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Abstract -We present a contribution about modeling of viscoplastic flows. For realistic applications such as numerical simulation of volcanic lava flows, the work focuses particularly on complex fluids whose rheology strongly depends on physical quantities such as temperature or the particle concentration. We develop a new numerical resolution algorithm of Herschel-Bulkley's equations combining an augmented Lagrangian method with variable augmentation parameter, a second order characteristic method and an auto-adaptive mesh procedure. On stationary or evolving problems as the lid-driven cavity flow benchmark, it provides an effective solution to ensure both a high numerical accuracy within a reasonable computing time. This algorithm is then extended and adapted to the case of non-isothermal rheological and suspensions. On the numerical simulation of volcanic lava flows, we describe a method of reducing by asymptotic analysis of the Herschel-Bulkley's equations for thin flows on arbitrary topography. It allows to describe the threedimensional flows of viscoplastic fluid with free surface by bidimensional surface equations. This approach is then extended to the non-isothermal case by adding the heat equation and thermal dependencies on rheology. By vertical integration of the heat equation, a two-dimensional model is maintained . The non-isothermal model is validated on a laboratory experiment of dome. Then, a numerical simulation is performed on a December 2010 Piton de la Fournaise lava flow from La Réunion island. In our view, the comparison gives satisfactory and encouraging results.

Résumé -Nous présentons une contribution autour de la modélisation des écoulements viscoplastiques. En vue d'applications réalistes telle que la simulation numérique des coulées de lave volcanique, le travail se concentre particulièrement sur les fluides complexes dont la rhéologie dépend fortement de grandeurs physiques telle que la température ou la concentration en particules. Nous développons un nouvel algorithme de résolution numérique des équations de Herschel-Bulkley combinant une méthode de Lagrangien augmenté à paramètre d'augmentation variable, une méthode des caractéristiques d'ordre 2 et une adaptation de maillage automatique. Sur des problèmes stationnaires ou en évolution tel que le problème test de la cavité entraînée, il apporte une solution efficace pour garantir à la fois une précision numérique élevée et un temps de calcul raisonnable. Cet algorithme est ensuite étendue et adapté au cas des rhéologies non-isothermes et aux suspensions. Concernant la simulation numérique des coulées de lave volcanique, nous détaillons une méthode de réduction par analyse asymptotique des équations de Herschel-Bulkley pour des écoulements de faible épaisseur sur une topographie arbitraire. Elle permet alors de décrire ces écoulements tridimensionnels de fluides viscoplastiques à surface libre par des équations bidimensionnelles surfaciques. Cette approche est ensuite étendue au cas non-isotherme en y ajoutant l'équation de la chaleur et des dépendances thermiques sur la rhéologie. Par intégration verticale de l'équation de la chaleur, on retrouve un modèle bidimensionnel. Le modèle non-isotherme est d'abord validé sur une expérience de dôme réalisée en laboratoire. Une simulation numérique est ensuite réalisée autour d'une coulée qui a eu lieu sur le volcan du Piton de la Fournaise à La Réunion, en décembre 2010. La comparaison donne des résultats qui sont de notre point de vue satisfaisants et encourageants.

Mots clés : modélisation ; simulation numérique ; inéquations variationnelles ; Lagrangien augmenté ; analyse asymptotique ; fluide viscoplastique ; fluide à seuil, Herschel-Bulkley ; Bingham, coulée de lave ; adaptation de maillage ; topographie arbitraire ; suspension ; fluide non-isotherme ; rhéologie ; Rhéolef. en silice et donc très fluides et libérant facilement leurs gaz volcaniques. À la sortie du cratère, la vitesse d'écoulement de la lave basaltique peut aller jusqu'à quelques dizaines de km/h et la température est comprise entre 900 °C et 1200 °C. Elle se refroidit ensuite lentement au contact de l'air, du sol ou de l'eau, perdant peu à peu de la vitesse. Pour les laves effusives formées à l'air libre, on distingue principalement deux types qui portent en volcanologie les noms que leur avaient déjà donnés les Hawaïens :

-les laves "pahoehoe" : ce terme hawaïen signifie qu'il est aisé de marcher sur la coulée quand elle est refroidie et solidifiée car sa surface est relativement plane, mimant parfois un amas de cordes ("lave cordée"). C'est une lave très fluide (voir fig. 3 (a)) ; -les laves 'a'a : laves en coulées à surface chaotique, hérissées de blocs basculés.

Ces laves progressent plus lentement, de quelques centaines ou dizaines de m/h (voir fig. 3 (b)) ;

Les laves effusives refroidies sous l'eau donnent quant à elles des "pillow lavas" ou "laves en coussin". Les éruptions effusives sont relativement calmes puisque lors de la remontée du magma dans la cheminée, les gaz n'ont aucun mal à s'échapper vers le cratère. Il n'y a donc aucune augmentation de pression pendant la remontée du magma, qui peut jaillir en fontaine de lave mais sans grandes explosions. Les coulées de lave formées peuvent s'étendre sur plusieurs kilomètres. L'écoulement est souvent canalisé et une partie de la lave peut aussi s'écouler dans un réseau de tunnels, en sub-surface. Exceptionnellement elle stagne dans le cratère et forme un véritable lac de lave. Lors d'une éruption effusive près d'une zone habitée, des dégâts matériels peuvent être constatés mais elles ne sont pas les plus dangereuses pour la population car la relative lenteur de ces coulées permet aux gens de fuir lors d'une éruption. Néanmoins, il est capital de comprendre et d'anticiper les risques occasionnés par les coulées de lave volcanique face à la croissance démographique que l'on observe dans les régions volcaniques (voir fig. 4). Les volcans effusifs sont généralement issus des points chauds comme ceux de Hawaii, le Piton de la Fournaise ou encore l'Etna. élevée du fait d'une forte teneur en silice, les gaz volcaniques atteignent difficilement la surface en se frayant un passage à travers le volcan et la pression dans la chambre magmatique augmente fortement. Si cette pression augmente au-delà du point de rupture des roches composant le volcan, une éruption explosive se déclenche par l'expulsion brutale du magma et des gaz. Il émet des coulées pyroclastiques, composées de cendres, de lapilli, de monceaux de lave brûlante et de lave visqueuse.

Très riche en silicate, très peu fluide, dure, cette lave s'accumule le plus souvent au sommet du volcan, créant ainsi un dôme de lave. Cette lave explosive peut aller à des températures de 1 000 °C à l'extérieur. Les coulées pyroclastiques peuvent être très dangereuses pour les populations humaines, notamment par leur rapidité, leur taille. Elles peuvent ensevelir et détruire une ville entière en quelques heures. De plus, ces coulées peuvent aller très loin par rapport à l'épicentre de l'éruption, ce qui augmente les chances de destruction d'une zone habitée près du volcan, même à des kilomètres de celui-ci. Les volcans explosifs se trouvent majoritairement à l'aplomb des zones de subduction et de collision continentale, notamment ceux de la ceinture de feu du Pacifique comme le Klioutchevskoï, le Merapi, le mont Unzen, le Pinatubo, le Mayon ou encore le mont Saint Helens mais aussi dans d'autres régions du monde comme le Vésuve ou la montagne Pelée.

Cette thèse a été réalisée en collaboration avec le laboratoire Géosciences de Saint Denis de La Réunion. L'île de La Réunion est située dans l'océan Indien et son volcan actif, le Piton de la Fournaise est un volcan issu d'un point chaud de type effusif.

Le travail proposé dans cette thèse se concentre avant tout sur la modélisation des coulées de laves basaltiques issues d'éruptions effusives et ne traite pas les problèmes liés au volcanisme explosif.

Rhéologie des laves

Les laves volcaniques sont des fluides complexes constituées principalement d'un mélange multiphasique de roches fondues, de cristaux solides et de bulles de gaz. La rhéologie des laves dépend directement de cette composition ainsi que de la température. Cette rhéologie évolue dans le temps avec les effets de refroidissement, des cristallisations, de nucléation, coalescence et de croissance des bulles de gaz. La viscosité de la phase liquide gouverne la micro-physique de la croissance, migration coalescence et déformation des bulles [START_REF] Manga | Interactions between bubbles in magmas and lavas : effects of bubble deformation[END_REF][START_REF] Manga | Rheology of bubble-bearing magmas[END_REF]. La viscosité macroscopique apparente de la lave résulte directement de la micro-physique entre les différentes phases du mélange. La teneur en cristaux des laves au moment de l'éruption peut s'étendre sur une importante plage de valeurs (elle est inférieur à 5% pour la plupart des laves basaltiques et rhyolites tandis qu'elle va de 30% à 50% pour les laves andésites et dacites) . La fraction de cristaux augmente ensuite au cours de l'écoulement, à mesure que l'on s'éloigne de la source éruptive (voir 5 (a) prise au microscope électronique ; [START_REF] Cashman | Cooling and crystallization of lava in open channels, and the transition of pāhoehoe lava to'a'ā[END_REF]). La fraction volumique des bulles peut être nulle ou de quelques Les expériences rhéologiques effectuées sur les laves [Sha69, MM84, PS92] et l'étude morphologique de réelles coulées de lave [START_REF] Hulme | The interpretation of lava flow morphology[END_REF][START_REF] Blake | Viscoplastic models of lava domes[END_REF][START_REF] Fink | Morphology, eruption rates, and rheology of lava domes : Insights from laboratory models[END_REF] suggèrent que dans une certaine plage de température, la dynamique macroscopique de la lave peut être approchée par un modèle de fluide viscoplastique : la présence de cristaux engendre une contrainte seuil. Si la contrainte exercée sur le fluide est inférieure à la contrainte seuil, le fluide se comporte comme un solide, au delà de cette contrainte, le fluide se déforme. Le modèle le plus simple pour décrire les fluides viscoplastiques est le modèle de Bingham [START_REF] Bingham | Fluidity and plasticity[END_REF]. Un modèle plus général de fluide non-newtonien est le modèle d'Herschel-Bulkley [START_REF] Herschel | Measurement of consistency as applied to rubber-benzene solutions[END_REF]. Il donne une description plus favorable sur des mesures rhéologiques de fluides viscoplastiques comme le sirop et les coulées de boue. Le modèle de Bingham est généralement suffisamment pour décrire les dynamiques des laves mais le modèle d'Herschel-Bulkley peut être plus approprié pour des laves riches en bulles qui ont tendance à rhéofluidifier la lave [START_REF] Manga | Interactions between bubbles in magmas and lavas : effects of bubble deformation[END_REF].

Influence de la température

La température θ a une influence déterminante sur la dynamique de la coulée puisque la viscosité (ou consistance) et la contrainte seuil en sont fortement dépendantes [START_REF] Johnson | Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, I : field observations, Gilbert's model, physical properties and flow of the magma[END_REF][START_REF] Pinkerton | Field measurements of the rheology of lava[END_REF][START_REF] Spera | Thermal boundary layer convection in silicic magma chambers : Effects of temperaturedependent rheology and implications for thermogravitational chemical fractionation[END_REF]. La dépendance de la viscosité peut être décrite par une loi d'Arrhénius :

η(θ) = η 0 e E a R ( 1 θ - 1 θ 0 ) ,
où θ 0 est une température initiale, η 0 = η(θ 0 ), E a une énergie d'activation et R la constante des gaz. Lorsque la température de la lave chute en dessous d'une certaine température θ l , que l'on appelle température de liquidus, la lave commence à cristalliser. Pour des températures inférieurs à θ l , on peut simplifier cette loi comme le propose Dragoni [START_REF] Dragoni | A dynamical model of lava flows cooling by radiation[END_REF] η(θ) = η l e a(θ l -θ) , θ < θ l .

Une loi semblable est également utilisée par Dragoni dans [START_REF] Dragoni | A dynamical model of lava flows cooling by radiation[END_REF] pour décrire la dépendance de la contrainte seuil en fonction de la température :

σ 0 (θ) = σ 0,0 e b(θ l -θ) -1 , θ < θ l .

Les constantes η l , σ 0,0 a et b peuvent être évaluées à partir des mesures de certains auteurs [Sha69, [START_REF] Mcbirney | Rheological properties of magmas[END_REF][START_REF] Pinkerton | Methods of determining the rheological properties of magmas at sub-liquidus temperatures[END_REF]. On trouve une estimation de ces constantes dans [START_REF] Dragoni | A dynamical model of lava flows cooling by radiation[END_REF].

Les laves basaltiques issues de volcans de point-chaud comme à Hawaii émergent à 1200 °C et à 1100 °C pour les volcans de l'océan Indien. La viscosité des laves basaltiques au moment de l'éruption est d'environ 10 2 -10 3 Pa s et et la contrainte seuil n'est pas très significative avant le refroidissement et la cristallisation [START_REF] Mcbirney | Rheological properties of magmas[END_REF]. D'un autre côté, les laves plus riches en silice et plus visqueuses sortent à environ 900 °C avec une viscosité de 10 5 -10 8 Pa s. Lorsque la lave atteint la surface terrestre à une température θ e dans un environnement à une température ambiante θ a , la différence de température θ eθ a implique d'importants flux de chaleur. Les pertes de chaleur sont principalement dues au rayonnement et à la convection dans l'air ainsi qu'a la diffusion de la chaleur dans le substratum. Enfin, la température agit directement sur l'état de solidification de la lave par cristallisation progressive et la chaleur latente nécessaire dans ce changement d'état peut être importante dans le bilan thermique. En particulier, le refroidissement en surface est rapide et une croûte solide se forme à la surface de la coulée. Cette croûte crée une couche limite isolante qui diminue les pertes de chaleur. Le gradient de température est alors principalement concentré dans la verticale.

Influence de la teneur en cristaux

La partie du magma en dessous de la température de liquidus θ l contient une certaine proportion de cristaux en suspension. Les propriétés de cette suspension sont gouvernées par deux valeurs limites de concentration : la concentration maximale de compaction φ m et la concentration minimale φ c pour laquelle la contrainte seuil 0.2. ÉTAT DE L'ART apparaît [Kri72,[START_REF] Wildemuth | A new interpretation of viscosity and yield stress in dense slurries : coal and other irregular particles[END_REF][START_REF] Zhou | Yield stress and maximum packing fraction of concentrated suspensions[END_REF]. La viscosité effective d'une lave contenant des cristaux est généralement estimée par l'équation d'Einstein-Roscoe [START_REF] Roscoe | The viscosity of suspensions of rigid spheres[END_REF] ou Krieger-Dougherty [START_REF] Krieger | A mechanism for non-Newtonian flow in suspensions of rigid spheres[END_REF] :

η = η 0 (1 -φ/φ m ) -φmε .
où ε l'effet d'interaction entre les cristaux. Pour des concentrations pas trop importantes, φ m ε ≈ 2.5. Différentes lois empiriques décrivant la relation entre le seuil de contrainte et la concentration en particules de la suspension sont proposées dans [START_REF] Pinkerton | Methods of determining the rheological properties of magmas at sub-liquidus temperatures[END_REF][START_REF] Zhou | Yield stress and maximum packing fraction of concentrated suspensions[END_REF]. Un modèle convenant est décrit par :

σ 0 (φ) =            +∞ si φ ≥ φ m , A φ/φ c -1 1 -φ/φ m 1/p si φ ∈]φ c , φ m [, 0 si φ ≤ φ c ,
qui est utilisé dans [HCM01, [START_REF] Wildemuth | A new interpretation of viscosity and yield stress in dense slurries : coal and other irregular particles[END_REF][START_REF] Zhou | Yield stress and maximum packing fraction of concentrated suspensions[END_REF]. A et p sont deux paramètres empiriques et φ c est une concentration minimale pour que le fluide devienne viscoplastique, en dessous de cette concentration, la quantité de cristaux est insuffisante pour créer un effet de blocage et le fluide est de type newtonien.

Parallèlement aux effets de cristallisation, plusieurs mesures expérimentales : Drever et Johnston [START_REF] Drever | The petrology of picritic rocks in minor intrusions-a hebridean group[END_REF][START_REF] Drever | Picritic minor intrusions. Ultramafic and related rocks[END_REF], Gibb [START_REF] Gibb | Flow differentiation in the xenolithic ultrabasic dykes of the Cuillins and the Strathaird Peninsula, Isle of Skye, Scotland[END_REF] et Simkin [START_REF] Simkin | The picritic sills of northwest Trotternish Isle of Skye, Scotland[END_REF][START_REF] Simkin | Flow differentiation in the picritic sills of north skye. Ultramafic and related rocks[END_REF] ont relevé que la dispersion des phénocristaux (gros cristaux visibles à l'oeil nu, d'un diamètre allant d'un millimètre à dix centimètres) n'était pas homogène, avec une concentration préférentielle des cristaux dans les zones les moins cisaillées. Par ses calculs [START_REF] Komar | Flow differentiation in igneous dikes and sills : profiles of velocity and phenocryst concentration[END_REF][START_REF] Komar | Mechanical interactions of phenocrysts and flow differentiation of igneous dikes and sills[END_REF], Komar suggère que dès lors que la concentration en phénocristaux dépasse les 5%, les intéractions entre les cristaux engendrent une importante dispersion qui permet d'expliquer les mesures expérimentales. Par ailleurs, les mesures de répartitions et de l'orientation des cristaux apportent aux géologues des informations essentielles sur l'histoire de la rhéologie du fluide [FDB + 04].

État de l'art

Le contexte rhéologique des coulées de lave volcanique m'a conduit à étudier au cours de cette thèse les points suivants :

-la modélisation des fluides viscoplastiques (isotherme et non-isotherme) ; -la modélisation des suspensions de particules (Newtonien et viscoplastique) ; -la réduction asymptotique d'écoulement viscoplastique de faible épaisseur (isotherme et non-isotherme). Je présente ici un état de l'art de chacun de ces points abordés afin de situer mes contributions.

La modélisation des fluides viscoplastiques

Les fluides viscoplastiques ont été introduits pour la première fois par Bingham [START_REF] Bingham | Fluidity and plasticity[END_REF] sous une forme simple. Le nom de ce modèle est resté par la suite très populaire. Il fut ensuite repris plus largement par Oldroyd [START_REF] Oldroyd | Two-dimensional plastic flow of a Bingham solid[END_REF], Prager [START_REF] Prager | On slow visco-plastic flow[END_REF], Mosolov et Miasnikov [START_REF] Mossolov | Variational methods in the theory of the fluidity of a viscous plastic medium[END_REF][START_REF] Mossolov | On stagnant flow regions of a viscous-plastic medium in pipes[END_REF] et Duvaut et Lions [START_REF] Duvaut | Inequalities in mechanics and physics[END_REF]. Parallèlement, des extensions plus complexes ont été développées comme le modèle de Herschel-Bulkley [START_REF] Herschel | Measurement of consistency as applied to rubber-benzene solutions[END_REF]. Ces fluides sont utilisés dans l'industrie et apparaissent aussi dans les écoulements naturels. Deux grandes classes de méthodes sont apparues pour modéliser numériquement les écoulements de fluides viscoplastiques : la régularisation et la minimisation par Lagrangien augmenté. Les travaux de Duvaut et Lions [START_REF] Duvaut | Inequalities in mechanics and physics[END_REF] ont amené à voir le problème de fluides viscoplastiques comme la minimisation d'une fonctionnelle non-différentiable. Les méthodes de régularisation consistent à remplacer la fonctionnelle nondifférentiable par une fonctionnelle différentiable qui tend avec un certain paramètre vers la fonctionnelle d'origine. Cette régularisation est faite en modifiant l'équation constitutive. La première utilisation de la méthode de régularisation apparaît dans [START_REF] Duvaut | Inequalities in mechanics and physics[END_REF] sur un problème viscoplastique comme partie d'une preuve constructive de l'existence et l'unicité d'une solution. La première suggestion d'utiliser la méthode de régularisation comme méthode numérique est faite par Glowinski et al. dans [START_REF] Glowinski | Analyse numérique des inéquations variationnelles[END_REF]. Il existe évidement une infinité de régularisation possible, les plus populaires sont dues à Bercovier et Engleman [START_REF] Bercovier | A finite-element method for incompressible non-Newtonian flows[END_REF] et à Papanastasiou [START_REF] Papanastasiou | Flows of materials with yield[END_REF]. La motivation première d'utiliser ces méthodes est qu'elles rentrent dans le cadre des fluides quasi-newtoniens qui sont plus simples à modéliser et qui nécessitent un coût de calcul moins important. Cependant, une première difficulté concerne le conditionnement des matrices intervenant dans les problèmes régularisés qui augmente lorsque l'on se rapproche du cas non-différentiel et les méthode de résolution pour les fluides quasi-newtoniens de type point fixe ou Newton se détériorent. De plus la stabilité et la convergence de la méthode n'est pas assurée pour les contraintes [START_REF] Frigaard | On the usage of viscosity regularisation methods for visco-plastic fluid flow computation[END_REF]. Une seconde difficulté est qu'il n'existe plus mathématiquement de zones rigides pour les problèmes régularisés. Ceci est gênant lorsque l'on souhaite justement prédire la localisation de ces zones : stabilité d'une fondation, départ ou arrêt d'un glissement de terrain, d'une avalanche, d'une coulée de lave ... Parallèlement à ces méthodes, une méthode de minimisation par Lagrangien augmenté est proposée par Fortin et Glowinski [START_REF] Fortin | Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems[END_REF] et reprise dans [START_REF] Glowinski | Numerical methods for nonlinear variational problems[END_REF][START_REF] Glowinski | Augmented Lagrangian and operator splitting methods in nonlinear mechanics[END_REF] pour résoudre directement le problème original non-différentiable. Le principe original de la méthode du Lagrangien augmenté existait déjà dans le cadre de problèmes de minimisations sous contraintes discrets [START_REF] Hestenes | Multiplier and gradient methods[END_REF][START_REF] Powell | A method for nonlinear constraints in minimization problems[END_REF][START_REF] Fletcher | Optimization[END_REF]. L'originalité dans [START_REF] Fortin | Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems[END_REF] est l'utilisation de ce formalisme adapté au cadre des équations aux dérivées partielles. Le modèle de Bingham est traité explicitement dans [START_REF] Fortin | Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems[END_REF][START_REF] Glowinski | Numerical methods for nonlinear variational problems[END_REF][START_REF] Glowinski | Augmented Lagrangian and operator splitting methods in nonlinear mechanics[END_REF] mais pas son extension de Herschlel-Bulkley. L'approche par Lagrangien augmenté n'a pas été utilisée ensuite jusqu'en 2001, où les travaux de Roquet et Saramito [START_REF] Saramito | An adaptive finite element method for viscoplastic fluid flows in pipes[END_REF][START_REF] Roquet | An adaptive finite element method for Bingham fluid flows around a cylinder[END_REF] ont montré l'intérêt de combiner cette approche 0.2. ÉTAT DE L'ART avec l'adaptation de maillage. La méthode du Lagrangien augmenté est très précise pour capturer les limites des zones rigides car elle est exacte mais elle nécessite généralement un temps de calcul plus important que pour les modèles régularisés.

La modélisation des suspensions de particules

Les suspensions sont des fluides di-phasiques constitués du mélange d'un solvant et de particules. Ces fluides sont très utilisés dans les procédés de fabrication industrielle, pour des matériaux composites, céramiques ou par exemple dans la composition du fuel pour fusée. La qualité d'un produit industriel dépend fortement de l'uniformité de la distribution des particules, ce qui encourage l'utilisation de la simulation numérique afin d'être capable de prévoir et comprendre la répartition des particules. Il y a eu plusieurs approches physiques et mathématiques pour tenter de décrire cette évolution de la répartition des particules dans un fluide newtonien en mouvement. On parle d'effet de migration. Des modèles d'approche directe de type Stokes (voir [START_REF] Brady | Microstructure of strongly sheared suspensions and its impact on rheology and diffusion[END_REF][START_REF] Sierou | Accelerated Stokesian dynamics simulations[END_REF]) ou de dynamique Brownienne (voir [START_REF] Fan | Simulation of fibre suspension flow with shear-induced migration[END_REF]) ont été réalisés avec succès dans la description de la micro-structure des suspensions mais ces méthodes sont très limitées en nombre de particules puisqu'on les modélise une à une, de l'ordre du millier, dues aux limites informatiques. Depuis, les approches macroscopiques continues comme le modèle de flux ou le modèle de suspension thermique sont devenues plus populaires car relativement simples et moins coûteuses en ressource informatique. En particulier le modèle de flux présenté pour la première fois dans par Phillips et al. dans [PAB + 92] en s'inspirant des travaux faits auparavant par Leighton et Acrivos dans [START_REF] Leighton | The shear-induced migration of particles in concentrated suspensions[END_REF], propose une description phénoménologique de la migration de particules au travers d'une équation de diffusion sur la densité volumique de particules φ. Ce modèle est ensuite repris et étendu par [KBL96, GMB98, KLK08, FMB + 02]. L'étude des suspensions de particules dans les fluides à seuil est moins documentée et son développement est plus récent. Le sujet intéresse de plus en plus les chercheurs ainsi que les industriels qui utilisent des pâtes granulaires comme le béton frais. On trouve de récents travaux expérimentaux et théoriques sur le sujet, bien résumé par Ovarlez et al. [START_REF] Ovarlez | Shear-induced sedimentation in yield stress fluids[END_REF] afin de développer des modèles rhéologiques et migratoires des particules dans un fluide à seuil. Le sujet étant encore en phase exploratoire, il n'existe actuellement pas, ou peu, de publications sur la modélisation numérique des suspensions dans un fluide à seuil.

La modélisation des écoulements de faible épaisseur

La modélisation tridimensionnelle des écoulements à surface libre soumis à la gravité est un problème complexe. Bien que des outils numériques existent de nos jours pour résoudre numériquement les équations complètes gouvernants les fluides newtoniens et non-newtoniens avec surface libre, la résolution de ce type de problèmes est relativement coûteuse, en particulier lorsque l'on s'intéresse à des problèmes longs dans le temps et de grandes amplitudes spatiales. Dans le contexte des fluides peu profonds, l'idée naturelle est alors d'exploiter cette spécificité pour dériver du problème 3D une version réduite bidimensionnelle, sous le prix d'un certain nombres d'hypothèses et ainsi bénéficier d'un temps de calcul bien plus raisonnable tout en gardant un modèle le plus fidèle possible au problème original. Il existe essentiellement deux techniques permettant cette réduction du 3D vers le 2D dans le contexte des fluides peu profonds : l'intégration dans l'épaisseur et l'analyse asymptotique.

La première utilisation historique de modèle réduit remonte sans doute à celui de Saint-Venant [START_REF] De Saint-Venant | Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leurs lits[END_REF] pour décrire l'écoulement des fluides inertiels peu profonds où les termes visqueux sont négligés à partir des équations de Navier-Stokes, en anglais on parle de "shallow water model". La technique employée consiste à supposer que la vitesse est constante dans la verticale, ou reliée à sa valeur moyenne par une relation de fermeture afin de simplifier les équations après intégration verticale. Ce modèle est de nos jours encore activement utilisé pour modéliser l'océan, le cours des rivières. Le terme "shallow water" est ensuite systématiquement repris lorsque cette méthode est employée. Plusieurs extensions visqueuses ont été proposées par Gerbeau et Perthame [START_REF] Gerbeau | Derivation of viscous Saint-Venant system for laminar shallow water ; numerical validation[END_REF], Marche [START_REF] Marche | Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects[END_REF] et Bresh et Desjardins [START_REF] Bresch | On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models[END_REF]. La viscosité est conservée au moyen d'une condition de friction sur la frontière inférieure du fluide, en contact avec la topographie. La méthode "shallow water" a été étendue au modèle d'Herschel-Bulkley dans [START_REF] Piau | Flow of a yield stress fluid in a long domain. Application to flow on an inclined plane[END_REF] et utilisée dans le contexte des coulées de boue [START_REF] Huang | A Herschel-Bulkley model for mud flow down a slope[END_REF][START_REF] Laigle | Numerical modeling of mudflows[END_REF] Une autre approche est proposée par Acary-Robert et al. dans [START_REF] Acary-Robert | A well-balanced finite volume-augmented Lagrangian method for an integrated Herschel-Bulkley model[END_REF] à partir des inéquations de viscoplasticité [START_REF] Duvaut | Inequalities in mechanics and physics[END_REF] réduites en deux dimensions. Une autre réduction asymptotique est proposée par Bouchut et al. dans [START_REF] Bouchut | A shallow model including static-flowing transition for viscoplastic Drucker-Prager materials[END_REF] et par Lusso dans [Lus13, chap. 3] pour les fluides viscoplastiques de type Drucker-Prager (rhéologie dépendante de la pression) et de faibles viscosités. Un autre courant s'est développé en parallèle afin de modéliser les écoulements peu profonds dont les effets de viscosité sont dominants. On parle de théorie de lubrification. L'idée est de faire une analyse asymptotique en fonction du rapport d'aspect, la ratio entre l'épaisseur et la longueur de l'écoulement, lorsque celui ci est très faible. Lorsque le fluide est laminaire, on obtient généralement avec ces modèles une description locale de la vitesse et de la pression directement à partir de la hauteur de fluide et des ses dérivées. Huppert [START_REF] Huppert | The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface[END_REF] a ainsi étudié les écoulements de fluides Newtoniens peu profonds à viscosité dominante. Il s'en est suivi diverses extensions pour des fluides visqueux plus complexes à rhéologie non-Newtonienne. La première approximation pour les fluides viscoplastiques de faible épaisseur est proposée par Liu et Mei [START_REF] Liu | Approximation equations for the slow spreading of a thin Bingham plastic fluid[END_REF] sur le problème d'ouverture de barrage sur un plan horizontal. Ce modèle fut ensuite revisité par Balmforth et Craster [START_REF] Balmforth | Viscoplastic flow over an inclined surface[END_REF] sur un plan incliné.

MES CONTRIBUTIONS

La volonté d'appliquer ces modèles à des problèmes naturels réels : coulée de boue, avalanche, coulée de lave, a conduit les auteurs à intégrer dans leur modèle la prise en compte d'une topographie quelconque, sans se restreindre à une géométrie bien particulière. Une écriture des équations de Saint Venant visqueux sur une topographie arbitraire est proposée par Boutounet et al. dans [START_REF] Boutounet | Shallow water viscous flows for arbitrary topopgraphy[END_REF] dans un système de repère curviligne. L'écriture dans un repère curviligne des équations de Saint Venant étendue au cas viscoplastique est également présenté par Ionescu dans [START_REF] Ionescu | Viscoplastic shallow flow equations with topography[END_REF] ainsi que le modèle viscoplastique asymptotique [START_REF] Bouchut | A shallow model including static-flowing transition for viscoplastic Drucker-Prager materials[END_REF].

Dans le cadre de la théorie de lubrification et des fluides à dominante visqueuse, seules quelques géométries bien particulières ont été étudiés. Des calculs sur des topographies tridimensionnelles à géométrie cylindrique ou sphérique ont été réalisés à l'aide de système de coordonnée adéquat : un canal cylindrique [START_REF] Mei | Slow flow of a Bingham fluid in a shallow channel of finite width[END_REF] et une surface conique [START_REF] Yuhi | Slow spreading of fluid mud over a conical surface[END_REF].

Dans le contexte des coulées de lave à surface libre, la dynamique étant principalement dominée par les effets de viscosité, les modèles développés se sont majoritairement orientés vers la théorie de lubrification, bien qu'il existe un modèle de type Saint Venant visqueux incluant des effets de température et de dissipation visqueuse Costa et Macedomio [START_REF] Costa | Numerical simulation of lava flows based on depth-averaged equations[END_REF]. La prise en compte de la température pour les modèles visqueux est proposée dans Bercovici et Lin [START_REF] Bercovici | A gravity current model of cooling mantle plume heads with temperature-dependent buoyancy and viscosity[END_REF] qui étudient le problème des plumes thermiques des points chauds dans le manteau terrestre avec des fluides Newtoniens. L'équation de température est moyennée dans l'épaisseur mais après intégration le modèle reste tridimensionnel. Bercovici et Lin proposent d'introduire une équation de fermeture et de supprimer un terme gênant apparu après intégration. Le modèle donne des résultats physiques intéressants (voir [START_REF] Garel | An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents : implications for thermal monitoring of lava flows and domes[END_REF] pour une application sur la modélisation des des dômes), mais est gênant d'un point de vue mathématique car, en supprimant un terme, la convergence asymptotique est perdue. Balmforth et al. proposent également dans [START_REF] Balmforth | Dynamics of cooling viscoplastic domes[END_REF] d'intégrer la température à leur modèle dans le problème de la modélisation des dômes de lave. Pour simplifier l'intégration de l'équation de la chaleur, la température est supposée constante dans la verticale.

Mes contributions

Plusieurs contributions ont été apportées au cour de ce travail de thèse dans le cadre de la simulation numérique des coulées de lave volcanique et plus généralement de la modélisation des fluides viscoplastiques. La première contribution de ce travail est la mise en oeuvre d'une méthode numérique pour la modélisation des fluides viscoplastiques. La méthode du Lagrangien augmenté est étendue au modèle de Herschel-Bulkley. La méthode proposée s'ap-pliquent aussi bien pour les problèmes stationnaires que pour les problèmes évolutifs, pour des fluides laminaires ou inertiels. De nouveaux résultats d'une grande précision numérique ont été établis sur le problème de la cavité entraînée, grâce notamment à des outils d'adaptation de maillage. Un grand nombre de simulation a été effectué sur le problème de la cavité pour étudier l'influence des différents paramètres physiques qui décrivent le modèle viscoplastique d'Herschel-Bulkley. Parallèlement, la méthode du Lagrangien augmenté a été accélérée en proposant d'utiliser une paramètre d'augmentation variable à progression géométrique. La vitesse de convergence passe d'un comportement linéaire en échelle log-log à un comportement linéaire en échelle semi-log (uniquement sur l'axe des ordonnées). Les temps de calcul s'en trouvent diminués très fortement. La seconde contribution est de proposer l'une des premières études numériques sur la migration de particules dans un fluide à seuil. Un algorithme de résolution du couplage entre les équations de viscoplasticité et de migration est développé à partir de la méthode du Lagrangien augmenté et d'une méthode du point fixe. De nouveaux résultats sont présentés sur le problème de Poiseuille évolutif pour des suspensions viscoplastiques dont la consistance et la contrainte seuil dépendent de la concentration en particules. Une troisième contribution est la réduction par analyse asymptotique des équations tridimensionnelles de l'écoulement à surface libre d'un fluide d'Herschel-Bulkley sur une topographie quelconque en un problème bidimensionnel surfacique. La prise en compte d'une topographie générale n'avait pas encore été proposée dans le cadre de l'approximation de lubrification. En complément à ce développement mathématique, de nouveaux outils numériques ont été proposés dans la simulation des écoulements à faible épaisseur comme un schéma en temps robuste, semi-implicite avec des pas de temps variables permettant de faire des simulations en temps long et une méthode d'adaptation de maillage pour suivre très finement l'évolution du front d'avancement de l'écoulement. Une quatrième contribution est la prise en compte dans le modèle réduit de l'équation de la chaleur et de la thermo-dépendance de la viscosité et de la contrainte seuil. Une nouvelle équation de fermeture pour la température est proposée afin de conserver la convergence asymptotique. De nouveaux calculs sont présentés avec ce modèle, une comparaison avec les mesures expérimentales de Garel [START_REF] Garel | An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents : implications for thermal monitoring of lava flows and domes[END_REF] et la simulation numérique d'une coulée de lave existante qui a eu lieue à La Réunion en 2010.

Plan de thèse

Ce document de thèse est articulé en deux parties.

La première partie, constituée de trois chapitres, concerne l'étude des équations de viscoplasticité complètes, sans régularisation ou développement asymptotique. Le premier chapitre présente les équations de Herschlel-Bulkley. Les équations sont 0.4. PLAN DE THÈSE dans un premier temps discrétisées en temps afin de traiter le terme d'inertie à l'aide de la méthode des caractéristiques. La succession de problèmes qui en découlent sont ensuite réécrits comme problèmes de minimisation équivalents obtenus à partir des inéquations variationnelles. Le chapitre s'intéresse ensuite à la résolution du problème de minimisation par la méthode du Lagrangien augmenté et se clôt par une résolution numérique du problème de la cavité entraînée. Différents outils numériques tels que l'adaptation de maillage sont présentés. Le second chapitre s'intéresse au couplage des équations de Herschel-Bulkley et de l'équation de la chaleur lorsque la rhéologie dépend de la température. Une méthode de résolution est proposée en mixant l'algorithme du Lagrangien augmenté et une méthode du point fixe. Des résultats numériques sont donnés sur le problème de l'écoulement d'un fluide en refroidissement dans un cylindre. Ils serviront de base de comparaisons avec les données proposées par Vinay et al. dans [START_REF] Vinay | Numerical simulation of nonisothermal viscoplastic waxy crude oil flows[END_REF] obtenues sur le même problème. Le troisième chapitre porte sur la modélisation des suspensions de particules et sur le couplage entre les équations de Herschel-Bulkley et une équation diffusive sur la migration des cristaux lorsque la rhéologie dépend de la densité de particules. Deux exemples numériques sont proposés sur les problèmes de Poiseuille et de Couette dans le cas des fluides newtoniens en reprenant le modèle de suspension de [PAB + 92]. Ce chapitre explore ensuite la modélisation des suspensions viscoplastiques. Un algorithme analogue à celui du chapitre 2 est proposé pour résoudre ce problème en mixant la méthode du Lagrangien avec celle du point fixe. Des résultats sont donnés sur le problème de Poiseuille en testant différentes lois rhéologiques de dépendance en particules.

La seconde partie, constituée de deux chapitres, concerne la modélisation d'écoulements viscoplastiques gravitaires à surface libre peu profonds. Le quatrième chapitre, qui à fait l'objet d'une publication [START_REF] Bernabeu | Numerical modeling of non-newtonian viscoplastic flows : part II. Viscoplastic fluids and general tridimensional topographies[END_REF], se limite au cadre des écoulements isothermes et présente en détail la réduction asymptotique sous les approximations de lubrification des équations tridimensionnelles de Herschel-Bulkley sur une topographie arbitraire. La méthode de résolution numérique est ensuite présentée (discrétisation en temps et en espace, méthode du point fixe pour gérer les non-linéarités, adaptation de maillage pour suivre très précisément le front d'avancement du fluide). Deux simulations basées sur des expériences réalisées en laboratoire sont présentées afin de comparer prévision numérique et mesures expérimentales : un dôme de Kaolin qui s'étale sur un plan incliné [START_REF] Balmforth | Viscoplastic flow over an inclined surface[END_REF], une ouverture de réservoir tridimensionnelle (en anglais "dam break problem") à base de Carbopol sur un plan incliné [START_REF] Ancey | The dam-break problem for Herschel-Bulkley viscoplastic fluids down steep flumes[END_REF]. Une section qui n'est pas dans l'article [START_REF] Bernabeu | Numerical modeling of non-newtonian viscoplastic flows : part II. Viscoplastic fluids and general tridimensional topographies[END_REF] vient s'ajouter à la fin du chapitre et propose une nouvelle méthode de résolution de la non-linéarité des équations réduites à l'aide de l'algorithme de Newton. Une comparaison est faite avec la méthode du point fixe. Le cinquième chapitre, qui fait actuellement l'objet d'un papier soumis [START_REF] Bernabeu | A new shallow approximation for tridimensional non-isothermal viscoplastic lava flows[END_REF], gé-néralise l'analyse du chapitre 4 au cadre des fluides viscoplastiques non-isothermes. Sous certaines hypothèses, un modèle réduit bidimensionnel est construit par analyse asymptotique et intégration dans l'épaisseur. Une première comparaison est faite sur les expériences de Garel [START_REF] Garel | An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents : implications for thermal monitoring of lava flows and domes[END_REF] (refroidissement et étalement d'un dôme d'huile de silicone alimenté sur un plan horizontal) entre simulations numériques et mesures expérimentales. Une seconde comparaison est faite sur la simulation numérique d'une réelle coulée de lave qui eu lieu en décembre 2010 sur Piton de la Fournaise à La Réunion.

