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A B S T R A C T

With the recent technical progress, single electron sources have moved
from theory to the lab. Conceptually new types of experiments where one
probes directly the internal quantum dynamics of the devices are within
grasp. In this thesis we develop the analytical and numerical tools for han-
dling such situations. The simulations require appropriate spatial resolu-
tion for the systems, and simulated times long enough so that one can probe
their internal characteristic times. So far the standard theoretical approach
used to treat such problems numerically—known as Keldysh or NEGF (Non
Equilibrium Green’s Functions) formalism—has not been very successful
mainly because of a prohibitive computational cost. We propose a refor-
mulation of the NEGF technique in terms of the electronic wave functions
of the system in an energy–time representation. The numerical algorithm
we obtain scales now linearly with the simulated time and the volume of
the system, and makes simulation of systems with 105 − 106 atoms/sites
feasible. We leverage this tool to propose new intriguing effects and exper-
iments. In particular we introduce the concept of dynamical modification
of interference pattern of a quantum system. For instance, we show that
when raising a DC voltage V on an electronic Mach-Zehnder interferom-
eter, the transient current response oscillates as cos(eVt/h̄). We expect a
wealth of new effects when nanoelectronic circuits are probed fast enough,
and the tools and concepts developed in this work shall play a key role in
the analysis and proposal of upcoming experiments.
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Part I

G E N E R A L I N T R O D U C T I O N





1
I N T R O D U C T I O N ( E N G L I S H )

In this thesis we study the theory of low temperature nanoelectronic ex-
periments in the GHz range and above. Keeping in mind that 1 K corre-
sponds to 20 GHz, one finds that as the signals frequencies get higher, they
become larger than the thermal background and eventually reach the in-
ternal characteristic frequencies of the systems. Conceptually new types of
experiments become possible where one probes directly the internal quan-
tum dynamics of the devices. Let us start by discussing a simple example.
The device is an electronic Mach-Zehnder interferometer, as sketched in
Fig. 1.1(a), implemented in a two-dimensional electron gas under high mag-
netic field (we will come back to it later). In the quantum Hall regime the
bulk of the electronic gas is insulating and the electrons propagate only on
the edges of the sample. Quantum point contacts (A and B) act as beam-
splitters and make the system a two-path interferometer. The upper arm
is much longer than the lower one, which implies an extra time of flight
τF = L/vg (with L the extra length of the upper arm with respect to the
lower one and vg the group velocity of the edge state). At t = 0 one raises
the bias voltage applied on contact 0 and monitors the current I1(t) as a
function of time. The most noteworthy feature of Fig. 1.1(b) lies in the
transient regime; the current oscillates with frequency eVb/h around a DC
component (Vb final value of the DC bias). The reasoning leading to this
behavior is quite straightforward. As we raise the voltage bias, the wave
function originated from contact 0 accumulates a phase difference eieVbt/h̄

between its front and its rear. The device uses the delay time τF between
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Figure 1.1 – (a) A 3 terminal Mach-Zehnder interferometer in the quantum Hall
regime. The semi-transparent quantum point contacts A and B act as
beamsplitters. Upper inset: schematics of the two interfering paths. (b)
Transmitted current at contact 1.
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the two arms to create an interference between the rear and the front of
the wave function, generating the oscillatory behavior. Here we probed the
time of flight of the interferometer by raising a DC potential faster than τF.
We will later call this effect dynamical control of interference pattern.

The objective of this work is twofold. On the one hand, we aim to develop
the analytical and numerical tools for handling the example above. This re-
quires to simulate devices with an appropriate spatial resolution (three ter-
minals and magnetic field in that case), for times long enough so that one
can probe the internal characteristic times of the systems (the delay time τF
in the example above). While there already exist standard approaches to
investigate time-dependent quantum transport, the numerical implementa-
tion has lacked of efficiency so far. On the other hand, the kind of effect
presented above calls for new concepts as we have just shown. We shall
provide along this thesis with new ways of thinking the quantum transport
beyond the adiabatic limit.

This introduction is organized as follows. We start with an overview of
the field of mesoscopic physics to which this work belongs in section 1.1,
with a particular emphasis on electronic interferometers. We will continue
in section 1.2 with a review of the theoretical developments of AC and time-
resolved quantum transport, and we will finally summarize our work in
section 1.3 with an outline of our results for each chapter.

1.1 electronic interferometers in mesoscopic physics

The domain of mesoscopic physics lies between particle physics and bulk
physics. In the former, the characteristic size of a device is small enough
for it to exhibit a quantum behavior while in the latter, it is large enough to
present many-body features. The characteristic lengths limiting the scope
of the mesoscopic domain are then the atomic scale (the angstrom) and the
phase coherence length Lφ. This latter length represents the distance over
which the phase of the electronic wave function remains unchanged. Be-
yond this length, all interference effects resulting from the wave-like nature
of electrons are washed out, and their quantum behavior is lost [1, 2]. That
is why phase coherence can be considered as the hallmark of mesoscopic
physics. The rise of the domain in the 90s is related to the increased ca-
pability to reduce the dimensionality of the systems, which enhances the
quantum interference effects. One defines the dimensionality of a system
by comparing its characteristic size with the Fermi wave length λF [3]:

3D: λF � Lx ∼ Ly ∼ Lz

2D: Lx < λF � Ly ∼ Lz

1D: Lx ∼ Ly < λF � Lz

0D: Lx ∼ Ly ∼ Lz < λF

In the early years, normal metals like gold were the usual material for ex-
periments. However, the high carrier density of metals (of the order of
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1022 cm−3) has two main drawbacks. First it makes the Fermi wave length
very small (of the order of the angstrom), which renders a confinement of
electrons difficult even in two dimensions. The second consequence is the
impossibility to use gate voltages to vary this carrier density (this would
cost a huge amount of electrostatic energy). In addition, the phase coher-
ence length of metals is of the order of the micrometer only [4]. One bright
aspect of metals is that some of them become superconducting at low tem-
perature (e.g. aluminium below 1.2 K) [5]. The superconducting phase be-
coming another “button” to play with. In the 1990s semiconductors started
to be used. Their great advantage over metals is that one can control their
lower carrier density (between 1014 cm−3 and 1019 cm−3) by nearby metallic
gates. It allows one to reduce the dimensionality of devices to 1D or even
down to 0D to form quantum dots [6]. A typical example of such semicon-
ductor structure is the two-dimensional electron gas formed at the interface

Ec
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Figure 1.2 – Conduction and valence bands line-up in a heterojunction made of n-
doped AlGaAs and intrinsic GaAs, (a) before and (b) after the charge
transfer. Plus symbols are positively charged donors and the red area
is the two-dimensional electron gas.

of the GaAs/AlGaAs heterostructure. The formation of this electron gas
is described in Fig. 1.2. Before the line-up of energy levels, the Fermi en-
ergy in the n-doped AlGaAs layer is higher than in the intrinsic GaAs layer.
Electrons therefore pour in GaAs from AlGaAs leaving positively charged
donors behind (plus symbols in Fig.1.2(b). This creates an electric field that
bends the bands. At equilibrium the Fermi levels are aligned and a two-
dimensional electron gas has formed at the GaAs/AlGaAs interface.

Although the phase of the electronic wave function is a central object for
a mesoscopic physicist, one has to resort to interference processes to probe
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it—as it cannot be measured directly. The effects of such processes are nat-
urally present in mesoscopic systems—for instance in the universal conduc-
tance fluctuations [7]—but can also be engineered with well defined inter-
ferometers. An important ingredient of mesoscopic experiments is the mag-
netic field and the associated Aharonov-Bohm effect [8]. Unlike photons,
electrons are charged particles and couple to the vector potential ~A of the
electromagnetic field even when the local magnetic field ~B is zero (realized
when ~B = ~∇× ~A =~0). As an electron propagates along an identified path
p, its wave function acquires a phase given by

∫
p d~r · (~k(~r) + e~A(~r)) with~k

the wave vector. The first term comes from the geometrical path followed by
the electron, and the second one arises from its coupling with the vector po-
tential. In 1985 Webb et al. observed for the first time the oscillations of the
magnetoresistance with the number of magnetic flux quanta (h/e) crossing
through a gold ring [9] (see Fig. 1.3). While such a system might be called
a two-path interferometer, it suffers from the existence of multiple paths
around the ring. One can remedy this spurious effect using, for instance, a
flying qubit configuration [10]. Other types of interferometers derive from
setups usually found in optics. For example Fabry-Perot cavities (two re-
flecting surfaces facing each other) are present in numerous devices. Such
a resonator can be implemented using carbon nanotubes [11, 12], where
the Shottky barriers that form at the nanotube-contact interfaces act as the
reflecting barriers (role played by the mirrors in optics). As one reduces
the transparency of the “mirrors”, the modes of the cavity become true
bound states of the system. Such a situation is very close to the Andreev
bound states occurring in Josephson junctions [13]. Fabry-Perot cavities
also appear in semiconductor nanowires [14] in a similar way, or can be en-

(b)

(a)

Figure 1.3 – (a) Magnetoresistance of a gold ring measured at T = 0.01 K. (b)
Fourier power spectrum of the magnetoresistance containing peaks at
h/e and h/(2e). Inset: photograph of the ring with inside diameter
784 nm and wire width of 41 nm [9].
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gineered in a two-dimensional electron gas in the quantum Hall regime [15].
A more involved setup is the electronic analogue of the Mach-Zehnder in-
terferometer [16, 17, 18]. Fig. 1.4 depicts the three-terminal device used
in [17], realizing a two-path interference between quantum Hall edge chan-
nels. These edge channels are separated and recombined by the quantum

Figure 1.4 – Scanning electron microscope view of Mach-Zehnder interferometer.
G0, G1, and G2 are quantum point contacts acting as beamsplitters.
The white lines represent the two interfering edge channels [17].

point contacts G1 and G2. A lateral gate (LG) can be used to modify the
length of the lower path. This interferometer is experimentally complex to
realize (central contact, high magnetic field), but it is very simple from a
theoretical point of view. Indeed, as shown by the white lines in Fig. 1.4
only two paths can interfere.

In this context we are interested in the physics of time-resolved quantum
transport in low-dimensional devices. The term “time-resolved” means that
the typical duration of the time-dependent perturbations can be considered
finite. We present this domain in the next section.

1.2 from ac to time-resolved quantum transport

The history of AC quantum transport probably starts in the 1960s with the
prediction and measurement of the photon assisted tunneling [19]. Tien and
Gordon described the quantum transport in a two-terminal nanostructure
subjected to both DC and AC voltages in a simple manner. They related the
DC current in presence of an AC bias voltage with frequency ω to the I-V
curves I(V) of this nanostructure in absence of AC voltage [20],

Idc(V) = ∑
n

pn I(V + nh̄ω/e), (1.1)

where the coefficients pn depend on the amplitude and the shape of the
AC perturbation. This effect, also known as the Tien-Gordon effect, has
attracted some renewed attention recently in the context of noise measure-
ments [21]. A motivation for such experiments lies in the possibility given
by today’s technology to work at frequencies higher than thermal noise
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(h̄ω > kBT), allowing for the observation of the effects of quantum fluc-
tuations on the mesoscopic apparatus (circuits amplifiers, detectors) [22].
Around the same time was the discovery of the AC Josephson effect [23, 24].
On applying a DC voltage bias V on a superconducting junction, one ob-
tains an AC current oscillating at the frequency 2eV/h. Other early exper-
iments showed that it was possible to generate a DC current with the help
of an AC perturbation in the absence of DC bias, which is called pump-
ing [25, 26]. The AC perturbation can be radio-frequency voltages applied
to gates using the Coulomb blockade effect [27] or, the modulation of the
phase of the order parameter of superconducting electrodes using the afore-
mentioned AC Josephson effect [28]. More recent experiments include the
measurement of a quantum LC circuit [29], the statistics of the photons
emitted by a tunnel junction [30, 31] and the minimization of the shot noise
using multiple harmonics [32].

An important point that was recognized early by Büttiker and his collabo-
rators is that a proper treatment of the electrostatics of a nanostructure was
crucial when dealing with finite frequency quantum transport [33, 34, 35, 36,
37]. Solving naively the time-dependent Schrödinger equation incorporat-
ing the AC perturbation does not suffice to compute the correct AC current
response. At finite frequency two main issues arise. On the one hand, in
the non-interacting AC theory the electronic density fluctuates with space
and time. As a result the current is no longer a conserved quantity. On
the other hand, the particle current response (not identical to the electrical
current anymore as it is in DC) depends on the voltage distribution across
the nanostructure. Both problems are dealt with using nearby gates capaci-
tively coupled to the conductors that screen the extra charges accumulated
in the system. This restores the neutrality of the global system, as well
as current conservation once the displacement currents (currents flowing
through the plates of the capacitors) are properly included. One then finds
that it is difficult to observe the internal time scales of a device as they are
often smaller than the classical RC time of the above capacitors. The theory
of AC quantum transport has now evolved into a field in itself which is not
the focus of this work. We refer to [38] for an introduction to the (Floquet)
scattering theory and to [39] for the numerical aspects.

Time-resolved quantum transport is not, a priori, very different from AC
quantum transport. A series of seminal works on time-resolved quantum
electronics showed however that the current noise associated with voltage
pulses crucially depends on their actual shape (i.e. on the details of the har-
monics content and of the relative phases of the various harmonics) [40, 41].
More precisely, Levitov and collaborators found that pulses of Lorentzian
shape can be noiseless while other shapes are associated with extra electron-
holes excitations that increase the noise of the signal. These predictions
are the object of an intensive experimental activity [42, 43]. Meanwhile,
other experiments are looking for various ways to construct coherent sin-
gle electron sources and reproduce known quantum optics experiments
with electrons. This rising field is sometimes referred to as “electronic

8



quantum optics”. Ref. [44] used a small quantum dot to make such a
source [45, 46, 47, 48] which was later used in a Hanbury-Brown and Twiss
setup [49], and in [50] to perform an electronic Hong-Ou-Mandel experi-
ment. A similar source, yet working at much larger energy has been re-
cently demonstrated in [51]. Another route used surface acoustic waves to
generate a propagating confining potential that transports single electrons
through the sample [52, 53]. These experiments are mostly performed in
the two-dimensional gases heterostructures introduced earlier taking ad-
vantage of the small velocities (estimated around 104 − 105 m.s−1 in the
quantum Hall regime) and large sizes (usually several µm) to work in the
GHz range. Smaller devices, such as carbon nanotubes, require the use of
frequencies in the THz range. Although THz frequencies are still experi-
mentally challenging, detection schemes in these range have been reported
recently [54]. Progress in cryogenic technology makes it possible to access
the high frequencies that are necessary to probe the internal time scale of
nanoelectronic devices. The motivation for such work relate to the con-
trol over the orbital and spin degrees of freedom of single electrons in the
wider picture of quantum computation [55], quantum information process-
ing [56, 57], and quantum teleportation [58, 59].

1.3 outline of this thesis

In this thesis we reformulate the standard approach to time-dependent
transport with a wave function in an energy–time representation. This work
allows us to simulate systems containing more than 105 sites during 106

time steps going beyond the adiabatic limit and optics physics. In addition
we propose new concepts and experiments. We showed the dynamical con-
trol of interference at the beginning of this introduction and we propose
ways to observe it experimentally; we also propose to stop and release an
electron of a charge pulse in the quantum Hall regime. Here we review the
present research results accessible in each chapter.

1.3.1 Chapter 3: Various approaches to time-resolved quantum transport

Chapter 3 contains the theory of time-dependent transport developed in
this thesis work. We consider a generic system made of several semi-infinite
electrodes and a central region as sketched in Fig. 1.5. The tight-binding
Hamiltonian for such a system reads

Ĥ(t) = ∑
i,j

Hij(t)c†
i cj, (1.2)

where c†
i (cj) are the Fermionic creation (annihilation) operators of a one-

particle state on site i. The basic objects of the Keldysh or NEGF formalism
are the Retarded (GR) and Lesser (G<) Green’s functions defined in the
central region 0̄. Integrating out the degrees of freedom of the leads into

9



Figure 1.5 – Sketch of a generic multiterminal system where the central part 0̄
(blue circles) is connected to three semi-infinite leads 1̄, 2̄, 3̄ (yellow
circles). The leads are kept at equilibrium with temperature Tm̄ and
chemical potential µm̄.

self-energy terms, one obtains effective equations of motion for GR and
G< [60, 61],

i∂tGR(t, t′) = H0̄0̄(t)G
R(t, t′) +

∫
du ΣR(t, u)GR(u, t′) (1.3)

G<(t, t′) =
∫

du
∫

dv GR(t, u)Σ<(u, v)[GR(t′, v)]† (1.4)

Introducing the wave function ΨαE(~r, t) which depends on space~r and time
t as well as on the injection energy E and mode α, we find that it obeys a
Schrödinger equation with an additional source term,

ih̄
∂

∂t
ΨαE(~r, t) = H0̄0̄(t)ΨαE(~r, t)+

∫
du ΣR(t−u)ΨαE(u)+

√
vαξαE(~r)e−iEt/h̄,

(1.5)

where ξαE(~r) corresponds to the transverse wave function of the conduct-
ing channel α at the electrode–device interface (the number α is labeling
both the different channels and the electrodes to which they are associated)
and vα is the associated mode velocity. The Lesser Green’s function, hence
the physical observables (density, current, ...), are then simply expressed in
terms of these wave functions,

G<(t, t′) = ∑
α

∫ dE
2π

i fα(E)ΨαE(t)ΨαE(t′)†, (1.6)

where fα(E) is the Fermi function in the electrode of channel α. The source
term and mode velocities in Eq. (1.5) are standard objects of the theory of
stationary quantum transport and are readily obtained, while Eq. (1.5) itself
can (and will) be integrated numerically.

In addition to the reformulation of the NEGF technique, we draw explicit
connections with two other approaches to time-dependent transport. We
first show the equivalence of our wave function method with the scattering
approach. By constructing the scattering states we find that they coincide
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with the wave function ΨαE(t) inside the central region of the system. A
second connection is drawn with the partition-free approach mentioned in
the previous section. We show that our wave function and the one obtained
within the partition-free approach are the same.

1.3.2 Chapter 4: Landauer formula for voltage pulses

Chapter 4 is devoted to the derivation of a generalization of the Landauer
formula to voltage pulses in multiterminal systems. We find that the num-
ber of particles is a relevant quantity for time-resolved quantum transport.
Indeed we show that it is conserved and gauge invariant. We first assume
a system at thermal equilibrium without net current flowing; and also that
the electrons do not experience any reflection at the location of the voltage
pulse. We thus find that on applying a voltage pulse Vm̄ on lead m̄, the
number of particles received in lead p̄ reads,

n p̄ = ∑̄
m

Np̄m̄

Np̄m̄ = ∑
β∈ p̄

∑
α∈m̄

∫ dε

2π
|S0

p̄β,m̄α(ε)|2
∫ dE

2π
|Km̄(E− ε)|2 [ f (E)− f (ε)] ,

(1.7)

where S0
p̄β,m̄α(ε) is the DC scattering matrix of the system in the absence of

a voltage pulse, and Km̄(E) is the harmonic content of the pulse applied on
lead m̄,

Km̄(E) =
∫

dt eiφm̄(t)+iEt, (1.8)

with φm̄(t) =
∫ t
−∞ du Vm̄(u).

1.3.3 Chapter 5: Strategies for numerical simulations

Chapter 5 deals with the numerical aspects of the NEGF and wave func-
tion (WF) approaches discussed in chapter 3. We propose several schemes
(three for NEGF and four for the wave function) illustrated with the propa-
gation of a voltage pulse along a one-dimensional chain. The relative com-
parison of the relevant implementations is given in Table 1.1. We denote
N the total number of sites of the central region and S the number of sites
connected to the electrodes. WF-D is our best algorithm and is the one used
in the rest of this work. While the numerical resolution of Eq. (1.5) is done
without difficulty, the integration over energy is often a source of compli-
cation. In particular, we show that contributions with vanishing velocity
make it difficult to obtain particle conservation. We show that one recov-
ers particle conservation when integrating over a long time. We propose
to filter these contributions of low energy to recover a Fermi level physics
expected in the long-time limit. Finally we discuss our choice of boundary
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Algorithm CPU (1D) Estimated CPU (2D) Scaling of CPU

WF-D 1 104 (t/ht)NE[N + γtS]
WF-B 40 4.107 (t/ht)NE[N + (t/ht)S2]

GF-C 10
4 1012 (t/ht)2S3 (*)

GF-A 10
5 1014 (t/ht)2S2N (*)

Table 1.1 – Computation time in seconds for a calculation performed on a single
computing core. 1D case: 20 sites (for GF-A the calculation has been
done in parallel using 48 cores in order to obtain the results within a
few hours). 2D case: 100× 100 sites. The CPU time is estimated from
the scaling laws except for WF-D where calculations of similar sizes
could be performed. Third column: typical scaling of the computing
time. A notable additional difference between the WF and GF methods
is that the GF methods (*) only provide the observables at one given
time per calculation while the WF methods give the full curve in one
run. The typical number of energy points NE is 100 in this example.

conditions in the electrodes and we justify our model of an abrupt voltage
drop used in this work.

1.3.4 Chapter 6: Propagation and spreading of a charge pulse

We study in chapter 6 the propagation and spreading of a charge pulse
created by a voltage pulse applied to an Ohmic contact. We begin with
a scattering approach for a one-dimensional chain, and continue in the
continuous limit to find that charge density and current oscillations follow
the spreading of the charge pulse. We show that these oscillations spread
diffusively. We perform additional numerical simulations using the one-
dimensional edge states of the quantum Hall regime as shown in Fig. 1.6.
Specifically we show that the spreading of the envelope of the charge den-
sity ∆X(t) spreads linearly in time. More precisely we identify two contribu-

t 
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0 2.5 5-2.5-5
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y

Figure 1.6 – Carte de la densité de charge liée à l’étalement d’un pulse de charge
créé par un pulse de tension Lorentzien, V(t) = Vp/(1+(t/τp)2), avec
amplitude Vp = 0.5i mV et durée τp = 5 ps.
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tions to the spreading. On the one hand, the calculations in the continuous
limit gives,

∆X
∣∣∣
qu

=
t

m∗∆X0
, (1.9)

with ∆X0 the initial spatial extension of the pulse, and m∗ the electron effec-
tive mass. On the other hand, a more classical picture based on a “hydro-
dynamic” reasoning leads to

∆X
∣∣∣
cl
=

n̄t
m∗∆X0

, (1.10)

where n̄ is the number of particles injected by the voltage pulse. The trans-
port properties of a voltage pulse applied to an Ohmic contact are then
related to its quantum nature that is bounded by n̄ ≈ 1.

1.3.5 Chapter 7: Dynamical control of interference using voltage pulses in the
quantum regime

We start to study the time-dependent transport beyond the adiabatic limit
in chapter 7. To this end we first consider a Fabry-Perot cavity as it is the
simplest system to exhibit a characteristic time scale (the time of flight inside
the cavity). Such a cavity is made out of a quantum wire and two barriers as
sketched in Fig. 1.7. We find that on applying voltage pulses faster than the

VA VB

V(t)

Figure 1.7 – Schematic of our setup, a quantum wire connected to two electrodes.
Two barriers A and B separated by a distance L are placed along the
wire and a Gaussian voltage pulse V(t) is sent from the left. The
barriers are characterized by the barrier heights (VA and VB).

time of flight of the cavity, we can dynamically control the relative phases
of the paths taken by the electrons. This regime of fast pulses allows for
the restoration of the interferences in presence of large bias voltages, neg-
ative currents with respect to the direction of propagation of the voltage
pulse, oscillations of the total transmitted charge with the total number of
injected electrons. All our numerical findings are supported by analytical
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derivations based on the formalism for voltage pulses developed in chap-
ter 4. We also validate our analysis further with the full scale simulation of
an electronic Mach-Zehnder interferometer in the quantum Hall regime.

We generalize the concept of dynamical control of interference to the case
of raising a DC bias voltage in the interferometers discussed above. We
show that on applying a DC voltage Vb to an electronic interferometer, there
exists a universal transient regime where the current oscillates at frequency
eVb/h. This effect is analogous to the AC Josephson effect.

1.3.6 Chapter 8: Numerical simulations of time-resolved quantum transport in
the quantum Hall effect regime

In chapter 8 we first present the procedure that should be followed to
perform numerical simulations in the quantum Hall regime, and continue
with the requirements specific to time-dependent transport. In particular
we come back to the integration over energy necessary to compute observ-
ables (see Eq. (1.6)). We find that the filtering potential engineered in chap-
ter 5 needs to be adapted to the peculiar density of states of a system in the
quantum Hall regime. In the last section of the chapter we discuss the in-
terplay between the modification of the path followed by the electrons and
the quantum dynamics of the electronic flow in a quantum circuit. Specif-
ically, we study the propagation of charge pulses through the edge states
of a two-dimensional electron gas in the quantum Hall regime. By sending
radio-frequency (RF) excitations on a top gate capacitively coupled to the
electron gas, we manipulate these edge states dynamically. We find that a
fast RF change of the gate voltage can stop the propagation of the charge
pulse inside the sample. This effect is intimately linked to the vanishing ve-
locity of bulk states in the quantum Hall regime and the peculiar connection
between momentum and transverse confinement of Landau levels. We pro-
pose new possibilities for stopping, releasing and switching the trajectory
of charge pulses in quantum Hall systems.
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2
I N T R O D U C T I O N ( F R A N Ç A I S )

Nous étudions dans cette thèse les expériences de nanoélectronique à
basse température dans la gamme de fréquences du GHz et au-delà. En
ayant à l’esprit que 1 K correspond à 20 GHz, on comprend que plus les
fréquences des signaux s’accroissent, plus elles surpassent le bruit ther-
mique, et finalement atteignent les fréquences caractéristiques des systèmes.
Des expériences conceptuellment nouvelles deviennent possibles, où l’on
sonde directement la dynamique quantique interne des systèmes. Com-
mençons par discuter d’un exemple simple. Le système est un interféromètre
électronique de Mach-Zehnder, comme schématisé en Fig. 2.1(a), réalisé
dans un gaz bi-dimensionnel d’électrons sous fort champ magnétique (nous
y reviendrons plus tard). Dans le régime d’effet Hall quantique l’intérieur
du gaz d’électrons est isolant et les électrons se propagent uniquement sur
les bords du système. Les points de contact quantique (A et B) jouent le rôle
de lame semi-réfléchissante et font de ce système un interféromètre à deux
chemins. Le bras supérieur est beaucoup plus long que le bras inférieur, ce
qui implique un temps de vol additionnel τF = L/vg (avec L la longueur
supplémentaire du bras supérieur par rapport au bras inférieur, et vg la
vitesse de groupe de l’état de bord). À t = 0 on monte la tension appliquée
au contact 0 et on enregistre le courant I1(t) en fonction du temps. Le point
notoire de la figure Fig. 1.1(b) réside dans le régime transitoire. Le courant
oscille à la fréquence eVb/h autour d’une composante DC (Vb valeur finale
de la tension DC). Le rasionnement menant à ce comportement est plutôt
direct. Lorsque l’on monte la tension, la fonction d’onde du contact 0 accu-
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Figure 2.1 – (a) Un interféromètre Mach-Zehnder à 3 terminaux dans le régime
d’effet Hall quantique. Les points de contacts quantiques A et B jouent
le rôle de miroir semi-réfléchissant. Insert: schéma des deux chemins
qui interfèrent. (b) Courant transmis au contact 1.
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mule une différence de phase eieVbt/h̄ entre l’avant et l’arrière. Le système
utilise le retard τF entre les deux bras pour créer une interférence, générant
le comportement oscillant. Ce que l’on a fait ici consiste à sonder le temps
de vol de l’interféromètre en montant une tension DC plus vite que τF. Plus
tard, nous appellerons cet effet modification dynamique du motif d’interférence.

L’objectif de ce travail de thèse est double. D’une part, nous développons
les outils analytiques et numériques pour traiter l’exemple ci-dessus. Cela
requiert de simuler des systèmes dont la résolution spatiale est appropriée
(trois contacts et du champ magnétique dans ce cas), pendant des temps
suffisamment longs pour sonder les temps caractéristiques des systèmes
(ici le temps de vol τF). Alors qu’il existe déjà des méthodes standards
pour étudier le transport quantique dépendent du temps, l’implémentation
numérique a manqué d’efficacité jusqu’à maintenant. D’autre part, le genre
d’effet présenté avec notre exemple fait appel à de nouveaux concepts. Tout
au long des pages qui suivent, nous allons donner de nouvelles façons de
penser le transport quantique au-delà de la limite adiabatique.

Cette introduction est organisée comme suit. Nous commençons par une
vue d’ensemble de la physique mésoscopique, à laquelle ce travail appar-
tient, en section 2.1, où l’on portera l’accent sur les interféromètres électron-
iques. Nous poursuivons en section 2.2 avec une revue des développements
théoriques du transport quantique AC et résolu en temps, et nous finirons
par un résumé des chapitres en section 2.3.

2.1 interféromètres électroniques en physique mésoscopique

Le domaine de la physique mésoscopique se situe entre la physique des
particules et la physique des systèmes massifs. Dans le premier cas, la taille
caractéristique d’un système est suffisamment petite pour exhiber un com-
portement quantique. Dans le second cas, le système est suffisamment large
pour avoir les caractéristiques d’un comportement à N corps. Les tailles
caractéristiques délimitant le cadre de la physique mésoscopique sont donc
l’échelle atomique (l’angstrom) et la longueur de cohérence de phase Lφ.
Cette dernière longueur représente la distance sur laquelle la phase d’une
fonction d’onde électronique reste inchangée. Au-delà de cette longueur,
tous les effets résultant de la nature ondulatoire des électrons disparaissent
et leur comportement quantique est perdu [1, 2]. C’est pourquoi la longueur
de cohérence de phase peut être considérée comme la marque principale de
la physique mésoscopique. L’essor de ce domaine dans les années 90 est
lié à la capacité croissante de réduire la dimensionnalité des systèmes, ce
qui renforce les effets quantiques. On définit la dimensionnalité d’un sys-
tème en comparant ses dimensions caractéristiques à la longueur d’onde de
Fermi λF [3]:
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3D: λF � Lx ∼ Ly ∼ Lz

2D: Lx < λF � Ly ∼ Lz

1D: Lx ∼ Ly < λF � Lz

0D: Lx ∼ Ly ∼ Lz < λF

Dans les premières années de la physique mésoscopique, des métaux or-
dinaires comme l’or étaient utilisés pour les expériences. Cependant, la
haute densité de porteurs de charge des métaux (de l’ordre de 1022 cm−3)
a deux inconvénients majeurs. D’abord cela implique une longueur d’onde
de Fermi très petite (de l’ordre de l’angstrom), ce qui rend difficile le con-
finement des électrons même en deux dimensions. Le second désavantage
est qu’il est impossible d’utiliser des tensions de grille pour faire varier
cette densité (cela coûterait une énergie électrostatique considérable). De
plus la longueur de cohérence de phase dans les métaux est seulement de
l’ordre du micromètre [4]. Un aspect intéressant émerge cependant en ce
que certains métaux sont supraconducteurs à basse température (par exem-
ple l’aluminium en-dessous de 1.2 K) [5]. La phase du supraconducteur
est alors un nouveau bouton avec lequel on peut jouer. Dans les années
90 on a commencé à utiliser des structures à base de semiconducteurs. Le
grand avantage des semiconducteurs sur les métaux est leur plus faible
densité de porteurs de charge (entre 1014 cm−3 et 1019 cm−3) que l’on
peut contrôler par des grilles métalliques. Ceci permet de résuire la di-
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Figure 2.2 – Alignement des bandes de conduction et de valence dans une hétéro-
jonction formée de AlGaAs dopé n et de GaAs intrinsèque, (a) avant
et (bC après le transfert de charges. Les symboles “plus” indiquent
les donneurs ionisés, et la zone rouge est le gaz bi-dimensionnel
d’électrons.
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mensionnalité des systèmes à 1D ou même jusqu’à 0D pour former des
boîtes quantiques [6]. Un exemple typique de telles structures semicon-
ductrices est le gaz bi-dimensionnel d’électrons qui se forme à l’interface
de l’hétérostructure GaAs/AlGaAs. La formation de ce gaz d’électrons est
décrite en Fig. 2.2. Avant l’alignement des niveaux d’énergie, l’énergie de
Fermi dans la couche d’AlGaAs dopé n est plus haute que celle de la couche
de GaAs intrinsèque. En conséquence, les électrons se déversent dans GaAs
à partir de AlGaAs, laissant derrière eux les donneurs ionisés (symboles
plus dans Fig.2.2(b)). Ce phénomène crée un champ électrique qui plie les
bandes. À l’équilibre les niveaux de Fermi sont alignés et un gaz d’électrons
bi-dimensionnel se trouve à l’interface GaAs/AlGaAs.

