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Nomenclature

In general, symbols are used according to the following conventions: scalars are represented by italics like {a, b, c}; vectors by bold-italic lowercase letters like {u, x, y}; matrices by bold-italic capital letters like {A, B, C}; and sets are denoted by calligraphic letters like {D, G, S}. For the sake of notation simplicity, the time dependence of signals is sometimes omitted when there are no confusions. Lie's bracket of two elements P > 0 (P < 0) means that P is a real symmetric and positive (negative) definite matrix Λ(A) set of all the eigenvalues of a square matrix A " * " element induced by symmetry in a symmetric block matrix 

Symbols and Variables

Résumé en Français

Les travaux de recherche traités dans cette thèse s'appuient sur l'expertise des actions menées entre l'Agence spatiale européenne (ESA), l'industrie française Thales Alenia Space (TAS) et le laboratoire de l'Intégration du matériau au système (IMS) qui vise à développer de nouvelles générations d'unités intégrées de guidage, navigation et pilotage (GNC) avec une fonction de détection des défauts et de tolérance des défauts.

Beaucoup de futures missions spatiales requerront des opérations de proximité autonomes dans lesquelles la détection des défauts, la localisation et les mesures de tolérance des défauts qui en découlent, sont d'une importance cruciale. Les missions de rendez-vous et d'amarrage/capture, comme pour la mission Mars Sample Return (MSR) et le Project for On-Board Autonomy No.3 (PROBA 3) sont aussi intrinsèquement liés aux conditions de fonctionnement et à la sécurité des engins spatiaux. Les rendez-vous autonomes et les tolérances de défauts ont été reconnus par l'ESA comme un élément clé des futures missions dans l'espace lointain, ce qui nécessitera un système GNC hautement sophistiqué.

Cette thèse porte sur la conception et la validation d'un système de commande à tolérance de défaut actif pour détecter, isoler et s'adapter à un défaut de tuyère qui affecte un vaisseau spatial chasseur lors d'un rendez-vous avec un vaisseau spatial cible passif sur une orbite circulaire. La mission de référence retenue dans cette thèse est la mission MSR de l'ESA. La mission MSR se compose de deux modules (engins spatiaux) injectés directement vers Mars par des lanceurs. Le premier module pénètre dans l'atmosphère martienne (phase d'entrée), atterrit sur la surface de Mars et libère un véhicule astromobile sur Mars. Une fois que le véhicule astromobile termine la procédure de collecte des échantillons martiens, ces derniers sont ensuite placés dans un conteneur d'échantillons et chargés sur un véhicule de montée sur Mars (MAV) qui est ensuite lancé, au moyen de fusées, pour atteindre l'orbite basse de Mars. Entretemps, le second module, composé de l'orbiteur MSR et de la capsule de rentrée sur Terre (ERC), s'insère directement autour de Mars, et le véhicule chasseur attrape la cible (capture des échantillons en orbite libéré par MAV), et enfin revient sur Terre éjecter les échantillons dans l'atmosphère de la Terre avec la capsule de rentrée sur Terre (ERC). La problématique abordée dans cette thèse se concentre sur la séquence terminale du rendez-vous de la mission MSR qui correspond aux dernières centaines de mètres jusqu'à la capture.

Le véhicule chasseur est l'orbiteur MSR (chasseur), alors que la cible passive est un conteneur sphérique. Pendant le rendez-vous terminal, le contrôle de l'attitude et la position du chasseur est continue, et rectifié par les tuyères. L'attitude est contrôlée afin de maintenir le conteneur d'échantillon (cible) dans le champ de vue du capteur LIDAR (Light Detection and Ranging).
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Résumé en Français

La position est contrôlée afin de se rapprocher de l'objectif le long de son axe de vitesse. Ensuite, juste avant la capture, le guidage est modifié afin d'aligner le mécanisme de capture avec la cible. Au niveau du capteur, le vaisseau spatial chasseur utilise un IMU (Inertial Measurement Units) et un viseur d'étoiles (DOS) pour le contrôle d'attitude et d'un LIDAR pour le contrôle de position et de capture. L'ensemble des capteurs et des vérins pendant le rendez-vous terminal est minimisé pour réduire le risque de défaillance et pour réduire la masse et la consommation d'énergie.

Les conditions de capture sont commandées par le mécanisme de capture. Le mécanisme de capture est un panier avec une ouverture cylindrique qui fait partie du système de manipulation d'échantillons (SHS). Il est orienté selon l'axe des x de l'orbiteur et situé avec un décalage latéral sur la face +x. L'objectif au niveau de contrôle est de réaliser la capture avec une précision inférieure à quelques centimètres.

La phase terminale du rendez-vous est très critique, car toute défaillance pourrait éventuellement conduire à une collision, et à un échec de la mission. Il est évident, que si, par exemple, une défaillance ouvrant entièrement une tuyère se produit (une tuyère coincée en position entièrement ouverte), elle pourrait conduire à une augmentation drastique de la consommation de gaz du propulseur qui est déjà très limitée par le voyage vers Mars. En outre, des conséquences dramatiques peuvent survenir, par exemple le système classique GNC peut entraîner une performance peu satisfaisante et/ou une instabilité, pouvant conduire le chasseur à perdre l'attitude et/ou la position du conteneur d'échantillons. Le problème devient particulièrement critique au cours des 20 derniers mètres de la phase de rendez-vous. Des études récentes ont montré qu'historiquement les défauts de tuyère représentent approximativement un quart de toutes les défaillances qui ont eu lieu en orbite.

Une détection rapide et une localisation de ces défaillances est la première étape vers une action efficace de correction du défaut. L'utilisation de capteurs de pression et de température spécialisées dans la tuyère d'un propulseur est une possibilité de détecter une défaillance de propulseur. Ceci, cependant, entraine une hausse de la masse, du prix et de la complexité.

Cette thèse se concentre donc plutôt sur des solutions basées uniquement sur des logiciels supplémentaires et du matériel déjà disponible à bord. Les travaux de recherche traités dans cette thèse s'intéressent donc au développement des approches sur base de modèle de détection et d'isolation des défauts (Fault Detection and Isolation, FDI) et de commande tolérante aux défaillances (Fault Tolerant Control, FTC), qui pourraient augmenter d'une manière significative l'autonomie opérationnelle et fonctionnelle du chasseur pendant le rendez-vous et, d'une manière plus générale, d'un vaisseau spatial impliqué dans des missions situées dans l'espace lointain. Dès lors que la redondance existe dans les capteurs et que les roues de réaction ne sont pas utilisées durant la phase de rendez-vous, le travail présenté dans cette thèse est orienté seulement vers les systèmes de propulsion par tuyères.

Les défaillances examinées ont été définies conformément aux exigences de l'ESA et de TAS et suivant leurs expériences. Quatre cas sont étudiés en détail, à savoir: i) ouverture de tuyère à 100%, dans ce cas, la tuyère fournit une poussée maximale indépendamment de la demande et est évidemment très consommatrice de propergol; ii) tuyère coincée en position fermée, dans ce cas la tuyère défectueuse ne génère aucune poussée indépendamment de la commande faite par l'autorité de contrôle; iii) une petite fuite de biergol et iv) une perte d'efficacité d'une tuyère spécifique, à savoir la poussée réelle est inférieure à celle qui est demandée.

Cette thèse comprend un chapitre qui illustre certains concepts, définitions et résultats classiques ainsi que quelques exemples de mise en oeuvre réussie des approches de l'FDI et de la FTC dans xxvi Résumé en Français certaines missions spatiales. On aborde ensuite, une description complète du système GNC déjà en place ainsi que la gestion de panne. Dans les études menées dans cette thèse, deux configurations de propulseurs différentes ont été étudiées. La première configuration (référence) dispose d'un ensemble de propulseur entièrement redondant de 2x8 tuyères tandis que la seconde configuration comprend 12 tuyères avec redondance fonctionnelle.

Pour la première configuration des tuyères (référence) une approche avancée détection/ défaillance, isolation de défauts et reconfiguration (FDIR) est proposée. Elle se compose d'un détecteur de défaut robuste et d'un test d'isolement en fonction d'une corrélation croisée. La reconfiguration des défauts est réalisée par une simple redirection du signal vers la tuyère redondante et la fermeture de la tuyère défectueuse par une soupape de verrouillage de la tuyère (TLV). Le détecteur de défaut est basé sur un générateur résiduel avec robustesse accrue contre le retard de variation de temps inconnue dans le canal d'entrée. Ce retard est induit par le dispositif électronique de guidage de la propulsion chimique (CPDE) et vise également à modéliser les incertitudes sur les temps de réponse de la tuyère. Pour assurer la robustesse, l'incertitude non structurée (effet du retard inconnu) est d'abord exprimée sous forme d'une entrée inconnue, puis, cette entrée inconnue est découplée du résidu en utilisant la technique de Eigenstructure Assignment (EA) à gauche. Deux méthodes pour transformer ce type d'incertitude en une entrée inconnue sont proposées. La première méthode est basée sur le théorème de Cayley-Hamilton et sur un h-ième ordre de l'expansion en série de Taylor ; le second procédé utilise dans un premier ordre l'approximant de Padé du retard temporel variable dans le temps.

Les indices de performance et de fiabilité FDI, qui ont été soigneusement choisis, accompagnés des campagnes de simulation de robustesse/sensibilité Monte Carlo (MC) ont été utilisés pour l'étude de comparaison des deux schémas FDI, l'une basée sur une position et la seconde basée sur un modèle d'attitude. Les aspects de la reconfiguration sont également étudiés. Les résultats obtenus à partir de la campagne MC, effectuée à l'aide d'un simulateur industrielle haute-fidélité du TAS, révèlent que le régime basé sur un modèle de position tend à atteindre une performance très similaire à celle du régime fondé sur le modèle de l'attitude pure. Le schéma du modèle basé sur la position réussi grâce au modèle linéaire judicieusement choisi, c'est à dire un modèle qui prend en compte à la fois les mouvements de rotation et de translation du chasseur. Dans ce modèle, le quaternion d'attitude joue le rôle de paramètre d'ordonnancement pour la génération de résidus. De plus ce modèle est naturellement robuste contre les incertitudes sur l'inertie et le centre de gravité.

Pour une autre configuration de propulseur qui a été spécialement développé par Thales Alenia Space pour étudier les principes FTC actifs, un schéma innovant FDI/FTC est proposé pour isoler sans ambiguïté et s'adapter à tout type de défaillance de tuyère (de types ouvert ou fermé) affectant le système de propulsion du chasseur. Cette configuration diffère de la configuration de base de la mission MSR car les propulseurs n'ont pas de pair redondante et certains propulseurs génèrent un moment de torsion dans la même direction ou dans une direction très similaire, ce qui rend évidemment le procédé d'isolement plus difficile. Le schéma FDI consiste en un détecteur de défaut robuste qui déclenche une banque d'observateur non linéaire à entrées inconnues (NUIOs) qui est en charge de confiner la défaillance à un sous-ensemble de défauts possibles, et une logique d'isolement à deux niveaux qui correspond respectivement au moment de torsion d'un propulseur fixe et des directions de force avec le biais de moment de torsion (estimé en utilisant un filtre de Kalman étendu, EKF) et du signal résiduel du détecteur de défaut. La principale caractéristique de ce schéma FDI est le développement d'une classe spéciale de NUIO pour les dynamiques d'attitude non linéaires incertaines. Sous certaines hypothèses de Lipschitz,

Résumé en Français une contrainte d'atténuation L2 est envisagée pour minimiser l'effet de l'inertie incertaine sur l'erreur d'estimation de l'état. La factorisation proposée de l'inversion de la matrice d'inertie incertaine permet à la dynamique de l'observateur à être limitée dans une région dynamique prévue tandis qu'est maximisée la constante de Lipschitz acceptable entrainant la robustesse contre les incertitudes non linéaires de Lipschitz. En outre, la dynamique d'erreur d'estimation est exactement découplée de l'entrée inconnue qui représente l'effet du groupe de propulseur qui produit les mêmes moments de torsion ou des moments de torsion similaires. La synthèse NUIO est formulée comme un problème d'optimisation convexe d'inégalité matricielle linéaire (LMI). La tolérance de défaillance est atteinte par la fermeture du propulseur défectueux par une soupape de verrouillage et en redistribuant les forces/moment de torsion souhaités parmi les N-1 vérins sains utilisant un algorithme d'allocation de contrôle (CA). L'avantage de cette approche est la réduction du nombre de propulseurs (pas d'ensemble redondant) nécessaires pour contrôler l'engin spatial en toute sécurité qui crée par conséquent un gain de masse, de volume et de complexité. Plusieurs techniques de CA sont évaluées pour leur pertinence à atteindre la tolérance aux défaillances précitée. La technique de CA NIPC (Nonlinear Iterative Pseudoinverse Controller) a été choisie et améliorée à des fins FTC.

Introduction

"You don't write because you want to say something, you write because you have something to say." -F. Scott Fitzgerald, American writer

Focus of this Study

T he research work addressed in this thesis draws expertise from actions undertaken between the European Space Agency (ESA), the industry Thales Alenia Space (TAS) and the IMS laboratory (laboratoire de l'Intégration du Matériau au Système) which aims at developing new generations of integrated Guidance, Navigation and Control (GNC) units with fault detection and tolerance capabilities. Many future space missions will require autonomous proximity operations, in which the fault detection, isolation and the subsequent fault tolerance actions are critically important. Rendezvous and docking/capture missions, such as the Mars Sample Return (MSR) mission and the Project for Onboard Autonomy No.3 (PROBA 3), are also inherently concerned with the fail-safe operating conditions of the vehicles. Autonomous and fault tolerant rendezvous has been recognized by ESA as a key element for the MSR mission, which will require a highly sophisticated GNC system. For instance, for a success of the critical rendezvous phase, the chaser vehicle uses a large range of sensors, namely Inertial Measurement Units (IMU), Star Trackers (STR), Coarse Sun Sensors (CSS), Global Navigation Satellite Systems (GNSS) sensors, Radio Frequency Sensors (RFS), Light Detection And Ranging (LIDAR) sensors, Narrow Angle Camera (NAC) and a very precise actuation system composed of sets of thrusters and reaction wheels. It is then obvious, that the rendezvous mission can be in danger if faults occur in these sensors and/or actuators and if the GNC system does not adequately compensate them. The research work addressed in this thesis draws expertise in this context.

More precisely, this thesis focuses on the design and validation of an active Fault-tolerant Control (FTC) system to detect, isolate and accommodate thruster fault affecting a chasing spacecraft during the rendezvous with a passive target spacecraft in a circular orbit. A FDIR (Fault/Failure Detection, Isolation and Recovery) system is also developed to be compliant with the requirements and the current state of practice of the space industries. The reference mission considered here is the ESA Mars Sample Return mission. It consists of two modules directly injected towards Mars by launchers. The first module enters the Martian atmosphere (Entry phase), lands Introduction on the Mars surface and releases a Mars rover vehicle. Once the rover finishes the collection procedure of the Martian samples, they are put into a Sample Container and loaded on the Mars Ascent Vehicle (MAV) which is then launched, by means of rockets, to reach the low Mars orbit. Meanwhile the second module, composed of the MSR Orbiter and the Earth Re-entry Capsule (ERC), inserts directly around Mars, and the chaser vehicle catches the target (capture of the orbiting Sample Container released by MAV) and finally comes back to Earth ejecting the Sample Container into Earth atmosphere with the Earth Re-entry Capsule (ERC). The research work addressed in this thesis focuses on the terminal rendezvous phase which corresponds to the last meters until the capture. The chaser vehicle is the MSR Orbiter, while the target is a diameter spherical container. During the terminal rendezvous, the control of the attitude and the position of the chaser is continuous, and applied by thrusters. The attitude is controlled in order to keep the Sample Container (target) within the LIDAR sensor field of view. The position is controlled in order to approach the target along its velocity axis. Then, just before the capture, the guidance is modified in order to align the capture mechanism with the target. At sensor level, the chaser spacecraft uses IMUs and Star-Trackers for attitude control and a LIDAR for position control and capture. The set of sensors and actuators used during the terminal rendezvous is minimized to reduce the risk of fault occurrence and to reduce the power consumption and mass. The capture conditions are driven by the capture mechanism. The capture mechanism is a basket with a diameter cylindrical aperture, which is part of the Sample Handling System (SHS). It is oriented along the Orbiter x axis and located with a lateral offset on the +x face. The analysis is conducted in the context of the terminal rendezvous sequence. The objective at control level is a capture achievement with an accuracy better than a few centimeters.

Motivation

The terminal phase of the rendezvous is highly critical, as any fault could possibly lead to a collision, thus to a mission loss. Thruster faults historically account for a largest percentage of failures that have occurred on orbit. Following a recent and extensive study based on 129 military and commercial spacecrafts from 1980 to 2005, thruster faults account for approximatively one quarter of all Attitude and Orbit Control System (AOCS) failures [START_REF] Tafazoli | A study of on-orbit spacecraft failures[END_REF], see Fig. 1 showing the distribution of various AOCS component failures.

Figure 1 -Distribution of AOCS component faults

Table 1 lists some known on-orbit thruster failures occurred in a real spacecraft [START_REF] Godard | Fault Tolerant Control of Spacecraft[END_REF]. In most situations the occurrences of these faults could not be prevented, but subsequent analyses often Introduction reveal that the consequences of faults could be avoided or, at least, that their severity could be significantly reduced.

Spacecraft Cause of the fault Impact Galaxy 8i

During September 2000, three of four xenon ion thrusters failed [START_REF] Robertson | Satellite gn & c anomaly trends[END_REF] Shortened mission life Iridium 27 During September 1997, thruster anomaly depleted operational fuel [START_REF] Robertson | Satellite gn & c anomaly trends[END_REF] Total mission loss Nozomi During December 1998, thruster valve was stuck partially open and the propulsion system consumed more fuel than expected during Earth swing-by [START_REF] Robertson | Satellite gn & c anomaly trends[END_REF] Mission Interruption

JCSat-1B During January 2005, the spacecraft experienced attitude loss during maneuver due to thruster anomaly [START_REF] Crosby | Solar extreme events 2005-2006: Effects on near-earth space systems and interplanetary systems[END_REF] Mission Interruption EchoStar VI During April 2001, the spacecraft was hit by one or more micrometeorites, in its attitude control system causing a propellant leak in one of the thrusters [START_REF] Tafazoli | A study of on-orbit spacecraft failures[END_REF] Mission Interruption

Table 1 -List of on-orbit thruster failures [START_REF] Godard | Fault Tolerant Control of Spacecraft[END_REF] In general, there are many types of thruster failures that may occur in-flight. Since it is impractical and relatively hard to create a GNC system that is able autonomously to detect, isolate and accommodate any kind of thruster fault, it is important to prioritize those faults which most likely occur in-flight and have a large impact on the mission success and/or GNC performance. Fortunately, in many cases, possible faults can be known in advance from the Fault Mode and Effect Analysis (FMEA), but the number of FTC systems increases with the number of faults to be covered. A solution to this problem may consist in judiciously combining active FTC systems with passive fault tolerance principles (e.g., robust controller covering some marginal faults). As an example, the FMEA of the ATVs (Automated Transfer Vehicles) developed by EADS Space Transportation for the "Jules Verne" flight (docking the 3 rd April 2003 and de-docking the 5 th September 2008), revealed 32 000 cases of recovery to be analyzed. 20 000 were relevant cases according to the mission phase and 300 were recovery actions. This analysis took into account both the "function context" (breakdown in the functional units such as communication, data processing, power and propulsion systems) and the "vehicle context" (about 80 vehicle modes).

As it is understood by the academic research community, only few of them were concerned by the FTC problem, since the majority dealt with FDIR problems.

The investigated faults in this thesis have been defined in accordance with ESA and TAS requirements and following their experiences. Four cases are particularly examined: i) thruster opening at 100% (in this case thruster provides maximum thrust regardless of the demand and is obviously very propellant consuming); ii) thruster stucks closed (in this case the faulty thruster does not generate any thrust regardless of the demanded command by the control authority); iii) small bi-propellant leakage and iv) loss of effectiveness of the specific thruster (i.e., the actual thrust is less than demanded).

It is obvious that, if for instance a fully open thruster fault occurs (thruster stucks fully open), it could lead to a drastic increase of the propellant consumption which is already very constrained by the travel to Mars. Furthermore, dramatic consequences can occur, e.g., the conventional GNC system may result in unsatisfactory performance and/or instability, possibly leading the chaser to lose the attitude and/or the position of the sample container. The problem becomes highly critical during the last 20 meters of the rendezvous phase when the chaser shall be cor-Introduction rectly positioned in the rendezvous corridor in order to successfully capture the sample container, as well as, the chaser attitude needs to be maintained in the rendezvous sensor field of view. Such faulty situations obviously cannot be diagnosed by ground support using telemetry information, due to the potential lack of communication between the chaser and the ground stations and/or due to significant communication delay. Finally, to increase safety, reliability and mission success, the research topics should be motivated by applications and the results are for the applications. This motivates to conduct studies for the development of new on-board fully autonomous FTC solutions that shall cope with thruster faults which may occur and endanger the mission whilst maintaining the desirable degree of overall stability and performance.

Approach and Objectives

The ability to ensure the desired performance of a dynamic system both in the absence and presence of faults is an important task in many applications of control engineering. A costeffective way to obtain increased reliability and safety in an autonomous spacecraft whilst keeping the desired performance level is to introduce active FTC approach. The basic implementation strategy of an active FTC system involves the design of a model-based Fault Detection and Isolation (FDI) unit that monitors the behavior of the components such that local incipient faults are prevented from developing into severe failures that can lead to a total mission loss. A quick detection and isolation of these faults is the first step towards an efficient fault accommodation action. The algorithmic simplicity in detecting and isolating faults is also a very important aspect when considering the need for validation and on-board implementation of a demonstrable scheme. Only very few FTC algorithms that meet the above requirements have been developed in practice and applied to a real spacecraft.

One possibility of detecting a thruster fault is through the use of specialized pressure and temperature sensors in the nozzle of a thruster. This, however, comes at the price of extra mass, cost and complexity. This thesis instead focuses on solutions of performing thruster FDI using only additional software and hardware already on board. Thus, the aim of this thesis is to propose a complete model-based FDI/FTC system able to quickly detect, isolate and accommodate a single thruster fault and therefore significantly increase the operational autonomy and safety of the chaser during the rendezvous and more generally, of any spacecraft involved in a deep space mission. Since redundancy exists in the sensors and since the reaction wheels are not used during the terminal rendezvous sequence, the work presented in this thesis deals only on the thruster-based propulsion system.

Thruster fault accommodation (recovery) is traditionally achieved through a fully redundant thruster set or through an overactuation (functional redundancy). After a thruster fault has been successfully detected or eventually isolated, the system can attempt to recover from faults.

In general, four tolerance principles against thruster faults can be distinguished:
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It is obvious, that the first principle would possibly lead to a drastic increase of the propellant consumption, which is already very constrained by the travel to Mars, and thus greatly reducing the spacecraft lifetime and mission success. The second principle does not require any isolation function, but on the other hand significantly decrease the fault coverage capabilities since only one single fault can be recovered at all. Moreover, it requires a fully redundant thruster set which obviously add extra mass, volume and complexity to the spacecraft, and therefore reducing payload and increasing the cost. Without a dedicated valve to shut off the faulty thruster, the only way to control the spacecraft is through the first two principles, however, if each thruster is equipped with a dedicated thruster valve that can disconnect the propellant supply into it, it is possible to consider the third and fourth principle. The third principle still requires a full thruster redundancy, but in this approach more than one thruster can be considered faulty. The last principle requires a functional redundancy thruster set. Here, the fault tolerance relies on a control redistribution approach, which aims at reallocating the desired control effort among the remaining N-1 healthy actuators. The advantage of this approach is the reduced number of thrusters (no redundant set) and therefore mass, volume and complexity savings. Due to the above mentioned and also other obvious reasons explained later, the focus of this thesis will only be on methodologies which involves the third and fourth principles only.

Overview of the Chapter Contents

This thesis is comprised of four chapters and is organized as follows:

The first chapter provides a literature review of the main approaches in the field of modelbased fault diagnosis and active fault-tolerant control. It also comes with a decent list of bibliographical references for the main contributions. Application examples from the space community, that have been successfully demonstrated in flight or in high-fidelity industrial simulators, are presented where applicable. The chapter is concluded by a summary-like table introduced in order to compare the presented approaches according to some pre-selected criteria.

The second chapter briefly describes the Mars Sample Return mission, its rendezvous phase and the vehicles involved in the mission. It describes the GNC unit, that is in charge of controlling the chaser during the rendezvous phase and the failure management unit, that is in charge of detecting failures and of engaging corrective maneuvers. It is shown how the FDIR and FTC solutions investigated in the next chapters can be integrated in the failure management unit. This chapter also addresses the models of the chaser spacecraft dynamics (relative position between the chaser and the target and chaser's attitude), that will be further used in the following chapters to design model-based FDIR/FTC solutions. Modelling of the chaser spacecraft thruster-based propulsion is also addressed to outline the effect of the faults. Necessities on modeling the spacecraft dynamics during the rendezvous phase as well as the rendezvous requirements in terms of GNC performance and successful capture are introduced.

The third chapter is dedicated to the development of a FDIR solution for thruster fault recovery. It introduces the baseline thruster configuration of the chaser consisting of a nominal and a fully redundant thruster set. The design of two distinct model-based FDIR techniques able to detect, isolate and accommodate (recover) a single thruster fault is addressed. The first approach is based on the position model whereas the second approach is based on the attitude model. Both techniques focus on the robustness issue against the unknown time-varying delays induced by the propulsion drive electronics and uncertainties on thruster rise times. A complete Introduction description of a robust residual generation design approach based on Eigenstructure Assignment (EA) technique is discussed in details. Computational procedure and implementation issues of the FDI schemes design are carefully discussed. A fault accommodation strategy, achieved by employing the additional hardware redundancy in the thruster-based propulsion system, is proposed. Finally, Monte Carlo (MC) results demonstrate the feasibility and efficiency of the proposed schemes. Carefully selected performance and reliability indices allow to compare the effectiveness of both approaches. Recovery aspects are also studied. 

Introduction

Fault-tolerance in dynamic systems is traditionally achieved through the use of hardware redundancy. Repeated hardware units (actuators, sensors, process components, etc.) are usually distributed spatially around the system to provide protection against localized damage. Such schemes operate typically in a duplex, triplex or quadruplex redundancy configuration and redundant outputs (or measurements) are compared for consistency. For example, three (or more) sensors measuring the same variable are installed where one would be sufficient if it was entirely reliable. The signals from these sensors are monitored by a logical system which neglects small differences in the signals due to noise, manufacturing tolerances of the measurement instruments, but which declares that a sensor is faulty if its signal deviates too far from the average value of the others (assuming that the others remain within a small differences from one another). This approach to fault-tolerance is simple and widely used. In some cases, it can be reasonably straightforward to apply. It is essential in the control of aircraft, space vehicles and in certain Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC process plants. The major problems related to the hardware redundancy are the extra cost and the additional space required to accommodate the equipment. In spacecraft, for example, the additional space could be used for more mission-oriented equipment (scientific devices, reserve propellant, etc.).

Safety-critical applications (such as space vehicles, aircrafts, power plants, cars, rapid transit trains, etc.) of which reliability, availability and operating safety are primary design requirements, application of ultra-high dependable control systems is needed. For such systems, an important means of increase in dependability is to detect and identify the different types of faults, and then to accommodate or minimize the impact of them. A control system with this kind of fault-tolerance capability is defined as a Fault-Tolerant Control System (FTCS).

The FTCS tasks are typically three or four. The first task is the fault detection. Fault detection indicates the occurrence of a certain fault in a monitored system. The second task is called fault isolation which determines the type and/or location of the fault. This two tasks are in literature referred with the common term Fault Detection and Isolation (FDI). Once the fault is isolated, then the task of fault identification might be considered, too. Fault identification aims at determining the magnitude and shape of a fault. The term Fault Detection and Diagnosis (FDD) is an extension of the term FDI in the sense that the procedures of FDD provide an additional "diagnosis" to the faults in terms of fault identification and sometimes an assessment of the degree of severity of the fault. In other words, FDD is mainly used to underline the need for fault estimation. After the fault is detected and diagnosed, in some applications fault is accommodated (i.e., a self-correcting of the fault) is required, usually through controller redesign.

Over the last decades, the growing demand for safety, reliability, and maintainability in technical systems has drawn significant research interest in FDI and FDD. Such efforts have led to the development of many essential techniques, see for example the survey works [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF][START_REF] Ding | Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[END_REF][START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF][START_REF] Frank | Survey of robust residual generation and evaluation methods in observer-based fault detection systems[END_REF][START_REF] Henry | Fault detection and diagnosis for aeronautic and aerospace missions[END_REF][START_REF] Krokavec | Dynamic Systems Diagnosis[END_REF][START_REF] Noura | Fault-tolerant Control Systems: Design and Practical Applications[END_REF][START_REF] Patton | Robustness in model-based fault diagnosis: The 1995 situation[END_REF][START_REF] Patton | Fault-tolerant control systems: The 1997 situation[END_REF][START_REF] Venkatasubramanian | A review of process fault detection and diagnosis: Part i-iii[END_REF]. Research on reconfigurable Fault-tolerant Control (FTC) has increased progressively since the initial research on restructurable control and self-repairing flight control systems of the early 1980s appeared [START_REF] Chandler | Self-repairing flight control system reliability and maintainability program executive overview[END_REF][START_REF] Eterno | Design issues for fault tolerantrestructurable aircraft control[END_REF]. More recently, FTC has attracted more and more attention, in both industry and academic communities [START_REF] Zolghadri | The challenge of advanced model-based fdir techniques for aerospace systems: the 2011 situation[END_REF], due to increased demands for safety, high system performance, productivity and operating efficiency in a wider engineering applications. Several survey literature on FTCS have been published [START_REF] Blanke | Fault-tolerant control systems[END_REF][START_REF] Blanke | Fault-tolerant control systems -a holistic view[END_REF][START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF][START_REF] Edwards | Fault Tolerant Flight Control: A Benchmark Challenge[END_REF][START_REF] Hwang | A survey of fault detection, isolation, and reconfiguration methods[END_REF][START_REF] Isermann | Fault-tolerant drive-by-wire systems[END_REF][START_REF] Steinberg | Historical overview of research in reconfigurable flight control[END_REF][START_REF] Verhaegen | Fault tolerant flight control -a survey[END_REF][START_REF] Zhang | Bibliographical review on reconfigurable fault-tolerant control systems[END_REF].

General Procedure of Fault-tolerant Control Systems

Generally speaking, fault-tolerant control systems can be classified into two main types based on different methodologies [START_REF] Zhang | Bibliographical review on reconfigurable fault-tolerant control systems[END_REF]:

• Passive Fault-tolerant Control Systems (PFTCS)
In PFTCS, controllers are fixed and designed to be robust against a class of presumed faults [START_REF] Eterno | Design issues for fault tolerantrestructurable aircraft control[END_REF]. This approach needs neither FDD schemes nor controller reconfiguration, but it has limited fault-tolerant capabilities [START_REF] Zhang | Bibliographical review on reconfigurable fault-tolerant control systems[END_REF]. Fault-tolerance is obtained without changing the default controller parameters, therefore it is called passive fault tolerance. From a classical control theory perspective, passive FTC is close to robust control. Furthermore, a robust controller works suboptimal for the nominal plant because its parameters are fixed so as to General Procedure of Fault-tolerant Control Systems get a trade-off between performance and robustness [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF]. Further discussions on PFTCS are beyond the scope of this work and interested readers are referred to [START_REF] Liao | Reliable robust flight tracking control: an lmi approach[END_REF][START_REF] Niemann | Passive fault tolerant control of a double inverted pendulum -a case study[END_REF][START_REF] Veillette | Design of reliable control systems[END_REF][START_REF] Zhang | Bibliographical review on reconfigurable fault-tolerant control systems[END_REF] and the references therein.

• Active Fault-Tolerant Control Systems (AFTCS)

In contrary to PFTCS, AFTCS acts to the system component failures actively by controller re-design so that the stability and acceptable performance of the entire system can be verified. Indeed, most of the earlier works on AFTCS design deal with the problem of recovering the pre-fault (before the fault occurs) system performances as much as possible [2,[START_REF] Noura | Evaluation of a fault-tolerant control design for actuator faults[END_REF][START_REF] Patton | Fault-tolerant control systems: The 1997 situation[END_REF]. The great benefit of the AFTCS approaches is that the fault-tolerance does not degrade the performance level in normal (fault-free) operating mode. From a classical control theory point of view, AFTCS can be seen as an adaptive control scheme that reacts to the fault event. This is the type of FTCS which we will present in Chapter 4 of this thesis.

The architecture of a general AFTCS is depicted in Fig. 1.1. The two blocks "diagnostic module" and "controller re-design" carry out the two steps of the fault tolerance. These two blocks operate in a supervision level. In AFTCS, the information obtained from the diagnostic module is used in the controller re-design [START_REF] Noura | Fault-tolerant Control Systems: Design and Practical Applications[END_REF]. Hence, system diagnostic module with its diagnostic algorithms should not only indicate that some faults have occurred but it has to identify the fault locations (i.e., to do FDI) and in some cases the fault magnitude and the shape (i.e., to do FDD) of the fault signal with sufficient precision [START_REF] Tharrault | Fault detection and isolation with robust principal component analysis[END_REF]. The re-design block uses the fault information and make it possible to set up a model of the faulty system, which can be used to determine the appropriate control law. "Appropriate" is meant with respect to given objectives which depend on the application, but which in all cases must preserve stability [START_REF] Jiang | Fault accommodationfor nonlinear dynamic systems[END_REF].

Controller re-design

Diagnostic module

System Controller

Supervision level

Execution level Figure 1.1 -General architecture of an active fault-tolerant control system [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF] The figure above shows also that the AFTCS extends the regular feedback controller by a supervision level, which includes the diagnostic module (FDI and/or FDD) and the controller re-design blocks. In the fault-free case, the nominal controller attenuates the disturbances d and ensures following the reference signal y ref and other performance requirements on the closedloop system. In fault-free case, the diagnostic module simply recognizes that the system is not suffering from any faults and no change in the control law is required. If a fault f occurs, the supervision level makes the control loop fault-tolerant, i.e., the diagnostic module identifies the fault and the controller re-design block will try to change the control law in order to cope with the faulty situation. Afterwards, the execution level alone continues to satisfy the control Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC objectives [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF].

Controller re-design considers the problem of changing the controller parameters and/or the control structure after a fault has been diagnosed in the system. The goal is to satisfy the requirements on the closed-loop system despite the presence of faults. In principal, two ways of controller re-design have to be distinguished [START_REF] Blanke | Fault-tolerant control systems -a holistic view[END_REF][START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF][START_REF] Jiang | Fault accommodationfor nonlinear dynamic systems[END_REF][START_REF] Patton | Fault-tolerant control systems: The 1997 situation[END_REF].

Fault Accommodation

Fault accommodation means to adapt the controller parameters to the dynamical properties of the faulty system. The input and output of the system used in the control loop remain the same as for the fault-free case. The response to the diagnosed faults should be an adequate change of the controller parameters. The main problem addressed in this approach is to calculate these new parameters. This step is usually performed on-line, therefore fault accommodation is usually autonomous [START_REF] Steffen | Control reconfiguration of dynamical systems: linear approaches and structural tests[END_REF]. A formal definition of the fault accommodation can be found in Blanke et al. [START_REF] Blanke | Fault-tolerant control systems -a holistic view[END_REF][START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF].

A simple, but well established way of fault accommodation is based on pre-designed controllers, each of which has been calculated off-line for a specific fault. The re-design step then simply sets the switch among the different control laws. However, the activation/repair mechanism may happen too quickly and during the whole operation interval which may cause instability of the control law [START_REF] Efimov | Supervisory fault tolerant control with mutual performance optimization[END_REF] and might lead to strong real-time constraints [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF].

Moreover, the controller re-design has to be made for all possible faults before the system is put into operation and all resulting controllers have to be stored in the control software. Fortunately, in many systems, possible faults are known in advance from the Fault Mode and Effect Analysis (FMEA), but the number of FTC systems increases with the number of faults to cover. A solution to this problem may consist in judiciously combining PFTCS and AFTCS as it is proposed by Staroswiecki and Berdjag [START_REF] Staroswiecki | A general fault tolerant linear quadratic control strategy under actuator outages[END_REF]. In case of severe faults that change the structure of the system, this approach is no more sufficient because the structure of the controller is not changed.

Control Reconfiguration

Control reconfiguration is usually necessary in the event of severe faults, such as total failures in actuators/sensors. If these components fail completely, the fault leads to a break-down of the control loop. There is no possibility to adapt the controller by simply changing its parameters to the faulty situation, i.e., a complete control loop has to be reconfigured. A new control law has to be selected and the controller structure has to be changed where alternative actuators and sensors have to be found, which are not affected by the fault, and which are able to satisfy the stability and the performance specifications on the closed-loop system. Note that the precomputed FTC solutions mentioned previously can be a viable approach in this case.

Remark 1.1. An important question in the controller re-design step is the analysis of reconfigurability as a system property. Reconfigurability is a property of faulty systems meaning that the original control goals specified for the fault-free system can be reached after suitable control re-design. A structural analysis of the reconfigurability can be found in [START_REF] Gehin | Structural analysis of system reconfigurability[END_REF]. The work of Staroswiecki [START_REF] Staroswiecki | On reconfigurability with respect to actuator failures[END_REF] deals with the reconfigurability on a linear level, based on the solvability of an optimal control problem with minimal control energy. 

System and Fault Modeling

Faults occurring in a system can be generally classified into three types [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF][START_REF] Frank | Modelling for fault detection and isolation versus modelling for control[END_REF][START_REF] Isermann | Model-based fault-detection and diagnosis -status and applications[END_REF][START_REF] Venkatasubramanian | A review of process fault detection and diagnosis: Part i-iii[END_REF]]:

• actuator faults;

• sensor faults; and

• component faults.
Actuator and sensor faults are typically referring to faults/failures occurring in the system actuation and measurement system/subsystems. Component faults usually lead to changes in the parameters of the system dynamics. Faults can be categorized into additive faults and multiplicative faults, where the additive faults are described as additional functions, which are added in the system dynamical equations (see (1.1) and (1.4)), while the multiplicative faults are represented by the product of a variable with the faults [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF][START_REF] Isermann | Model-based fault-detection and diagnosis -status and applications[END_REF] (see (1.6), (1.5) and (1.2)).

Ignoring the actuator dynamics, vector u f ∈ R nu of the faulty controlled system input can be described in terms of an additive fault type, i.e.,

u f (t) = u(t) + f a (t) (1.1)
where u ∈ R nu is the actuator control input and f a ∈ R nu represents the additive actuator fault vector. With regards to modelling multiplicative actuator faults, the following model can be used [START_REF] Henry | A norm-based point of view for fault diagnosis: Application to aerospace missions[END_REF] 

u f (t) = I -Ψ(t) u(t) (1.2)
where Ψ = diag(ψ 1 , . . . , ψ nu ) is an unknown matrix and ψ i models to the i th actuator fault. For instance, ψ i = 1 means that the i th actuator is out of order and ψ i = x% means a loss of efficiency of x% of the i th actuator. Note that if the controlled system keeps stability, then the multiplicative-based model can be approximated in terms of an additive fault model according to [START_REF] Frank | Modelling for fault detection and isolation versus modelling for control[END_REF] where y ∈ R ny is the true output vector of the system and f s ∈ R ny represents a vector of additive sensor faults. Similarly to the actuator case, the multiplicative faults model admits the following representation y f (t) = I -Ψ(t) y(t) (1.5) that can be approximated according to (1.4).

u f (t) = u(t) -Ψ(t)u(t) = u(t) + f a (t) (1.
The component faults are commonly modelled as multiplicative faults, i.e., they are modelled as changes in the parameters of the system matrices. In the linear case and under the assumption that the (controlled) system keeps stability, the i th row and j th column element a ij of the system matrix A represents a system parameter change, then the component fault can be described as follows

f c (t) = I i ∆a ij x j (t) (1.6)
where x j is the j th element of the state vector x ∈ R nx , I i is vector with all zero elements except '1' in the i th element and ∆a ij represents the parameter change around the nominal value a ij .

Methods for Fault Detection and Isolation

There is a great variety of fault detection and isolation methods, e.g., the parity space approach [START_REF] Gertler | Fault detection and diagnosis in engineering systems[END_REF], methods based on unknown input observer concepts [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF], the multiple model method [START_REF] Boskovic | Stable multiple model adaptive flight control for accommodation of a large class of control effector failures[END_REF], the geometric approach for detection filter design [START_REF] Massoumnia | A geometric approach to the synthesis of failure detection filters[END_REF], or methods based on frequency domain concepts [START_REF] Frank | Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis[END_REF]. According to Frank [START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF], a great variety of methods exists in the literature and they can be brought down to a four basic classes as follows:

• parity space approach [START_REF] Chow | Analytical redundancy and the design of robust failure detection systems[END_REF][START_REF] Ding | A characterization of parity space and its application to robust fault detection[END_REF][START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF][START_REF] Gertler | Fault detection and isolation using parity relations[END_REF][START_REF] Medvedev | Fault detection and isolation by a continuous parity space method[END_REF][START_REF] Patton | Review of parity space approaches to fault diagnosis for aerospace systems[END_REF].

• observer-based approach and innovation-based approach [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF][START_REF] Ding | Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[END_REF][START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF][START_REF] Frank | Survey of robust residual generation and evaluation methods in observer-based fault detection systems[END_REF][START_REF] Garcia | Deterministic nonlinear observer-based approaches to fault diagnosis: A survey[END_REF][START_REF] Noura | Fault-tolerant Control Systems: Design and Practical Applications[END_REF][START_REF] Patton | Observer-based fault detection and isolation: robustness and applications[END_REF],

• parameter identification approach [START_REF] Isermann | Process fault detection based on modeling and estimation methods -a survey[END_REF][START_REF] Simani | Model-based fault diagnosis in dynamic systems using identification techniques[END_REF][START_REF] Young | Parameter estimation for continuous-time models: A survey[END_REF], and

• fault detection filter approach [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF][START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF][START_REF] Henry | A norm-based point of view for fault diagnosis: Application to aerospace missions[END_REF][START_REF] Henry | Design and analysis of robust residual generators for systems under feedback control[END_REF][START_REF] Stoustrup | Fault estimation -a standard problem approach[END_REF].

All these four methods are discussed in more detail in the following sections. Since linear approaches are special cases of nonlinear methods, nonlinear approaches are preferred. Examples from space systems are given where available.

Parity Space Approach

The concept of the parity relation-based fault detection approach is to check the parity, i.e., consistency of the mathematical equations (analytical redundancy) of the system by using the actual measurements. A fault is declared to have occurred once given error bounds are exceeded. Some parity space approaches are able to achieve fault isolation properties [START_REF] Medvedev | Fault detection and isolation by a continuous parity space method[END_REF]. Several survey papers have been written on parity relation based fault detection methods [START_REF] Chow | Analytical redundancy and the design of robust failure detection systems[END_REF][START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF][START_REF] Gertler | Fault detection and isolation using parity relations[END_REF][START_REF] Patton | Review of parity space approaches to fault diagnosis for aerospace systems[END_REF].

Methods for Fault Detection and Isolation

The following developments give an overview of the general method. Using physical laws, a large class of engineering systems can be modelled by differential equations of the form

ẋ(t) = h x(t), u(t), f (t), d(t) y(t) = g x(t), u(t), f (t), d(t) (1.7)
where h ∈ R nx and g ∈ R ny are smooth 1 nonlinear vector functions of their arguments, x ∈ R nx is the state vector, u ∈ R nu the input vector, y ∈ R ny the vector of measured outputs, d ∈ R n d the vector of unknown inputs and f ∈ R n f the vector of faults.

Assuming that the functions h and g are differentiable up to order s h , the following yields

ȳ(s h ) (t) = G s h x(t), ū(s h ) (t), f (s h ) (t), d(s h ) (t) (1.8)
where

G s h x(t), ū(s h ) (t), f (s h ) (t), d(s h ) (t) =        g x(t), u(t), f (t), d(t) g 1 x(t), ū(1) (t), f (1) (t), d (1) 
(t) . . .

g s h x(t), ū(s h ) (t), f (s h ) (t), d(s h ) (t)       
If the system (1.8) is solvable with respect to x, then it can be written in the equivalent form

x(t) = G x ȳ(s h ) (t), ū(s h ) (t), f (s h ) (t), d(s h ) (t) (1.9) G y ȳ(s h ) (t), ū(s h ) (t), f (s h ) (t), d(s h ) (t) = 0 (1.10)
It can be seen, that (1.10) is an analytical redundancy relation, independent of the state vector x. In fault-free operation, it yields the necessary condition 

G y ȳ(s h ) (t), ū(s h ) (t), 0, d(s h ) (t) = 0 (1.11) If the function G y ȳ(s h ) (t), ū(s h ) (t), f (s h ) (t), d(s h ) (t)
G y ȳ(s h ) (t), ū(s h ) (t), f (s h ) (t), d(s h ) (t) = = G c y ȳ(s h ) (t), ū(s h ) (t) -G e y ȳ(s h ) (t), ū(s h ) (t), f (s h ) (t), d(s h ) (t) (1.12)
Then, it is possible to construct the residual r as follows

r(t) = G c y ȳ(s h ) (t), ū(s h ) (t) = G e y ȳ(s h ) (t), ū(s h ) (t), f (s h ) (t), d(s h ) (t) (1.13)
where G c y is the computation form and G e y is the evaluation form of the residual, respectively. The necessary condition for proper operation becomes Finally, by decomposing the fault vector f and the disturbance vector d

r(t) = G c y ȳ(s h ) (t), ū(s h ) (t) = G e y ȳ(s h ) (t), ū(s h ) (t), 0, d(s h ) (t) = 0 (1.
f (t) = f 1 (t) f 2 (t) , d(t) = d 1 (t) d 2 (t) (1.15)
then the fundamental problem of designing robust and structured residuals boils down to the solvability of the problem

G y ȳ(s h ) (t), ū(s h ) (t), f (s h ) (t), d(s h ) (t) = 0 (1.16)
with respect to f (t) (s h ) and d(t) (s h ) , the following equivalence yields

G 1 y ȳ(s h ) (t), ū(s h ) (t), f (s h ) 1 (t), d(s h ) 1 (t), f (s h ) 2 (t), d(s h ) 2 (t) = 0 (1.17) G 2 y ȳ(s h ) (t), ū(s h ) (t), f (s h ) 2 (t), d(s h ) 2 (t) = 0 (1.18)
If the second relation (1.18) can be written as a difference

G 2 y ȳ(s h ) (t), ū(s h ) (t), f (s h ) 2 (t), d(s h ) 2 (t) = = G 2c y ȳ(s h ) (t), ū(s h ) (t) -G 2e y ȳ(s h ) (t), ū(s h ) (t), f (s h ) 2 (t), d(s h ) 2 (t) (1.19) 
then, as in (1.12), the residual (structured and robust) verify that

r(t) = G 2c y ȳ(s h ) (t), ū(s h ) (t) = G 2e y ȳ(s h ) (t), ū(s h ) (t), f (s h ) (t), d(s h ) (t) (1.20)
where again G 2c y is the computation form and G 2e y is the evaluation form. Remark 1.4. From a practical point of view, it should be noted that it is not necessary to derive all outputs to the same order. A set of equations can be obtained by comparing the derivatives y 1 up to the order s 1 , y 2 up to the order s 2 , etc.. The only constraint is that the set of obtained equations (s 1 + s 2 + . . .) meets the solvability conditions necessary and sufficient for the existence of an analytical redundancy relations for the desired decoupling.

• Application to Space Missions

The most common application of parity space methods in the aerospace field is based on the redundancy available in Inertial Measurement Units (IMUs). The redundant measurements acquired from the IMUs are used for deriving the so-called parity-space relations. In particular, three configurations are used, i.e., the octahedron, dodecahedron and dedicated pyramidal configurations, see Fig. 1.3 for an illustration [START_REF] Henry | Fault detection and diagnosis for aeronautic and aerospace missions[END_REF].

In the octahedron configuration, each axis (labelled numerically 1 through 6) contains a gyro and an accelerometer. Complementary axes (i.e., 1 and 2; 3 and 4; and 5 and 6) make angles of 90 deg with each other and are symmetrically placed with respect to the body frame. Consequently instruments 1 and 2 are both inclined 45 deg with respect to the z body axis. Instruments 3 and 4 are inclined 45 deg with respect to the x body axis and 5 and 6, 45 deg with respect to the y body axis. This configuration facilitates the determination of 7 (static) parity relations [START_REF] Henry | Fault detection and diagnosis for aeronautic and aerospace missions[END_REF] defined as functions of the measurements m 1 , . . . , m 6 according to

r 1 = m 1 -m 2 -m 3 -m 4 r 2 = m 2 + m 3 -m 5 r 3 = m 6 + m 1 -m 3 r 4 = m 4 + m 5 -m 1 r 5 = m 4 + m 6 + m 2 r 6 = m 1 + m 2 + m 6 -m 5 r 7 = m 4 + m 5 + m 6 -m 3
These equations are used to detect and isolate a single axis fault in either gyros or accelerometers or a simultaneous correlated double axis fault.

The dedicated pyramidal configuration is based on two IMUs arranged in a geometric configuration, so that any single failure (1-axis gyro or 1-axis accelerometer) can be detected and isolated, through the 7 following (static) parity relations

r 1 = (m 1 + m 4 ) -(m 2 + m 5 ) r 2 = (m 2 + m 5 ) -(m 3 + m 6 ) r 3 = (m 3 + m 6 ) -(m 1 + m 4 ) r 4 = 2(m 1 + m 3 + m 5 ) -3(m 1 + m 4 ) r 5 = 2(m 2 + m 4 + m 6 ) -3(m 1 + m 4 ) r 6 = 2(m 1 + m 3 + m 5 ) -3(m 2 + m 5 ) r 7 = 2(m 2 + m 4 + m 6 ) -3(m 2 + m 5 )
where measurements m 1 , m 3 , m 5 are for IMU1 and m 2 , m 4 , m 6 are for IMU2. For the fault detection purpose, only r i , i = 1, 2, 3 are used whereas the four last signals r i , i = 4, . . . , 7 are used for fault isolation in gyros and accelerometers. The dedicated pyramidal configuration FDI technique is used in the Mars Sample Return mission, see discussion in Chapter 2.

Observer-based Approaches

Observer-based methods are the most popular form of model-based residual generator approaches. The basic idea is to estimate the output vector of the system (the state vector is usually unnecessary) from the measurements or from a subsets of the measurements. Then the estimation error or innovation is used to form a residual signal for fault detection and/or Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC isolation. It is well known from observer theory that for state estimation one can use linear or nonlinear, full or reduced-order state observers in the deterministic case or Kalman filters in the stochastic case when noise has to be considered. Many different design approaches have been employed [START_REF] Ding | Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[END_REF][START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF][START_REF] Frank | Survey of robust residual generation and evaluation methods in observer-based fault detection systems[END_REF][START_REF] Garcia | Deterministic nonlinear observer-based approaches to fault diagnosis: A survey[END_REF][START_REF] Patton | Observer-based fault detection and isolation: robustness and applications[END_REF][START_REF] Zhang | A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems[END_REF]. In the following developments, focus is on robust methods.

Iterative Learning Observer

This kind of observer is different from conventional Luenberger observer where the observer state is only a function of the actual input, output and the estimation error. Iterative Learning Observer (ILO) performs state estimation updated online by past system output errors as well. For the purposes of FDD, an ILO is used for jointly estimate the system state and the fault.

To proceed, let the system be modelled by the following class of nonlinear state space model

ẋ(t) = g(x(t)) + Bu(t) + E f f (t) y(t) = Cx(t) (1.21)
where the vector function f denotes an additive time varying signal that models the faults to be estimated. It is assumed that f is bounded and that

f (t) -K 1 f (t -τ ) ∞ is finite. The structure of the ILO is then defined according to ẋ(t) = g(x(t)) + Bu(t) + L(y(t) -C x(t)) + E f v(t) v(t) = K 1 v(t -τ ) + K 2 (y(t) -C x(t)) (1.22)
where L, K 1 , K 2 are gain matrices to be designed. The parameter τ is the sampling time interval (updating interval). The signal v is the ILO input that is used to estimate the timevarying fault. It can be seen that v is updated by both its past information and the output estimation error.

Several papers are devoted to the problematic of designing an ILO. For example, the work of Chen and Saif [START_REF] Chen | An iterative learning observer-based approach to fault detection and accommodation in nonlinear systems[END_REF] deals with the design of an ILO-based approach to fault detection and fault accommodation in nonlinear systems. An ILO approach for robust fault detection is proposed in [START_REF] Chen | A robust iterative learning observer-based fault diagnosis of time delay nonlinear systems[END_REF]. Industrial application of fault diagnosis in satellite systems for estimation of time-varying thruster faults can be found in [START_REF] Chen | Observer-based fault diagnosis of satellite systems subject to timevarying thruster faults[END_REF].

Unknown Input Observer

The basic idea behind the Unknown Input Observer (UIO) approach is the construction of a vector z decoupled from disturbances as well as uncertainties which are expressed in terms of unknown input signals.

One of the most general theory was initially proposed by [START_REF] Seliger | Robust component fault detection and isolation in nonlinear dynamic dynamic systems using unknown input observers[END_REF][START_REF] Seliger | Fault diagnosis by disturbance decoupled nonlinear observers[END_REF]. In that approach, faults to be detected are represented by exogenous input signals (additive fault types). The model is considered to be nonlinear with respect to the state x and control signal u, but linear with respect to faults and to all unknown inputs as follows

ẋ(t) = h(x, u) + K(x, u)f (t) + E(x)d(t) y(t) = g(x) (1.23)
Methods for Fault Detection and Isolation h and g are nonlinear vector functions of their arguments, x ∈ R nx is the state vector, u ∈ R nu the input vector, y ∈ R ny the vector of measured outputs, d ∈ R n d the vector of unknown inputs to be decoupled and f ∈ R n f the vector of faults. E(x) and K(x, u) are respectively the unknown inputs and faults distribution vector functions of appropriate dimensions. It is assumed that x(t) ∈ C, ∀t ≥ 0, where C ⊆ R nx is compact, connected, has a nonempty interior and contains 0.