Première partie

Modèle de fluides viscoplastiques

Chapitre 1 

Fluides viscoplastiques isothermes

Conservation de la masse

Le principe de la conservation de la masse postule qu'il n'y a ni apparition ni disparition de matière. On considère un fluide qui occupe un volume Ω, un domaine ouvert borné de R 3 . Introduisant les notations suivantes :

• ρ(t, x) la densité au point x = (x 1 , x 2 , x 3 ) à l'instant t, CHAPITRE 1. FLUIDES VISCOPLASTIQUES ISOTHERMES
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• u(t, x) = (u i (t, x)) 1≤i≤3 la vitesse au point x à l'instant t. 

d dt V ρ(t, x) dv = - ∂V ρ(t, x)u(t, x) • n(x) ds
où n est la normale unitaire sortante à V sur ∂V. Rappelons la formule de Green-Ostrogradski :

∂V v • n ds = V div v dv, ∀v ∈ (H 1 (V)) 3
et appliquons cette formule au membre de droite de l'équation de conservation de la masse, avec v = ρ(t, .)u(t, .). Après permutation de la dérivation en temps et de l'intégrale sur V dans le membre de gauche, il vient :

V ∂ρ ∂t + div(ρu) dv = 0.
Cette relation étant vraie pour tout voisinage V d'un point quelconque x de l'ouvert Ω et à tout instant t d'un intervalle de temps ]0, T [, nous obtenons une expression locale de la conservation de la masse :

∂ρ ∂t + div(ρu) = 0 dans ]0, T [×Ω.
(1.1)

Conservation de la quantité de mouvement

Pour un corps matériel supposé ponctuel, la quantité de mouvement est le produit de la masse par le vecteur vitesse, elle est définie par p = mu, qui dépend du référentiel 

p(t) = V(t) j p (t, x) dv = V(t)
ρ(t, x)u(t, x) dv à l'instant t. On entend par volume matériel un ensemble de particules en mouvement que l'on représente par un volume qui se déforme au cours du temps. La conservation de la quantité de mouvement exprime le fait que l'action d'une force extérieure sur tout système matériel de fluide V(t) ⊂ Ω conduit à une variation de sa quantité de mouvement :

dp dt = F ex .
Rappelons le théorème de transport de Reynolds qui permet de permuter la dérivation en temps avec une intégrale sur un domaine dépendant du temps :

pour tout volume matériel V(t) et tout champ scalaire f ∈ H 1 (V(t)), d dt V(t) f (t, x) dv = V(t) ∂f ∂t + div (f v) (t, x) dv.
On peut aisément étendre cette formule à tout champ de vecteurs f ∈ (H 1 (V(t))) 3 ,

d dt V(t) f (t, x) dv = V(t) ∂f ∂t + div (f ⊗ v) (t, x) dv.
où f ⊗ v est la notation pour le tenseur de composante (f i v j ) (1≤i,j≤3) et où pour tout tenseur τ , on définit sa divergence par :

div τ = 3 j=1 ∂τ ij ∂x j 1≤i≤3
Ainsi, div τ est un champ de vecteurs, à trois composantes. Afin d'éviter toute ambiguïté avec la divergence d'un champ de vecteurs div v, l'opérateur divergence d'un tenseur est noté en caractère gras.

On peut alors écrire le terme dp dt autrement en appliquant le théorème de transport avec f = ρ(t, .)u(t, .) :

dp dt = V(t) ∂(ρu) ∂t + div (ρu ⊗ u) (x, t) dv.
Les forces extérieures F ex exercées sur le volume matériel V(t) sont de deux sortes :

• Les forces externes, dues à la gravité :

V(t)
ρg(t, x) dv où g est le vecteur gravité, supposé constant. Nous négligerons ici les autres forces, telle que la force de Coriolis ou les forces dues aux effets magnétiques. • Les forces internes, dues aux déformations du fluide :

∂V(t)
σ tot (t, x)n(x) dv où σ tot est le tenseur symétrique des contraintes totales.

La notation σ tot n représente un champ de vecteurs issu du produit tenseur-vecteur, de composantes :

(σ tot n) i = 3 j=1 σ ij n j , 1 ≤ i ≤ 3.
En utilisant la version tensorielle de la formule de Green-Ostrogradski

∂V(t) τ n ds = V(t) div τ dv, ∀τ ∈ (H 1 (V(t))) 3×3
au tenseur σ tot (t, .), la conservation de la quantité de mouvement devient :

V(t) ∂(ρu) ∂t + div (ρu ⊗ u) -div σ tot -ρg dv = 0.
Cette relation étant vraie pour tout volume matériel de l'ouvert Ω, à tout instant t, nous obtenons une expression locale de la conservation de la quantité de mouvement :

∂(ρu) ∂t + div (ρu ⊗ u) -div σ tot -ρg = 0 dans ]0, T [×Ω. (1.2)
On peut développer cette équation :

ρ ∂u ∂t + (u.∇)u +u. ∂ρ ∂t + ρ div(u) + u.∇ρ -div σ tot -ρg = 0 dans ]0, T [×Ω,
où pour tout vecteur f , (u.∇)f est la notation du vecteur de composantes

((u.∇)f ) i = 3 j=1 u j ∂f i ∂x j , 1 ≤ i ≤ 3.
En utilisant l'équation de conservation de la masse (5.1b), on peut finalement écrire l'équation (1.2) sous une forme alternative :

ρ ∂u ∂t + (u.∇)u -div σ tot -ρg = 0 dans ]0, T [×Ω.
(1.3) 

Loi de comportement

Commençons par introduire quelques définitions. Tout d'abord, définissons la trace d'un tenseur τ :

tr(τ ) = 3 j=1 τ ii
On peut alors décomposer le tenseur τ en une somme de deux parties, 1 3 tr(τ )I, appelée partie sphérique et τ -1 3 tr(τ )I, appelée partie déviatrice, où I représente le tenseur identité (δ ij ) 1≤i,j≤3 et δ ij le symbole de Kronecker.

La partie sphérique du tenseur des contraintes totales permet d'introduire le champ de pression :

p = - 1 3 tr(σ tot ).
La partie déviatrice du tenseur des contraintes totales est notée σ, si bien que :

σ tot = -pI + σ. (1.4)
La loi de comportement exprime une relation entre la partie déviatrice du tenseur des contraintes totales et le tenseur des gradients de vitesse ∇u :

(∇u) ij = ∂u i ∂x j , 1 ≤ i, j ≤ 3.
Dans le cas le plus simple des équations de Navier-Stokes, le fluide considéré est supposé newtonien, c'est à dire que la loi de comportement est linéaire :

σ = 2ηD(u) - 2η 3 div(u)I (1.5)
où η est une constante positive appelée viscosité et D(u) est la partie symétrique du tenseur de gradient de vitesses :

D(u) = ∇u + ∇u T 2 .
Le tenseur D(u) est aussi appelé tenseur des taux de déformation. Remarquons que tr(D(u)) = div u, si bien que l'expression du membre de droite de (1. 

τ : δ = 3 i,j=1 τ ij δ ij .
On choisira plutôt comme produit scalaire usuel pour des tenseurs symétriques la grandeur τ : δ 2 . On peut alors définir une norme associée à ce produit scalaire par

|τ | 2 = τ : τ 2 = 1 2 3 i,j=1 τ 2 ij = 1≤i≤j≤3 τ 2 ij .
La loi de comportement des fluides viscoplastiques est généralement obtenue à partir de l'énergie de dissipation D. On appelle fluide de Herschel-Bulkley (voir [START_REF] Herschel | Measurement of consistency as applied to rubber-benzene solutions[END_REF] pour la première apparition du modèle en scalaire) le matériau pour lequel la fonction de dissipation D ne dépend que du tenseur des taux de déformation et des données, c'est à dire D = D(D(u)), et qui est donnée par :

D(G) = K 1 + n |2G| n+1 + σ 0 |2G|, ∀G ∈ S 3 (R) (1.9)
avec K > 0, n > 0 et σ 0 ≥ 0 qui sont les paramètres du modèle (voir [START_REF] Hohenemser | Über die ansätze der mechanik isotroper kontinua[END_REF] pour cette première écriture vectoriel) . On appelle la constante K la consistance du fluide, n l'indice de puissance et σ 0 la contrainte seuil. Lorsque σ 0 = 0, on parle d'un modèle en loi de puissance et de fluides quasi-newtoniens, si de plus n = 1, le modèle correspond au modèle de Navier-Stokes et la consistance K coïncide avec la viscosité η. Pour n = 1 et σ 0 > 0 ce modèle s'appelle modèle de Bingham (voir [START_REF] Bingham | Fluidity and plasticity[END_REF]).

La difficulté dans ce modèle est que l'énergie de dissipation D n'est pas différentiable dès que σ 0 = 0. Par contre elle est convexe et on peut ainsi définir son sous-différentiel :

Définition 1.3.1. On appelle le sous-différentiel d'une fonction convexe J en G ∈ S 3 (R) l'ensemble :

∂J(G) = {σ ∈ S 3 (R); J(χ) -J(G) ≥ σ : (χ -G), ∀χ ∈ S 3 (R)}. (1.10) D(G) |G 0 | ∂D(G 0 ) ∋ 0 γ = |G| D(G) |G 0 | ∂D(G 0 ) / ∈ 0 γ = |G| Figure 1.2 -Minimisation d'une énergie non-différentiable : (gauche) 0 ∈ D(G 0 ) ; (droite) 0 / ∈ D(G 0 ) .
Cette définition illustre le fait que toutes les tangentes possibles en (G, J(G)) sont situées sous la courbe convexe. Dans le cas d'une fonction de R dans R, cette notion se simplifie, si J est dérivable à gauche et à droite en

G 0 alors ∂J(G 0 ) = [J ′ -(G 0 ), J ′ + (G 0 )] (voir figure 1.2). Propriété 1.3.1. Soit G ∈ S 3 (R), le sous-différentiel de D vérifie : ∂D(G) =    σ = K|2G| -1+n 2G + σ 0 2G |2G| si G = 0, {σ, |σ| ≤ σ 0 } sinon.
Démonstration. Décomposons l'énergie de dissipation D = D 1 + D 2 avec :

D 1 (G) = K 1 + n |2G| 1+n , D 2 (G) = σ 0 |2G|, ∀G ∈ S 3 (R).
La première partie D 1 est différentiable : son sous-différentiel ne contient qu'un seul élément et ∂D 1 (G) = {K|2G| -1+n 2G}. Ainsi,

∂D(G) = {σ = K|2G| -1+n 2G + τ, τ ∈ ∂D 2 (G)}
La deuxième partie est différentiable lorsque G = 0 et correspond à la dérivée usuelle, mais elle n'est pas différentiable en G = 0, elle contient un ensemble de valeurs :

∂D 2 (G) =    σ = σ 0 2G |2G| si G = 0, {σ, |σ| ≤ σ 0 } sinon.
En effet, lorsque G = 0, soit σ tel que |σ| ≤ σ 0 et χ ∈ S 3 (R), alors par l'inégalité de

Cauchy-Schwarz, σ : 2χ 2 ≤ |σ||2χ| ≤ σ 0 |2χ|, c'est à dire σ ∈ ∂D 2 (0). Et réciproque- ment, soit σ ∈ ∂D 2 (0) alors ∀χ ∈ S 3 (R), σ : χ ≤ σ 0 |2χ|. En particulier, pour χ = σ 2 1.4. PROBLÈME AUX LIMITES
on a |σ| ≤ σ 0 . Finalement, on a bien :

∂D(G) =    σ = K|2G| -1+n 2G + σ 0 2G |2G| si G = 0, {σ, |σ| ≤ σ 0 } sinon.
Par définition, un fluide incompressible est de type Herschel-Bulkley si σ ∈ ∂D(D(u)).

Remarquons que la norme du déviateur des contraintes |σ| s'exprime assez simplement en fonction de celle des taux de déformation |2D(u)| (voir figure 1.3) : 

|σ| = K|2D(u)| n + σ 0 si 2D(u) = 0, |σ| ≤ σ 0 sinon. 0 σ 0 K + σ 0 0 1 |σ| γ = |2D(u)| n = 0.3 n = 0.6 n = 1.0 n = 2.0 Figure 1.3 -
σ = K|2D(u)| -1+n 2D(u) + σ 0 2D(u) |2D(u)| si |2D(u)| = 0, |σ| ≤ σ 0 sinon, ρ ∂u ∂t + (u.∇)u -div σ + ∇p = f dans ]0, T [×Ω, div u = 0 dans ]0, T [×Ω, u = u Γ sur ]0, T [×∂Ω, u(t = 0) = u init dans Ω.
où f sont les forces extérieures (gravité, etc) données de même que les conditions aux bords et initiales u Γ et u init . Nous allons voir que la méthode développée par la suite pour résoudre ce type de problème nécessite au préalable de discrétiser le terme d'inertie u • ∇u. Nous allons pour cela utiliser la méthode des caractéristiques.

Discrétisation en temps par la méthode des caractéristiques

Dans l'optique de faire de la simulation numérique par éléments finis, le choix de la méthode utilisée pour discrétiser en temps les équations d'évolution avec un terme d'advection porte sur la méthode des caractéristiques introduite par O. 

X(t m+1 , x) -X(t m , x) ∆t = u(t m+1 , X(t m+1 , x)) + O(∆t).
En utilisant X(t m+1 , x) = x, il vient :

X(t m , x) = x -∆tu(t m+1 , x) + O(∆t).
Comme u est une inconnue dans notre cas, on utilisera plutôt un schéma d'Euler semi-implicite d'ordre 1 :

X(t m+1 , x) -X(t m , x) ∆t = u(t m , X(t m+1 , x)) + O(∆t).
Il vient alors

X(t m , x) = x -∆tu(t m , x) + O(∆t).
Notons X m (x) = x -∆tu(t m , x) l'approximation de X(t m , x).

Introduisons la dérivée totale d'une quantité ϕ :

dϕ dt = ∂ ∂t {ϕ(t, X(t, x))} = ∂ϕ ∂t + (u.∇)ϕ.
La dérivée totale de ϕ à l'instant t m+1 est approchée par l'expression de type différences finies suivante (voir figure 1.5) : 

dϕ dt (t m+1 , x) = ϕ(t m+1 , x) -ϕ(t m , X m (x)) ∆t + O(∆t
dϕ dt (t m+1 , x) = 3ϕ(t m+1 , x) -4ϕ(t m , X m (x)) + ϕ(t m-1 , X m-1 (x)) 2∆t + O(∆t 2 ), où X m = x -∆tu * (x), X m-1 = x -2∆tu * (x), u * (x) = u m (x) -u m-1 (x).
Nous utiliserons ce schéma pour plus de précisions .Nous pouvons construire par récurrence les suites

(σ m ) 0≤m≤M , (u m ) -1≤m≤M et (p m ) 0≤m≤M où σ m (x) ≈ σ(t m , x), u m (x) ≈ u(t m , x) et p m (x) ≈ p(t m , x
) sont respectivement des approximations des contraintes, de la vitesse et de la pression :

Algorithme 1.5.1 (schéma BDF2).

initialisation (m = -1; 0) : u -1 = u 0 := u init sont donnés boucle en temps (m ≥ 0) : u m-1 et u m étant connus, trouver σ m+1 , u m+1 et p m+1 dans Ω tels que

   σ m+1 = K|2D(u m+1 )| -1+n 2D(u m+1 ) + σ 0 2D(u m+1 ) |2D(u m+1 )| si |2D(u m+1 )| = 0, |σ m+1 | ≤ σ 0 sinon, 1.6. EXEMPLE : ÉCOULEMENT DE POISEUILLE PLAN EN STATIONNAIRE 3ρ 2∆t u m+1 -div σ m+1 + ∇p m+1 = f + 4ρ 2∆t u m • X m - ρ 2∆t u m-1 • X m-1 dans Ω, div u m+1 = 0
dans Ω, 

u m+1 = u Γ (t
σ xz (x) = K|u ′ (x)| -1+n u ′ (x) + σ 0 u ′ (x) |u ′ (x)| si |u ′ (x)| = 0, |σ xz | ≤ σ 0 sinon, -σ ′ xz -f = 0 dans ] -L, L[, u(-L) = u(L) = 0
Écrivons un problème équivalent sans dimension. On se donne une contrainte représentative Σ = f L et une vitesse représentative U telle que K(U/L) n = Σ et on effectue le changement d'inconnues :

x = Lx, u = U ũ, σ xz = Σσ xz
Le système se réduit à un problème avec seulement deux paramètres n et le nombre de Bingham Bi = σ 0 /(f L). Comme il n'y a plus d'ambiguïté, on omet les tildes : trouver σ xz , u définis dans ] -1, 1[ tels que : 

σ xz (x) = |u ′ (x)| -1+n u ′ (x) + Bi u ′ (x) |u ′ (x)| si |u ′ (x)| = 0, |σ xz | ≤ Bi sinon, -σ ′ xz -1 = 0 dans ] -1, 1[, u(-1) = u(1) = 0 0 0.1 0.2 0.3 -Bi 0 Bi 1 n = 2.0 n = 1.5 n = 1.0 n = 0.5 n = 0.2
u(x) = n 1 + n (1 -Bi) 1+ 1 n -max (0, |x| -Bi) 1+ 1 n (1.11)
Cette solution est représentée sur la figure 1.6. 

Formulation variationnelle

F = f + 4ρ 2∆t u m • X m - ρ 2∆t u m-1 • X m-1 .
Utilisons la décomposition l'énergie de dissipation D = D 1 + D 2 avec :

D 1 (G) = K 1 + n |2G| 1+n D 2 (G) = σ 0 |2G|, ∀G ∈ S 3 (R).
La première partie D 1 est différentiable : son sous-différentiel ne contient qu'un seul élément et ∂D 1 (G) = {K|2G| -1+n 2G}. Ainsi, on obtient successivement :

∂D(G) = {σ = K|2G| -1+n 2G + τ, τ ∈ ∂D 2 (G)} ⇐⇒ ∂D 2 (G) = {τ = -K|2G| -1+n 2G + σ, σ ∈ ∂D(G)}
De la convexité de D 2 et par définition du sous-différentiel ∂D 2 (G), on obtient pour tout G ∈ S 3 (R) de trace nulle, et σ ∈ ∂D(G) que : (1.12) où l'on a posé :

D 2 (χ) -D 2 (G) ≥ (-K|2G| -1+n 2G + σ) : (χ -G), ∀χ ∈ S 3 (R) et tr(χ) = 0.
j(χ) = Ω σ 0 |χ|dx
On introduit les espaces suivants :

V (g) = {v ∈ W 1,s (Ω) 3 ; u |∂Ω = g}, pour tout g ∈ W 1-1 s ,s (∂Ω) 3 , K(g) = {v ∈ V (g); div(v) = 0}, X = L s (Ω) et X * = L s * (Ω), V = X 3 et V * = X * 3 , T = S 3 (X) et T * = S 3 (X * ), où s = max(1 + n, 2) et s * = s s -1 de tels sorte que 1/s + 1/s * = 1.
En multipliant la conservation de la quantité de mouvement par vu s'annulant sur le bord (i.e. élément de V (0)) et en intégrant par parties :

α Ω u.(v -u)dx + Ω σ : (D(v -u)) dx - Ω p div(v -u) dx = Ω F • (v -u) dx ,
en supposant que σ ∈ T * , p ∈ X * et F ∈ V * pour assurer l'existence de chaque intégrale par l'inégalité de Hölder.

En ajoutant cette équation à l'inéquation variationnelle (1.12), et en incorporant la relation d'incompressibilité, il vient la formulation variationnelle du problème :

(FV1) : trouver u ∈ V (u Γ ) et p ∈ X * tels que :

α Ω u.(v -u) dx + 2K Ω (|2D(u)| -1+n D(u)) : (D(v -u)) dx + j(2D(v)) -j(2D(u)) - Ω p div(v -u) dx ≥ Ω F • (v -u) dx - Ω q div(u) dx = 0 ceci pour tout v ∈ K(u Γ ) et q ∈ X * .
Il est possible d'écrire de façon équivalente ce problème sur le noyau de l'opérateur divergence :

(FV1) : trouver u ∈ K(u Γ ) tel que :

α Ω u.(v -u) dx + 2K Ω (|2D(u)| -1+n D(u)) : (D(v -u)) dx+j(2D(v)) -j(2D(u)) ≥ Ω F • (v -u) dx ceci pour tout v ∈ K(u Γ ).
Cette formulation variationnelle est élégante mais si l'on veut résoudre le problème, on doit récrire cette inéquation non-linéaire sur des espaces de dimension finie, on obtient un système d'inéquation de grande taille très difficile à résoudre, c'est pourquoi nous allons donner dans la section suivante un problème de minimisation équivalent plus simple à résoudre.

Méthode du Lagrangien augmenté

Il est développé dans [START_REF] Fortin | Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems[END_REF] un cadre général de problèmes de minimisation qui peuvent être résolus par une méthode de Lagrangien augmenté. Cette méthode s'applique en particulier aux équations de Herschel-Bulkley. Nous allons détailler précisément dans cette section cette méthode sur le problème considéré.

Problème de minimisation équivalent à (FV1)

La plupart des résultats qui suivent s'appuient sur un lemme très utile, démontré dans [DL76, p. 285], que nous énonçons tout de suite, adapté à notre cadre :

1.8. MÉTHODE DU LAGRANGIEN AUGMENTÉ Lemme 1.8.1. Soient J 1 et J 2 deux fonctionnelles convexes, propres, s.c.i., définies sur V (u Γ ), J 1 étant différentiable, alors minimiser J 1 + J 2 équivaut à trouver u ∈ V (u Γ ) vérifiant :

dJ 1 (u)(v -u) + J 2 (v) -J 1 (u) ≥ 0, ∀v ∈ V (u Γ ).
Théorème 1.8.1. Soit u dans K(u Γ ), u est une solution de (FV1) si et seulement si

(Q) : u = arg min v∈K(u Γ ) J (v) avec J (v) = α 2 Ω |v| 2 dx + Ω D(D(v)) dx - Ω F • v dx = α 2 Ω |v| 2 dx + K 1 + n Ω |2D(v)| 1+n dx + σ 0 Ω |2D(v)| dx - Ω F • v dx
De plus, comme la fonctionnelle J est clairement continue, propre strictement convexe et qu'elle vérifie :

lim v →+∞ J (v) = +∞ ,
on sait qu'il existe un unique minimum, et donc l'existence et l'unicité de la solution du problème (FV1).

Démonstration. Supposons que u = arg min

v∈K(u Γ ) J (v). Notons pour tout v ∈ K(u Γ ), J (v) = J 1 (v) + j(v) où : J 1 (v) = α 2 Ω |v| 2 dx + K 1 + n Ω |2D(v)| 1+n dx - Ω F • v dx.
Les fonctionnelles J 1 et j sont convexes, propres, s.c.i. et J 1 est différentiable. De plus

dJ 1 (u)(v) = α Ω u.v dx + 2K Ω |2D(u)| -1+n D(u) : D(v) dx - Ω F • v dx
En appliquant le lemme à J = J 1 +j sur K(u Γ ), J est minimale en u si et seulement si u vérifie l'inéquation variationnelle (FV1).

Algorithme de Fortin-Glowinski

La recherche du minimum de la fonctionnelle J n'est pas simple, car dès lors que σ 0 = 0, elle n'est pas différentiable. Il faut donc utiliser des techniques de l'optimisation convexe. Un algorithme de minimisation a été proposée par Fortin et Glowinski dans [START_REF] Fortin | Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems[END_REF] et repris par Glowinksi et P. Le Tallec dans [START_REF] Glowinski | Augmented Lagrangian and operator splitting methods in nonlinear mechanics[END_REF]. L'idée de leur méthode est de séparer la partie non-différentiable du reste en introduisant une variable supplémentaire γ vérifiant la relation γ = 2D(u). Notons :

J (v) = F (D(v)) + G(v), ∀v ∈ V (u Γ ), où F (δ) = K 1 + n Ω |δ| 1+n dx + σ 0 Ω |δ| dx, ∀δ ∈ T, G(v) = α 2 Ω |v| 2 dx - Ω F • v dx, ∀v ∈ V (u Γ ), et W (u Γ ) = {(v, δ) ∈ V (u Γ ) × T ) | δ = 2D(v)}.
Les fonctionnelles F et G sont convexes et G est différentiable. Le problème de minimisation (Q) est clairement équivalent au problème :

min (v,δ)∈W (u Γ ) F (δ) + G(v).
(1.13)

On peut alors voir le problème (1.13) comme un problème de minimisation sous-contrainte, où la contrainte est justement la relation 2D(u)γ = 0. Il est alors naturel d'introduire un multiplicateur de Lagrange σ ∈ S 3 (R) associé à la contrainte 2D(u)γ = 0. Les résultats théoriques montrent que le multiplicateur va coïncider avec le déviateur des contraintes, on le note donc dès maintenant σ.

On peut également traiter la conservation de masse div u = 0 comme contrainte associée à un multiplicateur de Lagrange p (qui vas coïncider avec la pression). Le Lagrangien associé s'écrit donc

L(u, γ; p, σ) = F (γ) + G(u) - Ω p div u dx + 1 2 Ω σ : (2D(u) -γ) dx .
Le problème initial devient une minimisation sous contraintes qui se formule comme le point-de-selle du Lagrangien, au vue du résultat suivant :

Théorème 1.8.2. Si (u, γ; p, σ) est point-de-selle de L, i.e.

(u, γ; p, σ) = arg inf

(v,δ)∈V (u Γ )×T sup (q,τ )∈X * ×T * L(v, δ; q, τ ) , alors u est solution du problème (Q) et on a γ = 2D(u).
La démonstration de ce théorème peut être trouvée dans [Glo84, chap. 6] dans le cadre général pour un multiplicateur de Lagrange. La démonstration étant intéressante pour comprendre la méthode, elle est retranscrite ici dans une version adaptée au problème traité avec deux multiplicateurs de Lagrange (p et σ).

Démonstration. Soit (u, γ; p, σ) ∈ V (u Γ ) × T × X * × T * un point-de-selle de L, alors par définition :

1.8. MÉTHODE DU LAGRANGIEN AUGMENTÉ ∀(v, δ; q, τ ) ∈ V (u Γ ) × T × X * × T *
L(u, γ; q, τ ) ≤ L(u, γ; p, σ) ≤ L(v, δ; p, σ) .

(1.14) De l'inégalité de gauche de (1.14), on a :

∀(q, τ ) ∈ X * × T * , Ω τ : (2D(u) -γ) dx - Ω q div u dx ≤ Ω σ : (2D(u) -γ) dx - Ω p div u dx , soit encore Ω (τ -σ) : (2D(u) -γ) dx + Ω (p -q) div u dx ≤ 0 , ∀(q, τ ) ∈ X * × T * .
En appliquant cette inégalité avec τ = σ + 2D(u)γ et q = p -div u, on obtient γ = 2D(u) et div u = 0, autrement dit u ∈ K(u Γ ). En appliquant ces deux relations, l'inégalité de droite donne :

J (u) ≤ L(v, δ; p, σ), ∀(v, δ) ∈ V (u Γ ) × T.
En particulier, pour v ∈ K(u Γ ) et δ = D(v), on obtient :

J (u) ≤ J (v).
ce qui prouve que u est solution du problème (Q).

Une difficulté est apparue avec l'utilisation du Lagrangien, L a une dépendance principalement linéaire en v. Seul le terme α 2 Ω |v| 2 dx est quadratique mais il tend à être proche de zéro dans la pratique car la valeur α est directement liée au pas de temps de la discrétisation, qui peut même être nulle si l'on étudie des problèmes en régime stationnaire. Pour assurer un comportement quadratique et faciliter la recherche des points-de-selles de L, on défini pour r > 0, le Lagrangien augmenté :

L r (v, δ; q, τ ) = L(v, δ; q, τ ) + r 2 Ω |2D(v) -δ| 2 dx .
Il est ainsi possible de trouver les points-de-selle de L r qui coïncident avec ceux de L d'après le résultat suivant :

Théorème 1.8.3. Si (u, γ; p, σ) est un point-de-selle de L sur V (u Γ )×T ×X * ×T * , alors c'est également un point-de-selle de L r pour tout r > 0, et inversement.

Ce théorème est lui aussi démontré dans [Glo84, chap. 6] dans le cadre général pour un multiplicateur de Lagrange. Cette démonstration soulevant également des points importants pour la compréhension, elle figure ici dans dans une version adaptée avec deux multiplicateurs de Lagrange.

Démonstration.

i) On suppose que (u, γ; p, σ) est un point-de-selle de L, soit (v, δ; q, τ ) ∈ V (u Γ ) × T × X * × T * tel que L(u, γ; q, τ ) ≤ L(u, γ; p, σ) ≤ L(v, δ; p, σ) .

On a vu dans ce cas que γ = 2D(u). Ainsi L(u, γ; q, τ ) = L r (u, γ; q, τ ) et L(u, γ; p, σ) = L r (u, γ; p, σ). De plus, par construction de L r , on a L(v, δ; p, σ) ≤ L r (v, δ; p, σ). Finalement, L r (u, γ; q, τ ) ≤ L r (u, γ; p, σ) ≤ L r (v, δ; p, σ), autrement dit (u, γ; q, τ ) est un point-de-selle de L r .

ii) Montrons la réciproque, on suppose maintenant que (u, γ; p, σ) est un point-deselle de L r , alors

∀(v, δ; q, τ ) ∈ V (u Γ ) × T × X * × T * , L r (u, γ; q, τ ) ≤ L r (u, γ; p, σ) ≤ L r (v, δ; p, σ).
De l'inégalité de gauche, on en déduit comme nous l'avions fait pour L dans la preuve du théorème 1.8.2 que γ = 2D(u) et donc immédiatement que ∀(q, τ ) ∈ X * × T * , L(u, γ; q, τ ) ≤ L(u, γ; p, σ)

De l'inégalité de droite générale, on écrit les deux cas particuliers on l'on maximise que par une seule variable :

L r (u, γ; p, σ) ≤ L r (v, γ; p, σ), (1.15a)

L r (u, γ; p, σ) ≤ L r (u, δ; p, σ).

(1.15b)

Appliquons la première inégalité (1.15a) avec v = u + t(wu), avec 0 < t ≤ 1 :

G(u + t(w -u)) -G(u) -t Ω p div (w -u) dx + t 2 Ω σ : (2D(w) -2D(u)) dx + r 2 t 2 Ω |2D(w) -2D(u)| 2 dx ≥ 0, ∀w ∈ V (u Γ ),
qui par convexité de G donne :

t(G(w) -G(u)) -t Ω p div (w -u) dx + t 2 Ω σ : (2D(w) -2D(u)) dx + r 2 t 2 Ω |2D(w) -2D(u)| 2 dx ≥ 0, ∀w ∈ V (u Γ ).
(1.16)

En divisant par t (1.16) puis en faisant tendre t vers 0, on obtient :

G(w)-G(u)- Ω p div (w-u) dx+ 1 2 Ω σ : (2D(w)-2D(u)) dx ≥ 0, ∀w ∈ V (u Γ ).
(1.17)

1.8. MÉTHODE DU LAGRANGIEN AUGMENTÉ
De la même manière en appliquant l'inégalité (1.15b) avec δ = γ + t(ξγ), avec 0 < t ≤ 1, on obtient par convexité de F :

F (ξ) -F (γ) - 1 2 Ω σ : (ξ -γ) dx ≥ 0, ∀ξ ∈ T. (1.18)
En additionnant les deux inégalités (1.17) et (1.18), on obtient finalement

L(u, γ; p, σ) ≤ L(w, ξ; p, σ), (w, τ ) ∈ V (u Γ ) × T
Le problème sur le Lagrangien augmenté s'écrit maintenant :

(u, γ; p, σ) = arg inf (v,δ)∈V (u Γ )×T sup (q,τ )∈X * ×T * L r (v, δ; q, τ )
Une façon simple de résoudre ce problème de point-de-selle est d'écrire un algorithme de descente à pas fixe (Uzawa) pour minimiser la fonctionnelle duale :

J * (σ) = - inf (v,δ)∈V (u Γ )×T sup q∈X * L r (v, δ; q, σ) On obtient Algorithme 1.8.1 (Uzawa). initialisation (k = 0) : σ 0 donné boucle Uzawa (k ≥ 1) : σ k-1 connu • étape 1 : calculer (u k , γ k ; p k ) = arg inf (v,δ)∈V (u Γ )×T sup q∈X * L r (v, δ; q, σ k-1 )
• étape 2 : On calcule σ k en descendant dans la direction opposée au gradient de J * :

σ k = σ k-1 + β(2D(u k ) -γ k )
où β est le pas de descente.

On peut découpler en deux parties la première étape de l'algorithme et calculer tout d'abord (u k ; p k ) et ensuite γ k . Cette variante s'écrit :

Algorithme 1.8.2 (Fortin-Glowinski, forme abstraite).

initialisation (k = 0) : σ 0 et γ 0 donnés boucle Uzawa relaxé (k ≥ 1) : σ k-1 et γ k-1 connus • étape 1 : calculer (u k ; p k ) = arg inf v∈V (u Γ ) sup q∈X * L r (v, γ k-1 ; q, σ k-1 )
• étape 2 : calculer

γ k = arg inf δ∈T L r (u k , δ; p k , σ k-1 )
• étape 3 : calculer :

σ k = σ k-1 + β(2D(u k ) -γ k )
Regardons en détail les étapes 1 et 2 de l'algorithme 1.8.2. Le Lagrangien L r est différentiable par rapport u et p si bien que la première étape s'écrit encore :

∂L r ∂u (u k , γ k-1 ; p k , σ k-1 ).(v) = 0, ∀v ∈ V (0) ∂L r ∂p (u k , γ k-1 ; p k , σ k-1 ).(q) = 0, ∀q ∈ X * En développant L r on a : L r (u, γ; p, σ) = α 2 Ω |u| 2 dx + K 1 + n Ω |γ| 1+n dx + r 2 Ω |γ| 2 dx + σ 0 Ω |γ| dx - Ω F • u dx- Ω p div u dx + 1 2 Ω σ : (2D(u) -γ) dx +r Ω D(u) : D(u) dx -r Ω γ : D(u) dx
On obtient alors :

∂L r ∂u (u, γ; p, σ).(v) = α Ω u.v dx + 2r Ω D(u) : D(v) dx - Ω p div v dx + Ω (σ -rγ) : D(v) dx - Ω F • v dx ∂L r ∂p (u, γ; p, σ).(q) = Ω q div u dx
On constate que la première étape se ramène à la résolution d'un problème de Stokes :

(S) k : trouver (u k , p k ) ∈ V (u Γ ) × X * tel que : α Ω u k .v dx + 2r Ω D(u k ) : D(v) dx - Ω p k div vdx = l k-1 (v), ∀v ∈ V (0), - Ω q div u k dx = 0, ∀q ∈ X *
où on a posé :

l k-1 (v) = Ω F • v dx - Ω (σ k-1 -rγ k-1 ) : D(v) dx 1.8. MÉTHODE DU LAGRANGIEN AUGMENTÉ
La résolution de ce sous-problème est complètement standard.

La seconde étape de l'algorithme qui consiste à minimiser le Lagrangien L r par rapport à la variable γ est plus complexe car L r n'est pas différentiable en γ mais peut s'écrire point par point presque pour tout x ∈ Ω fixé :

γ k (x) = arg min δ∈S 3 (R) J(δ)
où on a posé, pour tout δ ∈ S 3 (R) :

J(δ) = K 1 + n |δ| 1+n + r 2 |δ| 2 + σ 0 |δ| - χ : δ 2 χ = σ k-1 (x) + r2D(u k )(x)
Remarquons que J est convexe et donc ce problème de minimisation dans S 3 (R) admet une solution unique. Ce problème de minimisation peut être résolue à l'aide du sous-différentiel, voir [START_REF] Saramito | Méthodes numériques en fluides complexes : théorie et algorithmes[END_REF]p. 47]. Pour tout δ ∈ S 3 (R), le sous-différentiel ∂J(δ) est :

∂J(δ) =    {τ = K 2 |δ| -1+n δ + r 2 δ + σ 0 2 δ |δ| - χ(x) 2 } si δ = 0, {δ ∈ S 3 (R), |δ| ≤ σ 0 } sinon.
Le minimum γ de J est caractérisé par 0 ∈ ∂J(γ). En recherchant γ = 0 on obtient :

K|γ| -1+n γ + rγ + σ 0 γ |γ| = χ
soit encore, en passant en valeur absolue :

K|γ| n + r|γ| = |χ| -σ 0 .
On tire de cette équation une condition nécessaire pour avoir l'existence d'un minimum γ = 0 : |χ| ≥ σ 0 . Posons

ψ n,r,K (ξ) = Kξ n + rξ, ∀ξ ∈ R + Puisque ψ n,r,K est strictement croissante de R + dans R + , elle est inversible et notons φ n,r,K = ψ -1 n,r,K sont inverse. Pour n = 1 on a explicitement φ 1,r,K (ζ) = ζ/(K + r).
Dans le cas général n ∈ R + , on peut calculer efficacement φ par une méthode de Newton. Remarquons que ψ n,r,K (0) = 0 et donc φ n,r,K (0) = 0. Ainsi, si |χ| < σ 0 , on a γ = 0 sinon, si |χ| ≥ σ 0 , on a :

|γ| = φ n,r,K (|χ| -σ 0 )
D'autre part, les matrices γ et χ sont proportionnelles :

K|γ| -1+n + r + σ 0 |γ| γ = χ.
Ces deux matrices ont donc même direction :

γ |γ| = χ |χ| , d'où l'expression du mini- mum de J, noté P n,r,K,σ 0 (χ) : γ = P n,r,K,σ 0 (χ) = φ n,r,K (|χ| -σ 0 ) χ |χ| si |χ| > σ 0 , 0 sinon. (1.19)
Finalement, la seconde étape est un calcul simple semi-explicite point par point qui s'écrit :

γ k (x) = P n,r,K,σ 0 (σ k-1 (x) + r2D(u k )(x)) , p.p x ∈ Ω Algorithme 1.8.3 (Fortin-Glowinski, forme concrète). initialisation (k = 0) : σ 0 et γ 0 donnés boucle Uzawa relaxé (k ≥ 1) : σ k-1 et γ k-1 connus • étape 1 : trouver (u k , p k ) ∈ V (u Γ ) × X * , solution du problème de Stokes : α Ω u k .v dx + 2r Ω D(u k ) : D(v) dx - Ω p k div v dx = l k-1 (v), ∀v ∈ V (0), - Ω q div u k dx = 0, ∀q ∈ L 2 (Ω),
où on a posé :

l k-1 (v) = Ω F • v dx - Ω (σ k-1 -rγ k-1 ) : D(v) dx.
• étape 2 : calculer

γ k (x) = P n,r,K,σ 0 (σ k-1 (x) + r2D(u k )(x)) , p.p x ∈ Ω.
• étape 3 : calculer :

σ k = σ k-1 + β(2D(u k ) -γ k )
Dans la pratique, un bon critère de convergence pour l'algorithme est le contrôle de la norme de la contrainte :

||γ k -2D(u k )|| (L s (Ω)) 3×3 < ε, où ǫ ≪ 1 est une certaine tolérance.

