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Introduction 

De nos jours, il est évident que la recherche et le développement de nouvelles
molécules thérapeutiques ne suffisent pas à assurer les progrès des traitements 
médicamenteux. Une stratégie prometteuse consiste à associer le principe actif à un 
vecteur. Ainsi, après son administration le devenir du médicament dans 
l’organisme ne dépendra plus des propriétés de la molécule active mais sera soumis 
à celles du vecteur choisi.
La vectorisation a plusieurs objectifs, elle permet de :
- Protéger le principe actif après son administration en lui permettant de mieux 
s’opposer aux mécanismes biologiques de dégradation.
- Moduler les propriétés physico-chimiques de la molécule d’intérêt; l’exemple le
plus connu est celui de l’amélioration de la solubilité des molécules ayant une
hydrophobie
- Moduler les propriétés pharmacologiques de la substance active afin d’optimiser 
son efficacité thérapeutiques et surtout réduire ses effets indésirables.

trop élevée.

- Contrôler la distribution du principe actif dans l'organisme permettant ainsi son
ciblage vers les sites d’action.
Un bon vecteur doit répondre à un certain nombre de critères : il doit être stable,
biocompatible, efficace et non toxique. Par ailleurs, il doit être adapté au principe 
actif c.-à-d. capable de le stocker en quantité suffisante et de le relarguer par la 
suite de la manière désirée. De même la production industrielle du vecteur ne doit 
pas poser de problèmes.
Aujourd’hui, le développement des nanotechnologies a permis de concrétiser l’idée 
de vectorisation des principes actifs qui est devenue un axe de recherche suscitant
un véritable engouement dans le domaine pharmaceutique.  S’appuyant sur de 
nouveaux concepts physico-chimiques et sur de nouveaux matériaux, la recherche a 
ainsi pu imaginer des systèmes submicroniques d’administration des médicaments.
Les exemples des « drug-carriers » utilisés en pharmacie sont multiples; on peut 
citer les liposomes, les nano-capsules, les nano-sphères, les micelles, les nano-
émulsions, etc.
La production de ces nano-systèmes pour la vectorisation des principes actifs 
constitue un véritable défi. En effet, un procédé de fabrication doit être 
reproductible et permettre une production à large échelle avec un coût minimum.
Cependant la grande majorité des techniques de préparation reportées permettent 
seulement une production à l’échelle du laboratoire. Par ailleurs, ces procédés 
consomment dans la plupart des cas beaucoup d’énergie et se basent sur des 
méthodes empiriques qui manquent de reproductibilité.
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Au cours de ce travail, nous proposerons une alternative aux procédés classiques 
pour la préparation des vecteurs pharmaceutiques en se basant sur l’utilisation des 
membranes.
Une membrane est une barrière semi-perméable qui sous l’effet d’une force de 
transfert va permettre ou interdire le passage de certains composants entre les deux 
milieux qu’elle sépare. Les membranes ont été utilisées initialement pour la 
séparation et la filtration des particules; aujourd’hui elles sont exploitées en tant 
que « contacteurs ». C’est alors la capacité de ces barrières matérielles à générer 
une interface entre deux phases, qui est exploitée. Les contacteurs membranaires 
ont trouvé des applications dans le secteur de l’agro-alimentaire, de la chimie, de 
l’industrie du textile, du papier, de la métallurgie, de la micro-électronique, etc. 
Actuellement, dans le secteur pharmaceutique, une application des contacteurs 
membranaires porte sur le traitement de l’eau en vue de l’élimination du CO2

Technologie mature et sur le marché depuis plus de trente ans, les contacteurs 
membranaires sont considérés comme des technologies dominantes aux États-Unis, 
en Chine et au Japon. Les investissements industriels dans ce domaine sont 
importants et croissent rapidement. En France, selon le rapport d’une étude 
prospective technologique menée par le ministère de l’économie, de la finance et 
de l’industrie « Technologies clés 2015 », les applications des procédés 
membranaires ne sont pas tout à fait exploitées. Ainsi, l’association des 
technologies membranaires à la production des nano-produits serait un atout 
considérable pour l’intensification des procédés industriels.

dissous.

L’utilisation des membranes présente plusieurs points forts dont :
- La possibilité de préparer des particules de faible taille en une seule étape avec 
un apport d’énergie inférieur à celui des méthodes conventionnelles. L’utilisation 
réduite de l’énergie garantit d’une part le respect de l’environnement et permet 
d’autre part un coût d’exploitation modéré.
- Le travail dans des systèmes fermés permet d’éviter les contaminations 
extérieures; ceci représente un avantage certain en industrie pharmaceutique.
- L’usage de la modélisation permet d’établir des relations entre propriétés
structurales des membranes, conditions opératoires, avec l’efficacité du procédé 
permettant ainsi son optimisation. 
- Le développement de la simulation permet de prévoir la performance des 
membranes ce qui assurerait un développement rapide des procédés membranaires.
- La possibilité de développer des procédés continus et automatisables.
- Un fort potentiel d’innovation (fonctionnalisation des membranes, usage des 
procédés hybrides…) répondant aux contraintes de développement durable.
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L’objectif de ce travail est donc d’appliquer cette technologie propre et innovante 
pour la préparation de différents vecteurs permettant l’encapsulation des principes 
actifs en pharmacie. Dans cette étude, le choix du principe actif à encapsuler s’est 
porté sur l’ -tocophérol qui est une forme de la vitamine E présente en grande 
quantités dans les huiles végétales.
A température ambiante, la vitamine E se présente sous forme d’une huile 
visqueuse de coloration jaune pâle.  Elle est peu sensible à la chaleur mais très 
sensible à l’oxydation d’ou son rôle physiologique d’antioxydant contre les dérivés 
réactifs de l’oxygène appelés radicaux libres. Les radicaux libres sont des 
molécules contenant un nombre impair d’électrons, ils sont produits suite aux 
oxydations cellulaires induites par l’oxygène. La présence de ces radicaux libres 
entraîne une agression des cellules que l’on appelle le stress oxydatif. Ce 
phénomène physiologique, est impliqué dans le vieillissement de l’Homme. Le 
stress oxydatif devient une situation pathologique dès que le système de protection 
antioxydant est submergé  par une production accrue de radicaux libres. 
Parmi les pathologies liées au stress oxydatif, on trouve les maladies broncho-
pulmonaires liées à la consommation du tabac. En effet le tabac contient des 
molécules oxydantes qui accentuent la production des radicaux libres. Lorsque les 
défenses naturelles, constituées par des antioxydants, s’avèrent insuffisantes, les
radicaux libres toxiques vont s’attaquer aux cellules entraînant une perte de 
l’élasticité des poumons (fibrose pulmonaire) responsable entre autre de bronchites 
chroniques et parfois de cancers pulmonaires. Ces conséquences du stress oxydatif 
au niveau pulmonaire soulèvent donc l’importance du maintien d’un équilibre 
adéquat entre antioxydants et oxydants. Les antioxydants (dont la vitamine E), 
capables de neutraliser les radicaux libres, peuvent alors être utilisés pour prévenir 
ce genre de toxicité pulmonaire. Toutefois l’administration par voie systémique 
(orale, intraveineuse…) n’a pas permis d’atteindre un niveau adéquat de vitamine E 
au niveau de son site d’action broncho-alvéolaire. D’où l’idée de développer des 
nano-systèmes inhalables qui permettront l’encapsulation de la vitamine E puis sa 
délivrance au niveau pulmonaire.
Pour une action locale, la voie d’administration respiratoire offre l’avantage de 
cibler la zone à traiter; la délivrance du principe actif in situ procure alors une 
meilleure efficacité à dose plus faible et provoque par la même occasion moins 
d'effets secondaires comparativement aux autres voies d’administration. De plus, le 
médicament directement délivré vers sa cible permet d’avoir un début d’action 
rapide puisque il n’a pas besoin d’être ni absorbé ni transporté pour agir. Le 
devenir d’un médicament inhalé et par conséquent son efficacité thérapeutique 
dépend avant tout de la taille des particules de l’aérosol. Pour atteindre l’arbre 
trachéo-bronchique d’un adulte, les particules doivent idéalement présenter une 
taille inférieure à 5 . Il est donc nécessaire de pouvoir caractériser un aérosol en 
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terme de taille de particules pour prédire son site de dépôt, et de vérifier ainsi 
l’adéquation entre la zone à traiter et le site de dépôt.
Cette thèse comporte six chapitres :
- Le premier chapitre présente des notions de base sur les contacteurs à membrane
et sur les systèmes colloïdaux. 
- les quatre chapitres qui suivent présentent le développement de vecteurs 
encapsulant la vitamine E en utilisant des méthodes basées sur des contacteurs à 
membranes (respectivement liposomes, nano-émulsion, micelles et particules 
lipidiques solides). 
- Le dernier chapitre présente les résultats de caractérisation des aérosols générés et 
la prédiction du niveau de dépôt pulmonaire.
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Contacteurs à membrane et systèmes colloïdaux 

 

Dans le cadre de cette thèse, la vitamine E a été encapsulée dans des vecteurs 
colloïdaux en utilisant des procédés basés sur des contacteurs à membrane. Quelques 
notions bibliographiques concernant les contacteurs à membranes et les systèmes 
colloïdaux sont présentées brièvement ci-dessous.

1. Les contacteurs à membrane
1.1 Définition

Une membrane est un matériau poreux qui sépare deux milieux permettant ainsi un 
échange contrôlé de matière. Les procédés membranaires les plus utilisés sont les 
procédés de filtration, développés depuis les années 1960.  Ils permettent de séparer et 
de concentrer des molécules, des espèces ioniques en solution, des particules ou des 
microorganismes en suspension dans un liquide. Parallèlement à leur utilisation dans 
les procédés bien établis d’ultrafiltration et de microfiltration, les membranes font 
l’objet de nouvelles applications dans les industries pharmaceutiques et 
biotechnologiques, comme les bioréacteurs membranaires, les membranes 
chromatographiques, et les contacteurs à membrane [1]. Cet intérêt croissant est dû au 
fait que les systèmes à membrane présentent l’avantage d’être sélectifs, d’offrir une 
surface importante par unité de volume et la possibilité de contrôler le contact et/ou le 
mélange entre deux phases [2].

Le terme de contacteur membranaire désigne un procédé où une première phase est 
introduite sous pression à travers les pores d’une membrane microporeuse, dans une 
deuxième phase. Les pores de la membrane jouent le rôle de capillaires parallèles pour 
l’introduction sous pression de la phase dispersée dans la phase continue [3]. La figure 
1 montre un schéma représentatif d’un contacteur à membrane.

Figure 1. Schéma représentatif du principe d’un contacteur membranaire
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1.2 Différentes configurations expérimentales

Dans le cas de l’émulsification directe, le passage de la phase dispersée à travers les 
pores de la membrane entraîne la formation de fines gouttelettes à l’interface 
membrane/phase continue. Afin d’assurer un détachement uniforme de ces 
gouttelettes, une force de cisaillement est généralement requise. Cette force peut être 
générée par la circulation tangentielle de la phase continue [1], comme le montre la 
figure 2. a. Le débit de circulation de la phase continue doit être suffisant afin de 
garantir un détachement régulier des gouttelettes formées, mais pas très élevé pour ne 
pas altérer la structure des particules déjà préparées. 

Figure 2. Représentation schématique des différentes configurations expérimentales
des modules membranaires. (a), (b) et (c) : émulsification directe, (d) « premix 
emulsification ». Dans le cas de l’émulsification directe, la force de cisaillement 
assurant le détachement des gouttelettes peut être obtenue par : (a) circulation 
tangentielle de la phase continue, (b) agitation mécanique de la phase continue, ou (c)
mouvement de la membrane au sein d’une phase continue stationnaire.
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Le détachement des gouttelettes à la surface membranaire peut avoir lieu sans flux 
tangentiel mais par agitation mécanique de la phase continue, comme dans le cas d’une 
cellule d’agitation [4] (Figure 2. b). Le principal inconvénient de cette configuration 
est que la force de cisaillement générée à la surface membranaire, par l’agitation 
mécanique, varie dans l’espace. Ceci peut se répercuter sur l’uniformité de taille des 
particules obtenues. Toutefois certaines études, ayant utilisé des cellules d’agitation, 
ont décrit la préparation d’émulsions dont la distribution de taille était étroite [5]. Par 
ailleurs, la cellule d’agitation ne permet pas de préparer de grands volumes, mais elle 
s’avère être un outil intéressant pour étudier l’influence des différents paramètres 
opératoires sur le procédé de fabrication afin de l’optimiser. Un passage à une échelle 
de production plus importante peut être alors envisagé grâce à d’autres configurations 
de contacteurs membranaires.

D’autres configurations impliquent l’utilisation de modules membranaires dotés de 
mouvement de rotation ou de vibration au sein d’une phase continue stationnaire 
(Figure 2. c). Ce type de configuration présente un grand intérêt car il permet d’éviter 
la recirculation tangentielle de la préparation et est donc adapté à la fabrication de 
particules ayant une structure fragile pouvant être altérée suite aux passages multiples 
à travers la pompe et les différents conduits [6, 7].

Contrairement à l’émulsification directe, où la phase discontinue est directement 
dispersée dans la phase continue, la « premix emulsification » met en jeu une émulsion 
grossière qui passe à travers les pores d’une membrane microporeuse entraînant ainsi 
une réduction de la taille des globules lipidiques (Figure 2. d). Ce procédé peut être 
appliqué à la préparation d’émulsions simples ou multiples. Pour une membrane de 
taille de pores donnée, les études ont montré que les émulsions préparées par le 
procédé de « premix emulsification » présentent une taille inférieure à celles préparées 
par émulsification directe. Le procédé de « premix emulsification » peut être amélioré
en effectuant des passages répétitifs de l’émulsion à travers la membrane [8, 9].

1.3 Différents modules membranaires

Divers modules membranaires sont disponibles sur le marché; les plus communément 
utilisés sont les membranes SPG « Shirasu Porous Glass » (Ise Chemical Co, Japon). 
Ces membranes sont préparées à partir d’un type de verre extrait du magma d’un 
volcan Japonais « Shirasu ». Elles sont caractérisées par la présence de micropores 
interconnectés avec une distribution de taille étroite. Ces membranes sont disponibles 
avec des tailles de pores allant de 0.05 jusqu’à 30 μm et elles se présentent sous forme 
tubulaire avec des porosités élevées de 50 à 60 % [10, 11].

Récemment, les membranes microsieves ont connu une utilisation croissante 
(Aquamarijn Micro Filtration BV, Pays-Bas et Micropores Technologies, Royaume-
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Uni). Ces membranes sont caractérisées par une surface plane et lisse et une faible 
résistance membranaire. Leur avantage majeur est la grande uniformité de la taille des
pores et la régularité des distances inter-pores [12].

Par ailleurs, des modules fibres creuses ont été utilisés pour la préparation de 
particules colloïdales [13]. Les fibres creuses sont de fines membranes tubulaires qui 
sont assemblées parallèlement dans un module. Ces fibres poreuses ont un diamètre 
interne compris entre 0.2 et 1 mm, et une longueur de 10 à 100 cm. Le nombre de 
fibres dans un module varie de quelques fibres à plusieurs milliers. La composition 
chimique des fibres est très variée (polypropylène, polyamide, etc), offrant une large 
gamme de compatibilité chimique. Les modules fibres creuses sont disponibles sous de 
nombreuses configurations (taille des pores, longueurs des fibres, nombre de fibres par 
modules) permettant de s’adapter à de nombreuses applications dans l’industrie.

D’autres types de membranes peuvent être utilisés pour les procédés d’émulsification 
membranaire. On peut citer : les membranes en céramique, les membranes en 
poytetrafluoroethylene (PTFE), les membranes en polycarbonate, etc.

1.4 Applications

L’émulsification membranaire a été introduite au Japon en 1988 par Nakashima et al.
[14] lors des rencontres annuelles des ingénieurs chimistes Japonais. Depuis, cette 
technique suscite un engouement croissant comme alternative aux méthodes classiques 
d’émulsification. En effet, elle nécessite un apport modéré d’énergie (104 à 106 J/m3)
comparé aux méthodes conventionnelles (106 à 108 J/m3

De nombreuses applications ont été décrites dans la littérature. Quelques exemples 
sont donnés ci-dessous concernant l’encapsulation de principes actifs. L’émulsification 
membranaire avec une membrane SPG a été utilisée pour la préparation d’une 
émulsion de chlorure de méthylène dans de l’eau déminéralisée en utilisant un 
mélange de Tween 20 et Tween 80 comme tensioactifs et de l’alcool polyvinylique 
(PVA) comme stabilisateur. La méthode a permis d’encapsuler le flurbiprofène dans 
des gouttelettes de taille avoisinant les 100 nm [15].

).

L’utilisation d’un contacteur à membrane a permis de préparer une double émulsion 
eau/huile/eau pour le traitement, par chimiothérapie, du cancer de foie par injection 
artérielle [16]. La solution aqueuse contenant le principe actif (épirubicine ou 
carboplatine) est émulsionnée avec la phase huileuse (huile de graine de pavot iodé ou 
lipidol) avec un sonicateur pour obtenir une émulsion submicronique de type 
eau/huile. Cette émulsion est ensuite utilisée comme phase dispersée dans un procédé 
d’émulsification membranaire où la phase continue est composée d’une solution 
glucosée, permettant d’obtenir une double émulsion.
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Des microsphères de taille uniforme ont également été préparées pour contrôler la 
libération de divers principes actifs tels que l’anthracycline [17], l’astaxanthine 
caroténoide [18] et l’insuline [19].

La méthode de contacteur membranaire a permis également la préparation de 
nanoparticules lipidiques solides encapsulant la vitamine E [20], de nanocapsules de 
spironolactone [21] et récemment de liposomes encapsulant divers principes actifs 
(indométacine, dipropionate de béclométhasone et spironolactone) [13, 22].

2. Les systèmes colloïdaux 

Un système colloïdal est un système constitué par une fine dispersion d’une phase 
dans une autre; la phase dispersée présente une taille allant de quelques nanomètres à 
quelques micromètres. Les suspensions colloïdales font l’objet de la science des 
colloïdes et des interfaces, science initiée en 1861 par le chimiste Ecossais Thomas 
Graham. Les systèmes vectoriels d’encapsulation des principes actifs sont considérés, 
de part leurs tailles, comme des systèmes colloïdaux. Dans ce qui suit, on présentera 
brièvement les vecteurs colloïdaux qui ont été développés au cours de cette thèse.

2.1 Les liposomes

Les liposomes ont été fabriqués pour la première fois en 1965 par Bangham et ses 
collègues alors qu’ils faisaient des recherches sur la membrane cellulaire, au Centre de 
Recherche Agricole de l’Institut de Physiologie Animale à Babrham en Angleterre.
Les liposomes sont des particules sphériques constituées d’un espace aqueux interne 
entouré d’une ou de plusieurs bicouche(s) de phospholipide(s) (Figure 3). La taille du 
liposome va dépendre de la technique utilisée pour le fabriquer, mais généralement 
leur diamètre varie entre quelques dizaines de nanomètres et quelques dizaines de 
microns [23].

Figure 3. Structure d’un liposome
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Historiquement, la première méthode utilisée pour la préparation des liposomes est la 
méthode de Bangham. Elle consiste à évaporer une solution organique de 
phospholipides (généralement dans du chloroforme) jusqu’à la formation d’un film 
phospholipidique sec sur les parois d’un récipient. La dispersion du film lipidique dans 
un milieu aqueux accompagnée d'une agitation régulière permet d'obtenir des 
liposomes [24]. La méthode d’évaporation en phase inverse consiste à disperser le film 
phospholipidique dans un solvant organique non miscible à l’eau afin de former une 
émulsion. L’évaporation sous vide du solvant organique conduit à la formation de 
micelles inverses (constituées par une monocouche lipidique entourant un espace 
aqueux). La réduction de la pression permet l’évaporation totale du solvant organique 
et entraîne un rapprochement des monocouches lipidiques pour former des liposomes
[25]. La méthode d’injection de solvant consiste à injecter une solution organique 
contenant les phospholipides dans une solution aqueuse, qui entraîne une formation 
instantanée de liposomes. Cette méthode présente l’avantage d’être simple, rapide et 
conduire à la formation de vésicules de faible taille et de distribution de taille assez 
étroite [26]. Ainsi, plusieurs auteurs ont cherché à modifier cette méthode en vue de 
l’améliorer. Par exemple, Wagner et al. [27] ont utilisé, pour l’injection de la phase 
organique, un module permettant la circulation de la phase aqueuse selon un flux 
tangentiel. Ceci a permis de réaliser des préparations à plus large échelle. Jaafar-
Maalej et al. [22] ont effectué l’injection de la phase organique dans la phase aqueuse 
à travers les pores d’une membrane. Ceci a permis une meilleure maîtrise du procédé 
de fabrication et a conduit à des résultats reproductibles.

Les liposomes peuvent être utilisés comme vecteurs pour la délivrance des 
médicaments. Différentes formes pharmaceutiques à base de liposomes ont été mises 
au point tel que les suspensions, les aérosols ou les formes semi-solides comme les 
gels et les crèmes. L’administration de ces formes se fait soit par voie intraveineuse 
soit par voie topique. Les liposomes peuvent être utilisés comme vecteurs de thérapie 
génique en encapsulant des gènes ou des plasmides. Ils peuvent aussi être employés 
pour exposer des protéines virales à leur surface, dans ce cas on les appelle des 
virosomes et sont donc utilisés comme vaccins. A coté de ces utilisations en 
pharmacie, les liposomes sont également utilisés en cosmétologie et dans l’industrie 
agro-alimentaire.

2.2 Les micelles

Les micelles sont des vésicules sphériques formées par des molécules amphiphiles
lorsqu’elles sont présentes dans le milieu à une concentration supérieure à leur
concentration micellaire critique (CMC). La formation des micelles résulte de l’auto-
assemblage des chaînes hydrophobes à l’intérieur de la vésicule et l’exposition des
têtes hydrophiles à l’extérieur (Figure 4). Ce comportement résulte des interactions 
attractives et répulsives au niveau des têtes polaires et des chaînes hydrophobes. 
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Figure 3. Structure d’une micelle

Les copolymères de synthèse ayant un caractère amphiphile permettent de préparer des 
micelles polymériques. Ce type de micelles est largement étudié car il présente une 
meilleure stabilité comparée aux micelles obtenues avec des molécules de tensioactifs 
et permet une grande capacité d’encapsulation des principes actifs hydrophobes [28].

Les méthodes de préparation des micelles dépendent de la solubilité du copolymère. 
Lorsque le copolymère est soluble dans l’eau, les micelles peuvent être obtenues par 
dissolution directe du polymère dans la phase aqueuse [29]. Une autre technique
consiste à dissoudre le polymère dans un solvant organique volatile qui sera évaporé 
par la suite; l’hydratation du film polymérique entraîne alors la formation de micelles. 
Généralement, ces deux méthodes conduisent à la formation de particules avec une 
distribution de taille polydisperse parfois bimodale [30]. Lorsque le copolymère est 
insoluble dans l’eau, trois méthodes de préparation de micelles ont été décrites : la 
méthode de dialyse, la méthode d’émulsification et la méthode d’évaporation du co-
solvant. Dans la méthode de dialyse, le polymère est d’abord dissout dans un solvant 
organique miscible à l’eau; après le solvant organique est remplacé par de l’eau en 
utilisant la technique de dialyse [31]. Cette technique est longue et peut durer des 
jours. La méthode d’émulsification consiste à dissoudre le polymère dans un solvant 
organique non miscible à l’eau. La phase organique est ensuite émulsifiée avec la 
phase aqueuse; l’évaporation du solvant entraîne la formation de micelles. La méthode 
d’évaporation du co-solvant est identique à la méthode précédente mais le solvant 
organique utilisé est miscible à l’eau [32].

Toutes les méthodes précédemment reportées pour la formation des micelles 
polymériques sont difficiles à transposer de l’échelle du laboratoire à l’échelle de 
production industrielle. Ces méthodes manquent aussi de reproductibilité et ne 
permettent pas une bonne maîtrise de la taille des particules [33]. L’émulsification 
membranaire, jusqu’à présent pas utilisée pour la formation des micelles, pourrait donc 
constituer une bonne alternative aux méthodes de préparation conventionnelles en 
permettant une production maîtrisée et à large échelle.
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2.3 Les nano-émulsions

Les émulsions sont des mélanges de deux liquides non miscibles; la phase discontinue 
est dispersée dans la phase continue. La nature des phases interne et externe permet de 
définir deux types d’émulsion : huile/eau et eau/huile. Les nano-émulsions (structure 
présentée dans la Figure 4) sont une classe d’émulsions dont le diamètre des globules 
lipidiques dispersées dans la phase aqueuse est compris dans une gamme 
nanométrique. Il n’y a cependant pas de consensus dans la littérature concernant cette 
gamme qui peut varier fortement. Nous retiendrons ici la définition de Solans et al.
[34], soit un diamètre compris entre 20 et 200 nm.

Figure 4. Structure d’une nano-émulsion

De nombreuses propriétés découlent de la faible taille des gouttelettes constituant les 
nano-émulsions : une grande stabilité, une relative transparence et la possibilité de 
stérilisation par filtration. Tous ces avantages font que les nano-émulsions sont de plus 
en plus étudiées pour la vectorisation des principes actifs en pharmacie.

Les premières méthodes décrites pour la préparation des émulsions utilisent des 
dispositifs du type rotor/stator ou des homogénéisateurs à pression élevée. Ces 
méthodes permettent grâce à un apport élevé d’énergie de réduire la taille des globules 
lipidiques dans le mélange huile/eau [35, 36]. Toutefois, il a été établit que ces 
techniques ne permettent pas de contrôler efficacement le procédé d’émulsification car 
les émulsions ainsi obtenues présentent des distributions de taille très large [37]. Les 
recherches se sont donc tournées vers d’autres techniques moins énergivores et qui 
pourraient permettre de mieux contrôler le procédé d’émulsification. La méthode 
d’émulsification par inversion de phase consiste à ajouter de la phase interne à une 
émulsion dans des conditions spécifiques (ajout très lent, assorti d’une longue agitation 
de faible intensité) jusqu'à ce que la phase continue devienne la phase dispersée. 



41 
 

L’inversion de phase peut aussi être provoquée par une modification de la température 
sous agitation de façon à affecter le HLB du système [38]. L’intérêt principal de cette
méthode est qu’elle permet de préparer des émulsions de petite taille avec un faible 
apport d’énergie. Toutefois, cette méthode nécessite l’utilisation d’un mélange de 
tensioactifs en grande quantité ce qui fait qu’elle ne peut pas s’adapter facilement à 
une production industrielle.

L’émulsification membranaire présente une alternative intéressante, puisqu’elle 
nécessite un apport modéré d’énergie et permet un meilleur contrôle des propriétés des 
émulsions obtenues. Bien que de nombreux travaux ont étudié la préparation des 
émulsions en utilisant des membranes, à notre connaissance une seule étude a décrit la
fabrication de nano-émulsions par le procédé d’émulsification membranaire [15].

2.4 Les particules lipidiques solides

Les particules lipidiques solides ont une structure similaire à celle des émulsions, 
toutefois la phase lipidique dispersée est à l’état solide à température ambiante (voir 
Figure 5). Ces particules lipidiques sont stabilisées par l’ajout d’un tensioactif. Quand 
elles sont utilisées comme vecteurs de principe actif, ce dernier est dissout ou dispersé
dans la phase lipidique.

Figure 5. Structure d’une particule lipidique solide.

Ces formes colloïdales présentent de nombreux avantages : (i) selon le mode de 
fabrication choisi il est possible d’éviter l’utilisation de solvants organiques, (ii) les 
coûts des matières premières sont peu élevés et la production à l’échelle industrielle 
est facile, et (iii) la stabilité physico-chimique est meilleure comparée aux émulsions 
classiques [39].
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Les méthodes de préparation des particules lipidiques solides sont nombreuses, dans ce 
qui suit nous décrirons celles qui sont couramment utilisées. Dans la méthode par 
évaporation du solvant, le lipide est dissous dans la phase organique qui est ensuite 
émulsifiée dans la phase aqueuse contenant le tensioactif. La formation des particules 
lipidiques est obtenue par évaporation du solvant organique. Cette technique offre 
l’avantage d’éviter une étape de chauffage et est recommandée pour les principes 
actifs thermosensibles mais nécessite l’utilisation de solvants organiques avec le risque 
de retrouver des résidus de solvants dans le produit fini [40]. Afin d’éviter l’utilisation 
de solvants organiques, une autre technique consiste à faire fondre le lipide et
l’émulsifier à chaud avec une solution aqueuse contenant le tensioactif. Cette 
technique est fréquemment utilisée car elle est simple et offre de bons rendements 
d’encapsulation des molécules lipophiles [41]. La méthode d’homogénéisation sous 
haute pression à froid consiste à dissoudre le principe actif dans les lipides fondus, à 
laisser solidifier l’ensemble puis à le porphyriser dans un mortier. Les particules 
obtenues sont dispersées dans une phase aqueuse contenant un tensioactif. La taille des 
particules de la suspension obtenue sera réduite par un ou plusieurs passages sous 
pression à travers l’homogénéisateur [42].

L’émulsification membranaire a été également appliquée à la préparation de particules 
lipidiques solides [20]. Dans ce cas, les deux phases sont chauffées séparément à une 
température supérieure à la température de fusion du lipide. Une pression est appliquée 
à la phase lipidique afin de passer à travers les pores d’une membrane dans la phase 
aqueuse. Il y a alors formation de gouttelettes lipidiques à la sortie des pores 
membranaires sous un flux de phase aqueuse, générant une émulsion H/E, qui après 
refroidissement donnera lieu à une suspension de particules lipidiques solides. Cette 
technique présente l’avantage de se faire en une seule étape et de fournir des particules 
monodisperses, toutefois le colmatage des membranes résultant du passage de la phase 
lipidique peut limiter son utilisation.

Les particules lipidiques solides peuvent être administrées par voie orale, 
intramusculaire, sous-cutanée, topique, etc [43]. La voie d’administration pulmonaire 
n’a été, jusqu’à présent, que très peu étudiée.

3. Utilisation des contacteurs à membrane pour la préparation des 
formes colloïdales

Après ce bref état des lieux, il apparaît que les formes colloïdales d’encapsulation des 
principes actifs représentent par excellence les formes médicamenteuses d’avenir. Afin 
de garantir un développement rapide de ces formes, qui permettraient de les mettre 
rapidement sur le marché, il existe un besoin réel de développer des procédés de 
fabrication fiables, simples, faciles et permettant, de façon reproductible, la 
préparation de vecteurs présentant des caractéristiques appropriées. Les procédés à 
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base de contacteurs à membrane semblent répondre aux exigences requises d’un 
procédé pharmaceutique et peuvent donc convenir à la préparation des systèmes 
d’encapsulation des molécules actives. L’application des technologies membranaires à 
la production des nano-vecteurs serait un atout considérable pour le développement et 
l’intensification des procédés industriels de fabrication. Une grande partie de cette 
thèse sera consacrée au développement des formes colloïdales (liposomes, micelles, 
nano-émulsion, particules lipidiques solides) par des méthodes basées sur des
contacteurs membranaires.    
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Encapsulation de la vitamine E dans des 
liposomes en utilisant des membranes microsieves

Les liposomes sont des vésicules constituées d’un volume interne aqueux entouré 
d’une ou de plusieurs bicouches lipidiques concentriques. Ils sont de plus en plus 
développés dans la recherche pharmaceutique comme vecteurs de médicaments car 
ils permettent d’encapsuler des principes actifs de solubilité différente. 

Depuis la découverte des liposomes par Bangham dans les années 1960, plusieurs 
techniques de préparation ont été rapportées dans la littérature. On peut citer : la 
méthode de réhydratation du film lipidique, la méthode d’évaporation en phase 
inverse, la méthode par sonication et la méthode  d’injection de solvant.  
L’utilisation des contacteurs à membrane pour la préparation des liposomes 
constitue une amélioration de la méthode d’injection de solvant puisqu’elle permet 
un meilleur contrôle de la diffusion de la phase organique au sein de la phase 
aqueuse.

Au cours de ce travail, principalement réalisé à l’Université de Loughborough 
(Grande Bretagne), des membranes microsieves ont été utilisé pour la première fois 
pour la préparation de suspensions de liposomes. Ces membranes ont la 
particularité de présenter une parfaite uniformité de la taille des pores et de la 
distance inter-pores; propriété qui pourrait permettre une meilleure maîtrise des 
caractéristiques des liposomes en particulier la distribution de taille.

Il en sort principalement de ce travail que la taille des liposomes peut être 
parfaitement ajustée par la variation des différents paramètres expérimentaux :
concentration en phospholipides, vitesse d’agitation de la phase aqueuse, 
caractéristiques de la membrane utilisée, etc. Le procédé optimisé présente une 
bonne reproductibilité et s’apprête facilement à une production à large échelle. Les 
liposomes préparés présentent une bonne stabilité

Ce chapitre sera présenté sous forme de quatre articles :

- Le premier article est une revue bibliographique publiée en 2012 dans le « Journal 
of Colloid Science and Biotechnology ». Cette revue présente les différentes 
méthodes de préparation et les diverses techniques de caractérisation des 
liposomes. Elle présente aussi les différentes applications des liposomes 
principalement en pharmacie.

- Le deuxième article, publié en 2013 dans « RSC Advances » (un journal de la 
« Royal Society of Chemistry ») décrit les différentes étapes de développement 
d’un procédé de préparation des liposomes en utilisant des membranes microsieves. 
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Le procédé de fabrication ainsi optimisé est appliqué à l’encapsulation de la 
vitamine E.

- Le troisième article, publié en 2013 dans « Colloids and Surface B », détaille le 
« scale-up » du procédé de préparation des liposomes de l’échelle du laboratoire à 
une échelle plus large; différentes techniques sont comparées.

- Le quatrième article, soumis pour publication dans « Colloids and Surface A », 
présente les résultats de préparation de liposomes en utilisant un système micro-
fluidique. Des enregistrements vidéo, ayant permis l’observation de la formation 
des vésicules lipidiques suite au contact entre les phases aqueuse et organique, sont 
comparés à des simulations réalisées à l’aide d’un logiciel mathématique.
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Abstract

Liposomes, spherical-shaped nanovesicles, were discovered in the 60ies by 
Bangham. Since that, they were extensively studied as potential drug carrier. Due 
to their composition variability and structural properties, liposomes are extremely 
versatile leading to a large number of applications including pharmaceutical, 
cosmetics and food industrial fields. This bibliographic paper offers a general 
review on the background and development of liposomes with a focus on 
preparation methods including classic (thin film hydration, reverse-phase 
evaporation, ethanol injection…) and novel scalable techniques. Furthermore, 
liposome characterization techniques including mean size, zeta potential, 
lamellarity, encapsulation efficiency, in vitro drug release, vesicles stability and 
lipid analysis synthesized from different published works are reported. The current 
deepening and widening of liposome interest in many scientific disciplines and 
their application in pharmaceutics, cosmetics and food industries as promising 
novel breakthroughs and products were also handled. Finally, an opinion on the 
usefulness of liposomes in various applications ranging from unsubstantiated 
optimism to undeserved pessimism is given. The obtained information allows 
establishing criteria for selecting liposomes as a drug carrier according to its 
advantages and limitations.

Key words: Liposomes - Preparation Methods - Characterization – Phospholipids
- Therapeutic Application – Cosmetic - Food.
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1. Introduction

Liposomes, defined as microscopic spherical-shaped vesicles, consist of an internal 
aqueous compartment entrapped by one or multiple concentric lipidic bilayers.
Liposomes membrane is composed of natural and/or synthetic lipids which are 
relatively biocompatible, biodegradable and non-immunogenic material. Because 
of their unique bilayer-structure properties, liposomes are used as carriers for both 
lipophilic and water-soluble molecules. Hydrophilic substances are encapsulated in 
the interior aqueous compartments. Lipophilic drugs are mainly entrapped within 
lipid bilayers.

As asserted by different authors, liposomes have attractive biological properties, 
including the biocompatibility and biodegradability. They show promise as active 
vectors due to their capacity to enhance the encapsulant performance by increasing 
drug solubility, and stability; delivering encapsulated drugs to specific target sites, 
and providing sustained drug release [1]. Their sub-cellular size allows relatively 
higher intracellular uptake than other particulate systems; improving in vivo drug 
bioavailability. Other advantages of liposomes include high encapsulation
efficiency inspite of drug solubility, low toxicity due to phospholipids content, 
drug protection against degradation factors like pH and light and the reduction of 
tissue irritation.

Liposomes have been extensively studied as drug carriers in the pharmaceutical 
and medical fields [1, 2].Research has expanded considerably over the last 30 
years, increasing applications area from drug and gene delivery to diagnostics,
cosmetics, long-lasting immune-contraception to food and chemical industry [3].
The superiority of liposomes as drug carriers has been widely recognized. Ten 
liposomal and lipid-based formulations have been approved by regulatory 
authorities and many liposomal drugs are in preclinical development or in clinical 
trials [4].

Several reviews about liposomes as drug delivery systems [5] and specific 
application via oral [6, 7], topical [8], pulmonary [9, 10], and ophthalmic [11] route 
have been published. Clearly, within the frame of a single review paper it is 
impossible to address all the pertinent issues, this bibliographic paper attempt to 
review liposomes current technology with respect to numerous multidisciplinary
applications. As a contribution for updating the state of knowledge, a focuses on 
liposomes preparation method and recent characterization techniques including 
mean size, zeta-potential, lamellarity, encapsulating efficiency, in vitro active 
release, stability and lipid analysis have been described as well as the most 
significant achievements and applications.
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2. Liposomes
2.1 Definition

Liposomes were first produced in England in the 60’s, by Bangham who was studying 
phospholipids and blood clotting [12]. According to legend, he was experimenting 
with new laboratory equipment, and he made a noted observation about phospholipids 
forming closed multilamellar vesicle spontaneously in aqueous solution which took 
two years to be proved. The phospholipid reorganisation in aqueous solution is mainly 
driven by the hydrophobic effect which organizes amphiphilic molecules 
(phospholipids) so as to minimize entropically unfavorable interactions between 
hydrophobic acyl-chains and surrounding aqueous medium [13, 14].This effect is 
further settled by various intermolecular forces such as electrostatic interactions,
hydrogen bonding, as well as Vanderwaals and dispersion forces [15].

Liposomes were defined as an artificial microscopic vesicle consisting of a central 
aqueous compartment surrounded by one or more concentric phospholipid layers
(lamellas) (Fig. 1). Furthermore, hydrophilic (in the aqueous cavity), hydrophobic 
(within lipidic membrane) and amphiphilic substances are able to be incorporated
within these vesicles developing large potential applications. Numerous researchers 
have worked with these structures since Bangham’s discovery, making of liposomes 
the most popular nanocarrier systems [16].

Fig. 1. Schematic drawing of liposomes structure and lipophilic or hydrophilic drug 
entrapment models.
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2.2 Classification

Liposomes can be classified in terms of composition and mechanism of intracellular 
delivery into five types [17]: (i) conventional liposomes; (ii) pH-sensitive liposomes;
(iii) cationic liposomes; (iv) immunoliposomes and (v) long-circulating liposomes.

Otherwise, vesicle size is a critical parameter in determining circulation half-life of 
liposomes, and both size and number of bilayers influence the extent of drug 
encapsulation within liposomes. Thus, liposomes were typically classified on the basis 
of their size and number of bilayers into (Fig. 2): (i) Small unilamellar vesicles (SUV): 
20 – 100 nm; (ii) Large unilamellar vesicles (LUV): > 100 nm; (iii) Giant unilamellar 
vesicles (GUV): > 1000 nm; (iv) Oligolamellar vesicle (OLV): 100 – 500 nm and (v) 
Multilamellar vesicles (MLV): > 500 nm [18]. New developed types of liposome, 
designated as double liposome (DL) [19] and multivesicular vesicles (MVV) [20],
were recently reported. These liposomes, which could be prepared by novel 
preparative technique, are thought to improve drug protection against several enzymes 
[21].

Fig. 2. Liposomes classification based on size and lamellarity.
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3. Liposomes preparation procedures
3.1 General ingredients

Generally, liposome composition includes natural and/or synthetic phospholipids 
(Phosphatidylethanolamine, Phosphatidylglycerol, Phosphatidylcholline, 
Phosphatidylserine, Phosphatidylinositol) Phosphatidylcholine (also known as 
lecithin) and phosphatidylethanolamine constitute the two major structural components 
of most biological membranes. Liposome bilayers may also contain other constituents 
such as cholesterol, hydrophilic polymer conjugated lipids and water. Cholesterol has 
been largely used to improve the bilayer characteristics of the liposomes. It improves 
the membrane fluidity, bilayer stability and reduces the permeability of water soluble
molecules through the membrane [22]. A clear advantage of liposomes is the fact that 
the lipid membrane is made from physiological lipids which decreases the danger of 
acute and chronic toxicity.

3.2 Preparation methods
3.2.1 Classical techniques

There are four classical methods of liposome manufacture. The difference between the 
various methods is the way in which lipids are drying down from organic solvents and
then redispersed in aqueous media [23]. These steps are performed individually or are 
mostly combined.

Hydration of a thin lipid film: Bangham method. This is the original method which 
was initially used for liposomes production [24]. A mixture of phospholipid and 
cholesterol were dispersed in organic solvent. Then, the organic solvent was removed 
by means of evaporation (using a rotary evaporator at reduced pressure). Finally, the 
dry lipidic film deposited on the flask wall was hydrated by adding an aqueous buffer 
solution under agitation at temperature above the lipid transition temperature. This 
method is widespread and easy to handle, however, dispersed-phospholipids in 
aqueous buffer yields a population of multilamellar liposomes (MLVs) heterogeneous
both in size and shape (1 – 5 μm diameter). Thus, liposome size reduction techniques, 
such as sonication for SUVs formation or extrusion through polycarbonate filters 
forming LUVs [25, 26] were useful to produce smaller and more uniformly sized 
population of vesicles.

Reverse-phase evaporation (REV) technique. A lipidic film is prepared by 
evaporating organic solvent under reduced pressure. The system is purged with 
nitrogen and the lipids are re-dissolved in a second organic phase which is usually 
constituted by diethyl ether and/or isopropyl ether. Large unilamellar and 
oligolamellar vesicles are formed when an aqueous buffer is introduced into this 
mixture. The organic solvent is subsequently removed and the system is maintained 
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under continuous nitrogen. These vesicles have aqueous volume to lipid ratios that are
30 times higher than sonicated preparations and 4 times higher than multilamellar 
vesicles. Most importantly, a substantial fraction of the aqueous phase (up to 62% at
low salt concentrations) is entrapped within the vesicles, encapsulating even large 
macromolecular assemblies with high efficiency [27].

Solvent (ether or ethanol) injection technique. The solvent injection methods 
involve the dissolution of the lipid into an organic phase (ethanol or ether), followed
by the injection of the lipid solution into aqueous media, forming liposomes [28]. The 
ethanol injection method was first described in 1973 [29]. The main relevance of the 
ethanol injection method resides in the observation that a narrow distribution of small 
liposomes (under 100 nm) can be obtained by simply injecting an ethanolic lipid 
solution in water, in one step, without extrusion or sonication [30]. The ether injection 
method differs from the ethanol injection method since the ether is immiscible with the
aqueous phase, which is also heated so that the solvent is removed from the liposomal 
product. The method involves injection of ether-lipid solutions into warmed aqueous
phases above the boiling point of the ether. The ether vaporizes upon contacting the 
aqueous phase, and the dispersed lipid forms primarily unilamellar liposomes [31]. An
advantage of the ether injection method compared to the ethanol injection method is 
the removal of the solvent from the product, enabling the process to be run for 
extended periods forming a concentrated liposomal product with high entrapment 
efficiencies.

Detergent Dialysis. Liposomes, in the size range of 40–180 nm, are formed when 
lipids are solubilized with detergent, yielding defined mixed micelles [32]. As the 
detergent is subsequently removed by controlled dialysis, phospholipids form 
homogeneous unilamellar vesicles with usefully large encapsulated volume.