The approach proposed by [START_REF] Seliger | Robust component fault detection and isolation in nonlinear dynamic dynamic systems using unknown input observers[END_REF][START_REF] Seliger | Fault diagnosis by disturbance decoupled nonlinear observers[END_REF] consists in finding a nonlinear state transformation z = T (x) in order to separate the disturbed from the undisturbed portion of the model. This can be met if the following condition holds

∂T (x) ∂x E(x) = 0 (1.24)
This relation constitutes a system of first order linear partial differential equations which are to be solved simultaneously by z = T (x). The theorem of Frobenius [START_REF] Isidori | Nonlinear control systems[END_REF] can be applied to derive necessary and sufficient existence conditions for the solution of (1.24):

Theorem 1.1. Assume that the rank of E(x) is equal to n q for all x. Then the searched transformation T (x) is a (n xn q ) vector, solution of the following system

∂T i (x) ∂x E(x) = 0, i = 1, ..., n x -n q (1.25)
where T i (x) denote the i th row of T (x). Furthermore, there exists

n x -n q independent z i = T i (x), i = 1 . . . n x -n q if and only if rank E(x) [e i (x), e j (x)] = n q , ∀i, j = 1...n q (1.26)
where e i (x) denotes the i th column of E(x) and [e i (x), e j (x)] refers to the Lie bracket of two elements, i.e.,

[e i (x), e j (x)] = ∂e j (x) ∂x e i (x) - ∂e i (x) ∂x e j (x), i, j = 1 . . . n q (1.27)
In order to obtain the transformed (decoupled) model, the decoupled state z must be augmented by a subset of measurements ȳ = φ(y) such that a relation x = ψ 0 (z, ȳ) exists, where dim(ȳ) < dim(y). The conditions of the existence of ψ 0 (z, ȳ) are

rank   ∂T (x) ∂x ∂φ(y)| y=g(x) ∂x   = n x (1.28) lim x →∞ T (x) φ| y=g(x) T = ∞ (1.29)
It is shown in [START_REF] Seliger | Fault diagnosis by disturbance decoupled nonlinear observers[END_REF], that (1.28) is satisfied if the number of independent measurements is greater than n q . In other words, the number of independent measurements should be enough to decouple completely the unknown input vector d which is a quite classical result in the analytical elimination theory. The dynamical state equation of the decoupled system is then given by

ż(t) = ∂T (x) ∂x (h(x, u) + K(x, u)f (t)) x=ψ 0 (z, ȳ) (1.30)
Moreover, in order to guarantee that all faults affecting the system are also reflected by the decoupled state, the following condition must be fulfilled

rank ∂T (x) ∂x K(x, u) = rank (K(x, u)) (1.31)
The structure of a nonlinear UIO for FDI then is given by

     ż(t) = ∂ ẑ ∂ψ 0 (ẑ, ȳ) h(ψ 0 (ẑ, ȳ), u) + HR(ẑ, y) r(t) = R(ẑ, y) (1.32)
under the assumption that a relation R(z, y) = 0 exists. In (1.32), r is the residual vector. Now, the remaining problem is to design a the observer gain matrix H, in such a way that the equilibrium point e = 0 of the differential equation governing the estimation error e = ẑz is asymptotically stable. [START_REF] Seliger | Fault diagnosis by disturbance decoupled nonlinear observers[END_REF] proposes to design H, such that the observer is locally stable (around e = 0). To proceed, let us observe that 

ė(t) = ż(t) -ż(t) = ∂T (x) ∂ x h(x, u) - ∂T (x) ∂x h(x, u) + HR(ẑ, y)- - ∂T (x) ∂x K(x, u)f (t) x=ψ 0 (z, ȳ), x=ψ 0 ( ẑ, ȳ) (1.33) 
ė(t) = ρ(e, t) - ∂T (x) ∂x K(x, u)f (t) x=ψ 0 (z, ȳ) (1.35)
Then, under the assumption of a fault-free system (f = 0), a first-order Taylor expansion of (1.35) around e = 0 gives ė(t) ≈ F (t)e (1.36)

with

F (t) = ∂ ∂ψ 0 (ẑ, ȳ) ∂T (x) ∂ x h(x, u) ∂ψ 0 (ẑ, ȳ) ∂ ẑ + H(x, u) ∂R(ẑ, y) ∂ ẑ | x=ψ 0 ( ẑ, ȳ) (1.37)
Thus, the solution consists in choosing H(x, u) so that the time-varying system (1.36) is stable.

Another solution consists in choosing F constant, so that, the real part of its eigenvalues are strictly negative and in deducing H(x, u) from (1.37). This solution allows to adequately manage the dynamics of the nonlinear UIO, which is an important aspect from FDI viewpoint.

Methods for Fault Detection and Isolation

An alternative to these solutions is also proposed in [START_REF] Henry | Diagnostic et contrôle de cohérence des systèmes multivariables incertains[END_REF]. Under the assumptions rank ∂y(x) ∂x = n x and lim x →∞ y(x)|| = ∞ and additionally some Lipschitz conditions, sufficient conditions for the stability of the nonlinear UIO (1.32) are proposed. A design algorithm based on Linear Matrix Inequality (LMI) is proposed and FDI performance specifications are also handled in the design procedure using the concept of LMI regions.

Remark 1.5. The work reported in [START_REF] Chen | Unknown input observer design for a class of nonlinear systems: an LMI approach[END_REF] addresses the particular class of nonlinear systems that are described by ẋ(t) = Ax(t) + Bu(t) + Φ(x) + Ed(t) y(t) = Cx(t) (1.38) where the nonlinear function Φ(x) verifies the Lipschitz condition. A full order nonlinear UIO is proposed by the authors and a sufficient condition for its existence is provided in terms of a LMI problem. It is shown than the established condition is also necessary when applied to linear systems (i.e., Φ(x) = 0) and the proposed method becomes the classical ones of linear UIOs, see for instance [START_REF] Darouach | Full-order observers for linear systems with unknown inputs[END_REF][START_REF] Hou | Design of observers for linear systems with unknown inputs[END_REF]. This theory is not presented here since it is used and improved in Chapter 4.

• Application to the Mars Express Spacecraft

In [START_REF] Patton | Reliable fault diagnosis scheme for a spacecraft attitude control system[END_REF][START_REF] Patton | Robust fdi applied to thruster faults of a satellite system[END_REF], the UIO approach is used for thruster fault diagnosis of the Mars Express (MEX) spacecraft subject to disturbance, uncertainty and measurement noises. The main challenge is the detection and the isolation of faults in any one of the four active thrusters of the spacecraft during the phases of main engine burn that cause large torque and centre of mass disturbances. This is the so-called "thruster modulation" problem, which is difficult to solve using classical robust FDI methods. The structure of the MEX orbiter consists of a cube-shaped spacecraft together with two solar panel "wings" (see Fig. 1.4 for illustration). The proposed FDI strategy is based on a bank of UIOs (see Section 1.3.6) with minimum variance state estimation error, where a separate estimation of disturbance torque makes the isolation possible. Each observer is designed to be sensitive to a subset of faults (that have to be detected and isolated). The unknown input directions are estimated via additional states in an augmented state observer structure [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF]. Instead of using the nonlinear model of the spacecraft, a local linear mathematical models are estimated by means of a robust dynamic system identification approach based on the minimisation of the estimation error [START_REF] Simani | Model-based fault diagnosis in dynamic systems using identification techniques[END_REF]. The unknown inputs are updated in the moving window and the minimum variance estimator is re-initialized at the end of each window period. It is assumed that faults do not occur during the unknown input estimation phase.

Eigenstructure Assignment

In a similar way to UIO approach, the Eigenstructure Assignment (EA) technique aims at decoupling the effects of unknown inputs from the residual r. To the best knowledge of the author, only linear approaches have been developed. Therefore, consider a LTI system with faults and unknown inputs

ẋ(t) = Ax(t) + Bu(t) + E f 1 f (t) + Ed(t) y(t) = Cx(t) + Du(t) + E f 2 f (t) (1.39)
where E f 1 and E f 2 are entry (fault distribution) matrices multiplying the fault vector f ∈ R n f , d(t) ∈ R n d is the unknown input (or disturbance) vector entering the system through the known distribution matrix E assumed to be full column rank. Matrices A, B, C and D are of appropriate dimensions and (A, C) is assumed to be an observable pair.

Considering the above system, a Luenberger-like full state observer [START_REF] Luenberger | Observers for multivariable systems[END_REF] 

ẋ(t) = Ax(t) + Bu(t) + L (y(t) -ŷ(t)) ŷ(t) = C x(t) + Du(t) (1.40)
can be built to create a residual generator vector r ∈ R nr defined according to the relation

r(t) = Q (y(t) -ŷ(t)) (1.41)
where x(t) ∈ R nx is the state estimate vector, ŷ(t) ∈ R ny is the output estimate vector, and Q is the residual weighting matrix.

Defining the state estimation error e = xx, then the residual generator is governed by the following equations

ė(t) = A c e(t) + Ed(t) + E f 1 f (t) -LE f 2 f (t) r(t) = He(t) + QE f 2 f (t) (1.42)
where A c = (A -LC) and H = QC. The Laplace transformed residual response to faults and unknown inputs is thus

r(s) = QE f 2 f (s) + H(sI -A c ) -1 (E f 1 -LE f 2 )f (s) + H(sI -A c ) -1 Ed(s) (1.43)
There is a conflict between the effects that the uncertainty terms Ed and the fault terms E f 1 f and E f 2 f have on the residual response. In order to make the residual r be independent of unknown inputs d, it is necessary to null the entries in the transfer function matrix between the residual and the unknown inputs, i.e.,

G rd (s) = QC(sI -A c ) -1 E = 0 (1.44)
Once E is known, the problem is to find the matrices L and Q to satisfy (1.44), in addition to choosing the suitable eigenvalues to optimize the FDI performances [START_REF] Krokavec | Discrete-Time Systems[END_REF].

Methods for Fault Detection and Isolation

• Disturbance Decoupling Using Left Eigenvectors Assignment

Disturbance decoupling design via EA is to assign left observer eigenvectors orthogonal to all columns of E. This method can be briefly summarized as follows:

• Step 1: Calculate the residual weighting matrix Q such that QCE = 0

• Step 2: Determine the eigenstructure of A c : the eigenvalues of the observer are chosen according to the desired dynamic property of the residuals. The rows of QC must be the n r left eigenvectors of A c . The remaining (n xn r ) left eigenvectors will be chosen so that one can ensure a design with good conditioning.

• Step 3: Compute the gain matrix L using an appropriate EA technique.

A detailed design procedure for the disturbance decoupling residual generator via left eigenvector assignment is discussed in Chapter 3.

Remark 1.6. The observer feedback EA problem can be handled by means of a transformation of the dual control form. On assignment of the right eigenvectors to the dual control problem, these eigenvectors become the left eigenvectors of the observer system [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF][START_REF] Krokavec | Discrete-Time Systems[END_REF]. The assignment of the right eigenvectors for the control problem is a well-developed technique, see e.g., [START_REF] Krokavec | Dynamic Systems Diagnosis[END_REF][START_REF] Krokavec | Discrete-Time Systems[END_REF][START_REF] Liu | Eigenstructure assignment for control system design[END_REF][START_REF] Sobel | Eigenstructure assignment[END_REF].

• Disturbance Decoupling Using Right Eigenvectors Assignment

If the left eigenvector assignability conditions are not satisfied, an alternative approach can be used is to assign the columns of the matrix E as right eigenvectors of the observer dynamics. This approach is given by the following theorem:

Theorem 1.2 (Patton and Frank [229]). The sufficient conditions for satisfying the unknown input decoupling requirement (for right EA) are

1. QCE = 0,
2. all the rows of the matrix E are right eigenvectors of A c corresponding to any eigenvalues.

The assignment of the right observer eigenvectors (left eigenvector of dual controller) is a relatively new problem, only few investigators have considered this problem [START_REF] Choi | A simultaneous assignment methodology of right/left eigenstructures[END_REF][START_REF] Patton | Robust fault detection using eigenstructure assignment: A tutorial consideration and some new results[END_REF]. Some preliminaries to the assignment method proposed in [START_REF] Patton | Robust fault detection using eigenstructure assignment: A tutorial consideration and some new results[END_REF] is presented in the following theorem.

Theorem 1.3 (Patton and Chen [START_REF] Patton | Robust fault detection using eigenstructure assignment: A tutorial consideration and some new results[END_REF]). A vector v i can be assigned as a right eigenvector of A c corresponding to eigenvalue λ i ∈ Λ(A c ) only if "one" of the following necessary conditions is satisfied:

1. v i is not the right eigenvector of A corresponding to λ i and Cv i = 0 2. v i is the right eigenvector of A corresponding to λ i and Cv i = 0. The parameter perturbations considered in the robust control field are often approximated by

For the right eigenvector v

i of A c = (A -LC), it is possible to write (A -LC)v i = λ i v i (1.
∆A ≈ na i=1 α i (t)A i , ∆B ≈ n b i=1 β i (t)B i (1.48)
where A i and B i are known matrices with proper dimensions and α i and β i are unknown scalar time-varying factors. In this case, the modelling errors can be approximated by

Ed(t) = ∆Ax(t) + ∆Bu(t) = A 1 . . . A na , B 1 . . . B n b             α 1 (t)x(t) . . . α na (t)x(t) β 1 (t)u(t) . . . β n b (t)u(t)             (1.49)
Example 2: Consider the system matrices being functions of the parameter vector α ∈ R np , i.e., ẋ(t) = A(α)x(t) + B(α)u(t) (1.50) If the parameter has a perturbation around a nominal condition α = α 0 , this equation can be expanded as

ẋ(t) = A(α 0 )x(t) + B(α 0 )u(t) + np i=1 ∂A ∂α i δα i x(t) + ∂B ∂α i δα i u(t) (1.51)
In this case, the distribution matrix and unknown disturbance vector are expressed as

E = ∂A ∂α 1 ∂B ∂α 1 . . . ∂A ∂αn p ∂B ∂αn p (1.52) d(t) = δα 1 x T (t) δα 1 u T (t) . . . δα np x T (t) δα np u T (t) (1.53)
A more detailed study of this problem can be found in [START_REF] Chen | Optimal filtering and robust fault diagnosis of stochastic systems with unknown disturbances[END_REF][START_REF] Patton | Optimal unknown input distribution matrix selection in robust fault diagnosis[END_REF][START_REF] Patton | Observer-based fault detection and isolation: robustness and applications[END_REF].

Sliding Mode Observers

A special position among observer-based methods is occupied by the sliding mode observer (SMO). SMOs differ from linear Luenberger observers in that there is a nonlinear discontinuous term injected into the observer depending on the output estimation error. These observers are more robust than the Luenberger-like observers, as the discontinuous term enables the observer to reject disturbances, and also a class of mismatch between the system and the observer. The importance of the SMOs for FDI lies in their ability to reconstruct unmeasurable signals in a process, regardless of noise and uncertainty. SMOs force the output of the observer to exactly track the measured system output. SMOs have a natural fault estimation property [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF] since the "equivalent output error injection" needs to replicate and cancel the fault effects so that the output estimation error is zero.

In the work of Hermans and Zarrop [START_REF] Hermans | Sliding mode observers for robust sensor monitoring[END_REF] a SMO was designed such that, in the presence of faults, the sliding motion is destroyed. Edwards et al. [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF] used the same observer to estimate and thus detect and isolate faults using the so-called "equivalent output error injection" concept. However, in the presence of other disturbances (unmodelled dynamics, external disturbances, etc.), the estimation methods described in [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF] are no longer accurate. Tan and Edwards [START_REF] Tan | Sliding mode observers for robust detection and reconstruction of actuator and sensor faults[END_REF] proposed a design method for the observer parameters such that the L 2 gain from the disturbances to the fault estimation is minimised. Other techniques for designing FDI and FDD algorithms using SMOs can be found in [6].

The system model for the FDI analysis using SMO is based on a LTI system described by 

ẋ(t) = Ax(t) + Bu(t) + E fa f a (t,
y(t) = Cx(t) + f s (t) (1.59)
The sensor fault reconstruction can be posed in a similar fashion. The approach suggested in [START_REF] Tan | Sliding mode observers for robust detection and reconstruction of actuator and sensor faults[END_REF] is to transform the problem representation in (1.58) and (1.59) into the actuator formulation. This can be accomplished by first filtering the output

żf (t) = -A f z f (t) + A f y(t) (1.60)
where A f is a positive real matrix of time constants. Augmenting (1.58) with the filtering equation in (1.60) yields

           ẋ(t) żf (t) = A 0 A f C -A f x(t) z f (t) + B 0 u(t) + 0 A f f s (t) + E 0 d(t) y f = 0 I x(t) z f (t) (1.61)
Now f s appears as an actuator fault for the augmented system. Therefore, the observer structure for actuator faults in (1.55) can be used for the augmented system for sensor fault reconstruction.

In the further discussion on SMOs, only actuator faults are considered. If E fa from (1.54) has full column rank and n m ≥ n fa , then if ((A -G l C), E fa , W C) can be made passive2 by choice of the gains W and G l , a sliding mode observer as described in (1.55)-(1.57) can be obtained so that the signal z estimates the unmeasurable states despite the presence of the fault. In (1.56) the gain ρ 0 (t, y, u) must be sufficiently large to maintain a sliding motion in the presence of the faults and disturbances.

The observer synthesis is setup to produces a fault reconstruction signal f that minimizes the effects of uncertainty and noise on the estimation error in an L 2 -gain fashion. The reconstruction signal in (1.57) can be designed such that, if d = 0 then e f = f -f and the L 2 -gain from d to the estimation error e f = f -f is minimised. This is achieved by casting the problem of synthesizing the observer gains G l , G n and W as a convex optimization problem using LMI software. Further details can be found in [START_REF] Tan | Sliding mode observers for robust detection and reconstruction of actuator and sensor faults[END_REF].

As in typical L 2 minimisation problems, there are tradeoffs between robustness and performance as part of the design process. Obviously the observer can be designed to be robust against any uncertainty, but it can be over designed and the observers become insensitive to small magnitude and slow varying faults (and causes missed-alarms). However weighting the performance more over the robustness, can make the observer too sensitive to noise and uncertainty thus producing false alarms. Therefore careful tradeoffs between robustness and performance need to be made.

To summarize, the design procedure can be characterized by the following three steps:

• Step 1: Obtaining the model information A, B, C, including the uncertainty matrix E Methods for Fault Detection and Isolation and the fault distribution E fa .

• Step 2: Selecting the observer gains to guarantee the sliding surface is reached in finite time and that the motion when constrained to the surface is stable. This can be achieved by obtaining a SMO canonical form through state transformation, see e.g., [6,[START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF][START_REF] Tan | Sliding mode observers for detection and reconstruction of sensor faults[END_REF][START_REF] Tan | Sliding mode observers for robust detection and reconstruction of actuator and sensor faults[END_REF].

The observer gains G l and G n which minimize the effect of noise and uncertainty on the fault estimation is obtained using efficient LMI methods.

• Step 3: The fault signal reconstruction component is achieved through the gain W which is obtained as part of the LMI optimization process.

Remark 1.9. From the isolation point of view, the above introduced SMO is somewhat different from other typical model based residual generation schemes. There are two types of estimation from the SMO; the state (or output) estimate and the fault reconstruction/estimate. The fault reconstruction signal tries to estimate the magnitude and the shape of the faults and it is therefore able to distinguish small and short term faults from any noise or uncertainty. Also fault isolation is inherent. If the fault estimates are "nonzero", faults are present, and the larger the fault estimation size, the more severe the faults. As shown in [3], in practice a small threshold is needed during a fault-free condition to allow for small variations, model mismatches and noise in the system.

Remark 1.10. It should also be noted, that there are sliding mode observer designs in the literature which deal directly with nonlinear systems. Although the design synthesis is much more challenging, for well understood nonlinear systems such as aircraft and spacecraft, these ideas can be applied directly.

• Application to the Mars Express Spacecraft

A study presented in [5] is concerned with the development of an FDI scheme for the Mars Express Spacecraft (for more information see Section 1.3.2.2) operating in Sun Acquisition Mode (SACM). In this study a design of sliding mode observers for gyro and thruster fault detection and isolation is investigated. The main objective is to distinguish between the actuator and sensor faults which may occur during the SACM manoeuvre, and in the case of the later, to isolate the faulty gyro. A Monte Carlo campaign has been performed to assess the performance and the robustness of the SMO for the rigid satellite model with variations in initial conditions and parametric uncertainty. No effort were made to implement a threshold logic. In [START_REF] Nagesh | A sliding mode observer based fdi scheme for a nonlinear satellite systems[END_REF] this problem was further investigated and a fixed threshold was selected. The isolation task was achieved by a direction cosine vector projection method. A last square approach for an overdetermined system was presented in [START_REF] Nagesh | A sliding mode observer based sensor fault detection and isolation scheme for a nonlinear satellite system[END_REF] and used to detect fault in the gyros. A generalized bank of SMOs was used to isolate all possible sensor faults.

Geometric Approaches

The first concepts of geometric system theory were pioneered by Basile and Marro [START_REF] Basile | Controlled and conditioned invariant subspaces in linear system theory[END_REF] and Wonham and Morse [START_REF] Wonham | Decoupling and pole assignment in linear multivariable systems: a geometric approach[END_REF]. The concept was later extended to nonlinear systems where tools from differential geometry and Lie-algebra are primary used. In many cases, it is possible to convert the nonlinear and LTV problems into more easier LTI ones. The basic idea of the geometric approaches is to underline the problem of the residual generation for FDI with a given geometric interpretation. The geometric approach to design detection filters was initiated by Massoumnia [START_REF] Massoumnia | A geometric approach to the synthesis of failure detection filters[END_REF] for LTI systems. The geometric approach of the UIO problem was first introduced in [START_REF] Bhattacharyya | Observer design for linear systems with unknown inputs[END_REF] and different solutions were proposed in [START_REF] Frank | Robust fault diagnosis using unknown input schemes[END_REF]. In particular, in Massoumnia [START_REF] Massoumnia | A geometric approach to the synthesis of failure detection filters[END_REF] it was shown that the residual generation problem can be successfully solved for LTI system, using the geometric concept of unobservability subspaces. The concepts of invariant subspaces, separability and simultaneous detectability of the faults have been used for building a LPV FDI design procedure, see [START_REF] Bokor | Detection filter design for LPV systems -a geometric approach[END_REF]. Related results in FDI filter design for LTV systems can be found in [START_REF] Edelmayer | Robust detection filter design in the presence of time-varying system perturbations[END_REF], for bilinear systems in [START_REF] Hammouri | Observer-based approach to fault detection and isolation for nonlinear systems[END_REF] and the inversion-based approach for LTI systems in [START_REF] Edelmayer | Input reconstruction by means of system inversion: a geometric approach to fault detection and isolation in nonlinear systems[END_REF][START_REF] Szigeti | Fault detection and isolation filter design by inversion: The case of linear systems[END_REF].

Consider the state space description of the nominal LTI system subjected to multiple faults

       ẋ(t) = Ax(t) + Bu(t) + n f i=0 R i f i (t) y(t) = Cx(t) (1.62)
where R i is the known fault direction vector via the unknown function f i , representing the fault, enters. It is assumed that (A, C) is an observable pair. The goal is to detect and isolate faults by applying a residual generator based on the full-order state observer, as in (1.40) but with D = 0. Definition 1.1 (Edelmayer et al. [START_REF] Edelmayer | Robust detection filter design in the presence of time-varying system perturbations[END_REF]). A detection filter capable of detecting and isolating multiple faults is a state observer of the form as given in (1.40), whose static gain L is designed in such a way that the effects of the failure modes f i are assigned to independent subspaces W i ∈ R nx , different from zero. In geometrical terms

ImR i ⊆ W i , (A -LC)W i ⊆ W i , i = 1, . . . , n f (1.63) such that ImR i ∩ KerC = 0 (1.64)
Moreover, in the output error space, the output image of W i is decoupled, i.e.,

CW i ∩ n f i =j CW i = 0, i, j = 1, . . . , n f (1.65)
The closed loop transition matrix (A-LC) is required to be stable, more precisely its eigenvalues λ i , i = 1, . . . , n x have all negative real parts assuming its egenvalue spectrum Λ is arbitrarily assignable with only conjugate symmetry constraints, i.e., max{ (λ i ) : The (C, A)-invariance property of W i implies that the controllable space of R i with respect to the closed-loop transition matrix (A -LC) is the infimal (C, A)-invariant subspace containing ImR i , i.e., inf A -LC|R i 3 . This will be denoted by W * i (R i ) in the sequel. That is to say, the family of the controllable subspaces of (A -LC|R i ) is a subfamily of the (C, A)-invariant subspaces of the filter.

λ i ∈ Λ(A -LC) < 0}, ∀i = 1, . . . ,
Recall that the controllability subspace is the set W * ⊆ R nx of initial points x(0) that can be controlled by appropriate state feedback K to the origin of the state-space in finite time. W * is always a linear subspace of R nx . When W * = R nx , the system is said to be controllable. More precisely, W * i is the controllable subspace of the pair (A -LC|R i ), i.e.,

W * i = A -LC|ImR i (1.66)
In order to compute the minimal (C, A)-invariant subspaces a recursive algorithm can be used [START_REF] Murray | Linear multivariable control[END_REF]]

W l+1 i = ImR i + A(W l i ∩ KerC), W 0 i = 0 (1.67)
and then the infimal subspace W * i is given by lim l→∞ W l i .

• Inversion-based Detection Filter Design

A view of the inversion-based input reconstruction, with special emphasis to the aspects of fault detection and isolation by using invariant subspaces, and the results of classical geometrical system theory is provided in the next. The power of this kind of geometric approach is due to its direct treatment of the fundamental structural questions at the root of many important synthesis problems in control and systems theory such as the properties of inverse generation.

The existence of a left inverse for an LTI system is introduced first.

Proposition 1.1 (Wonham [298]). The system Σ : (A, B, C) given in state space form is left invertible if and only if A is monic (i.e., it has full column rank) and

V * ∩ ImB = 0 (1.68)
where V * is the supremal (A, B)-invariant subspace in KerB and F is the feedback, such that (A -BF )V * ⊆ V * (i.e., (A -BF ) is maximally unobservable).

This proposition, in particular, is equivalent to the condition that the largest controllability subspace of KerC (noted X *4 ) is zero. The subspace V * can be calculated by using the (A, B)invariant subspace algorithm without explicitly constructing F .

Proposition 1.2 (Edelmayer et al. [START_REF] Edelmayer | Input reconstruction by means of system inversion: a geometric approach to fault detection and isolation in nonlinear systems[END_REF]). Consider the left invertible system Σ : (A,B,C).

The dynamics of the (left) inverse can be given as the restriction of (A -BF ) on V * ,

A inv = (A -BF )|V * (1.69)
The dimension of the state space for the inverse system is n inv = dimV * = n xn p (p), where n x is the state dimension of Σ, p is its (vector) relative degree and n p (p) = m i=1 p i .

LTI inversion design steps: the inverse dynamics of the system (A, B, C) can be obtained thanks to the algorithmic procedure described in the following. • Step 2: Choose a basis for V * and compute the state transformation matrix T , i.e.,

z = T x = ξ η , ξ ∈ V * ⊥ , η ∈ V * (1.70) such that T -1 = [ B Ξ V * ], ImΞ ⊂ V * ⊥ (1.71)
where V * is the insertion map of V * . In a new coordinate system the state matrices will take the form

Ā = Ā11 Ā12 Ā21 Ā22 , B = B1 0 , C = C1 0 (1.72)
Since B1 is monic there exists a unique matrix F 2 such that B1 F 2 = -Ā12 .

• 

A inv = Ā22 , B inv = Ā21 S -1 0 (1.76)
Finally, the input function u can be obtained from the following equation

u(t) = C inv η(t) + D inv v inv (t) (1.77)
where C inv = F 2 , and

D inv = Z - S Ā11 S -1 0 0 0 (1.78)
The matrix Z is given by

Z =       Z 1 0 . . . 0 E 1 0 Z 2 . . . 0 E 2 . . . . . . 0 0 . . . Z np E np       , Z i =         0 1 0 . . . 0 0 0 0 1 . . . 0 0 . . . . . . 0 0 0 . . . 1 0 0 0 0 . . . 0 0         , E i = 0 e T i
where e i being the i th unit vector in R np .

Remark 1.11. In some situations the derivatives of certain output signals of the system are directly measured, and these can be utilized in this approach. This procedure can be used in some cases when other approaches like the (C, A)-invariant subspace based detection filter design method fails to provide a stable filter. The cost at which it can be obtained is that one needs to use the integrals of certain output signals in the residual generators as artificial inputs.

Remark 1.12. The method described in this section considers linear geometric approaches. However nonlinear approaches have been also developed by some authors. The interested reader can refer to the non exhaustive list of publications [START_REF] Bokor | Fault detection and isolation in nonlinear systems[END_REF][START_REF] De Persis | A geometric approach to nonlinear fault detection and isolation[END_REF][START_REF] Edelmayer | Fault Detection in Dynamic Systems: From State Estimation to Direct Input Reconstruction[END_REF][START_REF] Edelmayer | Input reconstruction by means of system inversion: a geometric approach to fault detection and isolation in nonlinear systems[END_REF].

Parameter Identification-based Approaches

To estimate the internal (states or physical parameters) and/or external (outputs) variables of the system, one is led to apply estimation or filtering techniques. Consider the dynamics of a nonlinear stochastic system expressed in the following state-space discrete time representation

x k = f k x k-1 , u k-1 + w k y k = g k x k , u k + v k (1.79)
where w k and v k are independent zero-mean white noise sequences. The vector

x k ∈ R nx , u k ∈
R nu and y k ∈ R ny denotes the state, input and output vector, respectively. The vector function f k and g k describes the trajectory dynamic of the state and the output vector, respectively. Both f k and g k are assumed to be continuous and differentiable functions.

In general, considering the fault detection problem, the results of the estimation procedure can be used in two different ways:

• If one looks at the estimated outputs, the approach would be to form residual signals defined by the difference between the real measurements and the estimated output vector. Then performing various tests on the resulting innovation sequence, which can be used for hypothesis testing [START_REF] Ducard | Efficient nonlinear actuator fault detection and isolation system for unmanned aerial vehicles[END_REF]. The decision test may be a simple threshold logic, or a more complex mechanism if the probabilities of wrong decisions are a priori imposed. Commonly used statistical test are the sequential Wald's test or the Pearson's test [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF][START_REF] Belsley | Weak Data[END_REF].

• If one is interested in monitoring of the internal variables (states and/or physical parameters), a consistency check in the parameter or state space can be done in order to monitor (detect) the unusual changes in the system behavior. A geometric solution to derive a CR2 decision test can be found in [START_REF] Zolghadri | An algorithm for real-time failure detection in kalman filters[END_REF].

Basically, an estimation problem rests in stochastic estimation of the state vector x k via its aposteriori probability density p(x k |Y 1:k ), where Y 1:k = {y 1 , y 2 , . . . , y k } is a matrix containing the past measurements collected on the system and available at time k. According to the Bayes' theorem, the a-posteriori density p(x k |Y 1:k ) can be evaluated using the following recursion

p x k |Y 1:k = p y k |x k p x k |Y 1:(k-1) p y k |Y 1:(k-1) (1.80) 
where p(x k |Y 1:(k-1) ) is obtained using the Chapman-Kolmogorov's relation [START_REF] Krokavec | Optimal Stochastic Systems[END_REF][START_REF] Papoulis | Stochastic processes[END_REF] 

p x k |Y 1:(k-1) = p x k |x k-1 p x k-1 |Y 1:(k-1) dx k-1 (1.81)
and p(y k |Y 1:(k-1) ) is a normalization constant defined by

p y k |Y 1:(k-1) = p y k |x k p x k |Y 1:(k-1) dx k (1.82)
Solving the recursive relation (1.81) provides an optimum solution to the filtration problem in the Bayesian sense [START_REF] Lewis | Optimal estimation: with an introduction to stochastic control theory[END_REF].

Generally, the optimal estimation of (1.81) in finite time horizon is practically not possible [START_REF] Krokavec | Optimal Stochastic Systems[END_REF][START_REF] Lewis | Optimal estimation: with an introduction to stochastic control theory[END_REF]. Solving this problem leads to different approximation techniques. Some of them will be introduced in the following paragraphs.

Remark 1.13. Note that if the functions f and g are linear, and ones is interested in the estimation of an augmented state vector (including some physical parameters), then the filtering problem is naturally nonlinear due to the coupling between the states and the parameters.

Extended Kalman Filter

An approach commonly used to solve the estimation problem given by (1.81) rests in using the Extended Kalman Filter (EKF). This approach is based on linearization of f and g using the first-order Taylor expansion around the current estimate of xk|k [START_REF] Crassidis | Optimal estimation of dynamic systems[END_REF][START_REF] Nørgaard | New developments in state estimation for nonlinear systems[END_REF].

The EKF estimation algorithm is based on the discrete time nonlinear state-space representation given by (1.79), where w k and v k are the uncorrelated process and measurement noise, respectively, that are assumed to be white Gaussian random processes with zero mean E{w k } = 0, E{v k } = 0 and with covariance matrix

E w i v i w T j v T j = Q 0 0 R δ ij E {x 0 } = x0 , E (x 0 -m 0 )(x 0 -m 0 ) T = P 0
where x 0 is a stochastic state vector with mean x0 and covariance matrix P 0 uncorrelated with the state noise w k and the measurement noise v k vectors.

Following the method proposed in [START_REF] Nørgaard | New developments in state estimation for nonlinear systems[END_REF], the problem of recursively estimating the state vector x k can be formulated as a nonlinear filtering problem that minimises the conditional mean-square error, i.e., xk = arg min

E xk xT k |Y 1:k (1.83)
where xk = x kxk is the state estimate error. The recursive algorithm of the extended Kalman filter is then given by the recursive application of the prediction-correction steps given by the following equations:

• The prediction step

xk|k-1 = f k xk-1|k-1 , u k (1.84)
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P k|k-1 = A k-1 P k-1|k-1 A T k-1 + G k-1 QG T k-1
(1.85)

• The correction step

K k = P k|k-1 C T k C k P k|k-1 C T k + H k RH T k -1 (1.86) ŷk = g k xk|k-1 , u k (1.87) xk|k = xk|k-1 + K k y k -ŷk (1.88) P k = I -K k C k P k|k-1 (1.89)
where

A k-1 = ∂f ∂x (x k-1|k-1 ), C k = ∂g ∂x (x k|k-1 ), G k-1 = ∂f ∂w (w k-1 ), H k = ∂g ∂v (v k )
characterize the system matrices, linearized and evaluated at the current value. Matrix K k represents the non-stationary Kalman gain calculated at time instance k.

The main issue of this approach is the linearization process, which could lead to highly unstable filter performance if the time-step intervals are not sufficiently small. On the other hand, small time-step intervals could lead to computational overhead. One should also mention that the derivation of the Jacobian matrices are nontrivial in most practical cases and may lead to significant implementation burden. Some improved versions of the EKF were developed to avoid these drawbacks. Mentioned may be the Second-Order EKF (SOEKF) [START_REF] Sadeghi | Second-order ekf and unscented kalman filter fusion for tracking maneuvering targets[END_REF], which by calculating the Hessian matrix, can reduce the risk of divergence of the estimator, but against a larger computational cost. Another alternative is to use polynomial approximation techniques for nonlinear functions [START_REF] Nørgaard | New developments in state estimation for nonlinear systems[END_REF]. In comparison with the Taylor approximation, it does not require Jacobian calculations, but only function evaluations. This allows for an easier implementation.

Remark 1.14. Although this method presents some optimality proofs, the key feature remains the a-priori choice of the covariance matrices Q and R. The process covariance matrix Q controls the flexibility of the model whereas the measurement covariance matrix R controls the flexibility of the measurement equations.

Particle Filtering

The particle filtering approach [START_REF] Doucet | On sequential simulation-based methods for Bayesian filtering[END_REF][START_REF] Liu | Sequential monte carlo methods for dynamic systems[END_REF][START_REF] Pitt | Filtering via simulation: Auxiliary particle filters[END_REF], also called the "Condensation Algorithm" or the "Markov Chain Monte Carlo Method" is a sequential probabilistic technique for approaching the distribution of the conditional probability of the state p(x k |Y 1:k ). The key idea is to represent (at any time instance k) the required posterior density function by a set of N random particles p i , i = 1, . . . , N with associated weights and to compute estimates based on these samples and weights. At time instance k, each particle p i is characterized by a pair {x i k , w i k } N i=1 (see Fig. 1.5 for illustration) where x i k represents the possible trajectory of the state (known as the support points) and w i k denotes the posterior density to this trajectory (weights). The particles evolve according to the state equation of the system (prediction step) and weights are adjusted at each iteration k depending on the observations (correction step).

Consider that the monitored system (1.79) is a Markov process 5 , where w k and v k are the 

w i k-1 = 1.
Then, the posterior density p(x k-1 |Y 1:(k-1) ) at k -1 can be approximated as

p x k-1 |y 1:(k-1) N i=1 w i k-1 δ(x k-1 -x i k-1 ) (1.90) 
where δ(•) represents the Dirac delta measure. The recursive prediction-correction algorithm can be summarized as follows (the interested reader can refer [START_REF] Doucet | Sequential Monte Carlo methods in practice[END_REF]):

• The prediction step

If p(x k , x k-1 |Y 1:(k-1)
) is the joint Probability Density Function (PDF) of the state, then the marginal PDF of the state x k can be written as follows

p x k |Y 1:(k-1) = p x k , x k-1 |Y 1:(k-1) dx k-1 (1.91)
According to the rule p(x, y) = p(x|y)p(y) and taking up the assumption that the monitored system is described by a Markov process, it follows that p(

x k , x k-1 |Y 1:(k-1) ) = p(x k |x k-1 )
which makes it possible to reformulate the joint PDF (1.91) as follows

p x k |Y 1:(k-1) = p x k |x k-1 p x k-1 |Y 1:(k-1) dx k-1 (1.92)
Using the approximation given by equation (1.90), the above equation can be rewritten as follows

p x k |Y 1:(k-1) = N i=1 w i k-1 p(x k |x i k-1 ) (1.93)
and makes it possible to write the predicted PDF p(x k |Y 1:(k-1) ) according to the following relation Methods for Fault Detection and Isolation

p x k |Y 1:(k-1) = N i=1 w i k|k-1 δ(x k -x i k|k-1 ) (1.94)
where x i k|k-1 is obtained from independent realizations of the transition probability law p(x k |x i k|k-1 ) where w i k|k-1 = w i k-1 .

• The correction step

Consists in passing the predicted PDF law p(x k |Y 1:(k-1) ) with the conditional PDF law p(x k |Y i:k ) by use of the likelihood p(y k |x k , Y 1:k ). The conditional PDF can be then approximated by another Dirac delta support

x i k = x i k|k-1 such that p x k |y 1:k = N i=1 w i k δ(x k -x i k ) (1. 95 
)
w i k = w i k|k-1 p(y k |x k ,Y 1:k ) N i=1 x i k|k-1 p(y k |x k ,Y 1:k ) , i = 1, 2, . . . , N (1.96)
Remark 1.15. However, the EKF always approximates p(x k |Y 1:(k-1) ) to be Gaussian. If the true density is non-Gaussian, then a Gaussian can never describe it well. In such cases, particle filters 6 will yield an improvement in performance in comparison to that of an EKF [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian bayesian tracking[END_REF].

Unscented Kalman Filter

The Unscented Kalman Filter (UKF) represents a derivative-free alternative to the EKF (discussed in the previous Section 1. 3.3.1), and provides superior performance with an equivalent computational complexity [START_REF] Haykin | Kalman filtering and neural networks[END_REF][START_REF] Wan | The unscented kalman filter for nonlinear estimation[END_REF]. The state distribution is again represented by Gaussian random variables, but is now specified using a minimal set of careful chosen sample points. The sample points completely capture the true mean and covariance of the Gaussian distribution, and when propagated through the true nonlinear system, captures the posterior mean and covariance accurately to the 2 nd order (Taylor series expansion) for any nonlinearity. This property is achieved by the unscented transformation. The idea is then to approximate the a-posteriori PDF p(x k |Y 1:(k) ) by a set of (2n + 1) points, called "sigma points", chosen so that some of their statistical properties (e.g., mean, covariance, etc.) are identical to those of the a-priori distribution. These points are then propagated through the system dynamics, through the analytical expressions of f and g given by (1.79), in order to evaluate the mean and the covariance matrix of the predicted state. The algorithm of the unscented transformation is introduced in [START_REF] Wan | The unscented kalman filter for nonlinear estimation[END_REF].

Remark 1.16. It should be noted that this transformation is very similar to the Monte Carlo used as part of the particle filtering. The main difference lies in the fact that the Sigma Points (particles in the case of particle filtering) are not random, but deterministically chosen in order to estimate the distribution of the state with a minimum number of points.

Based on the unscented transformation and considering the random variable x a k ∈ R η defined as the concatenation of the state vector x k , of the process noise w k and of the measurement 

v k , i.e., x a k = [x T k , w T k , v T k ]
T where η = (2n + m), it follows that the unscented Kalman filter can be described as the recursive form of the unscented transformation obtained through the correction equation of the Kalman gain [START_REF] Julier | A new extension of the kalman filter to nonlinear systems[END_REF].

Considering the initial mean and covariance matrix of x a k as

xa 0 = E {x a 0 } = [E{x 0 }, 0, 0] T , P a 0 = E (x a 0 -xa 0 )(x a 0 -xa 0 ) T =    P 0 0 0 0 Q 0 0 0 R   
where the initial distribution of the Sigma points is given by

χ a,i k-1 = xa,i k-1 xa,i k-1 ± (η + λ)P a,i k-1 , i = 1, . . . , 2η (1.97) 
then the prediction-correction algorithm of the UKF is given by the following equations

• The prediction step

χ i k|k-1 = f k χ i k-1 , u k (1.98) xk|k-1 = 2η i=0 w m i χ i k|k-1
(1.99)

P k|k-1 = 2η i=0 w c i [χ i k|k-1 -xk|k-1 ][χ i k|k-1 -xk|k-1 ] T (1.100) y i k|k-1 = h k χ i k-1 , u k (1.101) ȳk|k-1 = 2η i=0 w m i y i k|k-1
(1.102)

• The correction step

P ȳk ȳk = 2η i=0 w c i [y i k|k-1 -ȳk|k-1 ][y i k|k-1 -ȳk|k-1 ] T (1.103) P xk ȳk = 2η i=0 w c i [χ i k|k-1 -xk|k-1 ][y i k|k-1 -ȳk|k-1 ] T (1.104) K k = P xk ȳk P -1 ȳk ȳk (1.105) xk = xk|k-1 + K k (y k -ȳk|k-1 ) (1. 106 
)

P k = P k|k-1 -K k P ȳk ȳk K T k (1.107)
The parameters w m i and w c i represent the weights associated with the Sigma points and are set through different parameter adjustment methods. These allow control the distribution of Sigma points around the mean and reflect the real distribution of the state (see [START_REF] Julier | A new extension of the kalman filter to nonlinear systems[END_REF] for more details).

• Application to HL-20 Reusable Launch Vehicles

The HL-20 Re-entry Launched Vehicle (RLV) (see Fig. 1.6 for an illustration) was defined as a component of the Personnel Launch System (PLS) mission. This has initially been designed to Methods for Fault Detection and Isolation support several manned-space missions including the orbital rescue of astronauts, the International Space Station (ISS) crew exchange and some satellite repair missions. In the case of RLV, actuator faults and control effectors damages may lead to substantial performance degradation and instability of the closed-loop system. Information about the failed control surface position is necessary in order to access the remaining capabilities of the vehicle to be rotationally trimmed. Since no control surface sensors are today implemented on RLV (because of weight and thermal constraints), the faulty actuator deflection can be considered as an unknown input which has to be estimated. The work presented in [START_REF] Falcoz | A nonlinear fault identification scheme for reusable launch vehicles control surfaces[END_REF] deals with this important issue. In this work, it is assumed that the faults in on the control surfaces have been successfully diagnosed (by any method) and thus the focus is on the fault identification problem. In order to estimate the position of the faulty actuator deflections, a nonlinear extended Kalman-type estimator is proposed. The identification scheme is based on a modified EKF which does not requires derivatives, leading to an easy implementation at each updating time. A Particle Swarm-based optimization algorithm is used to derive automatically the process and measurement noises matrices Q and R.

Norm-based Approach

The robust residual generation problem can also be formulated as an optimization problem, where the sensitivity of the residuals with respect to noise and unknown disturbance is minimized and the sensitivity with respect to faults is maximized. A good survey paper of this approach can be found in [START_REF] Henry | A norm-based point of view for fault diagnosis: Application to aerospace missions[END_REF][START_REF] Mangoubi | Model-based fault detection: the optimal past, the robust present and a few thoughts on the future[END_REF][START_REF] Stoustrup | Fault estimation -a standard problem approach[END_REF].

The Pure H ∞ Filtering Formulation

The pure H ∞ -based fault estimation problem is equivalent to the design problem of a (stable) dynamic filter F (s) such that, for all model perturbations ∆ ∈ ∆ ∞ ≤ 1, f is an optimal estimate, in the H ∞ -norm sense, of the fault signal f .

It is then shown in [START_REF] Niemann | Multi objective design techniques applied to fault detection and isolation[END_REF] that the problem of estimation of faults can be formulated by the synthesis scheme given in Fig. 

y(s) = F u (s) P (s), ∆(s)    d(s) f (s) u(s)    , u(s) = K(s)y(s) (1.108)
where d denotes the exogenous disturbances (including measurement noise) and f models the faults to be estimated. The controller is placed in a feedback control loop and is assumed to be known. The output of the filter F represents an estimate f of the real fault signal f . The filter F uses the all available signals y and u to construct the estimate signal f

f (s) = F (s) y(s) u(s) (1.109)
The known Linear Time-Invariant (LTI) model is denoted by P . The block diagonal operator ∆ specifies how the modelling errors influence the system.

To achieve high FDD performance, some model-based FDD schemes include a fault model in the design procedure. Then the design objectives, in terms of robustness and sensitivity, can be specified by a weighting filters W f and W d as

f (s) = W f (s)f (s), d(s) = W d (s)d(s) (1.110)
Here, the fault model is represented as a colouring filter for f . In other words, f is considered to be the result of filtering a fictitious signal f through a filter W f . This filter is chosen taking into account the frequency location of the fault to be detected, e.g., if the energy of the faults to be detected are located at low frequencies, W f is chosen to be a low-pass filter. The same assumptions hold for d and W d . Now, let define the estimation error signal as e = f -f . Then the design problem turns out to be a minimization problem of the maximal gain of the closed-loop transfers from the signals f and d to the fault estimation error e. In other words, the goal is to design the filter F so that

T e d ∞ < α, ∀∆ ∈ ∆ : ∆ ∞ ≤ 1 (1.111) T e f ∞ < β, ∀∆ ∈ ∆ : ∆ ∞ ≤ 1 (1.112)
where T e f and T e d denote the closed-loop transfer functions between e and f , and between e and d, respectively. α and β are two positive constants which are introduced to manage
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separately T e f ∞ and T e d ∞ .

Including the weighting filters W f and W d into the model P and using the small gain theorem, it is straightforward to verify that the conditions (1.111) and (1.112) are satisfied if and only if ∃F :

F l ( P , F ) ∞ < 1, ∀∆ ∈ ∆ : ∆ ∞ ≤ 1 (1.113)
where F l ( P , F ) denotes the lower linear fractional transformation of P and F . P is also deduced from P , W f and W d by using tools of the LFR algebra.

The problem can by finally solved using two approaches developed in the research community.

The first involves the solution of a Riccati equation (see for instance [START_REF] Mangoubi | Robust estimation and failure detection: A concise treatment[END_REF]) and the second approach uses linear matrix inequality (LMI) optimization techniques [START_REF] Zhong | An LMI approach to design robust fault detection filter for uncertain LTI systems[END_REF]. Since an LMIbased approach has the advantage of eliminating the regularity restrictions attached to the Riccati-based solution, the LMI-based approach is often preferred.

The H ∞ /H -Approach

The H ∞ /H -approach considers the problem of designing a structured residual vector r in the following general form

r(s) = z(s) -ẑ(s) (1.114)
This residual signal is the basis for FDI and should have desired properties. Let y be a subset of available measurements and u the control inputs, then z is defined as a linear combination of y and u z(s) = M y y(s) + M u u(s) (1.115) where M y and M u are two residuals structuring (constant) matrices of appropriate dimension. They can also be called FDD allocation matrices.

The stable dynamical filter, F , is supposed to generate

ẑ(s) = F (s) y(s) u(s) , u(s) = K(s)y(s) (1.116)
where ẑ(s) is an estimation of z(s) and K denotes the controller.

This approach is based on jointly design of the FDD allocation matrices M y , M u and the FDD filter F (s) such that the effects that faults have on the residual r are maximized in the H -norm sense whilst the influence of the unknown inputs d and model uncertainties are minimized in the H ∞ norm sense. That is max T rf -, and min

T rd ∞ , ∀ω ∈ Ω (1.117)
where T rf denotes the closed-loop transfer between r and f , T rd the closed-loop transfer between r and d, and Ω is the frequency range where the energy of the faults is likely to be concentrated.

Various design goals and trade-offs can be achieved by using the different combinations of the norms. The main advantages are:
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• H ∞ specifications are convenient to enforce robustness to model uncertainty (disturbances, parametric uncertainties, neglected dynamics),

• H -specifications are useful for fault sensitivity requirements over specified frequency ranges,

• H 2 specifications are convenient to take into account the stochastic nature of disturbances, and

• H 2g specifications and poles assignment are convenient to tune the transient response and to enforce some minimum decay rate of the residuals.

The H ∞ /H -based FDD techniques are generally reputed to give robust but conservative solutions. The problem comes from the fact that, once the diagnostic filter is designed, no systematic analysis procedure is proposed to refine and manage the design trade-offs. It is clear that if the design method is associated with a suitable post-analysis process, an iterative refinement process can be established to get a good balance between different design trade-offs. In addition to get "as close as possible" to the required robustness/performance specifications, there is no reason for the final result to be conservative. Similarly to the H ∞ design and µ-analysis cycle used in the robust control community, the method proposed in [START_REF] Henry | Fault diagnosis of microscope satellite thrusters using H ∞ /Hfilters[END_REF][START_REF] Henry | A norm-based point of view for fault diagnosis: Application to aerospace missions[END_REF][START_REF] Henry | H ∞ /H-filters for fault diagnosis in systems under feedback control[END_REF][START_REF] Henry | Design and analysis of robust residual generators for systems under feedback control[END_REF][START_REF] Henry | A multi-objective filtering approach for fault diagnosis with guaranteed sensitivity performances[END_REF] provides a solution to the aforementioned problems by providing a complete design/analysis cycle.

With regards to the design task, the procedure aims to generate a structured residual vector r in the general form (1.114)- (1.116). With regards to the post-design analysis procedure, a test is proposed to check if all the FDI objectives are achieved in the face of specified structured and/or unstructured model perturbations. The problem is formulated using an appropriate performance index, defined with respect to the effects of underlying faults on the residual signal. Testing the performances of residual generators results in a min-max optimization problem which cannot be formulated and solved using the classical "µ-analysis" framework. The method proposed by [START_REF] Henry | H ∞ /H-filters for fault diagnosis in systems under feedback control[END_REF][START_REF] Henry | Design and analysis of robust residual generators for systems under feedback control[END_REF][START_REF] Henry | A multi-objective filtering approach for fault diagnosis with guaranteed sensitivity performances[END_REF] provides a remarkably powerful solution to the problem by a FDI-oriented generalized µ-analysis procedure, denoted by the authors the µ g -analysis procedure.

This method can be seen as a nice and practically "advanced" framework in which various design goals and trades-off are formulated and managed. It corresponds to a complete design/analysis cycle and has the following advantages:

-Systematic formulation of different design trade-offs.

-The residuals structuring matrices are jointly optimised with the dynamical part of the FDI filter. Their role is to merge optimally the available on-board measurements and the control signals to build the fault indicating signal.

-The control system can be included explicitly in the design.

-The µ g tool is used as FDD-oriented performance measure: similarly to the µ-analysis procedure that allows for checking the robust performance of any LTI control law, the µ g tool can be used as a general FDD-oriented performance measure for LTI model-based fault diagnosis scheme.

To go deeper into the method, consider the following model in the LFR form placed in a feedback 

y(s) = (∆(s) * P (s))    d(s) f (s) u(s)    , u(s) = K(s)y(s) (1.118)
The system model consists in a nominal LTI model P and a perturbation block ∆ ∈ ∆ : ∆ ∞ ≤ 1 acting on the nominal model. ∆ describes the set of all perturbations of a prescribed structure, i.e., ∆ = blockdiag(δ

r i I k i , δ c j I k ji , ∆ l ) (1.119)
where

δ r i I k i , i = 1, . . . , m r , δ c j I k j , i = 1, .
. . , m c and ∆ l , l = 1, . . . , m c are known respectively as the "repeated real scalar" blocks, the "repeated complex scalar" blocks and the "full complex" blocks. It is assumed that all model perturbations are represented by ∆.

Figure 1.8 -The FDI filter design problem

Let f entering in ((∆(s) * P (s)) * K) be detectable faults and the residual vector r be defined according to (1.114)- (1.116). The goal is to derive simultaneously M y , M u and the state space matrices of the dynamical filter L such that the residual vector r meets the following specifications:

(S.1) -T rd ∞ < γ 1 , for all perturbations model ∆ ∈ ∆ : ∆ ∞ ≤ 1 (S.2) -T rf -> γ 2 , over a specified frequency range Ω for all ∆ ∈ ∆ : ∆ ∞ ≤ 1
The specification (S.1) represents the worst-case robustness of the residual to disturbances d for all specified model perturbations, in the H ∞ norm sense. Under plant perturbation, the effect that the exogenous disturbances acting on the system have on the residual, can greatly increase. The fault detection performance may then be considerably degraded. A robust fault sensitivity specification is then needed to maintain a detection performance level of the FDI unit. Here the smallest gain of T rf is used to guarantee the worst-case sensitivity of the residual to faults (see specification (S.2)). It is clear that the smaller γ 1 and the bigger γ 2 are, the better the fault detection performances will be.

Generally speaking, to achieve high FDI performances, model-based FDI schemes use disturbance, measurement noise and fault models into the design procedure. Here, such models are expressed in terms of shaping filters, i.e., of desired gain responses for the appropriate closed-loop transfers. The objectives are then turned into uniform bounds by means of the shaping filters. To proceed, let W d and W f be the (dynamical) shaping filters associated to the robustness and 

W d ∞ ≤ γ 1 , W f -≥ γ 2 (1.120)
Assume that W d and W f are invertible (this can be done without loss of generality because it is always possible to add zeros in W d (s) and W f (s) to make them invertible). Thus, it is obvious that if the condition

T rd W -1 d ∞ < 1, ∀∆ ∈ ∆ : ∆ ∞ ≤ 1 (1.121)
is satisfied, then the robustness design specification (S.1) yields. Now, the following proposition is needed to transform the fault sensitivity specification (S.2) into a H ∞ requirement.

Lemma 1.1 (Henry and Zolghadri [START_REF] Henry | Design and analysis of robust residual generators for systems under feedback control[END_REF]). Consider the shaping filter W f defined above. Let W F be a right invertible transfer matrix so that W f -= γ 2 λ W F -and W F -> λ, where λ = 1 + γ 2 . Define the signal r such that r = r -W F (s)f (s) (see Fig. 1.9 for easy reference). Then a sufficient condition for the fault sensitivity specification (S.2) to hold, is

T rf ∞ < 1, ∀∆ ∈ ∆ : ∆ ∞ ≤ 1 (1.122)
where T rf denotes the transfer between r and f 

r(s) r(s) = ∆(s) * P (M y , M u , s) * L(s) d(s) f (s) (1.123)
Then by virtue of the small gain theorem, it follows that a sufficient condition is

P (M y , M u ) * L ∞ < 1 (1.124)
This equation seems to be similar to a standard H ∞ equation. However, this is not the case since the transfer P (M y , M u ) depends on M y and M u , which are part of the sought solution.

A solution may then consist in choosing them heuristically. However, there is no guarantee of the optimal solution. To solve this problem, a SDP (Semi Definite Programming) formulation is derived in [START_REF] Henry | H ∞ /H-filters for fault diagnosis in systems under feedback control[END_REF][START_REF] Henry | Design and analysis of robust residual generators for systems under feedback control[END_REF] by means on the bounded real lemma [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF] and the projection lemma [START_REF] Gahinet | A linear matrix inequality approach to H-infinity control[END_REF].

