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General Introduction

Context

There are currently two main ways to deal with the worldwide growing energy consumption.
The first possibility is to globally increase energy production capabilities. The second is to head
toward a more efficient energy consumption. Considering the second alternative, we decided to
work on energy consumption of one of the elementary loads on the grids : buildings.

According to [Observatoire Electricité 2014], the residential sector represents 44 % of the
total energy consumption in France with 69 Mtoe consumption from a total of 154 Mtoe. The
residential sector represents an important factor in the French energy consumption and can
be associated with substantial savings in terms of energy and/or money. For information, the
transport sector is the second largest with 32 % of the total energy consumption in France, then
the industry with 21 % and the agriculture with 3 %.

Focusing on the buildings sector, in the near future, the main issue concerns civil engineering
and the thermal insulation of buildings. But in the long term, issues concern local integration of
renewable energy and smarter buildings connected to smarter grids [Clastres 2010]. A relevant
knowledge of appliances consumption in buildings is needed in order to better control or monitor
energy consumption.

These controls and monitoring have two main goals. The first is to decrease the energy
consumption of buildings and/or decrease the electricity bill of inhabitants. The second is to
propose more tools to the grid managers in order to better manage an increasing intermittent
energy production due to the increasing renewable energy integration in the grids.

Therefore, monitoring and control of appliances consumption has two different purposes
whose business models are still in development. First, from the point of view of a wuser or
inhabitant, having information on appliances level usage can lead to reduced cost through a
reduction of the energy consumption or possible ancillary services (unbalancing requests, load
shading or energy price variations, etc.). Second, from a smart grid or grid manager point of
view the control of more loads represent more possibility of actions for maintaining stability of
the grids, i.e. more flexibility and reliability (reduce peak demand by eliminating electricity use,
or by shifting it to non-peak times, etc.). These services represent elementary bricks of an energy
management system whose privacy limits has still to be defined. They are explored in the work,
firstly, by load identification and secondly, by prediction of load energy consumption.

Another aspect for energy management is in terms of smart meters. According to the latest
energy policy, the objectives in France is to reach the target of 90 % of smart power meters
penetration by 2020. To achieve this goal new data analysis mechanisms have to be proposed
to inhabitants for their satisfaction and energy costs reduction. Just a transfer from an analog
to a digital system is not good enough for the customers. A comprehensive and qualitative data
analysis mechanism has to be proposed coupled with the subsequent load management strategies
that have to evolve. The challenges in energy monitoring and management is well defined by
Mickael MacKenzie, Vice President of digital energy services at Schneider Electric :
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“The difficulty in developing a core energy management strategy is a lack of visibility into
the full energy story of a facility. Getting insight into how energy is being consumed, what nor-
malizing factors create inefficiencies and how wastes, such as emissions or effluents are managed,
is critical to understanding how human behavior has an impact.

Data is frequently collected using utility bills and spreadsheets making it difficult to correlate
energy events with production events inside a plant. The proper data capture strategy can turn
raw data into information into wisdom, enabling continuous improvement strategies”.

Contribution

The major contributions in the work are as follows :

— A relevant pixel based energy data-visualization approach is implemented and its parame-
tric intricacies discussed. Modern visualization tools allow to move beyond daily, monthly
and yearly curves and visualize various patterns exhibited in the energy consumption data
(Chapter 3).

— The work propose a generic temporal classification approach after summarizing approaches
already available in the non-intrusive load monitoring domain. The novelty of the proposed
approach lies in the fact that it is applicable to the current smart meter (especially conside-
ring their sampling rates) and that it reduces privacy concerns by primarily concentrating
on high energy consuming appliances (Chapter 5).

— A novel multi-label classification approach is proposed and a selection of algorithms im-
plemented for comparison. Temporal distance based approach and sequence learning tech-
nique are compared (Chapters 6 and 7).

— A novel and generic appliance future usage prediction is proposed after summarizing other
techniques already available in the load prediction domain. The prediction algorithm is
made to be integrated in a three layer software architecture defined for smart home mo-
nitoring and control. The requirements of an appliance prediction system is highlighted
(Chapter 8).

— An expert knowledge based model is compared for standard classification techniques and
different aspects of the model are discussed. A real time implementation of the appliance
prediction system is also evaluated and performance on selected appliances are compared
(Chapters 9 and 10).

These contributions are highlighted in the following papers :

1. K. Basu, V. Debusschere, S. Bacha, “Non Intrusive Load Monitoring : A Temporal
Multi-Label Classification Approach”, IEEE transaction on Industrial Informatics, accep-
ted[Basu 2014].

2. K. Basu et al “A prediction system for home appliance usage”, Elsevier Journal for Energy
and Buildings, Energy and Buildings, 2013, vol. 67, p. 668—679.

3. K. Basu, V. Debusschere, S. Bacha, “A prediction system for home appliance usage”, In-
dustrial Electronics Society, IKCON 2013-39th Annual Conference of the IEEE, 2013.

4. K. Basu, V. Debusschere, S. Bacha, “Load identification from power recordings at meter pa-
nel in residential households”, IEEE XXth International Conference on Electrical Machines
(ICEM), 2012, [Basu 2012b].
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5. K. Basu, V. Debusschere, S. Bacha, “Appliance usage prediction using a time series based
classification approach”, IRCON 2012-38th Annual Conference of the IEEE, 2012.

6. K. Basu, M. Guillame-Bert, H. Joumaa, S. Ploix, J. Crowley, “Predicting Home Service De-
mands From Appliance Usage Data”, International Conference on Information and Com-
munication Technologies and Applications (ICTA). Jointly with the 17th International
Conference on Information Systems Analysis and Synthesis (ISAS), 2011, Orlando, Flo-
rida, USA. [Basu 2011]

7. V. Debusschere, K. Basu, S. Bacha, “Identification et prédiction non intrusive de l'état
des charges dans les batiments résidentiels a partir de mesures compteur a échantillonnage
réduit”, Symposium du Génie Electrique, 2014, Cachan, France. [Debusschere 2014a)

8. V. Debusschere, W.R.L. Garcia, K. Basu, S. Bacha, “Systéme de management énergétique
résidentiel prédictif sous critéres technico-économiques”, Symposium du Génie Electrique,
2014, Cachan, France. [Debusschere 2014b, Debusschere 2014c]|

9. V. Debusschere, W.R.L. Garcia, K. Basu, S. Bacha, “Bilan sur cycle de vie des flux éner-
gétiques dans les bdtiments résidentiels incluant de la production et du stockage”, 3éme
Conférence francophone sur 1’éco-conception en Génie Electrique CONFREGE, 2014, Albi,
France. [Debusschere 2014d]

Summary

Energy management for residential homes and/or offices requires both identification of the
load inside the buildings from the power meter and prediction of the future usages or service
requests of these appliances. The aim of the work is to identify residential appliances from
aggregate power readings at the power meter and to predict their states in order to manage and
possibly to minimize their energy consumption. For this purpose, our work is divided in two
distinct modules : Appliance identifcation and future usage prediction. Both identification and
prediction are based on multi-label learners which takes inter-appliance co-relation into account.

The residential buildings sector is mainly considered in this work because of the significant
variability of load profiles, but the tools and methodology are totally applicable to any other
kind of buildings.

1. The first part of the work concerns the identification of electrical appliances usages from
the smart meter monitoring. The main objective is to be able to identify individual loads
from the aggregate power consumption in a non-intrusive manner. High energy consuming
appliances are identified at low sampling rate using novel set of meta-features for this
domain.

2. The second part concerns future usage prediction. A generic model for future usage of
appliances is presented and different strategies are discussed.

Finally, this work is based on a real residential dataset of 100 houses monitored every 10
minutes during one year (including weather information).
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Introduction

From the inhabitants point of view, an energy management system applied to loads in buil-
dings lets customers adjust their energy consumption according to an expected level of comfort,
energy prices variations and sometimes environmental impacts (for example CO4 equivalent emis-
sions). Such demand side management strategies need an accurate evaluation of the amount of
energy that can be controlled and through which loads. Therefore, identifying the usage of each
appliance is one of the core issues in the field of smart buildings energy management.

From the smart grid point of view, receiving information on the usages of appliances (espe-
cially deferrable loads) helps to manage the energy distribution [Strasser 2013, Palensky 2011],
especially for the integration of more fluctuating energy sources (i.e. renewable). The energy
management depends on appliances : some can be postponed (washing machine, etc.) and some
cannot be (television set, etc.). In this field, there already exist strategies defined as demand
response [Siano 2014| to reduce peak demand by eliminating electricity use, or by shifting it to
non-peak times. The proper use of these techniques can depend on time of use pricing, then
on energy prices variations and ultimately on consumer acceptance. From the point of view
of energy providers, load identification can also play an important part in future prediction of
usages of particular appliances [Basu 2013b] where the process of historical data collection is
made as less intrusive as possible.

At the moment, current power meters only report whole-residence data. It is required to
separate and subsequently identify the total load into its constituent components, i.e. appliances
as shown in the Figure 1.1. In order to avoid indirect disaggregation, the appliances within the
house could be monitored directly, but at the costs of manufacturing and installing many new

7
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devices in the houses, inconvenience to the user and the fact that new sensors have to be installed
for any new appliances. Non-intrusive methods propose an attractive alternative with reduced
cost and manual overheads.

1.1 Problem statement

Noun-intrusive load monitoring deals with the disaggregation of individual appliances from
the total load at the smart meter. So if a load curve L monitored at a power meter is the sum of
three loads consuming respectively Li, Ly and L3, then the the task is to determine the state of
Ly, Ls and L3 individually with the only knowledge of L. This task is illustrated in the Figure
1.2.

FI1GURE 1.2 — The principle of signal separation

1.2 Non-intrusive load monitoring

The smart meters are one of the fundamental units of the smart grids, as many further
applications depend on the availability of fine-grained information on energy consumption and
production. From the energy consumer’s point of view, the access to fine-grained data can be
more than just load curves and energy readings, but also consumption information and potential
reduction. As a simple example, modern visualization tools can easily show comparisons to
previous days and weeks. These visualization give a detailed picture of the energy consumption
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of a building down to the identification of individual devices (e.g., washing machines, water
heater), as each device has its typical load curve.

From the service provider’s point of view, comparisons and useful information can be provided
to peer groups of consumers having similar consumption patterns (in terms of size and appliances
used). In addition, devices can be identified from their load profile, which can be visualized
additionally in a non-intrusive mechanism |[Farinaccio 1999]. The similitude of consumption for
specific appliances in a group of houses is significant information for grid managers who wish to
use consumption flexibility at a proper level.

Load monitoring instrumentation used to involve complex data-gathering hardware but more
simple software mechanisms. All the appliances of interest were directly monitored using wires
or power-line carrier techniques or radio signalling connected to a central data-gathering unit.
Conversely, a Non-Intrusive Appliance Load Monitoring (N1ALM) or Non-Intrusive Load Mo-
nitoring (N1LM) system consists of a simpler hardware part and a more complicated software
mechanism.

Load separation methods can be classified based on the intrusiveness of the training process
and the nature of the classification algorithm (event-based or non-event-based). Event-based
algorithm tries to detect ON/OFF transitions whereas non-event-based methods tries to detect
whether an appliance is ON during the whole sampled duration. Figure 1.3 proposes the two
cases, event-based in Figure 1.3a and non-event-based in Figure 1.3b.

Consumption

450
400
350
300
250
200
150
100
30
0

Time

(a) Event-based load monitoring method

Energy Consumption
450

400
350

300 Watt
250

200

: e | £

0 .
Time

(b) Non-event-based load monitoring method

F1aURE 1.3 — Two types of methods for non-intrusive load monitoring

1.3 Challenges

Researchers have been working on the N1ALM problem for the last two decades. The chal-
lenges to a NIALM problem is both technical and social.
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Technically, it is built on top of the premise that the study of how the variation over time of
the global energy consumption of a building can lead to information about the appliances that
have advocated these changes. Most of the approaches were based on signal processing at a high
sampling rate (1 second typically) to evaluate the appliance load signature and subsequently
to use pattern recognition techniques for identification from previously trained classifiers. This
requires the installation of a sensor for each appliance within the house and is then naturally
restricted by this important system of load monitoring (without speaking about the cost). Also,
the cost benefit for the user has to be carefully analyzed before developing this kind of solution.
The appliance usage being different from one user to the other, the variability of consumption
patterns is not compatible with a systematic benefit.

Socially, a major hurdle in the NIALM research is the privacy concerns of the user as the
appliance usage can be co-related with user behavior. For example, the time at which the lights
are shut d own can be assumed to be the sleeping time of the inhabitant.

Finally, a non-intrusive method which works for all the range of appliances within the house
is yet to be developed.

1.3.1 Works on load monitoring

Traditionally the NIALM consists of the six overlapping data flow phases |Birt 2012|. The
first is data acquisition followed by data processing, event detection, feature extraction, event
classification and finally energy computation as shown in the Figure 1.4.

Event

Detection Feature

Raw Data ) Generation
(Sta g'F”F‘-:; ON/ (signatures)

Pattern

Evaluation Recognition

FicUrg 1.4 — Non-Intrusive Load Monitoring work flow

The pioneering work in load separation was started by Hart [Hart 1992] in the beginning of
the 90’s. The methods were proposed to identify individual appliances from their ON/OFF tran-
sitions. Appliance transitions result in corresponding changes in the overall power consumption
monitored at the power meter. This pioneering signal processing technique is shown in Figure
1.5.

Methods were then proposed to identify individual appliances from their ON/OFF transitions.
From that time, most of the approaches were event-based and at a high sampling rate, typically
less than one second. This rate is required as event-based methods depends on state switching
detection. The sampling rate is defined compared to the variation of the state of the loads.
Events recognition works well for high sampling rates but fails most of the time at low sampling
rate.
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On Event QFF Event

! L 1 I
] 10 0 30 a0

Time (Min).

FIGURE 1.5 — Non-Intrusive Load Monitoring |[Hart 1992]

1.3.1.1 High sampling rate NI1ALM

In the last two decades, there have been considerable amount of work to this effect. Each
new method proposes to reduce the limitations of the previous ones both in term of signatures
or applying state of the art pattern recognition techniques. The identified features are known
as appliances signatures. Approaches typically consist of identifying the steady state or in some
cases transient state features [Zeifman 2011, Li 2013|. Subsequently, these signatures are mat-
ched with earlier learned models using a pattern recognition algorithm [Berges 2010, Bier 2013|.
The drawbacks of these approaches are mainly hardware requirement due to high sampling rates
and the impracticality of the process being totally non-intrusive [Fernandes 2013, Norford 1996].

These methods do not fit well into the smart meter sampling rate, so separate device has to be
installed for training, visualization and communication to the grid. This is a major drawback for
these methods, commercially and practically speaking. The load separation at a high sampling
rate of all the appliances also raise privacy comncerns as user activity can be easily detected,
interpreted and monitored [Birt 2012].

1.3.1.2 Low sampling rate NIALM

At a low sampling rate, switching events are difficult to detect so event-based methods are
more suited. The major issue at low sampling rate is that low energy consuming devices are
difficult to be detected. However, high energy consuming appliances, such as water heater or
washing machine can still be identified with reasonable precision even at sampling rate of 15
minutes for example [Kalogridis 2010, Prudenzi 2002].

Considering the constraint of low sampling rate, the differentiation of the methods is directly
dependent on the choice of algorithms. Some algorithms have already been implemented and
tested in the field of load monitoring.

A method partially disaggregating total household electricity usage into five load categories
has been proposed at a low sampling rate in [Kolter 2010] where different sparse coding algo-
rithms are compared and a Discriminative Disaggregation Sparse Coding (DDSc) algorithm is
tested. A feature-based Support Vector Machine (SvM) classifier accuracy is also mentioned but
is not presented. The method of [Kolter 2010] is an implementation of the blind source sepa-
ration problem, which aims at disaggregating mixture of sources into its individual sources. A
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classic example for this would be the problem of identifying individual speakers in a room having
multiple mikes placed at different locations. In the NIALM context, the problem is undermined
as there is only one mixture and a large number of sources. Another issue using blind source
separation is the assumption of no prior information about the sources. On the contrary, in
the NIALM context, the sources (appliances) do have separate usage patterns which could be
used. Nevertheless, blind source separation still remains a promising direction of research in this
domain.