Bien que la phase de la fonction d’onde électronique soit un objet central
pour le physicien mésoscopiste, on ne peut pas la mesurer directement et
l’on doit recourir à des processus d’interférence pour la sonder. Les effets
de tels processus sont naturellement présents dans les systèmes étudiés—on
peut penser par exemple aux fluctuations universelles de conductances [7]—
mais peuvent aussi être construits par des interféromètres bien définis. Un
ingrédient important des expériences est le champ magnétique et l’effet
Aharonov-Bohm associé [8]. Contrairement aux photons, les électrons sont
des particules chargées et se couplent au potentiel vecteur ~A du champ élec-
tromagnétique, même lorsque le champ magnétique local ~B est nul (réalisé
quand ~B = ~∇× ~A =~0). Lorsqu’un électron se propage suivant un chemin p,
sa fonction d’onde aquiert une phase donnée par

∫
p d~r · (~k(~r)+ e~A(~r)) avec~k

le vecteur d’onde. Le premier terme vient du chemin géométrique parcouru
par l’électron, et le second provient du couplage avec le potentiel vecteur.
En 1985 Webb et al. ont observé pour la première fois les oscillations de

(b)

(a)

Figure 2.3 – (a) Magnétorésistance d’un anneau d’or mesurée à T = 0.01 K. (b)
Densité spectrale de puissance de la magnétorésistance contenant des
pics à h/e et h/(2e). Insert: photographie de l’anneau dont le diamètre
interne est 784 nm la largeur du fil est 41 nm [9].
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magnétorésistance avec le nombre de quanta de flux (h/e) traversant un an-
neau d’or [9] (voir Fig. 2.3). Alors qu’un tel système pourrait être vu comme
un interféromètre à deux chemins, l’existence de multiples chemins autour
de l’anneau complexifie la situation. Ce problème peut être résolu en util-
isant, par exemple, une configuration de qubit volant [10]. D’autres types
d’interféromètres proviennent de montages que l’on trouve usuellement en
optique. Par exemple, les cavités Fabry-Perot (deux surfaces réfléchissantes
face-à-face) sont présentes dans de nombreux systèmes. De tels résonateurs
peuvent être créés en utilisant des nanotubes de carbone [11, 12], où les
barrières Shottky se formant à l’interface nanotube–contact jouent le rôle de
barrières réfléchissantes (les miroirs en optique). Lorsqu’on réduit la trans-
parence des “miroirs”, les modes de la cavité deviennent de véritables états
liés. Une telle situation est alors très proche des états liés d’Andreev qui
apparaissent dans les jonctions Josephson [13]. Les cavités Fabry-Perot sont
aussi présentes dans les nanofils semiconducteurs [14] de façon similaire,
mais peuvent aussi être créées dans un gaz bi-dimensionnel d’électrons en
régime d’effet Hall quantique [15]. Un système un peu plus complexe est
l’analogue électronique de l’interféromètre de Mach-Zehnder (vu rapide-
ment au début de cette introduction) [16, 17, 18]. La Fig. 2.4 montre le
système à trois terminaux utilisé dans [17], réalisant une interférence entre
deux canaux de bord de l’effet Hall. Ces canaux de bord sont séparés puis

Figure 2.4 – Vue au microscope électronique à balayage d’un interféromètre de
Mach-Zehnder. G0, G1, et G2 sont les points de contact quantiques
jouant le rôle de lame séparatrice. Les lignes blanches représentent les
canaux de bord qui interfèrent [17].

recombinés par les deux points de contact quantique G1 et G2. Une grille
latérale (LG) permet de modifier la longueur du chemin inférieur. Cet in-
terféromètre expérimentalement complexe à réaliser (le contact central est
complexe à obtenir, un fort champ magnétique est nécessaire), est cepen-
dant très simple du point de vu théorique. En effet il n’y a vraiment que
deux chemins qui interfèrent , comme le montrent les lignes blanches en
Fig. 2.4.

Dans ce contexte nous nous intéressons à la physique du transport ré-
solu en temps dans les structures à basses dimensions. Le terme “résolu
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en temps” signifie que l’extension temporelle des perturbations peut être
considérée comme finie. Nous présentons ce domaine dans la prochaine
section.

2.2 du transport quantique ac à résolu en temps

L’histoire du transport quantique AC commence probablement dans les
années 1960 avec la prédiction et la mesure de l’effet tunnel photo-assisté [19].
Tien et Gordon ont décrit le transport quantique dans des nanostructures à
deux terminaux soumises à des tensions DC et AC d’une façon simple. Ils
ont relié le courant DC en présence d’une tension AC à la fréquence ω aux
courbes I-V de la nanostructure en l’absence de tension AC [20],

Idc(V) = ∑
n

pn I(V + nh̄ω/e), (2.1)

où les coefficients pn dépendent de l’amplitude et de la forme de la perturba-
tion AC. Cet effet, aussi connu sous le nom d’effet Tien-Gordon, a attiré de
nouveau l’attention récemment dans le contexte des mesures de bruit [21].
Une motivation pour de telles expériences réside dans la possibilité que
l’on a aujourd’hui de travailler à des fréquences dépassant le bruit ther-
mique (h̄ω > kBT). Cela permet d’observer les effets des fluctuations quan-
tiques sur l’appareillage de mesure (amplificateurs, détecteurs) [22]. Au
même moment l’effet Josephson AC était découvert [23, 24]. L’application
d’une tension continue V sur une jonction supraconductrice fournit un
courant oscillant à la fréquence 2eV/h. D’autres expériences ont montré
que l’on pouvait générer un courant DC par le biais d’une tension AC en
l’absence de tension continue. On apelle cela le pompage [25, 26]. La ten-
sion AC peut être un signal radio-fréquence appliqué sur des grilles en
utilisant le blocage de Coulomb [27] ou bien, la modulation de la phase du
paramètre d’ordre d’électrodes supraconductrices en usant de l’effet Joseph-
son AC [28]. Plus récemment des expériences ont été réalisées sur un cir-
cuit LC quantique [29], sur la statistique des photons émis par une jonction
tunnel [30, 31] et sur la minimisation du bruit de grenaille en mélengeant
plusieurs harmonique [32].

Büttiker et ses collaborateurs ont remarqué très tôt qu’un bon traitement
de l’électrostatique d’une nanostructure était crucial dans l’étude du trans-
port quantique à fréquence finie [33, 34, 35, 36, 37]. Résoudre naivement
l’équation de Schrödinger dépendente du temps en incorporant une pertur-
bation AC ne suffit pas pour calculer la réponse en courant d’un système.
À fréquence finie, deux difficultés principales surgissent. D’une part, dans
la théorie AC sans interaction la densité électronique fluctue dans l’espace
et le temps. Il en résulte que le courant n’est plus une grandeur conservée.
D’autre part, le courant de particule (maintenant différent du courant élec-
trique contrairement au cas DC) dépend de la distribution de la tension à
travers la nanostructure. Ces deux problèmes ont été résolus en considérant
que des grilles couplées capacitivement au système permettent d’écranter
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la charge qui s’y est accumulée. Ceci permet de restaurer la neutralité glob-
ale du système, ainsi que la conservation du courant une fois que l’on a
pris en compte les courants de déplacement (courants circulant à travers
les grilles). On remarque alors qu’il est difficile d’observer les échelles de
temps caractéristiques d’un système parce qu’elles sont souvent plus petites
que le temps RC classique des capacités mentionnées. La théorie du trans-
port quantique AC a évolué pour devenir un domaine bien défini. Nous
reportons le lecteur à [38] pour une introduction à la théorie de la diffu-
sion (Floquet), et à [39] pour les aspects numériques. Ce domaine n’est
cependant pas l’objet de ce travail comme nous allons le voir maintenant.

Le transport quantique résolu en temps n’est, a priori, pas très différent du
transport quantique AC. Cependant, une série de travaux fondateurs por-
tant sur l’électronique résolue en temps a montré que le bruit en courant
associé à des pulses de tension dépend précisément de leur forme (c’est-à-
dire de leur contenu en harmoniques et des phases entre celles-ci) [40, 41].
Plus précisément, Levitov et ses collaborateurs ont trouvé que des pulses de
forme Lorentzienne peuvent être non bruités, alors que d’autres formes im-
pliquent l’excitation de paires électron–trou qui augmentent le bruit du sig-
nal. Ces prédictions font l’objet d’une intense activité expérimentale [42, 43].
Pendant ce temps, d’autres expériences cherchent des moyens de construire
des sources d’électrons uniques cohérents et reproduisent, avec des élec-
trons, des expériences connues d’optique quantique. Ce domaine naissant
est parfois dénommé “optique électronique quantique”. Ref. [44] utilise une
boîte quantique pour réaliser une telle source [45, 46, 47, 48] qui sera plus
tard utilisée dans un montage Hanbury-Brown and Twiss [49], ainsi que
dans [50] pour faire une expérience de Hong-Ou-Mandel. Une source simi-
laire, mais fonctionnant à plus grande énergie, a récemment été réalisée [51].
Une autre voie prise dans [52, 53] consiste à utiliser des ondes acoustiques
de surface pour générer un potentiel de confinement permettant de trans-
port les électrons uniques à travers l’échantillon. Ces expériences sont prin-
cipalement réalisées dans les gaz bi-dimensionnels d’électrons présentés
plus tôt. La motivation pour de tels travaux repose principalement sur
le fait que le contrôle des degrés de liberté de l’électron (spin et orbital)
est au coeur des problématiques de calcul quantique [55], d’information
quantique [56, 57] et de téléportation [58, 59].

2.3 résumé des chapitres

Dans cette thèse, on reformule l’approche standard du transport dépen-
dent du temps à l’aide d’une fonction d’onde dans une représentation
énergie–temps. Ce travail nous permet de simuler des systèmes contenant
105 sites durant 106 pas de temps. On peut alors aller au-delà de la lim-
ite adiabatique et de l’optique. Nous proposons aussi de nouveaux con-
cepts. On a déjà évoqué le contrôle dynamique du motif d’interférence
en introduction, on donne aussi des moyens de l’obsever expérimentale-
ment. On propose aussi d’arrêter et de relâcher un électron dans un gaz
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bi-dimensionnel d’électrons en régime d’éffet Hall quantique. Nous présen-
tons ici une vue d’ensemble de ces résultats.

2.3.1 Chapitre 3: Différentes approches du transport quantique résolu en temps

Le chapitre 3 contient la théorie du transport dépendent du temps dévelop-
pée dans cette thèse. Nous considérons un système arbitraire infini consti-
tué de plusieurs électrodes semi-infinies et d’une région centrale, comme
décrit en Fig. 2.5. Le Hamiltonien de liaisons fortes d’un tel système est

Figure 2.5 – Schéma d’un système multiterminaux où la région central 0̄ (cercles
bleus ) est connectée à trois contacts semi-infinis 1̄, 2̄, 3̄ (cercles jaunes).
Les électrodes sont à l’équilibre à la température Tm̄ et le potentiel
chimique µm̄.

Ĥ(t) = ∑
i,j

Hij(t)c†
i cj, (2.2)

où c†
i (cj) sont les opérateurs Fermioniques de création (annihilation) d’un

état à une particule au site i. Les objets de base du formalisme Keldysh, où
des Fonctions de Green hors Equilibre (NEGF), sont la fonction de Green
Retardée (GR) et Lesser (G<) définies sur la région centrale 0̄. Après inté-
gration des degrés de liberté des électrodes dans des termes de self-energie,
on obtient les équations de mouvement suivantes pour GR et G< [60, 61],

i∂tGR(t, t′) = H0̄0̄(t)G
R(t, t′) +

∫
du ΣR(t, u)GR(u, t′) (2.3)

G<(t, t′) =
∫

du
∫

dv GR(t, u)Σ<(u, v)[GR(t′, v)]† (2.4)

Nous introduisons la fonction d’onde ΨαE(~r, t) qui dépend de l’espace ~r
et du temps t, ainsi que de l’énergie d’injection E et du mode α. Cette
fonction d’onde obéit à l’équation de Shcrödinger avec un terme de source
additionnel

ih̄
∂

∂t
ΨαE(~r, t) = H0̄0̄(t)ΨαE(~r, t)+

∫
du ΣR(t−u)ΨαE(u)+

√
vαξαE(~r)e−iEt/h̄,

(2.5)
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où ξαE(~r) correspond à la fonction d’onde transverse du mode α à l’interface
électrode–système central et vα est la vitesse du mode. La fonction de Green
G<, et donc les observables physiques (densité, courant, ...), sont simple-
ment exprimées en termes de ces fonctions d’onde:

G<(t, t′) = ∑
α

∫ dE
2π

i fα(E)ΨαE(t)ΨαE(t′)†, (2.6)

où fα(E) est la fonction de Fermi dans l’électrode du canal α. Le terme de
source et les vitesses des modes dans Eq. (2.5) sont des objets standards de
la théorie du transport quantique stationnaire, tandis que Eq. (2.5) peut être
(et sera) intégrée numériquement.

En plus de cette reformulation du formalisme NEGF, nous faisons des
connexions avec deux autres approches du transport dépendent du temps.
D’abord on montre l’équivalence entre notre fonction d’onde et la méthode
dite de “scattering”. En construisant les états de diffusion, nous trouvons
qu’ils coïncident avec la fonoction d’onde ΨαE(t) à l’intérieur de la région
centrale du système. On rapporche aussi notre méthode de l’approche dite
sans partition (“partition-free”). Nous montrons que les fonctions d’onde
obtenues dans les deux cas sont les mêmes.

2.3.2 Chapitre 4: Une formule de Landauer pour pulses de tensions

Dans ce chapitre nous dérivons une généralisation de la formule de Lan-
dauer au cas des pulses de tension dans des systèmes multiterminaux.
Nous trouvons que la quantité du nombre de particules est tout à fait perti-
nente dans le cadre du transport résolu en temps. En effet nous montrons
qu’elle est conservée et invariante de jauge. Nous supposons un système
initialement à l’équilibre thermodynamique sans courant net, et que les
électrons ne subissent aucune réflexion à l’emplacement du pulse de ten-
sion. Nous trouvons alors que suite à l’application d’un pulse de tension
Vm̄ sur le contact m̄, le nombre de particules reçues dans le contact p̄ s’écrit,

n p̄ = ∑̄
m

Np̄m̄

Np̄m̄ = ∑
β∈ p̄

∑
α∈m̄

∫ dε

2π
|S0

p̄β,m̄α(ε)|2
∫ dE

2π
|Km̄(E− ε)|2 [ f (E)− f (ε)] ,

(2.7)

où S0
p̄β,m̄α(ε) est la matrice de scattering DC du système en l’abscence de

pulse de tension, et Km̄(E) est le contenu en harmoniques du pulse de ten-
sion:

Km̄(E) =
∫

dt eiφm̄(t)+iEt, (2.8)

avec φm̄(t) =
∫ t
−∞ du Vm̄(u).

23



2.3.3 Chapitre 5: Stratégies de simulations numériques

Le chapitre 5 traite des aspects numériques des approches NEGF et fonc-
tion d’onde (WF) discutées au chapitre 3. Nous proposons ici plusieurs
schémas numériques (trois pour NEGF et quatre pour la fonction d’onde)
illustrés par la propagation d’un pulse de tension le long d’une chaine 1D.
Une comparaison des implémentations les plus notables est donnée dans
le Tableau 2.1. On note N le nombre total de sites dans la région centrale,
et S le nombre de sites connectés aux électrodes. WF-D est notre meilleur

Algorithme CPU (1D) CPU estimé(2D) Evolution CPU

WF-D 1 104 (t/ht)NE[N + γtS]
WF-B 40 4.107 (t/ht)NE[N + (t/ht)S2]

GF-C 10
4 1012 (t/ht)2S3 (*)

GF-A 10
5 1014 (t/ht)2S2N (*)

Table 2.1 – Temps en secondes d’un calcul réalisé sur un seul processeur. Cas 1D:
20 sites (pour GF-A le calcul a été fait en parallèle sur 48 processeurs
afin d’obtenir le résultat en quelques heures).Cas 2D: 100 × 100 sites.
Le temps CPU est estimé à partir de la loi d’échelle sauf pour WF-D
où le calcul avec des tailles de systèmes comparables a pu être effec-
tué. Troisième colonne: loi d’échelle du temps de calcul. Une différence
notoire entre les méthodes WF et GF est que les méthodes GF (*) ne
fournissent les observables qu’à un temps donné par calcul, tandis que
les méthodes WF fournissent une courbe somplète en une seule simu-
lation. Le nombre de valeurs d’énergie typique NE est de 100 dans cet
exemple.

algorithme et est celui que l’on utilise dans le reste de ce travail. Alors que
la résolution numérique de Eq. (2.5) ne pose pas de difficulté, l’intégration
en énergie est souvent source de complications. Nous montrons que des
contributions ayant une vitesse très faible rendent difficile l’obtention de la
conservation du nombre de particules. On montre que cela est normal de
par les phénomènes physiques en jeu et que l’on retrouve la conservation
du nombre de particules si l’on intègre Eq. (2.5) sur un intervalle de temps
suffisamment long. Nous proposons de filtrer ces contributions de basse
énergie afin de retrouver la physique du niveau de Fermi attendue dans la
limite des longs temps. Enfin nous discutons de notre choix de conditions
aux bords dans les électrodes et justifions le modèle de chute de tension
abrupte (localisée dans l’espace) utilisé ici.

2.3.4 Chapitre 6: Propagation et étalement d’un pulse de charges

Dans le chapitre 6 nous étudions la propagation et l’étalement d’un pulse
de charges créé par un pulse de tension appliqué à un contact Ohmique.
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Figure 2.6 – Carte de la densité de charge liée à l’étalement d’un pulse de charge
créé par un pulse de tension Lorentzien, V(t) = Vp/(1+(t/τp)2), avec
amplitude Vp = 0.5 mV et durée τp = 5 ps.

Nous commençons par calculer la matrice de scattering d’une chaine 1D,
puis nous passons à la limite continue pour trouver que des oscillations de
densité de charge et de courant suivent l’étalement du pulse de charges.
Nous montrons alors que ces oscillations s’étalent de façon diffusive.

Nous visualisons ensuite l’étalement du pulse de charge dans un gaz
bi-dimensionnel d’électrons dans le régime d’effet Hall quantique, comme
décrit en Fig. 2.6. De façon plus spécifique nous montrons que l’étalement
de l’enveloppe de la densité de charge ∆X(t) s’étale linéairement avec le
temps. On identifie deux contributions à cet étalement. D’une part, le calcul
de la fonction d’onde électronique après l’application du pulse donne

∆X
∣∣∣
qu

=
t

m∗∆X0
, (2.9)

où ∆X0 est l’étalement spatial initial du pulse, et m∗ est la masse effective
des électrons. D’autre part, une vison plus classique basée sur un raison-
nement “d’hydrodynamique” amène

∆X
∣∣∣
cl
=

n̄t
m∗∆X0

, (2.10)

où n̄ est le nombre de particules injectées par le pulse de tension. Les
propriétés de transport du pulse de tension appliqué à un contact Ohmique
sont alors reliées étroitement à sa nature quantique dont la frontière est
déterminée par n̄ ≈ 1.

2.3.5 Chapitre 7: Contrôle dynamique d’interférence utilisant des pulses de ten-
sion dans le régime quantique

On commence à véritablement étudier le transport dépendent du temps
au-delà de la limite adiabatique dans le chapitre 7. On considère dans un
premier temps une cavité Fabry-Perot ; c’est le système le plus simple pos-
sédant un temps caractéristique (le temps de vol à l’intérieur de la cavité).
Un tel système est constitué d’un fil quantique et de deux barrières comme
représenté en Fig. 2.7. On trouve que l’application d’un pulse de tension
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Figure 2.7 – Schéma de notre système, un fil quantique connecté à deux électrodes.
Deux barrières A et B séparées d’une distance L sont placées le long
du fil et un pulse de tension Gaussien V(t) est envoyé du contact de
gauche. Les barrières sont caractérisées par leur hauteur VA et VB.

plus court que le temps de vol à l’intérieur de la cavité permet de contrôler
les phases relatives entre les différents chemins pris par les électrons. Ce
régime de pulses courts permet de restaurer les interférences même avec
une amplitude de pulse grande devant l’acart moyen entre niveaux de la
cavité, de faire apparaître un courant négatif par rapport à la direction de
propagation du pulse, et de faire osciller le nombre de particules transmises
avec le nombre de particules injectées. Ce travail combine des dérivations
analytiques basées sur le chapitre 4 et des calculs numériques. Nous vali-
dons notre analyse sur une simulation à grande échelle d’un interféromètre
de Mach-Zehnder dans le régime d’effet Hall quantique.

On généralise enfin le concept de contrôle dynamique d’interférence au
cas de la montée d’une tension continue dans les interféromètres discutés
ci-dessus (cas présenté au tout début de cette introduction). On montre que
l’application d’une tension DC Vb aux interféromètres précédents donne
lieu à un régime transitoire universel où le courant oscille à la fréquence
eVb/h. Cet effet est analogue à l’effet Josephson AC observé dans les jonc-
tions supraconductrices.

2.3.6 Chapitre 8: Simulations numériques du transport quantique résolu en temps
dans le régime d’effet Hall quantique.

Dans le chapitre 8 nous présentons dans un premier temps la procédure à
suivre pour réaliser des simulations numériques dans le régime d’effet Hall
quantique. On spécifie ensuite l’étude au transport dépendent du temps. En
particulier nous revenons sur l’intégration sur l’énergie d’injection néces-
saire au calcul des observables (voir Eq. (2.6)). En effet le filtrage mis en
place au chapitre 5 n’est plus adapté du fait de la grande densité d’états ne
se propageant pas (cas très spécial de l’effet Hall quantique)

Dans la dernière section du chapitre on dicute de l’interaction entre la
modification dynamique du chemin emprunté par les électrons et la dy-
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namique du flux d’électrons dans un circuit quantique. Précisément, on
étudie la propagation d’un pulse de charges via les états de bord d’un gaz
bi-dimensionnel d’électrons sous régime d’effet Hall quantique. L’envoi
d’excitations radio-fréquences (RF) sur des grilles couplées capacitivement
au gaz d’électrons nous permet de manipuler dynamiquement ces états de
bord. On trouve qu’un changement RF rapide de la tension de grille peut
arrêter la propagation d’un pulse de charge à l’intérieur du système. Cet
effet est intimement lié à la vitesse nulle des états se trouvant au milieu
du système dans le régime d’effet Hall quantique, ainsi qu’à la connexion
particulière entre vecteur d’onde et confinement transverse des niveaux de
Landau. Nous proposons une nouvelle possibilité de stopper, relâcher et
modifier la trajectoire de pulses de charges dans l’effet Hall.
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Part II

F O R M A L I S M A N D N U M E R I C A L A L G O R I T H M S
F O R T I M E - D E P E N D E N T Q U A N T U M

T R A N S P O RT





3
VA R I O U S A P P R O A C H E S T O T I M E - R E S O LV E D
Q U A N T U M T R A N S P O RT

We construct the theory of time-dependent transport with an emphasis
on drawing connections between various possible approaches. We begin
with a short review on the theoretical and numerical aspects of the time-
resolved quantum transport in section 3.1. We introduce our general model
in section 3.2 and the basic equations of the non-equilibrium Green’s func-
tion formalism in section 3.3, and then proceed in section 3.4 with the intro-
duction of the time-dependent wave function as a mathematical artifact to
reformulate the NEGF formalism. Section 3.5 is devoted to a constructive
presentation of the scattering approach. We show that it is strictly identical
to the wave function of section 3.4. We also find that the NEGF approach
is equivalent to the partition-free approach introduced in [62] and further
developed in [63]. Finally, in section 4 we apply the formalism that has been
introduced to voltage pulses in multiterminal systems. We generalize the
Landauer-Büttiker formula to the number of transmitted particles, and find
that this quantity is relevant in time-dependent transport (conserved and
gauge invariant). Sections 3.1, 3.2 and 3.3 contain known material, while
sections 3.4, 3.5 are original results.

3.1 theory and numerical simulations of time-resolved quan-
tum transport

While simulations of the time-dependent Schrödinger equation are al-
most as old as quantum mechanics itself [64], time-resolved quantum trans-
port requires that two additional difficulties to be dealt with: the statistical
physics of the many-body problem (the minimum level being the inclusion
of the Pauli principle and the thermal equilibrium of the leads) and the fact
that quantum transport takes place in infinite systems. Early numerical sim-
ulations of time-resolved quantum transport were based on a seminal paper
by Caroli, Combescot, Nozières, and Saint-James [65] which sets the basis
of the Non-Equilibrium Green’s Function (NEGF) formalism. This work,
itself based on the Keldysh formalism [66] in a one-dimensional situation,
was used in [67] to study resonant tunneling of a single level. Caroli et
al. originally presented their theory with a DC problem. They considered a
two-lead system where the central region is initially not coupled to the leads
(in which perturbations are applied). The electrical connection between the
leads and the central region is switched on adiabatically, leading to the flow
of a time-independent current. Although the partition of the infinite system
can be placed anywhere, it is usually placed at the central region–lead inter-
face. The theory was later completed with the addition of electron–phonon
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interactions [68, 69]. The formalism for a generic mesoscopic system was
established by Jauho, Wingreen and Meir [70, 71] extending the stationary
formalism put forward by Wingreen and Meir [72] which itself extends the
original work of [65]. The time-dependent NEGF approach described in
these papers is still the basis of most numerical works today. In a comple-
mentary approach, namely the scattering matrix theory [73], one focuses
on the incoming and outgoing states originating from the leads and propa-
gating through the central region (instead of focusing on the central region
and using the leads as boundary conditions). The latter approach, more
involved from a numerical point of view, is more favored for analytical cal-
culations. Considering that the NEGF formalism is 25 years old, the number
of publications on the subject is rather small. This is due in part to the fact
that it only recently became possible to perform experiments in the rele-
vant regimes (i.e. GHz frequencies at dilution fridge temperatures), and
also to the extreme computational cost of a direct integration of the NEGF
equations. Many recent works describe various strategies for integrating
the integro-differential equation of the NEGF formalism, including direct
approaches [74, 75, 76], a semi analytical approach [77], a parametriza-
tion of the analytical structure of the equations [78] and a recursive ap-
proach [79]. The important issue of properly dealing with electron-electron
interactions has been discussed in [80, 81, 82, 83]. Alternative approaches
to NEGF include a direct treatment of quantum master equations for the
single-electron density matrix [84, 85], or the use of a “stroboscopic” wave
packet basis [86, 87]. Perhaps the most advanced alternative to NEGF is the
partition-free approach introduced by Cini [62] in the early 80s. In this ap-
proach, instead of “integrating out” the electrodes’ degrees of freedom, as
it is done in NEGF, the central region and the leads are treated on the same
footing. One starts at t = 0 with the exact density matrix at equilibrium,
and follows the states of the system as they are driven out of equilibrium
by the time-dependent perturbation. This approach can be followed with
Green’s functions [88, 89] or more conveniently directly at the wave function
level [63, 90, 91].

To the best of our knowledge, the best performance so far has been ob-
tained with the partition-free approach where around 100 sites could be
studied (the direct NEGF simulations are usually confined to 10 sites or
fewer). The wave function approach leverages the fact that calculations of
the electric current do not require all of the information contained within
Green’s functions. Nevertheless, all these techniques suffer from the fact
that the systems are intrinsically infinite which brings non local (in time)
terms into the dynamical equations. An interesting approach followed
in [89] consists of ignoring these non local terms and considering a large
finite system instead.
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3.2 generic model for time-dependent mesoscopic devices

We consider a quadratic discrete Hamiltonian for an open system

Ĥ(t) = ∑
i,j

Hij(t)c†
i cj (3.1)

where c†
i (cj) are the usual Fermionic creation (annihilation) operators of a

one-particle state on site i. The site index i includes all the degrees of free-
dom present in the system, i.e. space but also spin, orbital (s,p,d,f) and/or
electron/hole (superconductivity), so that a large number of situations can
be modeled within the same framework. The system consists of a central
region, referred to as 0̄ connected to M semi-infinite leads labeled 1̄...M̄ as
depicted in Fig. 3.1. H(t) is formally an infinite matrix and can be viewed
as consisting of sub-blocks Hm̄n̄,

Figure 3.1 – Sketch of a generic multiterminal system where the central part 0̄
(blue circles) is connected to three semi-infinite leads 1̄, 2̄, 3̄ (yellow
circles). The leads are kept at equilibrium with temperature Tm̄ and
chemical potential µm̄. The dashed green line indicates a region that
will be integrated out in Fig. 5.1.

H =


H0̄0̄ H0̄1̄ H0̄2̄ . . .
H1̄0̄ H1̄1̄ 0 . . .
H2̄0̄ 0 H2̄2̄ . . .
. . . . . . . . . . . .

 (3.2)

A semi-infinite lead m̄ is itself a periodic system where a unit cell is de-
scribed by a Hamiltonian matrix Hm̄ which is coupled to the neighboring
cells by the coupling matrix Vm̄,

Hm̄m̄ =


Hm̄ Vm̄ 0 0 . . .
V†

m̄ Hm̄ Vm̄ 0 . . .
0 V†

m̄ Hm̄ Vm̄ . . .
. . . . . . . . . . . . . . .

 (3.3)
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While the time dependence of the device region H0̄0̄(t) can (and will) be ar-
bitrary, the leads are only subject to homogeneous time-dependent voltages
so that Hm̄m̄(t) = wm̄(t)1m̄ + Hm̄m̄(t = 0) (1m̄ is the identity matrix in lead
m). Following standard practice, we perform a unitary gauge transforma-
tion,

Ŵ = exp
(
− i ∑

i∈m̄
φm̄(t)c†

i ci

)
, (3.4)

on the Hamiltonian with φm̄(t) =
∫ t
−∞ du wm̄(u) being the integral of the

time-dependent voltage. After the gauge transformation, we recover time-
independent Hamiltonians for the leads while the matrix elements that con-
nect the lead to the central part now acquire a time-varying phase:

Hm̄0̄ → eiφm̄(t)Hm̄0̄. (3.5)

The quantum mechanical aspects being properly defined, we are left to
specify the statistical physics; each lead is supposed to remain at thermal
equilibrium with a chemical potential µm̄ and a temperature Tm̄. Note
that the thermal equilibrium condition is most simply expressed for time-
independent leads, i.e. after the gauge transformation. This particular
choice of boundary condition is significant and its physical meaning will
be discussed in more depth in section 5.5.

3.3 keldysh formalism and non-equilibrium green’s functions

Here we summarize the basic equations of the time-dependent NEGF
formalism [72, 70] that constitutes the starting point of our approach. We
refer to the original [60] or more recent references [39, 61] for a derivation
of these equations.

3.3.1 Equations of motion for the Retarded (GR) and Lesser (G<) Green’s func-
tions

The basic objects under consideration are the Lesser G<(t, t′) and Re-
tarded GR(t, t′) Green’s functions of the system,

GR
ij (t, t′) = −iθ(t− t′)〈{ci(t), c†

j (t
′)}〉 , (3.6)

G<ij (t, t′) = i〈c†
j (t
′)ci(t)〉 , (3.7)

where the operator ci(t) corresponds to ci in the Heisenberg representa-
tion and θ(t) is the Heaviside function. For a quadratic Hamiltonian, the
Retarded Green’s function takes a simple form in terms of the “first quanti-
zation” evolution operator of the system,

GR(t, t′) = −iθ(t− t′)U(t, t′) (3.8)
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+∞-∞

t0

Figure 3.2 – Closed time contour C due to Schwinger. The system evolves forward
on the upper branch from t = −∞ to t = t0, and backward on the
lower branch until t = +∞.

where the unitary evolution operator U(t, t′) verifies i∂tU(t, t′) = H(t)U(t, t′)
and U(t, t) = 1. The physical observables can be written simply in terms of
the Lesser Green’s function. For instance the particle current between sites
i and j reads,

Iij(t) = Hij(t)G<ji (t, t)−Hji(t)G<ij (t, t), (3.9)

while local electron density is ρi(t) = −iG<ii (t, t). Suppose that one is
interested in the quantum propagation of a wave packet Ψ(t) according
to the Schrödinger equation i∂tΨ(t) = HΨ(t) with an initial condition
given by Ψ(t = t0) = Ψ0. Then one finds that Ψ(t) is simply given by
Ψ(t) = iGR(t, t0)Ψ0. In other words, the Retarded Green’s function encodes
the quantum propagation of a wave packet. The Lesser Green’s function, on
the other hand, captures the remaining many-body / statistical physics as-
pects: the Pauli principle, the finite temperature properties of the leads and
the fact that the “initial conditions”, say an electric voltage pulse, are given
in terms of macroscopic quantities (as opposed to an initial microscopic
wave packet) and spread over a finite time window.

The significant difference between (thermodynamic) equilibrium and non-
equilibrium theories is the assumption made in the former that the system
comes back to its ground state long after the switching on and off of inter-
actions. In the latter the final state depends on the specifics of the switching
procedure. Since one needs to know the final state in order to compute
statistical averages, Schwinger initially proposed to take it the same as the
initial one [92]. In other words, we let the system evolve from t = −∞ to
some time of interest, t0 in Fig. 3.2, and then rewind the evolution back to
t = −∞. This construction makes the time evolve on a contour C that dis-
tinguishes between forward and backward evolution as depicted in Fig. 3.2.
The concept of the time contour was later used by Kadanoff and Baym [93],
and Keldysh [66]. The doubling of the degrees of freedom is the price to
pay to use this trick. As a result the typical object of interest of the theory
is the 2× 2 Green’s function matrix,

Ĝ(t, t′) =

(
GT(t, t′) G<(t, t′)
G>(t, t′) G T̃(t, t′)

)
(3.10)

The submatrices Ĝij(t, t′) refer to the position of t and t′ on the contour
C. These positions are labeled respectively by i and j: i, j = 1 for a time
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argument on the forward branch, i, j = 2 on the backward branch. The
diagonal elements of Ĝ are related to the real-time Green’s functions by the
relations

GT(t, t′) = G<(t, t′) + GR(t, t′) (3.11)

G T̃(t, t′) = G<(t, t′)− [GR(t′, t)]†, (3.12)

and G>ij (t, t′) = −i〈ci(t)c†
j (t
′)〉 is the Greater Green’s function. The pertur-

bation theory is then constructed by splitting the Hamiltonian in a simple
(solvable) part Ĥ0, and a perturbation part studied order by order Ĥ

′
(t).