Since the conditions stated by (1.122) and (1.124) are only sufficient conditions, what is the degree of conservatism of the obtained solution (M y , M u , L(s))? The FDI filter design method described in the previous section does not account for the structure of the model perturbation block ∆. This means that the solution (M y , M u , L(s)) can be conservative in some cases. Furthermore, the condition γ > 1 does not imply with certainty that the FDI filter does not meet the desired H ∞ /H -specifications.

To check if the required performances are achieved, the robust test based on the generalized structured singular value (denoted µ g ) proposed in [START_REF] Henry | H ∞ /H-filters for fault diagnosis in systems under feedback control[END_REF][START_REF] Henry | A new multi-objective filter design for guaranteed robust FDI performance[END_REF][START_REF] Henry | A multi-objective filtering approach for fault diagnosis with guaranteed sensitivity performances[END_REF]] can be used. Robust stability, i.e., stability of all models in the model set (∆(s) * P ), is analyzed with the µ-function. The real-valued function µ is the inverse of the size of the smallest destabilizing perturbation ∆ [START_REF] Doyle | Analysis of feedback systems with structured uncertainties[END_REF]. Consequently, µ-analysis guarantees stability for perturbations up to 1/µ. In a µ g -problem, the perturbation structure ∆ is divided into two parts, say ∆ J and ∆ K , so that ∆ J satisfies a maximum norm constraint and ∆ K a minimum gain constraint [START_REF] Henry | A multi-objective filtering approach for fault diagnosis with guaranteed sensitivity performances[END_REF]. The analogous stability result is that the system is stable for ∆ J ∞ < 1/µ g and for ∆ K ∞ > µ g .

To formalize, consider a block structure ∆ = {diag(∆ J , ∆ K )} and a complex valued matrix

N = N JJ N JK N KJ N KK (1.125)
partitioned in accordance with ∆ = {diag(∆ J , ∆ K )} that satisfies the closed-loop equations

z = N v, v = ∆z, z = z J z K , v = v J v K (1.126)
The µ g -function is a positive real-valued function of the matrix N and the specified block structure ∆ defined according to

µ g ∆ (N ) = max v =1 γ : v j γ ≤ z j , ∀j ∈ J v k ≥ z j γ, ∀k ∈ K (1.127)
The µ g function is defined in a domain dom(µ g ) given by

N ∈ dom(µ g ) iff N KK v K = 0 ⇒ v K = 0 (1.128)
which is equivalent to a nontrivial solution, i.e., the maximisation part in the µ g problem is finite.

To solve the robust fault sensitivity performance analysis problem with no conservativeness, consider the block diagram depicted in 

f (s) = W f (s)f (s) (1.129)
The filter performances analysis problem over the plant perturbations Λ ∈ Λ is then a min-max gain problem over the specified frequency grid Ω. This problem can be formulated as

sup ω∈Ω σ T r d(jω) < 1, ∀∆ ∈ ∆ : ∆ ∞ ≤ 1 (1.130) inf ω∈Ω σ T r f (jω) > 1, ∀∆ ∈ ∆ : ∆ ∞ ≤ 1 (1.131)
where T r d and T r f denote respectively the closed loop transfer between r and r, and between r and f . The following theorem gives the solution of the robust fault sensitivity analysis problem.

Theorem 1.4 (Henry and Zolghadri [START_REF] Henry | Design and analysis of robust residual generators for systems under feedback control[END_REF]). Consider the model structure depicted in 

sup ω∈Ω µ g ∆ (N (jω)) < 1 (1.132)
The block structure ∆ is defined according to

∆ = diag( ∆, ∆ f ) , where ∆ f ∈ C dim( f )×dim(r) is
a fictitious uncertainty block introduced to close the loop between r and f .

The requirement sup

ω µ ∆ (N 11 (jω)) < 1 is equivalent to the maximum norm constraint in (1.130)- (1.131
) is satisfied over the block structure ∆, which is strictly equivalent to the robustness performance specification (S.1), i.e., ∀∆ ∈ ∆ : ∆ ∞ ≤ 1.

Because this theorem involves a necessary and sufficient condition which takes into account the structure of the model perturbations ∆, the robust sensitivity performance (i.e., the specification (S.2)) can be tested by calculating the µ g function of N over the block structure ∆. Computationally inexpensive upper and lower bounds have been developed in [START_REF] Morris | Experimental Control and Model Validation: A Helicopter Case Study[END_REF]. If the bounds are equal, then an exact value of µ g has been found. An upper bound of µ g can be formulated as a convex optimization problem, which results in checking a LMI feasibility [START_REF] Henry | A norm-based point of view for fault diagnosis: Application to aerospace missions[END_REF]. A lower bound algorithm from the "Power Algorithm" family is also proposed in [START_REF] Morris | Experimental Control and Model Validation: A Helicopter Case Study[END_REF], which seeks to optimize ∆ J and ∆ K explicitly.

Remark 1.17. An important point regarding the robust fault sensitivity test given by (1.132) is that the convergence of the upper bound is much more critical than the lower, as the problem is to check if µ g (or any upper bound) is below 1 or not.

Remark 1.18. The H ∞ /H -technique has been extended within the LPV setting in a numerous recent papers. These techniques consider both the so-called polytopic [START_REF] Grenaille | A method for designing fault diagnosis filters for lpv polytopic systems[END_REF][START_REF] Henry | Design of norm based fault detection and isolation LPV filters[END_REF][START_REF] Henry | H ∞ /H-LPV solutions for fault detection of aircraft actuator faults: Bridging the gap between theory and practice[END_REF] and the LFR [START_REF] Henry | Structured fault detection filters for lpv systems modeled in an lfr manner[END_REF][START_REF] Henry | Design of norm based fault detection and isolation LPV filters[END_REF][START_REF] Henry | H ∞ /H-LPV solutions for fault detection of aircraft actuator faults: Bridging the gap between theory and practice[END_REF] formalism.

• Application to Space Systems

-Satellite Microscope

Microscope is a satellite that has the mission of testing the equivalence principle, which postulates the equality between gravitational mass and inertial mass with a resolution almost 3 orders of magnitude more than the best tests so far performed on Earth, see Fig. 1.11 for an illustration performed by the CNES-France. To control its trajectory, Microscope uses the coupling of six ultra-sensitive accelerometers, a stellar sensor and a very precise electric propulsion system composed by 12 Field Emission Electric Propulsion (FEEP) thrusters. The mission can be in danger if a FEEP thrusters fault occurs, since the satellite may not compensate for non-gravitational disturbances (i.e., atmospheric drag and solar radiation) which are indispensable prior conditions for its mission: testing the Equivalence Principle. A solution to this problem was proposed in [START_REF] Henry | Fault diagnosis of microscope satellite thrusters using H ∞ /Hfilters[END_REF], where a bank of 12 H ∞ /H -residual generators was used for FDI purposes. To be more precise, the design was done so that the sensitivity level of the i th residual with respect to the i th FEEP thruster fault f i is maximised in the H -norm sense, whilst guaranteeing robustness against measurement noises and spatial disturbances in the H ∞ norm sense. Nonlinear simulations show that, despite the fact that the considered faults are fully compensated by the control law, the faults are successfully detected and isolated.

-The HL-20 RLV

A HL-20 reusable launch vehicle (RLV) is a launch system which is capable of launching a launch vehicle into space more than once (for more information see the application paragraph of Section 1.3. of the atmospheric reentry mission (the landing phase), control is achieved using only aerosurfaces, and the occurrence of faults is a critical issue as they could lead quickly to vehicle-control loss. The time delay to engage recovery actions is therefore very limited, and so, a reliable and robust FDI unit appears to be a key feature in the overall system-health monitoring.

Figure 1.12 -Artist's concept of an HL-20 at a space station, c 1992 NASA

The work presented in [START_REF] Falcoz | Robust fault diagnosis for atmospheric reentry vehicles: a case study[END_REF] deals with any type of faults in the wing flap actuators during the landing phase. The strategy proposed by the authors consists of a bank of two H ∞ /H - fault detection filters that are designed so that a given filter is made robust against measurement noise, guidance reference signals, winds turbulence, and faults in a given wing flap actuator, whilst remaining sensitive to all faults in the other wing flap actuator. For the purpose of estimating the position of the faulty control surfaces, the nonlinear EKF method presented in [START_REF] Falcoz | A nonlinear fault identification scheme for reusable launch vehicles control surfaces[END_REF][START_REF] Falcoz | On-board model-based robust fdir strategy for reusable launch vehicles (rlv)[END_REF] is used.

-LISA Pathfinder

The LISA Pathfinder (LPF) will pave the way for a major ESA/NASA mission planned for the near future: LISA (Laser Interferometer Space Antenna), aimed at detecting lowfrequency gravitational waves of very massive cosmic objects (e.g., black holes) from space. The primary scientific objectives of the LPF experiment mainly consists in placing two test masses in a nearly perfect gravitational free-fall, and of controlling and measuring their motion with unprecedented accuracy of about 3 × 10 -14 m/s 2 / √ Hz in a measurement bandwidth between 1 mHz and 30 mHz.

Among key technologies to be tested, attractive and important features rely on high accuracy electrostatic-based inertial sensors, high resolution laser interferometer, star trackers. The electrostatic actuation system consists of a set of 12 FEEP thrusters and of a set of 8 micro-Newton colloidal thrusters in charge of controlling the spacecraft and the test masses during the experiment phase. The Fig. 1.13 illustrates the LPF spacecraft and a internal view of the LISA technology package consisting of the two test masses, the optical bench, and the metrology systems. The colloidal thrust system is a real cornerstone for the success of the experiment and the occurrence of faults could lead to significant experiment objectives degradation or mission unavailability according to the in-placed controllers fault accommodation capabilities. Falcoz et al. [START_REF] Falcoz | Robust fault diagnosis strategies for spacecraft application to LISA pathfinder experiment[END_REF] considered the problem of faults affecting the micro-Newton colloidal thrust system of the LPF experiment. The first FDI scheme consists of a bank of eight Kalman- 

-Telecom Satellites

The FDIR strategies used in the telecommunication satellite market requires a strong robustness and minimization of mission outage. One of the most fault sensible subsystem is the Attitude and Orbit Control System (AOCS) that needs to be more deeply investigated. The telecommunication satellite consists of a set of Gyro (measuring roll and yaw axis angular rates) and IRES (roll and pitch attitude angles) sensors. A typical telecom satellite is also equipped with 3 reaction wheels and two chains of 7 thrusters (10N) to control the position. The industrial reconfiguration logic rest in cold redundancy, i.e., the faulty thruster chain is passivated and switched on the redundant thruster chain. The development of robust and reliable model-based FDI rest in quick thruster fault detection during the station keeping manoeuver to limit the mission outage, as well as in improvement of the fault coverage in order to optimize spacecraft life cycle and telemetric bandwidth saving. A common FDI techniques for telecom satellites are based on a bank of H ∞ /H -, pure H ∞ or Kalman filters, respectively.

-The MSR Rendezvous Mission

The work reported in [START_REF] Henry | A model-based solution for fault diagnosis of thruster faults: Application to the rendezvous phase of the Mars Sample Return mission[END_REF] addresses the design of model-based FDI schemes to detect and isolate faults occurring in the orbiter thruster unit during the rendezvous phase of the Mars Sample Return (MSR) mission. The proposed fault diagnosis method is based on a H(0) filter with robust poles assignment to detect quickly thruster faults and a crosscorrelation test between the residuals and the thrusters signals to isolate them. Simulation results from the high-fidelity nonlinear simulator demonstrate that the proposed method is able to diagnose thruster faults with a detection and isolation delay less than 1.1 s for a certain type of faults (single thruster opening at 100%).

Decision Test

The first step of a fault diagnosis procedure is to evaluate the residuals. A fault can be detected by comparing the residual evaluation function J ev (r(t)) with a threshold function J th (t) Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC according to the following hypothesis test:

H 0 : J ev (r(t)) ≤ J th (t)
if fault-free

H 1 : J ev (r(t)) > J th (t) if faulty (1.133)
where H 0 corresponds to the zero hypothesis meaning normal operation (f (t) = 0) and H 1 to the hypothesis that the system is in abnormal operation mode (f (t) = 0).

There are many ways of defining J ev (r(t)) and J th (t). The simplest approach is to decide that a fault has occurred when the instantaneous value of a residual evaluation function J ev (r(t)) exceeds a constant threshold J th .

When a constant threshold is used, the sensitivity to faults will be intolerably reduced if the threshold is chosen too high, whereas the false alarm rate will be too large when the threshold is chosen too low. The proper choice of the threshold is a delicate problem [START_REF] Patton | Robustness in model-based fault diagnosis: The 1995 situation[END_REF].

One of the approach to overcome the above proposed difficulty is to use a time varying threshold function J th (t). This approach is also called the adaptive threshold approach and can be found in many publications [START_REF] Emami-Naeini | Effect of model uncertainty on failure detection: the threshold selector[END_REF][START_REF] Frank | Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis[END_REF][START_REF] Horak | Experimental identification of modeling errors in dynamic systems[END_REF]. This concept is illustrated in Fig. 1.14 which also shows the typical shape of an adaptive threshold for direct residual evaluation. Due to uncertainty, disturbance and noise encountered in a practical application, one will rarely find a situation where the conditions for a perfectly robust residual generation are met. It is practically impossible to detect a fault with unlimited sensitivity. Obviously, finding a compromise between the sensitivity and disturbance attenuation of the methods is an important design issue. It is therefore necessary to provide sufficient robustness not only in the residual generation stage, but also at the decision-making stage [START_REF] Patton | Robustness in model-based fault diagnosis: The 1995 situation[END_REF].

In some applications, stochastic system models are considered and the residuals generated are known or assumed to be described by some probability distributions [START_REF] Hwang | A survey of fault detection, isolation, and reconfiguration methods[END_REF]. Most statistical tests assume a normal distribution for r and require the knowledge of its nominal mean µ 0 and variance σ 2 0 . Robust decision making tools use the history and trend of the residual and make use of powerful or optimal statistical test techniques. The well-known examples of these statistical test techniques are the following7 .

• Statistical thresholding (3-sigma rule) test: The idea behind this test is to choose the two-sided threshold according to: J th = µ 0 ± kσ 0 , where k ≥ 3 [START_REF] Pukelsheim | The three sigma rule[END_REF]. This approach relies on the fact that 99.7% of the points of a Gaussian distribution lie within 3σ of its mean. Thus, this simple test is able to detect large deviations in r, but is likely to miss a detection when the size of the change is within the same order of magnitude as the 3σ 0 of the process. When bounds on model uncertainties, disturbances and noise are available, then the approach given in [START_REF] Emami-Naeini | Effect of model uncertainty on failure detection: the threshold selector[END_REF] provides a robust version of statistical thresholding in the worst-case sense (thus conservative). A similar problem is addressed in [START_REF] Ding | Threshold calculation using lmitechnique and its integration in the design of fault detection systems[END_REF], where the threshold calculation is based on LMI-technique.

• Generalized Likelihood Ratio (GLR) test: The evaluation function J ev (r(t)) of this test is based on the likelihood ratio of the probability that the mean of r is µ 1 = µ 0 to the probability that it is µ 0 , where µ 1 is the mean of r in faulty situation [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF][START_REF] Ding | Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[END_REF]. This test still assumes that, both µ 0 and σ 2 0 , are known a priori. See a more detailed discussion about this test in the Appendix B.

• Sequential Probability Ration Test (SPRT): Similarly to the GLR test, this test utilizes the likelihood ratio. The advantage of this method is that the threshold is fully determined by fixing the desired false alarm and desired the non-detection rate [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF][START_REF] Wald | Sequential Analysis[END_REF].

Compared to GLR, this test introduces a no decision stage, when more data are collected in order to decide between H 0 and H 1 . In the frame of fault diagnosis, this can be interpreted as a non-faulty behaviour, i.e., H 0 . This test is also known as Wald's sequential test, see Appendix B for further discussion about this test.

• CUSUM test: This test was announced few years after the publication of Wald's SPRT algorithm by Page [START_REF] Page | Continuous inspection schemes[END_REF]. Only few statistical hypotheses are needed for this two-sided test, which is expressed as follows [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF][START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF]]

S + (t) = max S + (t -1) + r(t) -µ 0 -δ µ 0 /2, 0 S -(t) = max (S -(t -1) -r(t) -µ 0 -δ µ 0 /2, 0) (1.134)
where δ µ 0 is assumed to be know and represents the shift in the mean value after the fault, i.e., either an increase µ + 1 = µ 0 + δ µ 0 or a decrease µ - 1 = µ 0δ µ 0 in the mean. Then, the H 1 hypothesis is accepted at the alarm time

t a = min{t : (S + (t) ≥ J th ) ∪ (S -(t) ≥ J th } (1.135)
where J th is again some tunable threshold reflecting the desired false-alarm rate.

• Student's t-test: This test the null hypothesis H 0 , i.e., checks whether the residual follows a normal distribution r ∼ N (µ 0 , σ 2 0 ). This leads to an automatic thresholding given by Student's table with a required confidence level (e.g., 95%) [START_REF] Gosset | The probable error of a mean[END_REF]. If this threshold is crossed, then the H 1 is adopted.

A good survey about other statistical decision making tools can be found in [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF][START_REF] Gustafsson | Adaptive filtering and change detection[END_REF][START_REF] Hwang | A survey of fault detection, isolation, and reconfiguration methods[END_REF].

Fault Isolation

The residuals generated should not only be able to detect the faults, they need to be able to determine the exact location of the fault (which component has failed). The conditions for a Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC existence of a perfect fault isolation can be found in Ding [START_REF] Ding | Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[END_REF]. In the FDI8 literature two main approaches for fault isolation exist:

• Directional residual approach: The directional residual approach achieves the isolation task by generating residual vectors that lie in a specified direction in the residual subspace corresponding to each type of fault (see Fig. 1.15a for illustration). The fault isolation problem is then transformed into one of determining the direction of the residual vector [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF][START_REF] Varga | New computational approach for the design of fault detection and isolation filters[END_REF].

• Structured residual approach: The structured residual approach is focused on developing a bank of residual generators (see Fig. 1.15b for illustration) to be sensitive to a single or selective set of faults, and insensitive to the rest [START_REF] Clark | Instrument fault detection[END_REF][START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF][START_REF] Gertler | Fault detection and diagnosis in engineering systems[END_REF]. Various design schemes exists [START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF]. A popular approach is the dedicated observer scheme proposed by Clark [START_REF] Clark | Instrument fault detection[END_REF] where each observer is driven by a different single sensor output and the complete output vector y is estimated. This scheme is capable to detect and isolate multiple simultaneous faults by checking properly structured sets of observer errors with the aid of a threshold logic [START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF]. If, for example, a certain sensor fault occurs, then the related output estimate reconstructed by the corresponding observer will be destroyed which can be then identified by an appropriate isolation logic. This philosophy is known as the "column matching" approach [START_REF] Gertler | Fault detection and isolation using parity relations[END_REF].

Frank [START_REF] Frank | Advanced fault detection and isolation schemes using nonlinear and robust observers[END_REF] developed an alternative version, i.e. the so-called generalized observer scheme that provides an observer dedicated to a certain sensor fault and driven by all outputs except that of the respective sensor. This scheme allows one to detect and isolate only a single fault in any of the sensors, but with increased robustness with respect to the unknown inputs.

The application of the UIO (see Section 1.3.2.2) philosophy to actuator, sensor or component Fault Detection and Isolation can bring a trade-off to the above mentioned two approaches. The general structure of the robust observer scheme based on UIOs is depicted in Fig. 1.16. For the sake of simplicity, assume that m different faults f i can occur in the system where m is also the number of measurements available. There exists three extremes [START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF]:

Faults have to be only detected: The FDI scheme reduces to a single UIO that generates a residual that is sensitive to all faults whilst being robust to m -1 unknown inputs. This design freedom can be used to generate a residual that is robust to the maximum number of unknown inputs, but not providing isolation properties.

Methods for Fault Detection and Isolation

Only a single fault is to be detected and isolated: Here the FDI scheme allows fault isolation and let the maximum design freedom for the generation of robustness to unknown inputs. Thus, the i th observer (i = 1, 2, . . . , m) is designed to be insensitive to the i th fault f i and to m -2 unknown inputs. Here the f i is interpreted as an unknown input and the remaining design freedom is used for generating invariance to the unknown inputs.

Repeating this design m times one arrives at an UIO scheme according to Fig. 1.16. Here the first residual r 1 depends on all faults except of the first f 1 , the second residual r 2 on all except the second fault f 2 and so on. Mathematically speaking

                       r 1 = q 1 (f 2 , f 3 , . . . , f m ) . . . r i = q i (f 1 , . . . , f i-1 , f i+1 , . . . , f m ) . . . r m = q m (f 1 , . . . , f m-1 )
Hence a simple decision logic can be implemented [START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF]. Note, that only a single fault at a time can be detected.

All faults are to be detected and isolated:

To be able to detect and isolate all faults occurring simultaneously, one has to implement all faults, except the i th fault, in the i th UIO as unknown inputs. Therefore the rank of the unknown input distribution matrix E is increased by m -1, which is the largest possible rank of E for which complete invariance can be achieved. In this case, the observer cannot be made robust with respect to any unknown input. The residuals depend on the faults according to the following relations

               r 1 = q 1 (f 1 )
r 2 = q 2 (f 2 ) . . . r m = q m (f m )
Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC This allows to uniquely detect and isolate m faults even if they occur simultaneously. The price to pay is the loss of robustness with respect to unknown inputs [START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF].

Fault Identification

Fault identification (also called fault estimation) follows after fault isolation and is defined as the procedure of determination of the size (magnitude) and time-variant behaviour (shape) of the faults [START_REF] Isermann | Trends in the application of model-based fault detection and diagnosis of technical processes[END_REF]. The fault identification methods generally obey to the ones presented in Section 1.3.2.4 and Section 1.3.3. Fault identification is needed in certain fault accommodation approaches, i.e., the control law is adapted based on the FDD in order to recover acceptable control of the system subject to faults [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF].

Several methods for fault estimation [START_REF] Zhang | Bibliographical review on reconfigurable fault-tolerant control systems[END_REF] have been developed, such as:

• sliding mode observer [6,[START_REF] Edwards | Sliding mode control: theory and applications[END_REF][START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF][START_REF] Tan | Sliding mode observers for detection and reconstruction of sensor faults[END_REF][START_REF] Tan | Sliding mode observers for robust detection and reconstruction of actuator and sensor faults[END_REF],

• learning methods based on neural network [START_REF] Korbicz | Fault diagnosis: models, artificial intelligence, applications[END_REF][START_REF] Polycarpou | Fault accommodation of a class of multivariable nonlinear dynamical systems using a learning approach[END_REF][START_REF] Polycarpou | Automated fault detection and accommodation: a learning systems approach[END_REF], and

• adaptive observer technique [START_REF] Jiang | Fault accommodationfor nonlinear dynamic systems[END_REF][START_REF] Wang | Actuator fault diagnosis: an adaptive observer-based technique[END_REF][START_REF] Zhang | Actuator fault estimation based on adaptive h ∞ observer technique[END_REF][START_REF] Zhang | Fault diagnosis of a class of nonlinear uncertain systems with lipschitz nonlinearities using adaptive estimation[END_REF].

Nonlinear approaches, especially SMOs, have good robustness and are completely insensitive to matched uncertainty [START_REF] Edwards | Sliding mode control: theory and applications[END_REF][START_REF] Utkin | Sliding modes in control and optimization[END_REF]. However, some systems may fail to satisfy the condition of the coordinate transformations [START_REF] Zhang | Actuator fault estimation based on adaptive h ∞ observer technique[END_REF]. Learning methods based on neural network require that all of the system states are measurable [START_REF] Polycarpou | Fault accommodation of a class of multivariable nonlinear dynamical systems using a learning approach[END_REF]. Adaptive methods for actuator faults were developed in Wang and Daley [START_REF] Wang | Actuator fault diagnosis: an adaptive observer-based technique[END_REF] and Jiang et al. [START_REF] Jiang | Fault accommodationfor nonlinear dynamic systems[END_REF].

Active Fault-tolerant Control Approaches

As an emerging and active area of research in automatic control, fault-tolerant control has recently attracted more and more attention. This section gives a review of different methods of controller re-design approaches and mechanisms achieving fault tolerance, ranging from projection-based methods to control signal redistribution. Since FTCSs involve many disciplines, there are many related publications in each individual topic in AFTCS and it is difficult to include all of them in the state of the art. However, it is believed that the references on articles and books cited in this section would serve the reader as good resources for entry and further study.

An overview and introduction into the field has been proposed by [START_REF] Lunze | Control reconfiguration: Survey of methods and open problems[END_REF][START_REF] Patton | Fault-tolerant control systems: The 1997 situation[END_REF]. A recent and very extensive bibliographical review has been published by Zhang and Jiang [START_REF] Zhang | Bibliographical review on reconfigurable fault-tolerant control systems[END_REF]. Other recent bibliography references can be found in [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF][START_REF] Jiang | Fault accommodationfor nonlinear dynamic systems[END_REF][START_REF] Noura | Fault-tolerant Control Systems: Design and Practical Applications[END_REF][START_REF] Verhaegen | Fault tolerant flight control -a survey[END_REF][START_REF] Yang | Fault tolerant control design for hybrid systems[END_REF]. Historically, FTC solutions have been developed for civil and military aircrafts, and recently UAVs and Re-entry vehicles, see [START_REF] Calise | Development of a reconfigurable flight control law for the x-36 tailless fighter aircraft[END_REF][START_REF] Marcos | A robust integrated controller/diagnosis aircraft application[END_REF] and the book [START_REF] Edwards | Fault Tolerant Flight Control: A Benchmark Challenge[END_REF] written by the GARTEUR FM-AG16 members.

Despite the fact that some survey papers exist on FTC, the approaches are not very well classified as opposed to the FDI/FDD methods. Thus, the classification illustrated in Fig. 1.17 is proposed in this thesis. This classification is inspired by the work of Lunze and Richter [START_REF] Lunze | Control reconfiguration: Survey of methods and open problems[END_REF] and serves as a guideline for the here considered methods. An approach which is not introduced in the following is based on the primal and dual-Youla parametrization, proposed by Niemann and used to determine the mode of the system at each time step, and to select the corresponding controller that has been designed for that particular mode. This results in robust and improved performance under various operating conditions. Note that this scheme can principally only cover a set of anticipated faults. This approach, however, assumes that for each fault an appropriate controller has been designed before the plant is put into operation. From a practical aspect, this is not reasonable if a large number of faults has to be considered.

A solution to this problem may consist in approach proposed by Staroswiecki and Berdjag [START_REF] Staroswiecki | A general fault tolerant linear quadratic control strategy under actuator outages[END_REF] that proposed to use jointly and adequately passive and active FTC laws. This may allow one to cover a large number of faulty situations.

In the area of AFTC, two main approaches can be distinguished: Multiple Model Switching and Tuning (MMST) and Interacting Multiple Models (IMM). When a fault occurs MMST switches to a pre-computed control law corresponding to the current failure situation. Rather than using the model which is closest to the current fault scenario, IMM computes a fault model as a convex combination of all pre-computed fault models and then uses this new model to make control decisions. These methods are further presented in the following sections.

• Multiple Model Switching and Tuning

In the MMST technique shown in Fig. 1.19, the dynamics of each fault scenario are described by a dedicated model. Each model is paired with its respective controller. The general form of this approach with a linear system is shown in the following equations

S : ẋ(t) = A 0 (p(t))x(t) + B 0 (p(t))u(t) y(t) = C 0 (p(t))x(t) (1.136)
where the vector p(t) ∈ S ⊆ R l represents the unknown plant parameters which may vary in time in an abrupt fashion and represents the various failure scenarios. Let M be the finite set of n linear models

M : {M 1 , . . . , M n } (1.137) such that M i : ẋi (t) = A i x i (t) + B i u(t) y i (t) = C i x i (t) (1.138)
where model M i corresponds to a set of parameters p i ∈ S. For each model M i a stabilizing controller K i is designed (off-line).

A switching logic module computes for each model M i a performance index J i , which is a function of the error e i between the model M i and the measurements data at time t. The performance index J i is of the following form [START_REF] Narendra | Adaptive control using multiple models[END_REF] J

i (t) = αe 2 i (t) + β t 0 e -λ(t-τ ) e 2 i (τ )dτ, α ≥ 0, β > 0, λ > 0 (1.139)
The coefficients α and β are responsible for the tradeoff between instantaneous and long-term contributions of the error e i in the calculation of the index J i . The coefficient λ is used as a forgetting factor.

The model M i producing the smallest performance index J is the closest to the current system, and therefore the controller K i becomes active.

Most of the MMST reconfigurable schemes also include a tuning part, which is based on a separate identification algorithm that updates the parameters of the model M i while the controller K i is active.

The MMST technique has the advantages of being fast and usually stable if the actually occurring fails match the predefined fault scenarios. However, the main limitation is that there may be faulty scenarios that were not modelled, which would likely be the case for multiple or structural faults. Moreover, the number of individual pairs of M i /K i to be designed, may become excessively large if the system has to be successfully operate over a wide range of fault scenarios [START_REF] Boskovic | A multiple model-based reconfigurable flight control system design[END_REF][START_REF] Ducard | Fault-tolerant flight control and guidance systems: practical methods for small unmanned aerial vehicles[END_REF].

Remark 1.19. Note that such a control switching structure is classified by some authors as the supervisory FTC structure [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF][START_REF] Boskovic | Failure detection, identification and reconfiguration in flight control[END_REF]. In this case, the main problem is concerned by the global stability of the overall FTC scheme [START_REF] Yang | A fault tolerant control framework for periodic switched non-linear systems[END_REF][START_REF] Yang | Supervisory fault tolerant control for a class of uncertain nonlinear systems[END_REF] A solution to this problem is given by Efimov et al. [START_REF] Efimov | Supervisory fault tolerant control based on dwell-time conditions[END_REF][START_REF] Efimov | Supervisory fault tolerant control with mutual performance optimization[END_REF] using the so-called dwell-time approach. This technique will be discussed in more details in Section 1.4.4.1.

• Interacting Multiple Models

The IMM approach attempts to deal with the main limitation of the MMST technique, i.e., that every fault scenario must belong to the model set M.

The primary assumption of IMM is that every possible fault can be modelled as a convex combination of models [START_REF] Zhan | An interacting multiple-model based fault detection, diagnosis and fault-tolerant control approach[END_REF] in a pre-determined model set M as defined in (1.138). The faulty system can be expressed as

M f = n i=1 µ i M i = µ T     M 1 . . . M n     , M i ∈ M, µ i > 0 ∈ R, n i=1 µ i = 1 (1.140)
Fault detection and modelling is then done online by identifying the variables µ i in (1.140).

Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC Several methods for computing the coefficients µ were proposed in the literature. One is known as Multiple Model Adaptive Estimation (MMAE) method (see e.g., [START_REF] Ducard | Fault-tolerant flight control and guidance systems: practical methods for small unmanned aerial vehicles[END_REF][START_REF] Maybeck | Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems[END_REF]). Here, a bank of Kalman Filters is designed for each M i ∈ M, running in parallel. A hypothesis testing algorithm uses the residuals from each Kalman Filter to assign a conditional probability to each fault hypothesis.

Once a fault model has been identified, there are a variety of methods for control law calculation. Ones can use Model Predictive Control (MPC) [START_REF] Kanev | Controller reconfiguration for non-linear systems[END_REF][START_REF] Kerrigan | Invariant sets for constrained nonlinear discrete-time systems withapplication to feasibility in model predictive control[END_REF][START_REF] Maciejowski | Reconfigurable control using constrained optimization[END_REF][START_REF] Maciejowski | MPC fault-tolerant flight control case study: Flight 1862[END_REF] scheme or EA, see [START_REF] Konstantopoulos | An eigenstructure assignment approach to control reconfiguration[END_REF][START_REF] Tsui | A new dynamic output feedback compensator design for pole assignment[END_REF][START_REF] Wang | The parametric solutions of eigenstructure assignment for controllable and uncontrollable singular systems[END_REF][START_REF] Zhan | An interacting multiple-model based fault detection, diagnosis and fault-tolerant control approach[END_REF] for details. One application of IMM approach has been used to design an integrated fault detection and fault tolerant aircraft flight control [START_REF] Zhang | Integrated active fault-tolerant control using imm approach[END_REF].

Bank of Observers for Sensor Faults

If only sensor faults are considered, it seems intuitive to replace the missing signal by an observed value, since, according to the linear system theory, this should not affect the stability of the control loop. The generalized observer scheme (see Section 1.3.6) provides the framework for this approach: a bank of dim(y) output observers is used, where every observer relies on a different set of measurements [START_REF] Frank | Advanced fault detection and isolation schemes using nonlinear and robust observers[END_REF][START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF][START_REF] Isermann | Process fault detection based on modeling and estimation methods -a survey[END_REF]. Once a sensor fault is detected, an observer is activated which does not depend on this sensor, and the output of this observer is used to replace the faulty sensor, see Fig. 1.20.

This setup solves the diagnosis and reconfiguration problems in an integrated manner, which is advantageous. However, this approach is limited to sensor faults. Clearly, the measurements will be of better quality than the observed values, since disturbances act on the observers. For this reason, the nominal controller should use the measurements. Note that it is predominant to make the best-possible use of certain knowledge, such as using reduced observers whenever possible [START_REF] Lunze | Control reconfiguration: Survey of methods and open problems[END_REF]. 
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On-line Controller Re-design

This paradigm covers approaches that perform a complete controller re-design after the detection and identification of a fault. It is clear that in case of a complete component fault, the control structure must change. Both analytical and physical redundancy can be utilized through this paradigm. The computational cost varies according to the specific method.

Several controller re-design methods are available in the literature [START_REF] Lunze | Control reconfiguration: Survey of methods and open problems[END_REF]. Few of them are presented in the following sections: The Pseudo-inverse Method (PIM) with two extensions (modified and admissible), the eigenstructure assignment, the perfect and adaptive model following, the optimal controller design using Linear Quadratic (LQ) optimal control techniques, and the model predictive control. Notably, the model predictive control is not limited to linear systems, whereas most other approaches to date are.

• Pseudo-inverse Method

The PIM addresses actuator and component faults. It is set in a linear control framework with state-feedback control. The basic idea is to match the closed-loop system matrix of the faulty system to the matrix of the nominal system without introducing new states. Let the nominal system be given by

M 0 : ẋ(t) = A 0 x(t) + B 0 u 0 (t) (1.141)
Assume that the nominal closed-loop system is designed by using the linear state feedback of the form u 0 (t) = -K 0 x(t) (1.142) where K 0 ∈ R r×n is the static feedback gain matrix. The closed-loop system is

M0 : ẋ(t) = (A 0 -B 0 K 0 )x(t) (1.143)
which is stable and provides the nominal dynamic performance.

Suppose that the model of the system, in which faults have occurred, is described by the pair (A f , B f ) provided by an on-line FDI/FDD module, that is, after the fault estimation time t f , the post-fault system operation and the model is given by

Mf : ẋ(t) = A f x(t) + B f u f (t) (1.144)
In post-fault operation, the aim is to design a new control law

u f (t) = -K f x(t) (1.145)
where K f is the new state-feedback gain to be determined. In the PIM due to Ostroff [START_REF] Ostroff | Techniques for accommodating control effector failures on a mildly statically unstable airplane[END_REF], the objective is to find a K f such that the resulting closed-loop transition matrix approximates in some sense to the one in (1.143) 

(t) = (A f -B f K f )x(t) (1.146)
The solution to this problem is obtained by solving the following matrix equation

A f -B f K f = A 0 -B 0 K 0 (1.147)
whose necessary and sufficient condition for a solution to exist if

Im(A f -A 0 + B 0 K 0 ) ⊆ Im(B f ) (1.148)
and an approximate solution for K f is given by [START_REF] Ostroff | Techniques for accommodating control effector failures on a mildly statically unstable airplane[END_REF]]

K f = B † f (A f -A 0 + B 0 K 0 ) (1.149)
where

B † f denotes the pseudoinverse of B f , see Appendix A.3.1.
The solution for K f is then plugged into the loop instead of nominal controller, see Fig. 1.21. For many anticipated faults the feedback gain K f can be computed off-line and be stored in the control computer. Once the fault has been detected, isolated and identified, the feedback gain is modified. This PIM method has also been used for on-line accommodation for unanticipated faults [START_REF] Caglayan | Evaluation of a second generation reconfiguration strategy for aircraft flight control systems subjected to actuator failure/surface damage[END_REF][START_REF] Ostroff | Techniques for accommodating control effector failures on a mildly statically unstable airplane[END_REF] although it appeared in different forms. Regarding solution (1.149), condition (1.148) will obviously hold only for very particular faults and therefore no exact solution will exist in most fault cases. For this reason, approximate rather than exact solutions might be of interest, i.e., when exact model matching is not possible, an approximate control solution [START_REF] Gao | Stability of the pseudo-inverse method for reconfigurable control systems[END_REF] may be computed as

K f = arg min K f J(K f ) (1.150)
by minimizing the criterion

J(K f ) = (A 0 -B 0 K 0 ) -(A f -B f K f ) F (1.151)
where • F stands for the Frobenius matrix norm.

However, the distance in the state space between the closed-loop system matrices has no known direct relation to the stability of the system. There is however a connection based on Gershgorin's theorem on eigenvalue localization [START_REF] Lunze | Control reconfiguration: Survey of methods and open problems[END_REF]. Loosely speaking, if the nominal control loop is robust enough and the norm (1.151) is sufficiently small, then PIM will find a stable solution where the bound in the variations of the closed-loop eigenvalues duo to faults is minimized [START_REF] Gao | Stability of the pseudo-inverse method for reconfigurable control systems[END_REF]. One advantage of the PIM is its simplicity in computing the reconfigured feedback controller gain.

The solutions (1.148) and (1.150) are called by some authors as the "Exact Model Matching" and "Approach Model Matching" solutions respectively, see [START_REF] Caglayan | Evaluation of a second generation reconfiguration strategy for aircraft flight control systems subjected to actuator failure/surface damage[END_REF][START_REF] Ostroff | Techniques for accommodating control effector failures on a mildly statically unstable airplane[END_REF][START_REF] Raza | Use of pseudo inverse for design of a reconfigurable flight control system[END_REF][START_REF] Staroswiecki | Fault tolerant control: the pseudo-inverse method revisited[END_REF][START_REF] Stengel | Restructurable control using proportional-integral implicit model following((for fighter aircraft))[END_REF].

• Modified Pseudo-Inverse Method

A major drawback of the PIM method is that the stability of the reconfigured system cannot be guaranteed. The method has been modified by Gao and Antsaklis [START_REF] Gao | Stability of the pseudo-inverse method for reconfigurable control systems[END_REF] in the manner of restrictions on the computation of K f to guarantee the stability of the post-fault system while achieving as much of the closed-loop nominal performance as possible.

The modification is based upon a consideration of structured uncertainty in the state-space model, i.e., by considering the state-space model with perturbation a matrix ∆A 0 , such that

ẋ(t) = (A 0 + ∆A 0 )x(t) + B 0 u 0 (t) (1.152)
Let assumed that (A f , B f ), given in (1.144), is a stabilizable pair. It is assumed that a stability bound δ f can be found such that if

| kf i,j | < δ f , i = 1, 2, . . . , r and j = 1, 2, . . . , n (1.153) 
then the system in (1.146) will be stable. Gao and Antsaklis [START_REF] Gao | Stability of the pseudo-inverse method for reconfigurable control systems[END_REF] describe in more detail how the bound δ f can be derived using the method of Zhou and Khargonekar [START_REF] Zhou | Stability robustness bounds for linear state-space models with structured uncertainty[END_REF] or the method developed by Yedavalli [START_REF] Yedavalli | Stability robustness measures under dependent uncertainty[END_REF].

The algorithm for the Modified Pseudo-inverse Method (MPIM) then becomes as follows:

• 

k f i,j = kf i,j if | kf i,j | ≤ δ f sgn( kf i,j )δ f otherwise (1.154)
The Fig. 1.21 can also serve as an illustration for this method, since the structure is the same as for PIM. The only difference lies in the details of the design procedure. MPIM solves the stability issue, but it is computationally too intensive to be considered for on-line application [START_REF] Lunze | Control reconfiguration: Survey of methods and open problems[END_REF].

• Admissible Pseudo-Inverse Method

As mentioned above, the main shortage of the PIM method is the lack of stability guarantees. The MPIM basically solves the problem under the additional constraint that the resulting closed-Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC loop system remains stable. This, however, results in a constrained optimization problem that increases the computational burden.

In [START_REF] Staroswiecki | Fault tolerant control: the pseudo-inverse method revisited[END_REF] the classical PIM and the modified PIM have been extended, by using a set of admissible models, rather than searching for an optimal one which does not provide any guarantee about the post-fault system behavior. The approach results in the unique and efficiently computable solutions as well as allows one to characterize the set of accommodable faults, and to quantify the robustness of the fault adaptation scheme with respect to unanticipated faults.

• Eigenstructure Assignment

To ensure the closed-loop stability in presence of component failure and to maximize the performance recovery, an eigenstructure assignment based algorithm has been developed under the state [START_REF] Jiang | Design of reconfigurable control systems using eigenstructure assignments[END_REF] and output feedback [START_REF] Duan | Parametric eigenstructure assignment via output feedback based on singular value decompositions[END_REF] configurations as an alternative to the pseudo-inverse approach. In this approach, the stability is always guaranteed. Eigenvalues and eigenvectors of the post-fault system can be placed such that the optimal performance recovery is obtained.

More specifically, consider the state space representation of the nominal system given in (1.141).

If λ(A c 0 ) = {λ i ∈ C, i = 1, 2, . . . , n} are the eigenvalues of the nominal closed-loop system A c 0 = A 0 -B 0 K 0 , and v i ∈ C n , i = 1, 2, .
. . , n are the corresponding eigenvectors, the EA method computes the state-feedback gain K f for the faulty model (1.144) as the solution to the following problem:

K f :    (A f -B f K f )v f i = λ i v f i v f i = arg min v f i v i -v f i 2 , i = 1, 2, . . . , n (1.155) 
In other words, the new gain K f needs to be such that the eigenvalues of the resulting closedloop system correspond to the eigenvalues of the nominal closed-loop system and, in addition, the eigenvectors of the closed-loop are as close as possible.

In case of stabilizing output-feedback law

u 0 (t) = K • 0 C 0 x(t) (1.156)
where K • 0 ∈ R r×m is the static output-feedback gain, the goal is to design a stabilizing controller

K • f for the faulty closed-loop system A f -B f K • f C f such
that the new eigenstructure is as close as possible to that of the original closed-loop system A 0 -B 0 K • 0 C 0 . Generally the most dominant eigenvalues of the faulty system, {λ f i , i = 1, . . . , max(r, m)} are made to exactly match those of the nominal system λ, while the remainder are kept stable. Similarly, the most important eigenvectors v f i , i = 1, . . . , max(m, k) of the faulty system are made close to those of the original system v i , i = 1, . . . , max(m, k) in the least squares sense.

There are several limitations to this approach when applied to reconfiguration. Firstly, only linear systems have been considered and actuator limitations have not been taken into account. Secondly, the fault model and FDD uncertainties cannot be easily incorporated in the optimization problem and the effects of possible uncertainties have not been extensively studied. Finally, the effect of the eigenvectors in the faulty system not being exactly equal to those in the nominal system is not well understood. The reference [START_REF] Konstantopoulos | An eigenstructure assignment approach to control reconfiguration[END_REF] further describes the use of EA.

• Model-following Approaches

The basic idea of the linear model-following [START_REF] Tyler | The characteristics of model-following systems as synthesized by optimal control[END_REF] is an attractive candidate for the re-design process associated with FTC because the goal is to emulate the performance characteristics of a reference model as closely as possible, even in the presence of faults, see [START_REF] Gao | Reconfigurable control system design via perfect model following[END_REF].

There are basically two strategies:

• Implicit Model Following (IMF): The attempt is to change and to adapt the output dynamics of the system using a feedback action in order to equal the output dynamics of a desirable reference model.

• Explicit Model Following (EMF):

The controller design is based on a real model, which means that the reference model is implemented as part of the actual controller.

The adaptive model following method [START_REF] Kim | Reconfigurable flight control system design using direct adaptive method[END_REF] is a further extension of the basic idea behind PIM. Instead of the closed loop system matrix alone, a closed loop reference model including the reference signal is attempted to be restored.

Consider the nominal system dynamic (1.141) and the output equation given by

y(t) = C 0 x(t) (1.157)
Assuming that the reference model and the system are of the same dimension, let the reference model be described by the following state-space equations

ẋM (t) = A M x M (t) + B M ref (t) y M (t) = x M (t) (1.158)
where ref is a reference trajectory signal. The goal is to compute matrices K 1 and K 2 such that the feedback interconnection of the open-loop system (1.141), (1.157) and the state-feedback control action

u(t) = -K 1 x(t) + K 2 ref (t) (1.159)
matches the reference model. To this end, reference model and closed-loop system are written in the form ẏM

(t) = A M x M (t) + B M ref (t) ẏ(t) = (C 0 A 0 -C 0 B 0 K 1 )x(t) + B 0 K 2 ref (t) (1.160)
so that perfect model following (PMF) can be achieved by choosing

K 1 = (C 0 B 0 ) -1 (C 0 A 0 -A M ) (1.161) K 2 = (C 0 B 0 ) -1 B M (1.162)
on the assumption that the system has the same number of inputs and outputs (i.e., m = r), and that the inverse of matrix (C 0 B 0 ) exists.

If the exact system matrices (A 0 , B 0 ) in (1.161), (1.162) are not known, they can be substituted by some estimated values ( Â0 , B0 ), resulting in the indirect (explicit) method [START_REF] Bodson | Multivariable adaptive algorithms for reconfigurable flight control[END_REF]. In order to avoid the need for estimating the system parameters, the direct (implicit) method of the model following can be used, which directly estimates the controller gain matrices K 1 and K 2 by means of an adaptive scheme. Two approaches to direct model following exist, the output error Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC method [START_REF] Tao | An adaptive actuator failure compensation controller using output feedback[END_REF] and the input error method [START_REF] Groszkiewicz | Flight control reconfiguration using adaptive methods[END_REF].

• LQ-optimal Re-design

An intuitive approach to the reconfiguration problem is the use of LQ-optimal control. The basic idea is depicted in Fig. 1.22. Before the system is put into operation, a nominal controller is designed off-line using an LQ-optimal design, where the common cost function

J = ∞ 0 (x T (t)Qx(t) + u T (t)Ru(t))dt (1.163)
is minimized. The weight matrices Q and R penalize the state error and the control energy. These matrices are stored for later online reuse. After a fault is detected and identified by the FDI/FDD module, a new controller is designed by solving the Algebraic Riccati Equation (ARE) again with an updated plant model (A f , B f ) that reflects the faults. If the faulty system is still controllable, the design will find a controller that solves the control problem with respect to the original criteria (weights) in the best possible way. The main drawback of this approach is that the discarding of the nominal controller completely and the amount of computing resources necessary for LQ design. There are also numerical issues to be aware of, such as the rank deficiency problem [START_REF] Lunze | Control reconfiguration: Survey of methods and open problems[END_REF].
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Staroswiecki [START_REF] Staroswiecki | Progressive accommodation of actuator faults in the linear quadratic control problem[END_REF] proposed a progressive accommodation strategy, based on the Newton Raphson scheme for solving the ARE which significantly reduce the risk of instability during the computation of the new accommodated controller. One of the lack of this method is that it works only for actuator or component faults.

• Model Predictive Control Approach

MPC can easily solve the reconfiguration problem with little extra effort in comparison with its use for control [START_REF] Maciejowski | MPC fault-tolerant flight control case study: Flight 1862[END_REF]. MPC refers to a class of algorithms which make explicit use of a system model to optimize the future predicted behaviour of a plant. At each sampling time t, a finite time optimal control problem is solved over a prediction horizon N , using the current state x of the system as the initial state. The on-line optimization problem takes account of system dynamics, constraints and control objectives. The optimization yields an optimal sequence of control inputs, and only the control action for the current time is applied while the rest of the calculated sequence is discarded.

To achieve control reconfiguration after the fault occurrence, using the information from the FDI/FDD unit, it is necessary to update the internal plant model of the MPC controller to reflect the system fault. The solution for the actuator faults is simple; actuator limit and rate constraints can be written as

u min i ≤ u i (t) ≤ u max i (1.164) umin i ≤ ui (t) ≤ umax i (1.165)
If the actuator i becomes jammed at position u * i , the MPC controller can be easily redefined by changing the constraints on input i to

u * i ≤ u i (t) ≤ u * i (1.166) 0 ≤ ui (t) ≤ 0 (1.167)
As a consequence, the MPC controller will find the optimal control sequence using the fault information within the updated model.

This approach is not limited to linear systems, nonlinear or even hybrid systems can be controlled in principle, thus also reconfigured by means of MPC controller. The major drawbacks are: high computing power requirements which limits the applicability to slow plants, and the requirement to know the reference trajectory. A reduction of the real-time computation requirements for MPC results from multi-parametric extensions to MPC, see the survey of Morari et al. [START_REF] Morari | Hybrid systems modeling and control[END_REF] or the recent work of Kvasnica et al. [START_REF] Kvasnica | Stabilizing polynomial approximation of explicit mpc[END_REF], where the affine representation of a MPC feedback law is approximated by a single polynomial.

Fault-hiding Paradigm

The fault-hiding paradigm, also known as virtual actuator or virtual sensor paradigm, was mentioned by Steffen [START_REF] Steffen | Control reconfiguration of dynamical systems: linear approaches and structural tests[END_REF] and implicitly used before by Looze et al. [START_REF] Looze | An automatic redesign approach for restructurable control systems[END_REF] in the form of LQ weights. This approach is highly advantageous since it aims at applying a minimal change in the control loop when faults occur. Thus, the method uses a single nominal controller, designed for the nominal or fault-free system, which is always present in the closed-loop system.

The key idea is to put a reconfiguration block between the faulty plant and the controller, as depicted in Fig. 1.23, to hide the fault from the controller. Hence the nominal controller may remain in the loop. Therein, u c and y c are the control input and the plant output seen from the controller, u f and y f are the same quantities acting on the plant, d is a disturbance and f represents the faults acting on the plant.

The advantage of this approach is that any existing nominal controller which has been designed, and possibly fine-tuned and tested, to satisfy the desired specifications for the system, can be used and kept in the loop at all times. All algorithms are suitable for online use with problems of medium size (up to 50 states) due to medium computational cost [START_REF] Lunze | Control reconfiguration: Survey of methods and open problems[END_REF]. Both analytical and physical redundancy can be exploited.

All approaches presented in [START_REF] Steffen | Control reconfiguration of dynamical systems: linear approaches and structural tests[END_REF] depend on a linearity assumption for the system. Recently, the fault-hiding approach has been extended for two classes of nonlinear systems by Richter [START_REF] Richter | Reconfigurable Control of Nonlinear Dynamical Systems: A Fault-Hiding Approach[END_REF].

For a class of Hammerstein-Wiener's systems, the stability recovery problem after combined actuator and sensor faults has been investigated by Richter [START_REF] Richter | Reconfigurable Control of Nonlinear Dynamical Systems: A Fault-Hiding Approach[END_REF].

Control Allocation

Control Allocation (CA) is an approach to manage the actuator redundancy in over-actuated systems and is the most famous used for aircrafts, spacecrafts and marine vessels. In the aerospace community, it is probably the most "ready to be implemented" FTC approach. The main reason is that, even if this technique has been used only for a few space experiments 9 , the computational complexity is already within the limits of today's off-the-shelf embedded computer systems, see [START_REF] Boada | Multi-saturation anti-windup structure for satellite control[END_REF][START_REF] Bodson | Evaluation of optimization methods for control allocation[END_REF][START_REF] Durham | Constrained control allocation[END_REF][START_REF] Fu | Fault tolerant control with on-line control allocation for flexible satellite attitude control system[END_REF][START_REF] Henry | From fault diagnosis to recovery actions for aeronautic and aerospace missions: A model-based point of view[END_REF][START_REF] Jin | Attitude control of a satellite with redundant thrusters[END_REF][START_REF] Oppenheimer | Control allocation[END_REF][START_REF] Page | High-fidelity simulation testing of control allocation methods[END_REF]. A recent and complete bibliographical review on CA techniques can be found in [START_REF] Johansen | Control allocation -A survey[END_REF]. Other reviews can be found in [START_REF] Bodson | Evaluation of optimization methods for control allocation[END_REF][START_REF] Härkegård | Backstepping and Control Allocation with Applications to Flight Control[END_REF][START_REF] Johansen | Control allocation -A survey[END_REF]. A comparison study of 16 different CA methods is performed in [START_REF] Page | High-fidelity simulation testing of control allocation methods[END_REF].

The objective of CA is to choose the configuration of actuators to meet a specified objective, subject to saturation and rate constraints (operational ranges of the actuators). In the case of actuator faults, it is desirable to reconfigure the control allocation scheme (re-allocation) in order to make the best use of the remaining healthy actuators [4,[START_REF] Ducard | Fault-tolerant flight control and guidance systems: practical methods for small unmanned aerial vehicles[END_REF][START_REF] Durham | Constrained control allocation[END_REF][START_REF] Härkegård | Backstepping and Control Allocation with Applications to Flight Control[END_REF][START_REF] Omerdic | Thruster Fault-Tolerant Control: Thruster Fault Diagnosis and Accommodation System ForUnderwater Vehicles[END_REF].

Most CA algorithms assume a linear effector model in the form of a matrix, i.e., a thruster configuration matrix. Thus, control allocation is fundamentally concerned by the inverse computation of the thruster configuration matrix. Since this matrix has more columns than rows (overactuated systems are of interest), there exists an infinite number of solutions. However, by minimizing some "measure" of it, it is possible to have a unique solution. Actuator faults can then be dealt with by control allocation principle so that it is not required to re-design the controller itself (assuming that the CA is feasible to produce the requested control). A consequence is that CA can be used as a FTC solution with a little extra effort on the original techniques. Reference [? ] also exploits this idea using sliding mode techniques.

Active Fault-tolerant Control Approaches

The following section introduces the main principles of the control allocation technique from a mathematical perspective. Details about implementation issues are given in Chapter 4.

The Control Allocation Problem

The concept of CA is to solve undetermined, and typically constrained, systems of equations.

The task is to generate the real control input u ∈ R nu for the corresponding virtual control input v ∈ R nv , which is the input of the control allocator. When a set of actuators is actuated by vector u, it generates the total control effort v sys ∈ R nv . If the CA is successful (feasible), then v = v sys . Mathematically, for a given v, the vector u must be found such that

h u(t) = v(t) (1.168)
where h : R nu → R nv is the mapping from the real to the virtual control inputs performed by the actuators and rank Jacobian(h) = n v [START_REF] Omerdic | Thruster Fault-Tolerant Control: Thruster Fault Diagnosis and Accommodation System ForUnderwater Vehicles[END_REF].