Temporal graphical models such as Hidden Markov Models (HMM) also have been promi-
singly used in this domain as they are a classical method for sequence learning [Parson 2011].
They have been successfully used in many domains, especially speech recognition. In the NiALM
context, the problem is to learn the model parameters given the set of observations as input se-
quence and appliances states as output. HMM also considers sequential patterns in consumption
but in the NIALM context, at a very low sampling rate it seems to have a sensibility to training
noise.

Among others, the algorithms SvM and HMM have a more detailed presented in Chapter 6.
They also have been implemented and used in this works.

1.4 The French context

In 2010, the French distribution system operator “Electricité Réseau Distribution de France”,
ERDF, launched an Automated Metering Management project (AMM) that aims to implement
300 000 smart meters in France '. The smart meters, however, present low sampling rates starting
from 10 minutes to one hour. These low rates of sampling considerably reduce the hardware
complexities of the process. As an opportunity, most of the high energy consuming appliances
have low frequency of usage, typically once a day. The identification of these appliances is useful,
and can still be performed under restrictive conditions on the sampling rate. However, methods
proven to be effective with a high sampling rate may not be as effective with a low sampling
rate due to the difficulty to detect the appliance signatures.

A situation is considered where a user gives a recording (time stamped) of the usage of his
high energy consuming appliances for a week or two (through e.g. a smart phone application) and
subsequently gets his energy management plan for the year. There is no need of any particular
power recordings other than the one of the household power meter. In cases where the users
cannot monitor the usage of the appliances, inexpensive ON/OFF sensors can be used for the
training phase only. These sensors have reduced privacy concerns ; they are only monitoring high
consuming appliances and thus are more acceptable to users who don’t desire their own behavior
to be monitored.

These appliances may be, finally, controlled by a local energy management system (private or
aggregating many consumers) responding to regional grid manager flexibility requests (through
automatically shutting downs, shifting or shading the loads). In order for the inhabitants to let
that happen, economic incentives will have to be proposed (real time pricing, financial compen-
sation, etc.) and are still to be developed.

1. http://wuw.erdfdistribution.fr/EN_Linky
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There are also other benefits of using the above mentioned technique. In many modern smart
meter applications the electricity usage can be visualized by the user. He gets his electricity
usage information but this one will lack qualitative information regarding what appliances are
responsible for the total load and to what extent. Knowing the consumption of a particular
appliance will give incentives to the user on its future usage.

An illustrative example that can be seen is in the super-market bill though the breakdown of
the total bill into individual purchases. The benefit to the client is trivial (he knows what costs
the most and possibly won’t buy it anymore) but the supermarket chain also gets valuable in-
formation about the client purchase patterns. This has many benefits in terms of advertisements
of products through client specific promotions.

1.4.1 Our contribution

The context of the training process offers two possibilities. The first one is to use supervised
machine learning methods with the assumption of the availability of prior data for training. This
training mechanism drastically increases the complexity of the monitoring process both in terms
of cost and time. The second possibility is to use unsupervised disaggregation methods where
no prior training data is used. This requires a post-processing phase where the appliances are
labeled manually.

One of the strengths of the proposed method is to be a non-event-based approach with a
very short and non-intrusive training period. In this work, a novel data collection mechanism is
suggested and can be practically implemented due to of its procedural simplicity. Furthermore,
an appliance state detection mechanism is presented and compared with the traditional NIALM
mechanism. We consider 10 minutes to an hour to be a low sampling rate and less than a minute
to be a high one [Basu 2012a].

Temporal classification using multi-label classification techniques presents an interesting al-
ternative to signal analysis at low sampling rates and have not been tested in the field of load
identification for households. We can divide into three parts the work on load identification
presented in this manuscript.

— A way of visualizing data for identified appliances is addressed.

— Meta-features in the field of residential building appliances are proposed and a smart meter
integrated methodology is formalized.
— For the identification of the loads.
— For the prediction of their future states.

— A variety of state of the art multi-label learners are applied to our dataset to find the most
relevant learners in this field of research for different low sampling rates.

The limitations of these techniques are due to the sampling rate. In fact, with a very high
sampling rate, privacy issues are raising and almost everything can be known about the users.
Remaining at a low sampling rate is sufficient both for information to the user, for load ma-
nagement and scheduling (only high energy consuming appliances are interesting for the grid
manager) and for the privacy concerns. Another limitation will be the variability of the efficiency
of the methods depending on the appliances. These points will be addressed in the Chapter 7.
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Summary

The chapter addresses the problem of load disaggregation at a low sampling rate which
is compatible with the current smart meters. The different techniques used in the field are
discussed. The techniques range from using probabilistic graphical models or event detection
methods followed by pattern recognition. These techniques both have their own advantages and
disadvantages which are discussed. The method proposed in this work is also introduced with a
training procedure which also accounts for user consent. The advantages and limitations of the
proposed method is also highlighted.

The global architecture of the identification process proposed in this work is shown in Fig.
1.6. All interactions between inhabitants, loads and the grid are centralized in one hub : the
classifier. This classifier can be integrated or be an added part to a smart meter or an energy
box. These components could directly interact with the local grid manager or be aggregated
with other similar components in a “smart city” for example.

Smart meter
4

‘ Classifier «sspeereeses

Inhabitants

Low power loads

Heater Washing machine

—— Training phase: Aggregate energy consumption

— — |dentification of appliance state
w—p |nteraction with the grid

----- » Training phase: States of high energy consuming appliances

F1GURE 1.6 — Classifier architecture : Centralizing information of a smart household.
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2.1 Problematic

Reducing housing energy costs is a major challenge of the 215 century. After thermal insu-
lation of buildings, the issues are those of local renewable energy integration (solar, wind, etc)
and smart buildings. In this last field, prediction of consumption is one of the key to a proper
energy management system for loads in buildings.

2.1.1 Residential Energy Management

Load management allows inhabitants to adjust power consumption according to expected
comfort, energy price variation, etc.. A home energy management system (EMS) is able to
determine the best energy assignment plan and a good compromise between energy production
and energy consumption [Ha 2006b].

In this work, the energy consumption is mainly restricted to the electricity consumption
(local production and storage will be also considered as application). We consider a three-layers
architecture system for the residential energy management system, consisting of an anticipation
layer, a reactive layer and a device layer [Abras 2008]. This system is both able to satisfy the
maximum available electrical power constraint and to optimize a compromise between user
satisfaction and cost.

The objective of the anticipation layer is to compute plans for production and consumption
of services. Uniqueness of housing systems involves a set of new issues in energy management :
it is necessary to develop new tools and especially algorithms for globally optimized power
management of the home appliances [Abras 2010, Elmahaiawy 2010, Ha 2010].

These algorithms should be able to anticipate difficult situations but also able to take into

15
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account the actual housing system state and the occupant expectations, without forgetting local
production [Riffoneau 2010].

Anticipating problematic situations requires also prediction capabilities. Even if overall
consumption is easier to predict, the usage of each appliance has to be known because of the
dynamics of the demand side management.

Also, it is important to evaluate how much energy or money can be saved thanks to request
to customers like unbalancing requests or energy price variations. The energy saving depends on
appliances : some can be unbalanced, some can be postponed and some cannot be controlled.
The overall concept of the smart home and its actors are described in Figure 2.1.

_— Energy

t::) Managment syste Q Inhabitants
WEATHE ! E I | s \r y
(d) l_ .'_::'

d

X

Future usage prediction

FIGURE 2.1 — Actors involved in the Smart Home concept

Based on the information obtained in the learning process, the prediction algorithm needs
to be adaptive in order to forecast the variations of usages of electrical services in a building.
It also includes a user interface where the user may provide his plans for the future. The pro-
posed approach is restricted to the prediction of appliance usage, based only on the appliance
consumption data and the time of the event.

2.1.2 Home Automation System

A home automation system basically consists of household appliances linked via a com-
munication network allowing interactions for control purposes [Palensky 1997|. Thanks to this
network, a load management mechanism can be carried out. It is called for example distributed
control [Wacks 1993] or energy management system (EMS).

Building automation is traditionally used to increase comfort, to enable remote access to
buildings and to increase the efficiency of buildings. These systems may aim at applying the
best energy assignment plan and a good compromise between energy production and energy
consumption, determined by the local Ems. Figure 2.2 also describes the principle of a home
automation system in homes and offices.
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FIGURE 2.2 — Home automation principle

Home automation systems with appliances aiming at providing comfort to inhabitants could
base their economic model on services [Humphries 1997]. The modification of consumer demand
for energy through various methods such as financial incentives is called demand side mana-
gement (DsM). The services can be decomposed into three kinds : the end-user services which
produce directly comfort to inhabitants, the intermediate services which manage energy storage
and the support services which produce electrical power to intermediate and end-user services.
Generally, when the home automation system is able to modify the behaviour of a service, this
service is qualified as modifiable by the system, for example, the modification of the starting
time of a cooking service or the interruption of a washing service, etc. A service is qualified as
permanent if its energetic consumption/production/storage covers the whole time range of the
energy assignment plan, otherwise, the service is named temporary service.

In a home automation system, the user is not supposed to give the system his expectations
(requested services). When the user’s demand is not known during a given period, the system
must take into account this uncertainty by anticipating the energy needed for services. This
helps the system to avoid some problems like peak consumption in this period. Therefore, the
behavior of the inhabitant has to be in term modeled and integrated into the home automation
system [Hawarah 2010].

In order to keep under control the total amount of consumed energy every hour, and then
avoid peak consumptions and minimize the energy cost, the home automation system has to
schedule as much as possible the energy consumptions in the most appropriate time periods. For
example, the washing machine could be planned before or after the oven in a low energy cost
period as far as such a plan satisfies the predicted user’s request. The efficiency of the anticipated
plan is as good as the prediction of the user’s request. Indeed if the actual user’s behaviour is far
from the predicted one, then the reactive layer has to stop an appliance in order to satisfy the
availability energy constraint for example, and schedule this appliance later without any energy
cost optimization.
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2.2 Predicting energy consumption

Short Term Load Forecasting (STLF) has been already applied at the grid level for some time,
for example by the French transmission operator RTE (for “Réseau de transport d’électricité”)
which proposes an on-line daily electricity consumption prediction of all consumer in France
[Rte 2014, Rte 2011]. At the individual appliance level, these techniques have yet to be proven. In
fact, the problem of individual appliance usage prediction through consumption data is relatively
new. Moreover, STLF uses regressive approaches whereas the proposed method is based on
clagsification but the strategies used in the domain of energy load prediction led to the choice
of inputs to the predictor.

A study on the approaches used in load prediction is done in [Feinberg 2005]. The approaches
range from using methodologies such as similar day, expert knowledge and linear or nonlinear
learning algorithms. In that field, a lot of work has been conducted on the implementation of neu-
ral networks in the domain of energy load forecasting [Hippert 2001, Bakirtzis 1996, Park 1991,
Khotanzad 1998] and SvM models to predict daily load demand for a chosen amount of time
[Chen 2001].

To anticipate the energy needed for a service in a home automation system, the system must
take into account the uncertainty which can be provided by the user. In this context, a proper
prediction of energy demand in housing sector is of much interest.

-
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F1curE 2.3 — Principle of the prediction system

A bottom-up approach can be considered : first, the energy consumption prediction is done
for each appliance in a building, then the forecast will be made for the total energy consu-
med, and finally a prediction can be made regarding the local households supplied by the same
energy provider. Indeed, even if it is easier to predict overall consumption, the prediction of
the consumption of each appliance is needed for the dynamics of the DsM. It is also important
to evaluate how much energy (or if not how much money) can be saved thanks to request to
customers like unbalancing requests or energy price variations, these variations depending on
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particular appliances. The energy savings depend on appliances : some can be unbalanced, some
can be postponed and some cannot be changed.

The overall operation of the prediction principle in a EMS is described in Figure 2.3. The
residential EMS also includes a user interface where the user may provide his plans for the
future. Despite that possibility, in order to limit the work and to stay in restrictive conditions,
our proposed approach is limited to the prediction of appliance usage using only appliance
consumption data (historical values) and time of the event.

Due to the randomness associated with the use of appliances, regressive model has not been
proven very useful in appliance usage prediction. To get over this problem, the solution that
we have chosen is to divide the day into 24 hour samples and to predict if the appliance is
consuming or not in the time slots. This sampling of the continuous time space in 24 discrete
samples makes the prediction more realistic. The details of the proposed method is provided in
Chapter 8.

2.3 Energy Management from inside the buildings

The notion of building energy management and control system consists of a set of appliances
fitted with micro-controllers able to communicate via standard protocols [Stum 1997]. Various
authors have studied control systems dedicated to homes for tracking purpose. For example,
[Zhou 2005] and [House 1995] have proposed optimal control strategies for Home Ventilation and
Air Conditioning system (HvVAC) taking into account the natural thermal storage capacity of
buildings that shift the HVAC consumption from peak-period to off-peak period. [Zhou 2005] has
shown that this control strategy can save up to 10 % of the electricity cost of a building. However,
these approaches do not take into account the energy resource constraints, which generally
depend on the autonomy needs of off-grid systems [Muselli 2000] or on the total power production
limits of the suppliers in grid connected systems. |[Pedersen 2008] have proposed a temperature
tracking control using Dynamic Matrix Control (DMc), a variant of Model Predictive Control
(Mpc). But, optimal tracking does not maximize energy usage efficiency.

Some authors have considered in particular the management of local production means and
storage systems [Henze 2003, Eynard 2010]. A lot of optimization algorithms have been tested
for energy load management [Long 2005, Ha 2006a] including dynamic programming approach
[Riffoneau 2010], real-time simulation [Missaoui 2010, Rigo-Mariani 2014| and multi-agent ap-
proach [Negenborn 2007]|. The general approach of the energy management in living places yields
new issues :

Solving energy management problems where uncertainties are predominant - A
possible solution (chosen in this work) is a three layer architecture |Ha 2008| which is
both able to satisfy the maximum available electrical power constraint and to maximize
user satisfaction criteria, through a reactive layer.

Solving large dimension optimization problems - A way of tackling the optimization pro-
blem is to use a mixed integer linear programming approach that can manage thousands
of binary and continuous variables [Ha 2009].

Solving singular problems - Multi-agent approaches have been used to manage services that
can only be modeled by non-linear equations [Abras 2006].
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Generating dynamically the energy management problems to solve - Every  living
place is unique and evolving. Dynamic optimization problem generation has been studied
in |Warkozek 2009]. Software architecture and solving process have been depicted in
[Ploix 2010|. Figure 2.4 illustrates the proposed solution.

prediction system

9y

' § cost ayfd limitation weather forecast

servict request  foregast component component
pradictor '
********************* anticipative solving system
il anticipative MILP
E solver projected| optimization
| s, solver

activation order

i
'
'
|
& set points o 1
smart plu, measure s [———--t-oooemo-o-- e 1 i 1| problem '
plug service service contextual ! i tranversal i~ |
1| proxy parameter problem [tf ~ problem |4 |
HEs séTver — |
! - learning system data i[1| generator : solution| MILP with 1
activation order 3| Service — i ' heuristics 1
. ' Lo
smart @ 4%‘? Proxy reactive solver N flr;plmnce ! optimization |1
appliance : Sorvice D . . . anu;::zuvez an r;;r; ice : solver ]
i
control order proxy b, X . 1|{ problem ! \ |
: (set-points, || generator 0 ]
supervibion system starting [} " 1
smart load level i !
! mes) 1|} ' other solver... |}
applianc: [ \
'
A ST .
generator repository
service with user environment  power cost
appliances  satisfaction models models related to a given
model model type of services

FI1GURE 2.4 — Architecture of a power manager

Technical aspects related to communication means within the smart house needs still some
standardization. Some details on that subject can be found in [Project 2009]. Hardware and
software architectures to predict and optimally manage energy are also the subject of patents
[Miller 2006].

Another interesting aspect of the buildings EMS is the real-life experiments. These expe-
riment are the key to making progress in the validation of algorithm and method as we are
presenting in this work. As a representative example, the PlaceLab is a real home where the
routine activities and interactions of everyday home life can be observed, recorded for later ana-
lysis, and experimentally manipulated. Volunteer research participants individually live in the
PlaceLab for days or weeks, treating it as a temporary home. Meanwhile, a detailed description
of their activities is recorded by sensing devices integrated into the fabric of the architecture
[Intille 2005, Intille 2006b].