The formal matrix representation of this decomposition reads,

H(t) = H0 + H
′
(t) (3.13)

H0 = H0
0̄0̄ +

M̄

∑̄
m=1

H0
m̄m̄ (3.14)

H
′
(t) = H

′
0̄0̄(t) +

M̄

∑̄
m=1

[
H
′
m̄0̄(t) + H

′
0̄m̄(t)

]
(3.15)

using the same notations for the subscripts as introduced in the previous
section. In order to obtain a perturbative expansion of the Green’s function
matrix it appears convenient to work in the interaction picture with respect
to Ĥ0 as it is the solvable part of the Hamiltonian. In the case where H

′
(t)

is quadratic in the fields, the re-summation of the Green’s function matrix
expansion yields the Dyson equation [60, 61],

Ĝ(t, t′) = ĝ(t, t′) +
∫

du ĝ(t, u)H
′
(u)σzĜ(u, t′), (3.16)

where σz is the Pauli matrix. ĝ is the Green’s function matrix of the uncou-
pled (isolated) system described by H0. Equation (3.16) is key for a numeri-
cal treatment of the formalism as it allows for the integration of subparts of
the initial infinite open system.

Introducing the projections of Green’s functions on the central region
GR(t, t′) = GR

0̄0̄(t, t′) and G<(t, t′) = G<0̄0̄(t, t′), one can obtain from Eq. (3.16)
effective Dyson equations where the leads’ degrees of freedom have been
integrated out. The Dyson equation for GR is derived from the diagonal
part of Eq. (3.16) (see Appendix A) and reads

GR(t, t′) = gR(t, t′)+
∫ ∫

du dv gR(t, u)
[
H
′
0̄0̄(u)δ(u− v)+ΣR(u, v)

]
GR(v, t′),

(3.17)

where self-energies encapsulate the effect of the leads,

ΣR(t, t′) =
M̄

∑̄
m=1

ΣR
m̄(t, t′), (3.18)
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with

ΣR
m̄(t, t′) = H

′
0̄m̄(t)gR

m̄(t, t′)H
′
m̄0̄(t

′). (3.19)

Applying the operator [i∂t −H0̄0̄(t)] on the left of Eq. (3.17) yields the equa-
tion of motion for the Retarded Green’s function,

i∂tGR(t, t′) = H
′
0̄0̄(t)G

R(t, t′) +
∫

du ΣR(t, u)GR(u, t′) (3.20)

or its symmetric counterpart

i∂t′GR(t, t′) = −GR(t, t′)H
′
0̄0̄(t

′)−
∫

du GR(t, u)ΣR(u, t′) (3.21)

with the initial condition limτ→0 GR(t + τ, t) = −i. Similarly, the equation
of motion for the Lesser Green’s function can be integrated formally from
the off-diagonal part of Eq. (3.16) (see Appendix A) and reads,

G<(t, t′) =
∫

du dv GR(t, u)Σ<(u, v)[GR(t′, v)]† (3.22)

with Σ<(t, t′) = ∑m̄ Σ<
m̄(t, t′) and Σ<

m̄(t, t′) = H
′
0̄m̄(t)g<m̄(t, t′)H

′
m̄0̄(t

′). Equa-
tions (3.20) and (3.22) form the starting point of the formalism detailed in
this chapter.

3.3.2 Equations of motion for the leads self-energies

To get a complete set of equations, we need to relate the self-energies of
the leads to the lead Hamiltonian matrices. While the corresponding calcu-
lation in the energy domain is well developed, self-energies as a function of
time have been seldom calculated. Here we use the following equation of
motion,

i∂tgR
m̄(t, t′)− Hm̄(t)gR

m̄(t, t′) =
∫

du Vm̄(t)gR
m̄(t, u)V†

m̄(u)gR
m̄(u, t′).

(3.23)

This equation only provides the surface Green’s function of the lead, i.e.
Green’s function matrix elements for the last layer of the semi-infinite peri-
odic structure. For time-independent leads (the case studied in this thesis
after the gauge transformation), gR

m̄(t − t′) is a function of the time differ-
ence t − t′ only. It is related by a simple Fourier transform to the surface
Green’s function in energy,

gR
m̄(t− t′) =

∫ dE
2π

e−iE(t−t′)gR
m̄(E). (3.24)

There are many techniques to calculate gR
m̄(E) but, the presence of a cusp

at t = t′ in the time domain and 1/
√

E singularities in the energy domain
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(whenever a new conducting channel opens) renders a Fourier transform
impractical and a direct use of Eq. (3.23) much more convenient. The ana-
logue of Eq. (3.23) in the energy domain is a self-consistent equation for
gR

m̄(E),

gR
m̄(E) = 1/[E− Hm̄ −Vm̄gR

m̄(E)V†
m̄], (3.25)

which is far less interesting than its time-dependent counterpart. Indeed,
the corresponding iterative solution converges poorly (each iteration corre-
sponds to adding one layer to the lead while other schemes allow to double
its size at each iteration) and it requires the use of a small imaginary part in
the self-energy. As each lead is at thermal equilibrium, the Lesser surface
Green’s function for the lead is obtained from the Retarded one through the
use of the fluctuation-dissipation theorem [94, 61],

g<m̄(E) = − fm̄(E)
(

gR
m̄(E)− [gR

m̄(E)]†
)

(3.26)

where fm̄(E) = 1/[1 + e(E−µm̄)/kBTm̄ ] is the Fermi function of the lead.

3.4 wave-function (wf) approach

We now turn to the construction of our wave function approach. We seek
to explicitly construct the wave function in terms of Green’s functions, re-
late the physical observables to the wave function and derive the equations
that this wave function satisfies. Eventually, we arrive at a closed set of
equations where the original Green’s function formalism has disappeared
entirely. The central object of the resulting theory lies halfway between
NEGF and the time-dependent scattering approach. Both Green’s functions
and the (time-dependent) scattering matrix can be obtained directly from
the wave function.

In what follows we suppose that the voltage drop actually takes place
inside the central region 0̄. This can be done without loss of generality; if it
is not the case then we simply change our definition of the central region to
include a few layers of the leads. We always include at least the first layer of
each lead in our definition of the central region 0̄. This step is not necessary
but somewhat simplifies the resulting expressions.

3.4.1 Construction of the wave function

We start with a representation of the lead Lesser self-energy in the energy
domain,

Σ<(t− t′) = ∑̄
m

∫ dE
2π

i fm̄(E)e−iE(t−t′)Γm̄(E) (3.27)
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where Γm̄(E) = iH0̄m̄
(

gR
m̄(E)− [gR

m̄(E)]†
)

Hm̄0̄ is the coupling matrix to the
electrodes (also known as the tunneling rate matrix in the context of weak
coupling). Γm̄(E) can be diagonalized into

Γm̄(E) = ∑
α

vm̄αξαEξ†
αE (3.28)

where the ξαE are the so-called dual transverse wave functions and vα(E)
is the corresponding mode velocity [95]. Note that the ξαE are normalized
but not necessarily orthogonal. They are related to the transverse incoming
modes ξ in

αE to be introduced in the next section by ξαE = Γm̄ξ in
αE/vm̄α. Note

that alternatively we could have used the fact that Γm̄ is a Hermitian matrix
to justify its diagonalization into a set of orthonormal vectors. However, by
doing so we would have mixed outgoing and incoming states and lost the
connection with the scattering theory described in the next section. We
also note that all modes are in principle included but the evanescent ones
have vanishing velocities and will therefore automatically drop out of the
problem.

Eq. (3.22) for the Lesser Green’s function, hence the observables, can be
recast using the two above equations into,

G<(t, t′) = ∑
α

∫ dE
2π

i fα(E)ΨαE(t)ΨαE(t′)† (3.29)

where we have used a unique index α to denote both the leads and the
channels inside the leads and introduced the wave function,

ΨαE(t) =
√

vα

∫
du GR(t, u)e−iEuξαE. (3.30)

ΨαE(t) is the projection inside the device region of ψαE(t) which is defined
in the infinite system, ΨαE = [ψαE]0̄, with

ψαE(t) =
√

vα

∫
du GR(t, u)e−iEuξαE. (3.31)

ΨαE(t) and ψαE(t) are the basic objects that will be discussed from now
on. We note the Retarded Green’s function, GR(t, t′) = θ(t− t′)[G>(t, t′)−
G<(t, t′)], can also be obtained from the wave function,

GR(t, t′) = −iθ(t− t′)
∫ dE

2π ∑
α

Ψα,E(t)Ψ†
α,E(t

′) (3.32)

from which we get the normalization condition,

∀ t
∫ dE

2π ∑
α

Ψα,E(t)Ψ†
α,E(t) = 10̄. (3.33)
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3.4.2 Effective Schrödinger equation

The equations satisfied by the wave function derive directly from the
equation of motion for the Retarded Green’s function. They read,

i∂tΨαE(t) = H0̄0̄(t)ΨαE(t) +
∫

du ΣR(t− u)ΨαE(u) +
√

vαe−iEtξαE, (3.34)

and

i∂tψαE(t) = H(t)ψαE(t) +
√

vαe−iEtξαE. (3.35)

Remarkably, Eq. (3.35) is almost the Schrödinger equation, up to the source
term

√
vαe−iEtξαE. Together, Eqs. (3.29) and (3.34) (or alternatively Eq. (3.35))

form a closed set of equations that permits the calculation of the observables
of the system. In particular, the Retarded Green’s function does not appear
explicitly anymore. Note that the initial conditions for the wave functions
are not well defined. We shall find, however, that they are essentially ir-
relevant and that after some relaxation time they are forgotten; the source
term controls the results (see Fig. 5.5). To understand the origin of this term
we consider a one-dimensional chain with just one electrode and no time-
dependent perturbations. The Schrödinger equation for the 1D chain in the
energy domain reads,

Ψx−1 + Ψx+1 = EΨx. (3.36)

We suppose that the “system” corresponds to x ≥ 1 and the “electrode”
corresponds to x ≤ 0. As a boundary condition in the electrode, we impose
the incoming part of the wave, for x ≤ 0,

Ψx = eikx + re−ikx (3.37)

which in turn implies that E = 2 cos k. Now we look for an effective equa-
tion where r has disappeared, which amounts to finding the effective bound-
ary condition imposed on the system due to the presence of the electrode.
Writing the Schrödinger equation for x = 0 and x = 1 we get,

1 + r + Ψ2 = EΨ1 (3.38)

e−ik + reik + Ψ1 = E(1 + r) (3.39)

Using E = eik + e−ik we find,

[ΣRΨ1 + iΣRv] + Ψ2 = EΨ1, (3.40)

where we have introduced the self-energy ΣR = eik and the velocity v =
∂E/∂k. Eq. (3.40) is reminiscent of the original equation Ψ0 + Ψ2 = EΨ1.
The value of the wave function in the electrode, Ψ0, has been replaced by
an effective boundary condition (first two terms in Eq. (3.40)) and the elec-
trode effectively drop out of the problem. This effective boundary condition
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contains a self-energy term (proportional to Ψ1) and a source term. This is
a generic consequence of our boundary conditions where we impose the
incoming waves, as opposed to more conventional Dirichlet or Neumann
boundary conditions. Upon transforming into the time domain, the self-
energy term transforms into a convolution which gives rise to the memory
kernel present in Eq. (3.34).

At this stage, several routes could be followed. If we suppose the time-
dependent perturbations to be periodic, we can make use of the Floquet
theorem to obtain a Floquet based wave function approach. Here, however,
we concentrate on the physics of pulses (perturbations of any sort but local-
ized in time). We suppose that the system is in a stationary state up to a
time t = 0 and that the time-dependent perturbations (voltage pulses, mi-
crowaves, etc.) are switched on at time t > 0. We separate the problem into
a stationary part and a time-dependent perturbation H0̄0̄(t) = H0̄st +H0̄w(t).
The solution of the stationary problem takes the form e−iEtΨst

αE, where the
stationary solution can be obtained by solving the linear (sparse) equation,

[E−H0̄st − ΣR(E)]Ψst
αE =

√
vαξαE. (3.41)

Ψst
αE is a typical output of wave function based algorithms for DC trans-

port [96]. We now introduce a wave function measuring the deviation with
respect to the stationary solution,

ΨαE(t) = Ψ̄αE(t) + e−iEtΨst
αE. (3.42)

Ψ̄αE(t) satisfies,

i∂tΨ̄αE(t) = H0̄0̄(t)Ψ̄αE(t)+
∫ t

0
du ΣR(t− u)Ψ̄αE(u)+H0̄w(t)e

−iEtΨst
αE (3.43)

with the initial condition Ψ̄αE(t = 0) = 0. Eq. (3.43) is very similar to
Eq. (3.34) but it has the advantage that the equilibrium physics has been
removed so that the memory kernel starts at t = 0 (instead of t = −∞). Also,
the source term does not take place at the system-leads interface anymore,
but rather at the sites where a time-dependent perturbation is applied. A
similar treatment can be done for ψαE(t) and we obtain

i∂tψ̄αE(t) = H(t)ψ̄αE(t) + Hw(t)e−iEtψst
αE, (3.44)

where ψst
αE satisfies [E −Hst]ψst

αE =
√

vαξαE and H(t) = Hst + Hw(t). We
shall find that Eq. (3.43) or Eq. (3.44) are much more well suited for numer-
ical simulations than the original NEGF equations.

Finally, a common case of interest involves metallic electrodes coupled
to mesoscopic systems whose characteristic energy scales are much smaller
than the Fermi energy of the electrodes. In this limit (known as the wide
band limit), one can neglect the energy dependence of the electrode self-
energy ΣR(E + ε) ≈ ΣR(E) and the self-energy memory kernel becomes
local in time resulting in

i∂tΨ̄αE(t) = [H0̄0̄(t) + ΣR(E)]Ψ̄αE(t) + H0̄w(t)e
−iEtΨst

αE. (3.45)
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3.5 time-dependent scattering theory

So far our starting point has been the NEGF formalism from which we
have constructed the wave function ΨαE(t). We now turn to a “Landauer-
Büttiker” scattering approach of time-dependent quantum transport in a
mixed time-energy representation. We construct the time-dependent scat-
tering states of the system and find that their projection inside the central
region is in fact the wave function ΨαE(t). Hence, we shall establish (as it
is the case for DC transport) that the corresponding scattering approach is
rigorously equivalent to the NEGF formalism. Last, we shall make the con-
nection with the partition free approach thereby completing the formalism
part of this thesis.

3.5.1 Conducting modes in the leads

We start by introducing the plane waves α inside a lead p̄ which take the
form ξ in

p̄α(E)e−iEt−ikin
α (E)x for the incoming states and ξout

p̄α (E)e−iEt+ikout
α (E)x

for the outgoing ones. The integer x labels the different layers of the lead
(x ∈ {1, 2, 3 · · · }) counted from the central system. The normalized vectors
ξout

p̄β (ξ in
p̄β) are the transverse part of the mode for the outgoing (incoming)

states, including the evanescent modes (although those will eventually drop
out for the incoming part). As the plane waves satisfy the Schrödinger
equation, we obtain

[Hp̄ − E + Vp̄λα + V†
p̄ λ−1

α ]ξout
p̄α (E) = 0, (3.46)

with λα = e+ikout
α (E). ξ in

p̄α(E) obeys the same equation with negative mo-
menta. This (2nd order) equation can be recast in the form of a generalized
eigenvalue problem,(

Hp̄ − E V†
p̄

1 0

)(
ξ p̄α(E)
χ p̄α(E)

)
= λα

(
−Vp̄ 0

0 1

)(
ξ p̄α(E)
χ p̄α(E)

)
(3.47)

for which efficient techniques have now been developed [95, 97] (χ p̄α(E) is
defined by the second line of Eq. (3.47)). We note that solving Eq. (3.46)
can be non trivial when V is not invertible, a common case when the lattice
has more than one atom per unit cell (e.g. graphene). The corresponding
mode velocity is given by vout

p̄α = i(ξout
p̄α )

†[Ve+ikout
α (E) − V†e−ikout

α (E)]ξout
p̄α . An

interesting relation is obtained by observing that ξout
p̄α (E) (ξ in

p̄α(E)) are the
eigenvectors of the Retarded (Advanced) Green’s function of the lead,

gR
p̄ (E)V†

p̄ ξout
p̄α (E) = e+ikout

α (E)ξout
p̄α (E) (3.48)

[gR
p̄ (E)]†V†

p̄ ξ in
p̄α(E) = e−ikin

α (E)ξ in
p̄α(E) (3.49)

as can be shown using Eq. (3.25) and Eq. (3.46), see [95]. Eq. (3.46) implies
that for any two modes (incoming or outgoing) [95],

(λα − [λ∗β]
−1)ξ in/out

p̄β (E)[Vp̄λα −V†
p̄ λ∗β]ξ

in/out
p̄α (E) = 0. (3.50)
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It follows that, while in general different modes are not orthogonal, they
satisfy

[ξout
p̄α (E)]†Γ p̄ξout

m̄β(E) = δαβδm̄p̄vout
p̄α (3.51)

with a similar expression for the incoming modes.

3.5.2 Construction of the scattering states

Our aim is to construct a wave function ψscat
αE (t) which (i) is a solution of

the Schrödinger equation and (ii) corresponds to an incoming plane wave
in mode α (belonging to lead m̄) with energy E. This boundary condition
amounts to imposing the incoming part of the wave function, and leaving
the outgoing part free. In particular, the system being time-dependent, the
outgoing part can contain many different energies. In the rest of this section,
we often drop the indices E and α when there is no risk of confusion. The
value of ψscat

αE (t) is noted ψscat
0̄ (t) in the central region and ψscat

p̄x (t) in the xth

layer of lead p̄. In the leads, the wave function is formed by a superposition
of plane waves,

ψscat
p̄x (t) ≡ ψin

p̄x(t) + ψout
p̄x (t) (3.52)

with

ψin
p̄x(t) = δp̄m̄

ξ in
p̄α(E)√
|vin

m̄α|
e−iEt−ikin

α (E)x (3.53)

ψout
p̄x (t) =

∫ dE′

2π ∑
β

ξout
p̄β (E′)√
|vout

p̄β |
e−iE′t+ikout

β (E′)xSp̄β,m̄α(E′, E) (3.54)

Sp̄β,m̄α(E′, E) is the central object of the scattering theory, namely the prob-
ability amplitude for a mode α with energy E to be transmitted (p̄ 6= m̄) or
reflected (p̄ = m̄) into mode β with energy E′. The formalism only differs
from its time-independent counterpart by the possibility to absorb or emit
energy. The normalization has been chosen so that the waves carry a cur-
rent (per energy unit) unity. As Eq. (3.52) is made of a superposition of the
eigenstates of the leads, it satisfies the time-dependent Schrödinger equa-
tion in the lead by construction. Eq. (3.52) forms an “incoming” boundary
condition. One proceeds by writing the Schrödinger equation in the central
region and in the first layer of the leads (the “matching conditions”):

i∂tψ
scat
0̄ (t) = H0̄0̄ψscat

0̄ (t) + ∑̄
p

Vp̄ψscat
p̄1 (t) (3.55)

i∂tψ
scat
p̄1 = Hp̄ψscat

p̄1 (t) + V†
p̄ Pp̄ψscat

0̄ (t) + Vp̄ψscat
p̄2 (t), (3.56)

where the projector Pp̄ projects the wave function of the central region on
the sites which are attached to the reservoir p̄. The set of the five above
equations fully defines the scattering states as well as the scattering matrix
Sp̄β,m̄α of the system.
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3.5.3 Connection to the wave function approach

To proceed, we note that as ψscat
p̄x (t) satisfies,

i∂tψ
scat
p̄1 = Hp̄ψscat

p̄1 (t) + V†
p̄ ψscat

p̄0 (t) + Vp̄ψscat
p̄2 (t), (3.57)

and Eq. (3.56) results in,

V†
p̄ Pp̄ψscat

0̄ (t) = V†
p̄ ψscat

p̄0 (t) (3.58)

which relates the scattering matrix on the right (via ψscat
p̄0 (t)) to the wave

function inside the system on the left. We now use the fact that ξout
p̄α (E) and

ξ in
p̄α(E) are the eigenvectors of the Retarded and Advanced surface Green’s

function of lead p̄. Equations (3.48), (3.49) and (3.52) provide,

Vp̄ψout
p̄1 (t) =

∫
duΣR

p̄ (t− u)ψout
p̄0 (u). (3.59)

Finally, inserting the explicit decomposition Eq. (3.52) in terms of incoming
and outgoing waves inside Eq. (3.55) and using Eq. (3.58) and Eq. (3.59), we
obtain,

i∂tψ
scat
0̄ (t) = H0̄0̄ψscat

0̄ (t) + ∑̄
p

∫ t

−∞
duΣR

p̄ (t− u)Pp̄ψscat
0̄ (u) + iΓm̄(E)ψin

m̄0(t).

(3.60)

Eq. (3.60) is identical to our main wave equation Eq. (3.34) which completes
the proof that

ψscat
0̄ (t) = ΨαE(t). (3.61)

Hence the equivalence between the scattering approach and the NEGF for-
malism can be extended to time-dependent transport. We note however that
ψαE(t) and the scattering state ψscat

αE (t) do not match outside of the scatter-
ing region as the former only contains outgoing modes (and no incoming
ones).

3.5.4 Generalization of the Fisher-Lee Formula

Besides proving the formal equivalence between the Scattering and NEGF
approaches in this context, the above construction provides an explicit link
between the wave function and the scattering matrix. Indeed, using the
definition Eq. (3.52) of the scattering matrix, one obtains after integration
over time,

Sp̄β,m̄α(E′, E) =
∫

dt′ eiE′t′
[ξout

p̄β (E′)]†√
|vout

m̄α(E′)|
Γ p̄(E′)[ψscat

p̄0,αE(t
′)−ψin

p̄0,αE(t
′)]. (3.62)
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Eq. (3.62) is a generalization of the Fisher-Lee relation [98] for time-dependent
problems. As the numerical algorithms described in the later sections al-
low one to compute the wave function ψscat

p̄0,αE(t
′) directly, they also provide

means to evaluate the scattering matrix through the above relation. Equa-
tion (3.62) can be further simplified into,

Sp̄β,m̄α(E′, E) =
[ξout

p̄β (E′)]†√
|vout

m̄α(E′)|
Γ p̄(E′)

[ ∫
dt′ eiE′t′ψscat

p̄0,αE(t
′)

− ξ in
m̄α(E′)√
|vin

m̄α(E)|
2πδ(E′ − E)

]
(3.63)

Inserting the definition of the wave function in terms of the Retarded Green’s
function inside Eq. (3.63), one obtains another form, closer to the original
one of [98],

Sp̄β,m̄α(E′, E) =
[ξout

p̄β (E′)]†√
|vout

m̄α(E′)|
Γ p̄(E′)

[
GR(E′, E)Γm̄(E)− 2πδ(E′ − E)δm̄p̄

] ξ in
m̄α(E)√
|vin

m̄α(E)|
(3.64)

where we have introduced the (double) Fourier transform of the Retarded
Green’s function,

GR(E′, E) =
∫

dtdt′ GR(t′, t)eiE′t′−iEt. (3.65)

3.5.5 Link with the partition-free initial condition approach

In the construction of the scattering states given above, we impose a
boundary condition where the form of the incoming modes is fixed for
all times while the outgoing modes are free. Hence, this construction treats
incoming modes and outgoing ones on different footings. This might seem
correct based on physical arguments, yet we have seen in section 3.4.1 that
the matrix Γ could be diagonalized in several different ways. In the rest of
this section, we follow a very simple route taken by Cini [62] and further
developed in Refs. [63, 90, 91, 99] where such a distinction does not ap-
pear explicitly. The approach is conceptually very simple. Let us suppose
that the Hamiltonian is time-independent up to t = 0, then for t < 0 we
assume that the system is in an incoherent superposition of all the eigen-
states e−iEtψst

αE of the system with a filling factor fα(E) (this may be thermal
equilibrium as in [90] or more generally a non-equilibrium stationary state).
At time t > 0 the corresponding states ψinit

αE (t) simply evolve according to
the Schrödinger equation i∂tψ

init
αE (t) = H(t)ψinit

αE (t) with the initial condition
ψinit

αE (t = 0) = ψst
αE. Apparently, this is a different boundary condition from

the one of the scattering state above. We now use the block structure of
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the Schrödinger equation (projected on lead p̄) and obtain after integration
between 0 and t (momentarily dropping the indices E and α),

ψinit
p̄ (t) + igR

p̄ (t)ψ
init
p̄ (0) =

∫ t

0
dugR

p̄ (t− u)Hp̄0̄ψinit
0̄ (u) (3.66)

from which we get (after substitution inside the equation for ψinit
0̄ ),

i∂tψ
init
0̄ (t) = H0̄0̄(t)ψ

init
0̄ (t)+

∫ t

0
duΣR(t− u)ψinit

0̄ (u)− i ∑̄
p

H0̄p̄gR
p̄ (t)ψ

init
p̄ (0).

(3.67)

Eq. (3.67) is essentially Eq. (4) of [63]. Eq. (3.67) is very similar to Eq. (3.43)
with a crucial practical difference: in the latter, the source term is present
only at the system’s sites which are time-dependent while in the former it
takes place at the system-lead interfaces. Introducing ψ̄init

αE (t) ≡ ψinit
αE (t)−

e−iEtψst
αE, we find that ψ̄init

0̄ (t) obeys Eq. (3.43) with ψ̄init
0̄ (t = 0) = 0. Hence,

we have proved one more equivalence, between the wave function Ψ̄αE(t)
and ψ̄init

0̄ (t),

ψinit
αE0̄(t) = ΨαE(t). (3.68)

We note that the equivalence requires that the initial states at t = 0 are the
scattering states ψst

αE of the stationary system. When the system contains
more than one channel, one finds that any choice of the initial condition
∑α Uaαψst

αE, where U is a unitary matrix, eventually gives the same total
current and is therefore also equivalent to the NEGF theory. However, the
matrix U must be unitary which fixes the normalization of the initial states;
they must carry a current unity.

3.5.6 “Floquet wave function” and link with the Floquet scattering theory

Although this thesis focuses on time-resolved electronics (typically tran-
sient regimes or voltage pulses), the wave function formalism can also be
used for perturbations periodic in time. We refer to [38] for an introduction
and bibliography on the subject. Let us briefly consider the situation where
H0̄0̄(t+ T) = H0̄0̄(t) and introduce its decomposition in terms of harmonics
of ω = 2π/T,

H0̄0̄(t) =
∞

∑
n=−∞

Hne−inωt. (3.69)

We also define the Fourier transform ΨαE(E′) of ΨαE(t),

ΨαE(E′) =
∫

dt′ eiE′t′ΨαE(t′) (3.70)

from which we can express Eq. (3.34) as,

E′ΨαE(E′) = ∑
n

HnΨαE(E′− nω) +ΣR(E′)ΨαE(E′) + 2πδ(E′− E)
√

vαξαE.
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(3.71)

Introducing ε ∈ [−ω/2, ω/2] and m such that E′ = E+ ε+mω, one defines
Ψm(ε) ≡ ΨαE(E + ε + mω) which verifies,

εΨm(ε) = ∑
n

HnΨm−n(ε) + [ΣR(E + ε + mω)−mω− E]Ψm(ε)

+ 2πδ(ε)δm,0
√

vαξαE. (3.72)

Last, we define

ψαEε(t) = ∑
m

e−imωtΨm(ε) (3.73)

and obtain,

ΨαE(t) =
∫ ω/2

−ω/2

dε

2π
e−iEt−iεtψαEε(t). (3.74)

ψαEε(t) verifies ψαEε(t + T) = ψαEε(t) so that Eq. (3.74) corresponds in fact
to the Floquet theorem. We also note that the source term in Eq. (3.72) is
only present at ε = 0 so that the other energies do not contribute to the
scattering wave function. Taking this last point into account and computing
(as an example) the current Iij(t) between site i and site j, we arrive at,

Iij(t) = −2 Im ∑
α

∫ dE
2π

fα(E) ∑
n,m,p

Ψ∗αE,m(i)[Hn]ijΨαE,p(j)e−i(n−m+p)ωt, (3.75)

where the wave function ΨαE,n(i) at site i satisfies,

[E + mω− ΣR(E + mω)]ΨαE,m −∑
n

HnΨαE,m−n = δm,0
√

vαξαE. (3.76)

Eq. (3.75) and Eq. (3.76) provide a complete set of equations to compute the
current of the system. The corresponding “Floquet wave function” can be
put in direct relation to Floquet Scattering theory using the link with the
Scattering matrix established at the beginning of this section. In practice,
the infinite set of equations defined by Eq. (3.76) needs to be truncated
somehow [100] and one is left with solving a large, yet finite, system of
linear equations. Alternatively, a systematic perturbation theory can be
constructed taking the AC Hamiltonian as a small perturbation [39].

We have thus made explicit connections between various theoretical frame-
works: the NEGF, the scattering approach, the partition-free initial condi-
tion approach and, for perturbations that are periodic in time, the scattering
Floquet approach. This concludes the formalism part of this thesis. We now
turn to its application to voltage pulses.
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4
L A N D A U E R F O R M U L A F O R V O LTA G E P U L S E S

So far, the formalism that has been presented is applicable to arbitrary
time-dependent perturbations. We now proceed with the particular case
where the perturbation is a voltage pulse of finite duration applied to one
or several Ohmic contacts of a device. We introduce the number of injected
particles as a relevant quantity for time-dependent transport in section 4.1,
and proceed with the calculation of the scattering matrix of a voltage pulse
in section 4.2. Finally we derive a generalization of the Landauer formula
for the number of injected particles in section 4.3. All the results presented
in this chapter are original.

4.1 total number of injected particles

We aim to define the generalization of the Landauer formula for pulse
physics. A natural extension would be to compute the time-dependent cur-
rent Ip̄(t) in lead p̄. It is given by,

Ip̄(t) =
∫ dE

2π ∑
α

fα(E)IαE,p̄(t), (4.1)

with

IαE,p̄(t) = 2 Im Ψ†
αE,p̄x(t)V

†
p̄ ΨαE,p̄x−1(t). (4.2)

The notation corresponds to the one introduced in the previous section. We
can now insert Eq. (3.52) into the definition of Ip̄(t) and express it in terms
of the scattering matrix. The general formula involves a triple integral over
energy which is not very illuminating. It also lacks the basic properties
of the Landauer-Büttiker approach which arise from current conservation
(time-dependent current is not conserved) and gauge invariance. An impor-
tant simplification occurs when one calculates the total number of particles,
n p̄ =

∫ tM
0 dtIp̄(t), received in lead p in the limit tM → ∞. Of course, at this

level of generality, n p̄ can possibly diverge due to the presence of DC cur-
rents. Hence, the following expressions assume a finite (large) value of the
cutoff tM. Introducing nαE,p̄ =

∫ tM
0 dt IαE,p̄(t) we obtain,

nαE,p̄ = ∑
β∈ p̄

∫ dE′

2π
Pp̄β,m̄α(E′, E)−

∫ tM

0
dt δαβδp̄m̄, (4.3)

with

lim
tM→∞

Pp̄β,m̄α(E′, E) = |Sp̄β,m̄α(E′, E)|2. (4.4)
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Pp̄β,m̄α(E′, E) is thus interpreted as the probability density to be scattered
from channel α and energy E to channel β and energy E′. Equivalently, in-
troducing the Fourier transform Sp̄β,m̄α(t, E) =

∫ dE′
2π e−iE′tSp̄β,m̄α(E′, E) and

using Parseval theorem, one obtains,

nαE,p̄ = ∑
β∈ p̄

∫ tM

0
dt [Pp̄β,m̄α(t, E)− δαβ], (4.5)

with

lim
tM→∞

Pp̄β,m̄α(t, E) = |Sp̄β,m̄α(t, E)|2. (4.6)

As the wave function ΨαE obeys the Schrödinger equation, one gets a cur-
rent conservation equation ∂tQαE,0̄ = ∑ p̄ IαE,p̄(t) where QαE,0̄ = ΨαE(t)†ΨαE(t)
is the total number of particles inside the system associated with mode α

and energy E. Long after the pulse, the system is back to equilibrium so
that QαE,0̄(tM) = QαE,0̄(0) and the current conservation implies,

∀E , ∀α ∑̄
p

nαE,p̄ = 0. (4.7)

Putting everything together, we obtain,

n p̄ = ∑̄
m

∑
α∈m̄

∫ dE
2π

fm̄(E)nαE,p̄. (4.8)

To summarize, we find a formal analogy between the known rules of con-
ventional (DC) scattering theory and those of time-dependent transport.
Summations over channels are extended to a summation over channels and
an integral over energy (or time) while the current is replaced by the total
number of transmitted particles. In practice, the different terms contribut-
ing to n p̄ should be grouped in such a way that the limit tM → ∞ can be
taken without divergences (in the absence of DC current).