Other methods have been already used for liposomes preparation such as: calcium 
induced fusion [33], nanoprecipitation [34], and emulsion techniques [35, 36].

The described classical techniques require large amounts of organic solvent, which are 
harmful both to the environment and to human health, requiring complete removal of 
residual organic solvent. Furthermore, conventional methods consist of many steps for 
size homogenization and consume a large amount of energy which is unsuitable for the 
mass production of liposomes.

3.2.2 New large-scale techniques

Since industrial scale production of liposomes has become reality, the range of 
liposome preparation methods has been extended by a number of techniques such as 
heating method, spray drying, freeze drying, super critical reverse phase evaporation 
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(SCRPE), and several modified ethanol injection techniques which are increasingly
attractive.

Heating method. A new method for fast production of liposomes without the use of 
any hazardous chemical or process has been described [23]. This method involves the 
hydration of liposome components in an aqueous medium followed by the heating of 
these components, in the presence of glycerol (3% v/v), up to 120 °C. Glycerol is a 
water-soluble and physiologically acceptable chemical with the ability to increase the 
stability of lipid vesicles and does not need to be removed from the final liposomal 
product. Temperature and mechanical stirring provide adequate energy for the 
formation of stable liposomes. Reza Mozafari et al. confirmed by TLC that no 
degradation of the used lipids occurred at the above mentioned temperatures [37]. The 
particle size can be controlled by the phospholipid nature and charge, the speed of the 
stirring and the shape of the reaction vessel. Otherwise, employment of heat abolishes 
the need to carry out any further sterilisation procedure reducing the time and cost of 
liposome production.

Spray-Drying. Since spray-drying is a very simple and industrially applicable method, 
the direct spray-drying of a mixture of lipid and drug was applied in the preparation of 
liposomes [38]. The spray-drying process is considered to be a fast single-step 
procedure applied in the nanoparticles formulation. Hence, liposomes were prepared 
by suspending lecithin and mannitol in chloroform. The mixture was sonicated for 8 
min (bath sonicator) and subjected to spray-drying on a Buchi 190 M Mini Spray 
Dryer. The spray-drying conditions were as follows: inlet and outlet temperatures were 
120 °C and 80°C, respectively; airflow rate was 700 NI/hr; and the flow rate was 1000 
ml/hr. The dried product was hydrated with different volumes of phosphate buffered 
saline (PBS; pH 7.4) by stirring for 45 min [38]. The main factor influencing the 
liposomal size was the volume of aqueous medium used for hydration of the spray-
dried product [38]. However, mannitol plays an important role in increasing the 
surface area of the lipid mixture, enabling successful hydration of the spray-dried 
product.

Freeze Drying. This new method was described for the preparation of sterile and 
pyrogen-free submicron narrow sized liposomes [39, 40]. It is based on the formation 
of a homogenous dispersion of lipids in water-soluble carrier materials. Liposome-
forming lipids and water-soluble carrier materials such as sucrose were dissolved in 
tert-butyl alcohol/water cosolvent systems in appropriate ratios to form a clear 
isotropic monophase solution. Then the monophase solution was sterilized by filtration 
and filled into freeze-drying vials. In recent study, a laboratory freeze drier was used 
and freeze-drying process was as follows: freezing at 40 °C for 8 h; primary drying 
at 40 °C for 48 h and secondary drying at 25 °C for 10 h [39]. The chamber pressure 
was maintained at 20 Pascal during the drying process. On addition of water, the 
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lyophilized product spontaneously forms homogenous liposome preparation. After 
investigation of the various parameters associated with this method it is found that the
lipid/carrier ratio is the key factor affecting the size and the polydispersity of the 
liposome preparation [39]. Therefore, TBA/water cosolvent system was used for 
economy concerns.

Super critical reverse phase evaporation (SCRPE). The SCRPE is a one-step new 
method that has been developed for liposomes preparation using supercritical carbon 
dioxide [41]. This method allowed aqueous dispersions of liposomes to be obtained 
through emulsion formation by introducing a given amount of water into a
homogeneous mixture of supercritical carbon dioxide/LR-
dipalmitoylphosphatidylcholine/ethanol under sufficient stirring and subsequent 
pressure reduction. Transmission electron microscopy observations revealed that 
vesicles are large unilamellar with diameters of 0.1 – 1.2 μm [41]. The trapping 
efficiency of these liposomes indicated more than 5 times higher values for the water-
soluble solute compared to multilamellar vesicles prepared by the Bangham method. 
The trapping efficiency for an oil-soluble substance, the cholesterol, was about 63%. 
Results showed that the SCRPE is an excellent technique that permits one-step
preparation of large unilamellar liposomes exhibiting a high trapping efficiency for 
both water-soluble and oil-soluble compounds [42, 43].

Modified Ethanol Injection Method. Novel approaches based on the principle of the 
ethanol injection technique such as the microfluidic channel method [44 – 46], the
crossflow-injection technique [47 – 50], and the membrane contactor method [51]
were recently reported for liposome production.

The Crossflow Injection Technique. The concept of continuous crossflow injection is a 
promising approach as a novel scalable liposome preparation technique for 
pharmaceutical application. Wagner et al. used a cross flow injection module made of 
two tubes welded together forming a cross [47 – 50]. At the connecting point, the 
modules were adapted with an injection hole. The influencing parameters such as the 
lipid concentration, the injection hole diameter, the injection pressure, the buffer flow 
rate, and system performance were investigated [47]. A minimum of buffer flow rate is 
required to affect batch homogeneity and strongly influencing parameters are lipid
concentration in combination with increasing injection pressures. After exceeding the 
upper pressure limit of the linear range, where injection velocities remain constant, the 
vesicle batches are narrowly distributed, also when injecting higher lipid 
concentrations. Reproducibility and scalability data show similar results with respect 
to vesicle size and size distribution and demonstrate the stability and robustness of the 
novel continuous liposome preparation technique [49].
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Microfluidization. By using a microfluidic hydrodynamic focusing (MHF) platform, 
Jahn et al. generated liposomes by injecting the lipid phase and the water phase into a 
microchannel [45]. Microfluidic flow is generally laminar due to the small channel 
dimensions and relatively low flow rates. Well-defined mixing is then obtained by 
interfacial diffusion when multiple flow streams are injected in a microchannel. The 
size of the liposomes was mainly controlled by changing the flow rate [44].

Membrane Contactor. 

4. In-vitro liposomes characterization

Recently, Jaafar-Maalej et al. applied the ethanol injection 
technique while using a membrane contactor for large scale liposomes production. In 
this method, a lipid phase (ethanol, phospholipid and cholesterol) was pressed through 
the membrane with a specified pore size. Nitrogen gas at pressure below 5 bar was 
sufficient for passing the organic phase through the membrane. At the same time, the
aqueous phase flew tangentially to the membrane surface and swept away the formed 
liposomes within the membrane device. The new process advantages are the design
simplicity, the control of the liposome size by tuning the process parameters and the 
scaling-up abilities [51]. As a result, these techniques lead from the conventional batch 
process to potential large scale continuous procedures.

In order to assess the liposome quality and to obtain quantitative measures that allow 
comparison between different batches of liposomes, various parameters should be
monitored. For liposomes applications in analytical and bioanalytical fields, the main 
characteristics include the average mean diameter and polydispersity index; 
encapsulation efficiency; the ratio of phospholipids to drug concentration and 
lamellarity determination. Other commonly monitored parameters include surface 
charge through zeta potential measurement, phase transitions through differential
scanning calorimetry and quantification of residual solvents through gas 
chromatography. A detailed description of today’s most commonly methods and novel 
techniques of liposome characterization is presented in this report.

4.1 Lamellarity determination

Lipid bilayers number of liposomes influences the encapsulation efficiency and the 
drugs release kinetics. Furthermore, when liposomes are taken up or processed in the 
cell, the intracellular fate is affected by the lamellarity. The liposomes lamellarity 
made from different lipids or preparation procedures varies widely. That is why, the 
analysis of liposomes lamellarity is an important parameter to be considered.

Liposome lamellarity is often accomplished by methods that are based on the visible 
or fluorescence signal change of lipids marker upon reagents addition. This approach 
is reviewed in more detail, since it is a relatively simple procedure that can be easily 
carried out in a standard lab. Several lipids can be used and results rely on the 
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comparison of the total signal to the signal achieved from the reaction between the 
lipids marker and the specified reagents [58].

For example the UV absorbance of 2,4,6-trinitrobenzensulfonic acid (TNBS) at 420 
nm increases in the mixture as a result of complex formation with primary amines. 
This property has been used for the detection of aminolipids at 420 nm. As the lipid 
bilayers are slightly permeable to the TNBS reagent, an overestimate of the external 
surface can be expected. To correct the reagent leakage through the bilayer, three 
incubation times were used. The obtained external surface area at each incubation time 
was plotted against incubation time and the graph was extrapolated to time zero. Under 
certain conditions, the bilayer permeability of TNBS is minimized such as the only 
aminolipids on the exterior bilayer contribute to the signal. Lysis of liposomes by a 
detergent such as Triton X-100 allows TNBS to interact with interior aminolipids and 
yields the total signal. TNBS has remained the commonly used method for the 
estimation of the degree of lamallarity. However, this method has disadvantages which 
make it impotent in most cases; the TNBS assay requires large amount of material 
(milligrams) which makes the multiple sample application difficult and affect assay 
precision when the amount is limited [59, 60].

In another method, the addition of periodate to phosphatidylglycerol results in the diol 
oxidation and releasing of formaldehyde. The released formaldehyde reacted with 
chromotropic acid to yield a product which was subsequently detected at 570 nm. This 
method has been used for the determination of external reactive groups on liposomes 
[58].

Otherwise, the quenching of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) (NBD) 
fluorescence is obtained by sodium dithionite. NBD-labeled lipids are highly 
fluorescent at low concentration (<1 mol%) in membranes, but undergo self-
quenching at increased concentrations. In this approach, the initial NBD labelled lipids 
fluorescence is from all lipids in the sample. Under appropriate conditions, the 
addition of sodium dithionite quenches the fluorescence of only the NBD labelled 
existing on the outer bilayer. Fluorescence was monitored on spectrofluorometer with 
excitation and emission wavelengths of 450 nm and 530 nm respectively. The 
percentage of external lipid is found by dividing the change in fluorescence upon 
dithionite addition by the total fluorescence [61 – 63].

These methods appear to close a gap in the methodology to determine external surface 
structure of vesicles. However, these methods assume that the lipid of interest is
distributed evenly over all lipid layers, and the reagents used to elicit the signal change 
are impermeable to the membrane over the time course of the measurements [64].
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Other numerous methods for the lamellarity determination such as magnetic resonance 
were mainly used to study the outside-inside distribution of phospholipids within 
bilayer and the characterization of model membrane structures. A straightforward 
application of nuclear magnetic resonance in the quality control of liposomes is the
determination of size and lamellarity. Dispersions of MLVs give rise to very broad 
powder 31P-NMR spectra due to the restricted anisotropic motion whereas SUVs are 
characterized using a narrow line spectra. It is well known that the paramagnetic ion 
Mn2+ interacts with the negatively charged phospholipids phosphate causing 
perturbations of the nuclear spin relaxation times which broaden the 31P-NMR 
resonance and reduces the quantifiable signal. Presuming that the shift reagent (Mn2+)
only interacts with the phospholipids located in the outermost monolayer, the degree 
of lamellarity can be calculated by the ratio of 31P-NMR signal before and after Mn2+
addition. Used for a long time in the field of liposome research, this technique has 
been found to be quite sensitive to experimental conditions which can have distinct 
effect on the analysis. For example, Mn2+ is able to penetrate the liposomal bilayer 
especially when used at high concentrations. At low pH or in the presence of 
complexing agents (such as HEPES or TRIS buffer at certain concentration), no 
penetration of Mn2+ occurs. Therefore, under well-defined conditions, the analysis of 
liposomes by 31P-NMR is the presence of shift reagent in an elegant and accurate 
method giving useful information about the outer to inner phospholipids ratio amount 
[65,66].

Other techniques for lamellarity determination include small angle X-ray scattering 
(SAXS). For this purpose, liposome dispersions put into glass capillaries and curves 
were recorded with a camera equipped with a one-dimensional position sensitive 
detector. Blank scattering curves were obtained from the same capillaries filled with 
the liposome suspension solvent. Data were evaluated using the Indirect Fourier 
Transformation which provides the electron distance distribution p(r) (the probability 
to find two electrons with distance r in the measured sample). SAXS is considered as a 
good method evaluating vesicles lamellarity with high accuracy [67, 68].

To confirm the lamellarity results by an imaging method, freeze fracture technique 
with subsequent transmission electron microscopy was used. For this purpose, carbon 
film grids were used for specimen preparation. A drop of the sample was put on the 
untreated coated grid. Most of the liquid was removed with blotting paper leaving a 
thin film stretched over the holes. The specimens were instantly shock-frozen in 
melting nitrogen or by plunging them into liquid ethane or propane in a temperature
controlled freezing unit. After freezing, the specimens were inserted into a cryo-
transfer holder and transferred to a cryo-electron microscope. To determine the mean 
lamellarity, micrographs of three different areas of the specimen were investigated [66, 
69, 70].
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Whatever is the technique, the lamellarity determination is essential to define liposome 
structure as it is a very important prerequisite for liposomes success in therapy.

4.2 Size analysis

The average size and size distribution of liposomes are important parameters 
especially when the liposomes are intended for therapeutic use by inhalation or 
parenteral route. Several techniques are available for assessing submicrometer
liposome size and size distribution which include microscopy techniques, size-
exclusion chromatography (SEC), field-flow fractionation and static or dynamic light 
scattering.

Several variations on electron microscopy (EM) such as transmission EM using 
negative staining, freeze fracture TEM, and cryo EM, provide valuable information on
liposome preparations since they yield a view of morphology and can resolve particles 
of varying size. However, sample preparation is complicated as it requires removal of 
liposomes from their native environment. These techniques can also generate artefacts, 
induce shrinkage and shape distortion, and are time consuming to obtain a 
representative size distribution of the population, thus are not amenable to being 
routine measurements. Some of these problems may be overcome yielding 
reproducible and accurate results by giving careful attention to sample preparation. A 
recently developed microscopic technique known as atomic force microscopy (AFM) 
has been utilized to study liposome morphology, size and stability. AFM, scanning 
probe microscopes with dimensional resolution approaching 0.1 nm, provides unique 
possibility for visualizing small liposomes in natural environment even without sample 
manipulation. The result is with a high resolution three-dimensional profile of the 
vesicle surface under study. The technique permits liposomes visualization without 
alteration of their native form; given that the requisite surface immobilization does not 
adversely affect the sample and that the force of the probe itself does not have
deleterious effects on the vesicles. AFM analysis is rapid, powerful and relatively non 
invasive technique. It can provide information on morphology, size, as well as on the
possible aggregation processes of liposomes during their storage. Imaging in aqueous 
medium allows the liposomes observation under physiological condition. Using AFM
technology, experimental data indicate that liposomes in water dispersion maintained 
their integrity only few minutes after deposition on mica support, after which they
collapsed. For this reason, the liposomes images have to be obtained within 10 min 
after deposition. Therefore, special attention has to be given to the experimental 
conditions and especially the analytical times, AFM technique can replace the wide 
variety of microscopic techniques measuring liposomal size [71 – 74].

HPLC using SEC can be used to separate and quantify liposome populations according 
to a time-based resolution of hydrodynamic size. The porous packing material used in 
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this technique excludes larges species from the internal pore volume leading to their 
shorter retention on the column. This mechanism leads to separation based on large 
particles elution before smaller particles. Conventional SEC is frequently used for 
liposomes separation from unencapsulated materials as a final purification step, but the 
use of HPLC-SEC for analysis offers increased resolution of liposome populations and 
reduced sample size and enhances reproducibility. One recommended commercially
available column is the ethylene glycol-metacrylate gel which has a separation range 
from 20 to 500 nm, this ‘hydroxylated poly-ether-based’ gel shows a larger exclusion
limit than other gels. An osmotically balanced mobile phase flowing at relatively low 
pressures (1–1.5 megapascal) helps to prevent damages, swelling or shrinkage of 
liposomes. HPLC-SEC can offer a powerful technique for not only size distribution 
determination, but also stability in terms of aggregation and vesicle permeability.
Three methods have been described in literature: dynamic light-scattering analysis of 
SEC fractions; re-chromatography of SEC fractions on a calibrated column with 
turbidity measurements; and SEC with on-line turbidity and refractive index detection. 
The re-chromatography method was judged to be the most reliable, although the 
sensitivity suffered from the dilution in the two chromatographic steps. Disadvantages 
of HPLC for liposomes size determination mainly stem from recovery issues. These
include unwanted adsorption of lipids on the column packing and destruction of 
liposomes containing lipids with higher affinity to the column material than the 
composite lipids. Both lipids necessitate a preliminary step of presaturation of the LC 
column with lipids prior to analysis. In addition, the lipid bilayer rigidity, which is a
function of the lipid composition, plays a role in the liposomes retention and recovery. 
The bilayer rigidity dictates whether liposomes of large diameter can be deformed and
thereby pass through relatively narrow pores or liposomes of small diameter which 
may be excluded from relatively large pores, dependent on pore’s shape and 
orientation. The net effect is therefore difficult to predict. Thus, while hydrodynamic 
size and subsequent molecular weight information can be obtained through this 
technique, the accuracy of this determination is based on the use of well-matched (both 
by shape and chemical composition) set of standards. Lastly, while suitable packing
materials are available for small to moderately sized liposomes resolution, it is not the 
case for large liposomes (>800 nm) [75 – 77].

Field-flow fractionation (FFF) is a technique which overcomes some of the limitations 
of HPLC in liposomes analysis. It includes electrical, thermal, sedimentation and flow 
FFF techniques that rely on a field application which is perpendicular to the direction 
of flow. FFF uses a channel wall which consists of a semipermeable membrane chosen 
with a MWCO suitable for the liposomes under study. This membrane allows only the 
carrier fluid to pass. In flow FFF, there are two liquids flows acting on the sample
components. The channel flow that runs through the channel and the crossflow that 
flowing perpendicular to the channel passes through the inlet frit into this channel and
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exits through the membrane and outlet frit. A common procedure for sample injection 
is called ‘stop-flow relaxation’, in which a small volume sample is injected into the 
channel flow. After a short delay period that allows the sample to move into the 
channel from the injector, the channel flow is stopped for a time, allowing only the
crossflow to act on the sample. The laminar flow profile slow down the movement of 
particles located closer to the channel walls, while the perpendicular flow propels all 
particles toward the membrane wall. Diffusion due to Brownian motion of particles in 
a size-based manner reduces the accumulation of smaller particles against the 
membrane wall. Retention times in this technique are proportional to the 
hydrodynamic diameter of the particles since smaller particles reach an equilibrium 
position further from the channel walls. Whereas in HPLC-SEC, large liposomes elute 
first, in normal mode FFF, small liposomes elute first due to their higher diffusion 
coefficient. The carrier liquid used in FFF needs to be chosen carefully so that there is
no appreciable swelling of the membrane, as this can lead to non-uniform flows in the 
channel. Aqueous solutions are usually used as carrier liquids, although non-aqueous
solvents have also been used. Many detectors have been used in FFF, but the most 
common is a UV/VIS spectrophotometer. Photodiode arrays have been used to obtain
the entire spectra of eluting samples instead of monitoring a single wavelength. The 
FFF mechanism for liposomes analysis differs in that FFF flow separates vesicles on a
hydrodynamic size basis, whereas sedimentation FFF separates them on a weight 
basis. Flow FFF enables rapid, convenient and non invasive measurement of vesicle 
size distribution without prior calibration using size standards. Other advantage of the 
FFF technique is the wide range of particle sizes that can be separated (1 nm – 100
μm) with high resolution. The only limit of this technique is the complexity and 
expense of instrumentation [78 – 81].

Dynamic light scattering (DLS), otherwise known as photon correlation spectroscopy 
(PCS), is extensively used in liposome size distribution analysis. DLS measures the 
time-dependant fluctuations of light scattered from particles experiencing Brownian 
motion, which results from collisions between suspended particles and solvent
molecules. When a particle is suspended in a solution and illuminated by light, it 
scatters light given that its index of refraction differs from that of suspending solvent. 
In other words, its polarizability differs from that of the solvent. This means that the 
arriving electric field is oscillating and is able to displace the cloud of electrons and
thereby cause atoms to oscillate. The strengths of the technique include the ability to 
make measurements in native environments; its sensitivity to small quantities of high
molecular weight aggregate; ease of commercially available operating instrument; 
minimal sample volume, concentration and preparation requirements. It also covers a
large size range of species spanning the low nanometer to low micrometer range. 
However, the technique does not yield particle shape information; it can yield a bias 
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towards reporting larger diameters when small quantities of high molecular weight or 
aggregates or impurities are present in the sample [82 – 84].

Measurement of particle size distribution could also be achieved using density gradient 
stabilized sedimentation whereby particles that are lower in density than the fluid in
which they are suspended can be accurately analysed [85, 86]. Centrifugal 
sedimentation of particles suspended in a fluid is a well-known method of measuring 
the size distribution of particles in the range of 0.015 – 30 μm in diameter. The 
sedimentation velocity of any particle could be calculated if the particle density, fluid 
density, fluid viscosity and centrifugal acceleration are known. If the conditions of
sedimentation are stable, the particles begin sedimentation as a very thin layer at the 
surface of the fluid. A light beam or an X-ray beam passes through the centrifuge at 
some distance below the surface of the fluid and measures the concentration of particle 
as they settle. The time required for particles to reach the detecting beam depends 
upon the speed and geometry of the centrifuge, the difference in density between the 
particles and the fluid and the diameter of the particles. The particles sediment at 
velocities, depending upon their size until reaching the detector beam which is 
positioned at a known distance below the fluid’s surface [86]. Sedimentation velocity 
increases as the square of the particle diameter, so that particles which differ in size by
only few percent settle at significantly different rates. The time needed to reach the 
detector is used to calculate the size of the particles. This method for size analysis has
a high resolution compared to the other analysis method, it has also a high sensitivity 
which enables him to detect small additional peaks and pick up small changes. 
Moreover, high accuracy is assured since all analyses are run against a known 
calibration standard; the calibration can be either external (standard injected before the 
sample) or internal (standard mixed with the sample) [85].

Several other techniques, considered to be less conventional, have been applied for 
liposome size distribution analysis but are not discussed in this paper, such as NMR,
flow cytometry, capillary zone electrophoresis, etc.

4.3 Zeta potential

Three of the fundamental states of matter are solids, liquids and gases. If one of these 
states is finely dispersed in another then we have a ‘colloidal system’. Most colloidal 
dispersions in aqueous media carry an electric charge. There are many origins of this 
surface charge depending upon the nature of the particle and its surrounding medium. 
The more important mechanisms are: ionization of surface groups (dissociation of 
acidic groups on the surface of a particle giving a negatively charged surface,
conversely a basic surface will take on a positive charge) and adsorption of charged 
species (surfactant ions may be specifically adsorbed on the particle surface leading in 
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the case of cationic surfactants to a positively charged surface and in the case of 
anionic surfactants to a negatively one).

The zeta potential of a particle is the overall charge that a particle acquires in a 
particular medium. It is a physical property which is exhibited by any particle in 
suspension. It has long been recognized that the zeta potential is a very good index of 
the interaction magnitude between colloidal particles. Measurements of zeta potential 
are commonly used to predict the stability of colloidal systems. If all the particles in 
suspension have a large negative or positive zeta potential then they will tend to repel 
each other and there will be no tendency to aggregation. However, if the particles have 
low zeta potential values then there will be no force to prevent the particles 
flocculating.

To measure the zeta potential, a laser is used to provide a light source illuminating 
particles within the samples. The incident laser beam passes through the centre of the
sample cell and the scattered light at an angle of about 13 ° is detected. When an 
electric field is applied to the cell, any particles moving through the measurement 
volume will lead to fluctuation of the detected light with a frequency proportional to 
the particle speed. This information is passed to a digital signal processor, then to a
computer and hence potential zeta is calculated. Particles suspension with zeta 
potentials > +30 mV or < 30 mV are normally considered stable [87, 88].

4.4 Encapsulation efficiency

The liposome preparations are a mixture of encapsulated and un-encapsulated drug 
fractions. The first step for the determination of the encapsulation efficiency is the 
separation between the encapsulated drug (within the carrier) and the free drug. 
Several separation techniques have been reported in the literature. The mini-column 
centrifugation is a method based on the difference of size between the drug loaded 
liposomes and the free drug. Indeed, undiluted liposome suspension is applied 
dropwise to the top of sephadex gel column and the column is spun at 2000 rpm for 3 
min to expel the void volume containing the liposomes into the centrifuge tube. Then 
250 μl of water was added and centrifugation was repeated. The non entrapped drug 
remained bound to the gel, while vesicles traversed the gel and were collected from the 
first and second stage of centrifugation [89].

The separation between the free drug and the encapsulated drug could also be achieved 
by the use of a dialysis membrane with an appropriate cut-off. The liposme sample is 
dialysed against a buffer solution for 2 hours [84].

The ultracentrifugation technique was reported as a simple and fast method for the 
separation of drug-loaded liposomes from their medium. The sample is centrifuged at 
50000 rpm for 50 min at +4 °C [90]. Centrifugation at 3000 rpm for 30 minutes can 
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also be used. But prior to the centrifugation, liposomes should be aggregated in order 
to enable their sedimentation by adding an equal volume of protamine solution (10 
mg/ml) to the sample [91, 92].

Once drug-loaded liposomes are separated from their medium, the lipidic bilayer is 
disrupted with methanol or Triton X-100 and the released material is then quantified.
Techniques used for this quantification depend on the nature of the encapsulant and 
include spectrophotometry, fluorescence spectroscopy, enzyme-based methods and
electrochemical techniques.

Other methods such as HPLC or FFF can also be applied for the determination of the 
encapsulation efficiency. In this case, the encapsulation percent can be expressed as 
the ratio of the un-encapsulated peak area to that of a reference standard at the same 
initial concentration. This method can be applied if the liposomes do not undergo any 
purification (SEC, dialysis…) following preparation. Either technique are applied to 
separate liposome encapsulating materials from un-encapsulated drug and hence can 
also be used to monitor the storage stability in terms of leakage or the effect of various 
disruptive conditions on the retention of encapsulants. In some cases, size distribution 
and encapsulation efficiency determinations could be combined in one assay by using
FFF coupled to a concentration detector suitable for the encapsulant. 

The terminology varies widely with respect to the ability of various liposome 
formulations to encapsulate the target molecules. Many papers express results in term 
of ‘percent encapsulation’, ‘incorporation efficiency’, ‘trapping efficiency’ or 
‘encapsulation efficiency (EE)’ which is typically defined as the total amount of 
encapsulant found in the liposome solution versus the total initial input of encapsulant 
solution. This value depends not only on the ability of the liposomes to capture the 
encapsulant molecules (dependent on lipid/buffer composition, liposome lamellarity, 
preparation procedure…) but also on the initial molar amount of encapsulant [93].

Other authors define the encapsulation efficiency, or encapsulation capacity, as the 
molar amount of marker per mole of lipid which is obtained by dividing the 
concentration of encapsulant by the concentration of lipid. A similar definition is 
suggested expressing EE on a weight (mg) encapsulant per mM of lipid basis [22].
Another commonly used parameter is the captured volume, defined as μL of entrapped 
volume/μmol of lipid. This number ranges from 0.5 μL/nmol for SUV and MLV to 30
μl/nmol for LUV. Unlike the ‘percent encapsulation’ parameter cited previously, these 
representations require knowledge of the phospholipids concentration [94, 95].

4.5 Lipid analysis

Several chemistry techniques are commonly used for the determination of 
phospholipid content. Most of these techniques include the use of molybdate-
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containing reagents yielding a blue-colored product. One such method is the Bartlett
assay which relies on the digestion of organic materials in liposome samples by 160 
°C sulfuric acid, oxidation to inorganic phosphates by hydrogen peroxide,
phosphomolybdate formation upon interaction with ammonium molybdate, followed 
by reduction through interaction with 1,2,6-aminonaphtolsulfonic acid at 100 °C. A 
blue product is formed which can then be analysed at 830 nm for the quantitative 
assessment of the phospholipids in the preparation [96].

In the ascorbic acid method, ammonium molybdate reacts with orthophosphates 
formed from acid digestion to yield phosphomolybdic acid. This compound is then
reduced with ascorbic acid to yield a blue-colored solution, analysed at 820 nm [96].

Phospholipids can also be analyzed through complex formation with ammonium 
ferrothiocyante, extraction into chloroform, and absorbance measurement at 488 nm 
[96].

A convenient and sensitive fluorescence assay for phospholipid vesicles has also been 
reported by London et al. [97]: when phospholipid vesicles are added to an aqueous 
solution of 1,6-diphenyl-1,3,5-hexatriene (DPH) a fluorescence enhancement of 
several hundred-fold is observed which can be used for a phospholipid concentration 
determination. The fluorescence is a function of the type of phospholipid, salt 
concentration, and time of incubation. 

Enzymatic assays for phosphatidylcholine and cholesterol analysis are commercially 
available and widely used. The former method used phospholipase D to hydrolyze
phospholipids and release free choline. The free choline is then oxidized to form 
betaine aldehyde, betaine and hydrogen peroxide, by choline oxydase. The generated
hydrogen peroxide causes oxidative coupling of phenol and 4-aminoantipyrine 
mediated by peroxidase to yield quinoneimine dye which is quantified at 505 nm [98].

The latter method relies on hydrolysis of cholesterol esters with cholesterol ester 
hydrolase, followed by oxidation of the cholesterol by cholesterol oxidase and 
subsequent production of hydrogen peroxide. This product also oxidatively couples 4-
aminoantipyrine to phenol in the presence of peroxidase to yield a blue coloured
quinoneimine dye which shows strong absorption at 505 nm [98, 99].

Chromatographic techniques such as HPLC, GC and thin layer chromatography (TLC) 
can be used to separate and quantify the lipids composing lipid bilayers [100].
Chromatographic approaches are advantageous since they can separate and quantify 
each lipid in the mixture. TLC methods for phospholipid analysis often rely on lipid 
separation using a mixture of chloroform, methanol and water. Detection is frequently 
accomplished using molybdenum blue in sulfuric acid and ninhydrin stains for the 
detection of phosphate and primary amino groups, respectively. For HPLC analysis, 
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detection of lipids in the UV range is limited to 200–210 nm due to their lack of 
chromophores. GC analysis of lipids typically requires a derivatization step to ensure 
sufficient volatility of the components, either through trimethyl silylation or methyl 
esterification prior to detection by flame ionization or mass spectroscopy. In many 
cases, pre-treatment of liposomes to disrupt the lipid bilayers is completed prior to 
chromatographic analysis including dilution of the liposome suspension with alcohols
such as 2-propanol, ethanol or methanol. The procedure choice is dependent on the 
mobile phase and the degree of lipid solubility.

4.6 In-vitro drug release

In vitro drug release can be performed using the dialysis tube diffusion technique. The 
dialysis bag membrane should be selected following screening of various membrane,
no drug adsorption may occur and the membrane should be freely permeable to the 
active ingredient (the cut off molecular weight shouldn’t be a limiting step in the 
diffusion process). Some milliliters aliquot of liposome suspension is placed in the 
dialysis bag, hermetically tied and dropped in the receptor compartment containing the 
dissolution medium. The entire system is kept at 37 °C under continuous magnetic 
stirring and the receptor medium is closed to avoid evaporation of the dissolution 
medium. The kinetic experiments are carried out respecting the sink conditions in the 
receptor compartment. Samples of the dialysate are taken at various time intervals and 
assayed for the drug by HPLC, spectrophotometer or any other convenient method. 
The sample volume is replaced with fresh dissolution medium so as the volume of the 
receptor compartment remains constant. Every kinetic experiment is performed in 
triplicate and the average values are taken to establish the release profile of the drug 
from the liposome suspension [101, 102].

4.7 Liposomes stability

The liposomes stability is a major consideration for liposome production and 
administration steps: from process to storage and delivery.

A stable pharmaceutical dosage form maintains its physical integrity and does not 
adversely influence the chemical integrity of the active ingredient during its life. 
Researchers are attempting to deliver low and high molecular weight drugs in a variety 
of polymer matrices and liposome suspensions. The successful introduction of dosage 
forms depends upon a well-defined stability study. In designing a stability study, 
physical, chemical and microbial parameters must be considered and evaluated. This 
wisdom is also required for the liposome dosage form. A stability study must include a 
section for product characterization and another section concerning the product
stability during storage.
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All liposome preparations are heterogeneous in size, the average size distribution of 
liposomes changes upon their storage. Liposomes tend to fuse and grow into bigger 
vesicles, which is a thermodynamically more favourable state. Fusion and breakage of 
liposomes on storage also poses a critical problem leading to drug leakage from the 
vesicles. Therefore, visual appearance and size distribution are important parameters to 
evaluate physical stability.

In the other hand, the major ingredient in the liposome formulations is the lipid. The 
liposomes lipids are derived from natural and/or synthetic phospholipid sources
containing unsaturated fatty acids which are known to undergo oxidative reactions. 
These reactions products can cause permeability changes within liposome bilayer. In
addition, interactions of drug with the phospholipid also alter the chemical stability;
hence the stability profile of a drug molecule may entirely be different from its 
liposome preparation stability profile. Thus, it is essential to develop stability 
protocols evaluating the chemical integrity of the drug over a period of time.

Finally, majority of therapeutic liposome formulations are parenteral products and 
therefore must be sterilized to remove the microbial contamination from the product.
Thus, it is important to control microbial stability of liposomal preparations [103, 
104].

5. Liposomes application
5.1 Pharmaceutical applications

The use of liposomes as systemic and topical drug delivery systems has attracted 
increasing attention. Liposomes can be formulated in liquid (suspension), solid (dry 
powder) or semi-solid (gel, cream) forms. In vivo, they can be administered topically 
or via parenteral route.

5.1.1 Systemic liposomal drugs

After systemic (usually intravenous) administration, liposomes are typically 
recognized as foreign particles and consequently endocytosed by the mononuclear 
phagocytic system cells (MPS), mostly fixed Kuppfer cells, in the liver and spleen. 
Liposomes can serve as an excellent drug-delivery vehicle to these cells. Thus, 
sterically stabilized liposome, which are not avidly taken up by MPS cells, have 
different biodistributions properties and have shown enhanced accumulation in sites of 
trauma, such as tumours, infections and inflammation. This accumulation is simply 
due to their prolonged circulation and small size; enabling them to extravasate [105].

Based on the liposome properties introduced above, several techniques of drug 
delivery can be envisaged:
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- Liposomes can be applied to protect the entrapped drug against enzymatic 
degradation whilst in circulation. The lipids used in their formulation are not 
susceptible to enzymatic degradation; the entrapped drug is thus protected while the 
lipid vesicles circulate within the extracellular fluid. As an example, -lactamase 
sensitive antibiotics such as the penicillins and cephalosporins have been encapsulated 
in order to be protected against the -lactamase enzyme. Rowland et al. reported that 
liposomes offer protection in the gastrointestinal tract environment of encapsulated 
drug and facilitate the gastrointestinal transport of a variety of compounds [106]. As 
clearly evidenced by Dapergolas, liposomes are candidates to be explored for oral 
delivery of peptides (insulin) and proteins (vaccines), which are orally degradable 
[107].

- Liposomes can be used for drug targeting. It has been proved that restricting the 
distribution of the drug to the specific target site should allow efficacy increase at low
dose with attendant decrease of toxicity. Indeed, pumping a drug through the whole 
body is not only wasteful but, more fundamentally, increase undesirable side effects.
Hence, the benefits of drug targeting include reducing drug waste, and it is possible to 
deliver a drug to a tissue or cell region not normally accessible to the free or
untargeted drug [108]. Liposomes have been widely applied in drug targeting 
especially in cancer treatment. Effective chemotherapy is severely limited by the toxic 
side effects of the drugs. Liposome encapsulation can alter the spatial and temporal 
distribution of the encapsulated drug molecules in the body, which may significantly 
reduce unwanted toxic side effects and increase the efficacy of the treatment. The first 
step, therefore, is to determine the antigens that are produced by the tumour cells. 
Then to target the drug via specific receptor ligands, which may be specific antibodies
for antigens produced by tumour cells [109]. Two liposomal formulations have been 
approved by the US food and drug administration (FDA) and are commercially 
available in the USA, Europe and Japan for the treatment of Kaposi’s sarcoma. 
Doxil® is a formulation of doxorubicin precipitated in sterically stabilized liposomes 
(on the market since 1995) and DaunoXome® is daunorubicin encapsulated in small 
liposomes (on the market since 1990). Doxil® has been shown to have a 4.5-times-
lower medium-pathology score for doxorubicin induced cardiotoxicity than the free 
drug. In squamous cell lung carcinoma, the same drug is capable of reducing tumor
burden to a significant extent [110].

- In order to enhance solubilisation, the amphotericin B, which is the drug of choice in 
the treatment of systemic fungal infections, has been widely studied for liposome
encapsulation. Owing to its aqueous insolubility, amphotericin B is typically 
formulated into detergent micelles. But, micelles are unstable upon systemic 
administration, and several neuro- and nephrotoxicity limit the dose that can be 
administered.
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However in a stable colloid particle, such as liposomes, encapsulated drug is delivered
much more efficiently to macrophages and, additionally, toxicity can be significantly 
reduced [111]. Following this rationale, a lipid-based amphotericin B formulation is
actually commercially available in the Europe and US market (respectively since 1990 
and 1997): AmBisome® including amphotericin B into small liposomes.

- Otherwise, liposomes can also be used to enhance the drug intracellular uptake. The 
lipid formulation promotes the cellular penetration of the encapsulated drug especially
antibiotics, reducing the effective dose and incidence of toxicity.

- According to the studies performed by Sullivan et al., liposomes may be useful as 
immunotherapeutic agents: the use of antigen-presenting liposomes may be a 
promising approach in the therapy of infectious diseases like HIV infection or Herpes 
simplex virus genital infection [112]. A liposomal vaccine against hepatitis A has been 
successfully launched by the Swiss Serum Institute in 1994. Purified hepatitis-A-virion 
capsule, viral phospholipids and envelope glycoprotein from influenza virus are mixed 
with phosphatidylcholine and phosphatidylethanolamine in the presence of excess 
detergent forming liposomes leading to potentiate the immune response. The same 
company is developing vaccines for influenza, hepatitis B, diphtheria and tetanus 
[113].

- Cationic liposomes have been shown to complex (negatively charged) DNA, and 
such complexes were able to transfect cells in vitro, resulting in the expression of the
protein encoded in the DNA plasmid in the target cells, and making liposomes useful 
in direct gene transfer. Obviously for gene therapy (the treatment of diseases on the
molecular level by switching genes on or off), it was discovered that cationic lipid-
based DNA complexes can transfect certain cells in vivo upon localized or systemic
administration [13].

Today, enthusiasm for the systemic use of liposomal drugs is not as widespread as it 
was. While the long list of diseases considered candidate for systemic application of 
liposomal drugs has been reduced to just a few indications, the topical application of 
liposomal preparations has recently attracted more interest.

5.1.2 Topical liposomal drugs

Skin treatment applications of liposomes are based on the similarity between the lipid 
vesicles bilayer structure and natural membranes which includes the ability of lipid 
vesicles, with specific lipid composition, to alter cell membrane fluidity and to fuse 
with them. In the dermatological field, liposomes were initially used because of their 
moisturizing and restoring action [114].
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In Schmid’s work, stratum corneum liposomes have been used in the treatment of 
atopic dry skin in order to restore the barrier function and to vehicle an active 
substance at the same time [115]. The composition and properties of liposomes play an 
important role in their interaction and possible penetration within the epidermis. In 
addition, liposomes provide valuable raw material for the regeneration of skin by 
replenishing lipid molecules and moisture. Lipids are well hydrated and, even in the 
absence of active ingredients, humidify the skin. Often this is enough to improve skin 
elasticity and barrier function, which are the main causes of skin aging. 

Later, the liposomes ability of enclosing many different biological materials and 
delivering them to the epidermal cells or even deeper cell layers was investigated. This
offered new perspectives and leads to the conclusion that liposomes may be useful 
vehicles for topical drug delivery for varying skin diseases treatment.

Typically, conventional dosage forms, such as solution, creams, and ointments, deliver 
drugs in a concentration dependant manner across the stratum corneum. However,
multilamellar liposomes can deliver drugs within 30 minutes to the stratum corneum, 
epidermidis, and dermis in significantly higher concentrations than conventional
preparations.

Among the great variety of candidates for liposome encapsulation, there are mainly 
three groups of drugs to be considered: corticoids, retinoids and local anaesthetics.

Mezei et al. was the first to report increased corticosteroid concentrations in epidermis 
and corium combined with a reduced percutaneous absorption in an animal model 
[116]. This is particularly important as far as adverse effects from extensive 
corticosteroid therapy are reduced. These findings were the same with human skin; 
Lasch investigated the effect of liposomally entrapped cortisol on human skin ex vivo; 
he revealed improved cortisol concentration profiles which is of real importance 
because cortisol is known to have no adverse effects in long-term therapy but to be 
often insufficient in the therapy of acute dermatoses [117]. For this reason, higher drug 
concentrations will mean an improved therapeutic effect. In a clinical trial, Korting 
investigated the effect of betamethasone dipropionate in a liposomal preparation and in 
a commercial conventional preparation in patient suffering from atopic eczema [118]. 
In this double-blind, randomized, paired trial the liposomal preparation, containing 
markedly less active substance was slightly superior in patients with atopic eczema 
reducing parameters of inflammation compared to the conventional preparation.

The retinoids is the second important group of drug which seems to be a promising 
candidate for liposomal encapsulation. One main field for the topical administration of 
retinoids is uncomplicated acne vulgaris. Commercial tretinoin gels shows local 
irritant effects and flare-up reactions at the beginning of the treatment. These 
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characteristics, often compromising patient compliance, can be overcome by the 
liposomal formulation of tretinoin. Masini et al. reported a reduced irritancy in animal 
experiments after treatment with liposomal tretinoin, which may be explained by 
gradual drug release from the liposomal preparation [119]. Schafer-Korting et al.
performed a double blind study to evaluate the efficacy and tolerability of liposomal 
tretinoin in patients with uncomplicated acne vulgaris [120]. The results clearly 
showed that the less concentrated liposomal drug commands equal efficacy and less 
skin irritation compared to its commercial conventional counterparts. This equal 
efficacy might be attributed to an improved bioavailability combined with a slower
drug release. In conclusion, the liposomally encapsulated tretinoin seems to be 
superior to the conventional dosage form.

During the last few years, many attempts have been made to provide adequate local 
anaesthesia of the skin. For this, prolonged application time and high anaesthetic
concentration are required. Studies performed by Gesztes et al. indicated that 
tetracaine encapsulated liposomes provide better local anaesthesia (low drug 
concentration and long anaesthesia duration) than a conventional anaesthetic cream. 
Similar results were obtained using other local anaesthetics such as lidocaine which is 
commercialized in the US market since 1998 (ELA-Max®) [121].

Furthermore, it has been commonly believed that high concentrations of ethanol are 
detrimental to liposomal formulations. Therefore, when liposomes are prepared from 
ethanolic solutions of phospholipids much care is taken to remove the remaining traces 
of alcohol. Data presented by Touitou et al. indicated that the presence of ethanol with 
a relatively high concentration in systems of lipid vesicles, termed ethosomes, was 
reported to influence the stratum corneum penetration and permeation of drugs [122].
Encapsulation experiments showed that ethosomes are able to entrap both hydrophilic 
and lipophilic drugs. These entrapment results were supported by in vitro studies on 
the delivery of drugs in and through the skin. Again, the ethosomal system was shown 
to be far superior to the control systems, both in terms of the drug concentration in the 
skin and the flux of the drug through the skin. Patches containing testosterone in an 
ethosomal system were compared in vivo in rabbits with the commercial patch 
Testoderm®. The results showed significantly higher testosterone blood levels from 
the ethosomal system. Horwitz et al. tested clinically the ethosomal carrier for dermal 
delivery of the antiviral drug, acyclovir in a double-blind randomized study with 
Zovirax® [123]. Results indicated that ethosomes performed significantly better than 
the commercial drug form. For example, the average time to crusting of lesions was 
shorter for the ethosomal system. The permeation enhancement from ethosomes
suggests a synergetic mechanism between ethanol, lipid vesicles and skin. Indeed, in 
comparison to liposomes, ethosomes are less rigid.
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Thus, the effects of ethanol which were considered to be harmful to classic liposomal 
formulations may provide the vesicles with soft flexible characteristics which allow 
them to penetrate more easily into deeper layers of skin. In another hand ethanol may 
disturbs the organization of the stratum corneum lipid bilayer and enhances its lipid 
fluidity.

