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Nomenclature

In general, symbols are used according to the following conventions: scalars are represented by
italics like {a, b, c}; vectors by bold-italic lowercase letters like {u,x,y}; matrices by bold-italic
capital letters like {A,B,C}; and sets are denoted by calligraphic letters like {D,G,S}. For
the sake of notation simplicity, the time dependence of signals is sometimes omitted when there
are no confusions.

Symbols and Variables

a [scalar] radius of the target’s circular orbit (m)
b [3× 1] vector of sensor biases (deg/s)
B̄ [6×N ] overall thruster configuration matrix
dk [3× 1] unit vector indicating the thrust direction of the kth thruster
dpk [3× 1] position (location) vector of the kth thruster w.r.t. Fb (m)
dCoM [3× 1] position (location) vector of the center of mass w.r.t. Fb (m)
d [nd × 1] disturbance (unknown input) vector
f [nf × 1] additive fault vector
F [3× 1] force vector (N)
F d [3× 1] vector of commanded forces (N)
I, (0) [suitable] identity (zero) matrix with appropriate dimensions
J [3× 3] inertia matrix (kg·m2)
L [nx × ny] observer gain matrix
mc [scalar] mass of the chaser spacecraft (kg)
m̂loss [scalar] thrust loss size
m̂leak [scalar] maximum leakage size
mM [scalar] mass of the Mars planet (kg)
n [scalar] uniform orbital rate of the target target (N.m2.kg−1)
qt [4× 1] quaternion describing the orientation of the target w.r.t. Fi
qc [4× 1] quaternion describing the orientation of the chaser w.r.t. Fi
r [nr × 1] vector of residual signal
T [scalar] sampling interval (s)
T [3× 1] torque vector (N.m)
T d [3× 1] vector of commanded torques (N.m)
u [nu × 1] general system input vector
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Nomenclature

ũ [N × 1] vector of scaled thruster open durations
uc [3× 1] controlled system input vector
x [nx × 1] state vector
z [nz × 1] augmented state vector
y [ny × 1] output vector
κ [scalar] design parameter (L2 attenuation) for the NUIO
ε [scalar] some tolerance close to zero
ν [scalar] true anomaly (rad)
G [scalar] universal gravitational constant (N.m2.kg−2)
τ(t) [scalar] time-varying delay (s)
ξ, η, ζ [scalars] Cartesian component of the relative position (m)
ϕ, θ, ψ [scalars] roll, pitch, and yaw angle (deg)
p, q, r [scalars] roll, pitch, and yaw rate (deg·s−1)
Ψ [N ×N ] multiplicative fault-modelling matrix

Dimensions

nx length of the state vector
nu length of the input vector
ny length of the output vector
nr residual signal dimension
nmc number of Monte Carlo runs
N number of thrusters (8 or 12)

Superscripts

•T matrix or vector transpose
•̂ an estimated value
~• vector in cartesian form

Subscripts

a attitude model
p position model
f faulty case

Reference frames

Fb body, chaser’s center of mass-fixed frame
Fl local, target-fixed frame
Fi inertial, Mars-centered frame
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Nomenclature

Sets

D set defining an LMI region
Sall set of all thruster indices
STk set (group) of thrusters with similar properties
R,C set of real and complex numbers
Z+ set of non-negative integers
H set of quaternions
C compact set

Times

t general notation for a continuous time
tf fault occurrence time
td, (τd) fault detection time (delay)
ti, (τi) fault isolation time (delay)
tg, (τg) fault group isolation time (delay)
k discrete time instance tk = kT