Three key challenges must be overcome from such work :

1. Need for comprehensive sensing ;
2. Need for labelled training datasets;

3. Need for complex, naturalistic environments, to evaluate how typically users will react to
a prototype technology in a representative setting

Some responses to these challenges are already being developed, for example, through techno-
logies and design strategies that use context-aware sensing to empower people with information
that helps them to make decisions, but without controlling their environment [Intille 2006a].
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There are technical and human-computer interface advantages of creating systems that at-
tempt to empower users with information at “teachable moments” rather than automating much
decision-making using “smart” control.

Uniqueness of housing systems involves the necessity to develop new tools and algorithms
for globally optimized power management of the home appliances, able to anticipate specific
situations but also able to take into account the actual housing system state and the occupant
expectations. This global control approach leads to the concept of energy smart home, which is
more ambitious, than home automation. It should help to keep the balance between consumption
and electricity production on the home scale but also at building, neighborhoods and grid scales.
Smart homes should be able to take into account external signals, like energy prices or unba-
lancing orders, and to modify the home appliance behaviors to compromise between occupants’
expectations and external actor wishes.

As an example of work combining hardware and software, three tools for acquiring data
about people, their behavior, and their use of technology in natural settings are proposed in
[Intille 2003] to make a first step toward a fully monitored smart home :

1. A context aware experience sampling tool, which offers a variety of options for acquiring
self-report data from users or subjects in experiments (software)

2. An ubiquitous sensing system that detects environmental changes. It can collect data
via measurement of objects in the environment and can complement the self-report data
collected by the context-aware experience sampling device (software + hardware)

3. An image-based experience sampling system. this tools combines scene-based sensing and
sampling techniques

Moreover, uniqueness also requires cheap installation and maintenance costs because eco-
nomy of scale is not possible. It means that the new tools and algorithms will have to be easy
to install thanks to auto-discovering and auto-learning capabilities, easy to reconfigure and easy
to repair. These issues involve sensing capabilities and intuitive human machine interfaces. This
field represent a huge opportunity of development for the open-source community, from the
hardware, and software point of view (example Zigbee [Baronti 2007]).

A system for recognizing activities in the home setting using a set of small and simple
state-change sensors has already been developed |Tapia 2004]. The sensors can be quickly and
ubiquitously installed in home environments. This system presents an alternative to sensors
that are sometimes perceived as invasive, such as cameras and microphones. In the work the
prediction system is based on the energy consumption of the appliances, no other sensors are
placed in the house.

Anticipating problematic situations requires prediction capabilities. Weather forecasts have
to be fit to real housing environments, taking into account building aspects and masks involving
shadings. Occupant behavior should also be predicted in order to avoid interrogating inhabitants
about their intended activities. But predicting the use of an oven is a quite difficult problem with
no apparent regularity. New prediction algorithms have to be developed where data comes both
from history and from the expression of intentions by occupants using proper Human-Machine
interfaces. The data privacy issue is in contention for some time now. The unregulated presence of
sensors is also a matter of concern. Any research in this direction should have minimal intrusion
of privacy and be properly regulated.
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Summary

In this chapter, the issues related to the energy management of residence are discussed. The
energy management for loads can be both from the gird level or the residence level, intricacies
of both the scenarios are discussed. Residential energy management have many aspects to it,
starting from anticipation of the behavior either by intrusive or non-intrusive means, followed
by large scale control and optimization strategies. The energy management system will be signi-
ficantly aided by an appliance level prediction system. Various aspects of a prediction system
is discussed in the home environment. Another aspect of this kind of system is just the use of
appliance consumption data and not using any other sensors, this can significantly contribute
in the reduction of user privacy concerns. In the part IV a novel application prediction strategy
is implemented and the intricacies of the system addressed.
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3.1 Data-set

The data-set used in this work is a sub-set from the results of an European project called
Residential Monitoring to Decrease Energy Use and Carbon Emissions in Europe (REMODECE).
This is a database of residential consumptions, from Western, Central and Eastern European
Countries, as well as more recent European Countries (like Bulgaria and Romania).

The part of the dataset used is a sub-set called IRISE. It is a part of REMODECE, dealing
only with houses in France. The database consists of energy consumption monitored in 100 hou-
seholds during a whole year. For each house, a data-set consists of the recordings of aggregated
power for almost all electric appliances in the house at a sampling time of 10 minutes over a
year. In addition the data-set contains weather information at a sampling time of 60 minutes
(temperature, humidity etc.), the number of residents, the area and the location of the house.

Fig. 3.1 shows a comparison of the 100 houses grouped by average energy consumption over
a year, showing that much more houses are low consuming (<100 Wh) than medium consuming
(100-200 Wh) and even less houses are high consuming (>200 Wh).

In Figure 3.2 a comparison of the average energy consumed by deferrable appliances to the
total energy consumer is shown for the 100 houses of the database IRISE. It can be observed
that deferrable appliances also account for a significant amount of consumption in the houses.

From the Figure 3.3, it can be observed that even at a low sampling rate of 10 minutes,
appliances have various energy consumption levels and frequency of usages. The most frequently
used appliance for this house is the Microwave Oven but it consumes less energy during one

25
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FI1GURE 3.1 — Comparison of the 100 houses of the IRISE database by average load consumption
over one year of data.

hour compared to the water heater which is less frequently used but consumes significantly high
energy. The washing machine varies both in frequency of usage and the energy consumption.
The snapshot at the raw data in .csv file format is attached for a particular house is shown in
the Appendix A.1.
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FiGURE 3.2 — Repartition of the consumption of the 100 houses of the IRISE database by average
load consumption over one year between all loads and only deferrable loads.

3.2 Visualization Techniques

3.2.1 Context

Advanced data visualization techniques have evolved over the years and represent an impor-
tant aspect in data interpretation. After all, it is said a figure represents a thousand words! With
the increasing number of smart meters, the quantity of data has also increased exponentially. A
new field of research is being explored at that point and is called Big Data.

When addressing the smart buildings problematic, it is not sufficient anymore to visualize
hourly consumption plot : more advanced visualization techniques are available and better suited.

Visualization techniques can be categorized as static or dynamic, global or local, two di-
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FIGURE 3.3 — Frequency of usage of different appliances within a house for different energy levels
at one hour.

mensional or three dimensional, etc. The energy consumption is essentially a uni-variable time
series and there are many existing visualization techniques for such temporal data. The task is
to identify techniques which will be beneficial from the energy management point of view and
also easily interpreted by the user.

To visualize the data dynamically and locally in two dimensions, a cluster and a calendar
based visualization could be used. These graphics help to visualize the energy consumption at
different level of aggregation. This way of visualization works well for interpretation but it is
difficult to compare between houses. In order to work around this problem, we used a pixel based
method for energy data visualization.

3.2.2 Pixel Based Visualization

The pixel based visualization method allows representing a large amount of information in
a graphic of limited size. For this purpose, each data is represented by a pixel whose color
corresponds to the value of this data. Over a two-dimensional spatial organization, a pixel based
representation is required in order to view and differentiate the data from each other. For this
purpose various forms can be chosen as shown in this section.

Such a representation method has several advantages. It allows the representation of a very
large number of data in one graph (up to the millions of values). This is ideal in the study case
of energy consumption monitoring in buildings, or group of buildings : as they are explored on
smart buildings and smart cities.

Due to the large amount of data shown, these visualization methods allow also the detection
of recursive schemes. In the observation of a phenomenon relative to one dimension (e.g. time),
the recursion is when a periodicity or a trend can be observed between the phenomenon and
one or more scales of the considered dimension. E.g. for energy consumption, one can observe
an increase in consumption between 18 h and 22 h for a majority of households, there exists a
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recursive scheme between power consumption and the time scale of hours.

To achieve a pixel-based visualization, several general parameters are to be determined : the
color scale (for color mapping), the arrangement of pixels (for pixel arrangement), the chart size
(for the ordering of the dimensions) and finally the shape of the sub-windows.

To apply this method into a meaningful system, specific parameters have to be considered.
The parameters consist of the color model, the arrangement of pixels, the shape of the window
and the granularity. Indeed, if the representation area is poorly designed, then it is certain that
the user cannot observe any recursive scheme and therefore be lead to wrong conclusions. Each
representation must be made case by case depending on the nature of the observed phenomenon.
There is no generic method for all applications. This method therefore requires careful assessment
of all the relevant parameters.

The energy consumption data will be represented here only as a function of time. Consump-
tion is measured with an interval of 60 minutes. In the Figure 3.6, the representation of data
over a year for one house is shown at different granularities.

In the Figure 3.4, two days from the same house are compared to observe the various patterns
of consumption.

Day 1 - [_)ay? ~ Watt-Hour

HOUR

| — .

1 Hour: 10 minutes each pixel

FIiGURE 3.4 — Day to day comparison using pixel based visualization.

3.2.2.1 Choosing the colors of the pixels

As explained above, the data value is represented by the color of the pixel. Subsequently,
the task is to determine the most appropriate scale for an easy reading of the chart. The task is
not only to select color but the shades that are most visible to the human eye. It is therefore a
question of principle “just noticeable differences”.

The goal is to have the largest number of colors well separated and as distinguishable as
possible. To determine the easiest and most common color, the task is to vary different charac-
teristics that separate colors : intensity, brightness and saturation. This is called the Hsv (Hue
— Saturation - Value) system. It is one of the most used in the case of graphical representation.
Experimentally, the most effective set of colors is the one that uses all the colors of the rainbow
scale. This is indeed the most intuitive to the human eye in term of color range.
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Once the color range (i.e. the gradient) is chosen, the task is to determine a scale with a
specific number of colors to represent the data. Each color should be chosen to correspond to a
range of values.

The chosen color scale is reported in the Figure 3.5 and described as follows :

— Basic scale using the gradient colors of the rainbow but can be used in several different
scales and should be implemented in a way that the user has a choice.

— To schedule representation, an option has to be provided that allows the color of each
pixel to be determined in part by the average value of the subdivision (together with an
adjustable rate of opacity).

FI1GURE 3.5 — Colour Model for Visualization.

3.2.2.2 Arrangement of the pixels

Since the requirement is to visualize huge amount of data, the arrangement of pixels is
essential to unravel recursive schemes. Without a suitable arrangement, the graph would be a
multitude of patterns of seeming colors that are arranged randomly and therefore unusable.

The arrangement depends on the nature of the data and thereby is domain specific. In
addition, the interval between each measurement is also taken into account (for example energy
measurement every 60 minutes). There is no general mathematical rule cutting across domains.
It is nevertheless necessary to propose a mathematical relationship for each case in order to
automatically position the pixels in the graph.

In the case of this work, we consider only data having a natural order of arrangement. Indeed,
the considered data correspond to temporal power readings. And two adjacent data over time
also will be placed in the adjacent pixels.

3.2.2.3 Windowing the data

Instead of representing all data in a single rectangle or in a single block, It is better suited to
subdivide the area of representation. This temporal subdivision can highlight recursive schemes
to smaller scales while allowing a global view of all values over the period. The advantage of using
sub-sampling is the possibility of visualization in-terms of daily, weekly, monthly and seasonal
patterns over a year. In the Figure 3.6 these patterns are highlighted from the model presented
in [Lammarsch 2009].

In addition, the use of sub-windows can allow the representation of additional data, such as
average value over the interval represented by this pane. Each subdivision of the representation
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FIGURE 3.6 — 1-year representation model of the data with four different granularities.
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allows performing calculations for smaller scales. This subdivision can then impact the color of
the pixels.

The use of opacity is also possible [Lammarsch 2009]. The color of each pixel is determined
both by the average color of the subdivision and share the precise value of the data corresponding
to that pixel. By varying the relative opacity of each of these two sources, the user can have a
broader view and more precise data.

In fig. 3.7 the recursive nature of energy data is observed by fixing the window size to twenty
eight days and then compared to a case where a random window size has been used.
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FIGURE 3.7 — 28 days window size (left) compared to random window size (right).

3.2.2.4 Chart size and shape

When it comes to creating a graph, the question of axes dimensions arises. A graph can be
interpreted as if a map is shown (two dimensional) or in the space (three dimensional). The
objective here is to be able to stay in the plane thereby in two dimension. Several solutions are
possible :
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— If two lines are sufficient for arranging all data, then a rectangular shape will be ideal
(note : considering the granularity).

— If more than two axes are needed to match all data then a polygon representation could be
used where each axes represents a edge of a polygon. This representation allows highlighting
particular cyclic repetitive patterns.

3.2.2.5 Granularities

Usually the data are represented in terms of a single parameter (e.g. time). Nevertheless, it
is possible to subdivide this parameter into smaller parts : this is known as granularity.

Granularities can be different for each axes of the graph. Furthermore the same axis can
represent two different granularities. For example, if we consider the representation of the time :
a first axis could represent months while a second one may represent days. Two different gra-
nularities of the same parameter are used to arrange the represented data. Each axis can both
determine the month and day of the week in question.

The number of granularity to use will determines the number of axis required. In the Figure
3.8, data are represented by a function of time. Multiple granularities have been used :

On the horizontal axis : the day and 10 minutes.

On the vertical axis : the week and hour.

- Day »

10 Minutes
-+ >

(a) Month 1. (b) Month 2.

FIGURE 3.8 — Monthly energy consumption representation with hourly and daily granularities.

The graph will be observed in two axes, each of them having up to two granularities. The
user must choose the configuration they want, i.e. choose the total measurement time (one day
to one year) and also chose the number of granularities that has to be taken into account in the
representation. Different granularities are available : 10 min, one day, one week, one month and
finally one season. The graph will then show several areas depending on the chosen granularity :
respectively minutes, hours, days, weeks or months.

Three granularities are proposed in figures here and are defined as follows :

1. Per day visualization, illustration in the Figure 3.4.



32 Chapitre 3. Database and Energy Consumption Analysis

2. Months visualization, illustration in the Figure 3.8.

3. Visualization by year, illustration in the Figure 3.9.

500
450
400
350

300
Sed

F1GURE 3.9 — Yearly Energy consumption with hourly, daily, weekly and monthly granularities.

In the figures 3.4, 3.8 and 3.9 the data can be observed at different scale and granularity. This
will allow the user to identify his peak consumption period is various time scales (daily, weekly,
monthly and so on). A color model based on opacity can add information about the average
consumption over a period (e.g. monthly). Note that this way of presenting data is completely
compatible for use on a touch-screen, including zoom from one granularity to the other.

Finally, the consumption information may be loads in a building, a residence, a group or at
the distribution grid level or a cluster of houses. The level of the application and the intended
beneficiary will determine the final implementation of the data visualization system.

Conclusion

The dataset used in the thesis is discussed in details with qualitative analysis of the consump-
tion patterns. The dataset consists of 100 houses consumption data at sampling rate of 10-60
minutes at both appliance and meter level. Weather and general consumer information is also
available. Various statistical analyses on the dataset is observed to understand the dataset and
also the importance of deferrable appliances. Big data visualization is an important aspect of
modern day research. In this work, a relevant pixel based visualization method is discussed and
implemented for energy data visualization. The data is visualized at various granularities to
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observe different temporal pattern within the data. This can be a tool for both the grid manager
and the consumer with different requirements. The application could be used at different levels
starting bottom-up from the appliances to the grid energy consumption.
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4.1 Categories of households

Clustering is the unsupervised learning task of grouping a set of objects into different cate-
gories. The objects of the same group are more similar to each other than the object in the other
groups. In the following section, the clustering principle and data dimension reduction algorithm
are discussed.

4.1.1 Clustering using K-means

K-means clustering [Hartigan 1979] is used to partition a set of observations into a set of
clusters in which each object belongs to the cluster with the nearest mean. It effectively partitions
the data into “Voronoi” cells which is a way of dividing space into a number of regions.

In the classical method the number of partitions K had to be provided but many variants
have evolved to overcome this restriction. In our work, an X-means algorithm is used. This
algorithm extends the K-means principal by an Improve-Structure part. In this part of the
algorithm the centers are attempted to be split in its region. The input vector is normalized
using the min-max algorithm.

Given a set of observations (xi, x2, ..., Z,), where each observation is a d-dimensional
real vector, K-means clustering aims to partition the n observations into K < n sets § =
{S1,S2,...,S;} so as to minimize the within-cluster sum of squares. In other words, its objective
is to find :

K
wgmind> 3 fle; = il @)
S

=1 ijSi
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where p; is the mean of the points contained in the set S;.