Liposomes based on a natural marine lipid extract containing a highly polyunsaturated 
fatty acid ratio were recently introduced as Marinosomes® by Moussaoui et al. for the 
prevention and treatment of skin diseases [124]. Cansell et al. have reported that 
Marinosomes® contributed to reduce inflammation induced by croton oil by 
regulating PGE2 and IL-8 production in keratinocyte cultures [125].

5.2 Cosmetic applications

The properties of liposomes can be utilized also in the delivery of ingredients in 
cosmetics. Liposomes offer advantages because lipids are well hydrated and can 
reduce the dryness of the skin which is a primary cause for ageing. Also, liposomes 
can supply replenish lipids and importantly linolenic acid to the skin. The first 
liposomal cosmetic product to appear on the market was the anti-ageing cream 
“Capture” launched by Christian Dior in 1986 [135]. Liposomes have been also used 
in the treatment of hair loss; minoxidil, a vasodilator, is in the active ingredient in 
products like “Regaine” that claim to prevent or slow hair loss [136]. The skin care 
preparations with empty or moisture loaded liposome reduce the transdermal water 
loss and are suitable for the treatment of dry skin. They also enhance the supply of 
lipids and water to the stratum corneum [137]. Various liposome formulations were
compared in vivo for cosmetics application [114]; liposome formulations prepared 
from egg phospholipids exhibited a 1.5-fold increase in skin water content, whereas 
liposome formulations prepared from soya phospholipids showed no advantage 
compared to the references. Skin water content was measured daily and the results 
showed that skin humidity was increased significantly for the formulation containing 
20% egg phospholipids during 6 days.

Since 1987, several cosmetic products have been commercially available; they range 
from simple liposome pastes which are used as a replacement for creams, gels and 
ointments to formulations containing various extracts, moisturizers, antibiotics, etc. 
Unrinsable sunscreens, long lasting perfumes, hair conditioners, aftershaves, lipsticks,
make-up and similar products are also gaining large fractions of the market [138].
Some of the liposomal cosmetic formulations currently available in the market are 
shown in Table 4.
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Table 4. Some liposomal cosmetic formulations currently on the market

Product Manufacturer Key ingredients
Capture Christian Dior Liposomes in gel
Effet du soleil L’Oréal Tanning agents in liposomes
Future Perfect Skin Gel Estée Lauder Vitamin E, A, Cerebroside, Ceramide
Aquasome LA Nikko Chemical Co Liposomes with humectant
Eye Perfector Avon Soothing cream with eye irritation
Flawless Finish Elisabeth Arden Liquid make-up

5.3 Food applications

The majority of microencapsulation techniques currently used in the food industry are 
based on biopolymer matrices composed of sugars, starches, gums, proteins, 
synthetics, dextrin and alginates. Nevertheless, liposomes have recently begun to gain 
in importance in food products [139, 140]. Indeed, the ability of liposomes to 
solubilise compounds with demanding solubility properties, sequester compounds 
from potentially harmful medium, and release incorporated molecules in a sustained 
and predictable way can be used in food processing industry. Based on studies on 
liposomes for pharmaceutical and medical uses, food scientists have begun to utilize
liposomes for controlled delivery of functional components such as proteins, enzymes, 
vitamins, antioxidants, and flavours. The applications are for example dairy products 
preparation, stabilization of food components against degradation, and delivery and 
enhanced efficiency of antimicrobial peptides.

The sustained release system concept can be used in various fermentation processes in 
which the encapsulated enzymes can greatly shorten fermentation times and improve 
the quality of the product. A classical example is cheese-making; after preliminary 
studies in which liposome systems were optimized the cheese ripening times were 
shorten by 30 to 50%. This means a substantial economic profit knowing that ripening 
times of some cheeses, such as Cheddar, are about one year during which they require 
well controlled conditions [141].

In addition to improved fermentation, liposomes were tried in the preservation of 
cheeses. Addition of nitrates to cheese milk to suppress the growth of spore-forming 
bacteria is questioned due to health concerns and natural alternatives are under study. 
Lysozyme is effective but quickly inactivated due to binding to casein. Liposome 
encapsulation can both preserve potency and increase effectiveness because liposomes 
become localized in the water spaces between the casein matrix and fat globules of 
curd and cheese [142]. These applications of enhancing natural preservatives,
including antioxidants such as vitamin E and C, will undoubtedly become very 
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important due to recent dietary trends which tend to reduce the addition of artificial
preservatives and increase portion of unsaturated fats in the diet.

In other areas of the agro-food industry, biocides encapsulated into liposomes have 
shown superior action due to prolonged presence of fungicides, herbicides, or 
pesticides at reduced damage to other life forms. Liposome surface can be made sticky 
so that they remain on the leafs for longer times and they do not wash into the ground 
[143].

6. Conclusion

Since they have been discovered in the 60’s by Bangham, liposomes have drawn 
attention of researchers. Nowadays, they always remain a topical issue; new 
preparation methods have been developed as well as new characterization techniques.

In the pharmaceutical field, liposomes have long been of great interest by offering a 
promising way for both systemic and locally acting drugs used for therapeutic 
applications in humans and animals. As a result of the great potential of liposomes in 
the area of drug delivery, several companies have been actively engaged in expansion 
and evaluation of liposome products. Most of them concern anticancer and antifungal 
drugs that, administered in their free form, are toxic or exhibit serious side-effects and 
their encapsulation into liposomal vesicles significantly diminishes these unwanted 
properties. However, there are few commercially available pharmaceutical products 
based on drug-in-liposome formulations. Liposome based formulation have not 
entered the market in great numbers because of some problems limiting their 
development.

Even that batch to batch reproducibility, low drug entrapment, particle size control, 
and short circulation half-life of vesicles seem to have been resolved, some other 
problems are still limiting the widespread use of liposomes, among them the stability 
issues, sterilization method and production of large batch sizes.

Some of the stability problems may be overcome by lyophilisation. The final product 
is freeze-dried liposome mixed with a suitable cryoprotectant that are particularly
stable and have to be reconstituted immediately prior to administration.

Another challenge is the identification of a suitable method for sterilization of 
liposome formulations as phospholipids are thermolabile and sensitive substance to
procedures involving the use of heat, radiation and/or chemical sterilizing agents. The 
alternative technique of liposome sterilization is filtration through sterile membranes
(0.22 _m). However, this method is limited by liposome size and is not suitable for 
large vesicles (>0_22 _m). 
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Finally, the major challenge for liposome is the large scale production method. 
Pharmaceutically acceptable procedures are those that can be easily scaled to larger
batch sizes and economically feasible. However, unlike the classical pharmaceutical 
dosage forms (tablets, capsules, suppository…) which are produced in large batch 
sizes, liposome based drugs even those already in the market are produced in small
size batches and thus are costly for the manufacturers. Scale-up process to larger size 
batches is often a monumental task for the process development scientists. However 
the accumulation of many novel experiences studying the practical aspects of 
liposomes, added to new developments in basic research, will bring the field of 
liposome biotechnology to the place it deserves in the future. An encouraging sign is 
the increasing number of clinical trials involving liposomes.
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Abstract

Liposomes with a mean size of 59 – 308 nm suitable for pulmonary drug delivery 
were prepared by the ethanol injection method using nickel microengineered flat 
disc membranes with a uniform pore size of 5 – 40 mm and a pore spacing of 80 or 
200 mm. An ethanolic phase containing 20 – 50 mg/ml phospholipid (1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine (POPC) or Lipoid1 E80), 5 – 12.5 mg/ml 
stabilizer (cholesterol, stearic acid or cocoa butter), and 0 or 5 mg/ml vitamin E 
was injected through the membrane into an agitated aqueous phase at a controlled 
flux of 142 – 355 l/m2/h and a shear stress on the membrane surface of 0.80 – 16 
Pa. The mean particle size obtained under optimal conditions was 84 and 59 nm for 
Lipoid E80 and POPC liposomes, respectively. The particle size of the prepared 
liposomes increased with an increase in the pore size of the membrane and 
decreased with an increase in the pore spacing. Lipoid E80 liposomes stabilized by 
cholesterol or stearic acid maintained their initial size within 3 months. A high 
entrapment efficiency of 99.87% was achieved when Lipoid E80 liposomes were 
loaded with vitamin E. Transmission electron microscopy images revealed 
spherical multi-lamellar structure of vesicles. The reproducibility of the developed 
fabrication method was high.

Key words: Liposomes – Vitamin E - Encapsulation – Microsieve membrane –
Membrane emulsification.
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1. Introduction

Over the last decades, advances in pharmaceutical science and technology have 
facilitated the availability of an extensive range of novel drug carriers including 
nanoparticles, nanocapsules, nanospheres and liposomes. Liposomes are known as 
self-assembled vesicles with a phospholipid bilayer structure, which contains an 
aqueous cavity [1]. Because of their structure, liposomes can entrap hydrophilic agents 
in their internal aqueous compartment and lipophilic ones within the lipid membrane 
[2]. Owing to their biocompatibility, biodegradability and low toxicity, liposomes have 
attracted much attention in a wide variety of fields including contrast agents,
cosmetics, and drug delivery systems [3].

Rational liposome design can be done by selecting an appropriate formulation and
production method. For pharmaceutical and clinical use, several criteria must be 
fulfilled in terms of size and size distribution which are of critical importance for in 
vivo applications of a liposomal formulation. In particular, the size of liposomes 
affects drug loading, biodistribution, targeting, acoustic response, therapeutic efficacy 
and rate of clearance from the body. In addition, the method used for liposome 
preparation must be reproducible and process conditions must allow production at 
reasonable costs and economic scale-up [4].

Since the pioneering discovery of Bangham several decades ago [1], the development 
of liposomes preparation methods has been astonishing. Indeed, numerous preparation 
techniques have been reported in the literature. Thin film hydration, reversed phase
evaporation, detergent dialysis and solvent injection are the most commonly applied
methods for liposome formulation. More details can be found in a recent review on 
liposomes [5].

The conventional ethanol injection technique first described by Batzari and Korn [6]
offers many advantages, such as simplicity, the absence of potentially harmful 
chemicals and complicated physical treatments, the possibility of production of small-
sized liposomes with minimal technical requirements and the possibility of scale up. 
Several novel approaches based on the ethanol injection technique are reported such as 
the microfluidic channel method [7] and the cross flow injection technique [8]
whereby substantial progress was achieved, leading from conventional batch process 
to potential large scale continuous procedure. 

Microporous membranes are increasingly used for the preparation of emulsions and 
micro/nano particles, such as lipid nanoparticles [9], nanocapsules [10], gel 
microbeads [11], microcapsules [12] and liposomes [13]. Recently, a new 
microengineered nickel membrane has become available, consisting of an array of 
regulary spaced, rectilinear pores. Microengineered membranes are analogous to an 
array of parallel microfluidic channels through which one fluid phase can be 
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introduced into another fluid at an overall much higher flow rate than is possible in 
microfluidic devices.

The membrane contactor method of liposome preparation used in this study was based 
for the first time on microengineered membranes. These membranes, which have a
perfect hexagonal array of uniform pores, allow a much more uniform and controllable 
injection of lipid-containing organic phase into an aqueous phase. Therefore, the use of 
microengineered membranes enables a better control over diffusive mixing at the 
liquid/membrane interface where the lipids selfassemble into vesicles. This may 
provide fine control of liposome size distribution and make easier the extrapolation of 
the results for an industrial large scale production.

This new method of liposome preparation was applied to the encapsulation of -
tocopherol (one isomer of vitamin E), which prevents oxidative damage and lipid 
peroxidation in central and peripheral nervous systems [14]. Because of its promising 
therapeutic potential and safety, -tocopherol has been tested to prevent cigarette 
smoke toxicity as several pulmonary disorders are mainly caused by oxidative stress
phenomena [15]. However, oral or intravenous administration failed to restore the 
broncho-alveolar level of vitamin E [16]. Recently, attention has been drawn to the 
pulmonary delivery of nanoencapsulated drugs, showing high intracellular uptake and
improved stability and solubility of active substances; in particular liposome 
formulations have been used for the solubilization of poorly water-soluble drugs. 
Vitamin E-loaded liposomes with appropriate size distribution and high loading
capacity could be an effective drug carrier to target the lungs after its pulmonary
administration via aerosol.

The aims of the present study were: (i) to develop and optimize a novel liposome 
preparation method using microengineered membranes: the experiments have been 
done to investigate the effects of process parameters (aqueous to organic phase volume 
ratio, organic phase flow rate, agitation speed), phospholipid type and concentration, 
stabilizer type, and membrane microstructure on the characteristics of the vesicles; (ii)
to apply the optimized process to the encapsulation of vitamin E; (ii) to study the 
process reproducibility and the stability of liposomal suspensions.

2. Material and methods
2.1 Materials

2.1.1 Reagents

The phospholipids used were POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine) and Lipoid1 E80, purchased from 
Germany). Lipoid E80 is obtained from egg yolk lecithin and contains 82% of 
phosphatidyl-choline and 9% of phosphatidyl-ethanolamine. Vitamin E, cholesterol 
and phosphotungstic acid were supplied by Sigma-Aldrich Chemicals (Saint Quentin 
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Fallavier, France). All reagents were acquired with their analysis certificate. Ethanol 
95% was supplied by Fisher Scientific (United Kingdom) and was of analytical grade 
and used without further purification. Ultra-pure water was obtained from a Millipore 
Synergy system (Ultrapure Water System, Millipore).

2.1.2 Microengineered membranes and stirred cell

The liposomes suspension was prepared using a stirred cell with a flat disc membrane 
fitted under the paddle blade stirrer, as shown in Fig. 1(a).

Fig. 1 (a) Schematic illustration of the stirred cell with a simple paddle stirrer above a 
flat disc membrane (b = 12 mm, D = 32 mm, Dm = 33 mm, nb = 2 and T = 40 mm). 
(b) Schematic diagram of the experimental set-up.
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Both stirred cell and membranes were supplied by Micropore Technologies Ltd. 
(Hatton, Derbyshire, United Kingdom). The agitator was driven by a 24 V DC motor
(INSTEK model PR 3060) and the paddle rotation speed could be controlled in the 
range from 200 to 1300 rpm by the applied voltage. The membranes used were nickel 
microengineered membranes containing uniform cylindrical pores with a diameter of 
5, 10, 20 or 40 μm, arranged at a uniform spacing of 80 or 200 μm. The membranes 
were fabricated by the UVLIGA process, which involves galvanic deposition of nickel
onto the template formed by photolithography [17]. A perfect hexagonal array of pores 
with a pore at the centre of each hexagonal cell can be seen in the supplementary 
material (Fig. S1).

The porosity of a membrane with the hexagonal pore array is given by:=  /(2 3)(dp/L)                                                                                                  (1)

where dp is the pore diameter and L is the interpore distance. The porosities of the 
membranes used in this study, were calculated from eqn (1) and expressed as 
percentages, and are given in the supplementary material (Table S1).

2.2 Protocol for preparation of liposomes

A schematic diagram of the experimental set-up is shown in Fig. 1(b). The required 
amounts of phospholipid (20 or 50 mg/ml Lipoid E80 or POPC) and stabilizer 
(cholesterol, stearic acid or cocoa butter, 25% w/w based on phospholipid dry matter) 
were dissolved in ethanol. The organic phase was injected through the membrane 
using a peristaltic pump (Watson Marlow 101U, Cornwall, UK) at a constant flow rate 
of 2 – 5 ml/min corresponding to the dispersed phase flux of 142 – 355 l/m2

After each experiment, the membrane was sonicated in ethanol for 1 h, followed by 
soaking in a siloxane-based wetting agent for 30 min (in order to increase the 
hydrophilicity of the membrane surface). Drug-loaded liposomes were prepared as 
described above, with the only difference being that 5 mg/ml vitamin E was dissolved 
in the ethanolic phase containing a mixture of phospholipid and stabilizer.

/h. The 
stirring speed ranged from 200 to 1300 rpm, which generated a shear stress on the 
membrane surface between 0.80 to 15.5 Pa. The cell was filled with 20 – 60 ml of
ultrapure water and the experiment was run until a predetermined organic to aqueous 
phase ratio was achieved. Spontaneous formation of liposomes started as soon as the
organic phase was brought in contact with the aqueous phase. The liposomal 
suspension was kept under stirring for 15 min and finally the suspension was collected 
and the ethanol was removed by evaporation under reduced pressure (Buchi, Flawil, 
Switzerland).
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2.3 Characterization of liposomes

In order to assess the quality of liposomes and to allow comparison between different 
batches, various analyses were performed: particle size distribution, zeta potential, 
encapsulation efficiency, and microscopic observation.

2.3.1 Size analysis

In this study, two different techniques for particle size characterization were used: 
dynamic light scattering (DLS) otherwise known as photon correlation spectroscopy 
(PCS) and differential centrifugal sedimentation (DCS). A Malvern Zetasizer Nano-
series (Zetamaster 3000 HSA, Malvern, UK) was used for DLS measurements. Each 
sample was diluted 100-fold with ultra-pure water before measurement and was then 
analyzed in triplicate at 25 °C. The average particle size was expressed as the Z-
average and polydispersity was expressed as the polydispersity index, PDI. A CPS disc
centrifuge, model DC 24000 (CPS instruments, Florida, USA), was used for DCS 
measurements. A light beam near the outside edge of the rotating disc passes through 
the centrifuge at some distance below the surface of the fluid and measures the 
concentration of particles as they settle. The time required for particles to reach the 
detecting beam depends upon the speed and geometry of the centrifuge, the difference 
in density between the particles and the fluid, and the diameter of the particles. Thus, 
when operating conditions are stable, sedimentation velocity increases with the 
particle diameter, so that the time needed to reach the detector beam is used to 
calculate the size of the particles [18, 19]. In this study, a sucrose gradient (from 18% 
to 26%) was built and the sample was diluted in a sucrose solution (30%) before being 
injected. Prior to the analysis, the instrument was calibrated using an aqueous
dispersion of polybutadiene particles of a known size distribution (mean size of the 
calibration standard = 402 nm). The mean particle size was expressed as the number
average mean diameter, dav and the polydispersity was expressed as the coefficient of 
variation, CV = ( /dav

2.3.2 Zeta potential determination

) × 100, where is the standard deviation of particle diameters 
in a suspension. A smaller CV or PDI value indicates a narrower size distribution [20,
21]. All values of the mean particle size and PDI or CV are expressed as the mean ± 
standard deviation (S.D.).

The zeta potential was measured using a Malvern Zetasizer Nano-series (Zetamaster
3000 HSA, Malvern, UK) and used to predict the colloidal stability of the liposome 
suspension. The measurements were repeated at least three times after sample dilution 
in water. The zeta potential was calculated from the electrophoretic mobility using the 
Helmholtz-Smoluchowski equation [22].
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2.3.3 Encapsulation efficiency

Liposome preparations are a mixture of encapsulated and non-encapsulated drug 
fractions. Methods to determine the fraction of encapsulated material within liposomes 
typically rely on destruction of the lipid bilayer and subsequent quantification of the 
released material. In the present study, the drug encapsulation efficiency was
determined using the protamine aggregation method, as described by Wang et al. [23]
and Sun et al. [24]. Briefly, the total amount of vitamin E (TA) was determined after 
disrupting and dissolving vitamin E-loaded liposomes in ethanol using an ultrasound 
bath for 10 min. The amount of encapsulated vitamin E was determined after non-
disruptive aggregation of liposomes with an equal volume of protamine solution (10 
mg/ml) and a normal saline solution. The mixture was centrifuged (Heraeus, Thermo 
scientific, Philadelphia, USA) at 15 000 rpm for 50 min at +4 °C to remove the 
supernatant from the liposome–protamine aggregates. The resulting liposomal pellet 
was dissolved in ethanol and assayed for encapsulated vitamin E amount (EA). The 
vitamin E encapsulation efficiency (EE) was calculated as follows:

EE = EA/TA×100                                                                                                         (2)

The encapsulation efficiency was determined in triplicate.

The concentration of vitamin E was measured using an HPLC system (Agilent System 
series 1100, Agilent Technologies, California, USA). The HPLC equipment consisted
of a pump, an auto-sampler and a UV/VIS detector. The column used was a 
LiChrospher RP C18 column (5 mm, 15 cm × 0.46 cm) (Supelco, Bellefonte, USA). 
The separation was carried out using a mixture of methanol and water (96 : 4 v/v) as 
the mobile phase at a flow rate of 1.6 ml/min. The eluent was monitored at 292 nm and 
peaks were recorded using the chromatography data system software provided by 
Agilent. Before the chromatographic data were collected, the column was equilibrated 
for 30 min with a minimum of 30 column volumes. At the end of the assay, the 
column was washed using water–acetonitrile mixture (50 : 50 v/v) for 60 min. This
HPLC analytical method was validated (data not shown).

2.3.4 Microscopic observation

The morphology of the liposomes was observed by Transmission Electron Microscopy 
(TEM) using a CM 120 microscope (Philips, Eindhoven, Netherlands) operating at an 
accelerating voltage of 80 kV. The sample was prepared as described in our previous 
study [25]. A drop of the liposome dispersion was placed on a copper grid. A thin film
of the liposome dispersion was obtained by removing excess solution using a filter 
paper. Negative staining using a 2% phosphotungstic acid solution (w/w) was 
performed directly on the deposit during 1 min. Finally, the excess of phosphotungstic
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solution was removed with a filter paper after which the stained samples were 
transferred to the TEM for imaging.

2.4 Reproducibility test

Once all the process parameters were assessed, the experiment under optimal 
conditions was repeated two times. The technique reproducibility was evaluated in 
terms of mean particle size and size distribution.

2.5 Stability study

Stability assessment is a major consideration for liposomes production. Since liposome 
preparations are heterogeneous in size, the average size distribution changes upon 
storage. Liposomes tend to fuse and grow into bigger vesicles, which are 
thermodynamically more stable. Hence, time variation of the size distribution is a good 
indicator of the long-term stability of liposomes. Moreover, breakage of liposomes 
during production and storage presents a significant problem leading to drug leakage 
from the vesicles. Therefore, encapsulation efficiency is also an important indication 
of the stability of liposomes [5].

The liposomal samples were stored under conditions required by the 2008 guidelines 
of the ICH (International Conference on Harmonization of Technical Requirements for 
Registration of Pharmaceutical for Human Use): 5 ± 3 °C for normal stability study. 
The storage period was about 3 months for drug-free liposomes and 2 months for drug-
loaded liposomes. The stability was assessed by comparing the initial mean size, zeta 
potential and encapsulation efficiency with those achieved after the storage period.

3. Results and discussion
3.1 Mechanism of liposomes formation

In our study, an ethanolic solution of vesicle-forming lipids was injected through the 
membrane into an agitated aqueous phase, leading to the formation of numerous 
micro-streams of the organic phase within a boundary layer of the aqueous phase. Due 
to inter-diffusion of the two miscible phases, phospholipids in the ethanol–water 
mixture reached a solubility limit and self-assembled into vesicles [13]. The exact
mechanism of liposomes formation is not yet well understood. A model of vesicle 
formation was proposed by Lasic [26]; this model suggests that during the injection 
process, the phospholipids which are completely soluble in the organic phase, 
precipitate at the water–ethanol phase boundary due to change in their solubility. The 
phospholipid bilayers peel off the precipitated phase and form bilayered phospholipid
fragments (BPFs) in the aqueous phase. The thermodynamic instability at the edges of 
the BPF causes bending and when the BPF closes upon itself, a vesicle is formed. The 
BPF was suggested to be an intermediate structure in all the vesicle formation 
processes.
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3.2 Optimization of phospholipid concentration

As can be seen from Table 1, as the phospholipid concentration in the organic phase 
was increased from 20 to 50 mg/ml, the mean vesicle size increased from 187 to 227 
nm and the PDI increased from 22 to 29%. Probably, at the higher phospholipid 
concentration in the organic phase, more phospholipid molecules are incorporated into 
each vesicle and larger vesicles are formed.

Our results are in agreement with those reported elsewhere. Laouini et al. [27]
observed that the mean size of liposomes, prepared using a hollow fiber membrane 
contactor, increased from 114 to 228 nm when the phospholipid concentration in the 
organic phase increased from 20 to 80 mg/ml. In addition, Jaafar-Maalej et al. [13]
prepared liposomes using Shirasu Porous Glass (SPG) membranes and observed that
the average size was around 50 and 95 nm at the phospholipid concentration in the
organic phase of 20 and 60 mg/ml, respectively. Similar trends with larger vesicles at 
higher phospholipid contents in the organic phase were reported in other liposome 
preparation techniques such as the modified ethanol injection method [28] and the 
microfluidic method [29].

Therefore, 20 mg/ml was selected as the optimum phospholipid concentration in the 
ethanolic phase in the subsequent parts of the study, since it gave vesicles with a
smaller mean size.

3.3 Optimization of the aqueous to organic phase ratio

In order to investigate the effect of aqueous phase volume, liposomes were prepared 
using approximately 13 ml of the organic phase and respectively 20, 40 and 60 ml of 
water; corresponding to an aqueous to organic phase volume ratio of 1.5, 3 and 4.5. As 
can be seen in Table 1, the mean size of the liposomes decreased as the aqueous phase 
volume increased. Indeed, at the higher aqueous to organic phase volume ratio,
phospholipids from the organic phase become more diluted after mixing with the 
aqueous phase, which may result in the formation of smaller vesicles. Moreover, 
formation of a more diluted liposomal suspension may help to prevent the fusion of 
small liposomes to larger vesicles, which can occur immediately after their formation.

Similar results were obtained using a hollow fiber membrane module [27]; increasing 
the aqueous to organic phase volume ratio from 0.4 to 2 led to a decrease in the mean 
size of the liposomes from 189 to 114 nm. When the organic phase was injected 
through a 0.9 mm SPG membrane into the aqueous phase with a volume of 400 and 
500 ml, the mean particle size of the liposomes was 203 and 61 nm, respectively [13].
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Our data suggests that the optimum aqueous to organic phase volume ratio is 4.5 since 
it produced liposomes with the smallest mean size. Thus, in the following experiments, 
the aqueous phase volume was set at 60 ml and the organic phase volume was set at 
approximately 13 ml.

3.4 Optimization of the agitation speed

Table 1 also illustrates the effect of the stirrer speed on the particle size distribution of 
the prepared liposomes. When the stirrer speed was increased by a factor of 6.5 (from 
200 to 1300 rpm), the mean size decreased by 58% (from 219 to 92 nm). The decrease 
in the particle size was the most pronounced in the range from 200 to 600 rpm. In 
addition, an increase in the agitator speed from 200 to 1300 rpm led to a broader size
distribution (the PDI was 8, 22 and 41% for the agitation speed of 200, 600 and 1300 
rpm, respectively). A decrease in the particle size with an increase in the stirrer speed 
was due to an increase in the inter-diffusion rate of the two phases. The faster diffusion 
rates generally lead to smaller vesicles because the local phospholipid concentration 
during vesicle formation is lower due to a more uniform distribution of phospholipids 
over the ethanol–water mixture. A similar trend was reported by Dragosavac et al.
[30] in membrane emulsification using the same stirred cell device and it was 
attributed to the higher drag force acting on droplets on the membrane surface. The
droplet size was significantly reduced when the stirrer speed increased up to 600 rpm, 
but this effect was less pronounced at the higher stirrer speeds; the average droplet size 
was almost constant at stirrer speeds above 1100 rpm. Our results are also in 
agreement with other membrane emulsification studies using the stirred cell device 
[31, 32]. In this study, 600 rpm was selected as the optimum agitation speed taking 
into consideration both the size of liposomes and their uniformity.

3.5 Optimization of the organic phase flow rate

As the flow rate of the organic phase decreased, so did the liposome size. Table 1
shows that the liposome size was 121 and 84 nm at flow rates of 5 and 2 ml/min, 
respectively. These two flow rates are equivalent to the transmembrane flux of 142 and 
355 l/m2/h, respectively. Increase in the flow rate of the organic phase leads to an 
increase in the rate of transfer of phospholipids (PL) to the membrane surface, given 
by the product: CoQo, where Co is the PL concentration in the organic phase and Qo 
is the organic phase flow rate. Our results indicate that the size of the liposomes 
increases with an increase in the rate of transfer of PL to the membrane surface or a 
decrease in the rate of transfer of PL away from the membrane surface. Therefore, the 
largest vesicles are formed at the conditions corresponding to the maximum 
concentration of PL at the membrane–aqueous phase interface. Similar trends were 
observed in liposome preparation using the SPG membrane and the hollow fiber 
membrane. Laouini et al. [27] observed a decrease of the liposome size from 129 to 
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114 nm when the organic phase pressure was reduced from 3.8 to 1.8 bar. Jaafar-
Maalej et al. [13] found that a peak in the particle size distribution of liposomes was 
shifted from around 45 to 80 nm as the organic phase pressure increased from 3 to 5 
bar. Sheibat-Othman et al. [33] have produced pH-sensitive particles by injecting 
organic phase into aqueous phase in a membrane contactor and obtained larger 
particles at higher organic phase flow rates. In this study, based on the obtained results 
2 ml/min was considered as the optimum organic phase flow rate, since it produced 
smaller sized liposomes at an acceptable production rate.

3.6 Choice of the stabilizer

The liposomal preparation method developed in this study is intended to be 
aerosolized in order to target the smokers’ lungs. Therefore, it would be meaningful if 
cholesterol used as a stabilizer could be replaced by another lipid, since cholesterol is 
usually associated with atherosclerosis and cardio-vascular diseases [34]. In the 
present study, we have investigated the use of stearic acid and cocoa butter as
alternative stabilizers to cholesterol.

Stearic acid has already been tested in liposomal formulations [35, 36]; however only 
the encapsulation efficiency was assessed and no investigation on long-term stability 
was carried out. Cocoa butter has never been used in a liposome preparation; it was 
chosen since it is a widely used excipient in pharmaceuticals and exhibits a better 
biocompatibility and lower in vivo toxicity than semi-synthetic lipids. Cocoa butter
contains 41% stearic acid of its typical fatty acid content, it is solid at room 
temperature and melts between 32 and 38 °C. As shown in Table 1, under the same
experimental conditions (the phospholipid concentration of 20 mg/ml, the aqueous to 
organic phase ratio of 4.5, the agitator speed of 600 rpm, and the transmembrane flux 
of 142 l/m2

However, only liposomes prepared using cholesterol or stearic acid maintained their 
initial mean size after 3 months (Fig. 2). Liposomes prepared using cocoa butter 
doubled in size during the storage period (from 135 nm at day 0 to 324 nm at day 90). 
Therefore, it can be concluded that stable liposomes can be obtained using cholesterol 
or stearic acid. Although stearic acid was an efficient long-term stabilizer of
liposomes, under the same experimental conditions significantly smaller and more 
uniform vesicles can be produced using cholesterol (the PDI increased from 24 to 37% 
and the mean size from 84 to 154 mm when cholesterol was replaced by stearic acid in 
the liposomal formulation). Cocoa butter was not suitable for long-term stabilisation, 
although the initial vesicle uniformity was comparable to that achieved with
cholesterol.

/h), the initial vesicle size was 84, 154, and 135 nm for liposomes stabilized 
by cholesterol, stearic acid and cocoa butter, respectively.
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Fig. 2 Stability data for Lipoid E80 liposomes prepared using various lipids
(cholesterol, stearic acid or cocoa butter) as stabilizers. The experimental conditions 
are specified in Table 1. The size characterization was performed using DLS.

3.7 Choice of the phospholipid

Two phospholipids were tested in this study: Lipoid E 80 and POPC. Table 1 shows 
that under optimal conditions both phospholipids enable the formation of liposomes 
with a mean size below 85 nm and acceptable size distribution. Therefore our 
optimized process can be used to prepare liposomes containing any of these two 
phospholipids.

3.8 Reproducibility of the optimized process

Based on the previous findings, the formulation composed of 60 ml of water and 13 ml 
of ethanolic phase containing 20 mg/ml of phospholipid (Lipoid E 80 or POPC) and 5 
mg/ml of cholesterol was taken to produce an optimal liposome suspension using a 
microengineered membrane with a mean pore size of 20 μm and a pore spacing 80 
μm. The organic phase flow rate was 2 ml/min, which is equivalent to the
transmembrane flux of 142 l/m2/h, and the agitation speed was 600 rpm. The 
experiment conducted under these optimum conditions was repeated twice with both 
Lipoid E80 and POPC in order to test the reproducibility of the technique. The 
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resulting data, presented in Fig. 3, revealed very good reproducibility, in terms of 
mean size and PDI, between different liposome batches produced using the same type 
of phospholipid.

The other results (not shown here) obtained in repeated experiments performed under 
identical conditions confirm good reproducibility of the preparation process.

Fig. 3 Reproducibility data for liposome suspensions prepared under optimal 
conditions. The size characterization was performed using DLS.

3.9 Comparison of different particle size characterization methods

The DLS instrument does not require calibration and sample preparation prior to each 
measurement. Due to its simplicity and speed, the DLS method was used for size 
characterization of liposomes during the optimization step. The DCS method requires 
a density gradient to be built up with 9 different sucrose concentrations (from 18% to 
26%) and the sample should be diluted in 30% sucrose solution prior to each
measurement. In addition, calibration of the instrument is required using a sample of 
known particle size. Thus, DCS was only used once the process was optimized to 
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corroborate the values for particle size by checking for multiple modes in the size 
distribution. The four reproducibility test batches (two using the lipoid E 80 and two 
using the POPC) were characterized using DCS and the results were compared with
those obtained with the DLS instrument in Table 2.

Table 2. Size characterization of liposome suspension containing two different PL 
types, prepared under optimal conditions, using two different characterization methods

PL DLS DCS

Lipoid E80 Mean size* (nm) 84 ± 1 110 ± 3
PDI or CV* (%) 25 ± 2 37 ± 2

POPC Mean size* (nm) 58 ± 1 88 ± 1
PDI or CV* (%) 28 ± 2 34 ± 1

*: Each value represents the mean of the 2 batches of reproducibility ± S.D. (n=3)

As can be seen, the results obtained using the same sample differ significantly 
depending on the characterization method used. The larger mean particle sizes and 
broader particle size distributions were obtained using DCS, which can be explained 
by the fact that in DCS, the sedimentation velocity increases as the square of the 
particle diameter, so particles that differ in size by only a few percent settle at 
appreciably different rates. This means that the DCS method can achieve a higher 
resolution of particle size compared to the DLS method. The DCS method also has a 
higher sensitivity which enables the detection of small additional peaks and picks up 
small changes in the size distribution. In addition, all measurements using DCS were 
run against a known calibration standard which assures a high accuracy of the size 
analysis. Given that the CPS instrument was more accurate and more sensitive, the 
DCS method was used for particle size measurements in the subsequent parts of this 
study.

3.10 The effect of ethanol removal

During the preparation process, the ethanolic phase was injected through the 
membrane pores into the aqueous phase. The obtained liposomes were in the 
nanometric range, although the pore diameter ranged between 5 and 40 μm. In order to 
investigate the effect of solvent evaporation on the vesicle size, the particle size 
distribution of liposomes was measured before and after rotary evaporation and the 
results are presented in the supplementary material (Table S2).

As can be seen in Table S2, no significant difference in the mean particle size and size 
distribution was observed in the liposomal suspension before and after solvent 
removal, which means that the vesicle formation process was mainly controlled and 
driven by the rate of inter-diffusion of the two phases. Vesicles were formed once the 
organic phase was brought into contact with the aqueous phase, irrespective of the 
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ethanol removal rate. Therefore, the critical concentration of phospolipid in the 
ethanol–water mixture was reached without solvent evaporation, simply by dilution of 
the organic phase with water present in the cell. Because ethanol evaporation did not 
affect the liposome size and size distribution, it was not necessary to optimize 
experimental conditions in the rotary evaporator such as evaporation temperature, 
pressure, rotation speed of the flask, etc.

3.11 The effect of membrane cleaning and wetting procedure

The membrane was immersed in a siloxane-based wetting agent for 30 min before 
each experiment in order to improve the hydrophilicity of the membrane surface. The 
reason for this treatment was to prevent the organic phase from being spread over the 
membrane surface and to ensure that tiny jets of the organic phase emerging from the 
membrane pores penetrate thoroughly into the aqueous phase. Table S3
(supplementary material) summarises the results of two experiments performed under
identical conditions with a brand new membrane used without any surface treatment 
and the one re-used after cleaning and treatment with the wetting agent.

No difference in the mean size of the liposomes and CV was observed between the 
two membranes, which means that the membrane properties were completely restored 
after cleaning and that the treatment with a wetting agent, critically important in
membrane emulsification, is not needed in liposome production.

3.12 The effect of membrane microstructure

In order to investigate the effect of the membrane characteristics on the liposomes 
mean size, experiments were conducted using 6 different membranes with nominal 
pore sizes 5, 10, 20 and 40 μm. The membranes with pore sizes of 5 and 10 μm had a 
pore spacing of 200 μm, whereas the membranes with 20 and 40 μm were supplied 
with two different pore spacings (80 and 200 μm). As shown in Fig. 4(a), as the
interpore spacing increased, the particle mean size decreased. This may be explained 
by the fact that when the distance between the membrane pores increased, the newly 
formed vesicles are less likely to aggregate. The liposome size is determined by a 
balance between the nucleation and growth rates. The larger the pore spacing, the 
smaller the number of organic phase micro-streams (potential nuclei) formed in the
aqueous phase and the higher the amount of phospholipid delivered through each pore; 
hence, a smaller number of larger vesicles will be formed. It can also be noticed from
Fig. 4(a) that the influence of the pore spacing is more pronounced for larger pore 
sizes.
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Fig. 4 Influence of the nominal pore size and pore spacing of the membrane on the 
liposome mean size. The experimental parameters: phospholipid: 20 mg/ml lipoid E80, 
stabilizer: 5 mg/ml cholesterol, aqueous to organic phase volume ratio: 4.5, agitation 
speed: 600 rpm, and organic phase flow rate: 2 ml/min. The size characterization was 
performed using DCS.
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Fig. 4(b) summarizes the effect of the membrane pore size on the size of the liposomes 
produced. Our results are in agreement with those reported for membrane 
emulsification in the same stirred cell. Dragosavac et al. [30] used the same type of 
microengineered membranes to produce oil-in-water emulsions and found that the size 
of oil drops increased by a factor of 1.8 when the pore size was changed from 19 to 40 
μm. Many other studies on membrane emulsification indicate that the particle size 
increases linearly with an increase in the pore size [37, 38]. Our data fitted well with a 
linear model with a gradient of 0.22 nm/μm and R2

3.13 Loading of vitamin E into liposomes

= 0.992 (Fig. 4c). Thus, our study
confirmed that the liposome size depends on the membrane structure (pore size, 
spacing); this underlines the feasibility of controlling the liposome size by using 
microengineered membranes with different pore sizes and interopore distances.

Table 3 shows the effect of entrapment of vitamin E on the liposome size and size 
distribution.

Table 3. Effect of vitamin E loading on the characteristics of liposomal suspension.
The experimental parameters: phospholipid: 20 mg/ml Lipoid E80, stabilizer: 5 mg/ml
cholesterol, vitamin E: 5 mg/ml, aqueous to organic phase volume ratio: 4.5, stirring 
speed: 600 rpm, organic phase flow rate: 2 ml/min, pore size: 10 μm, pore spacing: 
200 μm. The size characterization was performed using DCS.

Liposome suspension Mean size* (nm) CV* (%) Zeta potential* (mV) EE* (%)
Drug-free 88 ± 2 32 ± 1 28.0 ± 0.9

Drug-loaded 96 ± 3 44 ± 2 28.5 ± 0.8 99.8 ± 1.1
*: Each value represents the mean ± S.D. (n=3)

The addition of the drug increased the vesicle mean size from 88 to 96 nm and the CV 
from 32 to 44%. The increase in the vesicle size could be explained by the entrapment 
of the drug within the phospholipidic bilayers.

The negative values of the zeta-potential were obtained (around 228 mV), which could 
be attributed to the presence of negatively charged phospholipids in bilayers. The zeta 
potential measurements give information on the surface properties of the colloidal 
system and could therefore be useful to determine the type of the association between 
the active substance and the colloidal system (for example whether the drug is 
encapsulated in the lipid matrix or simply adsorbed on the surface) [39]. Table 3
indicates that the presence of the drug did not affect the negative surface charge. This
result suggests that all vitamin E was encapsulated within the lipid bilayers without 
any adsorption to the vesicles surface. The greater the zeta potential the more likely 
the suspension to be stable, because the charged particles repel each other and this 
overcomes their natural tendency to aggregate [40,41]. It is currently believed that an 
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absolute value of zeta potential above 15 is required for a good electrostatic 
stabilization [42]. Thus, our zeta-potential values were sufficient to prevent liposomes 
aggregation and predict a good stability of the liposomal suspensions.

The high encapsulation efficiency of vitamin E within liposomes (99.87 ± 1.14%) was 
probably due to the high lipophilicity of the drug. This result was in agreement with
those reported in the literature. Marsanasco et al. [35] reported that the percent of 
vitamin E encapsulated within liposomes prepared by the method of Bangham was 
equal to 98.13 ± 0.02%.

The prepared liposomal suspension is intended to be aerosolized for specific delivery 
of vitamin E to the alveoli level. Several previous studies have shown that the 
aerosolization of colloidal systems would enhance their aggregation which is 
dependent on the nebulizer design. No specific correlation was found between the 
initial size and the size of the nebulized droplets [43, 44]. For instance, the mass 
median diameters of aerosols generated upon nebulization were 2 to 14.4 folds larger 
than primary geometric particle diameters [45]. Therefore, the aerosolization of our 
vitamin E-loaded liposomes would generate particles less than 1.5 μm which is
suitable for reaching the alveolar space since many studies reported that for specific 
delivery to the alveoli a size of less than 5 μm was required [46].

3.14 TEM observation

The micrographs of drug-free liposomes (prepared using Lipoid E80 and POPC) and 
drug-loaded liposomes taken by TEM are given in Fig. 5.

Fig. 5 TEM images of drug-free liposomes prepared using Lipoid E80 (a) or POPC (b) 
and drug-loaded liposomes (c).

As can be seen, liposomes were of spherical shape with multilayered membrane 
structure. Their size estimated from TEM pictures was in the range of 50 – 150 nm 
which is coherent with values obtained using DLS and DCS.
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3.15 Stability study

The variations of the zeta potential, the vesicle mean size and CV were followed over 
a storage time of 3 months for drug-free liposomes and 2 months for drug-loaded 
liposomes at 5 ± 3 °C. The stability data are shown in Fig. 6 and Table 4.

Fig. 6 Stability data of drug-free liposomes prepared using Lipoid E80 (a) and POPC 
(b) (results presented are the average of reproducibility batches) and drug-loaded 
liposomes (c). The size characterization was carried out by DCS.
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Table 4. Encapsulation efficiency stability of vitamin E loaded liposome suspension 
stored at 5 ± 3 °C. Experimental conditions of liposome suspension preparation:
phospholipid: 20 mg/ml Lipoid E80, stabilizer: 5 mg/ml cholesterol, 5 mg/ml vitamin 
E, aqueous to organic phase volume ratio: 4.5, agitation speed: 600 rpm, organic phase 
flow rate: 2 ml/min, pore size: 10 μm, pore spacing: 200 μm. The size characterization 
was performed using DCS.