4.2 scattering matrix of a voltage pulse

The theory above is rather general. We proceed with the particular case
where the perturbation is a voltage pulse applied to one electrode. We
consider an abrupt voltage drop across an infinite wire described by the
Hamiltonian matrix Eq. (3.3). The voltage drop takes place between layers
x = 0 and x = 1. For this system, the Scattering matrix has a block structure
in terms of the amplitudes of reflection r and transmission d,

Sβα(E′, E) =

(
rβα(E′, E) dβα(E′, E)
d′βα(E′, E) r′βα(E′, E)

)
(4.9)

which corresponds to the following form of the scattering wave function,

x > 0 : ψscatt
x (t) = ψd

x(t), x ≤ 0 : ψscatt
x (t) = ψr

x(t) (4.10)
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with

ψr
x(t) =

ξ+m̄α(E)√
|v+m̄α|

e−iEt+ik+α (E)x + ∑
β

∫ dE′

2π

ξ−m̄β(E′)√
|v−m̄β|

e−iE′t−ik−β (E′)xrβα(E′, E)

(4.11)

ψd
x(t) =∑

β

∫ dE′

2π

ξ+m̄β(E′)√
|v+m̄β|

e−iE′t+ik+β (E′)xdβα(E′, E) (4.12)

where the subscript + (−) refers to right (left) going modes. ψr
x(t) and

ψd
x(t) satisfy i∂tψx(t) = Hm̄ψx(t) + V†

m̄ψx−1(t) + Vm̄ψx+1(t) for all values of
x while ψscatt

x (t) satisfies the “matching conditions”,

i∂tψ
scatt
0 (t) = Hm̄ψscatt

0 (t) + V†
m̄ψscatt
−1 (t) + Vm̄eiφm̄(t)ψscatt

1 (t) (4.13)

i∂tψ
scatt
1 (t) = Hm̄ψscatt

1 (t) + V†
m̄e−iφm̄(t)ψscatt

0 (t) + Vm̄ψscatt
2 (t) (4.14)

from which we directly get

Vm̄ψr
1(t) =Vm̄eiφm̄(t)ψd

1(t) (4.15)

V†
m̄ψr

0(t) =V†
m̄eiφm̄(t)ψd

0(t) (4.16)

Inserting the explicit forms of ψr
x(t) and ψd

x(t) into Eq. (4.15) and Eq. (4.16)
(and making use of Eq. (3.48) and Eq. (3.49)), we obtain the equation satis-
fied by the transmission matrix,

∑
β

∫ dE′

2π
Km̄(ε− E′)

[
ΣR

m̄(E′)− ΣR
m̄(ε)

†
] ξ+m̄β(E′)√
|v+m̄β(E′)|

dβα(E′, E) =

[
ΣR

m̄(E)− ΣR
m̄(ε)

†
] ξ+m̄α(E)√
|v+m̄α(E)|

2πδ(ε− E) (4.17)

and similarly

∑
β

∫ dE′

2π
K∗m̄(E′ − ε)

[
ΣR

m̄(E′)− ΣR
m̄(ε)

†
] ξ−m̄β(E′)√
|v−m̄β(E′)|

d′βα(E′, E) =

[
ΣR

m̄(E)− ΣR
m̄(ε)

†
] ξ−m̄α(E)√
|v−m̄α(E)|

2πδ(ε− E) (4.18)

where Km̄(E) is the harmonic content of the transmitted voltage pulse,

Km̄(E) =
∫

dt eiφm̄(t)+iEt. (4.19)
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In the situation where time-reversal symmetry is present Hm̄m̄ = H∗m̄m̄ (no
spin), one finds that to each right-going mode ξ+m̄α is associated a left-going
one (ξ+m̄α)

∗ with equal velocity. It follows that,

d′βα(E′, E) = dβα(E, E′)∗. (4.20)

The relation between left and right propagating modes is however more
complex in presence of magnetic field. We continue with a physical as-
sumption, namely that the typical pulse height (wp) is small compared to
the Fermi energy wp � EF. We also suppose that its duration τp is rather
long, h̄/τp � EF. This is in fact the typical situation in actual experiments
where the Fermi level EF ≈ 1eV (metal) or EF ≈ 10meV (semi-conductor
heterostructure) is much larger than the typical characteristic energies of
the pulses (wp < 1µeV, τp ≈ 1ns → h̄/τp ≈ 1µeV). As the kernel Km̄(E)
typically decays over max(wp, h̄/τp), we can therefore neglect the energy de-
pendence of the modes in Eq. (4.17) (the so called wide band limit) which
are all taken to be at energy E. The terms ΣR

m̄(E′) − ΣR
m̄(ε)

† simplify into
ΣR

m̄(E)− ΣR
m̄(E)† = −iΓm̄(E) and Eq. (3.51) leads to,

dβα(E′, E) = δαβK∗m̄(E− E′) (4.21)

or,

dβα(t, E) = δαβe−iφm̄(t)−iEt, (4.22)

while d′βα(E, E′) = δαβKm̄(E′ − E). We note that in the wide band limit
Eq. (4.20) holds even in the presence of magnetic field. Also, the reflection
matrix rβα(E′, E) simply vanishes in this limit. The role of the voltage drop
is therefore purely to redistribute the energy of the incoming electron into
a larger energy window.

4.3 voltage pulses in multiterminal systems

We now have all the ingredients to construct the theory of voltage pulses
in general multi-terminal systems. We assume that before the pulse, the
system is at equilibrium with no DC current flowing. We also assume the
wide band limit of the above section, which implies that all the inelastic pro-
cesses of the scattering matrix take place at the position of the voltage drop.
The assumption that no reflection takes place at this place is important as
each electron experiences at most two inelastic events (upon entering and
leaving the sample) which considerably simplifies the theory. Introducing
the DC scattering matrix S0

p̄β,m̄α(ε) of the device in the absence of pulses, we
have,

Sp̄β,m̄α(E′, E) =
∫ dε

2π
K p̄(ε− E′) S0

p̄β,m̄α(ε) K∗m̄(E− ε). (4.23)

52



Using
∫

dE′/(2π)K p̄(ε − E′)K∗p̄(ε̄ − E′) = 2πδ(ε̄ − ε), we find upon per-
forming the integral over E′ in Eq. (4.3),

n p̄ = ∑̄
m

∑
β∈ p̄

∑
α∈m̄

∫ dε

2π

[∫ dE
2π

f (E)|S0
p̄β,m̄α(ε)|2 |Km̄(E− ε)|2 − f (ε)

∫ tM

0
dt δαβδp̄m̄

]
(4.24)

By using the unitarity of the device Scattering matrix ∑m̄β |S0
p̄β,m̄α(ε)|2 =

δαβδp̄m̄ in the second part of Eq. (4.24), it can be rewritten in a more compact
form where the limit tM → ∞ can be taken formally. It reads,

n p̄ = ∑̄
m

Np̄m̄

Np̄m̄ = ∑
β∈ p̄

∑
α∈m̄

∫ dε

2π
|S0

p̄β,m̄α(ε)|2
∫ dE

2π
|Km̄(E− ε)|2 [ f (E)− f (ε)] . (4.25)

Eq. (4.25) is the main result of this section. The “pulse conductance ma-
trix” Np̄m̄ can be seen as the formal generalization of the multiterminal DC
conductance matrix [101] to voltage pulses. In particular it shares two im-
portant properties of the DC conductance matrix: charge conservation and
gauge invariance. Equations (4.24) and (4.25) call for a number of comments.
In particular they consist of the difference of two large terms so that some
care is needed when performing practical calculations.

— First, Eq. (4.24) contains a diverging term on the right hand side which
corresponds to the injected current from lead m̄. Indeed, at equilib-
rium, although the net total currents coming from the different leads
cancel, each lead injects a finite current, leading to a diverging number
of injected particles. Therefore, to use Eq. (4.24) in practice, it is impor-
tant to first sum the contribution from all leads before performing the
integrals. Also, one must add those contributions at fixed energy ε (i.e.
the energy inside the device region, not E the original energy of the
injected particle) for those diverging terms to properly compensate.

— Second, although Eq. (4.24) apparently contains contributions from
the whole spectrum, one can show that the only non-compensating
terms arise from a small region around the Fermi energy. Indeed,
let us consider an energy ε well below EF. The kernel Km̄(E − ε)
vanishes when E − ε becomes larger than max(wp, h̄/τp) so that the
values of E effectively contributing to the integral are also well below
EF, hence f (E) = f (ε) = 1. The integral over the energy E can now be
performed and, using Parseval theorem, we get

∫
dE|Km̄(E − ε)|2 =∫ tM

0 dt. We can now sum over the channel index α and lead index m̄
using the unitarity condition ∑αm̄ |S0

p̄β,m̄α(ε)|2 = 1 and finally find that
the first term of Eq. (4.24) compensates the second one for each energy
ε. Again, to obtain this compensation it is important to first perform
the integral over the injected energy E at fixed energy ε. The same
point applies to Eq. (4.25), E and ε must be close for Km̄(E− ε) to be
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non zero hence the term f (E) − f (ε) vanishes away from the Fermi
level. More discussion on this aspect and its numerical (technical)
implications can be found in section 5.4.

— Current conservation is one of the main features of the Landauer ap-
proach which is usually lost in non-interacting AC transport, as the
electronic density varies in time inside the system [33]. However the
total number of particles is a conserved quantity and

∑̄
p

Np̄m̄ = 0 (4.26)

as can be seen directly on Eqs. (4.24), (4.25) or from the general argu-
ment at the beginning of this section.

— Another equally important feature of the scattering approach is the
gauge invariance — raising the potential of all the leads simultane-
ously does not create any current — which is also usually lost in the
non-interacting AC theory. However Eq. (4.24) does satisfy gauge in-
variance. Indeed, suppose we send an identical voltage pulse on all
the leads simultaneously. Then the term |Km̄(E− ε)|2 does not depend
on m̄ and one can immediately perform the sum over α and m̄ and use
∑αm̄ |S0

p̄β,m̄α(ε)|2 = 1. In a second step we perform the integral over E
of the first term of Eq. (4.24) using Parseval theorem and find again
that it exactly matches and compensates the second term and n p̄ = 0.
Note that while the above statement is non trivial, there is a weaker
form of gauge invariance which is always verified. The physics is en-
tirely unaffected by a global change of the potentials of all the leads
and the internal potential of the device (as such a global variation of
the potential can be absorbed by a simple global phase in the wave
function). The combination of both forms of gauge invariance (weak
and strong) implies that a uniform voltage pulse applied to the central
region 0̄ (through a capacitive coupling to a gate) does not create any
charge pumping, even in the non adiabatic limit.

— One of the appealing aspects of Eq. (4.25) is that it has a direct connec-
tion to the DC conductance matrix in the adiabatic limit. Indeed the
DC Landauer formula reads,

Ip̄ =
e2

h ∑̄
m

Tp̄m̄Vm̄, (4.27)

where Tp̄m̄ is the total transmission probability from lead m̄ to p̄. When
the voltage pulse is extremely slow (adiabatic limit) with respect to all
the characteristic times of the device, one expects the current to follow
the voltage adiabatically, Ip̄(t) = (e2/h)∑m̄ Tp̄m̄Vm̄(t) and

n p̄ = ∑̄
m

Tp̄m̄n̄m̄, (4.28)

where n̄m̄ =
∫

dteVm̄(t)/h is the total number of particles injected
by the voltage pulse in lead m̄. Hence, in the adiabatic limit, Np̄m̄ =

54



Tp̄m̄n̄m̄ has a nice interpretation in terms of the total transmission prob-
ability from m̄ to p̄ and the interesting question is how the physics
deviates from this limit when the pulses get faster than the internal
characteristic time scales of the device. This point will be addressed
in chapter 7.
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5
S T R AT E G I E S F O R N U M E R I C A L S I M U L AT I O N S

We now turn to a discussion of various algorithms for simulating the
formalism introduced in chapter 3. Here we provide a concrete example
of an application to a simple one-dimensional chain, but the algorithms are
general and apply to arbitrary dimensions and geometries as it will appear
in the coming chapters. Our Hamiltonian reads,

Ĥ(t) = −γ
+∞

∑
i=−∞

c†
i+1ci − γ[eiφ(t) − 1]c†

2c1 +
N

∑
i=1

εic†
i ci + h.c. (5.1)

where we inject a voltage pulse w(t) with φ(t) =
∫ t
−∞ du w(u) through the

system, εi is the potential inside the central region 0̄ = {1, 2, . . . N} and
γ is the hopping between first neighbor sites. The εi can in principle be
time-dependent but we restrict the examples to static cases; all the time
dependence comes from the voltage drop between site 1 and site 2. During
the development of the numerical techniques presented below, we used
various analytical results to perform consistency checks of the validity of
the numerics. They are summarized in Appendix B.

We denote N the total number of sites of the central region and S the
number of sites connected to the electrodes (for a cubic system in d dimen-
sions we have N ∼ Ld and S ∼ Ld−1). Let us call tmax the maximum time of
the simulations and ht the typical discretization time step. In this chapter,
we introduce various algorithms in the first two sections, and turn to the nu-
merics in the third one. We emphasize that, although these algorithms have
very different computing efficiencies, they are all mathematically equiva-
lent and—as we have checked explicitly—give the same numerical results.
The brute force implementations are known material, while the rest is an
original work.

5.1 non-equilibrium green’s functions approach

We begin with three algorithms which implement the NEGF approach
labeled GF-A, B and C. Our starting point is the set of equations of motion
given by Eq. (3.20) and Eq. (3.22):

i∂tGR(t, t′) = H0̄0̄(t)G
R(t, t′) +

∫
du ΣR(t, u)GR(u, t′)

G<(t, t′) =
∫

du
∫

dv GR(t, u)Σ<(u, v)[GR(t′, v)]†
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5.1.1 GF-A: brute-force integration of the NEGF equations

The first technique consists in directly integrating the equations of mo-
tion of the NEGF formalism treating the integro-differential equations as
ordinary differential equations. However, the right hand sides of the equa-
tions contain the self-energy integrals that need to be re-evaluated every
time step. This also means that some values of the Retarded Green’s func-
tion in the past must be kept in memory. The algorithm consists of 3 steps.
One starts with a calculation of the leads’ self-energy by a direct integration
of Eq. (3.23) for the S× S surface Green’s function of the leads. In the sec-
ond step, one proceeds and integrates Eq. (3.20) which has a rather similar
structure. The last step is the calculation of the Lesser Green’s function us-
ing the double integration of Eq. (3.22). This last step is quite problematic
as the integration over times takes place over an infinite time window (as
opposed to the calculation of the Retarded Green’s function where the self-
energy terms only span a finite window due to the causality of the Retarded
Green’s function). In practice, one has to resort to using a cutoff within a
large time window ∆t. We can already note that the CPU cost of all these
three steps scale as the square of the total time, either (tmax/ht)2 or (∆t/ht)2

and that the calculations of various observables (for different times for in-
stance) involve separate calculations for the last step. For implementation
purposes, we note that the integrals containing the self-energy terms can be
parallelized by dividing the integral range into smaller pieces, which can be
used to speed up the calculations. For integrating the equations of motion,
we use either an implicit linear multi-step scheme [102] or an explicit 3rd

order Adams-Bashforth scheme (with slightly better performances for the
latter). Overall, the GF-A approach quickly becomes prohibitively expen-
sive in CPU time. This may explain why (to the best of our knowledge) the
simulations performed so far within this approach have been restricted to
very small systems and times.

5.1.2 GF-B: Integrating out the time-independent subparts of the device

A first strategy to improve on the direct (naive) GF-A approach described
above is to integrate out the parts of the device region where we do not
want to compute observables. A typical example is shown in Fig. 5.1. Sup-
pose that a subset Ω of the sites in region 0̄ has a “sub” Hamiltonian matrix
HΩ(t). The Green’s function for the isolated region Ω (i.e. when the cou-
pling to the rest of region 0̄ is zero) can be obtained by simply integrating
the equation of motion of the finite region, i∂tgR

Ω(t, t′) = HΩ(t)gR
Ω(t, t′).

This is particularly simple when the region Ω is time-independent: diag-
onalizing the finite matrix HΩχα = εαχα, the Retarded Green’s function
simply reads,

gR
Ω(t− t′) = −iθ(t− t′)∑

α

e−iεα(t−t′)χαχ†
α. (5.2)
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Figure 5.1 – Sketch of the GF-B scheme. The degrees of freedom of the region Ω
inside the dashed green square are integrated out in a self-energy term
denoted ΣR

Ω. This integration leads to an effective system containing a
reduced number of sites.

Note that Eq. (5.2) contrasts with its counterpart in the energy domain be-
cause the Retarded Green’s function as a function of energy of a finite region
is very ill defined numerically, as it is essentially a sum of Dirac distribu-
tions. Noting H0̄Ω the matrix elements coupling the Ω region to the rest of
the device region 0̄, we introduce the self-energy due to the Ω region,

ΣR
Ω(t, t′) = H0̄Ω(t)gR

Ω(t, t′)HΩ0̄(t
′). (5.3)

We can now proceed with solving Eq. (3.20) for the smaller region 0̄\Ω with
the added ΣR

Ω in the self-energy,

ΣR(t, t′)→ ΣR(t, t′) + ΣR
Ω(t, t′). (5.4)

Note however that the Lesser self-energy is unchanged as the Ω region is
not a lead (i.e. is not at thermal equilibrium). Using this procedure, any
region can be integrated out of the device region, effectively reducing the
effective total size N of the simulation, but at the cost of increasing the
number of surface sites S.

When the size of the Ω region becomes large, a direct calculation of
ΣR

Ω(t, t′) becomes impractical. Fortunately, many schemes that have been
developed in the energy domain can be transposed to the time domain:
the original recursive Green’s function algorithm, its variant the knitting
algorithm [103] or the more involved nested dissection algorithm [104, 105].
These schemes can be discussed using the self-energy introduced above to
“decimate” parts of the system, but they are perhaps more transparent when
discussed in the context of the Dyson equation. Let Hab(t) be the Hamil-
tonian matrix of a system and let one decompose it into the sum of two
terms Hab = Ha + Hb (typically Ha will be the Hamiltonian matrix for two
disconnected regions and Hb connects these two regions together) and we
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note GR
ab (GR

a ) the Retarded Green’s function associated with Hab (Ha). In
this context, the Dyson equation reads,

GR
ab(t, t′) = GR

a (t, t′) +
∫

du GR
a (t, u)Hb(u)GR

ab(u, t′). (5.5)

Eq. (5.5) allows the separated parts of the systems to be merged (note that
the structure in time of this equation is “triangular”, i.e. one can solve it
for t close to t′ and iteratively increase t). We refer to [103] for a detailed
discussion of the procedure used for glueing isolated parts together. Ap-
plying Eq. (5.5) recursively in a (quasi) one-dimensional geometry, one can
add one slice of the system at each iteration until the full system has been
added (Recursive Green’s function algorithm). Adding the sites one at a
time, one obtains the knitting algorithm which allows one to handle sys-
tems of arbitrary geometries. Both algorithms have CPU times that scale as
S2N(∆t/ht)2 but memory footprints much smaller than the direct method.
In the last algorithm, nested dissection, one cuts the system recursively into
2 (or more) pieces until the pieces are small enough such that their individ-
ual Green’s functions may be calculated directly. The gluing sequence is
then applied backward to reconstruct the Retarded Green’s function of the
full system. Note that the nested dissection algorithm suffers from stability
problems in the energy domain as some of the pieces are not in contact with
the leads (and thus suffers from the problem discussed in the beginning of
this subsection). In the time domain, however, no such limitation occurs.

5.1.3 GF-C: integration scheme that preserves unitarity

In GF-A and GF-B, we use simple discretization schemes to integrate the
integro-differential equations for the Retarded Green’s functions. However,
these schemes (as well as others, such as the Runge-Kutta method) do not
enforce unitarity of the evolution operator in Eq. (3.8). The scheme GF-
C builds on GF-B but one replaces the discretization scheme by one that
preserves this important property of quantum propagation.

Eq. (3.8) implies that for any intermediate time u ∈ [t′, t] we have,

GR(t, t′) = iGR(t, u)GR(u, t′), (5.6)

which has a simple interpretation in terms of path integral. The propagator
between t′ and t is a sum over all possible paths and this formula reflects
the fact that we keep track of the site where the particle is at time u. The
projection of Eq. (5.6) onto the central region 0̄ yields,

∀ u ∈ [t′, t], GR
0̄0̄(t, t′) = iGR

0̄0̄(t, u)GR
0̄0̄(u, t′) + i

M

∑
i=1
GR

0̄ī(t, u)GR
ī0̄(u, t′). (5.7)
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We use the Dyson equation to integrate over the degrees of freedom of the
leads, therefore rewrite GR

0̄ī(t, u) and GR
ī0̄(u, t′) as follows,

GR
0̄ī(t, u) =

∫ t

u
dv GR

0̄0̄(t, v)H0̄ī(v)gR
ī (v, u) (5.8)

GR
ī0̄(u, t′) =

∫ u

t′
dv gR

ī (u, v)Hī0̄(v)GR
0̄0̄(v, t′) (5.9)

After substituting these above relations into Eq.(5.7) we obtain,

∀ u ∈ [t′, t], GR(t, t′) = iGR(t, u)GR(u, t′)+
M

∑
i=1

∫ t

u
dv GR(t, v)

∫ u

t′
du H0̄ī(v)gR

ī (v, v′)Hī0̄(v
′)GR(v′, t′),

(5.10)

where we recognize the Retarded self-energy which allows for a more con-
densed form,

GR(t, t′) = iGR(t, u)GR(u, t′) +
∫ t

u
dv
∫ u

t′
dv′ GR(t, v)ΣR(v, v′)GR(v′, t′).

(5.11)

Eq. (5.11) is a sum of two terms which depend on the position of the particle
at time u. The first term corresponds to a particle which is in the central
region at time u while the second term accounts for the paths entering the
leads at v′ < u and returning to the central region at a later time v > u (i.e.
the particle is in the lead at time u). Eq. (5.11) encapsulates the unitarity of
the evolution operator by construction. It can be used to realize an efficient
explicit integration scheme for the Retarded Green’s function. Applying
Eq. (5.11) with t→ t + ht and u→ t we obtain,

GR(t + ht, t′) = iAht(t)G
R(t, t′)

+
ht

2

∫ t

t′
dv[Aht(t)Σ

R(t, v)− iΣR(t + ht, v)]GR(v, t′)

(5.12)

where Aht(t) is the short time propagator Aht(t) = GR(t + ht, t). Eq. (5.12)
provides an explicit scheme for integrating the equation of motion which
proves to be more stable than the naive ones. Note that the Hamiltonian
matrix has disappeared from Eq. (5.12). It is hidden in the short time prop-
agator, Aht(t), which can be obtained “exactly” from a direct integration of
the equation of motion Eq. (3.20) using a very small time step (much smaller
than ht). The computing time to get this very precise estimate is ∝ h2

t and,
ht being small, therefore negligible.

5.2 numerical implementation of the wave function approach

We now turn to four numerical implementations of the wave function
approach labeled WF-A, B, C and D. We shall see that they are much simpler
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and efficient than their NEGF counterparts. Our starting point is Eq. (3.34):

i∂tΨαE(t) = H0̄0̄(t)ΨαE(t) +
∫

du ΣR(t− u)ΨαE(u) +
√

vαe−iEtξαE

5.2.1 WF-A: direct integration of Eq. (3.34)

In the first algorithm, denoted WF-A, we integrate directly Eq. (3.34) us-
ing a 3rd order Adams-Bashforth scheme. The algorithm is intrinsically
parallel as the calculations for different energies are totally independent. In
a second step, we calculate the energy integral of Eq. (3.29) to obtain the
various observables. Note that this calculation can be done on fly so that
observables for all intermediate values of t ≤ tmax can be obtained in a sin-
gle run (in contrast to the GFs algorithms). A second level of parallelism
can be introduced with the calculation of the self-energy terms. Note that
in principle, the strategies developed for GF-B and GF-C could be also used
for the wave function approach. We shall take a somewhat different route
however. A direct advantage of the WF approaches is that the equations
involved are on vectors rather than on matrices. Sophisticated optimiza-
tions could be used in order not to calculate all the matrix elements in the
GF approaches (but only the relevant ones). However in the WF approach,
one naturally calculates the minimum information needed to recover the
observables.

5.2.2 WF-B: subtracting the stationary solution

WF-B is very similar to WF-A except that we now use Eq. (3.43) and there-
fore study the deviation from the stationary case. Being able to subtract the
stationary physics from the equations brings three distinct advantages com-
pared to WF-A. First, self-energy memory integrals start from t = 0 (instead
of t = −∞) removing the need for the large time cutoff ∆t introduced earlier.
In addition, the initial condition is very well defined as the wave function
simply vanishes. Second, for most practical physical systems, the character-
istic energies involved are small compared to the Fermi energy. Subtracting
the stationary physics allows one to take advantage of this feature to nar-
row down the integration of Eq. (3.29) to a region close to the Fermi energy.
Finally, the source terms in Eq. (3.43) are present only at the sites where
time-dependent perturbations are present.

5.2.3 WF-C: from integro-differential to differential equation

The scheme WF-B is already quite efficient and renders rather large prob-
lems (N ∼ 1000) for rather long times (t ∼ 1000γ−1) tractable in a reason-
able CPU time (say, 1 hour). Let us analyze its total CPU cost. We find,
CPU(WF − B) ∝ (t/ht)[N + S2(t/ht)]NE where the first term comes from
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the (sparse) matrix vector multiplication with the Hamiltonian matrix and
the second term accounts for the memory integral with the self-energy. The
factor NE accounts for the different energies and modes for which Eq. (3.44)
must be integrated. In general this NE is not an issue as all these calcu-
lations can be done in parallel and for relevant regimes the integral gets
concentrated on a region close to the Fermi energy. The memory footprint
is MEM(WF− B) ∝ [N + S(t/ht)] as we need to keep in memory the wave
function at time t in the system plus its history on the lead-system inter-
faces. The bottleneck of the calculation clearly comes from the self-energy
integral which itself comes from the information corresponding to the wave
function outside of the central region. The computational time is essentially
the same as if one had studied the time evolution of a finite isolated system
of N + S2(t/ht) sites. For the typical values used here, t = 1000γ−1 and
ht = 0.01, we find that WF-B’s CPU is the same as if one was studying a
finite system (i.e. no leads) of size N = 100000. On the other hand we know
that signal propagation in the Schrödinger equation takes place at most at
a speed v = ∂E/∂k with E(k) = −2γ cos k for a 1D chain. Hence at most
M ≈ γt layers of the lead can be probed by the propagation of the wave
function. For t = 1000γ−1 this means at most 1000 layers.

The scheme WF-C is therefore very simple. Instead of integrating the
integro-differential equation Eq. (3.43), one integrates the much simpler dif-
ferential equation Eq. (3.44). As this cannot be done for an infinite sys-
tem, one simply truncates the system keeping the central region plus M
layers of each leads (see Fig. 5.2). The expected correct value for M is
M ≈ vmxt/2 with the maximum speed being vmx = γ maxk |∂E/∂k| = γz.
z is the coordinance of the system (number of neighbors per site) and the
factor 1/2 comes from the fact that the signal has to travel up to the ef-
fective boundary (yellow-red interface on Fig. 5.2) and come back in order
to disturb the central region. Lower values of M can be used if the Fermi
energy is close to the band edges and the system is therefore slower. Ac-
cording to the above analysis, only M ∼ 1000 � 100000 layers should be
necessary, which should lead to an important speed up compared to WF-
B. It also considerably simplifies the implementation and allows for very
aggressive optimizations. The expected gain is not a simple prefactor as
CPU(WF − C) ∝ (t/ht)[N + Sγt]NE is parametrically smaller than WB-B
for 2D and 3D systems.

5.2.4 WF-D: faster convergence using the wide band limit

The drawback of WF-C is that hardwall boundary conditions are em-
ployed at the yellow-red interface (see Fig. 5.2). If one does not take a large
enough value of M, the particles will eventually bounce back toward the
central region. WF-D is a simple generalization of WF-C where the remain-
ing part of the leads (yellow sites in Fig. 5.2) are treated within the wide
band limit Eq. (3.45). We effectively have absorbing boundary conditions
and faster convergence properties with respect to M. Note that WF-D is an
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Figure 5.2 – Sketch of the WF-C and WF-D schemes: M layers of the leads (red)
are added the central part 0̄ (blue circles) to constitute the effective
central region. In WF-C the rest of the leads (yellow circles) are simply
ignored while in WF-D, they are treated within the wide band approx-
imation.

exact scheme, the (wide band limit) self-energy term is only used to acceler-
ate the convergence with respect to M (as we shall see later in Fig. 5.6). We
shall see that WF-D will be by far the fastest of all the methods described
in this thesis. We gather below the various steps associated with its prac-
tical implementation (the equations that follow were given before and are
repeated here for convenience).

1. One starts with defining the Hamiltonian of the model, i.e. the two
matrices Hm̄ and Vm̄ that define the Hamiltonian of each lead as well
as the time-independent matrix H0̄st for the central part and the time-
dependent counterpart H0̄w(t). In many cases (for instance for the
voltage pulses discussed next), the time-dependent part of the Hamil-
tonian only connects a few subparts of the central region.

2. a) One constructs the stationary modes of the leads, solving Eq. (3.47).
(There is a large literature on this topic which we refer to, see [103]
and references therein.)

b) One also computes the self-energy of the leads, defined by ΣR(E) =
∑m̄ Vm̄gR

m̄(E)V†
m̄ and Eq. (3.25).

3. Once the leads properties are known, one computes the stationary
wave function of the system solving the following linear set of equa-
tions,

[E−H0̄st − ΣR(E)]Ψst
αE =

√
vαξαE.

Note that steps (2a), (2b) and (3) are standard steps of quantum trans-
port calculations in wave function based algorithms.

4. M layers of the leads are now concatenated to the central region
Hamiltonian matrix H0̄st. Everything is now ready to form the main
Eq. (3.45) of the method,

i∂tΨ̄αE(t) = [H0̄st + H0̄w(t) + ΣR(E)]Ψ̄αE(t) + H0̄w(t)e
−iEtΨst

αE

which is integrated numerically using any standard integration scheme.

5. The full wave function of the system is then reconstructed,

ΨαE(t) = Ψ̄αE(t) + e−iEtΨst
αE.
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6. The various observables (time-dependent current, electronic density...),
which can be expressed in terms of the Lesser Green’s function, are
obtained by the numerical integration (and sum over incoming modes)
over energy of Eq. (3.29). For instance, the current between sites i and
j reads,

Iij(t) = −2 Im ∑
α

∫ dE
2π

fα(E)Ψ∗αE(i, t)Hij(t)ΨαE(j, t). (5.13)

It is worth noticing that after subtracting the equilibrium, only the out-
going modes remain present in the leads, and the out-of-equilibrium part
of the wave function is zero except where the source term has propagated.
This is a real change of paradigm. Instead of considering a perturbation
coming from the leads and modifying the system, one computes the effect
of a source term propagating in the system and the leads. As a result upon
using perfectely absorbing boundary conditions, WF-D can scale linearly
with the simulated time. The implementation of such boundary conditions
is an ongoing effort in the lab.

5.3 numerical tests of the different approaches

We illustrate the various implementations presented in the first two sec-
tions of this chapter with concrete numerical calculations and benchmarks.
We shall then conclude on their relative computational performance.

5.3.1 Green’s function based algorithms

Let us start the numerical applications by sending a square voltage pulse,
w(t) = w0θ(t − t0)θ(t1 − t), inside our quantum wire (t1 > t0). Fig. 5.3
shows the pulse (dashed line) together with the calculation of the current
I(t) using the GF-C technique (red line) and WF-B (black). Our first finding
is that both methods agree, which, given the fact that the two methods are
totally independent, is a strong check of the robustness of the approaches.
After relaxation, we expect the current to saturate to its DC value given
by the Landauer formula Idc = w0 (transmission is unity for a perfect 1D
chain), and indeed, it does. Just after the abrupt rise of the potential, one
observes rapid oscillations of frequency 2γ/π. These oscillations, often ob-
served in numerical simulations [71], come from the fact that the rise of the
voltage is (infinitely) fast compared to the bandwidth of the system, hence
the band serves as a low-pass filter for the signal. Other large energy oscil-
lations of frequency EF/(2π) can also be observed. The bandwidth usually
corresponds to optical frequencies. For nanoelectronics applications, there-
fore one should stay in a regime where the characteristic time scales of the
time-dependent perturbations are large (say at least a factor 10) compared
to γ−1.

