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Abstract 
 
A classic understanding of neurotransmitter clearance at glutamatergic synapses is that, in 

order to ensure sufficient glutamate uptake on a fast timescale, it is necessary to have high 

numbers of glutamate transporters in the vicinity of release sites to compensate for their 

slow transport kinetics. Using a combination of single molecule imaging and 

electrophysiological approaches, we now challenge this view by first demonstrating that 

GLT-1 transporters are not static but highly mobile at the surface of astrocytes, and that their 

surface diffusion is dependent upon both neuronal and glial cell activities. In the vicinity of 

glutamate synapses, GLT-1 dynamics are strongly reduced favoring their retention within 

this strategic location. Remarkably, glutamate uncaging at synaptic sites instantaneously 

increases GLT-1 diffusion, displacing the glutamate-bound transporter away from this 

compartment. Functionally, impairment of the transporter lateral diffusion through an 

antibody-based surface cross linking, both in vitro and in vivo, significantly slows the kinetics 

of excitatory postsynaptic currents. Taken together, these data reveal the unexpected and 

major role of the astrocytic surface GLT-1 fast dynamics in shaping glutamatergic synaptic 

transmission. 
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Résumé 
 
 
Le glutamate est le principal neurotransmetteur excitateur du système nerveux 

central des vertébrés, et le codage de l’information cérébrale repose en partie sur 

des modulations de l’amplitude et de la fréquence des transmissions synaptiques 

glutamatergiques. De ce fait, la résolution spatiale et temporelle de ces 

transmissions nécessite un contrôle fin de la présence de glutamate dans la fente 

synaptique. Cette durée de vie du glutamate dans les synapses dépend directement 

de l’action de transporteurs spécifiques exprimés à la surface des astrocytes, en 

particulier les transporteurs de type GLT-1, qui retirent le neurotransmetteur et 

permettent ainsi de « nettoyer » la fente synaptique avant la survenue d’un nouvel 

épisode de neurotransmission.  

 

Des études antérieures ont conclu qu’en raison d’un cycle de transport lent du 

glutamate, un large excès de transporteurs est nécessaire par rapport à la quantité 

de molécules de glutamate libérées dans la zone synaptique1.Ces études ont 

suggéré que par la seule force du nombre, les transporteurs du glutamate peuvent 

ainsi lier efficacement toutes les molécules de glutamate et les transporter lentement 

à l’intérieur des astrocytes1-3. Ces travaux ont également conduit à l'hypothèse que 

les transporteurs du glutamate peuvent agir comme des filtres perméables à haute 

activité, ce qui signifie qu’une forte libération de glutamate à la synapse peut saturer 

ces transporteurs et conduire à l'activation des récepteurs extrasynaptiques, qui ont 



de nombreux rôles physiologiques et pathologiques4,5. Récemment, ce point de vue 

a commencé à changer et de nouvelles découvertes ont suggéré que ce n'est pas 

seulement le niveau d’expression des transporteurs du glutamate, mais aussi leur 

localisation précise en particulier à proximité de la fente synaptique, qui permettent 

de contrôler la durée de l'activation des récepteurs neuronaux du glutamate6-9. 

 

Ici, nous apportons des éléments nouveaux qui supportent cette hypothèse en 

démontrant que la mobilité latérale des transporteurs GLT-1 à la surface des 

astrocytes, plus que leur nombre, joue un rôle clé dans la clairance du glutamate de 

la fente synaptique sur des laps de temps courts. Pour parvenir à ce résultat, nous 

avons combiné l’utilisation de techniques de suivi de nanoparticules unique (single 

nanoparticle tracking), qui permettent de suivre la diffusion latérale des protéines de 

surface dans le plan membranaire dans et hors des zones synaptiques, et 

d’électrophysiologie afin de suivre l’activité synaptique.  

 

Nos résultats suggèrent que c'est la diffusion de GLT-1 à la surface des astrocytes 

qui contribue essentiellement au tamponnage et à la recapture rapide du glutamate 

dans la fente synaptique. Nous avons montré que ces transporteurs ne sont pas 

fixes à la membrane, mais sont hautement dynamiques. Leur diffusion de surface 

est dépendante de l’activité, et est régulée à la fois par les cellules neuronales et 

gliales. Nous avons mimé la libération du glutamate neuronal par « décagage » de 

glutamate à proximité des synapses, et observé une augmentation de la diffusion de 

surface des GLT-1, entraînant le déplacement de ces transporteurs depuis la fente 

synaptique vers la zone extrasynaptique. Enfin, nous avons montré que 



l'immobilisation artificielle des transporteurs GLT-1 par agrégation (« cross-linking ») 

a des conséquences fonctionnelles majeures, à la fois in vitro et ex vivo dans une 

préparation de tranches d'hippocampe, et entraîne un changement significatif de la 

cinétique des courants synaptiques. Des résultats similaires ont été obtenus en 

bloquant pharmacologiquement les transporteurs du glutamate. Ceci indique que la 

diffusion de surface des GLT-1 joue un rôle fonctionnel dans le contrôle de 

l'évolution temporelle du glutamate synaptique. Les changements cinétiques 

observés montrent une exposition prolongée des récepteurs neuronaux du 

glutamate au neurotransmetteur, soulignant ainsi le rôle essentiel de la diffusion de 

surface des GLT-1 dans le maintien de l'homéostasie synaptique du glutamate in 

vitro et in vivo. Ces données renforcent le concept de la synapse tripartite, qui veut 

que les astrocytes soient des partenaires actifs à la synapse et participent 

directement à la communication cérébrale. 

 

Le trafic des récepteurs à la surface des neurones joue un rôle important dans le 

contrôle de leur distribution et de la signalisation synaptique, aussi bien au niveau 

physiologique que pathologique10-12. Il est donc possible que des altérations des 

mécanismes de régulation de la diffusion de surface des transporteurs du glutamate 

sur les astrocytes puissent aussi contribuer à l’apparition de pathologies 

neurologiques et psychiatriques. Il a précédemment été démontré que la 

perturbation des mécanismes de recapture du glutamate contribue à de nombreuses 

maladies neurodégénératives comme la sclérose latérale amyotrophique, l'épilepsie, 

la maladie d'Alzheimer ou la chorée de Huntington13-16. Ainsi, en plus d'améliorer 

notre compréhension de la contribution des transporteurs dans le contrôle du 



glutamate à la synapse, ce mécanisme inattendu ouvre de nouvelles perspectives 

de recherche dans les domaines des troubles neurologiques et psychiatriques. 

 

Représentation schématique du rôle de la 
diffusion latérale des transporteurs 
astrocytaires GLT-1 dans la recapture du 
glutamate synaptique. En condition normale 

(control, gauche), la diffusion latérale rapide des 

transporteurs GLT-1 à la surface des astrocytes 

facilite la recapture du glutamate et le nettoyage de 

la fente synaptique. En revanche, quand les 

transporteurs GLT-1 sont immobilisés (X-link, 

droite), la recapture du glutamate est plus lente, 

son temps de résidence synaptique est augmenté 

et la cinétique des courants synaptiques excitateurs 

est modifiée. 

 

 

 

Mots clés: 
Transporteurs du glutamate, recapture du glutamate, diffusion de surface, l'imagerie de 

nanoparticules unique, synapse tripartite, interactions neurone-glie 
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Introduction 
 

 

1. Glutamate 
 

Glutamate or glutamic acid is one of the 21 amino acids in the body. Its genetic 

codons in DNA are GAA and GAG. Glutamate is a non-essential amino acid, meaning that it 

can be synthesised by the body and therefore doesn’t need to be provided in the diet. In 

1953, Hans Adolf Krebs won the Nobel Prize in Physiology for his discovery that glutamate 

is a key compound in cellular metabolism serving as fuel for other biological processes. 

Catabolism of sugars, fats and amino acids, including glutamate, are all necessary for the 

production of energy in the citric acid cycle (also known as the TCA or Krebs cycle) which is 

the main form of aerobic energy production in the body (Krebs, 1935).  

Glutamate, apart from being a vital amino acid in the body and brain, is also 

commonly used as a flavour enhancer in its salt form monosodium glutamate (MSG). This 

salt was discovered by Japanese scientist Kikunae Ikeda in 1908, upon tasting the salt he 

identified it as flavour found in many foods. A flavour he termed unami, translated as sweet 

or delicious. He then patented a method of mass-producing this salt for the food industry. 

Recently, it was discovered that the combination of T1R1 and T1R3 taste receptors in the 

tongue, which are distantly related to metabotropic glutamate receptors in the brain, are 

responsible for this flavour when glutamate is present in food (Nelson et al., 2002). These 

receptors also responsible for recognising other amino acids in foods, this has been 

suggested to be a possible evolutionary advantage for animals, including humans, as we 

cannot produce all the necessary amino acids endogenously.  

In the brain, glutamate plays a very important role as an excitatory neurotransmitter. 

Glutamate is stored in vesicles and can be released by electrical impulses which travel in 

neurons. This release of glutamate allows the transfer of information from one cell to another 
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and in this way glutamate can be involved in many processes in the brain such as learning 

and memory. However, glutamate in large concentrations can be toxic for neurons, therefore 

there are specific transporters to remove this glutamate from the extracellular space. These 

transporters are known as excitatory amino acid transporters (EAATs) of which there are 

several types, which have differential locations in the brain and are expressed in different 

cell types according to their functions. Other functions for glutamate in the brain include 

metabolism into a precursor for an inhibitory neurotransmitter gamma aminobutyric acid 

(GABA), by the protein glutamate decarboxylase (GAD).  

 

1.1 Glutamate as a neurotransmitter 
 

 
Arguably one of the most important roles of glutamate in the body is its role as a 

neurotransmitter in the brain. The first indications that glutamate may play a role as a 

neurotransmitter were observed in experiments whereby injection of glutamate into the brain 

or carotid arteries produced convulsions (Hayashi, 1954). Soon after, an independent 

laboratory found that glutamate was indeed a neurotransmitter and activated a wide range of 

neurons in the central nervous system (CNS) (Curtis et al., 1960). Classically, for a 

substance to be accepted as a neurotransmitter it has to fulfil several criteria; first, this 

chemical has be present in the presynapse; second, it has to be released upon physiological 

stimulation of the cell; third, it has to have receptors on the target cell; and finally, there must 

be an innate mechanism to terminate the action of the transmitter. Glutamate falls 

comfortably into these criteria and is widely accepted to be the major excitatory 

neurotransmitter in the brain (Fonnum, 1984). This excitatory neurotransmitter plays roles in 

many physiological brain processes such as cognition, learning and memory. The 

concentration of glutamate is highly regulated to ensure that this amino acid can carry out its 

neurotransmitter function effectively. The brain contains a large amount of glutamate, 

estimated to be in the range of 5-15 mmol/kg (Danbolt, 2001). However, the concentration of 
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glutamate is not uniform in the brain, it has been demonstrated there are vast differences in 

its extracellular, cellular and sub-cellular locations. Extracellular levels glutamate are 

maintained at very low levels, with early reported values of around 4 μM  (Hamberger and 

Nystrom, 1984). More recently, extracellular glutamate concentration in hippocampal slices 

has been estimated to be closer to 25 nM (Herman and Jahr, 2007). Indeed it is more 

plausible that the extracellular glutamate concentration is in the nM range, this concentration 

is low enough to avoid any significant glutamate receptor activation, while 4 μM would 

induce constitutive glutamate receptor activation and would likely have deleterious effects.  

Intracellular glutamate concentrations have been estimated at ~ 10 mM, a more than 10,000 

fold difference (Burger et al., 1989). It has also been suggested that glutamate transporters 

working under physiological conditions should be capable of establishing a concentration 

gradient of 106, equating to a glutamate concentration of 10 nM extracellularly and 10 mM 

inside the cell (Zerangue and Kavanaugh, 1996), this is in agreement with extracellular 

glutamate concentrations proposed by Herman and Jahr (2007). Sub-cellularly, glutamate 

has been estimated to be present at extremely high concentrations in synaptic vesicles, ~ 60 

mM (Burger et al., 1989; Shupliakov et al., 1992).  

 

Figure 1.Extracellular, Intracellular and sub-
cellular glutamate concentrations in the 
brain 

Extracellular concentrations of glutamate are in 

the range of 25 nM – 4 μM (synaptic 

concentrations of glutamate can transiently rise 

to 1 mM for 1-2 ms following synaptic glutamate 

release), while intracellular concentrations are 

approximately 10 mM. Finally, synaptic 

vesicles, which express highly efficient 

vesicular glutamate transporters contain 

glutamate at concentrations up to 60 mM.  
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2. Glutamatergic neurotransmission 
 

2.1 Glutamate receptors 
 

Synaptic transmission is the basis of neuronal communication in the brain. 

Classically, neurons can transmit information in two ways, electrically and chemically. 

Beginning with the chemical signal, we observe the release of a neurotransmitter, such as 

glutamate, from the presynaptic cell. Glutamate then diffuses across the synaptic cleft where 

it acts upon glutamate receptors on the postsynaptic neuron. Glutamate binding to its 

specific receptors allows the influx of ions into the postsynaptic cell, resulting in 

depolarisation, i.e. a change in the cell’s membrane potential towards more positive values. 

If this depolarisation is large enough, it may result in an action potential which is conducted 

through the neuron allowing information to pass from one cell to another. This is the classical 

view of neurotransmission. However, it has now been demonstrated that glutamate not only 

acts on postsynaptic receptors but can also carry out presynaptic functions, which can result 

in a change in the release probability of presynaptic vesicles (Oliet et al., 2001). 

This classical view of glutamate acting on receptors located solely on neurons has 

been updated, with recent evidence demonstrating that these receptors are not neuron-

specific but are also expressed on glial cells (Gallo and Ghiani, 2000). Activation of 

glutamate receptors on astrocytes is still a topic of debate, with not only the existence of 

these receptors but also the consequence(s) of glutamate receptor activation on these cells 

remaining ambiguous. The neurotransmitter which is the focus of this thesis is glutamate, 

however there are many others such as GABA, dopamine and endocannabinoids which do 

not all follow the same rules as glutamate, regarding release, receptor activation and 

uptake/termination of action, and will not be mentioned further on.  

As previously mentioned, one criterion for a substance to be accepted as a 

neurotransmitter is the presence of receptors on the target cell. Glutamate performs its role 
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as a signalling molecule by binding to receptors located on both neurons and glia. Glutamate 

receptors can be separated into two distinct families, ionotropic and metabotropic glutamate 

receptors.  

 

2.1a. Metabotropic Glutamate Receptors 
 

The first family of glutamate receptors I will describe are known as metabotropic 

glutamate receptors (mGluRs). These are G-protein coupled receptors of which there are 8 

individual receptors (mGluR 1-8). mGluRs can be split into three main groups, which are 

based on their generalised location and functions (Niswender and Conn, 2010). Group I 

mGluRs, comprised of mGluR1 and 5, are coupled to Gq signalling. This group is 

predominantly expressed post-synaptically and activation results in phospholipase C, 

adenylyl cyclase as well as MAP kinase stimulation. Group II and III mGluRs are coupled to 

Gi/o proteins involved in inhibitory signalling. Group II mGluRs, mGluR2 and 3, can be found 

both pre- and post-synaptically. Activation of Group II mGluRs results in inhibition of adenylyl 

cyclase, activation of K+ channels and inhibition of Ca2+ channels. Finally Group III mGluRs, 

mGluR4 and 6-8, each expressed differentially in terms of synaptic location and brain region, 

result in inhibition of adenylyl cyclise activation of K+ channels and inhibition of Ca2+ 

channels (see Table 1). It is widely accepted that astrocytes express both mGluR3 and 

mGluR5 (Arizono et al., 2012; Panatier et al., 2011; Sun et al., 2013). Activation of these 

receptors by neuronal activity has been demonstrated to result in Ca2+ activity in astrocytes, 

therefore, these receptors are believed to play a functional role in neuron-glia 

communication (Panatier et al., 2011).  
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Group 

 

Receptor 

 

CNS expression 

 
Neuronal 

Localisation 

 

Signalling pathways 

 

Group I 

 

mGluR1 

 

Neuronal 

 

Predominantly 
postsynaptic 

• Stimulation of 
phospholipase C 
& adenylyl cyclase 

• MAP kinase 
phosphorylation 

mGluR5 Neuronal & 
Astrocytic 

 

Group II 

mGluR2 Neuronal  

Pre- & post-
synaptic 

• Inhibition of 
adenylyl cyclase 

• Activation of K+ 
channels 

• Inhibition of Ca2+ 
channels 

mGluR3 Neuronal & 
Astrocytic 

 

 

 

Group III 

mGluR4 Neuronal Presynaptic  
 

• Inhibition of 
adenylyl cyclase 

• Activation of K+ 
channels 

• Inhibition of Ca2+ 
channels  

 

mGluR6 Retinal Postsynaptic in 
ON-bipolar 
retinal cells 

mGluR7 Neuronal Presynaptic 
terminals 

mGluR8 Neuronal Presynaptic 

 

Table 1.Key features and differences between mGluRs. Adapted from (Niswender and 

Conn, 2010). 

 

2.1b. Ionotropic Glutamate Receptors 
 

There are 3 main ionotropic receptors, which mediate fast synaptic transmission, 

named after their affinities for exogenous agonists. It is possible to make some 

generalisations about this family of glutamate receptors; these receptors all form tetramers, 

thus four subunits are needed to combine to form a functional receptor; each subunit is 

composed of an extracellular amino-terminal domain (ATD) which participates in subtype 

specific receptor assembly, trafficking and modulation; a ligand binding domain (LBD); a 
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transmembrane domain (TMD) which forms the ion channel and a cytoplasmic carboxy-

terminal domain (CTD) involved in receptor localisation and regulation (see Figure 1). 

 

 

Figure 2. Generalisation of ionotropic glutamate receptor subunit 

Adapted from (Wollmuth and Sobolevsky, 2004). (a) Overview of a glutamate receptor 

subunit. We can observe the N-terminal domain (ATD), S1 and S2 lobes forming the 

ligand/co-agonist binding domain (LBD), 4 hydrophobic domains M1-M4 and the C-terminal 

domain (CTD). (b) Membrane topology of a glutamate receptor subunit. 

 

The first ionotropic glutamate receptor I will describe is the α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptor (AMPAR) which is expressed on neurons and 

potentially on astrocytes. On neurons AMPARs are expressed post-synaptically. When 

activated, by pre-synaptically released glutamate, these receptors allow the influx of mainly 

Na+ and K+ (as well as Ca2+ to a lower extent) into the cell which may result in depolarisation 

Introduction | 7 



 

of the post-synaptic neuron. AMPARs are tetramers composed of subunits (GluA1-4), and 

generally functional AMPARs are composed of a dimer of dimers. Activation, deactivation 

and desensitisation of these receptors occurs on a millisecond timescale (Hansen et al., 

2007), thus these receptors are responsible for fast synaptic transmission on neurons.  

On astrocytes, the expression and role of AMPARs is not so well defined. Evidence 

from studies of cultured hippocampal astrocytes has demonstrated that AMPARs on 

astrocytes have a much higher Ca2+ permeability (Fan et al., 1999). As such, it is believed 

that activation of these receptors on astrocytes leads to activation of Ca2+-dependent 

processes such as release of ‘gliotransmitters’ (glutamate, ATP, D-serine etc.) and the 

resulting modification of synaptic transmission (Mothet et al., 2005). These receptors could 

also act as a neuronal activity sensor, allowing high-speed communication between these 

different brain cells.  

Next, I will introduce the N-methyl-D-aspartate receptor (NMDAR) which is also 

expressed on neurons and possibly on astrocytes. On neurons these receptors, like 

AMPARs, are located post-synaptically and are also responsible for fast excitatory 

neurotransmission. NMDARs are also composed of subunits which combine in hetero-

tetramers to form a functional ion channel, these subunits are GluN1, GluN2A-D and 

GluN3A,B. Functional receptors are usually composed of two GluN1 and two GluN2 

subunits. However, unlike AMPARs, NMDAR kinetics are much slower with activation and 

deactivation occurring on tens to hundreds of milliseconds (Forsythe and Westbrook, 1988). 

Furthermore, in contrast to AMPARs, NMDARs need not only glutamate to be activated but 

are also voltage-dependent, i.e. the cell needs to be depolarised before NMDAR activation 

occurs. This is due to the presence of a Mg2+ ion in the pore of NMDARs which blocks the 

ion channel at resting membrane potentials (-70 mV in neurons). Following activation of 

AMPARs, neurons can become depolarised, raising the membrane potential which can 

result in the removal of the Mg2+ ion from the NMDAR, if glutamate is present in these 

conditions this results in the influx of Ca2+ and Na+ ions through the NMDAR and into the 
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cell. Activation of NMDARs is further complicated by the necessity of simultaneous binding 

of glutamate as well as a co-agonist. GluN2 subunits bind glutamate, while GluN1 subunits 

are the locus for the co-agonist binding site. Both glycine and D-serine can bind to the co-

agonist site and it has been recently shown that D-serine, provided by astrocytes (Mothet et 

al., 2005; Panatier et al., 2006), is the co-agonist at synaptic sites while glycine is 

predominant in extrasynaptic areas (Papouin et al., 2012).  

Due to the Mg2+ ion blocking the NMDAR pore, which can only be removed through 

depolarisation and the fact that astrocytes are not electrically excitable cells, it was believed 

that functional NMDARs could not be expressed on astrocytes. Only recently, this belief has 

been challenged, with evidence suggesting that not only are these receptors present but 

functional on astrocytes (Lalo et al., 2006). Furthermore, this study by Lalo and colleagues 

(2006) demonstrated that NMDARs on astrocytes seem to lack sensitivity to Mg2+, indicating 

that these receptors can be functional at astrocytic resting membrane potentials of -80 mV. 

The precise role and expression pattern of NMDARs on astrocytes in different brain regions 

remains unknown. 

Finally, it is worth mentioning kainate receptors (KARs). These receptors resemble 

AMPARs however their function and contribution to glutamatergic signalling is less 

understood compared to its previously mentioned counterparts. There are 5 subunits of 

KARs (GluK1-5) which can combine to form tetramers. However, for the KAR to be 

functional it is necessary to include at least one of the GluK1-3 subunits. KARs were first 

believed to be solely involved in pathology such as epilepsy (Ben-Ari, 1985). It is now 

believed that KARs play a more physiological role in synaptic integration in specific 

hippocampal circuits (Pinheiro et al., 2013). As the precise role of KARs are quite 

ambiguous, I will omit these receptors from further discussion in this thesis. Furthermore, the 

evidence for the expression of KARs on astrocytes has yet to be demonstrated.  
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Figure 3. Locations of glutamate receptors on neurons and astrocytes 

AMPARs, NMDARs and mGluRs have only been included on cell types where their function 

is known. Thus neurons express AMPA, NMDA, KA and mGlu receptors postsynaptically, 

while expressing KA and mGlu receptors presynaptically. On astrocytes only mGluRs are 

shown due to the controversial evidence and unknown function of AMPAR, NMDA and KA 

receptors on these cells. 

 

2.2 Synaptic plasticity in the hippocampus 
 

Synaptic transmission, as previously stated, is the chemical communication between 

two neurons across a synapse. This form of communication is highly dynamic, with changes 

in the strength of communication believed to be associated with many physiological 

processes such as learning and memory. These dynamic changes in the strength of 

transmission are known as synaptic plasticity. The idea of synaptic plasticity was proposed 

by Donald Hebb in 1949. Hebb proposed a coincidence detection rule whereby the synaptic 

communication between two neurons could be strengthened if both neurons are activated at 

the same time (Hebb, 1949). Hebb hypothesised that this form of synaptic plasticity could be 
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the substrate for learning and memory in the brain, this theory became known as Hebbian 

learning. It was not until many years later that Hebb’s idea of synaptic plasticity was proven 

to be true in vivo. Several revolutionary papers were published in the 1970’s demonstrating 

the existence of synaptic plasticity in the brain.  

First, Eric Kandel’s group published papers demonstrating synaptic correlates of 

simple learning paradigms, habituation and sensitisation, in the sea slug Aplasia (Castellucci 

et al., 1970; Kupfermann et al., 1970; Pinsker et al., 1970). These findings were postulated 

to be the first evidence of synaptic plasticity in monosynaptic circuits. Swiftly following 

Kandel’s group, two revolutionary papers from Tim Bliss’s lab demonstrated the first 

evidence of long-term synaptic plasticity in anaesthetised (Bliss and Lomo, 1973) and un-

anaesthetised (Bliss and Gardner-Medwin, 1973) rabbits. By stimulating neurons using a 

high frequency stimulation protocol Bliss and colleagues (1973) observed a long-term 

increase in the strength of the post-synaptic response which lasted for many hours. (On a 

side note, an anecdote from a review article by Bliss and colleagues (Bliss et al., 2003), 

highlights the evolution of modern science which has become a race to get to the finish line. 

The experiments which lead to publication of the 1973 papers demonstrating LTP were 

carried out and completed several years earlier, in this almost forgotten era, scientists had 

the luxury of spending a lot more time pondering the relevance of these important scientific 

discoveries). Since this initial biological demonstration of synaptic plasticity many other 

forms of synaptic plasticity have been demonstrated, both in vivo and in vitro, these different 

forms of plasticity vary in terms of induction, duration and molecular mechanisms.  

This section will focus only on hippocampal forms of synaptic plasticity although the 

mechanisms which induce and maintain these different forms of glutamatergic synaptic 

plasticity are rather ubiquitous in the brain. Synaptic plasticity has been extensively studied 

in the brain but no area has been subject to more scrutiny than the hippocampus. The 

hippocampus is one of the most extensively studied brain regions in contemporary 

neuroscience, as such, much is known about its circuitry and signalling (see Figure 4). The 
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high level of interest in this particular brain structure is due to the profound importance of the 

hippocampus for learning and memory. This was discovered, by chance, by the 

neurosurgeon William Scoville after he performed experimental surgery to alleviate epileptic 

seizures in a patient known by his initials H.M (Scoville and Milner, 1957). This surgery 

involved bilateral hippocampus removal, following this patient H.M. suffered from 

anterograde amnesia, meaning he could no longer form new memories. Further 

psychological testing demonstrated that not all forms of memory were affected by bilateral 

hippocampus removal; only semantic memory formation was abolished while patient H.M. 

was still capable of learning with respect to other forms of memory such as motor memory. 

Much of our current knowledge about the brain would not have been possible without the 

cooperation of patient H.M. over many years. Patient H.M. died in 2008 which lead to the 

release of his real name, Henry Molaison. Even after his death, Henry Molaison continues to 

add to our understanding of the brain. Recent work, which histologically sliced through the 

entirety of Molaison’s post-mortem brain, indicates that a significant proportion of the 

hippocampus was intact in both hemispheres (Annese et al., 2014). This finding raises the 

question of the functional viability of the remaining hippocampal tissue.  

Although no experimental work has been carried out on synaptic plasticity during this 

thesis, we have done some electrophysiology, therefore I will briefly describe the three most 

exhaustively studied forms of synaptic plasticity which are; short-term potentiation, long-term 

potentiation and long-term depression without going into too much detail regarding these 

processes. 
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Figure 4. The hippocampal circuit. 

This diagram indicates the unidirectional signalling of the hippocampus. Afferent innervation 

of the hippocampus arrives from the perforant pathway, into the dentate gyrus. This 

innervates cells in the CA3, which in turn innervates cells in the CA1. pp: perforant pathway. 