After preparation After 1 month After 2 months
99.87 ± 1.14 99.76 ± 1.03 98.81 ± 1.20

                      *: Each value represents the mean ± S.D. (n=3)

According to Heurtault et al., [42] the size determination is a good indicator of 
stability since in most cases the particle size increased before macroscopic changes 
appeared. Our stability data show that the average size remained nearly unchanged
during the storage period. In addition, the zeta potential was maintained at its initial 
value and no aggregation or sedimentation was observed during storage. Also, there 
were no significant changes in the vesicle size distribution during the same period 
(data not included). These results demonstrate a good stability of the liposome 
suspensions and thus indicate an adequate formulation of the preparation and optimum 
selection of process conditions.

4. Conclusion

In this study, we present a novel application of microengineered membranes: the 
preparation of size-controlled liposomes. The purpose of the research was to study the 
effect of the formulation factors and the process parameters on the final characteristics
of lipid vesicles. The liposome formation was based on a diffusion-driven process in 
which the dissolved phospholipids (Lipoid E 80 or POPC) self-assemble into
liposomes as ethanol quickly diffuses and dilutes into an agitated aqueous stream at 
the microsieve/aqueous phase interface. The size and size distribution of the liposomes 
was precisely controlled through adjustment of the phospholipid concentration and 
flow rate of the organic phase, pore size and spacing of the microengineered 
membrane used for injection of the organic phase, the degree of agitation in the cell 
and the mixing ratio of the two phases. This indicates that with a careful choice of 
formulation factors and process parameters, liposomes could be obtained with a 
defined size distribution. The rate of evaporation of ethanol did not have any
appreciable effect, indicating that the process was controlled by the rate of 
interdiffusion of the two miscible liquids.

The reproducibility of the optimized process was good, and after each experiment the 
membrane surface could be easily cleaned and fully regained its hydrophilicity. The 
prepared samples remained stable for 3 months.
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We have shown that a simple low-volume stirred cell is a useful apparatus for the 
quick testing of different experimental conditions. For continuous and larger-scale 
production, other experimental set-ups should be employed, such as crossflow and 
oscillation membrane systems and it will be the subject of our future investigation.
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Supplementary material

Fig. S1 Microscopic images of some membranes used in this study: (a) dp = 40 m, L 
= 200 m, (b) dp = 20 m, L = 80 m, and (c) dp = 10 m, L = 200 m. (d) Schematic 
view of the pore arrangement showing a regular hexagonal array of cylindrical pores 
with uniform pore spacing.

Table S1. Pore diameters, pore spacing and porosities of the membranes used in this 
study

Pore diameter (μm) Pore spacing (μm) Membrane porosity (%)
5 200 0.06

10 200 0.2
20 200 0.9
40 200 3.6
20 80 5.7
40 80 22.7
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Table S2. Effect of ethanol evaporation on the liposome size characteristics. The
experimental parameters: phospholipid: 20 mg/ml POPC, stabilizer: 5 mg/ml
cholesterol, aqueous to organic phase volume ratio: 4.5, agitation speed: 600 rpm, 
organic phase flow rate: 2 ml/min, membrane pore size: 20 m, pore spacing: 80 m. 
The size characterization was performed using DCS.

Before ethanol evaporation After ethanol evaporation
Mean size* (nm) 84 ± 3 89 ± 2

CV* (%) 33 ± 2 34 ± 1
*: Each value represents the mean ± S.D. (n=3)

Table S3. The effect of membrane cleaning and treatment with a wetting agent on the
liposome size and size distribution. The experimental parameters: phospholipid: 20
mg/ml Lipoid E80, stabilizer: 5 mg/ml cholesterol, aqueous to organic phase volume 
ratio: 4.5, agitation speed: 600 rpm, organic phase flow rate: 2 ml/min, pore size: 20 

m, pore spacing: 200 m. The size characterization was performed using DCS.

Brand new membrane (without 
wetting agent treatment)

Used membrane (after cleaning 
and wetting)

Mean size* 
(nm) 91 ± 3 91 ± 2

CV* (%) 36 ± 1 35 ± 1
*: Each value represents the mean ± S.D. (n=3)
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Nomenclature

b Blade height (m)

CV Coefficient of variation

PDI Polydispersity index

d Pore diameter (m)p

D Stirrer diameter (m)

D Effective membrane diameter (m)m

L Pore spacing (interpore distance) (m)

n Number of bladesb

T Internal diameter of tank (m)

Membrane porosity
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Abstract

A novel ethanol injection method using microengineered nickel membrane was 
employed to produce POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) 
and Lipoid E80 liposomes at different production scales. A stirred cell device was 
used to produce 73 ml of the liposomal suspension and the product volume was
then increased by a factor of 8 at the same transmembrane flux (140 l/m2/h), 
volume ratio of the aqueous to organic phase (4.5) and peak shear stress on the 
membrane surface (2.7 Pa). Two different strategies for shear control on the 
membrane surface have been used in the scaled-up versions of the process: a cross 
flow recirculation of the aqueous phase across the membrane surface and low 
frequency oscillation of the membrane surface ( 40 Hz) in a direction normal to 
the flow of the injected organic phase. Using the same membrane with a pore size 
of 5 m and pore spacing of 200 m in all devices, the size of the POPC liposomes 
produced in all three membrane systems was highly consistent (80-86 nm) and the 
coefficient of variation ranged between 26 and 36 %. The smallest and most 
uniform liposomal nanoparticles were produced in a novel oscillating membrane 
system. The mean vesicle size increased with increasing the pore size of the 
membrane and the injection time. An increase in the vesicle size over time was 
caused by deposition of newly formed phospholipid fragments onto the surface of 
the vesicles already formed in the suspension and this increase was most 
pronounced for the cross flow system, due to long recirculation time. The final 
vesicle size in all membrane systems was suitable for their use as drug carriers in 
pharmaceutical formulations. 

Key words: Liposomes – Ethanol injection method - Process scale-up – Stirred 
cell – Cross flow – Oscillating membrane
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1. Introduction

Liposomes are versatile drug carrier systems that can be tailor-made to accommodate a 
large variety of drugs for a wide range of therapies. Both lipophilic and hydrophilic 
drugs can be incorporated in liposomes, within the phospholipid bilayer and in the 
aqueous core, respectively [1]. The behaviour of liposomes in vivo and in vitro can be 
controlled by selecting the proper characteristics such as vesicle size, number of 
bilayers, bilayer fluidity, charge and hydrophilicity of the external surface, and the 
type of targeting molecules attached to the bilayer surface [2]. The applications of lipid 
vesicles are determined by their properties, which depend on molecular and 
physicochemical parameters as well as on the method of liposome preparation [3].
Therefore, a well-characterized methodology for liposome manufacture with validated 
operating procedures is the main requirement for producing liposomal populations 
with acceptable reproducibility and appropriate for the intended use.

Liposomal preparations can be manufactured using a wide variety of methods such as 
thin film hydration, reversed-phase evaporation, detergent dialysis, and solvent 
injection [4]. The major challenge in liposome production is still large scale 
production. Indeed, most of the described preparation techniques are not suitable for 
scaling up from the laboratory level to the industrial production, due to their 
complexity and a low reproducibility and predictability of the preparations obtained. A 
lack of predictability of product quality may be attributed to empirical methods 
traditionally employed for the design of lipid-based delivery systems [5]. Thus, there is 
a strong need to improve traditional manufacturing techniques, leaving behind those 
poorly characterizable methods, based on small batch sizes.

The ethanol injection method can be used for liposome production at large scale. In 
this process, an ethanolic solution of the lipid mixture is dispersed into an aqueous 
solution through fast injection. From the manufacturing point of view, this technique 
does fulfil the need for a rapid, simple, easily scalable and safe preparation technique. 
Also, this method does not promote degradation or oxidative alterations either in the 
lipid mixture or in active agents to be encapsulated [6].

Membrane dispersion, which is considered as an improvement of the ethanol injection 
technique, is a new method of producing liposomes of predetermined size. It involves 
mixing of two miscible liquids (the organic and aqueous phase) by injecting the 
organic phase through a microporous membrane into the aqueous phase. It is similar to 
membrane emulsification [7, 8], which involves the injection of one liquid (the 
dispersed phase) into another immiscible liquid (the continuous phase) through a 
microporous membrane [9, 10]. Micro-engineered membranes, which have a perfect 
hexagonal array of uniform pores, allow a much more uniform and controllable 
injection of lipid-containing organic phase into an aqueous phase. Thus, their use 
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enables a better control over diffusive mixing at the liquid/membrane interface where 
the lipids self-assemble into vesicles. This may provide fine control of liposome size 
distribution and make easier the extrapolation of the results for an industrial large scale
production. The shear stress at the membrane surface can be controlled by [11]: (i) 
stirring the continuous phase using a paddle stirrer (Figure 1a); (ii) cross flow of the 
continuous phase along the membrane surface (Figure 1b); (iii) vibrating (oscillating) 
the membrane in the continuous phase (Figure 1c).

Fig. 1. Generation of shear stress in membrane microfluidic processes and its spatial or 
temporal distribution over the membrane surface: (a) paddle stirrer; (b) continuous
phase cross flow; (c) oscillating membrane. All three methods of shear generation 
were used in this work to enhance the mixing rate of the two phases.

Recent studies [10, 12] were focused on the fabrication of liposomes using Shirasu 
Porous Glass (SPG) membrane. It was found that the vesicle size decreased with a 
decrease in the transmembrane flux and phospholipid concentration in the organic 
phase and with an increase in the aqueous to organic phase ratio and the shear stress on 
the membrane surface. Despite all the information provided in the literature regarding 
the effect of different operating and process conditions on vesicle characteristics [13-
15], there is a lack of information regarding scale-up of liposomes production. 

The aim of this study was to evaluate the scale-up of liposome production by a factor 
of 8 and beyond using novel ethanol injection method with microengineered 
membrane. For a small-scale production, a laboratory stirred cell was used, composed 
of a rotating stirrer above a flat disc membrane. For large scale production, two 
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different methods were used: (i) recirculation of the continuous phase in cross flow 
along the membrane surface, and (ii) oscillation of the membrane surface in a direction 
normal to the flow of the injected phase.

2. Materials and methods
2.1 Reagents

Phospholipids used in this study were POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine) and Lipoid® E80 (obtained from egg yolk lecithin and containing 
82% of phosphatidyl-choline and 9% of phosphatidyl-ethanolamine), both purchased 
from Lipoïd GmbH (Ludwigshafen, Germany). Cholesterol and phosphotungstic acid 
were supplied by Sigma-Aldrich Chemicals (Saint Quentin Fallavier, France). 95 % 
analytical-grade ethanol was supplied by Fisher Scientific (United Kingdom) and used 
as such, without further purification. Ultra-pure water was obtained from a Millipore 
Synergy®

2.2 Membranes

system (Ultrapure Water System, Millipore).

The membranes used were nickel microengineered membranes containing uniform 
cylindrical pores arranged in a hexagonal array with a diameter of 5 or 20 μm and pore 
spacing of 200 μm. The membranes were fabricated by the UV-LIGA process, which 
involves galvanic deposition of nickel onto a template formed by photolithography 
[16]. All membranes were supplied by Micropore Technologies Ltd. (Hatton, 
Derbyshire, United Kingdom).

2.3 Experimental equipment

Schematic illustration of the equipment used is presented in Figure 2.

2.3.1 Stirred cell device

A Dispersion Cell was supplied by Micropore Technologies Ltd. (Hatton, Derbyshire, 
UK). This device uses a 24 V DC motor (INSTEK model PR 3060) to drive a paddle-
blade stirrer at an adjustable speed controlled by the applied voltage. An effective 
diameter of the membrane fitted at the bottom of the cell was 3.3 cm and a membrane 
area was 8.55 cm2

2.3.2 Cross flow system

. The organic phase was injected through the membrane using a 
peristaltic pump (Watson Marlow 101U, Cornwall, UK).

Cross flow module (Micropore Technologies Ltd) was composed of 4 separate disk 
membranes, each with a diameter of 7 mm, so the total membrane surface area was 
1.54 cm2. The cross flow channel was 20 mm wide and 1 mm high. A syringe pump 
(Havard Appartus 11 Plus) was used to inject the organic phase through the 
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membranes and a peristaltic pump (Watson Matlow 603s, Cornwall, UK) was used to 
recycle the aqueous phase between the module and an aqueous phase tank.

Fig. 2. Schematic illustration of the different equipments used in this study: (A) Stirred
cell with a simple paddle stirrer above a flat disc membrane (b = 12 mm, D = 32 mm,
Dm = 33 mm, nb

2.3.3 Oscillating membrane system

= 2 and T = 40 mm); (B) Cross flow system; (C) Oscillating 
membrane system.

This system was also supplied by Micropore Technologies Ltd. The membrane was 
composed of 2 foils rolled in the form of a ring with a diameter of 30 mm and a length 
of 20 mm. The membrane had an area of 34.1 cm2 and was attached to the injection 
manifold to which an accelerometer was fixed. The accelerometer (PCB Piezotronics 
model M352C65) was connected to a National Instruments Analogue to Digital 
Converter (N1 Edaq-9172) which was interfaced to a LabView executable program 
running on a computer. The information provided by the program from the 
accelerometer was the frequency and the amplitude of the oscillations, the amplitude 
being determined by the direction of the travel and the frequency was deduced from 
the acceleration measurement. The oscillation signal was provided by an audio 
generator (Rapid Electronics), which fed a power amplifier driving the electro-
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mechanical oscillator on which the inlet manifold was mounted. The injection 
manifold had internal drillings to allow the passage of the organic phase by a syringe 
pump (Harvard Apparatus 11 Plus).

2.4 Experimental procedure and shear stress calculation

The organic phase was composed of 20 mg/ml of phospholipids and 5 mg/ml of 
cholesterol (used as a stabilizer) dissolved in ethanol. 

2.4.1 Stirred cell device

The cell was filled with 60 ml of ultrapure water and 13 ml of the organic phase was 
injected through the membrane at 2 ml/min to achieve a final volume ratio of the 
aqueous to organic phase of 4.5. The organic phase flux, J, was given by:

AQJ o /                     (1)

where Qo is the volume flow rate of the organic phase and A is the membrane area. 
The organic phase flux was 140 l/m2

For r < r

/h, calculated from Eq. (1), and the stirrer speed 
was 600 rpm. Previous studies in Dispersion Cell [17, 18] have shown that a shear 
stress is not uniformly distributed over the membrane surface, but varies with the 
radial distance r, according to the equations [19]:

trans
1825.0 raq                                                                         (2)

For r > rtrans
1/825.0 6.0rrr transtransaq                      

(3)

where rtrans

Re)43.11000Re/(35.057.0
2

23.1 116.0
036.0

btrans n
T
b

T
DDr

is the transitional radius, i.e. the radial distance from the center of the 
membrane at which the shear stress is greatest:

              (4)

where D is the stirrer diameter, T is the internal diameter of the stirred cell, b is the 
blade height, and nb

)2/(Re 2
aqaq D

is the number of blades (Figure 2a). The Reynolds number, Re, is 
given by:

          (5)

aq aq are the density and viscosity of the aqueous phase, respectively, and 

Landau-Lifshitz equation [17]:
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)/( aqaq (6)

Since the shear stress at the membrane surface is not constant, it can be argued that the 
appropriate value that should be used in comparative investigations is either the 
average or maximum shear. Because the shear stress at r = rtrans is the highest, the 
pressure above the membrane surface at r = rtrans has a minimum value, leading to the 
maximum transmembrane pressure and thus the maximum flux through the membrane. 
Since the membrane is most productive near the transitional radius, the shear stress at r 
= rtrans

)/(
825.0

max
aqaq

transaq r

(maximum shear stress) will be used as a representative value in stirred cell 
experiments. Using Equation (2) or (3) and (6):

(7)

In this study, the maximum shear stress was 4.7 Pa and the transitional radius was 1.1 
cm. A scale-up of stirred cell membrane systems is complicated, because the shear 
stress on the membrane surface is a complex function of the system geometry and the 
shear is non-uniformly distributed over the membrane surface (Figure 1a).

2.4.2 Cross flow system

480 ml of the aqueous phase was pumped through the cross-flow channel and overall 
107 ml of the organic phase was injected through the membrane at 36 ml/min (140 
l/m2

)2/(3 2WhQ aqaq

/h) to achieve an aqueous to organic phase volume ratio in the final preparation of 
4.5. The shear stress on the membrane surface generated by cross flow in rectangular 
channel geometry is given by:

                         (8)

where Qaq is the aqueous phase flow rate, and h and W are the height and width of the 
channel, respectively. In order to keep the same shear stress on the membrane surface 
as in the stirred cell device (4.7 Pa), Qaq

2.4.3 Oscillating membrane system

was set to 3.7 l/min.

A ring membrane was immersed into a beaker containing 480 ml of the aqueous phase. 
The aqueous phase was then sucked into the membrane and injection manifold using a 
syringe in order to ensure that no air bubbles were trapped within the organic phase. 
When air was completely removed, the injection tube was attached to the syringe 
pump. Then, overall 107 ml of the organic phase was injected through the membrane 
at 8 ml/min (140 l/m2/h) to achieve a final aqueous to organic phase volume ratio of 
4.5. Oscillations did not start until the organic phase emerged on the membrane 
surface in order to prevent pre-mixing within the membrane. In a stirred cell or cross 
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flow system, the shear stress does not vary over time at any location on the membrane 
surface. For oscillating membrane system, the shear stress on the membrane surface is 
a sinusoidal function of time (Figure 1c) and the maximum shear is given by: 

2/32/12/3
max )()2( afaqaq             (9)

where a and f is the amplitude and frequency of the membrane oscillations. Eq. (9) 
suggests that the same max

Table 1. Experimental conditions used in different preparation methods. The aqueous 
to organic phase volume ratio, transmembrane flux and shear stress on the membrane 
surface were held constant for all methods to conduct experiments under comparable 
conditions.

value can be achieved using many different sets of 
frequency and amplitude values. In membrane emulsification, the mean droplet size 
was found to be a function of the maximum shear stress only and not the frequency or 
amplitude used to achieve it [20]. In this study, the frequency and amplitude were 
adjusted to 40 Hz and 1.2 mm, respectively, to obtain the maximum shear stress on the 
membrane surface which is consistent with the cross flow and stirred system (4.7 Pa). 
Equation (9) implies that the oscillating membrane system is easy to scale up, because 
the surface shear does not depend on the membrane geometry or the geometry of the 
vessel, or channel, in which the membrane was fitted. A summary of the experimental 
conditions used in different systems is presented in Table 1.

Preparation method Stirred cell 
system

Cross flow 
system

Oscillating 
membrane system

Aqueous phase volume (ml) 60 480 480
Organic phase volume (ml) 13 107 107

Final aqueous to organic phase 
volume ratio (-) 4.5 4.5 4.5

Organic phase flow rate (ml/min) 2 0.36 8
Membrane area (cm2 8.55) 1.54 34.1

Transmembrane flux (l/m2/h) 140 140 140
Agitation speed (rpm) 600 N.A N.A

Aqueous phase flow rate (l/min) N.A 3.7 N.A
Maximum shear stress on 
membrane surface (Pa) 4.7 4.7 4.7

In all systems, formation of vesicles occurred as soon as the organic phase was 
brought into contact with the aqueous phase. The liposomal suspension was collected 
and remaining ethanol was removed by evaporation under reduced pressure (Buchi, 
Flawil, Switzerland). After each experiment, the membrane was washed by sonication 
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in ethanol for 1 hour, followed by soaking in a siloxane-based wetting agent for 30 
min in order to increase the hydrophilicity of the surface.

2.5 Liposomes characterization
2.5.1 Size analysis

The particle size distribution was measured by differential centrifugal sedimentation 
using a CPS disc centrifuge, model DC 24000 (CPS instruments, Florida, USA). A 
light beam near the outside edge of the rotating disc passed through the centrifuge at 
some distance below the surface of the liquid phase and measured the concentration of 
particles as they settled. The time required for particles to reach the detecting beam 
depends upon the speed and geometry of the centrifuge, the difference in density 
between the particles and the surrounding liquid, and the size of the particles. Thus, 
when operating conditions were stable, sedimentation velocity increased with the 
particle diameter, so that the time needed to reach the detector beam was used to 
calculate the size of the particles [21, 22]. A sucrose gradient (from 18% to 26%) was 
built and the sample was diluted in a sucrose solution (30%) before being injected. 
Prior to the analysis, the instrument was calibrated using an aqueous suspension of 
polybutadiene particles of a known size distribution and a mean size of 402 nm. The 
mean particle size of liposomes was expressed as the number-average mean diameter, 
dav av) × 

ticle diameters in a suspension. The 
smaller CV values indicate the narrower size distribution [23, 24]. All dav

2.5.2 Microscopic observation

and CV 
values will be expressed as the mean ± standard deviation (S.D.).

The morphology of the liposomes was observed by transmission electron microscopy 
(TEM) using a CM 120 microscope (Philips, Eindhoven, Netherlands) operating at an 
accelerating voltage of 80 KV. A drop of the liposome dispersion was placed on a 
holey copper grid. A thin film of the liposome dispersion was obtained by removing 
excess solution using a filter paper. Negative staining with 2% (w/w) phosphotungstic 
acid was directly performed on the deposit for 1 min. The excess of phosphotungstic 
solution was removed with a filter paper after which the stained samples were 
transferred to the TEM for imaging.

3. Results and discussion
3.1 Effect of the phospholipid type

The characteristics of Lipoid E80 and POPC vesicles obtained in stirred cell and cross-
flow systems using membranes with two different pore sizes are compared in Table 2.
The POPC liposomes prepared using the pore size of 5 m were smaller and more 
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uniform than Lipoid E80 liposomes prepared using the same pore size and the 
difference was more significant for cross-flow system, due to longer fabrication times. 
It should be noted that both Lipoid E 80 and POPC allow the formation of liposomes 
with an acceptable size for their use as drug carriers in pharmaceutical formulations. 
Therefore, both phospholipids can be used for large scale production of liposomes in a 
cross-flow membrane system.

Table2. Influence of phospholipid type and membrane pore size on the mean vesicle 
size and CV in stirred cell and cross flow systems. The experimental conditions are 
specified in Table 1.

Preparation 
method

Phospholipid 
used

Membrane pore 
size (μm)

Liposomes mean 
size* (nm)

CV* 
(%)

Stirred cell 
system

Lipoid E80 5 87 ± 3 32 ± 1
20 91 ± 3 34 ± 1

POPC 5 81 ± 3 29 ± 1

Cross flow 
system

Lipoid E80 5 105 ± 3 46 ± 1
20 204 ± 2 45 ± 2

POPC 5 86 ± 2 36 ± 2
* Each value represents the mean ± S.D. (n=3).

3.2 Effect of the membrane pore size

The effect of membrane pore size on the mean size of vesicles prepared in stirred cell 
and cross flow systems can be seen in Table 2. Clearly, the mean liposome size 
increased with increasing the pore size, and the effect was more pronounced for the 
cross-flow system, due to longer fabrication time. In the cross flow system, new 
phospholipid molecules supplied through the membrane by the organic phase were 
partly deposited on the existing liposomal particles that recirculate through the 
module, and partly form new phospholipid fragments in the aqueous phase. As a 
result, the liposomal particles formed in the cross flow system are larger than those 
formed in the stirred cell, where a secondary particle growth is less pronounced due to 
shorter injection time. The effect of the pore size on the vesicle size can also be seen in 
Figure 3. This figure shows that the mean vesicle size was between 50 and 100 m
when 5 m membrane was used and 150 to 200 m when the membrane with a 20 m
pore size was used. In membrane emulsification, the particle size was found to 
increase linearly with the pore size [19, 25, 26]. The results show that it is feasible to 
tune the size of liposomal particles by using microengineered membranes with 
different nominal pore sizes, but the effect is limited to a relatively narrow range of 
mean vesicle sizes.
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Fig. 3. The variation of the mean vesicle size, dav and its coefficient of variation, CV 
with the final aqueous to organic phase volume ratio: ( ) lipoid E 80, cross flow, dp = 
5 μm; ( ) POPC, oscillating system, dp = 5 μm; ( ) lipoid E 80, cross flow, dp = 20 
μm. max = 4.7 Pa, J = 142 l/m2

3.3 Variation of vesicle size with time during scale-up

/h. The each data point represents the mean ± S.D. (n = 
3).

The samples of liposomal nanosuspension prepared in both the cross flow and 
oscillating system were taken at predetermined time intervals to investigate the 
variation of the vesicle size with time. The aqueous to organic phase ratio, R, during 
the fabrication process was inversely proportional to the process time, t: 

)/(/ tQVVVR oaqoaq           (10)

where Vaq is the initial volume of the aqueous phase in the system and Qo is the flow 
rate of the organic phase through the membrane, which was kept constant. Thus, 
higher R values in the samples correspond to shorter processing times. As shown in 
Figure 3, the mean size and CV of vesicles in the liposomal suspension increased with 
time. It can be explained by assuming that the supersaturation in the aqueous phase 
was relieved by a combination of nucleation (formation of phospholipid fragments) 
and particle growth (precipitation of phospholipid fragments onto the surface of the 
vesicles already present in the suspension). Initially, formation of phospholipid 
fragments dominates over precipitation but subsequently, precipitation of material onto 
the existing vesicles becomes increasingly more important, leading to a gradual 
increase in the mean vesicle size. A polydispersity of vesicles in the suspension 



148 
 

increased as a result of coexistence of small vesicles formed directly from 
phospholipid fragments and larger vesicles formed by precipitation onto the smaller 
vesicles. The large vesicles can also be produced at the higher phospholipid 
concentration in the organic phase, as suggested elsewhere [9, 10, 27, 28].

As shown in Figure 3, in the cross flow system, the mean vesicle size increased over 
time by 80% (from 58 to 108 nm), whereas in the oscillating system the size variation 
over time was only by 8% (from 74 to 80 nm). The model of vesicles formation 
proposed by Lasic [29] suggests that following their injection, phospholipids 
precipitate at the water/ethanol boundary and form bilayered phospholipid fragments. 
The energy needed to curve a flat bilayer fragment into a closed sphere was provided 
here through agitation of the aqueous phase, cross flow or membrane vibrations. When 
cross flow system was used, the recirculation of the formed vesicles in a closed loop 
facilitated their contact with the newly formed small vesicles and phospholipid 
fragments, which might result in the formation of bigger vesicles. A contact of 
phospholipid fragments with existing vesicles was pronounced by a narrow cross flow 
channel with a height of 1 mm and a long recirculation time. 

The results in Figure 3 indicate that the vesicle size can be precisely controlled by 
monitoring the processing time, thereby controlling the amount of organic phase 
injected through the membrane. This finding is highly relevant since it can enable 
continuous production of liposomes with different mean particle sizes using a single 
pore size. It is important to note that both cross flow and oscillating membrane 
systems are scalable and the fabrication process developed in a small device can be 
carried out under the same shear conditions in a cross flow or oscillating system with a 
much larger membrane area. On the other hand, a stirred system is not scalable due to 
large spatial variations of the shear stress over the membrane surface (Fig. 1a) and a 
significant effect of the system geometry on the shear stress.

3.4 Comparison of different fabrication methods

Once optimized at small scale (Vaq = 60 ml) in stirred cell, the fabrication of POPC 
liposomes was scaled up by a factor of 8 (Vaq = 480 ml) at constant R, J, and max. The 
larger vesicle size and broader particle size distribution was obtained in the cross flow 
system, compared to that in the stirred cell (Table 3). The scale-up was done by 
maintaining constant Vaq/Vo and J values and thus, the fabrication time, t, should be 
proportional to Vaq/A. In the cross-flow system, the membrane area A was 5.6 times 
smaller than that in the stirred cell and thus, for an eightfold increase in the aqueous 
phase volume, the process time in the cross-flow device should be 48 times longer 
than that in the stirred cell (Table 3). The recirculation of the liposomal suspension 
over a time period of 297 min led to an increase in the mean vesicle size since the 
newly formed bilayered fragments settle upon the already formed vesicles. This can 
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explain why the mean vesicle size was increased from 81 to 86 nm when the cross 
flow system was used, instead of the stirred cell.  

Table 3. Comparison of different methods of liposome preparation. The phospholipid:
POPC, final aqueous to organic phase volume ratio: 4.5, membrane pore size: 5 μm. 
The other experimental conditions are specified in Table 1.

Preparation method Stirred cell Cross flow Oscillating system
Mean vesicle size* (nm) 81 ± 3 86 ± 2 80 ± 2

CV* (%) 29 ± 1 36 ± 2 26 ± 1
Suspension volume (ml) 73 587 587

Process time (min) 6.5 297 13
Process capacity (ml/min) 11 2 45

          * Each value represents the mean ± S.D. (n=3).

The membrane oscillation was used as an alternative to cross flow in order to avoid the 
requirement for recirculation of the organic phase along the membrane surface. The 
shear stress on the membrane surface is a sinusoidal function of time (Fig. 1c), but at 
40 Hz, there were 80 peak shear events per second (one peak shear event every 12.5 
ms). The organic phase was split into more than 90 thousand streams within the 
membrane, before being mixed with an aqueous phase on the other side of the 
membrane. The average flow velocity of the organic phase in the pores was 7 cm/s and 
the distance travelled by each stream between two peak shear events was less than 0.9 
mm. The mean vesicle size in the oscillating system was the same as that in the stirred 
cell and the CV improved from 29% to 26% (Table 3). Holdich et al. [20] attributed 
the better uniformity of the particles produced by the oscillating system to the fact that 
in such a system the shear stress is only applied at the membrane surface (where it is 
needed), while it is very low in the bulk of the aqueous phase. In addition, shear 
conditions on the membrane surface can be more finely adjusted by varying two 
parameters, the frequency and the amplitude of membrane oscillations. In the stirred 
cell, the shear can only be controlled by varying the stirrer speed. Zhu and Barrow
[30] reported that the use of a vibrating membrane had a significant effect in reducing 
the size of the droplets generated in membrane emulsification. 

The process capacity, defined as the volume of the liposomal suspension produced per 
unit time, was the maximum for the oscillating system (Table 3). The scale-up was 
done at constant flux and Vaq/Vo and thus, the process capacity was proportional to 
A/Vaq

Table 4 summarises potential advantages and disadvantages of the various membrane 
systems used for liposomes preparation. 

and inversely proportional to the process time. The fabrication time in the 
oscillating system was about 23 times shorter than that in the cross-flow system 
resulting in the higher capacity of the oscillating system by a factor of 23.   
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An advantage of cross-flow and oscillating system is that the volume of the aqueous 
phase is decoupled from the membrane area. In a stirred cell, the aqueous phase 
volume is limited by the membrane area, because D/H should be within certain limits 
to achieve a satisfactory mixing rate. Another advantage of cross-flow and oscillating 
membrane systems over batch stirred cells is that cross-flow and oscillating systems 
can be operated continuously or semi-continuously and a total membrane area in these 
systems can easily be increased by adding additional membrane elements and 
assemblies.

3.5 TEM observation

Liposomes prepared with different techniques were observed by Transmission 
Electron Microscopy (TEM) and TEM micrographs are given in Figure 4.

Fig. 4. Transmission electron microscopy of liposomes prepared with (A) stirred cell 
device (B) cross flow system and (C) oscillating membrane system.

As could be seen, liposomes were spherical with multilayered membrane structure 
specific to multilamellar vesicles. Their size estimated from TEM pictures ranged from 
60 to 120 nm which is coherent with the values obtained using the CPS instrument.

4. Conclusion

Multilamellar phospholipid vesicles were produced by injection of ethanolic phase 
through a microengineered membrane into aqueous phase using different membrane 
devices and batch sizes. The process developed in a stirred cell device was scaled-up
by a factor of 8 by maintaining the same transmembrane flux, peak shear stress on the 
membrane surface and aqueous to organic phase phase ratio. In the cross flow system, 
the vesicle size increased over time due to continual recirculation of the liposomal 
suspension. The oscillating membrane system, which avoids recirculation of the 
liposomes was fully capable of maintaining the size and polydispersity of the 
liposomal nanoparticles during scale-up. This technique can easily be further scaled up 
by providing a larger membrane area in the oscillating membrane assembly. By an 
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appropriate manipulation of hydrodynamic conditions during the process scaling up, it 
is possible to obtain small liposomes with a narrow size distribution. These results 
show great potential of microengineered membranes with constant pore spacing to be 
used for design, rationalization and intensification of industrial production of 
liposomes. 
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Nomenclature

A Membrane surface area (m2

a

)

Amplitude of membrane oscillations (m)

b Blade height (m)

D Stirrer diameter (m)

D Effective membrane diameter (m)m

d Pore diameter (m)p

f Frequency of membrane oscillations (Hz)

H Height of liquid layer in stirred cell (m)

h Height of cross flow channel (m)

J Transmembrane flux (l m 2 h 1

n

)

Number of blades (-)b

n Number of pores (-)p

Q Flow rate (ml/min)

R Aqueous to organic phase volume ratio (-)

Re Rotational Reynolds number (-)

r Radial distance from membrane center (m)

r Transitional radius, i.e. a value of r at =trans max

S

(m)

Pore spacing (interpore distance) (m)

T Internal diameter of stirred tank (m)

t Time (s)

W Width of cross flow channel (m)

Boundary layer thickness (m)

Membrane porosity (-)
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Viscosity (Pa s)

Density (kg m-3)

Shear stress on membrane surface (Pa)

Peak shear stress on membrane surface (Pa)max

Angular velocity (rad s-1)
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Abstract

Two novel modifications of the ethanol injection method have been applied to 
produce Lipoid E80 and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine) liposomes: (i) injection of organic lipid solution through a 
microengineered nickel membrane whose surface was kept under controlled shear 
conditions and (ii) injection of organic phase through a tapered-end glass capillary 
into co-flowing aqueous stream using coaxial assemblies of glass capillaries. The 
organic phase was composed of 20 mg/ml of phospholipids and 5 mg/ml of 
cholesterol dissolved in ethanol and the aqueous phase was ultra-pure water. Self-
assembly of phospholipid molecules into multiple concentric bilayers via 
phospolipid bilayered fragments was initiated by interpenetration of the two 
miscible solvents after organic phase injection. The mean vesicle size in the 
membrane method was 80 3 nm and consistent across all of the devices (stirred 
cell, cross-flow module and oscillating membrane system), indicating that local or 
temporal variations of the shear stress on the membrane surface had a negligible 
effect on the vesicle size, on the condition that a maximum shear stress was kept 
constant. The mean vesicle size in co-flow microfludic device decreased from 131 
to 73 nm when the orifice diameter in the injection capillary was reduced from 209 
to 42 m at the aqueous and organic phase flow rate of 25 and 5.55 ml/h, 
respectively. The vesicle size was significantly affected by the mixing efficiency, 
which was controlled by the orifice size and phase flow rates. The smallest vesicle 
size was obtained under conditions that promote the highest mixing rate.

Key words: Liposomes - Laminar co-flow - Micromixing - CFD simulation -
Microfluidic mixer - Membrane dispersion
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1. Introduction

Liposomes are spherical core-shell structures with a diameter ranging from 20 nm to 
several micrometres, composed of concentric bilayers resulting from the self-assembly 
of phospholipids in an aqueous solution [1]. The polar head groups of phospholipids 
are located at the surface of the bilayer membranes, whereas the fatty acid chains form 
the hydrophobic core of the membranes. Liposomes can be multi-, oligo- or 
unilamellar, containing many, a few, or one bilayer shell(s), respectively. Because of 
the ability of liposomes to encapsulate both hydrophobic and hydrophilic actives, 
selectively transport molecules across the bilayer(s), and attach site-specific ligands 
and stabilizing polymers to their surface, liposomes hold great potential as carriers 
and/or delivery vehicles for pharmaceuticals [2], enzymes [3], genes [4], and gases [5],
and as micro/nano-reactors for biomedical applications [6]. Conventional liposome 
formation techniques such as lipid film hydration and solvent dispersion methods (e.g. 
ethanol or ether injection) rely on the mechanical dispersion of dried lipids or rapid 
dilution of organic lipid solutions in an aqueous environment under non-uniform 
mechanical shear. In the traditional ethanol injection method [7], a lipid solution of 
ethanol is rapidly injected through a syringe into a stirred aqueous phase. Because of 
the existence of a single injection point, mixing occurs as a result of both bulk motion 
in the aqueous phase (macromixing) and molecular or eddy diffusion (micromixing) 
(Fig. 1a). Due to irregular shear-stress profile in the vessel and variable mixing length 
scales, this method typically leads to the formation of polydisperse population of 
vesicles. Monodispersed liposomes can be produced by utilising W/O or W/O/W 
emulsions as templates to generate the vesicles [8, 9]. However, emulsion templating 
methods are complicated and used primarily for production of giant liposomes with a 
vesicle diameter above 1 m. Uniform liposomes with a mean diameter ranging from 
50 to 150 nm were produced using microfluidic flow focusing in microchannels 
fabricated on a silicon wafer by photolithography and Deep Reactive Ion Etching 
(DRIE) [10]. However, DRIE is an expensive process and the flow rate of the product 
stream in the device was very low, in the range of 25-100 l/min. There is a strong 
need for the cheaper and simpler microfluidic techniques for controlled formation of 
liposomes that can be used at larger production scales.

In this work, two novel microfluidic strategies of liposome formation were used: (i) 
injection of ethanolic lipid solution through a microporous membrane whose surface 
was kept under controlled shear-stress conditions; (ii) injection of ethanolic phase 
through a tapered-end capillary into co-flowing aqueous phase using coaxial assembly 
of glass capillaries. Glass capillary devices have been used for making emulsions [11],
microparticles [12], and giant vesicles [9] with a controllable size. However, so far, 
these devices have not yet been used for production of nanosized vesicles. 
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Figure 1. Liposome production by the ethanol injection method: (a) direct dissolution 
(macromixing + micromixing); (b) membrane injection (direct micromixing).

In the membrane micromixing process, mixing occurs only at the microscale level, 
because the membrane provides numerous micro-injection points to finely disperse 
organic phase into the aqueous phase without intermediate macromixing stage (Fig. 
1b). Membrane emulsification also involves injection of organic phase into aqueous 
phase [13, 14], but in membrane micromixing the organic and aqueous phase are 
completely miscible and the process does not result in formation of emulsion droplets. 
Liposomes were previously prepared using polymeric hollow fibre and Shirasu Porous 
Glass (SPG) membranes in cross-flow configuration [15, 16]. However, both 
membrane types have a sponge-like structure with irregularly shaped, interconnected 
pores [17]. In this work, we have used microengineered membranes consisting of 
evenly spaced, unconnected pores of uniform size and regular cylindrical shape.

2. Materials and methods
2.1 Reagents

Phospholipids used in this work were POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine) and Lipoid E80 (egg yolk lecithin which contains 82% of 
phosphatidyl-choline and 9% of phosphatidyl-ethanolamine), both purchased from 
Lipoïd GmbH (Ludwigshafen, Germany). Cholesterol supplied from Sigma-Aldrich 
Chemicals (Saint Quentin Fallavier, France) was used as a stabiliser of phospholipid 
bilayers. 95 % analytical-grade ethanol supplied by Fisher Scientific (United 
Kingdom) was used as a volatile organic solvent to dissolve lipids prior to injection. 
Ultra-pure water was obtained from a Millipore Synergy® system (Ultrapure Water 
System, Millipore) and used as a dilution medium for organic lipid solutions.



164 
 

2.2 Membrane dispersion devices

The membranes used were nickel membranes with a pore size of 5 μm and pore 
spacing of 200 μm, fabricated using UV-LIGA (Ultraviolet Lithography, 
Electroplating, and Molding) technology [18], supplied by Micropore Technologies 
Ltd. (Hatton, Derbyshire, UK). Three different membrane rigs were used, as shown in 
Fig. 2. In the stirred cell (Fig. 2a), the aqueous phase was agitated by a paddle-blade 
stirrer attached above the membrane and the organic phase was injected through the 
membrane using a peristaltic pump (Watson Marlow 101U, Cornwall, UK). The 
effective diameter of the membrane was 3.3 cm and a corresponding membrane area 
was 8.55 cm2. The cross flow module (Fig. 2b) contained a flat membrane with 4 
separate active regions, each with a diameter of 7 mm, providing the total membrane 
area of 1.54 cm2. A shear stress was provided by recirculating the aqueous phase 
above the membrane surface through a cross-flow channel, 20 mm wide and 1 mm 
high. The organic phase was injected through the membrane using a syringe pump 
(Havard Appartus 11 Plus), while a peristaltic pump (Watson Matlow 603S) was used 
to recycle the aqueous phase between the module and an aqueous phase tank. The 
oscillating membrane rig (Fig. 2c) was composed of a ring membrane with a diameter 
of 30 mm, a height of 20 mm, and an effective area of 34.1 cm2. The oscillation signal 
was provided by an audio generator (Rapid Electronics), which fed a power amplifier 
driving the electro-mechanical oscillator on which the inlet manifold and membrane 
were mounted. The injection manifold had internal drillings to allow passage of the 
organic phase by a syringe pump (Harvard Apparatus 11 Plus).  

Figure 2. Membrane devices used in this work supplied by Micropore Technologies 
Ltd. (Hatton, Derbyshire, UK): (a) stirred cell (Dispersion Cell); (b) cross-flow 
membrane system; (c) vibrating ring membrane. The red line in figure (a) shows the 
distribution of the shear stress on the membrane surface.
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In all membrane devices the organic phase was a lipid mixture composed of 20 mg/ml

Experimental procedure

POPC and 5 mg/ml cholesterol dissolved in ethanol. The stirred cell was filled with 60 
ml of ultrapure water and agitated at 600 rpm, followed by injection of 13 ml of the 
organic phase through the membrane at 2 ml/min. In the cross-flow system, overall 
107 ml of the organic phase was injected through the membrane at 36 ml/min into 480 
ml of the aqueous phase recirculating in the system. The flow rate above the 
membrane was maintained at 3.7 l/min. In the oscillating membrane system, the ring 
membrane, oscillating with 40 Hz frequency and 1.2 mm amplitude, was immersed 
into a beaker containing 480 ml of the aqueous phase and 107 ml of the organic phase 
was injected through the membrane at 8 ml/min. In all membrane devices, a special 
precaution was taken to remove all air bubbles from the organic phase before injection. 
The above mentioned operating conditions were so adjusted to keep a constant 
transmembrane flux of 140 l/m2

The maximum shear stress on the membrane surface was calculated using the 
equations given in Table 1. 

/h, a constant maximum shear stress on the membrane 
surface of 4.7 Pa, and a constant aqueous to organic phase volume ratio in the 
preparation before ethanol evaporation of 4.5. After each experiment, the membrane 
was washed by sonication in ethanol for 1 h, followed by soaking in a hydrophilic 
wetting agent for 30 min.

Table 1. Equations for the maximum shear stress at the membrane/aqueous phase 
interface in different membrane devices as a function of system geometry, process 
parameters and physical properties of the continuous phase. 

Membrane set-up
Maximum shear stress on membrane 

surface

Shear variations

Temporal Local

Stirred cell )/(
825.0

max
aqaq

transaq r
* - +

Cross flow 
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Shear stress on the membrane surface in a stirred cell varies in the radial direction and 
has a maximum value at the transitional radius, rtrans

2.3 Co-microfluidic device

. The transitional radius depends 
on the stirring rate, physical properties of the continuous phase and cell geometry [19]
and was 1.1 cm for the conditions used in this work. In oscillating membrane system, a 
shear stress on the membrane surface is a sinusoidal function of time and the 
maximum shear is reached twice during each period of oscillation [20]. In a cross-flow 
system, shear stress on the membrane surface is neither time nor location dependent 
and can be controlled by the rate of recirculation of the aqueous phase and the 
dimensions of the cross-flow channel.