Before the pulse, the current is zero. In the WF-B scheme, this is auto-
matically encoded as the system is in a stationary state. In the GF schemes
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Figure 5.3 – Current as a function of time for a square voltage pulse w(t) = w0θ(t−
t0)θ(t1 − t) with w0 = 0.1γ, t0 = 10γ−1, t1 = 40γ−1 and EF = 0γ. The
lines show w(t) (dashed), the GF-C result (red) and the WF-B result
(black). Lower inset: current I(t = 5γ−1) as a function of ∆t for the
GF-B scheme (symbols) together with the fit 1/∆t (line). Upper inset:
zoom of the lower inset with the fit I = (0.1 + cos(4∆t))/∆t.

however, one needs a large value of the cut-off ∆t to simply recover this ele-
mentary fact. The lower inset of Fig. 5.3 shows the current before the pulse
as a function of the cut-off ∆t together with a 1/∆t fit. The data in the lower
inset look noisy but upon closer inspection (upper inset), one finds that the
convergence shows fast oscillations as cos(4γ∆t)/∆t. The slow convergence
of the GF schemes with respect to ∆t is in itself a strong limitation.

As Fig. 5.3 considers a perfect lead, it is enough to keep a small (N ≥ 2)
number of sites in the central region. If one is interested in, say, the time
it takes for a pulse to propagate, then a much larger system is necessary
and GF-A becomes impractical. Fig. 5.4 shows a comparison between GF-B
and GF-C for the calculation of the diagonal part of the Retarded Green’s
function for a system with N = 100 where the 96 central sites have been in-
tegrated out in order to reduce the effective size of the system. We find that
the naive discretization scheme (linear multi-steps in this instance) used in
GF-B fails and becomes unstable at large times while the unitarity preserv-
ing scheme of GF-C restores the stability of the algorithm. Further inspec-
tion showed that, indeed, extremely small values of ht were needed in GF-B
to enforce current conservation. GF-C is the best Green’s function based
algorithm we could come up with.

5.3.2 Wave functions based algorithms

We now turn to the wave function based algorithms. Fig. 5.5 shows the
local density of particles on site 1 for a system of two sites, N = 2, using WF-
A and various initial conditions. We find that the local density converges to
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Figure 5.4 – Comparison of GF-B (green, divergent) and GF-C (black, stable). We
plot the imaginary part of the diagonal part of the Retarded Green’s
function as a function of time for N = 100 (no time-dependent pertur-
bation is applied). The 96 central sites have been integrated out and
an effective system of four sites remains. ht = 0.1.

its equilibrium value for any initial condition, and rather faster than within
Green’s function algorithms. More importantly, by calculating the DC scat-
tering wave function (a standard object in computational DC transport), one
can avoid the relaxation procedure (i. e. compute a quantity until one con-
siders it has reached its equilibrium value) and automatically incorporate
the equilibrium properties of the system (dashed line). WF-B which natu-

0 3 6 9 12 15 18
t

0

0.25

0.5

0.75

1

ρ 1(t)

Figure 5.5 – Sensitivity of WF-A to initial conditions. Local density of particles on
site 1 as a function of time within WF-A. The calculations are done
for ΨE,x(t = 0) = 0 (orange full line), ΨE,x(t = 0) = δx,1 (blue dotted
line), ΨE,x(t = 0) = δx,2 (long green dashed line) and ΨE,x(t = 0) =

Ψst
E (short black dashed line). Except in the last case, we ignore the

memory integral for negative times.

rally captures the equilibrium conditions is a clear improvement over WF-A.
According to the arguments developed above, WF-C and D should permit
further improvements. Fig. 5.6(a) shows current versus time in presence of
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a Gaussian pulse for the three methods WF-B, C and D (and various values
of the number M of added sites for the latter two). In the case of WF-C,
one observes a very accurate regime until a time t0 ∝ M where the method
abruptly becomes very inaccurate. This is due to the finiteness of the effec-
tive system in WF-C. t0 corresponds to the time it takes for the signal to
travel until the end of the sample and back again after being reflected at the
end. The wide band limit approximation used in WF-D allows one to limit
this abrupt failure and results in a much more robust (and slightly faster)
method. Fig. 5.6b shows the (maximum) error made as a function of M.
As surmised, very small values of M are needed for very accurate results.
WF-D is the fastest and most robust method we developed.
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Figure 5.6 – Comparative study of WF-B, C and D for N = 100. EF = −1γ and we
send a Gaussian voltage pulse w(t) = Vpe−4 log(2)t2/τ2

p with Vp = 0.05γ

and τp = 10γ−1 through the system. (a) Current as a function of
time just after the voltage drop for WF-B (black), WF-C with (from left
to right) M = 10 (red), M = 20 (green), M = 30 (blue) and WF-D
M = 30 (orange squares). (b) Maximum error between t = 0γ−1 and
t = 100γ−1 as a function of M for WF-C (blue diamonds) and WF-D
(orange squares).

5.3.3 Relative performance of the different approaches

We end this chapter with Table 5.1 that compares the relative performance
of the various methods presented here. We find that WF-D is now fast
enough to study two or three dimensional systems with tens of thousand of
sites (work station) or millions of sites (supercomputers) with matching sim-
ulation times. More applications will be shown in the coming chapters and
will show that WF-D essentially bridges the gap between our simulation
capabilities for stationary problems and time-dependent ones.

Table 5.1 shows rather unambiguously the superiority of the WF-D ap-
proach over all the others, especially the GF approaches. GF-B (not stable
for long times, otherwise similar to GF-C), WF-A (similar to WF-B but much
less robust) and WF-C (similar to WF-D but less robust and slightly slower)
are not shown. Note that the given times correspond to single core calcu-
lations. WF-D can be further accelerated using two levels of parallelism. A
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trivial one is the calculation of different energies on different cores (allow-
ing to drop the factor NE). The second one is the sparse matrix-dense vector
multiplication in the evaluation of the product H0̄0̄(t)Ψ̄αE(t) in Eq. (3.45).
There are also two avenues for optimization which were not yet explored in
depth. The choice of the time integration scheme (e.g. an adaptive time step)
and the choice of the scheme for the integration over energy (here again a
combination of Gaussian quadrature scheme with an adaptive energy mesh
might be more effective than a naive approach).

Algorithm CPU (1D) Estimated CPU (2D) Scaling of CPU

WF-D 1 104 (t/ht)NE[N + γtS]
WF-B 40 4.107 (t/ht)NE[N + (t/ht)S2]

GF-C 10
4 1012 (t/ht)2S3 (*)

GF-A 10
5 1014 (t/ht)2S2N (*)

Table 5.1 – Computation time in seconds for a calculation performed on a single
computing core. 1D case: N = 20 and tmax = 10γ−1 (for GF-A the
calculation has been done in parallel using 48 cores in order to obtain
the results within a few hours). 2D case: 100× 100 sites hence, S = 100,
N = 104 and tmax = 100γ−1. The CPU time is estimated from the
scaling laws except for WF-D where calculations of similar sizes could
be performed. Third column: typical scaling of the computing time. A
notable additional difference between the WF and GF methods is that
the GF methods (*) only provide the observables at one given time per
calculation while the WF methods give the full curve in one run. Typical
values of NE needed for the integrations over energy are 20 < NE < 100.

5.4 integral over energies for the wave function approach

We have seen in section 4 that only a small energy window around the
Fermi level contributes to the transport properties and we would like now
to understand how this fact manifests itself in the numerical calculations.

The central technical issue when performing the energy integral numeri-
cally is that within the WF method, one integrates over the injection energy
Einj (see Fig. 5.7 for a schematic). On the other hand, we have seen in sec-
tion 4 that in order to understand the various compensations that take place
between the currents coming from different leads, we must add the contri-
butions at a given energy Esys (energy of the electron inside the mesoscopic
region, i.e. after the pulse). This is illustrated in Fig. 5.7(b). In case A the in-
jected energy Einj < EF is close enough to the Fermi energy that the voltage
pulse can bring it to an energy Esys > EF large enough for this contribution
not to be compensated by electrons coming from the other side. In case B
however, Einj � EF so that Esys < EF and all contributions are compensated
by electrons injected from the right (at energy Esys). Unfortunately, in the
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Figure 5.7 – (a,c) Contribution I(E, t) of the left lead to the current I(t) as a
function of the injected energy E and time t. The system is the one-
dimensional wire described in the introduction of this chapter where
one sends a Gaussian pulse, V(t) = Vpe−4log(2)t2/τ2

p , with duration
τp = 100γ−1 and amplitude Vp = 0.05γ. Red (blue) indicates values
above (below) one. (b,d) Schematic of the various contributions com-
ing from different energies: Case A: the injected energy Einj is close to
the Fermi energy EF. Case B: the injected energy Einj is well below EF

(these terms eventually give a vanishing contribution). Case C: the in-
jected energy Einj is close to the bottom of the band. These terms also
give a vanishing contribution but they relax extremely slowly with
time. Lower panels: same as the upper panels but including our en-
ergy filtering scheme which removes the contributions from case C.

numerics we only control Einj so that we cannot differentiate between cases
A and B and need to integrate over the whole energy range. This is not
a real issue, as several tens of energy points are usually enough and these
calculations can be performed in parallel. A real difficulty comes from case
C where the injected energy Einj is close to the bottom of the band so that
after the pulse the electron can end up at a vanishing energy Esys = 0 which
results in a vanishing velocity. As a result these contributions get stuck at
the place where the voltage drop takes place and cannot relax. This is il-
lustrated on the left panel of Fig. 5.7 where we have plotted the current
flowing through the device as a function of t and Einj. We find indeed that
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contributions that are too close to the bottom of the band relax extremely
slowly (by too close we mean closer than max(Vp, h̄/τp)). This makes nu-
merical convergence difficult as one needs very long simulation times to
recover particle conservation.

Our strategy to remove the effect of those contributions is to improve
our model of the electrodes. In actual experimental setups the electrodes
are essentially metallic (high Fermi energy) so that the contributions corre-
sponding to case C are essentially negligible. We therefore add an external
potential which is vanishing in the mesoscopic system and negative in the
electrode, as seen in Fig. 5.7(d). As the current is measured in the region
where this potential vanishes (i.e. on the right in Fig. 5.7), the very low
injected energies (case C) will not contribute to the current any more and
one recovers particle conservation even for rather small simulation times.

5.5 a comment on the electrostatics

We end this chapter with a discussion of our choice of boundary condi-
tions in the electrodes and our model for an abrupt voltage drop. Following
the usual practice [71], we have assumed (i) that the voltage drops abruptly
at the electrode – system interface and (ii) that the electrodes remain at
thermal equilibrium (in the basis where the gauge transformation has been
performed so that the electrode Hamiltonian is time-independent). Condi-
tions (i) and (ii) correspond to case (a) in Fig. 5.8; an abrupt drop of the
electrical potential at the lead – system interface. In an actual experiment,
however, a voltage source does not impose a difference of electric poten-
tial but rather a difference of electrochemical potential. How the latter is
split between electrical and chemical potentials is a matter of the balance
between the electrostatic and chemical (i.e. kinetic) energies of the system
and is therefore extrinsic to the model discussed so far. Fig. 5.8(b,c) illus-
trate two possible ways of splitting these contributions. In the former case
the potential drop is of a purely chemical nature, whereas in the latter the
potential drop is purely electrical and is not abrupt. Note that our model,
Fig. 5.8(a), implies a small potential mismatch at the electrode – system in-
terface which in turn induces a finite reflection amplitude, which is not the
case in Fig. 5.8(b). For DC current with small bias both models coincide,
but differences occur at large biases. Fig. 5.9 shows the stationary value
of the current after a fast increase of the voltage. We use a pulse of form
w(t) = Vθ(t), wait for a long (t = 100) time after the voltage has been estab-
lished and compute the corresponding stationary current (using any of the
above equivalent methods, in this case GF-A). One can check from Fig. 5.3
that t = 100 is sufficient to achieve convergence toward the stationary value.
This can be considered as a very elaborate (and ineffective) way to obtain
the I(V) characteristics of the device. We also calculated directly the DC
I(V) characteristics using the stationary equations [103] and checked that
we obtained matching results. Fig. 5.9 shows two curves. The first curve,
Fig. 5.9(a): red circles, corresponds to the natural condition in our formal-
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Figure 5.8 – Sketch of different repartitions between chemical and electrical poten-
tial upon applying a difference of electrochemical potential Vb between
source and drain. (a) Abrupt drop of purely electrical nature. (b) The
drop is purely of chemical nature. (c) The purely electric drop takes
place linearly over the sample (tunnel junction situation). (d) Device
corresponding to case a): the two electrodes I and III correspond to re-
gions with high density of states while the central region II has a low
density of states. A metallic gate, at a distance d below the sample,
screens the charges present in the sample.

ism (case Fig. 5.8(a)). The voltage drop is a drop of electrical potential, hence
there is a corresponding shift of the band of the left lead with respect to the
right one. The second curve, Fig. 5.9(b): triangles, corresponds to a change
of chemical potential (Fig. 5.8(b), the bottom of the right and left bands re-
main aligned). When V becomes large compared to the Fermi energy the
two prescriptions differ; a drop of electric voltage implies backscattering
while in (b) the transmission probability is always unity. Also, a current in
(a) implies that the bands in the two leads overlap which does not happen
when V is larger than the bandwidth of the system. At large V the current
therefore saturates to 2eγ/h in (b) while it vanishes in (a).

Let us discuss a simple situation which clarifies which boundary condi-
tion is the most appropriate for a given situation. A sketch of the system is
given in Fig. 5.8(d). It consists of two metallic electrodes I and III with a high
electronic density of states (per unit area) ρI and ρI I I connected to a central
device region with lower density of states ρI I (typically a GaAs/AlGaAs
heterostructure or a graphene sheet). Underneath the system, at a distance
d, is a metallic gate which is grounded. In a typical measurement setup the
electrode III is grounded while a voltage source Vb is placed between the
electrode I and the metallic gate. Upon imposing the electrochemical poten-
tial eVb in region I, a variation UI (µI) of electrical (chemical) potential takes
place with eVb = eUI + µI . The variation of chemical potential corresponds
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Figure 5.9 – I(V) characteristics of the 1D chain. Symbols: results obtained with
GF-A after a fast voltage rise w(t) = Vθ(t) and letting the system
equilibrate for t = 100γ−1. Lines: corresponding pure DC calculation.
We compare the case (a) where the drop of potential is purely electrical
(triangles, choice made everywhere else in this thesis) and (b) where
it is purely chemical (circles). Insets, schematics of the corresponding
adjustments of the band positions and Fermi levels. The blue region
corresponds to the filled states of the band.

to a variation of electronic density nI = ρIµI (quantum capacitance). On the
other hand, the presence of the underlying gate corresponds to an electric
capacitance (per unit area) C = ε/d and the electrostatic condition reads
nI = CUI/e. Putting everything together we arrive at,

U =
Vb

1 + C/(e2ρI)
. (5.14)

Turning to concrete examples, we find that for typical transition metals
(very high density of states) U ≈ Vb as raising the chemical potential would
imply a huge increase in the density which in turn would induce a cor-
respondingly large increase in the electrostatic energy. Metallic electrodes
are thus typically associated with the cases of Fig. 5.8(a) or Fig. 5.8(c). The
behavior in region II depends acutely on ρI I . If the density of states in re-
gion II is high enough (say a 2D gas with a screening gate at d = 100 nm)
then the electric potential decays linearly from eVb (region I) to 0 (region
III), as shown in Fig. 5.8(c). If the density of states in region II is small,
however, (e.g. one-dimensional systems such as edge states in the quan-
tum Hall regime or a carbon nanotube) the ratio C/(e2ρI) becomes large
and UI I vanishes [case Fig. 5.8(a)]. We conclude that while the situation
depicted in Fig. 5.8(b) is fairly rare (although possible using for instance a
graphene electrode coupled through a BN layer to an extremely close un-
derlying graphene gate), the situation of Fig. 5.8(a), which is the focus of
this thesis work, is typical of a mesoscopic system. In this case, the drop
of the electrical potential will typically take place over a distance d. While
the simulation of cases (a) and (c) is straightforward within our formalism,
case (b) (fortunately often not realistic) would require additional extrinsic
inputs. While the electrical potential adjusts itself instantaneously (i.e. at
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the speed of light) inside the sample, the chemical potential propagates at
the group velocity of the electrons, and a proper model of the inelastic re-
laxation inside the electrodes would be necessary.
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Part III

N E W C O N C E P T S A N D E X P E R I M E N TA L
P R O P O S A L S





6
P R O PA G AT I O N A N D S P R E A D I N G O F A C H A R G E P U L S E

While most elementary courses on quantum mechanics concentrate on
the stationary limit, one aspect of the time-dependent theory stands out re-
garding the spreading of a (mostly Gaussian) wave packet. An initial wave
packet with a certain spatial width and average momentum experiences a
ballistic motion of its center of mass, while its width spreads diffusively. In
this chapter, we study the propagation and spreading of an initial condition
given in terms of a voltage pulse. This can be considered as the condensed
matter analogue of the spreading of the wave packet. The voltage pulse
shares some similarities with the usual “localized wave packet” (where an
initial shape is assumed), yet there are also important differences. In partic-
ular, in an electronic system, there are stationary delocalized waves which
exist before the pulse. Hence, a voltage pulse does not create a localized
wave packet but a local deformation of (mostly the phase of) an existing
one. We show in this chapter that the spreading of a voltage pulse is accom-
panied by density (and current) oscillations that follow the propagation of
the pulse. While these oscillations spread diffusively, we shall see that the
envelope of a voltage pulse spreads linearly with time.

We start with a pedestrian construction of the scattering matrix of a one-
dimensional chain. We then leave the discrete model for the continuous
limit which is more tractable analytically. We continue with an explicit
calculation of the spreading of the wave packet and the above mentioned
oscillations that follows the ballistic propagation of the pulse. Finally we
leverage these calculations to investigate the spreading of a voltage pulse in
the quantum Hall regime. We show that it exhibits a quantum and a “clas-
sical” regime we shall distinguish in between by comparing the amplitude
and the duration of the pulse. All results presented here are original.

6.1 scattering matrix of a one-dimensional chain in pres-
ence of a voltage pulse

Our starting point is the Schrödinger equation for the one-dimensional
chain (i.e. the first quantization version of Hamiltonian (5.1) with a static
potential εi = 2γ over the entire infinite chain),

i∂tψx = −γψx−1 − γψx+1 + 2γψx, ∀x 6= 0, 1 (6.1)

i∂tψ0 = −γψ−1 − eiφ(t)γtψ1 + 2γψ0, (6.2)

i∂tψ1 = −γψ2 − e−iφ(t)γtψ0 + 2γψ1, (6.3)

where the hopping element γt between sites 0 and 1 can be different from
the hopping γ of the rest of the system. As the time-dependent part of the
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Hamiltonian concentrates on a single hopping term between sites 0 and 1,
we can build the states on either side with a linear combination of the plane
waves of the system,

ψx =
e−iEt+ik(E)x√
|v(E)|

+
∫ dE′

2π

e−iE′t−ik(E′)x√
|v(E′)|

r(E′, E), ∀x ≤ 0 (6.4)

ψx =
∫ dE′

2π

e−iE′t+ik(E′)x√
|v(E′)|

d(E′, E), ∀x ≥ 1 (6.5)

with E(k) = 2γ(1− cos(k)) and v = ∂E/∂k. The wave-matching conditions
Eqs. (6.2) and (6.3) translate, for our ansatz, into

e−ik(E′)√
|v(E′)|

r(E′, E) + 2π
eik(E)√
|v(E)|

δ(E′ − E) =

(γt/γ)
∫ dε

2π
K(E′ − ε)

eik(ε)√
|v(ε)|

d(ε, E) (6.6)

1√
|v(E′)|

d(E′, E) = (γt/γ)

[
1√
|v(E)|

K∗(E− E′)

+
∫ dε

2π
K∗(ε− E′)

1√
|v(ε)|

r(ε, E)

]
(6.7)

Equations (6.6) and (6.7) can be solved systematically, order by order, in
power of γt/γ. The first non vanishing term for the transmission reads,

d(E′, E) = (γt/γ)

√
v(E′)
v(E)

[
1− e2ik(E)

]
K∗(E− E′) + O(γt/γ)2. (6.8)

Of course, Equations (6.6) and (6.7) can also be solved in the wide band
limit, as in section 4.2. The wide band limit leads to,

r(t, E)e−ik(E) + eik(E)e−iEt = (γt/γ)eiφ(t)eik(E)d(t, E) (6.9)

d(t, E) = (γt/γ)e−iφ(t)
[
e−iEt + r(t, E)

]
(6.10)

from which we get,

d(t, E) = (γt/γ)e−iφ(t)e−iEt eik(E) − e−ik(E)

(γt/γ)eik(E) − e−ik(E)
(6.11)

which is a simple generalization (for γt 6= γ) of the result derived in sec-
tion 4.2. For γt = γ one obtains d(E′, E) = K∗(E− E′).
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Let us now look at the shape of the transmitted wave that can be recon-
structed from the knowledge of d(E′, E) and Eq. (6.5). In the wide band
limit E(k′) = E(k), it reads,

ψ(x, t) =
1√
v

e−iEteikxeiφ(t). (6.12)

We find that in this solution the pulse does not propagate, which is to be
expected as the wide band limit neglects the system velocity. Using a linear
dispersion relation, E(k′) = E(k) + v(k′ − k), improves the situation as the
corresponding wave function,

ψ(x, t) =
1√
v

eikx−iEx/vd(t− x/v), (6.13)

shows the ballistic propagation of the pulse. In the limit where the velocity
of the wave is slow (with respect to the typical scales of the voltage pulse)
one can use d(t, E) = e−iφ(t)−iEt, and the wave function reads,

ψ(x, t) =
1√
v

eikx−iEte−iφ(t−x/v) (6.14)

At this level of approximation the voltage pulse can be considered as a
“phase domain wall” which propagates ballistically inside the wire. The
spreading of the voltage pulse is associated with the mass of the particle,
i.e. with the curvature of the dispersion relation, and therefore is beyond
the linear dispersion considered here. Also, the expression d(t − x/v) =
e−iφ(t−x/v) is slightly ill-defined as it does not fulfill particle conservation (it
corresponds to a uniform density yet a non uniform current). This reflects
the fact that the transmission matrix itself was calculated in the wide band
limit, i.e. without taking the electronic propagation into account.

We continue by taking the continuum limit of the problem, i.e. we intro-
duce a small discretization step a, set γ = h̄2/(2ma2) and k→ ka. The limit
a→ 0 provides the usual quadratic dispersion of the Schrödinger equation,
E(k) = h̄2k2/(2m). In this limit, we can solve Eqs. (6.6) and (6.7) for a linear
spectrum, beyond the wide band limit. We obtain,

ṙ− iEr + 2iEe−iEt = (γt/γ)eiφ(t)[iEd− ḋ] (6.15)

eiφ(t)d = (γt/γ)
[
e−iEt + r

]
(6.16)

where we have used the notation ṙ = ∂tr(t, E). This set of linear equations
can be formally integrated and one obtains the correction to the wide band
limit. For γt = γ, we get,

ṙ− i(E + w(t)/2)r = ie−iEtw(t)/2. (6.17)

Assuming that the voltage is small compared to E, we can neglect w(t) in
the left hand side of Eq. (6.17) and obtain,

r(E′, E) = −w(E′ − E)
E′ + E

+ O[w(E)/E]2 (6.18)
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where w(E) is the Fourier transform of the voltage pulse w(t), or equiva-
lently,

r(t, E) =
i
2

∫ t

−∞
du e−i2Eu+iEtw(u) (6.19)

and

d(t, E) = e−iφ(t)−iEt +
i
2

e−iφ(t)
∫ t

−∞
du e−i2Eu+iEtw(u) (6.20)

It is interesting to look at Eq. (6.20) for a time larger than the total duration
of the pulse, so that the integral of the right hand side is simply w(−2E).
We get,

d(t, E) = e−iφ(t)−iEt[1 +
i
2

w(−2E)ei2Et] + O[w(E)/E]2 (6.21)

We find that the first correction to the wide band limit corresponds to a
beating of frequency 2E. The corresponding term is, however, very small
as w(ε) vanishes when ε is larger than max(Vp, h̄/τp) which, under the
assumptions of the wide band limit, is much smaller than EF.

As a test of the consistency of our different approaches, Fig. 6.1 shows the
transmission probability d(E′, E) of the one-dimensional chain as obtained
from a numerical calculation [WF-D method followed by the generalized
Fisher-Lee formula Eq. (3.62)] and the analytical result d(E′, E) = K∗(E− E′)
in the wide band limit [Eq. (4.21), the Fourier transform was performed
numerically]. First, we find that the wide band limit gives excellent results;
the analytics match the numerical results even for pulses that are quite large
in energy (Vp up to 20% of the injected energy E). Second, we find that, as
expected, the characteristic energy for the decay of d(E′, E) is indeed given
by max(Vp, h̄/τp). Last, we find (inset) a large peak of width h̄/tM and
height tM/h̄ around E′ = E. This peak, which converges to δ(E′ − E) when
tM → ∞ corresponds to the fact that for most of the time there is no time-
varying voltage in the system which is therefore elastic. This can also be
seen from the analytical expression of K(E), which can be obtained in the
case of a Lorentzian pulse [41]. Indeed for w(t) = 2τp

τ2
p+t2 , one obtains,

eiφ(t) =
t− iτp

t + iτp
and K(E) = 2πδ(E)− 4πτpeEτp θ(−E) (6.22)

6.2 spreading of a voltage pulse inside a one-dimensional

wire : analytics

Going beyond the linear dispersion to study the spreading of the voltage
pulse is not straightforward using the above wave matching method; we
now take a different approach. We consider a pulse with duration τp short
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Figure 6.1 – Transmission probability of an incoming particle at energy E = −1γ

for a Gaussian voltage pulse w(t) = Vpe−4 log(2)t2/τ2
p with amplitude

Vp, width τp and fixed product Vpτp = 5.9. Full lines corresponds to
Eq. (4.21) while symbols are numerical results. Orange circles : Vp =

0.059γ, τp = 100γ−1, blue triangles: Vp = 0.118γ, τp = 50γ−1, green
squares: Vp = 0.236γ, τp = 25γ−1. Inset: convergence of the discrete
Fourier transform for two different values of tM (same parameters as
the orange circles).

compared with the total propagation time that will be considered, yet long
with respect to h̄/E. At a small time t0 just after the pulse we can safely
ignore the spreading of the pulse and the wave function is given by

ψ(x, t0) =
1√
v

e−iφ(−x/v)e−iEt0eikx. (6.23)

Eq. (6.23) will be used as our initial condition. As noticed before, the voltage
pulse takes the form of a phase domain wall that modifies the existing plane
wave, as the function φ(−x/v) is uniform except within a small window of
size vτp. We now introduce explicitly the modulation of the plane wave
Y(x, t),

ψ(x, t) =
1√
v

Y(x, t)e−iEt+ikx, (6.24)

where Y(x, t) verifies Y(x, t0) = e−iφ(−x/v). To obtain the evolution of Y(x, t)
for times t > t0, we inject the definition of the wave function Eq. (6.24) into
the (free) Schrödinger equation and obtain,

i∂tY(X, t) = − 1
2m∗

∆XY(X, t) (6.25)

where the Laplacian ∆X = ∂XX acts on the coordinate X = x − vt which
follows the ballistic motion of the pulse. Solving this free Schrödinger
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equation is now straightforward and one proceeds as for a “regular” wave
packet. In momentum space we have

Y(X, t) =
∫ dQ

2π
e−iQXe−iQ2t/(2m∗)Y(Q, t = 0), (6.26)

with

Y(Q, t = 0) = vK∗(Qv). (6.27)

In a few cases one knows K(E) explicitly and an explicit formula for the
wave function can be obtained. In the case of a Lorentzian pulse, K(E) is
given by Eq. (6.22) and the integration in Eq. (6.26) provides an explicit
expression,

Y(X, t) = 1− vτp

√
2m∗π

it
exp

(
m∗(iX− vτp)2

2it

)[
1 + Erf

(
iX− vτp

2
√

it/(2m∗)

)]
(6.28)

with the usual definition of the error function Erf(x) = (2/
√

π)
∫ x

0 e−x2
dx.

6.3 numerical calculations of the spreading of a voltage

pulse inside a one dimensional wire

The previous form of Y(x, t) is the voltage pulse analogue of the spread-
ing of a wave packet. It can be recast as a function of the dimensionless
position X̄ = X/(vτp) and time t̄ = t/[m∗(vτp)2]. The typical spreading of
the energy components of the pulse takes place diffusively, i.e. ∆X̄ ∝

√
t̄, as

for a regular wave packet. However, the peculiarity of the voltage pulse (i.e.
it is merely a localized deformation of the phase of an existing stationary
wave rather than the modulation of its amplitude) manifests itself in the
presence of oscillations in the charge density. Fig. 6.2 shows the calculation
of the local charge density,

ρE(x, t) = |ΨE(x, t)|2 (6.29)

obtained from numerical calculations (left panels) and from Eq. (6.28) (up-
per right panel). The two upper color plots provide the same quantity as
calculated numerically (a) and analytically (b). We find that the analytical
description is fairly accurate despite various possible sources of discrepancy.
The numerics are performed with our tight-binding model which slightly
deviates from the continuum and the analytics neglect the quadratic disper-
sion at small times. A more detailed comparison is shown in Fig. 6.2(d)
where we have plotted a cut at fixed x of the local charge density. The
lower left plot corresponds to a different (Gaussian) form of the pulse from
which a close analytical expression could not be obtained. The most striking
feature of the spreading of the voltage pulse is the appearance of density
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Figure 6.2 – Color plot of the local charge density ρE(x, t)/ρE(x, t = 0) as a
function of space (in unit of vτp) and time (in unit of τp) at energy
E = −1.8γ and τp = 10γ−1. Levels of red (blue) correspond to lo-
cal densities higher (lower) than one. The white dashed lines indicate
the ballistic propagation x = vt. Panels (a) and (b) correspond to a
Lorentzian pulse w(t) = 2τp/(τ2

p + t2) calculated analytically [right,
Eq. (6.28)] and numerically [left]. Panel (c) shows the numerical result
for a Gaussian pulse w(t) = Vpe−4log(2)t2/τ2

p with Vp = 0.59γ. Panel (d)
shows a cut at x = 35vτp of the results of panel (a) (orange dashed
line) and panel (b) (full blue line).

oscillations which are reminiscent of a wake. Although we could only an-
alyze these oscillations analytically for the Lorentzian pulse, we actually
found them for other shapes, the specificity of the Lorentzian pulse being
that these oscillations always travel faster than the Fermi group velocity (the
electrons’ energy can only increase with a Lorentzian pulse, see Eq. (6.22)).
Indeed for a Gaussian pulse (Fig. 6.2(c)), the oscillations also take place after
the passage of the pulse.

At large time, Eq. (6.28) indicates that the amplitude of ρE(x, t) scales as
1/
√

t̄ while the “period” of the oscillations increases as
√

t̄. More precisely
the nth extremum Xn of these oscillations obeys the relation,

X2
n =

2π

m∗
(

n +
1
4

)
t + (vτp)

2 (6.30)
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In other words the positions Xn of the extrema increase diffusively with
the quantum diffusion constant D = h/m∗. Fig. 6.3 shows the values of
Xn as obtained numerically for a Gaussian or a Lorentzian pulse. We first
find that the positions of the peaks in front of the pulse is not affected by
the shape of the pulse (Lorentzian or Gaussian). Also the peaks behind
the pulse (negative n, not present in the Lorentzian case) are positioned
symmetrically with respect to the peaks with positive n.

In order to be able to observe these oscillations, one would need Dt to
be larger than the original size of the pulse vτp which unfortunately hap-
pens to be very difficult. Indeed, one finds D ≈ 10−4 − 10−2 m2.s−1 which
translates into X1 ≈ 1 nm for a large propagation time t = 10 ns that
would require, assuming v ≈ 104 m.s−1, a 100 µm long coherent sample
and τp < 100 fs. This is clearly beyond available technology. In addition,

X-7
X-5

X-3
X-1
X1
X3
X5

X7

X1
X3
X5

X7

0

100

200

300

400

0 10 20 30 40 50

t / τp

[X
n
 /

 v
τ

p
]2

 -
 1

0 10 20 30 40 50 60 70

t / τp

200

400

0

600

800

[X
n
 /

 v
τ

p
]2

 -
 1

(a) (b)

Figure 6.3 – Maxima of the oscillations appearing in Fig. 6.2(a) and Fig. 6.2(c)
as a function of time. (a) Full (empty) symbols correspond to the
Lorentzian (Gaussian) pulse. Both cases are hardly distinguishable.
Lines are linear fits of the numerical data obtained for the Lorentzian
case. (b) All symbols correspond to the Gaussian pulse, negative (pos-
itive) values of n refer to maxima appearing before (after) the pulse.

the numerics and expressions obtained so far in this section refer to the
contribution to the electronic density ρ(x, t) at a given energy E. This con-
tribution corresponds to the derivative of the corresponding density with
respect to the Fermi energy dρ(x, t)/dEF = ρEF(x, t). It can therefore be,
in principle, directly measured by modulating the system with a uniform
electrostatic gate, but its main interest lies in the physical insights it con-
veys. Fig. 6.4 shows full current (integrated over energy) as a function of
space and time corresponding to the Gaussian pulse of Fig. 6.2(c). Beside
the ballistic propagation of the pulse (at the Fermi velocity), one indeed ob-
serves that the oscillating tail survives the integration over energies. Note
that these oscillations are reminiscent of other oscillations, associated with
shock waves, that were predicted in [106, 107, 108]. In the latter case, a quan-
tum wire was perturbed with a local density perturbation (as opposed to
the voltage pulse studied here). However, as those oscillations also appear
for a non-interacting gas and a finite curvature is needed to obtain them,
they might be related to the present case.
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Figure 6.4 – Current density as a function of space (in unit of vτp) and time (in
unit of τp) for the Gaussian pulse of Fig. 6.2(c). Fermi level is set at
EF = −1.8γ. (a) The color map goes from zero values (blue) to 0.6
(red). (b) cut of the left panel at three positions in space A, B and
C corresponding to the three dashed lines shown on the left panel.
Orange: x = 15vτp, blue: x = 30vτp, green: x = 45vτp.