4.1.2 Principal Component Analysis

Principal component analysis (Pca) [Jolliffe 2005| also known as orthogonal linear transfor-
mation involves a statistical task that transforms a number of correlated variables into a smaller
number of uncorrelated variables called principal components. Mathematically, PCA solves ei-
genvalues and eigenvectors of a square symmetric matrix with sums of squares and cross product.
The eigenvector associated with the largest eigenvalue is the direction of the first principal com-
ponent and henceforth.

Physically, the first principal component represent the largest variability in the data and
each following component is used for the remaining variabilities. PCA is used in many fields
for different purposes. In this work it is used to reduce the dimension of the data for easier
visualization and understanding without significant loss of variability. It is also used in the
chapter 8 for the dimensional reduction of the input vector.

4.1.3 Features and clusters

To make qualitative analysis of the data-set, a clustering of the 100 houses of the IRISE
database has been done. The results obtained using a X-means clustering analysis resulted in
four categories of houses. The features taken into account for the analysis were the mean and
standard deviation of the energy consumed over one hour, the number of residents, the area of
the house, the number of deferrable appliances in the house, the mean of deferrable appliances
over a year (refer to the Table 4.1) and the number of usage of the appliances for different energy
levels (refer to the Figure 4.1).

TABLE 4.1 — Features for residential data analysis.

Mean of Standard Number of Area of Number of Mean of

Cluster energy deviation people the house  defer. load  defer. load
1 234 771 3.8 119 6.7 190
2 105 180 4 113 4.1 35
3 214 319 3.4 109 4.3 111
4 56 116 3.1 96 3.1 17

The cluster centers for the four categories are proposed in the table 4.1 along with some
features, in the Figures 4.1 and 4.2 for visualization.

It can be observed in the Table 4.1 that the increase in average hourly energy consumption
is not only proportional to the number of deferrable appliances present in the house but also
depends on the number of people present in the house.

The Figure 4.1 proposes the frequency of usage of the loads in each house in relation to
energy levels, from 0 to more than 400 kW.h. All algorithms and methods proposed in this work
are tested on houses representative of one of these defined categories.
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F1GURE 4.1 — Number of usages of the appliances for different energy levels.

In Figure 4.2 the 100 houses are projected using the features shown in Table 4.1 and in
Figure 4.1 (features values for the four cluster centers). The colors and the shapes represent
the clusters and the size (surface area) of any point is representative of the hourly mean energy
consumed over a year.

From the projection of the houses into two principal axes using principal component analysis
as shown in Figure 4.2, the houses are grouped in different categories based on their number
and use of appliances. This point is discussed in the Chapter 7. The parallel coordinate plot for
the houses in the dataset and the cluster centre is observed in annexture A.2.

4.2 Categories of appliances

The number of consumer appliances in buildings is increasing continually ; therefore, it is
difficult to review them individually. For that reason, the appliances are categorized as follows :

Continuously working devices - These devices are plugged in all the time during the day.
There is a cost associated with these devices if they are turned off (for example the heating
devices).

ON/OFF appliances - This category represent most of the appliances in household which have
two states (ON and OFF) such as simple water heater and light bulbs.

Multi-state appliances - Appliances that pass through several definite switching states like
they could be defined in a finite state machine. Example : washing machines and clothes
dryers.

Continuously variable appliances - Devices that have an infinite number of states with a
variable power draw. Examples : light dimmers and some power tools.

In the restriction of our work, based on the limitation of current smart meters, the focus
is primarily done on high consuming ON/OFF appliances and multi-state appliances. The ap-
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FIGURE 4.2 — 100 houses projected into two principal axis (using PcA) and divided into 4
clusters

pliances classification allows a better understanding of the optimal scheduling problem that
will be discussed in the last chapter. For that reason, the appliances are categorized in three
main categories, depending on their usability for energy management (or a future flezibility) as
follows :

1. The plug-in or non-controllable appliances are used for direct consumption and their usage
cannot be controlled by the grid. This category consists of lighting, T'Vs, small kitchen and
bathroom devices such as microwave, coffee machine, hair dryer and so on.

2. The controllable or manageable loads can be split into interruptible loads, non-interruptible
or semi-controllable ones. Hence, their usage can be controlled. Non-interruptible devices
can be re-scheduled or shifted in time, but once their work cycle has been started it
is more cost effective to complete the usage, an in-between stop and start consuming a
higher amount of energy or being simply impossible for the considered device. For non-
interruptible devices, it is important to know the consumers preferences in order to design
an optimal energy management system which takes into account comfort criteria. This
category regroups the major appliances settled by the inhabitants, who can decide to start
them immediately or not.

3. The interruptible device has been segmented in multi-modules and permanent switching.
A multi-module device means that its working cycle can be seen as a sum of individual
sub-working cycles, dissociated over the time horizon. The interruptible devices can be
controlled based on constraints which are specific for each concerned device.
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4.3 Load flexibility for the grids

Works allowing the grids to become more active and flexible are intended to let the sup-
ply of electricity to be more efficient, sustainable, and economical in accordance with security
conditions.

The main objective is to find the flexibility of the electrical consumption in a distribution
network, for the purposes of increasing or decreasing consumption in relation to a more variable
production. The evolution of the production is often related to the increase of renewable energy
production that will lead to more intermittent energy production injected in grids, and therefore
more difficulties to keep the equality between production and consumption.

This work is mainly focusing on the consumption of one building (in fact going inside it by
distinguishing between appliances) but can totally be taken one step beyond by considering the
consumption of several buildings, i.e. a district, then a city, etc. That is what will be considered
in this section.

The notion of flexsbility in this context represents the amount of energy that can be removed
or added (i.e. increased or decreased) at one point of the time in relation to the forecast of
the energy that should be consumed by an aggregation of houses. The aggregation of houses
is made on the basis of the clustering shown in section 4.1.3. The objective is to observe the
impact on grids by multiplying the amount of energy controlled through the multiplication of
the same charge (i.e. the same consumption behavior). This has to be done while keeping the
same amount of energy consumption over a given period of time (one day for example). Thef
“artificial” variations of the loads (i.e. the differences with a forecast due to an action of control
and not a prediction error) have then to be done on smaller time periods than the duration
taken as limit for the energy balance. In our case, the time duration for energy balance is of one
day, and then the actions on loads have to be in a range of a few minutes to less than 24 hours,
including the duration of service of the considered load.

The idea behind these manipulations is more to adapt the energy consumption to energy
production than to decrease globally energy consumption. The later observation is related to the
former one, but will be addressed in a different manner, effectively through awareness campaign
and more probably through prices incentives.

The flexibility of the means of consumption, in other words the variation of the energy
consumption relatively to its forecast, can be created by a house or a group of houses. The
evolution of the consumption compared to a previous forecast (or historical data) can be obtained
by load shedding in order to find the minimum consumption or on the contrary by load shifting
in order to reach the maximum consumption (while respecting certain constraints).

To start with, one must determine the possibilities of flexibility for one single house, starting
at a certain time. This flexibility is achieved by modifying the working cycles of the loads or
by rescheduling various categories of loads : movable loads, interruptible loads and modifiable
loads. Therefore, the daily flexibility in the energy consumption is primarily dependent on the
appliances being used during that day, the day before and the next day.

The constraints that can be listed for a possible use of the loads are as follows :

— The total power of the loads does not exceed a fixed limit.
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— The energy consumption during one day will remain the same as the energy consumption
forecast, regardless the way in which it will be distributed over the day.

— A movable loads cycle cannot be interrupted if it has started.

— The actions on loads are restricted by the inhabitant comfort criteria (are concerned mainly
the electric heater and water heater).

— Some appliances cannot start before the end of the cycle of other appliances (for example
the clothes drier after the washing machine).

— Some appliances cannot start unless the inhabitants ask them to (for example the washing
machine cannot start if there is no clothes inside).

— Some appliances has to end or start before a certain time (for example the washing machine
should not run after 10 O’Clock).

All these constraints, and probably many other specifics demands from inhabitants, will have
to be taken into account in a global energy management system in future smart buildings, and
later in the control and monitoring of smart cities. This kind of energy management system will
create a massive amount of private data, the challenge being double : to handle them properly,
first, technically and second, in a real secure way.

As a first proof of concept, the objective of these sections is to evaluate the principle of
flexibility of various loads in groups of houses through their energy consumption.

4.3.1 Flexibility of specific loads

We consider a scenario where a distribution network operator, through flexibility requests to
a specific market (not presently completely functional) wants to act on the energy consumption
of a house or of a group of houses, grouped by the similarities in their consumption pattern.
In France the regulation is down in NEBEF (!) for load shedding. This action is defined as a
certain amount of energy to add or subtract (a capacity) during a certain amount of time.

In the work, the time interval is a duration starting at a time of the day where we want to
achieve a given scenario, for example, to maximize or minimize the consumption. This interval
has a duration of one hour (but could be bigger or smaller) which corresponds to six time slots
of ten minutes (10 minutes being the sampling rate of the IRISE database).

The situation in the case of the considered loads is simple. They cannot be moved unless
their start-up time belongs to the interval defined in the scenario or is predicted to start after (in
the case of maximizing the energy consumption). These categories of appliances can be differed
or shifted only if the appliances are predicted to be used during the interval of consideration and
also that the predicted end of service (taking into account the new starting time) is included in
the time period of energy balance.

In the results shown in section 4.3.2, the duration is considered to be of 24 hours. It can be
observed that if the appliances are predicted to be used during the end of the day, the flexibility
within the day is then reduced. The consumption is moved in totality or by blocks. Taking the
inhabitants comfort criteria into consideration, the appliances should only be moved within a
restricted period. For example, for the washing machine, this interval has been fixed to 12 hours
and for the water heater to two hours.

1. http://www.erdf .fr/ERDF_NEBEF
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Another particular appliance is the electrical heating. This load is the largest one during
winter days in houses with water heater. It is subject to the restriction, that the heating cannot
be interrupted more than 30 minutes. This restriction is an average value based on thermal time
constant that could be found in typical rooms in households as they were consider in the IRISE
database. The total energy consumed by the heating system is also fixed. The distribution can
be rearranged without changing the overall consumption. An additional restriction of maximum
shift of 80% consumption is also imposed.

4.3.2 Assessing flexibility of a group of houses

The action of aggregating houses together depending on similarities of consumption patterns
is something that has already began to be considered by some industrial actors, like Voltalis? in
France. These actors will aggregate customers in order to bet blocs of energy that can be shifted
in time on capacity markets.

In the graphics shown below, the objective is to assess the flexibility limits (maximum and
minimum) that can be predicted for groups of houses, based on the previous knowledge of their
consumption pattern (consumption prediction after load identification).

At one point in time, the upper bound of the flexibility is defined when all loads that can
be started right away are shifted from their predicted (future) time of use to the current time
period. The lower bound of the flexibility is obtained when all loads that can be stopped or
postponed are shifted away in the future. This flexibility is assessed under the constraints listed
in the previous section which depends on the category of the load, the predicted starting and
ending time, etc.

All the houses from the IRISE database are grouped into four categories based on a clustering
algorithm (X-means) as discussed previously in section 4.1.3. All houses from one cluster are
aggregated together to constitute a group. The appliances considered are the washing machine,
the water heater, the electrical heating, the clothes drier and the dish washer. For each group
(from group 1 to group 4) three characteristic curves are observed : total consumption, minimum
of flexibility and maximum of flexibility.

In the Figure 4.3 the minimum of flexibility of the third group of houses is observed in
the smallest cluster described in section 4.1.3. This group contains only three houses that are
aggregated together to observe the global possibilities of flexibility. It can be observed by the
definition of maximum and minimum flexibility that their value depends on the consumption
during that period.

In a similar manner, the Figure 4.4 proposes the maximum of flexibility for the same group
(same cluster). The flexibility is reduced during the evening for the considered day due to the
general preference of the inhabitants to use the deferrable appliances later during that day. It
can be observed for both figure 4.3 and 4.4 that the individual houses have similar consumption
and flexibility pattern within the group. It can further be observed that the flexibility is highest
during the afternoon.

The minimum and maximum of flexibility proposed by two other groups of houses based on

2. http://www.voltalis.com
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the previous clusters can be seen in the Figure 4.5.

The flexibility is higher for the group 1 than group 3. This is primarily due to the fact
that more controllable appliances are present in the group (based on the category of houses
with multiple appliances). It can further be observed that the flexibility in the group 1 is highest
during the start of the day and reduces as the day progresses which is unlike the case of the group
3. This is primarily due to the difference in nature of the deferrable or controllable appliances
present within the groups.
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FIGURE 4.5 — Minimum and maximum of flexibility for group 1 (left) and group 2 (right).

A similar graphic is show by comparing the last two groups of houses, group 3 and group 4.
It can also be observed from Figure 4.6 that the flexibility reduces as the day progresses. This
analysis also provides a bandwidth (upper bound and lower bound) within which an optimal load
scheduling algorithm will work. The group 2 has a more stable flexibility throughout the day
than group 4, the possible reason is that within group 2 the number of interruptible appliances
are more than group 4. The non-interruptible appliances impose restriction which reduces the
flexibility as the day progresses.
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FIGURE 4.6 — Minimum and maximum of flexibility for group 3 (left) and group 4 (right).

The two Figures 4.5 and 4.6 show relatively similar trends in their flexibility, illustrating
the fact that the IRISE database is not diversified enough to propose a complete assessment of
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energy consumption patterns. In fact, even if the houses are in different groups, their number
of inhabitant, appliances and load curves are not significantly different. The primary difference
is in the nature of the controllable appliances whether they are interruptible or not and the
constraints governing them.

As a comment, we should emphasize that these graphics are a preliminary analysis within
the database and are being scaled up for further analysis. The appliances constraints related
curves could also give an insight into the tradeoff between the user comfort and the possible
flexibility.

Conclusion

The IRISE data-set is first introduced and some qualitative results are proposed. The objective
is to have an analysis on the nature of the dataset. A clustering technique for the houses is
discussed and the issue of the clusters categorization depending on the loads is emphasized. The
K-means clustering technique is detailed and a modified form of K-means (X-means) is used
for household segmentation. The Principal Component Analysis is briefly presented and used
for data dimension reduction and easier visual analysis. All the hundred houses are observed
with the surface area of each point representing the mean hourly energy consumed over a year.
The different categories of appliances are discussed and the different types of controllable loads
are detailed. Finally, the concept of the flexibility of the energy consumption of buildings is
discussed, followed by an illustration of its upper and lower bounds on groups composed by the
aggregation of all houses from each clusters. It is observed from the results that the number of
controllable appliance play an important role in the possible flexibility in load consumption. The
load consumption is more flexible with the presence interruptible appliances such as Heating or
Water Heater than with non-interruptible controllable appliances. This is a preliminary work in
this regard, it needs to be further incorporated with user defined constraints and observed over
the whole year rather than the one particular day. The load flexibility can be observed also in a
pixel based visualization to observe the high and low flexibility period.
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Introduction

The methodologies to solve the NIALM problem encompasses a mixture of domains. A ma-
jority of the earliest research focused on this problem from a signal processing perspective. The
focus was on identifying different appliance signatures which distinguishes one appliance from
another by analysing with mathematical tools (for example wavelet transformation) [Bier 2013].

Subsequent research also considered the problem as a blind source separation task and pro-
posed relevant techniques in that direction [Kolter 2010]. Our work considers this problem as
a temporal classification problem as summarized in the Figure 5.1. The advances in temporal
classification have been proven useful in other research domains. As an example, temporal clas-
sification is used to predict protein secondary structure from the protein’s sequence of amino
acid residues and for text mining |[Eddy 1998|.

The present work formalizes a generic appliance identification technique based on a multi-label
learning process using a temporal windowing approach where the only input after the training
phase is the fime stamped energy readings from the power meter. The implementation of the load
identification technique is described below, while each step is discussed in the following sections.

1. The energy readings are extracted from the IRISE dataset at the sampling rate of 10 to 60
minutes.

2. Sub-sequences are generated from this dataset using temporal sliding windows (refer to
Section 5.1) with a window size of 10 units.

3. Meta-features are computed for each sub-sequence (refer to Section 5.2).

47
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4. The features thus generated are processed as input attributes and the high energy ap-
pliances as output classes for the multi-label classifier (refer to the Chapter 6).

Note, the model is trained using 10 % of the dataset and evaluated on the remaining dataset.
This restriction is imposed to have a minimum training period and observe the impact on
unknown test instances.

Considering a 10 minutes sampling rate, the method can be directly implemented using cur-
rent smart meters technologies without any other energy boxes. It reduces the privacy concerns
as the daily user activity is less detectable. Indeed, only the high consuming events leave a foot-
print (even if the event is very short in time, a high consumption will be detected in the energy
trace).