Résultats de convergence

La convergence de l'algorithme 1.8.3 est démontré dans [FG83, p. 123] et [GLT87, p. 85] au travers du théorème suivant :

Théorème 1.8.4. Sous l'hypothèse :

β < 1 + √ 5 2
r, on a les convergences :

1.9. APPROXIMATION EN ESPACE • u k -→ u fortement dans V (u Γ ), • γ k -→ γ fortement dans T , • σ k+1 -σ k -→ 0 fortement dans T * .
Il est également suggéré dans [FG83, p. 127] et [GLT87, p. 89] qu'un bon choix pour le paramètre β est de le choisir comme étant le paramètre d'augmentation : β = r > 0. On respecte bien l'hypothèse du théorème de convergence.

1.9 Approximation en espace 

A(u, γ; v, δ) = α Ω u.v dx + r 2 Ω (γ -2D(u)) : (δ -2D(v)) dx + K 2 Ω |γ| -1+n γ : δ dx, B(v, δ; σ, p) = 1 2 Ω σ : (2D(v) -δ) dx - Ω p div v dx.
Avec ces notations, le lemme 1.8.1 permet de caractériser les points-de-selle (u, γ; p, σ) de L r comme solution du problème variationnel suivant :

(FV1) r : trouver (u, γ; p, σ) ∈ V (u Γ ) × T × X * × T * tel que : ∀(v, δ; q, τ ) ∈ V (u Γ ) × T × X * × T * ,    j(δ) -j(γ) + A(u, γ; v, δ -γ) + B(v, δ -γ; σ, p) ≥ Ω F.v dx, B(u, γ; τ, q) = 0.
Soient les espaces espaces de dimension finie :

W h ⊂ W 1,s (Ω) 3 , V h = V (u Γ ) ∩ W h , D h ⊂ T, T h ⊂ T * , Q h ⊂ X * .
La version en dimension finie de l'inéquation variationnelle s'obtient en remplaçant les espaces par leur homologue de dimension finie :

(FV1) h : trouver (u h , γ h ; p h , σ h ) ∈ V h × D h × Q h × T h tel que : ∀(v, δ; q, τ ) ∈ V h × D h × Q h × T h ,    j(δ) -j(γ h ) + A(u h , γ h ; v, δ -γ h ) + B(v, δ -γ h ; σ h , p h ) ≥ Ω F.v dx, B(u h , γ; τ, q) = 0.
Le choix des espaces de discrétisation est délicat et on suit ici la démarche présentée dans [START_REF] Roquet | An adaptive finite element method for Bingham fluid flows around a cylinder[END_REF]. Le choix le plus naturel est d'approximer les tenseurs γ et σ avec les mêmes éléments, en choisissant 

D h = T h . Bien que D h ⊂ T et T h ⊂ T * soient
D h = T h . Ce choix nous amène à γ h = 2R h (D(u h )), où R h est la projection L 2 de T sur T h , définie pour tout δ ∈ S 3 (L 2 (Ω)) par : R h δ ∈ T h et Ω (R h δ) : ξ dx = Ω δ : ξ dx, ∀ξ ∈ T h .
Pour σ 0 = 0 et n = 1, le problème est réduit à un problème linéaire qui correspond à la théorie des éléments finis mixtes développée dans [START_REF] Fortin | Mixed and hybrid finite element methods[END_REF]. Dans ce cas, σ h = 2KR h (D(u h )), et on obtient le problème elliptique suivant :

(S) h : trouver (u h , p h ) ∈ V h × Q h tel que : ∀(v, q) ∈ V h × Q h ,                α Ω u h .v dx + 2K Ω R h D(u h ) : D(v) dx + 2r Ω (I -R h )D(u h ) : D(v) dx - Ω p h div v dx = Ω F.v dx, - Ω q div u h dx = 0 .
On voit clairement que lorsque R h = I, i.e., lorsque T h = D(W h ), la solution discrète du problème u h dépend du paramètre numérique r > 0 de la méthode du Lagrangien augmenté. Cette dépendance est indésirable. Une condition nécessaire et suffisante pour que la solution u h de (F V 1) h soit indépendante de r est donnée par :

T h = D(W h ).
Dans ce cas, le problème (S) h est réduit à un problème de Stokes classique. Beaucoup de couples d'espace (W h , Q h ) acceptables pour résoudre ce problème se trouvent dans [START_REF] Fortin | Mixed and hybrid finite element methods[END_REF]. Dans ce manuscrit, nous choisirons les éléments finis de Soit T h un maillage triangulaire de Ω et soit Ω h , l'approximation de Ω obtenue par le maillage. Le choix de Taylor-Hood consiste à choisir pour W h l'espace des fonctions continues sur Ω h et polynomiales de degré 2 sur chaque élément du maillage T h , notée (P 2 -C 0 ), pour Q h l'espace des fonctions continues et linéaires sur chaque élément du maillage, notée 

(P 1 -C 0 ) et pour D h = T h = D(W h ), l'
σ = K|2D(u)| -1+n 2D(u) + σ 0 2D(u) |2D(u)| si |2D(u)| = 0, |σ| ≤ σ 0 sinon, ρ ∂u ∂t + (u.∇)u -div σ + ∇p = 0 dans ]0, T [×Ω, div u = 0 dans ]0, T [×Ω, u = (U, 0) sur ]0, T [×Γ top , u = 0 sur ]0, T [×Γ left ∪ Γ right ∪ Γ bottom , u(t = 0) = 0 sur Ω.
où U > 0 et où nous définissions les frontières comme :

Γ top =]0, L[×{L}, Γ left = {0}×]0, L[, Γ right = {L}×]0, L[ et Γ bottom =]0, L[×{0}.
Celles-ci sont représentées sur la figure 1.8. 

σ = |2D(u)| -1+n 2D(u) + Bi 2D(u) |2D(u)| si |2D(u)| = 0, |σ| ≤ Bi sinon, Re ∂u ∂t + (u.∇)u -div σ + ∇p = 0 dans ]0, T [×Ω, div u = 0 dans ]0, T [×Ω, u = (1, 0) sur ]0, T [×Γ top , u = 0 sur ]0, T [×Γ left ∪ Γ right ∪ Γ bottom , u(t = 0) = 0 sur Ω.
On s'intéressera uniquement aux solutions du problème stationnaire. Sur les exemples où Re = 0, le problème stationnaire est directement résolu. Lorsque Re = 0, les solutions stationnaires seront obtenues à convergence de l'algorithme (1.5.1).

Adaptation de maillage

Afin d'améliorer la précision des calculs par éléments finis et de limiter le coût des calculs numériques, nous allons utiliser une méthode d'adaptation de maillage. Le problème de la cavité entraînée étant résolue en 2D, nous utiliserons le générateur de maillage bidimensionnel anisotrope BAMG (voir [Hec98, BGH + 97]). Nous rappelons ici le principe de fonctionnement de ce générateur. Soit T 0 un maillage initial et (σ 0 , u 0 , p 0 ) la solution du problème (FV1) h obtenue par l'algorithme de Lagrangien augmenté associé au maillage T 0 . Selon [START_REF] Peraire | Adaptive remeshing for compressible flow computations[END_REF] on choisit un champ physique ϕ 0 comme critère d'adaptation bien approprié au problème, défini à partir de la solution (σ 0 , u 0 , p 0 ). Le critère d'adaptation ϕ 0 est approximé par une fonction ϕ 0,h continue sur le domaine maillé Ω 0 , linéaire sur chaque triangle K du maillage T 0 . L'erreur d'interpolation dans une direction unitaire d ∈ R 2 est estimée par :

e K,d = h 2 K,d ∂ 2 ϕ 0 ∂d 2 , dans K, où h K,d est la longueur de K dans la direction d, ∂ 2 ϕ 0 ∂d 2 = d T H 0,h d et H 0,h représente l'approximation linéaire par élément de la matrice hessienne de ϕ 0 sur T 0 H(ϕ 0 ) =     ∂ 2 ϕ 0 ∂x 2 ∂ 2 ϕ 0 ∂x∂y ∂ 2 ϕ 0 ∂x∂y ∂ 2 ϕ 0 ∂y 2     .
La matrice hessienne discrète est obtenue depuis ϕ 0,h en calculant d'abord le gradient discret g 0,h , continu et linéaire par morceaux, depuis la formulation variationnelle :

Ω 0 g 0,h .v h dx = Ω 0 ∇ϕ 0,h .v h dx,
où v h est un vecteur continu, linéaire par morceaux. Ensuite, H 0,h est obtenue par la formulation variationnelle :

Ω 0 H 0,h .τ h dx = Ω 0 D(g 0,h ) : v h dx,
où τ h est un tenseur continu linéaire par morceaux. L'objectif de l'adaptation de maillage est de répartir équitablement l'erreur d'interpolation de ϕ 0 , de la rendre constante sur chaque triangle du maillage et dans toutes les directions (voir [START_REF] Vallet | Generation de maillages anisotropes adaptés, application à la capture de couches limites[END_REF]). Notons λ 1 et λ 2 les valeurs propres de H 0,h et d 1 et d 2 les vecteurs propres correspondants :

∂ 2 ϕ 0 ∂d 2 1 = λ 1 et ∂ 2 ϕ 0 ∂d 2 2 = λ 2 . CHAPITRE 1. FLUIDES VISCOPLASTIQUES ISOTHERMES 57 L'erreur e K,d est indépendante de d et de K lorsque e K,d 1 = e K,d 2 , i.e. quand h 2 K,d |λ 1 | = h 2 K,d |λ 2 | = c 0 , ∀K ∈ T h,0 , où c 0 > 0 est une constante indépendante de K.
La matrice hessienne H 0,h est supposée connue sur chaque triangle K et nonsingulière i.e. λ 1 et λ 2 non nuls. La constante c 0 étant donnée, on souhaite construire des triangles de longueur h i dans la direction d i avec

h i = c 0 |λ i | , i = 1, 2.
Un tel triangle n'a pas de direction privilégiée dans une métrique pour laquelle les deux vecteurs 

h i d i , i = 1, 2,
h i d i M = h i d T i M (ϕ 0 )d i = √ c 0 , i = 1, 2.
Ainsi, un maillage isotrope de l'espace métrique associé à M (ϕ 0 ) est un maillage étiré dans l'espace euclidien, d'un facteur h i dans la direction d i .

Il reste à choisir le critère d'adaptation ϕ 0 . Plusieurs expériences de simulation concernant les écoulements de Bingham (voir [SR01, RS03, RMS00]) ont montré qu'un bon choix est la racine carrée de l'énergie dissipative :

ϕ 0 = (σ : D(u)) 1/2 = K 1 + n |2D(u 0 )| n+1 + σ 0 |2D(u 0 )| 1/2 .
La matrice hessienne est singulière au voisinage de la frontière des zones rigides car les vitesses d'écoulement d'un fluide d'Herschel-Bulkley ne sont généralement pas dans W 3,s (Ω). Ainsi, le générateur de maillage est forcé de raffiner les mailles là où la précision est attendue. La résolution d'un problème utilisant l'adaptation de maillage se fait par un processus itératif en trois étapes :

1. Résoudre le problème sur le maillage initial T 0 avec l'algorithme du Lagrangien augmenté. Soit u 0 la solution correspondant au maillage T 0 .

Évaluer ϕ

0 = K 1+n |2D(u 0 )| n+1 + σ 0 |2D(u 0 )| 1/2 le critère d'adaptation. Ce
champ fait ressortir les régions où les variations de la solution sont importantes.

3. Utiliser le générateur de maillage qui à partir de ϕ 0 sur le maillage T 0 génère un nouveau maillage T 1 qui aura des mailles resserrées au niveau des régions de fortes variations de la solution.

On répète ensuite ce procédé sur le maillage T 1 , et ainsi de suite, jusqu'à obtenir la précision voulue, en particulier lorsque la frontière entre les zones rigides et cisaillées devient lisse et régulière. Dans son utilisation, il faut préciser au mailleur certaines restrictions pour limiter le raffinement, sans quoi, le nombre d'éléments tendrait vers l'infini. Il faut imposer une limite. Nous choisirons de limiter la longueur minimale que peut avoir une arrête du maillage, avec dans la pratique h min = 10 -5 qui donne une maillage très précis pour un temps de calcul raisonnable sur le problème de la cavité.

Calcul de la vorticité

Il est intéressant de visualiser les lignes de courants qui donnent une bonne vision du champ des vitesses de l'écoulement. Pour calculer la fonction de courant (voir sous-section suivante 1.10.4), il faut au préalable calculer la vorticité puisqu'elle intervient dans le calcul de la fonction de courant. Lorsque la dimension du problème d = 2, nous définissons (voir [GR86, p. 30]) pour toute distribution φ et v :

rot φ = ∂v 1 ∂x 0 , - ∂v 0 ∂x 1 , rot v = ∂v 1 ∂x 0 - ∂v 0 ∂x 1 .
Soit u la solution du problème d'Herschel-Bulkley (P1). La vorticité est définie par : ω = rot u.

Rappelons que le champ des vitesses est approximée dans l'espace des polynômes quadratiques par morceaux, la vorticité sera donc discrétisée dans l'espace des fonctions discontinues, linéaire par morceaux (P 1 -C -1 ) :

Y h = {ξ ∈ L s (Ω); ξ |K ∈ P 1 , ∀K ∈ T h }.
La formulation variationnelle du problème discret est alors :

ω h ∈ Y h , Ω h ω h ξ dx = Ω h rot u h ξ dx, ∀ξ ∈ Y h .

Calcul de la fonction de courant

La fonction de courant permet l'observation du champ des vitesses de l'écoulement, puisque les vecteurs vitesse sont tous tangents à la fonction de courant. Lorsque d = 2, la fonction de courant ψ est un champ scalaire qui satisfait (voir [GR86, p. 88]) : rot ψ = u. De l'identité :

rot rot ψ = -∆ψ nous obtenons, pour le problème de cavité entraînée, la caractérisation suivante de ψ :

-∆ψ = ω dans Ω, ψ = 0 sur ∂Ω.
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On discrétisera la fonction de courant avec des éléments P 2 -C 0 comme pour le champ de vitesse u. On cherchera ψ h dans l'espace de dimension finie

V 0,h = {ξ ∈ W 1,s 0 (Ω); ξ |K ∈ P 2 , ∀K ∈ T h }.

Résultats numériques

Nous présentons les résultats de simulation obtenus pour le problème de la cavité entraînée. Les calculs ont été effectués à l'aide de la librairie éléments finis C++ Rhéolef [START_REF] Saramito | Efficient C++ finite element computing with Rheolef[END_REF]. Cette librairie intègre la méthode des éléments finis, la méthode des caractéristiques à l'ordre 1 et à l'ordre 2 ainsi que les outils d'adaptation de maillage de BAMG La figure 1.10 montre la convergence du résidu au fur et à mesure des itérations du cycle d'adaptation de maillage. On constate que l'adaptation de maillage ne modifie pas énormément le temps de calcul car la convergence initiale est la plus longue. Sur les maillages adaptés, les convergences se font en moins d'itérations. En particulier, lorsque l'on passe d'un maillage au suivant, on initialise le Lagrangien augmenté par la dernière solution obtenue mais réinterpolée sur le nouveau maillage. On observe ainsi que le résidu est déjà bien diminué dès la première itération. Par ailleurs, le fait de faitre croître r k de façon géométrique, peut induire, si r k est trop grand, des erreurs approximations importantes dues aux limites de la précision machine. Notre statégie est de réinitialiser le paramètre d'augmentation r k à r 0 à chaque adaptation de maillage. Comme les convergences sont ensuite plus rapides, le paramètre r k sera plus petit et ne posera plus de problèmes sur la précision. Sur l'exemple Bi = 2, pour une tolérance de convergence sur le résidu e k de 10 -8 , un paramètre d'augmentation initialisé à r 0 = 10, et un un facteur géométrie de 1.01, la valeur finale de r k est de l'ordre de 200 000 sur le maillage initial, elle n'est plus que de l'ordre de 400 sur les maillages adaptés. Les figures 1.11, 1.12 montrent un cycle d'adaptation de maillage de 10 itérations pour Bi = 50. Nous constatons que le critère d'adaptation choisi permet bien d'obtenir un maillage très précis au niveau de la frontière de la zone rigide. Après un premier calcul sur le maillage initial, le contour de la zone rigide n'est pas très régulier et le nouveau maillage n'est pas encore très localisé. Après quelques itérations du processus d'adaptation, le contour est rapidement net. Après 2-3 itérations, le maillage n'évolue presque plus, la différence est rapidement imperceptible à l'oeil nu. Le cycle de 10 itérations permet de bien identifier les parties sensibles des zones rigides, comme les coins et extrémités Les zones rigides sont obtenues numériquement par l'ensemble {x ∈ Ω | |σ(x)| < σ 0 + ǫ} La définition mathématique des zones rigides correspond à ǫ = 0 mais du fait des erreurs en O(h min ) sur les contraites induites par la discrétisation sur le maillage, les contours sont tracés avec ǫ = 10 -5 . Les figures 1.13, 1.14, 1.15 montrent les différentes zones rigides et lignes de courant obtenues en faisant varier le nombre de Bingham Bi. Naturellement, on constate que plus le nombre de Bingham est grand et plus les zones rigides sont importantes. Pour des faibles valeurs de Bi, on constate que les zones rigides sont constituées de trois parties disjointes, voir 1.13 (a). Pour les autres valeurs de Bi, les zones rigides sont constituées de deux parties. Une partie occupe l'espace inférieur de la cavité et remonte sur les côtés. Cette partie étant en contact avec les parois de la cavité Les figures 1.17, 1.18 présentent les effets de l'inertie sur l'état stationnaire de l'écoulement et sur les zones rigides. Le nombre de Reynolds est fixé à Re = 10 3 et nous faisons varier le nombre de Bingham. Pour de faibles valeurs du nombre de Bingham, voir 1.17 (a), l'effet inertiel est dominant. La zone rigide qui occupait la partie inférieure de la cavité dans les exemples sans inertie à disparu et laisse place à des recirculations de courant. Dans la circulation principale, la zone rigide est divisée en plusieurs petites parties dont certaines ont une très petite échelle L'image 1.19 montre plusieurs zooms effectués autour de chacune des zones rigides. On observe que le maillage est très raffiné autour des ces zones. Étant donnée leur échelle, l'utilisation de l'adaptation de maillage est indispensable pour pouvoir les observer. De plus, certaines formes sont très déformées dans une direction privilégiée (voir les zooms Z 1 , Z 2 et Z 3 de la figure 1.19), et l'utilisation d'un maillage anisotrope tel que le propose le mailleur BAMG permet d'obtenir un maillage optimal. Dans les recirculations, on observe qu'une nouvelle zone rigide se forme autour du centre des vortex secondaires ainsi que des petites zones rigides dans les trois "coins" que constitue ces zones de recirculation, d'une forme triangulaire, (voir les zooms Z 7 , Z 8 et Z 9 de la figure 1.19). Là encore, on constate l'utilité d'utiliser de l'adaptation de maillage pour capturer des zones d'une si petite échelle. Sur les figures suivantes, l'effet de seuil l'emporte sur l'inertie et l'on retrouve une zone rigide qui occupe les coins inférieurs de la cavité (en deux parties pour Bi = 1, voir 1.17 

) m || (L 2 ) 2 = 1 2∆t ||3u m -4u m-1 + u m-2 || (L 2 ) 2 < ε 1 pour ε 1 = 10 -

Conclusion

Conservation d'énergie

Nous étudions dans ce chapitre l'écoulement d'un fluide viscoplastique incompressible et nous allons considérer en plus des trois variables σ, u et p le champ scalaire de température θ. Le premier principe de la thermodynamique exprime la conservation de l'énergie, notée e : sa variation est égale au travail des forces plus les sources de chaleur, notées r :

ρ ∂e ∂t + u • ∇e = σ : D(u) -div q + r dans ]0, T [×Ω.
Nous retrouvons ici le terme d'énergie de dissipation σ : D(u) induit par le travail des forces internes au fluide qui agit comme terme source dans l'équation de l'énergie. La grandeur q corresponds aux flux de chaleur par diffusion et r aux éventuelles autres sources de chaleur.

On obtient l'équation de la chaleur en utilisant le lien entre l'énergie et la température : e = C p θ où C p est la capacité calorifique et en utilisant la loi de Fourier : q = -k∇θ où k est le coefficient de conductivité thermique. On effectue ces transformations dans l'équation de conservation de l'énergie, on obtient l'équation de la chaleur : 

ρC p ∂θ ∂t + u • ∇θ -div(k∇θ) = σ : D(u) + r dans ]0, T [×Ω.

Problème aux limites

σ = K(θ)|2D(u)| -1+n 2D(u) + σ 0 (θ) 2D(u) |2D(u)| si |2D(u)| = 0, |σ| ≤ σ 0 (θ) sinon, ρ ∂u ∂t + (u.∇)u -div σ + ∇p = f dans ]0, T [×Ω, div u = 0 dans ]0, T [×Ω, ρC p ∂θ ∂t + u • ∇θ -div (k∇θ) -σ : D(u) = 0 dans ]0, T [×Ω, u = u Γ sur ]0, T [×∂Ω, θ = θ Γ sur ]0, T [×∂Ω, u(t = 0) = u init dans Ω, θ(t = 0) = θ init dans Ω,
où u Γ et θ Γ sont des conditions aux bords données et u init et θ init des conditions initiales données.

La prise en compte de la variation de la température rend le problème plus complexe car de nombreux couplages apparaissent entre les diverses équations. L'équation de la chaleur est directement couplée au champ de vitesses par le terme de transport dans la dérivée totale ainsi qu'au tenseur des contraintes dans le terme source liée à l'énergie de dissipation. Et inversement, nous considérons le problème général d'un fluide dont la consistance et le seuil de contrainte sont dépendantes de la température, i.e. K = K(θ) et σ = σ(θ). Nous ferons par contre l'hypothèse que les paramètres physiques ρ, C p et k sont des constantes indépendantes de la température. Ces hypothèses sont plutôt bien respectées dans le cas de l'écoulement de laves volcaniques.

Adimensionnement du problème

Ce problème faisant intervenir un nombre important de paramètres physiques, il est préférable de travailler sous sa forme adimensionnée qui fait intervenir des nombres Effectuons l'adimensionnement dans le cadre général tridimensionnel. On note L une longueur caractéristique du domaine Ω et on note :

x i = L xi , i = 1, 2, 3 et Ω = L Ω
où les xi sont les nouvelles variables sans dimension et Ω l'ensemble des éléments de Ω adimensionnés par L. De la même manière on pose : 

u = U ũ, p = P p, σ = Σσ, t = Θ t, T = Θ T et f = F f , où U , P , Σ, Θ et F sont
K(θ) = K 0 K( θ), σ 0 (θ) = σ 0,0 σ0 ( θ). où K 0 et σ 0,0 sont données et vérifient K(θ init ) = K 0 et σ(θ init ) = σ 0,0 .
Pour adimensionner les équations, on introduit des nombres sans dimension et on donne des relations entre les différentes grandeurs caractéristiques du problème. Pour adimensionner la loi de comportement, on pose

Σ = K 0 U L n et on introduit le nombre de Bingham Bi = σ 0,0 Σ = σ 0,0 L n K 0 U n . Par ce changement de variable, la loi de comportement devient σ = K( θ)|2 D(ũ)| -1+n 2 D(ũ) + Bi σ0 ( θ) 2 D(ũ) |2D(ũ)| si |2D(ũ)| = 0, |σ| ≤ Bi σ0 ( θ)
sinon.

En posant P = Σ = LF , en choisissant Θ = L/U et en introduisant le nombre de Reynolds

Re = ρU 2 Σ = ρL n K 0 U n-2 .
l'équation de conservation de la quantité de mouvement s'écrit :

Re ∂ ũ ∂ t + (ũ. ∇)ũ -d iv σ + ∇p = f
L'équation de conservation de la masse reste inchangée :

d iv ũ = 0
Enfin, on définit le nombre de Péclet

P e = ρC p U L k et le nombre de Brinkman Br = LU Σ k(θ init -θ Γ ) = U n+1 K 0 k(θ init -θ Γ )L n-1 .
L'équation de la chaleur devient

P e ∂ θ ∂ t + ũ • ∇θ -∆θ -Br(σ : D(ũ)) = 0
On obtient finalement de toutes ces formules et relations le problème sans dimension suivant :

trouver ũ, p, σ et θ dans ]0, T [× Ω tels que : σ = K( θ)|2 D(ũ)| -1+n 2 D(ũ) + Bi σ0 ( θ) 2 D(ũ) |2 D(ũ)| si |2 D(ũ)| = 0, |σ| ≤ Bi σ0 ( θ) sinon, Re ∂u ∂ t + (ũ. ∇)ũ -d iv σ + ∇p = f dans ]0, T [× Ω, d iv ũ = 0 dans ]0, T [× Ω, P e ∂ θ ∂ t + ũ • ∇θ -∆θ -Br(σ : D(ũ)) = 0 dans ]0, T [× Ω, ũ = ũΓ sur ]0, T [×∂ Ω, θ = 0 sur ]0, T [×∂ Ω, ũ( t = 0) = ũinit dans Ω, θ( t = 0) = 1 dans Ω.
Par la suite, sauf en cas d'ambiguïté, nous omettrons le tilde sur les variables sans dimension afin d'alléger l'écriture mathématique. 

Approximation en temps

du dt (t m+1 , x) = 3u(t m+1 , x) -4u(t m , X m (x)) + u(t m-1 , X m-1 (x)) 2∆t + O(∆t 2 ), dθ dt (t m+1 , x) = 3θ(t m+1 , x) -4θ(t m , X m (x)) + θ(t m-1 , X m-1 (x)) 2∆t + O(∆t 2 ).
Nous pouvons ainsi construire par récurrence les suites

(σ m ) 0≤m≤M , (u m ) -1≤m≤M , (p m ) 0≤m≤M et (θ m ) -1≤m≤M où σ m (x) ≈ σ(t m , x), u m (x) ≈ u(t m , x), p m (x) ≈ p(t m , x) et θ m (x) ≈ θ(t m , x
) sont respectivement des approximations des contraintes, de la vitesse, de la pression et de la température :

Algorithme 2.4.1 (schéma BDF2 -version non-isotherme). initialisation (m = -1; 0) : u -1 = u 0 := u init et θ -1 = θ 0 = 1 donnés boucle en temps (m ≥ 0) : u m-1 , u m , θ m-1 et θ m étant connus, trouver σ m+1 , u m+1 , p m+1 et θ m+1 dans Ω tels que    σ m+1 = K(θ m+1 )|2D(u m+1 )| -1+n 2D(u m+1 ) + Bi σ 0 (θ m+1 ) 2D(u m+1 ) |2D(u m+1 )| si |2D(u m+1 )| = 0, |σ m+1 | ≤ Bi σ 0 (θ m+1 ) sinon, 3Re 2∆t u m+1 -div σ m+1 + ∇p m+1 = f + 4Re 2∆t u m • X m - Re 2∆t u m-1 • X m-1 dans Ω, div u m+1 = 0 dans Ω, 3P e 2∆t θ m+1 -∆θ m+1 -Br(σ m+1 : D(u m+1 )) = 4P e 2∆t θ m • X m - P e 2∆t θ m-1 • X m-1 dans Ω, u m+1 = u Γ (t m+1 ) sur ∂Ω, θ m+1 = 0 sur ∂Ω.
Notons qu'il n'est pas nécessaire pour cette algorithme d'initialiser σ et p.

Méthode du Lagrangien augmenté en non-isotherme

Nous allons adapter la méthode du Lagrangien augmenté présenté dans la section 1.8 du chapitre 1 au cas d'un écoulement non-isotherme. Considérons le problème : 83 (P2) : trouver σ, u, p et θ définis dans Ω tels que :

   σ = A(θ)|2D(u)| -1+n 2D(u) + B(θ) 2D(u) |2D(u)| si |2D(u)| = 0, |σ| ≤ B(θ) sinon, α 1 u -div σ + ∇p = F dans Ω, div u = 0 dans Ω, α 2 θ -∆θ -Br(σ : D(u)) = g dans Ω, u = u Γ sur ∂Ω, θ = 0 sur ∂Ω.
où α 1 , α 2 sont des constantes positives, F un champ vectoriel donné, g un champ scalaire donné et A et B deux fonctions de R dans R+. L'algorithme 2.4.1 est une succession de problèmes de cette forme, avec

α 1 = 3Re 2∆t , α 2 = 3P e 2∆t , F = f + 4Re 2∆t u m • X m - Re 2∆t u m-1 • X m-1 , g = 4P e 2∆t θ m • X m - P e 2∆t θ m-1 • X m-1 , A(θ) = K(θ) et B(θ) = Bi σ 0 (θ).
Pour un champ scalaire s donnée, notons (P1(s)) le problème : (P1(s)) : trouver σ, u et p définis dans Ω tels que :

   σ = A(s)|2D(u)| -1+n 2D(u) + B(s) 2D(u) |2D(u)| si |2D(u)| = 0, |σ| ≤ B(s) sinon, α 1 u -div σ + ∇p = F dans Ω, div u = 0 dans Ω, u = u Γ sur ∂Ω.
Pour un champ de vitesse v et un champ tensoriel δ donnés, notons (E(v, δ)) le problème :

(E(v, δ)) : trouver θ définis dans Ω tel que : initialisation

α 2 θ -∆θ = Br(δ : D(v)) + g dans Ω, θ = 0 sur ∂Ω.
(i = 0) : σ 0 , γ 0 et θ 0 donnés boucle point fixe (i ≥ 0) : σ i-1 , γ i-1 et θ i-1 connus • étape 1 : trouver (u i , p i ) ∈ V (u Γ ) × X *
, solution du problème de Stokes :

α 1 Ω u i .v dx + 2r Ω D(u i ) : D(v) dx - Ω p i div v dx = l i-1 (v), ∀v ∈ V (0), - Ω q div u k dx = 0, ∀q ∈ X * .
où on a posé :

l i-1 (v) = Ω F • v dx - Ω (σ i-1 -rγ i-1 ) : D(v) dx • étape 2 : calculer γ i (x) = P n,r,A•θ i (x),B•θ i (x) (σ i-1 + r2D(u i )) (x), p.p x ∈ Ω
(où le projecteur P est donné par la définition (1.19) du chapitre 1).

• étape 3 : calculer :

σ i = σ i-1 + r(2D(u i ) -γ i )
• étape 4 : trouver θ i ∈ H 1 0 (Ω), solution de l'équation elliptique 

α 2 Ω θ i s dx + Ω ∇θ i .∇s dx = Ω (Br(σ i : D(u i )) + g) s dx, ∀s ∈ H 1 0 (Ω). ( 2 
i ∈ T * = (L p * (Ω)) 3 et u ∈ V (u Γ ) ⊂ W 1,p alors D(u) ∈ L p (Ω) et σ i : D(u i ) ∈ L 1 (Ω)
(u i ), (p i ), (γ i ) et (σ i ) convergent.
Pour la résolution discrète, nous prendrons les mêmes espaces que dans la cas isotherme :

u h ∈ V h , σ et γ h ∈ D(W h ), p h ∈ Q h (
notations introduites dans la section 1.9 du chapitre 1) et nous utiliserons des éléments P 2 -C 0 pour la température discrète, θ h ∈ X h , où :

X h = {s ∈ H 1 (Ω h ); s |K ∈ P 2 , ∀K ∈ T h } ∩ H 1 0 (Ω h ).
2.5 Problème d'un écoulement en refroidissement dans un cylindre 

Γ in = {|r| < R, z = 0}, Γ out = {|r| < R, z = L}, Γ top = {r = R, |z| < L}, Γ axi = {r = 0, |z| < L}.
Ces frontières sont représentées sur la figure 2.2. 

   σ = K(θ)|2D(u)| -1+n 2D(u) + σ 0 (θ) 2D(u) |2D(u)| si |2D(u)| = 0, |σ| ≤ σ 0 (θ) sinon, ρ ∂u ∂t + (u.∇)u -div σ + ∇p = 0 dans ]0, T [×Ω, div u = 0 dans ]0, T [×Ω, ρC p ∂θ ∂t + u • ∇θ -kdiv (∇θ) -σ : D(u) = 0 dans ]0, T [×Ω, u r = 0, u z = u in (r) et θ = θ 0 sur ]0, T [×Γ in , u = 0 et θ = I [z<Le] θ 0 + I [z≥Le] θ a sur ]0, T [×Γ top , u r = 0, σ zz = 0 et ∂θ ∂z = 0 sur ]0, T [×Γ out , u r = 0, σ rz = 0 et ∂θ ∂r = 0 sur ]0, T [×Γ axi , u(t = 0) = u 0 et θ(t = 0) = θ 0 dans Ω.
où u in (r) est un profil de vitesse donné en entrée du cylindre et I désigne la fonction indicatrice d'ensemble. Nous choisirons pour u in (r) et u 0 = u 0,z (r)e z la solution stationnaire d'un écoulement de Poiseuille à la température fixe θ 0 .

Problème sans dimension équivalent

Écrivons la version sans dimension de ce problème. L'adimensionnement étant légèrement différent en coordonnées cylindriques, nous allons le détailler succinctement. Choisissons R une longueur caractéristique du domaine Ω et notons :

r = Rr, z = Rz, Ω = R Ω, u = U ũ, p = P p, σ = Σσ, t = Θ t, T = Θ T , θ = θ a + (θ 0 -θ a ) θ, K(θ) = K 0 K( θ) et σ 0 (θ) = σ 0,0 σ0 ( θ).
où U , P , Σ et Θ sont des grandeurs caractéristiques du problème et K 0 = K(θ 0 ) et σ 0,0 = σ(θ 0 ). Supposons que ces grandeurs soient reliées par les relations :

Σ = K 0 U R n = P/2 et Θ = R/U .
Les nombres sans dimension s'écrivent alors :

Bi = σ 0,0 Σ = σ 0,0 R n K 0 U n = 2σ 0,0 P , Re = ρU 2 Σ = ρR n K 0 U n-2 , P e = ρC p U R k , Br = RU Σ k(θ 0 -θ a ) = U n+1 K 0 k(θ 0 -θ a )R n-1 .
Le problème adimensionné est le suivant : trouver ũ, p, σ et θ dans ]0, T [× Ω tels que :

     σ = K( θ)|2 D(ũ)| -1+n 2 D(ũ) + Bi σ0 ( θ) 2 D(ũ) |2 D(ũ)| si |2 D(ũ)| = 0, |σ| ≤ Bi σ0 ( θ) sinon, Re ∂ ũ ∂ t + (ũ. ∇)ũ -d iv σ + 2 ∇p = 0 dans ]0, T [× Ω, d iv ũ = 0 dans ]0, T [× Ω, P e ∂ θ ∂ t + ũ • ∇θ -∆θ -Br(σ : D(ũ)) = 0 dans ]0, T [× Ω, ũr = 0, ũz = ũin (r) et θ = 1 sur ]0, T [× Γin , ũ = 0 et θ = I [z<Le] sur ]0, T [× Γtop , ũr = 0, σzz = 0 et ∂ θ ∂ z = 0 sur ]0, T [× Γout , ũr = 0, σrz = 0 et ∂ θ ∂r = 0 sur ]0, T [× Γaxi , ũ( t = 0) = ũ0 et θ( t = 0) = 1 dans Ω.
Il nous reste à établir la solution stationnaire du problème de Poiseuille cylindrique isotherme pour préciser la vitesse initiale et le profil de vitesse imposé à l'entrée du cylindre.

Écoulement de Poiseuille cylindrique isotherme

On suppose que la température θ est fixé à θ 0 . On suppose que le fluide est entraîné par une force de poussée f = f e z constante. L'écoulement une fois établi, est aussi selon z et la solution ne dépend que de r, u(r) = u(r)e z . Le tenseur symétrique n'a plus qu'une composante non-nulle σ rz (r). On vérifie sans difficulté que |2D(u)| = |u ′ |, si bien que la composante u vérifie :

trouver σ rz , u définis dans ]0, R[ tels que :

σ rz (r) = K 0 |u ′ (r)| -1+n u ′ (r) + σ 0,0 u ′ (r) |u ′ (r)| si |u ′ (r)| = 0, |σ rz | ≤ σ 0,0 sinon, - (rσ rz ) ′ r = f, dans ]0, R[, u(R) = 0, σ rz (0) = 0.
Dans ce problème stationnaire, le gradient de pression est remplacé par f , on choisit alors la relation Σ = f R/2. Le nombre de Bingham s'écrit alors Bi = 2σ 0,0 f R et le problème adimensionnel équivalent se formule :

trouver σrz et ũ définis dans ]0, 1[ tels que :

σrz (r) = |ũ ′ (r)| -1+n ũ′ (r) + Bi ũ′ (r) |ũ ′ (r)| si |ũ ′ (r)| = 0, |σ rz | ≤ Bi sinon, (2.2a) 
- (rσ rz ) ′ r = 2, dans ]0, 1[, (2.2b 
)

ũ(1) = 0, (2.2c 
) 

σrz (0) = 0. ( 2 
ũ(r) = n 1 + n (1 -Bi) 1+ 1 n -max (0, r -Bi) 1+ 1 n (2.
Bi * = σ 0,0 R K 0 u , Re * = ρRu K 0 , P e * = ρC p uR k , Br * = u 2 K 0 k(θ 0 -θ a )
.

où u est la valeur moyenne sur ]0, R[ de la vitesse u solution du problème de Poiseuille cylindrique isotherme.

Les définitions sont presque identiques mais le choix de la vitesse caractéristique est différente. Notre choix de prendre la vitesse caractéristique U = f R 2 2K 0 permet de rendre l'interprétation du nombre de Bingham très simple pour le problème stationnaire car la condition de von Mises devient simplement r ≤ Bi pour r ∈]0, 1[. En particulier, on peut immédiatement identifier sur le problème stationnaire la zone rigide en fonction de la valeur de Bi et le cas limite Bi = 1 est naturel. Pour passer d'une convention à une autre, nous pouvons détailler l'expression de u. De la formule (2.3), la vitesse solution du problème dimensionnel de Poiseuille cylindrique s'écrit :

u(r) = U 2 (1 -Bi) 2 -max (0, r R -Bi)
Ainsi, lorsque Bi < 1, la valeur moyenne de u sur ]0, R[ vérifie :

2 U u = 1 πR 2 2π 0 R 0 u(r)r dr dθ = 2 R 2 (1 -Bi) 2 R 0 r dr - R RBi r R -Bi 2 r dr = (1 -Bi) 2 -2 1 Bi (r -Bi) 2 r dr = (1 -Bi) 2 -2 1 Bi r3 -2Bir 2 + Bi 2 r dr = 1 2 - 2 3 Bi + 1 6 Bi 4 , soit u = U 4 1 - 4 3 Bi + 1 3 Bi 4 .
Lorsque Bi ≥ 1, naturellement u = 0. Pour tout Bi, on peut finalement écrire u comme :

u = U 4 1 - 4 3 min(Bi, 1) + 1 3 min(Bi, 1) 4 .
Nous voyons que pour passer d'une convention à une autre, il faut connaître la valeur de Bi. Le cas critique Bi ≥ 1 correspond à Bi * = +∞. Sinon, pour Bi < 1, on peut écrire la relation :

Bi = Bi * u U = Bi * 4 1 - 4 3 Bi + 1 3 Bi 4 .
À Bi * donné, on en déduit Bi comme solution réelle comprise dans ]0, 1[ de l'équation polynomiale de degré 4 :

3Bi * -(12 + 4Bi * )Bi + Bi * Bi 4 = 0. (2.4) 
En tant que polynôme de degré 4, la solution se calcule explicitement.