6.4 spreading of a charge pulse in the quantum hall regime

We now visualize the spreading of a charge pulse in the quantum Hall
regime. We consider a two-dimensional electron gas (2DEG) under high
magnetic field connected to two Ohmic contacts as depicted in Fig. 6.5. We

V(t)

B
x

y

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.5 – Color map of ∂ρ(x, y)/∂V of the two-dimensional electron gas show-
ing the position of the edge state at the Fermi energy.

work in a regime where the transport properties are fully determined by
the lowest Landau levels (LLL). We send voltage pulses via the left contact
while the right one is grounded. Fig. 6.5 is not a simple schematic of the
system, but shows the electronic charge distribution ∂ρ(x, y)/∂V appearing
in the 2DEG upon applying a DC bias voltage V at the left contact. The
Hamiltonian for the system reads

Ĥ =
(~P− e~A)2

2m∗
+ V(~r, t), (6.31)

where ~P = −ih̄~∇, and ~A = −By~x is the vector potential in the Lan-
dau gauge. B is the magnetic field and m∗ is the electron effective mass.
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V(~r, t) contains the voltage pulse applied to the left Ohmic contact and
the confining potential due to the mesa boundary. Equation (6.31) is dis-
cretized on a lattice following standard practice [103] with parameters cor-
responding to a GaAs/AlGaAs heterostructure. We use an electronic den-
sity ns = 1011 cm−2 which gives a Fermi energy EF = 3.47 meV (or a Fermi
wave length λF = 79 nm). We take a magnetic field B = 1.8 T that corre-
sponds to a magnetic length lB = 19 nm, and the width of the system is
150 nm.

Fig. 6.6 shows the propagation of a charge pulse generated by a Lorentzian
voltage pulse V(t) = Vp/(1 + (t/τp)2), with amplitude Vp = 0.5 mV and
duration τp = 5 ps, applied to the left contact. We represented the deviation
of the electronic charge from equilibrium in the center of mass of the pulse
at three different times. The corresponding charge integrated along the y-
direction is plotted in Fig. 6.7(a). One observes (i) a ballistic propagation at
the Fermi group velocity, (ii) a global spreading of the charge pulse and (iii)
oscillations of charge density inside its envelope. We already found these
oscillations in the previous section, and not only for the Lorentzian pulse.
We study the propagation of the pulse in the 2DEG within a Landauer-
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Figure 6.6 – Charge density color map of the spreading of a charge pulse generated
by a Lorentzian voltage pulse, V(t) = Vp/(1 + (t/τp)2), with ampli-
tude Vp = 0.5 mV and duration τp = 5 ps.

Büttiker approach using the concept of one-dimensional edge states [109].
The system is invariant by translation in the x-direction, hence in absence
of voltage pulse the LLL are eigenstates of the Hamiltonian Eq. (6.31) with
the plane waves

ψk(x, y, t) = e−(y−kl2
B)

2/4l2
B eikx. (6.32)

Following the results obtained in the previous section, we see that in pres-
ence of the voltage pulse, ψk becomes ψ = Yψk, where Y is given by
Eq. (6.28). Here we let the oscillations aside and focus on the spread-
ing of the envelope of the charge pulse ∆X(t). We will show that the
width ∆X(t) spreads linearly in time. ∆X(t) can be obtained analytically
from the exponential decay of |Y|2 with X, or numerically by looking at
the envelope of the electronic density ρ(x, y, t). In practice, we calculate
Q(x, t) =

∫
dy
∫ x

0 dx̄ρ(x̄, y, t) and define ∆X as the difference between the
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Figure 6.7 – (a) Number of particles as a function of space (integrated along the y-
direction). Symbols correspond to 5% (blue cross) and 95% (red pluses)
of the particles sent. Inset: spreading of the charge pulse as a function
of time. The full line is a linear fit ∆X − ∆X0 = at. (b) Spreading of
the charge pulse as a function of the number of particles sent n̄. The
dots correspond to numerical data and the dashed blue lines guide
the eye to distinguish between the quantum and the classical regime.
(c) Spreading of the charge pulse as a function of its initial spatial
extension. The dots are numerical data and the continuous line corre-
spond to the fit ∆X − ∆X0 = a/∆X0. Parameters for the Lorentzian
voltage pulse: (a) τp = 5 ps, n̄ = 1, (b) τp = 5 ps, (c) n̄ = 1, with
n̄ = (e/h)Vpτp/4. (b) and (c) are calculated at t = 200 ps.

blue and red crosses in Fig. 6.7(a). We identify two contributions to the
spreading as can be seen in Fig. 6.7(b). First we expand the exponential
argument in Eq. (6.28) and find that the spatial extension of the envelope of
the charge pulse ∆X|qu is typically given by

∆X
∣∣∣
qu

=
t

m∗∆X0
, (6.33)

with ∆X0 = vτp the initial spatial extension of the pulse. Fig. 6.7(b) shows
that Eq. (6.33) is valid only in the quantum regime that is bounded by n̄ ≈ 1.
We shall also consider a “hydrodynamic” aspect of the spreading. This
second contribution arises when one considers how the various states ψk are
filled (with Fermi statistics). Upon varying the potential on the left Ohmic
contact between 0 and Vp, one injects particles with different energies and
hence different velocities into the system. To first order in Vp, we find
that the difference of speed between the fastest and the slowest particles is

87



given by Vp/(vm∗). We recast the amplitude of the voltage pulse in terms
of the number of particles it contains n̄ ∼ Vpτp. This yields a “classical”
component of the spreading of the charge pulse,

∆X
∣∣∣
cl
=

n̄t
m∗∆X0

. (6.34)

The second part of Fig. 6.7(b) (n̄ > 1) confirms the scaling of Eq. (6.34) with
the number of particles injected by the voltage pulse. Overall Fig. 6.7(c)
confirms the scaling in 1/∆X0 of Eqs. (6.33) and (6.34).

We have shown that the transport properties of a voltage pulse applied
to an Ohmic contact are closely related to its quantum nature, as we shall
continue to see in the next chapter.
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7
D Y N A M I C A L C O N T R O L O F I N T E R F E R E N C E I N
M E S O S C O P I C D E V I C E S

In this chapter we start investigating the deviation from the adiabatic
limit. We present the new non-trivial physics that emerges when voltage
pulses become faster than the characteristic time scales of the devices.

Two competing kinds of dynamical excitations have emerged to inject
electrons in nanoelectronic devices. In the first, one fills up the state of
a small quantum dot and then rapidly increases its energy to release the
electron inside the system [44]. This setup allows the electrons to be injected
one by one with a rather well defined energy, but badly defined releasing
time. In the second—on which we shall focus here—one simply uses an
Ohmic contact to apply a voltage pulse V(t) to the device (well defined in
time but ill defined in energy). In a single mode device, such a voltage
creates a current I(t) = (e2/h)V(t) which injects

n̄ =
∫

dt
eV(t)

h
(7.1)

electrons inside the system. A voltage pulse will be said to be in the quan-
tum regime when roughly n̄ ≈ 1 electron is injected and the electronic
temperature is smaller than the energy scales associated with the height Vp
and duration τp of the pulse (h̄/τp). In a series of seminal works, Levitov
et al. studied the properties of pulses of Lorentzian shape [110, 40, 41, 111].
While they found a featureless time-dependent current, they predicted that,
in contrast, the current noise could oscillate with the amplitude of the pulse,
with the possibility to build noiseless quantum excitations for the particu-
lar Lorentzian shape. Recent experiments are beginning to address these
proposals [32, 54, 42]. In particular, the quantum regime was reported re-
cently [42].

Here we use voltage pulses to inject charge excitations in an electronic
interferometer. We find that ultra fast pulses permit the dynamical control
of the relative phases of the different paths taken by the electrons, there-
fore providing means to dynamically engineer the coherent superposition
of the traveling waves. We first focus on a simple Fabry-Perot interferometer
in one dimension followed by full scale simulations of a two-dimensional
Mach-Zehnder interferometer in the quantum Hall regime. Finally, we gen-
eralize dynamical control of interference to the raising of a DC bias on the
aforementioned interferometers. We find the analogous of the AC Joseph-
son effect in the transient regime. All results presented here are original.
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7.1 model and dc characterization of the fabry-perot cav-
ity

Fig. 7.1(a) and Fig. 7.1(b) show our model Fabry-Perot system, it consists
of a quantum wire connected to two metallic electrodes. The quantum
wire is made into a Fabry-Perot interferometer by means of two barriers (A
and B) which can be defects in the wire, gates (as in the sketch) or simply
the Schottky barriers that naturally form at the wire-electrode interfaces.
Such Fabry-Perot interferometers are standard devices of nanoelectronics
and their DC properties have been extensively measured [112, 11, 12, 14].

We model the Fabry-Perot cavity with a one-dimensional Hamiltonian,

Ĥ(t) =
∫

dx− h̄2

2m
ψ†(x)∆ψ(x) + ε(x)ψ†(x)ψ(x) + θ(−x)eV(t)ψ†(x)ψ(x),

(7.2)

(a)

(b)
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2
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Figure 7.1 – (a,b) Schematic of our setup, a quantum wire connected to two elec-
trodes. Two barriers A and B separated by a distance L are placed
along the wire and a Gaussian voltage pulse V(t) is sent from the left.
The barriers are characterized by the barrier heights (VA and VB) or
equivalently by their reflection and transmission amplitudes denoted
respectively rA, rB and dA, dB. A gate voltage Vg allows one to shift
the position of the resonant levels of the cavity. The mean level spac-
ing between the discrete levels of the cavity is δ = h/(2τF) where τF

is the ballistic time of flight from A to B. (c) Schematic of the phys-
ical mechanism for the dynamical control of the interference: as the
pulse propagates along the different trajectories, a phase difference
2πn̄ appears between the front (blue) and the rear (red) resulting in a
modification of the interference pattern. (d) Graphical representation
of Eq. (7.8) that gives the structure of a voltage pulse in terms of a
“phase domain wall”.
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Figure 7.2 – DC characterization of the Fabry-Perot cavity. (a) Transmission of the
barrier A against energy EF with VA = 1.73γ. (b) Transmission of
barrier A as a function of VA for EF = 1γ. (c) Transmission probability
DAB of the entire system with two barriers as a function of Vg for
VA = VB = 1.73γ and EF = 1γ (DA = DB = 0.5). The parameters of
panel (c) correspond to the blue circles of panels (a,b).

where the field operator ψ(x) [ψ†(x)] destroys (creates) an electron at posi-
tion x, V(t) is the voltage pulse applied on the left electrode (x < 0) and ε(x)
the static potential that defines the Fabry-Perot (for x > 0). We discretize
the model on a lattice with lattice distance a and get,

Ĥ(t) = 2γ +
N+1

∑
i=1

εic†
i ci − γ

+∞

∑
i=−∞

c†
i+1ci − γ[eiφ(t) − 1]c†

1c0 + h.c. (7.3)

where γ = h̄2/(2ma2) and φ(t) =
∫ t
−∞ dt′ eV(t′)/h̄ (same gauge transfor-

mation as in chapter 5 to transform the time-dependent potential for i ≤ 0
into a time-dependent hopping between sites 0 and 1). The operator ci (c†

i )
destroys (creates) an electron on site i. εi defines the Fabry-Perot cavity of
size L = Na: ε1 = VA, εN+1 = VB and εi = −V0 + Vg in the central region
i =∈ {2, 3, . . . N}.

The basic properties of this interferometer can be understood within an
elementary theory. Each barrier A (and B) is described by the amplitude
of probability dA (rA) for an incident electron to be transmitted (reflected).
Summing up the probability amplitudes for all the trajectories (direct trans-
mission: dBdA, one back and forth bouncing: dBrArBdA...), the total ampli-
tude of probability for an electron to be transmitted reads,

dAB(E) =
dAdB

1− rArBz
. (7.4)
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The factor z corresponds to the phase z = ei2kL accumulated by the electron
during the time between two collisions (L distance between the scatterers,
k electron momentum). z can also be rewritten as z = ei2τFE/h̄, where τF is
the time of flight between A and B, and E is the incident energy (our analyt-
ical treatment ignores the small energy dependence of τF, dA,dB. . . but our
numerics fully accounts for it). When E is at resonance with the eigenener-
gies En = nδ + eVg of the cavity formed by A and B (δ = h/(2τF): mean
level spacing, eVg: potential shift due to a nearby electrostatic gate), dAB
shows a sharp peak and reaches perfect transmission. Fig. 7.2 shows the DC
characteristics which were used to calibrate our device with the additional
parameter V0 = −1.068γ. Fig. 7.2(a) and Fig. 7.2(b) show the transmission
probability of a single barrier, say A, as a function of the Fermi energy (a)
and VA (b). Fig. 7.2(c) shows the transmission probability (conductance in
unit of e2/h) of the full Fabry-Perot cavity as a function of the gate voltage
Vg for a cavity length set with N = 70 and Fermi energy EF = 1γ. We can
extract the peak to peak mean level spacing δ = 0.09γ, and the associated
time of flight τF ≈ 35γ−1.

7.2 voltage pulses in the quantum regime

We now apply a (Gaussian) voltage pulse V(t),

V(t) = Vp exp

(
−4 log(2)

t2

τ2
p

)
, (7.5)

of width τp and maximum amplitude Vp to the left electrode. The pulse
contains n̄ = κeVpτp/h̄ particles where κ = 1/4

√
π log(2) ≈ 0.17. Various

durations of the pulses were used from τp = 5γ−1 to τp = 100γ−1. We
found that τp ≥ 5γ−1 is necessary to enforce h̄/τp � EF and get rid of
spurious effects associated with the band width of the model. Note that
contrary to the noise properties [40, 41, 111], the physics described in this
chapter is to a wide extent insensitive to the precise shape of the pulse as
will be shown later. Defining the transmitted current It(t) just after the
second barrier, the observable of interest to us will be the total number
nt =

∫
It(t)dt/e of electrons transmitted through the system. nt can be

directly measured experimentally and requires much less effort than e.g.
noise measurements. In an actual experiment, one would measure the DC
current Idc upon sending periodic trains of pulses through the system. In-
deed, by periodically applying the above pulse with a period Θ � τp, one
simply finds Idc = ent/Θ.

The limit of long pulses τp � τF is rather trivial. As V(t) varies very
slowly, at each instant the current follows the DC I-V characteristics of the
system, It(t) = Idc[V(t)] (adiabatic limit) which can be obtained from the
Landauer formula. In this limit, Vp � δ (linear regime) leads to nt =
|dAB(EF)|2n̄, while for large voltages Vp � δ (classical limit) the interfer-
ence pattern is washed out and one obtains nt = Dcl

ABn̄, where the classical
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Figure 7.3 – Total charge transmitted nt. (a) nt as a function of gate voltage eVg/δ.
(b,c) nt as a function of total injected charge n̄. The symbols correspond
to numerical data for short (red, τp = τF/7) and long (blue, τp = 3τF)
pulses while the full lines correspond to the analytical results for τp �
τF (red) and τp � τF (blue). (a) Vp = 0.5δ and DA = DB = 0.5. (b,c)
System at resonance and Vp is varied with DA = DB = 0.5 (b), and
DA = DB = 0.1 (c). Dashed lines: nt = DABn̄ (green) and nt = DCl

ABn̄
(magenta).

(or incoherent) probability Dcl
AB corresponds to the addition law of the prob-

abilities associated with the different paths [94],

Dcl
AB =

DADB

1− RARB
, (7.6)

capital letters D or R correspond to the probabilities associated with the
respective amplitudes so that DA = |dA|2. Eq. (7.6) is essentially identical to
Eq. (7.4) upon replacing amplitudes by probabilities. So far, we have made
rather standard predictions which are easily reproduced by our numerical
simulations: the blue symbols in Fig. 7.3 show that nt oscillates with the
gate voltage Vg (Fig. 7.3(a)) and increases monotonously with Vp (Fig. 7.3(b)).
Fig. 7.3(a) has been calculated with an intermediate value of Vp ≈ 0.5δ so
that the contrast of the interference pattern is not very large.

Having established the adiabatic limit, we can now turn to the more in-
teresting limit of short pulses τp � τF for which a proper time-resolved
quantum theory is compulsory. Let us make a naive guess: a very short
pulse can be viewed as a very localized perturbation that will propagate
ballistically through the wire. Monitoring the current after the barriers, one
observes a narrow peak when the perturbation has propagated up to the
observation point. 2τF later one observes a second peak corresponding to
trajectories with one reflection on each barrier, new peaks (of increasingly
smaller amplitudes) arrive sequentially every 2τF. As the perturbations
coming from different trajectories do not coincide in time, they cannot in-
terfere and one expects to observe the “classical” addition law nt = Dcl

ABn̄.
The argument can also be made in the energy domain: a fast pulse excites
electrons to a large spread in energy which results in an effectively random
phase z and the interference pattern gets washed out. A rapid glance at
the numerics does indeed confirm this picture. Fig. 7.4(b) shows the moni-
tored current It(t) which clearly shows the peaks described above. Perhaps
more transparent is the corresponding color map of the local current I(x, t)
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Figure 7.4 – (a) Local current It(x, t) as a function of space (in unit of the length
L of the cavity) and time (in unit of τF) for Vp = 1.5δ, τp = τF/3.5
and the cavity is at resonance. The dashed lines indicate the positions
of the barriers. (b) It(x0, t) for x0 = 2.5L on the right of the second
barrier B. In orange: Vp = 1.5δ, in purple: Vp = 4.5δ and for both
curves τp = τF/3.5. The black cross (×) marks the time associated
with Fig. 7.1(c).

in Fig. 7.4(a) where the different trajectories with multiple reflections are
clearly visible. In contrast, long pulses have an essentially featureless cur-
rent It(t) of the same shape as the voltage pulse, as can be seen in Fig. 7.5.
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Figure 7.5 – (a) Local current It(x, t) as a function of space (in unit of the length L
of the cavity) and time (in unit of τF) for Vp = 1.5δ, τp = 3τF and the
cavity is at resonance. The dashed lines indicate the positions of the
barriers. (b) It(x0, t) for x0 = 2.5L on the right of the second barrier B.

The story could end here: slow pulses allow one to observe the interfer-
ence effects (wave aspect of quantum mechanics) while fast pulses give ac-
cess to the ballistic propagation and reflection/transmission of the charges
injected by the pulse (particle aspect of quantum mechanics). A deeper look
at the numerics reveals however a handful of rather counter-intuitive phys-
ical effects. First, one observes in the It(t) plot of Fig. 7.4(b) that the current
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does not vanish in between consecutive peaks. Second, Fig. 7.3 shows that
the total number of transmitted electrons in fact oscillates strongly with
the gate voltage (Fig. 7.3(a)) in total contradiction with the above picture.
Indeed, upon using faster pulses, one actually restores the interference pat-
tern that was somewhat smeared in the long pulse case. Third, and even
more striking, are Fig. 7.3(b) and Fig. 7.3(c) which show that the number
of transmitted electrons actually oscillates with the number of injected elec-
trons n̄. Fig. 7.3(c) is particularly intriguing since for n̄ = 0.8, nt, e.g. the DC
current for a train of pulse, is negative. In other words, one raises the energy
of the electrons on the left and the electrons flow toward the left electrode.

7.3 dynamical control of interference pattern

To understand the regime of fast pulses, one needs to develop a proper
representation of what a fast voltage pulse really does to the electronic wave
function already present in the system (before any pulse was sent).

7.3.1 Propagation of a phase domain wall

The naive image where a voltage pulse generates some sort of localized
wave packet that propagates through the system is, to a large extent, wrong.
In contrast, stationary delocalized waves already exist before the pulse. Ig-
noring for a moment the presence of the interferometer (barriers), the sta-
tionary wave function is a simple plane wave Ψ(x, t) = eikx−iEt. Upon ap-
plying a voltage pulse V(t)θ(−x) (we suppose that the voltage drop is very
abrupt spatially for the sake of the argument, θ(x) is the Heaviside func-
tion), the energy of the wave is increased and the wave function starts to
accumulate an extra phase φ(t) =

∫ t
−∞ du eV(u)/h̄ for x < 0. Noting that

limt→∞ φ(t) = 2πn̄, one finds that the wave function after the pulse was
sent takes the form,

Ψ(x, t) = e−i2πn̄+ikx−iEt/h̄ for x < 0

Ψ(x, t) = e+ikx−iEt/h̄ for x > 0. (7.7)

The effect of a voltage pulse is therefore to generate a kink in the phase
of the electronic wave function Ψ(x, t) (see Fig. 7.1(d) for a schematic). In
other words, what propagates is essentially a “phase” domain wall between
two regions which are characterized by an ei2πn̄ phase difference. Phases
in quantum mechanics cannot be observed directly and one has to resort to
interferences between different paths to observe them. The role of the elec-
tronic interferometers used here is to introduce these different paths. While
the argument above is very naive, it correctly captures the main feature of
the wave function which reads (for a linearized spectrum),

Ψ(x, t) = e−iφ(t−x/v)+ikx−iEt/h̄, (7.8)

where v = (1/h̄)∂E/∂k is the group velocity.
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Let us now return to our Fabry-Perot cavity. In this case, the station-
ary wave is not a simple plane wave but a superposition of several waves
corresponding to the different paths that the electrons can take (with zero,
one, two... reflections) as shown in Fig. 7.1(c). When a voltage pulse is
sent through this superposition of paths, it propagates through the vari-
ous paths. Fig. 7.1(c) corresponds to a snapshot at a particular time where
the pulse has emerged from the direct path (Path 1 of stationary amplitude
dBdA) but not yet from the longer trajectories with multiple reflections (Path
2 of amplitude dB(rArB)dA, Path 3 of amplitude dB(rArB)

2dA. . . ). The time
at which this snapshot is taken corresponds to the cross in the It(t) plot of
Fig. 7.4(b). If one looks at the wave function just after the barrier B at that
particular time, one finds that the amplitude of Path 1 has an extra phase
ei2πn̄ compared to its stationary value (rear of the pulse as compared to Path
2, 3,... which are still in the front of the pulse). Therefore at this particular
time, the total amplitude is ei2πn̄dBdA + dB(rArB)dA + dB(rArB)

2dA. . . and is
dynamically modified with respect to its stationary value. As time increases,
the pulse will emerge from Path 2, Path 3...and the factor ei2πn̄ will progres-
sively spread to all trajectories until one recovers the stationary amplitude
(up to a now irrelevant global ei2πn̄ phase factor). After emerging from path
p, the total amplitude of transmission reads,

d(p)
AB(E) = d(0)AB(E) + (ei2πn̄ − 1)dAdB

1− (rArBz)p

1− rArB
, (7.9)

where d(0)AB(E) is given by Eq. (7.4). Hence we find the net current between
paths p and p + 1 with the Landauer-Büttiker formula,

I(p)
t =

∫
dE f (E)

[
|d(p)

AB(E)|2 − |d(0)AB(E)|2
]

, (7.10)

Path number n

I t 
 (

e
/τ

F)
(p

)

I t 
 (

e
/τ

F)
(2

)

(a) (b)

n=0.25, analytics

n=0.25, numerics

n=0.75, analytics

n=0.75, numerics

Figure 7.6 – Particle current resulting from the modification of the interference pat-
tern. (a) Current between paths p and p + 1. Purple symbols corre-
spond to the numerical data of Fig. 7.4(b), and the yellow line marked
by yellow symbols is the numerical evaluation of Eq.(7.11). (b) Current
of the second plateau (p = 2) as a function of the number of injected
particles n̄. Symbols are the numerical data from the simulations, and
the full line correspond to the evaluation of Eq. (7.11) with p = 2.
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which yields,

I(p)
t =

∫
dE f (E)DAB(E)

[
|1 + (ei2πn̄ − 1)(1− (rArBz)p|2 − 1

]
. (7.11)

The integral of Eq. (7.11) was calculated numerically and the result is shown
in Fig. 7.6(a) for n̄ = 0.25 and n̄ = 0.75. The agreement with the numerics
validates the above argument for the origin of the plateaus observed in
Fig. 7.4(b). Fig. 7.6(b) shows that the value of the current oscillates with
2πn̄ which consequently explains the oscillations of nt.

This mechanism, to which we refer to as the dynamical control of the inter-
ference pattern, is a key concept of this thesis.

7.3.2 Analytical calculation of the number of transmitted particles

As we just did for the current between the ballistic peaks, we can make
the above arguments more quantitative also for the number of transmitted
particles, and in particular properly take into account the Fermi statistics
for the filling of the stationary states. Our starting point for the calculation
of nt is Eq. (4.25),

nt =
∫ dE

2π

dE′

2π
|d(E′, E)|2[ f (E)− f (E′)] (7.12)

where d(E′, E) is the amplitude of probability for an incident electron com-
ing from the left with energy E to be transmitted with energy E′. d(E′, E)
can be further decomposed into

d(E′, E) = dv(E′ − E)dAB(E′) (7.13)

where the first (inelastic) term originates from the voltage drop while the
second comes from the (elastic) Fabry-Perot cavity. For the derivation of
Eq. (7.12), we have made use of the fact that the transmission amplitude
d′v(E′ − E) for electrons coming from the right is given by d′v(E′ − E) =
d∗v(E− E′). As we explained in chapter 4, Eq. (7.12) as a whole is a perfectly
convergent integral whose integrand is concentrated around the Fermi level
(assuming the voltage pulse is slow enough compared to h̄/EF). However
each of its two sub terms spread over the entire band of the model, so
one should refrain from calculating these two terms separately, if possible.
Eq. (7.12) has a nice straightforward interpretation: one simply sums over
the (incoherent) incoming states and calculates their total transmission prob-
abilities regardless of the final energy. In the absence of voltage pulse the
vanishing nt comes from the compensation between electrons coming from
the left and from the right.

Our model for the Fabry-Perot transmission amplitude has been given in
the previous paragraph. In the limit where the pulse is slow τp � h̄/EF,
and Vp � EF/e is low compared to the Fermi energy, (the case of interest
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for our nanodevices), dv(E′ − E) is given by Eq. (4.21) and we recover the
result of [41],

dv(E′ − E) =
∫

dtei(E′−E)te−iφ(t). (7.14)

To proceed, we expand dAB(E) in terms of the different paths

dAB(E) =
∞

∑
n=0

dAdB(rArB)
ne2iτF(E+eVg)n, (7.15)

and introducing ε = E′ − E, we get

nt =
∫ dE

2π

dε

2π ∑
n,m
|dv(ε)|2DADB(rArB)

n+m × e2iτF(E+eVg)(n−m)

× [ f (E− ε)− f (E)]. (7.16)

We can now perform the integration over E (at zero temperature) which
binds together the two parts of the integral. The terms n = m and n 6= m
need to be considered separately, and we get,

nt = Dcl
AB

∫ dε

2π
|dv(ε)|2ε +

∫ dε

2π
|dv(ε)|2

DaDb
2π

× ∑
n 6=m

(rarb)
n+m eiαg(n−m)

i2τf (n−m)
(ei2τf ε(n−m) − 1) (7.17)

with αg = 2τF(EF + eVg)/h̄. We can now replace dv(ε) by its expression
Eq. (7.14) and performing the integral over ε, we arrive at

nt = Dcl
ABn̄ + ∑

n
∑

m 6=n

DADB

2π
(rarb)

n+m eiαg(n−m)

i2τF(n−m)

×
∫

dt
[
e−iφ(t)eiφ(t+2τF(n−m)) − 1

]
(7.18)

Eq. (7.18) applies for all pulses, short and long. Assuming an infinitely short
pulse φ(t) = θ(t)ei2πn̄, we obtain after integration and resummation of the
geometric series,

nt
∣∣
short = Dcl

AB n̄ + (DAB(Vg)− Dcl
AB)

sin(2πn̄)
2π

−
2DAB(Vg)Dcl

ABrarb

πDADB
sin2(πn̄) sin(2πVg/δ). (7.19)

In the case of very long pulses φ(t) evolves very slowly with respect to τF
so that one expands φ(t + aτF) ≈ φ(t) + aτFeV(t)/h̄. In this limit, Eq. (7.18)
allows one to recover the adiabatic result,

nt
∣∣
long =

∫
dt
∫ EF+V(t)

EF

de
2π

DAB(e). (7.20)
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Eq. (7.19) contains two contributions of different kind: the first term, “par-
ticle” like, accounts for the ballistic propagation of the pulse while the
second and third terms, “wave” like, corresponds to the dynamical mod-
ification of the interference pattern discussed above which originates from
the difference of phase between the front and the back of the pulse. This
interference effect dominates for a resonant Fabry-Perot in the tunneling
regime (DA, DB � 1) where the “particle” term vanishes and one observes
a purely oscillating signal nt = [sin(2πn̄)]/(2π), see the right panel of
Fig. 7.3. In particular for n̄ = 3/4, one finds a negative transmitted charge
nt = −1/(2π) which is a pure interference effect: the ei3π/2 phase of the
pulse dynamically brings the Fabry-Perot cavity out of resonance and as a
result, the particles coming from the left are temporarily blocked. The elec-
trons coming from the right, on the contrary, are not affected by the pulse.
Therefore the current compensation between left and right is temporarily
withstood and one observes a negative net current (see the purple line in
Fig. 7.4(b) for instance).

7.3.3 Interference visibility with temperature and pulse characteristics

The requirements to observe the above predictions experimentally are
threefold. (i) One needs a device where Fabry-Perot interferences can be
observed at DC which implies that the temperature kBT is smaller than the
mean level spacing δ = h/2τF of the cavity. (ii) One needs values of τF
long enough compared to the speed of available pulse generators. (iii) An
important ingredient of the modeling is that the voltage drop needs to be
spatially abrupt (with respect to the distance L between the two barriers
A and B). The spatial shape of the voltage drop is controlled by the ratio
between the electric C and quantum e2ρ capacitances of the system, as dis-
cussed earlier in section 5.5. In order to obtain a large ratio C/(e2ρ) one
needs a very small density of state ρ and/or to use nearby metallic gates
in order to obtain an efficient screening of the charges inside the device.
Requirement (iii) requires some care but various strategies can be used to
enforce it, such as depositing screening gates close to the electron gas or us-
ing systems with extremely low density of states. One needs δ ≥ 10kBT in
order to fulfill (i) with a good contrast which translates into τF ≤ 250 ps for
a typical dilution fridge temperature of 10 mK. This in turn imposes a pulse
duration τp ≈ 100 ps to enter the regime of fast pulses. Such requirements
are stringent but definitely within grasp of current technology.

Fig. 7.7(a) shows the resonant and off resonance signal nt/n̄ as a function
of the maximum voltage Vp/δ for both short and long pulses. As the visi-
bility of the fast pulses is sensitive to n̄ and not to Vp/δ [Eq. (7.19)], we find
that the system can retain a high visibility for Vp > δ while the interference
pattern of the long pulse is totally smeared out. We study in Fig. 7.7(b)
the temperature dependence of nt at and off resonance. We find that a low
kBT ≤ 0.1δ temperature is needed to observe interferences with a good visi-
bility. This requirement is as stringent as the DC requirement but not more,
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Figure 7.7 – (a) Transmission probability nt/n̄ as a function of Vp/δ for a system at
resonance (full lines, Vg = 0) and off resonance (dashed line, Vg = δ/2)
for a short (orange, τp = τF/7) and long (blue, τp = 3τF) pulse.
DA = DB = 0.5. (b) Transmission probability nt/n̄ as a function of
temperature for the same short pulse and Vp = 0.5δ. Symbols: numer-
ical results, lines: energy average 〈−DAB(Vg, E)∂E f (E)〉E. The upper
curves correspond to Vg = 0 (resonance) while the lower one is off
resonance Vg = δ/2.

so that temperature should not be a restriction for the observation of the
effects predicted.

Regarding the specific question of the shape of the pulse, Fig. 7.8 presents
the number of transmitted electrons as a function of the injected one for
two different pulse shapes: a Gaussian pulse [Eq. (7.5)] and a Lorentzian
one (V(t) = Vp/(1 + 4t2/τ2

p)). We find, as expected from the analytical
calculation, that the results are insensitive to the shape of the pulse in the
fast pulse limit and we recover the oscillating behavior with respect to n̄.
We emphasize that this is in sharp contrast with the current noise in the
single barrier case studied in [41].

7.4 towards experiments with the mach-zehnder interfer-
ometer

There are many possible systems where the physics we present could
be measured. Recent progress on Thz detection were made with carbon
nanotubes [54], for instance, although these objects are rather small (which
implies small time of flight hence the THz physics). Here we explore an
implementation, perhaps the simplest one, where the interferometer is con-
structed out of the edge states of a two-dimensional electron gas in the
quantum Hall regime [112]. The one-dimensional edge states have very
low density of states and can be further screened by nearby metallic gates
or other nearby edge states (at filling factor two). With drift velocities
vD ≈ 104 − 105 m.s−1 and a phase coherence length [113] Lφ ≈ 20 µm at
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Figure 7.8 – Transmitted charge nt as a function of total injected charge n̄. The
system is at resonance and Vp is varied with DA = DB = 0.5. Orange
circles are the data of the short Gaussian pulse case from Fig. 7.3(b),
blue diamonds correspond to a Lorentzian shaped pulse with width
τp = τF/7.