In the literature, the majority of applications considers a linear case. Let's consider a LTI system with n u inputs ẋ(t) = Ax(t) + B o u(t) (1.169) where the overall input matrix

B o ∈ R nx×nu is assumed to have rank(B o ) = n v .
As shown in [START_REF] Härkegård | Resolving actuator redundancy -optimal control vs. control allocation[END_REF], the input matrix B o can be factorized as

B o = B v B (1.170)
where B v ∈ R nx×nv , B ∈ R nv×nu and both matrices have rank equal to n v . Now, the total control effort v sys , produced by the actuators, is decided by the control effectiveness matrix B, i.e., v sys (t) = Bu(t) (1.171)

The control law v is designed based on the pair (A, B v ). Each actuator is assumed to be physically limited by upper and lower position limits, so it is required that

u min i ≤ u i (t) ≤ u max i , i = 1, . . . , n u (1.172)
If actuator rate constraints also exist, it is further required that

umin i ≤ ui (t) ≤ umax i , i = 1, . . . , n u (1.173)
When a digital controller is used, the rate constraint can be threaded as a time-varying position constraint to adjust "how far can the actuator move during the next sampling period". This results in the following constraint formulation • If n v < n u there is an infinite number of solutions. This is the overactuated case, which can degenerate to the exactly actuated case or eventually to the underactuated case in • If n v = n u there is only one and unique solution. This represents the exactly actuated case.

u min i (t) ≤ u i (t) ≤ u max i (t), i = 1, . . . ,
• If n v > n u no solution exists. There are not enough degrees of freedom in the number of control inputs and so a compromise must be made, for example by minimizing a distance between the required control effort and the effort that can be physically achieved. This becomes a crucial aspect within the FTC setting since this means that the impact of the solution has on the control performance should be perfectly known. For example (e.g., in case of rendezvous corridor).

Control Allocation Methods

The proposed methods in literature correspond to different ways of computing the solution for a certain CA objective, rather than for different objectives. The most common approaches are the following.

• Optimization-based methods: These methods rely on the following pragmatic interpretation of the control allocation problem: given a virtual control command v, the goal is to determine a feasible control input u such that (1.171) constrained by (1.172) and (1.173) (or by (1.174)) yields. If there are several solutions, decide the best one by means of a predefined criteria, e.g., l 2 criteria in order to minimize the mean energy consumption, l ∞ criteria to minimize the peak energy consumption. If there is no solution, resolve u such that Bu approximates v as well as possible [START_REF] Härkegård | Backstepping and Control Allocation with Applications to Flight Control[END_REF], e.g., by means of a norm.

• Direct control allocation: Here, the choice of control input is made using the knowledge of the geometry of the actuators. This method was firstly introduced by [START_REF] Durham | Constrained control allocation[END_REF].

• Daisy Chain control allocation: The allocator suite is divided into groups which are successively employed to generate the total control effort [START_REF] Buffington | Lyapunov stability analysis of daisy chain control allocation[END_REF]. It can prevent the use of certain actuators until all other actuators have saturated [START_REF] Härkegård | Backstepping and Control Allocation with Applications to Flight Control[END_REF].

In the quadratic programming approach to CA, also known as l 2 -optimal CA, the control allocation problem is threaded as the following Sequential Least-Squares (SLS) problem

M = arg min u W v ( Bu -v) , s.t. u min ≤ u ≤ u max u = arg min u∈M W u (u -u d ) (1.175)
The above optimization problem (see Fig. 1.24 for an illustration when n u = 2) should be interpreted as follows: given M, the set of feasible control inputs that minimize ( Buv) (weighted by W v ), pick the control input that minimizes uu d (weighted by W u ). Here, u d is the desired control input and W u and W v are weighting matrices. The weighting matrix W u gives some specific priority to the actuators and W v affects the prioritization among the virtual control components when ( Buv) cannot be attained for example due to the actuator constraints.

If no actuator constraints exist, the above optimization problem has a unique and closed form solution in the least square sense, see Appendix A.3.2. If, however, actuator constraints are 

u * = min u W u (u -u d ) 2 + γ W v ( Bu -v) 2 , s.t. u min ≤ u ≤ u max (1.176)
As γ goes to infinity, the two formulations have the same optimal solution u * .

The MATLAB implementations of the Quadratic Programming Control Allocation Toolbox (QCAT) provides a number of algorithms for control allocation that can be found in the literature [START_REF] Bodson | Evaluation of optimization methods for control allocation[END_REF][START_REF] Kenneth A Bordignon | Constrained control allocation for systems with redundant control effectors[END_REF][START_REF] Burken | Two reconfigurable flight-control design methods: Robust servomechanism and control allocation[END_REF][START_REF] Durham | Constrained control allocation[END_REF][START_REF] Härkegård | Dynamic control allocation using constrained quadratic programming[END_REF][START_REF] Härkegård | Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation[END_REF][START_REF] Lötstedt | Solving the minimal least squares problem subject to bounds on the variables[END_REF][START_REF] Petersen | Constrained quadratic programming techniques for control allocation[END_REF][START_REF] Virnig | Multivariable control allocation and control law conditioning when control effectors limit[END_REF]. Seven different solvers, suitable to solve the CA problems dealt with in this thesis, have been selected: SLS Active set solver for the sequential least-squares formulation above. This algorithm determines the optimal solution in a finite number of iterations [START_REF] Härkegård | Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation[END_REF],

MLS Active set based solver for the SLS problem reformulated as a minimal least-squares problem. A limitation is that W u is required to be diagonal [START_REF] Lötstedt | Solving the minimal least squares problem subject to bounds on the variables[END_REF],

DIR Direct control allocation solver is based on a simple algorithm which differs from the SLS and WLS formulation. The idea is to determined u such that the two vectors Bu and v are exactly collinear and their magnitude is as close as possible [START_REF] Bodson | Evaluation of optimization methods for control allocation[END_REF],

WLS Active set based solver for the weighted least-squares formulation. It is based on an algorithm determining the optimal solution in a finite number of iterations [START_REF] Härkegård | Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation[END_REF],

IP Interior point solver for the WLS formulation. Uniform convergence to the optimum in the number of iterations is established in [START_REF] Petersen | Constrained quadratic programming techniques for control allocation[END_REF],

CGI Heuristic method solver based on cascading generalized inverses (or redistributing pseudoinverses) for the SLS formulation. It is based on an algorithm requiring only a finite number of iterations but not guaranteing that the optimal solution is found [START_REF] Kenneth A Bordignon | Constrained control allocation for systems with redundant control effectors[END_REF][START_REF] Virnig | Multivariable control allocation and control law conditioning when control effectors limit[END_REF],

FXP Fixed-point iteration solver for the WLS formulation. It is based on an algorithm converging to the optimal solution as the number of iterations goes to infinity [START_REF] Burken | Two reconfigurable flight-control design methods: Robust servomechanism and control allocation[END_REF].

The above solvers have been implemented by Härkegård [START_REF] Härkegård | Backstepping and Control Allocation with Applications to Flight Control[END_REF] into the QCAT toolbox and will serve as a benchmark in order to compare the results with CA approach proposed in Chapter 4.

Control Allocation for Fault-tolerant Control

In order to make use of the remaining healthy actuators in case of actuator faults, it is required to reconfigure the control allocation scheme (re-allocation) by including the constraints due to the faults. As a consequence, the CA principle will find the optimal control combination using the fault information. This means that a FDI or a FDD unit should be joined with the CA algorithm in order to identify the faulty situation. This principle is illustrated in Fig. 1.25. As it can be seen on this figure, the control allocation module takes as inputs the desired virtual signal v and an estimation Bf of the actuator configuration matrix B. This matrix is provided by the FDI/FDD module. Thus, the CA module has the ability to adapt the available actuators to the faults that have occurred. For example, if the effectiveness of a certain actuator becomes 0% due to a fault, the corresponding column in Bf becomes 0. This actuator is then not considered anymore by the CA algorithm. The goal is then to produce the desired virtual signal v by selecting the appropriate actuator inputs u without considering the faulty actuator. Whether this can be done depends on the situations discussed previously in Section 1.4.3.1, i.e.,

n v < n u , n v = n u or n v > n u .
In terms of control re-allocation techniques, a method based on a PIM and fixed-point algorithm (FXP) were proposed and evaluated for a realistic and nonlinear ADMIRE aircraft model in [START_REF] Zhang | Reconfigurable control allocation against aircraft control effector failures[END_REF]. An on-line sliding mode control allocation scheme for FTC has been developed in [4]. In [START_REF] Durham | Multiple control effector rate limiting[END_REF], the problem of CA with magnitude and rate limits on the actuators is considered. The method proposed in [START_REF] Zhenyu | The frequency-domain heterogeneous control mixer module method for control reconfiguration[END_REF] looks at restoring as much as possible the performance of the original B matrix after an actuator fault. In [START_REF] Khelassi | Reconfigurable control design for over-actuated systems based on reliability indicators[END_REF], the integration of reliability indicators into the CA framework was considered.

One of the major advantages of the control re-allocation is that the controller itself does not have to be modified, since it does not change the closed-loop dynamics of the system, assuming that it is feasible to produce the requested virtual control input. However, there are two major limitations to this approach. Firstly, the dynamics and limitations of the actuators after a fault are not taken into account in the control law. This means that the controller will still attempt to achieve the nominal system performance even though the actuators are not able of achieve it. Secondly, there is no guarantee of stability, even with a stabilizing control law, when n v > n u , as the input seen by the system may not be equal to that intended by the controller [START_REF] Ducard | Fault-tolerant flight control and guidance systems: practical methods for small unmanned aerial vehicles[END_REF]. A counterpart of this aspect is that, when there exists redundancy in the actuators, CA technique succeeds and the stability follows. That is why industrials from the space community design their spacecraft with redundant thrusters. It allows, for instance, to guarantee tolerance to Active Fault-tolerant Control Approaches thruster faults.

Note that one of the useful functionality of the CA theory for FTC is the possibility of visualizing the feasible virtual control set V = {v : v = Bu, ∀u ∈ {u min ≤ u ≤ u max }} allowing one to prior analyze the fault recoverability/compensability property that is the possibility of the remaining fault free actuators to recover/compensate the fault. This becomes a crucial aspect from a practical point of view and leads the CA technique to be suitable for FTC solutions in spacecrafts.

Enhanced and New Theories in FTC

In this section, two different approaches are briefly introduced to tackle some limitations of the methods described in the previous sections. These two approaches are however out of scope of this thesis.

The Supervisory FTC Approach

The major limitations of the classical FDI/FTC methods are: i) the problem of guaranteeing stability and performances of the overall FTC scheme taking into account the FDI, the switching and the re-configuration mechanisms is less considered even if it is an important aspect outlined by many authors. In other words, the majority of existing FTC approaches are built on the assumption that each individual unit is assumed to operate correctly, i.e., its output is instantaneously available to provide decisions and/or actions to other subsystems. From a practical point of view, the coupling properties are studied only by means of a Monte Carlo campaign. ii) as a direct consequence, even if the stability can be ensured, there exists no direct proof of global optimality of the FTC scheme since the controllers and the FDI/FDD schemes are designed separately.

The method proposed by Efimov et al. [START_REF] Efimov | Supervisory fault tolerant control with mutual performance optimization[END_REF] deals with the above limitations, particularly:

• Formal stability proofs are established for the overall FTC scheme taking into account the plant model switching, the control reconfiguration switching and the influence of uncertainties and unknown inputs.

• The method allows to design both the FDI and FTC unit taking into account their coupling. Further, it allows to derive a global FDI/FTC scheme with guarantee of stability and well established performance in terms of robustness, fault detection and tolerance.

• Finally, it is proved that the global stability of the FTC system is preserved even if the FDI scheme fails to identify the correct fault. In this case, a system chattering effect may exist that can be reduced by choosing some adequate parameters.

The proposed technique addresses the FDI/FTC design problem for uncertain LTI systems under arbitrary faults since a fault is considered to be a system operating mode. It is assumed that faults cause either instability or performance degradation of the nominal (already in-place) control law, so that the activation of a new controller is required. The main problem is the relation between the fault detection and isolation time and the reconfiguration time so that it is required to detect the smallest possible fault and to accommodate it in an earlier way. The FTC design problem is formulated within the supervisory framework. The structure of the supervisory FTC architecture that is proposed in [START_REF] Efimov | Supervisory fault tolerant control with mutual performance optimization[END_REF] is shown in Fig. 1.26. The supervisor is based on the switching logic that is a decision map H : R nu ×R ny ×R nx×N → I generating the switching signal

σ(t) = H(u, y, z 1 , . . . , z N ) (1.177)
which assigns the control algorithm. In ideal case, the control index matches the plant one (σ(t) → i). The supervisor has to ensure right continuity of the signal σ, i.e., the signal has to be piecewise continuous and between any two jumps a time delay should exist. The design of the map H differs depending on the operation conditions. Then, a converging observer exists that solves the detection problem. Typically in the FTC theory these blocks are designed independently, optimizing some performance functionals. As it is well known, the optimality of the subsystems does not imply the same property for the whole system. In the proposed method the optimal properties are critically dependent on switching and, hence, on the supervisor.

The main advantage of the method proposed in [START_REF] Efimov | Supervisory fault tolerant control with mutual performance optimization[END_REF] is concerned by an approach oriented on the mutual performance optimization of this switched system. For this purpose, the method chooses a characteristic of the hybrid system to be optimized in parallel with the conventional ones used for the observer and the control design. The criterion to be minimized is the minimal admissible time between switches among controls. It is well known that switching among stable linear systems does not lead to instability if the delay between switches are big enough (the minimum delay between switches is called dwell-time). This is why the strategy oriented on this delay increasing is frequently applied in practice to ensure stability in switched systems. However, for FTC systems such approach is not admissible, since it results in an increasing time of reconfiguration, which is dangerous if another fault would appear. This is especially the case for the intermittent faults where the dwell-time value has to be at least smaller than the time variation of two successive faults. Additionally, it may lead to a longer period of wrong control activation for the faulty plant. The both properties are inadmissible for the FTC systems from a practical point of view. Thus, the minimization of the dwell-time value for the supervisory FTC system has to be carefully adequate.

Stability theorems and corollaries are established for both constant and time varying plant index i ∈ I. The influence of the dwell-time value on the overall system performance is evaluated and a computation procedure for verification of the stability conditions and of the FTC system synthesis is formulated as a global optimization problem. Norms are used to formulate the problem, but others criteria can be used since the procedure involves a general formulation of a multi-objective optimization problem whereby the choice of the designed parameters is guided by the Pareto optimal points.

Remark 1.20. An alternative to the dwell-time theory to solve the supervisory-based approach is to use the so-called falsification theory [START_REF] Dehghani | Unfalsified adaptive control: a new controller implementation and some remarks[END_REF][START_REF] Safonov | Focusing on the knowable[END_REF][START_REF] Safonov | Fitting controllers to data[END_REF][START_REF] Safonov | The unfalsified control concept and learning[END_REF]. However, as it is proved in [START_REF] Efimov | Supervisory fault tolerant control with mutual performance optimization[END_REF], the case of the supervisor (1.177) involves some restrictive conditions when analysing the stability property of the overall FTC scheme. Thus, the falsification supervisory approach is thought by Efimov et al. [START_REF] Efimov | Supervisory fault tolerant control with mutual performance optimization[END_REF] to be not a viable candidate for practical FTC solutions.

Remark 1.21. Another solution that aims at proposing an enhanced FTC scheme under global stability is the so-called backstepping approach for fault tolerance [START_REF] Jiang | Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures[END_REF][START_REF] Wang | Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance[END_REF][START_REF] Wang | Adaptive compensation for infinite number of actuator failures or faults[END_REF][START_REF] Zou | Adaptive fuzzy fault-tolerant attitude control of spacecraft[END_REF]. However, at this time, only preliminary results exist and the advantage and the application of the method is not well established.

The Trajectory Re-planning Approach

Whatever the selected FTC strategy, a fault cannot be accommodated without sufficient resources in the system. The majority of the existing FTC methods continue to force the system to follow the pre-fault trajectories without considering the reduction in available control resources caused by actuator faults. Forcing the system to follow the same trajectories as before fault occurrence may result in actuator saturation and system's instability. Pre-fault objectives should be redefined in function of the remaining resources to avoid potential saturation. Any reference generation technique can be potentially used. However, in the context of trajectory replanning for FTC, it is of prime interest to consider the reduction in available control resources caused by the faults.

For systems with input and/or state related constraints, a reference governor or reference management is proposed in the literature. In [START_REF] Bemporad | Nonlinear control of constrained linear systems via predictive reference management[END_REF], a command governor based on tools of predictive control is designed for solving set-point tracking problems wherein pointwise-in-time input and/or state inequality constraints are present. A reference governor is designed in [START_REF] Gilbert | Nonlinear tracking control in the presence of state and control constraints: a generalized reference governor[END_REF] for general discrete-time and continuous-time nonlinear systems with uncertainties. It relies on safety properties provided by sub-level sets of equilibria-parameterised functions. In the context of FTC, a reference input management is introduced in [START_REF] Zhang | Fault tolerant control system design with explicit consideration of performance degradation[END_REF] to determine appropriate reference inputs in the presence of actuator faults to avoid potential saturation. The idea is to determine the relationship between the closed-loop control signals and the associated reference inputs at steady state and to translate the limits of actuator saturation to the desired requirements on the reference inputs. An on-line adjustment strategy of reference input trajectories is developed using MPC techniques in [START_REF] Theilliol | Fault tolerant control system against actuator failures based on re-configuring reference input[END_REF]. Another reference input generation method is proposed using feedback linearization in [START_REF] Dardinier-Maron | A fault-tolerant control design against major actuator failures: application to a three-tank system[END_REF]. The reference input generation, which leads the damaged system to its optimal operating point, corresponds to a nonlinear quadratic programming optimisation problem. The objective is to minimise the distance between the desirable output vector before and after failure occurrence while distributing most equitably the energy among the healthy actuators.

Chamseddine et al. [START_REF] Chamseddine | Trajectory planning/re-planning for satellite systems in rendezvous mission in the presence of actuator faults based on attainable efforts analysis[END_REF] established a relation between the reference trajectory to follow and the remaining resources after fault occurrence. In their work [START_REF] Chamseddine | Trajectory planning/re-planning for satellite systems in rendezvous mission in the presence of actuator faults based on attainable efforts analysis[END_REF], a flatness-based trajectory planning/re-planning method that can be combined with any active FTC approach is proposed. The work considers the case of over-actuated systems where a new idea to evaluate the severity of the occurred faults is proposed. In addition, the trajectory planning/re-planning approach is posed as an optimisation problem based on the analysis of attainable efforts domain in fault-free and fault cases.

The proposed approach in [START_REF] Chamseddine | Trajectory planning/re-planning for satellite systems in rendezvous mission in the presence of actuator faults based on attainable efforts analysis[END_REF] is applied to two satellite systems in rendezvous mission. The flatness-based trajectory planning/re-planning approach is formulated as an optimisation problem to minimise the total time (t f -t 0 ) of the mission while avoiding hitting actuator constraints, i.e.,

   Minimise t f -t 0 Subj. to v * (t) -c < ρ 2 R 2 , ∀t (1.178) 
where t 0 is the initial and t f the final time of the mission, and v ∈ R nv is the vector of desired efforts (the application of [START_REF] Chamseddine | Trajectory planning/re-planning for satellite systems in rendezvous mission in the presence of actuator faults based on attainable efforts analysis[END_REF] considers only the position dynamics, i.e., n v = 3). The parameters c ∈ R nv and R ∈ R + are used to determine a sphere S with a center c and radius R. This sphere is the largest sphere included in the set of attainable efforts Φ = {v ∈ R nv : v = Bu, ∀u ∈ Ω}, where Ω stands for the set of attainable control inputs u and B is the actuator effectiveness matrix. The parameter 0 < ρ < 1 is used to consider model uncertainties. The desired effort v * (t) can be generated by the control inputs

u if v * (t) ∈ Φ. If the optimization problem (1.178) is feasible, then v(t) * ∈ Φ, ∀t ∈ [t 0 , t f ] since S ⊆ Φ.
When actuator faults occur, the set Φ shrinks. The idea of the proposed method is to use the reduction in the domain Φ (and thus of S) to evaluate the severity of faults.

The major limitations of this approach is that the obtained trajectories are suboptimal since the reference trajectories are restricted to polynomial functions of time (Bézier polynomial functions of degree three) leading to a less smooth control efforts. Moreover, the set of attainable control efforts is approximated by a spherical subset and a perfect FDI unit is assumed (detection/isolation delay and the coupling between the FDI and FTC units are not addressed).

Conclusion

In this chapter, the state of the art of the main model-based FDI/FDD and FTC techniques has been presented. Bibliographical references are given for the main contributions. Some application examples from aerospace field have been introduced to highlight the applicability of the selected methods. In the following, a summary of the previously introduced FDI/FDD and FTC techniques is given in tabular forms. The next chapters address the main content and contributions of the work presented in this thesis.

Summary of the FDI/FDD Approaches

It is believed that the described FDI/FDD methods can also be classified according to seven criteria (see below) which lead to the classification proposed in Table 1.2.

1. Detection Time Performance (DTP) measure, defined as the time to detect (detection delay) normalized with respect to the maximum allowed time to detect. Statistics of this index, such as mean, minimum and maximum values, variance, etc., can for example be used with respect to the number of Monte Carlo (MC) runs.

Conclusion

2. The missed detection rate, which is a ratio of missed fault cases with respect to the total number of MC runs, 3. The false alarm rate, which is the ratio of false alarm cases with respect to the total number of MC runs without faults.

4. The executive time (in number of processor cycles), allowing the required executive time to be measured once a FDI design is coded using a oriented processor language.

5. The tuning complexity index, which is a metric allowing the re-use capacity of the FDI technique to be measured from a user point of view. It includes the number of input parameters to tune for a given scenario (e.g., the dimension of the Q and R matrices for a Kalman Filter-based algorithm).

6. The "formal proof for performance" criterion. This criterion indicates if there exists a formal proof of a given FDI algorithm to cover a specified set of faults.

7. Finally, the last criterion aims at quantifying if an FDI technique is suitable for FTC approaches described in the next section.

These metrics allow the existing approaches (described in this thesis) to be easily compared in terms of application criteria. The signs indicate that an approach fulfils a requirement very well (++), well (+), in a limited fashion (0), not favorable (-) or not applicable (--).

Summary of the FTC Approaches

With respect to the AFTC approaches, an attempt was made to do a classification that can be a be a possible guideline to choose the adequate solution for a given problem. This classification can be found in Table 1.1. In this table, the explanation of the signs corresponds to the ones presented in Table 1.2.

Note that since FTCS design is a recent topic in the research community, there is lack of a clear and recognized classification. There only exist some disseminate studies and applications.

Especially in terms of space applications, there only exist a few published papers. These techniques have been studied only under the assumption of perfect FDI which is though a negative aspect since the global stability of the overall FTC scheme (i.e., taking into account the FDI unit performance) cannot be formally proved. 

Table 1.2 -Classification of the existing FDI approaches

MSR Mission Description and Modelling

"We choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard!" -John F. Kennedy, American president T his chapter describes the Mars Sample Return (MSR) mission, its rendezvous phase and the vehicles involved (i.e., the target and chaser spacecraft) in the mission. It describes the Guidance Navigation and Control (GNC) unit that is in charge of controlling the chaser during the rendezvous phase and the failure management unit that is in charge of detecting failures and of engaging corrective maneuvers. It is shown how the FDIR and FTC solutions investigated in the next chapters, can be integrated in the failure management unit. This chapter also addresses the models of the chaser spacecraft dynamics (relative position between the chaser and the target and chaser attitude) that will be further used in the following chapters to design model-based FDIR/FTC solutions. Modelling of the chaser spacecraft thruster-based propulsion is also addressed to outline the effect of the faults. The considered fault scenarios are also discussed. It should be outlined that the work presented in this thesis does not consider the solar panel flexible modes, the slosh phenomena and the time-variations of the center of mass (it considers uncertain center of mass) of the chaser spacecraft. These problems are currently studied within the iGNC project (Integrated GNC Solutions for Autonomous Mars Rendezvous and Capture), see [START_REF]Statement of Work. Integrated GNC Solutions for Autonomous Mars Rendezvous and Capture[END_REF][START_REF] Peuvédic | Fault tolerant control design for terminal rendezvous around mars[END_REF].

Overview of the MSR Mission

The Red Planet has been an object of fascination and mystery since ancient times and still remains a primary goal for space robotic explorations. Rovers and other space vehicles do a great job studying Martian geological structures and biology. However, bringing samples of Mars back to Earth is still challenging for answering critical scientific questions that cannot be addressed by purely "in situ" missions, where it is not possible to effectively use the large international capabilities in scientific instrumentation.

The Mars Sample Return mission is one of the most exciting challenges in the international

Chapter 2. MSR Mission Description and Modelling effort on the Solar System exploration. The mission concepts have been studied for years by NASA (D'Amario et al. [START_REF] D'amario | Mars orbit rendezvous strategy for the mars 2003/2005 Sample Return Mission[END_REF]), French National Space Agency (CNES) (Cazaux et al. [START_REF] Cazaux | The NASA/CNES Mars Sample Return -a status report[END_REF]) and ESA. Its main goal is to collect samples of Martian rocks, soils and atmosphere, and to return these samples safe and intact back to Earth for analysis. The importance and complexity of this mission calls for a global effort, with particular collaboration between ESA and NASA, as well as the participation of other space agencies [START_REF]Mars Sample Return[END_REF].

The mission consists of two spacecrafts directly injected towards Mars by launchers [START_REF] Beaty | Preliminary planning for an international Mars Sample Return mission[END_REF]. The descent module is released on the Martian atmosphere (Entry phase), lands on the Mars surface and a Mars rover vehicle is released. Once the rover finished the collecting procedure, the samples are put into the sample container and loaded on the Mars Ascent Vehicle (MAV) which is then launched, by means of rockets, into a low Mars orbit. Meanwhile the second module, the rendezvous system (chaser) and the Earth Re-entry Capsule (ERC), is injected towards the Mars planet to rendezvous with the sample container (target) and bring it back to Earth. The chaser achieves the sample capture as soon as it is released by the MAV, which performs the last maneuver in order to avoid any interference with the rendezvous operation. Finally, after successful capture, the sample container is inserted into ERC inside the chaser vehicle and the chaser starts its interplanetary cruise towards the Earth. Figure 2.1 provides an overview of the mission. The target is a diameter spherical container whereas the chaser capture mechanism is a basket with cylindrical aperture which is part of the sample handling system. During the capture, the chaser aperture must face towards the target. The objective is obviously to successfully capture the target. To achieve this, the capture conditions in terms of position and velocity, and of attitude error and angular rates must be achieved within a certain precision, see In terms of mission performance, the critical constraints are the size of the approach corridor driven by the light detection and ranging (LIDAR) sensor field of view and the velocity profile of the chaser (the capture should be done at velocity very close to zero). Therefore, during the whole rendezvous phase, the chaser spacecraft must maintain its trajectory inside the rendezvous corridor (see Fig. 2.17 for an illustration), its velocity along the capture axis is close to 10 cm/s for capture, and must keep its attitude pointing towards the target with maximum attitude misalignment of 20 o on all the three axis. The minor objective for the rendezvous problem is to minimize the fuel consumption.

A number of new technologies are required to successfully accomplish this pioneering mission. One of them is the rendezvous and capture system, which will be able to detect, approach and capture the sample container, previously put in a predefined orbit by the MAV. See Fig. 2.2 for an illustration. Here, the guidance law is tasked with accelerating the chaser to reach the required velocity profile (10 cm/s) and with moving the chaser to a position of 3 m from the target. At a distance less than 3 m of separation, the remainder of the maneuver is passive (no active position control) and the chaser trajectory shall freely drift upwards to intercept the Y axis. During the whole length of this phase, the chaser must maintain its line of sight pointing towards the target. It is necessary for the short-range relative navigation sensors to function correctly. At the last tenths centimeters, the attitude guidance will align the capture mechanism towards the target. The simulation, however, stops at the point when this phase begins.

Combination of high control accuracy due to the tight capture tolerances together with the distances involved, and the resulting communication delays (up to 20 minutes in each direction), there is a particularly strong motivation to perform this operation autonomously.

Chaser Spacecraft GNC

The rendezvous GNC unit of the chaser spacecraft corresponds to a 6 Degree of Freedom (DOF) control. It ensures the application of both commanded torque and force using thrusters only. Figure 2.4 shows the general setup of the GNC system of the chaser vehicle. The set of sensors and actuators during the terminal rendezvous is minimized to reduce the risk of fault occurrence and to reduce the power consumption and mass [START_REF] Peuvédic | Fault tolerant control design for terminal rendezvous around mars[END_REF]. The control unit during the rendezvous phase relies on a precise on-board sensor systems composed of:

• two 3-axis Inertial Measurement Units (IMUs) in hot redundancy,

• two Star Trackers (STR) in cold redundancy, and

• two short-range rendezvous sensors with a functional hot redundancy:

a Light Detection and Ranging (LIDAR) sensor, and a Radio Frequency Sensor (RFS) as back-up.

The IMU is an electronic device that is in charge of measuring the chaser angular velocity ω = [p, q, r] T using a combination of accelerometers and gyroscopes, sometimes also magnetometers. The quaternion-producing STR provides the measurement of the (normalized) chaser attitude quaternion q c which can be easily converted to Euler angles Θ = [ϕ θ ψ] T , see Appendix A.5.2 for conversion details. The LIDAR unit is in charge of the measurement of the relative position ρ = [ξ η ζ] T between the chaser and target. The RFS sensor is used to monitor the chaser trajectory, and it can trigger a Collision Avoidance Maneuver (CAM), if necessary.

The role of the navigation unit (NAV) is to perform reliable estimates qc , Θ, ω, and ρ of q c , Θ, ω, and ρ, respectively, by removing the misalignment phenomena, sensor bias and noises on these measurements. The navigation unit also provides an estimate of the target attitude quaternion qt , that will be used later for the design of the FDI unit. It is assumed that the NAV unit is decoupled from thruster faults, but providing "non-perfect" state estimates, i.e., there still exists some unfiltered noises on ω, ρ, qt and qc (and therefore on Θ) and also there exists a constant delay between the NAV unit and the controller, see Section 2.2.1 about measurement noise modelling.

In terms of actuators, the chaser spacecraft is equipped with a very precise chemical propulsion system composed of N bi-propellant thrusters.

In this thesis, two distinct thruster configurations with different number of thrusters and different geometrical layout are considered. The properties of these configurations are introduced at the beginning of each chapter where they are considered. The chaser is also equipped with a set of reaction wheels in a classical pyramidal configuration. However they are not used during the rendezvous phase, therefore they are not considered in this thesis and the terms "actuator" and "thruster" are used interchangeably.

Remark 2.1. In the delivered version of the simulator that was used for all simulations in Chapter 3 and Chapter 4, the NAV block is not modelled and therefore an appropriate model of the coupling between the sensor blocks and NAV is considered. This is the purpose of the next section.

Sensors and Navigation Modelling Issues

The purpose of this section is to describe the models of the sensors used during the terminal rendezvous phase to capture the target. As explained previously, see Fig. 2.4 if necessary, those sensors are the LIDAR, the STR and the IMU sensors. The case of the RFS is not considered in the following since, again, it is only used to monitor the chaser trajectory and thus is not involved in the control loop. All the sensors, which are a part of the navigation unit too, are assumed to deliver their measures synchronously at sampling frequency of 10 Hz.

LIDAR Modelling Issues

Today's modern short rendezvous LIDAR devices dispose of high accuracy level. As such, that most space agencies (NASA, ESA, CNES) have already identified LIDAR as a viable candidate instrument for autonomous rendezvous [START_REF] Lee | Mission Design Overview for Mars 2003/2005 Sample Return Mission[END_REF][START_REF] Pelletier | Lidar-based rendezvous navigation for MSR[END_REF]. It seems to be a justified, precise and robust device for the MSR mission success [START_REF] Murphy | Light detection and ranging (lidar) mapping system[END_REF]. Therefore, all along this thesis, the LIDAR model is assumed to correspond to a perfect measure corrupted by an error. This error is assumed to be an additive zero-mean Gaussian white noise, i.e.,

ρ(k) = ρ(k) + w ρ (k) (2.1)
where w ρ ∈ R 3 is a random process following a normal distribution N (0, σ 2 ρ ).

High demand is put on the LIDAR to meet the navigation accuracy required for a close range rendezvous. This motivated some researchers to consider a relatively small noise variance for this device [START_REF] Hartley | Model predictive control system design and implementation for spacecraft rendezvous[END_REF][START_REF] Singla | Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty[END_REF]. In this work, the corresponding 3-sigma values are 3σ ρ = 0.035/ √ 2 (m) for all three axes (ξ η ζ). Remark 2.2. Despite the fact that the velocity measurements are not used in any of the proposed FDI/FTC schemes developed in this thesis, the same noise model was assumed for the velocities (used by the nominal controller) with the following 3-sigma values: 0.009 (m/s) for ξ axis and 0.007 (m/s) for the remaining two axes η and ζ, respectively.

Attitude Quaternion Modelling Issues

The STRs are in charge to deliver the attitude quaternion. The model considered in this thesis corresponds to the perfect quaternion measure corrupted by a noise.

To proceed, let the chaser (or the target) attitude be represented by the unit quaternion (see Appendix A.5 for quaternion definitions and algebras) q = (q 0 , q 1 , q 2 , q 3 ), q ∈ H q ∈ {q c , q t } (2.2)

satisfying the unity constraint

q = q 2 0 + q 2 1 + q 2 2 + q 2 3 = 1 (2.3)
Let a random variable w q ∈ R 3 follow a uniform distribution U(-u, u), where u > 0. The vector w q can be regarded as a rotation vector. This means, that w q represents a random rotation with the angle α w = w q (2.4)

around the axis e w = w q w q (2.5)

The quaternion representation q w of this rotation is

q w = cos α w 2 , e w sin α w 2 (2.6)
This noise quaternion can be now used to correctly corrupt a deterministic quaternion q (representing the real attitude in our case) to obtain a disturbed quaternion q, i.e., q(k) = q(k) q w (k) (2.7)

where stands for a quaternion product (see Appendix A.5.3). A noisy quaternion q obtained in this way with u = 10 -4 aims to model the imperfections of the sensor/navigation unit when speaking about the target or chaser quaternion. This type of measurement model is often used by the industry to model the coupling between the unmodelled sensor and the navigation blocks. Note, that since both quaternions q and q w are unit, the resulting quaternion q will keep this property too.

Angular Rate Measurement Model

Gyros (part of the IMU) are subject to different kind of uncertainties, such as noise and bias.

In accordance with the literature [START_REF] Lefferts | Kalman filtering for spacecraft attitude estimation[END_REF], a widely used gyro model is considered in this thesis, such as

ω(k) = ω(k) + b(k) + w r (k) ḃ(k) = w b (k) (2.8)
where b ∈ R 3 is a slowly varying gyro bias vector, w r ∈ R 3 and w b ∈ R 3 are independent zeromean Gaussian white noise processes following a normal distribution N (0, σ 2 r ) and N (0, σ 2 b ), respectively. The 3-sigma values are 3σ r = 0.0016 (deg/s) and 3σ b = 0.2282 × 10 -5 (deg/s 2 )

Translation and Attitude Guidance

The guidance function which fundamentally is nothing else than a path planning algorithm, is in charge of generating the position/velocitiy profiles ρ r = [ξ r η r ζ r ] T / ρr = [ ξr ηr ζr ] T and quaternion attitude/angular velocity profiles q r = [q 0r q 1r q 2r q 3r ] T /ω r = [p r , q r , r r ] T for the rendezvous and capture phases. Its function is to provide the reference state vectors as well as to compute and provide any feed forward control signals, if required.

• Position Guidance

In terms of position, the guidance for the final approach consists successively of a station keeping phase, an acceleration part followed by a constant velocity part which corresponds to the final docking velocity and a free drift. Past research has focused on various acceleration profiles to have smooth velocity profiles with indifferent results. The profile used for the terminal rendezvous of the MSR mission between the chaser and the target, is based on having constant accelerations leading to a simple and fast profile. This profile is defined in the local frame F l = {O T ; X l , Y l , Z l }, see Fig. 2.5 for an illustration. This frame is fixed at the center of the target O T , with its Z l axis be perpendicular to the X l and Y l axis and oriented as shown in Fig. 2.5.

The phase plane profiles for the final approach is illustrated in Fig. 2.6. The guidance profile is generated for each separate segments as illustrated, each segment corresponding to a rendezvous phase. The first segment defined for times t ∈ [t 0 , t 1 ] corresponds to the station keeping phase, Chapter 2. MSR Mission Description and Modelling Figure 2.5 -The Mars rendezvous orbit with the associated frames the second segment t ∈ [t 1 , t 2 ] refers to the constant acceleration phase, the third segment t ∈ [t 2 , t 3 ] is the constant velocity phase and finally, the fourth segment t ∈ [t 3 , t 4 ] refers to the free drift phase. The target is reached at time t 4 . Fig. 2.6 illustrates the phase plane profiles along the X and Y axes. The profile along the Z-axis is not presented since it is quite evident: since the rendezvous is done in the X-Y orbit plane, the Z-axis profile has to be fixed to zero. Thus ζ r = 0 and ζr = 0. In other words, the guidance profile is specified so that there is no motion in the out-of-plane of the orbit plane. During station keeping, i.e., t ∈ [t 0 , t 1 ], the reference vector signal ρ r will keep the spacecraft at a chosen location, i.e., the position reference are the coordinates of that point. This point corresponds to the initial position given in the Table 2.2. The reported coordinates are given in the inertial frame For the other segments, it is necessary to find the time t i , i = 1, ...4 and the location η r (t i ) and ξ r (t i ) at the shift points. Regarding the Y profile, this is all done based on the standard kinematic solution under constant acceleration that can be written in the general form as s = s 0 +v 0 t+ 1 2 at 2 , where s is the distance, v 0 is the initial speed, and a, the applied acceleration. The following gives the solution of the problem for the constant acceleration phase. The intermediate calculus are omitted since they are well known.

F i = {O M ; X i , Y i , Z i }
η r (t) = η r (t 1 ) + 1 2 η0 t 2 ∀t ∈ [t 1 , t 2 ]
(2.9) η r (t 1 ) = -21.85 m being the coordinate of η r at the end of the station keeping phase and η0 = 0.33.10 -3 m/s 2 being the required acceleration. The speed is then given by ηr (t) = η0 t (2.10)

The solution of the constant velocity phase is

η r (t) = η r (t 1 ) + ηr (t 2 )(t -t 2 ) ∀t ∈ [t 2 , t 3 ] (2.11)
the speed being ηr (t 2 ) = 0.1 cm/s. The last phase (free drift) corresponds to a (progressive) deceleration phase until the target is reached.

η r (t) = η r (t 4 ) -ηr (t 2 )(t 3 -t 2 ) - d 2 (t 3 -t 2 ) 2 + ηr (t 2 )(t -t 3 ) + d 2 (t -t 3 ) 2 ∀t ∈ [t 3 , t 4 ] (2.12)
where d refers to the slope of the required deceleration. The X profile (i.e., the definition of ξ r (t)) follows exactly the same principle. Figure 2 can also be easily identified.

• Attitude Guidance

The attitude guidance loop is very simple. Since the navigation unit provides the attitude quaternion of the target qt , the attitude guidance loop obeys simply to the rule "follow the attitude quaternion of the target with a shifted angle for ϕ equal to 90 o ", i.e.

q r = qt + q 90 o (2.13)
The reason of the shift of 90 o for ϕ is due to the position of the capture mechanism, i.e., its entry is placed perpendicular to the face of the chaser spacecraft. In this equation, q 90 o is the quaternion associated to ϕ = 90 o , see Appendix A for quaternion's algebra. The reference angular velocity ω r is derived from the relation ) is reported for better understanding of the coupling between the position and the attitude trajectories.

0 ω r = 2 qt q * t ( 2 

Control and Actuator Management Functions

To carry out the mission and to ensure the required performance, the chaser spacecraft has a fine 6 DOF manoeuvring capability. This is ensured by a 6 DOF control law whose architecture is illustrated on Fig. 2.8.

It mainly consists of two linear controllers, K pos and K att , a Thruster Modulator Unit (TMU) and a Thruster Management Function (TMF). The role of the matrix rotation R(q c , qt ) will be explained later. The controller K pos is in charge of controlling the position and K att is in charge of controlling the chaser attitude. They cope too with the attitude/position couplings in the chaser spacecraft. Couplings have several origins, e.g., flexible modes of the solar arrays and slosh phenomena (not considered in this thesis as already outlined), transverse inertia, relative orbital dynamics, capture mechanism offset with respect to the center of mass, etc.. 

Attitude Control Loop K att

Suppose that the attitude of the chaser spacecraft is expressed in terms of the direction cosine matrix A c relative to the reference frame in which the attitude manoeuvre is to be commanded and achieved (see Appendix A.4 for details on cosine direction matrix issues). Suppose that an attitude vector Θ has the components φ, θ, ψ in a given frame and that the chaser is to be manoeuvred so that its final direction cosine matrix will coincide with a known matrix A r . In the following, this matrix is called the reference matrix and will refer to the frame in which A r is defined. From a practical point of view, A r is computed by the attitude guidance law.

According to the developments presented in Appendix A.4, the vector Θ can be expressed in the chaser frame and in the reference frame as Θ c and Θ r (respectively) in the following way:

Θ c = A c Θ (2.15) Θ r = A r Θ (2.16)
Combining both equations, it yields

Θ c = A c A -1 r Θ r = A c A T r Θ r = A Θ r (2.

17)

The matrix A , as defined in (2.17), has the following meaning: if the components of two noncollinear vectors Θ i are identical in both the chaser frame and the reference frame, then these frames coincide and the chaser body axes have reached the desired attitude in space. Hence, A is the direction cosine error matrix. When this matrix becomes an identity matrix, then A c = A r and the chaser has reached the desired attitude. For the last matrix to become diagonal, the off-diagonal elements must be zeroed and the diagonal elements must become unit.

To understand the meaning of zeroing the off-diagonal elements, let examine Fig. 2.9 and interpret correctly the meaning of the elements a ij in (2.18). For example, a 12 is the scalar dot product between the X c and the Y r axes. Hence, a 12 = 0 is equivalent to making the X c axis perpendicular to the Y r axis by increasing the angle α in Fig. 2.9. This may be achieved by rotating the spacecraft about the Z c axis until the following equality is satisfied:

a 12 = X c . Y r = 0 (2.19)
In the same way, it is easily seen that zeroing a 13 is equivalent to the scalar dot product

a 13 = X c . Z r = 0 (2.20)
which means geometrically that the spacecraft is to be rotated about its Y c axis until the X c axis becomes perpendicular to the Z r reference axis. Finally, rotation of about the X c axis will make the Y c axis perpendicular to the Z r axis, thus zeroing a 23

a 23 = Y c . Z r = 0 (2.21)
Figure 2.9 -Geometrical interpretation of zeroing the off-diagonal elements of A .

By similar reasoning, it can be shown, that if both the reference and the chaser axis frames coincide, then the elements of the error matrix A , that lie below the matrix diagonal are also zeroed. Thus, with the completion of the manoeuvre, the error matrix becomes the unit diagonal matrix. Simultaneous satisfaction of (2.19), (2.20) and (2.21) tends to rotate the chaser axis frame, so that it coincides with the desired target axis frame, thus achieving the desired attitude manoeuvre in space. Since the basic attitude dynamics of any spacecraft consists of two integrations per axis (see the modelling Section 2.4 addressed later), rate terms, i.e., ω = [p q r] T , must be used in order to stabilize the spacecraft orientation along the three axes, leading to the following attitude control law:

T dx = K a x a 23 + K a xd p (2.

22)

T dy = K a y a 13 + K a yd q (2.23)

T dz = K a z a 12 + K a zd r (2.24)
The terms p , q , r are also used for damping purposes, the index being used to refer to errors (difference between desired and measured angular velocities, in the chaser frame).

In the beginning of a manoeuvre, the error elements may be quite large, depending on the initial relative attitude orientation of the chaser with respect to the reference frame. At the final stages of the attitude manoeuvre, when the axes are closely aligned with the reference frame axes, the error elements a 12 , a 13 and a 23 approach the errors of the Euler angles ϕ, θ, ψ.

The control gains K a x , K a y , K a z , K a xd , K a yd and K a zd should be designed so that, at the end of the large manoeuvre in space, the time responses will be well behaved. Also, sufficient stability margins in the frequency domain must be procured. These gains mainly depend on the inertia matrix.

There exists an equivalent quaternion error vector that can be associated to the cosine direction error matrix A , see Appendix A.5 for quaternion definition and algebra.

As explained above, when dealing with direction cosine matrices, two consecutive attitude transformations are achieved by matrix multiplication of the two individual rotations, see (2.17). These two rotations can be expressed in the quaternion terminology by A(q r ) for the first rotation and by A(q c ) for the second one. The following expression holds for the overall attitude transformation in terms of direction cosine matrices

A(q ) = A(q r )A(q c ) -1 = A(q r )A(q -1 c ) (2.25)
In terms of quaternion notation, this equation leads to

q -1 c q r =     
q r0 q r3 -q r2 q r1 -q r3 q r0 q r1 q r2 q r2 -q r1 q r0 q r3 -q r1 -q r2 -q r3 q r0

          -q c1 -q c2 -q c3 q c0      = q (2.26)
where q , q r and q c are the error, reference and chaser quaternions, respectively. Since there is a one-to-one equivalence between the direction cosine matrix elements and the elements of the quaternion vector, i.e., a given direction cosine matrix A = [a ij ], i, j = 1, 2, 3 and a quaternion q = (q 0 , q 1 , q 2 , q 3 ) 

q 0 = ± √ 1 +
T dx = 2K a x q 1 q 0 + K a xd p (2.

31)

T dy = 2K a y q 2 q 0 + K a yd q (2.32)

T dz = 2K a z q 3 q 0 + K a zd r (2.33)
Performing the computation of q in (2. Finally, since the advantages of an integral part in control laws are well known, the attitude control law K att of the chaser is given by

T dx = 2K a x q 1 q 0 + 2K a xi q 1 q 0 dt + K a xd p (2.

34)

T dy = 2K a y q 2 q 0 + 2K a yi q 2 q 0 dt + K a yd q (2.35)

T dz = 2K a z q 3 q 0 + 2K a zi q 3 q 0 dt + K a zd r (2.36)
where the gains K a xi , K a yi , K a zi are designed to manage the dynamics of disturbances rejection.

Finally and as it can be noted on Fig. 2.8, the control law (2.34)-(2.36) is followed by a low pass filter which is also useful in order to prevent high frequency behaviour of the controller outputs

T d = [T dx T dy T dz ] T .
Remark 2.3. Note, that usually another role of this filter is to reject the flexible modes of the solar arrays. However, since the solar arrays modes are not implemented in the MSR simulator provided by Thales Alenia Space, this aspect is not considered in this thesis.

Remark 2.4. The directional cosines based formulation of (2.31)-(2.33) is given by

T dx = - 1 2 K a x (a 32 -a 23 ) + K a xd p (2.

37)

T dy = -1 2 K a y (a 13a 31 ) + K a yd q (2.38)

T dz = - 1 2 K a z (a 21 -a 12 ) + K a zd r (2.39)
When small angles are considered, the terms a ij can be linearly approximated and the control law behaves as a classical linear controller (PD controller in this case or PID when considering an integral part). This approximation is useful, since it enables to analyse the degree of stability of the control law by computing the minimum gain margin, phase margin and associated crossover frequencies over each axis X, Y , Z considering that the other axes are in closed loop. This is usually the practical analysis done in space industries, even if it is more relevant to consider the controller in its MIMO form.

Position Control Loop K pos

The design of the chaser position control law K pos obeys to the classical theory of the PID controllers. Consider the theoretical developments given in Section 2.4.1 that addresses the modelling of the relative motion of the chaser with respect to the target spacecraft. As it is shown, under the assumption of a rendezvous on a circular orbit, the nonlinear equations Chaser Spacecraft GNC governing the dynamics of the chaser are given in the local frame according to

ξ(t) = 3n 2 ξ(t) + 2n η(t) + F tξ (t) + F pξ (t) (2.40) η(t) = -2n ξ(t) + F tη (t) + F pη (t) (2.41) ζ(t) = -n 2 ζ(t) + F tζ (t) + F pζ (t) (2.42)
where the X-axis is along the radius vector of the target spacecraft, the Z-axis is along the angular momentum vector of the target spacecraft, and the Y -axis completes the right handed system. With this definition, the central body is towards the negative X direction and the Y -axis points along the velocity vector of the target spacecraft, see Fig. 2.5 for an illustration.

F t = [F tξ F tη F tζ ]
T is the control input vector that is due to the thruster-based propulsion unit and • a rotation matrix that is in charge to transform the outputs F t of the linear controller K pos (s) into the chaser frame, i.e

F p = [F pξ F pη F pζ ] T is
F d = R(q c , qt )F t (2.43)
qc and qt also denote the quaternion of the chaser and the target respectively. The notation "•" indicates that these quaternions are estimated by the navigation unit.

So the major concern is the design of the linear controller K pos (s).

One solution that is well mastered by the space industries obeys to the so-called "in-plane" and "out-of-plane" separation principle. Noting that (2.42) is autonomous, the system of (2.40) -(2.42) can be split into two independent systems of equations, i.e.,

ξ(t) = 3n 2 ξ(t) + 2n η(t) + F tξ (t) + F pξ (t) (2.44) η(t) = -2n ξ(t) + F tη (t) + F pη (t) (2.45) and ζ(t) = -n 2 ζ(t) + F tζ (t) + F pζ (t) (2.46)
Motions along X-axis and Y -axis are "in-plane" and are concerned by (2.44)-(2.45) and motion along the Z-axis is out-of-plane and is concerned by (2.46). Note, that motion along the Y -axis is referred as along-track due to the capture scenario.

Finally, considering that the term 2n η can be neglected in (2.44) 

F tζ = K p ζ ζ + K p ζi ζ dt + K p ζd ζ (2.49)
The parameters K p ξ , K p η , K p ζ , K p ξi , K p ηi , K p ζi , K p ξd , K p ηd and K p ζd are designed to ensure some control objectives, e.g., to ensure the required capture performance requirements. Signals ξ = ξ r -ξ, 

η = η r -η , ζ = ζ r -ζ, ξ =

Robustness Margins and Performances

The stability and performance of the resulting controllers are illustrated on Fig. 2 

Actuator Management Functions

The controller outputs, the desired force F d and the desired torque T d , (see Fig. 2.8) are next sent to the Thruster Modulator Unit (TMU), that integrates the small commanded pulses which are below the Minimum Impulse Bit (MIB) and releases a pulse (F d or/and T d) when the total reaches a momentum threshold. The MIB shall not be too large as this corresponds to a delay from the controller viewpoint. The TMU is widely used to compensate actuator nonlinearities and to increase control accuracy [START_REF] Peuvédic | Key control techniques for gnc design of martian vehicles[END_REF][START_REF] Peuvédic | Autonomous Rendezvous Control System: a High Fidelity Functional Engineering Simulator Developed for GNC/AMM/FDIR Validation[END_REF]. The purpose of on-board Thruster Management Function (TMF) is to select specific thrusters at each control cycle and to compute their scaled firing times ũi to realize force F d and torque T d command impulses coming from the TMU. Note, that the TMF is nothing else than an online control allocation algorithm, see Section 1.4.3 which addresses the state of the art of CA methods1 . The baseline TMF algorithm relies on a simplified approach with respect to the Simplex and thruster non-linearities (minimum On/Off times) [START_REF] Peuvédic | Autonomous Rendezvous Control System: a High Fidelity Functional Engineering Simulator Developed for GNC/AMM/FDIR Validation[END_REF]. The chaser control law and propulsion system are summarised in Fig. 2.12.

H(s)I B K att (s) K pos (s) R(q t , qc ) T d F d T d F d

6DOF control law

Regarding the propulsion system, all thrusters have fixed direction d i ∈ R 3 , i ∈ S all . The set S all = {1, 2, . . . N } denotes the set of all thruster indices. Each thruster is able to produce a maximum thrust of ||F T || = 22 N. The Chemical Propulsion Drive Electronics (CPDE), that drives the thrusting actuators, initiates the opening of the thruster valves for the commanded durations 0 ≤ ũi ≤ 1, ∀i ∈ S all . Variables ũi are in fact scaled ON times (firing intervals).

The scaling is done versus the sampling period T of the control unit and is defined according to ũi (t k ) = T on i (t k )/T , where T on i (t k ) is the actual/real firing duration (ON time) of the i th thruster at control cycle t k = kT , see Fig. 2.13 for an illustration.

Figure 2.13 -Scaled ON-times versus real thruster firing durations

The propulsion system is obviously a source of uncertainty in the system. The linear parametervarying transfer function

H(s) = e -τ (t)s (2.50)
aims to model the effect of the unknown time-varying delays induced by the CPDE electronic device and the uncertainties on the thruster rise times [START_REF] Gollor | Electric propulsion electronics activities in europe[END_REF][START_REF] Pettazzi | Design of robust drag-free controllers with given structure[END_REF]. The delay τ (t) is assumed to be unknown and time-varying, but upper bounded by a known constant τ , i.e., τ (t) ≤ τ . Furthermore, it is assumed that each thruster is delayed with the same delay τ (t). This is a reasonable assumption from the practical point of view, since for all nominal thrusters, the same CPDE device is used to control the openings of the thruster valves.

To proceed, let ũk (tτ (t)) be the commanded open duration of the k th thruster delayed by τ (t), then the net forces and torques generated by the thrusters (in fault free case) are given in the chaser body fixed frame according to (see Fig. 2.12)

F (t) = B F ũ(t -τ (t)), T (t) = B T ũ(t -τ (t)) (2.51)
In this equation ũ(t) = [ũ 1 (t), ũ2 (t), . . . , ũN (t)] T , and

B F = b F 1 , b F 2 , . . . , b F N , B T = b T 1 , b T 2 , . . . , b T N (2.52)
are the thruster sensitivity (configuration) matrices with

2 b F k = -d k ||F T ||, b T k = (d p k -d CoM ) × b F k , ∀k ∈ S all
where " × " denotes the cross product of vectors, d CoM ∈ R 3 is the position vector of the CoM from the chaser geometrical center, and d p k ∈ R 3 , ∀k ∈ S all are the position (location) vectors of the thrusters. The overall, 6 DOF, thruster configuration matrix B is defined by

B = B T B F ∈ R 6×N (2.53)
The columns of B F and B T are the influence coefficients defining how each thruster affects each component of F and T , respectively.

Failure Management and Fault Considerations

The GNC unit described in the previous sections is also an important system to carry out the success of the rendezvous and to guarantee the necessary performance for the capture. However, it is clear that to prevent a mission avoidance, the chaser has to be equipped by a failure detection and recovery management unit, able to cover any failures in its different systems and subsystems.

Common fault diagnosis and accommodation architectures used by space industries, rely on a hierarchical implementation of failure detection and management. This is also the case of the chaser spacecraft [START_REF] Strippoli | Integrated vision-based GNC for autonomous rendezvous and capture around mars[END_REF][START_REF] Peuvédic | Autonomous Rendezvous Control System: a High Fidelity Functional Engineering Simulator Developed for GNC/AMM/FDIR Validation[END_REF]. Recent study Peuvédic et al. [START_REF] Peuvédic | Fault tolerant control design for terminal rendezvous around mars[END_REF] demonstrate that the failure management system tend to cover completely all the system and subsystem failures in the case of the MSR mission, consisting of two separate (main) functions, see Fig. 2.14 for an illustration. The Autonomous Mission Management (AMM) function is not considered here, since it is completely out of the scope of this study.