Math Notation

A† Moore–Penrose pseudoinverse of A
diag(. . .) block diagonal matrix
Im/Ker image/kernel of a linear transformation (matrix)
dim dimension of a vector space
rank(A) rank of a matrix A
sign(x) signum function of a real number x
⊗,� Kronecker, quaternion product
[·, ·] Lie’s bracket of two elements
P > 0 (P < 0) means that P is a real symmetric and positive (negative) definite matrix
Λ(A) set of all the eigenvalues of a square matrix A
” ∗ ” element induced by symmetry in a symmetric block matrix
‖ · ‖ 2-norm of a vector or the induced matrix 2-norm
‖ · ‖F Frobenius norm of a matrix
‖ · ‖lp Lp-norm of a signal, p ∈ {1, 2,∞}
| · | absolute value of ascalar
Lp space of all Lebensque measurable functions having a finite Lp norm
{. . .} set
E{·} expectation
a · b dot (scalar) product of vectors a and b
a× b cross (vector) product of vectors a and b
δij Kronecker’s delta
U(a, b) is the uniform distribution with boundaries a and b
N (µ, σ2) normal (Gaussian) distribution with mean value µ and variance σ2
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Abbreviations

Abbreviations

AFTCS Active-Fault Tolerant Control System

AMM Autonomous Mission Management

AOCS Attitude and Orbit Control System

ATV Automated Transfer Vehicle

CA Control Allocation

CDF Cumulative Distribution Function

CGI Cascading Generalized Inverse

CNES Centre National d’Études Spatiales (National Centre for Space Studies)

CNRS Centre National de la Recherche Scientifique (French National Centre for Scientific
Research)

CPDE Chemical Propulsion Drive Electronics

CRAN Centre de Recherche en Automatique de Nancy (Research Centre for Automatic Control
of Nancy)

CSS Coarse Sun Sensors

DIR Direct Control Allocatio

DOF Degree of Freedom

DTU Danmarks Tekniske Universitet (Technical University of Denmark)

EA Eigenstructure Assignment

EKF Extended Kalman Filter

EMF Explicit Model Following

ESA European Space Agency

ESTEC European Space Research and Technology Centre

FD Fault Detector

FDD Fault Detection and Diagnosis

FDI Fault Detection and Isolation

FDIR Fault/Failure Detection, Isolation and Recovery

FEEP Field Emission Electric Propulsion

FMEA Fault Mode and Effect Analysis

FTC Fault-Tolerant Control

FXP Fixed-Point

xvi



Abbreviations

GLR Generalised Likelihood Ratio

GNC Guidance Navigation Control

GNSS Global Navigation Satellite System

HCW Hill–Clohessy–Wiltshire

IFAC International Federation of Automatic Control

ILO Iterative Learning Observer

IMM Interacting Multiple Models

IMS Intégration du Matériau au Système (Material and System Integration)

IMU Inertial Measurement Units

IP Inerior Point

ISS International Space Station

LFR Linear Fractional Representations

LIDAR Light Detection and Ranging

LISA Laser Interferometer Space Antenna

LMI Linear Matrix Inequalities

LPV Linear Parameter-Varying

LQ Linear Quadratic

LTI Linear Time-Invariant

LTV Linear Time-Varying

MAV Mars Ascent Vehicle

MC Monte Carlo

MEX Mars Express

MIB Minimum Impulse Bit

MIMO Multiple Input Multiple Output

MLS Minimal Least-Squares

MM Multiple Model

MMST Multiple Model Switching and Tuning

MPC Model Predictive Control

MSR Mars Sample Return

NAC Narrow Angle Camera
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Abbreviations

NASA National Aeronautics and Space Administration

NAV Navigation Unit

NIPC Nonlinear Iterative Pseudoinverse Controller

NPI Networking/Partnering Initiative

NUIO Nonlinear Unknown Input Observer

PDF Probability Density Function

PFTCS Passive-Fault Tolerant Control System

PIM Pseudo-Inverse Method

QCAT Quadratic Programming Control Allocation Toolbox

RFS Radio Frequency Sensor

RLV Re-entry Launched Vehicle

SACM Sun Acquisition Mode

SHM System Health Management

SHS Sample Handling System

SISO Single Input Single Output

SLS Sequential Least-Square

SMO Sliding Mode Observer

SPRT Sequential Probability Ration Test

STR Star Tracker

SZTAKI Számítástechnikai és Automatizálási Kutatóintézet (Institute for Computer Science
and Control)