The main body of the microfluidic device was made up of two glass capillaries: a 
round inner capillary (1 mm outer diameter and 0.58 mm inner diameter), and an outer 
square capillary (1 mm inner dimension). One end of the inner capillary was shaped 
into a tapering orifice with an inner diameter ranging from 40 to more than 200 μm. A 
P-97 Flaming/Brown micropipette puller (Sutter Instrument Co.) was used to produce 
a sharp tip of about 20 μm in diameter. The orifice diameter was then increased by 
sanding the tip against sandpaper until the orifice with a required size and smooth rim 
was obtained. A microforge (MF-830, Intracel Ltd.) microscope was used to inspect 
the orifice size via a built-in scale. The round capillary was then inserted halfway into 
the square capillary and aligned. Both capillaries were glued onto a microscope slide 
and two needles (BD Precisionglide®, Sigma-Aldrich, O.D. 0.9 mm) were glued onto 
the slide such that the entrances to each capillary were situated inside the hubs (Fig. 
3a). A PTFE tubing (I.D. 0.80 mm) was used to deliver the organic phase to the inner 
capillary, while a PE tubing was used to deliver the aqueous phase to the square 
capillary. Another PTFE tubing (I.D. 1.5 mm) was attached to the outlet of the square 
capillary to transfer the liposomal solution into a vial.

Computational Fluid Dynamics (CFD) simulations were performed to study flow 
dynamics and mixing in the vicinity of the orifice. The problem was solved in 
dimensional form using Comsol Multiphysics 4.3b. The computational geometry was 
simplified by considering one fourth of the microfluidic device along the central axis. 
The length of the square capillary after the orifice was chosen to be sufficiently long 
(3.5 times the width of the square channel) to avoid end effects affecting the dynamics 
in the vicinity of the orifice. The model was developed using Laminar Flow model (for 
fluid flow) and Transport of Concentrated Species (for convection and diffusion). The 
density and viscosity of water-ethanol solution were determined using the Jouyban-

CFD simulations
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Acree model [21]. The boundary conditions for the system were specified as no-slip
and no flux at walls, velocity and mass fractions at the inlets and pressure boundary at 
the outlet. Computations were carried out using 1,438,532 tetrahedral mesh elements 
on a Windows workstation following a grid resolution study. The flow ratio between 
ethanol and water was varied using parametric continuation feature available in the 
package.

Figure 3. Microfluidic co-flow device consisted of coaxial assembly of glass 
capillaries glued onto a microscope slide: (a) Top view and microscopic image of a 
tapered section of the inner capillary with 209 m orifice diameter; (b) side view of 
the device and the experimental set-up.  
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In all microfluidic experiments the organic phase was a lipid mixture composed of 20 
mg/ml Lipoid E80 and 5 mg/ml cholesterol dissolved in ethanol. The organic and 
aqueous phases were delivered from SGE gas tight syringes to their respective 
capillaries using 11 Elite syringe pumps (Harvard Apparatus). The micro-scale mixing 
process then took place in the square capillary as the organic stream was diluted by 
Milli-Q water. This was observed through a Phantom V9.0 high-speed camera 
(Ametek, USA) mounted on an inverted microscope (XDS-3, GX Microscopes, UK). 
The process was recorded with 25 frames per second at 576 288 resolution and the 
recordings were analysed using ImageJ software.

Experimental investigations

2.4 Analysis and characterization of samples

After production, the liposomal suspension was collected and remaining ethanol was 
removed by evaporation under reduced pressure in a vacuum oven (Buchi, Flawil, 
Switzerland). The particle size distribution was measured by differential centrifugal 
sedimentation using a CPS disc centrifuge, model DC 24000 (CPS instruments, 
Florida, USA). Prior to the analysis, the instrument was calibrated using an aqueous 
suspension of polybutadiene particles of a known size distribution and a mean size of 
402 nm. The mean particle size of liposomes was expressed as the number-average 
mean diameter, dav and the polydispersity was expressed as the coefficient of 

av

3. Results and discussion

) × 100, where rticle diameters.

3.1 Membrane dispersion

The particle size distribution of multilamellar liposomes prepared in different devices 
is shown in Fig. 4. The mean vesicle size of 80 3 nm was consistent across all of the 
devices, indicating that local or temporal variations of the shear stress on the 
membrane surface had a negligible effect on the mean vesicle size, on the condition 
that a maximum shear stress was kept constant. The largest mean vesicle size (dav = 86 
nm) and the widest size distribution (CV = 36%) were obtained in the cross flow 
system, due to the long recirculation time of the liposomal suspension of nearly 300 
min, which can lead to deposition of newly formed bilayered fragments onto the 
surface of the vesicles already present in the suspension. The smallest and most 
uniform vesicles (dav = 80 nm and CV = 26%) were obtained in the oscillating system, 
which can be attributed to shear stress generated only on the membrane surface, while 
agitation was negligible in the bulk of the aqueous phase. The fabrication process 
using oscillating membrane holds greatest potential to be transferred from batch to 
continuous operation, because hydrodynamic conditions on the membrane surface are 
independent on the geometry of the cross-flow channel, flow rate above the membrane 
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surface or membrane size. In cross-flow membrane systems, shear stress on the 
membrane surface is controlled by fluid flow over the membrane surface, which 
means that the aqueous phase flow rate must be relatively high to generate sufficiently 
high stress on the membrane surface to achieve satisfactory mixing efficiency. As a 
result, recirculation of the aqueous phase is inevitable because the liposomal 
suspension would be too diluted in a single-pass operation. In oscillating membrane 
system, the shear stress on the membrane surface is decoupled from the cross flow 
velocity and controlled only by the frequency and amplitude of the membrane 
oscillation. Thus, very low cross-flow velocities can be used in continuous operation 
and recirculation of the aqueous is not needed, which can help to limit secondary 
interactions between particles in the product stream.

Figure 4. Particle size distribution of liposomal suspensions prepared using three 
different membrane dispersion devices.

3.2 Microfluidic vesicle formation

We have used CFD to simulate flow patterns in co-flow microfluidic device at 
constant organic phase flow rate (Qo = 0.6 ml/h) and a variable water flow rate. Fig. 5
shows the distribution of local velocities within the device with an orifice diameter of 
209 m. The maximum velocity was reached in the centre of the orifice. The organic 
phase velocity dropped significantly downstream of the orifice, due to sudden increase 
in the cross-sectional area and the drag force imposed by the surrounding water phase. 
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Flow rates Surface: Velocity magnitude (m/s), Arrows: Velocity field

(a)

Qw
Q

=0.6 ml/h
o = 0.6 ml/h

(b)

Qw
Q

=3 ml/h
o = 0.6 ml/h

(c)

Qw
Q

=4.8 ml/h
o = 0.6 ml/h

(d)

Qw
Q

=6 ml/h
o = 0.6 ml/h

(e)

Qw
Q

=7.2 ml/h
o = 0.6 ml/h

(f)

Qw
Q

=9 ml/h
o = 0.6 ml/h

Figure 5. Distribution of fluid velocities in co-flow capillary device at the organic 
phase flow rate, Qo, of 0.6 ml/h and increasing water flow rate, Qw. The orifice 
diameter is 209 m.
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The velocity profile was flat at a distance of one orifice diameter (D) downstream of 
the orifice with almost no difference in fluid velocity over the cross section. A 
parabolic velocity profile was established at a distance of 2-3D downstream of the 
orifice.

The distribution of fluid densities in the device is shown in Fig. 6. The orifice size and 
fluid flow rates are the same as those in Fig. 5. The organic phase forms a jet that 
extends downstream of the orifice. As the water flow rate increases from 0.6 to 9 ml/h,
the jet gets progressively shorter and thinner. The smaller jet diameters at the higher 
water flow rates were due to the higher jet velocities, as shown in Fig. 5. The mixing 
of the two liquids is more efficient at the higher water flow rates, because of the 
shorter diffusion distances x for thinner jets. In laminar flow, the average time for 
molecules to diffuse over a distance x is given by [22]:

t = x2

where D is the diffusion coefficient. In this study, x is the jet radius and therefore, the 
mixing time is proportional to the square of the jet radius.   

/2D                (1)

Microscopic images of real flow patterns at different flow rates of the two phases are 
shown in Fig. 7. We have identified three main regimes of fluid flow in the collection 
capillary: parallel two-phase flow, dripping, and jetting. At low flow rates of both 
phases, two parallel coexisting streams were formed – organic stream in the central 
part of the capillary and liposomal suspension in the annular space between the 
organic stream and the wall (Fig. 7a). The flow pattern was similar to that predicted by 
the CFD simulation shown in Fig. 6(a). The rate of convective transport of ethanol in 
the downstream direction was large compared to the rate of molecular diffusion of 
ethanol in the radial direction and consequently, a diameter of the organic stream in 
the square capillary was almost constant. Vesicles were visible in the aqueous phase, 
because they formed microscopic unstable aggregates, which disappeared upon 
dilution. As the water flow rate increased from 0.6 to 5 ml h-1, the organic phase 
formed a short hemispherical jet near the orifice (Fig. 7b). The interface between the 
organic and water phase was visible due to difference in refractive indices of water 
(1.33) and ethanol (1.36) and accumulation of phospholipid bilayers at the interface 
caused by an abrupt change in the ethanol concentration. The position of the interface 
would be stationary under steady-state conditions, but due to small periodic 
fluctuations in the flow rates caused by the pumps imperfections, the interface 
oscillated slightly in the axial direction, which enhanced the interfacial mass transfer. 
Aggregation of vesicles in the aqueous phase was less pronounced than in the previous 
case, due to higher dilution of the organic phase.
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Flow rates Surface: Density (kg/m),    Contour: Mass fraction  
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o = 0.6 ml/h

 

(d)

Qw
Q

=6 ml/h
o = 0.6 ml/h

 

(e)

Qw
Q

=7.2 ml/h
o = 0.6 ml/h

 

(f)

Qw
Q

=9 ml/h
o = 0.6 ml/h

 

Figure 6. Distribution of fluid densities in co-flow capillary device at the organic 
phase flow rate,Qo,of 0.6 ml/h and increasing water flow rate, Qw. The orifice 
diameter is 209 m. 
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As the water flow rate increased from 5 to 15 ml h-1, the interface was pulled
downstream, forming a cylindrical jet with a diameter approximately equal to the 
orifice diameter (Fig. 7c). We observed two distinct jet morphologies in the jetting 
regime. A narrowing jet was generated when the average velocity of the water stream 
at the orifice was higher that the organic phase velocity (Uw > Uo), as shown in Figs.
7(d) and (e). In Fig. 7(d), Uw = 4.3 mm/s and Uo = 0.8 mm/s. This velocity difference 
accelerated the jet, causing it to narrow as it moved downstream. The jet was longer at 
the higher water flow rate, as shown in Figs. 7(d) and (e). A good match between CFD 
simulation and real flow pattern at the experimental conditions is shown in Figs. 7(e)
and (f).

Figure 7. Flow patterns in co-flow capillary device with an orifice size of 209 m at 
different phase flow rates: (a) Qw = 0.6 ml/h, Qo = 0.6 ml/h; (b) Qw = 5 ml/h, Qo = 0.6 
ml/h; (c) Qw = 15 ml/h, Qo = 0.6 ml/h; (d) Qw = 15 ml/h, Qo = 0.1 ml/h; (e) Qw = 25 
ml/h, Qo = 0.1 ml/h; (f) Qw = 25 ml/h, Qo = 0.1 ml/h, CFD simulation; (g) Qw = 25 
ml/h, Qo = 12 ml/h; (h) Qw = 25 ml/h, Qo = 20 ml/h. 
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A widening jet was observed when the organic phase was injected at a much higher 
velocity than the average velocity of the water (Fig. 7f). A high shear at the interface 
due to large difference in fluid velocity at the outlet of the injection tube (Uo = 97 
mm/s, Uw

The particle size distribution of liposomes prepared using co-flow capillary devices 
with a variable orifice size is given in Fig. 8. At the aqueous and organic phase flow 
rate of 25 and 5.55 ml/h, respectively, the mean vesicle size decreased from 131 to 73 
nm when the orifice diameter decreased from 209 to 42 m. It can be explained by the 
fact that the organic phase jet got thinner when the orifice size was reduced, which 
reduced significantly the mixing time, according to Eq. (1). The smaller vesicles are 
formed at the higher mixing efficiency [23].

= 7 mm/s) decelerated the jet, causing it to widen until it was disintegrated. 
At very high velocities of both phases in the collection capillary, a vortex was formed 
in the aqueous phase around a jet, characterised by high concentration of aggregated 
liposomes (Fig. 7h).

Figure 8. Particle size distribution of liposomal suspensions prepared using co-flow 
capillary device as a function of orifice diameter. Qw = 25 ml/h, Qo = 5.55 ml/h, 
Qw/Qo = 4.5. 
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4. Conclusion

Size-controlled liposomes were produced by controlled mixing of ethanolic lipid 
solutions with water via a microengineered membrane or tapered-end glass capillary. 
The mean size of liposomes produced in different membrane devices was highly 
consistent when the maximum shear stress on the membrane surface was kept 
constant, although temporal or spatial distribution of shear stress in these devices was 
significantly different. The oscillating membrane system was found to be very suitable 
for scale-up, because shear stress on the membrane surface was independent on the 
system geometry, fluid flow rate and membrane size.

A mixing rate in co-flowing laminar streams depends on the morphology of an organic 
phase jet formed downstream of the injection orifice. A high mixing efficiency and 
low mixing time associated with small vesicle size were achieved at high flow rates of 
aqueous phase and/or small orifice diameter. The microfluidic strategies developed in 
this work can be used for production of a wide range of nanopraticles, such as 
micelles, gold nanoparticles, biodegradable polymeric nanoparticles, etc. 
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Nomenclature

a Amplitude of membrane oscillation

b Height of stirrer blade (=12 mm)

D Stirrer diameter (=32 mm)

f Frequency of membrane oscillation

h Height of cross flow channel (=1 mm)

nb

r

Number of stirrer blades

trans

Q Volume flow rate in cross-flow channel

Radial distance from the axis of rotation at which the shear is maximal 

Re Rotating Reynolds number of continuous phase (= cD2/(2 c

T Internal diameter of stirred cell (=40 mm)

))

W Width of cross flow channel (=20 mm)

w Viscosity of aqueous phase 

w

Angular velocity of stirrer

Density of aqueous phase

max Maximum shear stress on membrane surface



177 
 

References

[1] A.D. Bangham, R.W. Horne, Negative staining of phospholipids and their 
structural modification by surface-active agents as observed in the electron 
microscope, J. Mol. Biol. 8 (1964) 660–668. 

[2] V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers, Nat. 
Rev. Drug Discovery 4 (2005) 145–160.

[3] P. Walde, S. Ichikawa, Enzymes inside lipid vesicles: preparation, reactivity and 
applications, Biomol. Eng. 18 (2001) 143–177.

[4] N.S. Templeton, D.D. Lasic, P.M. Frederik, H.H. Strey, D.D. Roberts, G.N. 
Pavlakis, Improved DNA: liposome complexes for increased systemic delivery and 
gene expression, Nat. Biotechnol. 15 (1997) 647 652.

[5] E. Unger, D. Shen, T. Fritz, B. Kulik, P. Lund, G.L. Wu, D. Yellowhair, R. 
Ramaswami, T. Matsunaga, Gas filled lipid bilayers as imaging contrast agents, J. 
Liposome Res. 4 (1994) 861 874.

[6] A. Graff, M. Winterhalter, W. Meier, Nanoreactors from polymer-stabilized 
liposomes, Langmuir 17 (2001) 919–923.

[7] M.J. Campbell, Lipofection reagents prepared by a simple ethanol injection 
technique, Biotechniques 18 (1995) 1027 1032. 

[8] T. Kuroiwa, H. Kiuchi, K. Noda, I. Kobayashi, M. Nakajima, K. Uemura, S. Sato, 
S. Mukataka, S. Ichikawa, Controlled preparation of giant vesicles from uniform water 
droplets obtained by microchannel emulsification with bilayer-forming lipids as
emulsifiers, Microfluid. Nanofluid. 6 (2009) 811–821. 

[9] H.C. Shum, D. Lee, I. Yoon, T. Kodger, D.A. Weitz, Double emulsion templated 
monodisperse phospholipid vesicles, Langmuir 24 (2008) 7651–7653.

[10] A. Jahn, S.M. Stavis, J.S. Hong, W.N. Vreeland, D.L. DeVoe, M. Gaitan, 
Microfluidic mixing and the formation of nanoscale lipid vesicles, ACS Nano 4 (2010) 
2077–2087.

[11] A.S. Utada, A. Fernandez-Nieves, J.M. Gordillo, D.A. Weitz, Absolute instability 
of a liquid jet in a coflowing stream, Phys. Rev. Lett. 100 (2008) Art. No. 014502.

[12]
templating of poly(lactic acid) particles: droplet formation behavior, Langmuir 28, 
(2012) 12948–12954.



178 
 

[13] E. Egidi, G. Gasparini, R.G. Holdich, G
Membrane emulsification using membranes of regular pore spacing: Droplet size and 
uniformity in the presence of surface shear, J. Membr. Sci. 323 (2008) 414–420.

[14] Influence of process parameters on droplet size 
distribution in SPG membrane emulsification and stability of prepared emulsion 
droplets, J. Membr. Sci. 225 (2003) 15–23.

[15] A. Laouini, C. Jaafar-Maalej, S. Sfar, C. Charcosset, H. Fessi, Liposome 
preparation using a hollow fiber membrane contactor—Application to spironolactone 
encapsulation, Int. J. Pharm. 415 (2011) 53–61.

[16] T.T. Pham, C. Jaafar-Maalej, C. Charcosset, H. Fessi, Liposome and niosome 
preparation using a membrane contactor for scale-up, Colloids Surf., B 94 (2012) 15–
21.

[17]
hydrophobic Shirasu-porous-glass (SPG) membranes to pure liquids and its 
microstructure, J. Membr. Sci. 250 (2005) 69 77.

[18] G.T. Vladi
using membrane, microchannel and microfluidic emulsification devices, Microfluid. 
Nanofluid. 13 (2012) 151 178.

[19] M.M. Dragosavac, M.N. Sovilj, S.R. Kosvintsev, R.G. Holdich, G.T. 
Vlad -in-water emulsions containing unrefined 
pumpkin seed oil using stirred cell membrane emulsification, J. Membr. Sci. 322 
(2008) 178–188.

[20]
Membrane emulsification with oscillating and stationary membranes, Ind. Eng. Chem. 
Res. 49 (2010) 3810–3817.

[21] I.S. Khattab, F. Bandarkar, M.A.A., Fakhree, A. Jouyban, Density, viscosity, and 
surface tension of water+ethanol mixtures from 293 to 323 K, Korean J. Chem. Eng. 
29 (2012) 812–817. 

[22] Z. Zhang, P. Zhao, G. Xiao, Focusing-enhanced mixing in microfluidic channels, 
Biomicrofluidics 2 (2008) 014101.

[23]
Preparation of liposomes: a novel application of microengineered membranes, RSC 
Adv. 3 (2013) 4985-4994.



179 
 



 
180 

 

  



 
181 

 

 
 
 

Encapsulation de la 
vitamine E dans une 

nano-émulsion en 
utilisant des 

membranes SPG 
  



 
182 

 



 
183 

 

Encapsulation de la vitamine E dans une nano-
émulsion en utilisant des membranes SPG

Les nano-émulsions sont le plus souvent des émulsions H/E dont la taille des 
gouttelettes lipidiques est comprise entre 20 et 200 nm. Cette grande finesse de la 
taille des globules lipidiques confère à ce genre d’émulsion un certain nombre 
d’avantages : (i) contrairement aux émulsions classiques et aux microémulsions qui 
nécessitent une teneur élevée de tensioactifs, les nano-émulsions requirent 
généralement de très faibles quantités de surfactants,  (ii) une meilleure efficacité 
de la délivrance des médicaments due à la très grande surface spécifique du 
vecteur, (iii) une très bonne stabilité physique. Au vu de tous ces avantages, 
l’utilisation des nano-émulsions comme vecteurs de molécules actives en 
pharmacie et en cosmétologie ne cesse de progresser.

Les nano-émulsions peuvent être préparées par diverses méthodes; la plus connue 
est celle qui utilise des homogénéisateurs du type rotor/stator. Toutefois cette 
technique présente l’inconvénient d’une consommation très élevée d’énergie et une 
faible maîtrise de l’uniformité de la taille de l’émulsion obtenue. La préparation des 
émulsions en utilisant une membrane, appelé encore émulsification membranaire, 
permet de pallier à ces inconvénients. Ce travail, réalisé au Laboratoire 
d’Automatique et de Génie des Procédés (LAGEP), compte parmi les premiers à 
étudier la préparation de nano-émulsions en utilisant des contacteurs à membrane. 

Ce travail présente les différentes étapes d’encapsulation de la vitamine E dans une 
nano-émulsion en commençant par l’optimisation de la formulation galénique 
(études de solubilités et construction de diagrammes ternaires), puis par 
l’optimisation du procédé de fabrication en utilisant des membranes SPG. Une 
attention particulière a été accordée à la reproductibilité du procédé développé ainsi 
que la stabilité des préparations. Il en sort principalement de cette étude que la 
vitamine E peut être encapsulée dans des nano-émulsions préparées par 
émulsification membranaire. Le procédé de préparation peut être parfaitement 
maitrisé par simple ajustement des paramètres opératoires. La méthode développée 
s’avère simple rapide et efficace pour une production contrôlée de nano-émulsions.  

Ce chapitre sera présenté sous forme d’un article qui a été publié en 2012 dans 
« Journal of Membrane Science ».
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Abstract

The purpose of our study was to develop a vitamin E-loaded nano-emulsion which 
could be a convenient drug carrier to be used for targeting the lungs. The nano-
emulsion components (MCT oil and surfactant mixture Tween 80/Brij 35) were 
selected after solubility studies, and the concentration range was chosen after 
construction of ternary phase diagrams. For emulsion manufacturing, an SPG 
membrane emulsification process was developed. Key parameters influence on 
nano-emulsion characteristics was investigated. It has been established that small 
droplets and narrow size distribution were favored at low transmembrane pressure, 
high continuous phase flow rate and high agitation speed. Under optimal 
conditions, nano-emulsion with a span factor of 0.25 ± 0.01, which meant high
monodispersity, and an average size of 78 ± 3 nm, was prepared. The high zeta 
potential of -22.9 ± 0.9 mV was sufficient to prevent droplet coalescence. Vitamin 
E was successfully encapsulated within the optimized nano-emulsion with high 
entrapment efficiency value (99.7 ± 0.4%). Transmission electron microscopy 
images revealed spherical-shaped and well-distributed nano-droplets. Additionally,
special attention was paid on process reproducibility and preparations stability. 
Results confirmed the robustness of the optimized membrane emulsification 
technique which seems to be fast, simple and reliable.

Key words: Nano-emulsion – SPG membrane – Membrane emulsification –
Vitamin E – Cigarette smoke toxicity.
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1. Introduction

Emulsions with droplet size in the nanometric scale (typically in the range 20–200 nm) 
are often referred in the literature to as mini-emulsions [1], submicron emulsions [2],
nano-emulsions [3], etc. The term nano-emulsion is preferred because in addition to 
give an idea of the nanoscale size range of the droplets, it avoids misinterpretation 
with the term micro-emulsion (which are thermodynamically stable systems). Due to 
their size characteristics, nano-emulsions appear transparent to slightly milky. The 
very small droplet size causes a large reduction in the gravity force and the Brownian 
motion may be sufficient for overcoming sedimentation or creaming. Therefore, the 
long-term physical stability of nano-emulsions (with no apparent flocculation or
coalescence) makes them unique and they are sometimes referred to as “approaching 
thermodynamic stability” [4]. These properties make nano-emulsions of interest not 
only for fundamental studies, but also for practical applications (pharmaceutical, 
cosmetic, food, chemical fields, etc). In addition to their inherently high colloid 
stability, the interest for nano-emulsions could be explained by the following 
advantages: (i) unlike microemulsions (which require a high surfactant concentration 
usually around 20% and higher), nano-emulsions could be prepared using surfactant 
concentration less than 10%. (ii) nano-emulsions are suitable for efficient delivery of 
active ingredients, as the large surface area of the nano-emulsion system allows rapid 
penetration of actives.

Emulsion manufacturing is a very important process since there is a need to produce 
emulsions in which the droplets have a defined size and a narrow size distribution. 
Conventional methods for emulsion production are based on rotor–stator or high 
pressure homogenizer systems, in which emulsion droplet formation is mainly 
dependent on the exertion of strong external dissipated energy into fluid mixtures 
([5,6]). However it is well known that a number of problems may be associated with 
these existing methods of production. Indeed, because the dissipated energy cannot be 
controlled homogeneously and efficiently, an emulsion with a broad size distribution is 
often obtained and this, in turns affects the emulsion characteristics and stability [7].
Thus, a great amount of work has focused on exploring new devices with milder and 
more controllable dissipating techniques to produce a uniform emulsion. Among them, 
the phase inversion temperature method could be an alternative to high-energy 
emulsification methods. This technique involves transitional inversion induced by 
changing factors that affect the HLB of the system, such as temperature, electrolyte 
concentration, etc [8]. However, this method has several limitations such as requiring a 
large amount a surfactant and a careful selection of surfactant–cosurfactant 
combination, and is not applicable to large scale industrial productions [9].

Membrane emulsification, developed for the first time by Nakashima et al. [10], has 
therefore received increasing attention over the last 2 decades. This relatively new 



190 
 

method is attractive given the low energy consumption, the better control of droplet
size and size distribution and especially the mildness of the process. Applications of 
membrane emulsification were reviewed by several authors (for example Nakashima 
et al. [11], Jocelyne and Tragardh [12], Vladisavljevic and Williams [13], Charcosset
[14]). This technique allowed the preparation of emulsions, precipitates, polymeric and 
lipidic nanoparticles and it was also recently reported for liposomes production ([15]
and [16]). In membrane emulsification, the to-be-dispersed phase is pressed through a
porous membrane while the continuous phase flows along the membrane surface. 
Droplets grow at pores and detach at a certain size, which is determined by the balance 
between the forces acting on the droplets. It follows that the characteristics of the 
produced emulsions, particularly their size distribution, are influenced by several 
factors including membranes properties (hydrophobicity, nominal pore size…), 
experimental conditions (tangential flow, transmembrane pressure, temperature…) and 
properties of the continuous and dispersed phases (viscosity of the 2 phases, 
emulsifiers responsible for stabilizing the emulsion…). Considerable amount of work 
has been carried out in the field of emulsions, whereas there is only one report to our 
knowledge on the preparation of nano-emulsions using membranes [17].

In this study, we examined the influence of several factors when producing oil-in-
water nano-emulsions. Understanding the effect of these factors allowed suitable 
choice of operating parameters in order to produce nano-emulsions with a narrow
droplet size distribution. The optimized process was then applied to vitamin E 
encapsulation. Vitamin E is an essential nutrient which has several isomers including 

-, -, - and -tocopherols. The activity and bioavailability of which vary depending 
on their structures and physico-chemical properties. Among these isomers, -
tocopherol has the highest bioavailability [18]. This isomer prevents oxidative damage 
and lipid peroxidation in central and peripheral nervous systems [19]. Because of its
promising therapeutic potential and safety, -tocopherol has been tested to prevent 
cigarette smoke toxicity since several pulmonary disorders are mainly caused by 
oxidative stress phenomena [20]. Nevertheless, the oral or intravenous administration
failed to restore the broncho-alveolar level of vitamin E [21]. Recently, attention has
been drawn to nanoencapsulated systems, showing high intracellular uptake and 
improved stability and solubility of active substances; in particular nanoemulsion
formulations have been used for the solubilization of poorly water-soluble drugs [22].
Therefore, vitamin E-loaded nano-emulsion with adequate size distribution and high 
loading capacity could be an effective drug carrier to target the lungs after its 
pulmonary administration.

The aims of our study are to:

– Develop a nano-emulsion formula for vitamin E encapsulation. For this, solubility 
studies were achieved in order to choose the suitable components (oil and surfactants) 
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and ternary phase diagram were constructed in order to determine the best
concentration range.

– Optimize the preparation method. For this, the influence of process parameters (oil 
phase pressure, aqueous phase flow rate, agitation speed and working temperature) on 
nano-emulsion characteristics was investigated.

– Apply the optimized method to vitamin E encapsulation. The prepared nano-
emulsions were characterized for their size, size distribution, zeta potential, viscosity, 
encapsulation efficiency and microscopic morphology.

– Finally, study the reproducibility of the process, as well as the stability of the 
prepared nano-emulsions.

2. Materials and methods
2.1 Materials

2.1.1 Reagents

-tocopherol, ascorbic acid, phosphotungstic acid, Tween 20, Tween 60 and Tween 80 
were purchased from Sigma-Aldrich Chemicals (Saint Quentin Fallavier, France). 
Butyl-hydroxy-toluene, Brij 35 and Brij 98 were supplied from MP Biomedicals 
(Illkrch- Graffenstaden, France). The oils used in this study (diethylhexyladipate, 
ethylhexyl caprilate/caprate, ethylhexyl ethylhexanoate, ethylhexyl laurate, ethylhexyl 
stearate, isononyl isononanoate and Medium Chain Triglyceride MCT 55/45) were a 
kind gift from Stéarinerie Dubois (Boulogne-Billancourt, France). Ethanol 95% and
other organic solvents of HPLC grade (acetonitrile, methanol and water) were supplied 
by Carlo Erba Reagenti (Milano, Italy). They were used such as without further 
purification. Ultra-pure water (resistivity of 18 MO/cm) was obtained from a Millipore 
Synergys system (Ultrapure Water System, Millipore).

2.1.2 SPG membranes

Shirasu Porous Glass (SPG) tubular membranes were purchased from SPG 
Technology (Miyazaki, Japan). SPG membranes are prepared by phase-separated glass 
leaching in the Na2–O–CaO–MgO–Al2O3–B2O3–SiO2 system, which is synthesized 
from volcanic ash, called Shirasu, used as the main raw material [23]. SPG membranes
are widely used for membrane emulsification. These membranes have a narrow pore 
size distribution and high mechanical strength. In the present study, 3 hydrophilic SPG 
membranes were used with 0.4 μm, 0.9 μm and 10.2 μm as nominal pore size. The 
SPG membrane dimensions were as follows: 0.125 m in length, 10-2 m in inner 
diameter, and 10-3 m in thickness. Therefore, the active membrane surface was 3.9×10-

3 m2.
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2.2 Methods
2.2.1 Vitamin E assay

The concentration of vitamin E was determined using an HPLC system (Spactra 
System SCM 1000, Providence, Rhode Island, USA). The HPLC equipment consisted 
of a P1000XR pump, an AS3000 autosampler and an UV6000LP UV/VIS detector. 
The column was a LiChrospher RP C18 column (5 mm, 15 cm×0.46 cm) (Supelco, 
Bellefonte, USA). The separation was carried out using a mixture of methanol and 
water (96:4 v/v) as the mobile phase at a flow rate of 1.6ml/min. The eluent was 
monitored at 292 nm and peaks were recorded using the chromatography data system 
software Chromo-Quest version 5.0 (Thermo Fisher Scientific, Philadelphia, USA). It
should be noted that before chromatographic data were collected, the column was 
equilibrated for 30 min with a minimum of 30 column volumes. At the end of the 
assay, a washing of the column was performed using water–acetonitrile (50:50 v/v) for 
60min. This HPLC analytical method was validated as usually required (data not
shown).

2.2.2 Solubility studies

An excess of vitamin E (about 1.5 g) was added to 15 ml of 10% w/v surfactant 
solutions containing ascorbic acid as antioxidant (15mg/ml). The solutions were 
shaken in a water bath at 25 1C for 4 day, followed by a centrifugation for 10min at 
12,000 rpm (OptimaTM Ultracentrifuge, Beckman Coulter, USA). The supernatant 
was then filtered through a membrane filter (0.22 mm) (Millipore non-sterile filters, 
Billerica, USA). The resulting solution was assayed for vitamin E using the previously 
described HPLC method.

Solubility of vitamin E in different surfactants

The surfactants tested were: Brij 35 (polyoxyethylene glycol dodecyl ether), Brij 98 
(Polyoxyethylene glycol monooleyl ether), Labrafil (Oleoyl macrogol-6 glycerides), 
Phosphatidylcholine, Span 40 (Sorbitan monopalmitate), Span 60 (Sorbitan 
monostearate), Tween 20 (polyoxyethylene glycol sorbitan monolaurate), Tween 60 
(polyoxyethylene glycol sorbitan monostearate) and Tween 80 (polyoxyethylene 
glycol sorbitan monooleate). All experiences were conducted in triplicate and the 
mean values were taken.

To find the suitable oil for preparing the nano-emulsion, the solubility of vitamin E in
various oils was measured. An excess amount of vitamin E (about 1.5 g) was added to 
3 g oil containing BHT as anti-oxidant (2 mg/g). The obtained solutions were shaken 
in a water bath at 25 °C for 4 day, followed by a centrifugation for 10 min at 12,000 

Solubility of vitamin E in different oils
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rpm. To extract vitamin E from the resulting supernatant, 2 ml of methanol containing 
BHT (1 mg/ml) was added followed by a centrifugation at 12,000 for 10 min. The 
remaining pellet was re-extracted as previously described with 2 ml methanol-BHT. 
The second extract was combined to the first one and the final mixture was centrifuged
at 10,000 rpm for 8 min. The resulting solution containing extracted vitamin E was 
passed through a membrane filter (0.22 μm) and then assayed using the HPLC 
analytical method. 

The oils tested were: diethylhexyl adipate, ethylhexyl caprilate/ caprate, ethylhexyl 
ethylhexanoate, ethylhexyl laurate, ethylhexylstearate, isononyl isononanoate and 
Medium Chain Triglyceride MCT 55/45.

2.2.3 Ternary phase diagram

Construction of a phase diagram is a useful approach to study the complex series of 
interactions that can occur when different components are mixed. Nano-emulsions 
may be formed along with various other structures (including emulsions, micelles,
micro-emulsions and various gels and oily dispersions) depending on the chemical 
composition and concentration of each component. The existence of the nano-
emulsion field was identified from the ternary phase diagrams of systems containing 
oil, surfactant and water. The oil and the surfactant that showed higher solubility for 
vitamine E were selected for the preparations of the nano-emulsions. All the mixtures 
were homogenized, and then 3 heating-cooling cycles were carried out (between 45 °C
and 5 °C, with storage of 12 h at each temperature). Finally, the mixtures were kept at 
room temperature for 72 h. Visual observations were made; a slightly milky and easily 
flowable mixture was considered to be a nano-emulsion. After the 3 day storage, 3
nano-emulsion categories were assigned: (a) stable emulsion: an homogenous solution, 
(b) partially stable emulsion: a trend to separation between the 2 phases after storage, 
and (c) unstable emulsion: separation of the 2 phases after the preparation.

2.2.4 Nano-emulsion preparation protocol

A schematic diagram of the experimental set-up used in this study is shown in Fig. 1.
The system included a positive displacement pump (Filtron, France), a pressurized 
vessel (equipped with a manometer M3) connected on one side to a nitrogen bottle 
(Linde Gas, France) and on the other side to the membrane module (with two 
manometers M1 and M2, respectively, placed at the inlet and outlet of the device). For 
the nano-emulsion preparation, the MCT oil was placed in the pressurized vessel. The 
connecting valve to the nitrogen bottle was opened and the nitrogen pressure was set at 
a fixed level. The aqueous phase, containing the surfactant mixture, was then pumped 
through the membrane module using the positive displacement pump. When the 
aqueous phase arrived to the outlet of the membrane device, the valve connecting the
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pressurized vessel to the filtrate side of the membrane module was opened so that the 
oil phase permeated through the pores of the SPG membrane into the aqueous phase. 
Nano-emulsion formation occurred as soon as the MCT was in contact with the
aqueous phase. The experiment was stopped when air bubbles started to appear in the 
tube connecting the pressurized vessel to the membrane module, indicating that the 
pressurized vessel was empty. Then, the nano-emulsion was stabilized for 15 min 
under magnetic stirring (RW 20, Ika-Werk). All experiments were carried out in a 
close loop configuration. Drug-loaded nanoemulsions were prepared as described 
above and adding the vitamine E in the oil phase.

Fig. 1. Schematic diagram of the experimental set-up.

At the end of the experiment, the SPG membrane was regenerated. The washing was 
performed by flushing the module twice with 400 ml of water and 200 ml of ethanol in 
the pressurized vessel. The membrane permeability (the slope of the permeate flow 
rate versus transmembrane pressure) was measured at the beginning of each 
experiment and was checked to be around 90% of its initial value.
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2.2.5 Nano-emulsion characterization

In order to assess the nano-emulsion quality and to obtain quantitative measurements 
that allow comparison between different batches, various parameters were measured. 
The methods included average mean size and span factor determination, zeta potential 
analysis, viscosity measurement, microscopic observation and encapsulation 
efficiency. 

Dynamic light scattering (DLS), otherwise known as photon correlation spectroscopy 
(PCS), is extensively used in size distribution analysis since it is a simple and fast
technique which allowed the detection of droplets in the range of 0.6–6000 nm [24–
26]. In this study, a Malvern Zetasizer Nano-series (Malvern Instruments Zen 3600, 
Malvern, UK) was used. Each sample was diluted 100-fold with ultra-pure water 
immediately before measurement and then was analyzed in triplicate at 25 °C. A
previous report has indicated that the dilution of samples did not change the particle 
size distribution [27]. The data on droplet size distribution were collected using the 
DTS nano software (version 5.0) provided with the instrument. The mentioned Z-
average diameter corresponds to the harmonic intensity-weighted average
hydrodynamic diameter of these droplets. In addition, the polydispersity was assessed 
by the mean of span factor defined as (d

Size analysis 

90–d10)/d50; where d10, d50 and d90 are the 
droplets diameters at 10%, 50% and 90% of the cumulative intensity, respectively. The
span factor is a good indicator of the width of droplet size distribution of a sample: the 
smaller the value of the span factor, the narrower the size distribution. Usually if the 
span factor < 0.4, the size distribution can be considered to be monodispersed
([28,29]). These data (droplet size and span factor) were expressed as the mean ±
standard deviation (S.D.).

Measurements of zeta potential are commonly used to predict the colloidal system
stability [30]. The zeta potential was determined using a Malvern Zetasizer Nano-
series (Malvern Instruments Zen 3600, Malvern UK). After dilution of the nano-
emulsion in water, all the measurements were performed at least three times and the 
data were expressed as the mean size ± standard deviation (S.D.). The zeta potential 
was calculated from the electrophoretic mobility by the Helmholtz–Smoluchowski
equation [31].

Zeta potential determination

The apparatus used for viscosity determination was a viscometer TVe-05 (Lamy, 
Caluire, France). First, the spindle to be used was attached to the measurement system. 

Viscosity determination
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Then the rotation speed needed for the measurement was selected. The dynamic 
viscosity was directly displayed on the apparatus screen.

In this study, the vitamin E encapsulation efficiency was determined using the 
ultracentrifugation technique. Briefly, to determine the total amount of the drug (T.A.),
a sample of the nano-emulsion was dissolved in methanol and then assayed for vitamin 
E using the HPLC method previously described. Then, to determine the encapsulated 
amount of the drug (E.A.), a sample of the nano-emulsion was centrifuged (OptimaTM 
Ultracentrifuge, Beckman coulter, USA) at 50,000 rpm during 50 min at +4 °C and 
under reduced pressure. The obtained pellet was dissolved in methanol and assayed for 
vitamin E.

Encapsulation efficiency

The vitamin E encapsulation efficiency (E.E.) was calculated as follows:

E.E. = (E.A. / T.A.) × 100

For each batch of vitamin E-loaded nano-emulsion, the encapsulation efficiency was 
determined in triplicate.

The sample preparation was performed according to recent studies [32–34]. An aliquot 
of the emulsion was diluted 10-fold using ultrapure water and a drop of the diluted 
sample was placed onto a carbon-coated copper grid. The sample was allowed to stand 
for 5 min, after which the excess fluid was absorbed by a filter paper leaving a thin 
liquid film over the holes. One drop of a 2% phosphotungstic acid solution (w/w) was 
then applied and allowed to dry for 5 min. Finally, the negatively stained samples were 
observed and images were taken using a CM 120 microscope (Philips, Eindhoven, 
Netherlands) operating at an accelerating voltage of 80 kV.

Microscopic observation

2.2.6 Reproducibilty

Once all the process parameters were assessed, the experiment under optimal 
conditions was repeated three times. The technique reproducibility was evaluated in 
terms of z-average size, zeta potential, viscosity, and encapsulation efficiency, using 
the methods described above.

2.2.7 Stability study

The prepared nano-emulsion samples were stored under conditions required by the 
2008 guidelines of the ICH (International Conference on Harmonization of Technical 
Requirements for Registration of Pharmaceuticals for Human Use): 5 ± 3 °C for
normal stability study and 25 ± 2 °C, 60 ± 5 % RH (relative humidity) for accelerated 
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stability study. The storage period was of 4 months for drug-free nano-emulsions and 2 
months for drugloaded nano-emulsions. The stability was assessed by comparing the 
initial z-average size, zeta potential and microscopic observation with those obtained 
during the storage period.

3. Results and discussion
3.1 Development of the nano-emulsion formula

3.1.1 Screening components: solubility studies

The solubility of vitamin E in 10% w/v surfactant solutions is presented in Table 1.
The aqueous solution of vitamin E was about 49.41×10

Screening surfactant

-6

Table 1. Solubility of vitamin E in 10% w/v surfactant solutions.

mg/ml. Our results confirmed 
that vitamin E is very poorly soluble in water. The drug was more soluble in all the 
surfactants according to the solubility data.

Surfactants Solubility* (mg/ml)
Water 49.41 ± 0.21 × 10-6

Brij 35 74.32 ± 1.21
Brij 98 51.10 ± 0.16
Labrafil 89.29 ± 0.03 × 10

Phosphatidylcholine
-2

26.20 ± 0.50 × 10
Span 40

-3

2.52 ± 0.05
Span 60 7.04 ± 0.02

Tween 20 49.16 ± 1.02
Tween 60 15.62 ± 0.09
Tween 80 87.25 ± 0.16

                                * Each value represents the mean ± S.D. (n=3).

The nano-emulsion consisting of oil, surfactant(s) and water should be a stable 
monodispersed system. Therefore, the choice of surfactants is important for the 
production of uniformly sized nano-emulsion droplets via SPG membrane 
emulsification. Among the surfactants tested in this study Tween 80 and Brij 35 were 
selected since they gave the highest drug solubility, respectively (87.25 mg/ml and 
74.32 mg/ml).

The solubility of vitamin E in different oils is presented in Table 2. For the 7 tested 
oils, the solubility of vitamin E was highest in MCT (241.22 mg/ml) followed by 
ethyhexyl laurate (235.59 mg/ml). MCT was then selected as the oil phase since it 

Screening oil



198 
 

gave the higher solubility of vitamin E which may lead to a better encapsulation of the 
drug within the nano-emulsion.

Table 2. Solubility of vitamin E in various oils.

Oils Solubility* 
(mg/ml)Name Molecular 

weight (g/mol)
Density 
(g/ml)

Melting 
point (°C)

Diethylhexyle
adipate 370.64 0.922 67.8 231.65 ± 0.75

Ethylhexyl caprilate /
caprate 426.67 0.876 NA 219.26 ± 3.60

Ethylhexyl
ethylhexanoate 256.42 0.863 NA 144.99 ± 0.52

Ethylhexyl laurate 312.53 0.858 27 235.59 ± 1.88
Ethylhexyl stearate 369.68 0.859 4 156.38 ± 0.38

Isononyl
isononanoate 284.47 0.857 NA 220.96 ± 0.23

MCT 372.54 0.950 10 241.22 ± 4.09
* Each value represents the mean ± S.D. (n=3).

3.1.2 Screening concentration range: ternary phase diagram

The construction of the phase diagram makes it easy to determine the range of 
concentrations for the nano-emulsion formulation. Phase diagrams were constructed to 
determine the individual component ratio for the O/W nano-emulsion consisting of 
water, MCT as oil phase and Tween 80 (Fig. 2A) or Brij 35 (Fig. 2B) or a mixture 
Tween 80–Brij 35 50:50 w/w (Fig. 2C) as the surfactants. As can be seen in Fig. 2.,
the area corresponding to a stable O/W nano-emulsion varied with the surfactant. 