The drawback of this approach is that short term and long term events with low power
consumption remain undetected.

5.1 Temporal sliding window

We introduce a few key-terms to facilitate the understanding of this work. Temporal data
mining encompasses time series analysis on the form, type and scope of the data. The tempo-
ral data can be represented by time series or events and can be processed with tools such as
classification among others. Some definitions are summarized below :

Time Series : An ordered set of n real-valued variables T' = t1,...,t,.

Sub-sequence : For a given time series T' of length n, a sub-sequence C} of T is a sampling of
length w < n of contiguous positions from 7', that is Cy = tg, ..., tg4w—1 for 1 <k <n—w+1.

Time Sliding Window : Given a time series T' of length n and a sub-sequence Sy of length
w of that time series, a matrix M of all possible sub-sequences can be built by “sliding windows”
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across T and placing sub-sequence Cj, in the k' row of M. The size of the matrix M is (n —
w+1) X w.

In the field of load identification in households, the input (energy) is a time series with an
ordered set of real-valued variables whereas the output (predicted classes) is an ordered set of
events (appliance states). In this work, time series sub-sequences are generated from the energy
reading, and then meta-features are extracted from the sub-sequences to identify the appliances
states. The classifier system for load identification is based on temporal classification using
standard propositional machine learning algorithms.

The initial step is to populate the sliding window with sufficient historical data that aims
at creating a single test instance to start the closed loop classifying process for the future
time steps (priming). The subsets of the original time series are then shifted in time creating
thereby the sub-sequences and preserving time dependency among sub-sequences. Instances
containing these sub-sequences are finally presented as standard propositional instances to the
classification algorithm. This process is illustrated in the Figure 5.2. To summarize, the input of
the classification algorithm is the subsequences of the total energy consumption and the output
is the appliances states (in the Figure 5.2, the appliances are the washing machine and the
clothes drier).
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FIGURE 5.2 — Data representation in a standard propositional learning format

As the variables in each sub-sequence are considered as independent the time dependency
is lost. The temporal sliding window principle injects back this dependency among the sub-
sequences. The time dependency of the usage of the appliances is taken into account but in a
different way than event detection at low sampling.
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Once the classifier produces a prediction for the next time step, this classified value moves
into the sliding time window as the most recent value of the target and the oldest value in the
window falls out. Another test instance is then created from the history window and the next
time step is classified. This is also known in the literature as “closed loop forecasting”. Once the
classifier is trained, it only needs to be “primed” each time for classifying future instances.

The size of the sliding window is fixed experimentally to 10 units, each unit being of 10,
30, or 60 minutes, depending on the sampling rate. Increasing the window size can increase the
complexity of the algorithm (not always with a visible change in performance) and decreasing
the window size can lower the performances. After experiments, the window size can be reduced
up to five units for a lower sampling rate (30 to 60 minutes) without a significant drop in
performance. The minimum size of the window should be greater than the duty cycle of the
appliances being dis-aggregated.

In the Chapter 7, Section 7.1.2.2, a brief study on the position of the sliding window around
the time of analysis is proposed.

5.2 Meta-features

5.2.1 Principle

The problem of load identification being addressed here from the context of temporal clas-
sification, the issue is to convert raw data into a model that can be understood by established
machine learning techniques. There are three broad approaches in the temporal classification
domain :

1. Algorithms which deal specifically with temporal classification, for example, factorial hid-
den Markov models and sparse coding [Parson 2011, Labeeuw 2013].

2. Relational learning based techniques, like the recurrent neural networks.

3. Problem representation in a way that can be understood by propositional concept learners
[Kadous 2002].

The work presented here is based on the third approach. Knowledge extraction for a specific
representation of a problem is a technique of attribute construction applied to represent the
underlying substructure of the training instances. In the temporal classification domain, these
substructures are in the form of sub-events, defining for example a periodicity in the data
[Dong 2012]. These sub-events become synthetic features, which are then fed to a propositional
learner.

This concept also allows the inclusion of background and domain knowledge for temporal
classification. The output of the learner can then be converted back to a human readable form
for example as a decision tree.
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5.2.2 Proposed Meta-features

One of the primary goals of this work is to define and use meta-features based on requirements
of residential load identification. They are used to identify the substructures present in the
aggregated power readings from the meter panel in order to identify the appliances signatures.
The chosen meta-features are dedicated to the specific domain of high energy consuming loads
in household buildings. Each of these features takes into account the different characteristics of
appliances such as time of use, duration of use, trends of load, sequence of load, spike in load
and correlation among appliances.

The main meta-features on which the identification algorithms are based are presented in the
following subsections. Almost all of the meta-features are defined for the subsequence centered
on the considered time of event t, except for the “hour of the day”. The size of the sliding
window at one moment of computation is 2N with N =5 (refer to 5.1). Some of the presented
meta-features are illustrated on a generic time window in the Figure 5.3.

Aggregated —

power (Local Maxima)

Change in energy 4

Distance of local minima = +2

I ot

A
g, A

Local Minima )

T
-5 t4 t3 -2 t1 t t+l t+2 t+3 t+4
t : instance time slot

FiquRE 5.3 — Graphical definition of some of the main meta-features concerning the aggregated
power measurements in a sliding window.

To visualize the impact of the use of meta-features on classification of states of applainces,
a two dimensional projection plot (using PCA) of the water-heater ON/OFF states is proposed
in the Figure 5.4. The figure 5.4a is generated using the energy consumption sequence as the
feature, the figure 5.4b is generated using the meta-features as the feature. The ON state is
represented by color brown and the color blue for the OFF state.

It can be clearly observed that using the meta-features as input of the classifier (in Figure
5.4b), the two states of the water heater can be considerably better separated than using only
energy consumption information. Indeed, the process of the classifier algorithm can be easily
understood graphically in two dimensions.

The task of the classification algorithm is to determine a line (for linear classifiers) or a
non-linear curve (for non-linear classifiers) to best classify (i.e. distinguish between) the two
classes. In can be intuitively observed by comparing the Figures 5.4a and 5.4b that after the use
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FIGURE 5.4 — Two dimensional projection of the ON/OFF states of a water heater using PCA.
The pixel size is proportional to the energy consumption.

of meta-features as input, the two classes are more separable. The classification error is thereby
reduced.

In the following subsections, we will describe in a more detailed manner the major meta-
features defined and tested in our work.

5.2.2.1 Hour of the day

The hour of the day H(t) is a measurement of the hour of occurrence of an event. It is
represented as a numeric value from 0 to 23 in the propositional learner, as described in equation
5.1.

H(t) = hyh €[0,23] (5.1)

The impact of the hour of the day is illustrated in the Figure 5.5. In this figure, it can be
observed that the appliance is primarily used during two periods during the day. Obviously, this
feature plays an important role in representing the hourly temporal pattern in appliance usage.

5.2.2.2 Distances from the current event to the local maximum and local minimum

These two distances monitor the position, counted from the current time of event t, of
the local maximum dps(¢) and minimum d,,(t) of energy consumption in the sliding window.
This meta-feature provides to the classifier information on whether the current event is a local
minimum, local maximum or neither. The displacement is measured as an integer value where “0”
signifies whether the current event is a local minimum or maximum and “+d” or “—d” represents
the distance (in time steps) to the local minimum and maximum in the subsequence.
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FIGURE 5.5 — Hourly usage of the water heater in one of the house of the IRISE database over
one year. Two states are considered : OFF in blue and ON in red.

E(t =+ dM) = Fnax
o {Emaz =max{E(t;)};t; € [-N, N] (5.2)
o {E(t + dm)_z Emin 53)
Epin, = min{E(t;)};t; € [N, N]

Where E(t;) is the energy consumed from ¢, to ;.

In the Figure 5.6 this meta-feature has been used to visualized the ON/OFF states of a water
heater in one of the house of the IRISE database. The features are projected using the principle
of Pca. As already shown in the Figure 5.4, the use of a meta-feature increases the two class
separability compared to a trivial assessment.
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FIGURE 5.6 — Water heater ON/OFF states projected using PcA for the meta-feature called
distances from the current event to the local mazximum and local minimum.
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5.2.2.3 Energy variation between time steps

This meta-feature takes into account the energy variations between the current time of event
t and all other time steps in the considered sliding window, ¢;.

E,(t;) = E(t) — E(t;);t; € [-N +1,N] (5.4)

This knowledge is directly representative of the appliance energy consumption and its varia-
tions in time, which is an indirect image of the load profile.

5.2.2.4 Gradient and Laplacian of energy consumption within the window

For this meta-feature, the gradient V, laplacian A and gradient ratio V, are evaluated
around the current time of event ¢. These rates of change within the sliding window allow the
classification algorithm to identify trends in energy consumption. The gradient ratio is the ratio
between the gradient and the aggregated power value at any given time instance ¢; of the sliding
window.

ti—1)p t; € [-N + 1, N] (5.5)

These equations are used to identify different energy spikes or edges and also take into account
the base energy level from which the spikes occur. At low sampling rates, two appliances may
present similar edges but different base energy level makes them differentiable.

5.2.2.5 Mean and standard deviation

This meta-feature is used to add global statistics on the nature of all the other meta-features
within the sliding window. The mean and standard deviation are computed in the considered
sliding window for the aggregated power E, for the change of energy from previous to current
state F,, and for the first derivatives of energy V.

_ 1 N
B)= 5 | 3 E)
ti=—N
N
Bot) = g | 30 Bult) | p i [N +1,N] (56)
ti=—N
_ 1 N
V(t) = 5% Y V()
ti=—N
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Conclusion

The work of Non-intrusive load monitoring can be studied as a temporal classification pro-
blem. This problem encompasses many domains and thus requires a detailed understanding and
a broader perspective. Therefore, the relevant domains for the problem at the low rate are dis-
cussed. The raw data is transformed using sliding window into a form that could be directly
learned by a propositional learner. The input features are further enriched by generating tem-
poral meta-features. The various stages of data transformation using meta-features is explained
both logically and visually. The novel meta-features choices are explained and their relevance
emphasized. It is also observed visually that the use of domain specific meta-features resulted
in a better disaggregation capability for the subsequent classifier.
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Introduction

The problem is represented in the form of a standard propositional learner, after the sliding
window process and meta-feature generation discussed in the previous chapter. The subsequent
remaining task is to train or learn a function which maps the input-output relationship. As a
reminder, in our work the input is constituted by the energy readings and the meta-features and
the output is the appliances states.

It is further observed that the outputs (appliances) are correlated to their usage. In this
chapter, different classification techniques are explored to converge to a choice of suitable clas-
sification techniques which can model the requirement of the classification system. Finally, the
difficulties of the imbalanced dataset and relevant evaluation strategies are discussed.

57
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6.1 Multi-label classification

The identification of the state of loads is based on multi-label classification techniques. These
techniques are frequently used in the field of information theory and present many advantages
over single-label classification |Tsoumakas 2011, Tsoumakas 2007]. A classification learner ap-
proximates a function, mapping a vector into labels by looking at input-output examples of this
function. The features x; and the target class Y come in record of the form :

(,Y) = (z1,22,23,...,2,,Y) (6.1)

For multi-label classification : Y = {0,1}* where L is the number of appliances. In multi-
label classification problems, multiple target labels are assigned to each instance. In this work, a
function is built which maps inputs z; to an output vector Y rather than a scalar output which
is the case for single-label classification. Given a data-set of labelled instances, classification
algorithms seek relations that will correctly predict the class of future unlabelled instances Y/,
from future features z’, where :

0 if the appliance is OFF

(6.2)
1 if the appliance is ON

The fact that multi-label classification takes into account the interdependence among labels
(in our case the appliances) is the main reason why this work is based on these classifiers. For
example, generally the clothes drier is used after the washing machine. Multi-label classifier
models are built on meta-features as inputs which are computed on the sub-sequences Cf. The
appliance states are the output classes in this case. The time stamped data also allow taking
into account temporal information for load identification (temporal patterns).

There are two broad approaches in handling with multi-label classification algorithm. One is
by way of problem transformation where a multi-label problem is transformed into one or more
single-label problems and then a state of the art classification algorithm such as decision tree or
support vector machines is used. Another is to modify an existing single-label algorithm directly
for the purpose of multi-label classification (algorithm adaptation method e.g ML-kNN). Two
multi-label problem transformation and three different classification algorithms are implemented
and compared in this work. A Hidden Markov Model is also implemented for comparison. A brief
description of these algorithms follows.

TABLE 6.1 — Example of multi-label classification

Attributes classes of labels
Attr.1 Attr.2 ... Attr.N Lbl.1 Lbl.2 Lbl.L
Val.l Val.l Val.l Cl.1 Cl.2 ClL1
Val.2 Val.2 Val.2 Cl.1 Cl.2 Cl.2
Val.3 Val.3 Val.3 Cl.2 Cl.1 ClL1

Table 6.1 illustrates an example of multi-label classification problem. In this table, for three
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arbitrary instances, all combination of L labels classes and N attributes values are monitored.
In this table, labels can only have two classes or states.

In the following subsections, we will describe different classifiers, and compare their qualities.

6.1.1 Binary Relevance, BR

The BRr transformation is a method of problem transformation that learns separately single-
label binary models for each classes or label |Tsoumakas 2011, Tsoumakas 2007|. It transforms
the original data into single label data-sets that contain all the examples of the original data-set.
From the multi-label classification example presented in Table 6.1, the BR algorithm will build
the same number of tables as there are labels, each one of them having all the attributes and
only one label. Table 6.2 is generated from Table 6.1 using a BR transformation.

TABLE 6.2 — One of the tables obtained with a BR transformation from the Table 6.1

Attributes Classes of label
Attr.1 Attr.2 Attr.N Label i
Val.l Val.l Val.l Cl.1
Val.2 Val.2 Val.2 Cl.1
Val.3 Val.3 Val.3 Cl.2

6.1.2 Label Powerset, LpP

The Lp transformation considers each different set of labels that exist in the multi-label
data-set as one single label [Tsoumakas 2011, Tsoumakas 2007|. Unlike the Br classifier, the
Lp algorithm learns using only one single classifier consisting of the number of classes times
the number of labels in the original multi-label problem. The primary advantage of using this
transformation is that it takes into account appliances correlations. The primary drawback is
the computation cost compared to the BR transformation.

As an illustration, an example of table that the Lp transformation would give from the
multi-label classification presented in the Table 6.1 is proposed in the Table 6.3.

TABLE 6.3 — Example of Lp transformation from the Table 6.1

Attributes Classes of label
Attr.1 Attr.2 Attr.N New label
Val.1 Val.l .. Vall Lbl.1(CL.1) A Lbl.2(C1.2) A ...A IbLL(CL1)
Val.2 Val.2 .. Val2 Lbl.1(CL.1) A Lbl.2(C1.2) A ...A IbLL(CL.2)

Val.3 Val3 .. Val3 Lbl.1(CL2) A Lbl.2(CL1) A ...A IbLL(CL1)
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6.1.2.1 Rakel algorithm

Label Powerset algorithm discussed previously suffers from run time complexity. As the num-
ber of appliances increases the complexity increases exponentially. The Rakel algorithm uses an
ensemble of subset of Label Powerset (LP) transformation ; it randomly selects a subset of labels
and tries to lean the model. The ensemble combination is accompanied by “thresholding” the
average zero-one decision of each model per considered label [Tsoumakas 2010]. Its performance
is generally similar to Label Powerset but with reduced complexity.

6.1.3 The Decision Tree Learner, DTL

The decision tree consists of nodes where a logical decision has to be made. Branches are
connected according to the result of these decisions. For each node of the tree, one attribute
of the data is selected that most effectively splits its set of samples into subsets enriched in
one class or the other. Following a path of nodes and branches constitute a sequence through a
decision tree that reaches to a final decision regarding a specific appliance (in our case, the ON
or OFF state).

The DTL algorithms represent one of the preferred choices for load classification as described
in [Quinlan 1986]. Indeed, decision trees are rule based and the built model is easy to visualize.
The Figure 6.1 proposes an example of DTL visualization learned on a typical appliance in one
of the houses of the IRISE database.
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FIGURE 6.1 — Construction of a decision tree, applied on the application “electric oven”.

6.1.3.1 Disparity measurements

The impact of the meta-features into a learning system can be well understood by the use of
the disparity measure. In this work, the disparity measure is the gain ratio of the decision tree



6.1. Multi-label classification 61

learner, as described in the previous section (section 6.1.3).