DG: dentate gyrus. mf: mossy fibres. CA; cornu ammonis. Sc: schafer collaterals. Adapted 

from (Hilal, 2013) 

 

2.2a. Short-Term Plasticity 
 

Short-term plasticity in the hippocampus is believed to be a presynaptic 

phenomenon. This form of plasticity involves modifications in the probability of release of a 

synaptic vesicle from the presynaptic bouton which lasts for minutes at most, hence the 

name short-term plasticity. When considering short-term plasticity, we must be familiar with 

the processes involved. Short-term plasticity is based on changes in the probability of 

neurotransmitter release (p). This probability of neurotransmitter release is also related to 

the amount of vesicles which can be release at any one time. The smallest synaptic event, 

which is known as a quantal event (q), is the equivalent of the release of a single vesicle. It 

is believed that there are several pools of vesicles in any given presynaptic bouton, these 

pools can be categorised in readily releasable pool and the reserve pool. Short-term 
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plasticity can affect the amount of vesicles in the readily releasable pool thereby modifying 

the potential amount of neurotransmitter which can be released following stimulation. 

Theoretical models of presynaptic release have been proposed, which explain the 

relationship between these different elements (Hennig, 2013). The following equation 

demonstrates that the amount of neurotransmitter (T) released is a function of the probability 

of release (p) and the amount of vesicles in the readily releasable pool (N). As changes in 

the probability of neurotransmitter release are generally activity-dependent, each component 

of this equation is expressed as a function of time (t); 

T(t) = p(t) .N(t) 

For a more comprehensive model of presynaptic short term plasticity see Hennig, 2013. 

Thus, short-term plasticity can result from a change in the probability of neurotransmitter 

release due to high levels of intracellular Ca2+ needed for vesicle release, or even changes 

in the readily releasable pool of vesicles. A change in any of these factors, individually or in 

combination, will result in a change in the overall amount of neurotransmitter released (T).  

 

2.2b. Long-Term Plasticity 
 

Long-term plasticity, believed to be the cellular engram of learning and memory, 

resembles Donald Hebb’s early predictions of synaptic plasticity. Hebb predicted that 

memories could be stored in a synapse when there is a long lasting change in the strength 

of communication between neuron A and neuron B (Hebb, 1949). As previously mentioned, 

proof of this principle in vivo was published in 1973 (Bliss and Gardner-Medwin, 1973; Bliss 

and Lomo, 1973) and since then countless papers have reproduced this synaptic 

phenomenon. 

LTP is believed to be the cellular substrate for learning and memory throughout the 

brain. As such, LTP in the hippocampus, an area immensely important in learning and 
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contextual memory, has been one of the most widely studied phenomena in the brain. One 

of the major reasons why this is the case is owed to the extremely robust expression of this 

form of synaptic plasticity. It is quite simple to induce LTP in vitro and in vivo, using high 

frequency stimulation, thus many laboratories use this cellular phenomenon to compare the 

effects of drugs or disease states etc. (Bliss and Collingridge, 1993). In this review, Bliss and 

Collingridge (1993) aptly describe LTP as: 

“Activity-dependent synaptic potentiation occurs within milliseconds and can persist for many 

hours in the anaesthetised animal or in the in vitro slice preparation, and for days when 

induced in the freely moving animal” 

 

There are different mechanisms which can lead to LTP induction and the 

maintenance of this potentiation. Here I will mention two mechanisms which are NMDAR-

dependent and –independent. Beginning with the NMDAR-dependent pathway, one can 

assume from the name that the activation of NMDA glutamate receptors is necessary to 

induce this form of LTP. As previously mentioned, NMDAR are peculiar receptors needing 

both agonist and co-agonist binding sites to be occupied as well as the simultaneous 

depolarisation of the cell in order to remove the Mg2+ molecule blocking the pore. It is 

through these stringent conditions that NMDARs are perfectly adapted as a coincidence 

detection receptor only allowing LTP to occur when there is simultaneous activation of both 

pre- and post-synaptic elements. 

Induction protocols for LTP generally require high frequency stimulation which 

induces high levels of pre-synaptic glutamate release activating both AMPARs and NMDARs 

(Bliss and Gardner-Medwin, 1973; Bliss and Lomo, 1973). Following the activation of 

NMDARs in these conditions, there is a great influx of Ca2+ into the post-synaptic cell 

through the NMDAR. This leads to the activation of intracellular signalling pathways, 

including activation of calcium/calmodulin-dependent kinase II (CaMKII) among other 

secondary messenger molecules producing changes in protein phosphorylation and gene 
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expression, resulting in a long-term potentiation of the postsynaptic response to stimulation 

(Lynch, 2004). 

On the other hand, there is an NMDAR-independent pathway which involves the 

insertion of AMPARs into the postsynaptic density (Malinow and Malenka, 2002). It has been 

suggested that there are many synapses lacking AMPARs, these synapses, which still 

contain NMDARs are known as ‘silent’ synapses. It has been demonstrated that protocols 

used to induce LTP in experimental conditions are capable of inducing the trafficking of 

AMPARs to the synapse (Liao et al., 1995). Therefore, synapses which were once silent can 

now respond to presynaptic glutamate release, resulting in synaptic transmission.  

 In comparison to LTP, long-term depression (LTD) is induced by low frequency 

stimulation resulting in low levels of Ca2+ entry into the postsynaptic cell. This low level of 

Ca2+ entry will bind to proteins which have a higher affinity for Ca2+ than CaMKII such as 

calcineurin, which signal in different pathways, compared to those involved in LTP, inducing 

a functional decrease in the postsynaptic response to further stimulation (Mulkey et al., 

1994). It has also been suggested that LTD works in the opposite manner of LTP, effectively 

reducing the synaptic content of AMPARs (Carroll et al., 2001; Groc et al., 2004). As a 

consequence of the removal of synaptic AMPARs, and other mechanisms involved in LTD, 

the postsynaptic response to further glutamate release will be attenuated. 

 

2.3 Contribution of surface trafficking to synaptic transmission 
 

 An important point alluded to in the previous section is that there are activity-

dependent changes in the surface content and localisation of receptors on neurons (Carroll 

et al., 2001; Groc et al., 2004; Heine et al., 2008). It is taken for granted that un-silencing of 

synapses involves the insertion of AMPARs into the synaptic membrane (Liao et al., 1995). It 

has been suggested that this occurs through exocytosis of the protein into the membrane but 
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it remained unclear whether this exocytosis occurred directly in the synapse or outside of the 

synapse. The post-synaptic density (PSD) is a protein rich area, there is an extremely high 

concentration of scaffold proteins, which bind and stabilise neurotransmitter receptors, as 

well as many different signalling proteins at the synapse. It has been demonstrated that 

indeed, as predicted, both exo- and endo-cytosis occur in specific domains located outside 

of the PSD (Kennedy et al., 2010; Smith et al., 2012). Smith and colleagues (2012), state 

that surface receptors can become stabilised in these endocytotic zones before 

internalisation. Conversely, Kennedy and colleagues (2010) focused on exocytosis, they 

stated that proteins are inserted into the membrane in specific domains outside of the PSD. 

Down-regulation of specific proteins involved in this receptor exocytosis resulted in an 

impairment of LTP revealing the role of receptor insertion in synaptic plasticity (Kennedy et 

al., 2010). These findings are in agreement with earlier findings demonstrating the 

insertion/removal of receptors from the synapse contributing to synaptic plasticity. However, 

the reader is left wondering how these receptors move to the synapse from where they are 

inserted into the membrane and, vice versa, from the synapse to the endocytic zones. 

 Recent findings add another dimension of complexity to this process, demonstrating 

that many of these proteins, particularly receptors, are highly mobile on the surface of the 

cell. Through thermodynamic, Brownian diffusion these proteins move along the surface of 

the cell from one area to another, while experiencing varying levels of confinement in 

specialised areas, e.g. the synaptic area, where they can become transiently ‘trapped’. 

Receptors such as AMPARs, NMDARs and GABARs are subject to this surface diffusion 

(Groc et al., 2007; Heine et al., 2008; Muir et al., 2010). In recent years, a lot of effort has 

been devoted to uncover the molecular mechanisms by which proteins move (and stop) on 

the cell membrane. Lateral diffusion of receptors has been the primary focus of many 

laboratories for the past decade. Research from a handful of teams has divulged a wealth of 

knowledge regarding the regulation and consequence of surface diffusion of receptors on 

the surface of neurons. These teams have demonstrated that there are in fact very few 
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receptors that do not move on the surface of neurons and glia, including but not limited to 

AMPARs (Bats et al., 2007; Groc et al., 2008; Heine et al., 2008), NMDARs (Bard et al., 

2010; Dupuis et al., 2014; Groc et al., 2007; Groc et al., 2006), GABARs (Jacob et al., 2005; 

Muir et al., 2010; Smith et al., 2012), mGluRs (Arizono et al., 2012), P2X4 receptors (Toulme 

and Khakh, 2012) and dopamine receptors (Ladepeche et al., 2013b; Porras et al., 2012). 

Surface diffusion of these receptors is stringently regulated by many different factors such as 

binding with intracellular scaffold proteins (Bard et al., 2010; Bats et al., 2007; Porras et al., 

2012), interaction with other surface proteins and receptors (Ladepeche et al., 2013a; 

Mikasova et al., 2012; Muir et al., 2010) as well as confinement due to extracellular matrix 

proteins (Groc et al., 2007; Michaluk et al., 2009). It is now known that surface diffusion of 

receptors is an activity-dependent process and plays a strong role in synaptic plasticity 

(Frischknecht et al., 2009; Heine et al., 2008; Krugers et al., 2010). The checks and 

balances put in place to regulate surface diffusion of proteins are rather fragile and it has 

been observed that surface diffusion can be affected by physiological processes such as 

stress (Groc et al., 2008). Furthermore, as our technology and understanding of the 

mechanisms regulating surface diffusion of receptors continues, it is becoming increasingly 

clear that these mechanisms go awry in certain pathological conditions (Mikasova et al., 

2012). 

 

2.4 Astrocytes and synaptic transmission 
 

The role played by astrocytes in synaptic transmission in the brain must not be 

overlooked. The astroglial biology field, which developed from a small cult following, is now 

one of the fastest growing fields in neuroscience as researchers realise the important 

contribution of these cells to neuronal activity. Astrocytes were first believed to serve only as 

support cells in the brain, providing a metabolic and structural scaffold upon which neurons 

could grow. These cells were overlooked for many years due to the difficulty in stimulating 
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and recording activity from these cells. Neuronal activity is electrical, thus quite easy to 

record whereas astrocytes communicate through changes in intracellular Ca2+ (Cornell-Bell 

et al., 1990). Furthermore, until recently, neuroscientists were pouring the majority of their 

energy into the development of new technologies to investigate neuronal function. Thus, we 

find ourselves in a sort of predicament where we are using tools, developed to study 

neurons, in order to study a completely different cell type. Take for example one of the 

biggest technological advances of recent neuroscience, optogenetics (Aravanis et al., 2007; 

Boyden et al., 2005). This tool is being used to excite and well as inhibit neurons using 

genetically encoded light-sensitive ion channels. This technology has now been successfully 

transferred to astrocytes and is employed to induce intracellular Ca2+ release on a large 

scale (Gourine et al., 2010). This technology will certainly increase our current 

understanding of astrocyte biology but whether this gross manipulation of intracellular Ca2+ is 

physiologically relevant in astrocytes remains to be seen.  

One major difference in neuron versus glial activation is that neuronal firing is an all 

or none event, whereas astrocytes can have changes in intracellular Ca2+ levels which can 

occur independently in the fine processes as well as whole cell (Di Castro et al., 2011; 

Panatier et al., 2011). These intracellular Ca2+ increases can spread as calcium waves 

throughout the astrocytic syncytium (Charles et al., 1991; Newman and Zahs, 1997). The 

precise role of these small Ca2+ transients as opposed to large Ca2+ waves which spread 

throughout the whole astrocyte is unknown. It is a fact that many stimuli, such as activation 

of excitatory glutamate receptors or even inhibitory GABA receptors on astrocytes leads to 

an increase in Ca2+ (Haustein et al., 2014). This leads us to believe that astrocytes are 

unable to distinguish between excitatory and inhibitory inputs, which is very counterintuitive. 

One would assume that astrocytes, with each individual cell contacting hundreds of 

thousands of synapses in rodent brains and millions of synapses in the human brain, should 

be able to sense differences in GABAergic and glutamatergic signalling and respond 

accordingly. Therefore, it is possible that a lot of information is communicated in these Ca2+ 
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signals that we are not able to decipher using current techniques; perhaps the intensity 

and/or the propagation of the intracellular Ca2+ signal encodes information rather than a 

simple on/off switch with each event encoding the same message; it is also possible that 

Ca2+ signalling in astrocytes resembles a sort of LTP/LTD process which occurs in neurons, 

whereby small Ca2+ events may activate proteins which have a high affinity for Ca2+ whereas 

large Ca2+ transients could activate low affinity proteins resulting in the activation of distinct 

pathways. If one day we can listen to astrocytic Ca2+ activity and translate it into an 

intelligible ‘language’ of sorts, we will surely uncover a highly complex system of astrocytic 

communication and gather a wealth of information about astrocytic function in physiology 

and pathology. Research attempting to decode the information stored in astrocytic Ca2+ 

transients is well under way. A recent paper using genetically encoded calcium indicators 

(GECIs) highlights just how little we know about Ca2+ signalling in astrocytes and the current 

constraints in imaging astrocytic Ca2+ activity let alone determination of the functional 

consequences of this activity (Haustein et al., 2014). 

Following the initial discovery that astrocytes signal through changes in intracellular 

calcium, researchers set about exploiting this signalling mechanism to better understand 

these cells. A lot of progress has been made in the glial biology field, uncovering the role of 

these cells in many processes which were believed to be purely neuronal. It is now widely 

accepted by both astro- and neuro-centric researchers that astrocytes contribute strongly to 

synaptic transmission and plasticity. This important development came when it was 

demonstrated that; astrocytes are implicitly involved in the regulation of extracellular levels of 

glutamate (Oliet et al., 2001; Rothstein et al., 1996); astrocytes can release 

neurotransmitters such as ATP (Gordon et al., 2005; Panatier et al., 2011) and glutamate 

(Araque et al., 2000; Jourdain et al., 2007; Parpura and Haydon, 2000) thereby modifying 

neuronal activity; as well as the important observation the D-serine, the NMDA receptor co-

agonist is released by astrocytes   (Mothet et al., 2000; Panatier et al., 2006; Papouin et al., 

2012). Breakthrough papers demonstrated that LTP, the cellular substrate for learning and 
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memory in the brain, was dependent on astrocytic signalling, thus implicating these so-called 

supporting cells in synaptic plasticity (Henneberger et al., 2010; Panatier et al., 2006). These 

observations, among many others, fundamentally changed the field of neuroscience; the 

dogma that a synapse is composed of simply a pre- and post-synaptic element had to be 

revised and now the synapse is considered to be a tripartite structure. On a side note, there 

is increasing evidence that microglia, the immune cells of the brain, play a role in synaptic 

activity and development (Kettenmann et al., 2013). Momentum is now growing for further 

revision of the concept of a synapse to include other glial cells into this structure. Convincing 

evidence has been put forward to include microglia in synaptic communication in what has 

been coined the ‘quad-partite’ synapse (Schafer et al., 2013). A study, published this year, 

has demonstrated that myelin coverage of neurons by Oligodendrocytes in the cortex in not 

uniform, as formerly assumed, but more intermittent especially in higher cortical layers II/III, 

compared to deeper layers of the cortex (Tomassy et al., 2014). The functional significance 

of these findings are unknown but this study calls into question the dynamic role of 

Oligodendrocytes in the control, or perhaps synchronisation, of neuronal activity as impulse 

propagation speeds are a function of myelin coverage of axons. 

This tripartite structure is important for maintaining and synchronising communication 

between neurons and astrocytes. It has been demonstrated that astrocytic coverage of the 

synapse impacts upon presynaptic neurotransmitter release by affecting the level of 

presynaptic glutamate receptor activation (Oliet et al., 2001). The majority of synapses are 

ensheathed by astrocytic processes; although the overall level of coverage is believed to 

vary between brain regions (Ventura and Harris, 1999). As suggested by Fonnum (1984), 

one other criterion for defining a substance as a neurotransmitter is that there must be an 

endogenous mechanism to terminate the action of the neurotransmitter. This mechanism in 

the mammalian brain is carried out by a family of glutamate transporters, which will be the 

focus of the remainder of the introduction. 
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3. Glutamate Transporters 
 

As previously elucidated, the concentration of glutamate in the brain must be tightly 

regulated so that receptors do not become constitutively activated, which would lead to 

excitotoxic cell death. As there is no endogenous extracellular enzyme to degrade 

glutamate, this neurotransmitter is removed by a family of glutamate transporters in the 

brain. These transporters, known as Excitatory Amino Acid Transporters (EAATs) are 

located on neurons and glia, each has its own individual role depending on brain area and 

cellular location. It is believed that glutamate transporters on astrocytes play the most 

important role in removing extracellular glutamate (Danbolt, 2001; Rothstein et al., 1996). 

Once glutamate is removed from the extracellular space by astrocytes, this glutamate can be 

converted into glutamine, in an energy-dependent process, by the glial specific enzyme 

glutamine synthetase (see Danbolt, 2001). System N glutamine transporters (SN1) located 

on the astrocytic membrane export this physiologically inactive amino acid into the 

extracellular space where it can be taken up by neurons which express the system A 

transporters (SAT1). Once inside the neurons it is believed that glutamine is reconverted to 

glutamate, in an energy-independent process by phosphate activated glutaminase (PAG). 

Finally, glutamate is packaged into vesicles in the presynapse but vesicular glutamate 

transporters (vGLUT) thus completing the glutamate – glutamine cycle (see Figure 5). 
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Figure 5. Role of astrocytic glutamate 
transporters in removal and recycling of 
synaptic glutamate. 

The majority of glutamate uptake in the 

hippocampus is accomplished by glutamate 

transporters (GluT) on astrocytes. Once 

inside the astrocytes, glutamate (Glu) can 

be converted in to glutamine (Gln), an ATP-

dependent process involving glutamine 

synthase (GS). Glutamine is then 

transported out of the astrocyte by SN1 

transporters and taken up by neurons by 

SAT1 transporters. Gln is then converted 

back into Glu and packaged into vesicles.  

 

3.1 Glutamate transporter subtypes 
 

Glutamate transporters were originally referred to as ‘sodium-dependent high affinity 

transporters’. However, their affinities are not extraordinarily high, and depending on the 

brain preparation used, Km values have been estimated to be anywhere between 1 – 100 

μM. Also, these transporters do not depend solely on sodium, but also use the energy stored 

in potassium gradients to facilitate transport (Wadiche et al., 1995; Zerangue and 

Kavanaugh, 1996). Thus, these transporters are now referred to as either ‘sodium/potassium 

coupled glutamate transporters’ or ‘excitatory amino acid transporters’. To date, five 

transporter subtypes have been identified, through cloning of the transporter from rodent, 

rabbit and human tissue. The 5 human transporters (and their rodent or rabbit homologues) 

are: EAAT1/GLAST (Storck et al., 1992), EAAT2/GLT-1 (Pines et al., 1992), EAAT3/EAAC1 

(Kanai and Hediger, 1992), EAAT4 (Fairman et al., 1995) and EAAT5 (Arriza et al., 1997). 

Comparison of cDNA sequences for these human transporters has shown that they share 

over 90% sequence identity with their rodent/rabbit homologues, indicating that these 
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transporters are highly conserved between species (Arriza et al., 1994).  In addition to these 

5 main transporters, splice variants of individual transporters have been identified, with at 

least 3 splice variants of GLT-1 being known. Nomenclature for these splice variants was not 

always agreed upon and this makes for a lot of confusion when reading the literature. GLT-

1a, which is the original GLT-1 cloned by Pines and colleagues (1992) was later identified in 

rats by independent laboratories and named GLT-1a (Chen et al., 2002) and GLT-1alpha 

(Reye et al., 2002). GLT-1b, a C- terminal splice variant of the original GLT-1 was identified 

by Chen and colleagues (2002) as well as another laboratory which used the name GLT-1v 

for variant (Schmitt et al., 2002). There exists a third splice variant of GLT-1, GLT-1c which 

is developmentally expressed in photoreceptor cells in the retina (Rauen et al., 2004).  

 

3.2 Mechanism of glutamate transport 
 

Early studies showed that glutamate transporters use the energy stored in Na+ and 

K+ concentration gradients to move glutamate across the membrane (Kanner and Sharon, 

1978). The Na+ and K+ concentration gradients are maintained by ATPase pumps so a lot of 

energy is used by the brain just to keep these gradients intact. Every glutamate molecule 

transported into the cell is associated with the co-transport of three Na+ and one H+ ion, 

followed by the counter-transport of one K+ ion (Wadiche et al., 1995; Zerangue and 

Kavanaugh, 1996). Therefore, with each transport cycle is associated with a net positive 

charge across the membrane. It should also be mentioned that transporters can work in the 

opposite direction. This can occur in pathologies such as hypoxia where there is not enough 

energy to maintain high ionic concentration gradients across the membrane and transporters 

begin to release glutamate as well as other ions (Swanson et al., 1995).  

The kinetics of glutamate transporters are quite complex, involving binding of several 

different molecules and conformational change of the transporter. One complete glutamate 

transport cycle has been estimated last about 70 ms (Otis and Jahr, 1998; Wadiche et al., 
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1995) (see Figure 6). Each transport cycle commences with the binding of Na+, H+ and 

glutamate, followed by the conformational change in the transporter to an inward facing 

state. These transported molecules are then released before the binding of K+, followed by 

structural reorganisation of the transporter to an outward facing state before K+ is released 

into the extracellular space completing the cycle (Wadiche et al., 1995). 

 

Figure 6. Stoichiometry and kinetics of glutamate transport 

(A) Stoichiometry of glutamate transporters. Glutamate transport uses the energy stored in 

Na+ and K+ concentration gradients to remove glutamate from the extracellular space. (B) 
Kinetics of the human glutamate transporter (EAAT2) adapted from Wadiche et al. (1995). 

Transport cycle begins with empty transporter in outward facing state (1). If substrates are 

available the transporter will bind glutamate, Na+ and H+ (2) which leads to a conformational 

change whereby the transporter faces inward (3) to release these substrates into the 

intracellular medium (4). Following this the transporter is free to bind intracellular K+ (5) 

which induces a conformational change to an outward facing state (6) facilitating the release 

of K+ into the extracellular space (7). 
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3.3 Structure of glutamate transporters 
 

 The high level of conservation of structure between different transporters is 

thought to be due to the specialised function of these proteins. Comparison of amino acid 

sequences between members of the glutamate transporter family shows that they share 

roughly 50-60% homology. Until recently, structural studies of glutamate transporters have 

been lacking. In 2004 one group elucidated the structure of a bacterial homologue of GLT-1 

from Pyrococcus horikoshii, known as GltPh (Yernool et al., 2004). This transporter shares 

around 34% homology with human EAAT2 and so it is reasonable to assume that transport 

mechanisms are conserved. At the moment GltPh is one of the best tools we have to try to 

understand the structural changes which take place during the glutamate transport cycle. 

 It has been suggested for quite some time that glutamate transporters may 

function in multimers. This is due to the fact that although GLT-1 has a molecular weight of 

64 kDa, immunoblotting for GLT-1 has resulted in protein bands roughly 2-3 times this size 

(Haugeto et al., 1996). Yernool and colleagues (2004) provided direct evidence for 

multimerisation, at least for the bacterial transporter GltPh, showing that this transporter was 

indeed in a trimer. However, we should not necessarily assume that these transporters exist 

solely in trimers and do not exist as functional monomers and dimers (see Figure 7). 

Interestingly, it was observed that trimers of GltPh form a bowl-like structure in the middle 

which may facilitate access of glutamate and other ions to their respective binding sites. For 

GLT-1, it has been demonstrated that modifications in the protein sequence towards the C-

terminal part of the protein, including transmembrane domains 7 and 8, have the biggest 

impact upon transporter function (Grunewald and Kanner, 2000). Again, results from Yernool 

and collaborators (2004) demonstrated that the C-terminal region was indeed the area 

responsible for translocation of ions and glutamate across the membrane. In fact their 

crystallised structure contained a bound aspartate molecule which is another amino acid 
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closely resembling glutamate and often used for functional assays of glutamate uptake by 

this family of transporters. 

 

Figure 7. Evidence for multimerisation of glutamate transporters 

(A) Immunoblot of GLT-1 from Huageto et al. (1996) showing 3 bands for GLT-1 which 

correspond to monomeric, dimeric and trimeric forms of GLT-1. (B) Crystal structure of 

bacterial glutamate transporter GltPh showing trimeric structure of this transporter from 

Yernool et al. (2004). Each monomer is coloured individually. 

 

3.4 Location of glutamate transporters 
 

 Each member of the glutamate transporter family has a distinct location which is 

likely to be directly related to their function. The first differentiation we can make between 

transporters is between those located on glial cells, specifically on astrocytes, and others 

which are located on neurons. GLT-1 and GLAST have both been demonstrated to be 

astrocytic transporters (Chaudhry et al., 1995; Furuta et al., 1997b; Rothstein et al., 1994) 

whereas EAAC1 and EAAT4 are located on neurons (Furuta et al., 1997a; Rothstein et al., 

1994). It has been shown that expression of glutamate transporters is developmentally 

regulated (Furuta et al., 1997b), it was suggested that EAAC1 is the most highly expressed 

Introduction | 27 



 

glutamate transporter in pre-natal rats. Post-natally however, GLT-1 and GLAST assume 

their roles as the predominant glutamate transporters in the brain and are the transporters 

most commonly found on astrocytic processes facing synapses (Chaudhry et al., 1995), 

implying an important role for glial transporters in the control of synaptic glutamate 

concentrations. Expression levels of GLT-1 and GLAST were not found to be uniform in the 

adult brain, demonstrating transporter-specific, regional expression patterns. GLAST 

expression was found to dominate the cerebellum while GLT-1 expression was more 

pronounced in the forebrain areas particularly in the hippocampus (Chaudhry et al., 1995; 

Furuta et al., 1997b). 

 It has been estimated that GLT-1 accounts for 1% of the total brain protein 

(Danbolt, 2001; Lehre and Danbolt, 1998), if this is indeed the case, then it is certain that 

GLT-1 plays an extremely significant role in the brain. Total numbers of GLT-1 and GLAST 

protein in the have been estimated in the Danbolt lab. Their findings are high with average 

GLT-1 and GLAST densities on astrocytic membranes calculated to be 8500 and 2300 

transporters/μm2 in the stratum radiatum of the hippocampus respectively; and 740 and 

4700 transporters/μm2 in the cerebellar molecular layer respectively (Lehre and Danbolt, 

1998). These high levels of protein expression may be overestimated due to the methods 

used in the study, cell homogenates were measured for protein content and the authors 

were not able to distinguish between surface and intracellular glutamate transporter 

expression. 

Neuronal transporters EAAC1 and EAAT4 can be found throughout the brain, with 

EAAT4 acting as the predominant neuronal transporter in the cerebellum (Furuta et al., 

1997a). It should be noted that Furuta and colleagues (1997b) revealed that neuronal 

transporters were more likely to be found on the soma and dendrites of neurons, rather than 

in opposing synapses as is the case for glial transporters. This indicates a potential role for 

neuronal glutamate transporters in the control of extrasynaptic glutamate concentration. 
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EAAT5 has been demonstrated to be specifically located on retinal photoreceptor cells and 

may play a role in visual processing (Arriza et al., 1997). 