TAS Thales Alenia Space

TLV Thruster Latch Valve

TMF Thruster Management Function

TMU Thruster Modulator Unit

UAV Unmanned Aerial Vehicle

UIO Unknown Input Observer

UKF Unscented Kalman Filter

WLS Weighted Least-Squares
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Terminology

The terminology used in this thesis is in accordance with the International Federation of Auto-
matic Control (IFAC) Safeprocess Technical Committee terminology in the field of fault diagnosis
and fault-tolerant control as listed below. These definitions can also be found in [18, 19, 146, 147]

Active fault-tolerant system: a fault-tolerant system where faults are explicitly detected
and accommodated. Opposite of a passive fault-tolerant system.

Analytical redundancy: use of two or more (but not necessarily identical) ways to determine
a variable, where one way uses a mathematical process model in analytical form.

Availability: likelihood that a system or equipment will operate satisfactorily and effectively
at any point of time.

Autonomy: The ability for a spacecraft and its on-board systems to perform a function without
external support.

Dependability: a form of availability that has the property of always being available when
required.

Constraint: the limitation imposed by nature (physical law) or man. It permits the variables
to take only certain values in the variable space.

Controlled system: a physical plant under consideration with sensors and actuators used for
control.

Decision logic/rule: the functionality that decides what type of corrective action(s) to execute
in case of a reported fault and which alarm(s) shall be generated.

Disturbance: an unknown (and uncontrolled) input acting on a system.

Error: a deviation between a measured or computed value (of an output variable) and the true,
specified or theoretically correct value.

Failure: a permanent interruption of a system’s ability to perform a required function under
specified operating conditions.

Fault: an unpermitted deviation of at least one characteristic property or parameter of the
system from the acceptable (usual) standard condition.
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Terminology

Fault accommodation: an adequate change of the control law in order to avoid the con-
sequences of a fault. The input-output relations (channels) between the controller and
plant are unchanged. The original control objective is achieved although performance may
degrade.

Fault detection: determination of the faults present in a system and the time of detection.

Fault detector: an algorithm that performs fault detection and eventually also fault isolation.

Fault diagnosis: determination of the kind, size, location and time of detection of a fault. It
follows fault detection. It includes the fault isolation and identification (estimation).

Fault identification: determination of the size and time-variant behavior of a fault. Follows
fault isolation. Used as a synonym for “fault estimation”.

Fault isolation: determination of the kind, location and time of detection of a fault. Follows
fault detection.

Fault modelling: determination of a mathematical model to describe a specific fault effect.

Fault recovery: the result of a successful fault accommodation or a system reconfiguration.

Fault tolerance: the ability of a controlled system to maintain control objectives, despite
the occurrence of a fault. A degradation of the control performance may be accepted.
Fault-tolerance can be obtained through fault accommodation or through system and/or
controller reconfiguration.

Hardware redundancy: use of more than one independent instrument to accomplish a given
function.

Incipient fault: a fault where the effect develops slowly (e.g., clogging of a valve). It is in
opposite to an abrupt fault.

Model: a mathematical representation of a physical system or process intended to enhance the
ability to understand, predict or control its behavior.

Monitoring: a continuous real-time task of determining the conditions of a physical system,
by recording information, recognizing and indicating anomalies in the behavior.

Passive fault-tolerant control system: a fault-tolerant system where faults are not explic-
itly detected and accommodated, but the controller is designed to be insensitive to a
certain restricted set of faults. It is in contrary to an active fault-tolerant system.

Perturbation: an input acting on a system, which results in a temporary departure from the
current state.

Qualitative model: model using static and dynamic relations among system variables and
parameters in order to describe a system’s behavior in qualitative terms such as causalities
or if-then rules.