Par suite, on peut déduire les autres relations entre nombres sans dimension en utilisant Bi :

Re = Re * U u = 4Re * 1 - 4 3 Bi + 1 3 Bi 4 -1 , P e = P e * U u = 4P e * 1 - 4 3 Bi + 1 3 Bi 4 -1 , Br = Br * U u 2 = 16Br * 1 - 4 3 Bi + 1 3 Bi 4 -2
.

Avec les paramètres rhéologiques du fluide utilisés dans [START_REF] Vinay | Numerical simulation of nonisothermal viscoplastic waxy crude oil flows[END_REF], le nombre de Brinkman Br * est très faible et les effets de dissipation visqueuse sont négligés. Le nombre de Péclet utilisé est P e * = 10. Par ailleurs, le nombre sans dimension de Cameron

Ca * = k(L -L e ) ρC p uR 2 = L -L e
RP e * permet de définir l'efficacité du refroidissement par les parois dans fluide en mouvement. Ce nombre est directement lié à la géométrie du problème. Le nombre de Cameron permet de définir trois types de régimes thermiques :

• Ca * < 10 -2 : la régulation par les parois a très peu d'influence sur l'écoulement. Le régime est alors dit adiabatique. • 10 -2 ≤ Ca * < 1 : le régime est transitoire et le refroidissement thermique par les parois commence à agir. • Ca * ≥ 1 : le régime atteint son équilibre, le fluide en aval est complètement refroidi. L'objectif de la simulation étant de visualiser toute la transition thermique, du passage de la température θ 0 à la température θ a , les dimensions géométriques du pipeline sont choisies par L e = L/4 et L/R = 40 de tel sorte que Ca * = 3 afin de visualiser la transition thermique complète.

Résultat numérique pour

K = K(θ) et σ 0 constant
Afin de visualiser l'influence de la thermodépendance des paramètres rhéologiques K et σ 0 sur l'écoulement, nous étudierons séparément ces dépendances pour se concentrer sur un seul paramètre à la fois. Supposons ainsi que la contrainte seuil σ 0 est constante et que la viscosité K dépend linéairement de la température et notons K a = K(θ a ). Les grandeurs numériques utilisées sont données dans le tableau 2.1.

θ 0 -θ a K a K 0 Bi * P e * Bi P e 20 • K 20 10 10 ≈ 0.602 ≈ 166.05
Table 2.1 -Grandeurs numériques utilisées dans la simulation issues de [START_REF] Vinay | Numerical simulation of nonisothermal viscoplastic waxy crude oil flows[END_REF].

En adimensionnel, puisque

K(1) = K 0 et K(0) = K a , alors K( θ) = 1 - K a K 0 θ + K a K 0 .
Les calculs numériques ont été réalisés en axi-symétrique sur un maillage triangulaire avec 400 sommets dans la direction z et 30 sommets dans la direction r. Le critère de convergence pour le Lagrangien augmenté à chaque itération en temps

est ||λ m,k -2D(u m,k )|| (L 2 ) 2×2 < ε 1 avec ε 1 = 10 -8 . Le critère de convergence en temps est ||( ∂u ∂t ) m || (L 2 ) 2 = 1 2∆t ||3u m -4u m-1 + u m-2 || (L 2 ) 2 < ε 2 pour ε 2 = 10 -8 .
La figure (2.3) montre le champ de température obtenu à l'état stationnaire pour K themo-dépendant et θ 0 -θ a = 20 • K. On observe trois zones disctinctes, la zone d'entrée à une température θ 0 ( θ = 1), la zone de transition autour du choc thermique, puis une zone de sortie où le fluide est complètement refroidi à la température θ a ( θ = 0). On constate que la dimension de la géométrie basée sur le critère du nombre de Cameron a bien été choisie et permet d'observer toute la transition thermique. θ 0θ a σ 0,a σ 0,0 Bi * P e * Bi P e 1 • K 2.617 1.5 10 ≈ 0.250 ≈ 59.9 5 • K 9.083 1.5 10 ≈ 0.250 ≈ 59.9 20 • K 33.3 1.5 10 ≈ 0.250 ≈ 59.9

Table 2.2 -Grandeurs numériques utilisées dans la simulation issues de [START_REF] Vinay | Numerical simulation of nonisothermal viscoplastic waxy crude oil flows[END_REF].

En adimensionnel, puisque σ0 (1) = σ 0,0 et σ0 (0) = σ 0,a , alors 

σ0 ( θ) = 1 - σ 0,a σ 0,0 θ + σ 0,a σ 
-θ a = 1 • K ; (b) θ 0 -θ a = 5 • K ; (c) θ 0 -θ a = 20 • K.

Conclusion

Ce chapitre a permis de mettre au point des algorithmes pour la résolution numérique des écoulements viscoplastiques dont la rhéologie dépend de la température. 

η(φ) = η s 1 - φ φ m -1.82 , (3.1) 
où φ m est la densité maximale de l'entassement des particules, environ 0.68 pour des sphères. Le fluide étant supposé newtonien, le tenseur des contraintes vérifie :

σ = η(φ) γ, (3.2) 
où γ = ∇u + ∇u t = 2D(u). Le modèle de flux consiste à décrire l'évolution de la répartition des particules par une équation de conservation de la quantité de particules sous forme d'une équation de diffusion sur la quantité φ : 

∂φ ∂t + u • ∇φ = -div N t + χ, dans ]0, T [×Ω, (3.3 
N c = -K c a 2 φ∇(φ |γ|) (3.4)
Ce flux illustre la migration préférentielle des particules des zones à fort taux de déformation, là où il y a le plus de collision, vers les zones les moins déformées (voir fig.

3.1 a.). Le flux du gradient de viscosité est défini par : 

N η = -K η a 2
N c = -K c a 2 φdiv(φ |γ|Z) (3.6) N η = -K η a 2 φ 2 |γ| η dη dφ Z∇φ (3.7)
où Z est le tenseur directionnel de courant qui peut être déterminé en imposant des conditions non-homogènes sur la vitesse, le gradient de vitesse et les directions de vorticité. Une expression générale simple du tenseur Z peut être donnée dans le repère local formé des trois directions principales de cisaillement du système de vecteurs unitaires δ 1 , δ 2 et δ 3 , qui forment une base directe. Le vecteur δ 1 est dans la direction de la vitesse, δ 2 dans la direction du gradient des vitesses et δ 3 dans la direction de la vorticité. Dans cette base, le tenseur Z est diagonal : 

Z =   λ 1 0 0 0 λ 2 0 0 0 λ 3   (3.
σ = η(φ) γ dans ]0, T [×Ω, ρ ∂u ∂t + (u.∇)u -div σ + ∇p = f dans ]0, T [×Ω, div u = 0 dans ]0, T [×Ω, ∂φ ∂t + u • ∇φ -div K c a 2 φ∇(φ |γ|) + K η a 2 |γ|φ 2 K(φ) dK dφ ∇φ = 0 dans ]0, T [×Ω, u = u Γ sur ]0, T [×∂Ω, K c a 2 φ∇(φ |γ|) + K η a 2 |γ|φ 2 K(φ) dK dφ ∇φ .n = 0 sur ]0, T [×∂Ω, u(t = 0) = u init dans Ω, φ(t = 0) = φ init dans Ω,
où u Γ , u init et φ init sont des conditions aux limites et initiales données.

Adimensionnement du problème

Comme il a été fait pour le problème d'un écoulement non-isotherme, il est préférable de travailler avec le problème sous forme adimensionné afin de réduire le nombre de paramètres.

On note L une longueur caractéristique du domaine Ω et on note :

x i = L xi , i = 1, 2, 3 et Ω = L Ω
où x est la nouvelle variable sans dimension. De la même manière on pose : 

u = U ũ, p = P p, σ = Σσ, t = Θ t, T = Θ T et f = F f ,
M = L 2 K η a 2 , K = K c K η .
On obtient finalement de toutes ces formules et relations le problème sans dimension suivant :

trouver ũ, p, σ et φ dans ]0, T [× Ω tels que :

σ = η(φ) γ dans ]0, T [× Ω, Re ∂ ũ ∂ t + (ũ. ∇)ũ -d iv σ + ∇p = f dans ]0, T [× Ω, d iv ũ = 0 dans ]0, T [× Ω, M ∂φ ∂ t + ũ • ∇φ -div Kφ ∇(φ| γ|) + | γ|φ 2 K d K dφ ∇φ = 0 dans ]0, T [× Ω, ũ = ũΓ sur ]0, T [×∂ Ω, Kφ ∇(φ| γ|) + | γ|φ 2 K d K dφ ∇φ .ñ = 0 sur ]0, T [×∂ Ω, ũ( t = 0) = ũinit dans Ω, φ( t = 0) = φ init dans Ω.
Sauf en cas d'ambiguïté, nous omettrons les tildes dans la suite.

Approximation en temps

Pour la résolution en temps du problème d'une suspension newtonienne, on discrétise les termes de dérivée totale par la méthode des caractéristiques à l'ordre 2 décrite dans la section 1.5 du chapitre 1. Rappelons que l'intervalle [0, T ] est partitionné en

M sous-intervalles [t m , t m+1 ], où t m = m∆t, 0 ≤ m ≤ M et ∆t = T /M est le pas de temps. du dt (t m+1 , x) = 3u(t m+1 , x) -4u(t m , X m (x)) -u(t m-1 , X m-1 (x)) 2∆t + O(∆t 2 ), dφ dt (t m+1 , x) = 3φ(t m+1 , x) -3φ(t m , X m (x)) + φ(t m-1 , X m-1 (x)) 2∆t + O(∆t 2 ).
Nous pouvons ainsi construire par récurrence les suites Algorithme 3.3.1 (schéma BDF2 -suspensions newtoniennes).

(u m ) -1≤m≤M , (p m ) 0≤m≤M et (φ m ) -1≤m≤M où u m (x) ≈ u(t m , x), p m (x) ≈ p(t m , x) et φ m (x) ≈ φ(t m ,
initialisation (m = -1; 0) : u -1 = u 0 := u init et φ -1 = φ 0 = φ init donnés boucle en temps (m ≥ 0) : u m-1 , u m , φ m-1 et φ m étant connus, trouver u m+1 , p m+1 et φ m+1 dans Ω tels que 3Re 2∆t u m+1 -div (η(φ m+1 ) γm+1 ) + ∇p m+1 = f + 4Re 2∆t u m • X m - Re 2∆t u m-1 • X m-1 dans Ω, div u m+1 = 0 dans Ω, 3M 2∆t φ m+1 -div Kφ m+1 ∇(φ m+1 |γ| m+1 ) + |γ| m+1 φ 2 m+1 K(φ m+1 ) dK dφ ∇φ m+1 = 4M 2∆t φ m • X m - M 2∆t φ m-1 • X m-1 dans Ω, u m+1 = u Γ sur ∂Ω, Kφ m+1 ∇(φ m+1 |γ| m+1 ) + |γ| m+1 φ 2 m+1 K(φ m+1 ) dK dφ ∇φ m+1 .n = 0 sur ∂Ω.
Notons qu'il n'est pas nécessaire pour cette algorithme d'initialiser p.

Algorithme du point fixe

Considérons le problème suivant :

(NS3) : trouver u, p et φ définis dans Ω tels que :

αu -div (η(φ) γ) + ∇p = F dans Ω, div u = 0 dans Ω, βφ -div Kφ∇(φ |γ|) + |γ|φ 2 K(φ) dK dφ ∇φ = g dans Ω, u = u Γ sur ∂Ω, Kφ∇(φ |γ|) + |γ|φ 2 K(φ) dK dφ ∇φ .n = 0 sur ∂Ω,
où α et β sont des constantes positives, F un champ vectoriel donné et g un champ scalaire donné. L'algorithme 3.3.1 est une succession de problèmes de cette forme, avec

α = 3Re 2∆t , β = 3M 2∆t , F = f + 4Re 2∆t u m • X m - Re 2∆t u m-1 • X m-1 et g = 4M 2∆t φ m • X m - M 2∆t φ m-1 • X m-1 .
Le problème (NS3) possède de nombreux termes non-linéaires à cause du couplage entre l'équation de Stokes et celle de la migration, du faite de la dépendance de η en φ et de l'impact direct de γ sur l'évolution de la concentration des particules. On propose d'utiliser un algorithme du point fixe pour résoudre séparément un problème de Stokes à une viscosité donnée et un problème de migration à γ donné. Dans l'optique d'une résolution par éléments finis, nous pouvons détailler la formulation variationnelle du problème afin de préciser le choix de la linéarisation. Notons

V (g) = {v ∈ H 2 (Ω) 3 ; u |∂Ω = g}. Soient u ∈ V (u Γ ), p ∈ L 2 0 (Ω) et φ ∈ H 1 (Ω), alors pour toutes fonctions test v ∈ H 1 0 (0) 3 , q ∈ L 2 0 (Ω) et ψ ∈ H 1 (Ω)
, la formulation variationnelle du problème (NS3) s'écrit :

α Ω u.v dx + Ω η(φ)( γ : D(v)) dx - Ω p div v dx = Ω F.v dx, Ω q div u dx = 0, β Ω φψ dx + Ω Kφ∇(φ| γ|) + | γ| η dη dφ φ 2 ∇φ • ∇ψ dx = Ω gψ dx.
La dernière équation peut s'écrire :

β Ω φψ dx + Ω k(φ, γ)∇φ • ∇ψ dx + Ω φ k(φ, γ).∇ψ dx = Ω gψ dx, où k(φ, γ) = φ| γ| K + φ η dη dφ et k(φ, γ) = Kφ∇(| γ|).
On introduit les applications suivantes, respectivement linéaires en u, v, q, φ et ψ :

m 1 (u, v) = Ω u.v dx, a 1 (ω; u, v) = Ω ω(2D(u) : D(v)) dx, b 1 (v, q) = - Ω q div v dx, m 2 (φ, ψ) = Ω φψ dx, a 2 (ξ; φ, ψ) = Ω ξ∇φ • ∇ψ dx, b 2 (ξ; φ, ψ) = Ω φ ξ.∇ψ dx
La formulation variationnelle de ce problème s'énonce finalement :

(FV) 3 : trouver u ∈ V (u Γ ), p ∈ L 2 0 (Ω) et φ ∈ H 1 (Ω) tels que : αm 1 (u, v) + a 1 (η(φ); u, v) + b 1 (v, p) = m(F, v), ∀v ∈ H 1 0 (0) 3 , b 1 (u, q) = 0, ∀q ∈ L 2 0 (Ω), βm 2 (φ, ψ) + a 2 (k(φ, γ); φ, ψ) + b 2 (k(φ, γ); φ, ψ) = m 2 (g, ψ) ∀ψ ∈ H 1 (Ω).
On propose alors d'utiliser l'algorithme de point fixe suivant pour résoudre ce problème non-linaire comme succession de sous-problèmes linéaires.

Algorithme 3.3.2 (Algorithme du point fixe -suspension newtonienne). 

initialisation (i = 0) : φ 0 donnée boucle point fixe (i ≥ 0) : φ i-1 connue • étape 1 : trouver (u i , p i ) ∈ V (u Γ ) × L 2 0 (Ω), solution du problème de Stokes : αm 1 (u i , v) + a 1 (η(φ i-1 ); u i , v) + b 1 (v, p i ) = m(F, v), ∀v ∈ H 1 0 (0) 3 , b 1 (u i , q) = 0, ∀q ∈ L 2 0 (Ω). • étape 2 : trouver φ i ∈ H 1 (Ω), solution de l'équation : βm 2 (φ i , ψ) + a 2 (k(φ i-1 , γi ); φ i , ψ) + b 2 (k(φ i-1 , γi ); φ i , ψ) = m 2 (g, ψ) ∀ψ ∈ H 1 (Ω).

Écoulement de Poiseuille plan en stationnaire

σ = η(φ) γ, dans ]0, L[ (3.10a) -σ ′ = f, dans ]0, L[ (3.10b) K c φ 2 | γ| ′ + φ| γ|φ ′ + K η | γ|φ 2 1 η ∂η ∂φ φ ′ = 0, dans ]0, L[ (3.10c) u(L) = 0, (3.10d) σ(0) = 0, (3.10e) K c φ 2 | γ| ′ + φ| γ|φ ′ + K η | γ|φ 2 1 η ∂η ∂φ φ ′ = 0, sur {0, L}. (3.10f)
On peut réarranger l'équation (3.10c) sous la forme

| γ| ′ | γ| + φ ′ φ + K η K c η ′ η = 0. (3.11)
On intègre cette équation :

| γ|φ | γw |φ w = η w η Kη/Kc , (3.12) 
où φ w et γw sont les valeurs de φ et γ sur la paroi du cylindre intérieur et η w = η(φ w ). Le choix de φ w détermine la fraction volumique moyenne φ.

En intégrant l'équation des moments (3.10b) et en utilisant la loi de comportement (3.10a), le taux de cisaillement γ est donné par :

γ = - f x η . (3.13)
La constante d'intégration est nulle du fait de la condition de symétrie (3.10e). En remplacent γ par cette expression dans l'équation (3.12) et η par la loi de Krieger (3.1), on a : 

φ φ w = 1 x 1 -φ w /φ m 1 -φ/φ m α , ( 3 
F ′ (φ) = 1 φ α m (φ m -φ) α -αφ (φ m -φ) α-1 > 0 car α < 0.
La fonction F est donc inversible et la fonction réciproque F -1 est ellemême croissante. On en déduit de l'équation implicite (3.14) que φ décroît avec l'abscisse x et croît avec la valeur φ w . En particulier, la valeur moyenne φ croît naturellement avec la valeur φ w . Pour une valeur de φ w et de x données, on peut aisément calculer numériquement la solution φ de l'équation 3.14 en utilisant un algorithme de Newton en tant que zéro de la fonction :

G φw,x (φ) = xF (φ) -F (φ w ).
Si l'on se donne φ, la concentration sur le cylindre interne φ w est inconnue, on peut alors raisonner par dichotomie sur la valeur de φ w . On se donne une valeur initiale de φ w = φ Nous voyons sur la figure 3.4 (a) que, pour une valeur de φ fixée, l'effet de migration s'accentue avec la valeur de K et que les particules migrent des zones les plus cisaillées (les parois) vers les zones les moins cisaillées (l'axe de symétrie). Sur la figure 3.4 (b) nous constatons, à K fixé, quelque soit la valeur de φ, la migration vers l'axe de symétrie est maximale, la concentration atteint sa limite φ m . Pour des valeurs faibles de φ, la répartition est très hétérogène puisque la concentration varie sur un intervalle de valeurs important. Pour des concentrations proches de φ m , la migration est plus hétérogène puisque la densité moyenne de particules φ est déjà proche de l'état de saturation φ m .

Par définition de γ (3.9), on a

u ′ = - f x η .
En intégrant cette équation entre x et L et en utilisant la condition d'adhérence aux parois (3.10d), on obtient la vitesse verticale :

u(x) = f L x x η dx,
soit encore en adimensionnel :

û(x) = 1 x x η dx, où û = η 0 f L 2 u, η 0 = η(φ) et η = η/η 0 .
Sur les figures 3.4 (c)-(d) sont tracés différents profils de vitesses verticaux en fonction des paramètres K et φ. Sur la figure 3.4 (c) φ est fixé et nous faisons varier le paramètre K. Nous constatons que plus K est grand et plus le profil de vitesse est aplati autour de l'axe de symétrie. Ces profils sont en parfaite corrélation avec le graphe 3.4 (a) puisque la concentration en particule décroît avec x. A fortiori la viscosité est très élevée autour de l'axe de symétrie puis décroît très rapidement. Le fluid est très visqueux au centre, ce qui explique un profil très aplati. Pour les plus grandes valeurs de K, le profil de vitesse rappelle celui obtenu avec un fluide de Bingham (voir fig. 1.6 du chapitre 1) qui apparaît comme le cas limite où la partie aplatie de la courbe est horizontale. 

Écoulement de Couette

σ = η(φ) γ, dans ]0, T [×]0, R[ (3.17a) ρr ∂w ∂t - 1 r 2 ∂ ∂r (r 2 σ) = 0, dans ]0, T [×]0, R[ (3.17b) ∂φ ∂t = a 2 r ∂ ∂r r K c φ 2 ∂| γ| ∂r + φ| γ| ∂φ ∂r + K η | γ|φ 2 1 η ∂η ∂φ ∂φ ∂r , dans ]0, T [×]0, R[ (3.17c) w(t, kR) = Ω, dans ]0, T [, (3.17d) 
w(t, R) = 0, dans ]0, T [, (3.17e) 
K c φ 2 ∂| γ| ∂r + φ| γ| ∂φ ∂r + K η | γ|φ 2 1 η ∂η ∂φ ∂φ ∂r = 0, sur ]0, T [×{kR, R}, (3.17f) 
w(0, r) = w init (r), dans ]0, R[, (3.17g) 
φ(0, r) = φ init (r), dans ]0, R[, (3.17h) 
où w init et φ init sont des conditions initiales pour la vitesse et la concentration de particule et où la loi η(θ) est donnée par (3.1). La condition initiale φ init détermine la fraction volumique moyenne φ qui est constante au cours du temps. La condition (3.17f) correspond à un flux nul au niveau des parois cylindriques.

Solution stationnaire

Une solution analytique peut être trouvée dans le cas stationnaire. En stationnaire w(t, r) = w(t), φ(t, r) = φ(t), γ(t, r) = γ(r), σ(t, r) = σ(r) et ∂φ/∂t = 0, ∂w/∂t = 0. L'équation (3.17c) devient une équation différentielle ordinaire non-linéaire du premier ordre, qui correspond à la condition que le flux total est nul partout dans la suspension,

K c φ 2 | γ| ′ + φ| γ|φ ′ + K η | γ|φ 2 1 η dη dφ φ ′ = 0, dans ]0, R[.
On peut réarranger cette équation sous la forme 

| γ| ′ | γ| + φ ′ φ + K η K c η ′ η = 0. ( 3 
φ φ w = r2 k 2 1 -φ w /φ m 1 -φ/φ m α , (3.21) où on note r = r/R et α = 1.82(1-K η /K c ) = 1.82(1-K -1 ). Il s'en déduit finalement une équation implicite de φ, ∀r ∈]k, 1[ F (φ) - r2 k 2 F (φ w ) = 0, ( 3 

Évolution au cours du temps

On s'intéresse maintenant à l'évolution de la vitesse et de la concentration au cours du temps. La discrétisation en temps utilise l'algorithme 3. On suppose qu'a t = 0, φ init = φ = 0.55 partout et que le fluide est à l'arrêt :

u init = 0. En choisissant U = RΩ comme vitesse caractéristique, on obtient de la table 3.1 que η 0 = η(φ) = 100.55 Pa.s, en utilisant la loi de Krieger (3.1),

M = R 2 K η a 2 = 1912.64, K = K c /K η = 0.66, Re = ρU R η 0 = 0.07 .
On notera n = Ωt/2π le nombre de tours réalisés par le cylindre intérieur au temps t. 

Suspension non-newtonienne

Les fluides en suspension n'ont en réalité pas toujours un comportement de type newtonien. Lorsque la présence de particules, grains ou cristaux est suffisamment importante, le comportement peut devenir de type viscoplastique. C'est en particulier le cas pour les coulées de lave volcanique, voir [START_REF] Hulme | The interpretation of lava flow morphology[END_REF] et [START_REF] Shaw | The viscosity of basaltic magma ; an analysis of field measurements in Makaopuhi lava lake, Hawaii[END_REF]. La présence des particules peut créer un effet de seuil capable de bloquer l'écoulement du fluide lorsque ses contraintes sont trop faibles. Les travaux sur la compréhension de la migration de suspension dans un fluide à seuil ne sont pas nombreux. On utilisera les résultats effectués dans [START_REF] Wildemuth | A new interpretation of viscosity and yield stress in dense slurries : coal and other irregular particles[END_REF] qui donnent des relations empiriques entre la contrainte seuil et la densité de particules. Ces travaux sont notamment repris dans [START_REF] Pinkerton | Methods of determining the rheological properties of magmas at sub-liquidus temperatures[END_REF] pour déterminer les propriétés rhéologiques du magma, dans [START_REF] Zhou | Yield stress and maximum packing fraction of concentrated suspensions[END_REF] où l'on trouve un certain nombre de résultats expérimentaux et dans [START_REF] Hoover | The yield strength of subliquidus basalts-experimental results[END_REF] où l'on trouve des résultats expérimentaux sur de la lave basaltique. On trouve également une thèse sur le sujet [START_REF] Vu | Rhéologie des suspensions non newtoniennes[END_REF] qui passe en revue la plupart des travaux effectués autour de ce thème et propose un procédé pour construire les lois rhéologiques autour des suspensions dans des fluides non-newtoniens.

Problème au limite

Écrivons le problème complet d'une écoulement d'une suspension viscoplastique incompressible. Pour faire simple, on considère des conditions de types Dirichlet pour la vitesse et des conditions de flux de migration nul aux frontières pour la fraction volumique de particule. On pourra naturellement adapter les méthodes numériques développées pour ce problème avec d'autre type de conditions aux frontières sur la vitesse. On se place toujours dans le cas de suspension constituée de sphère solide de rayon a. On suppose que la consistance et la contrainte seuil dépendent de la concentration. Le problème est le suivant : trouver u, p, σ et φ dans ]0, T [×Ω tels que :

σ = K(φ)|2D(u)| -1+n 2D(u) + σ 0 (φ) 2D(u) |2D(u)| si |2D(u)| = 0, |σ| ≤ σ 0 (φ) sinon, ρ ∂u ∂t + (u.∇)u -div σ + ∇p = f dans ]0, T [×Ω, div u = 0 dans ]0, T [×Ω, ∂φ ∂t + u • ∇φ -div K c a 2 φ∇(φ |γ|) + K η a 2 |γ|φ 2 K(φ) dK dφ ∇φ = 0 dans ]0, T [×Ω, u = u Γ sur ]0, T [×∂Ω, K c a 2 φ∇(φ |γ|) + K η a 2 |γ|φ 2 K(φ) dK dφ ∇φ .n = 0 sur ]0, T [×∂Ω, u(t = 0) = u init dans Ω, φ(t = 0) = φ init dans Ω,
où u Γ , u init et φ init sont des conditions limites et initiales données.

On peut étendre la loi de Krieger [Kri72] pour la consistance :

K(φ) = K s 1 - φ φ m -1.82 , où K s = K(0) est la consistance du solvant.
Pour la contrainte seuil, on utilise la loi empirique de Wildemuth et al. [START_REF] Wildemuth | A new interpretation of viscosity and yield stress in dense slurries : coal and other irregular particles[END_REF].

σ 0 (φ) =            +∞ si φ ≥ φ m , A φ/φ c -1 1 -φ/φ m 1/p si φ ∈]φ c , φ m [, 0 si φ ≤ φ c , (3.24)
où φ c est la concentration minimale pour que le fluide devienne viscoplastique, en dessous de cette concentration, la quantité de cristaux est insuffisante pour créer un effet de blocage et le fluide est de type newtonien et A et p deux paramètres empiriques.

Adimensionnement du problème

Comme il a été fait pour les suspensions newtoniennes, nous travaillerons sur le problème sans dimension. Les variables et inconnues sont adimensionnées comme dans la sous-section 3.4.2. La loi de consistance est adimensionnée par sa valeur en φ init :

K(φ) = K 0 K(φ), où K 0 est donnée et vérifie K(φ init ) = K 0 .
Pour la contrainte seuil, nous ne pouvons pas l'adimensionner de façon analogue car la loi de Wildemuth et al. (3.24) fait intervenir un seuil qui est nul lorsque la concentration φ est inférieure à une concentration minimale φ c . On utilisera le paramètre A de la loi pour adimensionner la contrainte seuil :

σ 0 (φ) = A σ0 (φ).
On suppose que les relations Σ = K 0 U L n = P sont vérifiées et on introduit les nombres sans dimension spécifiques au problème :

Bi = A Σ = AL n K 0 U n , le nombre de Bingham Re = ρU 2 Σ = ρL n K 0 U n-2 , le nombre de Reynolds.
Les nombres sans dimension M et K sont identiques au problème newtonien. On obtient finalement le problème sans dimension suivant : trouver ũ, p, σ et φ dans ]0, T [× Ω tels que :

σ = K(φ)|2 D(ũ)| -1+n 2 D(ũ) + Bi σ0 (φ) 2 D(ũ) |2 D(ũ)| si |2 D(ũ)| = 0, |σ| ≤ Bi σ0 (φ) sinon, CHAPITRE 3. SUSPENSION DE PARTICULES DANS UN FLUIDE VISCOPLASTIQUE 123 Re ∂ ũ ∂ t + (ũ. ∇)ũ -d iv σ + ∇p = f dans ]0, T [× Ω, d iv ũ = 0 dans ]0, T [× Ω, M ∂φ ∂ t + ũ • ∇φ -div Kφ ∇(φ| γ|) + | γ|φ 2 K d K dφ ∇φ = 0 dans ]0, T [× Ω, ũ = ũΓ sur ]0, T [×∂ Ω, Kφ ∇(φ| γ|) + | γ|φ 2 K d K dφ ∇φ .ñ = 0 sur ]0, T [×∂ Ω, ũ( t = 0) = ũinit dans Ω, φ( t = 0) = φ init dans Ω.
Sauf en cas d'ambiguïté, nous omettrons les tildes dans la suite.

Approximation en temps

Comme dans la sous-section 3.3.3, on discrétise le problème en temps à l'aide d'un schéma BDF2 et de la méthode des caractéristiques à l'ordre 2.

Algorithme 3.4.1 (schéma BDF2 -suspensions viscoplastiques).

initialisation (m = -1, 0) : u -1 = u 0 := u init et φ -1 = φ 0 = φ init donnés boucle en temps (m ≥ 0) : u m-1 , u m , φ m-1 et φ m étant connus, trouver u m+1 , p m+1 et φ m+1 dans Ω tels que    σ m+1 = K(φ m+1 )| γm+1 | -1+n γm+1 ) + Bi σ 0 (φ m+1 )) γm+1 | γm+1 | si | γm+1 | = 0, |σ m+1 | ≤ Bi σ 0 (φ m+1 ) sinon, 3Re 2∆t u m+1 -div (σ m+1 ) + ∇p m+1 = f + 4Re 2∆t u m • X m - Re 2∆t u m-1 • X m-1 dans Ω, div u m+1 = 0 dans Ω, 3M 2∆t φ m+1 -div Kφ m+1 ∇(φ m+1 |γ| m+1 ) + |γ| m+1 φ 2 m+1 K(φ m+1 ) dK dφ ∇φ m+1 = 4M 2∆t φ m • X m - M 2∆t φ m-1 • X m-1 dans Ω, u m+1 = u Γ sur ∂Ω, Kφ m+1 ∇(φ m+1 |γ| m+1 ) + |γ| m+1 φ 2 m+1 K(φ m+1 ) dK dφ ∇φ m+1 .n = 0 sur ∂Ω.
Notons qu'il n'est pas nécessaire pour cette algorithme d'initialiser p.

SUSPENSION NON-NEWTONIENNE

Méthode du Lagrangien augmenté adapté aux suspensions

Nous allons adapter la méthode du Lagrangien augmenté aux suspensions viscoplastiques de façon analogue à ce qu'il a été fait dans la sous-section 2.4.2 du chapitre 2 concernant la méthode du Lagrangien augmenté adapté aux fluides non-isothermes. Considérons le problème :

(P3) : trouver σ, u, p et φ définis dans Ω tels que : initialisation point fixe (i = 0) : σ 0 , γ 0 et φ 0 donnés boucle point fixe (i ≥ 0) :

   σ = A(φ)| γ| -1+n γ + B(φ) γ | γ| si | γ| = 0, |σ| ≤ B(φ) sinon, αu + u -div σ + ∇p = F dans Ω, div u = 0 dans Ω, βφ -div Kφ∇(φ |γ|) + |γ|φ 2 K(φ) dK dφ ∇φ = g dans Ω, u = u Γ sur ∂Ω, Kφ∇(φ |γ|) + |γ|φ 2 K(φ)
= 3Re 2∆t , β = 3M 2∆t , F = f + 4Re 2∆t u m •X m - Re 2∆t u m-1 •X m-1 , g = 4M 2∆t φ m •X m - M ∆t φ m-1 •X m-1 , A(φ) = K(φ) et B(φ) = Bi σ 0 (φ).
σ i-1 , γ i-1 et φ i-1 connus • étape 1 : trouver (u i , p i ) ∈ V (u Γ ) × X * , solution à convergence partiel du Lagrangien augmenté : initialisation Lagrangien augmenté (k = 0) : σ i,0 = σ i-1 , γ i,0 = γ i-1 et φ i-1,0 = φ i-1,0 donnés boucle Lagrangien augmenté (k ≥ 0) : σ i,k-1 , γ i,k-1 et φ i,k-1 connus • étape 1A : trouver (u i,k , p i,k ) ∈ V (u Γ ) × X *
, solution du problème de Stokes :

α 1 Ω u i,k .v dx + 2r Ω D(u i,k ) : D(v) dx - Ω p i,k div v dx = l i,k-1 (v), ∀v ∈ V (0), - Ω q div u k dx = 0, ∀q ∈ X * .
où on a posé :

l i,k-1 (v) = Ω F • v dx - Ω (σ i,k-1 -rγ i,k-1 ) : D(v) dx • étape 1B : calculer γ i,k (x) = P n,r,A•φ i (x),B•φ i (x) (σ i,k-1 + r2D(u i,k )) (x), p.p x ∈ Ω
(où le projecteur P est donné par la définition (1.19) du chapitre 1).

• étape 1C : calculer :

σ i,k = σ i,k-1 + r(2D(u i,k ) -γ i,k )
• étape 2 : trouver φ i ∈ H 1 (Ω), solution de l'équation variationnelle

βm 2 (φ i , ψ)+a 2 (k(φ i-1 , γi-1 ); φ i , ψ)+b 2 (k(φ i-1 , γi-1 ); φ i , ψ) = m 2 (g, ψ) ∀ψ ∈ H 1 (Ω), (3.25) où k(φ, γ) = φ| γ| K + φ K(φ) dK dφ et k(φ, γ) = Kφ∇(| γ|). Les notations m 2 , a 2 et b 2 sont définies à la page 109.
Pour la résolution discrète, nous prendrons les mêmes espaces que dans la cas isotherme :

u h ∈ V h , σ et γ h ∈ D(W h ), p h ∈ Q h (
notations introduites dans la section 1.9 du chapitre 1) et nous utiliserons des éléments

P 2 -C 0 pour la concentration discrète, φ h ∈ V 1,h , où : V 1,h = {s ∈ H 1 (Ω h ); s |K ∈ P 2 , ∀K ∈ T h }.
Remarquons que comme γ est approchée par des éléments P 1 discontinus, le terme ∇(| γh |) n'est pas directement calculable. On calcule d'abord la norme de γh discrète n h projetée dans l'espace V 1,h , depuis la formulation variationnelle :

Ω n h v h dx = Ω | γh |v h dx,
où v h est une fonction test de V 1,h . On remplace ensuite le calcul de ∇(| γh |) par ∇(n h ), ce qui permet d'avoir une approximation P 1 -C 0 du gradient de γh .

Résultats numériques

On considère le problème de Poiseuille. Les deux plaques sont parallèles au plan Oxy et séparées par une longueur 2L et initié par une force de pression f = f e z constante. Le problème étant symétrique en x, on travaille uniquement avec x ∈ [0, L]. On modélise cette fois l'évolution en temps de la concentration et de la vitesse en supposant que φ = φ(t, z) et u = u(t, z).

Viscosité dépendante

On suppose dans cet exemple que n = 1, la consistance correspond donc à une viscosité. On suppose que cette viscosité suit la loi de Krieger 

Conclusion

Ce chapitre a permis de mettre au point des algorithmes pour la modélisation des suspensions newtoniennes et non-newtoniennes avec une rhéologie qui dépend de la concentration en particules. Le cadre newtonien possède des modèles de plus en plus sophistiqués et précis et un nombre important de résultats expérimentaux. Dans le cas viscoplastique, un modèle diffusif comme celui proposée par [PAB + 92] nécessite sûrement d'être modifié et adapté. Les deux calculs effectués dans ce chapitre pour des fluides à seuil proposent donc une base exploratoire qu'il sera intéressant de comparer à de futures expériences.

La suite de ce document concerne la modélisation des écoulements gravitaires à surface libre de faibles épaisseurs, c'est à dire de rapport d'aspect petit. Le chapitre 4 présente une réduction asymptotique des équations de viscoplasticité dans le cas isotherme sur une topographie arbitraire. 

Deuxième partie

Écoulement viscoplastique de faible épaisseur A second order and implicit time-dependent numerical algorithm is proposed to solve this problem, providing an auto-adaptive mesh feature for caching accurately the evolution of front position and predict accurately the long-time behavior and the arrested state of the model. This approach was tested on two flows experiments and compared to experimental measurements. The first study shows the efficiency of this approach when the shallow flow conditions are fully satisfied while the second one points out the limitations of the reduced model when these conditions are not satisfied.

Introduction

The study of shallow flows is motivated by numerous environmental and industrial applications. For Newtonian fluids, this problem was first motivated by hydraulic engineering applications. In 1887, Barré de Saint-Venant [START_REF] De Saint-Venant | Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leurs lits[END_REF] introduced for fast Newtonian flows the shallow water approximation, driven by inertia terms while viscous effects are neglected. The original technique, based on an averaged flow-depth, has been extended to the more general asymptotic expansion method. It leads to the same governing equation at zeroth expansion order, but furnishes a more general theoretical framework for the derivation of reduced models. More recently slower Newtonian flows [START_REF] Huppert | The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface[END_REF] and the effect of viscous terms [START_REF] Gerbeau | Derivation of viscous Saint-Venant system for laminar shallow water ; numerical validation[END_REF] were investigated. But only the more complex non-Newtonian case approaches the complexity of both the manufacturing processes (concretes, foods) and the environmental applications (e.g. mud flows [START_REF] Coussot | Steady, laminar, flow of concentrated mud suspensions in open channel[END_REF][START_REF] Laigle | Numerical modeling of mudflows[END_REF], volcanic lava [Gri00, VNB + 08], dense snow avalanches [START_REF] Ancey | Snow avalanches[END_REF] or submarine landslides [START_REF] Hampton | Submarine landslides[END_REF]). Concerning non-Newtonian rheologies, shallow approximations of the dam break problem were first studied for a viscoplastic fluid by Lui and Mei [START_REF] Liu | Approximation equations for the slow spreading of a thin Bingham plastic fluid[END_REF] and revisited by Balmforth and Craster [START_REF] Balmforth | A consistent thin-layer theory for Bingham plastics[END_REF]. See [START_REF] Balmforth | Viscoplastic flow over an inclined surface[END_REF][START_REF] Ancey | Plasticity and geophysical flows : a review[END_REF] for recent reviews on this subject and [START_REF] Acary-Robert | A well-balanced finite volume-augmented Lagrangian method for an integrated Herschel-Bulkley model[END_REF] for some recent theoretical avances. One may also note the recent interest for the Bostwick consistometer used in food industry [Per05, BCP + 07]. The
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2D horizontal dam break problem was used as a benchmark test : the nonlinear reduced equation obtained by the asymptotic method in the shallow limit does not admit an explicit solution and composite [START_REF] Huang | A Herschel-Bulkley model for mud flow down a slope[END_REF] or autosimilar solutions [START_REF] Hogg | The effects of hydraulic resistance on dam-break and other shallow inertial flows[END_REF][START_REF] Ancey | The dam-break problem for viscous fluids in the high-capillary-number limit[END_REF] were proposed instead (see also [START_REF] Ancey | The dam-break problem for Herschel-Bulkley viscoplastic fluids down steep flumes[END_REF]). Thus, a direct numerical resolution without any simplification is of the utmost interest to fully solve such a nonlinear problem. Let us mention the computation of the arrested state [MH07] by a specific finite difference scheme. Nevertheless, the proposed numerical procedure bases on some specific features of the solution of this benchmark and do not extends to a more general situation, such as non-constant slopes or 3D topographies. Some authors explored specific 3D topographies by using a specific axisymmetric coordinate systems : a curved channel [START_REF] Mei | Slow flow of a Bingham fluid in a shallow channel of finite width[END_REF] or a conical surface [START_REF] Yuhi | Slow spreading of fluid mud over a conical surface[END_REF] was explorated in that spirit. These author used a finite difference discretization scheme and then, an alternating direction algorithm for solving the resulting algebraic nonlinear set of equations. This numerical approach was next reused in [START_REF] Balmforth | Viscoplastic flow over an inclined surface[END_REF] for similar 3D computations. The aim of this paper is to bring a new robust and efficient numerical method for the resolution of the shallow approximation of 3D viscoplastic flow problem on a general topography. It extends a previous numerical work preformed on the horizontal 2D dam break problem [START_REF] Saramito | Numerical modeling of shallow non-Newtonian flows : Part I. the 1D horizontal dam break problem revisited[END_REF]. The present numerical scheme provides a fully automatic space-adaptive feature which enables an accurate capture of the evolution of front position and also is able to predict accurately the long-time behavior and the arrested state of the model. This manuscript has been divided as follow : Section 1 introduces the problem statement and the reduced problem obtained after the asymptotic analysis under the shallow flow approximation. Section 2 develops details of the numerical resolution of this nonlinear problem. Section 3 presents the numerical results and two comparisons between the present theory and experiment measurements available in the literature.