Importantly, the efficiency of glutamate transporters depends on their location. It has 

been estimated that each synaptic vesicle contains approximately 4000 glutamate molecules 

(Riveros et al., 1986). Thus for each quantal event, several thousand glutamate molecules 

are estimated to be released into the synaptic cleft, raising the synaptic concentration to 

approximately 1 mM (Clements et al., 1992). Clements and colleagues (1992) further 

suggested that glutamate is removed from the synaptic cleft in 1.2 ms, which is very fast 

when compared to the time scale of one transport cycle of a glutamate transporter (70 ms). 

In order for the glutamate uptake system to work efficiently, it has been hypothesised that 

there are more transporters than glutamate molecules at any given synapse (Diamond and 

Jahr, 1997; Lehre and Danbolt, 1998), thus the rapid removal of glutamate from the synapse 

can possibly be accounted for through buffering of glutamate by binding to transporters and 

not actual transport of glutamate across the astrocytic membrane. Due to the fact that the 

majority of glutamate transporters are located on astrocytes (Lehre and Danbolt, 1998) and 

that these astrocytic transporters play the most important role in removing glutamate from 

the synapse (Rothstein et al., 1996; Tanaka et al., 1997; Watase et al., 1998), astrocytic 

coverage of the synapse will play a great role in controlling glutamate concentration and spill 

over from one synapse to another. The precise location of astrocytic processes has been 

demonstrated to directly affect glutamate uptake (Melone et al., 2009; Oliet et al., 2001; 

Omrani et al., 2009; Pannasch et al., 2014). Studies have shown that GLT-1-containing 

astrocytic processes are located approximately 0-400 nm from the synapse (Melone et al., 

2009; Omrani et al., 2009), with further evidence suggesting that it is through close 

apposition of GLT-1-containing astrocytic processes to the synaptic area that permits 

astrocytes to control glutamatergic synaptic transmission (Pannasch et al., 2014). 

 

Introduction | 29 



 

4. Glutamate transporters in physiology 
 

 

Clearly, the single most important role for glutamate transporters is to maintain the 

extracellular concentration of glutamate at an extremely low level, this is particularly true in 

the synaptic cleft. The high level of protein expression and location of these transporters 

close to the synapse serves to highlight this point. As mentioned, synaptic glutamate release 

results in an excitatory postsynaptic current (EPSC), i.e. a flux of ions across the membrane, 

mediated by activation of postsynaptic glutamate receptors. The kinetics of these EPSCs are 

a product of two main factors; the concentration and timecourse of the neurotransmitter at 

the synapse and the properties of these postsynaptic receptors. First, it has been shown that 

under physiological conditions, the timecourse of glutamate at the synapse is rapid, around 

1.2 ms (Clements et al., 1992). Second, the properties of the receptors can play an 

important role in the timecourse of synaptic events as observed by measuring EPSCs. 

Glutamate receptors have been exhaustively characterised and we now know that 

desensitisation of both NMDARs and AMPARs can occur with prolonged exposure to 

glutamate (Colquhoun et al., 1992; Hestrin, 1992; Mayer and Westbrook, 1985; Trussell et 

al., 1993). It has been shown that NMDARs desensitise relatively slowly (hundreds of ms) 

(Forsythe and Westbrook, 1988), on the other hand AMPARs are believed to desensitise 

rapidly with some studies demonstrating that saturating concentrations of glutamate result in 

EPSCs of about 10 ms (Colquhoun et al., 1992; Hestrin, 1992). Thus, it seems that receptor 

desensitisation does not play a major role in controlling the timecourse of postsynaptic 

receptor activation during low activity events, because the glutamate transient at the 

synapse is shorter than the maximum potential EPSC. Rather, it has been suggested that 

desensitisation of glutamate receptors curtails postsynaptic excitation during multivesicular 

release of glutamate (Trussell et al., 1993) where the timecourse of glutamate at the 

synaptic cleft is prolonged. Originally, it was hypothesised that diffusion of neurotransmitter 

from the synapse could account for quick synaptic transients observed at the neuromuscular 
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junction (Eccles and Jaeger, 1958). Since then, evidence has come to light that diffusion 

alone cannot account for these quick synaptic transients and in the CNS studies implicated 

glutamate transporters in the regulation of glutamate timecourse at the synapse (Barbour et 

al., 1994). 

It is now beyond doubt that astrocytic glutamate transporters play a role in regulating 

the timecourse of synaptic glutamate as observed at both hippocampal (Bergles and Jahr, 

1997) and cerebellar (Clark and Barbour, 1997) synapses. Many studies have provided 

evidence implicating glutamate transporters in synaptic transmission by pharmacologically 

blocking transporters, leading to a build-up of synaptic glutamate as witnessed by increased 

glutamate receptor activation (Barbour et al., 1994; Mennerick and Zorumski, 1994; 

Overstreet et al., 1999; Takahashi et al., 1996; Tong and Jahr, 1994). However, the specific 

findings of these papers vary between studies and are likely to result from the brain 

preparation used, as astrocytic coverage of synapses is not uniform in the brain (Ventura 

and Harris, 1999). The most robust findings were observed in cerebellar synapses where 

astrocytes are believed to completely ensheath synapses. Barbour and colleagues (1994) 

specifically blocked glutamate transporters which resulted in increased AMPAR activation as 

witnessed by slower decay kinetics of AMPAR-mediated EPSCs. These findings were 

confirmed independently in the same preparation by Takahashi et al. (1996). Overstreet et al 

(1999) also observed prolonged AMPAR-mediated EPSCs in a distinct area of the 

cerebellum when glutamate uptake was blocked. Here the authors used the mossy fibre – 

granule cell glomerulus of the cerebellum and hinted towards a role for transporters in 

regulating glutamate spillover between synapses adjacent to the glomerulus during high 

activity. A paper by Tong and Jahr (1994), was one of the few studies in the literature which 

investigated the role of glutamate transporters in controlling the timecourse of synaptic 

glutamate at both room temperature (24°C) and near physiological temperature (34°C). 

Interestingly, while no effect of blocking glutamate transporters at 24°C was observed, they 

reported an increase in amplitude of AMPAR EPSCs at 34°C. This could suggest that most 
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studies carried out at room temperature have underestimated the role of transporters in the 

control of synaptic glutamate receptor activation. 

In contrast to the cerebellum, astrocytic coverage of hippocampal synapses is not 

considered to be complete (Ventura and Harris, 1999), which could possibly indicate a 

physiological role of glutamate spillover in this brain region. As such, findings from studies in 

the hippocampus have been rather mixed, with some studies directly implicating transporters 

in controlling the timecourse of synaptic glutamate, reporting delayed kinetics of AMPAR 

EPSCs (Mennerick and Zorumski, 1994), similar to findings in the cerebellum. Whereas 

other studies have discounted the role of transporters in the hippocampus, first, because of 

incomplete astrocytic coverage of synapses in this brain region and second, due to the 

observation that glutamate can diffuse out of the synapse and act on adjacent synapses 

(Kullmann et al., 1996). However, it was later reported that experimental conditions used by 

the former study in hippocampal slice preparation can dramatically influence the findings, 

underestimating the role of glutamate transporters in this brain region (Asztely et al., 1997). 

Asztely and colleagues (1997) reported that spillover of neurotransmitter between synapses 

is greatly reduced at physiological temperatures since diffusion of neurotransmitter, receptor 

kinetics and neurotransmitter transport are temperature dependent processes. 

Glutamate transporters can further control the timecourse of synaptic glutamate by 

directly competing with glutamate receptors for glutamate. This hypothesis was suggested 

following the demonstration that transporters have an affinity for glutamate comparable to 

that of the high-affinity NMDARs (around 1 μM) (Patneau and Mayer, 1990) with the Km of 

glutamate transporters roughly 30 μM (Arriza et al., 1994).  Further evidence, observed by 

measuring transporter currents in astrocytes, indicated that these receptors can bind 

glutamate as rapidly as AMPARs (Bergles and Jahr, 1997; Wadiche et al., 1995), suggesting 

a high level of competition between glutamate receptors and transporters for synaptically 

released glutamate. 
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The data presented above offer a very convincing hypothesis that glutamate 

transporters play an active part in synaptic transmission, controlling the timecourse of 

glutamate in the synaptic cleft thereby curtailing glutamate receptor activation. However, 

these studies did not address the question of exactly how transporters carry out this role 

taking into account that one complete transport cycle lasts around 70ms (Otis and Jahr, 

1998; Wadiche et al., 1995). It was first hypothesised that glutamate transporters are able to 

effectively remove glutamate on a synaptic time scale through binding glutamate, thus 

shielding receptors from this neurotransmitter (Diamond and Jahr, 1997). This hypothesis 

was strengthened by findings from an independent group who used multiple approaches, 

including manipulation of membrane potential of astrocytes which blocked transport but not 

binding of glutamate to the transporters to elucidate that glutamate translocation across the 

astrocyte membrane, as well as binding to the transporter, play a strong role in controlling 

the timecourse of synaptic glutamate (Mennerick et al., 1999). These observations are in 

agreement with previous work on glutamate transporter kinetics which proposed that it is not 

the glutamate translocation but rather K+ translocation which is the rate limiting step of the 

transport cycle (Otis and Jahr, 1998; Wadiche et al., 1995). 

Other studies further elucidated the role of transporters in synaptic transmission 

using more physiological preparations, taking advantage of the structural changes in 

astrocytic coverage of the synapse known to occur during lactation (Theodosis and Poulain, 

1984). Using this preparation, Oliet and colleagues (2001) observed an increase in 

presynaptic mGluR activation when glutamate transporter function was reduced by 

morphological changes or blocked by drugs, thereby decreasing the probability of 

neurotransmitter release. This physiological model definitively showed that astrocytic 

coverage of synapses regulates synaptic efficacy, by controlling presynaptic glutamate 

receptor activation through glutamate uptake. 

Strong evidence indicates that another primary role of glutamate transporters is to 

control spillover of glutamate between synapses maintaining the input specificity of individual 
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synapses. Some studies have suggested that glutamate transporters play a small role in 

glutamate uptake during single synapse/low activity events (Arnth-Jensen et al., 2002; 

Marcaggi et al., 2003). Interestingly, these studies noted that transporter activity is crucial 

during high activity/multi-synapse events to control glutamate receptor activation as well as 

preventing spillover to maintain input specificity between synapses, both in the hippocampus 

(Arnth-Jensen et al., 2002) and in the cerebellum (Marcaggi et al., 2003). Under certain 

conditions, spillover of glutamate can play a physiological role. In the mossy fibre glomerulus 

of the cerebellum, spillover from excitatory mossy fibre synapses onto inhibitory granule cell 

interneurons activates presynaptic mGluRs on these inhibitory interneurons resulting in a 

decrease of neurotransmitter release (Mitchell and Silver, 2000). Importantly, in this brain 

circuit, activation of mGluRs reduced GABAergic tone from these interneurons resulting in 

feedforward disinhibition, thereby increasing the efficacy of these excitatory fibres. The 

architecture of this mossy fibre glomerulus excludes a role for astrocytic glutamate 

transporters in this synaptic spillover inside the glomerulus, as astrocytes are only found on 

the periphery, rather astrocytes surround this structure limiting glutamate spillover onto 

extraglomerular synapses. 

In the hippocampus, glutamate spillover is believed to play a physiological role in 

LTP expression, through activation of silent synapses, which exclusively express NMDARs 

until activated by spillover of glutamate from another synapse (Isaac et al., 1995; Kullmann 

et al., 1996). As previously mentioned spillover of glutamate in the hippocampus is tightly 

regulated by transporters in order to efficiently regulate heterosynaptic plasticity (Asztely et 

al., 1997), therefore it is likely that high levels of activity are needed to induce this form of 

plasticity.  Unsilencing of synapses is now understood to involve the recruitment of AMPARs 

to the synapse in an NMDAR-dependent mechanism (Malinow and Malenka, 2002). 

Together, these experiments clearly show the important role played by glutamate 

transporters in controlling the timecourse of glutamate of the synapse. Blocking transporter 

function pharmacologically or in certain physiological conditions can have varied effects, 
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which could be due to several factors including differences in the structure of the synapse, 

astrocytic coverage of the synapse, the proximity different types of neurons 

(excitatory/inhibitory) which could be activated by glutamate spillover, as well as receptors 

present on these neurons. 

 

5. Glutamate transporters in pathology 
 

 

From the outset it seems quite paradoxical that glutamate, while being necessary for 

many vital processes in the brain, can also be toxic in high concentrations (Choi, 1985, 

1987). Choi (1987) discovered that glutamate neurotoxicity (or excitotoxicity) is highly 

dependent on Ca2+ entry through both NMDARs as well as voltage-gated Ca2+ channels, 

opened during depolarisation. As elucidated in the previous section, NMDAR desensitisation 

is a very slow process, thus once NMDARs become activated, prolonged pathological 

glutamate exposure can lead to great flux of ions across the cell membrane. It is believed 

that the damaging effects exerted by high levels of intracellular Ca2+ are due to aberrant 

signalling which leads to further glutamate release from neurons as well as activation of 

apoptotic pathways (Orrenius et al., 2003). This excitotoxicity highlights the complexity and 

importance of regulating extracellular glutamate concentrations in the CNS, with modest 

concentrations of glutamate activating receptors physiologically while high concentrations 

result in neuronal cell death. The importance of glutamate transporters in protecting against 

excitotoxicity was not observed until many years later, when specific glutamate transporter 

blockers became available. It has been repeatedly observed that blocking glutamate 

transporters pharmacologically is sufficient to increase extracellular glutamate to 

pathological levels resulting widespread neuronal cell death in culture (Robinson et al., 

1993) and organotypic slice cultures (Bonde et al., 2003). Consistent with early reports, 

these studies have shown that glutamate toxicity observed in these conditions could be 
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significantly attenuated by addition of NMDAR antagonists (Bonde et al., 2003; Robinson et 

al., 1993).  

Technological advances in genetic manipulation, have allowed researchers to 

specifically ablate individual glutamate transporters, thus elucidating roles of different 

transporters in the brain. These studies further confirmed the importance of astrocytic 

transporters in removing extracellular glutamate (Rothstein et al., 1996; Tanaka et al., 1997; 

Watase et al., 1998). On the other hand, knock-down of the neuronal transporter EAAC1, did 

not provoke any phenotype nor neuronal cell death in the mice, indicating that these 

transporters are not vital for life (Rothstein et al., 1996). Knock-out of GLAST, an astrocytic 

glutamate transporter, did not produce any dramatic phenotype (Watase et al., 1998), these 

genetically modified mice seemed to develop normally and have normal life expectancies. 

However, this study noted a significant reduction in motor coordination and an increased 

susceptibility to injury in the cerebellum. These findings are consistent with the localisation of 

GLAST as the predominant glutamate transporter in the cerebellum (Chaudhry et al., 1995; 

Furuta et al., 1997b), a brain region important for motor coordination. It has been 

demonstrated, using pharmacological and genetic manipulations, that GLT-1 is in fact the 

most important glutamate transporter in the forebrain. In contrast to animals lacking the 

GLAST transporter (Watase et al., 1998) which presented a mild phenotype, animals lacking 

GLT-1 suffered from excitotoxicity which lead to cell death and eventually death of the 

animals through epileptic seizures (Rothstein et al., 1996; Tanaka et al., 1997). Consistent 

with GLAST knock-out animals, GLT-1 knock-out mice also experienced an increased 

susceptibility to brain injury (Tanaka et al., 1997). Thus, it is now beyond doubt that this 

family of amino acid transporters play a vital role in glutamate homeostasis, one could 

already suggest that dysregulation of these transporters could be deleterious and have 

widespread damaging effects in the CNS. This is indeed the case as we will see in the final 

paragraphs of this introduction discussing the role of glutamate transporters in pathology. 
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Among the first reports suggesting that glutamate transporters may be directly 

implicated in pathology discovered that the cerebrospinal fluid from patients with 

amyotrophic lateral sclerosis (ALS) contained 100-200% more glutamate and aspartate 

compared to healthy individuals (Rothstein et al., 1990). ALS is the most common motor 

neuron disease in adults with a prevalence of 2-3 per 100,000 people. Most of the cases of 

this disease are sporadic in origin with the greatest risk factor (like most neurodegenerative 

diseases) being age, however, a small percentage of cases (< 10%) are genetically inherited 

and linked to a gain function in the superoxide dismutase (SOD1) enzyme (Cleveland and 

Rothstein, 2001). Further work by Rothstein and colleagues (1992), observed that there was 

dramatic decrease in glutamate uptake, up to 90% reduction in some cases, in tissue from 

patients with ALS. Later studies concluded that this loss in the capacity to remove glutamate 

from the extracellular space in ALS is due to selective loss of GLT-1, with no modification in 

EAAC1 or GLAST (Rothstein et al., 1995). As mentioned above dysregulation of GLT-1, 

which leads to excitotoxicity and cell death (Rothstein et al., 1996; Tanaka et al., 1997), is 

one of the primary factors in the progression of this disease. 

Dysregulation of glutamate uptake function is now implicated in a wide range of 

diseases in the CNS, particularly in pathologies where excitotoxicity plays a strong role in 

disease development, such as epilepsy (Molinari et al., 2012; Tanaka et al., 1997). It has 

been demonstrated that spillover of glutamate is not solely a physiological process but can 

also occur in certain epilepsy-like pathologies, in which a failure of uptake by transporters 

leads to the activation of postsynaptic group I and II mGluRs. Activation of postsynaptic 

mGluRs, as opposed to presynaptic mGluRs, increases excitation, allowing postsynaptic 

neurons to remain hyperpolarised during prolonged periods of time resulting in 

burst/epileptiform activity (Molinari et al., 2012). Furthermore, spillover of glutamate in 

pathological conditions is likely to result not only in the activation of postsynaptic mGluRs but 

also the activation of extrasynaptic NMDARs. These extrasynaptic NMDARS, as opposed to 
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synaptic NMDARs, have been shown to be implicated in cell death pathways (Hardingham 

et al., 2002). 

Increasing evidence suggests that malfunctions in the glutamate uptake system are 

implicated in neurodegenerative diseases which have not previously been considered to  be 

associated with disrupted glutamate uptake such as Alzheimer’s (Lauderback et al., 2001; 

Lauderback et al., 1999; Scimemi et al., 2013) and Huntington’s (Arzberger et al., 1997; 

Lievens et al., 2001) disease. Alzheimer’s disease has been associated with a decrease in 

glutamate transporter expression and function both in human brain tissue (Masliah et al., 

1996) as well as in animal models of this disease (Masliah et al., 2000). Moreover it has 

been demonstrated that the amyloid-beta (Aβ) plaques, one classical hallmark of 

Alzheimer’s disease, can effectively inhibit glutamate uptake (Harris et al., 1996; Lauderback 

et al., 1999). Some potential mechanisms have now been elucidated with one study pointing 

towards oxidation of GLT-1 leading to inactivation and dysfunction of the transporter 

(Lauderback et al., 2001) while another study suggests that Aβ acts to increase the lifetime 

of synaptically release glutamate by reducing GLT-1 surface expression on astrocytes 

(Scimemi et al., 2013). Interestingly the latter study indicated that the drug Trolox, a vitamin 

E derivative, prevented the Aβ induced reduction of GLT-1 expression. Thus proposing a 

novel treatment strategy directed towards glutamate transporters to alleviate the symptoms 

of Alzheimer’s disease. Malfunction in glutamate uptake has also been implicated in 

Huntington’s disease, a genetic neurodegenerative disease caused by an expansion of CAG 

codons (coding for glutamine) resulting in a mutant form of huntingtin protein. Studies have 

reported a specific reduction in EAAT2/GLT-1 glutamate transporter expression in human 

brain tissue (Arzberger et al., 1997) and in animal models of this disease (Lievens et al., 

2001). In Huntington’s disease, it is sure that glutamate transporter dysfunction does not 

play a causal role in the disease but likely exacerbates the neurodegeneration observed 

across multiple brain areas. Whether GLT-1 dysregulation is a cause or effect of the formerly 

mentioned diseases, particularly ALS and epilepsy, is unclear. What is certain is that 

Introduction | 38 



 

glutamate uptake, both at the synapse and extrasynaptically, is a highly important process in 

both physiology and pathology in the brain.  
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6. Aim of thesis project 
 

 

Since the initial observations that neurotransmitter receptors are capable of lateral 

diffusion on the surface of the cells on which they are expressed, this lateral diffusion has 

consistently been shown to impact upon the efficacy of synaptic transmission (Dupuis et al., 

2014; Heine et al., 2008). Furthermore, surface diffusion of receptors has been 

demonstrated to be highly dynamic and can be modified by many physiological stimuli such 

as stress (Groc et al., 2008; Krugers et al., 2010). These observations lead to the idea that 

perhaps glutamate transporters, responsible for removing glutamate from the extracellular 

cleft, could also be subject to surface diffusion. This mechanism could shed light onto how 

transporters, with their slow cycling time, are capable of rapidly remove glutamate from the 

synapse. Integrating our current knowledge regarding the importance of astrocytic glutamate 

transporters at the synapse, as well as what we know about the surface diffusion of 

receptors, the next logical step forward is to consider the possibility that glutamate 

transporters may too diffuse on the surface of astrocytes which could possibly impact upon 

neuronal synaptic transmission. 

We could further speculate that through this surface diffusion, glutamate transporters 

may be capable of buffering glutamate in a manner which has been suggested in previous 

studies (Diamond and Jahr, 1997; Mennerick et al., 1999). The hypothesis being that 

glutamate transporters, having upmost importance in removing synaptic glutamate, may 

diffuse along the surface of the cell from non-synaptic regions to areas where there are high 

levels of glutamate release, such as synapses. Once the individual transporters bind a 

molecule of glutamate, beginning the slow transport cycle, these transporters may move 

away from the synapse allowing a naïve unbound transporter to move into the confined 

synaptic space which binds another molecule of glutamate resulting in the effective buffering 

and removal of synaptic glutamate. Moreover, diffusion of transporters is likely to increase in 

importance with high glutamate release activity, by moving glutamate-bound transporters 
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away from the synapse allowing unbound transporters to enter this confined space. Through 

this mechanism, the effects of saturation of transporters by high concentrations of glutamate 

are likely to be minimised. This process, in physiological conditions may indeed play a role in 

shaping the timecourse of glutamate at the synapse as well as ensuring input specificity of 

synaptic connections by limiting glutamate spillover between synapses. In the long-term, 

implication of surface diffusion of glutamate transporters in buffering and removing glutamate 

from the synapse, could provide a novel target in alleviating symptoms of certain diseases. 
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Methods 
 

1. Hippocampal Cell Culture 
 

Mixed cultures of hippocampal glia and neurons were prepared from E18 Sprague-

Dawley rats (Janvier) based on a protocol developed by Banker and colleagues (Banker and 

Cowan, 1977) following previously described methods (Mikasova et al., 2012). Briefly, the 

hippocampi were removed from the brain and dissociated by trypsin and mechanical 

treatments and cells were plated onto poly-L-lysine-treated glass cover-slips at a density of 

60 x 103 cells per ml. Cultures were kept in neurobasal medium (Invitrogen) with 3% horse 

serum (Invitrogen) for several days before changing to serum-free neurobasal medium 

(Invitrogen). Cultures were maintained at 37°C in 5% CO2 for 20 days in vitro (DIV) at 

maximum. 

‘Neuron-free’ cultures were prepared with the same dissection protocol described 

above. However, these cultures differ in the medium used and treatment of cells once plated 

on culture dishes. For ‘neuron-free’ cultures cells were maintained in MEM medium 

(Invitrogen) containing 10% horse serum, again at 37°C in 5% CO2 until experimentation. 

Furthermore, these dishes were subjected to intense agitation after 3 DIV which was 

repeated twice per week when changing culture medium. Combining the medium, which 

does not promote neuronal growth, as well as intense agitation of culture dishes, which 

removes weakly attached cells, microglia and neurons, we achieved a ‘neuron-free’ culture. 

It is possible that these culture dishes contained a low amount of neurons and perhaps 

microglia, these parameters were not quantified. However, while imaging these cultures we 

never observed any neurons. 
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2. COS cell culture 
 

COS-7 cells were plated in 12 well plates at a density of 25,000 cells/well in 

Dulbecco’s Modified Eagle’s Medium (Invitrogen) supplemented with 1% glutamax (Gibco), 

1% sodium pyruvate (Sigma-Aldrich), 10% Fetal Bovine Serum (Invitrogen). After 1 day, cells 

were transfected or not with GLT-1flag using lipofectamine 2000 (Invitrogen) and left under 

humidified 5% CO2 atmosphere (37°C) for 2 days before experimentation. 

 

3. Protein expression 
 

Cells were transfected at 7-10 DIV using Effectene transfection reagent (Qiagen) 

following the manufacturer's protocol before experimentation between 10-16 DIV. For live 

imaging cells were transfected with GLT-1 transporter with a flag tag (DYKDDDDK) inserted 

into an extracellular loop of the protein (between Pro199 and Pro200; Figure 5; a gift from M. 

Rattray) (Peacey et al., 2009), as well as enhanced Green Fluorescent Protein (eGFP), this 

approach allowed us to determine the cell type which has been transfected. For live imaging 

of GLT-1flag diffusion around the synapse, cells were electroporated with Homer 1c-dsRed 

before plating. Electroporation was carried out using the Nucleofector device (Lonza) 

following the manufacturer’s protocol. For immunostaining, cells were transfected with GLT-

1flag as well as the synaptic marker Homer 1c-dsRed to quantify the colocalisation of GLT-

1flag at the synapse. 
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Figure 8. Structure of GLT-1flag. 

GLT-1 is an eight transmembrane domain protein with both NH2 and COOH termini located 

on the intracellular side of the cell. For live QD imaging it was necessary to have an 

extracellular tag, thus we utilised a GLT-1 transporter expressing a flag tag in its second 

extracellular loop between Pro199 and Pro200. 

 

4. Immunocytochemistry 
 

For immunostaining, surface GLT-1flag was stained using a monoclonal anti-flag 

antibody (1 µg/ml; Stratagene) for 30 min on live mixed cultures at 37°C and 5% CO2. Cells 

were then fixed with 4% paraformaldehyde for 15 min, washed and then incubated with 

appropriate secondary antibodies. For synapse labelling experiments we used secondary 

anti-mouse Alexa-568 (1 µg/ml, 1 hr.; Molecular probes) for GLT-1flag and to label shank, 

neurons were permeabilised using 0.1% Triton X-100, incubated with a primary rabbit 

polyclonal anti-shank antibody (1 µg/ml, 1 hr; Abcam), and finally incubated with secondary 

antibody anti-rabbit Alexa-488 antibodies (2 µg/ml, 30 min; Molecular Probes). For 

quantification of synaptic content, cells were transfected with Homer 1c-dsRed before 

immunostaining for GLT-1flag using a monoclonal anti-flag antibody (1 µg/ml; Stratagene) for 
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30 min followed by a secondary FITC anti-mouse (3 µg/ml; Invitrogen) for 1 hr. Cells were 

washed and mounted and preparations were kept at 4°C until imaging. Fluorescent 

specimens were examined under a confocal microscope (Leica) equipped with appropriate 

excitation/emission filters. Images were analyzed in Metamorph software (Universal Imaging 

Corp.).  