The position of the feature in the tree gives an idea about the significance of an attribute.
The closer the feature is to the root, the higher its gain ratio is and thereby its significance. An
example of typical decision trees obtained during identification is proposed in the Figure 6.1.

A good quantitative measure of the significance of an attribute is a statistical property
called information gain. It measures how well a given attribute separates the training examples
according to their target classification. This measure is used to select among the candidates
attributes at each step while the decision tree is growing. The attribute presenting the highest
normalized information gain is chosen to make the decision.

The metric used in practice is the gain ratio which corrects the information gain by taking
the intrinsic information of a split into account. Then, the algorithm applies it recursively on the
sub-lists. Finally, the impact of the meta-features into a learning system can be well understood
by the use of the disparity measure. In this work, the J48 implementation of C4.5 algorithm
is used [Weka 2014] and the parameter is optimized using parameter section algorithm during
training.

The DTL usually leads to a good understanding of the significant features for each appliance.
Based on the disparity measurement, the attribute with the highest normalized information gain
is chosen as the root of the decision tree. Information gain is measured in bits and is given a
probability distribution, the information required to predict an event is the distribution’s entropy,
given by :

S(p1,p2,---,pn) = —p1log(p1) — p2log(p2) — - -+ — pn log(pn) (6.3)

6.1.3.2 Decision process

The leaf nodes in the decision tree gives the number of instances correctly classified by the
built model. For example, in the Figure 6.1, “O(z,y)” means that z is the number of instances
correctly classified and that y is the number of instances incorrectly classified. Also, the value
“0” means that the considered appliance is OFF and “1” means ON.

This can be corroborated by looking at the increasing number of correctly predicted cases
when approaching the root of the decision tree. Indeed, the higher in the decision tree an attribute
is, the more significant it is. The number of correctly classified cases should then be following
accordingly.

As it can be seen in the Figure 6.1, this decision process is easy to apprehend as its repre-
sentation is based on logical decisions. It is a way to validate our proposed meta-features. In
fact, the main meta-features proposed in the section 5.2 of the Chapter 5 have appeared in the
decision trees built during the identification tests.
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6.1.4 The Support Vector Machine algorithm, (Svm)

The SvM algorithm is a powerful tool for data classification described in [Onoda 2000]. The
first major step of a SvM classification is to build a decision plane that separates a set of objects
with different class memberships. [t guarantees the best function to distinguish between members
of classes by maximizing the margin between them. The maximal margin hyper-planes allow the
best generalization abilities and thus the best classification performances on the training dataset.
This procedure requires finding the solution of the following optimization problem :

l
N
vrvr}gg <2W w+ C;&) (6.4)

yi (who(z;) +b) >1-¢

subject to
§& >0

with [ the total number of sub-sequences, w the normal vector of the hyper-plane, b the offset
of the hyper-plane, C' the penalty parameter of the error term £ and ¢ the kernel function.

The second major step is to choose the kernel function of the algorithm. The Radial Basis
function is preferred over others in this work. For two groups ¢ and j, the training vectors x;
and x; are mapped to a higher dimensional space by the kernel function ¢ defined as :

K(zi,25) = exp (=llei — 25]*) 57> 0

where v is a parameter of the kernel. In our work, a grid-search has been conducted on the
parameters C et v using cross-validation. Without being used here, other kernels exist for the
SVM algorithm :
Linear kernel : K(z;,z;) =zl z;
Polynomial kernel : K(z;,7;) = (y.2lz; + )47 >0
Sigmoid kernel : K(z;,z;) = tanh(y.z! z; + 1)

The SvMm algorithm is computationally more expensive than rule based algorithms such as
DrL. In this work, the Sequential Minimal Optimization (SMO) implementation of [Weka 2014]
is used with a grid search for parameter optimization during training.

6.2 The K-Nearest Neighbours classifier, KNN

The KNN classifier is an instance based learning method where the classification function
is approximated by a majority vote of the neighbors using a distance metric. K is the number
of neighbors which is calculated using cross-validation. The function is approximated locally
and all computation is deferred until classification. Typically, the Euclidean distance is used as
distance function. But in this work, time series metrics has been preferred.
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The mechanism of KNN is quite simple. For any new data instance, the attributes of the new
case is compared with all the previously seen cases or instances in the training database. The
comparison is typically based on a distance measurements. The nearest instances or cases in the
training database are evaluated based on the distance metric. The new instance is assigned to
the class of the majority of neighboring instances (process of classification). Mathematically, for
any instance x; in the database of size n x x, the distance is expressed as :

d(xz;) = mind(x;, z) with j € {1,--- ,n} (6.7)
j

The key point here is the use of the proper distance metric. The default metric is the Fucli-
dean distance, which is calculated on the normalized value of the attributes. In our case, other
possibilities are explored : the temporal distance metrics. These metrics and their interest are
presented in the following subsection.

6.2.1 EFEuclidean Distance

The Euclidean distance is a standard metric to calculate the distance between two points. It
is given by the following equation :

(6.8)

where n is the total number of points. This is a static measure and is not able to account for
the temporal relation between the data points.

6.2.2 Dynamic Time Warping

Dynamic time warping (DTw) is a template-matching recognition method based around a
dynamic programming algorithm [Douzal-Chouakria 2012|. They are primarily used to deter-
mine similarity between two temporal sequences which may vary in time or speed.

The basic aim of the dynamic time warping algorithm is to align the time axes of a sampled
time series and a template, in order to minimize some distance measures. The time axis of either
series is stretched or compressed to achieve the best possible fit, allowing a single template to
match a range of similar patterns in the data.

Both the template and the time series consist of sequences of data points over a time interval,
which does not need to be the same for both sequences. The dynamic time warping problem is
stated as follows :

Let X = (uj,---,p) and Y = (v1,--- ,q) be two time series of length p and gq.

Construct a warp path :

D =dy,dy,--- ,dp mazx(p,q) <K <p+q (6.9)
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k is the length of the warp path and the k’th element of the warp path is d(i, 7).
Here, 7 is an index from time series X, and j is an index from time series Y. The warp path must
start at the beginning of each time series at D; = (1, 1) and finish at the end of both time series
at D = (p,q).. So both the ends of the time-series is bounded. The warp is also monotonically
increasing which could be formally represented as :

Dy=(i.j) Dip=(j) ; i<i<i+l ; j<j<j+1 (6.10)
The optimal warp path is the warp path is the minimum-distance warp path, where the
distance of a warp path W is :

k
Dist(W) = Z = K Dist(wi, wg;) (6.11)
k=1

Dist(D) is the distance (typically Euclidean distance) of warp path D, and Dist(wg;, wy;)
is the distance between the two data point indexes (one from X and one from Y) in the k’th
element of the warp path.

The above cost function involves the differences between the aligned values of two time
series, without taking into account the values neighborhoods. A visual illustration of the distance
between two time series having similar values-based characteristics is proposed in Figure 6.2.
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FIGURE 6.2 — Two time Series having similar values-based characteristics

6.2.3 Temporal Correlation

Two time series X and Y are considered similar in behavior if, during any observed period
[ti, ti+1], they increase or decrease simultaneously with the same growth rate. In contrast, they
are considered to be opposite in behavior if, during any observed period [t;,t;+1] in which X
increases, Y decreases and (vice-versa) with the same growth rate (in absolute value).

Let X = (uj,... p) and Y = (v1.... 4) be two time series of length p and ¢. The Pearson corre-
lation coefficient has been used as a behavior proximity measure between signals. An equivalent
formula for the correlation coefficient relying on pairwise values differences is shown below :

> i (i — wir) (v — vir)

T P S (v )2

It can be seen that the correlation coefficient assumes the independence of data as based

Cor(X,Y) (6.12)
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on the difference between all of the pairs of values observed at [t;,¢;]. In contrast, the beha-
vior proximity needs only to capture how time series behave at [t;,t;11]. Thus, the correlation
coefficient is biased by all of the remaining pairs of values observed at [t;,t;/] with |i — 4| > 1.

For temporal data, a variant of the Pearson correlation involving first-order differences is :

or _ >i(Uiv1 — ug) (vig1 — v;)
C t(X,Y) \/Zi(ui-‘rl _ ui)Q\/Zi(’UH—l _ 1)1')2 (613)

with Cort(X,Y) belonging to [—1;1]. Cort(X,Y) = 1 indicates a similar behavior and
Cort(X,Y) = —1 an opposite behavior between X and Y.

A visual illustration of the distance between two time series having similar behavior-based
characteristics is proposed in Figure 6.3.

~ N

' __series 1
— Series 2

-

~

FIGURE 6.3 — Two time Series having similar behavior-based characteristics (Temporal Correla-
tion, T'¢)

6.2.3.1 Value and behavior based metric

A last possibility has been proposed in [Douzal-Chouakria 2009] : a proximity measure co-
vering both the value and behavior based cost function. A parameter k is used for modulation
between the two original metrics.

2
1+ exp(k.Cort(Sy, S2))

cx(r) Adptw,0 < k (6.14)

In our work, values from 0 to 5 have been used for the parameter k for fine tuning the
modulation effect.

6.2.4 Multi-label k-nearest neighbour (ML-KNN)

M1-KNN is the multi-label implementation of the k-nearest neighbor algorithm for single-
label classification [Zhang 2007]. It is a direct implementation for multi-label problem so a single-
label base classifier is not required. It works on the principle that for every test instance, its k
nearest neighbors in the training set are identified. Then, according to statistical information
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gained from the label sets of these neighboring instances (i.e. the number of neighboring instances
belonging to each possible class), a maximum a-posteriori principle is used to determine the label
set for the test instance. ML-KNN is a learning approach which is different from the rule and
function based approaches discussed above.

6.3 Hidden Markov Model based classification, HMM

HwMmM is a standard parametric statistical modelling technique used extensively in the field of
signal processing to maximize the probability that a series could have been generated by a model.
A Markov model is a sequence of random variables in which each variable is dependent upon
only the variable immediately preceding it. A hidden Markov model (HMM) is a Markov model
in which the sequence is made up of discrete state variables. An associated continuous variable
x is observed for each discrete variable z, in our case the state of the considered appliance.

There are three major applications of HMM in real life problems : the evaluation problems,
the decoding problems and the learning problems. In this application the learning problem
approach is used. In the learning approach, given a model (A, B, 7) and a set of observations
x, the problem is to find the optimal model parameters that maximize the probability that the
model produced the proper observations. The solution to this problem provides the means to
train a model to recognize a particular sequence [Rabiner 1986].

Iterative procedures can be used to solve this problem. One of the popular algorithm for
that matter is the forward-backward algorithm, also known as the Baum-Welch or expectation-
maximization method [Rabiner 1986].

In our work, the input is the time series sub-sequences of energy readings from the power
meter. The number of states is optimally determined through cross-validation. It can be observed
in the Figure 6.4 that the observed continuous variable in our case is the total energy consumption
at the smart meter and the hidden discrete variables are the appliance states.

The three model parameters which are evaluated are :

A; ; : The state transitional probability, of being at state A; and making a transition to A; in the
next time instance. Mathematically, A; j = P({#zt+1 = j}|{z: = i}). In the implementation,
the state transitional matrix is initialized using a K-means algorithm.

B, + The emission probability for having the observation z; being at state z;. For continuous
variables, a Gaussian distribution is generally used.

7, :+ The probability of each state of the discrete hidden Markov model.
The HMmM is implemented in the following set of sequences :

1. Pre-processing and generating the time-series sub-sequences.
2. Initializing and re-estimating the HMM parameters from the training data.

3. Evaluating the output class based on learned model parameters on unseen testing examples.
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FIGURE 6.4 — The continuous and discrete variables for the Hidden Markov Model applied to
load identification.

6.4 Imbalance in the data-set

A data-set is imbalanced if the classification categories are not approximately equally repre-
sented. In our application, the number of instances where an appliance is in the ON state is
considerably low compared to the number of OFF state instances. Such imbalance in the data-
set creates many challenges to the learning algorithm, as illustrated in the Figure 6.5. The two
major challenges faced in our application are during the training and the evaluation of the used
measures.

s

ON State ) m‘ N :

FIGURE 6.5 — Iceberg to showcase the imbalance in the dataset
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6.4.1 Instance sampling during training

To deal with imbalance in the data-set many sub-sampling and over-sampling techniques
can be found in the literature [Chawla 2011]. In sub-sampling, the number of instances of the
majority class is reduced during training using some selection criteria whereas in over-sampling
the number of instances of the minority class is increased artificially during training to reduce the
imbalance in the data-set. In this work one sub-sampling (spread sub-sample) and over-sampling
(SMOTE) techniques were implemented. Experimentally sub-sampling performed better for this
domain and was used during training for enhanced performance.

The spread sub-sampling randomly selects data points (instances) from the original data
reducing the number of instances of the majority class and making the dataset more balanced.
Using this method in our case results in a significant reduction in training instances. Heuristically,
the 2 :1 ratio of the classes were chosen, where the majority class is twice the number of minority
class.

The Synthetic Minority Oversampling Technique (SMOTE) is a oversampling technique
where the number of minority classes are increased. The algorithm uses the nearest neigh-
bor algorithm to artificially generate features. This is done by introducing synthetic examples
along the line segments joining any or all of the k minority class neighbors. Depending on the
percentage of oversampling the nearest neighbors are randomly chosen. In the implementation a
200 percent oversampling was done. Initial results indicate that the sub-sampling method works
better in our case the over-sampling method.

6.5 Evaluation Strategies

6.5.1 Indicators of classifier performance

Given a dataset of labeled instances, supervised machine learning algorithms seek an hypo-
thesis that will correctly predict the class of future unlabeled instances. As already discussed in
the Chapter 6 in Section 6.5, in order to compare structures of predictors, we need indicators
that will give a quantitative way of assessing the classifier performances. While comparing these
indicators values, the best predictor can be found for a given appliance.

In order to properly define the performance indexes of the classification algorithms used for
prediction, we introduce the confusion matriz [Kohavi 1998|.

A confusion matrix contains information about the actual and the predicted results obtained
by a classification system. The performances of such systems are commonly evaluated using the
data contained in this confusion matrix. The table 6.4 shows the confusion matrix for a two-class
classifier. The classes that can be predicted are “positive" or “negative" instances, which in this
case signifies the appliance consumes or does not consume energy.

In the context of this study, the entries defined in the confusion matrix reported in the Table
6.4 have the following meaning :

a : is the number of correct predictions where an instance is negative,
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TABLE 6.4 — Confusion matrix

Predicted
Negative Positive
Negative a b
Actual —
A T Bositive c d

b : is the number of incorrect predictions where an instance is positive,
c : is the number of incorrect of predictions where an instance negative,

d : is the number of correct predictions where an instance is positive.
Several standard terms have been defined for this 2 class matrix :

The accuracy : is the proportion of the total number of predictions that were correct. It is
determined using the ratio AC' = (a+d)/(a+b+c+d). It is the percentage of cases where
the predicted energy state (ON or OFF) is correct for an appliance.

The true positive rate (recall) : is the proportion of positive cases that were correctly iden-
tified, as calculated using the equation TP = d/(c + d). Represents the ratio between the
predicted positives states of the appliances (ON) and the total number of correct positives
states of the appliances.

the precision : is the proportion of the predicted positive cases that were correct, as calculated
using the equation P = d/(b+ d). Represents the fraction of the positives states (ON) of
the appliances correctly predicted.

There are multiple labels or appliances present when we represent the problem as a multi
label classification problem. To evaluate such a model we need go beyond accuracy and look
into other evaluation measures which deal with the appliances all together. For this reason, the
confidence of the predictions is monitored in our work using tools commonly used in information
theory |Tsoumakas 2011, Tsoumakas 2007| with use the measures defined below.

F-measure : Is taken to be the weighted harmonic mean of precision and recall. In this work, a
special case of the general F-measure definition has been used, where both are contributions
of the precision and the recall are equally weighted in the F-measure coefficient.

Receiver operating characteristic - Area Under Curve (Auc) : Is a graphical plot of
the true to false positive rate at various threshold settings of the classification algorithm.
The AucC score is given on a scale from 0 to 1, where a score of 1.0 indicates perfect
classification and a score below 0.5 shows a quasi-random guessing.

Subset accuracy : is defined as the percentage of cases where the disaggregation of the load
into its constituent appliances (under investigation) are correct. This is also a measure
which gives an idea about how well the energy disambiguation is working.