4.2

The reduced problem for a general 3d topography

Problem statement

The Herschel-Bulkley [START_REF] Herschel | Measurement of consistency as applied to rubber-benzene solutions[END_REF] constitutive equation expresses the deviatoric part τ of the stress tensor versus the rate of deformation tensor γ as :

τ = K| γ| n-1 γ + τ y γ | γ| when γ = 0, |τ | ≤ τ y otherwise. (4.1)
where K > 0 is the consistency, n > 0 is the power-law index and τ y is the yield stress. Here |τ | = ((1/2) 3 i,j=1 τ 2 ij ) 1/2 denotes the conventional norm of a symmetric tensor in mechanics. The total Cauchy stress tensor is σ = -p.I + τ where p is the pressure and I the identity tensor. When n = 1 and τ y = 0, the fluid is Newtonian and K is the viscosity. For a general n > 1 and when τ y = 0, the model describes a power-law fluid. When n = 1 and τ y ≥ 0, this model reduces to the Bingham one [START_REF] Bingham | Fluidity and plasticity[END_REF]. The constitutive equation (4.1) is completed by the conservations of momentum and mass :

ρ (∂ t u + (u.∇)u) -div(-p.I + τ ) = ρg, (4.2) 
div u = 0, (4.3) 
where ρ > 0 is the constant density and g is the gravity vector. There are three equations (4.1)-( 4.3) and three unknowns τ , u and p. The corresponding problem is closed by defining the boundary and initial conditions. The flow over a variable topography is considered (see Fig. 4.1). For any time t > 0, the flow domain is denoted as Q(t). We suppose that Q(t) can be described as :

Q(t) = {(x, y, z) ∈ Ω × R; f (x, y) < z < f (x, y) + h(t, x, y)}
where Ω is an open and bounded subset of R 2 . Here, f denotes the topography and h the flow height. The boundary ∂Q(t) splits in three parts : the bottom relief Γ s , the top free surface Γ f (t), and the lateral part Γ w (t), defined by :

Γ s = {(x, y, z) ∈ Ω × R; z = f (x, y)} Γ f (t) = {(x, y, z) ∈ Ω × R; z = f (x, y) + h(t, x, y)} Γ w (t) = {(x, y, z) ∈ ∂Ω × R; f (x, y) < z < f (x, y) + h(t, x, y)}
For any t > 0, the boundary conditions expresses the non-slip condition on the bottom and lateral boundaries and the null stress on the free surface :

u = 0 on Γ s ∪ Γ w (t) (4.4) 
σ • ν = 0 on Γ f (t) (4.5) 
where ν is the unit outward normal on ∂Q(t). It remains to describe the evolution of the free surface. It is convenient to introduce the level set function ϕ that expresses as : ϕ(t, x, y, z) = zf (x, y)h(t, x, y).

Notice that the zero level set, where ϕ(t, x, y, z) = 0, is exactly the free surface. The level set function is transported by the flow : ∂ t ϕ + u • ∇ϕ = 0,. On Γ s (t), where z = f + h, this writes :

∂ t h + u x ∂ x (f + h) + u y ∂ y (f + h) -u z = 0, ∀t > 0 and (x, y) ∈ Ω. (4.6) 
This transport equation for the height h is completed by an initial condition :

h(t = 0, x, y) = h init (x, y), ∀(x, y) ∈ Ω. (4.7) 
where h init is given. The set of equation is finally completed by an initial condition for the velocity u :

u(t = 0) = u init in Q(0) (4.8) 
The problem expresses as : find h, τ , u and p satisfying (4.1)-(4.8).

Dimensional analysis

The dimensionless procedure

In this paragraph, the asymptotic analysis, introduced by Lui and Mei [START_REF] Liu | Approximation equations for the slow spreading of a thin Bingham plastic fluid[END_REF] and revisited by Balmforth and Craster [START_REF] Balmforth | A consistent thin-layer theory for Bingham plastics[END_REF] for a bidimenional flow on a constant slope, is here extended to the case of tridimensional flow on a arbitrarilly topography.

Let H be a characteristic length of the bidimensional domain Ω and H a characteristic height of the flow. We introduce the dimensionless parameter ε = H/L. Let U = ρgH 3 /(ηL) be a characteristic flow velocity in the (x, y) plane, where η = K (U/H) n-1 is a representative viscosity and g = |g| is the gravity constant. Replacing this expression of η, we obtain :

U = ρgH 2 KL 1 n

H

Let W = εU be a characteristic velocity in the z direction, T = L/U a characteristic time, and P = ρgH a characteristic pressure. The problem is reformulated with dimensionless quantities and unknowns, denoted with tildes :

x = Lx, y = Lỹ, z = H z, t = T t, p = P p, h = H h, u x = U ũx , u y = U ũy , u z = εU ũz .
Notice the non-isotropic scaling procedure for the z coordinate and the z vector component of the velocity vector u. The dimensionless rate of deformation tensor γ is also related to its dimensional counterpart γ = ∇u + ∇u T by the following non-isotropic relations :

γαβ = (U/L) γαβ , α, β ∈ {x, y} γαz = (U/H) γαz , α ∈ {x, y} γzz = (U/L) γzz .
The scalling procedure for the deviatoric part of stress τ is similar :

τ αβ = η (U/L) ταβ , α, β ∈ {x, y}, τ αz = η (U/H) ταz , α ∈ {x, y}, τ zz = η (U/L) τzz .

The constitutive equation

The dimensionless rate of deformation tensor can be expressed versus the dimensionless velocity as :

γαβ = ∂ β ũα + ∂ α ũβ , α, β ∈ {x, y}, γαz = ∂ z ũα + ε 2 ∂ α ũz , α ∈ {x, y}, γzz = 2∂ z ũz .
The tensor norm scales as :

| γ| = (U/L) | γ|. Using (4.
3), we get :

| γ| = ε -1 E where E = ε 2 (∂ x ũy + ∂ ỹ ũx ) 2 + 2ε 2 (∂ x ũx ) 2 + 2ε 2 (∂ ỹ ũy ) 2 +2ε 2 (∂ x ũx + ∂ ỹ ũy ) 2 + (∂ z ũx + ε 2 ∂ x ũz ) 2 + (∂ z ũy + ε 2 ∂ ỹ ũz ) 2 1 2
Let us introduce the Bingham dimensionless number Bi that compares the yield stress τ y to a characteristic viscous stress ηU/H :

Bi = τ y H ηU = ε -1 τ y ρgH .
We suppose that Bi = O(1) in ε. This hypothesis interprets as τ y /(ρgH) = O(ε) or equivalently that the yield stress τ y is supposed to be small when compared to the gravity effets ρgH. When |τ | ≥ τ y we obtain a dimensionless version of the constitutive equation (4.1) :

τij = Bi E + E n-1 γij Then |τ | = η(U/L)|τ | where |τ | = ε -1 T and T = τ 2 xz + τ 2 yz + 1 2 ε 2 τ 2 xx + 1 2 ε 2 τ 2 yy + 1 2 ε 2 τ 2 zz + ε 2 τ 2 xy 1 2
.

Remark that the von Mises condition |τ | ≥ τ y then becomes T ≥ Bi. The constitutive equation (4.1) writes :

τ = Bi E + E n-1 γij when E = 0, T < Bi otherwise. (4.9) 4.2 

. THE REDUCED PROBLEM FOR A GENERAL 3D TOPOGRAPHY

The conservation laws

Let us introduce the Reynolds number :

Re = ρU L η = ρ 2 gH 3 η 2 .
We suppose that Re = O(1) in ε. It means that the flow is supposed to be sufficiently slow for the inertia effects to be neglected at the zeroth order of development in ε. The conservation of momentum and mass (4.2)-(4.3) become :

ε 2 Re(∂ t ũx + ũx ∂ x ũx + ũy ∂ ỹ ũx + ũz ∂ z ũx ) = -∂ x p + ε 2 (∂ x τxx + ∂ ỹ τxy ) +∂ z τxz , (4.10a) 
ε 2 Re(∂ t ũy + ũx ∂ x ũy + ũy ∂ ỹ ũy + ũz ∂ z ũy ) = -∂ ỹ p + ε 2 (∂ x τxy + ∂ ỹ τyy ) +∂ z τyz (4.10b) ε 4 Re(∂ t ũz + ũx ∂ x ũz + ũy ∂ ỹ ũz + ũz ∂ z ũz ) = -∂ z p + ε 2 (∂ x τxz + ∂ ỹ τyz + ∂ z τzz ) -1 (4.10c) ∂ x ũx + ∂ ỹ ũy + ∂ z ũz = 0. (4.10d) 

Boundary and initial conditions

The non-slip boundary condition (4.4) on Γ s ∪ Γ w writes :

ũ = 0
The unit outward normal ν on the free surface Γ s (t) expresses as :

ν = ∇ϕ ||∇ϕ|| = 1 1 + |∇(f + h)| 2   -∂ x (f + h) -∂ y (f + h) 1   .
Then (4.5) writes :

  τ xx -p τ xy τ xz τ xy τ yy -p τ yz τ xz τ yz τ zz -p     -∂ x (f + h) -∂ y (f + h) 1   =   0 0 0   .
and becomes in dimensionless form :

-(ε 2 τxx -p)∂ x( f + h) -ε 2 τxy ∂ ỹ( f + h) + τxz = 0 (4.11a) -ε 2 τxy ∂ x( f + h) -(ε 2 τyy -p)∂ ỹ( f + h) + τyz = 0 (4.11b) -ε 2 τxz ∂ x( f + h) -ε 2 τyz ∂ ỹ( f + h) + ε 2 τzz -p = 0 (4.11c)
where f = f /H denotes the dimensionless topography and is known. The transport equation (4.6) for the flow height h becomes :

∂ th + ũx ∂ x( f + h) + ũy ∂ ỹ( f + h) -ũz = 0. (4.12) 
The dimensionless problem is completed by the initial conditions for the dimensionless height and velocity. The initial (4.1)-(4.7) problem and its dimensionless version are equivalent, since the change of unknowns is simply linear.

The reduced problem

The zeroth order problem

In this paragraph, we only consider the dimensionless problem : since there is no ambiguity, we omit the tilde on the dimensionless variables. We assume that the unknown admit the following development in ε when ε ≪ 1 :

τ = τ 0 + ετ 1 + ε 2 τ 2 + . . . u = u 0 + εu 1 + ε 2 u 2 + . . . p = p 0 + εp 1 + ε 2 p 2 + . . . h = h 0 + εh 1 + ε 2 h 2 + . . .
In this paragraph, we aim at obtaining the problem at the zero order for τ 0 , u, p 0 and h 0 . Since we only consider the zeroth order, we also omit the zero subscript in this paragraph. Let us denote ∇ || = (∂ x , ∂ y ) the gradient vector in the 0xy plane, u || = (u x , u y ) the projected velocity in this plane and τ || = (τ xz , τ yz ) the shear stress vector in the same plane. For any v || = (v x , v y ) we also denote as

div || v || = ∂ x v x + ∂ y v y the corresponding plane divergence and v || = (v 2 x + v 2 y ) 1/2 the usual Euclidean norm in R 2 .
For convenience, we also denote as dir(v || ) = v || / v || the direction of any nonzero plane vector. With these notations, we have E = ∂ z u || and T = τ || at the zeroth order. The constitutive equation (4.9) then reduces to :

τ αz = Bi ∂ z u || + ∂ z u || n-1 ∂ z u α , ∀α ∈ {x, y}, (4.13a) 
τ αβ = Bi ∂ z u || + ∂ z u || n-1 (∂ β u α + ∂ α u β ), ∀α, β ∈ {x, y}, (4.13b) 
τ zz = 2 Bi ∂ z u || + ∂ z u || n-1 ∂ z u z , (4.13c) 
when ∇u + ∇u T = 0 and

τ || ≤ Bi, otherwise. (4.13d) 
From the conservation laws (4.10) we get at the zeroth order :

∂ z τ xz -∂ x p = 0, (4.14a) 
∂ z τ yz -∂ y p = 0, (4.14b) 
-∂ z p = -1, (4.14c) 
∂ x u x + ∂ y u y + ∂ z u z = 0. (4.14d) 4.2 
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The free surface boundary condition (4.11) at z = f (x, y) + h(t, x, y) reduces at the zeroth order to :

τ xz + p∂ x (f + h) = 0, (4.15a) 
τ yz + p∂ y (f + h) = 0, (4.15b) 
p = 0. (4.15c) 
The others equations, i.e. the transport equation (4.12), the non-slip boundary condition and the initial conditions for u and h, are unchanged at the zeroth order.

Reducing the problem

In this paragraph, we show that the zeroth order problem reduces to a nonlinear parabolic problem with h as the only unknown : all the others quantities τ , u and p at the zeroth order can be computed from h by an explicit expression. From (4.15) we get at the free surface z = f + h :

p(z = f + h) = 0, (4.16a) 
τ || (z = f + h) = 0. (4.16b) 
Integrating (4.14c) in z from z = 0 to z = f + h and using (4.16a), we have :

p(t, x, y, z) = f (x, y) + h(t, x, y) -z. (4.17) 
As f is known, the quantity p depends only of the unknown h. From (4.15a)-(4.15b), we then obtain an explicit expression for the shear stress :

τ || = -(f + h -z)∇ || (f + h). (4.18) 
Remark that τ || is linear in z : since there exists a z ∈ [f, f + h] where τ || ≥ Bi and, from (4.16b), τ || = 0 at z = f + h, there exists an intermediate height h c (t, x, y) ∈ [0, h(t, x, y)] for which |τ || (z = f + h c )| = Bi and we have :

h c (t, x, y) = max 0, h - Bi |∇ || (f + h)| . (4.19) 
The von Mises criteria at the zeroth order writes equivalently as :

τ || > Bi ⇐⇒ (f + h -z)|∇ || (f + h)| > Bi ⇐⇒ z ∈ [f, f + h c [
Taking the Euclidean norm of (4.13a) leads to

|τ || | = Bi + |∂ z u || | n . (4.20) 
Then from (4.18) and (4.20), we get :

∂ z u || = ∇ || (f + h) 1 n (f + h c -z) 1 n when z ∈ [f, f + h c ] 0 when z ∈ ]f + h c , f + h]
Taking the direction of (4.13a) leads to dir(τ

|| ) = dir(∂ z u || ) = -dir(∇ || (f + h))
and then :

∂ z u || = -∇ || (f + h) 1 n (f + h c -z) 1 n dir(∇ || (f + h)) when z ∈ [f, f + h c ] 0 when z ∈ ]f + h c , f + h]
In the zeroth order problem, the z = f (x, y)+h c (t, x, y) surface splits the flow in two zones : the z ≤ f + h c zone is sheared while the z ≥ f + h c one is rigid. Remark that when h c = 0, i.e. when h ∇ || (f + h) < Bi, there is only a rigid zone. Thanks to the non-slip boundary condition at z = f , the fluid is locally arrested. After summation from z = f to z = f + h c , and using the non-slip boundary condition u || = 0 at z = f and the continuity of u || at z = f + h c , we get :

u || =        n n+1 ∇ || (f + h) 1 n dir(∇ || (f + h)) (f + h c -z) n+1 n -h c n+1 n when z ∈ [f, f + h c ] -n n+1 ∇ || (f + h) 1 n dir(∇ || (f + h)) h c n+1 n when z ∈ ]f + h c , f + h] (4.
21) The last component of the velocity is obtained by integrating the mass conservation (4.10d) in [f, z] :

z f ∂ x u x dz + z f ∂ y u y dz + z f ∂ z u z dz = 0 (4.22) 
From the non-slip boundary condition, u z = 0 at z = f , we get :

u z (t, x, y, z) = - z f (x,y) div || (u || ) dz (4.23)
Thus, velocity u admits an explicit expression depending only upon h. Then, the complete stress τ follows explicitly from (4.13).

It remains to obtain a characterization of h alone. Let us consider (4.23) at z = f + h : by swapping the derivation ∂ x and ∂ y with the integral over [f (x, y), f (x, y) + h(t, x, y)], and using the non-slip boundary condition at z = f , we get :

f +h f ∂ α u α dz = ∂ α f +h f u α dz -u α (t, x, y, f + h)∂ α (f + h), ∀α ∈ {x, y}
Combining the previous relation with the transport equation (4.12) at the zeroth order, and replacing in (4.23) at z = f + h, leads to :

∂ t h + div || f +h f u || dz = 0
By replacing in the previous equation u || by its expression (4.21), depending only upon h, we obtain, after rearrangements, the following conservative equation for h :

∂ t h -div || µ n Bi, h, ∇ || (f + h) ∇ || (f + h) = 0 in ]0, +∞[×Ω (4.24) 
Here, µ n denotes a diffusion coefficient, defined for all n > 1 and all Bi, h, ξ ∈ R + by :

µ n (Bi, h, ξ) =    n ((n + 1)hξ + nBi) (hξ -Bi) 1+ 1 n (n + 1) (2n + 1) ξ 3 when hξ > Bi, 0 otherwise. (4.25) 
This expression contains the two parameters n and Bi of the Herschel-Bulkley viscoplastic fluid. The non-slip velocity condition at the lateral boundaries leads to an homogeneous Neumann boundary condition :

∂(f + h) ∂n = 0 on ]0, +∞[×∂Ω (4.26) 
where ∂/∂n = n.∇ || and n denotes the outward unit normal on ∂Ω in the Oxy plane. Recall the initial condition :

h(t = 0) = h init in Ω (4.27)
The reduced problem writes : find h(t, x, y), defined for all t > 0 and (x, y) ∈ Ω and satisfying (4.24), (4.26) and (4.27).

Notice that, for a Newtonian flow (n = 1 and Bi = 0), expression (4.25) simplifies as :

µ 1 (0, h, ξ) = h 3 3 For a power-law fluid (n > 0 and Bi = 0) :

µ n (0, h, ξ) =      n h 2+ 1 n (2n + 1) ξ 1-1 n when ξ = 0, 0 otherwise.
For the Bingham model (n = 1 and Bi ≥ 0) :

µ 1 (Bi, h, ξ) =    (2hξ + Bi) (hξ -Bi) 2 6 ξ 3 when hξ > Bi, 0 otherwise. 

A new dimensionless formulation

Going back to dimensional variable, the zeroth order equation (4.26) writes :

∂ t h - ρg K 1 n div || µ n τ y ρg , h, ∇ || (f + h) ∇ || (f + h) = 0
From a computational point of view, it is convenient to consider a new dimensionless formulation. This second dimensionless procedure differs from the previous one as ε does no more appears in the zeroth order problem : the new dimensionless quantities are denoted with an hat. Let H be a characteristic length of the problem and let :

ĥ = h H , x = x H , ŷ = y H , t = t T , f = f H ,
where T = K ρgH 1 n represents a characteristic time. After variable substitution, we obtain the following zeroth order dimensionless equation :

∂ tĥ -div || µ n Bi, ĥ, ∇|| ( f + ĥ) ∇|| ( f + ĥ) = 0

where Bi = τ y /(ρgH) is the Bingham number related to this new dimensionless procedure. As we now only consider this dimensionless problem, and since there is no ambiguity, we omit the hat for all the quantities and also for the Bingham number.

Numerical method

The nonlinear parabolic problem is first discretized in time by a full implicit second order variable step scheme and then, the resulting subproblems are discretized in space by an adaptive quadratic finite element method.

Second order implicit scheme

Let (t m ) m≥0 the discrete times and ∆t m = t m+1t m , m ≥ 0 the corresponding time steps. As the observed solutions decrease exponentially to an arrested state, we choose a geometric progression for the time step ∆t m+1 = θ∆t m where θ > 1 and ∆t 0 are given. The time derivative is approximated by the following backward second order variable step finite difference scheme, defined for all ϕ ∈ C 0 by :

∂ϕ ∂t (t m+1 ) = 2∆t m + ∆t m-1 ∆t m (∆t m + ∆t m-1 ) ϕ(t m+1 ) - ∆t m + ∆t m-1 ∆t m ∆t m-1 ϕ(t m ) + ∆t m (∆t m + ∆t m-1 )∆t m-1 ϕ(t m-1 ) + O(∆t 2 m + ∆t 2 m-1 ).
The approximate solution sequence (h m ) m≥0 , h m ≈ h(t m ), is defined recursively, for all m ≥ 1 by : (P ) m : h m-1 and h m being known, find h m+1 such that :

α m h m+1 -div || µ n Bi, h m+1 , ∇ || (f + h m+1 ) ∇ || (f + h m+1 ) = g m in Ω (4.28a) ∂(f + h m+1 ) ∂n = 0 on ∂Ω (4.28b) 4.3. NUMERICAL METHOD
where

α m = 2∆t m + ∆t m-1 ∆t m (∆t m + ∆t m-1 ) g m = ∆t m + ∆t m-1 ∆t m ∆t m-1 h m - ∆t m (∆t m + ∆t m-1 )∆t m-1 h m-1
The sequence is initiated by h -1 = h 0 = h init for m = -1 and 0, respectively. The initial time-dependent nonlinear parabolic problem is transformed as a sequence of nonlinear subproblem (4.28) in h m+1 . An under-relaxed fixed point algorithm is used for solving these subproblems. The sequence (ϕ k ) k≥0 of the fixed point iteration is initiated with ϕ 0 = h m for k = 0. Then, for k ≥ 0, ϕ k being known, a prediction ϕ * is computed as the solution of the following linear subproblem :

α m ϕ * -div || µ n Bi, ϕ k , ∇(f + ϕ k ) ∇ || ϕ * = g m (4.29a) +div(µ n {ϕ k , |∇(f + ϕ k )|}∇f ) in Ω (4.29b) ∂(f + ϕ * ) ∂n = 0 on ∂Ω (4.29c)
Finally, ϕ k+1 is defined by the following under-relaxed scheme :

ϕ k+1 = ωϕ * + (1 -ω)ϕ k
The relaxation parameter 0 < ω ≤ 1 aims at improving the convergence properties of the sequence, while the unrelaxed case is obtained with ω = 1. The stopping criteria of the fixed point algorithm is defined by the residue of the nonlinear subproblem that should be less than a given tolerance. At convergence, we set h m+1 := ϕ k+1 . The choice of ω depends upon n, the power-law index of the fluid rheology (see also [START_REF] Saramito | Efficient C++ finite element computing with Rheolef[END_REF] for a similar analysis on the p-Laplacian nonlinear problem). We observe that when n < 1 and decreases, then ω should be chosen smaller for the algorithm to converge efficiently. The linear subproblem (4.29) is completely standard and is efficiently solved by a quadratic finite element method, as provided by the [Sar13a] library.

Auto-adaptive mesh procedure

In order to improve both the accuracy and the computing time of the previous algorithm, we use an anisotropic auto-adaptive mesh procedure. Such a procedure was first introduced in [SR01] for viscoplastic Bingham flows and then extended in [START_REF] Roquet | An adaptive finite element method for Bingham fluid flows around a cylinder[END_REF], and we refer to theses articles for implementation details. The procedure bases on a mesh adaptation loop at each time step : your goal is to catch accurately the evolution of the front of the free surface, were h = 0 and the associated gradient is sharp (see Fig. 5.2). As the time approximation is a second order one, the adaptation criterion c takes into account the also solution at two previous time steps : . Observe that ε is not so small and that Re is not negligible. This experimental set is expected to test the limitations of the present method. Fig. 4.6 plots in the left column the experimental visualization performed by [START_REF] Cochard | Experimental investigation of the spreading of viscoplastic fluids on inclined planes[END_REF] for various times and the corresponding numerical simulations, as obtained by the present method, are represented in the right column. Observe first that, in the experimental apparatus, the door does not disappear instantaneously : its takes about 0.19 s for the door to be completely open. In the numerical simulations of the dambreak problem, the whole bulk of fluid was assumed to be released instantaneously, i.e. the time needed for the gate to open was neglected. Nevertheless, observe the good qualitative correspondence of the flow until the complete arrested state. A more quantitative comparison is shown on Fig. 4.7 : the successive positions of the front position are compared with experimental observations. The agreement is now less favorable : the numerical prediction of the front is more spread and less advanced than its experimental counterpart. There are several possible explanations for these discrepancies. First, the hypothesis made by the asymptotic expansion are not valid in this case, as ε = 0.59 is not so small. Second, the Reynolds number is not negligible, at least during the first seconds, when the inertia effects are no more negligible and that 3D effects develops at the vicinity of the dam. In that case, our 149 asymptotic analysis is no more valid. Third, the experimental delay to open the dam induces some discrepancies. Finally the carbopol is not strictly a viscoplastic fluid : it also develops viscoelastic properties [START_REF] Park | Oscillatory pipe flows of a yield-stress fluid[END_REF][START_REF] Luu | Drop impact of yield-stress fluids[END_REF] 

c = h m+1 + h m + h m-1 .

Conclusion

A new reduced model for the shallow tridimensional viscoplastic fluid flowing on a general topography was presented in this paper. A second order and implicit timedependent numerical algorithm was proposed to solve this problem, providing an auto-adaptive mesh feature for caching accurately the front position. This approach was tested on two flows experiments and compared to experimental measurements. The first study shows the efficiency of this approach when the shallow flow conditions are fully satisfied while the second one points out the limitations of the reduced model when these conditions was not satisfied. Future works will focus on applications to volcanic lava flows and temperature-dependent problems. Experiments from [START_REF] Cochard | Experimental investigation of the spreading of viscoplastic fluids on inclined planes[END_REF] are in black and present computations with colors.

L'algorithme de Newton

À chaque itération de la discrétisation en temps, nous devons résoudre le problème non-linéaire (4.28). Définissons, pour m ≥ 0 la fonction F m par :

F m (h) = α m h -div(ν n {Bi, h|∇(f + h)|}h 3 ∇(f + h)) -(f m + w e )
où ν n est défini, pour tout Bi > 0 et tout z > 0 par

ν n (Bi, z) = µ n (Bi, 1, z) =    n ((n + 1)z + nBi) (z -Bi) 1+ 1 n (n + 1) (2n + 1) z 3 si z > Bi, 0 sinon.
le problème peut être reformulé de façon équivalente en faisant intervenir la suite de fonction F m :

(P ) m : h m-1 et h m connues, trouver h m+1 tel que :

F m (h m+1 ) = 0, dans Ω, ∂(f + h m+1 ) ∂n = 0, sur ∂Ω.
Sous cette forme là, on pense naturellement à utiliser l'algorithme de Newton pour résoudre ces équations non-linéaires comme alternative à l'algorithme du point fixe (4.29).

Algorithme 4.5.1 (Newton).

• k = 0 : ϕ (0) := h m .

• k ≥ 1 : ϕ (k) connu, trouver δϕ (k) tel que :

F ′ m (ϕ (k) )δϕ (k) = -F m (ϕ (k) ).
• On calcule explicitement :

ϕ (k+1) := ϕ (k) + δϕ (k) .
La notation F ′ m (h) désigne la dérivée au sens de Fréchet de F m . Après calcul de la dérivée, nous obtenons le problème linéaire tangent sous sa forme forte : 153 (LT) soit ϕ donné, trouver δϕ défini sur Ω tel que :

α m δϕ -div ν n {Bi, ϕ|∇(f + ϕ)|}ϕ 3 ∇δϕ + 3ν n {Bi, ϕ|∇(f + ϕ)|} + ν ′ n {Bi, ϕ|∇(f + ϕ)|}ϕ ϕ 2 ∇(f + ϕ)δϕ + ν ′ n {Bi, ϕ|∇(f + ϕ)|} ϕ 4 |∇(f + ϕ)| ∇(f + ϕ)(∇(f + ϕ) • ∇δϕ) = -F m (ϕ (k) ) ∂(f + δϕ) ∂n = 0 sur ∂Ω, où ν ′ n (Bi, z) =    (z -Bi) 1 n (n + 1)(2n + 1)z 4 (1 -n 2 )z 2 + 3nBi z + 3n 3 Bi 2 si z > Bi, 0 sinon. 
C'est une équation parabolique avec condition de Neumann homogène et un coefficient de diffusion tensoriel non-constant. La formulation variationnelle du problème tangent s'écrit :

(VLT) trouver δϕ ∈ W 1,∞ (Ω) tel que :

a 1 (ϕ; δϕ, δχ) = l 1 (δχ), ∀δχ ∈ W 1,∞ (Ω),
où a 1 (.; ., .) et l 1 (.) sont définis pour tout ϕ, δϕ, δχ dans W 1,∞ (Ω) par :

a 1 (ϕ; δϕ, δχ) = Ω α m δϕδχ + ν n {Bi, ϕ|∇(f + ϕ)|}ϕ 3 ∇δϕ • ∇δχ + 3ν n {Bi, ϕ|∇(f + ϕ)|} + ν ′ n {Bi, ϕ|∇(f + ϕ)|}ϕ ϕ 2 δϕ∇(f + ϕ) • ∇δχ + ν ′ n {Bi, ϕ|∇(f + ϕ)|} ϕ 4 |∇(f + ϕ)| (∇(f + ϕ) • ∇δϕ)(∇(f + ϕ) • ∇δχ) dx l 1 (δχ) = - Ω rδχ dx.
En notant, pour tout ϕ ∈ R + et pour tout ξ ∈ R 2 : e ). Nous supposons que cette injection dure t e = 600 s. Les paramètres rhéologiques utilisés pour les calculs numériques sont directement issus des paramètres physiques de lave volcanique de type basaltique. L'indice de puissance est fixé à 1 et la viscosité de lave étant fortement dépendante de la température et pouvant varier sur plusieurs ordres de grandeur, nous la fixerons à η = 10 6 Pa.s. Concernant le paramètre de contrainte seuil, nous étudierons son influence sur la plage de valeurs [100, 1000] Pa. Nous allons effectuer une simulation numérique sur une durée t f = 7200 s afin de modéliser l'écoulement lors de la phase d'injection puis lors de la phase d'étalement une fois la production de matière arrêtée. Nous prendrons comme pas de temps : ∆t = 2.5 s, il faudra donc 7200/2.5 = 2880 itérations en temps. Nous prendrons comme critère de convergence pour les algorithmes du point fixe ou de Newton, une tolérance sur l'erreur relative entre deux itérés tol=10 -12 . La figure 4.8 présente les résultats obtenus par l'algorithme du point fixe avec relaxation. Nous voyons sur le graphique 4.8 a. l'effet du paramètre de relaxation ω crit sur le nombre total d'itérations (la somme sur les 2880 itérations en temps du nombre d'itérations nécessaire pour le point fixe). Nous constatons qu'il existe pour chaque taille de maillage h fixé, un ω optimal qui minimise le nombre d'itération global à effectuer. Nous le noterons ω opt (h). Nous pouvons voir également que les valeurs de ω opt (h) ne sont pas les mêmes suivant les valeurs de h et qu'elles diminuent avec la raffinement du maillage. Notons ici que toutes les courbes finissent par s'arrêter à une certaine une abscisse. Les courbes ne sont pas calculées au-delà, non pas par faute d'avoir effectué le calcul numérique correspond mais parce que pour un choix de ω plus grand, l'algorithme du point fixe diverge. Lors d'une itération en temps, l'algorithme du point fixe n'arrive pas à faire chuter le résidu entre deux itérés consécutifs sous la tolérance tol=10 -12 . Notons alors w crit (h) la valeur du paramètre de relaxation critique pour lequel le point fixe converge si w ≤ w crit et diverge si w > w crit . Comme pour le paramètre ω opt (h), le paramètre de relaxation critique diminue avec le raffinement du maillage. Nous avons même pour les valeurs de h les plus faibles (h = 0.005 et h = 0.007) une égalité entre le paramètre optimal et le paramètre critique. De ce graphique, nous pouvons déjà voir des nombreuses faiblesses de l'algorithme du point fixe. Premièrement, la relaxation est obligatoire, car dès que h ≤ 0.014, nous avons w crit < 1, autrement dit, sans relaxation, ce qui revient à choisir ω = 1, la méthode du point fixe n'aurait pas convergé. Mais nous constatons que bien choisir le paramètre de relaxation n'est pas simple car la plage de convergence diminue et que ω crit et ω opt sont très proches.

β(ϕ, ξ) = 3ν n {Bi, ϕ|ξ|} + ν ′ n {Bi, ϕ|ξ|}ϕ ϕ 2 ξ, k(ϕ, ξ) = ϕ 3 ν n {Bi, ϕ|ξ|}I 2 + ν ′ n {Bi
Le graphique 4.8 b. présente le comportement de ω crit en fonction de la taille de maille h en échelle logarithme. La valeur du paramètre critique semble avoir une dépendance avec la taille de maille h du type : ω crit (h) = ch 0.64 , où c est une constante positive. Autrement dit, w crit tend rapidement vers 0 lorsque h tend vers 0, et par conséquent le nombre d'itération tend vers l'infini.

Remarquons que si l'on choisit un ω identique dans la plage de convergence commune pour différents taille de maillage h, nous voyons sur la figure 4.8 c. que la convergence du résidu est sensiblement la même quelque soit le choix de h. La convergence est extraite d'une itération en temps lorsque t = 1000 s mais ce constat est le même à toutes les itérations. Autrement dit, tant qu'il converge, la convergence l'algorithme du point fixe est indépendant de la taille de maille h, c'est uniquement la dégradation de ω crit qui est problématique. Enfin, nous voyons sur la figure 4.9 l'influence du paramètre τ y sur l'algorithme du point fixe. Lorsque l'on choisit un paramètre de relaxation ω suffisamment petit pour être dans une zone de convergence commune à toutes les valeurs de τ y utilisées dans le graphique, la convergence de l'algorithme est indépendante de τ y (voir 4.9 a. pour t = 1000 s, h = 0.01 et w = 0.2). Cependant, l'algorithme du point fixe va se dégrader à cause du paramètre ω crit qui décroit lorsque l'on augmente la valeur de τ y (voir 4.9 b), ce qui oblige à effectuer une sous-relaxation encore plus importante, et par conséquent une augmentation du nombre d'itérations du point fixe. 

Conclusion

Dans ce chapitre, nous avons présenté et testé numériquement une méthode d'analyse asymptotique pour modéliser avec un temps de calcul raisonnable les écoulements de fluides viscoplastiques à surface libre à dominante visqueuse. Deux méthodes ont été testées pour résoudre les non-linéarités inhérentes au problème réduit. La méthode de Newton semble être très efficace sur ce problème.

Le chapitre suivant propose, sous certaines hypothèses, une extension du modèle réduit en y intégrant l'équation de la chaleur et une thermo-dépendance des paramètres rhéologiques.

Présentation de l'article

Ce chapitre s'intéresse à la modélisation des fluides viscoplastiques de faible épaisseur non-isothermes. Ce travail a fait l'objet d'un papier [START_REF] Bernabeu | A new shallow approximation for tridimensional non-isothermal viscoplastic lava flows[END_REF] actuellement soumis et est présenté ici. Celui ci se décompose principalement en trois parties. Une première partie reprend l'analyse dimensionnelle et asymptotique vue au chapitre précédent en y intégrant l'équation de la chaleur et une consitance et une contrainte seuil thermo-dépendantes. Après réduction asymptotique, l'équation de la chaleur est toujours un problème tridimensionnel. La deuxième partie de l'article propose une intégration verticale de l'équation de la chaleur, sous réserve de plusieurs hypothèses restrictives, pour obtenir au final un vrai problème bidimensionnel. La troisème partie de l'article présente deux résultats numériques. Une première comparaison est proposée avec les expériences de Garel [START_REF] Garel | An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents : implications for thermal monitoring of lava flows and domes[END_REF] sur l'étalement et le refroidissement d'un dôme d'huile de silicone. Les résultats prédits sont en bonne concordance avec les mesures expérimentales. Un second calcul reproduit une coulée de lave qui a eu lieu en décembre 2010 sur le Piton de la Fournaise. Compte tenu du manque de précisions sur certains paramètres physiques, sur la résolution spatiale de la topographie et sur l'histoire exacte du déroulement de cette coulée, les résultats sont très encourageants.

A new shallow approximation for tridimensional non-isothermal viscoplastic lava flows 

Introduction

The risk assessments for volcanic lava flow pose a difficult challenge to numerical methods. Indeed, these flows with free surface couple the fluid dynamic equations (Navier-Stokes like) with thermal effects, as diffusion-convection in lava, radiation and convection in air, diffusion in the substrate while the fluid rheology is complex and temperature-dependent. In order to overcome these complexities, some authors proposed a probabilistic approach based on the topography : the flow path is determined by the maximum slope direction. See the DOWNFLOW [START_REF] Tarquini | Mapping and DOWNFLOW simulation of recent lava flow fields at mount Etna[END_REF] or the ELFM [DGN + 06] codes. Such codes require few computational time and few input data, which is a definitive advantage. However, these approaches do not permit to predict the evolution of the lava, its thickness and its arrested state. The deterministic approaches adopt more complete descriptions of the phenomena. Harris et al. [START_REF] Harris | FLOWGO : a kinematic thermorheological model for lava flowing in a channel[END_REF] proposed a kinematic one-dimensional thermo-rheological model of a lava flow in a confined channel (the FLOWGO code). In [START_REF] Hidaka | VTFS project : development of the lava flow simulation code LavaSIM with a model for three-dimensional convection, spreading, and solidification[END_REF], a three-dimensional model for Newtonian fluids, including the energy conservation, solidification and free surface is presented. A variant of the deterministic approach is the cellular automata method for 2D computation systems, based on a spacial partition into cells whose state evolves according to that of their neighbours and a transition function which describes the exchanges of lava and heat : see the MAGFLOW code [VAdN + 07] that evaluates the lava exchange from the steady state solution of the Bingham fluid equations on an inclined plane, or the SCIARA code [SAL + 10] that bases on a minimization rule of the difference in height between neighbouring cells while the lava cooling takes into account the radiation at the free surface and the heat exchanges due to lava mixing.