 

5. Single Particle (QD) Tracking and Surface Diffusion Calculation 
 

Single particle (Quantum dot) labelling and microscopy was performed as previously 

described (Mikasova et al., 2012). Hippocampal primary cultures were incubated for 10 min 

(37˚C) with monoclonal antibodies against flag epitope (10 µg/ml; Stratagene) to tag GLT-

1flag. Cells were then washed and incubated for 10 min (37˚C) with quantum dots 655 goat 

F(ab’)2 anti-mouse IgG (1 µg/ml; Invitrogen). Non-specific binding was blocked by the 

addition of 1% casein or 1% BSA (Vector Laboratories) to the quantum dots 15 min before 

use. Cells were again rinsed and mounted in an aluminium chamber containing aCSF 

solution (containing 140 mM NaCl, 2 mM KCl, 2 mM CaCl2.2H2O, 2 mM MgCl2.6H2O, 10 mM 

HEPES and 10 mM D-glucose; 250-260 mOsm; pH 7.4, 37˚C) on a Nikon microscope 

(NIKON Eclipse TE2000-U) with the stage heated to 37˚C using an air bower (World 

Precision Instruments) and an objective heater (Bioptechs). Quantum dots were detected 

using a mercury lamp and appropriate excitation/emission filters. Images were obtained with 

and acquisition time of 50 ms for 1000 consecutive frames. Signals were detected using an 

EM-CCD camera (Quantem, Roper Scientific). Quantum dots were followed on randomly 

selected astrocytes expressing both GFP and GLT-1flag. Quantum dot recording sessions 

were processed with the MetaMorph software (Universal Imaging Corp.). The instantaneous 

diffusion coefficient (D) was calculated for each trajectory, from linear fits of the first four 

points of the mean-square-displacement versus time function using MSD (t) = < r2> (t) = 

4Dt. The 2D trajectories of single molecules in the plane of focus were constructed by 
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correlation analysis between consecutive images using a Vogel algorithm. Synaptic dwell 

time was calculated for exchanging transporters and defined as the mean time spent within 

an annulus of 320 nm around the synaptic area. The 2D trajectories of single molecules in 

the plane of focus were constructed by correlation analysis between consecutive images 

using a Vogel algorithm. 

Although this epifluorescent microscope, equipped with a high sensitivity EM-CCD camera, 

is not a super-resolution microscope, we still have a high sensitivity with regards to pointing 

accuracy, when tracking a single QD-tagged protein. From analysis of a single QD we can 

determine the centre point and create a Gaussian curve (see Figure 9). Using the 

coordinates of the half-width full maximum point of this Gaussian curve we can detect in a 

very precise manner the movement around this centre point thus we can tell if a single 

protein is moving on a ~40 nm scale. By tracking the movements of a single protein we can 

define characteristics of this protein, i.e. speed of diffusion as well as determining the 

confinement (see Figure 9).  

 

Figure 9. High-sensitivity tracking of a single Quantum Dot-tagged molecule. 

(A) High magnification image of a single QD-tagged protein (black pixels). (B) Gaussian 

curve from (A) from this curve we can find the full height at half-width and track one single 

QD from frame to frame with high precision. (C) After following several QD-tagged proteins 
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we can map their movement by reconstructing their trajectories over time. These trajectories 

can vary, with some displaying high levels of confinement compared to others which can be 

very freely-diffusing. 

 

Drugs were added into the bath, in different experimental conditions, to observe potential 

effects on GLT-1 surface diffusion. The drugs applied were; L-glutamate (100 µM; Sigma-

Aldrich); TBOA (DL-threo-benzyloxyaspartate, 30 µM; Tocris); TTX (Tetrodotoxin, 1 µM; 

Tocris); The glutamate receptor antagonist cocktail comprised AP5 (D-(-)-2-Amino-5-

phosphonopentanoic acid, 10 µM; Tocris), NBQX  (2,3-Dioxo-6-nitro-1,2,3,4-tetrahydr-

obenzo[f]quinoxaline-7-sulfonamide, 10 µM; Tocris)  and MCPG ((RS)-α-Methyl-4-

carboxyphenylglycine, 500 µM; Tocris).  

 

6. MNI-caged-L-Glutamate Uncaging 
 

Uncaging experiments were carried out in mixed hippocampal cultures between 14-

16 DIV, cells were transfected with GLT-1flag 24 hours before uncaging experiments. On the 

day of experimentation, cells were incubated with primary and secondary antibodies for QD 

tracking before 30 second incubation with mitotracker-green (1/2000) to mark mitochondria-

rich synapses. Coverslips were imaged in aCSF solution (containing 140 mM NaCl, 2 mM 

KCl, 2 mM CaCl2.2H2O, 2 mM MgCl2.6H2O, 10 mM HEPES and 10 mM D-glucose; 

Osmolarity was 250-260 Osm/L; pH 7.4) with 5 mM MNI-caged-L-glutamate. Uncaging 

experiments were carried out on a Nikon Ti-Eclipse inverted microscope equipped with a 

stage heater at 37˚C (World Precision Instruments), a 100X objective and 405, 491, 561 and 

642 nm lasers. Signals were detected using an EM-CCD camera (Quantem, Roper 

Scientific). Regions of interest (ROIs) were chosen arbitrarily at synapses in close apposition 

to GLT-1flag transfected astrocytes. Uncaging was performed using a single laser pulse at 

405 nm on ROIs directly beside synapses, with a pulse duration of 2 ms. Trajectories of 
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GLT-1flag tagged with QDs were analyzed as described above for a duration of 30 seconds 

before uncaging and 60 seconds directly after uncaging. 

 

7. Stereotaxic Injections 
 

Surgical procedures were done in accordance with the guidelines of the ethical 

committee for animal research in Bordeaux University. Sprague-Dawley rats (P16-18) were 

anaesthetized with isoflurane and mounted on a Kopf stereotaxic frame. The heads were 

placed in a surgical mask to maintain the skull stable. A constant flux of an isoflurane / air 

mixture was applied inside the surgical mask. 500-1000 nl of either rabbit polyclonal 

antibodies directed against GLT-1 (NBP1-20136, Novus Biologicals) or goat anti-rabbit IgG 

(Invitrogen) (0.4 µg / µl) were dissolved in a PBS (0.1 M, pH 7.4) and infused into the dorsal 

hippocampus (coordinates relative to bregma, AP: -4.5 mm, ML: ±2.2 mm, DV: -2.5 mm at 

P17) using borosilicate micropipettes (GC150F-10, Harvard Apparatus) prepared with a 

vertical micropipette puller (PC-10, Narishige). The solution was injected in the hippocampus 

at approximately 250 nl/min. After injection, the needle was left in situ for few minutes to 

reduce reflux up the needle. The incision was both mechanically and chemically sutured. 

Rats were then allowed to recover before being used for slice electrophysiology 

experiments.  

 

8. Electrophysiology 
 

Cell Culture: Spontaneous excitatory postsynaptic currents (sEPSC) were recorded in 

whole-cell patch-clamp (Vhold = -70 mV) from hippocampal neurons at 14-16 days in vitro 

located in the close proximity of GFP/GLT-1flag transfected astrocytes. All experiments were 

conducted under continuous perfusion of extracellular medium containing (in mM): 145 

NaCl, 2.5 KCl, 10 HEPES, 10 D-glucose, 2 MgCl2, 2 CaCl2, adjusted to pH 7.4 with NaOH. 
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All chemicals were purchased from Sigma-Aldrich unless otherwise stated. The bath was 

heated to 32°C using a temperature control system (Badcontroller V, Luigs & Neumann) and 

was supplemented in GABAA and GABAB receptors antagonists SR95531 (10 µM) and 

CGP55845 (5 µM; Tocris), respectively, in order to block inhibitory neurotransmission. 

Whole-cell recordings were performed using 1.5 mm external diameter borosilicate pipettes 

(GC150F-10, Harvard Apparatus) prepared with a micropipette puller (P97, Sutter 

Instruments). Electrodes (3.5-5 MΩ) were filled with a solution containing (in mM): 125 

CsCH3SO3, 2 MgCl2, 1 CaCl2, 10 EGTA, 10 HEPES, 4 Na2-ATP, 0.4 Na3-GTP, 5 QX-314, 

adjusted to pH 7.25 with CsOH. Alexa-568 was added to the internal solution for further 

immunodetection. 

Recordings were performed using a Multiclamp 700A amplifier and a Digidata 1322A 

interface controlled by Clampex 10.1 (Molecular Devices). Signals were sampled at 20 kHz 

and low-pass filtered at 2 kHz, respectively. sEPSC detection and analysis was performed 

using an in-house software (Detection Mini, Michel Goillandeau). Access resistance and leak 

currents were monitored continuously and experiments were discarded if these parameters 

changed by more than 15% during recording. 

 

Brain slices: P16-18 Sprague-Dawley rats anesthetized with isoflurane and parasagittal brain 

slices (350 µm-thick) were prepared in an ice-cold sucrose buffer solution containing (in 

mM): 250 sucrose, 2 KCl, 7 MgCl2, 0.5 CaCl2, 1.15 NaH2PO4, 11 glucose, and 26 NaHCO3 

(gassed with 95% O2 / 5% CO2). Slices were then incubated for 30 min at 33°C and 

subsequently stored at room temperature in an artificial CSF (aCSF) solution containing (in 

mM): 126 NaCl, 3.5 KCl, 2 CaCl2, 1.3 MgCl2, 1.2 NaH2PO4, 25 NaHCO3, and 12.1 glucose 

(gassed with 95% O2 / 5% CO2; pH 7.35). Whole-cell voltage clamp recordings of CA1 

pyramidal cells were performed using infrared differential interference contrast microscopy 

under continuous perfusion of heated ACSF (32°C) saturated with 95% O2 / 5% CO2. 

Electrodes (4–5 MΩ) were prepared from borosilicate pipettes (GC150T-10, Harvard 
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Apparatus) with a vertical micropipette puller (PC-10, Narishige) and filled with a solution 

containing (in mM): 120 cesium methanesulfonate, 4 NaCl, 4 MgCl2, 10 HEPES, 0.2 EGTA, 

4 Na2ATP, 0.33 Na3GTP, and 5 phosphocreatine adjusted to pH 7.3 with CsOH. sEPSC 

were recorded using an EPC10 USB amplifier (HEKA Elektronik) at -70 mV in the presence 

of bicuculline (20 µM) in order to block GABAA receptors. Signals were sampled at 20 kHz 

and low-pass filtered at 2 kHz, respectively. sEPSC detection and analysis was performed 

using an in-house software (Detection Mini, Michel Goillandeau). Access resistance and leak 

currents were monitored continuously and experiments were discarded if these parameters 

changed by more than 15% during recording. 

 

9. 3H-glutamate Uptake 
 

3H-glutamate uptake assays were performed on both COS-7 cell and mixed 

hippocampal cell cultures (astrocytes and neurons). Incubations with radiolabelled glutamate 

were performed in HEPES-buffered saline (HBS) solution (5 mM Tris base, pH 7.4, 10 mM 

HEPES, 140 mM NaCl, 2.5 mM KCl, 1.2 mM CaCl2, 1.2 mM MgCl2, 1.2 mM K2HPO4, 10 mM 

glucose) supplemented with 50 µM L-glutamate. We found it was vital to add glutamate to 

the medium in the initial washes. Glutamate is a negatively charged amino acid and binds to 

the positively charged polylysine used to promote cell adhesion in culture dishes. Thus, if we 

failed to add non-radioactive glutamate in our initial wash medium we observed a lot of false 

positive 3H-glutamate uptake. 

Cells were washed twice with Na+-free HBS solution (prepared by equimolar 

replacement of Na+ with choline) at 37°C then incubated with normal HBS (containing 1 

µCi/ml 3H-glutamate) at 37°C for 6 min. Assays were stopped by aspiration of HBS 

(containing 3H-glutamate) followed by two washes with ice-cold Na+-free HBS and dishes 

were also placed on ice. Mixed cultures were then lysed in 0.1 M NaOH and accumulated 

radioactivity measured by liquid scintillation counting.  
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Liquid scintillation counting is a technique which incorporates a radiolabelled analyte with a 

liquid medium capable of converting the kinetic energy of nuclear emissions into light energy. 

Briefly, after lysis of cells, the lysate was mixed with a flow detection cocktail ULTIMA-Flo 

(Pearson-Elmer), which is a mixture of a solvent and solute. In this cocktail the energy 

released by beta particles during the decay of 3H-glutamate, excites the solvent molecule 

which emits UV light, this UV light the excites solute molecules, which are fluorophores and 

emit blue light flashes which are detected by photon multipliers. Thus the more 3H-glutamate 

molecules in the cell lysate, the more radioactive decays we will observe and thus it is 

possible to quantify the amount of glutamate taken up in each condition by measuring the 

nuclear disintegrations per minute (d.p.m.). All values are displayed in d.p.m. 

 

10. Acid Wash 
 

To investigate how long GLT-1flag stays at the surface of a cell we used an acid wash 

protocol (Tardin et al., 2003). For acid wash experiment we used a low pH (pH 2) aCSF of 

the same composition as for live QD imaging at 4°C. Mixed hippocampal cultures, 

transfected with GLT-1flag were incubated for 10 min (37˚C) with monoclonal antibodies 

against FLAG epitope (10 µg/ml; Stratagene) to tag GLT-1flag. Cells were then washed and 

incubated for 10 min (37˚C) with quantum dots 655 goat F(ab’)2 anti-mouse IgG (1 µg/ml; 

Invitrogen). Following this step, cells were imaged in exactly the same manner as for QD 

imaging (1000 frames, 50ms/frame acquisition) and cells were left for 10, 15, 20 and 30 min 

intervals before a 1 min 'acid wash' (incubation with a low pH, cold aCSF; pH 2, 4°C) to 

break antibody-protein bonds and so the only transporters with QDs still attached are the 

ones that have been internalised. This acidic aCSF was then removed and replaced with 

normal aCSF (pH 7.4, 37°C) and another QD imaging series was acquired. 
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Total numbers of trajectories were compared in before and after acid wash at different time 

points to assess the internalisation of GLT-1flag-QD complexes during these specific time 

periods. 

 

11. Data and Statistical Analysis 
 

For imaging data, statistical values are given as mean ±s.e.m. or median 

±interquartile range, defined as the interval between 25 to 75% percentile. Statistical 

significance was tested using Prism 4.0 (GraphPad). Normally distributed data sets were 

compared using the paired Student’s t-test and unpaired Student’s t-test. Statistical 

significance between more than two normally distributed data sets was tested by one-way 

analysis of variance test, followed by a Newman-Keuls test to compare individual pairs of 

data. Non-Gaussian data sets were tested by non-parametric Mann-Whitney test. Indications 

of significance correspond to p-values p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***). 
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Results 
 

 

1. Diffusion characteristics of GLT-1 
 

We set out to determine if GLT-1 displays surface trafficking properties on the 

surface of astrocytes, using tools which had been developed to investigate the surface 

diffusion of proteins on neurons. This transfer of technology from neurons to astrocyte was 

straightforward due to the specificity of antibodies for this modified GLT-1 (GLT-1flag), thus 

we were certain that our QD-tagging of GLT-1flag was specific. Astrocytes were transfected 

with both GFP and GLT-1flag. We then randomly selected astrocytes which were double 

transfected and recorded GLT-1 trajectories from these cells under basal conditions (Figures 

10A-C). We observed that GLT-1 does indeed diffuse on the surface of astrocytes (Figures 

10C and D) and its instantaneous diffusion coefficient (D) is very fast (D = 2.3 x 10-1 µm2/s ± 

1.2-3.6 x 10-1 µm2/s; n = 720 trajectories; Figure 10E), compared to what has been reported 

in the literature for neurons (Groc et al., 2004), astrocytes (Arizono et al., 2012) and 

microglia (Toulme and Khakh, 2012). Furthermore, we observed that the immobile fraction 

(D < 0.005 µm2/s) of the total GLT-1 population was low at only 6% (Figure 10F). Even 

though these transporters are moving very fast, they are still subject to confinement (Figure 

10G). This suggests that there may be some regulatory mechanism controlling the diffusion 

of GLT-1 on the surface of astrocytes. 
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Figure 10.Characteristics of GLT-1 diffusion. 

(A) Schematic representation of GLT-1 that has been modified to express a flag 

(DYKDDDK) domain on the extracellular loop, between Pro199 and Pro200, allowing surface 

quantum dot labelling. (B) Overlay of eGFP expressing astrocyte on DIC image taken from 

hippocampal culture showing both astrocytes and neurons in the same environment. (C) 
eGFP expressing astrocyte with 50s long QD trajectories overlaid (1000 frames, 50 

ms/frame acquisition).(D) A single, enlarged, trajectory of GLT-1flag moving over 50 s. (E) 
The instantaneous diffusion coefficient distribution of GLT-1 (median ±25-75% IQR): 2.3 x 

10-1 µm2/s ±1.2-3.6 x 10-1 µm2/s; n = 720 trajectories. (F) The cumulative frequency curve 

versus membrane diffusion (µm2/s) for GLT-1 shows the distribution of the transporters. Note 

the first point at 0.005 µm2/s, anything below this point is considered immobile. Therefore 

only 6% of GLT-1 is immobile in control conditions. (G) Plot of the mean squared 

displacement (MSD) versus time for GLT-1. The curve exhibits a negative curvature 

characteristic of confined behaviour. 
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2. Activity-dependent surface trafficking of GLT-1 
  

 

2.1 Neuron-free 
 

Following the discovery that GLT-1 moves on the surface of astrocytes, we were 

intrigued as to whether this diffusion could be regulated in some manner. The existence of a 

regulatory mechanism is quite logical seeing as the presence of GLT-1 in close proximity to 

the synapse is extremely important for synaptic transmission (Oliet et al., 2001). We began 

this line of enquiry by investigating what happens to GLT-1 surface diffusion when there are 

no neurons in culture. Thus, we prepared a ‘neuron-fee’ culture (see Materials & Methods). 

These cultures, primarily astrocytes, were transfected as before with eGFP and GLT-1flag. In 

these experimental conditions it was particularly important to transfect cells with GLT-1flag as 

it has been reported that astrocytes in primary cultures lacking neurons, express little or no 

endogenous GLT-1 (Yang et al., 2009). When searching for transfected astrocytes, before 

the QD recordings it was clear to us that the morphology of these astrocytes was different to 

that of astrocytes in mixed cultures of neurons and glia, it appeared that they did not have 

many processes (Figure 11A). This observation was not quantified. This difference did not 

end with the morphology, we saw that individual trajectories were smaller and we also 

observed that the diffusion coefficient of GLT-1 in neuron-free cultures was a lot lower than 

that of GLT-1 in mixed cultures i.e. Control conditions (D = 2.9 x 10-4 µm2/s ± 1.1-16 x 10-4 

µm2/s, n = 333 trajectories; Figures 11B-D).  
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Figure 11. GLT-1 diffuses slower in neuron-free conditions. 

(A) eGFP expressing astrocytes with 50s long GLT-1flag trajectories overlaid in neuron-free 

condition. (B) Representative single trajectories of GLT-1flag surface diffusion in control and 

neuron-free conditions. (C) Instantaneous diffusion coefficient (median ±25-75% IQR) of 

GLT-1 was significantly affected by removal of the majority of neurons in culture. Control: 2.3 

±1.2-3.6 x 10-1 µm2/s; n = 720 trajectories. Neuron-free: 2.9 x 10-4 µm2/s ± 1.1-16 x 10-4 

µm2/s, n = 333 trajectories. P < 0.001. (D) Normalised data expressing the decrease in the 

diffusion coefficient between control and neuron-free conditions (84% decrease compared to 

control, p < 0.001). 

 

 

2.2 Decreased neuronal firing 
 

After elucidating the effect of the absence of neurons upon GLT-1 surface diffusion, 

we investigated whether this effect was due to having no neurons in culture or simply the 

lack of neuronal activity. We employed TTX, a potent blocker of voltage gated Na+ channels, 

which effectively blocks action potentials in neurons to investigate whether absence of 

neuronal firing could have an impact on GLT-1 surface diffusion. The effect of this drug is 

highly specific because neurons are the only brain cells which communicate by action 

potential firing. Thus, we incubated mixed hippocampal cultures, containing neurons and 

glia, with TTX (1 µM) for a maximum of 20 min, acquiring images (1000 frames, 50ms/frame 

acquisition) before TTX application and after 10, 15 and 20 min incubation with TTX. We 
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saw that after only 20 min there was a significant reduction in the diffusion coefficient of 

GLT-1 (Figures 12A-D). 

 

Figure 12. Blocking neuronal firing reduces GLT-1 surface diffusion on astrocytes. 

(A) eGFP expressing astrocytes with 50s long GLT-1flag trajectories overlaid after 20 min 

TTX application. (B) Representative single trajectories of GLT-1flag surface diffusion in 

control and TTX (1 µM, 20 min) conditions. (C) Instantaneous diffusion coefficient (median 

±25-75% IQR) of GLT-1 was significantly reduced after 20 min TTX application. Control: 5.9 

±2.1-18.1 x 102 µm2/s; n = 1891 trajectories. TTX - 10 min: 8.8 x 102 µm2/s ±3.1-16 x 102 

µm2/s, n = 2199 trajectories. TTX - 15 min: 5.9 x 102 µm2/s ±1.8-14 x 102 µm2/s, n = 2113 

trajectories. TTX - 20 min: 2.4 x 102 µm2/s ±0.3-9.9 x 102 µm2/s, n = 2199 trajectories. p < 

0.001. (D) Normalised data expressing the decrease in the diffusion coefficient between 

control and TTX (20 min) conditions (42.5% decrease compared to control, p < 0.001). 

 

2.3 Glutamate transport blocker TBOA 
 

We have determined without doubt that the presence and activity of neurons have 

effects on GLT-1 diffusion, thus we decided to investigate whether the activity of the 

transporter itself could affect its surface diffusion. We began by blocking the activity of the 

transporter using a general blocker of glutamate transporters TBOA (30 µM). TBOA was 

added to the bath in the same manner as TTX, a general bath application with images 

acquired (1000 frames, 50 ms/frame acquisition) before and after 0, 2, 5 and 15 min 

incubation with TBOA.  We observed a significant decrease in GLT-1 surface diffusion after 

5 minute TBOA incubation which remained after 15 minutes (Figures 13A-D). 
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Figure 13. GLT-1 surface diffusion is reduced when transporter is blocked. 

(A) eGFP expressing astrocytes with 50s long GLT-1flag trajectories overlaid after 15 min 

TBOA application. (B) Representative single trajectories of GLT-1flag surface diffusion in 

control and TBOA (30 µM, 15 min) conditions. (C) Instantaneous diffusion coefficient 

(median ±25-75% IQR) of GLT-1 was significantly reduced after 5 min TBOA application. 

Control: 1.4 ±0.49-2.7 x 101 µm2/s; n = 655 trajectories. TBOA - 0 min: 1.4 ±0.55-2.7 x 101 

µm2/s, n = 601 trajectories. TBOA - 2 min: 1.1 ±0.43-2.4 x 101 µm2/s, n = 535 trajectories. 

TTX - 5 min: 9.1 ±2.9-18.4 x 102 µm2/s, n = 554 trajectories. p < 0.01. TTX - 15 min: 7.7 

±3.3-18.54 x 102 µm2/s, n = 432 trajectories. p < 0.01. (D) Normalised data expressing the 

decrease in the diffusion coefficient between control and TBOA (15 min) conditions (36% 

decrease compared to control, p < 0.01). 

 

 

2.4 Glutamate, the substrate of GLT-1 transporters 
 

We predicted that glutamate may have a strong effect on GLT-1 surface diffusion due 

to the fact that the primary role of GLT-1 it to remove glutamate from the extracellular 

synapse. Thus we applied glutamate to the bath at a non-toxic concentration (100 µM). As 

for previous experiments we used mixed hippocampal cultures, placed them under the 

microscope and acquired one QD image (1000 frames, 50 ms/frame acquisition) before and 

after adding the drug, taking images at several time points. In this case, we observed that 

the effect of glutamate was be transient, increasing as long as glutamate is present and then 
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going back to control conditions when the levels of glutamate go back to baseline. Thus we 

acquired images at 2, 5 and 10 minute intervals (Figure 14A-D). 

 

 

 

Figure 14. Glutamate transiently increases the surface diffusion of GLT-1. 

(A) Representative single trajectories of GLT-1flag surface diffusion in control and Glutamate 

(100 µM, 2 min) conditions. (B) Instantaneous diffusion coefficient (median ±25-75% IQR) of 

GLT-1 after 2, 5 and 10 min glutamate application. Control: 2.3 x 10-1 µm2/s ± 1.2-3.6 x 10-1 

µm2/s; n = 720 trajectories. Glutamate-2min: 3.0 x 10-1 µm2/s ± 1.1-5.4 x 10-1 µm2/s; n = 855 

trajectories; p < 0.01. Glutamate-5min: 2.7 x 10-1 µm2/s ± 1.4-4.4 x 10-1 µm2/s; n = 511 

trajectories; p > 0.05. Glutamate-10min: 2.3 x 10-1 µm2/s ± 0.7-3.9 x 10-1 µm2/s. n = 394 

trajectories.  p > 0.05. (C) Normalised data expressing the increase in the diffusion 

coefficient between control and Glutamate conditions (36% increase compared to control, p 

< 0.001). (D) Plot of the mean squared displacement (MSD) versus time showing that 

glutamate induces increase in confinement of transporters. 
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2.5 Does glutamate act directly on GLT-1 or indirectly through glutamate receptors? 
 

The previous findings, that glutamate increases GLT-1 surface diffusion, is quite 

ambiguous as glutamate can act on receptors as well as binding to transporters. We 

investigated whether the effect of glutamate on GLT-1 surface diffusion was due to 

glutamate acting directly on the transporter or glutamate. To do this, we applied a cocktail of 

glutamate receptor antagonists (GluR antag.) comprising AP5 (10 µM), NBQX (10 µM) and 

MCPG (500 µM) to inhibit NMDARs, AMPARs and mGluRs respectively. We found that 

simply adding this antagonist cocktail alone reduced GLT-1 surface diffusion (Figures 15A-

D). This draws attention to the fact that GLT-1 is a highly sensitive to the activity of 

glutamate receptors. 

We then examined whether glutamate could still impact on the surface diffusion of 

GLT-1in the presence of the GluR antagonist cocktail. Thus, we incubated cells in the GluR 

antagonist cocktail for 5 minutes, as in the previous experiment, and then added glutamate 

at 100 µM to elucidate the effects of glutamate directly on the transporter. We observed that 

the effect of glutamate was conserved. However, this increase was to a lower extent than 

that of glutamate alone (Figures 15C and D); glutamate alone increased GLT-1 surface 

diffusion by 36% while glutamate in the presence of GluR antagonists resulted in a 14% 

increase in the diffusion coefficient. 
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Figure 15. GLT-1 is highly sensitive to activity of glutamate receptors. 

(A) eGFP expressing astrocytes with 50s long GLT-1flag trajectories overlaid in glutamate 

receptor antagonist (GluR antag.) condition. (B) Representative single trajectories of GLT-

1flag surface diffusion in control and GluR antag. conditions. (C) Instantaneous diffusion 

coefficient (median ±25-75% IQR) of GLT-1 was significantly affected by removal of the 

majority of neurons in culture. Control: 8.9 x 10-2 µm2/s ± 5.3-12.3 x 10-2 µm2/s; n = 2100 

trajectories. GluR antag.: 6.3 x 10-2 µm2/s ± 2.9-9.8 x 10-2 µm2/s, n = 1986 trajectories, p < 

0.001 GluR antag. +Glutamate: 7.1 x 10-2 µm2/s ± 4.2-10.7 x 10-2 µm2/s. n = 2226 

trajectories, p < 0.001. (D) Normalised data expressing changes in the diffusion coefficient 

between control and GluR antag. conditions (17% decrease compared to control, p < 0.001) 

and control and GluR antag. +Glutamate conditions (14% increase compared to GluR 

antag., p < 0.001). 
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3. Compartmentalisation of GLT-1 
 

3.1 Soma versus process 
 

We tested the hypothesis that the surface diffusion of GLT-1 may be 

compartmentalised, i.e. have differential diffusion properties depending on its location on the 

surface of astrocytes. We began by investigating whether there was a difference in the 

diffusion coefficient between the soma and the processes of the astrocytes, in mixed 

hippocampal cultures control conditions. However, first we needed to confirm that astrocytes 

in our culture model have processes distinct from the soma of the cell. Cultures were 

transfected with GLT-1flag, as for QD experiments. Cells were then fixed and stained for 

surface GLT-1flag using anti-flag antibodies and appropriate secondary antibodies. Cells were 

then imaged using confocal microscopy. We observed that astrocytes do indeed have 

processes and that GLT-1 forms clusters on the surface of the cell at the level of the 

processes (Figures 16 A and B). These findings convinced us that our culture system 

retained some physiological structures found in more intact systems and we were confident 

to proceed to live imaging of GLT-1 in these distinct compartments. 