These measures in the multi-label classification require some additional metrics than those
used in traditional single-label classification. The Micro and Macro averaged scores are discussed
for the same. Micro-averaged values are calculated by constructing a global contingency table
and then calculating precision and recall using these sums. Macro averaged scores are calculated
by first calculating the measure(s) for each appliance and then taking the average of them. In
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this case the Macro averaged results are of more importance, as the data is sparse the micro
average scores are generally high.

All these qualification coefficient will be used in the results chapter (Chapter 7, 2 and 10)
for proper interpretation of the load identifications and prediction.

6.5.2 Evaluation procedures

There are two standardized methods to evaluate the performance of a classification algorithm.
They are cross-validation and hold-out data analysis. In a 10 fold cross validation, the data of
size n is divided in n/10 sets. The classifier is trained on nine sets of the dataset and tested on
the remaining one. The process is repeated 10 times and the average measure is taken. This is
standard method for comparing algorithms or evaluating parameters based on a measure.

The hold-out data analysis is using a portion of the data for training and the remaining for
testing. In our application both this techniques are used depending on the requirement.

Summary

The method of multi-label classification is explained and the relevance to the current problem
is highlighted. The major advantage of multi-label classification is the consideration of interclass
correlation. The various problem transformation techniques (BRr, LP) are also explained. The
base leaner such as Decision Tree Learner (DTL) and Support Vector Machines (SvM) are
summarized and the chosen configuration is discussed. The base learners represent different
class of learners, the decision tree (C4.5) represent a rule based learner, the SVM represents a
function based learner and the KNN is an instance based learner. The KNN algorithm using
time series metrics is also discussed. The use of temporal distance measure is highlighted using
both value and behavior based metrics. The Hidden Markov Model is used as a sequence learner
in many application, a discrete HMM model suitable for the problem is shown. Finally, the
imbalance of the data for such application is observed and remedies discussed, the evaluation of
these imbalance and multi-label dataset is also summarized.
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Introduction

In this chapter, various classification techniques discussed in the previous chapters are applied
and the results are presented. Various aspect of the technique is explored, like the parameters
selection, such as the orientation of the sliding window, the categories of houses and the sensi-
tivity to sampling rate. Comparison to state of the art classification techniques are conducted.
The used classifiers represent different categories of classifiers. Each category of classifier has its
own advantages and disadvantages, the work further tries to observe the implication of the use
of different categories classifiers and highlight the advantages and disadvantages. Finally, the
use of temporal distance based techniques is illustrated, the results are compared for value and
behavior based metrics. The observation from the results is discussed and further conclusion are
drawn.
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7.1 Time-related observations

In this section, the various temporal aspect of the model is explored. To have an overview
on identification performance, in the section 7.1.1, the comparison of identification performance
with actual case is observed. It is observed both in real time scale for the year and also in terms
of number of usage at a particular hour.

7.1.1 Usage of the loads in time
7.1.1.1 Time-line

A way of analyzing the energy consumption is by visualizing its repartition of over a full
year. As an illustration, the Figure 7.1 shows the time-line for an electric cooking device which
is tested for a year using the Rakel algorithm on one house.

Appliance timeline
Actual

Predicted

07 08 09 10 11 12 o1 02 03 04 05
Month number

FIGURE 7.1 — Hourly time-line diagram, electric cooking (oven + hotplates). The red lines are
the identified states of the load and the blue lines are the states from the readings database.

The time-line gives an overall idea about the usage of the appliance over the year and the
months in which the usage is more intensive than in the others. In this figure, the red lines
represent the ON states after the identification and the blue lines represent the ON state from
the database (true state). When there is no possible superposition between both time series, it
means that there is an error in the identification of the state of the load. It can be observed that
the appliance has been identified with a reasonable amount of accuracy in this case. The results
also highlight the period during which the major identification error occurs which needs to be
further analysed.

7.1.1.2 Frequency of usage

The corresponding frequency of usage in terms of hours of the day is proposed in the Figure
7.2. In this figure the hourly frequency of usage represents the number of times the appliance
was in its ON state in the considered 60 minute, divided in 6 time-slots of 10 minutes each. So if
the appliance was ON for the whole hour the corresponding count will be 6 for that hour. This
“frequency” is calculated for the length of the tested database. This predicted frequency chart
may be provided to the inhabitants along with a more efficient energy management plan.
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FIGURE 7.2 — Hourly frequency of usage diagram for an electric cooker (oven + hotplates).

7.1.2 Classification algorithm and time analysis
7.1.2.1 Time of training

The classification algorithm is trained on a certain portion of the database, and uses the
rest for validation (testing). This time of testing is representative of the time inhabitants can
obtain the result without fresh training. Therefore it is interesting to play with that duration
in order to assess the sensitivity of the results to that testing period. In the Figure 7.3 a time
based account of the classification results is shown for one random house from the IRISE.

Subset Accuracy, %

98 o

96

92 1 1 1 1 1
0 1 3 6 9 12
Test period, month

FIGURE 7.3 — Accuracy as testing time is increased.

If classification is conducted on a smaller period of time, the accuracy is much higher com-
pared to longer period of testing. This fact may be attributed to multiple factors among which
are the seasonal variations of usage of an appliance and it being operated in a different state
than the one seen in the past. So, a testing period within 6-months is ideal after which for better
results fresh training needs to be done.

7.1.2.2 Sliding window

When considering algorithms based on sliding windows process, three possible orientations
can be chosen as they are presented in the Figure 7.4. The position of the sliding window can
be balanced around the time of analysis, or left or right oriented.

The multi-label classification algorithm Rakel is used (as presented in the previous chapter)
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FIGURE 7.4 — Three possible choices for the sliding window position

[Tsoumakas 2010] with the decision tree (DTL) as the base learner. The table 7.1 shows the
difference of efficiency of this classification algorithm on three houses from the IRISE database.
For an explanation on the qualifying coefficient, please refer to the Section 6.5 of the Chapter 6.

TABLE 7.1 — Selection of sliding window orientations.

Test house Measure left  balanced right
House 968 puset hecuacy o m
House 992 ey oo
House 938 lil_lrzsee;s—i(;curacy §?4 ?(5)3 iglll

When we consider a fixed sliding window, it is difficult to affirm which orientation works
better from the results, as the difference is statistically insignificant. For that reason, the pro-
posed model in the following results is based on the balanced orientation. Note that for the
requirements of an on-line system (proposing real-time analysis), the left orientation should be
preferred.

In future works a metric may be formulated using for example the duty cycle of the appliances
under investigation to calculate the optimal window size. This period of time could replace
the fixed size of the sliding window and lead to a better efficiency of the overall classification
algorithms. The main problem being that the classification would be appliance-specific or well
adapted for a group of appliances.

7.2 Energy variation between time steps

The energy variation between time steps is the one of the meta-feature presented in the
Chapter 5, Section 5.2.2.3. This meta-feature is illustrated in Figure 5.3. As already discussed in
that chapter, we have seen that meta-features play an important role in the proper classification
of loads.
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As an illustration, we propose in table 7.2 a sensitivity study on one of the basic meta-
features, energy variation between time steps. The classification algorithm is run with this meta-
features, or with only the knowledge of the energy reading from the power meter during the
training session.

TABLE 7.2 — Impact on the results of using “Energy variation between time steps” or only
“Energy” as features for the classification algorithm.

Energy variation

Test house Measure between time steps Energy
House 1 e :32 e
S S "o
S S W

It is seen that taking into account this feature works better than using only the exact energy
values of the reference time in the sliding window. In the results, the subset accuracy are simi-
lar but the F-measure is higher. Note that a cross-validation evaluation is used to distinguish
between features.

Similar results are obtained by considering the other meta-features one by one. This principle
already has been illustrated in Chapter 4, Section 4.1.2.

7.3 Identifying the loads

The objective of this work is firstly to identify loads in buildings. Therefore, classification al-
gorithms have to be compared on their ability to conduct such task. In this section, a comparison
of some of the major classification algorithms is conducted on categories of appliances extracted
from the houses of the IRISE database. Here is a short summary of the chosen algorithms and

their description. For further information on their principle and qualities, please refer to the
Chapter 6.

BR1 : Binary relevance problem transformation using decision tree algorithm
[Tsoumakas 2007].

BR2 : Binary relevance problem transformation using Svm algorithm [Tsoumakas 2007,
Wu 2007].

LP1 : Label powerset as problem transformation and decision tree as base classifier
[Tsoumakas 2007].

LP2 : Classifier chain algorithm using Svin as base classifier [Read 2011].
MLKNN : Multi-label K Nearest Neighbours with K=7 [Zhang 2007].
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7.4 Load identification for defined categories of consumers

For a qualitative analysis of the database, the clustering proposed in chapter 3 is used for
grouping. In this chapter, we have defined four clusters. In practice, we have also identified that
two of these four clusters were close, one of them containing only three houses. We decided
then to group them differently, based on their appliances configuration in addition than on their
features dispositions. The houses from the three major clusters correspond to houses containing
different appliance categories as follows :

Cat. 1 : Small number of distinct high energy appliances.
Cat. 2 : Small number of distinct high energy appliances with a few grouped appliances.

Cat. 3 : Many high energy appliances including grouped and repeated appliances.

These categories serve two purposes. The first one is to propose a relevant discrimination
of the houses based on the facility to identify the state of all their high energy loads then to
compare algorithms efficiency. Indeed, the grouping of loads has a significant impact on the algo-
rithm efficiency. Therefore these categories are primary used here to compare the implemented
algorithms. The second one is to gather potential information for the local grid manager. A
category of houses reflect the potential flexibility level in term of aggregated power that could
be obtained with appropriate tools.

The comparison of multi-label classification algorithms are presented in Section 7.4.1, 7.4.2
and 7.4.3 for the three categories of houses defined previously using F-measure as performance
evaluation (refer to Section 6.5 for more information on the performance evaluation of the
classification algorithms).

10 minutes and 1 hour sampling rates are presented together only for the first category of
houses. A comparison of two multi-label learners with Hidden Markov Model is also proposed in
Section 7.6.1, using AUC as performance evaluation. All the results discussed here are obtained
using different readings of houses extracted from the 100 houses of the IRISE database.

7.4.1 Considering the first category of houses

For the first category of houses, the results are shown using multi-label learners on different
appliances for two houses grouped together. Two sampling times are used here in order to
compare their impact on load identification.

The results proposed in table 7.3 indicate that the multi-label learners such as LP and
ML-KNN (relying on appliance correlation) offer better performances on some of the appliances
at a 10 minutes sampling rate. That is not the case for the other algorithms which do not consider
appliances correlations. It can also be observed that generally, rule based algorithm such as DTL
as base learner provides better performances.

The results of the Table 7.3 can also be observed in the Figure 7.5 for better visualization.

The scores are much lower at a sampling rate of 1 hour and it is difficult to distinguish
clagsifiers, except for the washing machine. Indeed, the correlation among appliances is weak
and the learner is over-fitting during training, as it can be seen in the Figure 7.6.
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TABLE 7.3 — Cat. 1 : Comparison of different multi-label algorithms for identifying the loads of
a residential building.

Appliance Sampling Algorithms
Rate LP1 LP2 BR1 BR2 MLKNN

Washing 10 min 75.72 72.50 79.32 74.49 71.98
Machine lh 55.22 59.55 60.07 54.5 55.87
Microw. 10 min 45.65 36.87 19.04 31.37 33.45
Oven 1h 29.94 11.40 21.13 5.10 2.12
Water 10 min 96.66 95.99 97.35 92.02 97.40
Heater lh 89.50 90.46 91.12 91.53 89.56
Electric 10 min 66.79 55.82 73.65 46.81 60.53
Oven lh 51.04 54.46 50.14 40.30 20.30
Clothes 10 min 76.34 79.21 75.24 68.51 87.15
Drier lh 58.16 60.65 62.21 60.11 69.50
Dish 10 min 64.93 66.40 61.42 67.21 79.78
Washer lh 36.86 36.50 36.72 34.66 32.63

Washing Machine

100

Microwave oven Dish Washer

- LP1
-+ LP2
BR1
=i~ BR2
=»=MLKNN

F-measure

Water Heater Clothes Drier

Electric Oven

FIGURE 7.5 — Cat. 1 : Load identification performances for five different algorithms with a 10
minutes time sampling (algorithms acronyms in Section 7.3).
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F1GURE 7.6 — Cat. 1 : Load identification performances for five different algorithms with 1 hour
sampling rate (algorithms acronyms in Section 7.3).

Among all appliances water heater is identified with the highest scores and microwave oven
with the lowest. This is due to the fact that even at a low sampling rate, the water heater keeps
similar temporal usage patterns. On the contrary, the microwave oven presents high variations
in both the duration of usage and the consumed energy which makes its identification difficult.

A microwave oven usage provides potential information for users if they want to reduce their
energy consumption at a given time; it is certainly not a controllable load. Actually, as a side
result on load identification, only well identified appliances (washing machine, clothes drier, dish
washer and water heater) present the possibility to become automatically controlled appliances.
In fact, the water heater has already a possible distant grid control in France, the heating of the
water operation depending on term of use pricing.

7.4.2 Considering the second category of houses

In this identification, the washing machine and the clothes drier are grouped together and
considered as one appliance, along with other loads in the house. The sampling rate is of 10
minutes. The performance of the five algorithms is presented in table 7.4.

It is observed that when the numbers of high consuming appliances are small in the residence
the performances are generally good. As in the previous section, the LP algorithm and M1-KNN
present the best performances. Compared to the performances of algorithms if no load is grouped
(Cat. 1), it can be seen that the appliances are identified with a better F-measure for all of the
five algorithms. This category of household is particularly interesting considering identification
algorithms and potential (distant) control for energy management and grid support through
ancillary services.
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Fiqure 7.7 — Cat. 2 : Load identification performances considering some grouped appliances
with a 10 minutes sampling time (acronyms in Section 7.3).

7.4.3 Considering the third category of houses

In this section, a high number of appliances including doubled appliances are considered.
The results are shown in the Table 7.4 and the Figure 7.8, with a 10 minutes sampling time.
The performance of the classifiers is drastically reduced as the number of appliances increases.
Only the first water heater is identified with a sufficient accuracy, because its temporal features
are well defined but it is not the case of the second water heater, which presents a lower number
of uses.

At such low sampling rate, it is difficult for the classifier to learn the right temporal features
of the appliances, if so many of them are used simultaneously and especially, if some of them are
repeated. In that case, the short training phase is insufficient for a proper identification. Finally, it
is observed that the single multi-label classifier (ML-KNN) presents lower performances than the
transformation based multi-label classifiers using a single-label classifier at a core (for example
BR1). This can be explained by the difficulty to find a specific correlation between so many
appliances. Considering all labels at the same time are not of much interest in that particular
case.

This work is based on voluntarily restrictive conditions. Two appliances state can change
at the same time and the training period is short for the classification algorithms. Indeed,
actual consumers would not accept a long period of monitoring and will use simultaneously
their appliances.

Considering the results of all the three categories of houses, an algorithm capable of using
appliances correlations is generally more suited than a one which is not. The Cat. 2 is the most
promising one, based on the good identification capabilities associated with multi-label classifi-
cation algorithms taking into account appliances correlations. On the contrary, when the number
of appliances increases too much, then it is more efficient to suppress the possibility of taking
into account appliances correlations because it interferes with the identification capabilities : the
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Washing Machine and Clothes Drier

Hot Plate
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Water Heater 1
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Fiqure 7.8 — Cat. 3 : Load identification performances considering some grouped and repeated
appliances with a 10 minutes sampling time (algorithms acronyms in Section 7.3).

TABLE 7.4 — Cat. 2 & 3 : Comparison of different multi-label algorithms

Cat.  Appliance Algorithms
LP1 LP2 BR1 BR2 MLKNN
Wash.Mach.
Cloth Deior 73:93 67.62 69.37 70.17 76.18
Dish
9 Wastior 91.05 92.88 89.56 86.52 93.65
Electric 84.46 77.44 82.92 59.06 79.81
Oven
Wash.Mach.
Gt DY 4414 44.55 36.13 43.97 17.56
Hot 40.96 97.43 40.96 18.31 9.14
Plates
Microw. 14.93 93.61 34.56 10.29 1.32
; Oven
Water 75.17 76.33 76.56 76.16 85.92
Heat. 1
Water 98.49 24.11 32.43 921.58 6.90
Heat. 2
Dish 48.93 46.23 42.16 55.10 38.93

Washer
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clagsification algorithm is trying to find relations where there is none.