The system with combined use of two surfactants appeared to have the largest region 
of nano-emulsion compared to the systems using Tween 80 or Brij 35 alone. A similar 
result was reported by Li et al. [35]; the combined use of surfactants showed
advantages over the single use of surfactant as the emulsion region was greatly 
increased in the phase diagram and the produced emulsion had small particle size, 
increased drug loading capacity and improved physical stability. Based on these 
finding, the formulation composed of water, MCT and the surfactant mixture Tween 
80–Brij 35 (50:50 w/w) at weight ratio of 80:14:6 was selected for further studies.
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Fig. 2. Ternary phase diagrams: (A) water, MCT and Tween 80; (B) water, MCT and 

Brij 35; (C) Water MCT and Tween 80 Brij 35 (50:50 w/w).

3.2 Optimization of the process parameters and the surfactant 
concentration

3.2.1 Influence of the oil phase pressure on the nano-emulsion 
characteristics

The pressure applied on the dispersed phase control the flow rate through the 
membrane pores and the detachment of the droplets. During preliminary studies, it has 
been observed that below 2.4 bar no oil phase flow was obtained. Thus, the effect of
the oil phase pressure over the range of 2.4–4 bar on the nanoemulsion characteristics 
was investigated. Fig. 3A. shows the size distribution of samples prepared for 3 
different oil phase pressures.
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Fig. 3. Influence of process parameters on droplets size distribution: (A) effect of the 
transmembrane pressure, (B) effect of the continuous phase flow rate, (C) effect of the
agitator speed and (D) effect of the temperature. Other experimental parameters are 
specified in Table 3.

It can be observed that when the pressure was set at 4 bar, the emulsion size 
distribution presented 3 peaks: at 9 nm, 50 nm and 382 nm, representing 44%, 14% 
and 42% of the total intensity, respectively. Besides, when the pressure was fixed at 
3.2 bar, the emulsion size distribution presented only 2 peaks: at 10 nm and 170 nm, 
this last peak represented 45% of the total intensity. When the pressure decreased to 
2.4 bar, the emulsion size distribution seems to be better with 2 peaks: the first peak
remained at 10 nm and the second one at 132 nm and represented 49% of the total 
intensity. The peaks situated around 10 nm correspond to micelles formed by the 
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association of surfactant molecules. As could be seen, when the dispersed phase
transmembrane pressure increased, the uniformity of the emulsion decreased. It is 
suggested that a high dispersed phase flow led to a poly-disperse emulsion.

Liu et al. [36] had obtained similar results when they investigated the effect of the 
pressure on droplets of a w/o emulsion prepared using an acrylic polymer 
microchannel. The authors reported that when the applied pressure was increased from
0.3 kPa to 0.6 kPa, an increase of the average diameter was observed (from 62 mm to 
98 mm).

Table 3 shows that the span factor increased (+ 38%) when the pressure was increased 
from 2.4 bar to 4 bar.

Vladisavljevic and Schubert [37] studied the influence of the transmembrane pressure 
on droplet size distribution of an emulsion prepared using a 4.8 μm SPG membrane. 
The authors found that at high pressures, the droplet distribution became much wider. 
Indeed, a 3-fold increase of the feed pressure led to a 2-fold increase of the span factor 
(from 0.27 to 0.52). Hao et al. [38] also observed the effect of different emulsification 
pressure on droplet size distribution. They reported that the increase in transmembrane 
pressure resulted in the formation of a polydispersed emulsion. Indeed, they found that 
the span factor value increased from 0.11 to 0.26 when the dispersed phase pressure
was increased from 8 kPa to 28 kPa. Yasuno et al. [39] observed the formation of 
droplets during SPG membrane emulsification using a microscope video. The 
microscopic visualization of the droplet formation revealed that increasing the 
dispersed phase flux induced the formation of polydispersed emulsion.

In addition, Schroder et al. [40] and Jocelyne and Tragardh [41] explained the effect 
of transmembrane pressure by the interfacial tension dynamics. The increase of the 
transmembrane pressure induces increasing of the oil phase flux; if the formation time 
of droplets is shorter than the time needed by the emulsifier to decrease the interfacial
tension, then too high pressure lead to jets of oil and very large droplets. In another 
word, at higher pressure the organic phase surface expand very rapidly leading to high
interfacial tension and because of that a higher shear rate is needed to keep the same 
droplet size. In conclusion, if the shear stress is kept constant, larger droplets are 
formed at higher pressure.

In the present study we considered that 2.4 bar was the optimum data for the 
transmembrane pressure and thus the pressure was fixed at this level for subsequent 
experiments.
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3.2.2 Influence of the aqueous phase flow rate on nano-emulsion 
characteristics

Droplets formed at the membrane surface detach under the influence of the flowing 
continuous phase. Thus, the continuous phase flow rate is another parameter which 
may have a strong influence on droplet size distribution. The effect of this parameter
was determined by comparing the size distribution and the span factor of three nano-
emulsions prepared under different conditions. Fig. 3B. shows that the different nano-
emulsions presented 2 peaks: the micelles peak was at 10 nm and the second one 
depended on the crossflow. An increase of the aqueous phase flow rate shows an
improvement in the size distribution. Indeed, with a high flow rate (33 ml/s) the main 
peak was at 122 nm and represented 64% of the total intensity whereas at a low flow 
rate (11 ml/s) the main peak was at 132 nm and presented 49% of the total intensity.

Joscelyne and Tragardh [41] reported that the droplet size decreased sharply as the 
crossflow velocity increased and reached a size where it became more or less 
independent of the flow velocity. The authors concluded that at low shear stresses the
droplets grow and coalesce at the membrane surface before finally being dislodged. 
The influence of the continuous phase velocity may vary depending on the 
concentration of dispersed phase in the circulating solution. It has been shown by 
Williams et al. [42] that no significant influence could be observed if the oil is more 
than 30% in an o/w emulsion.

Our results suggest that 33 ml/s was the optimal crossflow. All the following 
experiments were then realized under this condition.

3.2.3 Influence of the agitation speed on nano-emulsion 
characteristics

The influence of the agitator speed over a range of 200–1400 rpm on the nano-
emulsion characteristics are shown in Fig. 3C. and Table 3. As the agitator speed 
increased from 800 rpm to 1400 rpm, the z-average of the main peak did not 
significantly change, however its percentage increased from 64% to 82%. When the 
agitator speed was fixed at 200 rpm, the size determination quality report noticed the 
existence of big droplets with very high mean size, which had not been measured 
(exceeding the upper limit of the Zetasizer: 6000 nm). Because the emulsion droplets
generated by membrane emulsification may coalesce before they sufficiently disperse 
in the continuous phase, the increase in stirring rate could improve the droplets 
dispersion and then prevent their coalescence. Moreover, the mixing tank geometry 
may help the droplets break up when the agitation speed is increased leading to small 
particle size.
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The effect of agitator speed on the properties of an emulsion was studied by Tsukada 
et al. [43]. The authors reported that the particle sizes decreased from 220 nm to 170 
nm with increasing agitation speed from 100 rpm to 1000 rpm. In another study [44],
the stirring rate influence on the properties of nanoparticles produced by the
emulsification-diffusion method was investigated. As expected, increasing the stirring 
rate from 8000 rpm to 24,000 rpm was associated to a reduction of the mean size from 
554 nm to 276 nm.

In this study, we considered that an agitator speed of 1400 rpm was the optimal speed. 
For further experiments, the agitation was set at this level.

3.2.4 Influence of temperature on nano-emulsion characteristics

Temperature can be an important parameter in membrane emulsification, affecting the 
viscosity of both the dispersed and the continuous phases. In this study, we 
investigated the effect of the temperature on the droplet size distribution. As shown in
Fig. 3D. and Table 3, the increase in temperature from 25 °C to 45 °C gave a larger 
average size for the main peak (respectively, 125 nm and 215 nm, at 25 °C and 45 °C) 
and a much broader size distribution (span factor increased from 0.53 to 0.90).

For w/o emulsions, heating the continuous phase is needed so that there is a substantial 
decrease in its viscosity which makes it easier to circulate. Katoh et al. [45] found that 
heating the continuous phase led to smaller droplet size. For o/w emulsions, there have 
been few studies of the effect of the temperature on the size uniformity of emulsions 
during membrane emulsification. In a recent study, Oh et al. [17] reported that 
increasing the emulsification temperature from 25 °C to 35 °C induced a decrease in 
the uniformity of the formed oil droplets. In a literature review, Jocelyne and Tragardh
[12] concluded that the emulsification temperature is usually dictated by the 
requirements of a product. For instance, the authors prepared in a previous work [41]
an o/w emulsion where the operating temperature was significantly above room 
temperature (65 °C). Heating was used to dissolve the emulsifier in the continuous 
phase.

In our study, 25 °C was selected as the optimum temperature since it gave relatively 
uniform emulsion droplets.

3.2.5 Influence of surfactant concentration on nano-emulsion 
characteristics

The presence of emulsifiers dissolved in the continuous phase plays a critical role in 
membrane emulsification. First they lower the interfacial tension between oil and 
water. This facilitates droplets disruption given that the interfacial tension force is one
of the essential forces holding a droplet at a pore during the membrane emulsification 
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process. Second, emulsifiers stabilize the formed droplets by restricting coalescence 
and/or aggregation. According to Tadros et al. [3], the amount of surfactant required to 
produce the smallest droplets size depends on its properties. Generally, the mean size 
decreases with increase in surfactant concentration till it reaches eventually a plateau 
value.

In our study, the optimization of the process parameters was not sufficient to obtain a 
narrow size distribution. Indeed the nano-emulsion size distribution presented two 
peaks: a main peak at 125 nm representing 82% of the total intensity and
corresponding to the oil droplets, and a second peak at 11 nm representing 18% 
corresponding to micelles. The formation of these micelles was believed to be due to 
the presence of emulsifiers in excess. For that reason, the surfactants concentration
was decreased progressively in order to find an optimum value. Results in Fig. 4. and 
Table 3 confirm the aforementioned assumption. When the surfactants concentration 
was decreased from 6% to 2.25%: the peak corresponding to micelles decreased
progressively and finally disappeared. The size distribution became more uniform and 
therefore the span factor decreased from 0.52 to 0.25. When the surfactants 
concentration was set at 2%, the main peak was situated at 290 nm, the size 
distribution became broader and the span factor increased to 0.41. This could be 
explained by the fact that the emulsifiers’ amount was not enough, so that the 
surfactant molecules did not adsorb rapidly at newly formed interfaces and thus larger 
droplets were formed. Another explanation would be the coalescence of the formed
droplets.

Vladisavljevic and Schubert [37] found similar results when studying the dynamic 
interfacial tension of Tween 80 solution at two different concentrations (0.2 wt % and 
2 wt %). The more concentrated Tween 80 solution caused a faster decrease of the
interfacial tension. Thus, when the emulsifiers’ concentrations increased, the droplet 
size became smaller and the size distribution narrower, till a plateau value. After this 
plateau value (which is in our study the concentration of 2.25%), increasing the
emulsifiers concentration did not affect the droplets size (the main peak was always 
about 125 nm) but could lead to a broader size distribution given that the surfactant 
excess induced micelles formation (a second peak at 11 nm appeared then).

To the authors’ knowledge, there have been no systematic studies of the effect of 
surfactant excess on nano-emulsion characteristics. Oh et al. [17] investigated the 
effect of stabilizer excess on the droplets size distribution. The nano-emulsions
prepared with 1, 2 and 4% PVA showed span factor values of 0.25, 0.24 and 0.33, 
respectively. This study confirmed that when the stabilizer (which plays a similar role 
as the surfactant during membrane emulsification) was used in excess, this may result 
on a large droplets size distribution. In addition to its effect on the size distribution, the 
presence of surfactant in excess could also affect the emulsion stability. Izquiedro et 
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al. [8] compared the stability of 5 nano-emulsions prepared using different surfactant
concentrations (from 4 wt % to 8 wt %). The authors found that as the surfactant 
concentration increased, the nano-emulsion became less stable. They explained this 
result by the formation of micelles, which increased with the surfactant concentration.
The presence of micelles increases the oil molecules diffusion between emulsion 
droplets and the oil phase solubilized by surfactant micelles. This exchange of oil 
molecules between different size droplets enhances Ostwald ripening [46]. Indeed,
Ostwald ripening process causes growth of the larger droplets of an emulsion in the 
expense of smaller ones due to molecular diffusion through the continuous phase. 
Since the mutual miscibility between the continuous and the dispersed phase is often
very low, the effect of Ostwald ripening is often neglected. Nevertheless, in the case of 
nano-emulsion droplets, all liquid pairs are mutually miscible to some finite extent and 
this may lead to rapid ripening [47]. As could be seen, the concentration of surfactants 
affects the production process as well as the long term stability of nano-emulsions. Our 
study confirms the importance and the complexity of the optimization of the emulsifier
concentration for the production of stable nano-emulsions. Apart from stability and 
productions issues, it is often desirable to minimize the use of surfactants especially 
for pharmaceutical applications because they are usually costly and some of them may 
have potential toxic effects.

Fig. 4. Influence of surfactant concentration on droplets size distribution. Other
experimental parameters are specified in Table 3.
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In conclusion, and based on the findings during the preparation optimization, the 
formulation composed of MCT, water and the surfactant mixture Tween 80–Brij 35 
(50:50 w/w), at the weight ratio of 17.75/80/2.25 was selected to produce an optimal
uniform nano-emulsion using an SPG membrane at an agitator speed of 1400 rpm, a 
transmembrane pressure of 2.4 bar, a continuous flow rate of 33 ml/s and a 
temperature of 25 °C.

3.3 Vitamin E loading in the nano-emulsion

To prepare drug-loaded nano-emulsion, vitamin E was added in the oil phase, since it 
is poorly soluble in water and very soluble in oil. The preparation process was the 
same as the one used for the drug-free nano-emulsion.

3.3.1 Influence of loading amount on vitamin E nano-emulsion 
characteristics

To prepare vitamin E-loaded nano-emulsion, 3 concentrations were tested: 5, 7 and 
10% w/w. The effect of the drug amount on the droplets size was investigated. Results 
reported in Fig. 5A. show that increasing the vitamin E proportion in the oil phase led
to an increase of the average droplet size (the peak was situated at 151, 235 and 278 
for the 3 different ratios 5, 7 and 10% w/w, respectively). In the other hand the size 
distribution became larger; as could be seen in Table 4, the span factor increased from 
0.29 to 0.46.

Similar results was reported by Hatanaka et al. [32]; when the -tocopherol ratio in 
the nano-emulsion composition increased from 10% w/w to 50% w/w, the droplets 
mean diameter increased from 85 nm to 381 nm. The authors explained that the 
differences in mean size was attributed to the loading amount and suggested that a 
high amount of a-tocopherol might also affect the morphology of emulsion systems, 
possibly leading to a decrease in long-term stability. The study of Cheong et al. [48]
confirmed also this trend. Indeed the authors reported that the droplet size of -
tocopherol nanodispersions prepared with 90% of aqueous phase was about 106 nm 
and increased to about 146 nm when the aqueous phase ratio changed to 70%. There 
are a number of possible reasons to explain this trend: (i) higher vitamin E content
increased the to-be-dispersed phase viscosity and thereby droplet disruption and break-
up at the surface of membrane pores would be more difficult leading to high size 
droplets. (ii) According to Jafari et al. [9], the emulsifier concentration may be 
insufficient to completely cover the new formed interfaces; this could favor droplets 
aggregation and thus increases the emulsion mean size.

Due to these reasons, a 5% w/w concentration of vitamin E was selected for 
subsequent study.
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Fig. 5. Influence of (A) vitamin E loading amount (% w/w) and (B) SPG membrane
nominal pore size on droplets size distribution. Other experimental parameters are 
specified in Table 4.

Table 4. Influence of (i) vitamine E loading amount and (ii) membrane pores size on
drug loaded nano-emulsions polydispersity.

Vitamin E concentration (% w/w) Membrane nominal pore size (μm) Span factor*
5 0.9 0.29 ± 0.007
7 0.9 0.37 ± 0.005
10 0.9 0.46 ± 0.012
5 0.4 0.37 ± 0.016
5 10.2 0.49 ± 0.021

* Each value represents the mean ± S.D. (n=3).
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3.3.2 Influence of membrane pore size on nano-emulsion 
characteristics

In order to investigate the effect of membrane pore size on the droplet size during 
membrane emulsification, experiments were conducted using 3 different SPG 
membranes (nominal pore size of 0.4 μm, 0.9 μm and 10.2 μm). Fig. 5B shows the 
droplet size distribution as a function of the membrane nominal pore size and Table 4
summarizes the effect of nominal pore size on the span factor. As could be seen, 
between 0.4 μm and 0.9 μm there was no great difference on the peak average size 
(respectively, 160 nm and 151 nm). However the experiment lasted 9 min with the 0.9 
μm membrane and more than 1 h when the 0.4 μm membrane was used. This could be 
explained by the high viscosity of the oil phase which had much more difficulty to 
pass through the narrow pores of the 0.4 μm membrane. Cheng et al. [28] prepared 
w/o emulsions using different SPG membranes with an average pore size of 1.8, 2, 2.5 
and 4.8. However the preparation was unsuccessful when an SPG membrane with 
average pore size of 0.6 mm was used even if the transmembrane pressure was set to
its higher level. In the study of Cheng et al. [28], results suggest that membranes with 
pore size less than 0.6 mm may be used only for the preparation of emulsion at low 
dispersed phase proportion. In general, the pore size of the membrane which would be
used for the emulsification is greatly dependent on the properties of both continuous 
and dispersed phases (viscosity, density, interfacial tension, etc)

On the other hand, when the 10.2 mm membrane was used, the dispersed phase passed 
very rapidly in a few seconds. The average size increased and the size distribution 
became broader.

Our results were in a good agreement with those reported in the literature. Indeed 
many studies using SPG membranes [37,42,49] revealed that the droplet size of an 
emulsion could be related to the pore size of the used membrane by a linear
relationship. Our data fitted well to a linear model with R2 = 0.996. Thus, our study 
confirmed that the droplet size depends on the pore size of the membrane used to 
prepare the emulsion. This raises the possibility of controlling the emulsion droplet 
size using various pore size membranes. In our case, the use of the 0.4 μm membrane 
was not convenient since the process was too slow. In addition, the use of the 10.2 μm
membrane was not convenient too since it gave an emulsion with high average size 
and very large size distribution. Based on these findings, the 0.9 μm membrane was 
considered to be the optimal and was therefore used for the reproducibility tests.
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3.4 Reproducibility tests
3.4.1 Drug free nano-emulsion reproducibility

The nano-emulsion preparation was repeated 3 times in order to study the technique 
reproducibility (Batches N1, N2 and N3). Resulting data shown in Table 5 revealed 
the very good accordance, in terms of Z-average size, span factor, zeta potential,
viscosity and processing time between the 3 batches prepared under identical 
conditions.

3.4.2 Vitamin E loaded nano-emulsion reproducibility

The reproducibility of the preparation technique of the vitamin E-loaded nano-
emulsion was investigated. Three batches were produced under the same conditions 
(Batches E1, E2 and E3). Data shown in Table 5 revealed the very good 
reproducibility of the preparation process.

3.5 Characteristics of the optimized vitamin E loaded nano-emulsion

The effect of the drug entrapment on the nano-emulsion characteristics was 
investigated; data are shown in Table 6. The addition of the drug increased the 
droplets average size (respectively, 78 nm and 106 nm without and with vitamin E) 
and the span factor (respectively, 0.25 and 0.30 without and with vitamin E). This
increase is due to the entrapment of vitamin E within the MCT oil droplets.

Kuo et al. [50] reported similar results; when loading -tocopherol within nano-
emulsion the span factor increased from 0.23 to 0.28. The droplet size and size 
distribution are important parameters affecting emulsion stability. Saito et al. [51]
reported that small droplets tend to be more stable to droplets coalescence than large 
droplets. Indeed, the small droplets size of nano-emulsions confers stability against 
creaming and sedimentation because of the high Brownian motion [4]. Thus, in our
study, the narrow size of the prepared nano-emulsion allows predicting a good stability 
of the preparation.

Zeta potential has also been identified as an important factor for the stability of 
colloidal systems [52]. In our study, negative zeta-potential values were obtained (-
22.9 mV for drug-free nano-emulsion). This value could be explained by the presence
of negatively charged carboxyl groups of free fatty acids present in the MCT oil. 
According to the certificate of analysis, the free fatty acids present in the MCT oil are: 
the caprylic acid (C8: 62%), the capric acid (C10: 37.9%) and the lauric acid (C12: 
0.1%).
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The zeta potential measurements give information on the surface properties of the 
colloidal system and could therefore be useful to determine the type of the association 
between the active substance and the colloidal system (for example whether the drug is 
encapsulated in the lipidic matrix or simply adsorbed on the surface) [53]. As could be 
seen in Table 6, the negative surface charge was further shielded in the presence of the 
drug; the vitamin E-loaded nano-emulsion had an upper zeta potential (-16.5 mV). 
This result suggests that a part of vitamin E was adsorbed to the MCT droplets surface 
and the rest was incorporated within the oil droplets. Many authors (Mora-Huertas et 
al. [54], Wiacek and Chibowski [55] and Lyklema and Fleer [30]) reported that greater 
the zeta potential the more likely the suspension to be stable, because the charged 
particles repel one another and thus overcome the natural tendency to aggregate. It is
currently admitted that zeta potential under mV is required for a good 
electrostatic stabilization [56]. Thus, our zetapotential values were sufficient to prevent 
droplets coalescence and predict a good stability of the prepared nano-emulsions.

The high encapsulation efficiency of vitamin E within nanoemulsion (99.7 ± 0.4%) 
was believed to be due to the high lipophilicity of the drug. This result was in 
agreement with those reported in the literature. Indeed, Anais et al. [44] reported that
the association rate of vitamin E in nanocapsules was equal to 92.8% when the 
nanoprecipitation method was used and equal to 97.8% when nanocapsules were 
prepared by the emulsification–diffusion method.

Finally, the vitamine E-loaded nano-emulsion was more viscous than the drug-free 
nano-emulsion; this is logical since that adding the vitamin E during the drug loading 
experiments increased the viscosity of the oil phase (viscosity of MCT oil and vitamin 
E are 30 mPa s and 660 mPa s, respectively).

3.6 Stability study

Stability studies were carried out over 4 months for the drug free nano-emulsion and 
over 2 months for the vitamin E-loaded nano-emulsion. The three batches of 
reproducibility were selected in order to follow the droplets size, the zeta potential and 
morphological observation during storage at 5 °C and 25 °C. Stability data are shown 
in Table 7 and Fig. 6.

According to Heurtault et al. [56], the size determination is a good indicator of 
stability since in most cases the particle sizes increased before macroscopic changes 
appeared. Our stability data shows that the Z-average size and the span factor 
remained nearly unchanged during the storage period. There were also no significant
changes in the droplets size distribution during the same period (data not included). In 
addition, the zeta potential was maintained to its initial value and no coalescence was 
observed during storage.



21
3 

 

T
ab

le
 7

.S
ta

bi
lit

y 
da

ta
 o

f t
he

 p
re

pa
re

d 
na

no
-e

m
ul

si
on

s f
or

 st
or

ag
e 

te
m

pe
ra

tu
re

 o
f 5

 °C
 a

nd
 2

5 
°C

.

(a
)D

ru
g 

fr
ee

 n
an

o-
em

ul
si

on
Ti

m
e

D
ay

 0
D

ay
 4

5
D

ay
 9

0
D

ay
 1

20
St

or
ag

e 
te

m
pe

ra
tu

re
 (°

C
)

5
25

5
25

5
25

A
ve

ra
ge

 si
ze

* 
(n

m
)

78
 ±

 2
.0

85
 ±

 0
.9

84
 ±

 2
.1

85
 ±

 1
.2

92
 ±

 0
.6

89
 ±

 0
.7

99
 ±

 0
.8

Sp
an

 fa
ct

or
*

0.
25

 ±
 0

.0
1

0.
31

 ±
 0

.0
0

0.
38

 ±
 0

.0
1

0.
25

 ±
 0

.0
0

0.
22

 ±
 0

.0
1

0.
22

 ±
 0

.0
1

0.
20

 ±
 0

.0
1

Ze
ta

 p
ot

en
tia

l*
 (m

V
)

-2
3 

± 
0.

9
-2

1 
± 

0.
5

-2
2 

± 
0.

6
-2

1 
± 

0.
7

-2
3 

± 
1.

4
-2

0 
± 

0.
5

-2
5 

± 
0.

7
(b

)V
ita

m
in

 E
-lo

ad
ed

 n
an

o-
em

ul
si

on
Ti

m
e

D
ay

 0
D

ay
 3

0
D

ay
 6

0
St

or
ag

e 
te

m
pe

ra
tu

re
 (°

C
)

5
25

5
25

A
ve

ra
ge

 si
ze

* 
(n

m
)

10
6 

± 
3.

2
10

8 
± 

1.
6

10
9 

± 
1.

1
10

5 
± 

0.
5

10
2 

± 
1.

4
Sp

an
 fa

ct
or

*
0.

30
 ±

 0
.0

1
0.

29
 ±

 0
.0

1
0.

27
 ±

 0
.0

0
0.

23
 ±

 0
.0

1
0.

22
 ±

 0
.0

1
Ze

ta
 p

ot
en

tia
l*

 (m
V

)
-1

7 
± 

0.
8

-2
0 

± 
1.

0
-1

5 
± 

0.
3

-1
6 

± 
0.

2
-1

6 
± 

0.
3

* 
Ea

ch
 v

al
ue

 re
pr

es
en

ts
 th

e 
m

ea
n 

of
 re

pr
od

uc
ib

ili
ty

 b
at

ch
es

 ±
 S

.D
. (

n=
3)

.



214 
 

The microscopic investigation illustrates the droplets appearance and size (Fig. 6.). 
TEM images indicated that the nanoemulsion droplets were spherical and well 
distributed. The morphological investigation, as well as the size and zeta potential 
determination, demonstrate the good stability of the nano-emulsions and thus indicate 
an adequate formulation of the preparation and optimum process conditions.

Fig. 6. TEM micrographs of the prepared nano-emulsions stored at 5 °C. A, B and C:
TEM pictures of drug-free nano-emulsion at day 0, day 60 and day 120, respectively.
D, E and F: TEM pictures of vitamin E-loaded nano-emulsion at day 0, day 30 and 
day 60, respectively. Scale bar represents 200 nm.

4. Conclusion

In this study, a vitamin E-loaded nano-emulsion composed of water, MCT, surfactant 
mixture (Tween 80–Brij 35 (50:50 w/w)) and vitamin E at the weight ratio of 
80/12.75/2.25/5 was prepared using a 0.9 mm SPG membrane at an agitator speed of 
1400 rpm, an oil phase pressure of 2.4 bar and an aqueous phase flow rate of 33 ml/s. 
The prepared nano-emulsion had an average size of 106 nm, a uniform size 
distribution (span factor = 0.30) and a relatively high zeta potential (-16.5 mV) 
sufficient to prevent droplet coalescence and a high encapsulation efficiency (99.7%).
Moreover, the obtained nano-emulsions showed a good stability for at least 2 months.

The results presented in this study, confirmed that nanoemulsions can be produced in a 
controlled way by adjusting the processing parameters. Therefore, membrane 
emulsification seems to be a simple, effective and reliable technique for the
encapsulation of vitamin E within nano-emulsion.
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Encapsulation de la vitamine E dans des micelles 
polymériques en utilisant des membranes 

microsieves

Les micelles sont des structures, constituées par l’association de quelques dizaines 
de molécules, qui se forment dans les solutions aqueuses  au-dessus d’une certaine 
concentration qu’on appelle la concentration micellaire critique « C.M.C. ».  Les 
molécules qui composent les micelles doivent être  amphiphiles c.-à-d. comportant 
dans leurs structures une ou des parties hydrophiles (ayant une forte affinité pour 
l’eau) et une ou des parties lipophiles (ayant une forte affinité pour les huiles, 
hydrocarbures et autres liquides non polaires). Les exemples de composés
amphiphiles sont multiples. On peut citer les tensioactifs, les phospholipides, et
certains copolymères en blocs. Les copolymères sont qualifiés de matériaux 
intelligents car leurs structures peuvent être modifiées afin d’obtenir une réponse 
suite à des diverses stimuli (changement de température, de force ionique, de pH, 
etc). 

Dans notre étude réalisée principalement à l’Université de Loughborough puis 
complétée au Laboratoire d’Automatique et de Génie des Procédés,  des 
copolymères sensibles au pH ont été synthétisés et appliquées à la formation de 
micelles polymériques. La méthode de préparation des micelles, basée sur 
l’utilisation des contacteurs à membrane, a été choisie afin de pallier aux 
inconvénients des méthodes existantes. En effet, les techniques de préparation 
décrites dans la littérature présentent un certain nombre d’inconvénients tel que 
l’obtention d’une distribution de taille poly-disperse, un taux d’encapsulation 
insuffisant, un manque de reproductibilité ou un passage difficile à une échelle de 
production plus large. Cette étude présente les différentes étapes de préparation et 
de caractérisation de copolymères sensible au pH. Puis, elle détaille l’influence des 
paramètres opératoires sur le procédé de formation de micelle en vue de son 
optimisation. Une fois le procédé optimisé, l’encapsulation de la vitamine E a été 
étudiée et une attention particulière a été accordée à la reproductibilité du procédé 
et au profil de libération de la vitamine E en fonction des conditions de pH. La 
préparation de micelles par la méthode de dispersion membranaire a été reportée 
pour la première fois au cours de ce travail. Cette méthode présente un très grand 
potentiel pour la production à large échelle et de manière contrôlée de micelles 
polymériques.

Ce chapitre sera présenté sous forme d’un article qui a été publié en 2013 dans
«ACS Applied Materials and Interfaces» (un journal de l’ACS « American 
Chemical Society »).
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Abstract

A novel membrane contactor method was used to produce size-controlled 
poly(ethylene glycol)-b-polycaprolactone (PEG-PCL) copolymer micelles 
composed of diblock copolymers with different average molecular weights, Mn

(9200 or 10400 Da) and hydrophilic fractions, f (0.67 or 0.59). By injecting 570 
l/m2/h of the organic phase (a 1 mg/ml solution of PEG-PCL in tetrahydrofuran) 
through a microengineered nickel membrane with a hexagonal pore array and 200 

m pore spacing into deionized water agitated at 700 rpm, the micelle size linearly 
increased from 92 nm for a 5- m pore size to 165 nm for a 40- m pore size. The 
micelle size was finely tuned by the agitation rate, transmembrane flux and 
aqueous to organic phase ratio. An encapsulation efficiency of 89 % and a drug 
loading of 75 % (w/w) were achieved when a hydrophobic drug (vitamin E) was 
entrapped within the micelles, as determined by ultracentrifugation method. The 
drug-loaded micelles had a mean size of 146 ± 7 nm, a polydispersity index of 0.09 
± 0.01, and a zeta potential of -19.5 ± 0.2 mV. When drug-loaded micelles where 
stored for 50 h, a pH sensitive drug release was achieved and a maximum amount 
of vitamin E (23 %) was released at the pH of 1.9. When a pH-sensitive hydrazone 
bond was incorporated between PEG and PCL blocks, no significant change in 
micelle size was observed at the same micellization conditions. 

Key words: Polymeric micelles - pH-sensitivity - Membrane contactor - Stirred 
cell - Vitamin E encapsulation - Hydrazone bond.
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1. Introduction

In recent years, there has been growing interest in drug delivery using nano-carriers 
such as liposomes, core-shell nanocapsules, solid lipid nanoparticles, and micelles. 
Polymeric micelles are self-assembled aggregates of amphiphilic polymers consisting 
of a hydrophobic inner core and hydrophilic outer shell [1]. The core can be used to 
solubilize drugs with poor water solubility, while the hydrophilic shell can prolong 
circulation time in blood by inhibiting opsonins from adsorption on the micelle 
surface. Long circulation time in vivo is ensured by the micelle size of less than 200 
nm [2]. Particles with such a small size remain undetected by reticuloendothelial 
systems (RES) [3],

Micelles can be modified by incorporation of various functional groups and bonds to 
achieve targeted or triggered release. Of the many stimuli that can be exploited, 
changes in pH are particularly interesting because significant pH gradients can be 
found physiologically, for instance between normal tissues and some pathological 
sites, between the extracellular environment and some cellular compartments, and 
along the gastrointestinal tract. Some pathological states are associated with pH 
profiles different from that of normal tissues. Examples include ischemia, infection, 
inflammation and tumor acquisition, which are often associated with acidosis [5].

which can be exploited to achieve prolonged therapeutic action [4].

Compared to normal blood pH of 7.4, extracellular pH values in cancerous tissues can 
be as low as 5.7 due to rapid expansion of tumor cells, leading to production of lactic 
acid and hydrolysis of ATP in an energy-deficient manner [6].

There is a plethora of methods available for the preparation of polymeric micelles. If a 
copolymer is soluble in water, micellization is usually performed by direct dissolution 
in water or film casting. If a copolymer is insoluble in water, the most common 
methods are dialysis, oil-in-water (O/W) emulsion and co-solvent evaporation or 
displacement. The direct dissolution consists of dissolving polymer and drug in water. 
The method is not widely applicable, since both blocks of the copolymer and the drug 
should be readily soluble in water. The method has been applied successfully for the 
encapsulation of hydrophobic drugs, but produced micelles are large and polydisperse
[10].

To achieve pH 
sensitivity, the hydrophobic block of the copolymer can be modified to introduce acid-
liable bonds which degrade at mildly acidic pH, causing the micelle to collapse, thus 
releasing the encapsulated drug. The examples of pH sensitive groups are acetal bonds
[7, 8] and poly(ortho ester) side chains [9] that allow chemical conjugation of drugs to 
the side chain. 

In film casting, polymer and drug are dissolved in a volatile organic solvent, 
which after evaporation leaves a thin drug-impregnated film. Micelles are formed upon 
addition of warm water and stirring. The method is often used when other methods
give poor drug loading efficiencies, as is the case with paclitaxel [11]. Micelles 
produced by film casting typically have large sizes and bimodal size distributions [12].
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In order to avoid detection by the RES and premature elimination, the micelle solution 
must be filtered, which results in drug losses and poor yields. In the dialysis method, 
drug and polymer are dissolved in a water-miscible organic solvent followed by 
dialysis to replace the organic solvent with water. The technique generally yields large 
micelles with low drug contents [13] and lacks reproducibility [14]. These problems 
can be partially addressed by adding water to the polymer/drug solution prior to the 
dialysis, which kinetically freezes the micelles [15]. Dialysis often requires days to 
complete and is difficult to scale up. In the O/W emulsion technique, polymer and 
drug are dissolved in a water-immiscible organic solvent and this mixture is then 
emulsified followed by evaporation of the organic solvent. The co-solvent evaporation 
method is similar, except that the organic solvent is miscible with water [16]. This 
method is often more suitable than the emulsion method, since it leads to the formation 
of smaller micelles with higher drug loading [17] and ICH (International Conference 
on Harmonization) class 2 solvents, such as chloroform and dichloromethane, can be 
avoided [18].

The main objective of this work was to develop and investigate a novel membrane 
dispersion method for micelle preparation, suitable for large scale production. 
Membranes are increasingly used for fabrication of emulsions and particles [20]
including nanoparticles such as solid lipid nanoparticles [21], liposomes [22], and 
nanoemulsions [23]. However, to the best of our knowledge, fabrication of micelles by 
dispersion through a microporous membrane has never been reported.

Therefore, most of the established techniques for micelle formation are 
not suitable for scaling-up from laboratory level to industrial production and suffer 
from low reproducibility and poor control over the micelle size [19]. Thus, there is a 
strong need for improvements in micelle preparation techniques. 

2. Experimental section
2.1 Reagents

-caprolactone monomer 
-CL), tin(II) 2-ethylhexanoate 95%, Sn(Oct)2, and sodium silicotungstate were 

supplied by Sigma-Aldrich. Toluene, extra dry grade, was purchased from Acros 
Organics. PEG was dried by azeotropic distillation with toluene prior to the 
polymerizatio -CL was dried prior use by distillation under reduced 
pressure onto 3A molecular sieves. O-[2-(6-Oxocaproylamino)ethyl]-O -
methylpolyethylene glycol (Mn = 5000 g/mol), PEG-CHO, and  2-
hydroxyethylhydrazine 98%, 2-HEH, were purchased from Sigma-Aldrich Co Ltd, 
Gillingham, Dorset, UK. Tetrahydrofuran (THF) and acetone of analytical grade were 
purchased from Fischer Scientific and used without further purification. Ultra-pure 
water was obtained from a Millipore Synergy® system (Ultrapure Water System, 
Millipore).
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2.2 Equipments

The micelles suspension was prepared using a stirred cell with a flat disc membrane 
fitted under the paddle blade stirrer, as shown in Figure 1 (a).

Figure 1. (a) Schematic illustration of the stirred cell with simple paddle stirrer above 
a flat disc membrane (b = 12 mm, D = 32 mm, Dm

Both stirred cell and membranes were supplied by Micropore Technologies Ltd. 
(Hatton, Derbyshire, UK). The agitator was driven by a 24 V DC motor (INSTEK 
model PR 3060) and the paddle rotation speed was controlled by the applied voltage. 

= 33 mm, and T = 40 mm). (b)
Schematic diagram of the experimental set-up.
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The membranes used were nickel membranes with regular hexagonal pore array 
containing uniform cylindrical pores with a diameter of 5, 10, 20 or 40 μm, arranged at 
uniform spacing of 80 or 200 μm (Figure S1 in the supplementary material). The 
membranes were fabricated by the UV-LIGA (ultraviolet lithography, electroplating, 
and molding) process, which involves galvanic deposition of nickel onto the template 
formed by photolithography [24].

The porosity of a membrane with the hexagonal pore array is given by: 

2

32 S
d p               (1)

where dp

2.3 Preparation procedures

is the pore diameter and S is the interpore distance. The porosities of the 
membranes calculated from Eq. (1) are given in the supplementary material (Table 
S1).

2.3.1 PEG-PCL synthesis

1 g of PEG and 40% (v/v) -CL solution in toluene were dissolved in 20 ml of 
refluxing toluene under nitrogen atmosphere. The mole ratio of PEG to -CL in the 
reaction mixture varied from 1:22 to 1:88. The polymerization was initiated by the 
addition of a 20% (v/v) solution of Sn(Oct)2

2.3.2 PEG-Hyd-PCL synthesis

in toluene (0.75 w/w) and carried out at 
110 °C under nitrogen atmosphere and constant stirring for 18 h. The PEG-PCL 
copolymer was isolated by precipitation in diethyl ether and dried under vacuum.

1 g of PEG-CHO was dissolved in 12 ml of ethanol at 35 oC under nitrogen 
atmosphere and 2-HEH 10% (v/v) solution in ethanol was added in excess 
(CHO/NHNH2 = 1:5). After 48 h, PEG-Hyd-OH was isolated from diethyl ether, 
washed with cold (-18 oC) ethanol and dried under vacuum at 40 o

2.3.3 Micellization and drug loading

C for 24 h. 
Polymerization of  -CL from PEG-Hyd-OH was carried out under the same 
conditions used in synthesis of PEG-PCL copolymers.

A schematic diagram of the experimental set-up is shown in Figure 1 (b). The cell was 
filled with 15-35 ml of ultrapure water and the stirring speed was adjusted between 
400 and 1000 rpm. A 1 mg/ml of the copolymer (PEG-PCL-3 or PEG-PCL-4) was 
prepared by dissolving the copolymer in THF or acetone. The organic phase was 
injected through the membrane using a peristaltic pump (Watson Marlow 101U, 
Cornwall, UK) at a constant flow rate of 2-8 ml/min corresponding to the dispersed 
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phase flux of 142-568 l/m2

2.4 Polymers characterization

/h. The experiment was run until a predetermined organic to 
aqueous phase ratio was achieved. Spontaneous formation of micelles started as soon 
as the organic phase was brought in contact with the aqueous phase, but the micelle 
suspension was kept under stirring for 15 min. The suspension was then collected and 
the organic solvent was removed by stirring under vacuum for 24 h. After each 
experiment, the membrane was sonicated in THF for 1 h, followed by soaking in a 
siloxane-based wetting agent for 30 min. Drug-loaded micelles were prepared as 
described above with the only difference being that 2.5 mg/ml vitamin E was dissolved 
in the organic phase containing the polymer.

2.4.1 Gel Permeation Chromatography (GPC)

GPC analysis was performed on an Agilent 1100 HPLC System equipped with a 
refractive index detector (G1362A) and an Agilent PLgel MIXED-C column, 5 m, 
300 7.5 mm, in series with an Agilent PLgel guard column, 5 m, 50 7.5 mm. The 
flow rate of the mobile phase (THF) was 1 ml/min and the column temperature was 30 
°C. The calibration was performed using polystyrene standards with a narrow 
molecular weight distribution (EasiVials PS-M).

2.4.2 Fourier Transform-Infrared Spectroscopy (FTIR)

FTIR spectra were obtained using a Shimadzu FTIR-8400S spectrometer. A small 
amount of each material was mixed with KBr and compressed to tablets. The IR 
spectra of these tablets were obtained in absorbance mode and in the spectral region of 
600 to 4000 cm-1 using a resolution of 4 cm-1

2.4.3 Nuclear Magnetic Resonance Spectroscopy (NMR)

and 64 co-added scans.

Polymers were solubilised in deuterated chloroform (CDCl3) and 1H-NMR spectra 
were obtained on a Bruker Ultrashield Av-400 spectrometer, operating at 400.13 MHz, 
employing a 5 mm high-resolution broad-band ATMA gradients probe. Spectra were 
recorded using the zg30 pulse program with P90

2.5 Micelle characterization

= 14.5 s covering a sweep width of 
20.7 ppm (8278 Hz) with 64 k time domain data points giving an acquisition time of 
3.95 s, Fourier transformed using 128 k data points and referenced to an internal TMS 
standard at 0.0 ppm.

2.5.1 Size analysis

Particle size distribution was determined by dynamic light scattering (DLS), otherwise 
known as photon correlation spectroscopy (PCS) [25, 26], using a Malvern Zetasizer 
Nano-series (Malvern Instruments Zen 3600, Malvern, UK). Each sample was diluted 
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10-fold with ultra-pure water before measurement and analyzed in triplicate at 25 °C. 
The particle size distribution data were generated using the DTS nano software 
(version 5.2). The micelle size polydispersity was expressed by the polydispersity 
index, PDI.

2.5.2 Zeta potential

The zeta potential was determined using a Malvern Zetasizer Nano-series (Malvern 
Instruments Zen 3,600, Malvern UK) and measurements were performed at least three 
times after dilution in water. The zeta potential was calculated from the electrophoretic 
mobility applying the Helmholtz-Smoluchowski equation [27].

2.5.3 Encapsulation efficiency

The encapsulation efficiency of vitamin E in micelles was determined using the 
ultracentrifugation technique. The total amount of vitamin E (TA) was determined 
after disrupting drug-loaded micelles in ethanol using an ultrasound bath for 10 min. 
The amount of vitamin E encapsulated in micelles (EA) was determined by 
centrifuging solutions of vitamin E-loaded micelles using an OptimaTM 
Ultracentrifuge (Beckman Coulter, USA) at 50,000 rpm for 50 min at +4 °C to 
separate micelles from non-encapsulated drug. The resulting micelle sediment was 
dissolved in ethanol and assayed for encapsulated vitamin E content (EA). The vitamin 
E encapsulation efficiency (E.E.) was calculated as follows:

100/.. TAEAEE (2)

E.E. was determined in triplicate. The concentration of vitamin E was measured using 
an HPLC system (Agilent System series 1100, Agilent Technologies, California, USA) 
consisted of a pump, an auto-sampler and a UV/VIS detector. The column used was a 
LiChrospher RP C18 column (5 μm, 15 cm 0.46 cm) (Supelco, Bellefonte, USA). 
The separation was carried out using a mixture of methanol and water (96:4 v/v) as the 
mobile phase at a flow rate of 1.6 ml/min. The eluent was monitored at 292 nm and 
peaks were recorded using the chromatography data system software provided by 
Agilent. The column was equilibrated for 30 min with a minimum of 30 column 
volumes. The column was washed after use using water - acetonitrile mixture (50:50 
v/v) for 60 min. This HPLC analytical method was validated (data not shown).