• The first failure detection set of functions, implemented at the GNC level (and more precisely at the navigation level) is in charge to detect faults at subsystem level. The main functions are:

the detection of sudden sensor death, -the detection of sudden frozen signals (lock-in-place fault type) coming from a sensor, -the consistency check between the two IMUs, and
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the consistency check between IMUs in "hot redundancy" configuration and STRs in "cold redundancy" configuration. Hot and cold redundancy is a terminology used by space industries to outline, that all redundant sensors are switched on (hot) or only one of the redundant sensor is switched on, the others being switched off and waiting for a possible use (cold).

• The second failure detection set of functions, implemented at the Safety Monitoring level, is in charge of the detection of failures at actuator level or at higher level. The main functions of this set are:

checking the consistency between the tachometers and the commands sent to the reaction wheels (not used in this study as already mentioned),

checking the consistency between the IMUs and the commands sent to the thrusters, -checking the chaser trajectory with respect to predefined rendezvous corridors, -checking the approach velocity, -checking the trajectory of the chaser with respect to collision risks, -checking the convergence of the controller output signals during the whole rendezvous phase, and finally, monitoring the power.

All these functions are hierarchized into five levels. These levels with the functions they are concerned by, are summarized in Table 2 Failure accommodation and recovery are managed by the System Health Management (SHM) unit, see Fig. 2.14. This unit manages the type of corrective actions to be applied

• at equipment level: switching to a redundant set of equipments, e.g., sensor in hot redundancy (IMU case), or propagation of last valid measurement during the switch-on of the redundant module in cold redundancy (STR case), switching to a redundant set of actuators, etc.,

• at GNC level: switching to a different guidance mode/sub-mode, or new control allocation, and

• at mission level: triggering a collision avoidance maneuver and transfer to a safe waiting orbit, or simple retreating.

In this thesis, model-based FDI solutions, that fit the above described fault management architecture are proposed. More precisely, Chapter 3 will address a FDIR solution that can be integrated in level 3 as it is, the recovery principle being exactly those used by the SHM, i.e., switching to a redundant set of equipments. Chapter 4 will address a more enhanced solution, since it relies on an active FTC approach. However, since an active FTC approach involves an FDI unit, it is guaranteed that the FDI part can be embedded at level 3. In other words, all solutions proposed in this thesis must be understood to be an integral part of the overall failure management unit currently developed by Thales Alenia Space for the MSR mission.

Description of the Set of Detection Functions at the Subsystem Level

The lowest fault detection function implemented as the subsystem level (level 1) is concerned by the sensors. It monitors directly their outputs. If a signal becomes null, while the sensor state is operational, an alarm "dead sensor" is raised.

To detect a lock-in-place fault type in the sensors, the technique is based on the comparison between the output of a sensor and its time derivative. Let s i (t) denote the output of the i th sensor, then s i (t)-ds i (t) dt defines a fault indicating signal for the lock-in-place fault type. Similarly to the "dead sensor" fault monitoring technique, the lock-in-place monitoring is activated if the sensor is operational. Furthermore, this monitoring is activated only if s i (t) is not null (i.e., dead sensor), providing a hierarchical approach between these two kinds of faults.

The higher monitoring level (level 2) is concerned by the IMU/IMU and the IMU/STR consistency checks. This monitoring is also activated if the IMUs and the STRs are operational and if a fault has not been detected at the previous level.

The IMU/IMU consistency check relies on the (static) parity space approach, see Chapter 1 if necessary. To proceed, let us denote 

F IM U 1 = {O IM U 1 ; X IM U 1 , Y IM U 1 , Z IM U 1 } and F IM U 2 = {O IM U 2 ; X IM U 2 , Y IM U 2 , Z IM U 2 }
(t) = R 1 ωF IM U 1 (t) (2.54) ωF b (t) = R 2 ωF IM U 2 (t) (2.55) ω F b (t) = R 1 ω F IM U 1 (t) (2.56) ω F b (t) = R 2 ω F IM U 2 (t) (2.57)
where R 1 ∈ R 3 and R 2 ∈ R 3 are rotation matrices in charge of mapping the signals from F IM U 1 and F IM U 2 to F b 3 . These four relations allow to define the following residual vectors

r ω1 (t) = ωF IM U 1 (t) -R -1 1 R 2 ωF IM U 2 (t), r ω1 ∈ R 3 (2.58) r ω2 (t) = ωF IM U 2 (t) -R -1 2 R 1 ωF IM U 1 (t), r ω2 ∈ R 3 (2.59) r ω1 (t) = ω F IM U 1 (t) -R -1 1 R 2 ω F IM U 2 (t), r ω1 ∈ R 3 (2.60) r ω2 (t) = ω F IM U 2 (t) -R -1 2 R 1 ω F IM U 1 (t), r ω2 ∈ R 3 (2.61)
For residual evaluation, the GLR test is applied to each component of the residual vectors, see Appendix B for some issues about the GLR test. The decision making is done through a threshold based approach, i.e., if the GLR test is higher that a given threshold, then a Boolean is set. Because in a given frame, accelerometers (providing ω = [ ṗ q ṙ] T ) and gyroscopes (providing ω = [p q r] T ) can be diagnosed axis per axis and IMU per IMU, it leads to the isolation of the faulty axis to be immediate.

A special case is concerned by the case of simultaneous drifts on the three axes of a given IMU, say the accelerometer to illustrate the technique. In such a case, because the fault manifests itself on all components of r ω1 and r ω2 , it is necessary to have a dedicated signal-based technique to identify which accelerometer (IMU) is faulty. The basic of the principle is to look for the maximum covariance of the augmented residual vector [r T ω1 r T ω2 ] T and the measurements ωF IM U 1 and ωF IM U 2 separately. Those that admits the maximum covariance is retained to be faulty. Figure 2.15 (left) illustrates a sensor drift in the 1 st accelerometer on all the 3 axes simultaneously. This corresponds to the most difficult fault to be diagnosed since, in this case, both the residuals are affected. Thus, in order to make a final decision about the faulty IMU, the maximum covariance principle explained above is used. Figure 2.15 (right) considers a performance degradation (increased noise) in the z-axis of the second gyro. In this case, the GLR test plays an important role to identify which axis is faulty.

Similarly to the fault monitoring technique explained above, the IMU/STR consistency check is activated if no fault is declared by the IMU/IMU consistency check. The IMU/STR consistency check relies on a H ∞ observer based on the relation between the rotational velocities ω and the rate of the Euler angles Θ = [ φ θ ψ] T , in the body frame F b . Its inverse relationship describes the kinematic equations for the attitude [START_REF] Wie | Space vehicle dynamics and control[END_REF]. For clarity, the notation superscript F b is omitted in the following developments.

Θ(t) = h Θ(t) ω(t) = 1 cos(θ)    cos(θ) sin(ϕ) sin(θ) cos(ϕ) sin(θ) 0 cos(ϕ) cos(θ) -sin(ϕ) cos(θ) 0 sin(ϕ) cos(ϕ)    ω(t) (2.62)
Since the IMUs and the STR deliver the measure of ω and Θ, this equation suggests the following 3 The numerical values of R1 and R2 are not given there due to confidential reasons.
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       Θ(t) = h Θ(t) ω(t) + L(y(t) -ŷ(t)) ŷ(t) = Θ(t) r Θ (t) = y(t) -ŷ(t), r Θ ∈ R 3 (2.63)
The problem then turns out to be the design of the matrix gain L. Here, a linear approximation of (2.62) is used so that equation (2.63) becomes a linear observer in a form that is suitable for the design of the gain L using H ∞ techniques.

To proceed, consider equation (2.62) linearly approximated around Θ = 0. From a practical point of view, since there exists noises and misalignment errors in the sensors, it can be verified that (2.62) can be written according to

Θ(t) = A Θ Θ(t) + B Θ ω(t) + Γw(t) y(t) = Θ(t) + v(t) (2.64)
The state noise w distributed by Γ aims at modelling the errors due to the linearization and the IMUs misalignments and noises, whereas the measurement noise v aims at modelling STRs misalignment errors and noises.

The H ∞ techniques consider that the state and measurement noises w and v have frequency spectrum which can be approximated by linear dynamics with normalized inputs d i , i.e., ẋw (t) = A w x w (t) + B w d 1 (t) 

w(t) = C w x w (t) + D w d 1 (t) , ẋv (t) = A v x v (t) + B v d 2 (t) v(t) = C v x v (t) + D v d 3 (
= [d T 1 d T 2 d T 3 ] T :    Θ(t) ẋw (t) ẋv (t)    =    A Θ ΓC w 0 0 A w 0 0 0 A v       Θ(t) x w (t) x v (t)    +    ΓD w 0 0 B w 0 0 0 B v 0    d(t) = Ax(t) + [Γ 1 0] d(t) (2.66) y(t) = I 0 C v x(t) + 0 0 D v d(t) = Cx(t) + [0 Γ 2 ] d(t) (2.67) e(t) = I 0 0 x(t) -I 0 0 x(t) = M (x(t) -x(t)) (2.68)
Note, that e refers to the state estimation error Θ -Θ. The design objective is the following

L = arg min T de ∞ (2.69)
The solution to this problem can be found in the H ∞ literature [START_REF] Ding | Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[END_REF]. Assume that Γ 2 Γ T 2 is invertible, the solution is

L = P C T (Γ 2 Γ T 2 ) -1 (2.70)
where P is the solution of the algebraic Riccati's equation 

AP + P A T + Γ 1 Γ T 1 -P C T (Γ 2 Γ T 2 ) -1 C - 1 γ 2 M T M P = 0 (2.71) Once L is computed, ||T de || ∞ < γ (2.

Description of the Set of Detection Functions at the Safety Monitoring Level

The higher level (level 3) is concerned by the thruster/IMU and wheel/tachometer consistency checks. At this level, it is assumed that all sensor faults have been detected and accommodated by the lower levels, so that all measures are deemed to be reliable.

As explained previously, Chapters 3 and 4 are dedicated to the problem of thruster fault detection, isolation and accommodation. So this problem is not considered here, since it is extensively discussed in the next chapters.

The wheel/tachometer consistency check, it is based on the following principle: since each wheel is equipped by a velocity sensor, namely a tachometer, that performs the measurement Ω w , the following relation provides a residual dedicated to each wheel (isolation is thus immediate)

r w (t) = J w dΩ w (t) dt -T w (t) (2.73)
In this equation, J w is the inertia of the considered wheel and T w is the (controlled) torque requested to deliver by the wheel. For decision making, a simple threshold-based approach has been revealed to be sufficient.

The higher level, level 4, is concerned by the check of the chaser spacecraft trajectory and velocity with respect to corridors and collision risk. During the last phases of the rendezvous (hopping and terminal rendezvous approach), the trajectory shall be kept within predefined corridors. Two corridors are defined: a smaller inner corridor with a slope at 8% that is used to trigger a corrective manoeuvre, and a wider corridor with a slope at 10% including the smaller one, that is used to trigger a collision avoidance maneuver. Figure 2.17 (left) shows the shape of the two corridors with the nominal trajectory of the chaser spacecraft. The corridors are centered on the approach direction and they have a conical shape. Similarly, the velocity of the chaser spacecraft is monitored. The capture velocity and the nominal velocity requirements of the chaser are illustrated on the Fig. 2.17 (right). If the chaser velocity exceeds the requirements (velocity along the capture axis between 5 cm/s and 15 cm/s and along the other axes, below 4 cm/s), a corrective maneuver is engaged. 
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Finally, the highest level, level 5, monitors the power to protect the overall systems and subsystems of the chaser against electrical failures and ground operation errors.

Thruster Fault Modelling

Following the fault management system described in the previous section, the main concern is now to develop FDI(R)/FTC algorithms for thruster faults to be implemented on level 3.

With regards to the possible faults occurring in the thruster-based propulsion system, the focus is on the so-called "open-type" (fully open and leaking thruster) and "closed-type" (blockedclosed and loss of efficiency) thruster faults. These faults have been defined in accordance with the industrial partners and follow both the TAS and ESA experiences. More precisely, the following thruster fault scenarios are considered:

• Case 1: fully Open Thruster (stuck open valve)

-provides maximum thrust regardless of the demanded command by TMF

• Case 2: thruster Closing Itself (blocked-closed) -thruster does not generate any thrust regardless of the demand

• Case 3: leakage (bi-propellant residual leakage)

-leaking thruster of size m leak (t), starting from 0 and reaching the maximum leakage size mleak > 0 with a given slope m s > 0, i.e., m leak (t) = min{m s (tt f ), mleak }, where t f denotes the time of fault occurrence

• Case 4: loss of Efficiency (thrust loss) -loss of efficiency of a particular thruster by a value mloss > 0.

Assuming no simultaneous faults, the considered thruster faults can be mathematically modelled in a multiplicative manner according to4 (index "f " is used to outline the faulty case)

F f (t) T f (t) = B I -Ψ(t) ũ(t -τ (t)) (2.74)
with Ψ(t) = diag ψ 1 (t), . . . , ψ N (t) , where 0 ≤ ψ k (t) ≤ 1, ∀k ∈ S all are unknown. The health status of the k th thruster is modeled by ψ k (t) as follows

ψ k (t) = 0 if healthy 1 -ϕ k (t)/ũ k (t) if faulty
where ϕ k (t) allows to consider all the four fault cases, mentioned earlier, as follows

ϕ k (t) = max{ũ k (t), m leak (t)} if open-type (1 -mloss )ũ k (t) if closed-type
In this formalism, 0 < mleak < 1 models a leakage fault and 0 < mloss < 1 an efficiency loss fault. It is obvious that m leak (t) = 1, ∀t ≥ t f refers to a fully open, and mloss = 1 to a blocked-closed thruster fault.

The GNC unit, the failure detection and recovery management unit and the faults to be diagnosed being described, the main concern is now to derive the suitable mathematical models of the chaser motion. This is the purpose of the next section.

Modelling the Chaser Dynamics during the Rendezvous Phase

This section addresses the modelling the motion of the chaser spacecraft during the rendezvous phase. A linear relative position model and an attitude model of the chaser dynamics, that will be used in Chapters 3 and 4, are introduced for FDI purpose. These two models are able to describe the dynamics of the chaser spacecraft in both, fault-free and faulty situations. The relative position model is well known and mastered for control, but rarely used for fault diagnosis.

The reason is quite simple: the attitude model "seems to be" more sensitive to thruster faults. The position model compared to the attitude model has the advantage that it is naturally robust against uncertainties of the inertia tensor and of the center of mass. In Fonod et al.

[90], a sensitivity/robustness analysis campaign was performed to asses the reliability and the efficiency (in terms of detection times) of a position model-based fault detector. Encouraging results were obtained.

For the sake of brevity, only the necessary developments about the spacecraft dynamics modelling are introduced. The interested reader might refer to the extensive space literature about spacecraft modelling, see for instance [START_REF] Gurfil | Nonlinear modelling of spacecraft relative motion in the configuration space[END_REF][START_REF] Schaub | Analytical Mechanics of Space Systems[END_REF][START_REF] Sidi | Spacecraft dynamics and control: a practical engineering approach[END_REF][START_REF] Wie | Space vehicle dynamics and control[END_REF][START_REF] Wisniewski | Lecture notes on modeling of a spacecraft[END_REF].

Relative Position Model

The relative motion of one object with respect to another has gained a great interest over the past decades. The problem has been present since the use of Hill's equations [START_REF] Hill | Researches in the lunar theory[END_REF]. The linearized Hill's equations around the null solution were introduced by Clohessy and Wiltshire [START_REF] Clohessy | Terminal guidance system for satellite rendezvous[END_REF] to analyze satellite rendezvous, and are now known as Hill-Clohessy-Wiltshire (HCW) equations [START_REF] Wie | Space vehicle dynamics and control[END_REF]. The HCW equations propagate the relative position and velocity of the chaser with respect to the target in a Cartesian reference frame centered on a target object in a circular Keplerian orbit. These equations can also be used to form a linear time-invariant state space model of the relative dynamics. The key assumptions in the HCW equations are that: a) the two spacecraft are in close proximity, i.e., the distance between the chaser and target is very small compared with the distance to the centre of Mars, b) the target's orbit is near circular (orbital eccentricity e = 0) and c) the radial and out-of-plane separations are small [START_REF] Hartley | Model predictive control system design and implementation for spacecraft rendezvous[END_REF].

Consider the illustration of the rendezvous between the chaser and target spacecraft around Mars given by Fig. 2.5. The translation motion of the chaser can be derived from the 2 nd Newton law. To proceed, let a, m c , G, and m M denote the radius of the circular orbit of the target, the mass of the chaser during the rendezvous, the universal gravitational constant and the mass of Mars, respectively. Then, the orbit of the rendezvous being circular, the velocity of the target is given by the relation µ a (2.75) where µ = G•m M 5 . Let us recall the definition of the local reference frame F l = {O T ; X l , Y l , Z l }. 5 Considered values: G . = 6.67384 × 10 -11 N.m 2 kg -2 and mM . = 6.4173 × 10 23 kg.
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It is fixed at the center of the target O T , with its Z l axis be perpendicular to the X l and Y l axis and oriented as shown in Fig. 2.5.

The linear velocity of the target is given by the relation a.n, where n = ν stands for the uniform orbital rate of the target (hence the orbital period is 2π/n). This velocity is given in the inertial frame

F i = {O M ; X i , Y i , Z i }, see Fig 2.5 if necessary.
From the Kepler's third law it follows:

a.n = µ a ⇒ n = µ a 3 (2.76)
During the rendezvous phase, it is assumed that the chaser motion is due to the five following forces, all given in the local frame F l = {O T ; X l , Y l , Z l } (note that the rendezvous orbit is circular):

• the Mars attraction force • the centripetal force

F a = -m c µ ((a+ξ) 2 +η 2 +ζ 2 ) 3/2 (a + ξ) X l + η Y l + ζ Z l ,
F e = m c n 2 (a + ξ) X l + n 2 η Y l ; • the Coriolis force F c = m c 2n η X l -2n ξ Y l ;
• the non-gravitational force (spatial perturbations)

F p = F pξ X l + F pη Y l + F pζ Z l ;
• the thruster-based propulsion system force F t = F tξ X l +F tη Y l +F tζ Z l . (This force vector is nothing else than the one given by (2.51) expressed in F l .)

Then, from the 2 nd Newton law, it follows

               ξ = n 2 (a + ξ) + 2n η - µ (a+ξ) 2 +η 2 +ζ 2 3/2 (a + ξ) + F tξ +F pξ mc η = n 2 η -2n ξ - µ (a+ξ) 2 +η 2 +ζ 2 3/2 η + Ftη+Fpη mc ζ = - µ (a+ξ) 2 +η 2 +ζ 2 3/2 ζ + F tζ +F pζ mc (2.77)
Because the distance between the target and the chaser, during the rendezvous, is negligible compared to the radius of the target orbit, i.e., ρ a, therefore it is possible to derive the HCW equations from (2.77) by means of a first order approximation of the nonlinear state space model [START_REF] Clohessy | Terminal guidance system for satellite rendezvous[END_REF]. Finally, by introducing the fault model (2.74) and the CPDE unknown time-varying delay τ (t), the translation motion of the chaser can be modeled in the target (local) frame F l , in both fault-free (i.e., Ψ(t) = 0) and faulty (i.e., Ψ(t) = 0) situations, according to the linear 6 th order state space representation with state vector

x p = [ξ η ζ ξ η ζ] T . It can be verified that from (2.77) it follows ẋp (t) = A p x p (t) + B p R q t (t), q c (t) F f (t) + E pp F p (t) y p (t) = C p x p (t) (2.

78)

where

A p =           0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 3n 2 0 0 0 2n 0 0 0 0 -2n 0 0 0 0 -n 2 0 0 0           , B p = E pp = 1 m c           0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1           , C p =    1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0   
In (2.78), q t ∈ H and q c ∈ H stand for the attitude quaternion of the target and the chaser, respectively. These quaternions describe the orientation of the target body frame (q t ) and the chaser body frame (q c ) with respect to the inertial frame F i . The estimates qt and qc of these signals are assumed to be available on-board since they are computed online by the navigation unit, see Section 2.2. The quaternion-dependent rotation matrix R(•) performs the projection of the three-dimensional force vector F f from the chaser body-fixed frame on to the target frame F l , see its equivalence F t in (2.77). Let us remind the reader that F f denotes the forces due to the propulsion system of the chaser spacecraft that can be possibly faulty, see (2.74). The output vector y p = ρ = [ξ η ζ] T is the relative position of the two spacecrafts expressed in R l and is assumed to be measured by the LIDAR device. Spatial disturbances (solar radiation pressure, gravity gradient and atmospheric drag) are represented by F p . Moreover, it is assumed that the navigation unit is decoupled from thruster faults. This is a reasonable assumption since, as previously explained, sensor faults are diagnosed and accommodated at the lowest level of the failure management unit.

Attitude Model

To fully describe the rotational motion of the chaser, dynamic and kinematic equations of motion are required [START_REF] Schaub | Analytical Mechanics of Space Systems[END_REF][START_REF] Sidi | Spacecraft dynamics and control: a practical engineering approach[END_REF][START_REF] Wertz | Spacecraft attitude determination and control[END_REF][START_REF] Wie | Space vehicle dynamics and control[END_REF][START_REF] Wisniewski | Lecture notes on modeling of a spacecraft[END_REF]. The attitude control system works in a target pointing mode, which means that the chaser keeps one face of the spacecraft pointed to the target and maintains it during the whole rendezvous phase (see Let's consider the spacecraft as a rigid body, the rotational motion of this body caused by an applied moment (sum of all external torques acting on the body) can be derived in the inertial frame F i from the Euler's second law. This law says that the time derivative of the angular momentum L of any rotating body equals the sum of all applied torques about its center of mass, i.e., L =

k (T k ) F i (2.79)
where (T k ) F i , k = 1, 2 . . . are the external torques acting on the body center of mass and given in F i . In practice, it is more convenient to simply express L in a frame of reference whose axes are fixed to the rotating body. Therefore, the mathematical model of the chaser rotational dynamics (flex modes and slosh phenomena are not considered) in the body-fixed reference frame F b = {O B ; X b , Y b , Z b } (the center of this frame is fixed to the center of mass of the chaser and their axes are parallel to those of the local target reference frame) can be derived from (2.79)

ω(t) = J -1 T (t) + T p (t) -J -1 ω(t) × J ω(t) (2.80)
where ω = [p, q, r] T is the angular velocity vector of the frame F b relative to the inertial frame F i , and J ∈ R 3×3 is the inertia dyadic about the chaser CoM. In (2.80), T and T p describe the external torques about the CoM that are due to the thrusters (i.e., T ) and due to the orbital perturbations (i.e., T p ). Note that, in (2.80), both ω and J are given in F b .

Using the individual rotation matrices from an Euler's rotation of type (3,2,1), it is possible to express the relation between the rotational velocities ω and the rate of the Euler angles Θ = [ φ θ ψ] T . Its inverse relationship then describes the kinematic equations for the attitude 

Θ(t) = 1 cos(θ)    cos(θ) sin(ϕ) sin(θ) cos(ϕ) sin(θ) 0 cos(ϕ) cos(θ) -sin(ϕ) cos(θ) 0 sin(ϕ) cos(ϕ)    ω(t) (2.81)
Note that (2.81) becomes singular when the pitch angle approaches θ = π/2 ± kπ, k ∈ Z + . A solution to avoid singularities in the kinematics equations is to describe the attitude by by quaternion representation, see Appendix A.

Considering that, during the rendezvous phase, the chaser spacecraft is controlled around the equilibrium points6 Θ = Θ 0 (with θ = ±90 • ) and ω = 0, choosing x a = [ϕ θ ψ p q r] T as the attitude model state vector and by introducing the fault model (2.74) together with the CPDE unknown delay τ (t), the rotational motion (both kinematics and dynamics) of the chaser can be derived by means of a first-order approximation of the nonlinear equations (2.80) and (2.81) around the equilibrium points, in both fault-free (i.e., Ψ(t) = 0) and faulty (i.e., Ψ(t) = 0) situations, according to the following 6 th order linear state space model

ẋa (t) = A a x a (t) + B a T f (t) + E ap T p (t) y a (t) = C a x a (t) (2.82)
where matrices A a , B a = E ap and C a result from the linearization process around x a0 = [Θ 0 0], i.e.

A a = 0 I 0 0 , B a = E ap = 0 J -1 , C a = C p

Conclusion

Let us recall the reader that T f denotes the torques due to the propulsion system of the chaser spacecraft that can be possibly faulty, see (2.74).

The attitude model (2.82) and the position model (2.78) will be used in the following chapters to design robust FDIR/FTC solutions.

Conclusion

This chapter described the Mars Sample Return mission, its rendezvous phase and the vehicles involved in the mission (i.e., the target and chaser spacecraft). It described the GNC unit that is in charge to control the chaser during the rendezvous phase and the failure management unit that is in charge to detect failures and to engage corrective maneuvers. It is shown how the FDIR and FTC solutions investigated in the next chapters, can be integrated in the failure management unit. This chapter further addressed the models of the chaser spacecraft dynamics (relative position between the chaser and the target and chaser attitude) that is used in the following chapters to design model-based FDIR/FTC solutions. Modelling of the chaser spacecraft thruster-based propulsion is also considered to outline the effect of the faults. All investigated fault scenarios are discussed, too.

All models and functions described in this chapter have been embedded in a "high-fidelity" industrial simulator developed by TAS. The simulator is implemented in the MATLAB /Simulink environment. It consists of a nonlinear model of the rigid body dynamics of the chaser and target in a Mars orbit. The simulator assumes that the Mars planet is in a Keplerian orbit about the sun. The chaser and target orbits around the Mars are modelled using Gauss' equations, with the gravitational field of Mars calculated using a spherical harmonic expansion with the Mars50c coefficients [START_REF] Hartley | Model predictive control system design and implementation for spacecraft rendezvous[END_REF]. The attitude dynamics are modelled assuming that the target and chaser are rigid bodies [START_REF] Fehse | Automated rendezvous and docking of spacecraft[END_REF][START_REF] Sidi | Spacecraft dynamics and control: a practical engineering approach[END_REF]. The effects of external disturbances (earlier referred as orbital perturbations) due to gravity gradient, solar radiation pressure and atmospheric drag (assuming an exponential atmospheric model) are also included in the simulator. A number of uncertainties are considered in the simulator, from the variations of the initial conditions, parametric uncertainties in the different components of the spacecraft (e.g., mass, CoM, moment of inertia, thrusters, see Table 2.3), up to navigation uncertainties (on LIDAR, STR, IMU). This simulator will be considered to validate the theoretical developments proposed in the next chapters in which model-based FDIR and FTC solutions are investigated. The solutions that will be proposed, fit the fault management architecture that is described in this chapter. More precisely, Chapter 3 will address a FDIR solution that can be integrated in the level 3, the recovery principle being exactly those used by the SHM, i.e., switching to a redundant set of equipments. Chapter 4 will also address a more enhanced solution since it relies on an active FTC approach. However, since an active FTC approach involves an FDI unit, it is guaranteed that the FDI part can be embedded at level 3. In other words, all solutions proposed in this thesis must be understood to be an integral part of the overall failure management unit currently developed by Thales Alenia Space for the MSR mission.
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Chapter 3

Advanced Model-based FDIR Solution for the Baseline MSR Thruster Configuration "Prepare your proof before you argue." -Jewish proverb I n this chapter, the design and implementation of two distinct model-based FDIR techniques to detect, isolate and accommodate (recover) a single thruster fault affecting the chaser spacecraft propulsion system are addressed. The first approach is based on the position model whereas the second approach is based on a pure attitude model. Both techniques focus on the robustness issue against the unknown time-varying delays induced by the propulsion drive electronics and uncertainties on thruster rise times. A complete description of a robust residual generation design approach based on eigenstructure assignment technique is discussed in details. Computational procedure and implementation issues of the FDI scheme design are carefully discussed. Particular novelty of the work presented in this chapter is the development of a new method for estimating the unknown input directions used to enhance robustness property of the diagnosis scheme. The fault accommodation is achieved by employing the additional hardware redundancy in the thruster-based propulsion system. Finally, Monte Carlo results demonstrate feasibility and efficiency of the proposed FDI schemes. Carefully selected performance and reliability indices allow to compare the effectiveness of both approaches. Recovery aspects are also studied.

Problem Statement and Motivation

In space systems, fault tolerance is usually achieved by FDIR (Fault/Failure Detection Isolation and Recovery). This approach relies on hardware-based redundancy in actuators and sensors. At the present time, the fault detection task of in-flight spacecraft is based on cross, consistency, and limit-value checks, respectively. Monitored variables are verified with respect to certain tolerances of nominal values. Alarms are triggered if the thresholds are exceeded. Different architectures for an industrial state of practice FDIR have been suggested in the literature, see [START_REF] Marcos | Deimos experience, insight and perspective on space FDIR[END_REF][START_REF] Olive | FDI(R) for satellites: How to deal with high availability and robustness in the space domain[END_REF][START_REF] Osder | Practical view of redundancy management application and theory[END_REF][START_REF] Pong | Autonomous thruster failure recovery for underactuated spacecraft[END_REF] for good surveys.

Chapter 3. Advanced Model-based FDIR Solution

Actuator faults are detected at higher level through consistency checks, see discussion in Section 2.3. The classical thruster fault detection is based on the comparison of the commanded torque and force with the IMU measurements. An alarm is raised when a thruster is opened during a too long time. Fixed thresholds are used for recognition of out-of-tolerance condition [START_REF] Olive | FDI(R) for satellites: How to deal with high availability and robustness in the space domain[END_REF].

Space literature reports that conventional FDIR techniques (present-day techniques) are suffering from significant shortcomings, like often missing isolation capabilities of faults on-board [START_REF] Olive | FDI(R) for satellites: How to deal with high availability and robustness in the space domain[END_REF]. The classical FDIR approach for a thruster configuration as in Fig. 3.2 consists of a "half satellite" strategy, where only fault detection is performed on-board [START_REF] Olive | FDI(R) for satellites: How to deal with high availability and robustness in the space domain[END_REF]. If a fault is detected, the nominal thruster set is switched to a redundant one (see Fig. 3.1) and the spacecraft mode is changed to a predefined system safe mode, waiting for a ground intervention. However, in mission critical phases like rendezvous capture/docking phase, the transition to safe mode could possibly lead to collision with the target, thus the safe mode is switched off during the rendezvous phase and a collision avoidance maneuver is triggered rather. In some cases, "industrial approaches" exist for on-board fault isolation. For instance:

• One possibility is through the use of specialized pressure and temperature sensors in the nozzle of the thruster. This, however, comes at the price of extra mass, cost and complexity [START_REF] Pong | Autonomous thruster failure recovery for underactuated spacecraft[END_REF]. Therefore, only methods allowing to perform thruster FDIR using only additional software and/or hardware already on-board are considered in this chapter.

• Another industrial method is based on sending thruster commands (in addition to the command produced by the control law) to all thrusters and assuming that the faulty thruster has no effect on the spacecraft dynamics. Then, the observation of the IMU measurements over a some period of time enables to isolate the failed thruster. This approach, however, has several drawbacks, like extra fuel consumption, degraded control accuracy and it might not work for closed-type thruster failures (stuck closed or thrust loss). All these shortcomings discourage the usage of this method for close range rendezvous.

In non-critical mission phases, common (industrial) methods are well-proven, but for critical mission phases like rendezvous and docking, advanced model-based FDIR techniques shall be particularly developed to cope with the necessary robustness/stability of the spacecraft control, the necessary trajectory dynamics and the vehicle nominal operation. To ensure normal operation, real-time fault diagnosis is essential to provide information for the spacecraft to accommodate the fault in time [START_REF] Wander | Innovative fault detection, isolation and recovery strategies on-board spacecraft: State of the art and research challenges[END_REF].

The enhanced model-based FDIR approaches take advantage of the available on-board inputoutput relations, analytical and informational redundancy. The expected benefits of these meth-
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ods are to provide additional and more precise fault indicators to assess the occurred faulty situation. In [START_REF] Wander | Innovative fault detection, isolation and recovery strategies on-board spacecraft: State of the art and research challenges[END_REF], a gap analysis has been discussed on drawback of classical FDIR methods in deep space applications. It suggests that in critical mission phases, an interesting approach would be to assist the innovative FDIR methods of the system with traditional methods [START_REF] Wander | Innovative fault detection, isolation and recovery strategies on-board spacecraft: State of the art and research challenges[END_REF].

Obviously, there is a natural tendency to take profit from the continuously increasing spacecraft on-board computational resources that sets the scene for the application of more sophisticated and powerful FDIR techniques, based on modern estimation/decision tools. These advanced techniques enable to respond to faults in a timely manner, increase spacecraft autonomy and thus offering prospect of reducing the overall operational cost. The FDIR approach proposed in the next sections follows this philosophy. As explained in the previous chapter, the focus of this study is on thruster faults, sensor faults being assumed to be diagnosed and accommodated at lower levels.

Baseline MSR Thruster Configuration

The baseline MSR thruster configuration that is considered in the following developments was designed for full redundancy. Particularly it means that for this configuration, the chaser is equipped with a propulsion system composed of 2 × 8 thrusters arranged in two sets. The nominal set 'A' is used for the nominal vehicle control and the redundant set 'B' is reserved for the recovery actions, i.e., the set 'A' is switched off and the set 'B' becomes active as soon as a fault has been detected. The thruster configuration is illustrated in Fig. 3.2.

Z X Y 1A 1B 2A 2B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B

Figure 3.2 -Baseline MSR thruster configuration of the chaser spacecraft

The design of this configuration was driven by the following industrial aspects: a) The need to minimize the interaction of the thrusters plume with payloads, optical sensors, solar arrays or a chaser first stage that is jettisoned before rendezvous operation.

b) The need to minimize the number of thrusters while ensuring a full redundancy: A consequence is that there is no need to isolate the thruster fault. Whatever the thruster fault, the recovery consists in switching to the redundant set.

c) The need to cope with center of mass evolutions during the chaser life.

This configuration enables a full 6 DOF control (attitude and translation) using any of the thruster set (nominal or redundant). As mentioned earlier, the propulsion system uses only 8 of the 16 thrusters to control the spacecraft in normal operation. Thus, for the FDI design and implementation in the next section, only the nominal thruster set 'A' is considered and the total number of (active) thrusters will be denoted by N = 8. It should be noted, that every thruster in the configuration of Fig. 3.2 has a partner thruster that produces a force in exactly the opposite direction and torque in the exactly same direction, see Fig. 3.3 for illustration. 

Justification of the FDIR Approach

The nominal thrusters set of the baseline configuration has just enough thrusters to produce any necessary force and torque in order to cope with the demand of the 6DOF control law (in normal operation). So this configuration is in some sense "optimal", meaning that even if only a single thruster fails, the nominal set may become underactuated1 . This, however, cannot be checked with the classical controllability test. For example, in the case of a single fault (i.e., 7 >DOF), the controllability test will indeed result as positive (controllable). This misinterpretation is due to the fact that all thrusters are unilateral, meaning that they cannot produce negative thrust and therefore actuator saturation limits must be considered for such a test. Taking into account thruster limits, Fig. 3

.4 demonstrates the set of attainable forces/moments

Robust FDI Scheme Design using all the 8 nominal thrusters (Ω 8 a ) as well as the subset of this set when thruster No.1 is not considered (Ω

1/8 a ⊂ Ω 8 a )
. This figure clearly illustrates that a big portion of nominally attainable forces/moments (quasi control authority) is lost if only N -1 = 7 thrusters are considered to control the spacecraft. It can be also verified by means of closed-loop simulations that, if any combination of 7 thrusters is considered for control, the GNC performance is very degraded and the required rendezvous objectives cannot be met. This justifies the need for an FDIR approach instead of an FTC one, i.e., an approach where fault accommodation is performed by using some thrusters from the redundant thruster set 'B'.

From the above reasoning, it becomes clear that the crucial element of the FDIR approach is the FDI unit. It decides which component of the system or subsystem is faulty. Then one activates the redundant sub-system in order to recover the initial performance. That is what "R" means in the acronym FDIR.

Robust FDI Scheme Design

Due to the central role of the FDI scheme in the FDIR architecture, robustness issues must be rigorously addressed. In this section, two model-based FDI schemes are presented with enhanced robustness against the uncertain time-varying delay τ (t) which, as mentioned earlier, aims at modelling the uncertainties on the thruster rise times and delays induced by the CPDE device, see Section 2.2.3 for discussion about these uncertainties.

The first FDI scheme is based on the position model (2.78) and the second one uses the attitude model (2.82). For both schemes, decision making is done using the GLR test (see Appendix B) and the isolation task is achieved by evaluating a cross-correlation like criterion between the component of the residual and the commanded thruster opening intervals. Finally, fault recovery is based on redirecting the control input to the redundant thruster and switching off the faulty thruster with a dedicated closing mechanism.

Overview of the Time-delay Problematic

Considering FDI of time-delay systems, only limited results have been developed in recent years in the literature. Among the contributions, an UIO was designed for fault detection of statedelayed systems with "known" delays [START_REF] Yang | Observer design and fault diagnosis for state-retarded dynamical systems[END_REF]. The well known parity space approach was extended for fault detection of retarded time-delay systems [START_REF] Kratz | Fault detection for time-delay systems: a parity space approach[END_REF]. In [START_REF] Ding | An LMI approach to the design of fault detection filter for time-delay LTI systems with unknown inputs[END_REF][START_REF] Jiang | h ∞ fault detection filter design for linear discrete-time systems with multiple time delays[END_REF], a two-objective optimization approach was considered for LTI systems, again considering constant time-delays aiming at a formulation of the optimization problem as: enhancing sensitivity of the residual to faults and at the same time suppressing the undesirable effects of unknown inputs and uncertainties in L 2 -gain sense. In [START_REF] Jiang | Fault detection and identification for uncertain linear time-delay systems[END_REF], a robust fault diagnosis approach based on an adaptive observer was developed for uncertain continuous LTI systems with multiple discrete time-delays in both states and outputs. Recently, a geometric approach for FDI of retarded and neutral time-delay systems was developed [START_REF] Meskin | Robust fault detection and isolation of time-delay systems using a geometric approach[END_REF]. Problem of robust fault detector design for a class of LTI systems with some nonlinear perturbations and mixed neutral and discrete time-varying delays is investigated in [START_REF] Karimi | A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbations[END_REF] using a descriptor technique, Lyapunov-Krasovskii functional and a suitable change of variables.

Often, uncertain time-varying delays occur in the input channels of the system. This is also the case of the thruster-based propulsion system of the chaser spacecraft considered in this thesis. Dealing with FDI, one of the main difficulty lies in the fact that the uncertainty caused by such delays is unstructured. Therefore, robustness cannot be achieved by applying directly existing robust unknown input (disturbance) decoupling approaches directly. There is an important assumption for all such approaches, i.e., the distribution matrix through which the uncertainty affects the system state must be known. However, a generalized approach to obtain the distribution matrix is still lacking, see e.g., [START_REF] Patton | Robust fault detection of jet engine sensor systems using eigenstructure assignment[END_REF][START_REF] Rj Patton | Parameter-insensitive technique for aircraft sensor fault analysis[END_REF] for further discussion about this problematic.

This chapter provides a solution to this problems by introducing a Cayley-Hamilton's theorembased and h-order Taylor series expansion-based polytopic transformations, the influence of the time-varying delay (uncertainty) on the system state is summarized as an unknown input. This is (thought to be) a novel approach of estimation of the distribution matrix related to the uncertain time-varying input delay which is a prior condition for the application of unknown inputs decoupling techniques. For residual generation, Patton and Chen shown that by assigning the eigenstructure of an observer-based scheme, the residuals can be decoupled from these unknown inputs [START_REF] Patton | Robust fault detection of jet engine sensor systems using eigenstructure assignment[END_REF]. The solutions investigated here follow this strategy. More precisely, some left eigenvectors of the observer are assigned to be orthogonal to the unknown input entry directions (columns of the distribution matrix) and thus providing a robust fault detector.

Problem Formulation

Consider the position model (2.78) and the attitude model (2.82) derived in the previous chapter. Due to the quaternion-based rotation matrix R(q t , q c ) (for position model only) and due to the presence of the time-varying delay τ (t) in the control signal ũ, suitable model transformations and manipulations have to be addressed so that both models are in a general and unified form (1.39) (see Chapter 1) that is suitable for the unknown input decoupled residual approach using the EA technique. This is the purpose of the following developments.

To proceed, consider the relative position model (2.78), the multiplicative fault model (2.74) and the model (2.51) relating the thruster ON-times ũ with the forces F (due to the thrusters). Then, a new system input vector u p ∈ R 3 can be defined according to

u p (t) = R q t (t), q c (t) B F ũ(t -τ (t)) (3.1)
and the fault model can be approximated in terms of an additive fault vector

f p ∈ R 3 as follows f p (t) = -R q t (t), q c (t) B F Ψ(t)ũ t -τ (t) (3.2)
where B F ∈ R 3×8 is the lower block of the thruster configuration matrix B related to the considered thruster configuration, see (2.53) and Fig. where f p is acting on the state via a constant distribution matrix E pf = B p . The output vector is defined as y p = [ξ η ζ] T (the relative position between the chaser and the target) and the input vector is defined as the delayed control signals (3.1) given in the local frame F l .

Taking similar steps as for the position model, the attitude model (2.82) can be rewritten according to

ẋa (t) = A a x a (t) + B a u a (t) + E af f a (t) y a (t) = C a x a (t) (3.4)
where f a ∈ R 3 stands for the additive fault vector, E af = B a and u a ∈ R 3 is the new input vector defined as

u a (t) = B T ũ(t -τ (t)) (3.5) f a (t) = -B T Ψ(t)ũ t -τ (t) (3.6)
with B T ∈ R 3×8 being the upper block of the MSR thruster configuration matrix B. The output vector is defined as y a = [ϕ, θ, ψ] T (the chaser attitude Euler's angles) and the input vector is defined as the delayed control signals given by (3.5). The model (3.4) is now suitable for the FDI filter design technique proposed in the next section and has exactly the same structure as the position model given by (3.3).

From (3.3) and (3.4) it is clear that both models admit the following general description of a continuous LTI system

ẋ(t) = Ax(t) + Bu(t) + E f f (t) y(t) = Cx(t) (3.7)
where x ∈ R nx , u ∈ R nu , y ∈ R ny , and f ∈ R n f is system state, system input, measurement, and unknown fault vector, respectively. The quadruplet {A, B, C, E f } represents the statespace matrices either of the position (3.3), or the attitude (3.4) model. It is assumed that all considered faults f are detectable (see [START_REF] Massoumnia | A geometric approach to the synthesis of failure detection filters[END_REF] for more details on fault detectability) and that the pair (A, C) is observable. Now, consider the TMF described in Section 2.2.3 in Chapter 2. Since the TMF generates the thruster opening times equidistantly with a fixed sampling interval T > 0, the system (3.7) can be seen as a discrete-time controlled system. Modelling of continuous time systems with digital control and delayed control input was for example introduced in [START_REF] Mikheev | Asymptotic analysis of digital control systems[END_REF]. Under the assumption that τ (t) is constant during each control cycle "k", i.e., τ (t) = τ (k), ∀t ∈ [kT, (k + 1)T ), the same philosophy can be employed here.

Noting that the control signal ũ(k), generated at time t = kT, k ∈ Z + , arrives to the actuator at time instant t = kT + τ (k) (i.e., with the delay of τ (k)). It is then kept unchanged by the zero-order-hold until the next control signal arrives. Noting that the time-varying delay τ (k) is upper bounded, i.e., τ (k) ≤ τ , ∀k ∈ Z + , it follows that the system input, affected by delays, is given by

u(t) =    u c (k -1), t ∈ kT, kT + τ (k) u c (k), t ∈ kT + τ (k), (k + 1)T (3.8)
where u c depends on the considered model so that

u c (k) =    R q t (k), q c (k) B F ũ(k), if position model is considered B T ũ(k), if attitude model is considered (3.9)
The residual generation problem under the unknown input decoupling constraint can then be formulated as follows.

Problem 3.1. Design a discrete time residual generator of the form

r(z) = H y (z)y(z) + H u (z)u c (z) (3.10)
with H y /H u being observer-based transfer functions, such that the residual signal r lends robustness against the uncertain delay τ (k).

To solve Problem 3.1, the influence of the uncertain parameter τ (k) is first approximated as an unknown input which acts on the system state via a constant distribution matrix. This unknown input is then decoupled by means of the left EA technique. In the following, two approaches are proposed, the first uses a Cayley-Hamilton theorem-based, whereas the second considers a h-order Taylor series expansion-based polytopic transformation of τ (k). As already mentioned, the decision making is done using the GLR test and the isolation is performed using a crosscorrelation like test between the residual and the commanded thruster opening intervals. 

4). The reason is simple. Since exact disturbance (unknown input)

decoupling techniques are considered in the following developments and since the spatial disturbances act on the state via the same distribution matrix (in the same directions) as those of the inputs and thruster faults, i.e., B p = E pf = E pp and B a = E af = E ap , so decoupling these disturbances means decoupling the inputs and faults, too. This is a well know issue (fact) in the space community when considering robust fault diagnosis problem against spatial disturbances 2 . Robustness against these disturbances can be checked a-posteriori, for instance using a huge number of Monte Carlo simulations.

Uncertainty Transformation

Assume that τ (k) can be partitioned as follows

τ (k) = lT + δ(k) ≤ τ (3.11)
where l ∈ Z + is known and δ(k) ∈ R is the time-varying part of τ (k) assumed to be unknown and bounded by 0 ≤ δ(k) < mT , with m ∈ Z + being also known.

In the next developments, the case when m = 1 is assumed. This means that the variation part of the delay is less than one sampling interval. Note that the theory can be easily extended for m > 1 by employing some steps presented in [START_REF] Wang | A new fault detection scheme for networked control systems subject to uncertain time-varying delay[END_REF].

To proceed, let's assume that the fault f is constant during each sampling interval T , what is a reasonable assumption from a practical point of view3 , then the discrete representation of (3.7) and (3.8) is

x(k + 1) = Āx(k) + Γ 0 (δ(k))u c (k -l) + Γ 1 (δ(k))u c (k -l -1) + Ēf f (k) y(k) = Cx(k) (3.12)
where

Ā = e AT , Γ 0 (δ(k)) = T -δ(k) 0 e At dtB, Ēf = T 0 e At dtE f C = C, Γ 1 (δ(k)) = T T -δ(k) e At dtB
It is obvious that the following holds

B = Γ 0 (δ(k)) + Γ 1 (δ(k)) = T 0 e At dtB (3.13)
Introducing a new augmented state vector

z(k) = x T (k) u T c (k -l -1)
T and using (3.13), (3.12) can be rewritten as

   z(k + 1) = Â0 + Â(δ(k)) z(k) + B0 + B(δ(k)) u c (k -l) + Êf f (k) y(k) = Ĉz(k) (3.14) where Â0 = Ā 0 0 0 , B0 = B I , Â(δ(k)) = 0 Γ 1 (δ(k)) 0 0 , B(δ(k)) = -Γ 1 (δ(k)) 0 , Ĉ = C 0 Êf = Ēf 0
The system (3.14) is an uncertain linear parameter-varying system, where Γ 1 is strongly dependent on the uncertain parameter δ(k). The task is now to transform this system to an uncertain polytopic system for which structured properties can be extracted in terms of unknown inputs. The polytopic system is then rewritten as a LTI system subject to an unknown input with a suitable distribution matrix.

Uncertainty Transformation Using Cayley-Hamilton Theorem

The following proposition gives a way to transform the uncertainty Γ 1 (δ(k)) as an convex polytope. (The index a outlines that the first, a-method is considered.)

Proposition 3.1. The Cayley-Hamilton theorem based transformation of Γ 1 (δ(k)) can be expressed as the convex matrix polytope

Γ a 1 (δ(k)) = 2nx i=1 µ a i (k)U a i (3.15)
where andU a i , i = 1, . . . , 2n x are known constant matrices defined as

µ a i (k) > 0, i = 1, ..., 2n x , ∀k ∈ Z + are uncertain scale factors satisfying 2nx i=1 µ a i (k) = 1, ∀k ∈ Z + ,
U a 2i-1 = n x s min i A i-1 B, U a 2i = n x s max i A i-1 B (3.16)
with

s max i = max 0≤δ(k)≤T T T -δ(k)
s i (t)dt, i = 1, 2, . . . , n x (3.17)

s min i = min 0≤δ(k)≤T T T -δ(k) s i (t)dt, i = 1, 2, . . . , n x (3.18)
where s i (t), i = 1, 2, . . . , n x are the solutions to the n x -th order homogenous scalar differential equation

d nx s(t) dt nx + c nx-1 d nx-1 s(t) dt nx-1 + . . . + c 1 ṡ(t) + c 0 s(t) = 0 (3.19)
satisfying the following initial conditions

d i-1 s i (0) dt i-1 = 1, d j s i (0) dt j = 0 for j = i -1, 0 ≤ j ≤ n x - 1 
Proof. Consider first the Cayley-Hamilton theorem, according to which the characteristic polynomial of a matrix A can be expressed as follows

p(λ) = det(λI -A) = λ nx + c n-1 λ nx-1 + . . . + c 1 λ + c 0 (3.20) 
then according to Leonard [START_REF] Leonard | The matrix exponential[END_REF], e At can be written as

e At = s 1 (t)I + s 2 (t)A + . . . + s nx (t)A nx-1 (3.21)
where s i (t), i = 1, 2, . . . , n x are solutions to (3.19). Using (3.21), it is possible to express Γ 1 (δ(k)) as follows

Γ a 1 (δ(k)) = T T -δ(k) e At dtB = nx i=1       T T -δ(k) s i (t)dt    A i-1 B    (3.22) 
Considering (3.17) and (3.18), then (3.22) can be rewritten as

Γ a 1 (δ(k)) = nx i=1 α i,0 (k)s min i + α i,1 (k)s max i A i-1 B (3.23)
where α i,0 (k), α i,1 (k), i = 1, . . . , n x are two time-varying unknown parameters satisfying 0

≤ α i,0 (k) ≤ 1, 0 ≤ α i,1 (k) ≤ 1, and α i,0 (k) + α i,1 (k) = 1 for ∀k ∈ Z + . It can be verified [294] that T T -δ(k) s i (t)dt, i = 1, 2, . . . , n x are Lipschitz-continuous on 0 ≤ δ(k) ≤ T , i.e., they satisfy T T -δ 1 (k) s i (t)dt - T T -δ 2 (k) s i (t)dt ≤ γ i |δ 1 (k) -δ 2 (k)| , ∀δ 1 (k), δ 2 (k) ∈ [0, T ]
where γ i , i = 1, 2, ..., n x are the Lipschitz constants.

Considering (3.16) together with µ a 2i-1 (k) = α i,0 (k)/n x and µ a 2i (k) = α i,1 (k)/n x , it can be verified that (3.23) yields (3.15) and µ a i (k) > 0, 2nx i=1 µ a i (k) = 1 holds ∀k ∈ Z + .
Remark 3.2. Note that the Lipschitz constants are not unique, they can be any finite constants satisfying the Lipschitz inequality. Therefore, according to [START_REF] Wang | A new fault detection scheme for networked control systems subject to uncertain time-varying delay[END_REF], when s max i and s min i cannot be obtained analytically, reliable Lipschitz global optimization algorithms (e.g., Piyavskii's algorithm), which can guarantee a global convergence for all Lipschitz-continuous functions in a closed interval [START_REF] Pintér | Global optimization in action: continuous and Lipschitz optimizationalgorithms, implementations, and applications[END_REF], can be adopted to find s max i and s min i no matter s i (t), i = 1, 2, . . . , n x are convex or not. Remark 3.3. From the derivation above, it can be concluded that the number of vertices of the polytopic representation is 2n x (when considering 0 ≤ δ(k) ≤ T ), which is a linear function of the system order.

Uncertainty Transformation Using Taylor Series Expansion

The second transformation is based on the h-order Taylor series expansion [START_REF] Hetel | Stabilization of arbitrary switched linear systems with unknown time-varying delays[END_REF] and is given the following proposition. (Here the index b denotes the second, b-method.) Proposition 3.2. The h-order Taylor series approximation of Γ 1 (δ(k)) can be expressed as the convex matrix polytope

Γ b 1 (δ(k)) . = h+1 i=1 µ b i (k)U b i (3.24)
where

µ b i (k) > 0, i = 1, ..., h + 1, ∀k ∈ Z + are uncertain scale factors satisfying h+1 i=1 µ b i (k) = i , i = 1, .
. . , h + 1 are known constant matrices, i.e.:

U b i = G h , . . . , G 1 Φ i , i = 1, . . . , h + 1 (3.25)
with

G i = (-1) i+1 A i-1 i! e AT B, i = 1, . . . , h Φ 1 = δ h min I δ h-1 min I , ..., δ 2 min I δ min I T Φ 2 = δ h min I δ h-1 min I , ..., δ 2 min I δ max I T . . . Φ h+1 = δ h max I δ h-1 max I , ..., δ 2 max I δ max I T Proof. Consider F (x) = T T -x
e As ds (3.26) then using the Taylor series expansion, one can write

F (x) = F (0) + Ḟ (0)x + F (0) x 2 2! + . . . + d i F dx i (0) x i i! + . . . = - ∞ i=1 (-x) i i! A i-1 e AT ( 3.27) 
Taylor series expansion of the uncertainty

Γ 1 (δ(k)) = T T -δ(k)
e At dtB can be obtained from (3.26) and (3.27) using x = δ(k) as follows

Γ b 1 (δ(k)) = - ∞ i=1 (-δ(k)) i A i-1 i! e AT B
Then, the h-order approximation of the Taylor series expansion for the uncertainty Γ 1 (δ(k)) can be expressed as a finite sum of the first h elements

Γ b 1 (δ(k)) . = - h i=1 (-δ(k)) i A i-1 i! e AT B (3.28)
The approximation error is given by the remainder Ξ h , i.e.,

Ξ h = - ∞ i=h+1 (-δ(k)) i A i-1 i! e AT B = h i=1 (-δ(k)) i A i-1 i! e AT - T -δ(k) T e At dt B
In [START_REF] Hetel | Stabilization of arbitrary switched linear systems with unknown time-varying delays[END_REF], it was shown that if

µ b 1 (k) = 1 - δ(k) -δ min δ max -δ min , µ b i (k) = δ i-1 (k) -δ i-1 min δ i-1 max -δ i-1 min - δ i (k) -δ i min δ i max -δ i min , i = 2, . . . , h (3.29) 
where δ min = min{δ(k)}, δ max = max{δ(k)}, and thus 

δ(k) ∈ [δ min , δ max ], ∀k ∈ Z + , then µ b i (k) > 0, i = 1, ..., h + 1 and h+1 i=1 µ b i (k) =

Approximation of the Uncertainty in Terms of Unknown Inputs

Taking into account the structure of the uncertain matrices Â(δ) and B(δ) in (3.14) and the two transformations of Γ 1 (δ) introduced in Proposition 3.1 and Proposition 3.2, the influence of the uncertain scalar factors µ a i and µ b i on the state x can be approximated in terms of unknown inputs as follows

2nx i=1 µ a i (k)U a i u c (k -l -1) -u c (k -l) = E a d d a (k) (3.30) h+1 i=1 µ b i (k)U b i u c (k -l -1) -u c (k -l) = E b d d b (k) (3.31)
where

d a (k) = µ a 1 (k) u T c (k -l -1) -u T c (k -l) , . . . , µ a 2nx (k) u T c (k -l -1) -u T c (k -l) T d b (k) = µ b 1 (k) u T c (k -l -1) -u T c (k -l) , . . . , µ b h+1 (k) u T c (k -l -1) -u T c (k -l) T E a d = U a 1 , . . . , U a 2nx , E b d = U b 1 , . . . , U b h+1
These two distribution matrices, E a d and E b d , aim to model the uncertainty-entry directions in two different ways. Therefore, in order to preserve all these directions, i.e., not use only a single approach, an augmented distribution matrix Êd and an augmented unknown input d is considered so that

Êd = Ēd 0 , d(k) = d a (k) d b (k) (3.32) 
where Ēd = E a d E b d . The elements (columns) of Êd define the directions how each component of d affects the augmented state z. This kind of approach gains advantage of combining two techniques to model the effect of the complex uncertainty δ on the state.