The lava flow extends over several kilometres while its thickness remains relatively small. An asymptotic analysis based on this aspect ratio allows to reduce rigorously the three-dimensional set of conservation laws and constitutive equations to a surface bidimensional system of equations. For inertia dominated flows, we obtain the classical Saint-Venant shallow water model [START_REF] De Saint-Venant | Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leurs lits[END_REF], where viscous terms are neglected. Gerbeau and Perthame [START_REF] Gerbeau | Derivation of viscous Saint-Venant system for laminar shallow water ; numerical validation[END_REF] proposed a modified Saint-Venant system where viscous effects are maintained thought a wall friction term. Costa and Macedomio [START_REF] Costa | Numerical simulation of lava flows based on depth-averaged equations[END_REF] extended this viscous variant by including non-isothermal and viscous heating effects for volcanic lava flows. Notice that free surface viscoplastic lava flows are highly viscous and these inertia dominated models could be improved. Huppert [START_REF] Huppert | The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface[END_REF] investigated Newtonian viscous dominated flows. For more complex non-Newtonian rheologies, shallow approximations of the horizontal dam break problem were first studied for a viscoplastic fluid by Liu and Mei [START_REF] Liu | Slow spreading of a sheet of Bingham fluid on an inclined plane[END_REF] and revisited by Balmforth and Craster [START_REF] Balmforth | Viscoplastic flow over an inclined surface[END_REF]. Computations for some specific tridimensional topographies was next performed by using a specific axisymmetric coordinate systems : a curved channel [START_REF] Mei | Slow flow of a Bingham fluid in a shallow channel of finite width[END_REF] and a conical surface [START_REF] Yuhi | Slow spreading of fluid mud over a conical surface[END_REF]. Recently, an extension for an arbitrarily topography is presented by the present authors in [START_REF] Bernabeu | Numerical modeling of non-newtonian viscoplastic flows : part II. Viscoplastic fluids and general tridimensional topographies[END_REF].

Tacking into account thermal effects is more complex with the asymptotic analysis approach : the problem does not reduce to a surface bidimensional one, it remains fully three-dimensional. In order to overcome this difficulty, different approaches based on a depth-average version of the heat equation was investigated by Bercovici and Lin [START_REF] Bercovici | A gravity current model of cooling mantle plume heads with temperature-dependent buoyancy and viscosity[END_REF] for a Newtonian fluid to model the cooling of mantle plume heads with temperature-dependent buoyancy and viscosity. Balmforth and Craster applied this approach to the evolution of a lava dome [START_REF] Balmforth | Dynamics of cooling viscoplastic domes[END_REF] for viscoplastic fluid with temperature-dependent consistency and yield stress.

The aim of this paper is to bring a new robust and efficient numerical method based on the asymptotic analysis approach for the resolution of the shallow approximation of tridimensional non-isothermal viscoplastic flow problem with temperaturedependent consistency and yield stress on a general topography. The first section presents the tridimensional problem, its surface bidimensional reduction and the numerical resolution of the set of equations. The second section validates our approach based on comparisons of numerical simulations with experimental measurements performed on a non-isothermal silicone oil dome laboratory experiment. The last section develops in details some comparison of numerical predictions with data available for a real volcanic lava flow, the December 2010 Piton de la Fournaise lava one.

Problem statement and tridimensional formulation

The viscoplastic Herschel-Bulkley constitutive equation [START_REF] Herschel | Measurement of consistency as applied to rubber-benzene solutions[END_REF] expresses the deviatoric part τ of the stress tensor versus the rate of deformation tensor γ = ∇u + ∇u T as :

τ = K(θ)| γ| n-1 γ + τ y (θ) γ | γ| when γ = 0, |τ | ≤ τ y .
otherwise.

(5.1a)

where u is the velocity field, θ is the temperature, K(θ) > 0 the temperaturedependent consistency, n > 0 is the power-law index and τ y (θ) is the temperaturedependent yield stress. The consistency and the yield stress are in general decreasing with the temperature. Here

|τ | = (1/2) 3 i,j=1 τ 2 ij 1/2
denotes the conventional norm of a symmetric tensor τ in mechanics. The total Cauchy stress tensor is σ = -p.I + τ where p is the pressure and I the identity tensor. When τ y = 0 and n = 1, the fluid is Newtonian and K is the viscosity. When τ y = 0 and n > 0 the fluid is a quasi-Newtonian power-law one. When τ y > 0 and n = 1, the model reduces to the Bingham one [START_REF] Bingham | Fluidity and plasticity[END_REF]. The constitutive equation (5.1a) should be completed by the mass, momentum and energy conservation laws :

div u = 0, (5.1b) 
ρ (∂ t u + (u.∇)u) -div(-p.I + τ ) = ρg, (5.1c) 
ρC p (∂ t θ + u.∇θ) -div(k∇θ) -τ : γ 2 = 0.

(5.1d)

where ρ is the constant density, C p the constant specific heat, k the thermal conductivity and g the gravity vector. Notice that there are four equations (5.1a)-(5.1d) and four unknowns τ , u = (u x , u y , u z ), p and θ. The corresponding problem is closed by defining the boundary and initial conditions. The flow over a variable topography is considered with cooling and mass eruption from a vent (see Fig. 5.1). For any time t > 0, the flow domain is represented by :

Q(t) = {(x, y, z) ∈ Ω × R; f (x, y) < z < f (x, y) + h(t, x, y)}
where Ω is an open and bounded subset R 2 . The function f denotes the topography and h is the flow height. Notice that, since h is a function, h is mono-valued, which excludes the small front cusp often observed on real flows. The eruption zone is described by an open subset Ω e of Ω (see Fig. 5.1) and Ω s = Ω\Ω e denotes its complementary. The boundary ∂Q(t) of the flowing lava volume Q(t) splits in four parts : the bottom relief in the eruption zone Γ e , the bottom relief out of the eruption zone Γ s and the top free surface Γ f (t) : Also, S = {(x, y, z) ∈ Ω s × R; z < f (x, y)} denotes the substratum. For any t > 0, the boundary conditions are a non-slip (Dirichlet) condition on the bottom for the velocity field and natural (Neumann) one on the free surface :

Γ e = {(x, y, z) ∈ Ω e × R; z = f (x, y)}, Γ s = {(x, y, z) ∈ Ω s × R; z = f (x, y)}, Γ f (t) = {(x, y, z) ∈ Ω × R; z = f (x, y) + h(t, x, y)}.
u x = u y = 0 and u z = w e on Γ e ∪ Γ s , (5.1e) 
σ.ν f = 0 on Γ f (t).

(5.1f)

where ν f denotes the unit outward vector of ∂Q(t) on Γ f (t). Here, w e is the lava eruption velocity, defined on ]0, +∞[×Γ e , and satisfying w e = 0 on Γ e and w e = 0 on Γ s . Notice that, from the Dirichlet condition, we have u = 0 on Γ s and a vertical profile on the eruption zone Γ e . For the temperature, a Dirichlet condition in the eruption zone, a conduction flux on the bottom with the substratum (out of eruption zone) and radiative and convection fluxes with air on the free surface are considered :

θ = θ e on Γ e , (5.1g 
)

kν s .∇θ = k s ν s .∇θ s on Γ s , (5.1h 
)

kν f .∇θ + ǫσ SB θ 4 -θ 4 a + λ(θ -θ a ) = 0 on Γ f (t). (5.1i)
where θ e is the initial eruption temperature, θ s is the temperature in the substratum, θ a is the temperature in the air, k s is the thermal conductivity of the substratum, ν s is the unit outward vector of ∂Q(t) on Γ s , ǫ is the emissivity, σ SB is the Stefan-Boltzmann constant and λ is the convective heat transfer coefficient. Here, the term k s ν s .∇θ s represents the heat flux from the substratum. The temperature in the substratum is not directly known but as the substratum is deep and very large, we suppose that the domain S is a semi-infinite. The heat equation in the substratum is written :

ρ s C p,s ∂ t θ s -div(k s ∇θ s ) = 0 in S, (5.1j 
)

θ s = θ on Γ s , (5.1k 
)

θ s (z = -∞) = θ a , (5.1l 
)

θ s (t = 0) = θ a , (5.1m) 
where ρ s , C p,s and k s are physical quantities of substratum (the density, the specific heat and thermal conductivity). It remains to describe the evolution of the free surface. It is convenient to introduce the level set function ϕ that is defined for all t > 0 and (x, y, z) ∈ Ω × R by :

ϕ(t, x, y, z) = z -f (x, y) -h(t, x, y).
Notice that the zero level, where ϕ(t, x, y, z) = 0, coincides with the free surface Γ f (t). Let us write that the level set function is transported by the u velocity field : ∂ t ϕ + u.∇ϕ = 0. On Γ f (t), where z = f + h, this relation becomes :

∂ t h + u x ∂ x (f + h) + ∂ y (f + h) = u z in ]0, +∞[×Ω (5.1n)
This is a first-order transport equation for the height h that should be completed by an initial condition :

h(t = 0, x, y) = h init , ∀(x, y) ∈ Ω, (5.1o) 
where h init is given. It should also be completed by an inflow boundary condition for h : h = h ext on ]0, +∞[×∂Ω -where ∂Ω -= {(x, y) ∈ ∂Ω | u x ν w,x + u y ν w,y < 0}.

We assume that the domain Ω is sufficiently large that the flow never reaches the boundaries of Ω. Then, on ∂Ω, u x = u y = 0 for any time and Ω -= ∅ and thus this last boundary condition is here empty. The set of equation is finally completed by an initial condition for the velocity u and for the temperature θ :

u(t = 0) = u init and θ(t = 0) = θ init in Q(0). (5.1p)
Finally, the tridimensional problem expresses : find h, τ , u, p and θ satisfying (5.1a)-(5.1p). For applications to lava flows, the finite element of finite difference discretisations of this problem lead to huge nonlinear and time-dependent set of equations.

The next paragraph present a reduction to a bidimensional problem.

Reduction to a bidimensional problem

Dimensional analysis

The asymptotic analysis approach developed here was initiated by Liu and Meil [START_REF] Liu | Slow spreading of a sheet of Bingham fluid on an inclined plane[END_REF] and then revisited by Balmforth and Craster [BCRS06] for an
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isothermal bidimensional viscoplastic flow on a constant slope. Balmforth and Craster then extended this analysis to the non-isothermal case for an axisymmetric geometry and presented applications to a lava dome [START_REF] Balmforth | Dynamics of cooling viscoplastic domes[END_REF]. In [START_REF] Bernabeu | Numerical modeling of non-newtonian viscoplastic flows : part II. Viscoplastic fluids and general tridimensional topographies[END_REF], the present authors extended this asymptotic analysis to the case of an isothermal tridimensional viscoplastic flow on an arbitrarily topography. In the present paper, this analysis is extended to the case of a non-isothermal flow : the consistency and the yield stress are supposed temperature-dependent.

The problem is reformulated with dimensionless quantities and unknowns, denoted with tildes. The temperature is expressed as θ = θ a + (θ eθ a ) θ. The temperature-dependent consistency and yield stress are rescaled as K(θ) = K e K( θ) and τ y (θ) = τ y,e τy ( θ) where K e = K(θ e ) and τ y,e = τ y (θ e ). Remark that K(1) = 1 and τy (1) = 1. Let H be a characteristic flow height and L be a characteristic horizontal length of the bidimensional flow domain Ω. Let us introduce the dimensionless aspect ratio :

ε = H/L.
Let U = ρgH 3 /(ηL) a characteristic flow velocity in the horizontal plane, where η = K e (U/H) n-1 is a characteristic viscosity and g = |g| denotes the norm of gravity vector. The characteristic velocity expands as

U = ρgH 2 K e L 1 n

H.

Let W = εU be a characteristic velocity in the vertical direction, T = L/U be a characteristic time and P = ρgH a characteristic pressure. We consider the following change of variables :

x = Lx, y = Lỹ, z = H z, t = T t, p = P p, h = H h, u x = U ũx , u y = U ũy , u z = W ũz .
Remark the non-isotropic scaling procedure for the vertical coordinate z and the vertical vector component u z of the velocity vector. The dimensionless rate of deformation tensor γ is also related to its dimensional counterpart γ = ∇u + ∇u T by the following non-isotropic relations :

γαβ = (U/L) γαβ , α, β ∈ {x, y} γαz = (U/H) γαz , α ∈ {x, y} γzz = (U/L) γzz .
The scaling procedure for the deviatoric part of stress tensor τ is similar :

τ αβ = η(U/L)τ αβ , α, β ∈ {x, y} τ αz = η(U/H)τ αz , α ∈ {x, y} τ zz = η(U/L)τ zz .

The constitutive equation

The dimensionless rate of deformation tensor can be expressed versus the dimensionless velocity as

γαβ = ∂ β ũα + ∂ α ũβ , α, β ∈ {x, y} γαz = ∂ z ũα + ε 2 ∂ α ũz , α ∈ {x, y} γzz = 2∂ z ũz .
The tensor norm scales as : | γ| = (U/L)| γ|. Using (5.1b), we get :

| γ| = ε -1 E where E ={ε 2 (∂ x ũy + ∂ ỹ ũx ) 2 + 2ε 2 (∂ x ũx ) 2 + 2ε 2 (∂ ỹ ũy ) 2 + 2ε 2 (∂ x ũx + ∂ ỹ ũy ) 2 + (∂ z ũx + ε 2 ∂ x ũz ) 2 + (∂ z ũy + ε 2 ∂ ỹ ũz ) 2 } 1 2
Let us introduce the Bingham dimensionless number Bi that compares the yield stress τ y,0 to a characteristic viscous stress ηU/H :

Bi = τ y,0 H ηU = ε -1 τ y,0 ρgH ,
We suppose that Bi = O(1) in ε. This hypothesis interprets as τ y,0 /(ρgH) = O(ε) or equivalently that the yield stress τ y,0 is supposed to be small when compared to the gravity effects ρgH. When |τ | > τ y , we obtain a dimensionless version of the constitutive equation (5.1a) :

τij = τy ( θ)Bi E + K( θ)E n-1 γij . Then, |τ | = η(U/L)|τ | where |τ | = ε -1 T and T = {τ 2 xz + τ 2 yz + 1 2 ε 2 τ 2 xx + 1 2 ε 2 τ 2 yy + 1 2 ε 2 τ 2 zz + ε 2 τ 2 xy } 1 2 .
Remark that the Von Mises condition |τ | > τ y then becomes T > τy ( θ)Bi. The constitutive equation (5.1a) writes :

     τ = B( θ) E + A( θ)E n-1 γij when E = 0, T ≤ B( θ) otherwise.
(5.2) with the notation A( θ) = K( θ) and B( θ) = τy ( θ)Bi.
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The conservation laws

Let us introduce the Reynolds dimensionless number :

Re = ρU L η = ρ 2 gH 3 η 2
, the Péclet dimensionless number P e that compares convection to diffusion :

P e = ρC p U L k ,
and Brinkman dimensionless number that measures the importance of the viscous dissipation :

Br = U η k∆θ = K e U n+1 k(θ 0 -θ a )H n-1 .
We suppose that Re = O(ε -1 ) in ε. It means that the flow is supposed to be sufficiently slow for the inertia effects to be neglected at zero-order of development in ε. We assume that the Péclet number P e = O(ε -N ) where N is an integer and we denote P e = ε N P e. Finally, we suppose that Brinkman number Br = O(ǫ). It means that the friction effects are neglected at zero-order of development in ε.

The conservation laws of momentum, mass and energy (5.1c), (5.1b) and (5.1d) becomes :

ε 2 Re(∂ t ũx + ũx ∂ x ũx + ũy ∂ ỹ ũx + ũz ∂ z ũx ) = -∂ x p + ε 2 (∂ x τxx + ∂ ỹ τxy ) + ∂ z τxz , (5.3a) ε 2 Re(∂ t ũy + ũx ∂ x ũy + ũy ∂ ỹ ũy + ũz ∂ z ũy ) = -∂ ỹ p + ε 2 (∂ x τxy + ∂ ỹ τyy ) + ∂ z τyz , (5.3b) 
ε 4 Re(∂ t ũz + ũx ∂ x ũz + ũy ∂ ỹ ũz + ũz ∂ z ũz ) = -∂ z p -1 + ε 2 (∂ x τxz + ∂ ỹ τyz + ∂ z τzz ), (5.3c) 
∂ x ũx + ∂ ỹ ũy + ∂ z ũz = 0, (5.3d) 
∂ t θ + ũx ∂ x θ + ũy ∂ ỹ θ + ũz ∂ z θ = ε N -2 P e ε 2 ∂ xx θ + ε 2 ∂ ỹ ỹ θ + ∂ z z θ + Br 2 ε 2 α,β∈{x,y} ταβ γαβ + ε 2 τzz γzz + α∈{x,y} ταz γαz . 
(5.3e)

Boundary and initial conditions

The Dirichlet condition (5.1e) on Γ s ∪ Γ e writes : ũx = ũy = 0 and ũz = we ,

where we = w e /W . The unit outward normal ν f on the free surface Γ f (t) expresses as :

ν f = ∇ϕ ||∇ϕ|| = 1 1 + |∇(f + h)| 2   -∂ x (f + h) -∂ y (f + h) 1   .
Then, (5.1f) writes :

  τ xx -p τ xy τ xz τ xy τ yy -p τ yz τ xz τ yz τ zz -p     -∂ x (f + h) -∂ y (f + h) 1   =   0 0 0  
and becomes in dimensionless form :

-(ε 2 τxx -p)∂ x( f + h) -ε 2 τxy ∂ ỹ( f + h) + τxz = 0, (5.5a) -ε 2 τxy ∂ x( f + h) -(ε 2 τyy -p)∂ ỹ( f + h) + τyz = 0, (5.5b) -ε 2 τxz ∂ x( f + h) -ε 2 τyz ∂ ỹ( f + h) + ε 2 τzz -p = 0, (5.5c) 
where f = f /H denotes the known dimensionless topography.

Concerning the temperature, the radiative and convective transfer with air (5.1i) on Γ f (t) become :

-ε 2 {∂ x( f + h)∂ x θ + ∂ ỹ( f + h)∂ ỹ θ} + ∂ z θ + Rp µ ( θ) θ + N u θ = 0, (5.6) 
where

R = Hǫσ SB (∆θ) 3 k , a radiation number, N u = λH k , the Nüsselt number, µ = θ a θ e -θ a
, a temperature ratio number, for radiation.

Also, p µ (θ) = θ 3 + 4µθ 2 + 6µ 2 θ + 4µ 3 for any θ ≥ 0. We suppose that R = O(1) and N u = O(1).

The unit outward normal ν s on the Γ s surface expresses as :

ν s = 1 1 + |∇f | 2   ∂ x f ∂ y f -1   .
Then, the condition at the interface Γ s (5.1h) writes :

ε 2 (∂ x( f + h)∂ x θ + ∂ ỹ( f + h)∂ ỹ θ) -∂ z θ = - k s k ε 2 (∂ x( f + h)∂ x θs + ∂ ỹ( f + h)∂ ỹ θs ) -∂ z θs .
(5.7)
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Boundary and initial conditions at the zero-order

From the conditions at the free surface (5.5) and (5.6) for z = f (x, y) + h(t, x, y) we get at the zero-order :

τ xz + p∂ x (f + h) = 0, (5.14a 
)

τ yz + p∂ y (f + h) = 0, (5.14b 
)

p = 0, (5.14c 
)

∂θ ∂z + Rp µ (θ)θ + N uθ = 0. (5.14d)
The reduction of the condition of conduction in the substratum for the temperature on Γ s (5.7) depends also of the value of N .

• For N ≤ 1, it becomes : ∂θ ∂z = 0.

This condition becomes a homogeneous Neumann condition, the conduction effect with the substratum is neglected. It is no cooling by the bottom.

• For N ≥ 3, it becomes : θ = 0.

This condition becomes a homogeneous Dirichlet condition. The cooling by the bottom is very important. Temperature is immediately reduced at this minimum value at this interface.

• For N = 2, it becomes :

∂θ ∂z = - k s k ∂θ s ∂z .
Heat equation in substratum (5.8) writes :

∂ t θ s = ∂ zz θ s P e s in S, (5.15a 
)

θ s = θ on Γ s , (5.15b 
)

θ s (z = -∞) = 0, (5.15c) 
θ s (t = 0) = 0.

(5.15d)

The solution of this problem is given by Carslaw and Jaegerin in [CJ46, p. 53] :

∀z ≤ f, θ s (t, x, y, z) = f -z 2 P e s π t 0 θ(ζ, x, y, f ) (t -ζ) 3/2 e - P e s (f -z) 2 4(t -ζ) dζ.
This solution can be approximated in the neighborhood of z = f by :

θ s (t, x, y, z) = -θ(t, x, y, f )erfc( √ P e s (z -f ) 2 √ t ),
In particular, on Γ s :

∂θ s ∂z (t, x, y, f ) = -θ(t, x, y, f ) P e s πt .
Finally, the cooling by the substratum in z = f writes :

∂θ ∂z = k s k θ P e s πt .
(5.16)

For this case, a progressive cooling by substratum remains.

In the next, we consider that N = 2. It is the most interesting case because it remains several thermal effects and the hypothesis P e = O(ε -2 ) is consistent with the particular case of basaltic lava. The other boundary conditions : Dirichlet condition for the velocity Γ s ∪ Γ e (5.4), Dirichlet condition for the temperature on Γ e , transport equation (5.9) and initial conditions for u, h and θ remains identical at zero-order.

Vertical-averaged problem

Partial resolution of dynamic equations

For any function g of ]0, +∞[×Q(t), let us denote g its vertical-averaged value, defined for all (t, x, y) ∈]0, +∞[×Ω by

g(t, x, y) =      1 h f +h f g(t,
x, y, z) dz when h = 0, 0 otherwise.

(5.17)

For simplicity, assume that the consistency and the yield stress depend only of the vertical-averaged temperature : K(θ) = K(θ) and τ y (θ) = τ y (θ). It means that the effects of vertical variation of temperature on the consistency and the yield stress are here neglected, while their effects in the horizontal directions x and y is still taken into account.

In this paragraph, with the last hypothesis concerning the consistency and the yield stress, we show that the set of equation at zero-order concerning the fluid dynamic : the conservation laws (5.12), the constitutive equation (5.10), the boundary conditions about the velocity, on the stress (5.14a)-(5.14c) and the transport equation of h reduces to a nonlinear problem with h and θ as the only unknown : all the others quantities τ , u and p at the zero-order can be computed Remark that h c increases with the temperature θ, then the sheared zone is higher in the hot parts of fluid while the rigid zone is more important on the cold parts.

In the limit case, where h c = 0, equivalently |h∇ || (f + h)| < B(θ), there is an only rigid zone. Thanks to the non-slip boundary condition in z = f , the fluid is locally arrested. After summation from z = 0 to z = f + h and using the condition u || = 0 in z = f and the continuity of u || en z = f + h c (θ), we get :

u || =              n n+1 |∇ || (f + h)| 1 n dir(∇ || (f + h))A -1 (θ) (f + h c (θ) -z) n+1 n -h n+1 n c when z ∈ [f, f + h c (θ)], -n n+1 |∇ || (f + h)| 1 n dir(∇ || (f + h))A -1 (θ)h n+1 n c when z ∈]f + h c (θ), f + h], (5.23) 
The last component of the velocity is obtained by integrating the mass conservation (5.12d) in [f, z] :

z f ∂ x u x dz + z f ∂ y u y dz + z f ∂ z u z dz = 0. (5.24) 
The condition u z = w e in z = f gives :

u z (t, x, y, z) = - z f div || (u || ) dz + w e .
(5.25) Thus, velocity u admits an explicit expression depending only upon h and θ. Then, the complete stress τ follows explicitly from (5.10).

It remains to obtain a characterization of h involving only h and θ. By swapping the derivation ∂ x and ∂ y with the integrate on [f (x, y), f (x, y) + h(t, x, y)] and using the non-slip boundary condition u || = 0 at z = f , we get the following formula :

f +h f ∂ α u α dz = ∂ α f +h f u α dz -u α (t, x, y, f + h)∂ α (f + h), ∀α ∈ {x, y}.
Combining the previous relation with (5.25) in z = f + h and using the zero-order transport equation, leads to :

∂ t h + div || f +h f u || = w e .
By definition (5.17) extended to vector, this equation can be written :

∂ t h + div || hu || = w e , (5.26) 
where after integrating (5.23), we have :

u || =            - nA -1 (θ) (n + 1)h|∇ || (f + h)| + nB(θ) h|∇ || (f + h)| -B(θ) 1+ 1 n (n + 1)(2n + 1)h|∇ || (f + h)| 3 ∇ || (f + h) when h|∇ || (f + h)| > B(θ), 0 otherwise. 
(5.27) Equation ( 5.26) can be written as an diffusion equation involving a diffusion coefficient µ n :

∂ t h -div || µ n (A, B, h, θ, |∇ || (f + h)|)∇ || (f + h) = w e , (5.28) 
where µ n is defined for any n > 0, for any h, ξ ∈ R + , for any θ ∈ [0, 1] and any functions A, B : [0, 1] → R + as :

µ n (A, B, h, θ, ξ) =      nA -1 (θ) (n + 1)hξ + nB(θ) hξ -B(θ) 1+ 1 n (n + 1)(2n + 1)ξ 3 when hξ > B(θ), 0 otherwise. 
(5.29) The non-slip velocity condition at the lateral boundaries leads to an homogeneous Neumann boundary condition :

∂(f + h) ∂n = 0, on ]0, +∞[×∂Ω.
(5.30)

Finally, after zero order reduction of all equations and a partial resolution of the dynamic part, the problem is written :

(P ) : find h and θ satisfying :

∂ t h + div || hu || = w e in ]0, +∞[×Ω (5.31a) h(t = 0) = h init in Q(0), (5.31b) 
∂(f + h) ∂n = 0 in ]0, +∞[×∂Ω, (5.31c) 
∂ t θ + u x ∂ x θ + u y ∂ y θ + u z ∂ z θ - 1 P e ∂ zz θ = 0 in ]0, +∞[×Q(t), (5.31d 
)

θ(t = 0) = θ init in Q(0), (5.31e 
)

∂θ ∂z + R p µ (θ)θ + Nuθ = 0 on ]0, +∞[×Γ f (t), (5.31f) 
- ∂θ ∂z + k s k P e s πt 1 2 θ = 0 on ]0, +∞[×Γ s , (5.31g) 
θ = 1 on ]0, +∞[×Γ e .

(5.31h)

Reduction of the heat equation

Notice that the reduced problem still remain tridimensional, as (5.31d) is still defined on the tridimensional flow domain Q(t). It remains to integrate this equation in the vertical direction and express the problem in terms of the averaged temperature θ.

For any t > 0 and (x, y) ∈ Ω, integrating heat equation from z = f (t, x, y) to z = f (t, x, y) + h(t, x, y) leads to :

f +h f ∂ t θ dz + f +h f u x ∂ x θ dz + f +h f u y ∂ y θ dz + f +h f u z ∂ z θ dz = 1 P e f +h f ∂ zz θ dz
The right member is easily integrated. By swapping integrate of first term with partial time derivative ∂ t whose one bound depended on t and by integrating by parts the other terms, we get :

∂ t f +h f θ dz -θ(t, x, y, f + h)∂ t h + f +h f ∂ x (u x θ) dz - f +h f (∂ x u x )θ + f +h f ∂ y (u y θ) dz - f +h f (∂ y u y )θ + [u z θ] f +h f - f +h f (∂ z u z )θ dz = [∂ z θ] f +h f P e .
After some swapping with integrates and partial derivatives in x and y and using the θ = 1 condition on Γ e , it gets :

∂ t f +h f θ dz -θ(t, x, y, f + h) ∂ t h + u x (t, x, y, f + h)∂ x (f + h) + u y (t, x, y, f + h)∂ y (f + h) -u z (t, x, y, f + h) + ∂ x f +h f u x θ dz + ∂ y f +h f u y θ dz - f +h f (∂ x u x + ∂ y u y + ∂ z u z )θ dz = [∂ z θ] f +h f P e + w e .
Using mass conservation equation (5.12d) and transport equation of the free surface (5.9), we obtain :

∂ t f +h f θ dz + ∂ x f +h f u x θ dz + ∂ y f +h f u y θ dz = [∂ z θ] f +h f P e + w e . ( 5 

.32)

This equation is rewriting as :

∂ t (hθ) + div(hu || θ) = [∂ z θ] f +h f P e + w e .
Expanding the term ∂ t (hθ),

h∂ t θ + θ∂ t h + div(hu || θ) = [∂ z θ] f +h f P e + w e .

VERTICAL-AVERAGED PROBLEM

The kinetic equation (5.31a) permits to replace ∂ t h by w e -div(hu || ). Last equation becomes

h∂ t θ + div(hu || θ) -div(hu || )θ = [∂ z θ] f +h f P e
+ w e 1θ .

(5.33)

In order to obtain a well-posed problem in term of θ instead of θ, an additional relation should be introduced : the so-called closure relation, that expresses θ versus θ. A vertical profile θ is chosen according to θ as θ(t, x, y, z) = ϕ(t, x, y, z) θ(t, x, y) where ϕ is a unknown function satisfying ϕ = 1 and the boundary conditions in the vertical direction :

∂ z ϕ + Rp µ (θϕ)ϕ + Nu ϕ = 0 on Γ f (t), -∂ z ϕ + k s k P e s πt 1 2 ϕ = 0 on Γ s and θϕ = 1 on Γ e .
With these notations, (5.33) becomes :

h ∂ t θ + ϕu || .∇θ + div h(ϕu || -u || ) θ -w e 1 -θ - 1 P e [∂ z ϕ] f +h f θ = 0. (5.34)
Notice that ϕu || interprets as a weighted averaged velocity. The closure equation (5.34) was first introduced by Bercovici and Lin [START_REF] Bercovici | A gravity current model of cooling mantle plume heads with temperature-dependent buoyancy and viscosity[END_REF] in the context of the cooling mantle plume heads : these authors showed that, restricting ϕ(t, x, y, z) to be a second degree polynomial in z for any fixed (t, x, y), leads to a well-posed reduced problem when replacing (5.31d) by (5.34) in problem (P ). Moreover, the computation of the ϕ polynomial coefficient at any (t, x, y) was easy and explicit. However, this second order polynomial approximation in z do not permit to eliminate the term div h(ϕu ||u || ) θ from equation (5.33). There is also no evidence that its always positive : it can thus generate an exponential growth of the averaging temperature and this possible behavior is difficult to handle in numerical simulation. Finally, the physical meaning of this therm is unclear and Bercovici and Lin neglected div h(ϕu ||u || ) θ in the previous equation. These authors showed that a real numerical error is committed with this hypothesis : its order of error is of about 10% for their specific problem [START_REF] Bercovici | A gravity current model of cooling mantle plume heads with temperature-dependent buoyancy and viscosity[END_REF]p. 3307]. Notice that 10% of errors is acceptable for some applications ; nevertheless, from a mathematical point of view, all convergence properties versus ε are definitively lost.

In the present paper, we propose a variant of this approach that conserve the convergence properties versus ε : we choose ϕ as a third degree polynomial in z. This choice allows one additional degree of freedom at each (t, x, y) and we choose to impose exactly ϕu || = u || at any (t, x, y) as an additional constraint. Let (t, x, y) be fixed and ϕ(z) = az 3 + bz (5.36c)

Numerical resolution

The nonlinear reduced problem in h and θ is first discretized versus time by an implicit second order variable step finite difference scheme (see [START_REF] Bernabeu | Numerical modeling of non-newtonian viscoplastic flows : part II. Viscoplastic fluids and general tridimensional topographies[END_REF]). It leads to a sequence of nonlinear subproblems that depends only of the horizontal coordinates (x, y) ∈ Ω. An under-relaxed fixed point algorithm is used for solving these nonlinear subproblem : it allows to decouple the parabolic evolution equation evolution, in terms of h, and the averaged heat equation, in term of θ. Then, these equations are discretized by an auto-adaptive finite element method : the practical implementation bases on the Rheolef finite element library [Sar13a].

Time discretization

Let (t m ) m≥0 a discrete times and ∆t m = t m+1t m , m ≥ 0 the corresponding time step.

The time derivative is approximated by the following backward second order variable step finite difference scheme (BFD2), defined for all ϕ ∈ C 0 by :

∂ϕ ∂t (t m+1 ) = 2∆t m + ∆t m-1 ∆t m (∆t m + ∆t m-1 ) ϕ(t m+1 ) - ∆t m + ∆t m-1 ∆t m ∆t m-1 ϕ(t m ) + ∆t m (∆t m + ∆t m-1 )∆t m-1 ϕ(t m-1 ) + O(∆t 2 m + ∆t 2 m-1 ).
For all functions φ in ]0, +∞[×Ω, we denote (φ m ) m≥-1 ≈ φ(t m , x, y) where t -1 = t 0 = 0.

NUMERICAL RESOLUTION

We compute recursively (h m ) and (θ m ) by : Algorithme 5.5.1 (BDF2).

• m = -1, 0 :

h 0 := h -1 := h init , θ 0 := θ -1 := θ init • m ≥ 1 : h m-1 , h m , θ m-1
and θ m being known : find h m+1 and θ m+1 such that :

α m h m+1 -div(µ n {A, B, h m+1 , θ m+1 , |∇(f + h m+1 )|}∇(f + h m+1 )) = f m + w e in Ω, α m h m+1 - 3a m+1 h 2 m+1 + 2b m+1 h m+1 P e + w e θ m+1 = h m+1 g m + w e in Ω, ∂(f + h m+1 ) ∂n = 0 on ∂Ω, ∂(θ m+1 ) ∂n = 0 on ∂Ω,
where we denote :

α m = 2∆t m + ∆t m-1 ∆t m (∆t m + ∆t m-1 ) , β m = ∆t m + ∆t m-1 ∆t m ∆t m-1 , γ m = - ∆t m (∆t m + ∆t m-1 )∆t m-1 , f m = β m h m + γ m h m-1 , g m = β m θ m • X m + γ m θ m-1 • X m-1
and where a m+1 , b m+1 and d m+1 are solutions of the (S m+1 ) system defined for any m ≥ 0 as :

(S m )              ϕ m = 1, ∂ϕ m ∂z + (Rp µ (θ m ) + N u)ϕ m = 0 on Γ f (t m ), ∂ϕ m ∂z = k s k P e s ϕ m √ πt m on Γ s and θ m ϕ m = 1 on Γ e , u ||,m ϕ m = u ||,m with ϕ m = a m z 3 + b m z 2 + c m z + d m .
Transport terms were discretized by characteristic method, where characteristics X m and X m-1 are defined as :

X m = x -∆t m u * || X m-1 = x -(∆t m + ∆t m-1 )u * || u * || = ∆t m-1 + ∆t m ∆t m-1 u ||,m - ∆t m ∆t m-1 u ||,m-1 .

Fixed point algorithm

Fixed point algorithm is used for solving this sequence of nonlinear subproblems. An under-relaxed method is used to make easier the convergence of fixed point algorithm.

Algorithme 5.5.2 (Fixed point algorithm).

• k = 0 : χ (0) := h m and ψ (0) := θ m .

• k ≥ 1 :

Step 1 : χ (k) and ψ (k) being known, find χ * such that : Then χ (k+1) = ωχ * + (1ω)χ (k) .

Step 2 : χ (k+1) and ψ (k) being known, find ψ * such that : α m χ (k+1) -3a (k+1) (χ (k+1) ) 2 + 2b (k+1) χ (k+1) P e + w e ψ * = χ (k+1) g m + w e in Ω, ∂ψ * ∂n = 0 on ∂Ω, where a (k+1) , b (k+1) and d (k+1) are solutions of (S k+1 ) linear system where for all k ≥ 1

(S k )                  ϕ (k) = 1, ∂ϕ (k) ∂z + (Rp µ (ψ (k-1) ) + N u)ϕ (k) = 0 on Γ f (t m ), ∂ϕ (k) ∂z = k s k P e s ϕ (k) √ πt m+1 on Γ s and ϕ (k) ψ (k) = 1 on Γ e , u (k) || ϕ (k) = u (k) || with ϕ (k) = a (k) z 3 + b (k) z 2 + c (k) z + d (k) .
Then ψ (k+1) = ωψ * + (1ω)ψ (k) .

Remark that we have deliberately relaxed the third order term : p µ (ψ (k) ) in p µ (ψ (k-1) ) to make system (S k ) linear in a (k+1) , b (k+1) , c (k+1) and d (k+1) .

5.6. COMPARISON WITH A SILICONE OIL DOME EXPERIMENT

Auto-adaptive mesh procedure

In order to improve both the accuracy and the computing time of the previous algorithm, we use an anisotropic auto-adaptive mesh procedure. Such auto-adaptive mesh method was first introduced in [SR01] for viscoplastic flows and then extended in [START_REF] Roquet | An adaptive finite element method for Bingham fluid flows around a cylinder[END_REF], and we refer to theses articles for the implementation details. The procedure bases on a mesh adaptation loop at each time step : your goal is to catch accurately the front evolution, were h = 0 (see Fig. 5.2). At the front, both the h and θ gradients are sharp. As the time approximation is a second order one, the adaptation criterion c takes into account the also solution at two previous time steps : c = h m+1 + h m + h m-1 . C p 1500 J.m -1 .K -1 convective heat transfer coefficient with air λ 1 -3 W.m -2 .K -1 thermal conductivity of the polystyrene k s 0.03 W.m -1 .K -1 thermal diffusivity of the polystyrene κ s 6 × 10 -7 m 2 .s -1 vent radius r e 2 -4 mm constant in Arrhenius law α 0.00808044 K -1 constant in Huppert [START_REF] Huppert | The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface[END_REF] formula a 0.715 dimensionless Table 5.1 -Physical parameters for the laboratory experiment [START_REF] Garel | An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents : implications for thermal monitoring of lava flows and domes[END_REF][START_REF] Garel | Modélisation de la dynamique et du refroidissement des coulées de lave : utilisation de la télédétection thermique dans la gestion d'une éruption effusive[END_REF].

The evolution of lava dome was numerical studied by Balmforth and Craster using yield stress fluids [START_REF] Balmforth | Dynamics of cooling viscoplastic domes[END_REF]. In 2012, Garel presented [GKTL12] a laboratory experiment that reproduce analogously the lava dome growth with silicon oil (Newtonian fluid) and allowed accurate temperature measurements. The fluid is injected through a vertical vent in an horizontal polystyrene plane at constant flow rate Q. The fluid is initially heated at θ e above the ambient temperature θ a and a system of optical and infrared cameras are used to follow the dome growth and the surface temperature. Table 5.1 groups the relevant physical parameters for this experiment. The fluid viscosity was measured for the full experimental temperature range (see Fig. 5.3). Data was first presented in [START_REF] Garel | Modélisation de la dynamique et du refroidissement des coulées de lave : utilisation de la télédétection thermique dans la gestion d'une éruption effusive[END_REF]. Observe that the viscosity can be approximated by an Arrhenius law K(θ) = K e e α(θe-θ) where α = 0.00808044 K -1 was obtained by a linear regression. The flow thought the vent is supposed to be a steady Poiseuille flow. As the vent is a circular hole with radius r e , the vertical velocity w e is a second order polynomial versus the radius. Then w e (r) = c max(0, r 2 e -r 2 ) where c > 0 is such that re 0 w e (r) r dr = Q i.e. c = 2Q/(πr 4 e ). .a shows the computed surface temperature as obtained by numerical simulations for different variants of our shallow model. These simulations are also compared with experimental measurements, from [START_REF] Garel | An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents : implications for thermal monitoring of lava flows and domes[END_REF]. Observe the good correspondence between all simulations and the experimental data. The label P 2 is associated to a constant viscosity model similar to those of by Bercovici and Lin [START_REF] Bercovici | A gravity current model of cooling mantle plume heads with temperature-dependent buoyancy and viscosity[END_REF] : the temperature profile θ = ϕ θ is approximated with a second order polynomial ϕ in the vertical direction and the term div h(ϕu ||u || ) θ is neglected. The label P 3 denotes a constant viscosity model where ϕ is approximated by a third order polynomial that satisfies ϕu || = u || . Finally, the label K(θ)-P 3 denotes a non-constant viscosity model based on the Arrhenius's law. For this silicone oil dome problem, the results of the simulations are very close for all these model variants ; the comparison is presented at time t = 7480 s but this observation is still valid for other times. The change from a P 2 to a P 3 model has few effects on numerical computations, despite this change is more satisfactory from a mathematical point of view. The change from a P 3 to a K(θ)-P 3 model has also few effects : the difference between the two curves is imperceptible on Fig. 5.4.a. Remark that in the present experiment, the viscosity varies about a factor two in the temperature range from 20 • C to 60 • C (see Fig. 5.3).