20 mK, one finds that a rather large system of length of a few micrometers
should meet the requirements.

7.4.1 Simulation of an electronic Mach-Zehnder interferometer

We simulated an electronic analogue of a Mach-Zehnder interferometer
as represented in Fig. 7.9 and sketched in the inset of Fig. 7.11. The device
is close to the ones measured experimentally, for example in [113] (although
smaller owing to computational limitations) and simulated in DC in [103]. It
consists of a two-dimensional gas under magnetic field with three terminals
and two quantum point contacts which serve as beam splitters. This device
differs from the Fabry-Perot in two ways: first it is simpler conceptually as
only two paths contribute to the transport. Second, these two paths can
be resolved spatially (the edge states being chiral, transmitted and reflected
waves propagate on different edge states). We considered a 2 µm2 GaAs/Al-
GaAs heterostructure with an electronic density of ns = 1011 cm−2, mobility
µ = 2× 106 cm2.V−1.s−1 under a perpendicular magnetic field B = 1.8 T
(corresponding to filling factor one, first Hall plateau). The velocity is mea-
sured to be v = 7× 104 m.s−1 with an abrupt confinement of the electrons
so that the difference of time of flight between the two paths is τF = 64 ps.
Fast pulses of duration τp = 12 ps were applied to electrode 0 to obtain the
fast pulse limit. The system is modeled within the effective mass approxi-
mation in presence of a small static disorder. The Schrödinger equation is
discretized on a mesh with a step a = 3 nm (so that 105 sites were used in
the simulation) much smaller than both the Fermi wave length λF = 79 nm
and magnetic length lB = 19 nm of the system. The model and the in-
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Figure 7.9 – Mach-Zehnder interferometer. Snapshot of the local electronic density
at t = 46 ps. The color map indicates the deviation from equilibrium
which goes from 0 (salmon) to 0.22× 1011 cm−2 (black).

corporation of the magnetic field in the numerics are detailed in chapter 8.
Fig. 7.10 shows the differential conductance dI1/dV0 as a function of mag-
netic field. We adjust the extra magnetic field to 1 mT such that the system
is at(off) resonance for contact 1(2).

Magnetic field - 1.8T (mT)

d
I 1
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V

0
 (

e
2
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)

Figure 7.10 – Differential conductance dI1/dV0 for contact 1 in units of e2/h as a
function of magnetic field.

In the simulations, contacts 1 and 2 are grounded, while a voltage pulse is
applied on contact 0 [same pulse as Eq. (7.5)]. The injected current follows
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Figure 7.11 – Main figure: difference n1 − n2 between the transmitted charge into
contact one and two as a function of the total injected charge n̄.
The full line corresponds to the analytical calculation n1 − n2 =

0.12n̄ + 0.14 sin(2πn̄) (see Method section). Upper inset: schematic
of the system with the electron gas (light gray), the three contacts 0,
1, and 2 (yellow), the two semi-transparent quantum point contact A
and B and the effective chiral edge states (blue arrows). Lower inset:
schematic of the two paths which contribute to the stationary wave
function. As the pulse propagates along the different trajectories, a
phase difference 2πn̄ appears between the front (blue) and the rear
(red) of the pulse.

the edge state and is split into two parts as it reaches the first quantum
point contact (QPC). Both QPCs are set to be semi-transparent DA = DB =
0.5 and consequently act as beam splitters. The two parts of the initial
current are recombined at the second QPC. Fig. 7.9 actually corresponds to a
snapshot of the simulation at an intermediate time t = 46 ps. The color code
indicates the deviation of the local electronic density with respect to the
equilibrium value. At this intermediate time, the pulse has already passed
through the first QPC and is split into two parts. The lower (transmitted)
part is reaching the electrodes 1 and 2 while the upper (reflected) part is
traveling along the longer arm of the interferometer.

The results of Fig. 7.11 confirm the oscillations of the transmitted charge
with n̄. The dynamical control of the phase between the two arms of the
interferometer stands in this experimentally accessible geometry. Fig. 7.12(c)
shows the current arriving in the electrode 1 as a function of time, in direct
analogy with Fig. 7.4(b). The two peaks correspond respectively to the
arrival of the pulse from the lower arm and upper arm of the interferometer
while the plateau in between corresponds to the dynamical control of the
interference pattern. We show for completeness the actual value of these
currents at the first peak (t = ta) and on the plateau (t = tb) in Fig. 7.12(a)
and Fig. 7.12(b) respectively. We find, as expected, that the first contribution
increases with n̄ while the latter oscillates as sin(2πn̄). The lower inset of
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Figure 7.12 – Current I1 at contact 1 for the Mach-Zehnder interferometer. (a,b)
Amplitude of I1(ta), I1(tb), as a function of the number of injected
particles n̄. Symbols are numerical data. The line in (b) corresponds
to I1(tb) = 0.001 sin(2πn̄). (c) Transmitted current I1(t) as a function
of time for n̄ = 0.2.

Fig. 7.11 contains a schematic of a snapshot of the interference pattern at
t = tb.

The quantitative calculation of the number of transmitted particles for the
Mach-Zehnder geometry proceeds along the same lines as for the Fabry-
Perot case, and is even simplified by the presence of only two paths con-
tributing to the transmission amplitude of the device. The transmission
probabilities from lead 0 to 1 (2) reads,

|S0
10(E)|2 = DADB + RARB + 2

√
DADBRARB cos(φ + τF(E− EF)),

(7.21)

|S0
20(E)|2 = DARB + RADB − 2

√
DADBRARB cos(φ + τF(E− EF)),

(7.22)

with φ the total magnetic flux through the central depleted region (in unit
of h̄/e) and τF the extra time needed for the upper paths with respect to the
lower one. After following the same steps as for the Fabry-Perot geometry,
one obtains (in the limit of short pulses) the number of particles transmitted
to contact 1 (2),

n1 =(DADB + RARB)n̄ +
2
π

√
DADBRARB sin(πn̄) cos(πn̄ + φ)

n2 =(DARB + RADB)n̄−
2
π

√
DADBRARB sin(πn̄) cos(πn̄ + φ)

(7.23)

(7.24)

Fig. 7.13 shows the number of transmitted particles at contact 1 as a function
of the magnetic flux φ for four different numbers of injected particles. We
find that the numerics confirm the quantitative calculations.
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Figure 7.13 – Number of transmitted particles at contact 1 as a function of the
total magnetic flux through the central depleted region. Symbols
correspond to numerical data for n̄ = 0.25 (blue squares), n̄ = 0.5
(yellow triangles), n̄ = 0.75 (green circles), n̄ = 1 (magenta dia-
monds). Full lines correspond to the analytical result Eq. (7.23) with
DA = DB = 0.5.

7.4.2 A comment on electron-electron interactions

A common difficulty encountered in time-dependent transport, which
was pointed out by Büttiker some years ago [36], is the crucial role of elec-
trostatics in restoring a gauge invariant, current conserving theory. Indeed,
in the non-interacting theory used here, the conservation equation for the
charge reads,

∂tρ(x, t) + ∂x I(x, t) = 0, (7.25)

where ρ(x, t) is the charge density and I(x, t) the local current. In presence
of time-dependent perturbations (such as the voltage pulse), the current is
not conserved and a finite charge density temporarily accumulates in the
system. An accumulation of charge costs however a tremendous amount of
electrostatic energy so that in real systems, this charge density is screened
by image charges in nearby gates. Those image charges result in a displace-
ment current Id = ∂tρ(x, t) flowing in those electrodes. Only once this dis-
placement current is taken into account does one recover current conserva-
tion. As a result of the presence of this time-dependent charge density, one
should, at the mean field level include the corresponding time-dependent
potential created by these charges into our time-dependent Schrödinger
equation. Let us make a couple of specific remarks for the situation studied
here. First, we study situations with a small number of injected particles n̄,
therefore one should be very careful with the mean field approach as one
wants to avoid spurious self interacting terms present at the Hartree level.
Second, all our calculations are done for a non-interacting model, and are
therefore a priori expected to be valid in presence of metallic gates in close
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proximity to the quantum wire. Third, while the displacement currents and
corresponding time-dependent potentials can modify the AC properties of
the system, the total transmitted charge nt shall not be affected by treating
explicitly the electrostatic problem. Indeed, the total number of transmit-
ted and reflected electrons are conserved and gauge invariant quantities
(in the sense defined by Büttiker [36]) and therefore do not suffer from the
flaws of their AC counterparts. In plainer words, the integral (over time)
of the displacement currents as well as the corresponding time-dependent
potentials is zero, therefore their presence do not modify nt. Finally, recent
experiments [42] with fast voltage pulses indicate that the non-interacting
theory works remarkably well for those systems. Note that beside these
aspects, the electrostatics remains crucial in the determination of the spatial
profile of the voltage drop created by the voltage pulse. In order to observe
the effects discussed in this chapter, one needs to be able to create spatially
localized voltage drops that can subsequently propagate inside the interfer-
ometer. The corresponding condition has been discussed in section 5.5.

7.5 generalization : the ac josephson effect without super-
conductivity

The concept of dynamical control of interference pattern developed in the
previous sections is very generic and applies beyond the physics of voltage
pulses. Here we extend the concept to the raising of a DC voltage in the
interferometers discussed above. We show that an oscillating signal is gen-
erated upon changing abruptly the bias voltage. The effect is analogous
to the AC Josephson effect in superconductors [23]; a DC voltage bias Vb
applied across a weak link between two superconductors creates an oscil-
lating current with frequency 2eVb/h. The mechanism behind this effect is
quite straightforward. The energy of the left superconductor is eVb higher
than the right one, so that its wave function gets an extra oscillating factor
e−i2eVbt/h̄. The junction produces an interference between these two wave
functions, hence the oscillations.

We begin with the electronic Mach-Zehnder interferometer in the quan-
tum Hall regime already described in the previous section and sketched in
Fig. 7.14(a). At t = 0 one raises the bias voltage applied on contact 0 from
V(t < 0) = 0 to V(t > τP) = Vb. While the exact manner in which the
voltage is raised is unimportant, the rise time τP must be sufficiently fast
(τP < τF), and the voltage drop spatially sharp enough (compared to the
length of the interferometer) as discussed in chapter 5. Fig. 7.14(b) shows
the transmitted current I1(t) as a function of time t, and we can discern
three distinct regimes. In the beginning (Fig. 7.14(a) left) the voltage bias
did not have enough time to propagate up to contact 1, and I1(t) = 0.
During a transient regime of duration τF (Fig. 7.14(a) middle), the bias has
arrived at contact 1 from the lower arm but not yet from the upper one.
The current increases to a finite value. Finally (Fig. 7.14(a) right), the bias
arrives from the upper arm and the current increases to its stationary value.
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Figure 7.14 – (a) Color plot of the local electronic charge density (measured from
equilibrium) in a 3 terminal Mach-Zehnder interferometer in the
quantum Hall regime: from vanishing density (yellow), to 1011 cm−2

(red). At t = 0, the voltage bias is raised from V(t < 0) = 0 to
Vb = 20h/(eτF). The three color plots correspond to three snapshots
for different times as indicated by the arrows. A two-dimensional
electron gas (yellow) is connected to three electrodes, the semi-
transparent quantum point contacts A and B act as beamsplitters.
Insets: schematics of the propagation of the voltage bias along the
two arms of the interferometer. (b) Transmitted current at contact 1.
Upper inset: schematic of the raising of the bias voltage. Lower inset:
zoom on the oscillations of the current.

The most noteworthy feature of Fig. 7.14(b) lies in the transient regime; the
current oscillates with frequency eVb/h around a DC component. This tran-
sient oscillatory regime is the mesoscopic analogue of the AC Josephson
effect. It is to the AC Josephson effect what persistent currents [2] are to
supercurrents.

The theory required to obtain this transient oscillatory regime is the same
as the one used in section 7.3.1. Within the time-dependent scattering ap-

107



proach, one finds that the wave function close to contact 0 is a plane wave
that acquires an additional phase when the bias voltage is raised,

Ψ0(x, t) =
1√
k

eikx−iEt/h̄−ieVbtθ(t−x/v)/h̄ (7.26)

where θ(x) is the Heaviside function, E is the incident energy of the elec-
tron, k the corresponding momentum, and the curved coordinate x follows
the edge of the sample. We have assumed for simplicity a linear dispersion
relation E(k) = h̄vk and the condition τP � τF. We see from Eq. (7.26) that
raising the voltage induces an oscillating phase difference eieVbt/h̄ between
the front and the rear of the wave. One can consider this phase difference
as the time-dependent extension of the stationary case that was discussed
in [40] and in the previous sections. The device uses the delay time τF
between the two arms to create an interference between the rear and the
front of the wave function, generating the oscillatory behavior. In the tran-
sient regime, the wave function close to contact 1 is the superposition of the
contributions from the two paths and one finds,

Ψ1(x, t) =
1√
k

eikx−iEt/h̄d1(t, E) (7.27)

with the total time-dependent transmission amplitude d1(t, E) given by,

d1(t, E) = du(E)e−iEτF/h̄ + dl(E + eVb)e−ieVbt/h̄. (7.28)

The amplitudes du/l for the upper/lower arm are given in terms of the
transmission (reflection) probabilities DA/B (RA/B) of the quantum point
contacts, du =

√
DADB and dl =

√
RARB. Using the time-dependent gener-

alization of the Landauer formula Eq. 4.1 in the continuous limit,

I1(t) = (e/h)
∫

dE|d1(t, E)|2 f (E) (7.29)

[ f (E) is the Fermi function, Eq. (7.29) includes the equilibrium current in-
jected from contact 0 which needs to be subtracted], we finally get the cur-
rent at contact 1 during the transient regime,

I1(t) =
e2Vb

h
DADB +

e
πτF

√
DADBRARB cos

(
eVbt

h̄
+ φ

)
. (7.30)

Eq. (7.30) agrees with the direct microscopic numerical calculations pre-
sented above. While the precise coefficients depend on the particular inter-
ferometer considered, its structure is totally general. It contains a DC term
plus an AC term at frequency eVb/h, and the amplitude of the AC current
is of the order of e/τF. For a typical micrometer sized Mach-Zehnder in-
terferometer, the amplitude of the AC current is of the order of a few nA.
Going back to our original Fabry-Perot device, Fig. 7.15 shows a sketch of
the Fabry-Perot geometry together with a numerical calculation of the mea-
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Figure 7.15 – Transmitted current (in units of e/τF, where τF is twice time of flight
between the two barriers) as a function of time for a Fabry-Perot
cavity. At t = 0, the voltage bias is raised from V(t < 0) = 0 to
Vb = 6h/(eτF). Upper inset: zoom on the oscillations of the cur-
rent on a plateau. Lower inset: schematic of the Fabry-Perot cavity
(Da = Db = 0.1).

sured current as a function of time (τF is now twice the time of flight to
allow for a direct comparison with the Mach-Zehnder case). The It(t) curve
now features many steps that correspond to the arrival of the path with
direct transmission (0), the path with one reflection on B and A (1), two
reflections (2) and so on, as discussed extensively in the previous sections.
Again, each of these steps is accompanied by oscillations at the frequency
eVb/h. On decreasing the transparencies of the barriers, DA and DB, the
Fabry-Perot resonances gradually become true bound states and the dura-
tion of the transient regime increases accordingly. This situation is very
close, mathematically, to the true Andreev bound states that occur in a
Josephson junction [13].

For an easier observation of the transient AC signal, it might be conve-
nient to replace the abrupt voltage change described above by a train of
square pulses (with a “slow” period ∼ τF). Such a train of pulses would
stabilize the AC signal and should permit its observation with current tech-
nology. Finally, it is worth mentioning that the electrical currents calculated
so far identify to the particle currents only, as we did not take the dis-
placement currents into account. While this is important when looking for
quantitative numerical values, it does not question the oscillatory behavior
discussed here.
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8
N U M E R I C A L S I M U L AT I O N S O F T I M E - R E S O LV E D
Q U A N T U M T R A N S P O RT I N T H E Q U A N T U M H A L L
E F F E C T R E G I M E

Electronic states in the quantum Hall regime—obtained for instance by
applying a strong magnetic field to a two-dimensional heterostructure—are
very peculiar; with a vanishing velocity in the bulk of the system, they
only propagate (in a chiral way) on the edges of the sample. Following
its initial discovery some thirty years ago [114], the quantum Hall effect is
now used for the metrological measurements of the quantum of conduc-
tance e2/h [115, 116] as well as a model system for mesoscopic physics, for
example electronic interferometers [16, 17, 18] such as the one simulated
in chapter 3. The corresponding transport properties can be understood
quantitatively using the Landauer-Büttiker scattering theory and the associ-
ated concept of one-dimensional chiral edge states [109]. These edge states
can take place on the actual edges of the sample—the mesa of the two-
dimensional electron gas—or can be defined by electrostatic gates put on
top of the device.

In this chapter we first introduce the standard prescriptions for numer-
ical simulations in the quantum Hall regime in section 8.1. We continue
with some additional requirements for the time-dependent transport in sec-
tion 8.2. These are mainly technical obstacles we dealt with during this
work, and we provide our solutions. The last section is devoted to a con-
ceptually intriguing proposal. Upon applying radio-frequency pulses on
the electrostatic gates of a device, we propose to stop an electron from an
initial voltage pulse (applied to an Ohmic contact) in the bulk of a two-
dimensional electron gas in the quantum Hall regime. The DC numerical
settings are known material, while all other sections are original work and
results.

We will consider throughout this chapter a two-dimensional electron gas
(2DEG) with perpendicular magnetic field ~B. Our Hamiltonian reads,

Ĥ(t) =
∫ ∫

dx dy ψ†(x, y)
(−ih̄∇− e~A)2

2m∗
ψ(x, y)+ ε(x, y, t)ψ†(x, y)ψ(x, y),

(8.1)

where the field operator ψ(x, y) [ψ†(x, y)] destroys (creates) an electron at
position (x, y), ε(x, y, t) is a time-dependent potential containing contribu-
tions from the mesa boundary, voltages applied at the Ohmic contacts and
the electric field due to possible gates. ~A = ∇× ~B is the vector potential,
m∗ is the effective mass of the system.
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8.1 quantum hall regime in discretized systems

We begin with the prescriptions to perform numerical DC simulations in
presence of magnetic field.

8.1.1 Magnetic field in numerical calculations

Let us suppose, for simplicity, that Eq. (8.1) does not contain any time-
dependent potential. The discretization of the model on a square lattice
with lattice parameter a yields,

Ĥ(t) = −γ ∑
〈i,j〉

e−iΦij c†
i cj +

N

∑
i=1

Vic†
i ci + h.c., (8.2)

where ci [c†
i ] destroys (creates) a particle on site i, N is the number of sites

inside the central region of the system, and 〈 〉 refers to nearest neighbor
coupling (with hopping amplitude γ = h̄2/(2m∗a2)). The magnetic field
is incorporated by means of the Peierls phase Φij = e/h̄

∫ ri
rj

~A · d~r. In the

Landau gauge ~A = Bxŷ, Φij reads,

Φij = 2πΦ(nyi − nyj)
nxi + nxj

2
, (8.3)

with Φ = Ba2/Φ0, where Φ0 = h/e is the flux quantum and (nxi , nyi) is the
position of site i on the lattice along x and y. Note that in the chosen gauge,
only the hoppings in the y-direction are modified. More remarkable is that
the Peierls phase depends on the y-coordinates of sites i and j only through
their difference. This is of importance for incorporating the magnetic field
into the leads. Indeed within the Landau gauge, the Hamiltonian matrix of
a vertical unit cell, Hm̄, as well as the coupling matrix Vm̄ (both defined in
section 3.2) do not depend on the layer, which allows for the calculation of
self-energies with standard techniques [95].

Introducing a magnetic field into the Schrödinger equation brings new
characteristic quantities to the problem. Table 8.1 relates the experimental
parameters to the discretized model. We shall see in the following how

Experimental parameter Discretized model

Magnetic field B ΦΦ0/a2

Cyclotron frequency ωc = eB/m∗ 4πΦγ/h̄
Magnetic length lB =

√
h̄/(eB) a/

√
2πΦ

Table 8.1 – Relation between experimental parameters and the discretized model
ones. We chose the electronic charge e = 1 in the discretized model
parameters.

to set these parameters to enter the quantum Hall effect regime. In order
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to ease the discussion, we pose h̄ = 1 and use dimensionless (arbitrarily
reduced) lengths such that the lattice parameter becomes ã and the magnetic
length l̃B = 1/

√
2πΦ.

8.1.2 DC settings for the quantum Hall effect regime

We consider a simple quasi one-dimensional ribbon with ã = 1 as a model
system for this discussion, see Fig. 8.1. The magnetic field is set via the

B

x~

y~

Figure 8.1 – Quasi one-dimensional system discretized with ã = 1 in presence
of a magnetic field B. The black dots and connections correspond to
the central region, and the red ones correspond to a few layers of the
semi-infinite leads.

previously defined phase Φ. The color plot in Fig 8.2(a) shows the trans-
mission of the ribbon as a function of energy and Φ. This fractal structure,
so-called Hofstadter butterfly [117], is due to the magnetic length becoming
smaller than the lattice constant. Indeed as we increase the magnetic field,
we decrease the magnetic length. When Φ > 0.1 (roughly) the discretiza-

ϕ 

E
 (
γ
)

Transmission k

(a) (b) (c)

E
 (
γ
)

E
 (
γ
)

Figure 8.2 – DC characterization of a quasi one-dimensional system in presence of
magnetic field. (a) Color map of the transmission as a function of the
number of flux quanta Φ and energy. (b) Energy as a function of the
transmission of the system. (c) Local band structure of the system. The
system is discretized with ã = 1. (b,c) Φ = 0.07.

tion is too coarse with respect to the magnetic length to properly render the
physical reality and one obtains numerical artifacts. Fig. 8.2(b,c) show the
transmission and the band structure for an intermediate value Φ = 0.07. At
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low energy we recover the quantization of the transmission corresponding
to the opening of Landau levels in Fig. 8.2(c).The bands are flat (disper-
sionless) only in the middle of the system (small wave vector k). They are
bended by the confining potential created by edges of the system. At higher
energy finite size effects again creates spurious effects as can be seen both
in the transmission and the band structure.

8.2 additional settings for time-dependent numerics

Time-dependent numerics differs from its DC counterpart as we are now
forced to integrate over a wide range of energies to compute observables
(see Eq. (4.25)). In addition, time-dependent perturbations, such as voltage
pulses, tend to excite energies above the Fermi level in a very badly defined
manner. As transport properties may vary greatly with energy, such as
velocity, spurious effects in numerical results are easily obtained.

8.2.1 Filtering slow propagating modes

We already addressed the integration over energy required by our wave
function approach in section 5.4. The filtering procedure we came up with
calls for a few comments.

— The slow modes and their effects are completely physical. The time-
dependent perturbation excites all energies below the Fermi level, it is
then normal to get contributions from the whole band.

— These effects disappear in the long time limit, where only the contri-
butions close to the Fermi level remain significant.

— As opposed to real experiments, we cannot simulate this infinitely
long-time limit. As a result the filtering operation is only a way to
simulate the relevant part of the full physical reality.

Here we show how to engineer the spatial shape of the filtering potential in
presence of magnetic field. We consider the same system as in the previous
section modeled by the Hamiltonian Eq. (8.1) where we add a few layers
between the left contact and the central region to apply an onsite potential
that only depends on the y-coordinate. We also include a Gaussian volt-
age pulse, V(t) = Vp exp(−4 log(2)t2/τ2

p), of amplitude Vp = 0.05γ and
duration τp = 10γ−1 sent through the system via the left contact. We work
in a regime where only the lowest Landau levels (LLL) contribute to the
transport properties. Fig. 8.3 shows the current density coming from the
left contact (see sketch in Fig. 8.1). Similarly to Fig. 5.7, Fig. 8.3(a) shows
that without filtering, contributions from the bottom of the band relax very
slowly. However our previous filter consisting of a step potential placed
after the voltage drop does not work anymore, as can be seen in Fig. 8.3(b).
This is due to the high density of slow propagating states which character-
izes the quantum Hall effect regime. We take this feature into account and
engineer a tunneling barrier as shown in the inset of Fig. 8.3(c). The color
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Figure 8.3 – Contribution I(E, t) of the bottom lead to the current I(t) as a function
of time and injected energy. We inject a Gaussian pulse in the quasi
1D system, V(t) = VPe−4log(2)t2/τ2

p , with amplitude VP = 0.05γ and
duration τp = 10γ−1. Red (blue) indicates values above (below) one.
(a) No filter is applied. (b) The filter is a step voltage (see inset). (c)
The filter is a localized barrier (see inset).

plot of Fig. 8.3 indicates that the central region was cleared from any slow
propagating states, resulting in a recovery of the numerical convergence.

8.2.2 Dealing with abrupt geometries

Building our time-dependent numerical scheme on top of a powerful DC
package, kwant [96], allows us to simulate two-dimensional systems of
any geometry very easily. We already showed an example with the Mach-
Zehnder interferometer in chapter 7. Here we show how a coarse, but
acceptable (i. e. ã < l̃B), discretization can lead to unexpected numerical
results by mixing the Landau levels. We consider a rectangular shaped
system where half a disk was cut out as sketched in Fig. 8.4(a). Since we
use a square lattice, the circling edge is rough with numerous steps as can be
seen in the inset (lattice parameter ã = 0.5). As previously, we initially work
in a regime where only the LLL participates in the electronic transport. The
color plot of Fig. 8.4(a) actually shows the electronic density dρ(x, y)/dV
upon applying a DC bias voltage V at the left (inner state) or right (outer
state) contact.

We set the Fermi energy (EF) slightly below the second LL as shown
in the band structure of Fig. 8.4(b), and apply a Gaussian voltage pulse,
V(t) = Vp exp(−4 log(2)t2/τ2

p), of amplitude Vp = 0.12γ and duration
τp = 50γ−1 on the left contact. Fig 8.5(a,b) show the deviation of the lo-
cal electronic density from equilibrium as a function of the curved coordi-
nate along the circle and time. We used two values of the discretization
parameter, ã = 1 [Fig. 8.5(a)] and ã = 0.5 [Fig. 8.5(b)]. While Fig. 8.5(b)
displays a seamless propagation similar to what could be obtained in a one-
dimensional quantum wire, Fig. 8.5(a) exhibits chaotic features. In order
to understand this behavior we need to combine both characteristics of the
discretization and the voltage pulse. The numerics were obtained for a re-
duced magnetic length l̃B = 1.5 (corresponding to Φ = 0.07). It implies
that ã = 1 yields a crude discretization and does not allow one to separate
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Figure 8.4 – Color map of dρ(x, y)/dV of the system showing the edge states at
the Fermi level as defined by the dashed line in (b). Inset: zoom on
the lattice, ã = 0.5. (b) Band structure of the system. The dashed
line is the Fermi level. The curved arrow starting from the state at
Fermi energy (red dot) indicates the energy of particles injected in the
device by means of a voltage pulse. The mixing of the Landau levels
is illustrated with two cases. Case A, the particle is transfered into the
second LL in a state with finite velocity. Case B, the particle ends up
in a state with vanishing velocity.

properly the edge states appearing at higher energy than EF on the circling
part of the system. Since at equilibrium only one edge state is available at
the Fermi energy (see the red dot in Fig. 8.4(b)), one could think that this is
not an issue. This is where the voltage pulse comes into play. Its role is to
transfer particles initially in the lead below EF inside the system at energies
above EF, on an energy scale given by max(Vp, h̄/τp) as indicated by the
ascending arrow in Fig. 8.4(b). The particles in the voltage pulse have now
enough energy to access the second LL, which implies acquiring a different
group velocity. This is illustrated by the horizontal arrows in Fig. 8.4(b). In
case A, the particle ends up in a state with a lower, but finite, velocity. This
is the origin of the second branch that grows around the curved coordinate
r = 20 in Fig. 8.5(a). In case B, the particle is transfered in a dispersionless
state (bottom of the second LL). This gives rise to the exotic charge fluctua-
tions shown in Fig. 8.5(a), and makes numerical convergence difficult. This
result is similar to what we obtained earlier when applying a voltage pulse
without filtering the slow propagating modes. The difference is that these
modes are now populated by the pulse propagation inside the system.

The mixing of Landau levels arises in our example only because of a bad
discretization (no disorder in our model). In order to remedy this issue it
appears obvious that one should use a smaller discretization with respect
to the magnetic length, as shown in Fig. 8.5(b). However this can lead to
a significant increase in the number of sites in the system (halve the lat-
tice parameter amounts to quadruple the number of sites), and eventually
limit our ability to simulate realistic devices. Another route can be followed
when considering the physics one wants to model. Indeed if one is only in-
terested in the physics of the LLL, one should use voltages variations much
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Figure 8.5 – Deviation of the local electronic charge from equilibrium as a function
of the curved coordinate~r along the inner circle of the system and time,
for a Gaussian voltage pulse of amplitude Vp = 0.12γ and duration
τp = 50γ−1. Square lattice parameter: (a) ã = 1, (b) ã = 0.5.

smaller than the cyclotron frequency (max(Vp, h̄/τp) � ωc for a voltage
pulse) to avoid any spurious cross-talk. It is worth mentioning though, that
it does not prevent one to have ã < l̃B.

We now turn to a concrete example of time-resolved simulation that goes
beyond the technical requirements exposed so far.

8.3 radio-frequency (rf) protocol for stopping voltage pulses

The field effect obtained by applying voltages on electrostatic gates put
on top of a device is very peculiar. Not only does it allow one to close
or open conducting paths (as in conventional field effect transistors), but it
also modifies the actual paths taken by the electrons or even partitions the
edge states into the superposition of two paths [16, 17].

Here we discuss a possibility allowed by the flexibility of the edge state in
the quantum Hall regime, namely the dynamical manipulation of the path
taken by the electron, using fast RF modification of the gate voltages. The
system is probed by sending charge pulses from an Ohmic contact. We will
show that these charge pulses can be dynamically manipulated with the
help of the gate voltages; they can be stopped, stored and their trajectories
switched dynamically.

8.3.1 Mechanism for stopping single electron pulses

We start with defining our “stopping” protocol and the associated phys-
ical mechanism. Fig. 8.6(a,b) shows the first (simulated) sample that we
consider. Our usual 2DEG under high magnetic field is connected to two
Ohmic contacts. We work again in a regime where only the LLL contribute
to the transport properties. As we concluded from the previous section, it
imposes that all variations of voltages are slow compared to the cyclotron
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Figure 8.6 – (a) Color maps of dρ(x, y)/dV of the system indicating the position
of the edge states at the Fermi level. A gate voltage Vg is applied to
the electrostatic gate (red dashed rectangle) and allows one to shift the
position of the edge states: Vg = V0 (left), Vg = 0 (right). (b) Band
structure of the system with polarized gate (Vg = V0: dashed red) and
with grounded gate (Vg = 0: blue line). The times t1 and t2 refer to the
stopping protocol described in Fig. 8.7

frequency. The upper contact is grounded while the lower one is used to
send voltage pulses through the system. A side gate, capacitively coupled
to the right-hand side of the system (dashed line) allows one to modify the
propagating edge states. When the gate voltage Vg = V0 the current prop-
agates through the middle of the sample [Fig. 8.6(a) left] while when the
gate is grounded, the current propagates on the right edge of the sample
[Fig. 8.6(a) right]. Fig. 8.6(a,b) are not simple schematics of the edge states
but correspond to the extra electronic density dρ(x, y)/dV that appears in
the 2DEG on imposing a DC bias voltage V at the lower contact.