Quantitative model: model using static and dynamic relations among system variables and
parameters in order to describe a system behavior in quantitative mathematical terms
such as differential or difference equations.

Reliability: probability of a system to perform a required function under normal conditions
and during a given period of time.
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Terminology

Residual: signal containing information about fault(s), based on a deviation between measure-
ments and model based computations.

Residual generation: is a procedure of extracting fault symptoms from the system, using the
available input/output information.

Residual evaluation: the process of comparing residuals to some predefined thresholds, di-
rections or evaluation function. This is a stage where symptoms are produced.

Residual generator: is an computational algorithm used to generate residuals.

Safety: ability of a system not to cause danger to persons or equipment or the environment.

System reconfiguration: change in input-output between the controller and the plant through
change of the controller structure and parameters. The original control objective is
achieved although performance may degrade.

Supervision: monitoring a physical system and taking appropriate actions to maintain the
operation in case of faults.

Symptom: a change of an observable quantity from normal behavior.

Threshold: limit value of a residual’s deviation from zero, so if exceeded, a fault is declared as
detected.
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Résumé en Français

Les travaux de recherche traités dans cette thèse s’appuient sur l’expertise des actions menées
entre l’Agence spatiale européenne (ESA), l’industrie française Thales Alenia Space (TAS) et le
laboratoire de l’Intégration du matériau au système (IMS) qui vise à développer de nouvelles
générations d’unités intégrées de guidage, navigation et pilotage (GNC) avec une fonction de
détection des défauts et de tolérance des défauts.

Beaucoup de futures missions spatiales requerront des opérations de proximité autonomes dans
lesquelles la détection des défauts, la localisation et les mesures de tolérance des défauts qui en
découlent, sont d’une importance cruciale. Les missions de rendez-vous et d’amarrage/capture,
comme pour la mission Mars Sample Return (MSR) et le Project for On-Board Autonomy No.3
(PROBA 3) sont aussi intrinsèquement liés aux conditions de fonctionnement et à la sécurité
des engins spatiaux. Les rendez-vous autonomes et les tolérances de défauts ont été reconnus
par l’ESA comme un élément clé des futures missions dans l’espace lointain, ce qui nécessitera
un système GNC hautement sophistiqué.

Cette thèse porte sur la conception et la validation d’un système de commande à tolérance de
défaut actif pour détecter, isoler et s’adapter à un défaut de tuyère qui affecte un vaisseau spatial
chasseur lors d’un rendez-vous avec un vaisseau spatial cible passif sur une orbite circulaire. La
mission de référence retenue dans cette thèse est la mission MSR de l’ESA. La mission MSR se
compose de deux modules (engins spatiaux) injectés directement vers Mars par des lanceurs. Le
premier module pénètre dans l’atmosphère martienne (phase d’entrée), atterrit sur la surface de
Mars et libère un véhicule astromobile sur Mars. Une fois que le véhicule astromobile termine
la procédure de collecte des échantillons martiens, ces derniers sont ensuite placés dans un
conteneur d’échantillons et chargés sur un véhicule de montée sur Mars (MAV) qui est ensuite
lancé, au moyen de fusées, pour atteindre l’orbite basse de Mars. Entretemps, le second module,
composé de l’orbiteur MSR et de la capsule de rentrée sur Terre (ERC), s’insère directement
autour de Mars, et le véhicule chasseur attrape la cible (capture des échantillons en orbite libéré
par MAV), et enfin revient sur Terre éjecter les échantillons dans l’atmosphère de la Terre avec la
capsule de rentrée sur Terre (ERC). La problématique abordée dans cette thèse se concentre sur
la séquence terminale du rendez-vous de la mission MSR qui correspond aux dernières centaines
de mètres jusqu’à la capture.