Finally, the augmented model with lumped unknown inputs can be expressed as

z(k + 1) = Â0 z k + B0 u c (k -l) + Êf f (k) + Êd d(k) y(k) = Ĉz(k) (3.33)
This model is a quasi-equivalent representation of the augmented system given in (3.14). In other words, using two polytopic transformations, the influence of the uncertainty Γ 1 (δ) (that models the effect of the unknown time-varying delays induced by the CPDE electronic device) on the augmented state z is approximated in terms of the unknown input d.

By closer examining the structure of Â0 , B0 , Êf , Êd in (3.33), one can see that only the upper state of z, i.e., the system state x, is influenced by f and d. It means that there is no coupling between the lower and upper state. This allows to consider only the upper state x in (3.33) for residual generator design.

Residual Generator Design with Decoupled Unknown Inputs

To solve Problem 3.1, the following observer-based residual generator is considered

x(k + 1) = ( Ā -L C)x(k) + Bu c (k -l) + Ly(k) r(k) = Q y(k) -C x(k) (3.34) 
where r ∈ R nr is the residual signal, x ∈ R nx the estimation of the state vector x, L ∈ R nx×ny the observer gain and Q ∈ R nr×ny the residual weighting matrix, respectively. 

(z) = -Q C[zI -( Ā -L C)] -1 B and H y (z) = Q I -C[zI -( Ā -L C)] -1 L .
The Z-transformed residual response to faults and unknown inputs is

r(z) = G rf (z)f (z) + G rd (z)d(z) (3.35) 
where

G rf (z) = Q C(zI -Ā + L C) -1 Ēf (3.36) G rd (z) = Q C(zI -Ā + L C) -1 Ēd (3.37)
In (3.35), G rf (z) and G rd (z) denote the transfers between f (z) and r(z), and d(z) and r(z), respectively.

Once Ēd is known, the remaining problem is to find matrices L and Q so that ( Ā -L C) is stable, and G rd (z) = 0 holds. The assignment of the observer eigenvectors and eigenvalues is a direct way to solve this design problem. Additionally, the assignment of the eigenvalues enables to adequately manage the dynamics of the observer. Note that, because this technique does not consider a sensitivity constraint in the design procedure, the fault sensitivity performance of the proposed residual generator can only be verified a posteriori. Especially, the subspace of the considered faults should not intersect the subspace of decoupled disturbances, i.e., Im( Ēf ) ⊂ Im( Ēd ) (separability condition). See the discussion in [START_REF] Ding | A unified approach to the optimization of fault detection systems[END_REF] if necessary.

To proceed, two lemmas which relate the eigenstructure properties of the system are introduced.

Lemma 3.1 (Chen and Patton [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF]). Any transfer function matrix (resolvent matrix) can be expanded in term of eigenstructure:

(zI -Āc ) -1 = v 1 p T 1 z -λ 1 + v 2 p T 2 z -λ 2 + . . . + v nx p T nx z -λ nx (3.38)
where v i is the right and p T i is the left eigenvector of Āc = Ā -L C, both corresponding to eigenvalue λ i ∈ Λ( Āc ). [START_REF] Patton | Fault Diagnosis in Dynamic Systems: Theory and Application[END_REF], Chap.4). A given left eigenvector p T i corresponding to eigenvalue λ i of Āc is always orthogonal to the right eigenvectors v j corresponding to the remaining (n x -1) eigenvalues λ j of Āc , where λ i = λ j .

Lemma 3.2 (Patton and Frank

Remark 3.5. Note that Lemma 3.1 is only valid for cases when all eigenvectors of Āc are different, however this requirement does not impose any restriction on the residual generator
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Based on Lemma 3.1, the transfer function G rd (z) can be expanded in terms of the eigenstructure as

G rd (z) = nx i=1 Υ i z -λ i = nx i=1 Hv i p T i Ēd z -λ i (3.39)
where

H = Q C and Υ i = Hv i p T i Ēd , i = 1, . . . , n x .
It is obvious that the unknown input decoupling is feasible if and only if

Hv i p T i Ēd = 0, ∀ i = 1, . . . , n x (3.40)
Let's define the left P and right V eigenvector matrices of Āc as

P = p 1 , p 2 . . . p nx T , V = v 1 , v 2 . . . v nx (3.41)
Based on Lemma 3.2, the following relation holds

P V =       p T 1 v 1 0 . . . 0 0 p T 2 v 2 . . . 0 . . . . . . . . . . . . 0 0 . . . p T nx v nx       (3.42) 
If vectors p T i and v i (i = 1, . . . , n x ) are properly scaled, the above equation becomes

P V = I (3.43) 
This also means that P = V -1 . Using this property, (3.40) implies

H nx i=1 v i p T i Ēd = H V P Ēd = H Ēd = Q C Ēd = 0 (3.44)
Hence, one of the necessary conditions for designing an unknown input decoupled residual is given by (3.44) and restated in the following theorem. where Q1 ∈ R nr×ny is an arbitrary design matrix and ( C Ēd ) † is the pseudoinverse of ( C Ēd ) given in Appendix A.3.1. The maximum row rank of Q is n yrank( C Ēd ), thus the residual signal dimension should be chosen according to

n r ≤ n y -rank( C Ēd ) (3.48)
since the linearly dependent rows do not provide any useful information for fault diagnosis.

Remark 3.6. For most cases, the rank condition (3.48) is not satisfied [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF]. This condition also implies that if the number of independent columns Ēd is larger than the independent row number of C, i.e., the number of independent unknown inputs that should be decoupled is larger than the number of independent measurements, then an approximate decoupling procedure should be used (i.e., Ēd should be approximated by a lower-rank matrix), see e.g., [START_REF] Gertler | Optimal residual decoupling for structured diagnosis and disturbance insensitivity[END_REF].

The second step is to determine the eigenstructure of the observer. All rows of H must be the n r left eigenvectors of Āc . For the given (stable) eigenvalue spectrum Λ( Āc ) = {λ i , i = 1, . . . , n x }, the following relation holds

p T i (λ i I -Ā) = -p T i L C = -m T i C, i = 1, . . . , n x (3.49)
where m T i = p T i L. The assignability condition says that for each λ i , the corresponding left eigenvector p T i should lie in the column subspace spanned by { C(λ i I -Ā) -1 }, i.e., a vector m T i exists such that

p T i = m T i Ki , i = 1, . . . , n r (3.50) 
where Ki = -C(λ i I -Ā) -1 , i = 1, . . . , n r . The projection of p i in the subspace span{ Ki } is denoted by

p •T i = m •T i Ki , i = 1, . . . , n r (3.51)
where m

•T i = p T i KT i ( Ki KT i ) -1 , i = 1, . . . , n r . If p T i = p •T i , then p T i is in span{ Ki },
the required observer eigenstructure is assignable and perfect decoupling can be achieved. Otherwise, the eigenvectors must be chosen to be close, e.g., in a least-square sense p T ip •T i , to the desired eigenvectors, i.e., an approximative procedure must be considered in order to replace p T i by its projection p •T i . In this situation, the Robust FDI Scheme Design residual is not perfectly decoupled, but has low sensitivity to unknown inputs due to approximate decoupling [START_REF] Patton | Robust fault detection of jet engine sensor systems using eigenstructure assignment[END_REF].

The remaining n xn r eigenvalues (λ i , i = n r + 1, . . . , n x ) and the corresponding eigenvectors (p T i , i = n r + 1, . . . , n x ) can be chosen freely from the assignable subspace, e.g., using Singular Value Decomposition (SVD). Finally, the observer matrix L can be computed as follows

L = (P ) -1 M (3.52)
where

M = m • 1 . . . m • nr m n r+1 . . . m nx T P = p • 1 . . . p • nr p n r+1 . . . p nx T
It is obvious that, the first n r eigenvalues corresponding to the required eigenvectors p T i , i = 1, . . . , n r must be real because all these eigenvectors are real-valued.

Remark 3.7.

There is no loss of generality in assuming that Ēd has a full column rank. When this is not the case, the following decomposition can be applied: Ēd d = Ēd1 Ēd2 d, where Ēd1 is a full column rank matrix and d 1 = Ēd2 d can be considered as a new unknown input (see, e.g., [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF]).

Computational Procedure and Comments on Implementation Issues

First, the position model (3.3) and the attitude model (3.4) are transformed into the discrete form (3.12) with T = 0.1 s, l = 0 and m = 1. Practically it means that the unknown timevarying delay τ (k) is assumed to be in the closed interval [0, T ). Using the Cayley-Hamilton theorem-based transformation (given in Proposition 3.1) and the 2 nd -order (h = 2) Taylor series expansion-based approximation (given in Proposition 3.2), the uncertainty Γ 1 (δ(k)) is transformed into an unknown input as in (3.32).

The resulting matrix Ēd has a large number of columns and the rank condition given by (3.48) cannot be explicitly satisfied, see also Remark 3.6. Hence, choosing the desired residual dimension equal to one, i.e., n r = 1, the following low rank factorization is performed for both models:

Ē * d = arg min Ēd - Ē * d 2 F , s.t. n r = n y -rank( C Ē * d ) (3.53) 
By this factorization, the most significant directions are kept. Equation (3.53) is easy to solve using Singular Value Decomposition (SVD) of Ēd as follows [START_REF] Lou | Optimally robust redundancy relations for failure detection in uncertain systems[END_REF]:

Ēd = Ū s Ss V T s (3.54)
where 

Ss = [diag(σ 1 , . . . , σ nx ), 0], σ 1 ≤ σ 2 ≤ . . . ≤
Ē * d = Ū s diag(0, . . . , 0, σ n r+1 , . . . σ nx ) V T s (3.55)
Finally, following Remark 3.7, a full column rank decomposition is performed on Ē * d using again the SVD technique.
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The obtained distribution matrix Ēd is then used for the residual generator (3.34) design. The left eigenvectors of the observer are assigned to be the rows of the matrix H = Q C, where the weighting Q is determined such that (3.45) holds. In order to be able to compare the performances of both FDI schemes (first based on the position and the second based on the attitude model), the assigned stable eigenvalues, which determine the observer dynamics, are selected to be exactly the same for both models, i.e., Λ( Āc ) = {0.85, 0.87, 0.89, 0.91, 0.93, 0.95}.

In order to avoid using an optimization procedure to determine s max i and s min i in (3.22), the solutions s i (t), i = 1, . . . , n x of the differential equation (3.19) are found numerically, and therefore, s max i and s min i can be found using a simple iterative method. [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF]. In our particular case only the left EA technique appeared to be a viable candidate. Other methods, such as UIO or right EA technique, violated some necessary conditions of the solution existence.

Remark 3.8. It is worth noting that other exact unknown input (disturbance) decoupling methods exist, see for instance the book of Chen and Patton

Residual Evaluation -Fault Detection

Once the residual generation problem is solved, the problem is to make a decision about the fault presence. The GLR test is used here to detect changes in the residual statistical properties. The decision is made based on two hypotheses: the null hypothesis (H 0 ) means no fault is present, while the alternative hypothesis (H 1 ) indicates some anomaly in the system considered due to the thruster fault. In this case, the decision test J th is defined according to

J th (k) = 1, S N d (k) > J th ⇒ H 1 is accepted 0, S N d (k) ≤ J th ⇒ H 0 is accepted (3.56)
where J th is a fixed threshold selected by the designer and S N d (k) is the GLR algorithm for the variance, see (B.50) and (B.53) in Appendix B. A higher value of J th will obviously increase the non-detection rate while a lower threshold will increase the false alarm rate. The optimal value of J th can be selected through Monte Carlo simulation. This approach is widely used in the FDI community to analyze the efficiency and performance of the designed algorithm [START_REF] Patton | Reliable fault diagnosis scheme for a spacecraft attitude control system[END_REF]. The interested reader can refer to the monograph of Basseville and Nikiforov [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF] for details on the threshold determination.

The following developments propose a solution to this problem. An isolation strategy is developed to uniquely isolate the faulty thruster. Moreover, it should be recalled that simultaneous faults are not considered here.

Residual Evaluation -Fault Isolation

As it has been already noted, in the considered thruster configuration, each thruster has its partner which provides the same torque directions but force in exactly opposite direction, see Fig. 3.3 for illustration. Therefore, a residual subspace approach (see Section 1.3.6) cannot guarantee a full coverage of the considered isolation problematic [START_REF] Massoumnia | A geometric approach to the synthesis of failure detection filters[END_REF], because this approach cannot distinguish between faults in either thruster, but only in the thruster pair 4 . The same can be concluded for the so-called "structured observer schemes" (see Section 1.3.6) which are based on making each residual signal sensitive to a subset of faults while being insensitive to another subset [START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy -a survey and some new results[END_REF]. Moreover, this strategy requires a bank of observers to be designed and run in parallel, and thus, can pose some constraints on the on-board computational equipment.

Proposed Isolation Strategy

The proposed isolation strategy requires only one observer to be designed and run. It relies on a minimum σ Ns j or maximum σNs j cross-correlation criterion between the j th residual signal r j (a general case when n r > 1 is considered here) and the associated controlled thruster open durations ũi , i ∈ S all , i.e.,

σ Ns j (k) =    σ Ns j (k) if open-type thruster fault σNs j (k) if closed-type thruster fault (3.57) 
where

σNs j (k) = arg max ∀i∈S all 1 N s + 1 k l=k-Ns+1 r j (l)ũ i (l) , j ∈ {1, . . . , n r }, ∀k ∈ Z + (3.58) σ Ns j (k) = arg min ∀i∈S all 1 N s + Ns i (k) k l=k-Ns+1 r j (l)ũ i (l) , j ∈ {1, . . . , n r }, ∀k ∈ Z + (3.59) 
with

Ns i (k) = 1 - k l=k-Ns+1 φ i (l), where φ i (l) = 0 if ũi (l) = 0 1 if ũi (l) = 0 , i = 1, . . . , N
These cross-correlation functions are statistical quantities that try to find the associated thruster index that has the smallest/greatest impact on the resulting residual signal. For real-time reason, these criteria are computed on a N s -length sliding-window. An increase in the value of N s results in an elongated isolation delay. An optimal value of N s has to be selected and it can be done through a MC campaign. The resulting index σ Ns j (k) ∈ {1, 2, . . . , N } refers to the identified faulty thruster using the j th residual signal at time instance k.

Note that if the i th thruster is not used by the TMF, i.e., ũi = 0, the minimum cross-correlation function will possibly result in σ(k) = i. This fact is taken into account by introducing the penalty function Ns i (k) in (3.59). Furthermore, if the TMF does not consider the MIB constraint, then this fact should be incorporated in the penalty function Ns i (k) as follows:

φ i (l) = 1 if ũi (l) ≤ M IB, ∀i ∈ S all .
Considering the residual dimension being n r > 1, then one of the following three approaches can be used to determine a unique σ Ns (k), i.e., 1) take the smallest/greatest cross-correlation among all the residuals;

2) use only one residual signal r j , j ∈ {1, . . . , n r }, e.g., the first one σ Ns = σ Ns 1 ;
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3) using a "voting" scheme where, for each residual entry r j a σ Ns j is computed separately, and a "majority voting rule" is implemented, i.e., the resulting index by the most σ Ns j , j = 1, . . . , n r is the identified faulty thruster.

Finally, the resulting thruster index is confirmed at time instant

t i = kT , if the following holds σ Ns (k) = σ Ns (k -1) = . . . = σ Ns (k -N c + 1) (3.60) 
where a confirmation window of length N c > 1 is introduced in order to avoid initial transition phenomena. It also allows to increase the robustness property of the proposed FDI scheme.

Algorithm 1 Thruster Fault Detection and Isolation Algorithm

1: if J th (k d ) = 1 then 2:
Decision = Declare the fault presence at time t d = k d T ;

3:

Start collecting the isolation signals σ Ns (k), k ≥ k d ; 4:
if For a given N c , (3.60) holds at time t i = k i T then

5:

Decision = Declare the i = σ Ns (k i )-th thruster to be faulty;

6:

end if 7: end if

A key feature of this isolation strategy is that it is static, and thus it has a low computational burden. The whole fault detection and isolation strategy is summarized in Algorithm 1 Remark 3.9. It should be noted that an event resolution algorithm must be implemented for the decision given in (3.61), since it is required to distinguish the fault cases 1-3 (open-type fault) from the case 2-4 (closed-type fault). Fortunately, because cases 1-3 imply a propellant overconsumption and since the chaser is equipped with a set of dedicated sensors (tank pressure and tank temperature sensors) that can be used to monitor the overall propellant consumption P, this problem can be easily solved as follows: using the reading from these sensors and combining some laws of fluid mechanics, a "measurement-based estimate" Pm of the actual fuel consumption can be computed. On the other hand, using the knowledge of the thrusters Specific Impulse (ISP) and the available (on-board) thruster firing times ũ, another "firing-times-based estimate" Pf can be established. Comparing these two quantities, the following event resolution logic is suggested

σ Ns j (k) =    σ Ns j (k) if Pm ≥ Pf σNs j (k) if Pm < Pf (3.61)
Another solution is to apply an additional, second threshold on the likelihood estimate S N d (k) or directly to the norm of the residual signal r(k) .

Tuning of the FDI Scheme

In order to ensure robustness, whilst being sensitive to faults, the threshold J th has to be selected carefully. As suggested in Section 3.2.7, the optimal value of J th can be selected through MC simulation. Here, a set of 200 fault-free closed-loop MC simulations was performed using a GLR sliding window of 10 samples, i.e., N d = 10. In the following, the notation S 10 is used to denote the considered GLR test. Figure 3.7 illustrates the obtained results of the MC analysis. It can
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be clearly seen from this figure that, for both models, the GLR signal S 10 (k) is very unlikely to exceed the value 20 during the whole length of the simulation5 . Therefore, a threshold J th = 20 is chosen to ensure (ideally) a zero false alarm rate. For the isolation function σ Ns j given by (3.61), a sliding window of N s = 10 and a confirmation window of N c = 15 samples is considered. Note that the residual dimension is n r = 1, thus the index j is omitted for σ Ns j in the following. 

Simulation Results

The two FDI schemes described in the previous section are next implemented within the MSR simulator to detect and a isolate single thruster fault affecting the chaser thruster-based propulsion system. The first scheme is based on the position model and the second on the attitude model one, respectively. Carefully selected robustness and FDI performance indices together with the Monte Carlo simulation campaign allow one to compare these schemes among each other.

Residual Behaviour

In order to provide a qualitative analysis of the position model-based and attitude model-based residual behaviour, a comparison of four different scenarios is shown in Fig. 3.8. This figure illustrates the time behaviour of the residual signal, both in fault-free and faulty cases. Fig. 3.8a corresponds to a fault-free situation. It can be observed that both residuals are very similar in terms of their variances. This allowed to select very similar parameters for the GLR test, i.e., for the parameters µ and σ 0 (see Appendix B.2.1.2). It also justifies why the selected threshold J th = 20 resulted to be the same for both model-based schemes, see Section 3.2.9 for details.

Three other simulations have been performed in order to compare the fault-free residual with faulty cases. Fig. 3.8b corresponds to a blocked-closed thruster fault affecting thruster No.5. from t f = 1000s. The rest two figures, i.e., Fig. 3.8c and Fig. 3.8d, correspond to a leaking thruster of size 10% and a loss of efficiency by 40%, respectively. In all the three cases, In these particular cases, the blocked-closed thruster fault has the greatest impact on the residual behaviour (in terms of total magnitude), however the effect when this fault influences the residual is slightly later as it is in the later cases. As explained earlier, this can be due to the fact that an uncommanded thruster, which is deemed to be stuck-closed, has no effect on the spacecraft dynamics.

Figure 3.8c and Fig. 3.8d show that these fault types (leakage and thrust loss) have exactly opposite effect on the spacecraft dynamics, both in terms of rotational and translational dynamics since the residual behaves in opposite directions. A fully open thruster fault is not considered here. It is obvious that due to the direct link between the fully open thruster fault and a leakage type fault, i.e., without loss of generality a fully open thruster can be understood as a leakage fault with size 100%, the residual would have a very similar behaviour as the one depicted in Fig. 3.8c but obviously with much greater magnitude.

Monte Carlo Campaign

A Monte Carlo simulation campaign is used to test and validate the performance of the proposed FDI schemes when applied on a huge number of simulation models with randomly drawn dynamics. All considered simulations are carried out under realistic conditions except the event
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resolution algorithm introduced in Remark 3.9, which is considered to work perfectly. For each run, model parameters, e.g., mass, CoM, inertia, etc. are altered within a specific limit, see Table 2.3 in Section 2.2.3. Navigation imperfections, spatial disturbances, time-varying delays induced by the CPDE electronic device and uncertainties on thruster rise times are also considered, see Chapter 2 for more details.

All together, a set of four n mc = 1600 Monte Carlo simulations for each faulty case (4 × n mc ) has been performed in order to assess the performance of the proposed FDI schemes. These fault scenarios correspond to:

• Case 1: fully open thruster (m leak (t) = 1, ∀t ≥ t f ) • Case 2: blocked-closed thruster (m leak (t) = 1, ∀t ≥ t f )
• Case 3: residual leakage ranging from 10% to 30% ( mleak ∼ U(0.1, 0.3), m s = 0.1)

• Case 4: loss of efficiency ranging from 40% to 90% ( mloss ∼ U(0.4, 0.9))

Thruster faults have been uniformly distributed among all the 8 thrusters, see Fig. 3.11a for thruster indices distribution for all considered fault cases separately. Correspondingly, the leakage and the thrust loss size have been drawn from the uniform distribution with the following intervals: mleak ∈ [10%, 30%] and mloss ∈ [40%, 90%]. The leakage is implemented as a dynamic lower saturation to the commanded thruster open rate, where this saturation starts at value 0 and ends at mleak with a slope of m s = 0.1, see Section 2.3.3 about fault modelling. In all cases, fault occurs at time t f = 1000 s. Note that in this section, the recovery aspects are not considered, i.e., the fault remains present in the system during the whole length of the simulation and is not recovered. The confirmation time window of length N c = 15 samples is also considered. Figures 3.9 and 3.10 illustrate (from top to bottom) the above listed characteristics for the following set of four arbitrary chosen faulty scenarios from the MC campaign:

1. A fault that corresponds to a stuck open valve, occurring in the thruster No.8., i.e., the thruster No. 8 is fully opened so that it provides a maximum thrust. Figure 3.9 is concerned with the two first situations whereas Fig. 3.10 considers the two last cases. Clearly, the nonlinear simulations show that faults are detected and isolated by the proposed FDI units within a reasonable time. Moreover, Fig. 3.10 shows the ability to detect and isolate small (thrust loss) and incipient (residual leakage) thruster faults.

To evaluate and compare the performance and reliability of the two proposed FDI schemes, some statistical indices are computed. These indices are evaluated for the detection delay τ d (time from fault occurrence to fault detection) and isolation delay τ i (time from fault occurrence to fault isolation). The considered performance indices are listed below:

• mean(τ d )/mean(τ i ) -mean detection/isolation time,

• std(τ d )/std(τ i ) -standard deviation of the detection/isolation,

• p i -true isolation rate (number of correctly isolated thrusters divided by n mc ),

• p f -false alarm rate (number of wrongly detected faults divided by n mc ),

• p nd -non-detection rate (number of non-detections divided by n mc ).

These performance indices are calculated for each fault scenario and model separately. Table 3.1 presents complete results obtained from the Monte Carlo simulation campaign. As it can be seen from this table, the two proposed FDI schemes present good reliability characteristics since no false alarms p f = 0 and non-detections p nd = 0 have been revealed. Furthermore, all thruster faults were correctly isolated at the end of the campaign (i.e., p i = 1). These achieved results also demonstrate that each FDI scheme is able to successfully detect and isolate thruster faults affecting the chaser baseline thruster-based propulsion system. In order to better appreciate the results presented in Table 3.1, histogram plots graphically demonstrate the distributions of the detection (τ d ), isolation (τ i ) and pure isolation (t i -t d ) delays. Figure 3.11b shows a comparison of the obtained results in terms of detection times, Fig. 3.12a in terms of isolation times and finally Fig. 3.12b in terms of pure isolation times. This visual representation allows to evaluate the FDI performances in terms of minimum and maximum detection/isolation times, as well as to observe the median values.

Simulation Results

It can be seen from Fig. 3.11b that (as expected) the FDI unit based on the attitude model presents a greater sensitivity towards all the faulty situations. This can be easily explained by the fact that the attitude dynamics reacts more quickly to small faults. By closer examining Fig. 3.12a, it can be revealed that the final performance (isolation times) of both FDI schemes are only slightly different from each other. Furthermore, from Fig. 3.12b, it can be seen that in terms of pure isolation times, the position model-based approach performs better. This can be simply explained by the fact that the position model-based residual evolves more likely in the direction of the fault. 

Concluding Remarks on the Obtained FDI Results

The obtained results indicate that both proposed model-based FDI schemes are effective and applicable for on-board implementation. They also show that all considered fault scenarios are covered with the suggested model-based FDI schemes, i.e., they are able to unambiguously isolate all considered faults with high probability. However, this is in contrast with the classical FDIR approaches used in satellite systems. Moreover, the carefully selected performance indicators also reveal that the position model-based scheme tends to achieve very similar FDI performance as the scheme based on the attitude model.

The position model-based FDI scheme succeeded thanks to the judiciously chosen linear model, i.e., a model that takes into account both the rotational and translational motions of the chaser. In other words, the dynamics of the attitude of the chaser is not modeled, but the chaser quaternion is introduced in the residual computation (quaternion-based force vector scheduling, see equation (3.1) for details). This allows to propose a fault diagnosis solution with a very similar performances to those based on the attitude model. Moreover, the position model is naturally robust against the model uncertainties, such as center of mass and inertia, whilst the attitude model not. The linearity of the attitude model during the fault presence is also questionable. Since only one observer is used for both fault detection and isolation, the computational burden is kept relatively low which is an a prior condition for on-board implementation.

It should be also note that the occurrence of incipient or relatively small size thruster faults (e.g., small propellant leakage or thrust loss) may be covered by (robust) control actions, which lead to the selection of the minimum interval limits for mleak and mloss , respectively. The early detection of such faults is clearly more challenging. Another problem can arise when a blocked-closed thruster is not commanded and thus a fault detection is almost impossible. Such behaviour was not observed, since the TMF unit respects the thruster non-linearities (minimum On/Off times) of each thruster in the set.

Finally, all considered faults are detected and isolated by the proposed FDI units within a reasonable time (see the results presented in Table 3.1), i.e., within a time interval which allows the GNC system to keep its required performance (e.g., in terms of pointing accuracy and Recovery Aspects 

Recovery Aspects

After the faulty thruster has been successfully detected and isolated by the FDI unit, the system can attempt to recover from the fault. The strategy of recovery is the last element of the proposed fault tolerant scheme and is ensured by switching to the fault-free thruster, thanks to the full hardware redundancy in thrusters. More precisely, the strategy is based on redirecting the control input ũi of the faulty thruster (with index 'i') from thruster set 'A' to the thruster in the redundant set 'B'. This makes the fault recovery without any change in the nominal controller or/and in the in-placed TMF.

Without a valve to switch off the faulty thruster, there is only one way to control the spacecraft, i.e., try to on-line compensate the force and torque of the faulty thruster. However, this would lead to a drastic increase of the propellant consumption which is already very constrained by the travel to Mars. Therefore, a thruster which has been failed must be switched off by a dedicated Thruster Latch Valve (TLV). Fortunately, each thruster is equipped with a TLV leading the proposed FDIR solution to be a viable solution. Note that, in contrast to the "half-satellite" strategy, this approach can be (re-)used for each thruster separately, and thus, significantly increase the fault coverage capabilities.

In the following, a set of 4 × 100 randomly chosen simulation scenarios from the Monte Carlo campaign presented in Section 3.3.2 is considered. This set is used to analyse the effect of the isolation delay on the fault recovery, and thus, on the overall GNC performance as well as on the final capture requirements. For each scenario, two simulations are required. One for the recovery built on the position model-based FDI unit (further denoted as FDI-P) and the other built on the attitude model-based FDI scheme (further denoted as FDI-A). In total, a set of 800 simulations has been considered. 3.17b illustrate, that in all faulty cases, the chaser maintains the required trajectory, i.e., stays inside the rendezvous corridor (right on the figures), and that the chaser keeps its attitude pointing towards the target leading to a successful capture (left on the figures). Finally, Fig. 3.15 and Fig. 3.18 show that the proposed strategy is able to meet the required 3σ capture accuracy in terms of angular misalignment and angular rate errors.

The obtained simulation results on the recovery aspects indicate that the isolation performances given by Table 3.1, for both FDI schemes (FDI-P and FDI-A), are reasonable when considering the coupling of the isolation delay with the GNC system performance and capture accuracy. In other words, the obtained results suggest that both FDI units are able to perform fault detection/isolation (for the considered fault profiles) within a time interval less than the time during which the system becomes saturated (e.g., the LIDAR sensor is out of sight) or the control accuracy becomes intolerable (e.g., the capture requirements are not met).

Conclusion

This chapter presented a complete design and implementation of two different model-based FDIR strategies for thruster fault diagnosis and accommodation (recovery). The focus of both approaches is on the robustness issue against the unknown time-varying delays induced by the propulsion drive electronics and uncertainties on thruster rise times. The idea is to transform these unstructured uncertainties into unknown inputs and to decouple them from the residual by means of EA technique. Two polytopic transformations to the original system are introduced. The first transformation is based on the Cayley-Hamilton theorem whereas the second relies on the h-order Taylor series expansion. Based on these transformations, the effect of the uncertain- ties on the state is summarized as an unknown input linked with its corresponding distribution matrix. The estimation of the complex unknown input distribution matrix can be considered as a contribution to the theory. The robust (in the sense of unknown input decoupling) observerbased residual generation for FDI is achieved by assigning some left eigenvectors of the observer to be orthogonal to the unknown input directions (columns of the distribution matrix).

The faulty thruster isolation is achieved by cross-correlation-like test between the residual signal and the commanded thruster open rates. To reduce computational burden, the isolation test is based on a sliding window and thus having a low computational complexity which is a prior condition for an on-board implementation. Fault accommodation is achieved by employing the additional hardware redundancy in the thrusters, i.e., as soon as the faulty thruster is isolated by the FDI unit, it is switched off using a dedicated thruster latch valve and the redundant thruster from the back-up set is used instead. This makes the fault recovery without any change in the nominal controller or/and TMF. Additionally, the thruster fault isolation is made without requiring any valve position sensors. The core element of this chapter is the judiciously chosen position model. This model was used to design the first FDI scheme and was compared (in terms of well established FDI performance indices) to the second one, the attitude model-based scheme.

A Monte Carlo simulation campaign has been performed under realistic conditions considering measurement noises, delays, spatial disturbances and parameter uncertainties. Four different fault scenarios were injected throughout simulations. The obtained results demonstrated hight reliability (no false alarms) and the efficiency (reasonable detection times) of the proposed FDI schemes. Moreover, the simulation campaign on recovery issues revealed that the isolation delay of both FDI schemes has only minor effect on the GNC system performance and that the final capture requirements can be fully met since the system is recovered to its pre-fault condition (nominal operation). The following chapter addresses an enhanced fault detection, isolation and accommodation solution based on an active FTC scheme. [START_REF] Henry | Fault detection and diagnosis for aeronautic and aerospace missions[END_REF] Chapter 4

Active FTC Approach for a New Thruster Configuration without Redundant Set "All stable processes we shall predict. All unstable processes we shall control."

-John von Neumann, Hungarian-born mathematician T his chapter addresses the design and implementation of an active fault tolerant control system strategy to detect, unambiguously isolate and accommodate a single thruster fault occurring in the thruster-based propulsion system. Since the thruster configuration used in the previous chapter has not enough degrees of freedom to deal with such an advanced solution, a new layout of thrusters is considered. Key features of the proposed method are the use of the following components: a fault detector based on eigenstructure assignment technique for robust and quick fault detection, a bank of nonlinear unknown input observers with dynamics assignment together with an extended Kalman filter-based torque bias estimator for fault isolation and an online control allocation unit scheduled by the fault isolation scheme for fault tolerance. A Monte Carlo campaign is conducted in the context of the terminal rendezvous phase. Mission oriented criteria demonstrate that the proposed FTC strategy is able to cope with a large class of thruster faults, despite the presence of various types of uncertainties.

New Thruster Configuration

The considered thruster configuration in this chapter is different from the baseline MSR configuration introduced in Chapter 3. It is a special one designed by Thales Alenia Space industries, in order to study active fault-tolerant strategies. This configuration is composed of N = 12 thrusters and is physically organised in four groups, see Fig. 4.1 for illustration. This configuration disposes of some degrees of freedom to achieve fault tolerance (functional redundancy). Particularly, the set of 12 thrusters is placed on the chaser such that the nominally attainable set Ω a of propulsion torques T and forces F is likewise attainable by combining the thrusts of any N -1 = 11 thrusters. From practical viewpoint, it means that it is possible to achieve the required capture accuracy and the necessary GNC performance with only 11 (healthy) thrusters. This fact will be justified in the next section. The main drawback of this new thruster configuration is, that in terms of FTC, it requires a fault isolation function and also that the TMF and/or the already in-placed controller must be changed in order to cope with the fault.

Considering the thruster configuration illustrated in Fig. 4.1 by analysing the sensitivity matrices B F and B T (attached to this configuration) in terms of directional properties, the following can be concluded: the torque directions of the thrusters having index inside the sets S T k , k = 1, . . . , 4 are the same and those having index inside the set S T 5 are similar. In our case, the above subsets are defined as follows

S T 1 = {1, 11}, S T 3 = {4, 8}, S T 5 = {3, 6, 9, 12} S T 2 = {2, 10}, S T 4 = {5, 7}, (4.1) 
In terms of force directions, the following property is revealed

b F 1 = -b F 11 , b F 4 = -b F 8 , b F 3 = -b F 12 b F 2 = -b F 10 , b F 5 = -b F 7 , b F 6 = -b F 9 (4.2)
which means that thruster pairs given by S T k , k = 1, ..., 4 produce exactly opposite forces. The last thruster group, i.e., S T 5 , has the following properties

b F 3 • b F 6 = 0, b T 3 ≈ -b T 6 ≈ -b T 9 ≈ b T 12 (4.3)
where " • " denotes the dot product. Relations in (4.3) mean that thrusters belonging to the S T 5 group produce a) forces perpendicular to the forces of their neighbours b) nearly collinear torques. Directional properties given by (4.1)-(4.3) are visualised in Fig. 4.2 and will be later used to derive an explicit fault isolation strategy.

Note, that not only the number of thrusters and the absence of the redundant set differs from the configuration considered in Chapter 3, but also the fact that there are two thruster pairs in the fifth group, which produce torques in a very similar directions. This makes the fault diagnosis task (especially the isolation) very challenging. 

Feasibility of the Attainable Forces and Moments

Let Ω a be the set of attainable forces/moments linked with the here investigated thruster configuration and Ω k a be the set of attainable forces/moments using all thrusters but the k kt one, then Ω k a ⊆ Ω a , ∀k ∈ S all . Then, it is revealed that sets Ω k a , ∀k ∈ S all are very close to Ω a . This can be also illustrated by a simple example, see Fig. This figure illustrates the set of attainable moments and forces in the case of a single example using all the 12 thrusters (i.e., the set Ω a ) and in the case when thruster No.1 is not considered (i.e., the set Ω1 a ). Note, that these sets were generated taking into account the upper thruster limits, see the discussion at the beginning of Chapter 3. Figure 4.7 shows that only a small portion of the "quasi control authority" is lost when considering Ω 1 a for control 1 . Thus, it is guaranteed that this new thruster configuration is capable of achieving admissible GNC and capture/rendezvous performances, whenever 11 thrusters are available, that is for all Ω k a , ∀k ∈ S all . Remark 4.1. The MIB constraint was not taken into account when computing Fig. 4.7. Basically, it would create a dead zone-like subset (polyhedron) around the origin of the coordinate system. This, however, does not invalidate the claims mentioned above.

Context and motivations

Following the previous discussion, it seems clear that the major problem turns out to be the design of FTC scheme able to detect, isolate and accommodate a faulty thruster. This is the main purpose of this chapter where an active FTC solution is provided. The idea is that instead of trying to redesign the already in-placed nominal controller (in the presence of thruster faults), the control allocation module is reconfigured with the use of the baseline 6DOF control law, such that the control effort is redistributed (re-allocated) to the remaining operational thrusters.

Note, that the problem of designing an active FTC system for thruster faults has been rarely studied for space systems (or very few papers have been published). In terms of model-based FDI, numerous techniques have been studied in the past decades in the academic community, see Chapter 1 or [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF][START_REF] Ding | Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[END_REF][START_REF] Patton | Issues of fault diagnosis for dynamic systems[END_REF] for good surveys.

Additionally to works presented in Chapter 1, one can mention [START_REF] Posch | Model-based on-board realtime thruster fault monitoring[END_REF] that proposes a torque bias vector matching FDI algorithm. The torque bias is estimated using an EKF and directly matched with the torque directions of each thruster. The main drawback of this approach is that it is unable to consider a thruster configuration where some thrusters generate same or very similar torques, which is the case of the new thruster configuration presented earlier. A similar idea is presented in [5], where instead of estimating the torque bias, the sliding mode injection term is matched with the thruster directions. This method has similar drawbacks like the previous method. Additionally, the isolation performance strongly depends on the measurement noise. In [START_REF] Peuvédic | Fault tolerant control design for terminal rendezvous around mars[END_REF], a robust model-based H ∞ /H -FDI filter is used for thruster fault detection and fault isolation is performed using a bank of linear thruster-direction decoupling observers.

In the aero-space community, the control allocation technique is probably the most "ready to be implemented" FTC approach. The major reason is that, even if the technique has been used only for FTC purpose for a few space experiments, the computational complexity is already within the limits of today's off-the-shelf embedded computer systems, see [START_REF] Boada | Multi-saturation anti-windup structure for satellite control[END_REF][START_REF] Bodson | Evaluation of optimization methods for control allocation[END_REF][START_REF] Fu | Fault tolerant control with on-line control allocation for flexible satellite attitude control system[END_REF][START_REF] Henry | From fault diagnosis to recovery actions for aeronautic and aerospace missions: A model-based point of view[END_REF][START_REF] Jin | Attitude control of a satellite with redundant thrusters[END_REF][START_REF] Johansen | Control allocation -A survey[END_REF][START_REF] Oppenheimer | Control allocation[END_REF][START_REF] Page | High-fidelity simulation testing of control allocation methods[END_REF]. Thruster faults can be dealt with using CA principle so that it is not required to re-design the control law itself. A consequence is that CA can be used as a FTC solution with a little extra effort on the original techniques. This chapter follows this idea.

Robust Fault Detector Design

Since in any FTC scheme, it is required a fault detection and isolation scheme, this section addresses the design of a robust fault detector. The fault detector shall indicate the fault occurrence in the thruster-based propulsion system. The proposed fault detector is based on a robust residual generator and a statistical decision test that evaluates the residual. The residual is designed such that it lends robustness against the uncertain delay τ (t) introduced in Section 2.2.3. Following the reasoning about the position model-based fault detector in Chapter 3, the proposed residual generator in this chapter is based on the relative position model 2 . Robustness is achieved by employing a different approach, i.e., the uncertain delay is modelled using a first-order Padé approximation. This uncertainty is next approximated in terms of unknown inputs and decoupled by means of an EA technique. The whole design procedure is derived in the continuous time domain rather than in the discrete time as it was the case in Chapter 3.

Problem Setting

Consider the position model given by (3.3) with additive thruster fault model (3.1) and input delays (3.8) (the index "p" is omitted here for clarity)

ẋ(t) = Ax(t) + Bu(t) + E f f (t) y(t) = Cx(t) (4.4)
The system input u is considered in the continuous fashion as

u(t) = u c (t -τ (t)) (4.5)
where u c (t) = u c (k), ∀t ∈ [kT, (k + 1)T ) is the continuous time version (piecewise-continuous) of the discrete time system input u c (k), see (3.9) if necessary.

Compared to (3.8), it can be noted that, here the discrete time unknown delay τ k is considered to be a time-varying piecewise continuous (continuous from the right) delay τ (t) = τ (k), ∀t ∈ [kT, (k + 1)T ). Thus, (4.5) is an equivalent representation of (3.8) in the continuous time domain.

The robust residual generation problem is then formulated as follows: with H y /H u being observer-based transfer functions, such that the residual signal r lends robustness against the uncertain time-varying delay τ (t).

Derivation of the Solution

In order to solve Problem 4.1, the influence of the uncertain time-varying delay is first expressed as an unknown input. This is achieved by using a first-order Padé approximation and introducing a new augmented state space description. Second, the unknown input is decoupled by means of EA technique.

To proceed, consider the transfer function

H(s) = u(s) u c (s) = e -τ (t)s (4.7)
of the time delay τ (t) being an irrational transfer. Therefore, it is useful to substitute e -τ (t)s with an approximation in form of a rational transfer function. where p is the order of the approximation and the coefficients k i are functions of p.

Here, a first-order Padé approximation of the time delay is considered when the Padé coefficients become: k 1 = τ (t) 2 and k i = 0, i = 2, . . . , p. The irrational transfer can be then approximated as

e -τ (t)s . = 1 -τ (t) 2 s 1 + τ (t) 2 s (4.9)
If this approximation is considered for all system inputs, then the transfer function (4.9) is equivalent to the following state space representation where

ẋd (t) = A d (τ )x d (t) + B d u c (t) u(t) = C d (τ )x d (t) + D d u c (t) ( 4 
Â(τ ) = A BC d (τ ) 0 A d (τ ) , B = BD d B d , Ĉ = C 0 , Êf = E f 0
It can be seen, that thanks to the chosen state-space representation (4.10), the uncertainty τ is present only in Â(τ ). The task now is to decompose this matrix into a constant and parametervarying part.

More precisely, the task is to decompose the matrix Â(τ ) in the following form

Â(τ ) = Â0 + ∆ Â(τ ) (4.12)
where Â0 is a constant matrix and ∆ Â(τ ) is the parameter-varying (uncertain) part of Â(τ ).

Let be considered that τ (t) can be expressed as

τ (t) = τ 0 + δ(t) : |δ(t)| ≤ δ (4.13)
where τ 0 > 0 is the nominal delay, δ(t) is the variation around τ 0 , and 0 < δ < τ 0 is the upper bound of the variation part.

Proposition 4.1. The inverse of the uncertain time-delay τ (t) can be expressed as

(τ (t)) -1 = τ 0 + δ(t) -1 = 1 τ 0 - 1 τ 0 δ * (t) (4.14)
where δ * (t) = δ(t) τ 0 +δ(t) .

Proof. Let a ∈ R and b ∈ R be two real scalars, where a = 0 and a + b = 0. Then based on Miller's lemma [START_REF] Miller | On the inverse of the sum of matrices[END_REF] (see Appendix A) the following holds

(a + b) -1 = a -1 -a -1 b a + b (4.15)
Using (4.13) and (4.15), Proposition 4.1 yields.

Based on Proposition 4.1, (4.12) is defined as follows

Â0 = A BC τ 0 d 0 A τ 0 d , ∆ Â(τ ) = 0 -BC τ 0 d 0 -A τ 0 d δ * (t) (4.16)
where Finally, the uncertain system described by (4.11) can be rewritten as an LTI system with unknown inputs

A τ 0 d = -
   ż(t) = Â0 z(t) + Bu c (t) + Êf f (t) + Êd d(t) y(t) = Ĉz(t) (4.19) 
This model is an equivalent representation of the initial model (4.4)-(4.5) which approximates the effect of the uncertain time-varying delay τ (t) on the state in terms of an unknown input d(t) and a first-order Padé approximation. The problem then turns out to be the design of the fault detector.

To proceed, consider the following residual generator based on a full-order observer

   ż(t) = ( Â0 -L Ĉ)ẑ(t) + Bu c (t) + Ly(t) r(t) = Q y(t) -Ĉ ẑ(t) (4.20)
where r ∈ R nr is the residual signal and ẑ is the augmented state z estimate. The matrix Q ∈ R nr×ny is the output estimation error (residual) weighting matrix.

Design of the Isolation Scheme additional design parameter. The fault is declared at time t d , i.e.,

t d = arg inf t≥t 0 { J th (t) = 1} (4.24)
where t 0 ≥ 0 is the time required for r to achieve steady state (settle down) when Ψ(t) = 0, ∀t ∈ [0, t 0 ).

The next step of the FDI algorithm is concerned by the isolation task which is addressed in the following section.

Design of the Isolation Scheme

Recall the thruster configuration properties given by (4.1)-( 4.3) and taking into account the fact that thrusters cause both linear and rotational motions, a set of explicit rules can be derived to unambiguously isolate a single thruster fault. These rules are implemented on a hierarchical basis as follows:

i) The first stage is based on a bank of five NUIOs which is used to confine the faulty thruster into a single group S T k (subset of thrusters). The proposed NUIO approach is adopted because of its decoupling properties, adjustable error dynamics and ability to take into account both nonlinearities and uncertainties of the attitude dynamics.

ii) The second stage uses jointly an Extended Kalman Filter (in charge of estimating the torque bias due to the fault, torque bias matching or Wald's sequential test) and a residual/force vector matching approach (to uniquely isolate the faulty thruster within the already isolated subset S T k ).

Attitude Dynamics with Inertia Uncertainty

Let's recall here the model of the attitude dynamics (2.80) (no kinematic equations are considered in this chapter/approach) without taking into account the spatial disturbances (see Remark 3.1) and the time delay τ (t), i.e.,

ω(t) = J -1 B T ũf (t) -J -1 ω(t) × J ω(t) (4.25)
where ũf (t) = I -Ψ(t) ũ(t) is the control input (thruster opening times) that takes into account the fault model given in (2.74).

Since the attitude model involves the inertia matrix J (and its inverse), robustness issue against uncertainties in J is a key problem. In aerospace industry, the real inertia is newer known precisely on-board, therefore the control laws are always validated in the presence of uncertainty on inertia to confront modelling errors. Similarly, in terms of FDI/FTC, it is important to analyse and incorporate into the design procedure the influence of the uncertain inertia for conditions of successful rendezvous. To proceed, let J be of the general form

J =    J xx J xy J xz J xy J yy J yz J xz J yz J zz    (4.26)
First, a factorization of J is defined by introducing a diagonal matrix J d ∈ R 9×9 with the uncertain terms of J , i.e.,

J d = diag(J xx , J yy , J zz , J xy I 2 , J xz I 2 , J yz I 2 ) (4.27)
where I 2 is an identity matrix of size 2. The J d matrix can now be associated with two placement matrices R J and S J ,

R J =   
1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1

  , S T J =   
1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0

  
to give the factorized expression of J as follows The inertia uncertainty can be expressed by direct multiplicative uncertainty as [START_REF] Chaudenson | Dynamics modeling and comparative robust stability analysis of a space launcher with constrained inputs[END_REF] J d = J d0 (I + ∆ J ) (4.29)

J = R J J d S J (4.
where J d0 consists of nominal values of J d and ∆ J represents the considered uncertainty in the diagonal form 

∆ J = diag(
∆ J = W ∆ * J , ∆ * T J ∆ * J ≤ I (4.31)
where W = diag( δxx , δyy , δzz , δxy I 2 , δxz I 2 , δyz I 2 )

In [START_REF] Chaudenson | Dynamics modeling and comparative robust stability analysis of a space launcher with constrained inputs[END_REF], the multiplicative uncertainty (4.29) was used to build a Linear Fractional Representation (LFR). In this work, the concern is about the additive uncertainty. Therefore, inserting (4.29) into (4.28) gives the inertia matrix expressed in the additive uncertainty form

J = J 0 + R * J ∆ * J S J (4.32)
Design of the Isolation Scheme with

J 0 = R J J d0 S J R * J = R J J d0 W
Since the inverse of J appears in (4.25), it is essential to express this inverse in a factorized form. Proposition 4.2 provides a method to achieve it.

Proposition 4.2 (Uncertain inertia inverse factorization). If J -1 0 R * J S J ≤ 1, then the inverse of the uncertain inertia matrix (4.32) can be expressed as

J -1 = J -1 0 + R 2 ∆ 2 S 2 (4.33)
where R 2 , S 2 are constant matrices given by R

2 = J -1 0 R * J (I + S J J -1 0 R * J ) -1 and S 2 = S J J -1 0 . Matrix ∆ 2 satisfies ∆ T 2 ∆ 2 ≤ I.
Proof. The real inertia matrix J is always invertible and symmetric, thus J 0 and J 0 + R * J ∆ * J S J are invertible and symmetric, too. Now, multiplying (4.32) with J -1 0 from the left, yields

J -1 0 J = I + J -1 0 R * J ∆ * J S J (4.34)
and inverting both sides gives

J -1 J 0 = (I + J -1 0 R * J ∆ * J S J ) -1 (4.35) 
Since ∆ * T J ∆ * J ≤ I ⇒ ∆ * J ≤ 1, following bound yields

J -1 0 R * J ∆ * J S J ≤ J -1 0 R * J ∆ * J S J ≤ J -1 0 R * J S J (4.36)
Thus, if J -1 0 R * J S J < 1, then the right-hand side of (4.35) can be expressed according to Neumann series Lemma A1 (see Appendix A) as follows

(I -(-J -1 0 R * J ∆ * J S J )) -1 = ∞ k=0 (-1) k (J -1 0 R * J ∆ * J S J ) k (4.37)
Now, pre-multiplying (4.35) by J -1 0 from the right and substituting (4.37) gives

J -1 = ∞ k=0 (-1) k (J -1 0 R * J ∆ * J S J ) k J -1 0 = J -1 0 + ∞ k=1 (-1) k (J -1 0 R * J ∆ * J S J ) k J -1 0 = J -1 0 + R 1 ∆ 1 S 1 (4.38)
where 

R 1 = J -1 0 R * J (4.39) S 1 = S J J -1 0 (4.40) ∆ 1 = ∆ * J (-I + S J J -1 0 R * J ∆ * J -(S J J -1 0 R * J ∆ * J ) 2 + . . .) ( 4 
= -I + S J J -1 0 R * J -(S J J -1 0 R * J ) 2 + . . . = - ∞ k=0 (-1) k (S J J -1 0 R * J ) k (4.42)
which gives the upper bound of ∆ 1 , i.e., ∆ 1 ≤ ∆1 . According to Lemma A1, the right-hand side of (4.42) is equivalent to

∆1 = - ∞ k=0 (-1) k (S J J -1 0 R * J ) k = -(I + S J J -1 0 R * J ) -1 (4.43) if S J J -1 0 R * J < 1, which is true since S J J -1 0 R * J ≤ J -1 0 R * J S J < 1. It is obvious that ∆1 = (I + S J J -1 0 R * J ) -1 > 1,
thus a new scaling matrix W 2 must be introduced such that

∆ 1 = W 2 ∆ 2 , ∆ T 2 ∆ 2 ≤ I (4.44)
where ∆ 2 is unknown. One of the possible choice of W 2 is to take the norm upper bound of ∆ 1 , i.e.,

W 2 = ∆1 I = (I + S J J -1 0 R * J ) -1 I (4.45)
Then, the following holds with the following assignments

∆ 1 = W 2 ∆ 2 = ∆1 ∆ 2 ≤ ∆1 ⇒ ∆ T 2 ∆ 2 ≤ I Inserting (4.
Φ(x(t)) = -J -1 0 x(t) × J 0 x(t) -Ax(t), ∆B = R 2 ∆ 2 S 2 B T , A = ∂ ẋ ∂x (x 0 ,J 0 ) ∆Φ(x(t)) = -J -1 x(t) × J x(t) + J -1 0 x(t) × J 0 x(t), B = J -1 0 B T , C = I (4.48)
This formulation is also suitable for the NUIO theory proposed in the following section.

Robust Nonlinear Unknown Input Observer Design

In this section, a nonlinear unknown input observer approach for a class of uncertain Lipschitz systems is considered. The result is an observer with an L 2 attenuation level κ from ∆B ũ to the estimation error e, i.e., e l2 ≤ κ ∆B ũ l2 , guaranteing asymptotic stability of the estimation error dynamics and robustness against Lipschitz nonlinear uncertainties as well as against time-varying parametric uncertainties in the input matrix. Furthermore, the estimation error dynamics is adjustable and is exactly decoupled from the considered unknown inputs. The admissible Lipschitz constant is maximized through LMI optimization.

Problem Statement

Consider the model given by (4.46)-(4.47) without the nonlinear uncertainty ∆Φ(x), but with a disturbance vector d occurring in the state equation (this will be justified later, see Section 4.4.7), i.e., ẋ(t) = Ax(t) + Φ(x(t)) + (B + ∆B)u f (t) + Ed(t) (4.49)

y(t) = Cx(t) (4.50)
As usual in UIO theory, the design of the UIO parameters is done without fault consideration, i.e., Ψ = 0 ⇒ ũf = ũ. Thus, fault sensitivity performance can only be checked "a posteriori". This usually results in some rank conditions, see for instance [START_REF] Ding | Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[END_REF][START_REF] Patton | Issues of fault diagnosis for dynamic systems[END_REF]. in such a way that x lends robustness against the uncertainties ∆B ũ and is decoupled from the unknown inputs d. In (4.51)-(4.52), x ∈ R n stands for the estimate of x and z ∈ R n is an auxiliary signal.

To proceed, define the estimation error as and the necessary condition for this equation to have a solution is that Assumption 4.2 is satisfied. The general solution of (4.62) can be written according to [START_REF] Darouach | Full-order observers for linear systems with unknown inputs[END_REF] 

e(t) = x(t) -x(t) ( 4 
H = U + Y V (4.63)
where Y must be chosen such that it does not cause rank deficiency of H. Matrices U and V are given by

U = E(CE) † , V = I -(CE)(CE) † (4.64) 
where (CE) † is the generalized pseudoinverse of the matrix CE.

The aim is now to design the parameters K and Y in such a way that the estimation error dynamics (4.61) is asymptotically stable with maximum admissible Lipschitz constant γ * and such that the L 2 gain from ∆B ũ to the estimation error e is bounded by

e l2 ∆B ũ l2 ≤ κ, ∀ũ ∈ L 2 [0, ∞), ∆B ũ l2 = 0 (4.65)
for a given κ > 0.

LMI-based Synthesis

The following theorem provides a LMI-based design method for the NUIO. 