We recorded trajectories from GLT-1flag and during the analysis separated 

trajectories on the soma from those on the processes. We observed that GLT-1 moved 

slower in the processes compared to the cell body (Figures 16C and D). 
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Figure 16. GLT-1 surface diffusion differs between soma and processes of astrocytes. 

(A) Surface staining for GLT-1 to confirm presence of distinct processes and soma in 

culture. (B) eGFP expressing astrocyte with 50s long GLT-1flag trajectories overlaid. Boxes 

with broken lines denotes processes compared to box with whole line, which denotes the 

soma. (C) Representative single trajectories of GLT-1flag surface diffusion on the soma and 

processes. (D) Instantaneous diffusion coefficient (median ±25-75% IQR) of GLT-1 is lower 

in the processes compared to the soma. Soma: 5.9 x 10-2 µm2/s ± 4.2-9.0 x 10-2 µm2/s; n = 

1601 trajectories. Processes: 4.4 x 10-2 µm2/s ± 2.1-8.3 x 10-2 µm2/s, n = 416 trajectories, p < 

0.05. 

 

3.2 Synaptic compartment 
 

Following the observation that GLT-1 diffuses slower on the processes compared to 

on the cell body, we further investigated whether this reduction of GLT-1 surface diffusion at 

the processes could be due to the possibility that astrocytic processes are closely apposed 

to synapses. We hypothesised that due to the importance of GLT-1 for the removal of 

synaptically released glutamate, there must exist some mechanism to favour GLT-1 

retention at the astrocyte membrane close to synapses. We began by verifying that our 

culture model had glutamatergic synapses which were surrounded by GLT-1. This was 

achieved by fixing cultures and staining for surface GLT-1flag, cells were then permeabilised 

and stained for Shank, a postsynaptic scaffold protein found in glutamatergic synapses. 

Imaging was carried out using confocal microscopy. Following a line scan analysis of the 

acquired images, clusters of GLT-1 were found to bedirectly colocalised or very close to 
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synaptic shank staining (Figure 17A). At higher magnification it was sometimes possible to 

see shank completely surrounded by GLT-1 (Figure 17B). This further validated our culture 

model as these finding reflect observations reported in more intact brain preparations. 

After confirming the presence of GLT-1 transporters around glutamatergic synapses, 

we examined the surface diffusion properties of GLT-1 at the synapse. Mixed hippocampal 

cultures were electroporated with Homer 1c-dsRed, to label synapses in live cultures, before 

plating (see Material & Methods). Astrocytes were then transfected with GLT-1flag 24 hours 

before imaging session. Neurons expressing Homer 1c-dsRed were imaged before acquiring 

QD trajectories of GLT-1flag. During the analysis the synaptic area was defined as the total 

synaptic staining with an annulus of 320 nm. GLT-1 is not a neuronal synaptic protein, thus 

we do not expect to find it directly colocalised with synapses but rather on the surface of 

astrocytes very close to synapses. Nevertheless, we often observed colocalisation between 

GLT-1 and synaptic markers (Figures 17A-C). This is likely due to the small size of astrocyte 

processes, their proximity to synapses and the resolution of our microscope. During our QD 

imaging we often saw trajectories that went from outside the synapse into the synaptic area 

(Figure 17C). Interestingly we saw that the surface diffusion of GLT-1 was greatly reduced in 

the synaptic area compared to the synapse (Figure 17D). 
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Figure 17. GLT-1 surface diffusion is greatly reduced inside the synaptic area. 

(A) Surface staining for GLT-1 and postsynaptic protein Shank, confirms presence of GLT-1 

at the synapse. (B) High magnification confocal image showing GLT-1 completely 

surrounding the synapse. (C) Representative single trajectory of GLT-1flag moving from 

outside to inside the synaptic area and then going to a different synapse. (D) Instantaneous 

diffusion coefficient (median ±25-75% IQR) of GLT-1 is reduced in the synaptic area. 

Outside synapse: 8.9 x 10-2 μm2/s; IQR ± 0.8-22 x 10-2 μm2/s; n = 444 trajectories. At 

synapse: 1.3 x 10-3 μm2/s; IQR ± 0.014-4.6 x 10-3 μm2/s, n = 61 trajectories, p < 0.001. 

 

 

3.3 Mimicking synaptic activity using caged glutamate 
 

The fact that GLT-1 diffusion is reduced in the vicinity of synapses and that for some 

unknown reason this transporter also moves away from these synapses was very intriguing. 

We hypothesised that GLT-1 moves to synaptic areas where it is stabilised and remains until 

a signal, possibly glutamate binding to the transporter, allows GLT-1 to overcome the forces 

which anchor the transporter to the synapse allowing GLT-1 to displace away from the 

synapse leaving space for a non-bound transporter to move into the confines of the synapse 

to further bind and buffer glutamate.  

One method of testing this hypothesis was through glutamate uncaging experiments. 

In this way we can control the exact moment when GLT-1 transporters are exposed to 

glutamate. We began by transfecting astrocytes with GLT-1flag, as in previous experiments, 
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and marking all synapses with Mitotracker-green an AM dye which stains mitochondria-rich 

areas such as the synapse. Mitotracker was used as a synaptic marker due to its high level 

of staining, the chance probability of finding a GLT-1flag transfected astrocyte and a Homer 

1c-dsRed transfected neuron in close apposition is quite low resulting in low-yield 

experiments. When using caged-glutamate it is important to maximise data yield thus, 

mitotracker was optimal for this purpose staining practically all synapses in culture dishes. 

As opposed to previous QD imaging experiments, here we needed to use an imaging 

system equipped with a 405 nm laser in order to uncage glutamate. We observed that 

uncaging close to synapses where GLT-1 was present, induced a significant increase in 

GLT-1 surface diffusion (Figures 18A and B). This was not the case for experimental 

conditions where glutamate was uncaged close to GLT-1 at non-synaptic sites and 

importantly no change in diffusion coefficient was observed in the absence of caged 

glutamate i.e. 405 nm laser alone (Figures 18A and B). Furthermore, we found that uncaging 

at synaptic sites resulted in a decrease in the synaptic dwell time for GLT-1 (Figure 18C) 

indicating that not only does exposure to glutamate increase GLT-1 diffusion, the transporter 

also moves away from the synapses as predicted.  
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Figure 18. Synaptic glutamate uncaging increases GLT-1 diffusion and displaces 
transporters from the synapse. 

(A) Representative trajectories of a single GLT-1flag at a synapse, before and after uncaging 

in the presence (top) or absence (bottom) of MNI-caged-glutamate (Scale bar 0.32 µm). (B) 
% change in GLT-1 surface diffusion before and after uncaging laser at the synapse (56% 

increase after uncaging, n = 21, p< 0.001), at non-synaptic sites (0% change, n = 53, p> 

0.05) and absence of MNI-caged-L-glutamate (2% increase, n = 22, p>0.05). (C) Significant 

decrease in synaptic dwell time for GLT-1 transporters after uncaging (p< 0.01). 
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4. Computational model of GLT-1 diffusion 
 

Together, these data lead us to hypothesise that surface diffusion of GLT-1 could be 

important for the buffering and physical removal of glutamate from the synapse on a synaptic 

timescale. We tested this hypothesis using a computer simulation with parameters based on 

previous findings, in which i) GLT-1 density was estimated to be roughly 8500/μm2 on the 

surface of hippocampal astrocytes (Lehre and Danbolt, 1998), ii) around 4000 glutamate 

molecules are released during one synaptic event, relating to the content of a single vesicle 

(Clements et al., 1992) and iii) the surface area of astrocyte surrounding glutamate synapse 

was 30 nm x 1 μm (see Figure 19A). GLT-1 transporters were allowed to move in and out of 

the synaptic area, with a diffusion coefficient ranging from D = 0 μm2/s (immobile) up to D = 

0.23 μm2/s whereas glutamate molecules remained in the cleft until clearance by 

transporters (70 ms per molecule per transporter; see Figure 19B). Consistent with the 

experimental data, the clearance rate of glutamate from the synaptic area was strongly 

dependent on the diffusion coefficient of the transporter (Figure 19C), with a high GLT-1 

dynamics associated with a fast clearance of glutamate, supporting our experimentally-

based claim that the surface diffusion of transporters play a key role in the buffering and 

removal of glutamate from the synapse. 
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Figure 19. Computational model of the effects of diffusion of GLT-1 on glutamate 
uptake. 

(A) Schematic representation of our computational model. We defined the total surface area 

of astrocytic synaptic coverage as a 2D box of 30 nm x 1 μm (bottom) in a total space of 

1μm2 (not shown). (B) Representation of two different scenarios corresponding to static and 

dynamic receptors, binding a glutamate molecule while they are in the astrocytic surface in 

contact with the synaptic cleft. (C) Brownian motion of GLT-1 transporters clearing glutamate 

was numerically simulated and the effect of clearance was analysed for different diffusion 

coefficients (see Materials and Methods). The clearance rate of available glutamate was 

found to be strongly dependent on the receptors’ diffusion coefficient.  
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5. Physiological role for GLT-1 surface diffusion 
 

Following our very promising findings in the computational simulation of whether 

surface diffusion aids GLT-1 in removing glutamate from the confines of the synapse, we 

moved into a more biologically relevant system. Beginning in cultured cells before finally 

demonstrating the importance of GLT-1 diffusion in a more intact system, the hippocampal 

brain slice preparation. 

 

5.1 Immobilisation of GLT-1 
 

One means to investigate whether the surface diffusion of GLT-1 holds any 

physiological importance is to stop GLT-1 from moving along the surface of the astrocytes 

and study the consequences of this alteration. To directly tackle this, we took advantage of a 

previously established strategy to immobilise proteins on the surface of the cell, a procedure 

known as cross-linking (X-link; see Figure 20A) (Heine et al., 2008). First, it was necessary 

to establish the concentration of antibodies necessary to effectively reduce the surface 

diffusion of GLT-1. Our control concentration of primary (anti-flag) antibodies for QD 

experiments using GLT-1flag transfected into astrocytes was 10 μg/ml, thus we tested several 

relatively high concentrations of primary antibodies to see which concentration had the 

greatest effect on GLT-1 surface dynamics. We found that with increasing concentrations of 

primary antibodies there was an increasing reduction in the diffusion coefficient of GLT-1 

(Figure 20B) and decided to continue with the highest antibody concentration that we tested, 

200 μg/ml (1/5). This concentration effectively reduced GLT-1 diffusion speed as well as 

increasing the mobile fraction (Figure 20D) and the confinement of the protein (Figure 20C 

and E). 
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Figure 20. Establishing X-link protocol for GLT-1. 

(A) Schematic depicting X-link protocol with representative single trajectories of GLT-1flag in 

control and X-link (1/5) conditions below. (B) Instantaneous diffusion coefficient (median 

±25-75% IQR) of GLT-1 is reduced with increasing primary antibody concentration. Control 

(1/100): 2.3 x 10-1 µm2/s ± 1.2-3.6 x 10-1 µm2/s; n = 720 trajectories. 1/20 antibody: 4.6 x 10-2 

μm2/s; IQR ± 0.02-18 x 10-2 μm2/s, n = 362 trajectories, p < 0.001. 1/10 antibody: 7.4 x 10-2 

μm2/s; IQR ± 1.4-13.6 x 10-2 μm2/s, n = 2010 trajectories, p < 0.001. 1/5 antibody: 1.8 x 10-2 

μm2/s; IQR ± 0.09-4.4 x 10-2 μm2/s, n = 325 trajectories, p < 0.001. (C) Cumulative frequency 

curve distribution of GLT-1 in control and X-link conditions, highlighting the increase in 

immobile fraction from 6% in control to 42% in X-link. (D) Plot of the mean squared 

displacement (MSD) versus time showing that X-link dramatically increases confinement of 

GLT-1. 
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5.2 Secondary effects of GLT-1 X-link 
 

Before carrying out further experiments, it occurred to us that it would be very 

important to verify that the X-link did not have any other effects on GLT-1, such as transport 

function or GLT-1 content at the synaptic area. We began by looking at the effect of the X-

link on transporter function. This was achieved by measuring radiolabelled glutamate (3H-

glutamate) uptake in COS-7 cells, we chose this cell line because there is no endogenous 

glutamate transport. We started with two conditions, COS-7 cells transfected or not with 

GLT-1flag, this has already been reported in the literature (Peacey et al., 2009), nevertheless 

we wanted to be sure that we were doing the experiment correctly. We found that cells 

transfected with GLT-1flag had a great uptake capacity compared to non-transfected cells 

(Figure 9A). Next we tested whether X-link has an effect on GLT-1 uptake capacity. COS-7 

cells were transfected with GLT-1flag and the chosen X-link concentration 1/5 primary 

antibody was incubated during 10 min, before the start of the 3H-glutamate uptake 

experiment. We observed no significant difference between control antibody concentrations 

and X-link concentrations (Figure 21A). 

Next we investigated the possibility that the X-link might affect the GLT-1 content at 

the synapse. To this end we used immunostaining for surface GLT-1 in control and X-link 

conditions and measured synaptic colocalisation between these conditions. As in previous 

experiments, the synaptic area was defined at the synaptic staining plus an annulus of 320 

nm. Mixed hippocampal cultures were transfected with Homer 1c-dsRed one day before 

transfection with GLT-1flag. 48 hours later, antibodies at control and X-link concentrations 

were incubated for 10 min, as in QD experiments, before fixation in 4 % PFA and incubation 

with appropriate secondary antibodies for GLT-1flag. Using confocal microscopy, we revealed 

that there is no difference in the level of synaptic co-localisation between control and X-link 

conditions (Figures 21B and C). 
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Figure 21. No secondary effects of X-link on GLT-1 

(A) COS-7 cells transfected with GLT-1flag had greatly increased glutamate uptake 

capacities, p < 0.001. This uptake capacity was not affected by X-link. Control: 87173 ± 7562 

d.p.m. versus X-link: 85211 ± 5719 d.p.m. p > 0.05. (B) High magnification immunostaining 

of GLT-1 and Homer 1c-dsRed. (C) Quantification of immunostaining revealed no difference 

in synaptic co-localisation of GLT-1 and Homer 1c-dsRed in X-link condition, p > 0.05. 

 

5.3 Effect of GLT-1 X-link on neuronal activity 
 

After finding the concentration of primary antibody necessary for an effective X-link of 

GLT-1 and then verifying that this X-link had no adverse secondary effects, we investigated 

the effect of the GLT-1 X-link on neuronal activity. These experiments were carried out in 

mixed hippocampal cultures at 14-16 days in vitro, transfected with GLT-1flag and GFP 24-48 

hours before experimentation. Just before experimentation, cultures were incubated with X-

link antibody or a control, non-specific antibody. Spontaneous excitatory postsynaptic 

currents (sEPSC) were recorded in whole-cell patch clamp from neurons in close proximity 

of GFP/GLT1flag transfected astrocytes (see Figure 22A). We found no difference in the 

frequency or amplitude of these spontaneous events (Figure 22B). However, we noted a 

change in the kinetics of single events after X-link (Figure 22C). Further analysis revealed 

that both rise time and decay were increased (Figures 22D and E), indicating an increase in 

neuronal excitability due to an increase in the glutamate available to bind to these receptors.  
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Figure 22. X-link of GLT-1 increases neuronal excitability 

(A) Example of Alexa-568-filled neuron recorded in whole-cell patch-clamp in the close 

proximity of a GFP/GLT-1flag-transfected astrocyte (green). (B) Representative sample traces 

of spontaneous EPSCs recorded from hippocampal neurons in the presence of secondary 

anti-mouse antibodies (control) or primary anti-GLT-1 antibodies (X-link). (C) 
Superimposition of sEPSCs recorded from hippocampal neurons in the presence of Control 

(black trace) and X-link (grey trace) antibodies. Inset: magnification of peak currents in 

Control (black trace) and X-link (grey trace) conditions. (D and E) Bar charts showing the 

increase in rise time and decay of sEPSCs in the presence of X-link compared to Control. p 

< 0.05. 

 

6. Surface diffusion of endogenous GLT-1 
 

At the beginning of this project there were no commercially available antibodies 

which specifically bind to an extracellular epitope of GLT-1. To carry out QD surface 

trafficking experiments it is necessary to have an extracellular target due to the fact we are 

tracking molecules moving on the surface of the cell in real time. For this reason we have 

used GLT-1flag, which has a flag domain one of the extracellular loop and allows for highly 

specific conjugation with QDs. Recently, we became aware that some other researchers 
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were working with antibodies targeting extracellular domains of GLT-1. We found that there 

was finally a commercially available antibody directed towards the same extracellular loop as 

where we put our flag domain in the modified GLT-1. Thus we began QD experiments to 

investigate first of all, whether endogenous GLT-1 (GLT-1endo) diffuses on the surface of 

astrocytes and secondly, whether this diffusion is similar to what we have previously seen 

with GLT-1flag. 

To first characterise the surface diffusion properties of GLT-1endo we needed to find 

the appropriate control concentration of primary antibody, while avoiding undesired side-

effects such as X-link of GLT-1endo. We tested several concentrations of antibodies and 

found that the most effective was 0.2 mg/ml, concentrations higher than this affected the 

diffusion coefficient of GLT-1 (Figure 23A). Comparison with GLT-1flag revealed that 

endogenous GLT-1endo diffuses slower compared to our transfected GLT-1flag (Figure 23B). 

Following this observation, we removed all the immobile trajectories (below 0.005 μm2/s) and 

found that there was still a significant reduction (Figure 23B), however this reduction was 

less pronounced. When plotted on a cumulative frequency curve we observed a very slight 

left shift in GLT-1endo (Figure 23C). We analysed the MSD of the mobile fraction of GLT-1endo 

and GLT-1flag and found a higher degree of confinement in GLT-1endo (Figure 23D).  As in 

GLT-1flag conditions it was necessary to verify that the transport function of GLT-1endo was 

not compromised in X-link conditions. Uptake of radiolabelled glutamate was carried out in 

mixed cultures with important controls, Na+ free and TBOA conditions, where uptake should 

be non-existent, as well as a condition where no antibodies or drugs are added to be 

compare with our antibody conjugated transporters. We observed that indeed in Na+ free 

and TBOA conditions there was no uptake of glutamate, furthermore we observed no 

difference between, the control condition (No Ab), GLT-1flag, GLT-1endo control or GLT-1endo 

X-link (Figure 24). 
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Figure 23. Endogenous GLT-1 surface diffusion 

(A) Representative trajectories of GLT-1flag in control conditions and GLT-1endo in control and 

X-link conditions (scale bar, 0.5 µm). (B) Instantaneous diffusion coefficients of GLT-1flag, 

compared to the GLT-1endo at 1/500 (Diff. Coeff. - 0.13 µm2/s; IQR ±0.014-0.273 µm2/s, n = 

668 trajectories) and X-link (Diff. Coeff. –0.06 µm2/s; IQR ±0.033-0.105 µm2/s, n = 326 

trajectories) concentrations (p < 0.001). (C) Cumulative distribution of the mobile fraction of 

GLT-1flag and GLT-1endo in control conditions. (D) Plot of the mean squared displacement 

(MSD) versus time showing that the mobile fraction of GLT-1endo is more confined than that 

of mobile GLT-1flag.  
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Figure 24. Antibodies do not affect glutamate uptake properties of GLT-1endo 

While lack of Na+ and TBOA blocked glutamate uptake, antibodies has no significant effect 

on the uptake function of GLT-1endo. 

 

 

6.1 X-link of GLT-1endo in hippocampal slices 
 

Knowing that we could faithfully track GLT-1endo in hippocampal cultures as well as 

being able to induce a X-link of GLT-1endo, similar to that of GLT-1flag, we proceeded to 

investigate whether surface trafficking of GLT-1 could also be important in a more 

physiologically intact preparation, the hippocampal brain slice.  

To induce a X-link of GLT-1 in hippocampal slices it was first necessary to inject the 

anti-GLT-1 antibody into the hippocampus by in vivo stereotaxic injection in anaesthetised 

animals. Following injection of antibodies into the brain, animals were allowed to recover for 

1 hour before sacrifice and slice preparation. Total time between injection and 

electrophysiological recordings was 3 hours (Figure 25A). We then recorded sEPSCs 

exactly as in culture conditions and observed the same change in kinetics as was previously 

observed, i.e. no change in amplitude or frequency of these events (Figure 25B) but rather a 

change in kinetics with increases in both rise time and decay of sEPSCs (Figures 25C-E). 
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This finding reinforces all of our in vitro data and proves that surface diffusion of GLT-1 is 

important in intact brain tissue.   

 

 

Figure 25. Endogenous GLT-1 surface diffusion 

(A) Schematic indicating precise location of stereotaxic injection site, and slice preparation, 

in the hippocampus of the endogenous GLT-1 antibody used to induce X-link in acute 

hippocampal brain slices. (B) Representative sEPSCs recorded from hippocampal neurons 

in control and X-link conditions (scale bars 50 pA and 500 ms). (C) Superimposition of 

sEPSC recorded in control (black) and X-link (grey) conditions (scale bars 10 pA and 10 

ms). (D and E) X-link of GLT-1 increased the rise and decay time of AMPAR sEPSCs. 
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Discussion 
 

 

1. GLT-1 is highly mobile on the surface of astrocytes 
 

We first demonstrated that GLT-1 diffuses on the surface of astrocytes. When we 

began, this was a novel finding because there were no studies in the literature 

demonstrating the existence of surface diffusion of any protein, receptor or transporter, on 

the surface of astrocytes. Since then a paper has been published in an independent 

laboratory showing that the metabotropic glutamate receptor 5 (mGluR5) diffuses on the 

surface of astrocytes (Arizono et al., 2012), as well as this there have been other such 

publications demonstrating P2X4 receptor trafficking on the surface of microglia (Toulme and 

Khakh, 2012). One of the most prominent findings of our study is the high diffusion 

coefficient and low immobile fraction of GLT-1. We have demonstrated that GLT-1 diffuses 

on the surface of astrocytes 4-5 times faster than that of glutamate receptors, on neurons 

and astrocytes (Arizono et al., 2012; Heine et al., 2008). We also verified that this was not a 

phenomenon of all transporters in astrocytes by transfecting the dopamine transporter 

(DAT), data from DAT more closely resembled that of glutamate receptors from previous 

studies with slower diffusion coefficient and a higher level of confinement compared to GLT-

1. Furthermore the immobile fraction is dramatically lower than what has been reported for 

glutamate receptors with only 6% of GLT-1 being immobile. This suggests that surface 

diffusion of GLT-1 is one of a kind, with the majority of transporters moving rapidly. This may 

imply an important functional role for fast movement of transporters from areas of low 

synaptic activity towards area of high activity, or vice versa, regarding glutamate uptake 

mechanisms. It is logical to think that if surface diffusion of GLT-1 plays a role in removing 

glutamate from the synapse through binding/buffering glutamate and then moving out of the 
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synaptic area, this diffusion would need to be very fast. Thus our primary observation, that 

GLT-1 is mobile, indeed matches our initial hypothesis. 

It is important for us to consider the evidence suggesting that glutamate transporters 

may indeed form multimers, as witnessed by immunoblotting assays (Haugeto et al., 1996) 

as well as in crystallographic studies (Yernool et al., 2004). From the more recent study by 

Yernool and colleagues (2004) it seems that glutamate transporters are homotrimeric, which 

appears to be the case for the bacterial glutamate transporter (GltPh) in their study. Taking 

into account the fact that there is a high level of homology between the glutamate transporter 

family, even between species, and evidence from immunoblotting of GLT-1, it is not far-

fetched to speculate that GLT-1 is a homotrimer. This implies that, although the general 

dogma in single nanoparticle imaging studies is that there is a one to one ratio of target 

protein to quantum dot, it is possible that each quantum dot we are following is in fact 

attached to one individual GLT-1 in a trimer. This consideration does not diminish the 

importance of our findings. It is already accepted that glutamate transporters are one of the 

most highly expressed families of transporters in the brain (Lehre and Danbolt, 1998), 

therefore evidence suggesting that these transporters group together into multimers does 

not impact on the potential role of surface diffusion of these transporters in the regulation of 

synaptic glutamate concentration. To date, there is no quantitative evidence demonstrating 

which form, monomer or multimer, is the most common in intact brain tissue. Furthermore, it 

is completely unknown whether multimerisation will help or hinder GLT-1 transport function.  
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2. Surface diffusion of GLT-1 is activity-dependent 
 

Although this transporter is moving very fast, with very few immobile transporters, we 

observed that GLT-1 diffuses in a confined manner. This led us to believe that there may 

exist some form of regulation for this transporter. Indeed, if the surface diffusion of GLT-1 is 

important for maintaining low levels of synaptic glutamate, it seems logical that there are 

regulatory mechanisms in place to ensure that sufficient numbers of GLT-1 are distributed at 

glutamatergic synapses.  Consistent with this hypothesis, it would also be necessary to have 

a readily available pool of transporters sitting in the astrocytic membrane opposing 

synapses, even at less active synapses, so that following the release of glutamate there are 

ample numbers of transporters on hand to remove this glutamate from the extracellular 

space.  

We focused on the effects of low activity, both neuronal and glial, on GLT-1 surface 

diffusion. Due to the importance of these transporters for synaptic glutamate uptake, we 

decided to investigate the possible role of neurons in the regulation of GLT-1. Previously, it 

has been reported that astrocytes cultured without neurons exhibit reduced expression of 

GLT-1 (Swanson et al., 1997; Yang et al., 2009). This is consistent with the fact that the 

primary role of GLT-1 is to remove glutamate from the extracellular space and neurons are 

the major contributors of glutamate release in the brain. Furthermore, neurons are most 

sensitive to the effects of excessive levels of ambient glutamate (Choi, 1985, 1987; 

Robinson et al., 1993). However, it should be noted that neurons are not the only cells which 

release glutamate into the extracellular space. Astrocytes are also believed to be capable of 

glutamate release through mechanisms, vesicular or otherwise, which are subject to fierce 

debate in the field (Araque et al., 2000; Parpura and Haydon, 2000; Woo et al., 2012).  

Crudely removing neurons from our mixed cultures was achieved by regular agitation 

and removal of cells in suspension before experimentation. Thus, these neuron-free cultures 

are not ‘pure’ astrocyte cultures but these cultures have a strong reduction in the number of 
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neurons in the culture dish, which was not quantified. The results from these neuron-free 

cultures were quite dramatic. We observed that GLT-1 was almost immobile in neuron-free 

conditions. This finding highlights two very important facts; first, our crude neuron-free 

culture was quite successful in disrupting neuron-glia communication and second, 

communication between neurons and astrocytes is of upmost importance concerning GLT-1 

surface diffusion. These observations are in agreement with previous studies, which have 

shown that lack of neurons, results in an absence of GLT-1 expression in astrocytes 

(Swanson et al., 1997).  