7.5 Sensitivity to the sampling rate

One of the key points of the work is the choice of keeping the sampling rate at 10 minutes and
to test further lower ones (30 minutes or 1 hour). Indeed, depending on the sampling time, the
computation workload and the need for big-data algorithm varies a lot. Testing the sensitivity of
the classification algorithm to these sampling rates is of much interest considering the possible
sampling rates of future smart meters.

In Fig. 7.9 the subset accuracy (refer to Section 6.5) for four houses is shown with a 10
minutes, 30 minutes and 1 hour sampling rates. The score logically increases with the sampling
rate, but the variation is depending on the considered house.

A confirmation is obtained through the comparison of the results presented in Fig. 7.5 and
7.6. For high energy consuming appliances, increasing the sampling rate from 30 minutes to 10
minutes is a benefit regarding the classifier performance.

The performances of the classifiers vary from one house to another, depending on the tem-
poral behavior of the inhabitants (more regular or not). This conclusion has been validated on
all of the 100 houses of the IRISE database.

House 1

100
w10 minutes sampling

s 30 minutes sampling

1 Hour sampling

Subset-Accuracy

House 2 House 4

House 3

FI1GURE 7.9 — Load identification subset accuracy for 3 sampling rates and 4 houses.
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7.6 Comparison with standard non-intrusive load identification
methods

7.6.1 Hidden Markov Model

In table 7.5, a comparison is shown between two multi-label learners and a standard non-
intrusive load monitoring algorithm (HMM). The number of states of the HMM is experimentally
set to 2 and the input is the time series subsequence. The results are shown for four houses and
tend to hold generally for the whole dataset. It indicates that at low sampling rates the multi
label learners using meta-features perform considerably better than HMM. LP2 which considers
appliances correlations performs better than BR2 and it is seen that SvM as a base learner
performs better (considering AUC measures).

TABLE 7.5 — Comparison of Multi-label learners and Hidden Markov Model with AUC measures

Algorithms
Residence BRO Lp2 HMM
House1 97.90 99.24 80.20
House 2 95.57 98.42 72.27
House 3 89.76 97.51 63.55
House 4 95.27 98.96 84.67

7.6.2 KNN Distance based measures

One representative house from each of the clusters has been selected to analyze the impact
of different type of algorithms. A comparison is made for the different algorithms for each house.
The best performing algorithm is selected and results for each individual appliance is presented
in table 7.6. The distance metrics were discussed in details in section 6.2.

TABLE 7.6 — Comparison of distance based metric and Hidden Markov Model with AUC measures

K-Nearest Neighbours Distance Measures

Residence Drw Tc Euclidean HAMM
House 1 91 .50 .83 80.20
House 2 .85 78 87 72.27
House 3 .82 70 .78 63.55
House 4 81 .80 .86 84.67

The results in 7.6 shows that the distance based time series metrics are performing better
than HMM. This could be attributed to many factors, the primary among them is the fact the
D1w is based on similarity between two temporal sequences which may vary in time or speed
and T'C can take into account the similarities between two behavior based metrics.

DTw as a measure is performing best for two houses and the default euclidean distance for
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the other two. This indicates the fact that in this domain appliance signature may be more
influenced by variation in time and speed than by behavior. Looking internally into the results,
temporal correlation seems to wrongly classify appliance ON state of one appliance and pass it
to another, as the two signatures have a similar behavior but differ by magnitude.

HMM results are the lowest among the tested algorithms. The low performances of HMM can
be attributed to the possibility that many of the appliances in the database do not always show
obvious indication of the times when they are switched ON.

There are different appliance load patterns. A similarity-based or statistically-based learning
scheme should be able to correctly classify these groups, given sufficient training examples from
both sets (ON and OFF states). A similarity-based learner would be able to classify the non-
obvious examples separately, using whatever similarities did exist between the instances of each
clags. A statistically-based system cannot do this. In that case, HMM will attempt to build a
single model that accurately describes all of the training examples for a particular class. The
examples from the appliances signatures that do not show any recognizable pattern contribute
with very little information about the class, but the model will still attempt to account for
them. This behavior leads to both models trying to classify a group of quite similar examples.
Consequently, the models will perform poorly when an instance from this group is encountered
during testing. We used a discrete markov model for supervised learning but there exists other
ways of modelling using Hmm which needs to be further explored.

In table 7.7 the F-measure (section 6.5.1) for different appliances present in different houses
are shown. The results are proposed taking each time the best performing Knn algorithm (with
different metrics) for each appliance in each house.

TABLE 7.7 — Appliance level performance with F-measures (N.A. is used for “Non Applicable”).

Houses
Appliance Housel House?2 House3 House4
Water Heater 91 94 91 N.A
Washing Machine .30 .82 N.A N.A
Dish Washer 43 N.A .60 .86
Electric Oven N.A .56 N.A .36
Microwave Oven N.A A8 N.A .01
Clothes Drier N.A N.A .39 N.A
Washing Machine+Clothes Drier N.A N.A N.A .58
Electric Cooker .64 N.A N.A N.A

Table 7.7 gives an insight of the high consuming appliances present in the house as well
as their predictability. In can be seen from the results that water heater is classified the best,
followed by dish washer, electric cooker and electric oven. These appliances have a significant
amount of consumption even at a low sampling rate so they can be classified better. Devices such
as washing machine and washing machine + clothes drier show an intermediate performance.
For some houses then can be classified better than others, this can be attributed to the different
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possible operational modes of the device. Just a mere “binarisation” of the states to ON/OFF
does not work well for all the cases. Microwave oven is the less identified appliance among the
devices, as it can be used in multiple modes and different duration so its identification task is
very difficult at this sampling rate.

7.7 Discussion

The results indicate that for high power consuming appliances the proposed methodology
gives reasonably good results considering the large span of time it is tested. In a particular period
of training (more than a few months), the shorter the period of testing is, the more accurate are
the results.

The predictability of the states (i.e. their identification) also varies among the appliances.
Some appliances such as water heater are easier to disambiguate than other such as washing
machine or microwave oven.

This fact indicates the necessity to group these appliances into more abstract groups. So
Washing can be a group for washing machine and clothes drier, similarly Cooking can regroup
the microwave oven and the hot plates. It depends on the appliances used by the domestic user
for such groupings, if high consuming appliances are small in number and only from one group
then grouping might not be necessary.

It also needs to be pointed out that other appliances in the house are neglected at this
sampling rate : low consuming appliances. Maybe at lower sampling rate these appliances may
also be predicted. The approach is based on the assertion that instances seen in the future can
be classified based on what is seen in the past, which has its own limitations.

The proposed NIALM technique is suitable for scenarios where multiple appliances start at
the same time (similar and dissimilar). The method used in this work is non-event based and uses
a multi-label classification approach thereby developing a separate category when two appliances
are in the ON state. When the washing machine and the water heater are working during the same
period of time, a new combined binary class label will be generated representing the washing
machine and the water heater ON states and will be compared with similar instances encountered
during training. This holds true also for two similar appliances, for example if two appliances
with two possible states (ON and OFF) are represented as binary “1” and “0” respectively. Four
new classes will be generated represented as “00”, “017, “11”, “10” considering all possible state
combinations.

Most of the common algorithms in the multi-label classification have been tried and in general
the label powerset (LP) as problem transformation and decision tree (DTL) as the base algorithm
works better. This may be attributed to the fact that the number of labels is not very large.
The computation cost of the algorithm is also quite low.
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Conclusion

Household’s energy management is an important discipline considering the impact of energy
efficiency on different levels from global policies to particular behaviors. The work proposes a
multi-label learning method that takes into account appliances correlations based on novel meta-
features in order to identify loads without extensive monitoring of inhabitants during the training
phase and without any monitoring thereafter, except for the active power meter measurements,
all this at a low sampling rate. Inhabitants may then monitor their energy consumption for a
short period of time and subsequently get an energy management plan for the rest of the year.
For grid managers, a good identification will lead to better possibilities of flexibility assessment
and requests (through distant shut down, load shade or shift) and also a better global behavior
prediction, i.e. without intervention into resident’s private life.

The results are computed using 10 minutes and 1 hour sampling rate on the IRISE database
(including 100 houses monitored over one year) using a range of multi-label learning algorithm.
The choice of this sampling rate is done in order to avoid privacy issues, to stay with realistic
order of magnitude considering the first generation of smart meters and to decrease the needs
for big data.

The results indicate that consideration of temporal knowledge leads to an increased capability
of non-intrusive disambiguation of the aggregated load. The use of multi-label learners also
exhibits that there are appliance correlations.

The presented algorithms are well suited for load identification, considering particular hy-
pothesis (like appliance grouping) that allows defining categories of houses, for example, small
number of appliances, different high energy appliances, repeated appliances, etc. The learned
models are also of interest regarding the future work, which will concern energy management
applied to smart buildings and behavior prediction.
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The objective of this work is to statistically predict the user energetic service request for the
next 24 hours using an enrich learning algorithms with expert knowledge. We sample the time
space into 24 hour and wish to predict the user appliances usages requirements for a particular
hour. At each point of time the prediction system will predict the following 24 hours and then
shift to the next hour and predict the following 24 hours one again, etc.

The novelty of our approach lies in the proposed general model which is still lacking in the
domain of appliances usages prediction for home automation systems. It is a difficult problem
because prediction at appliance level does not benefit from any profusion. It is difficult to tackle
these prediction problems with usual prediction approaches. Nevertheless, the algorithms of
prediction are tested in the IRISE database and the results indicate that they are well suited for
this application.

8.1 Load forecasting algorithms

The problem of forecasting has been a subject of research for a considerable number of years.
The workability of a technique depends on its simplicity and comprehensibility (i.e. the meaning)
of the model being used. Forecasting has been used in a number of domains, at first, one needs
to look into the domain of load forecasting at the grid level and review the approaches used. In
this chapter, a brief summary of load forecasting models is provided and sub-subsequently the
model used for residential load is discussed in details.

Load forecasts can be divided into three categories :

89
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Short term forecasts : From one hour to one week.
Medium forecasts : From a week to a year.

Long-term forecasts : Longer than a year.

The problem of appliance usage prediction has similarity with the short-term load forecasting
(STLF). We list here some of the common approaches used in the later. Though STLF uses
regressive approaches whereas our approach is based on classification, the strategies used in the
domain of energy load prediction will guide us in our choice of input to the predictor.

In the following paragraphs, we look into the approaches already used in load prediction
|Feinberg 2005]. The approaches are not independent of each other but rather complementary.
An important aspect of forecasting algorithms is that the simpler models are more popular
among utilities, of course without being too trivial. The features of a forecasting algorithm
depend on the business needs it is implemented for. The challenge is not only to be technical
but analytical in the approach to build a proper model of forecasting tool.

Similar-day approach : This approach is based on searching historical data for days within
one, two, or three years with similar characteristics to the day to forecast. Similar characteristics
include weather, day of the week, and the date for example. In the case of a load forecasting,
the load of the similar day is taken as a forecast |[Feinberg 2005].

This process is simple to comprehend but in relevant cases it can outperformed more complex
mathematical approaches. It also must be mentioned that, though this method is simple, it is
not trivial and requires a good understanding of the domain of interest.

Regressive methods :  For electric load forecasting, regression methods are usually used
to model the relationship of loads consumption and other factors such as weather, day type,
and customer class. |[Engle 1992] presented several regression models for the next day peak
forecasting. For appliance prediction researches indicate that a classification based on appliance
categories would be more applicable [Hawarah 2010].

Indeed, the energy consumption values are highly random to be predicted correctly in a
regressive approach rather than a class based approach to determine the appliance state followed
by the assignment of the energy value.

Time series : Time series methods are based on the assumption that the data have an
internal structure, such as autocorrelation, trend, or seasonal variation. In particular ARMA,
ARIMA and ARIMAX are the most often used classical time series methods |[Tran 2012|. The idea
of the time series approach is based on the understanding that a load pattern is nothing more
than a time series signal with seasonal, weekly, and daily periodicities.

Generally, techniques in time series approach work well unless there is an abrupt change in
the environmental or sociological variables which are believed to affect load pattern. Our work
takes into account the time series approaches using a Neural Network predictor [Tran 2013]
but it must be emphasized that, unlike in time series based energy forecasting our approach
is clagsification based where the energy-values are discrete in time. Neural networks are also
addressed in a following paragraph.
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Expert systems : Expert systems incorporate rules and procedures used by human experts in
the field of interest into software. From that knowledge, these softwares are able to automatically
make forecasts without human assistance. Knowledge-based expert system for the short-term
load forecasting have already been successfully deployed in the world, for example for the Taiwan
power system [Ho 1990]. In this example, operators knowledge and the hourly observations of
system loads along with weather parameters were taken into consideration.

Our model also proposes a general model which takes the expert knowledge into account.
The detailed approach regarding how to formalize expert knowledge is discussed in chapter 9.

Artificial neural network, ANN :  Artificial neural networks have also been applied in
the domain of energy load forecasting. The studies conducted in [Hippert 2001, Bakirtzis 1996,
Park 1991, Khotanzad 1998] give an adequate idea of the architecture and parameters that are
most commonly used for energy load forecasting.

Neural networks are essentially non-linear circuits that have demonstrated the capability
to do non-linear curve fitting. The outputs of an artificial neural network are some linear or
non-linear mathematical function representing its inputs. The inputs may be also the output of
other networks elements. In that configuration, they are arranged in a relatively small number
of connected layers of elements between networks inputs and outputs.

As an illustration, the Figure 8.1 proposes the input configuration of an implementation of
neural networks in Short term load forecasting.

Month

Date

Year

Houres

Time

Sun
Mon

Tue
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Thu
Fri

Day Type

School

Exames

For d Load

Ramadan
Eid
Haj
Public Holyday

ANN STLF Model

Special Events

ForecastedTemp

Weather

Forecasted Hum

Previous three days load

Previous two days load

Last day load

Historical load dat

Last week load

F1GURE 8.1 — Short term load forecasting predictor input configuration
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The neural network architecture used in the prediction is a multi-layer perceptron. The ANN
model is feed forward back-propagation learner that maps a set of input to a output model. For
load forecasting the commonly used learning methods can be either Hopfield, Back propagation
or Boltzmann machine. In our work, the Back propagation learning [Hecht-Nielsen 1989 was
used. The final choice of all the parameters is shown in the Table 8.1.

TABLE 8.1 — Artificial Neural Network parameters chosen in these works.

Network Type MLP
Activation function (hidden unit) Tanh
Activation function (output unit) Softmax
No of hidden neurons no of input/2
Error Function Cross entropy
Training Algorithm BGFS
Learning Rate 0.1
Support vector machines :  Support vector machines perform a non-linear mapping (by

kernel functions) of the data into a higher dimensional feature space. Then the algorithm uses
simple linear functions to create linear decision boundaries in the new space. SVM model can be
used to predict daily load demand, for example for the next month [Chen 2001].

The problem of choosing an architecture for a neural network is replaced here by the problem
of choosing a suitable kernel function for SvM. The detailed implementation of the support vector
machines is discussed in chapter 5.

Decision table : Given a training sample containing labeled instances, an induction algorithm
builds a hypothesis in some representation. The representation investigated here is a decision
table [Kohavi 1995] with a default rule mapping to the majority class, which is abbreviated as
DtM. A DTM has two components :

— A schema, which is a set of attributes.
— A body, which is a set of rules (labeled instances). Each rule consists of a value for each
of the attributes in the schema and a value for the label.

Given an unlabeled instance I, the label assigned to an instance by a DTM classifier is
computed as follows. Let L be the set of rules in the DTM exactly matching the given instance
I, where only the attributes in the schema are required to match and all other attributes are
ignored. If L = ¢; return the majority class in the DTM otherwise, return the majority class in
L.

The most important part of the decision table are the rules. Some of the rules used by
decision table classification for the oven consumption are given in figure 8.2.

In this particular situation, the most important attributes considered when building the rules
are : the hour and the consumption at hours H — 11, H — 2 and H. Based on this rules, the
unlabeled instance “consH + 1" will be classified.
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Rules:

Hour ConsH-11 ConsH-2 ConsH ConsH+1
23 1 o 5 1 0
17 0 1 1 0
10 0 il 1 0
g 0 b 1 0
14 0 1 1 1
20 0 1l 1 1]
18 0 1 | |
16 0