Le véhicule chasseur est l’orbiteur MSR (chasseur), alors que la cible passive est un conteneur
sphérique. Pendant le rendez-vous terminal, le contrôle de l’attitude et la position du chasseur
est continue, et rectifié par les tuyères. L’attitude est contrôlée afin de maintenir le conteneur
d’échantillon (cible) dans le champ de vue du capteur LIDAR (Light Detection and Ranging).
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La position est contrôlée afin de se rapprocher de l’objectif le long de son axe de vitesse. Ensuite,
juste avant la capture, le guidage est modifié afin d’aligner le mécanisme de capture avec la cible.
Au niveau du capteur, le vaisseau spatial chasseur utilise un IMU (Inertial Measurement Units) et
un viseur d’étoiles (DOS) pour le contrôle d’attitude et d’un LIDAR pour le contrôle de position
et de capture. L’ensemble des capteurs et des vérins pendant le rendez-vous terminal est minimisé
pour réduire le risque de défaillance et pour réduire la masse et la consommation d’énergie.
Les conditions de capture sont commandées par le mécanisme de capture. Le mécanisme de
capture est un panier avec une ouverture cylindrique qui fait partie du système de manipulation
d’échantillons (SHS). Il est orienté selon l’axe des x de l’orbiteur et situé avec un décalage
latéral sur la face +x. L’objectif au niveau de contrôle est de réaliser la capture avec une
précision inférieure à quelques centimètres.

La phase terminale du rendez-vous est très critique, car toute défaillance pourrait éventuelle-
ment conduire à une collision, et à un échec de la mission. Il est évident, que si, par exemple,
une défaillance ouvrant entièrement une tuyère se produit (une tuyère coincée en position en-
tièrement ouverte), elle pourrait conduire à une augmentation drastique de la consommation de
gaz du propulseur qui est déjà très limitée par le voyage vers Mars. En outre, des conséquences
dramatiques peuvent survenir, par exemple le système classique GNC peut entraîner une perfor-
mance peu satisfaisante et/ou une instabilité, pouvant conduire le chasseur à perdre l’attitude
et/ou la position du conteneur d’échantillons. Le problème devient particulièrement critique
au cours des 20 derniers mètres de la phase de rendez-vous. Des études récentes ont montré
qu’historiquement les défauts de tuyère représentent approximativement un quart de toutes les
défaillances qui ont eu lieu en orbite.

Une détection rapide et une localisation de ces défaillances est la première étape vers une ac-
tion efficace de correction du défaut. L’utilisation de capteurs de pression et de température
spécialisées dans la tuyère d’un propulseur est une possibilité de détecter une défaillance de
propulseur. Ceci, cependant, entraine une hausse de la masse, du prix et de la complexité.
Cette thèse se concentre donc plutôt sur des solutions basées uniquement sur des logiciels sup-
plémentaires et du matériel déjà disponible à bord. Les travaux de recherche traités dans cette
thèse s’intéressent donc au développement des approches sur base de modèle de détection et
d’isolation des défauts (Fault Detection and Isolation, FDI) et de commande tolérante aux dé-
faillances (Fault Tolerant Control, FTC), qui pourraient augmenter d’une manière significative
l’autonomie opérationnelle et fonctionnelle du chasseur pendant le rendez-vous et, d’une manière
plus générale, d’un vaisseau spatial impliqué dans des missions situées dans l’espace lointain.
Dès lors que la redondance existe dans les capteurs et que les roues de réaction ne sont pas util-
isées durant la phase de rendez-vous, le travail présenté dans cette thèse est orienté seulement
vers les systèmes de propulsion par tuyères.

Les défaillances examinées ont été définies conformément aux exigences de l’ESA et de TAS et
suivant leurs expériences. Quatre cas sont étudiés en détail, à savoir: i) ouverture de tuyère à
100%, dans ce cas, la tuyère fournit une poussée maximale indépendamment de la demande et
est évidemment très consommatrice de propergol; ii) tuyère coincée en position fermée, dans ce
cas la tuyère défectueuse ne génère aucune poussée indépendamment de la commande faite par
l’autorité de contrôle; iii) une petite fuite de biergol et iv) une perte d’efficacité d’une tuyère
spécifique, à savoir la poussée réelle est inférieure à celle qui est demandée.