Continuing our investigation on the impact of low activity on GLT-1 diffusion, blocking 

neuronal firing using TTX resulted in a strong reduction in GLT-1 surface diffusion. This 

observation is in agreement with previous studies which reported that expression of GLT-1 

on astrocytes is highly dependent on neuronal activity. Studies in mixed hippocampal 

cultures found that TTX application over several days can lead to a decrease in the protein 

expression of GLT-1 (Perego et al., 2000; Yang et al., 2009). Benediktsson and colleagues 

(2012), working in organotypic slice cultures, found that application of TTX reduced the size 

and density of GLT-1 clusters on the astrocytic processes as well as reducing the expression 

of GLT-1 opposing synapses. Finally, Genoud et al. (2006) reported that astrocytic coverage 

of synapses and glutamate transporter expression in the barrel cortex is highly plastic, with 

expression of GLT-1 highly correlated with neuronal activity in vivo. Our findings further 

underline the highly sensitive nature of GLT-1 surface diffusion. GLT-1 is ideally located to 

sense and respond to changes in neuronal activity. In our experiments, TTX application was 

quite short, 20 minutes, nevertheless we observed a significant reduction in the surface 

diffusion of GLT-1. Thus it seems very likely that GLT-1 may possess the unique capacity to 

sense neuronal activity and rapidly respond to this by modifying its surface dynamics so that 

it can stay in line with neuronal release of glutamate and ensure sufficient uptake of this 

neurotransmitter on a short time scale. Changes in expression levels of glutamate 

transporters as witnessed by other studies (Perego et al., 2000; Yang et al., 2009) are likely 
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to be important in the medium- to long-term for preventing excess excitation which in 

pathology may lead to cell death.  

After demonstrating that the diffusion of GLT-1 is highly dependent on neuronal 

activity, we investigated whether GLT-1 diffusion can be modified by changes in glial activity. 

The most obvious and pertinent activity which we decided to investigate was the activity of 

the transporter itself. This was achieved using a non-transportable blocker of glutamate 

transporters, TBOA. It has been demonstrated that application of TBOA can cause 

widespread cell death, which can be attenuated by the addition of NMDA and AMPA 

receptor antagonists (Bonde et al., 2003). Impairing glutamate transporter function, 

genetically, pharmacologically or in pathology, has been shown to increase epileptiform 

activity and lead to neuronal cell death by excitotoxicity (Bonde et al., 2003; Robinson et al., 

1993; Rothstein et al., 1996; Tanaka et al., 1997).  

We found that acute application of TBOA can affect the surface diffusion of GLT-1. 

Following a relatively short incubation with TBOA, GLT-1 surface diffusion was significantly 

reduced. This may be due to a direct effect of the drug on the transporter or it may be due to 

the fact that GLT-1 is no longer functional therefore the surface diffusion is reduced. This 

finding indicates that the activity of GLT-1 itself can modify its surface diffusion properties. A 

general trend seems to be clear, when GLT-1 is inactive, as is the case in neuron-free, TTX 

and TBOA conditions, the surface dynamics of this transporter are reduced. Alterations in 

the speed of surface diffusion may be important physiologically, ensuring that the transporter 

remains where it may be needed in the future or moving away from a glutamate-rich area 

once it has bound free glutamate. If asked to speculate on the mechanism by which TBOA 

affects the surface diffusion of GLT-1, we could surmise that this change in surface 

dynamics is due to the conformational change of GLT-1 when TBOA is bound (Boudker et 

al., 2007). TBOA, which binds to the glutamate binding site without being transported and 

changes the transporter’s conformation, may fix GLT-1 into a conformation which no longer 

supports fast diffusion dynamics of the transporter.  
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Conversely we pursued a line of investigation into whether GLT-1 surface diffusion 

may also be sensitive to increases in neuronal and glial activities. We observed that the 

application of glutamate, at non-toxic concentrations, induced an immediate increase in the 

surface diffusion of GLT-1. This is intriguing as one would assume that GLT-1, the 

transporter responsible for the majority of synaptic glutamate uptake in the hippocampus 

(Lehre and Danbolt, 1998; Tanaka et al., 1997), should slow down in a glutamate-rich area, 

i.e. where there is synaptic glutamate release, to ensure that the maximum number of 

transporters are trapped at the synapse and can remove glutamate on a fast timescale. The 

observation that glutamate effectively increases transporter diffusion forces us to reassess 

this hypothesis. We can speculate that GLT-1 moves faster after exposure to glutamate so 

that synaptic transporters which have bound glutamate move away from the confines of the 

synapse, thereby opening a space for naïve, unbound transporters to enter the synaptic area 

to further remove glutamate.  

The observation that glutamate increases GLT-1 diffusion is rather ambiguous. The 

question still remains as to whether the effect of glutamate application is due to glutamate 

acting directly on the transporter or through glutamate receptors, neuronal and/or astrocytic. 

To answer this question, we applied a glutamate receptor antagonist cocktail blocking 

NMDARs, AMPARs and mGluR. Surprisingly, we found that GLT-1 surface diffusion was 

decreased in the presence of this cocktail alone, suggesting communication between 

neurons and glia via glutamate receptors. The limitation of this experiment is that we cannot 

distinguish glutamate receptors on neurons from receptors located on astrocytes due to the 

fact that these antagonists are not cell-specific. Although it is surprising that by blocking 

glutamate receptors we reduce the surface diffusion of GLT-1, it is not completely 

unexpected. It has already been demonstrated that inhibition of glutamate receptors can 

reduce the expression of GLT-1 (Yang et al., 2009). Yang and colleagues (2009), observed 

that this effect was primarily due to AMPA receptor and group I mGluR (most likely mGluR5) 

antagonism. The authors proposed that synaptic communication between neurons and 
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astrocytes induces an upregulation in GLT-1 expression. It is worth noting that Yang and 

colleagues (2009) incubated slice cultures with glutamate receptor antagonists for 7 days 

while the effects seen by us on surface diffusion were seen following 5 minute incubation. 

This, once again, highlights the importance of GLT-1 surface diffusion in the immediate, 

short-term regulation of glutamate homeostasis. 

Continuing on this line of enquiry, we repeated the previous experiment, i.e. adding a 

glutamate receptor antagonist cocktail, and then bath applied glutamate to observe any 

potential direct effects of glutamate on GLT-1 itself. We discovered that the increase in 

surface diffusion following glutamate application was preserved even in the presence of 

receptor antagonists, albeit to a lower level than glutamate alone. This suggests that 

glutamate does indeed have a direct effect on GLT-1. However, the effect we see when 

adding glutamate without glutamate receptor antagonists may be a composite of the 

glutamate activating glutamate receptors as well as acting on glutamate transporters. 

Together, these data reinforce the idea that neurons and glia constantly communicate to 

ensure the proper functioning of these brain cells. 

We could further speculate that the effect of glutamate we observe is due to a 

combination of glutamate binding to astrocytic glutamate receptors, as well as binding to 

GLT-1. This seems logical with respect to the timescale of the effect. If glutamate was acting 

on neuronal receptors, resulting in downstream signalling pathways which affect the surface 

diffusion of GLT-1 we would expect to see a longer latency to increase in surface diffusion. 

The rapid increase in GLT-1 surface diffusion observed in response to bath application of 

glutamate suggest that glutamate is more likely to be acting on glutamate receptors on 

astrocytes. Potentially increasing intracellular Ca2+ in the astrocyte which may contribute to 

the observed change in GLT-1 surface trafficking. It has been well documented that 

astrocytes signal through changes in intracellular Ca2+ (Henneberger et al., 2010; Mulligan 

and MacVicar, 2004; Panatier et al., 2006) and that these waves are more common in the 

fine processes that in the cell body (Panatier et al., 2011). Thus, local changes in Ca2+ 
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concentration would be an efficient mechanism to regulate the precise location of 

transporters in compartments of astrocytes close to active synapses.  
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3. Diffusion of GLT-1 varies according to its surface location 
 

Previous studies have demonstrated that quite often, proteins diffusing on the cell 

membrane are subject to confinement, due to the extracellular matrix (Groc et al., 2007), 

interactions with other proteins (Bats et al., 2007) or by unknown mechanisms. In nature 

there are generally mechanisms to keep proteins in a specific location for functional reasons. 

Here, we decided to test whether GLT-1 may be subject to some sort of confinement or 

differential regulation according to its location. We began by focusing on the differences in 

surface diffusion properties of GLT-1 located on the processes compared to the cell body. 

First, it was pertinent to verify that our culture model contained astrocytes with processes as 

has been previously described in the literature (Benediktsson et al., 2012). Immunostaining 

for surface GLT-1flag revealed the presence of astrocytic processes in our culture system, 

closer inspection revealed GLT-1 clusters on the fine processes of the astrocyte. This was 

reassuring, astrocytes in our culture model indeed retain some features which can be found 

in more physiological preparations.  

Moving on we carried out single molecule trafficking experiments and during post-

acquisition analyses we separated trajectories located on cell bodies from those located on 

the processes using the GFP image of the astrocyte. We observed that trajectories in the 

processes were moving slower compared to those on the cell body. This could be for several 

reasons; perhaps GLT-1 moves slower on the processes because this is a more confined 

space and there is less room to move or maybe GLT-1 on astrocyte processes are located 

closer to synapses, as it is well documented that astrocytes extend their processes to wrap 

around synapses (Lehre and Rusakov, 2002; Ventura and Harris, 1999) and there is 

possibly a retention mechanism to ensure adequate numbers of GLT-1 per synapse for 

sufficient glutamate uptake on a synaptic time scale.  

This finding, contrasts to that of Arizono and colleagues (2012) who demonstrated 

that mGluR5 moves faster in the processes compared to the soma. As previously 
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suggested, there may be some role for mGluR5, to locally modulate Ca2+ concentration in 

the fine processes of astrocytes which may in turn signal GLT-1 to change its surface 

dynamics. Before arriving at any conclusions regarding the potential mechanisms regulating 

fast moving mGluR5 and slow moving GLT-1 on the processes it is necessary to examine 

the absolute values regarding the speed of this diffusion. Although we observed that surface 

diffusion of GLT-1 is slower in the processes compared to the cell body, the absolute speed 

of GLT-1 in both compartments is still higher than that of mGluR5. So the relative effect of 

changes in the speed of mGluR5 surface diffusion is unlikely to share a similar mechanism 

to that of GLT-1 surface diffusion. These two mechanisms are likely to be independent of 

one another and indeed be linked to their individual roles on the surface of astrocytes. 

We delved deeper into the possible compartmentalisation of GLT-1 and carried out 

experiments to decipher whether GLT-1 is retained at the synapse. Following 

immunostaining in fixed cultures, which verified that synapses were in close contact with 

GLT-1 expressing astrocyte processes, we examined how GLT-1 moves when inside a 

defined synaptic area. The synaptic area was defined with parameters normally used for 

studying surface trafficking of neuronal receptors; in our case the astrocytic synaptic area 

incorporated the synaptic staining plus the perisynaptic area (2 pixels around the synapse or 

320 nm). We observed that GLT-1 surface diffusion was greatly reduced when inside the 

synaptic area, which implies that GLT-1 is highly regulated in the vicinity of the synapse. 

Interestingly, stabilisation of GLT-1 at the synapse was a transient event and transporters 

readily left the confines of the synapse where they recovered normal diffusion parameters. 

From these data one may suggest that glutamate release from the presynaptic terminal 

‘unleashes’ these transporters from the synapse allowing naïve un-bound transporters to 

take their place thus facilitating buffering and removal of glutamate from the synaptic cleft.  

To provide some insight into this hypothesis we carried out further experiments using 

caged glutamate. These experiments allowed us to precisely control the time at which these 

synaptic GLT-1 were exposed to glutamate. We observed that that GLT-1 surface diffusion 
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was increased following glutamate uncaging close to the synapse. Furthermore, these 

transporters moved away from the synapse, which was observed by a decrease in the 

synaptic dwell time. Importantly, we observed no change in surface diffusion of GLT-1 before 

and after glutamate uncaging at non-synaptic sites. This indicates the existence of a 

synapse-specific mechanism whereby GLT-1 diffusion is reduced which can be rapidly 

reversed following synaptic glutamate release. 

Unfortunately, the exact mechanism by which GLT-1 surface diffusion is reduced in 

the vicinity of the synapse remains unknown. If we borrow some ideas from what has been 

shown in neurons, we could speculate that GLT-1 surface diffusion is reduced close to 

synapses through one or a combination of the following mechanisms; protein-protein 

interactions with other astrocytic proteins important at the synapse; interaction with an 

intracellular ‘scaffold-like’ protein in astrocytes; interactions with transmembrane proteins 

which span the void between neurons and astrocytes; or even lipid rafts which may be rich in 

other proteins therefore hindering the passage of GLT-1 through this confined area.  

Of all the proposed mechanisms mentioned above, one of the more likely 

mechanisms by which GLT-1 may be transiently stabilised at the synapse is protein-protein 

interactions. To date there have been no studies showing a dense, protein rich area in 

astrocyte processes facing the synaptic cleft. If this structure did exist it would likely have 

been observed using electron microscopy. Thus, the mechanism by which GLT-1 is 

stabilised at the synapse is more likely to involve interactions between other surface 

proteins. There is not a great wealth of information available regarding the known binding 

partners of GLT-1, I believe that this is not due to lack of interest but rather a result of the 

complexity of experiments needed to demonstrate these interactions. It is highly likely that 

interactions between GLT-1 and its binding partners are transient in order to stabilise the 

transporter in specific place for a limited time. Furthermore, we could speculate that these 

protein-protein interactions are quite weak, which would be important to allow GLT-1 to 

move away from the synapse rapidly following exposure to glutamate. Several potential 
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binding partners of GLT-1 have been identified; the water channel Aquaporin 4 (Nielsen et 

al., 1997; Zeng et al., 2007); N+/K+ ATPase (Rose et al., 2009); and mitochondria (Genda et 

al., 2011). One could imagine that GLT-1 ‘prefers’ to stay in close contact with N+/K+ ATPase 

and mitochondria due to their role in providing local conditions conducive to glutamate 

transport. The ion gradients needed for glutamate transport are created by the ATPase 

pump and energy is provided to this pump by mitochondria. Furthermore, Kir4.1 an inward 

rectifying potassium channel, demonstrated to colocalise with Aquaporin 4 (Nagelhus et al., 

1999), maintains a negative membrane potential which supports electrogenic glutamate 

transport. Moreover, it has been demonstrated that disruption of Kir4.1 expression reduces 

total glutamate uptake from the extracellular space (Djukic et al., 2007; Kucheryavykh et al., 

2007).  

Many studies have proposed potential intracellular binding partners for GLT-1. 

However, evidence for an astrocytic ‘PSD-like’ intracellular accumulation of scaffolding 

proteins, facing synapses, is quite weak. If high accumulations of scaffolding proteins in 

astrocytes existed, it is likely that they would have already been observed using electron 

microscopy. We can count several proteins which could possibly act as intracellular scaffold 

proteins for GLT-1, such as Ajuba (Marie et al., 2002), MAGI-1 (Zou et al., 2011), PKCa 

(Gonzalez et al., 2005) as well as PICK1 which has been shown to interact with GLT-1b 

(Bassan et al., 2008), an isoform of GLT-1 located distally from synapses (Sullivan et al., 

2004) with very low expression in the hippocampus (Holmseth et al., 2009). To date, there 

has been no conclusive evidence for a direct intracellular binding partner for GLT-1, which 

could potentially stabilise this transporter near glutamatergic synapses. It is quite possible 

that it is GLT-1 itself which is stabilising itself. Evidence suggesting that GLT-1 forms 

multimers could hold to the key to how GLT-1 is stabilised at the synapse. We can imagine 

that individual GLT-1 form multimers close to the synaptic cleft and effectively cross-linking 

each other in this area. However, this opens the question as to why this occurs at the 
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synapse and not at non-synaptic sites? This area of the glutamate transporter field remains 

completely unexplored. 

Another important question to ponder is how do astrocyte processes become 

stabilised at synapses? Regarding our findings, this is a very important question indeed. We 

observed that GLT-1 diffusion was reduced at synapses, which we postulate is due to 

interactions with other surface proteins but how does the astrocyte know the location of the 

synapse is and project its GLT-1-expressing processes accordingly? This question remains 

unresolved. If indeed there is a transient accumulation of different transporters, pumps and 

receptors on the glial membrane opposing neuronal synapses, then there must be a 

mechanism by which astrocytes sense synaptic activity, extend their processes and anchor 

themselves to this specialised region. One potential mechanism could be that could anchor 

astrocyte processes to synapses could involve transmembrane proteins signalling between 

neurons and glia. We could hypothesise that astrocytic processes scan the brain for activity 

until they find synapses where they can anchor themselves. Once anchored in place through 

transmembrane protein interactions, the astrocytic process begins to form a transient 

accumulation of proteins, highly adapted for sensing and controlling synaptic activity. If I was 

to speculate on a specific family of proteins responsible for astrocytic stabilisation at the the 

synapse, I would suggest the ephrin family of proteins. Indeed ephrin signalling may be a 

good target to investigate this question as it has already been demonstrated that neuron-glia 

signalling between neuronal EphA4 and astrocytic EphrinA3 controls glutamate transporter 

expression on astrocytes and dendritic spine morphology in the hippocampus (Carmona et 

al., 2009; Filosa et al., 2009). This is of course pure speculation and the discovery these 

mechanisms will no doubt arrive piece by piece. Over time it just might be possible to piece 

this puzzle together and understand exactly how and why astrocytes approach a synapse 

and carry out their vital functions in the brain. If we understand how this process occurs in 

normal, physiological conditions this will provide insight into how and why this process goes 

awry and its implication in pathology.  
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4. Simulation of GLT-1 surface diffusion 
 

 Before investigating surface diffusion in the physiological regulation of glutamate 

uptake at the synapse in a biological system, we created a computational model of the 

synapse to see if our hypothesis could stand up to a non-biased test. This model measured 

the efficacy of glutamate uptake from the synapse with differing GLT-1 diffusion coefficients 

from immobile to mobile. Our computer model of GLT-1 diffusion showed a correlation 

between the speed of GLT-1 surface diffusion and the efficiency of glutamate uptake from 

the synapse. It is clear that faster moving transporters are capable of removing more 

glutamate from the synaptic area compared to slower moving or immobile transporters. 

However, our model is rather limited in terms of faithfully representing our observations in 

vitro due to the complexity of this system. Two important parameters observed in our study 

but omitted from this model, due to their complexity, were; i) the reduction in surface 

diffusion of GLT-1 in the synaptic area compared to non-synaptic areas and ii) the increase 

in GLT-1 surface diffusion when exposed to glutamate. It is highly likely that if we were able 

to include these parameters, our simulation would show improved efficiency in glutamate 

removal from the synaptic area in conditions where diffusion is permitted.  

  Another important factor that we do not consider in our model is diffusion of 

glutamate away from the synapse. There have been reports that glutamate diffuses quite 

fast in the extracellular space in the brain, ~ 0.4 μm2/s (Zheng et al., 2008), thus we can 

imagine that a lot of the synaptically released glutamate will diffuse away without the need 

for the intervention of synaptically localised glutamate transporters to remove glutamate. 

Another valid point is that we do not know the exact proportion of the synapse that is 

ensheathed by glial processes, in our model we took for granted that the synapse was 

completely ensheathed by the astrocyte thus giving us an astrocytic synaptic domain of 30 

nm x 1 µm. It has been suggested that glial processes cover around 40% of each individual 

synapse in the hippocampus (Lehre and Rusakov, 2002; Ventura and Harris, 1999). 
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Ensheathment of synapses by glia is brain region specific and it has been estimated by 

electron microscopy that Purkinje cell synapses of the cerebellum are almost completely 

ensheathed by the Bergmann glia of the cerebellum (a specialised astrocyte specific to this 

area) (Xu-Friedman et al., 2001). As a result of this high level of ensheathment, diffusion of 

glutamate out of the synapse is almost non-existent thus there is a high sensitivity to drugs 

which block the uptake of glutamate from the synapse by transporters (Barbour et al., 1994; 

Overstreet et al., 1999; Takahashi et al., 1995; Tong and Jahr, 1994). Perhaps there is a 

functional role for the variation in astrocytic ensheathment of synapses between brain 

regions. It is known that the plasticity of astrocytic coverage of glutamatergic synapses in the 

supraoptic nucleus of the hypothalamus plays an important physiological role in lactation 

(Theodosis and Poulain, 1984). Thus it is not implausible that the differences in astrocytic 

coverage of hippocampal versus cerebellar synapses are linked to a physiological function. It 

has been suggested that glutamate spill-over at hippocampal synapses and activation of 

glutamate receptors on adjacent synapses, serves a physiological role (Isaac et al., 1995; 

Kullmann et al., 1996). It must be added, however, that we did not set out to successfully 

reproduce a physiological model of glutamate uptake at the synapse, we simply wanted to 

uncover whether mobile transporters were more efficient at removing glutamate from a 

confined synaptic cleft than static transporters. To this end our model was a success.  
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5. Physiological role of GLT-1 surface diffusion 
 

 If our hypothesis that surface diffusion of GLT-1 is important for the removal of 

glutamate from the synapse is true, experimental manipulation of GLT-1 surface diffusion 

should have an impact on synaptic transmission. To this end we used a previously described 

technique (Heine et al., 2008) to effectively immobilise proteins on the surface of the cell, a 

procedure known as cross linking (X-link). This X-link successfully immobilised GLT-1 

without affecting any other properties such as transport function or access to the synaptic 

area. We found no effect of antibody/quantum dot conjugation, necessary for surface 

trafficking experiments, on GLT-1 uptake function at any concentration used. Furthermore, 

our observation that X-link did not change the content of GLT-1 at the synapse indicates that 

the antibodies are not so big that they obstruct access of GLT-1 to the synapse. 

 Here, we propose that by binding two separate GLT-1 transporters together, we can 

effectively reduce their diffusion. It is important to consider the implications of this statement 

when, as previously mentioned, glutamate transporters have been suggested to form 

multimers. Our X-link, must therefore bind two GLT-1 transporters in distinct mulitmers. This 

is a reasonable assumption because if the primary antibody was binding individual GLT-1 in 

the same multimer, there would be no hindrance of the transporter’s diffusion in X-link 

conditions. If indeed GLT-1 is moving on the surface of astrocytes in a multimer, this could 

potentially increase the efficacy of our X-link. Instead of one antibody being able to immobile 

two GLT-1 transporters, one single antibody would have the potential to immobilise six GLT-

1 molecules, the equivalent of two trimers. 

 After verifying these important controls, we investigated whether surface diffusion of 

GLT-1 plays a role in removing glutamate from the synapse. To do this we searched cultures 

for astrocytes which were double transfected with GFP/GLT-1flag and then recorded from 

spontaneous EPSCs from neurons situated inside the transfected astrocyte’s domain. We 

observed no difference in amplitude or the frequency of firing between control and X-link 
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conditions. We did, however, observe slower kinetics of single events, with both rise time 

and decay of EPSPs increased in GLT-1X-link conditions. 

 These in vitro observations were further strengthened by our work in the acute 

hippocampal slice preparation. Of course, any biological observation in vitro must be 

interpreted with caution, we should always strive to integrate our findings and test our 

hypotheses in the most intact and physiologically relevant preparation possible. Recently, 

our lab developed a novel technique by which proteins diffusing on the surface of neuronal 

membranes in intact brains can be immobilised and then neuronal activity recorded following 

acute brain slice preparation (Dupuis et al., 2014). This technique was readily transferred to 

our study in order in test our hypothesis in a more intact brain preparation. This was also 

made possible due to the fact that an antibody targeting an extracellular loop of GLT-1 was 

made commercially available, prior to this the only antibodies targeting endogenous GLT-1 

recognised C- and N- termini thus were useless for live single nanoparticle imaging.  

 We characterised the diffusion characteristics of endogenous GLT-1 (GLT-1endo) and 

compared to those of GLT-1flag. We observed that while the mobile fraction of GLT-1endo was 

rather similar to GLT-1flag, there was a much higher population of slow moving and immobile 

transporters in the GLT-1endo group. There are several possible explanations for this 

phenomenon; starting with the most critical, one could imagine that by transfecting 

astrocytes with GLT-1flag we are overloading the regulatory mechanisms which are involved 

in the surface trafficking of GLT-1 and this is why we are seeing transfected transporters 

moving faster. This is a plausible explanation, however one could also imagine that there is 

limited machinery in the cell for the manufacture of proteins and insertion of these proteins 

into the membrane. Cells do not continue manufacturing proteins until they explode. There 

are many regulatory hurdles to pass before a protein is expressed on the surface of the cell. 

Overexpression of exogenous proteins is widely used and well accepted technology in 

modern neuroscience; take for example recent advances in optogenetics (Boyden et al. 

2005) as well as GECIs such as GCaMP6 (Haustein et al. 2014), both techniques require 

Discussion | 95 



 

the expression of exogenous light-sensitive ion channels and calcium-sensitive fluorescent 

proteins respectively. Another piece of evidence against this ‘overloading’ hypothesis is the 

similarity in total distribution of endogenous and transfected GLT-1.The absolute diffusion 

speeds for the fastest and slowest moving transporters is exactly the same. Furthermore, the 

average speed of total GLT-1endo (mobile & immobile) is slower than that of total GLT-1flag, 

this observation may be due to the specificity of the antibody we are using. To track GLT-1flag 

transporters we are using an anti-flag antibody, this flag sequence of proteins (DYKDDDDK) 

does not occur in nature therefore there will be very little non-specific tagging. However, the 

antibody we are using against an extracellular loop of endogenous GLT-1 may be less 

specific. Polyclonal antibodies can vary from batch to batch and may indeed recognise this 

amino acid sequence if it is shared with other proteins. This could account for the higher 

proportion of slower moving and immobile trajectories that we are seeing. Finally, another 

plausible reason as to why GLT-1endo moves slower than GLT-1flag is that there are at least 3 

known splice variants of GLT-1 endogenously; a, b and c (Chen et al., 2002; Pines et al., 

1992; Rauen et al., 2004; Sullivan et al., 2004). These splice variants all differ in the N- and 

C- termini, therefore our antibody against endogenous GLT-1 will recognise all three variants 

of GLT-1. It is also possible that this commercial antibody, which recognises the extracellular 

loop between transmembrane domain 3 and 4 (amino acids 143-238), may bind the GLAST 

transporter. Although the amino acid sequence identity between these two proteins on this 

extracellular loop is ~ 37% (see Figure 26A) it is still possible that the antibody might 

recognise GLAST. Most commercially available antibodies bind to the N- or C- terminus of 

the protein, which have no sequence homology (see Figure 26B). 
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Figure 26. Alignment of GLAST and GLT-1 amino acid sequences 

(A) Sequences highlighted in red denote the amino acid sequence in the extracellular loop 

between transmembrane domains 3 and 4. Note high level of sequence identity in the 

extracellular loop targeted by anti-GLT-1 antibody. Stars denote identical amino acids. (B) 
Similarity between GLT-1 and GLAST. Colour between the two sequences denotes a 55 % 

homology. Sequences were aligned using SIM alignment tool (http://web.expasy.org/sim/). 