Γ 11 = -(V CA) T Ȳ T -Ȳ V CA -C T KT -KC (4. 69 
)

Ω 12 = P (I -U C) -Ȳ V C (4. 70 
)

Ω 13 = P (I -U C)R 2 -Ȳ V CR 2 (4.71) (4.72)
Once the problem is solved, then

K = P -1 K (4.73) Y = P -1 Ȳ (4.74) γ * = ξ (4.75)
Proof. Assume that H is chosen such that (4.60) holds. Under the assumption that ∆B = R 2 ∆ 2 S 2 B T with ∆ T 2 ∆ 2 ≤ I, the error dynamics of the NUIO (4.61) can be rewritten as

ė = N e + M (Φ -Φ) + M R 2 ∆ 2 S 2 B T ũ (4.76) 
Considering a quadratic Lyapunov function V (t) = e(t) T P e(t), where P = P T > 0. The time derivative of V (t) along the trajectory of (4.76) is given by V = e T (N T P + P N )e + 2e T P M (Φ -Φ) + 2e where

Ψ 1 = N T P + P N + (1 + γ 2 )I + P M (I + R 2 R T 2 )M T P Ψ 2 = (S 2 B T ) T S 2 B T -κ 2 I The following LMI Ψ 1 0 * Ψ 2 < 0 (4.81)
should hold to satisfy (4.80). Then, by virtue of the Schur's complement Lemma A3, (4.81) is equivalent to

        N T P + P N + (1 + γ 2 )I P M P M R 2 0 0 * -I 0 0 0 * * -I 0 0 * * * -κ 2 I S 2 B T * * * * -I         < 0 (4.82)
It can be seen that there is no systematic way to obtain the observer parameters directly from (4.82) due to coupled terms. To reformulate (4.82) as an LMI, we substitute H given by (4.63), and use the following assignments Ȳ = P Y , K = P K and ξ = γ 2 . Additionally, it is desired to achieve the maximum possible Lipschitz constant γ * and simultaneously to respect the constraint γ * ≥ γ. This constraint can be rewritten by defining a new variable ξ = (γ * ) 2 as ξγ 2 ≥ 0 (4.83)

Then, using the Schur's complement, (4.67) follows. It is then obvious that maximizing ξ is equivalent to maximizing γ * . This concludes the proof.

Robustness Against Nonlinear Uncertainty

Consider here the fully uncertain attitude dynamics given by (4.46). Recalling the nonlinear terms, i.e.,

Φ ∆ (x) = Φ(x) + ∆Φ(x) (4.84)
where Φ ∆ is the uncertain nonlinear function and ∆Φ is the unknown part of 

Φ ∆ . Suppose that ∆Φ(x 1 ) -∆Φ(x 2 ) ≤ ∆ γ x 1 -x 2 , ∀(x 1 , x 2 ) ∈ S ( 
Φ ∆ (x 1 ) -Φ ∆ (x 2 ) ≤ Φ(x 1 ) -Φ(x 2 ) + ∆Φ(x 1 ) -∆Φ(x 2 ) ≤ (γ + ∆ γ) x 1 -x 2
According to Theorem 4.1, Φ ∆ (x) can be any Lipschitz nonlinear function with Lipschitz constant less than or equal to γ * ,

Φ ∆ (x 1 ) -Φ ∆ (x 2 ) ≤ γ * x 1 -x 2 , ∀(x 1 , x 2 ) ∈ S so there must be (γ + ∆ γ) ≤ γ * → ∆ γ ≤ γ * -γ.
For any continuously differentiable function ∆Φ the following holds

∆Φ(x 1 ) -∆Φ(x 2 ) ≤ ∂∆Φ ∂x (x 1 -x 2 ) , ∀(x 1 , x 2 ) ∈ S
where ∂∆Φ/∂x is the Jacobian matrix. Therefore, according to [1], ∆Φ can be any additive uncertainty with ∂∆Φ/∂x ≤ γ *γ.

NUIO Dynamics Adjustment

The maximization of the admissible Lipschitz constant γ * may result in unsatisfactory dynamical behaviour of the state estimation error. To overcome this problem, the D-stability concept proposed by Chilali and Gahinet [START_REF] Chilali | h ∞ design with pole placement constraints: An LMI approach[END_REF] can be used jointly with Theorem 4.1, thanks to the LMI formulation (4.67). First, the definition of an LMI region is recalled here and some results on the pole placement LMI constraints are introduced in order to prove the proposed proposition to come. Definition 4.1 (LMI region [START_REF] Chilali | h ∞ design with pole placement constraints: An LMI approach[END_REF]). A subset D of the complex plane is called an LMI region if there exist two symmetric matrices α

= [α kl ] ∈ R p×p and β = [β kl ] ∈ R p×p , such that D = {z ∈ C : f D (z) = α + βz + β T z < 0} (4.86)
where f D (z) is called the characteristic function of D.

Theorem 4.2 (Chilali and Gahinet [45]). Eigenvalues of a real matrix X lie in D, if and only if there exists a symmetric positive definite matrix P > 0, such that

M D (X, P ) = α ⊗ P + β ⊗ (XP ) + β T ⊗ (XP ) T < 0 (4.87)
where ⊗ stands for the Kronecker product of two matrices.

Proof. The proof can be found in [START_REF] Chilali | h ∞ design with pole placement constraints: An LMI approach[END_REF].

Corollary 4.1 (Chilali and Gahinet [45]). Given two LMI regions D 1 and D 2 , the eigenvalues of a matrix X lie in D 1 ∩ D 2 if and only if there exists a positive definite matrix P such that M D 1 (X, P ) < 0 and M D 2 (X, P ) < 0.

In Theorem 4.1, the NUIO gain matrix N , which controls the dynamical behaviour of the state estimation error, directly depends on the LMI variables P , K and Ȳ , thus offering extra degree of freedom to place the eigenvalues of N in a prescribed region D. The four degrees of freedom (α, q, r, β), used to determine D, allow us to fix the desired region of all the eigenvalues of N , i.e., Λ(N ) ∈ D(α, q, r, β).

α k ⊗ P + β k ⊗ (A T P -(U CA) T P -( Ȳ V CA) T -( KC) T )+ β T k ⊗ (P A -P (U CA) -Ȳ V CA -KC) < 0, k = 1,
N T = A T -(U CA) T -( Ȳ V CA) T P -1 -( KC) T P -1 (4.

Comments on NUIO Implementation and Computational Issues

For each thruster group S T k , k = 1, ..., 5 (see (4.1) for definition), a dedicated NUIO is designed based on Algorithm 2. The Lipschitz constant γ for Φ(ω) is computed using a constrained optimization algorithm over the set

S ω = {ω ∈ R 3 : |ω k | ≤ ω, k = 1, 2, 3}
, where ω is the upper bound of the angular velocity for each axis. The LMI region assignment approach given in Proposition 4.4 is considered to adjust adequately the dynamics of the NUIOs. In other words, the four LMI parameters (α, q, r, β) have to be chosen carefully such that the observer error dynamics reacts quick enough to any type of thruster fault, allowing early distinction among the healthy/faulty thruster groups S T k , k = 1, ..., 5 (see the following section about the proposed thruster group isolation strategy). Compute U and V according to (4.64);

6:

Prescribe the desired dynamics using D(α, q, r, β);

7:

Solve the optimisation problem (4.66) under LMI constraints (4.67) and (4.88)

8:

Then

K = P -1 K, Y = P -1 Ȳ and γ * k √ ξ; 9:
Using K and Y , gains for the k th NUIO are given by (4.56)-(4.59) and (4.63); 10: end for The k th NUIO is such that it can fully estimate the angular velocity ω with all control inputs but those associated with S T k , i.e., with ũi , ∀i ∈ S all \S T k . On the other hand, d in equation (4.49), stays for the control inputs associated with S T k (i.e., ũi , ∀i ∈ S T k ). As a result, the NUIO dedicated to the group S T k shall not be affected by faults occurring in the thrusters belonging to S T k due to the decoupling property, while all the other NUIOs will be (are expected to be, to be more precise, since the design of the NUIOs are done without fault sensitivity specifications, see [START_REF] Henry | H ∞ /H-filters for fault diagnosis in systems under feedback control[END_REF][START_REF] Henry | A new multi-objective filter design for guaranteed robust FDI performance[END_REF][START_REF] Henry | A multi-objective filtering approach for fault diagnosis with guaranteed sensitivity performances[END_REF] for discussion about guaranteed sensitivity performances).

It is important to note that d can be exactly decoupled only if the columns of ∆B related to d are zero. If this is not the case, only the known directions, i.e., b * i = J -1 0 b T i , i ∈ S T k , can be exactly decoupled, while the uncertain columns ∆b * i , i ∈ S T k (columns of ∆B associated with S T k ) are attenuated in L 2 sense (with upper bound κ) since the entire ∆B matrix is considered in (4.65). Furthermore, if a constant γ * linked to a given NUIO verifies γ * > γ, then the associated observer tolerates an additional nonlinear uncertainty in Φ ∆ (ω), see discussion in Section 4.4.5.

Note, that the all observers estimate only the angular rate ω of the chaser. Therefore, the computational burden is reduced since there is no need to process the entire state vector (i.e., the linear position/velocity and the attitude in addition). For real-time reasons, the bank of 5 NUIOs is triggered only when the decision signal J th (see (4.22)) indicates the fault occurrence, i.e., when J th (t) = 1 for t ≥ t d . Even if only ω is estimated, keeping the NUIOs switched off before the fault is detected seems to be a good strategy, concerning the nonlinear nature of the observer.

Thruster Group Isolation Logic -First Stage

It is obvious that, in case of (small) truster faults, the spacecraft attitude dynamics is more likely prone to dynamic deviations than the translation one. This gives the motivation to derive the first isolation rule using the angular velocity measurement rather than the one obtained from the LIDAR device. On the other hand, due to the fact that some thrusters produce exactly the same or very similar torques, it is very hard to obtain a global isolation strategy based exclusively on angular velocity measurements. Therefore, the second isolation rule of the proposed (global) isolation strategy uses the information about the position dynamics contained in the fault detector's residual. This chronology of isolation steps gives to the fault an extra time to propagate into the translation dynamics. where σ g (t) : R + → S G represents the identified faulty thruster group index at time "t".

To avoid initial transition phenomena and to ensure robustness against noise, a confirmation time window, δ g > 0, is introduced, i.e.,

t g = arg inf t≥t d +δg {σ g (t) = σ g (ϑ), ∀ϑ ∈ (t -δ g , t]} (4.95)
where t g is the isolation time of the faulty thruster group. For notation simplicity, let j = σ g (t g ).

At this isolation stage, in the ideal case, the minimum time (t dt f ) + δ g has elapsed from the true fault occurrence time, i.e., t = t f , thus allowing additional time for the fault to induce observable dynamic deviation in the translation dynamics that is contained, e.g., in the fault detector's residual r given by (4.20). Therefore, as soon as the faulty thruster group index "j" is confirmed, the faulty thruster can be uniquely isolated by simply examining the degree of alignment between r and the fixed force vector directions b F k , k ∈ S T j (see (2.52) for definition of b F k ) under the assumption that the fault type is known. This is the purpose of the next section.

Remark 4.6. It is assumed that the time-varying delay has no big effect on the isolation performance. Therefore, τ (t) is not considered in (4.25). Nevertheless, the isolation process is triggered by the decision test J th (t), which already has enhanced robustness against τ (t).

Final Thruster Fault Isolation -Second Stage

In this section, a method to uniquely isolate a single thruster fault is proposed by evaluating the EKF-based torque bias estimate together with the directional cosine approach. This method represents the second stage of the overall isolation strategy.

As soon as the faulty thruster group S T j is identified at the first stage, the faulty thruster can be easily isolated by examining the angle of the vector r given by (4.20) along the fixed force directions b F k , ∀k ∈ S T j . If the k th thruster is faulty, then vectors r ∈ R 3 and b F k ∈ R 3 should be collinear (owing the fault model (2.74)). The degree of collinearity can be computed using the direction cosine approach:

θ k d = b F k • r/( b F k r ),
where θ k d is the angle between the vectors r and b F k . If r and b F k are collinear, then cos(θ k d ) = 1 (i.e., the angle between the two vectors θ k d = 0). Thus, the following isolation rule is proposed to isolate the faulty thruster uniquely:

σ(t) = arg min k∈S T j ρ(t) b F k • r(t) b F k r(t) , t ≥ t g (4.96)
In this equation, ρ determines whether an "open-type" or "closed-type" thruster fault has occurred, see Section 2.3 about fault considerations. The notation "t ≥ t g " indicates that this rule is applied only when the NUIO-based strategy (first stage) subscribed and confirmed the fault to the subset S T j .

With respect to ρ, the following two definitions are adopted depending on the identified thruster group S T j , i.e., a) Definition for j=1,...,4

Recalling the geometrical properties in terms of torque directions (see Fig. It is obvious that the two fault types, i.e., "open-type" and "closed-type", result in exactly opposite torque bias (shift) relative to the torque direction b T k , ∀k ∈ S T j , j = 5.

The bias (4.98) can be estimated using an EKF based on the nominal (J J 0 ) attitude dynamics model (4.25), see for instance [START_REF] Posch | Model-based on-board realtime thruster fault monitoring[END_REF] for realisation details. Note that in (4.97), the direction vector b T k can be any from S T j since they are equal for all j ∈ S G \{5}, see discussion in Section 4.1.

b) Definition for j=5

Considering the thruster group 5, it is obvious that the previous strategy cannot be used since b T k , k ∈ S T 5 are not the unique/same-valued direction vectors, see equation (4.3). However, a special property of thrusters belonging to this subset is that they barely produce any torque in the x-and y-axis. This enables to focus only to z-axis and thus, the following definition of ρ when j = 5 is proposed:

ρ (5) (t) = f W ald r bias (t k ) , j = 5 (4.99)
where r bias (t k ) = T z bias (t k ) -T z bias (t k-1 ), T z bias is the third component (i.e., the component on the z-axis) of T bias and f W ald (•) stands for the sequential Wald test for the variance applied on r bias . This test can result in three possible situations: 

f W ald r bias (t k ) =        1 if

Improvement of the Strategy

For the thruster group number 5, taking into account (4.3), it is possible to slightly improve the reliability of the isolation algorithm (4.96) by dividing the set S T 5 into two smaller subsets defined as follows

S a T 5 = {3, 12}, S b T 5 = {6, 9} (4.101) 
Now, the isolation rule (4.96) can be redefined for j = 5 as follows Finally, another confirmation window, δ > 0, is introduced according to

σ(t) =          arg min k∈S a T 5 ρ (5) (t) b F k •r(t) b F k r(t) , if min k∈S a T 5 ρ (5) (t) b T k • T bias ≥ min k∈S b T 5 ρ (5) (t) b T k • T bias arg min k∈S b T 5 ρ (5) (t) b F k •r(t) b F k r(t
t i = arg inf t≥tg+δ {σ(t) = σ(ϑ), ∀ϑ ∈ (t -δ, t]} (4.102)
where t i is the isolation time of the faulty thruster. Let i = σ(t i ) for future reference. The well known EKF approach, introduced in Section 1.3.3.1, has been used to estimate the torque bias vector T bias . The fourth-order Runge-Kutta integration method has been used to propagate the nonlinear equations [START_REF] Kutta | Beitrag zur näherungsweisen integration totaler differentialgleichungen[END_REF]. This estimate, i.e., T bias , is achieved such that the state of the nonlinear (nominal) attitude dynamics is augmented with T bias , and the so obtained model is used in (1.79). The EKF covariance matrix Q has to be tuned such that the estimated torque bias "directions" are as close as possible to the real ones. This problem can be Chapter 4. Active FTC Approach for a New Thruster Configuration mathematically expressed as follows

Implementation and Tuning of the overall FDI Scheme

Q = arg min Q∈R 6×6 atan2 T bias × T bias (Q) , T bias • T bias (Q) (4.103)
where the atan2(, ) function is defined in Appendix A.5.2. It is obvious that, the solution to (4.103), taking into account all the possible fault scenarios and uncertainties, is almost impossible to find. Therefore, the state covariance matrix Q is chosen to be Q = diag(Q ω , Q bias ), where Q ω = I and Q bias = 0.1I, and the initial covariance matrix P 0 is fixed to P 0 = I. The measurement covariance matrix R is selected based on the knowledge of the gyro model, see Section 2.2.1.3 for details.

For the two-stage isolation logic, a confirmation window δ g = 1.5 s in (4.95) and δ = 0.5 s in (4.102) has been considered, respectively. The whole FDI strategy is summarized in Algorithm 3, see Fig. 4.5 for an illustration.

Algorithm 3 Thruster fault detection and isolation

1: if J th (t) = 1 then 2:
Decision = declare the fault presence and run the bank of NUIOs;

3: if σ g (t) = σ g (ϑ), ∀ϑ ∈ (t -δ g , t] then 4:
Decision = declare the thruster group S T j , j = σ g (t) to be faulty;

5: if σ(t) = σ(ϑ), ∀ϑ ∈ (t -δ, t] then 6:
Decision = declare the i th thruster to be faulty, where i = σ(t); end if 9: end if

Thruster Fault Accommodation

Once a faulty thruster is diagnosed by the aforementioned FDI algorithm, a fault accommodation mechanism has to be engaged in order to maintain the rendezvous/capture objectives of the MSR mission. The nominal 6DOF control law, that is planned to be implemented on-board, is designed to guarantee some predefined performance criteria such as: the chaser attitude misalignment versus the target, the longitudinal and lateral capture velocity errors, the position keeping in the rendezvous corridor, the precise capture accuracy, etc., thus, it is desirable to keep the nominal controller in the loop. For further details, see Chapter 2.

Since the control allocation techniques, introduced in Section 1.4.3, do not require any modifications in the control law (assuming feasibility of the virtual control inputs), it motivates to propose a fault accommodation strategy based on this philosophy. Moreover, the CA solution is further justified by the fact that all the thrusters are individually equipped with a dedicated TLV able to disengage the propellant arrival, switching off de facto the associated thruster.

In the next sections, a simple strategy for accommodating the fault effect by changing some functionalities in the TMF function to an online control allocation algorithm is proposed, based on the use of the existing baseline 6DOF controller and TLVs. Figure 4.6 gives an overview of the proposed accommodation solution together with the FDI scheme implemented within the GNC architecture.

Nonlinear Iterative Pseudoinverse Controller Approach

Here, a modified Nonlinear Iterative Pseudoinverse Controller (NIPC) approach whose original version was proposed by Jin et al. [START_REF] Jin | An optimal thruster configuration design and evaluation for quick step[END_REF], is considered. The NIPC method tries to solve the following optimization problem

ũ = arg min ũ W v B ũ -v d p s.t. 0 ≤ ũk ≤ ũmax k , ∀k ∈ S all (4.105)
where B is the overall thruster configuration matrix (see (2.53)), v d = [T T d F T d ] T is the vector of the desired torque and force commands of the 6DOF control law5 , and ũmax k is the maximum opening duration of the k th thruster. The core of the fault tolerance principle is that if the i th thruster is faulty, then ũmax i is set to "0". The weighting matrix W v affects the prioritization among torque/force components when B ũv d cannot be attained due to thruster constraints.

The different choice of the vector p-norm in (4.105) results in [START_REF] Jin | An optimal thruster configuration design and evaluation for quick step[END_REF]:

1. Minimum flow rate allocation: min ũ 1 2. Minimum power allocation: min ũ 2 3. Minimum peak torque/force allocation: min ũ ∞ Using the minimum-flow-rate allocation will yield the greatest control authority for flow-ratelimited thruster systems. Similarly for the other two allocations. It is known that stability of the closed-loop system can be guaranteed as long as the constraints of the optimization problem (4.105) are met (feasibility implies stability).

The proposed NIPC method that solves the re-allocation problem to ensure thruster fault tolerance, is given in Algorithm 4. This algorithm also solves the optimization problem (4.105). It terminates if a certain precision ε ≥ 0 of the allocated torques/forces, weighted by W v , is achieved (typical choice is ε → 0) or if the maximum number of iterations N max iter is reached. N max iter can be considered to reflect the max computation burden. In Algorithm 4, M IB (Minimum Impulse Bit)stands for the minimum impulse (minimum shooting time that a thruster can execute), λ > 0 allows the algorithm to manage the convergence time of the algorithm and Bp+ i stands for the generalized inverse of Bi given in step 3 (optimal in the sense of the considered p-norm).

It is obvious, that both N max iter and λ influence the computational burden of the algorithm. Note, that Bp+ i , ∀i ∈ S all are fixed, thus it is possible to pre-compute them off-line for all i ∈ S all . This enables also to reduce the computational burden, however the price to pay is a higher memory consumption.

Fault tolerance is achieved due to step 3 and consequently to steps 9 and 12, the index "i" being determined by the FDI unit. Changing the minimization objective in (4.105) is very simple since it results in changing the criterion p ∈ {1, 2, ∞} in steps 7 and 9. Remark 4.7. It should be noted, that there is no formal proof that the solution of Algorithm 4 will be optimal in the sense of (4.105). Moreover, this algorithm concerns only a finite number of Chapter 4. Active FTC Approach for a New Thruster Configuration Figure 4.8 clearly illustrates the consequence when such a fault is not accommodated, i.e., the chaser misses the target and the mission fails. On the other hand, when the proposed approach is engaged, the chaser maintains nominal trajectory, i.e., stays inside the rendezvous corridor and the MSR capture requirements are met. Furthermore, it can be inferred from Fig. 4.8 that the chaser keeps its attitude pointing towards the target all the time.

The second and third simulation example aim to illustrate the time behaviour of the internal signals of the proposed FDI scheme in the case of "open-type" and "closed-type" thruster fault. In order to better visually appreciate the obtained FDI signals, the fault accommodation mechanism is switched off for this purpose. 4.10 correspond to a 15% leakage fault affecting the thruster No.2 from t f = 1000 s. The fault is maintained during the whole length of the simulation and is not accommodated (FTC off). The fault presence is declared at t d = 1003.9 s and the faulty thruster index clearly isolates and confirms at t i = 1006 s. It should be noted that the torque bias estimate, shown in Fig. 4.10b, is tuned such that it attains the real torque bias "directions" and is not considered to deliver a trustworthy estimate of the bias magnitude. The same reasoning is valid for Fig. 4.12b. 4.12 correspond to a fully blocked thruster failure. The selected faulty thruster is the thruster No.9. This is to illustrate the more complex isolation logic used for the 5 th thruster group since {9} ∈ S T 5 . Again, the fault starts from t f = 1000 s and is maintained. In this case, since this type of fault is much harder to detect and isolate, the fault presence is declared later than in the previous example, i.e., at t d = 10018.5 s. As it can be seen from to the judiciously chosen confirmation time (δ g = 1.5 s), this phenomenon is correctly managed and the correct group is isolated. As it can be further inferred, despite the external disturbances, uncertainties, delays, navigation imperfections, etc., the right thruster index has been isolated at t i = 1029.4s. 

Open-type Thruster Fault Example

Monte Carlo Campaign

Several uncertainties are involved in the validation of the FDI/FTC system, from the variation of the initial conditions to the parametric uncertainties in the different components of the chaser spacecraft, see Figure 4.12 -The overall isolation logic behaviour for "closed-type" fault the proposed FDI/FTC system when applied on a number of simulation models with randomly drawn dynamics. In this simulation study, the considered thruster fault scenarios are associated with (see Section 2.3.3 for details on fault modelling):

• Case 1: fully open thruster (m leak (t) = 1, ∀t ≥ t f );

• Case 2: bipropellant leakage ranging from 7% to 20% (m leak (t) ∼ U(0.07, 0.2), ∀t ≥ t f );

• Case 3: loss of efficiency ranging from 30% to 100% ( mloss ∼ U(0.3, 1)).

The selected leakage and efficiency loss intervals have been determined based on the author's study presented in [START_REF] Fonod | A class of nonlinear unknown input observer for fault diagnosis: Application to fault tolerant control of an autonomous spacecraft[END_REF], where it was shown that if the FDI unit fails to detect or isolate a small thruster fault (e.g., m loss 15%), the effect that this fault has on the GNC system and/or on the final MSR capture performance requirements is negligible. This is due to the fact that such relatively small fault has a very little impact on the system dynamics and shall be compensated by a robust control law. On the other hand, such faults are very hard or even impossible to detect and isolate.

For each above mentioned fault case, a set of n mc = 1000 Monte Carlo simulations has been carried out in order to assess the performance of the proposed FTC strategy. Thruster faults are uniformly distributed among all the 12 thrusters. In all the cases, fault occurs at time t f = 1000 s and is maintained.

All simulations (3 × n mc ) have been carried out under realistic conditions, i.e., the navigation unit is considered to deliver "non-perfect" state estimates, therefore all the signals used by the FDI scheme, by the NIPC algorithm and by the 6DOF controller are replaced with their respective uncertain values, see Section 2.2.1 for navigation uncertainty models. Time-varying delays, uncertainties on thruster rise times and spatial disturbances are also considered. For each run, the nominal model parameters, e.g., mass, center of mass, etc., were scattered within a specific limit (see Table 2.3 for details). Since the real configuration matrix B is never precisely known on-board, an uncertain configuration matrix B is considered for on-board computational purposes (control law, FDI/FTC). Therefore, B is considered instead of B in the NIPC algorithm. This matrix is computed similarly as B in (2.53), but using a worst-case scenario when an offset of -3 cm is added to each axis of the nominal CoM (see Table 2.3).

Simulation Results

Metric

To evaluate the performance and reliability of the proposed FDI scheme, some statistical indices have been used, e.g., the mean detection delay and its corresponding standard deviation. The considered indices are listed below:

• µ(τ d )/σ(τ d ) -mean/standard deviation (st.dev.) of the detection delay (i.e., τ d = t dt f ),

• µ(τ g )/σ(τ g ) -mean/st.dev. of the thruster group isolation delay (i.e., τ g = t gt d ),

• µ(τ i )/σ(τ i ) -mean/st.dev. of the thruster isolation delay (i.e., τ i = t it g ),

• µ(τ o )/σ(τ o ) -mean/st.dev. of the overall detection and isolation delay (i.e., τ o = t it f ),

• p f -FDI fail rate, i.e., the number of wrongly isolated thrusters divided by the total number of Monte Carlo runs (1000 for each fault scenario).

These performance indices have been calculated for each fault case separately. Table 4.2 presents complete results obtained from the simulation campaign. This table demonstrates that the proposed FDI scheme is able to detect and isolate the considered thruster faults within reasonable times. Moreover, it presents a good reliability since no fail detection/isolation has been revealed for the first two faulty scenarios, i.e., p f = 0. Considering the thrust loss scenario, in about 110 simulation cases, the FDI unit failed to either detect or correctly isolate the faulty thruster. As it will be shown in the next, this fact does not violate any capture conditions nor endanger the mission success. Therefore, it can be concluded that the nonlinear simulations clearly demonstrate that all severe faults are detected and isolated by the proposed FDI units within a reasonable time, i.e., such that the required GNC performances are kept (e.g., in terms of pointing accuracy). Note, that the early detection of the occurrence of incipient or small size thruster faults (e.g., small thrust loss) is clearly more difficult. Another problem can arise when a fully blocked thruster (i.e., mloss = 1) is not commanded and thus a fault detection is almost impossible. As On the other hand, in some particular cases, the attitude misalignment requirement (3-sigma) is not met even if the FDI unit succeeded. This is the case when it takes too long time for the FDI unit to detect and/or isolate the faulty thruster, thus the fault accommodation unit has not enough time to fully recover the faulty system or when the control accuracy has been degraded, e.g., due to a worst case uncertainty or strong disturbance. Based on the FDI performances given in Table 4.2, this case has been very rarely observed. In such cases, the solution may consist in a corrective maneuver that is engaged at the higher level of the fault management unit, see Chapter 2 if necessary. 

Conclusion

In this chapter, a systematic procedure has been presented for the theoretical design and application of a model-based approach to FDI/FTC of an autonomous rendezvous system in the terminal phase. The aim is to detect and isolate a single thruster fault affecting the chaser propulsion system and to accommodate it as quick as possible. The proposed FDI scheme is based on a robust fault detector and a NUIO-based isolation logic. The NUIO gains are given by an LMI optimization, which ensures maximization of the admissible Lipschitz constant while simultaneously satisfying the L 2 gain bound and the pole constraints on the observer dynamics. The L 2 attenuation is considered to minimize the effect of the uncertain inertia on the state estimation error. The NUIO design together with the derivation of the uncertain inertia inverse can be considered as a contribution to the theory. The thruster fault tolerance is achieved by an improved version of the NIPC control allocation algorithm scheduled by the robust FDI scheme. A Monte Carlo simulation campaign has been performed to assess the performance and robustness of the NUIO-based FDI/FTC system subject to parameter uncertainties, spatial disturbances, delays and imperfect navigation. The results indicate that, for all considered fault profiles, which are those considered to be the most relevant by the industrial partners, the proposed strategy can carry out the terminal rendezvous successfully and meet all the required capture specifications.

Conclusions and Perspective

"You cannot create experience. You must undergo it."

-Albert Camus, French Nobel Prize winner T his thesis dealt with the design and validation of advanced model-based methodologies for an integration of FTC capabilities within the GNC system of a chaser spacecraft to ensure a success rendezvous with a target in a circular orbit around the planet of Mars. The main objective, conclusive work of a three years research period focused on the major of fault diagnosis and fault-tolerant control, was to present a collection of results which should lead towards a unified framework for FTC of an autonomous spacecraft involved in a safety critical mission, like MSR mission, PROBA 3, etc.. The analysis is conducted in the context of a terminal rendezvous sequence for the Mars Sample Return mission., In space systems, fault tolerance is usually achieved by Fault/Failure Detection Isolation and Recovery approach. FDIR solutions are preferred to FTC ones due to their availability and simplicity. In the FDIR problem, when a fault is diagnosed and subscribed to a subsystem, the redundant subsystem is activated in order to recover the initial performance. That is what the "R" means in the acronym FDIR. The FTC solutions differ fundamentally from the FDIR ones, since they are not based on a redundant system/subsystems (e.g., actuators and sensors), but they are rather based on analytical (software) redundancy (e.g., model-based approaches for fault detection and isolation and/or functional redundancy in actuators for fault tolerance). Due to the increasing mission demands and the strict constraints on weight, power and cost, providing full hardware redundancy for all actuators is difficult. In order to overcome these limitations, this thesis investigated some methodologies required to design and incorporate an FTC system that performs its functions autonomously and it is based on analytical redundancy, where applicable.

The review of the available state of the art on existing FTC system concepts and FDI approaches, and their possibility to be applied for space systems, has concluded that there exist some important learned lessons:

i) The first is that the tolerance to both sensor and actuator faults cannot be achieved at the same level. The reason is quite evident: since any model-based FDI/FTC scheme uses the sensor measurements y, one has to be sure that these measurements are fault-free.

Similarly for tolerance to sensor faults, because FTC scheme like observer-based method uses the control signals u, one has to be sure that no faults occur in the actuators. As a direct consequence, for space systems, it is better to hierarchize the fault diagnosis task into different levels and to use hardware redundancy in sensors or signal-based techniques in order to guarantee sensor fault tolerance. A direct consequence of this is that a global FTC system should ensure tolerance to sensor faults first, and then if the measurements are deemed to be "fail-safe", the second step should consist in ensuring tolerance to actuator faults that is at an upper level than sensor fault tolerance. Here, advanced model-based techniques for FDI and control allocation are proposed for fault accommodation.

ii) Another lesson is that the FTC requirements should not be decoupled from mission objectives. If the already in-placed robust GNC system is able to compensate some subset of thruster faults (e.g., small losses of thruster efficiency), then there is no need to develop a FTC system for this subset (see Fig. 4.17 and Fig. 4.18b in Chapter 4 or Fonod et al. [START_REF] Fonod | A class of nonlinear unknown input observer for fault diagnosis: Application to fault tolerant control of an autonomous spacecraft[END_REF] if necessary).

iii) Finally, because of the lack of formal proofs, both in terms of global stability and performance, for many methods (see Table 1.2 and Table 1.1 in Chapter 1), the control reallocation approach for FTC purpose seems to be the more advantageous one in the case of functional redundancy based thruster configuration, since it requires a little modification of the existing GNC system.

The solutions investigated in this thesis followed these kinds of strategies.

This work has conducted a survey chapter which illustrated some concepts, definitions and classical results as well as some examples from successful implementation of FDI and FTC approaches in some space missions. Then, a complete description of the already in-placed GNC system and of the failure management unit has been addressed. Within the studies conducted in this thesis, two different thruster configurations have been studied. The first (baseline) configuration disposes with a fully redundant thruster set of 2x8 thrusters, whilst the second configuration is composed of 12 thrusters with functional redundancy. Starting from these concepts, two architectures for FDIR and FTC have been considered. These architectures have been developed in order to accomplish the task of fault tolerance in the more efficient way.

For the baseline configuration, two distinct model-based FDIR schemes for thruster fault diagnosis and accommodation have been proposed. The first scheme is based on the position model whereas the second scheme is based on the attitude model. Effects of unknown time-varying delays induced by the propulsion drive electronics and uncertainties on the thruster rise times have been taken into account during the robust FDI scheme design procedure. The proposed FDI strategy is based exclusively on one observer and uses a cross-correlation like isolation test computed on a sliding window. Therefore, the computational burdens is kept low, which is an a priori condition for real time on-board implementation. The proposed recovery action consists in disengaging the faulty thruster using a dedicated thruster latch valve and redirecting the control signal to the back-up thruster in the redundant thruster set. This solution to fault accommodation does not require any change in the nominal controller or TMF, which leads the solution being very attractive from an industrial perspective. For the validation purposes, four different real fault scenarios were investigated. The obtained results from a Monte Carlo simulation campaign, performed under realistic conditions considering imperfect navigation unit, delays, spatial disturbances (gravity gradient, atmospheric drag, and solar radiation pressure) and parameter uncertainties (mass, inertia, center of mass, and uncertainties on the thruster rise times), revealed that the proposed FDI strategies are effective. They also showed that all the considered fault scenarios are covered with the suggested model-based FDI schemes, i.e., they are able to unambiguously isolate all considered faults with high probability. Moreover, the carefully selected FDI performance indices also reveal that the position model-based scheme tends to achieve very similar performance as the scheme based on the pure attitude model. The position model-based scheme succeeded thanks to the judiciously chosen linear model, i.e., a model that takes into account both the rotational and translational motions of the chaser. In this model, the attitude quaternion plays the role of a scheduling parameter for the residual generation.

An active FTC system strategy to detect, isolate and accommodate a thruster fault has been proposed for the second thruster configuration. A robust fault detector, based on a residual generator with enhanced robustness against the uncertain input delay, has been suggested for fault detection purposes. For fault isolation, a bank of robust NUIOs has been proposed. Based on a set of explicit rules, an isolation strategy has been given to unambiguously isolate a single thruster fault affecting the chaser propulsion system. The main challenge of the isolation problem inhered in the fact that the considered thruster configuration consists of a subset of thrusters which produce torque in almost the same directions. The thruster fault tolerance was achieved by an improved version of the NIPC control allocation algorithm scheduled by the robust NUIO-based FDI scheme. A Monte Carlo simulation campaign has been performed to assess the performance and robustness of the proposed FDI/FTC system subject to parameter uncertainties, spatial disturbances, delays and unperfect navigation. The results indicate that, for all considered fault profiles, the proposed strategy can carry out the terminal rendezvous successfully and the required capture accuracy is maintained. Moreover, it was shown that in case of small thruster faults, the required GNC performances are kept (e.g., in terms of pointing accuracy) despite wrong isolation or non-detection. On the other hand, all the severe faults have been detected and isolated by the proposed FDI unit within a reasonable time.

To conclude, all the results obtained in this thesis revealed that both advanced FDIR and FTC techniques have great advantages in terms of reliability, safety and mission success when compared to the classical FDIR approaches. Thanks to the good knowledge of the subsystems that the engineers at ESA and TAS have, the FMEA (Fault Mode and Effect Analysis) made it easier to develop a more specific FDI/FTC schemes dedicated to certain subset of occurring faults in a real spacecraft. This is one of the many reasons why the valuable knowledge of the control system engineers collaborating within this project was crucial.

Future developments should include the study of more complex verification and validation tools that could enlighten more the distributed and uncertain nature of the complex spacecraft systems (variation of the center of mass, more realistic model of the navigation unit, etc.) and also the stochastic nature of the faults. Robustness against other model parameters like flexible modes, slosh phenomena, uncertain mass, variation of the center of mass, etc. should be incorporated at the design stage of the FDI scheme. Moreover, robustness and sensitivity constraints should be considered too, for instance using H ∞ /H -filtering theory. The implementation, performance, reliability and certification issues slow down the use of these techniques in space, therefore the complexity and computational burden should be further reduced or at least kept at the current level.

Norms and Singular Values

A.2 Norms and Singular Values

A.2.1 Vector Norms

Let u ∈ R r , the p-norm u p of the vector u is defined as follows The 2-norm u 2 defined above is also called the Euclidian or spectral norm and is used without subscript, i.e., u .

u p =

A.2.2 Matrix Norms

Let A ∈ R n×r , the matrix p-norm A p of the matrix A is defined as

A p = sup u =0 Au p u p , ∀u ∈ R r
where sup stands for supremum (least upper bound). The norm of a matrix A is defined through the norm of a vector u, thus it is called an induced norm. For p = {1, 2, ∞} the following matrix norms are obtained

A 1 = max 1≤j≤r n i=1 |a ij | A 2 = λ max (A T A) = σ max (A) A ∞ = max 1≤i≤n r j=1 |a ij |
where λ max and σ max denote the largest eigenvalue and singular value of the matrix A, respectively.

The Frobenius norm A F of the matrix A is defined as

A F = n i=1 r j=1 |a ij | 2 = tr(A H A)
eigenvector with eigenvalue of unity. This means that, since one of the eigenvalues λ i , i = 1, 2, 3 is unity, the eigenvector is unchanged by the matrix A:

Av 1 = 1.v 1
The eigenvector v 1 has the same components along the body axes and along the reference frame axes (see Fig.

A.1 for an illustration). The existence of such an eigenvector is the analytical demonstration of Euler's famous theorem about rotational displacement [START_REF] Sidi | Spacecraft dynamics and control: a practical engineering approach[END_REF]: "The most general displacement of a rigid body with one point fixed is a rotation about some axis". In this case, the rotation is about the eigenvector v 1 . Any attitude transformation in space by consecutive rotations about the three orthogonal unit vectors of the coordinate system can thus be achieved by a single rotation about the eigenvector with unity eigenvalue, i.e., v 1 .

The quaternion is defined as a vector in the following way q = q 0 + q 1 i + q 2 j + q 3 k where the unit vectors i, j, and k satisfy the following equalities:

i 2 = j 2 = k 2 = -1 i. j = -j. i = k j. k = -k. j = i k. i = -i. k = j
In the definition of the quaternion q, q 0 is a scalar. These equations show that the order of multiplication is important. The conjugate of q is also define as q * = q 0q 1 iq 2 jq 3 k

A.5.2 Conversion from Quaternion to Euler Angles

Consider the attitude be represented by a unit quaternion q = (q 0 , q 1 , q 2 , q 3 ), then the mapping from a unit quaternion to a set of Euler (3,2,1) angles is given by [59]

   ϕ θ ψ    =   
atan2 2(q 0 q 1 + q 2 q 3 ), 1 -2(q 2 1 + q 2 2 ) arcsin (2(q 0 q 2q 3 q 1 )) atan2 2(q 0 q 3 + q 1 q 2 ), 1 -2(q 2 2 + q 2 3 ) 

A.5.3 Quaternion Product

Quaternion product between quaternions q a ∈ H and q b ∈ H is defined as follows [START_REF] Diebel | Representing attitude: Euler angles, unit quaternions, and rotation vectors[END_REF] q a q b = q a 0 q b 0 -(q a 1:3 ) T q b 1:3 q a 0 q b 1:3 + q b 0 q a 1:3q a 1:3 × q b 1:3 = q a 0 -(q a 1:3 ) T q a 1:3 +q a 0 I + C(q a 1:3 )

q b 0 q b 1:3 = q b 0 -(q b 1:3 ) T q b
1:3 +q b 0 I + C(q b 1:3 ) q a 0 q a 1:3

where the skew-symmetric cross product matrix function C(•) : R 3 → R 3×3 of x ∈ R 3 is defined by

C(x) =    0 -x 3 x 2 x 3 0 -x 1 -x 2 x 1 0   
Note that quaternion product is non-commutative.

Wald's Sequential Probability Ratio Test In this case, it is assumed that at sample k the system is normal functioning (r(k) ≤ S 1 ). The threshold is determined by considering the extreme case when the likelihood ratio λ(k) is equal to A. Then from (B.4), for all samples from 1 to k, the following yields: Here, the case when no decision is adopted (S 1 < r(k) < S 2 ) is considered. Supposing that samples r(i), i = 1, ..., k are independent of each other, then (B.4) can be rewritten as follows: It is assumed that at sample k the system is faulty (r(k) ≤ S 1 ). Similarly as in situation No. Finally after some tedious calculations the following holds

λ(k) = p(
σ 2 µ 1 -µ 0 ln(A) + k 2 (µ 1 + µ 0 ) ≤ k i=1 r(i) ≤ σ 2 µ 1 -µ 0 ln(B) + k 2 (µ 1 + µ 0 ) (B.25)
where A and B are fixed as given in (B.1) and (B.2) using the probabilities P nd and P f .

B.1.3.1 Graphical Interpretation

The graphical interpretation of the sequential Wald's decision test for the mean value is depicted in where it is required that ∆µ > 0, therefore ∆µ = |µ 1µ 0 | has to be considered.

B.1.4 Wald's Test for the Variance

This test deals with a change detection in the variance of the residual signal r. Let's assume that under the hypothesis H 0 , r has a mean value µ and a variance σ 2 0 , and under the hypothesis H 1 , r has a mean value µ and variance σ The sequential Wald's test for the variance can be written as: 

A ≤ λ v (k) ≤ B (B.

B.1.4.1 Graphical Interpretation

The time varying thresholds are again defined as two parallel lines according to the following equations: 

g 1 (k) = 2 ln(A)
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 13 Figure 1.3 -The octahedron (left), the dodecahedron (centre) and the dedicated pyramid (right) configurations[START_REF] Henry | Fault detection and diagnosis for aeronautic and aerospace missions[END_REF] 
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  u) + HR(ẑ, y) x=ψ 0 (z, ȳ), x=ψ 0 ( ẑ, ȳ) (1.34) equation (1.33) can be written
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 14 Figure 1.4 -MEX spacecraft structure[START_REF] Patton | Robust fdi applied to thruster faults of a satellite system[END_REF] 

Chapter 1 .

 1 State of the Art in Model-based Fault Diagnosis and Active FTC

Chapter 1 .

 1 State of the Art in Model-based Fault Diagnosis and Active FTC

Chapter 1 .• Step 1 :

 11 State of the Art in Model-based Fault Diagnosis and Active FTC Calculate V * by using the (A, B)-invariant subspace algorithm[START_REF] Edelmayer | Fault Detection in Dynamic Systems: From State Estimation to Direct Input Reconstruction[END_REF] 
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 16 Figure 1.6 -The HL-20 RLV vehicle, c 1998 NASA

  Methods for Fault Detection and Isolation control loop (see Fig. 1.8).
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 19 Figure 1.9 -The quasi standard setup for the design of a robust fault detection filter
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 1110 Figure 1.10 -The generic structure of robust detection performance analysis problem
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 1 10 and partition N according to N = N 11 N 12 N 21 N 22 , where N 22 denotes the transfer between the signals r and f . Let sup ω µ ∆ (N 11 (jω)) < 1 where ∆ = {diag(∆, ∆ d )} where ∆ d ∈ C dim( d)×dim(r) is a fictitious plant perturbation block introduced to closed the loop between r and d, and let N ∈ dom(µ g ). Then a necessary and sufficient condition for (1.130)-(1.131) to hold is
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 111 Figure 1.11 -The Microscope satellite, c 2006/2012 CNES

  3.1). A typical atmospheric re-entry for a medium or high Lift/Drag (L/D) vehicle consists of performing three successive flight phases. During the last phase Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC
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 1 Figure 1.13 -LISA Pathfinder and its technology package, c 2011 ESA
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 116 Figure 1.16 -General structure of the UIO scheme
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 120 Figure 1.20 -Bank of observers for sensor faults
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 1 Figure 1.24 -The SLS optimization problem
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 125 Figure 1.25 -Control allocation scheme
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 126 Figure 1.26 -The structure of the supervisory FTC architecture
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 21 Figure 2.1 -Illustration of the principal steps of the MSR mission, c 2012 TAS
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 22 Figure 2.2 -Artist's view of the chaser spacecraft (left) and of the Mars ascent vehicle (middle) lifting off from Mars surface with the Martian soil samples (right), c 2006/2013 ESA
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 23 Figure 2.3 -Mars rendezvous orbit
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 24 Figure 2.4 -General setup of the chaser's GNC system during the rendezvous
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 126 Figure 2.6 -The phase plane profiles for the final approach: Y plane (left) and X plane (right)

  which is attached to the centre of the Mars O M , see Fig.2.5 for an illustration. However, it can be verified that, in the local frame, those coordinates are given according to ρ r = [0 -21.85 0] T m. Such coordinates indicate that the chaser is in the same orbit plane of the target but is put behind the target at a distance of 21.85 m. During station keeping, the velocity reference is zero along all axes, i.e., ρr = 0.
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 28 Figure 2.8 -GNC of the chaser spacecraft

  ξrξ, η = ηr -η, and ζ = ζrζ refer to the position and velocity errors. Signals ρ r = [ξ r η r ζ r ] T , ρr = [ ξr ηr ζr ] T and ρ = [ ξ η ζ] T , ρ = [ ξ η ζ] T are provided by the guidance and navigation units respectively.
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 210211 Figure 2.10 -Robustness margins and performances of the attitude control loop
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 212 Figure 2.12 -Control law (left) and the propulsion system (right) of the chaser vehicle
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 214 Figure 2.14 -Failure management unit with the location of the failure detection units

  the frames in which the measurement signals of the first and second IMU are delivered, and consider the body frame F b = {O B ; X b , Y b , Z b } illustrated in Fig. 2.18 (the center of this frame is fixed to the center of mass of the chaser). Then, it Chapter 2. MSR Mission Description and Modelling follows ωF b
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 215 Figure 2.15 -Sensor drift in the 1 st accelerometer (left) and performance degradation of the 2 nd gyro (right)

Figure 2 . 16 -

 216 Figure 2.16 -Sensor drift in the STR (left) and the corresponding quaternion (right)

Figure 2 . 17 -

 217 Figure 2.17 -The corridor shape during the rendezvous approach

  where ξ, η, ζ denote the elements of the relative position vector ρ = [ξ, η, ζ] T of the chaser from the origin of the target frame O T ;
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 2218 Figure 2.18 -Chaser attitude target pointing mode
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 31 Figure 3.1 -"Half satellite" strategy for thruster faults

Figure 3 . 3 -

 33 Figure 3.3 -Torque directions (left) and force directions (right)

Figure 3 . 4 -

 34 Figure 3.4 -Set of attainable moments (left) and forces (right) using all the 8 nominal thrusters (blue polyhedron) and using only 7 thrusters (red polyhedron). In both cases the thruster limits are taken into account.

Figure 3 .Figure 3 . 5 -

 335 Figure 3.5 illustrates general overview of the proposed FDI scheme based on the position model together with its internal and external signals. The red coloured blocks are concerned with the robust residual generation whereas the yellow coloured blocks corresponds to the evaluation function of the residual (fault detection and isolation). The green coloured blocks represent the necessary signal transformations for the FDI. The explicit meaning and operation of each particular block in Fig. 3.5 will be explained in details in the following developments.
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 3631 Figure 3.6 -Attitude model-based FDI scheme

1 ,

 1 ∀k ∈ Z + . Using (3.29), (3.28) and (3.25), the convex Robust FDI Scheme Design matrix polytope (3.24), given in Proposition 3.2, yields.

Remark 3 . 4 .

 34 The residual generator given in the observer-like form (3.34) can be easily transformed into a transfer function-like form (3.10), i.e., H u

Theorem 3 . 1 ( 3 . 2 . 5 . 1

 313251 [START_REF] Patton | Robust fault detection using eigenstructure assignment: A tutorial consideration and some new results[END_REF]). If the necessary conditionQ C Ēd = H Ēd = 0 (3.45) holds and all the rows of the matrix H are left eigenvectors of Āc corresponding to any n r eigenvalues of Āc , then G rd (z) = 0 is satisfied. Proof. If the rows of H are the n r left eigenvectors (p i , i = 1, . . . , n r ) of Āc , i.e., H = p 1 p 2 . . . p nr T (3.46) then using Lemma 3.2 the following must hold Hv i = 0, i = n r + 1, . . . , n x Chapter 3. Advanced Model-based FDIR Solution According to the necessary condition (3.45), the following must hold too p T i Ēd = 0, i = 1, . . . , n r From Lemma 3.1 it can be shown that Υ i = 0, ∀i = 1, . . . , n x and thus G rd (z) = 0 Left Eigenstructure Assignment Unknown input decoupling design via EA is to assign left observer eigenvectors orthogonal to all the columns of Ēd . Following Theorem 3.1, the first step for the design of the unknown input decoupled residual generator (3.34) is to compute the weighting matrix Q such that (3.45) is satisfied. If C Ēd = 0, any weighting matrix can satisfy (3.45). A general solution is however given by Q = Q1 I -C Ēd ( C Ēd ) † (3.47)
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 37 Figure 3.7 -GLR signals based on a set of 200 Monte Carlo simulations for fault-free case
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 38 Figure 3.8 -Position and attitude model-based residual behaviours for different scenarios

Figures 3 .

 3 Figures 3.9 and 3.10 illustrate the behaviour of the most important characteristics of the FDI units and their internal signals. Both the position model-based (left figures on Fig. 3.9 and 3.10) and attitude model-based (right figures on Fig. 3.9 and 3.10) FDI units are considered. These characteristics are: i) the GLR signal S 10 (k) represented at each sample k and for a detection sliding window of length N d = 10 samples, see (B.53); ii) the decision (alarm) signal 20 (k) with the defined threshold J th = 20, see (3.56); iii) the thruster declared to be faulty by an isolation unit which is represented by the signal σ 10 (k) for a computation sliding window of length N s = 10 samples, see (3.61)-(3.59).
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 239 Figure 3.9 -Behaviour of the internal signals of the position (on the left) and attitude (on the right) model-based FDI scheme, respectively

7

 7 Loss of efficiency Thr.N.7 Loss of efficiency
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 310 Figure 3.10 -Behaviour of the internal signals of the position (on the left) and attitude (on the right) model-based FDI scheme, respectively
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 311 Figure 3.11 -Histograms for thruster indices distribution and detection delays

  Histograms for pure isolation delays
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 312 Figure 3.12 -Histograms for isolation and pure isolation delays
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 3 Figure 3.13 -Capture position requirements and GNC performances for fault Case 1

  Figure 3.14 -Capture position requirements and GNC performances for fault Case 2
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 315 Figure 3.15 -Capture angular requirements for fault Case 1 and Case 2
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 318 Figure 3.18 -Capture angular requirements for fault Case 3 and Case 4
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 41 Figure 4.1 -Thruster configuration of the chaser spacecraft
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 42 Figure 4.2 -Torque directions (left) and force directions (right)

  4.7. 
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 43 Figure 4.3 -Set of attainable moments (left) and forces (right) using all 12 thrusters (blue polyhedron) and using only 11 thrusters (red polyhedron) and in both cases taking into account the thruster limits

Problem 4 . 1 .

 41 Design a continuous time residual generator of the form r(s) = H y (s)y(s) + H u (s)u c (s) (4.6)

  .10) where x d (t) is the delayed state and the matrices A d (τ ), B d , C d (τ ) and D d are given as follows A d (τ ) = -2 τ (t) I, B d = I, C d (τ ) = 4 τ (t) I, D d = -I The augmented state-space description of the system (4.4) and the delayed inputs (4.10) with the state vector z T = x T x T d is:    ż(t) = Â(τ )z(t) + Bu c (t) + Êf f (t) y(t) = Ĉz(t) (4.11)

2 τ 0

 0 I and C τ 0 d = 4 τ 0 I. Now, the parameter-varying part ∆ Â(τ ) can be expressed as an unknown input d(t), entering the augmented dynamics (4.11) through Êd , by: ∆ Â(τ )z(t) = 0 -BC τ 0 d 0 -A τ 0 d δ * (t)z(t) = Êd d(t) = δ * (t)x d (t) (4.18)
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 2843 RemarkThe factorization (4.28) can be used to factorize any symmetric matrix of size 3 × 3.

  dynamics is governed by (omitting the time dependency here) ė = N e + (I -HC)A + N (I -HC) -LC x + (I -HC)∆B ũ + (I -HC)B -G ũ + (I -HC)Φ -M Φ + (I -HC)Ed (4.55) To make the error dynamics (4.55) independent of the state x, of the unknown input d, and of Chapter 4. Active FTC Approach for a New Thruster Configuration (I -HC)B -G ũ, respectively, the following must hold N = M A -KC, verified that (4.55) reduces to ė = N e + M (Φ -Φ) + M ∆B ũ (4.61) Equation (4.60) can be rewritten as HCE = E (4.62)
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 44 Consider the NUIO design based on Theorem 4.1. If there exists a common Lyapunov matrix P = P T > 0 and matrices K, Ȳ such that the LMI optimization problem

Figure 4 . 4 -

 44 Figure 4.4 -LMI Region D(α, q, r, β) = D 1 ∩ D 2 ∩ D 3

89 )Remark 4 . 5 .••

 8945 If the LMI conditions (4.67) and (4.88) are satisfied at the same time, then the proof of Proposition 4.4 directly follows from Theorem 4.2, from Corollary 4.1, and from the fact that eigenvalues of any square matrix are equal to eigenvalues of its transpose, i.e., Λ(N ) = Λ(N T ). In Proposition 4.4, the use of N T instead of N was motivated by elimination possibility of P -1 from (4.89). The product N T P in (4.87) thus yields:N T P = A T P -(U CA) T P -( Ȳ V CA) T -( KC) T .To modify the NUIO dynamics, results related to Proposition 4.4 are used. Here, the intersection of three elementary LMI regions D k , k = 1, 2, 3 are considered, which restrict the eigenvalues of N in the region D = D 1 ∩ D 2 ∩ D 3 . This region is illustrated in Figure 4.4 and represented by the following LMIs: • Left-half plane delimited by a vertical line -α, with α > 0 M D 1 (N T , P ) = 2αP + N T P + P N < 0 (4.90) Disk with center at (-q, 0) and radius r M D 2 (N T , P ) = -rP qP + N T P Conic region with center at the origin and with inner angle 0 < β < π/2 pointing left M D 3 (N T , P ) = sin β(N T P + P N ) cos β(N T P -P N ) * sin β(N T P + P N )

Algorithm 2 1 :do 3 : 4 :

 2134 Design of the bank of 5 NUIOs Compute γ for Φ(ω) over S ω and choose the attenuation level κ; 2: for k = 1 to 5 B k = [b * 1 , ..., b * 12 ] where b * i = J -1 0 b T i , ∀i ∈ S all \S T k and b * i = 0, ∀i ∈ S T k ; Set E J -1 0 b T i for any arbitrary i ∈ S T k and B B k ; 5:

  decision in favour of "closed-type" 0 if no decision has been adopted -1 if decision in favour of "open-type" (4.100) For implementation details of the sequential Wald's test, see Appendix B.1.
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 445 Figure 4.5 illustrates the overall structure of the proposed global FDI scheme. It consists of the robust residual generator and the GLR test, both introduced in Section 4.3. The decision test J th (see (4.22)) triggers the bank of 5 NUIOs and the EKF-based torque bias estimator. Following, the residual signal r, torque bias estimate T bias and the NUIOs estimation errors are being processed by the two-stage isolation logic introduced in Section 4.4.8 and Section 4.4.9.