Comparison between experiments and simulations

Based on an auto-similar solution for the lava dome problem, Huppert [START_REF] Huppert | The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface[END_REF] proposed an explicit formula of the reference height h ref and dome front radius r f (t) for the isothermal case :

h ref = a (ρ -ρ a )gQ 3 3K 1/4
and r f (t) = a 2/3 3KQ (ρρ a )g 1/8 t 1/2 , (5.37

)
where a is a constant and ρ a is the air density. Observe that the viscosity K appears with some 1/4 and 1/8 exponents : as a consequence, the dependence upon the temperature is finally negligible for the present silicone oil dome evolution experience. This situation will dramatically change for real lava flows, as presented in the next section.

The experimental estimate of the coefficient of convective heat transfer λ ranges from 1 to 3 W.m -2 .K -1 . Fig. 5.4.b plots the computed surface temperature for the two extreme values of λ. Observe that the corresponding numerical results are close. Moreover, the two curves wrap completely the experimental data. In the rest of this paragraph, the median value λ = 2 is used for all the simulations. Fig. 5.5, present the surface temperature evolution versus time for the K(θ)-P 3 model. All these simulations appear in good concordance with experimental data for times larger than t = 600 s. At t = 160 s, we observe some discrepancy between the experimental data and the theoretical model. Following [GKTL12, p. 7], "we interpret the faster experimental cooling as due to lateral heat conduction in the substrate that initially widens the size of the thermal anomaly. This effect decreases as the temperature decreases at the front of the current, and becomes negligible for t > 320 s, when the experimental observations are well reproduced by theory."

5.7

Comparison with a real volcanic lava flow for more information about the 2010 lava flow. Table 5.2 groups all the relevant physical quantities suitable for the simulation. The fluid is represented by a Bingham viscoplastic rheological model (the power law index is n = 1). The substrate and the lava present similar properties, such as density and thermal conductivity, since the substrate is composed by old cooled lava. The consistency and the yield stress depend strongly upon the temperature and vary on a large range of magnitude. More precisely, we suppose that the viscosity and the yield stress follow some Arrhenius laws : K(θ) = K e e α(θe-θ) and τ y (θ) = τ y,e e β(θe-θ) where α = β = 0.016447 K -1 . the detailed contours of the final lava flow at arrested state (see Fig. 5.7 right) : this data will be used for comparison with numerical simulations. The average lava flow rate Q during the eruption is also known (see table 5.2). An expedition was necessary to complete some missing data and localize accurately the different vents (see Fig. Notice that these areas are known from the detailed contours of the lava flow at arrested state. On the A zone, we suppose that the vent 1 is a circular cone with a radius of 20 meters and is active during the full eruption time. On the B zone, we suppose that the vents from 2 to 6 are active one after the other and that they are circular. Let us denote by d e the eruption duration. We suppose that the vent 2 is active from t = 0 to d e /5 with a radius of 10 meters and the vent i, 3 ≤ i ≤ 6, is active from t = (i -2)d e /5 to (i -1)d e /5 with a radius of 20 meters. Numerical simulations are performed for this volcanic lava flow : the arrested state is reached at t = 25 h and is represented on Fig. 5.9 over the DEM. Observe that the predicted arrested state is relatively closed to that of the observed one, represented by a thin white line. Some discrepancies remain between the simulation and the observation. The final deposit is overestimated in different places. Also, the widths of the different flow branches are not always well predicted and some flow bifurcations do not appear in the simulation. There are many explanations to understand these discrepancies. The main problem for the simulation is the lack of data concerning the 2010 lava flow, especially concerning the vent positions and their corresponding flow rates during the time. These missing data was here estimated and we observed that different choices slightly influence the final result. A second source of error is the accuracy of the present DEM : its 5 meter horizontal resolution should be reported to the characteristic flow height that is of about 1 meter. At this scale, a lot of ground details are lost and a single block of rock or a little relief with a size of 2 or 3 meters is able to generate a bifurcation while it is invisible on the present DEM. In 2012, a new DEM of the Piton de la Fournaise has been realized with a one meter spatial resolution : it can very interesting to test it for future eruptions.

Digital elevation model and flow conditions

Numerical simulations

A third source of errors could be due to the model itself : the vertical variation of the temperature is here neglected in the viscosity and the yield stress temperature dependent functions, since only a vertical averaged value of the temperature is used.

A future research direction will be to reconsider this vertical variation. Nevertheless, considering theses lack of physical data and our simplified shallow viscoplastic flow model, the numerical simulations are in relatively good agreement with observations. Finally, Figs. 5.10 and 5.11 shows the evolution of the volcanic lava flow simulation for various times until the arrested state.

5.8. CONCLUSION

Conclusion

A new reduced model for the non-isothermal free-surface tridimensional viscoplastic fluid for shallow flows on a general topography has been presented in this paper. Both the consistency and the yield stress are supposed temperature-dependent. The governing equations was numerical approximated by an auto-adaptive finite element method, allowing to track accurately the front position. The proposed approach was evaluated by comparing numerical predictions with available data for both a laboratory experiment with a non-isothermal silicon oil flow and a real volcanic lava flow. These two tests showed that the numerical simulations are relatively in good agreement with observations. Future works will consider a new 1 meter resolution DEM of the Piton de la Fournaise volcano for more accurate simulations and also to explore lava flow simulation for others volcanoes. Another research direction is to improve our model, by tacking into account the vertical dependence of the temperature in the viscosity and yield stress functions. 
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 112 Figure 1 -Vue schématique d'un volcan (source : illustration provenant de galleryhip.com).
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 3 Figure 3 -(a) Exemple de coulée de lave de type pahoehoe à Hawaii ; (b) Exemple de coulée de lave de type 'a'a, volcan Kilauea à Hawaii (source : http: //en.wikipedia.org/wiki/Lava.
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 4 Figure 4 -Risques occasionnés par les coulées de lave dans les zones habitées. Éruption majeur d'avril 2007 sur le Piton de la Fournaise (source : http://www. fournaise.info/eruption2avril07.php, crédit : Serge Gelabert).

Figure 5 -

 5 Figure 5 -L'images (a) est un échantillon vu au microscope électronique de lave cristallisée de type 'a'a prélevé dans un canal actif à 2 km du point d'éruption du volcan Kilauea, Hawaii, en 1997. La taille de l'échantillon est de 0.4 mm et la fraction volumique de cristaux et de l'ordre de 45% ( [CTK99]) ; l'image (b) est un échantillon d'une pierre ponce vu au microscope électronique. Cette roche, très poreuse, est issue d'une projection d'une éruption pyroclastique du Mt. Mazama, USA. La taille de l'échantillon est de 0.5 mm ( [CSPN99]).
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 11 Figure 1.1 -Écoulement dans un domaine Ω
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 16 Figure 1.6 -Fluide viscoplastiques : écoulement de Poiseuille pour Bi = 1/2.

Choisissons

  G = D(u) : la contrainte tr(G) = 0 devient div(u) = 0. De même, choisissons χ = D(v) avec div(v) = 0 comme fonction test. En intégrant sur Ω, il vient l'inéquation variationnelle : 2K Ω (|2D(u)| -1+n D(u)) : (D(v-u))dx+j(2D(v))-j(2D(u)) ≥ Ω σ : (D(v-u))dx

1. 10 .

 10 Figure 1.7 -Éléments finis utilisés pour l'approximation

  espace des fonctions discontinues et linéaires sur chaque élément du maillage (P 1 -C -1 ). La figure1.7 donne une représentation des éléments finis utilisés pour l'approximation. Il est montré dans[START_REF] Roquet | Simulation numérique d'écoulement de fluides viscoplastiques par un algorithme de lagrangien augmentée et une méthode d'éléments incompressibles[END_REF] que la forme discrète du problème (FV1) h admet une solution unique.1.10 Le problème de la cavité entraînée1.10.1 Formulation du problème On considère le problème d'un écoulement d'Herschel-Bulkley dans une cavité entraînée Ω =]0, L[ 2 , L > 0. Le problème s'écrit : trouver σ, u et p définis dans ]0, T [×Ω tels que :

Figure 1 . 8 -

 18 Figure 1.8 -Domaine du problème et conditions aux limites.

  Figure 1.9 -Convergence du résidu de l'algorithme du Lagrangien augmenté sur le problème de la cavité avec Bi = 2. (a) Convergence en échelle log-log ; (b) Convergence en échelle semi-log.

Figure 1

 1 Figure 1.10 -Convergence en echelle semi-log du résidu au cours des itérations du cycle d'adaptation de maillage sur le problème de la cavité avec Bi = 2.

  Figure 1.11 -Cycle d'adaptation de maillage pour le problème de la cavité entraînée avec Bi = 50. La colonne de gauche représente les maillages. La colonne de droite représente les zones rigides (en couleur foncée), les zones déformées (en clair) et les lignes de courant correspondants au maillage. (a) k = 0, card(T 0 ) = 5878 ; (b) k = 1, card(T 1 ) = 6458 ;

  Figure 1.13 -Influence du nombre de Bingham sur la zone rigide (en couleur foncée) et sur les lignes de courants. Les résultats sont donnés après 10 adaptations de maillage. (a) Bi = 2, card(T 10 ) = 8124 ; (b) Bi = 20, card(T 10 ) = 13970.

  (b) puis une seule partie) et plus aucune recirculation. Pour Bi = 1 (fig. 1.17 (b)), en plus de deux zones rigides situées dans les coins inférieurs de la cavité, il apparaît plusieurs zones rigides de petites échelles, comme pour le cas Bi = 0.1. Elles sont agrandient sur la figure 1.20. Pour Bi = 10 (fig. 1.18 (a)) et Bi = 100 (fig. 1.18 (b)), la zone rigide située dans le vortex n'est plus divisée qu'en deux parties.

  Figure 1.17 -Influence du nombre de Reynolds Re = 10 3 sur la zone rigide (en couleur foncée) et sur les lignes de courants. Les résultats sont donnés après 10 adaptations de maillage. (a) Bi = 0.1, card(T 10 ) = 8026 ; (b) Bi = 1, card(T 10 ) = 11158.

Figure 1 .

 1 Figure 1.19 -Agrandissements autour des différentes zones rigides de l'état stationnaire pour Re = 10 3 et Bi = 0.1.

Figure 1 .

 1 Figure 1.20 -Agrandissement autour des différentes zones rigides de l'état stationnaire pour Re = 10 3 et Bi = 1.

  8 . • La discrétisation en espace : Syrakos et al.utilise une méthode de volumes finis d'ordre 2 sur des grilles régulières de taille de 2040 x 2040 pour Bi = 1 et Bi = 10 et de taille 512 x 512 pour Bi = 100. Muravleva utilise un schéma centré de différences finies d'ordre 2 de type grilles décalées pour la résolution de la première étape de la méthode la projection et une méthode d'ordre 3 pour la résolution de l'équation de convection. Ses calculs sont effectués sur un maillage uniforme de taille h = 1/256. Le critère de convergence pour le Langrangien augmenté utilisé par Muravleva est ||λ m,kλ m,k-1 || (L ∞ ) 2×2 < ε avec ε = 10 -3 . Pour notre part, le cycle d'adaptation de maillage nous permet d'effectuer des calculs sur des maillages dont la longueur minimale des arrêtes est fixée à h min = 10 -5 . Le critère que nous utilisons est ||λ m,k -2D(u m,k )|| (L 2 ) 2×2 < ε 2 avec ε 2 = 10 -8 . Sur ce point là, nos calculs semblent être plus précis.

  Figure 1.21 -Comparaison des zones rigides obtenues sur le problème stationnaire de la cavité, avec Re = 10 3 et : (a) Bi = 0.1 ; (b) Bi = 1 (c) Bi = 10 et (d) Bi = 100. La zone en violet correspond aux calculs personnels, les contours bleus à Syrakos et al. [SGA14] et les contours rouges à Muravleva [Mur14].
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 24 ADIMENSIONNEMENT DU PROBLÈME sans dimension en quantité inférieure et qui est facilement adaptable à différentes configurations.
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 22 Figure 2.2 -Géométrie du problème

  .2d) On obtient par intégration de (2.2b) : σrz (r) = -r + c 1 où c 1 est une constante d'intégration. Par la condition (2.2d), c 1 = 0 et la loi de comportement (2.2a) donne ũ(r) = c 2 quand r ≤ Bi où c 2 est une constante d'intégration. Si Bi > 1 la solution est ũ = 0. Sinon, pour r > Bi, on obtient |ũ ′ (r)| n + Bi = r et finalement, avec la condition (2.2c) et la continuité en r = Bi :

Figure 2 .

 2 Figure 2.3 -Champ de température avec K themo-dépendant et θ 0θ a = 20 • K. La figure 2.4 présente les zones rigides et déformées à l'état stationnaire pour K themo-dépendant et θ 0θ a = 20 • K. Sur la première portion, pour z/L ∈ [0; 0.2], la zone rigide correspond bien à celle attendue par le profil imposé en entrée. On constate par ailleur que cette zone rigide ne va pas jusqu'à distance où à lieu le changement de température aux parois Le/L = 0.25 . Le choc thermique à globalement fait disparaître les zones rigides dans toute la phase transitoire, execeptée une petite zone. La disparition de zone rigide vient sans doute du fait que dans la zone transitoire, la température n'est plus homogène dans la direction radiale et par conséquent la viscosité non plus, elle va être plus élevée à mesure qu'on se rapproche des parois. La vitesse n'est alors plus uniquement dans la direction de l'écoulement et un terme radial apparaît et annule sauf sur une petite partie la zone rigide. La température retrouve ensuite une état d'équilibre, l'écoulement est à nouveau de type Poiseuille et une zone rigide apparaît autour de l'axe du cylindre. Cette zone est naturelement plus fine car la viscosité a augmenté. Comme u est necessairement constant, on peut définir un nombre de Bingham Bi * out basé sur la viscosité K a et non K 0 . Dans cette exemple, K a /K 0 = 20, donc Bi * out = Bi * /20 = 0.5. Par l'équation (2.4), on obtient une valeur Bi out ≈ 0.107 qui correspond à la largeur de la zone rigide attendue après la transition thermique. La figure 2.4 est bien cohérente avec cette valeur. Pour une comparaison avec les résultats de Vinay et al., nous renvoyons à la figure 12 de [VWA05]. Les résultats sont assez similaires avec quelques nuances comme la petite zone rigide que nous observons pendant la transition qui n'apparaît pas dans les calculs de Vinay et .al. Les autres zones rigides sont quasi-identiques, à la précision du maillage employé près. En complément, des profils de vitesses axiales sont tracées sur la figure 2.5 en plusieurs sections du cylindre et peuvent être comparées à la figure III-5 p. 99 de [Vin05].
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 2425 Figure 2.4 -Zones rigides/déformées (resp. en couleur foncée/gris clair) avec K themo-dépendant et θ 0θ a = 20 • K.
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 262728 Figure 2.6 -Champ de température avec σ 0 themo-dépendant : (a) θ 0θ a = 1 • K ; (b) θ 0θ a = 5 • K ; (c) θ 0θ a = 20 • K. La figure 2.7 présente les zones rigides et déformées à l'état stationnaire pour σ 0 themo-dépendant et suivant différentes valeurs θ 0θ a . La même valeur de Bi est utilisée dans les trois exemples. On constate que plus le choc thermique est important (le ratio σ 0,a σ 0,0 est important) et plus la largeur de la zone rigide après transition est importante. Ceci est en cohérence avec les largeurs prévues par le calcul : (a) Bi out ≈ 0.43 ; (b) Bi out ≈ 0.65 ; (c) Bi out ≈ 0.81. De plus, on observe que plus le choc thermique est important et plus rapidement la zone rigide réapparait. Comme nous l'avions sur l'exemple où K dépendait de la température, la zone rigide semble disparaître pendant la phase de transition, saut sur l'exemple (a) puisqu'une vitesse radiale apparaît. Pour une comparaison avec les résultats de Vinay et al., nous renvoyons à la figure 15 de [VWA05]. Les résultats sont assez proches avec quelques différences comme la petite zone rigide que nous observons pendant la transition sur l'exemple (a) et des zones rigides qui semblent apparaître plus brutalement sur nos calculs. Les autres zones rigides sont quasi-identiques, à la précision du maillage

  que les particules ont tendances à migrer là où la viscosité est la plus faible (voir fig. 3.1 b.). Ce modèle de migration introduit deux paramètres physiques K c et K η que l'on obtient généralement de manière empirique. On peut montrer pour des raisons physiques évidentes que le ratio K = K c /K η est inférieur à 1. Finalement, le flux de migration défini plus haut correspond donc à N t = N c + N η .
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 31 Figure 3.1 -Migration des particules durant leurs collisions : (a) Flux de collision et migration vers les zones les moins déformées γ-; (b) Flux du gradient de viscosité et migration vers les zones les moins visqueuses η -.

  où U , P , Σ, Θ et F sont des grandeurs caractéristiques du problème. La concentration volumique φ étant déjà une quantité sans dimension est conservée telle quelle. La viscosité est adimensionnée par sa valeur en φ init :η(φ) = η 0 η(φ),où η 0 est donnée et vérifie η(φ init ) = η 0 . Pour un fluide newtonien, il est naturel de poser Σ = η 0 U L = P et T = L/U et on introduit le nombre de Reynolds Re = ρU 2 Σ = ρU L η 0 , et deux autres nombres sans dimension nécessaires pour adimensionner l'équation de migration :

  On considère l'écoulement d'une suspension entre deux plaques parallèles au plan Oxy séparées par une longueur 2L et initié par une force de pression f = f e z constante. Le problème étant symétrique en x, on travaille uniquement avec x ∈ [0, L], voir fig. 3.3.

Figure 3

 3 Figure 3.3 -Géometrie Poiseuille
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 34 Figure 3.4 -Profil vertical de concentration et de vitesse verticale sur un écoulement de Poiseuille plan pour une suspension newtonienne : (a) influence du paramètre K sur φ pour φ = 0.55 ; (b) influence de la valeur moyenne φ sur φ pour K = 0.66 ; (c) influence du paramètre K sur u pour φ = 0.55 ; (d) influence de la valeur moyenne φ sur u pour K = 0.66.

w

  puis φ 0 par une formule de quadrature. Par croissance de φ en fonction de φ w , si φ 0 < φ, on réitère le procédé en partant avec φ w = φ et si φ 0 > φ, on réitère le procédé en choisissant φ arrête le processus lorsque |φ (k) -φ| est inférieur à une certaine tolérance. Cette opération a été utilisée afin de visualiser sur les figures 3.4 (a)-(b) l'influence du choix de K = K c /K η et de φ sur φ.

  On considère l'écoulement d'un fluide placé entre deux cylindres concentriques, le cylindre intérieur tournant à une vitesse angulaire Ω. On note R le rayon du cylindre extérieur et kR celui du cylindre intérieur avec k < 1, voir fig.3.5.
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 35 Figure 3.5 -Géométrie Couette

Figure 3

 3 Figure 3.6 -Profil radial de concentration et de vitesse angulaire sur un écoulement de Couette pour une suspension newtonienne : (a) influence du paramètre K sur φ pour φ = 0.55 ; (b) influence de la valeur moyenne φ sur φ pour K = 0.66 ; (c) influence du paramètre K sur ω pour φ = 0.55 ; (d) influence de la valeur moyenne φ sur ω pour K = 0.66.

Figure 3

 3 Figure 3.7 -Évolution du profil radial de concentration et de vitesse angulaire sur un écoulement de Couette pour une suspension newtonienne : (a) profil radial de concentration φ ; (b) profil radial de la vitesse angulaire ω.

  dK dφ ∇φ .n = 0 sur ∂Ω, où α, β sont des constantes positives, F un champ vectoriel donné, g un champ scalaire donné et A et B deux fonctions de R dans R+. L'algorithme 3.4.1 est une succession de problème de cette forme, avec α

Figure 3 . 8 - 5 .

 385 Figure 3.8 -Évolution du profil vertical de concentration et de vitesse sur un écoulement de Poiseuille pour une suspension viscoplastique dont la viscosité dépend de la concentration : (a) profil vertical de concentration φ ; (b) profil vertical de la vitesse u.

Figure 3

 3 Figure 3.9 -Évolution du profil vertical de concentration et de vitesse sur un écoulement de Poiseuille pour une suspension dont la contrainte seuil dépend de la concentration : (a) profil vertical de concentration φ ; (b) profil vertical de la vitesse u.
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 41 Figure 4.1 -Schematic view of a flow on a variable topography.
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 42 Figure 4.2 -Uniform (top) and dynamic auto-adaptive meshes (center). Zoom near the front (bottom).

4. 4 .

 4 COMPARISON WITH EXPERIMENTS 4.4 Comparison with experiments 4.4.1 Comparison with the Balmforth and al. experiment

Figure 4 .

 4 Figure 4.3 -The kaolin experiment with α = 9.6 • . Initial state (left) and final one (right). Comparison of the arrested front position between experiments from [BCRS06] in black and present computations in red. Successive computed font position from [BCRS06] are in blue.
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 44 Figure 4.4 -The kaolin experiment with α = 3.4 • . Initial state (left) and final one (right). Comparison of the arrested front position between experiments from [BCRS06] in black and present computations in red. Successive computed font position from [BCRS06] are in blue.
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 42 Comparison with the Cochard and Ancey experiment

Figure 4 . 5 -

 45 Figure 4.5 -Schematic view of the Cochard and Ancey 3D dam break experiment [CA09].
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 46 Figure 4.6 -The carbopol experiment : left : experimental visualization [CA09] ; right : present numerical simulation. (a) t = 0 s, (b) t = 0.3 s, (c) t = 0.6 s, (d) t = 1.4 s et (e) t = 52 min.
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 47 Figure 4.7 -The carbopol experiment : comparison of the successive front position. Experiments from [CA09] are in black and present computations with colors.

, ϕ|ξ|} ϕ |ξ| ξ ⊗ ξ , où I 2

 2 est la matrice identité 2 × 2, on peut écrire a 1 sous une forme plus compacte :a 1 (ϕ; δϕ, δχ) = Ω α m δϕδχ+ δϕβ{ϕ, ∇(f +ϕ)}+(k{ϕ, ∇(f +ϕ)}∇δϕ) •∇δχ dx4.5.1 Convergence des algorithmesOn propose ici une étude comparative des propriétés de convergence de l'algorithme du point fixe avec relaxation et de l'algorithme de Newton. Le problème considéré est l'écoulement d'une dôme sur un plan horizontal. On suppose que le domaine Ω est un carré de longueur 120 m par 120 m. Nous allons étudier l'évolution d'un dôme produit par une injection de fluide. On suppose qu'il n'y a pas de fluide à l'état initial, h init = 0 pour tout (x, y) ∈ Ω. La zone d'injection est supposée circulaire de rayon r e =20 m, placé au centre du domaine Ω, le débit est supposé constant d'une valeur Q = 10 m 3 /s et le profil de vitesse d'injection w e est choisi comme solution stationnaire d'un écoulement de type Poiseuille dans un canal cylindrique de rayon r e . Plus précisément, w e est polynomial d'ordre 2 en fonction du rayon et w e (r) = c max(0, r 2 er 2 ) où c > 0 est une constante telle que re 0 w e (r) r dr = Q i.e. c = 2Q/(πr 4

  t = 1000 s, w = 0.5h = 0.028 h = 0.02 h = 0.014 h = 0.01 h = 0.007 h = 0.005

Figure 4 .

 4 Figure 4.8 -Algorithme du point fixe avec relaxation : (a) Effet du paramètre de relaxation ; (b) diminution de ω crit avec un raffinement du maillage ; (c) propriété de convergence du résidu à t = 1000 s et w = 0.5 avec un raffinement de maillage.
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 49 Figure 4.9 -Algorithme du point fixe avec relaxation : (a) propriété de convergence du résidu à t = 1000 s, h = 0.01 et w = 0.2 pour différentes valeurs du seuil de contrainte ; (b) diminution de ω crit avec l'augmention de seuil de contrainte.

Figure 4 .

 4 Figure 4.10 -Algorithme de Newton : (a) propriété de convergence du résidu à t = 1000 s avec un raffinement de maillage ; (b) comparaison du temps CPU entre la méthode de Newton et l'algorithme du point fixe en échelle logarithmique en fonction de la taille caractéristique du système ; (c) indépendance de la convergence du résidu à t = 1000 s et h = 0.01 par rapport à la contrainte seuil.

5. 2 .

 2 Figure 5.1 -Eruption flow on a variable topography with cooling.

2 +ϕ

 2 cz + d : the four unknown coefficients a, b, c and d are the only solution of the following four equations ; ϕ = 1, (5.35a) ϕu ||u || = 0, (5.35b) ∂ϕ ∂z + (R p µ (θϕ) + Nu)ϕ = 0 on z = f + h, = 0 on Γ s and θϕ = 1 on Γ e , on z = f (5.35d)The reduced problem is then obtained from (P ) by replacing (5.31d) byh ∂ t θ + u || .∇θw e (1θ) -3ah 2 + 2bh P e θ = 0. (5.36a) and the initial and boundary conditions (5.31e)-(5.31h) by θ(t = 0) = θ init on Ω, (5.36b) ∂θ ∂n = 0 on ]0, +∞[×∂Ω.

α

  m χ * -div(µ n {A, B, χ (k) , ψ (k) , |∇(f + χ (k) )|}∇χ * ) = f m + w e +div(µ n {A, B, χ (k) , ψ (k) , |∇(f + χ (k) )|}∇f ) in Ω, ∂(f + χ * ) ∂n = 0 on ∂Ω.
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 5253 Figure 5.2 -Uniform (a) and dynamic (b) auto-adaptive meshes. Zoom near the front (c). This mesh was automatically generated for the volcanic lava flow simulation presented in the forthcoming section 3.

5. 6

 6 Comparison with a silicone oil dome experiment 5.6.1 Experimental setup and physical parameters Physical quantities symbol value unit euption flow rate Q 2.2 × 10 -8 m -3 .s -1 initial temperature of the eruption fluid θ e 315.15 K initial temperature of air and polystyrene θ a 293.151 K fluid density ρ 954 kg.m -3 air density ρ a 1.2 kg.m -3 fluid viscosity at θ e temperature K e 3.4 Pa.s fluid emissivity ǫ 0.96thermal conductivity of the fluid k 0.15 W.m -1 .K -1 fluid specific heat
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 54 Figure 5.4 -Comparison between the present simulations and a laboratory experiment from [GKTL12] : surface temperature vs radius. (a) influence of some model variants (with λ = 2) ; (b) influence of the λ convection parameter.
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 55 Figure 5.5 -Comparison between the present simulations and a laboratory experiment from [GKTL12] : surface temperature vs radius (λ = 2 and K(θ)-P 3 model). Time evolution for t = 160s, 600s, 1200s, 3000s and 7480s.

5.7. 1

 1 The December 2010 Piton de la Fournaise lava flow Piton de la Fournaise, a volcano from La Réunion island, is among the most active volcanoes in the world. A lava flow occurred in December 2010 on the north flank of volcano. It was a basalt flow lasted few hours which outcome of a fissure on the volcano surface. Fig.5.6 shows the flow at arrested state in 2014. See [RPT+ 12] 

Figure 5 .

 5 Figure 5.6 -The Piton de la Fournaise 2010 lava flow (credit N. Bernabeu, May 2014).
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 57 Figure 5.7 -Digital elevation model of the Piton de la Fournaise volcano in 2008, with a 5 meter horizontal resolution (left). Zoom with the observed arrested flow contours (right).

  5.8.a). Observe on Fig. 5.8.b that the 2010 volcanic flow is splited in two disjoint zones, denoted as A and B, where vents are numbered from 1 to 6. The flow rates of these two disjoint flows are estimated as proportional to their relative areas, i.e. Q A = κ Q and Q B = (1κ)Q, where κ = |A|/(|A| + |B|) and |A| and |B| denote the areas of the A and B zones, respectively.

Figure 5 .

 5 Figure 5.8 -(a) View of the aligned cones along the fault line associated to different vents at arrested state (credit N. Bernabeu, 2014). (b) Schematic view of the different vent positions and the two separated zones of the observed arrested state.
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 59 Figure 5.9 -Simulation of the volcanic lava flow : prediceted arrested state represented over the DEM with a colormap showing the flow height h. The contour of the observed arrested state is represented by a thin white line.

Figure 5 .

 5 Figure 5.10 -Simulation of the volcanic lava flow at t = 5 h and 10 h (left) height h ; (right) vertical-averaged temperature θ. The contour of the real covered zone is represented by a thin black line.

Figure 5 .

 5 Figure 5.11 -Simulation of the volcanic lava flow at 15 h and 25 h : (left) height h ; (right) vertical-averaged temperature θ. The contour of the real covered zone is represented by a thin black line.

  

  

  Les fluides viscoplastiques ont la propriété d'avoir un comportement solide en dessous d'une certaine contrainte seuil, puis un comportement fluide au delà de cette contrainte. Il faut qu'il y ait suffisamment de forces qui s'exercent sur ces fluides pour les déformer. Le modèle viscoplastique permet de décrire convenablement de nombreux écoulements naturels. Outre les coulées de lave, il est également utilisé pour d'écrire la dynamique des avalanches, des coulées de boues, de débris, de sable etc. On le rencontre également dans la modélisation du sang et dans d'autres fluides biologiques. Les fluides viscoplastiques sont également très utilisés dans l'industrie, notamment dans l'alimentaire, afin de donner une certaine consistance aux aliments, comme les sauces de type Ketchup. Les fluides viscoplastiques sont également utilisés dans l'industrie cosmétiques, pour la fabrication de crèmes et de mousses à raser,

	1.1. INTRODUCTION
	1.1 Introduction

dans le domaine de la construction avec le béton, dans la peinture, l'extraction de pétrole ... Tous ces exemples montrent bien que ces fluides sont aujourd'hui au centre au des préoccupations d'un grand nombre physiciens, biologistes, mathématiciens et industriels et concernent une grande diversité de secteurs d'application. Notons que pour la plupart des exemples cités, le modèle viscoplastique est souvent complété par d'autres propriétés physiques, comme les effets d'élasticité, on parle alors de fluides élasto-plastique, et même visco-élasto-plastique pour un fluide combinant les deux effets. On propose dans ce chapitre une méthode numérique permettant de résoudre les équations de viscoplasticité décrites par le modèle de Herschel-Bulkley.

1.2 Équation générales de la mécanique des fluides

Nous présentons dans cette section les équations permettant de décrire le mouvement des fluides, en particulier les équations dites de Navier-Stokes. L'établissement des équations de conservation sera détaillé ici dans l'optique d'introduire les notations et les objets utilisés tout au long de cette thèse. De nombreux ouvrages présentent l'établissement des équations de la mécanique des fluides avec différentes approches pour aboutir aux mêmes équations. Le choix fait ici est similaire à celui présenté dans [Fay94, chap. 3] pour la conservation de la masse et [Fay94, chap. 5] pour la conservation de la quantité de mouvement. Le choix des notations et de la forme de la présentation s'appuient également sur le livre de Pierre Saramito [Sar13b, chap. 1].

  1.2. ÉQUATION GÉNÉRALES DE LA MÉCANIQUE DES FLUIDESOn utilisera de préférence cette écriture. Les deux équations de conservation (5.1b) et (1.3) contiennent trois inconnues : u, σ tot et ρ. Plus précisément, au niveau scalaire, il y a en réalité 4 équations et 10 inconnues. Il manque des équations plus spécifiques au propriétés physiques du fluide, on cherche plutôt à avoir autant d'équations que d'inconnues. Pour cela, on complète généralement ce système à l'aide d'une équation liant u et σ tot que l'on appelle loi de comportement.

  La loi de comportement entre σ et ∇u est alors non-linéaire. Les coulées de laves sont en particulier un exemple de fluide non-newtonien car dans ce cas, la loi de comportement fait apparaître un phénomène de seuil. On parle alors de fluides vi-

			1.3. FLUIDES VISCOPLASTIQUES
	1.3 Fluides viscoplastiques	
	Dans cette section, on reprend le formalisme utilisé dans [DL76] pour les fluides de
	Bingham et dans [Sar13b, chap. 3] pour la généralisation aux fluides de Herschel-
	scoplastiques. Il existe principalement deux modèles qui décrivent ce type d'écou-Bulkley.
	lement, le modèle de Bingham et son extension, le modèle d'Herschel-Bulkley. On se place toujours dans l'hypothèse d'incompressibilité. Un fluide viscoplastique Nous détaillerons ces modèles dans la section 1.3. Comme ce modèle correspond obéit toujours aux mêmes lois de conservation énoncées précédemment, mais avec le mieux à la dynamique des fluides, nous considérerons des écoulements de types une loi de comportement particulière. Introduisons tout d'abord un produit scalaire viscoplastiques pour le reste du manuscrit. 1.2.4 Hypothèse d'incompressibilité dans l'espace des tenseurs symétriques S 3 (R). Pour tout tenseur τ et δ symétrique de S 3 (R), on note :
	Avec l'ajout de la loi de comportement et l'introduction du déviateur des
	contraintes σ et de la pression p, on compte 4 équations et 5 inconnues : σ tot ,
	σ, u, p et ρ. Au niveau scalaire, nous avons ajouté 7 inconnues et 6 équations,
	ce qui nous amène à 16 équations pour 17 inconnues. Il manque encore une équation !
	Une façon classique de résoudre cette difficulté est de se donner une seconde loi
	de comportement, liant cette fois la pression et la densité ρ [Pir88]. C'est ce que
	l'on fait classiquement pour les gaz, comme l'air, qui sont sensiblement compres-
	sibles. Cet effet intervient dans de nombreux phénomènes : la portance des avions,
	l'optimisation de la forme des voitures pour améliorer la pénétration dans l'air et
	diminuer la consommation, etc. Pour de nombreux liquides tels que l'eau ou les laves
	volcaniques et autres fluides complexes que nous étudierons par la suite, la variation
	de la densité ρ est extrêmement faible, si bien que l'on peut supposer ρ constante.
	Cette hypothèse est parfois également utilisée pour des gaz tels que l'air, à faible
	vitesse. Avec cette hypothèse, les équations vont se simplifier, la conservation de la
	masse (5.1b) conduit alors à la relation d'incompressibilité :	
			div u = 0 dans ]0, T [×Ω.	(1.6)
	En particulier, pour des fluides newtoniens, la loi de comportement (1.5) devient
			σ = 2ηD(u).	(1.7)
	et en utilisant la décomposition (1.4) du tenseur des contraintes totales, la conser-
	vation de la quantité de mouvement (1.3) devient :	
	ρ	∂u ∂t	+ (u.∇)u -div(2ηD(u)) + ∇p = ρg dans ]0, T [×Ω.	(1.8)
	Les équations de Navier-Stokes dans le cas général compressibles correspondent
	aux équations (5.1b), (1.5) et (1.3). La cas particulier de Navier-Stokes incompres-
	sible correspond aux équations (1.6) et (1.8).	

5) 

est bien à trace nulle. Nous verrons par la suite qu'il existe un certain nombre de fluides qui ne vérifient pas cette loi de comportement, appelés alors fluides non-newtoniens.

  ).

	Figure 1.5 -Approximation de la dérivée totale.
	Cette méthode a été introduite par O. Pironneau dans [Pir88]. On parle de
	méthode des caractéristiques dans le contexte des différences finis et de méthode de
	Lagrange-Galerkin dans le contexte des éléments finis.
	1.5.3 Approximation du second ordre
	En suivant [BMMR97, FP04], on peut étendre la méthode des caractéristiques à
	l'ordre 2. La dérivée totale est alors approchée par un schéma de différences finies
	rétrograde d'ordre 2 (BDF2) :		
	La dérivée totale du champ des vitesses
			du dt	=	∂u ∂t	+ (u.∇)u
	apparaît dans l'équation de conservation du moment. Il est donc possible d'approcher
	ce terme par			
	du dt	(t m+1 , x) =	u(t m+1 , x) -u(t m , X m (x)) ∆t	+ O(∆t).

  a priori des sous-ensembles d'espaces fonctionnels différents, l'hypothèse Ω borné implique que la mesure de Ω au sens de Lebesgue est finie, ainsi, la suite des espaces L p (Ω) est décroissante au sens de l'inclusion. En particulier, comme s ≥ 2 et s

* ≤ 2, on a T ⊂ T * , avec égalité lorsque s = s * = 2. Il est donc bien possible de choisir les espaces D h et T h tels que

  schéma BDF2 avec la méthode des caractéristiques, et enfin une boucle de Lagrangien augmenté pour la résolution des équations de Herschel-Bulkley. Les résultats obtenus sur le problème de la cavité sont en cohérence avec ceux disponibles dans la littérature et apportent une bonne base de comparaison grâce à leur précision numérique. Une autre propriété fondamentale dans la dynamique des coulées de lave est la forte dépendance avec la température. Le chapitre suivant s'intéresse à cette dépendance en intégrant au modèle l'équation de la chaleur et des lois de dépendances en température pour les paramètres rhéologiques.Dans ce chapitre, nous allons étendre le modèle présenté dans le chapitre 1 en intégrant les effets thermiques au travers de l'équation de la chaleur et de lois rhéologiques dépendantes de la température. D'une point de vue théorique, Duvaut et Lions[START_REF] Duvaut | Transfert de chaleur dans un fluide de Bingham dont la viscosité dépend de la température[END_REF] ont étudié le problème d'un champ de vitesse et de température dans un fluide de Bingham incompressible dont la viscosité η(θ) dépend de la température. Ils ont établi l'existence d'une solution faible pour le cas bidimensionnel. Kato dans[START_REF] Kato | On a Bingham fluid whose viscosity and yield limit depend on the temperature[END_REF] fini par résoudre le problème d'existence et d'unicité dans le cas tridimensionnel en supposant de plus que la contrainte seuil σ(θ) est dépendante de la température. Sur le plan numérique, il existe peu de références qui traitent du couplage entre les équations de viscoplasticité et l'équation de la chaleur. Nous avons choisi de reprendre le problème d'extraction de pétrole présenté par Vinay et al.[START_REF] Vinay | Numerical simulation of nonisothermal viscoplastic waxy crude oil flows[END_REF] car il fournit une bonne base de comparaison sur un problème viscoplastique non-isotherme.
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Ce premier chapitre à permis d'étudier l'une des propriétés essentielles des coulées de lave : une rhéologie non-newtonienne de type viscoplastique. Un ensemble d'algorithmes à été proposé pour modéliser l'écoulement ces fluides dans le cadre général. Pour résumer, la méthode numérique proposée est construite sur trois boucles imbriquées, une boucle pour l'adaptation de maillage, une boucle de discrétisation en temps par un

  constitutive par des conditions aux bords et initiales pour obtenir un problème à quatre inconnues. Pour faire simple, on considère ici des conditions de type Dirichlet pour la vitesse et pour la température, mais les méthodes numériques développées par la suite pourront être adaptées facilement à des exemples spécifiques faisant intervenir d'autres types de conditions aux frontières comme des conditions de Neumann ou de Robin. Le modèle d'un fluide viscoplastique non-isotherme incompressible est régit par le système d'équations suivant : trouver le champ de vitesse u, la pression p, le tenseur des contraintes σ et la température θ dans ]0, T [×Ω tels que :

Nous pouvons maintenant écrire un problème complet d'un fluide viscoplastique non-isotherme incompressible. On complète les équations de conservation et l'équation

  des grandeurs caractéristiques du problème. En l'absence de terme source, la température est nécessairement comprise entre θ Γ et θ 0 . Dans nos exemples, on étudiera principalement des problèmes de refroidissement, c'est à dire lorsque θ 0 > θ

Γ . On choisit alors d'adimensionner la température par θ = θ Γ + (θ 0θ Γ ) θ. La température sans dimension θ est alors principalement comprise entre 0 et 1, elle peut éventuellement dépasser 1 par le terme source de dissipation visqueuse. On peut également adimensionner les lois de consistance et de contrainte seuil par leur valeur en θ = θ init :

  Rappelons que l'intervalle [0, T ] est partitionné en M sous-intervalles [t m , t m+1 ], où t m = m∆t, 0 ≤ m ≤ M et ∆t = T /M est le pas de temps. Nous pouvons ainsi utiliser la méthode des caractéristiques à l'ordre 2 présenté dans la section 1.5 du chapitre 1 afin discrétiser le terme d'inertie dans la conservation du mouvement et le terme de transport dans l'équation de la chaleur :

Comme pour le problème isotherme, nous allons utiliser un algorithme de Lagrangien augmenté, adapté au cas non-isotherme. Il faut au préalable discrétiser les termes de dérivée totale.