Graphic for part b was made using LALNVIEW bioinformatics software. 
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 Following the characterisation of GLT-1endo, we were convinced that this antibody 

was relatively specific, at least for glutamate transporters. We carried out further 

experiments and found that X-link of GLT-1, i.e. a reduction in the surface diffusion without 

any effect on the transport function was also possible. Satisfied with these in vitro data, we 

proceeded to investigate the effect of GLT-1endo X-link in hippocampal brain slices by 

stereotaxic injection of anti-GLT-1 antibodies into the hippocampus of the anaesthetised 

animal. As in culture we carried out exactly the same experiment, recording spontaneous 

EPSCs in neurons from the CA1 region of the hippocampus. We failed to observe any 

difference in frequency or amplitude of spontaneous EPSCs following X-link of GLT-1 in 

slices but again, exactly as in culture, we noted significantly slower kinetics with both rise 

time and decay increased in X-link conditions. These data further implicate surface diffusion 

of GLT-1 in the efficient buffering and removal of glutamate from the synapse, this time in an 

ex vivo brain slice preparation. 

 Many studies which pharmacologically blocked glutamate transporters have reported 

similar findings ours, i.e. blocking glutamate uptake increases the timecourse of synaptic 

glutamate, evidenced by slowed kinetics of EPSCs (Barbour et al., 1994; Mennerick and 

Zorumski, 1994; Overstreet et al., 1999; Takahashi et al., 1996; Tong and Jahr, 1994). 

However, we did not pharmacologically block transporters in X-link conditions. Transporters 

in X-link conditions were fully functional. The only parameter modified in this experiment was 

the speed of diffusion of GLT-1 on the surface of astrocytes. These data suggest that 

surface diffusion of GLT-1 plays an important role in controlling the timecourse of synaptic 

glutamate in the hippocampus.  

 Changes in AMPAR EPSC kinetics can be directly linked to the concentration and 

timecourse of glutamate at the synapse as well as the properties of the postsynaptic 

receptors activated. The decay rate of EPSCs is known to be a function of the properties of 

the receptors activated by glutamate. In our experiments the membrane potential was held 

at -70 mV, thus we can be certain that the spontaneous EPSCs recorded come from 
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activation of postsynaptic AMPARs. As mentioned in the introduction, AMPARs are fast-

desensitising receptors, so the duration of AMPAR EPSCs are tightly regulated by the 

desensitisation rate. We observed slower kinetics following X-link of GLT-1, which we 

believe are due to a reduction in glutamate uptake by transporters leading to prolonged 

exposure of AMPARs to glutamate. As we did not alter the properties of postsynaptic 

glutamate receptors in our experimental conditions, we can rule out any modifications in the 

properties of receptors which may influence the kinetic changes from our results. Therefore 

the only possible conclusion from our data is that GLT-1 surface diffusion plays a role in 

controlling the concentration and timecourse of glutamate, as observed by increased 

AMPAR activation in conditions where GLT-1 is immobilised. 

 We also observed an increase in the rise time of spontaneous EPSCs. This is quite 

interesting and has not been previously demonstrated by other laboratories. We could 

speculate that other studies have failed to observe this increased rise time due to the 

experimental conditions used. The majority of studies, which observed changes in the decay 

of EPSCs, were carried out at room temperature (21-24°C). It is now understood that 

glutamate transporter function, diffusion of glutamate and kinetics of glutamate receptors are 

temperature dependent synapses (Asztely et al., 1997). The few studies which carried out 

experiments near physiological temperature (34°C) have reported reduced spillover at 

hippocampal synapses (Asztely et al., 1997) and more dramatic effects on AMPAR EPSCs 

at cerebellar synapses in the presence of glutamate transport blockers (Tong and Jahr, 

1994). Therefore, it is possible that many studies which observed changes in the decay of 

EPSCs in the presence of glutamate uptake blockers have, through experimentation in non-

physiological conditions, underestimated the role that transporters play in regulating the 

timecourse of glutamate at the synapse. 

 In addition to increasing the efficacy of glutamate uptake by transporters, recording at 

physiological temperature also affects the diffusion of the neurotransmitter glutamate. This 

could further explain our observed increase in rise time of EPSCs. As hippocampal 
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synapses are not fully ensheathed by astrocytes, reducing glutamate uptake by X-link, is 

likely to result in increased glutamate spillover between synapses. Thus a delayed rise time 

could be explained by activation of AMPARs on adjacent synapses. At physiological 

temperatures glutamate, as well as other molecules, diffuse faster than at room temperature, 

therefore any impairment of the uptake system will lead to increased diffusion from the 

synaptic cleft. Activation of AMPARs on adjacent synapses would occur slightly later than 

activation of AMPARs in the original synapse therefore slowing the rise time kinetics.  

 The observed increase in rise time can be further explained by recent research which 

suggests that AMPARs are not distributed homogenously on the postsynaptic density, but 

are rather organised into nanodomains of receptors on the PSD (Nair et al., 2013). This 

study by Nair and colleagues (2013) demonstrated that groups of AMPA receptors which are 

more than 150 nm apart can be functionally separated, depending on the precise location of 

single vesicle release. They calculated that if these nanodomains are separated by > 150 

nm it is possible that single vesicle release of transmitter will act upon one nanodomain and 

not the neighbouring nanodomain. So if we consider the X-link conditions in this study, we 

know that glutamate uptake is impaired leading to an increase in timecourse and diffusion of 

glutamate at the synapse. Thus, we can hypothesises that X-link of GLT-1 allows 

monosynaptic spillover between nanodomains of AMPARs thereby increasing the rise time 

of EPSCs. 

  

Discussion | 100 



 

Conclusion 
 

Here we have identified a novel mechanism for glutamate removal from the synapse 

on a fast timescale, through surface diffusion of GLT-1. Previous studies have come to the 

conclusion that, due to the slow transport cycle of glutamate transporters, there are more 

transporters than glutamate molecules at the synaptic area and it is by a sheer force of 

numbers that glutamate transporters can effectively bind all the glutamate molecules and 

slowly transport them on a synaptic scale (Attwell and Gibb, 2005; Diamond and Jahr, 1997; 

Lehre and Danbolt, 1998). These laboratories also hypothesised glutamate transporters may 

act as a high pass filter, meaning that high frequency synaptic glutamate release may 

saturate these transporters and lead to the activation of extrasynaptic receptors and/or 

adjacent synapses which have many physiological and pathological roles (Hardingham et 

al., 2002; Kullmann et al., 1996). Recently this point of view began to change direction with 

new evidence suggesting that it is not only the level of glutamate transporter expression but 

also their precise location, particularly close to the synaptic cleft, which can control neuronal 

glutamate receptor activation (Melone et al., 2009; Oliet et al., 2001; Omrani et al., 2009; 

Pannasch et al., 2014).  

Here, we further update this hypothesis, challenging the supposed necessity for a 

large number of transporters at the synapse. Our findings infer that it is surface diffusion of 

GLT-1 which contributes to the buffering and removal of glutamate from the synaptic cleft on 

a fast timescale. We have shown that these transporters are not fixed in the membrane but 

are highly dynamic and that this surface diffusion is activity-dependent, regulated by both 

neuronal and glial cell activity. We observed that mimicking neuronal glutamate release by 

uncaging glutamate close to the synapse, increases GLT-1 surface diffusion resulting in 

displacement of these transporters from the confines of the synapse. Functional 

consequences of immobilising GLT-1 in vitro as well as ex vivo in a hippocampal slice 

preparation were observed through strong changes in kinetics of spontaneous EPSCs. 
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Similar findings have been demonstrated by pharmacologically blocking glutamate 

transporters indicating that surface diffusion of GLT-1 serves a functional role in controlling 

the timecourse of synaptic glutamate. The observed changes in kinetics indicate prolonged 

exposure of neuronal glutamate receptors to glutamate, highlighting the vital role of GLT-1 

surface diffusion in maintaining synaptic glutamate homeostasis both in vitro and in vivo. 

Taken together these data further reinforce the concept of the tripartite synapse, which 

proposes that astrocytes are active partners at chemical synapses and directly participate in 

cerebral communication. 

Trafficking of neurotransmitter receptors at the surface of neurons plays important 

roles in controlling receptor distribution and synaptic signaling in physiological as well as 

pathological processes (Gerrow and Triller, 2010; Krugers et al., 2010; Mikasova et al., 

2012). Consequently, it is not far-fetched to consider the possibility of a failure in the 

regulatory mechanisms controlling glutamate transporter surface diffusion under certain 

pathological conditions. It has previously been demonstrated that disruption of this vital 

neurotransmitter clearance mechanism contributes to many neurodegenerative diseases 

including ALS, epilepsy, Alzheimer’s and Huntington’s disease (Lievens et al., 2001; 

Rothstein et al., 1995; Scimemi et al., 2013; Tanaka et al., 1997). Thus, in addition to 

improving our understanding of the contribution of transporters in controlling glutamate at the 

synapse, this unexpected mechanism opens new avenues of research for neurological and 

psychiatric disorders involving a dysfunction of glutamate transport.  

 

 

Conclusion | 102 



 

References 
 

Annese, J., Schenker-Ahmed, N.M., Bartsch, H., Maechler, P., Sheh, C., Thomas, N., Kayano, J., 
Ghatan, A., Bresler, N., Frosch, M.P., et al. (2014). Postmortem examination of patient H.M.'s brain 
based on histological sectioning and digital 3D reconstruction. Nature communications5, 3122. 

Araque, A., Li, N., Doyle, R.T., and Haydon, P.G. (2000). SNARE protein-dependent glutamate 
release from astrocytes. The Journal of neuroscience : the official journal of the Society for 
Neuroscience20, 666-673. 

Aravanis, A.M., Wang, L.P., Zhang, F., Meltzer, L.A., Mogri, M.Z., Schneider, M.B., and Deisseroth, K. 
(2007). An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and 
optogenetic technology. Journal of neural engineering4, S143-156. 

Arizono, M., Bannai, H., Nakamura, K., Niwa, F., Enomoto, M., Matsu-Ura, T., Miyamoto, A., 
Sherwood, M.W., Nakamura, T., and Mikoshiba, K. (2012). Receptor-selective diffusion barrier 
enhances sensitivity of astrocytic processes to metabotropic glutamate receptor stimulation. Science 
signaling5, ra27. 

Arnth-Jensen, N., Jabaudon, D., and Scanziani, M. (2002). Cooperation between independent 
hippocampal synapses is controlled by glutamate uptake. Nature neuroscience5, 325-331. 

Arriza, J.L., Eliasof, S., Kavanaugh, M.P., and Amara, S.G. (1997). Excitatory amino acid transporter 
5, a retinal glutamate transporter coupled to a chloride conductance. Proceedings of the National 
Academy of Sciences of the United States of America94, 4155-4160. 

Arriza, J.L., Fairman, W.A., Wadiche, J.I., Murdoch, G.H., Kavanaugh, M.P., and Amara, S.G. (1994). 
Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. 
The Journal of neuroscience : the official journal of the Society for Neuroscience14, 5559-5569. 

Arzberger, T., Krampfl, K., Leimgruber, S., and Weindl, A. (1997). Changes of NMDA receptor subunit 
(NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington's disease--an in situ 
hybridization study. Journal of neuropathology and experimental neurology56, 440-454. 

Asztely, F., Erdemli, G., and Kullmann, D.M. (1997). Extrasynaptic glutamate spillover in the 
hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron18, 281-
293. 

Attwell, D., and Gibb, A. (2005). Neuroenergetics and the kinetic design of excitatory synapses. 
Nature reviews Neuroscience6, 841-849. 

Banker, G.A., and Cowan, W.M. (1977). Rat hippocampal neurons in dispersed cell culture. Brain 
research126, 397-342. 

Barbour, B., Keller, B.U., Llano, I., and Marty, A. (1994). Prolonged presence of glutamate during 
excitatory synaptic transmission to cerebellar Purkinje cells. Neuron12, 1331-1343. 

Bard, L., Sainlos, M., Bouchet, D., Cousins, S., Mikasova, L., Breillat, C., Stephenson, F.A., Imperiali, 
B., Choquet, D., and Groc, L. (2010). Dynamic and specific interaction between synaptic NR2-NMDA 
receptor and PDZ proteins. Proceedings of the National Academy of Sciences of the United States of 
America107, 19561-19566. 

Bassan, M., Liu, H., Madsen, K.L., Armsen, W., Zhou, J., Desilva, T., Chen, W., Paradise, A., Brasch, 
M.A., Staudinger, J., et al. (2008). Interaction between the glutamate transporter GLT1b and the 
synaptic PDZ domain protein PICK1. The European journal of neuroscience27, 66-82. 

References | 103 



 

Bats, C., Groc, L., and Choquet, D. (2007). The interaction between Stargazin and PSD-95 regulates 
AMPA receptor surface trafficking. Neuron53, 719-734. 

Ben-Ari, Y. (1985). Limbic seizure and brain damage produced by kainic acid: mechanisms and 
relevance to human temporal lobe epilepsy. Neuroscience14, 375-403. 

Benediktsson, A.M., Marrs, G.S., Tu, J.C., Worley, P.F., Rothstein, J.D., Bergles, D.E., and Dailey, 
M.E. (2012). Neuronal activity regulates glutamate transporter dynamics in developing astrocytes. 
Glia2, 175-188. 

Bergles, D.E., and Jahr, C.E. (1997). Synaptic activation of glutamate transporters in hippocampal 
astrocytes. Neuron19, 1297-1308. 

Bliss, T.V., and Collingridge, G.L. (1993). A synaptic model of memory: long-term potentiation in the 
hippocampus. Nature361, 31-39. 

Bliss, T.V., Collingridge, G.L., and Morris, R.G. (2003). Introduction. Long-term potentiation and 
structure of the issue. Philosophical transactions of the Royal Society of London Series B, Biological 
sciences358, 607-611. 

Bliss, T.V., and Gardner-Medwin, A.R. (1973). Long-lasting potentiation of synaptic transmission in 
the dentate area of the unanaestetized rabbit following stimulation of the perforant path. The Journal 
of physiology232, 357-374. 

Bliss, T.V., and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate 
area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of 
physiology232, 331-356. 

Bonde, C., Sarup, A., Schousboe, A., Gegelashvili, G., Zimmer, J., and Noraberg, J. (2003). 
Neurotoxic and neuroprotective effects of the glutamate transporter inhibitor DL-threo-beta-
benzyloxyaspartate (DL-TBOA) during physiological and ischemia-like conditions. Neurochemistry 
international43, 371-380. 

Boudker, O., Ryan, R.M., Yernool, D., Shimamoto, K., and Gouaux, E. (2007). Coupling substrate and 
ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature445, 387-393. 

Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005). Millisecond-timescale, 
genetically targeted optical control of neural activity. Nature neuroscience8, 1263-1268. 

Burger, P.M., Mehl, E., Cameron, P.L., Maycox, P.R., Baumert, M., Lottspeich, F., De Camilli, P., and 
Jahn, R. (1989). Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of 
glutamate. Neuron3, 715-720. 

Carmona, M.A., Murai, K.K., Wang, L., Roberts, A.J., and Pasquale, E.B. (2009). Glial ephrin-A3 
regulates hippocampal dendritic spine morphology and glutamate transport. Proceedings of the 
National Academy of Sciences of the United States of America106, 12524-12529. 

Carroll, R.C., Beattie, E.C., von Zastrow, M., and Malenka, R.C. (2001). Role of AMPA receptor 
endocytosis in synaptic plasticity. Nature reviews Neuroscience2, 315-324. 

Castellucci, V., Pinsker, H., Kupfermann, I., and Kandel, E.R. (1970). Neuronal mechanisms of 
habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science167, 1745-1748. 

Charles, A.C., Merrill, J.E., Dirksen, E.R., and Sanderson, M.J. (1991). Intercellular signaling in glial 
cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron6, 
983-992. 

References | 104 



 

Chaudhry, F.A., Lehre, K.P., van Lookeren Campagne, M., Ottersen, O.P., Danbolt, N.C., and Storm-
Mathisen, J. (1995). Glutamate transporters in glial plasma membranes: highly differentiated 
localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron15, 711-720. 

Chen, W., Aoki, C., Mahadomrongkul, V., Gruber, C.E., Wang, G.J., Blitzblau, R., Irwin, N., and 
Rosenberg, P.A. (2002). Expression of a variant form of the glutamate transporter GLT1 in neuronal 
cultures and in neurons and astrocytes in the rat brain. The Journal of neuroscience : the official 
journal of the Society for Neuroscience22, 2142-2152. 

Choi, D.W. (1985). Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neuroscience 
letters58, 293-297. 

Choi, D.W. (1987). Ionic dependence of glutamate neurotoxicity. The Journal of neuroscience : the 
official journal of the Society for Neuroscience7, 369-379. 

Clark, B.A., and Barbour, B. (1997). Currents evoked in Bergmann glial cells by parallel fibre 
stimulation in rat cerebellar slices. The Journal of physiology502 ( Pt 2), 335-350. 

Clements, J.D. (1996). Transmitter timecourse in the synaptic cleft: its role in central synaptic function. 
Trends in neurosciences19, 163-171. 

Clements, J.D., Lester, R.A., Tong, G., Jahr, C.E., and Westbrook, G.L. (1992). The time course of 
glutamate in the synaptic cleft. Science258, 1498-1501. 

Cleveland, D.W., and Rothstein, J.D. (2001). From Charcot to Lou Gehrig: deciphering selective 
motor neuron death in ALS. Nature reviews Neuroscience2, 806-819. 

Colquhoun, D., Jonas, P., and Sakmann, B. (1992). Action of brief pulses of glutamate on 
AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. The Journal of 
physiology458, 261-287. 

Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S., and Smith, S.J. (1990). Glutamate induces calcium 
waves in cultured astrocytes: long-range glial signaling. Science247, 470-473. 

Curtis, D.R., Phillis, J.W., and Watkins, J.C. (1960). The chemical excitation of spinal neurones by 
certain acidic amino acids. The Journal of physiology150, 656-682. 

Danbolt, N.C. (2001). Glutamate uptake. Prog Neurobiol65, 1-105. 

Di Castro, M.A., Chuquet, J., Liaudet, N., Bhaukaurally, K., Santello, M., Bouvier, D., Tiret, P., and 
Volterra, A. (2011). Local Ca2+ detection and modulation of synaptic release by astrocytes. Nature 
neuroscience14, 1276-1284. 

Diamond, J.S., and Jahr, C.E. (1997). Transporters buffer synaptically released glutamate on a 
submillisecond time scale. The Journal of neuroscience : the official journal of the Society for 
Neuroscience17, 4672-4687. 

Djukic, B., Casper, K.B., Philpot, B.D., Chin, L.S., and McCarthy, K.D. (2007). Conditional knock-out 
of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and 
enhanced short-term synaptic potentiation. The Journal of neuroscience : the official journal of the 
Society for Neuroscience27, 11354-11365. 

Dupuis, J.P., Ladepeche, L., Seth, H., Bard, L., Varela, J., Mikasova, L., Bouchet, D., Rogemond, V., 
Honnorat, J., Hanse, E., and Groc, L. (2014). Surface dynamics of GluN2B-NMDA receptors controls 
plasticity of maturing glutamate synapses. The EMBO journal. 

Eccles, J.C., and Jaeger, J.C. (1958). The relationship between the mode of operation and the 
dimensions of the junctional regions at synapses and motor end-organs. Proceedings of the Royal 
Society of London Series B, Containing papers of a Biological character Royal Society148, 38-56. 

References | 105 



 

Fairman, W.A., Vandenberg, R.J., Arriza, J.L., Kavanaugh, M.P., and Amara, S.G. (1995). An 
excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature375, 599-
603. 

Fan, D., Grooms, S.Y., Araneda, R.C., Johnson, A.B., Dobrenis, K., Kessler, J.A., and Zukin, R.S. 
(1999). AMPA receptor protein expression and function in astrocytes cultured from hippocampus. 
Journal of neuroscience research57, 557-571. 

Filosa, A., Paixao, S., Honsek, S.D., Carmona, M.A., Becker, L., Feddersen, B., Gaitanos, L., 
Rudhard, Y., Schoepfer, R., Klopstock, T., et al. (2009). Neuron-glia communication via 
EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nature neuroscience12, 1285-
1292. 

Fonnum, F. (1984). Glutamate: a neurotransmitter in mammalian brain. Journal of neurochemistry42, 
1-11. 

Forsythe, I.D., and Westbrook, G.L. (1988). Slow excitatory postsynaptic currents mediated by N-
methyl-D-aspartate receptors on cultured mouse central neurones. The Journal of physiology396, 
515-533. 

Frischknecht, R., Heine, M., Perrais, D., Seidenbecher, C.I., Choquet, D., and Gundelfinger, E.D. 
(2009). Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic 
plasticity. Nature neuroscience12, 897-904. 

Furuta, A., Martin, L.J., Lin, C.L., Dykes-Hoberg, M., and Rothstein, J.D. (1997a). Cellular and 
synaptic localization of the neuronal glutamate transporters excitatory amino acid transporter 3 and 4. 
Neuroscience81, 1031-1042. 

Furuta, A., Rothstein, J.D., and Martin, L.J. (1997b). Glutamate transporter protein subtypes are 
expressed differentially during rat CNS development. The Journal of neuroscience : the official journal 
of the Society for Neuroscience17, 8363-8375. 

Gallo, V., and Ghiani, C.A. (2000). Glutamate receptors in glia: new cells, new inputs and new 
functions. Trends in pharmacological sciences21, 252-258. 

Genda, E.N., Jackson, J.G., Sheldon, A.L., Locke, S.F., Greco, T.M., O'Donnell, J.C., Spruce, L.A., 
Xiao, R., Guo, W., Putt, M., et al. (2011). Co-compartmentalization of the astroglial glutamate 
transporter, GLT-1, with glycolytic enzymes and mitochondria. The Journal of neuroscience : the 
official journal of the Society for Neuroscience31, 18275-18288. 

Gerrow, K., and Triller, A. (2010). Synaptic stability and plasticity in a floating world. Current opinion in 
neurobiology20, 631-639. 

Gonzalez, M.I., Susarla, B.T., and Robinson, M.B. (2005). Evidence that protein kinase Calpha 
interacts with and regulates the glial glutamate transporter GLT-1. Journal of neurochemistry94, 1180-
1188. 

Gordon, G.R., Baimoukhametova, D.V., Hewitt, S.A., Rajapaksha, W.R., Fisher, T.E., and Bains, J.S. 
(2005). Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nature 
neuroscience8, 1078-1086. 

Gourine, A.V., Kasymov, V., Marina, N., Tang, F., Figueiredo, M.F., Lane, S., Teschemacher, A.G., 
Spyer, K.M., Deisseroth, K., and Kasparov, S. (2010). Astrocytes control breathing through pH-
dependent release of ATP. Science329, 571-575. 

Groc, L., Choquet, D., and Chaouloff, F. (2008). The stress hormone corticosterone conditions 
AMPAR surface trafficking and synaptic potentiation. Nature neuroscience11, 868-870. 

Groc, L., Choquet, D., Stephenson, F.A., Verrier, D., Manzoni, O.J., and Chavis, P. (2007). NMDA 
receptor surface trafficking and synaptic subunit composition are developmentally regulated by the 

References | 106 



 

extracellular matrix protein Reelin. The Journal of neuroscience : the official journal of the Society for 
Neuroscience27, 10165-10175. 

Groc, L., Heine, M., Cognet, L., Brickley, K., Stephenson, F.A., Lounis, B., and Choquet, D. (2004). 
Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. 
Nature neuroscience7, 695-696. 

Groc, L., Heine, M., Cousins, S.L., Stephenson, F.A., Lounis, B., Cognet, L., and Choquet, D. (2006). 
NMDA receptor surface mobility depends on NR2A-2B subunits. Proceedings of the National 
Academy of Sciences of the United States of America103, 18769-18774. 

Grunewald, M., and Kanner, B.I. (2000). The accessibility of a novel reentrant loop of the glutamate 
transporter GLT-1 is restricted by its substrate. The Journal of biological chemistry275, 9684-9689. 

Hamberger, A., and Nystrom, B. (1984). Extra- and intracellular amino acids in the hippocampus 
during development of hepatic encephalopathy. Neurochemical research9, 1181-1192. 

Hansen, K.B., Yuan, H., and Traynelis, S.F. (2007). Structural aspects of AMPA receptor activation, 
desensitization and deactivation. Current opinion in neurobiology17, 281-288. 

Hardingham, G.E., Fukunaga, Y., and Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic 
NMDARs by triggering CREB shut-off and cell death pathways. Nature neuroscience5, 405-414. 

Harris, M.E., Wang, Y., Pedigo, N.W., Jr., Hensley, K., Butterfield, D.A., and Carney, J.M. (1996). 
Amyloid beta peptide (25-35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte 
cultures. Journal of neurochemistry67, 277-286. 

Haugeto, O., Ullensvang, K., Levy, L.M., Chaudhry, F.A., Honore, T., Nielsen, M., Lehre, K.P., and 
Danbolt, N.C. (1996). Brain glutamate transporter proteins form homomultimers. The Journal of 
biological chemistry271, 27715-27722. 

Haustein, M.D., Kracun, S., Lu, X.H., Shih, T., Jackson-Weaver, O., Tong, X., Xu, J., Yang, X.W., 
O'Dell, T.J., Marvin, J.S., et al. (2014). Conditions and constraints for astrocyte calcium signaling in 
the hippocampal mossy fiber pathway. Neuron82, 413-429. 

Hayashi, T. (1954). Effects of sodium glutamate on the nervous system. The Keio Journal of 
Medicine3, 183-192. 

Hebb, D.O. (1949). The organization of behavior; a neuropsychological theory (New York,: Wiley). 

Heine, M., Groc, L., Frischknecht, R., Beique, J.C., Lounis, B., Rumbaugh, G., Huganir, R.L., Cognet, 
L., and Choquet, D. (2008). Surface mobility of postsynaptic AMPARs tunes synaptic transmission. 
Science320, 201-205. 

Henneberger, C., Papouin, T., Oliet, S.H., and Rusakov, D.A. (2010). Long-term potentiation depends 
on release of D-serine from astrocytes. Nature463, 232-236. 

Hennig, M.H. (2013). Theoretical models of synaptic short term plasticity. Frontiers in computational 
neuroscience7, 45. 

Herman, M.A., and Jahr, C.E. (2007). Extracellular glutamate concentration in hippocampal slice. The 
Journal of neuroscience : the official journal of the Society for Neuroscience27, 9736-9741. 

Hestrin, S. (1992). Activation and desensitization of glutamate-activated channels mediating fast 
excitatory synaptic currents in the visual cortex. Neuron9, 991-999. 

Hilal, M. (2013). Role of Scribble1 in hippocampal synaptic maturation, bidirectional plasticity and 
spatial memory formation in mice.  (University of Bordeaux). 

References | 107 



 

Holmseth, S., Scott, H.A., Real, K., Lehre, K.P., Leergaard, T.B., Bjaalie, J.G., and Danbolt, N.C. 
(2009). The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) 
glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience162, 
1055-1071. 

Isaac, J.T., Nicoll, R.A., and Malenka, R.C. (1995). Evidence for silent synapses: implications for the 
expression of LTP. Neuron15, 427-434. 

Jacob, T.C., Bogdanov, Y.D., Magnus, C., Saliba, R.S., Kittler, J.T., Haydon, P.G., and Moss, S.J. 
(2005). Gephyrin regulates the cell surface dynamics of synaptic GABAA receptors. The Journal of 
neuroscience : the official journal of the Society for Neuroscience25, 10469-10478. 

Jourdain, P., Bergersen, L.H., Bhaukaurally, K., Bezzi, P., Santello, M., Domercq, M., Matute, C., 
Tonello, F., Gundersen, V., and Volterra, A. (2007). Glutamate exocytosis from astrocytes controls 
synaptic strength. Nature neuroscience10, 331-339. 