2.5.4 Transmission Electron Microscopy (TEM)

TEM observation was carried out according to a previously reported protocol [28].
Briefly, an aliquot of the micelle solution was diluted 10-fold using ultrapure water 
and a drop of the diluted sample was placed onto a carbon-coated copper grid. The 
sample was allowed to stand for 3 min, after which the excess fluid was absorbed by a 
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filter paper leaving a thin liquid film over the holes. One drop of a 1% (w/w) sodium 
silicotungstate solution was then applied and allowed to dry for 2 min. Finally, the 
stained samples were observed and images were taken using a CM 120 microscope 
(Philips, Eindhoven, Netherlands) operating at an accelerating voltage of 80 kV.

2.6 Process reproducibility

The experiments conducted under the optimum conditions were repeated three times in 
order to estimate reproducibility of the fabrication process.

2.7 pH-responsive drug release

A drug-loaded micelle solution was divided into 4 aliquots and the pH of each aliquot 
was adjusted to 1.9, 4.5, 6.3 and 9.8. pH 1.9 was adjusted by potassium phosphate 
buffer consisting of potassium dihydrogen phosphate and phosphoric acid solution. pH 
4.5 or 6.3 was adjusted by a buffer solution of potassium dihydrogen phosphate and 
sodium hydrogen phosphate. At pH 9.8, the drug release medium was a buffer solution 
of boric acid and potassium borate. At chosen time intervals, samples were taken and 
encapsulation efficiency was determined using the method previously described.

3. Results and discussion
3.1 Polymers characterization

3.1.1 Gel Permeation Chromatography (GPC)

The molecular weight of the synthesized polymers, as calculated by GPC, is shown in 
Table 1. The hydrophilic fraction, f, is the mass fraction of the hydrophilic block to 
the total polymer mass and it dictates the structure of the micelles. For diblock 
amphiphilic copolymers, Discher and Eisenberg [29] suggest that micelles are formed 
if f > 0.5; a condition that is satisfied for all four synthesized polymers.

Table 1. Number average molecular weight, Mn, polydispersity index, Mw/Mn

Polymer

, and 
hydrophilic fraction, f, of the synthesized copolymers, as determined by GPC.  

PEG/ -CL mole ratio
in the feed mixture Mn M(Da) w/M fn

PEG-PCL-1 1:22 7400 1.10 0.82
PEG-PCL-2 1:44 8200 1.14 0.74
PEG-PCL-3 1:66 9200 1.17 0.67
PEG-PCL-4 1:88 10400 1.25 0.59
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3.1.2 Fourier Transform-Infrared Spectroscopy (FTIR)

FT-IR spectra are presented in Figure 2. All materials show characteristic 
absorbancies for PEG, the C-O-C etheric bond bending vibration at 1109 cm-1 and the 
absorbancies at 842 and 1333 cm-1, attributed to PEG crystalline regions. On the PEG-
PCL spectra, new absorbances emerge; one at 1724 cm-1 is attributed to stretching of 
the esteric carbonyl, while the two at 2935 and 729 cm-1 are due to C-H bond 
stretching in the PCL block. All absorbancies attributed to the PCL block increase in 
intensity from PEG-PCL-1 to PEG-PCL-4, as the molecular weight of the hydrophobic 
block increases respectively. 

Figure 2. FT-IR spectra for PEG and the synthesized copolymers.

3.1.3 Nuclear Magnetic Resonance Spectroscopy (NMR)

Chemical structure, proton numbering and 1H-NMR spectra for polymers is shown in 
Figure 3.

The degree of polymerization, DP, of PCL was calculated using the equation: 

DPPCL = (A4.0/2 )/(A3.3/3) = (A2.3/2)/(A3.3

Absorbancies
-group of PEG. 

/3)                      
(3)
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This allowed the calculation of the molecular weight for each polymer using NMR 
spectroscopy. 

 

Figure 3. Proton numbering and 1

The M

H-NMR spectra for PEG and synthesized di-block 
PEG-PCL copolymers.

n

Table 2. Degree of polymerization, DP, and number average molecular weight, M

results presented in Table 2 are in relatively good agreement with those 
obtained using GPC.

n, of 
the synthesized copolymers, as determined by 1

Polymer

H-NMR.

DP Mn (Da)

PEG-PCL-1 10 7300
PEG-PCL-2 13 7600
PEG-PCL-3 31 9600
PEG-PCL-4 54 12300
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3.2 Parameters affecting the micellization process
3.2.1 Membrane used

In order to investigate the role of membrane during micellization process, two micelle 
suspensions were prepared under the same operating conditions (agitation speed = 700 
rpm and organic phase flow rate = 4 ml/min) and using the same formulation (polymer
PEG-PCL-4 concentration = 1 mg/ml, organic solvent = THF, and aqueous to organic 
phase volume ratio = 5). In one experiment, the organic phase was injected directly in 
the aqueous phase, whereas in another experiment the organic phase was passed 
through the membrane with a pore size of 20 μm and pore spacing 80 μm. As shown 
in Figure 4, the mean particle size of micelle suspension was 552 nm for direct 
injection and 132 nm for injection through the membrane. In direct injection 
micromixing occurs after macromixing (breaking macrovolumes of the organic phase 
into microvolumes by agitation), whereas in membrane injection micromixing is a sole 
means of mixing. Therefore, membrane injection is associated with better uniformity
of polymer and organic solvent distribution through the aqueous phase resulting in a 
more uniform distribution of micelle sizes and significantly smaller particle size. 

 

Figure 4. Size distribution of micelles prepared by direct or membrane injection of the 
organic phase. Experimental conditions: organic phase flow rate = 4 ml/min, 
membrane pore size = 20 μm, pore spacing = 80 μm, polymer PEG-PCL-4
concentration = 1 mg/ml, organic solvent = THF, agitation speed = 700 rpm, aqueous 
to organic phase volume ratio = 5.

3.2.2 Aqueous to organic phase volume ratio

The particle size distribution of micelles was compared by injecting 5 ml of the 
organic phase through the membrane into respectively 15, 25 and 35 ml of water 
(corresponding to an AOR of 3, 5 and 7). As shown in Table 3 and Figure 5(a), when 
the AOR increased from 3 to 7, the mean micelle size decreased from 127 to 90 nm 
and the PDI increased from 0.24 to 0.29. A similar behavior was observed during 
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fabrication of liposomes in a hollow fiber module, with the particle size reduction from 
189 to 114 nm as a result of increase in AOR from 0.4 to 2 [30]. By increasing AOR, 
the polymer is more rapidly dispersed in the aqueous phase due to a higher 
concentration gradient during mixing and the critical micellar concentration (CMC) is 
reached faster, which means that less time is allowed for the polymer molecules to 
redistribute into larger micelles. In addition, at the higher AOR value, micelles are 
more diluted after mixing with the aqueous phase, which may reduce their tendency to 
aggregation. Based on the obtained results and taking into consideration the final 
micelle concentration and their size and uniformity, the AOR was fixed at 5 in the 
following experiments.

 

Figure 5. The effect of different process parameters on the micelle size distribution:
(a) Aqueous to organic phase volume ratio, AOR, (b) Agitation speed, (c)
Transmembrane flux, (d) Polymer molecular weight, and (e) Type of the organic 
solvent. Other conditions are specified in Table 3.
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Table 3. Influence of formulation factors and process parameters on micelle size 
characteristics. The membrane pore size was 20 μm and the interpore distance was 200 
μm.

AOR Agitation 
speed (rpm)

Flux
(l/m2

Polymer 
used (PEG-

PCL)/h)
Organic 
solvent

Mean 
size 
(nm)

PDI
Zeta 

potential 
(mV)

3 700 568 4 THF 127 0.24 -20.1
5 700 568 4 THF 117 0.28 -27.6
7 700 568 4 THF 90 0.29 -24.2
5 400 568 4 THF 131 0.24 -24.8
5 1000 568 4 THF 82 0.41 -24.0
5 700 142 4 THF 54 0.23 -26.1
5 700 355 4 THF 62 0.26 -24.2
5 700 568 3 THF 49 0.36 -26.8
5 700 568 3 Acetone 41 0.47 -25.0

 

3.2.3 Agitation speed

The influence of agitation speed over a range of 400-1000 rpm on the micelle size is 
shown in Table 3 and Figure 5(b). The micelle size decreased from 131 to 82 nm 
when the agitation speed increased from 400 to 1000 rpm and the most uniform 
micelles (PDI = 0.24) were obtained at the stirring rate of 400 rpm. The shear stress at 
the membrane/continuous phase interface increases with increasing the stirring rate. It 
was previously found that the particle size in membrane-based particle fabrication 
processes was smaller at the higher wall shear stress [24, 31], which was associated 
with higher mixing efficiency [32, 33]. Thus, high homogenous supersaturation may 
occur in a short time, leading to rapid self-arrangement of polymers and formation of 
small micelles. Our results suggest that for a given set of conditions, an agitator speed 
of 700 rpm was the optimal speed, since the produced micelles were both relatively 
uniform and of suitable size.

3.2.4 Transmembrane flux

As shown in Table 3 and Figure 5(c), by increasing the dispersed phase flux from 142 
to 568 l/m2/h, the mean micelle size increased from 54 to 117 nm and PDI increased 
from 0.23 to 0.28. The higher dispersed phase flux resulted in the higher amount of the 
polymer injected through the membrane per unit time [34], which has an effect to 
prolong mixing time and reduce the mixing efficiency. The maximum micelle size in 
Table 3 corresponds to the maximum polymer concentration at the 
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membrane/continuous phase interface. Thus, the largest micelles were formed at the 
maximum transmembrane flux and the minimum agitation speed.

3.2.5 Copolymer molecular weight

The results in Table 3 and Figure 5(d) show that larger micelles were prepared using a 
copolymer with the higher MW. Both polymers are suitable for preparation of micelles 
with a convenient mean size (between 49 and 117 nm) and acceptable size distribution 
(PDI between 0.26 and 0.36) for drug release applications.

3.2.6 Organic solvent

Numerous organic solvents have been used for micelle preparation, such as methanol
[35], THF [36], dimethylsulfoxide [37], N,N-dimethylformamide, and acetone [38].

3.2.7 Membrane structure

Although removed by evaporation, solvents may remain as traces in the final 
formulation, representing a possible risk for human health. In this work, THF and 
acetone were selected as organic solvents due to their low toxicity and good vitamin E 
and PEG-PCL solubility. Table 3 and Figure 5(e) show that the particle size 
distribution is virtually unaffected by the organic solvent used.

Micelle suspensions were prepared using 6 different membranes with pore diameters 
of 5, 10, 20 and 40 μm and pore spacing of 80 or 200 μm. At the constant pore spacing 
of 200 μm, a strong linear correlation between the mean micelle size and the 
membrane pore size was found, with a gradient of 2 nm /μm and R2 > 0.99, as shown 
in Figure 6. A similar linear relation between the particle size and pore size of 
microengineered membrane was obtained in fabrication of liposomes [39] and 
membrane emulsification [40, 41]. The results clearly show that the micelle size can 
be controlled by the membrane pore size. The size uniformity increased with 
decreasing the pore size (Figure 6b). As shown in Table 4, the micelle size decreased 
by 4-10 % as a result of increase in the pore spacing from 80 to 200 μm. There are two 
consequences of increasing pore spacing at constant transmembrane flux: (i) organic 
phase stream is fragmented into smaller number of sub-streams, and (ii) the flow 
velocity of each sub-stream is higher. The micromixing is more efficient when at the 
higher velocity of organic phase, probably because the organic phase micro-jets can 
penetrate deeper into the aqueous phase before being disintegrating due to mixing with 
a surrounding aqueous phase. 
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Figure 6. Effect of the membrane pore size on the micelle size characteristics: (a)
mean micelle size, and (b) PDI of the micelles. The membrane pore spacing is 200 μm 
and other conditions are specified in Table 4.

Table 4. Influence of membrane on the micelle size characteristics. The experimental 
conditions: aqueous to organic phase volume ratio AOR = 5, organic solvent = THF, 
polymer PEG-PCL-4 concentration: 1 mg/ml, agitation speed = 700 rpm, 
transmembrane flux = 568 l/m2

Membrane characteristics

/h.

Micelles size characteristics
Spacing (μm) Pore size (μm) Mean size (nm) PDI

200

5 92 0.17
10 101 0.19
20 117 0.28
40 165 0.38

80 10 105 0.21
20 130 0.23
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3.3 Vitamin E loading

Vitamin E was chosen as a hydrophobic drug for the preparation of drug-loaded 
micelles. This active agent was widely used as an antioxidant in many medical and 
cosmetic preparations and was encapsulated in the micelles by hydrophobic forces, 
due to its affinity to the hydrophobic block of the copolymers, without chemical 
conjugation. The effect of drug entrapment on the vesicle size and zeta potential is 
presented in Table 5 and Figure 7.

Table 5. The effect of vitamin E loading on the micellization process. Organic solvent: 
THF, polymer PEG-PCL-4 concentration = 1 mg/ml, vitamin E concentration in the 
organic phase = 2.5 mg/ml, agitation speed = 700 rpm, AOR = 5, transmembrane flux 
= 568 l/m2/h.

Size 
(nm) PDI Zeta potential 

(mV)
Encapsulation efficiency 

(%)

Drug-free micelles 92 0.17 -27.0
Drug-loaded 
micelles 154 0.09 -19.3 87.4

 

Figure 7. The effect of loading vitamin E into micelles on their size distribution. The 
experimental conditions are specified in Table 5.

The mean micelle size increased from d0 = 92 to d1 = 154 nm when vitamin E was 
encapsulated under otherwise constant experimental conditions. Thermodynamically 
stable drug-loaded micelles can be referred to as “microemulsion droplets” or “swollen 
micelles” and these two terms can be used interchangeably [42]. Although there is no 
single particle size that can be used as a definitive cut-off point to distinguish a 
swollen micelle from a conventional emulsion, most authors assume that the mean 
particle diameter in a stable O/W microemulsion should be less than 200 nm [43].
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Assuming that the micelles are spherical and volumes of vitamin E and copolymer are 
additive, the drug loading percentage is as follows: 

(3)

where E = 0.95 g ml-1 is the density of vitamin E and PEG-PCL = 1.135 g ml-1 is the 
density of PEG-PCL diblock copolymer, based on melt densities of PEG and PCL 
homopolymers of 1.13 and 1.4 g ml-1, respectively. The drug loading calculated using 
Eq. (3) is 75%, which means that vitamin E constitutes 75% of the total mass of a 
drug-loaded micelle and the copolymer 25%. The drug loading can be also estimated 
from the mass balance of vitamin E. It is reasonable to suggest that neither vitamin E 
nor copolymer was adsorbed onto the membrane surface due to low internal pore 
volume of the membrane. The volume of organic phase injected through the 
membrane was 5 ml, the concentration of vitamin E in the organic phase was 2.5 
mg/ml and the efficiency of vitamin E encapsulation was 87.4 % (Table 5), which 
means that the total amount of vitamin E entrapped within the micelles was 10.9 mg. 
The critical micelle concentration (CMC) of PEG-PCL diblock copolymer with a 
molecular weight of 12600 Da, as determined by GPC, was found to be 0.018 mg/ml
[44]. The total amount of non-aggregated PEG-PCL-4 molecules in the final 
preparation was 0.45 mg, based on the volume of aqueous phase in the final 
preparation of 25 ml and the above value of CMC. The concentration of PEG-PCL-4
in the organic phase was 1.0 mg/ml

The zeta-potential of vitamin E-loaded micelles and drug-free micelles was -19.3 and -
27.0 mV, respectively (Table 5), which can be attributed to the presence of terminal 
carboxyl groups on PCL chains. Zeta potential measurements can give information 
about the type of association between the active substance and the carrier [45],

and thus, the total amount of PEG-PCL-4
incorporated in the micelles was 4.55 mg. The drug loading estimated from the process 
mass balance is now: 10.9/(4.55+10.9) 100=71%, which is close to 75%, calculated 
from Eq. 3. A small difference can be attributed to the fact that Eq. (3) does not take 
into account the effect of molecular interactions on the volumes of vitamin E and 
copolymers in the micelles. 

for 
example whether the drug is encapsulated in the core material or adsorbed onto the 
shell [46]. Here, the negative surface charge was partially shielded in the presence of 
the drug suggesting that at a small part of the drug might have been adsorbed onto the 
surface, while the rest was incorporated within the micelle cores. The zeta potential 
data suggest that the micelles should exhibit a good colloidal stability, since a negative 
zeta potential near or lower than -20 mV was found to prevent vesicle coalescence
[47]. A high encapsulation efficiency of 87.4% was probably due to the high 
hydrophobicity of the vitamin E as many studies reported that the encapsulation 
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efficiency was proportional to the drug solubility in the organic phase [48]. Drug-
loaded micelles were more uniform in size than unloaded micelles as evidenced by the 
lower PDI value in Table 5. It was found that core-entrapping drug, in this case -
tocopherol, may act as a filler molecule and enhance the stability of the micelle [49].

3.4 Process reproducibility

The reproducibility of the preparation technique was investigated by repeating 3 times 
a typical micellization experiment with and without drug loading. The results in 
Figure 8 and Table S2 (supplementary material) suggest a very good reproducibility 
in terms of size characteristics, zeta potential and encapsulation efficiency between the 
samples produced under the same conditions.

Figure 8. Reproducibility of the micelle preparations: (a) Drug-free micelles and (b)
Drug-loaded micelles. Experimental conditions are specified in Table 5.
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3.5 TEM observation

Figure 9 revealed nanometric, quasi-spherical shape of vitamin E-loaded micelles. 
According to this morphological investigation, micelles ranged in size from 100 to 200 
nm, which is in good correlation with the dynamic light scattering measurements.

Figure 9. TEM micrograph of vitamin E-loaded micelles.

3.6 pH-responsive drug release

The release of vitamin E from micelle preparations stored under different pH 
conditions was monitored as a function of time. The results in Figure 10 show that the 
micelles kept under acidic pH were unstable due to hydrolysis of the ester bonds in the 
PCL block and formation of 6-hydroxycaproic acid. 

Figure 10. Time evolution of the encapsulation efficiency of vitamin E-loaded 
micelles stored under different pH conditions.
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Since vitamin E is predominantly encapsulated within a hydrophobic core, hydrolytic 
degradation of hydrophobic PCL segments led to the release of vitamin E. A decrease 
in the drug encapsulation efficiency was proportional to the medium acidity, because 
PCL hydrolysis was catalyzed by hydrogen ions. Indeed, within 50 hours, the 
encapsulation efficiency decreased from an initial value of 89.2% to 83.2, 79.5 and 
68.3% at the pH of 6.3, 4.5 and 1.9, respectively. When the micelles were stored at the 
pH of 9.8, no release of vitamin E occurred and the encapsulation efficiency remained 
nearly unchanged.

3.7 Preparation of PEG-Hyd-PCL micelles

The maximum percent of vitamin E released from PEG-PCL micelles after 50 h was 
23 % at pH = 1.9. In order to increase the release rate and pH sensitivity at mildly 
acidic pH, we have synthesized highly pH sensitive PEG-Hyd-PCL micelles by 
incorporating a pH-sensitive hydrazone bond between the PEG and PCL blocks. When 
the micelles are exposed to mildly acidic pH, the bond hydrolyzes and the micelle 
collapses releasing the drug. We have prepared PEG-PCL and PEG-Hyd-PCL micelles 
under the same conditions by transferring 5 ml of the organic phase containing 5 
mg/ml of each polymer dissolved in THF to 25 ml of deionized water at the flow rate 
of 0.5 ml/min and pH = 7.4 to obtain the final micelle concentration of 1 mg/ml and 
AOR = 5. The micelle suspension was gently stirred for 6 hours and any residual THF 
was removed with vacuum distillation. As can be seen in Figure 11, both micelle 
types were found to show identical micellization behaviour forming micelles of 
identical particle size distribution. It shows that the micellization behavior is 
determined only by the type of the hydrophobic and hydrophilic block and molecular 
weight of the polymer and not by the presence of hydrazone bond.

Figure 11. Particle size distributions of micelles composed of PEG-PCL and PEG-
Hyd-PCL copolymers. The molecular weight of PEG and PCL block was the same in 
both copolymers.
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The main difference between the two micelle types was in a higher pH sensitivity of 
PEG-Hyd-PCL micelles. We have confirmed the hydrolysis of hydrazone bond by 
GPC, showing bimodal MW distributions in PEG-Hyd-PCL dispersions exposed to 
pH< 6. The hydrolysis leads to the dissolution of the PEG blocks and the release of the 
PCL blocks and the entrapped drug. This was confirmed by optical transmittance and 
DLS measurements in PEG-Hyd-PCL dispersions at pH<6. By decreasing pH, the 
transmittance of PEG-Hyd-PCL dispersions at 500 nm decreased significantly, while 
the average particle size increased, which can be both explained by the agglomeration 
of released PCL blocks.

4. Conclusion

Di-block copolymers composed of hydrophilic poly(ethylene) glycol (PEG) and 
hydrophobic polycaprolactone (PCL) segments were successfully synthesized, 
characterized, and used for the preparation of pH sensitive PEG-PCL micelles using a 
new membrane dispersion method. The organic phase composed of a mixture of the 
copolymer and a volatile organic solvent was split into numerous microscopic sub-
streams by injection through a microsieve membrane and mixed with an agitated 
aqueous phase. A precise control over the micelle size and size distribution was 
achieved by controlling the pore size and interpore distance of the membrane, 
molecular weight of the copolymer, solvent type, and micromixing conditions in the 
stirred cell device, such as transmembrane flux, aqueous to organic phase ratio, and 
agitation speed. The micelles were obtained with a sufficiently small mean size, 
satisfying zeta potential, and high encapsulation efficiency of a hydrophobic drug 
(vitamin E), and can be used as a pH-sensitive delivery system. The preparation 
technique is simple, fast, reproducible, and has a potential for an industrial scale-up.
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Supplementary material

Fig. S1 Microscopic images of some membranes used in this study: (a) dp = 40 m, L 
= 200 m, (b) dp = 20 m, L = 80 m, and (c) dp = 10 m, L = 200 m. (d) Schematic 
view of the pore arrangement showing a regular hexagonal array of cylindrical pores 
with uniform pore spacing.

Table S1. Pore diameters, pore spacing and porosities of the membranes used in this 
study

Pore diameter (μm) Pore spacing (μm) Membrane porosity (%)
5 200 0.06

10 200 0.2
20 200 0.9
40 200 3.6
10 80 1.4
20 80 5.7
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Table S2. Reproducibility of the fabrication method. The experimental conditions are 
specified in Table 4.

Size 
(nm) PDI Zeta potential 

(mV) E.E. (%)

Drug free micelles

Experiment 1 92 0.17 -27.0
Experiment 2 88 0.18 -27.3
Experiment 3 87 0.18 -27.8
Average±S.D. 89±3 0.18±0.00 -27.4±0.4

Vitamin E-loaded 
micelles

Experiment 1 154 0.09 -19.3 87.4
Experiment 2 140 0.08 -19.8 89.2
Experiment 3 144 0.10 -19.5 86.7
Average±S.D. 146±7 0.09±0.01 -19.5±0.2 87.8±1.3
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Encapsulation de la vitamine E dans des particules 
lipidiques solides en utilisant des membranes 

classiques et des membranes dynamiques

Les particules lipidiques solides ont été développées au cours des années 1990. Le 
cœur de ces particules est constitué d’une matrice de lipides qui est solide à 
température ambiante; cette matrice plus ou moins cristallisée est stabilisée par une 
couche de surfactants. Ces particules présentent l’avantage d’avoir une capacité 
d’encapsulation des molécules lipophiles supérieure à celle des liposomes ou des 
micelles. Par ailleurs, ces particules peuvent être synthétisées en l’absence de 
solvant organique. De point de vue stabilité, ces préparations sont plus stables que 
les émulsions.

Plusieurs techniques de préparation ont été reportées, parmi lesquelles figure la 
méthode de contacteur à membrane. Toutefois cette méthode présente un 
inconvénient majeur à savoir le colmatage des membranes en cas d’utilisation 
d’une huile très visqueuse associé à d’énormes difficultés du lavage des 
membranes utilisées. Une alternative envisageable consiste à utiliser des 
membranes dynamiques à la place des membranes classiques. Ces membranes 
dynamiques sont constituées par un lit de billes en verre et présentent l’avantage de 
se nettoyer facilement par simple désintégration du lit de billes. Ce travail a été 
réalisé à l’Université de Wageningen (Pays-Bas) pour la partie membranes 
dynamiques et au Laboratoire d’Automatique et de Génie des Procédés pour la 
partie membranes classiques.

Ce travail étudie l’influence des différents paramètres opératoires sur les 
caractéristiques de la préparation finale et sur le colmatage des membranes 
utilisées. Il présente aussi une comparaison entre la méthode d’émulsification 
directe utilisant des membranes en céramique et la « premix emulsification »
utilisant un lit de billes en verre. Il en sort de cette étude que les particules 
lipidiques solides peuvent être préparées en utilisant un lit de billes en verre. Le 
procédé de préparation peut être contrôlé via l’ajustement des différents paramètres 
expérimentaux. En évitant les cas extrêmes dans le choix des conditions 
opératoires, aucun colmatage de la membrane n’a été observé.  

Ce chapitre sera présenté sous forme d’un article qui a été accepté pour publication 
au « Chemical Engineering Journal».  



260 
 

  



261 
 

Use of Dynamic Membranes for the Preparation of 
Vitamin E-Loaded Lipid Particles: An Alternative to 
Prevent Fouling Observed in Classical Cross-Flow 

Emulsification 

A. Laouini1, 2, C. Charcosset2, H. Fessi2, K. Schroen1

 

1: Food Process Engineering Laboratory, Wageningen University, 
Bomenweg 2, 6703 HD Wageningen, The Netherlands.
2: Université Claude Bernard Lyon 1, Laboratoire d’Automatique et de Génie 
des Procédés (LAGEP), UMR-CNRS 5007, CPE Lyon, Bât 308G, 43 
Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France.

Submitted to the “Chemical Engineering Journal”



262 
 

Abstract

Solid lipid particles (SLP) were introduced at the beginning of the 1990s as an 
alternative to encapsulation systems such as emulsions and liposomes used in 
cosmetic and pharmaceutical preparations. The present paper investigated for the 
first time the preparation of SLP based on premix emulsification with packed beds 
of micron-sized glass beads. A coarse pre-emulsion was prepared by mixing the 
aqueous phase (water and Tween 80) and the lipid phase (Precirol and vitamin E) 
under magnetic stirring at 1200 rpm during 15 min, followed by passing the premix 
through the glass beads layer. SLP were formed by cooling to room temperature of 
the final emulsion. SLP were successfully produced under various conditions, but 
was most optimally carried out by extruding a coarse O/W emulsion 6 times under 
a pressure of 2 bar through a dynamic membrane. For example, when a 2 mm layer 
of glass beads sized 63 μm was used, the premix size of 5 μm was reduced to 1.5 
μm. It was found that particle size tended to decrease with increasing feed pressure, 
increasing number of passes, decreasing glass bead size and decreasing bed height. 
Even more importantly, the dynamic membrane was hardly prone to fouling 
compared to the membranes used in traditional cross-flow emulsification which 
typically need small pore size for the production of particles of similar size. In 
addition, the small beads could be easily cleaned by disintegrating the bed. The 
preparation process developed was easy to use, easy to scale-up, and the particle 
size could be controlled by appropriate choice of process parameters.

Key words: Packed glass beads – Premix emulsification – Vitamin E-loaded lipid 
particles – Membrane fouling – Scaling-up
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1. Introduction

A large number of products is targeted to be beneficial for human health and used in 
the prevention of many diseases; however, not all of the active components in these 
products arrive at the targeted organs. Thus, in recent years the development of 
suitable drug carrier systems has attracted increasing attention. One of the beneficial 
natural products is vitamin E, which prevents oxidative damage and lipid peroxidation 
in central and peripheral nervous systems [1]. Owing to its promising therapeutic 
potential and safety, vitamin E has for example been tested to prevent cigarette smoke 
toxicity since several pulmonary disorders are mainly caused by oxidative stress 
phenomena [2]. Nevertheless, the oral or intravenous administration failed to restore 
the broncho-alveolar level of vitamin E since that the use of conventional 
pharmaceutical forms doesn’t allow precise transport of drugs to their specific action 
sites [3]. Recently, attention has been drawn to nanoencapsulated systems, showing 
high intracellular uptake and improved stability and solubility of active substances. 
The solid lipid particles consisted of a solid lipid core matrix, stabilized by surfactants, 
in which lipophilic compounds are solubilized [4]. Since the production of lipid 
microparticles by spray congealing was described by Speiser in 1990 [5], these new 
carriers have been extensively studied as drug delivery systems. Since they are solid, 
lipid particles offer a better stability compared to emulsions. Moreover, unlike 
liposomes, their preparation doesn’t require any organic solvents, which is a major 
advantage. In addition, large scale production can be performed in a cost-effective and 
relatively simple way [6]. For all these reasons, attention from various research groups 
has been focused on lipid particles as an alternative to traditional lipid based carriers 
(emulsions, liposomes, nanodispersions, etc).

Different techniques have been proposed for lipid particle preparation such as high 
pressure homogenization, microemulsification, emulsification-solvent evaporation, 
emulsification-solvent diffusion, solvent displacement, phase inversion, multiple 
emulsion technique and ultrasonication [7]. Besides cross flow membranes, that are 
also applied for the preparation of liposomes [8-10], nano-emulsions [11], gel micro 
beads [12] and microcapsules [13] also used for lipid particle preparation [14, 15].

The use of membrane contactor for the preparation of solid lipid particles presents 
several advantages compared to classic methods: (i) less energy consumption, (ii) 
better mixing efficiency due to an increased contact surface between both phases, (iii) 
better control of the final particles size characteristics via a careful tuning of the 
process parameters, (iv) easy extrapolation of the results obtained at laboratory scale 
and thus an improved scaling up ability from conventional batch process to continuous 
large scale industrial production, (v) low cost, and (vi) facility of use. 
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In cross-flow membranes set-up, the lipid phase was pressed, at a temperature above 
the melting point of the lipid, through the membrane pores allowing the formation of 
small droplets. The aqueous phase circulated inside the membrane device and swept 
away the droplets formed at the pores outlets. Solid lipid particles (SLP) were obtained 
by cooling of the emulsion to room temperature. The major drawback of this technique 
was the fouling of the membrane which was reported to lead to difficult and long 
cleaning procedures. 

As an alternative a novel preparation strategy is presented in this study; the technique 
is based on premix emulsification using a dynamic membrane consisting of small glass 
beads. Premix emulsification is a two-step process: first a coarse pre-emulsion is 
prepared, which is subsequently passed through a porous structure to obtain small 
droplets. This process was chosen since it was reported to produce stable emulsions at 
high fraction of dispersed phase in which the droplets were of small mean size [16]. A 
packed bed of small glass beads was used; it is quite similar in morphology to the 
conventional membranes, but presents a great advantage that the beads could be easily 
cleaned by disintegrating the bed. The bed could easily be formed again before a new 
experiment. 

The packed bed of glass beads, otherwise known as “dynamic membrane”, has already 
been used to prepare hexadecane in water emulsions, stabilized by Tween 20 by Van 
Der Zwan et al [17], while Nazir et al [18] used the same system and focused on the 
droplet break-up mechanism during premix emulsification. In the current study, glass 
beads will be applied for the first time to prepare solid particles that are known to foul 
regular membranes.

The main objectives of this work were: (i) to investigate the process parameters 
influencing the size of SLP, (ii) to study scale-up of the developed process, and (iii) to 
compare the dynamic premix technique with regular membrane emulsification.

2. Materials and methods
2.1 Materials

2.1.1 Reagents

Precirol® ATO 5 (glyceryl palmitostearate) was a kind gift from Gattefossé (Saint 
Priest, France). Its melting point, according to the supplier analysis certificate, is 56°C. 
Tween® -tocopherol were purchased 
from Sigma-Aldrich (Saint Quentin Fallavier, France). Ultra-pure water was obtained 
from a Synergy® Ultrapure Water System Millipore (Massachusetts, USA). Ethanol, 
acetone and acetonitrile, of analytical grade, were supplied by Fischer Scientific 
(Illkirch, France). The cleaning agent Derquim® was purchased from Derquim
company (Ileida, Spain).
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2.1.2 Membranes

Four different fractions of hydrophilic glass beads (10HFL, Pneumix SMG-AF) 
having mean diameters between 30 and 90 μm were used in this study. The particle 
density ( p) and the bulk density ( b) of each fraction were measured in water and in 
air, respectively. Subsequently, the porosity ( ) was calculated according to the 
following equation:

Packed bed of glass beads

– b / p                                                                                                         (1)

The capillary model for fixed bed [19] was used to determine the structural properties 
of the porous medium like the interstitial void diameter and tortuosity. This model 
assumes the packed beds to consist of a bundle of identical cylindrical tortuous pores.

The interstitial void diameter, dv, was defined as:

dv v (1 –                                                                                                (2)

where Av is the dynamic specific surface area, a ratio of wetted surface area to volume 
of solid, and is related to bead diameter db by:

Av = 6 / db                                                                                                                    (3)

The bed tortuosity, , was calculated as follows:

                                                                                                  (4)

where q = 0.41 for tightly packed spheres.

The characteristics of the packed beds used in the present study are presented in 
Table1.

Table 1. Characteristics of the packed beds used in this study.

Beads fraction db (μm) p (kg.m-3) b (kg.m-3) dv(μm)
1 90 1519 2500 0.392 38.7 1.38
2 75 1528 2500 0.388 31.7 1.39
3 63 1516 2500 0.393 27.2 1.38
4 30 1510 2500 0.396 13.1 1.38

The membrane used was a ceramic membrane with an active zirconium oxide, ZrO2,
layer on an aluminum titanium oxide, Al2O3-TiO2, support. The membrane length was 

Kerasep® membrane
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0.4 m, the inner diameter 6 10-3 m and the outer diameter 10-2 m. Thus, the active 
membrane surface was 7.5 10-3 m2. The mean pore size was 10.2 μm. The membrane 
was supplied by Orelis (Salindres, France).

2.1.3 Emulsification set-up

A schematic representation of the emulsification set-up is shown in Figure 1.A. The 
pressurized vessel (containing the coarse emulsion) was connected to a Plexiglas 
column having a packed bed of glass beads pre-deposited on top of a sieve support 
with an effective surface area of 9.4 10-4 m2. The sieve support was held in place by 
two o-ring rubbers (above and below) at the bottom junction of the column. Both the 
pressurized vessel and the membrane module were placed in an oven at 65°C in order 
to keep the temperature of the overall system above the lipid melting point. The fine 
emulsion was collected in a flask placed on a balance for digital recording of the mass 
every second using the custom written Mem-Fil Lite Software (lab of FPE, WU).

Dynamic membrane set-up

Figure 1. Schematic representation of the experimental set-ups: (A) Dynamic 
membrane set-up and (B) Conventional membrane set-up.
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The volume flux, J, across the packed bed was calculated from the mass flow rate, m, 
using the following equation:

J = m e A)                                                                                                       (5)

where e is the emulsion density = 980 kg/m3 and A is the packed bed effective cross-
sectional area.

The flow inside the packed bed was characterized using the pore Reynolds number, 
Rep, which is the ratio of the inertial to the viscous forces defined as:

Rep e vv dv e                                                                                                           (6)

where e is the emulsion viscosity = 0.434 g/m/s and vv is the average interstitial void 
velocity, defined as:

vv = v0 /                                                                                                                     (7)

where is the tortuosity (see table 1) and, v0 is the superficial velocity defined as:

v0                                                                                                                        (8)

Before starting an experiment, a small amount of continuous phase was introduced 
inside the Plexiglas column in order to properly wet the packed bed with the 
continuous phase. The column was then turned upside down for a few times and 
placed vertically to let the glass beads settle down under the influence of gravity. 

The experimental set-up used for the cross-flow emulsification is shown in Figure 
1.B. It includes a Quatro-Flow 1000S pump (Pall, France) used to circulate the 
aqueous phase through the membrane device and a pressurized vessel (equipped with a 
manometer) connected on one side to a nitrogen bottle (Linde Gas, France) and on the 
other side to the membrane module. Both the pressurized vessel and the membrane 
module were placed in a water bath at 65°C. The emulsion was collected in a beaker 
placed on a balance. The balance was interfaced to a computer in order to collect the 
mass versus time data.

Conventional membrane set-up

2.2 Methods
2.2.1 Preparation procedures

The following formulation was used for all experiments. The aqueous phase contains 
water (91.2%) and Tween 80 (1.8%) and the lipid phase contains Precirol (6.5%) with 
vitamin E (0.5%). Before emulsification, both aqueous and lipid phase were heated to 
65°C.
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O/W emulsions were prepared in a two-step emulsification system. The first step was 
the preparation of a coarse emulsion by mixing the aqueous and the lipid phases using 
a magnetic stirrer (Ika RTC basic, Boutersum, Belgium.) at 1200 rpm for 15 minutes 
at 65°C. This led to reproducible starting emulsions for our experiments; the droplets 
mean size of the coarse emulsion was around 4.8 μm. Next, the coarse emulsion was 
put in the pressure vessel of which the connecting valve to the nitrogen source was 
opened and set at a fixed level (between 0.5 to 5 bar). Then the valve connecting the 
pressure vessel to the dynamic membrane module was opened so that the coarse 
emulsion permeated through the glass beads after opening the outlet valve of the 
packed bed module. The fine emulsion resulting from this process was collected in a 
flask placed on a balance while the increase in mass was digitally recorded. The 
premix procedure was repeated up to 8 times. SLP were formed by immediate cooling 
to a temperature below 35°C. Glass beads were cleaned by injection of ethanol 
through the Plexiglas column.

Premix emulsification protocol

The SLP preparation process using cross-flow emulsification was previously 
investigated by Charcosset et al [14, 15]. In the present study, the lipid phase was 
introduced in the pressure vessel and the pressure was set at 5.5 bar. The aqueous 
phase was pumped through the membrane device at a flow rate of 4 10-2 L/s
corresponding to a velocity of 1.4 m/s. The valve connecting the pressure vessel to the 
filtrate side of the membrane module was then opened so that the lipid phase 
permeated through the pores of the membrane into the aqueous phase which circulated 
tangentially. The membrane used was made of ceramic and presented a pore size of 
10.2 μm. The experiment was stopped when air bubbles started to appear, indicating 
that the pressure vessel was empty. SLP were formed by immediate cooling to a 
temperature below 35°C. At the end of the experiment, the membrane was 
regenerated. The washing was performed by flushing the module several times with a 
detergent (Derquim®) followed by a circulation of acetone and acetonitrile. The 
membrane permeability (the slope of the permeate flow rate versus transmembrane 
pressure) was then measured and the cleaning procedure was stopped when the 
permeability was found to be more than 90% of its initial value.

Direct emulsification protocol

2.2.2 Size characterization

A Malvern Zetasizer Nano-series (Malvern Instruments Zen 3600, Malvern, UK) was 
used for size distribution analysis. Each sample was diluted 100-fold with ultra-pure 
water and analyzed in triplicate at 25°C. The data on particle size distribution was 
collected using the DTS nano software (version 5.1) provided with the instrument. The 
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sizes mentioned correspond to the average particle diameter (d32). In addition the 
polydispersity was assessed through the polydispersity index PDI. 

3. Results and discussion
3.1 Premix emulsification using a packed bed of glass beads

3.1.1 Number of homogenization cycles

Emulsification was repeatedly carried out using 75 μm beads with a bed height of 2 
mm at an applied pressure of 1.5 bar. Figure 2.A shows the coarse emulsion size 
distribution with a main peak around 5.6 μm. After the 2nd pass, the intensity of this 
peak decreased and a new peak appeared around 1.4 μm. As shown in Figure 2.B, the 
intensity of this new peak increased with the number of cycles while the peak around 
5.6 μm disappeared, and the particle z-average was reduced as can be seen in Figure 
2.C. Significant reduction occurred till the 6th pass, after which no decrease in size was 
observed. Therefore it was decided to carry the other experiments out at 6 passes. 

3.1.2 Bead diameter

The size of the interstitial voids between the beads is directly related to the bead size 
and packing arrangement. These voids could be seen as interconnected asymmetric 
capillaries that follow an irregular path through the packed bed, somewhat comparable 
to pores in ceramic membranes which are prepared by sintering a packed bed of 
individual ceramic particles [18]. Thus, the bead size is an important factor to consider 
for the emulsification process.

Experiments were carried out using 4 different beads (30, 63, 75 and 90 μm) at a 
constant bed height of 2 mm with an applied pressure of 2 bar. Figure 3.A shows the 
particle size distribution as a function of bead size and Table 2 summarizes the effect 
of bead size on particle size reduction during the premix emulsification process. For 
the bead sizes 90, 75 and 63 μm, the particles size reduction ratio increased when the 
beads size decreased, which is related to smaller interstitial void diameters, which are 
38.7, 31.7 and 27.2 μm for bead size 90, 70 and 63 μm, respectively. 

The final particle to interstitial void size ratio was calculated; and values between 0.05 
and 0.06 where found, which indicated that the produced particles are considerably 
smaller than the interstitial voids. Compared with other premix membrane 
emulsification studies, it is clear that the current reduction in size is much larger as 
found in any of the other works which are in the range from 0.2 to 4.1 [18, 20-27]
(more details could be found in Table S1 in supplementary material); which is 
indicative of the effectiveness of the current process.
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The 30 μm glass beads didn’t follow the general trend. The mass flow through the 
packed bed decreased from 9.4 to 7.7 g s-1 during the 1st and 6th pass, and this may 
indicate fouling occurred, which will be discussed in detail in section 3.1.7.

Figure 2. Evolution of the size during the premix emulsification process: (A) size 
distribution, (B) main peak intensity, and (C) z-average. Experimental parameters: 
feed pressure = 1.5 bar, glass bead size = 75 μm, and packed bed height = 2 mm.
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Figure 3. Effect of the process parameters on the particle size distribution: (A) effect 
of the bead diameter, (B) effect of the bed height, (C) and (D) effect of the feed 
pressure, (C): 30 μm beads, (D): 75 μm beads, and (E) effect of the temperature. 
Experimental parameters are described in Tables 2, 4, 5 and 6. (F) size distribution of 
the starting emulsion.

3.1.3 Packed bed height

The effect of the bed height was investigated with 63 μm glass beads using heights 
ranging from 1 to 5 mm at an applied pressure of 2 bar. Results presented in Figure 
3B and Table 2 show higher size reductions for lower bed heights. The relationship 
was found to be linear (see Figure S1 in supplementary material); although the overall 
effect is not that large in the range investigated here. This result could be attributed to 
a decrease in void velocity with increasing bed height, resulting in less shear force 
acting on the droplets [17]. On the other hand, at high bed height, the emulsion would 
spend more time in the packed bed, which may increase the chances that newly formed 
droplets meet inside the packed bed, possibly leading to coalescence. 
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When the bed height is very low (1 mm), a small fraction of the 5.6 μm peak was 
detected (0.6%), indicating that the height of the packed bed has to be carefully 
optimized. Indeed the packed bed should be high enough to allow break up of all 
droplets of the coarse emulsion but not too high to negatively affect droplet size. 
Therefore it was decided to keep the bed height constant at 2 mm which seems to be 
the optimum bed height value since it gave a high size reduction ratio and allowed 
production of particles with a mono-modal size distribution.

3.1.4 Transmembrane pressure

As shown in Table 2, for both sizes of glass beads, the particle size decreased with 
increasing applied pressure, which is expected to be caused by the resulting increase in 
the flow velocities and shear rate. A linear relationship was found when size reduction 
ratios were plotted versus the applied pressure (See Figure S2 in supplementary 
material); although the effect on size is not that large. More importantly, Figure 3C
and 3D also show that at lower pressure, the size distribution is much wider and 
becomes narrower at higher pressure; this effect will be further discussed in section 
3.1.6 On Rep numbers.