  Cela ne pause aucun problème car tout le développement fait dans la section 1.8 du chapitre 1 pour aboutir à l'algorithme 1.8.3 est tout à fait généralisable lorsque K = K(x) et σ 0 = σ 0 (x). De même, à u et σ fixés, la résolution de l'équation (E(v, δ)) est classique car c'est une équation linéaire elliptique. Le terme δ : D(v) engendre tout de même des difficultés car suivant sa régularité, il peut ne pas y avoir de solution à l'équation elliptique. On propose un algorithme de type point fixe pour résoudre successivement et de manière découplée un problème de la forme (P1(θ)) et un problème de la forme (E(v, δ)) :

	Algorithme 2.4.2 (Algorithme du point fixe -forme abstraite).

Avec ces notations, on a naturellement que (σ, u, p, θ) est une solution du problème (P2) si et seulement si, simultanément, (σ, u, p) est solution de (P1(θ)) et θ est solution de (E(u, σ)). À θ donné, la résolution d'un problème de la forme (P1(θ)) est possible en utilisant l'algorithme du Lagrangien augmenté 1.8.3 du chapitre 1. Il suffit de l'appliquer en remplaçant α par α 1 , K par A(θ) et σ 0 par B(θ). Notons que l'on remplace K et σ 0 par des champs scalaires A(θ) et B(θ) puisque θ = θ(x). initialisation (i = 0) : θ 0 donné boucle point fixe (i ≥ 0) : θ i-1 connu

• étape 1 : trouver u i , p i et σ i définis sur Ω solution du problème (P1(θ i-1 )).

• étape 2 : trouver θ i défini sur Ω solution du problème (E(u i , σ i )).

L'algorithme

sous cette forme là n'est pas très efficace, car à chaque itération du point fixe, il faut résoudre l'étape 1 par un algorithme du Lagrangien augmenté. Or la convergence de l'algorithme du Lagrangien augmenté est lente. Comme il est fait dans [VWA05], on propose d'utiliser une version relaxée, pour laquelle on ne résout qu'une seule étape de l'algorithme du Lagrangien augmenté à chaque itération du point fixe. Écrivons cette algorithme de manière concrète, sous forme variationnelle : Algorithme 2.4.3 (Algorithme du Lagrangien augmenté -version non-isotherme).

  Nous allons tester la résolution d'un problème de couplage rhéologique/thermique par la méthode du Lagrangien augmenté sur un problème d'écoulement cylindrique avec un fluide viscoplastique non-isotherme. Ce problème est étudié par Vinay et al. dans[START_REF] Vinay | Numerical simulation of nonisothermal viscoplastic waxy crude oil flows[END_REF] dans le cadre de la modélisation de l'acheminement de pétrole brut dans un pipeline. On suppose que la partie orthoradiale du champ de vitesses est nulle, autrement dit u θ = 0. Sur la figure 2.2, R, L et L e représentent respectivement le rayon du cylindre, la longueur du cylindre et la distance d'écoulement avant un changement brutal de température. La longueur L e est choisie suffisamment grande pour que la température et la vitesse en entrée ne soient pas perturbés par le changement de température. On suppose que dans cette première portion du cylindre, le fluide entrant est à la même température θ 0 que les parois avec un profil de type Poiseuille isotherme. Au delà de la longueur L e , on suppose que la température aux parois chute brutalement, i.e. θ a < θ 0 . Après une certaine distance, un nouveau régime d'écoulement de type Poiseuille se crée à une température plus basse θ in , Γ out , Γ top et Γ axi une partition de la frontière de ∂Ω définie par :

	2.5.1 Formulation du problème

L'objectif est d'appréhender les effets de gel rencontrés fréquemment sur les sites d'extraction de pétrole installés dans des zones froides (mer, océan, Arctique, ...,voir fig. 2.1).

Figure 2.1 -Acheminement de pétrole dans un pipeline en Alaska (source : http: //pipelineobserver.ca)

Généralement, le fluide extrait est au départ à une température θ 0 supérieure à la température ambiante θ a dans lequel est plongé le pipeline. Les pertes de chaleur par les parois peuvent alors causer le blocage du fluide, notamment par l'effet de seuil puisque que le pétrole brut est un fluide viscoplastique. Le modèle rhéologique utilisé dans

[START_REF] Vinay | Numerical simulation of nonisothermal viscoplastic waxy crude oil flows[END_REF] 

est le modèle de Bingham. L'étude numérique porte sur la dépendance en température de la viscosité et de la contrainte seuil. Une dépendance linéaire est considérée successivement pour la viscosité à contrainte seuil fixe, et inversement. Ces résultats présentés par Vinay et al. nous servirons ainsi de base de comparaison pour valider le modèle numérique. Détaillons la configuration du problème. On considère un cylindre axi-symétrique dont la direction axiale est parallèle à Oz dans le système de coordonnées cylindriques {r, θ, z}. a , l'objectif est de visualiser ce qu'il se passe dans la zone de transition, en particulier sur l'évolution des zones rigides. Par symétrie du problème, nous ne travaillerons que sur une demie-section axiale du cylindre représentée par le domaine ouvert Ω = {(r, z) ∈ R + 2 ; r < R, z < L} et notons Γ

  Nous allons proposer des comparaisons aux calculs fait dans[START_REF] Vinay | Numerical simulation of nonisothermal viscoplastic waxy crude oil flows[END_REF] en utilisant exactement les mêmes paramètres physiques et numériques. Le modèle de Bingham est utilisé, on suppose désormais que n = 1. La consistance K corrspond donc à une viscosité. Les définitions des nombres sans dimension utilisées par Vinay et al. sont différentes. Nous distinguerons leurs nombres sans dimension en les dotant d'un astérisque. Ils sont définis comme suit :

	90	2.5. PROBLÈME D'UN ÉCOULEMENT EN REFROIDISSEMENT DANS UN CYLINDRE
	Cette solution est similaire à la solution de Poiseuille plan (1.11) du chapitre 1
	illustrée sur la figure 1.6. Simplement, pour un problème cylindrique la définition du nombre de Bingham est différente : Bi = 2σ 0,0 f R au lieu de Bi = σ 0,0 f L .
	2.5.4 Paramètres numériques
		3)

  Le problème du refroidissement dans pipeline proposé par[START_REF] Vinay | Numerical simulation of nonisothermal viscoplastic waxy crude oil flows[END_REF] a été repris afin de disposer d'une comparaison. Les résultats semblent assez proches avec quelques différences observables sur la limite des zones rigides. Cette exemple est surtout utile à titre académique, un cas-test (un "benchark") dans le cas non-isotherme et ne cherche pas à être réaliste. Une perspective serai d'appliquer ce modèle à un problème réaliste concernant les coulées de laves avec des lois de consistance et de contrainte seuil plus complexes, de type Arrhénius par exemple. Il est difficile d'envisager actuellement d'utiliser ce modèle pour modéliser une coulée de lave tridimensionnelle. Les temps de calculs seraient très importants et il faudrait de plus modéliser la surface libre de l'écoulement. La chapitre 5 propose pour ce problème une simplification par une réduction asymptotique. Avec ce modèle complet, on peux par contre s'intéresser à des écoulements bien particulier, comme l'écoulement dans un tunnel de lave. L'exemple du pipeline y ressemble déjà beaucoup. Il suffirait simplement d'utiliser les paramètres physiques correspondants aux laves et des lois rhéologiques plus réalistes. Le chapitre suivant s'intéresse aux propriétés de suspensions des laves induites par la présense des cristaux.Lorsque la température de la lave devient inférieure à la température de liquidus, un certain nombre de cristaux apparaît par effet de cristallisation. Ces cristaux en suspension ont un impact direct sur la rhéologie de l'écoulement. Lorsqu'ils sont suffisamment nombreux, de l'ordre de quelques pourcents, des réactions vont se produire et engendrer une dispersion non-homogène de ces cristaux. Outre dans les écoulements naturels, les suspensions sont aussi très utilisées dans les procédés de fabrication industrielle, pour des matériaux composites, céramiques ou encore dans la composition du fuel pour fusée, dans lequel la qualité du produit dépend fortement de l'uniformité de la distribution des particules. La migration des particules au travers du fluide peut s'expliquer par de nombreux types d'interaction, comme des interactions hydrodynamiques, électrostatiques et autres interactions de surface. Il est toutefois difficile de prendre en compte tous ces phénomènes et on cherche généralement à ne garder que les effets prédominants. Il y a eu plusieurs approches pour essayer de décrire cette migration. Des modèles d'approche directe de type Stokes (voir [BM97, SB01]) ou de dynamique Brownienne (voir[START_REF] Fan | Simulation of fibre suspension flow with shear-induced migration[END_REF]) ont été réalisés avec succès dans la description de la micro-structure des suspensions mais ces méthodes sont très limitées en nombre de particules puisqu'on les modélise une à une, de l'ordre du millier. Ces limitations sont dues aux limites informatiques. Depuis, les approches macroscopiques comme le modèle de flux ou le modèle de suspension thermique sont devenues plus populaires car relativement simples et moins coûteuses en ressource informatique. En particulier le modèle de flux présenté pour la première fois dans par Phillips et al. dans [PAB + 92] en s'inspirant des travaux faits auparavant par Leighton et Acrivos dans[START_REF] Leighton | The shear-induced migration of particles in concentrated suspensions[END_REF], explique par des arguments de comparaison quantitative, que la migration des particules est principalement causée par deux effets, la variation spatiale de la fréquence d'interaction (le taux de collision), directement liée à la variation du taux de contraintes et la variation spatiale de la viscosité. C'est la première étude qui présente des comparaisons entre expériences et simulations. Ce modèle a ensuite été complété par Krishnan dans[START_REF] Krishnan | Shear-induced radial segregation in bidisperse suspensions[END_REF] en introduisant des termes d'induction liées à la courbure des lignes de courant et par Fan et al. [FMB + 02] qui ont étendu l'écriture du modèle afin de tenir compte de l'anisotropie des migrations observable expérimentalement, ceci en introduisant un tenseur d'alignement.Nous présentons plus en détail dans cette section l'écriture mathématique du modèle de Phillips et al. [PAB + 92] et ces extensions dans le cadre des fluides newtoniens. La section 3.4 contribuera à étendre ces modèles au cas viscoplastique. L'avantage du modèle de flux est d'avoir une structure relativement proche du modèle thermorhéologique. La prise en compte de la densité de particules est assez analogue puis-qu'il s'agit de considérer une nouvelle équation de conservation comme nous l'avions fait avec l'équation de la chaleur. La viscosité est également impactée par la concentration en particules comme elle l'était avec la température (et de façon générale, la consistance et la contrainte seuil, pour des fluides non-newtoniens, voir section 3.4). On peut retrouver une synthèse détaillée de tous ces modèles dans[START_REF] Kim | Numerical simulations of particle migration in suspension flows : frame-invariant formulation of curvature-induced migration[END_REF].3.2.1 Conservation de la quantité de particulesConsidérons le problème de l'écoulement d'un fluide newtonien incompressible décrit par les grandeurs σ, u, p et par le champ scalaire de densité volumique de particules φ (dit aussi concentration en particules ou fraction volumique). La prise en compte de ce nouveau paramètre est déterminant dans de nombreux écoulements car la répartition des particules en suspension dans le fluide peut fortement agir localement sur la viscosité. Intuitivement, plus le fluide est concentré en particules et plus il est visqueux. De nombreuses lois empiriques existent pour décrire finement cette dépendance, certaines plus efficaces pour des concentrations faibles, d'autres pour des concentrations élevées. La plupart des ces lois sont établies en faisant l'hy-
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Notons a le rayon des particules sphériques et notons η s la viscosité du solvant dans lequel les particules sont suspendues. Nous utiliserons l'observation empirique de Krieger

[Kri72] 

qui est classiquement utilisée dans le cas de particules sphériques en suspension dans un fluide newtonien. Cette loi exprime la viscosité de la suspension (le mélange solvant et particules) en fonction de la concentration φ par l'approximation :

  Modèle de flux original de Phillips et al. une étude quantitative, Phillips et al. proposent dans [PAB + 92] de ne tenir compte que de l'effet dominant des interactions à deux corps irréversibles, négligeant ainsi les autres types d'interactions. La migration des particules, durant leurs collisions est alors induite d'une part par le flux de collision et d'autre part par le gradient de la viscosité. Le flux de collision est défini comme étant proportionnel au gradient du taux de déformation dans la concentration φ :

	3.2. SUSPENSION DANS UN FLUIDE NEWTONIEN
	3.2.2 Après

) où N t correspond au flux de migration des particules et χ aux éventuelles sources de création de particules (par exemple par cristallisation). Ce flux dépend directement des autres grandeurs u, γ et η. Nous supposerons par la suite que χ = 0. Nous allons présenter les différents modèles qui existent pour décrire le terme de flux de migration des particules N t .

  Phillips et al. prédit une migration trop importante des particules vers l'intérieur. Les résultats expérimentaux de Chow et al. [CSIS94] confirment l'absence de migration. Le problème est identique sur une géométrie cône-plaque où le modèle de Phillips et al. prévoit une migration qui n'est pas détectée sur les expériences de Chow et al. [CISL95]. Globalement, le modèle de Phillips et al. semble bien fonctionner sur des problèmes isotropes puisque le flux de migration N t , basés sur φ| γ| est isotrope mais pour des problèmes de torsions, la migration des particules est plus fréquemment orientée dans la direction de cisaillement que dans la direction normal. Cette propriété non-isotropique n'est pas prise en compte dans le modèle original de Phillips et al.. Plusieurs auteurs ont proposé des modifications du modèle original pour pallier à ces problèmes. Le modèle Phillips et al. n'est pas non plus totalement satisfaisant sur problème de Couette. Les travaux expérimentaux de Tetlow et al. [TGI + 98] réalisés sur cette géométrie ont montré que le modèle de Pillips et al. surestime la migration vers l'extérieur sur le grand cylindre par rapport aux mesures expérimentales, même avec un choix optimal des constantes K c et K η . Graham et al. ont proposé dans [GMB98] en reprenant d'une part le terme de courbure du modèle de Krishnan et al. de considérer alors K Fan et al. ont proposé une méthode alternative dans [FMB + 02] pour pallier aux manques de précisions du modèle original sur les problèmes de torsion entre deux plaques parallèles et le problème de cône-plaque. Ils ajoutent un tenseur directionnel de courant dans le modèle diffusif. Le tenseur directionnel de courant vient de Brady et Morris [BM97]. La nature anisotrope de la diffusion et de la migration est utilisée dans ce modèle. Les flux sont modifiés de la manière suivante :

3.2.3 Les différentes extensions du modèle de flux

Ajout d'un flux induit par la courbure sur un problème 1D radial Krishnan et al. ont proposé dans [KBL96] d'ajouter un terme lié à la courbure des lignes de courants pour réduire les différences observées sur les problèmes de torsions de plaques parallèles. Ils définissent un flux supplémentaire induit par la courbure (voir fig. 3.2) :

N κ = K κ nκa 2 |γ|φ 2

où n est le vecteur unitaire radial extérieur par rapport aux lignes de courant courbes, κ le rayon de courbure de ces lignes et K κ un nouveau paramètre empirique qui doit être réajusté avec les paramètres K c et K η . Finalement, le flux migratoire total est N t = N c + N η + N κ . Krishnan et al. ont défini explicitement les grandeurs κ et n dans le cas spécifique du problème 1D stationnaire de plaques parallèles. Ce terme améliore les résultats sur ce problème spécifique mais l'écriture de κ et n présenté dans

[START_REF] Krishnan | Shear-induced radial segregation in bidisperse suspensions[END_REF] 

ne peut s'étendre à des géométries plus complexes qui nécessite la résolution d'équation de dimension supérieur comme le problème de Couette excentrique ou le problème d'écoulement forcé dans un canal.

Modèle avec K c φ-dépendant c comme une fonction de la densité de particules φ. Avec une dépendance de K c linéaire en φ, cela permet d'obtenir une très bonne correspondance entre les prévisions du modèle et les mesures expérimentales sur Couette. Figure 3.2 -Flux par courbure Ajout d'un flux induit par la courbure indépendant du problème traité Plus récemment, Kim et al. ont étendu dans [KLK08] le terme de courbure introduit de Krishnan et al. [KBL96] en proposant une écriture intrinsèque des paramètres κ et n pouvant s'adapter à tout type de géométrie, sans limite sur la dimension des équations : n = -(|u| 2 a -(a.u)u) |u||a ∧ u| , κ = a ∧ u |u| 3 où a est l'accélération qui correspond à la dérivée matérielle de la vitesse : a = ∂u ∂t + u.∇u. En particulier, ces expressions correspondent à celles définies par [KBL96] lorsque l'on se place dans un problème stationnaire radial. Ils montrent sur l'exemple que Couette excentrique que ce modèle améliore les résultats par rapport au modèle original. Leur modèle incorpore également la dépendance de K c en φ proposée dans [TGI + 98].

Modèle avec le tenseur directionnel de courant

  8)Pour obtenir un profil de concentration correct sur le problème de plaques parallèles ou de cône-plaques, il est déterminé dans [FMB + 02] que λ 1 = λ 2 = 2λ 3 . Lorsque Z est le tenseur identité, on retrouve naturellement le modèle original. L'avantage de ce modèle est qu'il est également invariant du problème considéré comme le terme de courbure[START_REF] Kim | Numerical simulations of particle migration in suspension flows : frame-invariant formulation of curvature-induced migration[END_REF]. Les auteurs ont appliqué le tenseur directionnel de courant sur le problème de Couette excentrique et sur le problème d'écoulement forcé dans un canal.

	3.3. RÉSOLUTION NUMÉRIQUE DU PROBLÈME ORIGINAL DE PHILLIPS ET AL.
	3.3.1 Problème au limite
	On considère le problème complet d'un écoulement d'une suspension newtonienne
	incompressible de sphères solides de rayon a. Pour faire simple, on choisit des
	conditions de types Dirichlet pour la vitesse et des conditions de flux de migration
	nul aux frontières pour la fraction volumique de particules. Le problème de Phillips
	et al. s'écrit :

3.3 Résolution numérique du problème original de

Phillips et al. Nous présentons ici une méthode de résolution numérique du problème en temps de la migration dans un fluide newtonien. Cette méthode servira de base pour l'étendre ensuite au cas des fluides viscoplastiques. Le cadre des suspensions newtoniennes est idéal pour valider la résolution numérique car il existe de nombreuses études et résultats d'expérience. L'extension au fluides viscoplastiques sera un peu plus exploratoire car il existe actuellement peu de mesures précises pour ces fluides. On s'intéressera avant tout à développer une méthode numérique. Dans cette optique, on considère uniquement le modèle original [PAB + 92]. trouver u, p, σ et φ dans ]0, T [×Ω tels que :

  et γw sont les valeurs de φ et γ sur la paroi du cylindre intérieur et η w = η(φ w ). Le choix de φ w détermine la fraction volumique moyenne φ.

	En intégrant (3.18), on obtient					
	| γ|φ | γw |φ w	=	η w η	Kη/Kc	,	(3.19)
	où φ w L'équation des moments (3.17b) s'écrit en stationnaire :	
	(r 2 σ) ′ = 0.		
	En intégrant cette équation et en utilisant la loi de comportement (3.17a), le taux
	de cisaillement γ est donné par :	γ =	C r 2 η	,		(3.20)
						.18)

où C est une constante d'intégration. On remplace dans l'équation (3.19) γ par son expression et η par la loi de Krieger (3.1) :

Table 3 .

 3 1 -Grandeurs numériques utilisées pour la modélisation d'un écoulement de type Couette d'une suspension newtonienne.

  On propose de faire comme pour l'algorithme 2.4.3 un découplage des équations de rhéologie de l'équation du migration par une méthode du point fixe. Par contre, contrairement au problème non-isotherme, l'algorithme est plus efficace en résolvant partiellement à chaque itération du point fixe le Lagrangien augmenté sur les équations de rhéologie plutôt que d'effectuer une seul itération comme cela a été proposé sur le problème non-isotherme. L'algorithme ci-dessous est une sorte de compromis intermédiaire entre l'algorithme 2.4.2 et l'algorithme 2.4.3. Dans la pratique, un tolérance de convergence du Lagrangien augmenté de l'ordre de 10 -4 donne de très bons résultats. Ce critère de convergence n'est pas trop coûteux en itération du Lagrangien augmenté car cette tolérance est atteinte pendant le premier régime de convergence. Le taux de convergence diminue ensuite drastiquement et il serait inutile de chercher une meilleur précision à chaque itération du point fixe. La tolérance 10 -4 semble être un bon compromis. Algorithme 3.4.2 (Algorithme du Lagrangien augmenté/point fixe pour les suspensions).

  Présentation de l'articleCe chapitre porte sur l'écoulement des fluides viscoplastiques de faible épaisseur et a fait l'objet d'un papier[START_REF] Bernabeu | Numerical modeling of non-newtonian viscoplastic flows : part II. Viscoplastic fluids and general tridimensional topographies[END_REF] qui est présenté ici. Celui ci se décompose principalement en deux grandes parties. Une première partie aborde le problème de la réduction asymptotique des équations d'Herschel-Bulkley tridimensionnelles à surface libre sur une topographie générale. À l'inverse des modèles de type Saint Venant ("shallow water"), l'approximation retenue suppose que le fluide est laminaire, les termes visqueux sont maintenus tandis que les termes d'inerties sont négliglés. Ces hypothèses sont cohérentes avec le contexte des laves qui sont des fluides principalement visqueux. La réduction asymptotique conduit à une unique équation bidimensionnelle sur la hauteur de fluide h et sur ses dérivées. Les autres grandeurs comme la vitesse, la pression et les contraintes se déduisent ensuite explicitement en fonction de h. L'équation est de type parabolique non linéaire et la deuxième partie de l'article s'intéresse la résolution numérique de cette équation.

	Numerical modeling of shallow non-Newtonian
	flows : Part II. Viscoplastic fluids and general
	tridimensional topographies,
	Noé Bernabeu, Pierre Saramito and Claude Smutek
	December 4, 2014
	Abstract -A new reduced model for the shallow tridimensional visco-
	plastic fluid flowing on a general topography is presented in this paper.

Une méthode implicite d'ordre 2 en temps est proposée pour résoudre ce problème, couplée à une méthode d'adaptation de maillage pour capturer très précisement le coutour de la ligne de contact du fluide. La non linéarité du problème est résolue par une méthode de type point fixe sous-relaxé. Le modèle numérique permet ainsi de prédire le comportement à long terme jusqu'à l'arrêt total du fluide par effet de seuil. L'approche est ensuite testée sur deux expériences réalisées en laboratoire. À la suite de l'article, une section supplémentaire 4.5 est ajoutée et propose une nouvelle méthode plus efficace pour résoudre les non linéarités du problème réduit grâce à l'algorithme de Newton.

Remarque : dans cette articule et dans le reste de la thèse, la contrainte seuil est notée τ y au lieu de σ 0 .

  that are not taken into account in the present computations. A more complete model, that extends Herschel-Bulkley one to viscoelastic effects[START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF][START_REF] Saramito | A new elastoviscoplastic model based on the Herschel-Bulkley viscoplasticity[END_REF] should be considered, and then a new reduced model derived. Let us mention that Kirill et al.[START_REF] Nikitin | Numerical method for the simulation of free surface flows of viscoplastic fluid in 3D[END_REF] recently performed a numerical simulation of the same experiment by another approach, based on a tridimensional approximation of the viscoplastic Herschel-Bulkley by a regularized model. While the 3D effects in the first times are taken into account, the comparisons are not sufficiently accurate to validate the front position and the arrested state is not treated. This could be due to the use of a regularized model that not allow to detect the full stop of the flow. In contrast to the ideal viscoplastic flow, which reaches complete cessation at a finite time, the regularized flow reaches a flow regime corresponding to a small but nonzero flow rate[START_REF] Chatzimina | Cessation of Couette and Poiseuille flows of a Bingham plastic and finite stopping times[END_REF] 

  Abstract -A new shallow reduced model for the non-isothermal tridimensional viscoplastic fluid flowing on a general topography is presented in this paper. Both the consistency and yield stress are supposed temperature-dependent. An asymptotic analysis leads to reduce the 3D problem to a 2D surface one with depth-averaged equations. These equations are numerical approximated by an auto-adaptive finite element method, based on the Rheolef C++ library, allowing to track accurately the front position. The proposed approach is first evaluated by comparing numerical prediction with non-isothermal experimental measurements for a silicone oil dome. Next, the December 2010 eruption of Piton de la Fournaise (La Réunion island) is numerically reproduced and compared with available data.

	Noé Bernabeu, Pierre Saramito and Claude Smutek
	August 29, 2014

  Table 5.2 -Physical parameters for the lava flow. See [VNB + 08, MM84, PN95, Sha69] and [RPT + 12] for the 2010 eruption data.

	Physical quantities	symbol	value unit
	average eruption flow rate	Q	9.7 m -3 .s -1
	eruption duration	d e	15 : 15 h :min
	initial temperature of the fluid	θ e	1423 K
	initial temperature of air and substrate	θ a	303 K
	lava density	ρ	2200 kg.m -3
	air density	ρ a	1.2 kg.m -3
	lava viscosity at θ e temperature	K e	10 4 Pa.s
	lava yield stress at θ e temperature	τ y,e	10 2 Pa.s
	lava emissivity	ǫ	0.95 -
	lava thermal conductivity	k	2 W.m -1 .K -1
	lava specific heat	C p	1225 J.m -1 .K -1
	convective heat transfer coefficient with air	λ	80 W.m -2 .K -1
	flow characteristic thickness	H	1 m
	flow characteristic length	L	1000 m
	constant in viscosity Arrhenius law	α	0.016447 K -1
	constant in yield stress Arrhenius law	β	0.016447 K -1

  Sommaire 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 199Ce travail de recherche a été l'occasion de proposer un nouveau modèle mathématique et numérique concernant la simulation des coulées de lave volcanique. Dans le cadre d'une collaboration avec le laboratoire Géosciences de La Réunion, j'ai pu réaliser diverses expéditions scientifiques sur le Piton de la Fournaise. Ces missions sur le terrain ont été très enrichissantes dans l'élaboration de ce projet. Elles ont été l'occasion d'échanges scientifiques très instructifs avec les géologues et physiciens spécialistes du volcanisme. Cela m'a permis d'acquérir une représentation plus concrète du mécanisme des laves. Ce travail pluridisciplinaire a ainsi permis de développer un programme prédictif réaliste sur l'évolution des coulées. Il fournit dès à présent un outil complémentaire dans l'aide à la décision pour la protection des populations face aux risques volcaniques. Pour aboutir à ce modèle, les propriétés physiques des laves m'ont conduit à étudier la viscoplasticité, les fluides à rhéologie thermo-dépendante, les suspensions et les écoulements de faible épaisseur. Le premier chapitre a été l'occasion d'étudier dans un cadre général la modélisation des fluides viscoplastiques. Une méthode numérique a été construite à partir des inéquations variationnelles de viscoplasticité, basée sur la méthode du Lagrangien augmenté. Des résultats sont présentés sur le "problème test" de la cavité entraînée. Les méthodes numériques employées telles que l'adaptation de maillage, l'ordre des schémas numériques et les critères de convergence exigeants, en font de nouveaux résultats de référence sur ce problème. D'un point de vu algorithmique, la convergence de l'algorithme d'Uzawa sur le problème de minimisation du Lagrangien augmenté a été grandement accélérée en proposant l'utilisation d'un paramètre d'augmentation à croissance géométrique. Le second chapitre apporte une nouvelle contribution sur le problème d'un fluide viscoplastique en refroidissement dans un cylindre. Nos résultats viennent compléter ceux obtenus par Vinay et al.[START_REF] Vinay | Numerical simulation of nonisothermal viscoplastic waxy crude oil flows[END_REF] et enrichissent les possibilités de comparaisons sur ce problème. Le troisième chapitre propose l'une des premières simulations numériques de suspensions viscoplastiques. Deux variantes différentes ont été explorées : une suspension de particules dans un fluide déjà viscoplastique à contrainte seuil fixe ; une suspension de particules dans un fluide initialement newtonien, qui bascule localement en un fluide à seuil par effet de concentration des particules générant une contrainte seuil. Ces résultats sont succeptibles d'encourager les expérimentateurs à effecter de nouvelles mesures rhéologiques et expérimentales sur les suspensions viscoplastiques. Des comparaisons précises permettraient d'améliorer les modèles théoriques et mathématiques sur la migration et la dispersion des particules. Dans le cadre de la modélisation des fluides viscoplastiques visqueux de faible épaisseur, le quatrième chapitre a permis d'étendre les travaux déjà existants dans la littérature au cas tridimensionnel et pour une topographie arbitraire. Ce chapitre a permis de détailler la réduction des équations de Herschel-Bulkley par analyse dimensionnelle et asymptotique. Deux CHAPITRE 6. CONCLUSION ET PERSPECTIVES 199 comparaisons sont proposées avec des expériences de laboratoire. Elles permettent d'observer l'efficacité et limites du modèle. Enfin, le chapitre 5 généralise la théorie de la lubrification aux fluides à seuil non-isothermes. La réduction des équations est réécrite en y intégrant les effets thermiques. Les simulations donnent de très bons résultats sur l'expérience de Garel[START_REF] Garel | An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents : implications for thermal monitoring of lava flows and domes[END_REF] et la simulation numérique de la coulée de décembre 2010 au Piton de la Fournaise est très encourageante quant à son potentiel prédictif.6.2 PerspectivesCe travail apporte une contribution à la modélisation multi-physiques des fluides viscoplastiques et dans la simulation réaliste des coulées de lave volcanique.Sur le plan physique, les coulées de lave sont très complexes puisqu'elles mettent en jeu une grande diversité de phénomènes physiques. Cette thèse nous a permis d'en explorer une partie mais d'autres propriétés physiques seraient très intéressantes à approfondir : l'évolution des bulles au sein du magma et l'impact sur la rhéologie, les effets de cristallisations, de solidifications, de chaleur latente... Sur la modélisation des fluides viscoplastiques, il serait intéressant d'explorer d'avantage les effets du paramètre d'augmentation sur la convergence algorithmique d'Uzawa lorsque celuici est variable. Les travaux présentés par Delbos et Gilbert dans[START_REF] Delbos | Global linear convergence of an augmented lagrangian algorithm to solve convex quadratic optimization problems[END_REF] sur les problèmes de minimisation d'une fonction quadratique convexe sous les contraintes d'inégalités linéaires peuvent être une source intéressante pour utiliser un paramètre d'augmentation r k automatique et optimal. Avec la prise en compte de la température, il serait intéressant d'effectuer des simulations numériques sur des problèmes réalistes avec des lois rhéologiques plus complexes. L'exemple de l'écoulement d'un fluide viscoplastique dans un cylindre pourrait naturellement s'étendre au problème de tunnels de lave. Des simulations sur ce problème pourraient apporter des informations sur la vitesse de refroidissement de la lave à l'intérieur d'un tunnel, la distance qu'elle peut parcourir avant de se solidifier. Sur la modélisation des suspensions, les différentes extensions du modèle de [PAB + 92] pourraient être reprises et intégrées au cas viscoplastique. Par ailleurs, l'approche de la migration par le modèle de suspension thermique ("balance model") proposé par Brady et Morris[START_REF] Brady | Microstructure of strongly sheared suspensions and its impact on rheology and diffusion[END_REF] donne de très bon résultat pour des fluides newtoniens et serait intéressante à étudier dans le cas viscoplastique. Concernant les écoulements viscoplastiques non-isothermes de faible épaisseur, une perspective à court terme sera de tester le modèle sur d'autres coulées de lave existantes. L'idéal serait de travailler sur une coulée bien documentée, avec des données précises. Concernant le Piton de la Fournaise, un nouveau MNT d'une résolution de 1 mètre a été réalisé en 2012 et il serait très intéressant d'utiliser cette topographie pour simuler une coulée de lave qui a eu lieu en Juin 2014 sur ce volcan. Concernant les aspects mathématiques du modèle, il pourrait être envisageable de remplacer l'étape d'intégration dans l'épaisseur sur l'équation de la 200 6.2. PERSPECTIVES chaleur par une résolution verticale multicouche. Ceci permettrait de modéliser plus efficacement le gradient de température dans l'épaisseur de fluide et de se dispenser de l'hypothèse restrictive d'une consistance et une contrainte seuil constante dans la verticale. Un tel modèle multicouche permettrait de modéliser la couche limite thermique observable au voisinage de la surface de la coulée et au niveau du contact avec le substratum. Le travail de stage réalisé par Olivier Ozenda[START_REF] Ozenda | Modélisation multicouche d'écoulements visqueux minces et calculs thermiques appliquésa la simulation d'épanchements de lave[END_REF] dans le cadre de son Master 2, que j'ai supervisé avec Pierre Saramito, apporte les premiers éléments sur une résolution multicouche de l'équation de la chaleur transportée par un champ de vitesse et semble prometteur. La résolution multicouche de problèmes d'écoulements à faible épaisseur intéresse de plus en plus les chercheurs : Audusse et al. proposent dans[START_REF] Audusse | A multilayer Saint-Venant system with mass exchanges for Shallow Water flows. Derivation and numerical validation[END_REF] une extension multicouche des équations de Saint-Venant ; Jouvet propose dans[START_REF] Jouvet | A multilayer model for ice flow[END_REF] une modélisation multicouche des écoulements de glace.
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(R), espace des tenseurs symétriques de R 3 , γ, tenseur des taux de déformations (2D(u)), s, indice de Sobolev (max(1+n,2)), s * , indice de Sobolev conjugué (s/(s -1)), ε, rapport d'aspect.
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3.4. SUSPENSION NON-NEWTONIENNE

s mais le comportement est identique pour les autres pas de temps. Nous constatons que la convergence du résidu plonge très rapidement. Cela correspond à la convergence quadratique de l'algorithme de Newton. La convergence est très peu impactée par la taille de maille, on a une indépendance en h. L'algorithme de Newton paraît dans cette situation bien plus robuste et efficace que l'algorithme du point fixe. Il ne nécessite pas de choisir un paramètre ω, la convergence du résidu est très rapide et l'algorithme de Newton est très stable avec le raffinement de maillage contrairement à l'algorithme du point fixe. Pour effectuer une comparaison objective de l'efficacité des deux algorithmes, nous présentons sur la figure 4.10 b. le temps total de calcul nécessaire à la réalisation d'une simulation complète du problème d'écoulement avec l'algorithme de Newton et l'algorithme du point fixe en fonction de la quantité N = 1/h 2 qui est directement proportionnelle à la taille du système à résoudre. En effet, bien que la convergence du résidu pour l'algorithme de Newton soit plus efficace, la taille des système à résoudre pour l'algorithme de Newton est généralement plus importante que celle des systèmes résolus lors de l'algorithme du point fixe. On constate que malgré la taille de la jacobienne plus importante et plus longue à inverser que celle de la matrice du point fixe, l'algorithme de Newton est plus rapide et à même un comportement optimal avec une pente proche de 1 en échelle logarithmique. Si l'algorithme du point fixe n'était pas limité par ω crit , en choisissant par exemple ω = 0.5, l'algorithme aurait aussi un comportement optimal en fonction de la taille du système. La complexité serait la même bien que les temps
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REDUCTION TO A BIDIMENSIONAL PROBLEM

Let us introduces a Péclet number for the substratum :

We suppose that P e s ∼ P e in ε where P e s = ε N P e s . The heat problem satisfied by θ s (5.1) becomes in dimensionless form :

θs = θ on Γs , (5.8b) θs (z = -∞) = 0, (5.8c) θs ( t = 0) = 0.

(5.8d)

The Dirichlet condition (5.1g) on Γ e becomes θ = 1.

Finally, the transport equation (5.1n) for the flow height h on Γ f (t) becomes :

(5.9)

The dimensionless problem is completed by the initial conditions for the dimensionless height, velocity and temperature. The initial problem (5.1a)-(5.1p) and it dimensionless version (5.2)-(5.9) are equivalent, since the change of unknowns is simply linear.

Asymptotic analysis

The zeroth order problem in ε

In this paragraph, we only consider the dimensionless problem : since there is no ambiguity, we omit the tilde on the dimensionless variables. We assume the unknowns admit the following development in ε when ε ≪ 1 :

In this paragraph, we aim at obtaining the problem at the zero-order for h 0 , τ 0 , u 0 , p 0 and θ 0 . Since we only consider the zero-order, we also omit the zero subscript in this paragraph. Let us denote ∇ || = (∂ x , ∂ y ) the gradient vector in the Oxy plane, 

)

)

when γ = 0 and |τ || | ≤ B(θ), otherwise.

(5.11)

Conservation laws at the zero-order

The conservation laws (5.3) at the zero-order becomes :

(5.12d)

The reduced heat equation (5.3e) at the zero-order depend of the value of N .

• For N ≤ 1, it becomes :

In this case, the effects of convection are neglected, it's a purely diffusive model.

• For N ≥ 3, it becomes :

In this case, the effects of diffusion are neglected, it remains a transport equation of the temperature.

• For N = 2, it becomes :

(5.13) This is more interesting since remain convection and diffusion effects.

VERTICAL-AVERAGED PROBLEM

from h and θ by an explicit expression.

From (5.14a)-(5.14c), we get at the free surface z = f + h :

Integrating in z (5.12c) from z = 0 to z = f + h and using the boundary condition (5.18a), we have :

As f is known, the quantity p depends only on the unknown h. Integrating (5.12a)-(5.12b) and using (5.18b), we get an explicit expression of the shear stress : 

The von Mises criteria at zero-order writes equivalently as :

Taking the Euclidian norm of (5.10b) leads to :

Then from (5.20) and (5.22), we have :

Taking the direction of (5.10b) leads to dir(∂ z u || ) = dir(τ || ) = -dir(∇ || (f + h)) and then :

In the zeroth order problem in ε, the z = f (x, y) + h c (t, x, y) surface splits the flow in two zones, the z ≤ f + h c zone is sheared while the z > f + h c one is rigid zone.