Kanai, Y., and Hediger, M.A. (1992). Primary structure and functional characterization of a high-
affinity glutamate transporter. Nature360, 467-471. 

Kanner, B.I., and Sharon, I. (1978). Active transport of L-glutamate by membrane vesicles isolated 
from rat brain. Biochemistry17, 3949-3953. 

Kennedy, M.J., Davison, I.G., Robinson, C.G., and Ehlers, M.D. (2010). Syntaxin-4 defines a domain 
for activity-dependent exocytosis in dendritic spines. Cell141, 524-535. 

Kettenmann, H., Kirchhoff, F., and Verkhratsky, A. (2013). Microglia: new roles for the synaptic 
stripper. Neuron77, 10-18. 

Krebs, H.A. (1935). Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and 
ammonia, and the enzymic hydrolysis of glutamine in animal tissues. The Biochemical journal29, 
1951-1969. 

Krugers, H.J., Hoogenraad, C.C., and Groc, L. (2010). Stress hormones and AMPA receptor 
trafficking in synaptic plasticity and memory. Nature reviews Neuroscience11, 675-681. 

Kucheryavykh, Y.V., Kucheryavykh, L.Y., Nichols, C.G., Maldonado, H.M., Baksi, K., Reichenbach, 
A., Skatchkov, S.N., and Eaton, M.J. (2007). Downregulation of Kir4.1 inward rectifying potassium 
channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical 
astrocytes. Glia55, 274-281. 

Kullmann, D.M., Erdemli, G., and Asztely, F. (1996). LTP of AMPA and NMDA receptor-mediated 
signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron17, 461-
474. 

Kupfermann, I., Castellucci, V., Pinsker, H., and Kandel, E. (1970). Neuronal correlates of habituation 
and dishabituation of the gill-withdrawal reflex in Aplysia. Science167, 1743-1745. 

Ladepeche, L., Dupuis, J.P., Bouchet, D., Doudnikoff, E., Yang, L., Campagne, Y., Bezard, E., Hosy, 
E., and Groc, L. (2013a). Single-molecule imaging of the functional crosstalk between surface NMDA 
and dopamine D1 receptors. Proceedings of the National Academy of Sciences of the United States 
of America110, 18005-18010. 

Ladepeche, L., Yang, L., Bouchet, D., and Groc, L. (2013b). Regulation of Dopamine D1 Receptor 
Dynamics within the Postsynaptic Density of Hippocampal Glutamate Synapses. PloS one8, e74512. 

Lalo, U., Pankratov, Y., Kirchhoff, F., North, R.A., and Verkhratsky, A. (2006). NMDA receptors 
mediate neuron-to-glia signaling in mouse cortical astrocytes. The Journal of neuroscience : the 
official journal of the Society for Neuroscience26, 2673-2683. 

References | 108 



 

Lauderback, C.M., Hackett, J.M., Huang, F.F., Keller, J.N., Szweda, L.I., Markesbery, W.R., and 
Butterfield, D.A. (2001). The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-
2-nonenal in the Alzheimer's disease brain: the role of Abeta1-42. Journal of neurochemistry78, 413-
416. 

Lauderback, C.M., Harris-White, M.E., Wang, Y., Pedigo, N.W., Jr., Carney, J.M., and Butterfield, D.A. 
(1999). Amyloid beta-peptide inhibits Na+-dependent glutamate uptake. Life sciences65, 1977-1981. 

Lehre, K.P., and Danbolt, N.C. (1998). The number of glutamate transporter subtype molecules at 
glutamatergic synapses: chemical and stereological quantification in young adult rat brain. The 
Journal of neuroscience : the official journal of the Society for Neuroscience18, 8751-8757. 

Lehre, K.P., and Rusakov, D.A. (2002). Asymmetry of glia near central synapses favors 
presynaptically directed glutamate escape. Biophysical journal83, 125-134. 

Liao, D., Hessler, N.A., and Malinow, R. (1995). Activation of postsynaptically silent synapses during 
pairing-induced LTP in CA1 region of hippocampal slice. Nature375, 400-404. 

Lievens, J.C., Woodman, B., Mahal, A., Spasic-Boscovic, O., Samuel, D., Kerkerian-Le Goff, L., and 
Bates, G.P. (2001). Impaired glutamate uptake in the R6 Huntington's disease transgenic mice. 
Neurobiology of disease8, 807-821. 

Lynch, M.A. (2004). Long-term potentiation and memory. Physiological reviews84, 87-136. 

Malinow, R., and Malenka, R.C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual 
review of neuroscience25, 103-126. 

Marcaggi, P., Billups, D., and Attwell, D. (2003). The role of glial glutamate transporters in maintaining 
the independent operation of juvenile mouse cerebellar parallel fibre synapses. The Journal of 
physiology552, 89-107. 

Marie, H., Billups, D., Bedford, F.K., Dumoulin, A., Goyal, R.K., Longmore, G.D., Moss, S.J., and 
Attwell, D. (2002). The amino terminus of the glial glutamate transporter GLT-1 interacts with the LIM 
protein Ajuba. Molecular and cellular neurosciences19, 152-164. 

Masliah, E., Alford, M., DeTeresa, R., Mallory, M., and Hansen, L. (1996). Deficient glutamate 
transport is associated with neurodegeneration in Alzheimer's disease. Annals of neurology40, 759-
766. 

Masliah, E., Alford, M., Mallory, M., Rockenstein, E., Moechars, D., and Van Leuven, F. (2000). 
Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice. 
Experimental neurology163, 381-387. 

Mayer, M.L., and Westbrook, G.L. (1985). The action of N-methyl-D-aspartic acid on mouse spinal 
neurones in culture. The Journal of physiology361, 65-90. 

Melone, M., Bellesi, M., and Conti, F. (2009). Synaptic localization of GLT-1a in the rat somatic 
sensory cortex. Glia57, 108-117. 

Mennerick, S., Shen, W., Xu, W., Benz, A., Tanaka, K., Shimamoto, K., Isenberg, K.E., Krause, J.E., 
and Zorumski, C.F. (1999). Substrate turnover by transporters curtails synaptic glutamate transients. 
The Journal of neuroscience : the official journal of the Society for Neuroscience19, 9242-9251. 

Mennerick, S., and Zorumski, C.F. (1994). Glial contributions to excitatory neurotransmission in 
cultured hippocampal cells. Nature368, 59-62. 

Michaluk, P., Mikasova, L., Groc, L., Frischknecht, R., Choquet, D., and Kaczmarek, L. (2009). Matrix 
metalloproteinase-9 controls NMDA receptor surface diffusion through integrin beta1 signaling. The 
Journal of neuroscience : the official journal of the Society for Neuroscience29, 6007-6012. 

References | 109 



 

Mikasova, L., De Rossi, P., Bouchet, D., Georges, F., Rogemond, V., Didelot, A., Meissirel, C., 
Honnorat, J., and Groc, L. (2012). Disrupted surface cross-talk between NMDA and Ephrin-B2 
receptors in anti-NMDA encephalitis. Brain : a journal of neurology135, 1606-1621. 

Mitchell, S.J., and Silver, R.A. (2000). Glutamate spillover suppresses inhibition by activating 
presynaptic mGluRs. Nature404, 498-502. 

Molinari, F., Cattani, A.A., Mdzomba, J.B., and Aniksztejn, L. (2012). Glutamate transporters control 
metabotropic glutamate receptors activation to prevent the genesis of paroxysmal burst in the 
developing hippocampus. Neuroscience207, 25-36. 

Mothet, J.P., Parent, A.T., Wolosker, H., Brady, R.O., Jr., Linden, D.J., Ferris, C.D., Rogawski, M.A., 
and Snyder, S.H. (2000). D-serine is an endogenous ligand for the glycine site of the N-methyl-D-
aspartate receptor. Proceedings of the National Academy of Sciences of the United States of 
America97, 4926-4931. 

Mothet, J.P., Pollegioni, L., Ouanounou, G., Martineau, M., Fossier, P., and Baux, G. (2005). 
Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of 
the gliotransmitter D-serine. Proceedings of the National Academy of Sciences of the United States of 
America102, 5606-5611. 

Muir, J., Arancibia-Carcamo, I.L., MacAskill, A.F., Smith, K.R., Griffin, L.D., and Kittler, J.T. (2010). 
NMDA receptors regulate GABAA receptor lateral mobility and clustering at inhibitory synapses 
through serine 327 on the gamma2 subunit. Proceedings of the National Academy of Sciences of the 
United States of America107, 16679-16684. 

Mulkey, R.M., Endo, S., Shenolikar, S., and Malenka, R.C. (1994). Involvement of a 
calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature369, 486-
488. 

Mulligan, S.J., and MacVicar, B.A. (2004). Calcium transients in astrocyte endfeet cause 
cerebrovascular constrictions. Nature431, 195-199. 

Nagelhus, E.A., Horio, Y., Inanobe, A., Fujita, A., Haug, F.M., Nielsen, S., Kurachi, Y., and Ottersen, 
O.P. (1999). Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat 
retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. 
Glia26, 47-54. 

Nair, D., Hosy, E., Petersen, J.D., Constals, A., Giannone, G., Choquet, D., and Sibarita, J.B. (2013). 
Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in 
nanodomains regulated by PSD95. The Journal of neuroscience : the official journal of the Society for 
Neuroscience33, 13204-13224. 

Nelson, G., Chandrashekar, J., Hoon, M.A., Feng, L., Zhao, G., Ryba, N.J., and Zuker, C.S. (2002). 
An amino-acid taste receptor. Nature416, 199-202. 

Newman, E.A., and Zahs, K.R. (1997). Calcium waves in retinal glial cells. Science275, 844-847. 

Nielsen, S., Nagelhus, E.A., Amiry-Moghaddam, M., Bourque, C., Agre, P., and Ottersen, O.P. 
(1997). Specialized membrane domains for water transport in glial cells: high-resolution immunogold 
cytochemistry of aquaporin-4 in rat brain. The Journal of neuroscience : the official journal of the 
Society for Neuroscience17, 171-180. 

Niswender, C.M., and Conn, P.J. (2010). Metabotropic glutamate receptors: physiology, 
pharmacology, and disease. Annual review of pharmacology and toxicology50, 295-322. 

Oliet, S.H., Piet, R., and Poulain, D.A. (2001). Control of glutamate clearance and synaptic efficacy by 
glial coverage of neurons. Science292, 923-926. 

References | 110 



 

Omrani, A., Melone, M., Bellesi, M., Safiulina, V., Aida, T., Tanaka, K., Cherubini, E., and Conti, F. 
(2009). Up-regulation of GLT-1 severely impairs LTD at mossy fibre--CA3 synapses. The Journal of 
physiology587, 4575-4588. 

Orrenius, S., Zhivotovsky, B., and Nicotera, P. (2003). Regulation of cell death: the calcium-apoptosis 
link. Nature reviews Molecular cell biology4, 552-565. 

Otis, T.S., and Jahr, C.E. (1998). Anion currents and predicted glutamate flux through a neuronal 
glutamate transporter. The Journal of neuroscience : the official journal of the Society for 
Neuroscience18, 7099-7110. 

Overstreet, L.S., Kinney, G.A., Liu, Y.B., Billups, D., and Slater, N.T. (1999). Glutamate transporters 
contribute to the time course of synaptic transmission in cerebellar granule cells. The Journal of 
neuroscience : the official journal of the Society for Neuroscience19, 9663-9673. 

Panatier, A., Theodosis, D.T., Mothet, J.P., Touquet, B., Pollegioni, L., Poulain, D.A., and Oliet, S.H. 
(2006). Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell125, 775-
784. 

Panatier, A., Vallee, J., Haber, M., Murai, K.K., Lacaille, J.C., and Robitaille, R. (2011). Astrocytes are 
endogenous regulators of basal transmission at central synapses. Cell146, 785-798. 

Pannasch, U., Freche, D., Dallerac, G., Ghezali, G., Escartin, C., Ezan, P., Cohen-Salmon, M., 
Benchenane, K., Abudara, V., Dufour, A., et al. (2014). Connexin 30 sets synaptic strength by 
controlling astroglial synapse invasion. Nature neuroscience17, 549-558. 

Papouin, T., Ladepeche, L., Ruel, J., Sacchi, S., Labasque, M., Hanini, M., Groc, L., Pollegioni, L., 
Mothet, J.P., and Oliet, S.H. (2012). Synaptic and extrasynaptic NMDA receptors are gated by 
different endogenous coagonists. Cell150, 633-646. 

Parpura, V., and Haydon, P.G. (2000). Physiological astrocytic calcium levels stimulate glutamate 
release to modulate adjacent neurons. Proceedings of the National Academy of Sciences of the 
United States of America97, 8629-8634. 

Patneau, D.K., and Mayer, M.L. (1990). Structure-activity relationships for amino acid transmitter 
candidates acting at N-methyl-D-aspartate and quisqualate receptors. The Journal of neuroscience : 
the official journal of the Society for Neuroscience10, 2385-2399. 

Peacey, E., Miller, C.C., Dunlop, J., and Rattray, M. (2009). The four major N- and C-terminal splice 
variants of the excitatory amino acid transporter GLT-1 form cell surface homomeric and heteromeric 
assemblies. Molecular pharmacology75, 1062-1073. 

Perego, C., Vanoni, C., Bossi, M., Massari, S., Basudev, H., Longhi, R., and Pietrini, G. (2000). The 
GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and 
regulated by neuronal activity in primary hippocampal cocultures. Journal of neurochemistry75, 1076-
1084. 

Pines, G., Danbolt, N.C., Bjoras, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, 
J., Seeberg, E., and Kanner, B.I. (1992). Cloning and expression of a rat brain L-glutamate 
transporter. Nature360, 464-467. 

Pinheiro, P.S., Lanore, F., Veran, J., Artinian, J., Blanchet, C., Crepel, V., Perrais, D., and Mulle, C. 
(2013). Selective block of postsynaptic kainate receptors reveals their function at hippocampal mossy 
fiber synapses. Cerebral cortex23, 323-331. 

Pinsker, H., Kupfermann, I., Castellucci, V., and Kandel, E. (1970). Habituation and dishabituation of 
the gill-withdrawal reflex in Aplysia. Science167, 1740-1742. 

References | 111 



 

Porras, G., Berthet, A., Dehay, B., Li, Q., Ladepeche, L., Normand, E., Dovero, S., Martinez, A., 
Doudnikoff, E., Martin-Negrier, M.L., et al.(2012). PSD-95 expression controls L-DOPA dyskinesia 
through dopamine D1 receptor trafficking. The Journal of clinical investigation122, 3977-3989. 

Rauen, T., Wiessner, M., Sullivan, R., Lee, A., and Pow, D.V. (2004). A new GLT1 splice variant: 
cloning and immunolocalization of GLT1c in the mammalian retina and brain. Neurochemistry 
international45, 1095-1106. 

Reye, P., Sullivan, R., Fletcher, E.L., and Pow, D.V. (2002). Distribution of two splice variants of the 
glutamate transporter GLT1 in the retinas of humans, monkeys, rabbits, rats, cats, and chickens. The 
Journal of comparative neurology445, 1-12. 

Riveros, N., Fiedler, J., Lagos, N., Munoz, C., and Orrego, F. (1986). Glutamate in rat brain cortex 
synaptic vesicles: influence of the vesicle isolation procedure. Brain research386, 405-408. 

Robinson, M.B., Djali, S., and Buchhalter, J.R. (1993). Inhibition of glutamate uptake with L-trans-
pyrrolidine-2,4-dicarboxylate potentiates glutamate toxicity in primary hippocampal cultures. Journal of 
neurochemistry61, 2099-2103. 

Rose, E.M., Koo, J.C., Antflick, J.E., Ahmed, S.M., Angers, S., and Hampson, D.R. (2009). Glutamate 
transporter coupling to Na,K-ATPase. The Journal of neuroscience : the official journal of the Society 
for Neuroscience29, 8143-8155. 

Rothstein, J.D., Dykes-Hoberg, M., Pardo, C.A., Bristol, L.A., Jin, L., Kuncl, R.W., Kanai, Y., Hediger, 
M.A., Wang, Y., Schielke, J.P., and Welty, D.F. (1996). Knockout of glutamate transporters reveals a 
major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron16, 675-686. 

Rothstein, J.D., Martin, L., Levey, A.I., Dykes-Hoberg, M., Jin, L., Wu, D., Nash, N., and Kuncl, R.W. 
(1994). Localization of neuronal and glial glutamate transporters. Neuron13, 713-725. 

Rothstein, J.D., Tsai, G., Kuncl, R.W., Clawson, L., Cornblath, D.R., Drachman, D.B., Pestronk, A., 
Stauch, B.L., and Coyle, J.T. (1990). Abnormal excitatory amino acid metabolism in amyotrophic 
lateral sclerosis. Annals of neurology28, 18-25. 

Rothstein, J.D., Van Kammen, M., Levey, A.I., Martin, L.J., and Kuncl, R.W. (1995). Selective loss of 
glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Annals of neurology38, 73-84. 

Schafer, D.P., Lehrman, E.K., and Stevens, B. (2013). The "quad-partite" synapse: microglia-synapse 
interactions in the developing and mature CNS. Glia61, 24-36. 

Schmitt, A., Asan, E., Lesch, K.P., and Kugler, P. (2002). A splice variant of glutamate transporter 
GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system. Neuroscience109, 
45-61. 

Scimemi, A., Meabon, J.S., Woltjer, R.L., Sullivan, J.M., Diamond, J.S., and Cook, D.G. (2013). 
Amyloid-beta1-42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-
1. The Journal of neuroscience : the official journal of the Society for Neuroscience33, 5312-5318. 

Scoville, W.B., and Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. 
Journal of neurology, neurosurgery, and psychiatry20, 11-21. 

Shupliakov, O., Brodin, L., Cullheim, S., Ottersen, O.P., and Storm-Mathisen, J. (1992). Immunogold 
quantification of glutamate in two types of excitatory synapse with different firing patterns. The Journal 
of neuroscience : the official journal of the Society for Neuroscience12, 3789-3803. 

Smith, K.R., Muir, J., Rao, Y., Browarski, M., Gruenig, M.C., Sheehan, D.F., Haucke, V., and Kittler, 
J.T. (2012). Stabilization of GABA(A) receptors at endocytic zones is mediated by an AP2 binding 
motif within the GABA(A) receptor beta3 subunit. The Journal of neuroscience : the official journal of 
the Society for Neuroscience32, 2485-2498. 

References | 112 



 

Storck, T., Schulte, S., Hofmann, K., and Stoffel, W. (1992). Structure, expression, and functional 
analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proceedings of the 
National Academy of Sciences of the United States of America89, 10955-10959. 

Sullivan, R., Rauen, T., Fischer, F., Wiessner, M., Grewer, C., Bicho, A., and Pow, D.V. (2004). 
Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat 
CNS: implications for CNS glutamate homeostasis. Glia45, 155-169. 

Sun, W., McConnell, E., Pare, J.F., Xu, Q., Chen, M., Peng, W., Lovatt, D., Han, X., Smith, Y., and 
Nedergaard, M. (2013). Glutamate-dependent neuroglial calcium signaling differs between young and 
adult brain. Science339, 197-200. 

Swanson, R.A., Farrell, K., and Simon, R.P. (1995). Acidosis causes failure of astrocyte glutamate 
uptake during hypoxia. Journal of cerebral blood flow and metabolism : official journal of the 
International Society of Cerebral Blood Flow and Metabolism15, 417-424. 

Swanson, R.A., Liu, J., Miller, J.W., Rothstein, J.D., Farrell, K., Stein, B.A., and Longuemare, M.C. 
(1997). Neuronal regulation of glutamate transporter subtype expression in astrocytes. The Journal of 
neuroscience : the official journal of the Society for Neuroscience17, 932-940. 

Takahashi, M., Kovalchuk, Y., and Attwell, D. (1995). Pre- and postsynaptic determinants of EPSC 
waveform at cerebellar climbing fiber and parallel fiber to Purkinje cell synapses. The Journal of 
neuroscience : the official journal of the Society for Neuroscience15, 5693-5702. 

Takahashi, M., Sarantis, M., and Attwell, D. (1996). Postsynaptic glutamate uptake in rat cerebellar 
Purkinje cells. The Journal of physiology497 ( Pt 2), 523-530. 

Tanaka, K., Watase, K., Manabe, T., Yamada, K., Watanabe, M., Takahashi, K., Iwama, H., 
Nishikawa, T., Ichihara, N., Kikuchi, T., et al. (1997). Epilepsy and exacerbation of brain injury in mice 
lacking the glutamate transporter GLT-1. Science276, 1699-1702. 

Tardin, C., Cognet, L., Bats, C., Lounis, B., and Choquet, D. (2003). Direct imaging of lateral 
movements of AMPA receptors inside synapses. The EMBO journal22, 4656-4665. 

Theodosis, D.T., and Poulain, D.A. (1984). Evidence for structural plasticity in the supraoptic nucleus 
of the rat hypothalamus in relation to gestation and lactation. Neuroscience11, 183-193. 

Tomassy, G.S., Berger, D.R., Chen, H.H., Kasthuri, N., Hayworth, K.J., Vercelli, A., Seung, H.S., 
Lichtman, J.W., and Arlotta, P. (2014). Distinct profiles of myelin distribution along single axons of 
pyramidal neurons in the neocortex. Science344, 319-324. 

Tong, G., and Jahr, C.E. (1994). Block of glutamate transporters potentiates postsynaptic excitation. 
Neuron13, 1195-1203. 

Toulme, E., and Khakh, B.S. (2012). Imaging P2X4 receptor lateral mobility in microglia: regulation by 
calcium and p38 MAPK. The Journal of biological chemistry287, 14734-14748. 

Trussell, L.O., Zhang, S., and Raman, I.M. (1993). Desensitization of AMPA receptors upon 
multiquantal neurotransmitter release. Neuron10, 1185-1196. 

Ventura, R., and Harris, K.M. (1999). Three-dimensional relationships between hippocampal 
synapses and astrocytes. The Journal of neuroscience : the official journal of the Society for 
Neuroscience19, 6897-6906. 

Wadiche, J.I., Arriza, J.L., Amara, S.G., and Kavanaugh, M.P. (1995). Kinetics of a human glutamate 
transporter. Neuron14, 1019-1027. 

Watase, K., Hashimoto, K., Kano, M., Yamada, K., Watanabe, M., Inoue, Y., Okuyama, S., 
Sakagawa, T., Ogawa, S., Kawashima, N., et al. (1998). Motor discoordination and increased 

References | 113 



 

susceptibility to cerebellar injury in GLAST mutant mice. The European journal of neuroscience10, 
976-988. 

Wollmuth, L.P., and Sobolevsky, A.I. (2004). Structure and gating of the glutamate receptor ion 
channel. Trends in neurosciences27, 321-328. 

Woo, D.H., Han, K.S., Shim, J.W., Yoon, B.E., Kim, E., Bae, J.Y., Oh, S.J., Hwang, E.M., 
Marmorstein, A.D., Bae, Y.C., et al. (2012). TREK-1 and Best1 channels mediate fast and slow 
glutamate release in astrocytes upon GPCR activation. Cell151, 25-40. 

Xu-Friedman, M.A., Harris, K.M., and Regehr, W.G. (2001). Three-dimensional comparison of 
ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. 
The Journal of neuroscience : the official journal of the Society for Neuroscience21, 6666-6672. 

Yang, Y., Gozen, O., Watkins, A., Lorenzini, I., Lepore, A., Gao, Y., Vidensky, S., Brennan, J., 
Poulsen, D., Won Park, J., et al. (2009). Presynaptic regulation of astroglial excitatory 
neurotransmitter transporter GLT1. Neuron61, 880-894. 

Yernool, D., Boudker, O., Jin, Y., and Gouaux, E. (2004). Structure of a glutamate transporter 
homologue from Pyrococcus horikoshii. Nature431, 811-818. 

Zeng, X.N., Sun, X.L., Gao, L., Fan, Y., Ding, J.H., and Hu, G. (2007). Aquaporin-4 deficiency down-
regulates glutamate uptake and GLT-1 expression in astrocytes. Molecular and cellular 
neurosciences34, 34-39. 

Zerangue, N., and Kavanaugh, M.P. (1996). Flux coupling in a neuronal glutamate transporter. 
Nature383, 634-637. 

Zheng, K., Scimemi, A., and Rusakov, D.A. (2008). Receptor actions of synaptically released 
glutamate: the role of transporters on the scale from nanometers to microns. Biophysical journal95, 
4584-4596. 

Zou, S., Pita-Almenar, J.D., and Eskin, A. (2011). Regulation of glutamate transporter GLT-1 by 
MAGI-1. Journal of neurochemistry117, 833-840. 

 

References | 114 



 

 

Annex | 115 


	THÈSE PRÉSENTÉE
	POUR OBTENIR LE GRADE DE
	L’UNIVERSITÉ DE BORDEAUX
	ÉCOLE DOCTORALE  des Sciences de la Vie et de la Santé
	Par Ciaran MURPHY-ROYAL
	Soutenue le 6 Juin 2014
	Introduction
	1. Glutamate
	1.1 Glutamate as a neurotransmitter

	2. Glutamatergic neurotransmission
	2.1 Glutamate receptors
	2.1a. Metabotropic Glutamate Receptors
	2.1b. Ionotropic Glutamate Receptors

	2.2 Synaptic plasticity in the hippocampus
	2.2a. Short-Term Plasticity
	2.2b. Long-Term Plasticity
	2.3 Contribution of surface trafficking to synaptic transmission
	2.4 Astrocytes and synaptic transmission

	3. Glutamate Transporters
	3.1 Glutamate transporter subtypes
	3.2 Mechanism of glutamate transport
	3.3 Structure of glutamate transporters
	3.4 Location of glutamate transporters

	4.  Glutamate transporters in physiology
	5. Glutamate transporters in pathology
	6. Aim of thesis project

	Methods
	1. Hippocampal Cell Culture
	2. COS cell culture
	3. Protein expression
	4. Immunocytochemistry
	5. Single Particle (QD) Tracking and Surface Diffusion Calculation
	6. MNI-caged-L-Glutamate Uncaging
	7. Stereotaxic Injections
	8. Electrophysiology
	9. 3H-glutamate Uptake
	10. Acid Wash
	11. Data and Statistical Analysis

	Results
	1. Diffusion characteristics of GLT-1
	2. Activity-dependent surface trafficking of GLT-1
	2.1 Neuron-free
	2.2 Decreased neuronal firing
	2.3 Glutamate transport blocker TBOA
	2.4 Glutamate, the substrate of GLT-1 transporters
	2.5 Does glutamate act directly on GLT-1 or indirectly through glutamate receptors?

	3. Compartmentalisation of GLT-1
	3.1 Soma versus process
	3.2 Synaptic compartment
	3.3 Mimicking synaptic activity using caged glutamate

	4. Computational model of GLT-1 diffusion
	5. Physiological role for GLT-1 surface diffusion
	5.1 Immobilisation of GLT-1
	5.2 Secondary effects of GLT-1 X-link
	5.3 Effect of GLT-1 X-link on neuronal activity

	6. Surface diffusion of endogenous GLT-1
	6.1 X-link of GLT-1endo in hippocampal slices


	Discussion
	1. GLT-1 is highly mobile on the surface of astrocytes
	2. Surface diffusion of GLT-1 is activity-dependent
	3. Diffusion of GLT-1 varies according to its surface location
	4. Simulation of GLT-1 surface diffusion
	5. Physiological role of GLT-1 surface diffusion

	Conclusion
	References