3.1.5 Temperature

Temperature should be kept over the melting point of the solid lipid during the entire 
premix emulsification process. In this work, the melting point of the used lipid is 
stated to be 56°C, and during experimental work two temperature values were used: 59 
and 65°C. Results presented in Table 2 and Figure 3E show that the lower 
temperature led to greater average size and smaller size reduction ratio. This could be 
explained by the fact that at low temperature, the actual volume fluxes are lower, 
resulting in lower void velocities and less droplet break-up.

3.1.6 Size reduction versus Reynolds pore number

To summarize all investigated effects, the pore Reynolds number is used to compare 
the obtained size reductions (Figure 4). At higher Reynolds number, the droplets 
became smaller leading to a virtually linear increase in size reduction ratio, which 
indicates that the break-up mechanism became similar and was characterized by a 
dominance of constriction and shear forces, irrespective of the bed height, bead size 
and pressure. These results are comparable to those recently reported by Nazir et al 
[18] for emulsions.
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Figure 4. Size reduction ratio as a function of the Reynolds pore number for all 
experiments.

3.1.7 Fouling

Table 3 shows the mass flux evolution during premix emulsification under different 
process parameters. It can be noticed that mostly no flux reduction took place, but at 
four conditions the flux became lower, which we consider to be an indication for 
fouling. For instance when the 30 μm glass beads were used, the flux during the 6th

passage was 20% lower than the initial value, while for the other bead sizes similar 
fluxes were found. Fouling observed with 30 μm beads could explain the bi-modal 
size distribution of SLP described in section 3.1.4. Flux loss was also observed during 
the experiments carried out at different feed pressure. When the 75 μm beads were 
used, it was observed that at low pressure (0.5 bar) the flux was reduced. Illustrative is 
also the experiment carried out at 59°C in which the viscosity was large with possibly
solidification happening inside the bed. All parameters affect the flow inside the 
packed bed and from the Reynolds numbers could be concluded that fouling of the 
membrane was only observed for Reynolds number values under 8. Obtained results 
underline the possibility of avoiding membrane fouling during the preparation of SLP 
by a suitable choice of the working conditions.
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3.1.8 Scale-up of the optimized process

To test scalability, a 4-fold volume increase was realized (from 200 to 800 g; which is 
the maximum capacity of the pressure vessel). As shown in Table 4, under similar 
conditions (bead diameter = 63 μm, bed height = 2 mm, and feed pressure = 2 bar), the 
flow inside the packed bed (calculated Rep) and size reduction ratio was the same. 
Furthermore, Figure 5 shows a very good agreement in size distributions; this shows 
the proof of principle that the premix emulsification process, using a packed bed of 
glass beads, can be operated successfully at larger scale, with all of the larger particles 
in the premix effectively reduced in size.

Table 4. Scale-up of SLN prepared by premix emulsification

Preparation 
final 

weight (g)

Calculated 
Rep

Starting 
preparation 
size* (μm)

Final 
preparation 
size* (μm)

Size 
reduction 

ratio

5.6 μm 
peak 

intensity 
(%)

1.4 μm 
peak 

intensity 
(%)

200 17.8 4.99 ± 0.16 1.56 ± 0.02 3.20 0 100
800 17.2 5.02 ± 0.05 1.59 ± 0.01 3.16 0 100

* Each value represents the mean ± S.D. (n=3).

Figure 5. SLP size distribution during process scale-up
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3.2 Comparison

SLP preparation using a ceramic membrane was previously investigated by Charcosset 
et al [14, 15]. Under optimum conditions and using the same formulation as in the 
premix emulsification process, SLP prepared by cross flow emulsification had a mean 
size of 2.51 μm. Thus, compared to SLP obtained by premix emulsification the mean 
size was larger (as previously discussed). The major drawback of the direct 
emulsification process was membrane fouling as could be seen in Figure 6. Indeed the 
maximum amount of dispersed phase which could be injected through the membrane 
was around 45 g before blockage occurred. However, when the premix emulsification 
process was applied using a packed bed of glass beads, an amount of 52 g of lipid 
could be used without any fouling of the dynamic membrane. In addition, the packed 
bed allowed the production of 851 kg of SLP preparation per m2 of active area in less 
than 5 minutes, versus a preparation of 93 kg per m2 of active area within more than 15 
minutes when the classic cross-flow emulsification technique was used; the glass bead 
system clearly outperforms cross-flow emulsification. Table 5 summarizes the main 
differences between both preparation processes used in this study. 

Figure 6. Membrane fouling during SLP preparation using a ceramic tubular 
membrane: Time evolution of the weight of the lipid phase injected through the 
membrane and time evolution of the mass flow rate during the preparation. 
Experimental conditions are described in section 2.2.1.
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4. Conclusion

The purpose of this research was to determine whether SLP preparation could be 
achieved by premix emulsification using a packed bed of glass beads. The experiments 
reported in this work showed that this was feasible and particle size could be adjusted 
by tuning the operational parameters. It was found that size reduction ratio tended to 
increase with increasing feed pressure, increasing number of homogenization cycles, 
decreasing glass bead size and decreasing bed height. When process conditions were 
chosen appropriately, there was no indication of fouling. Besides it was shown that the 
process could easily be scaled-up with a factor of 4. Therefore, premix emulsification 
process appears asa promising alternative for classical membrane emulsification 
especially for preparations with high fouling risk. 
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Supplementary material

Figure S1. Effect of the packed bed height on the particle size reduction ratio

Figure S2. Effect of the pressure on the particle size reduction ratio for the 75 μm 
glass beads.
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Table S1. Comparison of particle size to pore size ratios obtained in the present 
study with ratios reported in other premix emulsification studies.

Membrane system used Membrane 
pore size (μm)

Particles to 
pore size 

ratio
Reference

Dynamic 
membranes

Packed bed of 
glass beads

13 - 39 0.05 – 0.06 Present 
study

23 - 39 0.20 – 0.28 [18]

Conventional 
membranes

Tubular SPG 1.1 – 20.3 0.20 – 2.1 [20-22]
Tubular ceramic 1.5 1.5 – 1.8 [23]

Flat cellulose 0.2 - 3 1 – 3.5 [24]
Flat PTFE 1 1.2 – 4.1 [25-26]

Flat 
Polycarbonate 0.33 - 1 < 1.6 [27]
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Nomenclature

A: Packed bed effective cross-sectional area (m2)

Av: Dynamic specific surface area (m-2 m-3)

db: Bead diameter (m)

dv: Interstitial void diameter (m)

J: Flux (m.s-1)

q: Equation 4 constant (dimensionless)

Rep: Pore Reynolds number (dimensionless)

v0: Superficial velocity (m.s-1)

vv: Average interstitial void velocity (m.s-1)

: Porosity (dimensionless)

e: Emulsion viscosity (Pa.s)

b: Bulk density (kg.m-3)

e: Emulsion density (kg.m-3)

p: Particle density (kg.m-3)

: Bed tortuosity (dimensionless)

m: Mass flow rate (g.s-1)
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Caractérisation des aérosols générés et prédiction 
du niveau de dépôt pulmonaire

L’efficacité thérapeutique des aérosols dépend de la répartition en masse et du site de 
dépôt du principe actif inhalé. Malgré la complexité des paramètres physiques et 
physiologiques influençant le devenir des particules inhalées, la taille des particules 
exprimée en diamètre aérodynamique massique médian semble être le paramètre qui a
le plus d’effet sur la déposition pulmonaire et par conséquent sur l’activité 
pharmacologique d’un aérosol.

Diverses techniques d’évaluation des préparations inhalables ont été décrites dans la 
littérature. Les techniques d’évaluation des aérosols in vitro permettent principalement 
une caractérisation dimensionnelle des particules. La diffraction laser et l’impaction 
inertielle sont deux méthodes largement utilisées pour mesurer le diamètre 
géométrique et aérodynamique des gouttelettes d’aérosol, respectivement.

La modélisation mathématique de la déposition pulmonaire a été développée pour une 
meilleure quantification et localisation des zones de dépôts des aérosols en fonction de 
la taille des particules. La modélisation consiste à décrire le système respiratoire par 
des relations mathématiques. L’interprétation des résultats permet de réaliser des 
simulations numériques afin de prévoir le trajet et le devenir des aérosols in vivo.

Le travail réalisé sur l’évaluation des aérosols constitue le fruit d’une collaboration 
entre le Laboratoire d’Automatique et de Génie des Procédés (LAGEP), le Laboratoire 
de Pharmacie Galénique de la Faculté de Pharmacie de Marseille et le Laboratoire 
Aerodrug de la Faculté de Médecine de Tours. Ce dernier chapitre de la thèse est
présenté sous forme d’un article qui sera soumis pour publication. Il décrit les résultats 
de caractérisation de la taille des aérosols générés suite à la nébulisation des différents 
systèmes d’encapsulation de vitamine E précédemment développés (liposomes, 
micelles, nano-émulsion, particules lipidiques solides). Il présente aussi les résultats de 
prédiction mathématique du niveau de dépôt pulmonaire des aérosols générés et la 
fraction de la dose inhalée qui peut atteindre son site d’action.  
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intended for pulmonary drug delivery 
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Abstract

The controlled release of drugs for pulmonary delivery is a research field which has 
been so far rather unexploited but is currently becoming increasingly attractive.
Colloidal suspensions encapsulating vitamin E (liposomes, micelles, nano-emulsion, 
and solid lipid particles) were prepared using various methods based on membrane 
contactor. The suspensions were nebulised and aerodynamic characteristics of the 
generated aerosols were assessed using two different methods: laser light scattering 
and cascade impaction. When the laser diffraction technique was used, results showed
that fine particle fractions (< 5 μm) were 19, 29, 38 and 71% for solid lipid particles, 
micelles, nano-emulsion and liposomes, respectively. When the impaction method 
was applied, using a next generation pharmaceutical impactor operated at 30 l/min, 
results showed that fine particle fractions were 39, 78, 82 and 87% for solid lipid 
particles, micelles, nano-emulsion and liposomes, respectively. The differences 
observed between the results obtained from both methods confirm that the laser 
diffraction method is not always suitable for aerodynamic characterization of aerosols 
and should be validated against an impaction method. Nebulisation of the drug-carrier 
suspensions led to an increase of their size. The size was increased by a factor of 2 to 
26 depending on the encapsulation system. The most important aggregation was 
obtained with nano-emulsion; the less one with solid lipid particles. The mass median 
aerodynamic diameter (MMAD) of the generated aerosols ranged from 1.76 to 6.10 
μm. The application of a mathematical model, the Multiple-Path Particle Dosimetry 
(MPPD), for the prediction of the pulmonary deposit gave encouraging results. The 
rate of vitamin E able to reach the lung ranged from 37.6 (for the liposomes) to 51.6%
(for the micelles). The obtained results showed that the different systems developed 
for vitamin E encapsulation were suitable to target the lung after pulmonary 
administration by nebulisation.

Key words: drug-carrier, vitamin E encapsulation, aerosols, pulmonary 
administration, lung deposit
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1. Introduction

Vitamin E, a natural antioxidant, has been tested to prevent cigarette smoke toxicity 
since several pulmonary disorders are mainly caused by oxidative stress phenomena 
[1]. Nevertheless, the use of conventional pharmaceutical forms (oral or intravenous 
administration) doesn’t allow precise transport of vitamin E to its specific action site, 
the lung alveoli [2]. According to Zaru et al. [3], pulmonary disorders can be 
efficiently treated only if high and prolonged drug concentrations are maintained in the 
lungs. Thus, pulmonary drug delivery has become an increasingly attractive route for 
administration of a wide spectrum of drug substances.

Pulmonary administration for the treatment of local lung disorders offers many 
advantages over other routes of administration. The direct deposition of the drug at the 
specific site could increase local drug concentration. This increase in local drug 
concentration may improve the pulmonary receptor occupancy and potentially reduces 
the overall dose required, thereby avoiding the side effects that result from high doses 
of drug and enhancing patient compliance [4, 5].

A number of micrometer and nanometer sized drug carrier systems such as liposomes, 
micelles, nano-emulsion, microparticles, etc have been investigated as potential 
pulmonary delivery systems because of the many advantages they can offer: (i) a
decrease in particle size leading to an increase in surface area and therefore an
enhanced dissolution rate as well as a relatively uniform distribution of drug dose 
among the alveoli, (ii) an enhanced solubility of the drug than its own aqueous 
solubility, (iii) a sustained release of the drug in the lung tissue, and (iv) the potential 
of cell targeting due to the possibility of surface properties modifications [6, 7].

As opposed to the intravenous or oral application of such drug delivery systems, the 
pulmonary application via inhalation is accompanied by several unique challenges. 
The major challenge is the atomization of the drug formulation in a suitable form for 
inhalation. It is generally accepted that aerosol particles of 1 – 5 μm are required for 
deposition in the alveolar region of the lung, which shows the highest drug absorption.

The aims of this study were to:
- assess the aerodynamic characteristics of aerosols generated by nebulisation of 
different drug-carrier systems encapsulating vitamin E.
- predict the pulmonary deposit of the aerosols particles and the rate of vitamin E that 
can reach its action site, the broncho-alveolar level.
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2. Materials and methods
2.1 Materials

1.1.1. Tested suspensions

Four different drug-carriers encapsulating the vitamin E were prepared using 
membrane contactors (liposomes, micelles, nano-emulsion and solid lipid particles). 
The characteristics of these suspensions are summarized in Table 1.

1.1.2 Reagents

HPLC grade methanol and acetonitrile were supplied by Carlo Erba Reagenti (Milano, 
Italy) and used as such, without further purification. Ultra-pure water was obtained 
from a Millipore Synergy® system (Ultrapure Water System, Millipore, France).

1.1.3. Vitamin E delivery rate

The breathing simulator, used for the drug delivery rate determination, is a dual phase 
control respirator pump Model 613, also called large animal volume controlled 
ventilator (Havard Appartus, USA). The specifications of the apparatus used for this 
test are presented in Table S1 in supplementary material. 

Filter Pads were supplied by Pari Gmbh (Starnberg, Germany); these low-resistance 
filters are capable of collecting the aerosol and enable recovery of the active substance 
with an appropriate solvent. The electronic nebulizer “eflow rapid” was also purchased 
from Pari Gmbh.

1.1.4 Aerodynamic assessment of nebulised aerosols

Nebulised products were characterized for their size using 2 methods. The first 
technique was based on laser light scattering and used the Mastersizer 2000 particle 
size analyzer (Malvern, United Kingdom). The second technique was based on 
cascade impaction and used a next generation pharmaceutical impactor supplied by 
Copley scientific (Nottingham, United Kingdom). The impactor configuration is 
shown in Figure S1 in supplementary material. There are 3 main sections in the 
impactor: (i) the bottom frame that holds the removable impaction cups, (ii) the seal 
body that holds the jets, and (iii) the lid that contains the interstage passageways. In 
routine operation, the seal body and lid are held together as a single assembly. The 
impaction cups are accessible when this assembly is opened at the end of an inhaler 
test. The impaction cups are held in a support tray so that all cups could be removed 
from the impactor simultaneously by lifting out the tray. The flow passes through the 
impactor in a saw-tooth pattern.
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1.1.5 Mathematical model for pulmonary deposit prediction

The Multiple-Path Particle Dosimetry (MPPD) model, version 2.9, was used for the 
prediction of the pulmonary deposit. The model was originally developed jointly by 
the Chemical Industry Institute of Toxicology (CIIT, currently The Hamner Institutes 
for Health Sciences, USA) and the National Institute for Public Health and the 
Environment (RIVM, Netherlands). The MPPD model calculates the deposition and 
clearance of monodisperse and polydisperse aerosols in the respiratory tracts of rats 
and human for particles ranging in size from ultrafine (0.01 μm) to coarse (20 μm).
The multiple-path method calculates particle deposition in all airways of the lung and 
provides lobar-specific and airway-specific information. Within each airway, 
deposition is calculated using theoretically derived efficiencies for deposition by 
diffusion, sedimentation, and impaction within the airway or airway bifurcation. 
Filtration of aerosols by the nose and mouth is determined using empirical efficiency 
functions [12].

2.2 Methods

Products used for nebulisation and intended for pulmonary delivery are characterized 
using the following tests: (i) active substance delivery rate, and (ii) aerodynamic 
assessment of the nebulised aerosols. These tests standardize the approach given to the 
assessment of the dose that would be delivered to a patient.

2.2.1 Vitamin E delivery rate

This test was performed to assess the delivery rate of the active substance to the 
patient using standardized conditions of volumetric flow rate. The method used a 
standard breathing pattern defined for adults. It is essential to use breathing patterns 
rather than continuous flow rates to provide a more appropriate measure of the mass of 
active substance that would be delivered to patients. In this test, the filter (contained in 
the filter holder) was attached to the breath simulator as shown in Figure 1. The 
mouthpiece of the nebuliser was attached to the inhalation filter using an adapter in 
order to ensure airtight connections. The breathing simulator was set to generate the 
breathing pattern specified in Table S1. At the beginning of an inhalation cycle, the 
nebulizer was started and kept in operation for 60 s. The mass of vitamin E collected 
on the filters was determined using an HPLC method (see section 2.2.3). The active 
substance delivery rate was then calculated by dividing the mass of vitamin E 
collected on the inhalation filter by the collection time.
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Figure 1. Experimental set-up used for vitamin E delivery rate determination.

2.2.2 Aerodynamic assessment of nebulised aerosols

Each pharmaceutical suspension (3 ml) was nebulised. The nebulizer mouthpiece was 
held approximately 1 cm from the center of the laser beam so that the air, containing 
the generated aerosol, is directed in a well defined steam through the laser beam of the
particle size analyzer. The redirected laser light was detected by a photo detector; the 
amplitude of light scattered was then measured and size distribution results were 
displayed. All experiments were performed at room temperature (25 - 30 °C) and 
relative humidity of 80 – 85 %; three replicates of each measurement were performed.

Laser light scattering

The impaction cups were placed in the cup tray which was inserted then into the 
bottom frame of the impactor. The impactor lid was hermetically closed using the 
handle so that the system is airtight. The induction port was connected to the impactor 
inlet and a suitable mouthpiece adapter was placed at the end of the induction port to 
allow its connection to the nebulizer. A pump was connected to the outlet of the 
impactor and air flow was adjusted to 30 l/min. For each test, 5 ml of each
pharmaceutical suspension was introduced in the nebulizer. The pump was switched 
on followed after 15 s by the suspension nebulisation. A schematic presentation of the 
experimental set-up is shown in Figure 2.

Cascade impaction

At the end of the test, the induction port was removed and the impactor was opened by 
releasing the handle. The cup tray holding the impaction cups was then removed and 
the vitamin E collected in each cup was dissolved in methanol. The mass of vitamin E 
collected on the filters was determined using an HPLC method (see section 2.2.3).
This test was repeated 3 times for each pharmaceutical suspension.
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Figure 2. Experimental set-up for measuring the size distribution of aerosols

The cumulative mass fraction of vitamin E was plotted versus the cut-off diameters; 
the plot was then used to determine the values of the mass median aerodynamic 
diameter (MMAD) and the fine particles (less than 5 μm) dose (FPD). The geometric 
standard deviation (GSD) was calculated according to the following equation:

Calculation of the aerodynamic parameters

GSD = . %. %                                                                                                                            (1) 
where d84.1% and d15.9% are the particles diameters at 15.9 and 84.1 % of the cumulative 
particles number, respectively. 

2.2.3 Vitamin E assay

The concentration of vitamin E was determined using an HPLC system (Spactra 
System SCM 1000, Rhode Island, USA). The HPLC equipment consisted of a 
P1000XR pump, an AS3000 autosampler and an UV6000LP UV/VIS detector. The 
column was a LiChrospher RP C18 column (5 mm, 15 cm × 0.46 cm) (Supelco, 
Bellefonte, USA). The separation was carried out using a mixture of methanol and 
water (96:4 v/v) as the mobile phase at a flow rate of 1.6 ml/min. The eluent was 
monitored at 292 nm and peaks were recorded using the chromatography data system 
software Chromo-Quest version 5.0 (Thermo Fisher Scientific, Philadelphia, USA). It 
should be noted that before chromatographic data were collected, the column was 
equilibrated for 30 min with a minimum of 30 column volumes. At the end of the 
assay, a washing of the column was performed using water–acetonitrile (50:50 v/v) for 
60 min. This HPLC analytical method was validated as usually required (data not 
shown).



302 
 

2.2.4 Pulmonary deposit prediction

In order to predict the aerosol pulmonary deposit using the MMPD model, the 
following parameters were fixed as follow:
- The functional residual capacity “FRC” (volume of air present in the lungs at the end 
of a passive expiration) = 2800 ml.
- Upper respiratory tract “URT” volume (volume of the nasal cavity, larynx and 
trachea) = 50 ml.
- Breathing frequency, also called pulmonary ventilation rate (number of breaths taken 
within a set amount of time) = 15/min.
- Tidal volume (the lung volume representing the normal volume of air displaced 
between normal inspiration and expiration) = 500 ml.
- Inspiratory fraction (inspiratory-to-total lung capacity ratio) = 0.5.

In addition to these parameters, aerodynamic characteristics of the aerosol particles 
(MMAD and ETG) have been entered. The model predicts the percentage of the 
aerosol deposited in each region of the respiratory tract: (i) ear, nose and throat “ENT” 
sphere, (ii) peripheral lung and (iii) central lung.

3. Results and discussion
3.1 Vitamin E delivery rate

The delivery rate of vitamin E was assessed for the different drug-carriers (Table 2).

Table2. Vitamin E delivery rate from various nebulised suspensions

Preparation Delivery rate* (mg/min)
Nano-emulsion 13.43 ± 0.50

Liposomes 0.42 ± 0.01
Micelles 0.23 ± 0.01

Solid lipid particles 1.00 ± 0.01
*: Values represent the mean ± S.D. (n=3) 

Active substance delivery rate is an important characteristic of aerosols since it allows 
the delivered mass of active substance to be characterized in a standard way regardless 
of the nebulizer used. In our study, the highest delivery rate was obtained with nano-
emulsion preparation; the lowest one was obtained with micelles. This result could be 
explained by the vitamin E concentration in each suspension which was the highest for 
the nano-emulsion and the lowest for micelles (Table 1).

3.2 Aerodynamic assessment of nebulised aerosols

Light scattering counters are used for the determination of the size distribution of
aerosols particles. The intensity of light scattered into a certain solid angle is measured 
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and used to determine particle size by electronically classifying response pulses 
according to their magnitude. A comparison of the MMAD, GSD and FPD of the four 
colloidal suspensions is presented in Table 3. A difference of size could be noticed 
between the particles in the to-be-nebulised suspensions and those present in the 
nebulised aerosols. Indeed, after nebulisation, the particle size increased by a factor of 
3, 37, 39 and 52 for solid lipid particles, micelles, liposomes and nano-emulsion,
repectively. This increase in size could be explained by particles aggregation that 
occurred during aerosols formation.

Table 3. The aerosols aerodynamic parameters assessed by laser diffraction analyzer. 

Preparation DAMM* (μm) Size increase ratio GSD* FPD* (%)
Nano-emulsion 5.58 ± 0.09 52 1.58 ± 0.03 38.3 ± 1.4
Liposomes 3.79 ± 0.06 39 1.55 ± 0.01 71.3 ± 1.1
Micelles 5.84 ± 0.03 37 1.42 ± 0.04 29.3 ± 1.4
Solid lipid particles 7.73 ± 0.06 3 1.68 ± 0.04 19.3 ± 0.7

*: Values represent the mean ± S.D. (n=3)

Size distribution of generated aerosols was also determined using a cascade impaction 
method; results are shown in Table 4. As previously noticed, the particle size 
increased when the suspension were nebulised. The size was multiplied by a fold-
factor of 2, 20, 18 and 26 for solid lipid particles, micelles, liposomes and nano-
emulsion, repectively. Several previous studies have shown that the aerosolization of 
colloidal systems would enhance their aggregation which is dependent on the 
nebulizer design. No specific correlation was found between the initial size and the 
size of the nebulized droplets [13, 14]. For instance, the mass median diameters of 
aerosols generated upon nebulization were 2 to 20 folds larger than primary geometric 
particle diameters [15]

Table 4. The aerosols aerodynamic parameters assessed by cascade impaction. 

Preparation DAMM* (μm) Size increase ratio GSD* FPD* (%)
Nano-emulsion 2.83 ± 0.09 26 1.98 ± 0.08 82.4 ± 2.5
Liposomes 1.73 ± 0.05 18 1.56 ± 0.05 87.1 ± 2.3
Micelles 3.16 ± 0.05 20 1.65 ± 0.06 78.0 ± 1.7
Solid lipid particles 6.10 ± 0.08 2 2.15 ± 0.04 39.6 ± 1.1

*: Values represent the mean ± S.D. (n=3)

It can be seen that the results obtained from both methods are quite different. Larger 
aerosols particle sizes are obtained when the light scattering method was used. Indeed, 
this technique works on the assumption that within a certain volume illuminated there 
is only one particle present; thus determination of the particle size from the light 
response may not be very reliable. Moreover, this technique presents other limits: not 
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all the aerosol is uniformly illuminated and not all particles spend the same time in the 
illuminated volume [16, 17].

Unlike the cascade impaction technique, the light scattering method doesn’t detect the 
active substance; rather it measures the size distribution of the aerosols droplets
irrespective of their content. This may not be a problem with homogenous solutions, 
but it may result in significant error if the product to be nebulised is a suspension, as in 
our study. Cascade impactor technique enables the aerosol to be characterized 
unambiguously in terms of the mass of active substance as a function of aerodynamic 
diameter. 

Although the laser light scattering instrument can provide rapid size distribution 
measurements of nebulizer-generated aerosols, this technique may be used only if it 
has been validated against a cascade impaction method. In our study, the preparations 
to be nebulised are colloidal suspensions; the impaction method seems to be the only 
suitable one for aerodynamic assessment.

On another hand, both size characterization methods showed that during the 
nebulisation, the highest aggregation was obtained with nano-emulsion and the lowest 
one with solid lipid particles. This observation shows that during suspension 
aerosolisation, solid lipid particles system, in which the dispersed phase is solid, is 
more stable than the nano-emulsion system, in which the dispersed phase is liquid.
Liposomes and micelles showed similar aggregation behavior, this could be explained 
by the fact that both vesicles have similar composition (composed by amphiphiles 
molecules). 

3.3 Pulmonary deposit prediction

In order to reach the lower respiratory tract, aerosols need to present aerodynamic 
diameters between 1 and 5 μm. Large particles impact in the oro-pharynx while 
submicron particles remains suspended in the air and are exhaled [18]. Sung et al. [19]
reported that particles with aerodynamic diameter of 1 to 3 μm deposit optimally in the 
alveolar region of the lungs. 

In this study, the MMAD of the different drug-carriers ranged from 1.76 to 6.10 μm 
which seems to be suitable to reach the broncho-alveolar region. In order to confirm 
the drug deposition, a mathematical model (MPPD) was applied and obtained results 
are reported in Figure 3.
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Figure 3. Vitamin E deposition level as predicted by the MMPD model for different 
drug-carriers. Modeling parameters: human 21 years old, body orientation: upright, 
breathing scenario: mouth only. Other parameters are specified in section 2.2.4.

The highest exhalation rate (60%) was observed with liposomes (MMAD of 1.76 μm) 
and the lowest one (23.7%) was observed with solid lipid particles (MMAD of 6.1 
μm). Due to its size, the latter system was mostly retained in the ENT sphere and only 
¼ of the inhaled dose could reach the alveoli. It is evident that the suitable drug-carrier 
systems for vitamin E delivery are: micelles and nano-emulsion. When loaded within 
micelles, only 40.6% of vitamin E is exhaled and 51.6% could reach the lung 
(peripheral and central). When encapsulated within nano-emulsion, 47.1% of the 
inhaled dose could reach the lung versus an exhalation of 44.9% of the dose.

Liposomes are one of the most extensively investigated systems for controlled delivery 
of drug to the lung. This colloidal form is particularly appropriate for therapeutic agent 
delivery to the lung, since vesicles are prepared from compounds endogenous to the 
lungs, such as the components of lung surfactant, and these properties make liposomes 
attractive candidates as drug delivery vehicles [20]. However, concerns arise from 
drug stability in the liquid state and leakage when nebulizers are used to deliver a 
liposomal encapsulated agent [21]. Solid lipid particles (SLP) are made from solid 
lipids (at room temperature), surfactants and water. Since the beginning of the 1990s, 
the SLP have been investigated as an alternative to other drug delivery systems. The 
main advantage of SLP is the high tolerability in the lungs especially when prepared 
using physiological lipids with little or no cytotoxicity [22]. Although they seem to be 
suitable drug carriers for lung delivery, especially due to their biocompatibility, 
liposomes and solid lipid particles could not be convenient systems in our study 
because of their size. The MMAD values of these carriers allow prediction of either 
high exhalation rate or high retention by the upper respiratory tract.
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Therapeutically used micelles are composed of biodegradable or biocompatible 
polymers such as polycaprolactone (PCL) or polyethylene glycol (PEG). Micelles are 
attractive drug delivery systems due to their biocompatibility, surface modification 
capability and sustained release properties. In addition, compared to liposomal 
formulations, the presence of polymers confers to micelles a greater stability during 
the nebulisation process, thus eliminating the possibility of drug leakage [23]. In our 
study, micelles with a mean size of 154 nm generated aerosols with a MMAD of 3.06 
μm. In addition, more than the half of the inhaled dose could reach its action site.

Concerning nano-emulsions, until now they have not yet been fully exploited for 
pulmonary drug delivery and very little has been published in this area. Extensive 
studies are required for a successful formulation of inhalable nano-emulsions due to
possible adverse effects of surfactants and oils on lung alveoli function (adverse 
interactions with lung surfactant) [24]. In our study, the nano-emulsion system seems 
to be a promising way for vitamin E delivery to the lung since that half of the 
administrated dose could reach the broncho-alveolar level.

4. Conclusion

In this study, different systems for vitamin E encapsulation were characterized in 
terms of aerodynamic parameters using laser diffraction and cascade impaction 
techniques. The standard inertial impaction method, which describes the phenomenon 
of the deposition of aerosol particles on the walls of an airway conduct, remains the 
most reliable one to measure particle aerodynamic size of pharmaceutical aerosol 
delivery systems. Obtained results showed that during nebulisation, aggregation was 
the highest for the nano-emulsion (size increased by a 26 fold-factor).

A balance between exhaled and lung deposited drug rates exists and it depends on the 
aerosols particle size. For small sizes, the nebulised suspension is mostly exhaled; for 
example after their nebulisation, liposomes generated particles with a size of 1.76 μm 
and 60% of the administrated dose was predicted to be exhaled. Larger sizes of the 
nebulised suspension led to its retention in the upper respiratory tract; for instance 
when nebulised, solid lipid particles aggregate to form particles with a size of 6.10 μm 
and a third of the dose was retained in the ENT sphere. In this study, micelles and 
nano-emulsions present the highest deposition rate in the broncho-alveolar level; 
around 50% of the inhaled dose was predicted to reach the lung. Among these two 
systems, nano-emulsion presents the highest vitamin E delivery rate (13.43 mg/min).  

Few studies have investigated the use of nano-emulsions in pulmonary drug delivery. 
Thus the nebulization of nano-emulsions would be a new and upcoming research area
since that these sytems offer the potential to improve targeting, release and therapeutic 
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effects of drugs. Coming work includes an in-vivo administration of vitamin E loaded 
nano-emulsion to rats in order to confirm its safety and therapeutic efficiency.
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Supplementary material

Table S1. Breathing simulator specifications

Tidal volume 
(ml)

Frequency (cycles / 
min) Waveform Inhalation / exhalation 

ratio
500 15 Sinusoidal 1:1

Figure S1. Next generation pharmaceutical impactor configuration.
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Conclusion 

L’objectif de ce travail de recherche consiste à mettre au point différents systèmes 
de vecteurs encapsulant la vitamine E destinés à une administration pulmonaire par 
nébulisation. La vitamine E est un antioxydant physiologique qui peut être utilisé 
pour lutter contre les effets du stress oxydatif en particulier ceux observés au 
niveau pulmonaire. Malheureusement, l’administration de la vitamine E par voie 
orale ou intraveineuse ne permet pas d’atteindre une concentration efficace au 
niveau pulmonaire. L’encapsulation de la vitamine E dans des vecteurs inhalables 
devrait donc permettre d’améliorer son efficacité thérapeutique. Différents vecteurs 
de vitamine E ont été développés au cours de ce travail par des procédés de 
préparation basé sur l’utilisation de contacteurs à membrane. Il s’agit d’un procédé
dont le principal avantage est la possibilité de transposition à l’échelle industrielle. 
De plus, les procédés de fabrication à base de contacteurs à membrane permettent 
de préparer des particules de distribution de taille convenable et ce sans apport 
conséquent d’énergie comparé aux méthodes conventionnelles appliquées à la
préparation des systèmes colloïdaux. 

Les liposomes représentent le système vectoriel le plus largement étudié pour la 
voie pulmonaire principalement en raison de la présence de phospholipides, 
composant majeure du surfactant pulmonaire, dans leur formulation. La première 
partie expérimentale de cette thèse aborde la préparation des liposomes en utilisant 
des membranes microsieves. La particularité de ces membranes réside dans 
l’uniformité de la taille des pores et des distances inter-pores. La taille des 
liposomes obtenus était influencée par la concentration des phospholipides, le débit 
d’injection de la phase organique dans la phase aqueuse, le rapport des volumes des 
deux phases, la vitesse d’agitation et la microstructure de la membrane. Ce qui
signifie que la taille des liposomes peut être contrôlée par un choix judicieux des 
paramètres opératoires.  Le procédé optimisé a permis de préparer des liposomes 
encapsulant la vitamine E ayant une taille de 96 ± 3 nm, un potentiel zêta de -28.5 
± 0.8 mV et un taux d’encapsulation de 98.8 ± 1.1 %. Ce procédé présentait une 
très bonne reproductibilité et les suspensions liposomales étaient stables pendant 
une période de 3 mois. L’étude du procédé à l’échelle du laboratoire qui a été faite 
en utilisant une cellule d’agitation, a permis de préparer 73 ml par cycle de 
préparation. Pour une production continue et à échelle plus large, d’autres 
dispositifs ont été testés. Le premier est un système membranaire à circulation 
tangentielle et le deuxième un système membranaire doté de mouvements 
d’oscillations à l’intérieur de la phase continue. Un scale-up d’un facteur 8 a été 
réalisé tout en gardant les mêmes conditions expérimentales pour tous les systèmes 
étudiés. Les résultats ont montré qu’avec le système de circulation tangentielle la 



316 
 

taille obtenue était plus élevée et la distribution de taille plus large. Ceci est
certainement dû à la recirculation de la suspension de liposomes lors du procédé de 
fabrication. Seul le système oscillant a permis de reproduire à large échelle les 
résultats obtenus à plus petite échelle (en termes de taille et de distribution de la 
taille). Ceci confirme le potentiel des contacteurs à membrane dans l’intensification 
des procédés industriels de production des liposomes.

La deuxième partie expérimentale de cette thèse porte sur l’élaboration et la 
caractérisation d’une nano-émulsion chargée en vitamine E en utilisant des 
membranes SPG. Les nano-émulsions présentent de nombreux avantages comparés
aux microémulsions dont principalement une meilleure stabilité, une capacité 
d’encapsulation plus élevée et une utilisation moindre de tensioactifs.
Préalablement à l’étude du procédé de fabrication, une optimisation de la 
formulation a été réalisée. Le choix de l’huile et des tensioactifs a été déterminé à 
partir d’une étude de solubilité de la vitamine E et de la construction de 
diagrammes de phases ternaires qui ont permis de détecter les zones de formation 
de nano-émulsion stable. Le dispositif membranaire utilisé est constitué d’une 
membrane tubulaire SPG à l’intérieur de laquelle circule la phase aqueuse de façon 
tangentielle. L’influence des paramètres opératoires sur les caractéristiques de la 
nano-émulsion a été étudiée et a montré que les meilleurs résultats sont obtenus 
avec la plus faible pression transmembranaire, le débit de la phase continue le plus 
élevé et la vitesse d’agitation la plus élevée. Pour ces conditions optimales, le 
procédé de fabrication appliqué à l’encapsulation de la vitamine E a conduit à la 
préparation de nano-émulsions de taille égale à 106 ± 3 nm, de potentiel zeta égal à 
-16.5 ± 0.8 mV et avec un taux d’encapsulation de 99.7 ± 0.4%. Les préparations 
étaient stables pendant 2 mois. Le procédé de fabrication ainsi optimisé était 
simple, rapide, reproductible et permettait la production contrôlée de nano-
émulsion de taille convenable.

La troisième partie de notre étude expérimentale consistait à l’encapsulation de la 
vitamine E dans des micelles polymériques. Les copolymères ayant servi à la 
préparation des micelles ont été synthétisé dans le but d’avoir une réponse sensible 
au changement de pH. La méthode de préparation des micelles impliquait 
l’utilisation des membranes microsieves et le procédé était optimisé comme 
précédemment détaillé. Les résultats ont de nouveau confirmé la possibilité 
d’ajuster la taille des micelles par le choix des paramètres opératoires. Au terme de 
l’optimisation du procédé de fabrication, des micelles de taille égale à 146 ± 7 nm 
et de potentiel zêta égal à -19.5 ± 0.2 mV ont été préparés avec un taux 
d’encapsulation de 89%.

Le dernier système de vectorisation de la vitamine E, auquel a été consacrée la 
quatrième partie de l’étude expérimentale, porte sur les particules lipidiques
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solides. Ces systèmes d’encapsulation de principes actifs associent les avantages 
des systèmes conventionnels (liposomes, micelles, etc) tout en évitant leurs 
inconvénients en particulier l’utilisation des solvants organiques lors de la 
préparation. L’émulsification directe par utilisation des membranes en céramique, a 
conduit à la formation de particules ayant une taille moyenne de 2.5 μm. 
L’inconvénient majeure était le colmatage de la membrane qui conduisait à une
taille maximale du lot, pouvant être préparé par cette méthode, inférieure à 93 
kg/m2 de surface membranaire. L’alternative qui a été envisagée consistait à
l’utilisation d’un lit de billes en verre pour réaliser une « premix emulsification ». 
Ces systèmes qualifiés de « membranes dynamiques », par opposition aux 
membranes conventionnelles, permettent de limiter le problème du colmatage 
puisque le nettoyage du lit de billes est plus aisé comparé à celui des membranes 
classiques. La méthode de « premix emulsification » consistait à préparer une 
émulsion grossière de taille moyenne voisine de 5 μm, puis réduire la taille des 
gouttelettes par passages successifs à travers le lit de billes en verre. Ainsi, sous 
une pression de 2 bar, après 6 passages à travers un lit de 2 mm de hauteur et 
constitué par des billes de 63 μm de diamètre, la taille moyenne des gouttelettes de 
l’émulsion de départ s’est trouvée réduite à 1.5 μm. Ce procédé a permis non 
seulement la préparation de particules de taille plus petite, mais également de 
réduire considérablement le colmatage des membranes. En effet, grâce à cette 
méthode, la taille du lot a atteint 851 kg/m2

La dernière partie de cette thèse consistait à caractériser les suspensions nébulisées
en utilisant deux méthodes différentes : la granulométrie laser et l’impaction à
cascade. Les résultats ont confirmé que la méthode de référence pour l’évaluation 
de la taille des aérosols est l’impaction à cascade. Lors de la nébulisation, une 
augmentation de la taille a été observée et les diamètres aérodynamiques des 
aérosols pour les différentes formes de vecteurs ont été compris entre 1.73 et 6.10 
μm. Les paramètres aérodynamiques ainsi déterminés ont constitués des données 
d’entrée pour un modèle mathématique, Le MPPD (Multiple-Path Particle 
Dosimetry), qui a permis de prévoir le devenir des particules après leur 
nébulisation. Les résultats ont montré que les micelles, ayant une taille initiale de 
154 nm, permettent de générer des aérosols d’une taille de 3.16 μm (soit une 
augmentation de taille des particules d’un facteur 20 suite à nébulisation). Avec ces 
caractéristiques, le modèle permet de prévoir que plus de la moitié de la dose 
inhalée pourrait atteindre son site d’action alvéolo-pulmonaire.  

de surface membranaire avec la 
possibilité de réaliser un système de production en mode continu.

En conclusion, nous avons réussi à préparer et caractériser quatre types de vecteurs 
pour l’encapsulation de la vitamine E (liposomes, nano-émulsion, micelles et 
particules lipidiques solides). La préparation est basée sur divers type de 
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contacteurs à membrane. Pour chaque forme colloïdale, une étude a été conduite 
systématiquement afin de déterminer l’influence des conditions opératoires sur le 
procédé de fabrication. Ceci a permis d’obtenir des vecteurs de taille convenable, 
stable dans le temps et avec un taux d’encapsulation satisfaisant. La déposition 
pulmonaire simulée in vitro en appliquant un modèle mathématique a permis de 
prévoir une déposition optimale de la vitamine E au niveau du tractus pulmonaire.

Les perspectives de ce travail comportent une étude in vivo ayant pour objectif la 
visualisation du dépôt pulmonaire des vecteurs de vitamine E chez des rats et 
éventuellement une étude clinique afin de vérifier l’efficacité thérapeutique de nos 
préparations dans le traitement des symptômes liés au stress oxydatif au niveau 
pulmonaire.
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Résumé

L’objectif de ce travail est de développer des vecteurs pharmaceutiques, encapsulant la 
vitamine E, adaptés à l’administration pulmonaire par aérosolisation. La vitamine E, 
antioxydant physiologique, peut être utilisée pour lutter contre les phénomènes du stress 
oxydatif en particulier ceux observés au niveau pulmonaire. L’encapsulation de la vitamine E 
dans des vecteurs inhalables a été envisagée afin d’optimiser son efficacité thérapeutique en 
améliorant la concentration du principe actif pouvant atteindre son site d’action, les alvéoles 
pulmonaires.
Les différents systèmes d’encapsulation de la vitamine E ont été préparés par des méthodes 
utilisant des contacteurs à membrane. Le principe de préparation se résume au passage de la 
phase dispersée, à travers les pores d’une membrane microporeuse, au sein de la phase 
continue. Les avantages de cette technique sont en particulier une bonne reproductibilité et un 
faible apport d’énergie et par conséquent un coût d’exploitation modéré. De plus, les procédés 
à base de contacteurs à membrane se prêtent aisément au passage à l’échelle de production 
industrielle. Au cours de ce travail, les paramètres influençant le procédé de fabrication par 
contacteur à membrane ont été étudiés; principalement la pression transmembranaire de 
passage de la phase discontinue, la force de cisaillement de la phase continue et la 
microstructure de la membrane utilisée. Différentes configurations membranaires ont été 
testées telles que (i) les modules membranaires tubulaires avec écoulement tangentiel de la 
phase continue, (ii) les membranes planes montées dans des cellules d’agitation et (iii) les 
membranes dotées d’un mouvement d’oscillation à l’intérieur de la phase continue. En cas 
d’émulsification directe, diverses membranes ont été utilisées: des membranes SPG, des 
membranes microsieves et des membranes en céramique. Pour la « premix emulsification » 
des membranes dites dynamiques, constituées par un lit de billes en verre, ont été étudiées. 
Quatre types de vecteurs ont été développés au cours de ce travail : les liposomes, les 
micelles, les nano-émulsions et les particules lipidiques solides. La formulation galénique de 
ces vecteurs a été étudiée en vue de son optimisation. Les préparations ont été caractérisées en 
termes de distribution de taille, potentiel zêta et efficacité d’encapsulation; la stabilité a été 
étudiée pour des périodes allant de deux à quatre mois. Les résultats obtenus ont révélé que 
les vecteurs développés présentent des propriétés très satisfaisantes. La caractérisation des 
aérosols générés suite à la nébulisation de ces systèmes vectoriels, ainsi que la modélisation 
mathématique de la déposition pulmonaire in vitro ont aboutit à des résultats très prometteurs.
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