Figure 4 .

 4 Figure 4.9 and Figure4.10 correspond to a 15% leakage fault affecting the thruster No.2 from t f = 1000 s. The fault is maintained during the whole length of the simulation and is not accommodated (FTC off). The fault presence is declared at t d = 1003.9 s and the faulty thruster index clearly isolates and confirms at t i = 1006 s. It should be noted that the torque bias estimate, shown in Fig.4.10b, is tuned such that it attains the real torque bias "directions" and is not considered to deliver a trustworthy estimate of the bias magnitude. The same reasoning is valid for Fig.4.12b.

  t d =1003.9(s) →50x(a) Residual (top), GLR test (middle) and decision test (bottom) Norms of the NUIO estimation errors

Figure 4 . 9 -

 49 Figure 4.9 -Fault detection algorithm and NUIOs' dynamics behaviour for "open-type" fault

Figure 4 .

 4 Figure 4.11 and Figure4.12 correspond to a fully blocked thruster failure. The selected faulty thruster is the thruster No.9. This is to illustrate the more complex isolation logic used for the 5 th thruster group since {9} ∈ S T 5 . Again, the fault starts from t f = 1000 s and is maintained. In this case, since this type of fault is much harder to detect and isolate, the fault presence is declared later than in the previous example, i.e., at t d = 10018.5 s. As it can be seen from Fig.4.12a, there exists a chattering phenomena in the thruster group isolation rule σ g . Thanks
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 4410 Figure 4.11 and Figure4.12 correspond to a fully blocked thruster failure. The selected faulty thruster is the thruster No.9. This is to illustrate the more complex isolation logic used for the 5 th thruster group since {9} ∈ S T 5 . Again, the fault starts from t f = 1000 s and is maintained. In this case, since this type of fault is much harder to detect and isolate, the fault presence is declared later than in the previous example, i.e., at t d = 10018.5 s. As it can be seen from Fig.4.12a, there exists a chattering phenomena in the thruster group isolation rule σ g . Thanks

  Residual (top), GLR test (middle) and decision test (bottom) Norms of the NUIO estimation errors
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 411 Figure 4.11 -Fault detection algorithm and NUIOs' dynamics behaviour for "closed-type" fault

  Faulty thruster group isolation (top), directional cosines within the isolated group (middle) and isolation rule signal (bottom) Torque bias direction estimates (top), bias directions relative to torque directions within the isolated group (middle) and the Wald's test behaviour (bottom)

Figures 4. 14

 14 Figures 4.14-4.18 illustrate the fault tolerant capabilities of the proposed technique. The capture conditions in terms of position and velocities are given in Fig. 4.13a, Fig. 4.15a, and Fig. 4.17a for fully open thruster, leaking thruster and loss of efficiency thruster fault, respectively. Figure 4.13b, Fig. 4.15b and Fig. 4.17b illustrate, that in all faulty cases, the chaser maintains the required trajectory, i.e., stays inside the rendezvous corridor, and that it keeps its attitude pointing towards the target leading to a successful capture. Finally, Fig. 4.14b, Fig. 4.16b and Fig. 4.18b show that the proposed strategy is able to meet the required 3σ capture accuracy in terms of angular misalignment and angular rate errors.
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 4 Figures 4.14-4.18 illustrate the fault tolerant capabilities of the proposed technique. The capture conditions in terms of position and velocities are given in Fig. 4.13a, Fig. 4.15a, and Fig. 4.17a for fully open thruster, leaking thruster and loss of efficiency thruster fault, respectively. Figure 4.13b, Fig. 4.15b and Fig. 4.17b illustrate, that in all faulty cases, the chaser maintains the required trajectory, i.e., stays inside the rendezvous corridor, and that it keeps its attitude pointing towards the target leading to a successful capture. Finally, Fig. 4.14b, Fig. 4.16b and Fig. 4.18b show that the proposed strategy is able to meet the required 3σ capture accuracy in terms of angular misalignment and angular rate errors.
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 4 Active FTC Approach for a New Thruster Configuration (cm/s) Nominal velocity Out of requirement (3 sigma) Target velocity (FDI success) (a) Position misalignment on +X face (top left), lateral velocity (top right) and longitudinal velocity (bottom) (b) Chaser attitude error (left) and trajectory inside the rendezvous corridor (right)
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 4 Figure 4.13 -Capture position requirements and GNC performances for fault the Case 1

Figure 4 . 14 -

 414 Figure 4.14 -Considered distributions and capture angular requirements for fault the Case 1

  (cm/s) Nominal velocity Out of requirement (3 sigma) Target velocity (FDI success) (a) Position misalignment on +X face (top left), lateral velocity (top right) and longitudinal velocity (bottom) (b) Chaser attitude error (left) and trajectory inside the rendezvous corridor (right)

Figure 4 .1

 4 Figure 4.15 -Capture position requirements and GNC performances for fault the Case 2
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 416 Figure 4.16 -Considered distributions and capture angular requirements for fault the Case 2

Figure 4 .1

 4 Figure 4.17 -Capture position requirements and GNC performances for fault the Case 3
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 418 Figure 4.18 -Considered distributions and capture angular requirements for fault the Case 3

For p = {1, 2 ,

 2 ∞} the following vector norms are obtained

2 y

 2 > 0, x = 0 -π 2 y < 0, x = 0 undefined y = 0, x = 0

1 p

 1 (r(k)|H 1 )dr(k) = 1 -P nd (B.3)and the likelihood ratio λ(k) for Wald's sequential test is given by:λ(k) = p (r(1), r(2), . . . , r(k)|H 1 ) p (r(1), r(2), . . . , r(k)|H 0 ) (B.4) Situation No.1

  p(r(k)|H 1 ) = Ap(r(k)|H 0 ) (B.5)Now, integrating (B.5) over the space E 0 , it follows thatE 0 p(r(k)|H 1 )dr(k) = A E 0 p(r(k)|H 0 )dr(k) (B.6)Considering (B.1) and (B.2), it yieldsP nd = A(1 -P f )

r( 1 )

 1 |H 1 )p(r(2)|H 1 ) . . . p(r(k)|H 1 ) p(r(1)|H 0 )p(r(2)|H 0 ) . . . p(r(k)|H 0 )

Figure B. 2 .These equations represent two parallel lines with gradient µ 1 +µ 0 2 and origin in σ 2 µ 1 B. 1 . 3 . 2 2 µ1 2 gradientFigure B. 2 -

 221132222 Figure B.2 -Graphical interpretation of the Wald's decision test for the mean value

2 1 ,Figure B. 3 -

 13 Figure B.3 -Graphical interpretation of the Wald's decision test for the variance

  i)µ) 2 ≤ B (B.38) Further, applying the natural logarithm on (B.38) results in ln(A) ≤ k ln σ i)µ) 2 ≤ ln(B) (B.39) which, after some arithmetic operations, A and B are again fixed as given in (B.1) and (B.2).
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  The fourth chapter addresses a different thruster configuration with functional redundancy. For this configuration, an innovative active FTC strategy is proposed to unambiguously detect, isolate and accommodate any kind of the considered thruster faults. Key features of the given method are the use of a fault detector based on EA technique for robust and quick fault detection, a bank of Nonlinear Unknown Input Observers (NUIO) with dynamics assignment together with an Extended Kalman Filter-based torque bias estimator for fault isolation. An online Control Allocation (CA) algorithm scheduled by the fault isolation scheme is proposed for fault tolerance. A MC campaign is conducted in the context of the terminal rendezvous phase. Mission oriented criteria demonstrate that the proposed FTC strategy is able to cope with a large class of thruster faults despite the presence of various types of uncertainties.
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"It takes a wise man to learn from his mistakes, but an even wiser man to learn from others."

-Zen proverb

  General Procedure of Fault-tolerant Control Systems Remark 1.2. The term Fault/Failure Detection, Isolation and Recovery (FDIR) is widely used in the industrial community when referring to FTC approaches.

3 )

 3 Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC Without taking into account sensor dynamics, the faulty measured output vector y f ∈ R ny can be described as y

f (t) = y(t) + f s (t)

(1.4) 

  Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTCThe assignment of v i as the right eigenvector of A c is to find the matrix L to satisfy(1.46). This equation has solutions only if either condition in Theorem 1.3 holds true.

	Remark 1.7. If the desired observer eigenstructure is assignable (using left or right eigenvec-
	tors), perfect decoupling can be achieved, otherwise the eigenvectors must be chosen to be close,
	in some norm sense, to the desired eigenvectors. In this situation, the residuals also have low
	sensitivity to uncertainties due to approximate decoupling	
	Remark 1.8. The term Ed in (1.39) can be used to describe the additive disturbance as well
	as a number of other different kinds of modelling uncertainties. Examples are: noise, non-linear
	terms in system dynamics, terms arise from time-varying system dynamics, linearization and
	model reduction errors, parameter variations. In the following, two examples in the representa-
	tion of modelling errors as additive disturbance term Ed are given.	
	Example 1: Consider that the system dynamics with parameter perturbations is represented by
	ẋ(t) = (A + ∆A)x(t) + (B + ∆B)u(t)	(1.47)
		45)
	and this leads to	
	LCv i = (A -λ i I)v i	(1.46)

u) + Ed(t, y, u) y(t) = Cx(t)

  

	(1.54)
	where d(t, y, u) ∈ R n d represents the disturbance (uncertainty) signal. The matrix E ∈ R n×n d provides the disturbance structure. Actuator faults f a (t, u) ∈ R n fa are assumed to enter in the system through a distribution matrix E fa ∈ R n×n fa .
	A sliding mode observer for actuator faults proposed by Tan and Edwards [274] has the struc-
	ture
	ż(t) =

Ax(t) + Bu(t) -G l e y (t) + G n ν(t) e y (t) = Cz(t) -y(t) (1.55) with a typical Luenberger gain matrix G l and the addition of a gain G n associated with

  

	Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC	
	to sensor faults f s ∈ R n fs given by	
	ẋ(t) =	
		the
	nonlinear injection term. The signal	
	ν(t) = -ρ 0 (t, y, u)sign(e y (t))	(1.56)
	is the "output error injection" signal which forces the state estimation error to reach the sur-
	face	
	S = {e : Ce = 0}	
	in a finite time, and subsequently maintains the motion on this surface. The actuator fault
	reconstruction is defined as	
	f a (t) = W ν(t)	(1.57)
	where the static gain W ∈ R n fa ×nm must be selected by the designer.	
	A sensor fault problem can be posed and solved in a similar fashion. Consider a system subject

Ax(t) + Bu(t) + Ed(t, y, u)

  

	(1.58)

  n x .

	Relations (1.63)-(1.65) are respectively the detectability, input observability and output separa-
	bility principles of the design. The subspaces W i , i = 1, . . . , n f are called detection spaces of the filter. Relation (1.63) shows that W i is (C, A)-invariant subspace of the pair (A -LC, R i ). For practical reasons, it is important to use extremal (C, A)-invariant subspaces in the design. It is
	advantageous to find the family of the smallest possible subspaces W i satisfying the principles (1.63)-(1.65).

Step 3: Calculate

  

	the matrix S = [c T 1 , . . . , (c 1	Āp 1 -1 11 ) T , . . . , (c m	Āpm-1 11	) T ] T
	• Step 4: Introduce the vector of derivatives			
	v inv (t) = w T (t), (y	(p 1 ) 1 (t)) T , . . . , (y pm ny (t)) T T	(1.73)
	as the input of the inverse systems, where			
	w(t) = y 1 (t), . . . , y	(p 1 -1) 1	(t), . . . , y ny (t), . . . , y	(pm-1) ny	(t)	T	(1.74)
	Then, the dynamics of the inverse is obtained from		
	η(t) = A inv η(t) + B inv v inv (t)			(1.75)
	using the definitions						

Table 1 .

 1 1 -Classification of the introduced AFTC approaches

	Method/Criteria	Reusable	Tuning complexity	On-line solution	Guaranteed stability	Computational burden
	MMST	+	+	--	0	++
	IMM	+	++	-	+	++
	Bank of observers	+	+	+	0	0
	PIM	+	0	+	--	+
	Modified PIM	+	0	++	++	-
	Admissible PIM	+	+	++	++	+
	EA	+	+	++	++	-
	Model following	++	+	++	+	0
	LQ-redesign	+	++	+	+	-
	MPC	++	++	++	+	-
	Fault hiding	++	+	+	+	0
	CA	++	++	++	+	0

Table 2 .

 2 1 for numerical values of the considered capture requirements. These values are driven by the capture mechanism.

	Overview of the MSR Mission

Table 2 .

 2 1 -MSR conditions for successful capture ( are 3σ requirements)

Table 2 .

 2 2. 

	Chapter 2. MSR Mission Description and Modelling		
	Orbital parameter	Chaser	Target Unit
	Semimajor axis	3893	3893	km
	Eccentricity	0	0	n/a
	Inclination	30	30	deg
	RAAN	0	0	deg
	Argument of periapsis 0	0	deg
	True anomaly	-32.16 × 10 -5 0	deg

Table 2 .

 2 2 -Keplerian orbital parameters (initial) of the chaser and target

  To clarify the meaning of this statement, the

	Chapter 2. MSR Mission Description and Modelling					
	matrix multiplication (2.17) is expanded as follows:					
	A =	  	a 11c a 12c a 13c a 21c a 22c a 23c	  	  	a 11r a 12r a 13r a 21r a 22r a 23r	   =	  	a 11 a 12 a 13 a 21 a 22 a 23	  	(2.18)
			a 31c a 32c a 33c			a 31r a 32r a 33r			a 31 a 32 a 33		

  a 11 + a 22 + a 33

	2 q 1 =	a 23 -a 32 4q 0	(2.27) (2.28)
	q 2 =	a 31 -a 13 4q 0	(2.29)
	q 3 =	a 12 -a 21 4q 0	(2.30)
	then equations (2.22)-(2.24) lead to the following attitude control law	

  26) requires fewer algebraic operations than computing Chapter 2. MSR Mission Description and Modelling the elements in A . This is one reason why the control law of (2.31)-(2.33) is preferred to that of (2.22)-(2.24) in the case of the MSR mission, although they are equivalent from a physical point of view.

  a generalized disturbance vector, both given in the local frame. The definition of F p is considered later, since it is not of prime interest here.Since equations (2.40)-(2.42) define a linear state-space model, it is natural to think about linear methods from the robust control community to design the position control law. This leads to the definition of the control structure as depicted on Fig.2.8, i.e., the position control law consists of two successive functions:

• a linear controller that is designed on the model given by equations (2.40)-(2.42) and that generates F t , and

Table 2 .

 2 .10 and 2.11 which plot the open-loop transfers on each axis considering, that the other axes are in closed loop. Figure2.10 is concerned by the attitude control and Fig.2.11 is concerned by the position control. Zooms are presented for a better illustration of the robustness margins and performances. A scattering of the uncertainties is performed following the numerical values reported in Table2.3. The red large curve corresponds to the nominal cases. 3 -Considered parameter uncertainties of the chaser spacecraft Each color in the plot (magenta, red and blue for the X ,Y and Z-axes, respectively) corresponds to a stack of the same SISO transfer obtained with different numerical values of the plant parameters. These plots show that the obtained range of the phase margin P m , of the gain margin G m , and the bandwidth ω u are given according to

	Property	Nominal value	Unit	Uncertainty Distribution
	Mass (m c ) Inertia matrix (J ) CoM (d CoM ) Thrust ( F T ) Cartesian coordinates (x p ) Converted orbital ele-1575    1450 -20  5 -20 1800 -5 5   -5 1200 0.880 0.035 0.035 T 22 × (N -thrusters) ments, see Table 2.2	kg kg • m 2 ±20% ±10% m ±3cm N ±1% m, m/s ±10%	N (1, 0.1/3) N (1, 0.2/3) N (0, 0.03/3) N (1, 0.01) N (1, 0.1/3)
	MIB	0.068	s	n/a	n/a
	ON-time quantisation step 0.01	s	n/a	n/a

-Attitude: G m ≈ [-14.5 dB ; 14.5 dB], P m ≈ [49 o ; 58 o ], ω u ≈ 0.1 rad/s -Position: G m ≈ [-15 dB ; -10.6 dB], P m ≈ [54 o ; 68 o ], ω u ≈ 0.1 rad/s

Table 2 .

 2 .4.

	Levels	Interest
	Level 1 sensor checks	Monitoring of the outputs of all the sensors. This level covers
		most of the sensor faults such as sudden sensor death and
		lock-in-place fault types.
	Level 2 IMU/IMU	Interest is limited to the detection of failures not seen by
		level 1 (i.e., unlikely slow drifts of IMUs).
	Level 2 IMU/STR	Interest is limited to the detection of failures not seen by
		level 1.
	Level 3 thruster/IMU	Check is done during the whole rendezvous. The IMU
		hot redundancy enables to discard IMU failures in the
		thruster/IMU inconsistency, leading model-based tech-
		niques viable candidates.
	Level 3 wheel/tachometer This check covers most of wheels faults. The isolation is
		immediate since a tachometer is available on each wheel.
	Level 4 approach corridors Monitor the position/velocity of the chaser versus the ap-
		proach corridors.
	Level 4 collision risks	Detect if a collision may occur between the spacecraft.
	Level 4 mode success	Detect the divergence of the controller outputs.
	Level 5 power alarm	Protection against ground operation errors and electrical
		subsystem failures.

4 -Hierarchical fault detection levels

Failure Management and Fault Considerations

  3.2 if necessary. This type of approximation is widely used in the literature. The interested reader can refer to Isermann[START_REF] Isermann | Model-based fault-detection and diagnosis -status and applications[END_REF] and Frank et al.[START_REF] Frank | Modelling for fault detection and isolation versus modelling for control[END_REF] for a discussion of such an approximation.

Considering (2.78) together with (3.1) and (3.2), the relative position model which suits the FDI Robust FDI Scheme Design scheme design purposes can be written in the following form ẋp (t) = A p x p (t) + B p u p (t) + E pf f p (t) y p (t) = C p x p (t)

(3.3) 

  σ nx are the singular values of Ēd , and Ū s , V s are orthogonal matrices.

	Matrix	Ē * d which solves the constrained optimization problem
	(3.53) is given by [181]	

Table 3 .

 3 1 -Evaluated FDI performance indices based on 4x1600 Monte Carlo runs

	Criterion/	Position model-

based FDI Attitude model-based FDI Scenario Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

  

	mean(τ d )	1.6	16.3	3.6	18.8	1.4	11.7	2.9	12.2
	std(τ d )	0.017	3.803	0.167	6.594	0.048	2.895	0.076	3.064
	mean(τ i )	3.4	17.9	5.5	20.4	3.6	15.0	5.5	15.6
	std(τ i )	0.207	3.799	0.399	6.592	0.237	3.231	0.459	3.456
	p f /p nd /p i	0/0/1	0/0/1	0/0/1	0/0/1	0/0/1	0/0/1	0/0/1	0/0/1

  The most common approximation Chapter 4. Active FTC Approach for a New Thruster Configuration is the Padé approximation e -τ (t)s . = 1k 1 s + k 2 s 2 + . . . ± k p s p 1 + k 1 s + k 2 s 2 + . . . + k p s p (4.8)

  ∆J xx , ∆J yy , ∆J zz , ∆J xy I 2 , ∆J xz I 2 , ∆J yz I 2 ) (4.30)with |∆J ij | ≤ δij , ∀i, j ∈ {x, y, z}, where 0 ≤ δij ≤ 1 is the upper bound of the considered uncertainty level in the given axis. If δij < 1 for any i, j couple, it is possible to reduce conservatism by introducing the following scaling

  Assumption 4.1. It is assumed that Φ(x) ∈ R n is Lipschitz in a region S containing the origin, i.e.,

Φ(x 1 ) -Φ(x 2 ) ≤ γ x 1x 2 , ∀(x 1 , x 2 ) ∈ S

where γ > 0 stands for the Lipschitz constant. If S = R n , Φ is globally Lipschitz. Otherwise, it is locally Lipschitz. Assumption 4.2. It is assumed that E is of full column rank and that the system satisfies rank(CE) = rank(E). Remark 4.4. Assumption 4.1 is reasonable in our case, since Φ(x) = Φ(ω) in (4.46) is continuously differentiable on R 3 and thus, it is locally Lipschitz, see

[7]

. This means that the angular velocity shall be bounded in magnitude which is a reasonable assumption from a practical point of view, too. Assumption 4.2 can be done without loss of generality, see Remark 3.7 if necessary.

Under assumptions 4.1-4.2, the goal turns out to be the design of the following NUIO ż(t) = N z(t) + Gũ(t) + Ly(t) + M Φ (x(t)) (4.51)

x(t) = z(t) + Hy(t)

(4.52) 

  Assumming that the actual Lipschitz constant of the system is γ and the maximum admissible Lipschitz constant achieved by Theorem 4.1 is γ * . Then, the observer designed based on Theorem 4.1, can tolerate any additive Lipschitz nonlinear uncertainty ∆Φ(x) with Lipschitz constant less than or equal to γ *γ.

	Proof. Based on Schwartz inequality, it follows

4.85) Proposition 4.3 (Abbaszadeh and Marquez [1]).

  4.2), i.e., that thrusters belonging to the same group S T k , ∀k ∈ S G \{5} generate torques in the same direction, i.e., b T k = b T h , ∀k, h ∈ S T j , where j ∈ S G \{5}. This property allows to consider the following definition for ρ when j ∈ S G \{5}, i.e.,

	Chapter 4. Active FTC Approach for a New Thruster Configuration	
	follows 3	
	T bias (t) = -B T Ψ(t)ũ(t), Ψ(t) = 0	(4.98)
	ρ (1:4) (t) = sign b T k • T bias (t) , for any k ∈ S T j , j = 5	(4.97)

where T bias ∈ R 3 is the estimate of the real torque bias T bias and sign(•) stands for the signum function. This bias is due to the faulty thruster, see

(2.74)

, and should be understood as

  Implementation and Tuning of the overall FDI Scheme thruster group isolation j = σ g was successful).Since the residual r in (4.96) is matched with the force directions within the already isolated group S T j , in which the force directions are either exactly opposite (j ∈ S G \{5}, see (4.2)) or orthogonal (j = 5, see (4.3)), this makes the isolation logic σ(t) : R + × S G → S all very reliable.

	) ,	otherwise
	Now, the logic (4.96) is able to isolate any of the four considered fault scenarios (see Section 2.3),

i.e., thruster fault of both types, within any truster group S T j , ∀j ∈ S G (supposing that the

Table 2 .

 2 3 from Chapter 2 that gives a list of the considered uncertainties. Therefore, a Monte Carlo simulation campaign is used to test and validate the performance of Chapter 4. Active FTC Approach for a New Thruster Configuration

Table 4 .

 4 Fully open Leakage Thrust loss µ(τ d )/σ(τ d ) 2.36/0.14 (s) 4.97/0.75 (s) 48.44/53.29 (s) µ(τ g )/σ(τ g ) 1.50/0.86 (s) 1.75/0.37 (s) 3.37/5.16 (s) µ(τ i )/σ(τ i ) 0.40/0.00 (s) 3.70/11.39 (s) 4.20/8.21 (s) µ(τ o )/σ(τ o ) 4.27/0.87 (s) 10.41/11.71 (s) 56.01/54.57 (s) 2 -FDI performances based on 3 × 1000 Monte Carlo runs

	p f	0	0	0.11

Titre : Diagnostique de défaut à base de modèle et accommodation de défaut pour missions spatiales Résumé :

  Les travaux de recherche traités dans cette thèse s'appuient sur l'expertise des actions menées entre l'Agence spatiale européenne (ESA), l'industrie Thales Alenia Space (TAS) et le laboratoire de l'Intégration du Matériau au Système (IMS) qui développent de nouvelles générations d'unités intégrées de guidage, navigation et pilotage (GNC) avec une fonction de détection des défauts et de tolérance des défauts. La mission de référence retenue dans cette thèse est la mission de retour d'échantillons martiens (Mars Sample Return, MSR) de l'ESA. Ce travail se concentre sur la séquence terminale du rendez-vous de la mission MSR qui correspond aux dernières centaines de mètres jusqu'à la capture. Le véhicule chasseur est l'orbiteur MSR (chasseur), alors que la cible passive est un conteneur sphérique. L'objectif au niveau de contrôle est de réaliser la capture avec une précision inférieure à quelques centimètres. Les travaux de recherche traités dans cette thèse s'intéressent au développement des approches sur base de modèle de détection et d'isolation des défauts (FDI) et de commande tolérante aux défaillances (FTC), qui pourraient augmenter d'une manière significative l'autonomie opérationnelle et fonctionnelle du chasseur pendant le rendez-vous et, d'une manière plus générale, d'un vaisseau spatial impliqué dans des missions située dans l'espace lointain. Dès lors que la redondance existe dans les capteurs et que les roues de réaction ne sont pas utilisées durant la phase de rendez-vous, le travail présenté dans cette thèse est orienté seulement vers les systèmes de propulsion par tuyères. Les défaillances examinées ont été définies conformément aux exigences de l'ESA et de TAS et suivant leurs expériences. Les approches FDI/FTC présentées s'appuient sur la redondance de capteurs, la redirection de contrôle et sur les méthodes de réallocation de contrôle, ainsi que le FDI hiérarchique, y compris les approches à base de signaux au niveau de capteurs, les approches à base de modèle de détection/localisation de défauts de propulseur et la surveillance de sécurité de trajectoire. Utilisant un simulateur industriel de haute-fidélité, les indices de performance et de fiabilité FDI, qui ont été soigneusement choisis accompagnés des campagnes de simulation de robustesse/sensibilité Monte Carlo, démontrent la viabilité des approches proposées. Mots clés : Diagnostic des défauts; commande tolérante aux défauts rendez-vous spatial.
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Title: Model-

based Fault Diagnosis and Fault Accommodation for Space Missions Abstract:

  The work addressed in this thesis draws expertise from actions undertaken between the European Space Agency (ESA), the industry Thales Alenia Space (TAS) and the IMS laboratory (laboratoire de l'Intégration du Matériau au Système) which develop new generations of integrated Guidance, Navigation and Control (GNC) units with fault detection and tolerance capabilities. The reference mission is the ESA's Mars Sample Return (MSR) mission. The presented work focuses on the terminal rendezvous sequence of the MSR mission which corresponds to the last few hundred meters until the capture. The chaser vehicle is the MSR Orbiter, while the passive target is a diameter spherical container. The objective at control level is a capture achievement with an accuracy better than a few centimeter. The research work addressed in this thesis is concerned by the development of model-based Fault Detection and Isolation (FDI) and Fault Tolerant Control (FTC) approaches that could significantly increase the operational and functional autonomy of the chaser during rendezvous, and more generally, of spacecraft involved in deep space missions. Since redundancy exist in the sensors and since the reaction wheels are not used during the rendezvous phase, the work presented in this thesis focuses only on the thruster-based propulsion system. The investigated faults have been defined in accordance with ESA and TAS requirements and following their experiences. The presented FDI/FTC approaches relies on hardware redundancy in sensors, control redirection and control re-allocation methods and a hierarchical FDI including signal-based approaches at sensor level, model-based approaches for thruster fault detection/isolation and trajectory safety monitoring. Carefully selected performance and reliability indices together with Monte Carlo simulation campaigns, using a high-fidelity industrial simulator, demonstrate the viability of the proposed approaches.

Keywords: Fault diagnosis; fault-tolerant control; space rendezvous. Laboratoire de l'Intégration du Matériau au Système (IMS) -UMR CNRS 5218 -Département LAPS Université de Bordeaux -351 cours de la Libération -33405 TALENCE cedex -FRANCE http://www.ims-bordeaux.fr

Les résultats obtenus à partir de la campagne de simulation MC, effectués à l'aide d'un simulateur industrielle haute-fidélité du TAS, mettent en évidence la pertinence des approches FDI/FTC proposées. L'évaluation des critères orientés de mission démontre clairement que la stratégie à tolérance de défaut proposée est en mesure de faire face à une grande catégorie de défauts de tuyères malgré la présence de différents types d'incertitudes et de garantir le succès de la capture. En d'autres termes, les schémas FDI/FTC proposées sont capables de détecter, d'isoler et de s'adapter à tous les types de défaut de tuyères considérés qui pourraient mettre en danger la réussite de la mission. Il est également montré que les petits défauts de propulseurs, comme les petites pertes de poussée (qui sont très difficiles, voire impossibles à détecter et isoler), ont des effets négligeables sur le maintien de la performance GNC (par exemple en termes de précision de pointage) et/ou sur les exigences finales de capture MSR.

This is the assumption made in[START_REF] Tan | Sliding mode observers for robust detection and reconstruction of actuator and sensor faults[END_REF] and can be understood as a requirement that (A, E fa , C) is minimum phase and of relative degree one.

A -LC|Ri stands for the family of all (A -LC)-invariant subspaces bounded to the subspace Ri.

Note that, in the control literature, the controllability subspace is conventionally denoted by R. The different notation is due to the possible mismatch with the subspace of the faults.

A Markov process is a stochastic process with the Markov property, where the distribution of future states depends only on the present state and not on how it arrived in the present state. It is distinguished from a Markov chain in that the states of a Markov process may be continuous as well as discrete.

A number of different types of particle filters exists in the literature, for a more details see[START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian bayesian tracking[END_REF] 

To present the main statistical tests, a scalar residual r is considered.

There exists an other community called DX for Diagnosis, that addresses the problem of fault isolation. Their approaches use AI-based tools to perform the diagnosis task, see e.g.,[START_REF] Biswas | Diagnosis of complex systems: Bridging the methodologies of the fdi and dx communities[END_REF][START_REF] Daigle | Multiple fault diagnosis in complex physical systems[END_REF][START_REF] Kleer | Diagnosing multiple faults[END_REF][START_REF] Nyberg | A generalization of the gde minimal hitting-set algorithm to handle behavioral modes[END_REF][START_REF] Nyberg | A fault isolation algorithm for the case of multiple faults and multiple fault types[END_REF][START_REF] Reiter | A theory of diagnosis from first principles[END_REF] 

For instance, a SIMPLEX-based method is implemented in the ATV developed by EADS Astrium Space Transportation, to carry out a prescribed set of thruster faults.

The "TMF" is a more general term linked with control allocation and used within an industrial context.

Due to confidential reasons, the numerical values with regards to the spacecraft geometry and characteristics are omitted.

It should be noted that a fault in one of the thrusters may generate an uncommented force/torque variation in all the 3 axes of the spacecraft.

This is a reasonable assumption from practical point of view since the chaser spacecraft works in an attitude target pointing mode and the distance between the two spacecrafts is very small (≤ 20 m), thus the pointing guidance is a straight line like.

For instance, if a single thruster suffers from a partial (small) loss of efficiency, the spacecraft might still perform close to the nominal case, therefore "may become underactuated".

Note that there exist frequency (norm) based approaches to tackle this problem in an approximative (decoupling) manner, see Section 1.3.4 of Chapter

13 The counterpart of this assumption is that the sampling interval T is chosen adequately so that (3.12) holds.

However, this claim is valid only if the same initial design conditions are considered as stated in this chapter, i.e., when only a single 3DOF model (either position or attitude) is considered for fault diagnosis instead of a full

One can attach a certain false alarm probability (P f ) to the selected threshold J th from the Cumulative Distribution Function (CDF) of the GLR test statistic plotted in Fig.3.7. For example in[START_REF] Hansen | Diagnosis of airspeed measurement faults for unmanned aerial vehicles[END_REF], based on real flight data of an Unmanned Aerial Vehicle (UAV), the CDF of the GLR test statistics was found to be best fitted using a Weibull distribution. Using the fitted distribution, the detector threshold linked with a certain P f was determined by looking at the right tail distribution to find the probability of exceeding a chosen threshold.

The third faulty situation corresponds to thruster No.2 suffering from a leakage with a final magnitude of 19.2%.

It should be noted, that Fig.4.7 illustrates only the thruster configuration physical capabilities and not the real control authority which is obviously dependent on the selected control law (controller and/or TMF).

This, however, poses no limits on the applicability of the proposed fault detector approach to position model only. In fact, attitude model can be equally used. The usage of the position model will be further justified in Section 4.4.

In other words, this bias can be also understood as a difference (bias) between the real torques applied on the spacecraft and the torques as seen from the controller point of view.

Note, that what is here called as "Control Allocation (CA) algorithm" is often referred as "Thruster Management Function (TMF)" in the industrial community.

Synthesized by the

6DOF controller and followed by the thruster modulator unit, see Section 2.2.3.

A scalar discrete time residual signal r(k) is considered.

L A T E X 2εis an extension of L A T E X. L A T E Xis a document preparation system for high-quality typesetting developed by Leslie Lamport in 1985 as a special version of Donald Knuth's T E Xprogram.
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Active Fault-tolerant Control Approaches Stoustrup [START_REF] Niemann | Gain scheduling using the youla parametrization[END_REF]. It is to be discussed since it represents some attractive advantages for FTC. 

Multiple-Model Approach

The multiple-model (MM) approach belongs to the so called projection-based techniques [START_REF] Maybeck | Multiple model adaptive controller for the stol f-15 with sensor/actuator failures[END_REF][START_REF] Narendra | Adaptive control using multiple models[END_REF][START_REF] Theilliol | A multiple model based approach for fault tolerant control in non linear systems[END_REF]. This approach is used for systems, where the nominal (robust) controller cannot provide all the goals (stability and performance) in the presence of faults. The main idea is based on the existence of a suitable set of pre-computed controllers for each fault mode, as shown in the Fig. 1.18. In this sense, this approach can be classified into the class of pre-computed FTC solutions. In the MM approach, a bank of parallel models is used to describe the system under normal conditions and under a finite set of failure modes, such as actuator or component faults. A reasonable controller is designed for each of these models. A suitable chosen switching logic is holds. To achieve this, the left EA approach introduced in Section 3.2.5 is used to compute L and Q. The only difference using this (EA) approach for the continuous case is that the assigned eigenvalue set Λ( Â0 -L Ĉ) = {λ i , i = 1, . . . , n z } must belong to the stable left complex half plain, i.e., λ i ≤ 0, ∀i.

By this, the resulting residual r can be designed such that it is (approximately) decoupled from the unwanted effects of the time-varying delay τ (t). Furthermore, if the unknown input d is completely decoupled from r, i.e., if (4.21) holds, then the resulting residual r is robust against the uncertain variations δ(t) ∈ (-τ 0 , τ 0 ) of the delay τ (t), see (4.13).

Remark 4.2. In the author's work [START_REF] Fonod | Robust fault detection for systems with electronic induced delays: Application to the rendezvous phase of the MSR mission[END_REF], a robustness/sensitivity analysis campaign has been performed in order to compare the efficiency of two fault detectors, one based on the polytopic approach (Cayley-Hamilton) introduced in Section 3.2 and the other based on the Padé approach introduced in this section. The simulation results revealed that the Padé method offers greater sensitivity/robustness level towards all considered fault scenarios than the polytopic method.

Implementation of the Residual Generator

A reasonable value of the nominal time delay τ 0 has been determined to be exactly one sampling interval, i.e., T = 0.1 s. Therefore, the distribution matrix Êd is calculated with τ 0 = 0.1 as in (4.18). This practically means that if the unknown input d is completely decoupled from r, then the resulting residual r is robust against the uncertain time varying delay τ (t) ∈ (0, 0.2). Following the discussion in Section 3.2.5, the residual weighting matrix was determined to be Q = I and the dimension of the residual n r = 3, i.e., r = [r 1 , r 2 , r 3 ] T . All the assigned eigenvalues were chosen to be close to -0.22. Finally, the residual generator (4.20) is converted to discrete time (t = kT ) using a Tustin approximation [START_REF] Franklin | Digital Control of Dynamic Systems[END_REF] to be implemented within the nonlinear simulator of the MSR mission.

Residual Evaluation -Fault Detection

The residual evaluation function considered here is a slightly modified version of the scalar valued GLR test for the variance, see Appendix B. The proposed decision test J th is defined by

where

is the weighted GLR algorithm with w i ≥ 0, i = 1, . . . , n r being the normalized weight factors used to prioritize certain elements (axes) of the residual. S N d (r i (k)) is the estimated log likelihood of the GLR algorithm applied to the i th element of the residual signal r i (k) and evaluated on the sliding window N d , i.e., using k -N d + 1, . . . , k samples. The fixed threshold J th is an 

Control Re-allocation

During the rendezvous, the chaser control is done on position and attitude and makes use of thrusters only. Thus, a 6DOF control allocation algorithm has to be considered. The on-board CA algorithm shall determine in real-time, i.e., at each control cycle (10 Hz frequency), the proper thruster selection and their firing durations to achieve the controller-commanded torque and force impulses. Hence, the CA algorithm has to perform the following tasks 4 :

• select thrusters capable of performing the controller demand with minimization of the propellant consumption (or another criterion) as far as possible, and

• compute the thruster firing durations while taking into account their firing constraints.

In order to make use of the remaining healthy thrusters in case of an actuator fault, it is required to reconfigure the control allocation scheme (re-allocation) by including the constraints due to the faults. Thus, as soon as the i th thruster is confirmed to be faulty through σ(t), see (4.96) and (4.102), the faulty thruster is switched off using the dedicated TLV. The desired forces F d and torques T d are then re-allocated among the remaining N-1 healthy thrusters. This re-allocation can be achieved very easily by changing the constraints in the existing CA algorithm, i.e., if the i th thruster is faulty, then 0 ≤ ũi ≤ 0 (4.104)

can counteract the effect of the fault in a simple manner. Additionally, this makes the fault accommodation without any change in the nominal controller or any additional valve position sensor.

Existing CA algorithms which have potential to be used for reconfigurable control allocation (reallocation) include pseudo-inverse, modified pseudo-inverse, direct allocation, constrained optimization methods based on linear programming or quadratic programming, fixed-point method or their combinations [START_REF] Zhang | Bibliographical review on reconfigurable fault-tolerant control systems[END_REF]. In the next section, an existing CA approach has been modified and improved in order to cope with the considered FTC problematic.

Thruster Fault Accommodation

Algorithm 4 NIPC control allocation with fault tolerance principle iterations. Thus, stability proof cannot be provided as stability regards behaviour for iter → +∞.

The form in which the NIPC algorithm has been reported here is slightly different with respect to the one in the original reference [START_REF] Jin | An optimal thruster configuration design and evaluation for quick step[END_REF]. Especially because of:

• inclusion of the fault tolerance principle described earlier,

• inclusion of the two stopping rule parameters (i.e., ε and N max iter ), and • taking into account thruster nonlinearities such as MIB.

In the next section, the effectiveness of the NIPC algorithm is evaluated and compared to other approaches. , where ũ are generated in different ways depending on the considered CA algorithm. These results consider only 11 thrusters for CA purposes. To be more precise, thruster No.1 is considered to be unavailable, thus not taken into account in the CA formulations (ũ max 1 = 0). This, in terms of FTC, corresponds to a situation when the FDI unit correctly identified the faulty thruster. The thruster was then immediately closed and the CA was modified accordingly, i.e., a perfect accommodation was achieved.

Comparison of the NIPC Algorithm with the Existing Methods

A sequence of desired force/moment vectors, v d (k), k = 0, 1, . . ., has been used as the virtual input for these algorithms. This sequence corresponds to a real flight scenario of the rendezvous phase. The desired (virtual) control inputs (v d ), synthesized by the 6DOF controller, have been simulated and stored in closed loop, while the results presented in Fig. 4.7 have been performed As it can be seen from Fig. 4.7, all the CA methods deliver only approximate solutions of varying accuracy. This, however, to certain amount is not an issue since the final precision highly depends on the considered uncertainties. For instance, the thruster configuration matrix (necessary for all CA algorithms) is not precisely known on-board, therefore even if the CA produces an exact solution, the real torques/forces applied to the spacecraft will differ from the ones supplied to the CA algorithm.

The computational requirements of a particular CA algorithm are a concern if it has to be used on-board. Table 4.1 compares the computational burden of the 8 CA algorithms used to produce Fig. 4.7. The computational load of each algorithm is expressed as a percentage ratio with respect to the SLS algorithm considered to be the reference time (since the SLS algorithm is one of the most computational expensive algorithms).

CA algorithm

NIPC SLS MLS DIR WLS IP CGI FXP Computational burden (%) 1. [START_REF] Doucet | On sequential simulation-based methods for Bayesian filtering[END_REF] The tic and toc commands were used to compute the timing properties which were evaluated over the whole length of the simulation. The selected parameters for the NIPC algorithm correspond to: W v = I, N max iter = 350, λ = 1.89, ε = 1e -7 and p = 2, i.e., the 2 nd norm was chosen leading to a minimum power allocation (see Section 4.6.2 for details about norm selection). The parameters for the other 7 algorithms have been selected to be the same as those of the NIPC algorithm, whenever applicable.

From Fig. 4.7 and Table 4.1 it turns out that the NIPC approach constitutes a good tradeoff between accuracy and computational burden. This is mostly because it makes use of the pseudoinverse to make the algorithm conceptually very simple. Another alternative is the WLS algorithm showing very low computational burden and high accuracy.

Remark 4.8. Note that the MIB constraint was not used in the open loop simulations. Thus, it is expected that the NIPC algorithm might perform even better in real flight scenario (closed loop simulation) when compared with these 7 algorithms. In the next section, the NIPC algorithm is further evaluated/justified in a closed loop manner. However a comparison with the other algorithms is omitted due to very heavy computational complexity of some algorithms, see Table 4.1.

Simulation Results

The overall FTC strategy described in the previous sections and illustrated in Fig. 4.5 and Fig. 4.6 has been implemented within the MSR simulator. The NIPC algorithm has been selected and implemented as an integral part of the TMF. All the simulation examples in this section are carried out under realistic conditions (see discussion in Chapter 2) and during the last 20m of the rendezvous phase. 

Illustrative Examples

List of Main Contributions

In the following, a list of contributions in point fashion is presented. At the end of each list entry, a reference number is given which corresponds to the reference number of the author's list of publication given earlier (see page xxiii).

The contributions of this thesis are mainly concerned by:

• the development of two distinct approaches for the FDI of any kind of thruster faults ("open-type" and "closed-type") [1], [2],

• the comparison study of the position model-based FDI scheme with the pure attitude model-based scheme [2],

• the analysis of the impact of small thruster faults on the GNC performance and capture accuracy [4],

• the development of a method for estimating the complex distribution matrix E d (used to decouple the effect of uncertain input delays from the residual signal) using:

-LPV transformation based on the first-order Padé approximation [6],

polytopic transformation based on the CH (Cayley-Hamilton) theorem [5], [6], [7],

combination of two polytopic transformations, one based on the CH theorem and the other based on the h-th order Taylor series expansion [2].

• the derivation of the uncertain inertia matrix inverse decomposed form

• the development of a NUIO with constrained observer dynamics, bounded L 2 gain from ∆B ũ to the estimation error e and maximization of the admissible Lipschitz constant γ * [1], [3], [4],

• the improvement of the NIPC control allocation algorithm for FTC purposes [1].

Appendix A

Mathematical Details

The purpose of this appendix is to introduce some mathematical results that are used throughout this thesis.

A.1 Lemmas

A.1.1 Neumann Series

Lemma A1 (Neumann Series, [START_REF] Chatelin | Spectral Approximation of Linear Operators[END_REF]). Consider a square matrix A such that A < 1. Let λ be any eigenvalue of A. It is clear that (I -A) is invertible if λ = 1, ∀λ ∈ Λ(A). The condition A < 1 implies that |λ| < 1, ∀λ ∈ Λ(A). Thus, (I -A) is invertible and the Neumann series

A.1.2 Millers's Lemma on the Inverse of the Sum of Matrices

Lemma A2 (Inverse of the Sum of Matrices, Miller [START_REF] Miller | On the inverse of the sum of matrices[END_REF]). Let A and (A + B) be nonsingular matrices and let B have positive rank r. Let B = E 1 + E 2 + . . . + E r where each E k has rank one and

where tr(•) stands for the sum of the elements on the main diagonal.

Proof. The proof can be found in Miller [START_REF] Miller | On the inverse of the sum of matrices[END_REF].

A.1.3 Schur's Complement

Lemma A3 (Schur's Complement). Consider a matrix X ∈ R n×n partitioned as

where Q ∈ R p×p and Q ∈ R q×q , with n = p + q. If R is nonsingular, the Schur complement of X with respect to R is defined as

Proof. The proof of Schur's complement lemma can be found in [START_REF] Golub | Matrix computations[END_REF].

A.1.4 Matrix Inequality Lemma

Lemma A4 (Zhou and Khargonekar [START_REF] Zhou | Robust stabilization of linear systems with norm-bounded time-varying uncertainty[END_REF]). Let D, F , and Σ(t) be matrices with appropriate dimensions. If Σ T (t)Σ(t) ≤ I, ∀t, then for any scalar > 0 the following inequality holds:

It can be verified that the following yields

then expanding the above yields

This concludes the proof.

where A H is the conjugate transpose of A.

A.2.3 Signal Norms

Definition A1 (L p Space). The space L p consists of all Lebensque measurable functions u(t) :

R + → R r having a finite L p norm u lp .

Let u(t) : R + → R r be a Lebensque measurable function, then the L p -norm u lp of the signal u(t) is defined as

For p = {1, 2, ∞} the following signal norms are obtained

A.2.4 Singular Values

The singular values of A are given by the positive square roots of the eigenvalues of A T A, i.e.,

ordered such that σ 1 ≥ ... ≥ σ l > σ l+1 = ... = σ r = 0, where l = rank(A).

A.3 Pseudoinverses

Let B ∈ R l×r , where r ≥ l and l = rank(B). Consider solving is the pseudoinverse, or the Moore-Penrose inverse of B.

Proof. Define the Lagrangian of this problem as

where λ denotes the Lagrange multipliers. By differentiating the Lagrangian L with respect to u ones get

Since rank(B) = l, matrix BB T is non-singular and the optimal solution for the Lagrange multiplier is

Finally, the optimal solution of the given optimization problem is Again, using Lemma A5 we get

A.3.2 The Least Square Problem

A.4 Cosine Direction Matrix for Attitude Modelling

A.4.1 Definitions

The basic three-axis attitude transformation is based on the direction cosine matrix. Any attitude transformation in space is actually converted to this essential form [START_REF] Sidi | Spacecraft dynamics and control: a practical engineering approach[END_REF]. In 

In this matrix, u 1 , u 2 , u 3 are the components of the unit vector u along the three axes 1,2,3 of the reference orthogonal system: u = [u 1 u 2 u 3 ] T . In a similar way, v and w have components v 1 , v 2 , v 3 and w 1 , w 2 , w 3 along the same reference axes:

The direction cosine matrix A, also called the attitude matrix has the important property of mapping vectors from the reference frame to the body frame. Suppose that a vector a has components a 1 , a 2 , a 3 in the reference frame: a = [a 1 a 2 a 3 ] T . The following matrix vector Quaternions multiplication expresses the components of the vector a in the body frame

where a b is the vector a mapped into the body frame. Since u is a unit vector, it follows that the scalar product u. a is the component a u of the vector a along the unit vector u. By the same reasoning, the components of the vector a on the remaining unit vectors of the body triad are a v and a w .

A.4.2 Basic Properties

Some basic properties of the matrix A may be stated as follows:

-Each of its elements is the cosine of the angle between a body unit vector and a reference axis; its name is derived from this property.

-Each of the vectors u, v, w are vectors with unit length, hence

-The unit vectors u, v, w are orthogonal to each other, hence

-These relationships lead to the useful identity AA T = I and thus A T = A -1 . Of course, transposition of a matrix is a much simpler process than inversion of the same matrix.

-It is well known that det (A) = u • (v × w). Since u, v, w form a cubic orthogonal triad, it follows that det (A) = 1. Thus, a = A T a b -Finally, A is a proper real orthogonal matrix. Such a matrix transformation preserves the lengths of vectors and also the angles between them, and thus represents a rotation. The product of two proper real orthogonal matrices A = A 2 A 1 is the result of two successive rotations, first by A 1 and then by A 2 . This property is useful in modelling spacecraft attitude since a chain of successive rotations is common.

A.5 Quaternions

A.5.1 Definition

The quaternion basic definition is a consequence of the properties of the direction cosine matrix A. It is shown by linear algebra that a proper real orthogonal 3 × 3 matrix has at least one

Hypothesis Testing

The task of the statistical hypothesis testing of the residual is to determine the presence and the time occurrence of a fault in the system. The fault indicating residual signal can be generated by different ways, see Section 1.3. The decision is based on accepting or rejecting one of the following two possible hypotheses:

• H 0 : normal operation (the system is fault-free),

• H 1 : abnormal operation (the system is faulty).

One can ask, how to choose between these two hypotheses with a given risk. Let p(r|H 0 ) and p(r|H 1 ) be the conditional PDF (Probability Density Function) associated with the residual r under the condition of H 0 and H 1 , respectively. Consider a fixed decision threshold chosen based on a priori knowledge of the decision problem, then the decision process can result in four possible scenarios, see Table B.1.

-Decision situations in a two-hypothesis test

A hypothesis test is then a rule that, for a given measurement, makes a decision as to which hypothesis best "explains" the data. 

B.1 Wald's Sequential Probability Ratio Test

A Sequential Probability Ratio Test (SPRT), also known as Wald's sequential test, is a diagnostic algorithm generally used when the residual of the system follows a Gaussian distribution. Nonsequential diagnostic tests are dependent on the number of observed samples being tested. In practice, a moving window is used on the residual. For Wald's sequential test, the width of the sample size is not fixed a priori, but depends upon the data that have been already observed. A decision is made as soon as there are enough observations in the actual step so that error probabilities are inferior to set values. These values are the non-detection P nd and false alarm P f probabilities. The sequential decision-making theory was developed by Abraham Wald in his famous book [START_REF] Wald | Sequential Analysis[END_REF] as a statistical tool for sequential hypothesis testing. A good survey on hypothesis testing can be found in [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF].

B.1.1 Decision Test

Assume that r(k) is a random variable, and S 1 and S 2 are two decision thresholds (S 1 < S 2 ) such that: 1

then no decision is adopted;

Wald's sequential test relies on the connection of the two decision thresholds S 1 and S 2 with the probability of non-detection P nd and false alarm P f , defined by:

The detection probability, denoted as P d , is defined by:

B.1.2 Calculation of the Decision Thresholds

Assume that the probability density functions associated with H 0 and H 1 have been determined and are noted as p(r(k)|H 0 ) and p(r(k)|H 1 ), where r(k) is the residual at the time instant k. Then, the probability P f , P nd and P d are mathematically given by: 

B.1.3 Wald's Test for the Mean Value

Let r be a Gaussian random variable regardless of the operation mode of the system (faulty or fault-free). The idea of this test is to find out whether the statistical mean of this signal has been changed.

Let be assumed that under hypothesis H 0 , r has a mean value µ 0 and a variance σ 2 , and under the hypothesis H 1 , r has a mean value µ 1 and variance σ 2 , i.e., E{r} = µ 0 under H 0 (B.15) [START_REF] Blanke | Fault-tolerant control systems[END_REF])

The probability density function are then expressed as:

The expression of the likelihood ratio given by (B.10) for the mean value becomes (the index "m" indicates the mean value):

The graphical interpretation of the sequential Wald's decision test for the variance is depicted in Figure B.3.

Remark B.1. In order to avoid that the cumulative sum in the above mentioned methods will tend to infinity, one has to reset the cumulative sum and the thresholds as soon as a decision is taken, i.e., when H 0 or H 1 is accepted.

B.2 Generalized Likelihood Ration Test

One of the main drawbacks of the Wald's decision test is that some knowledge is required about the residual distribution in faulty situation. In practice, once the residual generation problem is solved and the distribution of the fault-free residual is known, a Generalized Likelihood Ration (GLR) test statistic can be formed without a priori knowledge about the faulty residual distribution. Similarly as the SPRT test, the GLR test is built on the Neyman-Pearson's lemma [START_REF] Neyman | On the problem of the most efficient tests of statistical hypotheses[END_REF].

B.2.1 Decision Test

Let's consider the two hypotheses H 0 and H 1 , and assume that r(k) is a random variable, then the GLR decision test can be expressed as:

• Situation No.1: if r(k) ∼ N (µ 0 , σ 0 ), then H 0 is accepted;

where µ 0 and σ 0 are the (known) mean and standard deviation of r(k) in fault-free situation, respectively and µ 1 and σ 1 are assumed to be unknown.

By the same reasoning as in the case of the Wald's test, the likelihood ratio λ(k) between hypotheses H 0 and H 1 , can be computed as in (B.4).

B.2.1.1 GLR Test for the Mean Value

This test deals with a change detection in the mean of the residual signal r(k). Assume that (B.15) -(B.17) hold, i.e., the variance of the residual is assumed to be the same in both situations σ 2 = σ 2 0 = σ 2 1 , then the natural logarithm of the likelihood ratio (log LR) λ(k) is described by [START_REF] Ding | Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[END_REF] ln 

Generalized Likelihood Ration Test

In case of N samples of r, r(k), k = 1, . . . , N , are available, the log LR is defined by [START_REF] Ding | Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[END_REF] S

In practice, µ 1 is unknown. Thus, µ 1 is replaced by its maximum likelihood estimate. The maximum likelihood estimate μ1 of µ 1 is an estimate achieved under the cost function that the LR is maximized, i.e., max

where r is the mean value of the residual r, i.e., r = 1 N N i=1 r(i). With (B.46) the LR is maximised [START_REF] Ding | Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[END_REF]. It can be seen that the maximum likelihood estimate of µ 1 is in fact the estimate of the mean value r. Substituting μ1 for µ 1 in (B.44) gives the GLR algorithm for the mean value

B.2.1.2 GLR Test for the Variance

This test deals with a change detection in the variance of the residual signal r. To proceed, assume that (B.30) -(B.32) hold, i.e., the mean of the residual is assumed to be the same for both situations µ = µ 0 = µ 1 , and the log LR for the first N samples is given by [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF][START_REF] Ding | Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[END_REF] S

where p(r(i)|H 1 ) and p(r(i)|H 0 ) are given by (B.33) and (B.34), respectively. Since σ 2 1 is unknown, its maximum estimate σ1 is considered, i.e., max

Substituting (B.49) into (B.48) gives the GLR algorithm for the variance 

has a standard χ 2 distribution with the degree of freedom equal to N -1. Thus, for a given significance level α, the threshold is determined by

where χ 2 α,γ is given by the standard χ 2 distribution table corresponding to the significance level α and degree of freedom γ equal to γ = N -1. This algorithm was used for the decision test in [START_REF] Fonod | Robust fault detection for systems with electronic induced delays: Application to the rendezvous phase of the MSR mission[END_REF].

B.2.2 On-line Realization

The above presented GLR algorithms can be realized on a fixed sliding window N d ∈ Z + . In this framework, (B.47) and (B.50) become

The sliding window N d is introduced to tackle on-line realization aspects. Graphs, figures and diagrams have been produced using the following tools: MATLAB from MathWorks Inc., TikZ -graphic system for T E X, Inkscape, and PowerPoint from Microsoft . External sources are referenced, where applicable.