The upper part of Fig. 8.7(a) shows our “stopping” protocol. At time t = 0
we send a voltage pulse V(t) through the lower contact in presence of a gate
voltage Vg = V0 [Fig. 8.6(a)]. We wait until the pulse has propagated up to
(roughly) one third of the sample and at time t1 we start decreasing the gate
voltage Vg. At time t2, Vg = 0 and the gate is grounded [Fig. 8.6(b)]. The
snapshots in Fig. 8.7(a) show that this protocol actually stops the propaga-
tion of the pulse which stays frozen in the system for t > t2. The mechanism
behind this behavior can be easily understood from an analysis of the eigen-
states of the system. We model our system with the Hamiltonian Eq. (8.1).
In the absence of RF pulses, and assuming that our system is invariant by
translation along the y-direction (which it is except close to the contacts but
this is irrelevant), the LLL [that diagonalize Eq. (8.1)] are localized along
the x-direction and the plane waves along the y-direction read,

Ψk(x, y) = e−(x−kl2
B)

2/2l2
B eiky. (8.4)

Fig. 8.6(b) shows the, numerically calculated, dispersion relations for Vg =
V0 (dashed red) and Vg = 0 (blue). In the absence of confining potential,
the LLL are degenerate with an energy E(k) = E0 (central part of the LLL
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Figure 8.7 – (a) Color map of the charge density at various times during the “stop-
ping” protocol. The gate is polarized for t < t1, and slowly grounded
between t1 and t2. At t2 the pulse is stopped. (b) Velocity v(t) of the
pulse as a function of time. Diamonds correspond to numerical data,
the full line to the analytical result.

in Fig. 8.6(b)). Consequently they are dispersionless with vanishing velocity
as vk = (1/h̄)∂E/∂k. The presence of a confining potential V(x) breaks this
degeneracy (bending of the bands in Fig. 8.6(b)). Assuming for the sake of
the argument that V(x) is smooth on the scale of lB, then the LLL remain
eigenstates of the Hamiltonian in presence of the confining potential and
their energy is simply raised by the value of V(x) at the center of the state,
E(k) = E0 + V(kl2

B). The corresponding LLL are propagating on the edges.
Let us now go back to the “stopping” protocol. After we have sent

the voltage pulse (0 < t < t1), the system is in a superposition of LLL
with energies close to the Fermi energy EF (we use V(t) � EF), Ψ(t) =

∑k akΨke−iE(k)t. At t > t1, we start changing the gate voltage Vg. Al-
though V(x, t) now depends on time, we should bear in mind that the
system remains invariant by translation along the y-direction at all times.
As a result the momentum k is a good quantum number and the linear
superposition of LLL is unmodified. The dispersion relation is now time-
dependent with E(k, t) = E0 +V(kl2

B, t) and the wave function reads, Ψ(t) =

∑k akΨke−i
∫ t

0 duE(k,u). In other words, the energy decreases at fixed momen-
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tum k, as indicated by the arrow in Fig. 8.6(b). In particular the velocity of
the pulse,

v(t) =
1
h̄

∂E(k, t)
∂k

∣∣∣∣
kF

, (8.5)

decreases until it vanishes at t = t2 where the pulse stops. This argument
does not depend on the speed at which the gate voltage is varied as long
as it is fast enough for the pulse not to escape the gated region before the
velocity vanishes. The quantum Hall effect therefore gives us a way to
modify the dispersion relation dynamically and trap particles in a region of
vanishing velocity.

8.3.2 Numerical results

We turn to direct numerical simulations of our RF protocol in order to
check the above argument. Equation (8.1) is discretized on a square lattice
according to the prescriptions of the above sections with a lattice param-
eter a = 13 nm. We consider a 2DEG made out of a GaAs/AlGaAs het-
erostructure with density ns = 1011 cm−2, corresponding to a Fermi energy
EF = 3.47 meV or equivalently to a Fermi wave length λF = 79 nm. A mag-
netic field B = 1.8 T is applied to the system yielding a magnetic length
lB = 19 nm and a cyclotron frequency h̄ωc = 3.1 meV (same set of param-
eters used for the Mach-Zehnder interferometer of section 7.4). We used a
realistic confining potential for the gate that corresponds to a drift velocity
v = 5× 104 m.s−1 but we did not actually solve the associated electrostatics.
In Fig. 8.7(a), a Gaussian pulse V(t) = Vp exp(−4 log(2)t2/τ2

p) of duration
τp = 2 ps and amplitude VP = 0.4 mV is sent through the system. Fig. 8.7(a)
actually shows the difference between two simulations performed with and
without the voltage pulse. Indeed, upon decreasing Vg, the system relaxes
to a new equilibrium (with electrons entering the system in order to fill
the formerly forbidden region). We discuss this aspect briefly towards the
end of the chapter. As expected, we find that the pulse is indeed stopped
for t > t2. More importantly, Fig. 8.7(b) shows a quantitative agreement
between the numerics and the analysis made above. The symbols show the
velocity of the pulse as measured from the time-dependent numerics (by
looking at the time evolution of the center of mass of the electronic density
carried by the pulse) while the line corresponds to Eq. (8.5).

Now that we have established the mechanism for stopping the pulse, we
proceed with a slightly different sample with 4 terminals and an additional
top gate, see Fig. 8.8. The first part of the protocol of Fig. 8.8 is the same
as previously. We sent a pulse at t = 0 (now the pulse is sent from the
lower left contact and the left gate is polarized) and stop it by gradually
grounding the left gate between t1 and t2. For t2 < t < t3 the voltage
pulse is stuck in the middle of the sample. After waiting for some time,
until t3, we do one of two things. Either we increase again the voltage of
the left gate (upper panels) in order to restart the pulse, or we increase the
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Figure 8.8 – Charge density color map for the “stop and release” protocol. The two
gates on each side of the system (red/blue dashed rectangles) control
the edge states (hence the direction of propagation of the pulse). The
left gate is polarized for t ≤ t1 and grounded for t ≥ t2. At t2, the
pulse is frozen. At t = t3 one of the two gates is polarized again,
which releases the pulse. Top: the left gate is polarized, the pulse
follows its original edge state and is collected in the top left electrode.
Bottom: the right gate is polarized, the pulse follows the right hand
side edge state and is collected in the bottom right electrode.

voltage of the other (right) gate (lower panels) which also restarts the pulse
but in a different direction. From a theoretical point of view, both cases are
very similar and are essentially the counter-part of the stopping protocol
(and can be analyzed accordingly). However, in practice they illustrate the
versatility of what could be accomplished with this dynamical modification
of the paths of the electrons. This RF protocol allows one to stop a charge
pulse, then store it for a while in a region with vanishing velocity, and
finally release it in a direction of our choice.

8.3.3 Mach-Zehnder analysis of the voltage pulse

We now turn to an analysis of the nature of the “stop and release” pro-
tocol. In the sample sketched in Fig. 8.9(a), we send a voltage pulse, stop
it with a gate (as previously), wait for some time τw, and release the pulse
(again, as previously). However, instead of directly collecting the current
in the electrode, it is sent through the electronic Mach-Zehnder interferom-
eter already used in section 7.4. Fig. 8.9(b) shows the difference between
the total number of electrons collected at electrodes 1 (n1) and 2 (n2) as a
function of the waiting time τw. The result is at first sight rather intrigu-
ing, n1 − n2 oscillates with τw as cos((EF − E0)τw). To understand this
behavior, one needs to remember that a voltage pulse is not simply a local-
ized charge pulse propagating in vacuum, indeed a delocalized plane wave
(LLL) Ψ ∝ eiky−iEt already exists before the pulse is sent. As one raises
the bias voltage V(t), the part of the wave at higher voltage starts accumu-
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Figure 8.9 – (a) Schematic of a Mach-Zehnder interferometer with a “stop and
release” gate. The blue line shows the two paths of the interferometer.
(b) Difference n1 − n2 between the transmitted charges into contacts
1 and 2 as a function of the waiting time of the pulse τw for EF =

3.47 meV (purple circles) and EF = 2.5 meV (yellow triangles). Lines
correspond to the fit n1 − n2 = a1 + a2 sin2([(EF − E0)/2]τw).

lating an extra phase φ(t) =
∫ t du eV(u)/h̄. Noting that φ(∞) = 2πn̄ (n̄:

number of injected particles) and supposing the voltage drop to be concen-
trated around y = 0, the wave function just after the pulse takes the form
Ψ ∝ eiky−i2πn̄θ(−y) where θ(y) is the Heaviside function. The kink in the
phase of the wave function and the associated propagating phase domain
wall were extensively discussed in chapter 7. The 2πn̄ phase difference be-
tween the front and the rear of the pulse causes oscillations of n1 − n2 with
n̄ owing to the “dynamical control of interference pattern”. We now come
back to our “stop and release” protocol (ignoring the presence of the volt-
age pulse). We suppose that the part of the edge state which is affected by
the gate corresponds to y ∈ [0, L] (using curved coordinates that follow the
edge state). Before t1, we have a plane wave Ψ ∝ eiky−iEt. After t2, the inner
part for y ∈ [0, L] oscillates as eiky−iE0t while the rest of the wave, unaffected
by the gate, still oscillates as eiky−iEt as sketched in Fig. 8.10. Therefore, after
the waiting time τw, a phase difference 2πn̄w = (E− E0)τw has been accu-
mulated between the inner part and the outer one. When one releases the
pulse again at time t3, the wave function reads Ψ ∝ eiky+i2πn̄wθ(y)θ(L−y). In
other words, the “stop and release” procedure is equivalent to introducing
two voltage pulses in series separated by a distance L, one effective pulse
of n̄w electrons followed by a counter-pulse of −n̄w electrons. The oscil-
lation shown in Fig. 8.9(b) simply follows from the dynamical control of
interference pattern of chapter 7 applied to this series of two pulses.
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Figure 8.10 – Wave function of the system for t2 < t < t3. The (full and dashed)
blue line shows the edge state and the red dashed rectangle is the
top gate. The red dot corresponds to the voltage pulse containing
n̄ particles, and the blue dots correspond to the effective pulses cre-
ated by the stopping protocol and containing n̄w = (EF − E0)τw/(2π)

particles.

8.3.4 Effect of the disorder on the “stop and release” protocol

We present some additional data on the effect of static disorder on the
“stop and release” protocol described above. In the presence of a disorder
potential, the bulk states of the LLL are no longer dispersionless but form
localized states whose typical extension is the correlation length of the dis-
order potential. The argument given for the mechanism of the “stop and re-
lease” protocol (the energy decreases at fixed momentum k) applies equally
well to these localized states with one difference. After being “stopped”,
the voltage pulse will locally follow the small circular trajectories defined
by the equi-potential of the disorder potential (instead of being fully frozen).
Fig. 8.11 shows the same “stop and release” protocol as Fig. 8.8 in presence
of a finite disorder (modeled by a white random potential) corresponding
to a mobility µ = 3× 106 cm2.V−1.s−1 (a typical value for a high mobility
GaAs/GaAlAs heterostructure). One finds that the “stop and release” pro-
tocol works as discussed above. The efficiency of the protocol is 100% for
the stopping part and 80% for the releasing part (i.e. only 80% of what is
injected eventually arrives at the expected contact) which we attribute to
the fact that the localized states only partially overlap with the region un-
derneath the gate and partly with the rest of the sample that is not covered
by the gate. When the releasing RF pulse is applied, it weakly affects the
charge that has spread in the uncovered region.

Fig. 8.12 shows the total efficiency of the protocol as a function of the
mobility. Except for the very disordered case where even the DC quan-
tum Hall effect is affected by disorder (for the rather small sample used in
the simulations), the stopping protocol always works. The releasing part is
more sensitive to disorder. For mobilities above 10× 106 cm2.V−1.s−1, dis-
order plays no role, while 3× 106 cm2.V−1.s−1 is enough for the protocol
to work with good probability. Below 106 cm2.V−1.s−1, the 2DEG is not
clean enough for the procedure to be operational. Let us recall that the
current state of the art for high mobility two-dimensional electron gas lies
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Figure 8.11 – Stop and release protocol in presence of disorder. The setting is iden-
tical to Fig. 8.8 of the main manuscript except that a white disorder
was added corresponding to a finite mobility of 3× 106 cm2.V−1.s−1

around 30× 106 cm2.V−1.s−1 while the value 3× 106 cm2.V−1.s−1 is rather
common [118].

8.3.5 A comment on charge relaxation

We now discuss what happens in the “stopping” protocol when one does
not send any voltage pulse in the system. Unfortunately we shall not enter
into any detail of the relaxation of the charge below the gate as our model
is not adapted to its description. We suppose, for the sake of the argument,
that the gate is grounded very abruptly (t2 = t1). Just after t2 the former
edge state is frozen as discussed extensively above. On the other hand, a
new one (which was at very high energy before t2) now appears on the edge
of the mesa. This edge state is initially empty and gets gradually filled as
electrons pour in from the electrode. In our non-interacting model, only
the propagating modes get filled in, leaving an empty puddle in the region
of the 2DEG where the velocity vanishes (most of the area under the gate).
This is of course unphysical as it raises the electrostatic energy of the sys-
tem. As the new edge state is filled, the corresponding charges create a
local electric field; the neighboring edge states become dispersive, and start
to get filled as well. This process continues until all the LLL below the gate
are filled and the system has relaxed to its equilibrium. This relaxation pro-
cess should be very slow as the whole area underneath the gate needs to be
filled while the electrons can only be poured in through one-dimensional
edge states. A proper treatment of this physics would require solving the
Poisson equation self-consistently with quantum mechanics. It would allow
one to describe the charge relaxation using the compressible and incom-
pressible regions discussed in [119]. We expect however that the (current
carrying) compressible stripes behave essentially in the same way as the
edge states of the non-interacting theory used in this thesis. Combining a
Poisson equation solver with our wave function approach is the next step
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Figure 8.12 – Efficiency of the “stop and release” protocol as a function of the
strength of the disorder. The plot shows nt/n̄ (the number of trans-
mitted particles nt in the top left contact divided by the number of in-
jected particles n̄ in the lower left contact) as a function of the mobility
µ. Different symbols correspond to different disorder configurations.

beyond this thesis work to simulate these phenomena. In any case, perform-
ing the difference between two simulations (with and without charge pulse)
allows us to disentangle the pulse physics (of interest here) from the charge
relaxation (poorly described by our model). A similar protocol should be
followed experimentally.

Similarly to the dynamical control of interference of chapter 7, the prac-
tical implementation of the proposals presented here imply delicate exper-
iments where one injects high frequency pulses in a dilution fridge setup.
The measurement scheme however should not be too difficult as, by peri-
odically repeating the pulse sequences, measuring the number of electrons
received in one electrode amounts to measuring DC currents.
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9
C O N C L U S I O N ( E N G L I S H )

High frequency experiments that are starting to be realized at low temper-
ature and the possibility to manipulate single electron states are the motiva-
tions of this work. The objectives were to establish a theoretical framework
capable of describing these experiments and to propose new concepts. At
the end of these pages we can appraise our contribution to time-dependent
quantum transport at different levels: formalism, numerical algorithm, ex-
perimental concepts.

Let us start with the foundation of it all, the mathematical framework. We
began this work like everyone else did before us in this field, i. e. fighting
with the NEGF formalism. It is only after we rewrote the main Green’s
functions in terms of a more tractable wave function that we were able to
advance our understanding of the whole problem. The energy–time repre-
sentation of our wave function approach seems now natural to describe the
time-dependent transport. Upon applying a time-dependent perturbation
to a system, one searches for its effects in time on the propagating states
taken at an initial energy E. The choice of these original states is only a
matter of boundary conditions. For instance, in the scattering theory one
fixes spatial boundary conditions valid at all times, while in the partition-
free approach one specifies an initial condition at time t < 0 in the entire
system. Our final contribution related to the formalism focused on volt-
age pulses in multiterminal systems. We generalized the Landauer-Büttiker
formula to the number of particles transmitted between the contacts. We
showed that the latter quantity was particularly relevant in time-dependent
quantum transport as it is conserved and gauge invariant.

Based on our formalism we made progress on the numerical aspects of
time-dependent quantum transport. We started with an integro-differential
equation (Retarded Green’s function) and a double integral (Lesser Green’s
function) on matrices, and ended up with a simple differential equation
and a single integral over energy for wave functions. The best algorithm we
proposed scales now linearly with the simulated time and the volume of
the system. Because of this breakthrough we were able to simulate a system
with 105 sites, which is a thousand times better than the state of the art. This is
where we actually benefited from the kwant software package developed
in the lab. Building our wave function approach on top of a readily usable
and powerful DC code saved us an incredible amount of time.

Combining our analytical and numerical work we investigated the physics
of voltage pulses in various situations going beyond the seminal work of
Levitov et al. [110, 40, 41]. We first investigated the propagation and spread-
ing of a charge pulse. On the one hand, we found that the propagation of
a pulse is accompanied by oscillations that spread diffusively; on the other
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hand the envelope of the charge pulse spreads linearly with time. While
we understood that a pulse generates excitations with energies of the or-
der of max(Vp, h̄/τp), we distinguished between a classical and a quantum
spreading. We then focused on the quantum regime in systems possessing
a characteristic time scale smaller than the Fermi energy (or the bandwidth
of the model). We found that a voltage pulse should be thought of as a
phase domain wall propagating ballistically and modifying the phase of the
stationary states already present in the system. The dynamical modification of
interference was first shown for voltage pulses in a Fabry-Perot cavity as well
as in a Mach-Zehnder interferometer. The concept was further generalized
to the raising of a DC bias in the aforementioned interferometers. We found
that upon raising a voltage bias to a finite value Vb, there exists a universal
transient regime where the current oscillates at frequency eVb/h in analogy
to the AC Josephson effect. It is worth noticing that the control of interfer-
ence shown here is very generic and could be applied to Andreev resonant
states which form on the boundary of superconductors, or to the oscillatory
magnetic exchange interaction in magnetic multilayers. Finally, we used
the quantum Hall regime to manipulate single electrons in a conceptually
new approach. By using time-dependent gate voltages, we proposed to stop,
store and release a charge pulse.

Fast quantum electronics is still an emerging field experimentally and,
one might even say, theoretically. We have shown very intriguing and, in
some extent, counter intuitive effects even in the simplest system. This gives
a glimpse of the conceptually new physics that is about to emerge. We shall
now end this manuscript with some perspectives of future work. In the
light of our understanding of voltage pulses, we may consider calculating
the noise associated with their excitations. In particular, we could come
back to the noiseless property of excitations created by a Lorentzian voltage
pulse [40, 42]. What does make these pulses so special? What would be
the result of a slower pulse? Is it even related to the speed of the pulse?
Our numerical approach together with analytical calculations might help
answering these questions. A second perspective is to improve our numer-
ical simulations where the Hamiltonian would depend on some arbitrary
operator in addition of the usual time as Ĥ(t, Ô(t)). This allows us to in-
corporate electron–electron interactions at the mean field level (solving the
Poisson equation and our wave function self-consistently). It might seem
as a wishful thinking only designed to please the referees of our publica-
tions. However it would open the way to a wealth of new simulations like
electron–electron collision, and Coulomb drag to name a few.
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10
C O N C L U S I O N ( F R A N Ç A I S )

Des expériences à hautes fréquences commencent à être réalisées à basse
température. Ces travaux sont motivés par la possibilité de manipuler des
électrons uniques. Les objectifs de ce travail de thèse étaient d’établir un
cadre pour traiter ces expériences et proposer de nouveaux concepts. Au
bout de ces pages nous pouvons évaluer notre contribution au transport
quantique dépendent du temps suivant différents aspects : le formalisme,
les algorithmes numériques, les concepts expérimentaux.

Commençons par la base la plus essentielle, le formalisme mathématique.
Nous avons débuté ce travail comme de nombreux autres thésards avant
nous dans ce domaine, c’est-à-dire en se battant avec le formalisme NEGF.
Ce n’est qu’après avoir réécrit les fonctions de Green principales en ter-
mes d’une fonction d’onde bien plus maniable, que nous avons pu faire
avancer notre compréhension du problème dans sa globalité. La représen-
tation énergie–temps de notre approche semble maintenant naturelle pour
décrire le transport dépendent du temps. Dorénavant lorsqu’on applique
une perturbation dépendente du temps à un système, on cherche ses effets
en temps sur les états pris à l’énergie E qui se propagent. De plus, nous
avons vu que le choix de ces états initiaux n’est qu’une question de con-
ditions de bord. Par exemple, dans la théorie de scattering on fixe des
conditions au bord dans l’espace et valables à tout temps, alors que dans
l’approche dite “partition-free” on spécifie une condition initiale pour t < 0
pour l’ensemble du système. Notre contribution finale au formalisme porte
sur les pulses de tension dans des systèmes multiterminaux. Nous avons
généralisé la formule de Landauer pour le nombre de particules transmises
entre les contacts. Nous avons montré que cette quantité est particulière-
ment pertinente dans le cadre du transport dépendent du temps de par sa
conservation et son invariance de jauge.

En s’appuyant sur notre formalisme nous avons fait progresser les aspects
numériques du transport dépendent du temps. Nous sommes partis d’une
équation intégro-différentielle (fonction de Green Retardée) et d’une double
intégrale (fonction de Green Lesser), pour arriver à une simple équation dif-
férentielle et une intégrale sur l’énergie pour des fonctions d’onde. Notre
meilleur algorithme peut maintenant être amélioré pour donner un temps
de calcul évoluant linéairement avec le temps simulé et le volume du sys-
tème. Grâce à ce progrès nous avons simulé un système contenant plus
de 105 sites, ce qui est 1000 fois mieux que l’état de l’art. C’est ici que nous
avons bénéficié du programme kwant développé au laboratoire. Dévelop-
per notre approche par fonction d’onde au-dessus d’un code DC puissant
et prêt à l’emploi a été une source de gain de temps considérable.
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En combinant nos méthodes analytiques et numériques, nous avons en-
suite étudié la physique des pulses de tension dans des situations diverses
au-delà des travaux fondateurs de Levitov et al. [110, 40, 41]. Nous avons
d’abord étudié la propagation et l’étalement à une dimension d’un pulse de
charges. Nous avons trouvé que la propagation du pulse est accompagnée
d’oscillations de la densité de charge et du courant qui s’étalent de façon dif-
fusive. Puis dans un deuxième temps nous avons remarqué que l’enveloppe
de la densité de charge s’étale linéairement avec le temps. Nous avons alors
trouvé que ce dernier étalement se composait de deux régimes, classique et
quantique, séparés par le nombre de particules contenues dans le pulse de
tension initial. Nous nous sommes ensuite concentrés sur le régime quan-
tique (nombre de particules injectées de l’ordre de un) dans des systèmes
possédant un temps caractéristique plus petit que l’énergie de Fermi (ou
que la bande passante du modèle). Nous avons compris qu’un pulse de
tension devait être vu comme une paroi de domaine de phase qui se propage
ballistiquement et modifie localement la phase des états stationnaires déjà
présents dans le système. La modification dynamique du motif d’interférence
a d’abord été montrée dans une cavité Fabry-Perot puis dans un inter-
féromètre de Mach-Zehnder. Nous avons enuite généralisé le concept à
la montée d’une tension DC dans les interféromètres cités. Nous avons
trouvé que monter une tension continue Vb donnait lieu à un régime transi-
toire universel où le courant oscille à la fréquence eVb/h en complète analo-
gie avec l’effet Josephson AC. Il est à noter que le contrôle d’interférence
présenté ici est très générique et pourrait s’appliquer aux états d’Andreev
résonants qui se forment à l’interface de jonctions supraconductrices, ou
encore à l’interaction d’échange dans des multicouches magnétiques. Enfin,
nous avons utilisé l’effet Hall quantique pour manipuler des électrons dans
une approche conceptuellement nouvelle. En utilisant des tensions de grille
dépendentes du temps, nous avons proposé de stopper, stocker et relâcher un
pulse de charge.

L’électronique quantique rapide est toujours un domaine naissant expéri-
mentallement et, dans une certaine mesure, aussi du point de vu théorique.
Nous avons donné des résultats souvent intrigants, et parfois contre intu-
itifs même dans le cas de systèmes simples. Cela donne donc un aperçu
de la physique nouvelle qui est en train d’émerger. Nous terminons avec
quelques perspectives. A la lumière de notre compréhension des pulses
de tension, on peut maintenant considérer calculer le bruit associé aux ex-
citations qu’ils créent. En particulier, on pourrait revenir aux propriétés
spéciales prêtées aux pulses Lorentziens [40, 42]. Que rend ces pulses si
spéciaux ? Que donnerait un pulse plus lent ? L’absence d’excitation de
trou est-elle liée à la vitesse de montée du pulse ? Notre combinaison de
méthodes analytiques et numériques semble aujourd’hui bien adaptée pour
traiter ce problème. Une seconde perspective est d’améliorer notre outil
de simulation numérique pour traiter un Hamiltonien dépendent d’une ob-
servable Ĥ(t, Ô(t)). Cela permettrait d’incorporer les interactions électrons–
électrons au niveau du champ moyen (en résolvant l’équation de Poisson
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de façon auto-consistente). On pourrait croire ici à un voeu pieux n’ayant
pour but que de satisfaire les referees de nos publications. Cependant une
telle implémentation ouvrirait la voie à de nouvelles simulations telles que
les collisions électrons–électrons ou le Coulomb drag.
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Part V

A P P E N D I X





A
D Y S O N E Q U AT I O N F O R T H E R E TA R D E D A N D L E S S E R
G R E E N ’ S F U N C T I O N S

We provide here the derivation of the Dyson equation for the Retarded
(Eq. (3.17)) and Lesser (Eq. (3.21)) Green’s functions. For more clarity we
introduce a compact notation for the convolution product. Be A and B two
time-dependent functions, the convolution product C reads,

C(t, t′) =
∫

duA(t, u)B(u, t′) = A ∗ B (A.1)

We start from the Dyson equation of the Green’s function matrix Ĝ, Eq. (3.16),

Ĝ(t, t′) = ĝ +
∫

du ĝ(t, u)H
′
(u)σzĜ(u, t′). (A.2)

The diagonal and off-diagonal parts respectively yields,

G< + GR = g< + gR + (g< + gR) ∗H
′ ∗ (G< + GR)− g< ∗H

′ ∗ G>
(A.3)

G< = g< + gR ∗H
′ ∗ G< + g< ∗H

′ ∗ GA (A.4)

where GA(t, t′) = [GR(t′, t)]† is the Advanced Green’s function. We dropped
the time arguments for convenience and we will continue to do so unless
there is any ambiguity. We shall now focus on the Dyson equations for the
projections of the Green’s functions on the central region GR and G<.

Subtracting Eq. (A.3) and Eq. (A.4), we obtain,

GR = gR + gR ∗H
′ ∗ GR + g< ∗H

′ ∗
(
[GR − GA]− [G> − G<]

)
(A.5)

which reduces to

GR = gR + gR ∗H
′ ∗ GR, (A.6)

upon using the identity [GR − GA] = [G> − G<] resulting from the defini-
tions of all the Green’s functions aforementioned. Eq. (A.6) is the Dyson
equation for the Retarded Green’s function of the whole system (central
region and leads). Projecting this result on the central region 0̄ yields,

GR
0̄0̄ = gR

0̄ + gR
0̄ ∗H

′
0̄0̄ ∗ G

R
0̄0̄ +

M̄

∑̄
m=1

gR
0̄ ∗H

′
0̄m̄ ∗ G

R
m̄0̄, (A.7)

with

GR
m̄0̄ = gR

m̄ ∗H
′
m̄0̄ ∗ G

R
0̄0̄. (A.8)
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Subtituting GR
m̄0̄ in Eq. (A.7) by Eq. (A.8) yields,

GR
0̄0̄ = gR

0̄ + gR
0̄ ∗
[

H
′
0̄0̄ +

M̄

∑̄
m=1

H
′
0̄m̄ ∗ gR

m̄ ∗H
′
m̄0̄

]
∗ GR

0̄0̄, (A.9)

where we identify the Retarded self-energy in the second term of the bracket.
A more compact form reads,

GR = gR
0̄ + gR

0̄ ∗
[
H
′
0̄0̄ + ΣR

]
∗ GR, (A.10)

which concludes the derivation of Eq. (3.17).
Following the exact same steps for the derivation of Eq. (A.4) yields,

G< = g<0̄ + gR
0̄ ∗
[
H
′
0̄0̄ + ΣR

]
∗G< + gR

0̄ ∗Σ< ∗GA + g<0̄ ∗
[
H
′
0̄0̄ + ΣA

]
∗GA

(A.11)

We apply [i∂t −H0
0̄0̄] on the left side of Eq. (A.11) and obtain,[

i∂t −H0
0̄0̄ −H

′
0̄0̄ − ΣR

]
∗ G< = Σ< ∗ GA, (A.12)

where we used the identities,

i∂tgR
0̄ (t, t′)−H0

0̄0̄gR
0̄ (t, t′) = δ(t− t′) (A.13)

i∂tg<0̄ (t, t′)−H0
0̄0̄g<0̄ (t, t′) = 0 (A.14)

as can be shown from the definitions of gR
0̄ and g<0̄ . Now inserting the

equation of motion for GR (Eq. (3.20)) as an additional convolution product
to the right-hand side of Eq. (A.12). We finally obtain the Dyson equation
for the Lesser Green’s function on the central region 0̄

G< = GR ∗ Σ< ∗ GA. (A.15)
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B
VA R I O U S A N A LY T I C A L R E S U LT S F O R G R E E N ’ S
F U N C T I O N S O F T H E 1 D C H A I N

We gather here a few analytical results for the 1d chain that were used
to benchmark the numerical results shown in this thesis. Given an analytic
function f our convention for Fourier transforms is

f (t) =
∫ dE

2π
f (E)e−iEt (B.1)

f (E) =
∫

dt f (t)eiEt (B.2)

The expressions below correspond to the Hamiltonian Eq. (5.1) for the per-
fect one dimensional chain (εi = 0). The Lesser Green’s functions were
computed at zero temperature with EF = 0. Energies are written in units of
the hopping parameter γ, and times are in units of γ−1.

We begin with self-energies in energy for a semi-infinite lead,

ΣR(E) =


E
2 − i

√
1− (E

2 )
2 if |E| ≤ 2

E
2 −

√
(E

2 )
2 − 1 if E > 2

E
2 +

√
(E

2 )
2 − 1 if E < −2

(B.3)

Σ<(E) =

 2i
√

1− (E
2 )

2 if − 2 ≤ E ≤ EF

0 else
(B.4)

The corresponding Fourier transforms in time yields,

ΣR(t) = −i
J1(2t)

t
θ(t) (B.5)

Σ<(t) = i
J1(2t)

2t
− H1(2t)

2t
(B.6)

where Jn is the Bessel function of the first kind, and Hn is the Struve function
of order n.

We also computed Green’s functions for the infinite 1D chain at equilib-
rium. The diagonal elements of the Retarded and Lesser Green’s functions
in energy read,

GR
xx(E) =


1

2i
√

1−( E
2 )

2
if |E| ≤ 2

1
2
√

( E
2 )

2−1
if E > 2

1
−2
√

( E
2 )

2−1
if E < −2

(B.7)

G<
xx(E) =


i√

1−( E
2 )

2
if − 2 ≤ E ≤ EF

0 else
(B.8)
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and their counterparts in the time domain,

GR
xx(t) = −i J0(2t)θ(t) (B.9)

G<
xx(t) =

i
2

J0(2t)− H0(2t)
2

(B.10)

The off diagonal element G<
x,x+1 in energy and time domains read,

G<
x,x+1(E) =


iE/2√
1−( E

2 )
2

if − 2 ≤ E ≤ EF

0 else
(B.11)

G<
x,x+1(t) =

J1(2t)
2
− i

2
H−1(2t). (B.12)
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With the recent technical progress, single electron sources have moved from the-
ory to the lab. Conceptually new types of experiments where one probes directly
the internal quantum dynamics of the devices are within grasp. In this thesis we
develop the analytical and numerical tools for handling such situations. The simu-
lations require appropriate spatial resolution for the systems, and simulated times
long enough so that one can probe their internal characteristic times. So far the
standard theoretical approach used to treat such problems numerically—known as
Keldysh or NEGF (Non Equilibrium Green’s Functions) formalism—has not been
very successful mainly because of a prohibitive computational cost. We propose a
reformulation of the NEGF technique in terms of the electronic wave functions of
the system in an energy–time representation. The numerical algorithm we obtain
scales now linearly with the simulated time and the volume of the system, and
makes simulation of systems with 105 − 106 atoms/sites feasible. We leverage this
tool to propose new intriguing effects and experiments. In particular we introduce
the concept of dynamical modification of interference pattern of a quantum sys-
tem. For instance, we show that when raising a DC voltage V to an electronic
interferometer, the transient current response oscillates as cos(eVt/h̄). We expect
a wealth of new effects when nanoelectronic circuits are probed fast enough. The
tools and concepts developed in this work shall play a key role in the analysis and
proposal of upcoming experiments.

Keywords: quantum transport, time-dependent, numerics, interference

Grâce aux progrès techniques récents, les sources d’électrons uniques sont passées
de la théorie au laboratoire. Des expériences conceptuellement nouvelles où l’on
sonde directement la dynamique quantique interne des systèmes sont désormais
possibles. Dans cette thèse nous développons les outils analytiques et numériques
pour analyser et comprendre ces problèmes. Les simulations requièrent une résolu-
tion spatiale appropriée pour les systèmes, et des temps simulés suffisament longs
pour sonder leurs temps caractéristiques. Jusqu’à présent l’approche théorique
standard utilisée pour traiter de tels problèmes numériquement—connue sous
les dénominations de formalisme Keldysh ou NEGF (Fonctions de Green Hors
Equilibre)—n’a pas été très fructueuse, principalement à cause du coût en temps
de calcul prohibitif. Nous proposons une reformulation de cette technique sous
la forme des fonctions d’onde électroniques du système dans une représentation
énergie–temps. Le coût de calcul de notre algorithme numérique est maintenant
linéaire avec le temps simulé et le volume du système, rendant possible la simu-
lation de système contenant 105 − 106 atomes/sites. Nous utilisons cet outil pour
proposer de nouveaux effets intrigants ainsi que des expériences. Nous intro-
duisons la modification dynamique du motif d’interférence d’un système quan-
tique. Nous montrons, par exemple, que la montée d’une tension DC V sur
un interféromètre électronique produit un régime transitoire où le courant oscille
comme cos(eVt/h̄). Nous prévoyons une grande variété d’effets nouveaux lorsque
les circuits de nanoélectronique sont sondés très rapidement. Les outils et concepts
développés dans cette thèse auront un rôle clé dans l’analyse et les propositions
des expériences à venir.

Mots-clés : transport quantique, dynamique, numérique, interférence
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