Cette thèse comprend un chapitre qui illustre certains concepts, définitions et résultats classiques
ainsi que quelques exemples de mise en œuvre réussie des approches de l’FDI et de la FTC dans
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certaines missions spatiales. On aborde ensuite, une description complète du système GNC
déjà en place ainsi que la gestion de panne. Dans les études menées dans cette thèse, deux
configurations de propulseurs différentes ont été étudiées. La première configuration (référence)
dispose d’un ensemble de propulseur entièrement redondant de 2x8 tuyères tandis que la seconde
configuration comprend 12 tuyères avec redondance fonctionnelle.

Pour la première configuration des tuyères (référence) une approche avancée détection/ dé-
faillance, isolation de défauts et reconfiguration (FDIR) est proposée. Elle se compose d’un
détecteur de défaut robuste et d’un test d’isolement en fonction d’une corrélation croisée. La
reconfiguration des défauts est réalisée par une simple redirection du signal vers la tuyère re-
dondante et la fermeture de la tuyère défectueuse par une soupape de verrouillage de la tuyère
(TLV). Le détecteur de défaut est basé sur un générateur résiduel avec robustesse accrue contre
le retard de variation de temps inconnue dans le canal d’entrée. Ce retard est induit par le dis-
positif électronique de guidage de la propulsion chimique (CPDE) et vise également à modéliser
les incertitudes sur les temps de réponse de la tuyère. Pour assurer la robustesse, l’incertitude
non structurée (effet du retard inconnu) est d’abord exprimée sous forme d’une entrée inconnue,
puis, cette entrée inconnue est découplée du résidu en utilisant la technique de Eigenstructure
Assignment (EA) à gauche. Deux méthodes pour transformer ce type d’incertitude en une entrée
inconnue sont proposées. La première méthode est basée sur le théorème de Cayley-Hamilton et
sur un h-ième ordre de l’expansion en série de Taylor ; le second procédé utilise dans un premier
ordre l’approximant de Padé du retard temporel variable dans le temps.

Les indices de performance et de fiabilité FDI, qui ont été soigneusement choisis, accompagnés
des campagnes de simulation de robustesse/sensibilité Monte Carlo (MC) ont été utilisés pour
l’étude de comparaison des deux schémas FDI, l’une basée sur une position et la seconde basée
sur un modèle d’attitude. Les aspects de la reconfiguration sont également étudiés. Les résultats
obtenus à partir de la campagne MC, effectuée à l’aide d’un simulateur industrielle haute-fidélité
du TAS, révèlent que le régime basé sur un modèle de position tend à atteindre une performance
très similaire à celle du régime fondé sur le modèle de l’attitude pure. Le schéma du modèle
basé sur la position réussi grâce au modèle linéaire judicieusement choisi, c’est à dire un modèle
qui prend en compte à la fois les mouvements de rotation et de translation du chasseur. Dans ce
modèle, le quaternion d’attitude joue le rôle de paramètre d’ordonnancement pour la génération
de résidus. De plus ce modèle est naturellement robuste contre les incertitudes sur l’inertie et
le centre de gravité.

Pour une autre configuration de propulseur qui a été spécialement développé par Thales Alenia
Space pour étudier les principes FTC actifs, un schéma innovant FDI/FTC est proposé pour
isoler sans ambiguïté et s’adapter à tout type de défaillance de tuyère (de types ouvert ou fermé)
affectant le système de propulsion du chasseur. Cette configuration diffère de la configuration de
base de la mission MSR car les propulseurs n’ont pas de pair redondante et certains propulseurs
génèrent un moment de torsion dans la même direction ou dans une direction très similaire, ce qui
rend évidemment le procédé d’isolement plus difficile. Le schéma FDI consiste en un détecteur
de défaut robuste qui déclenche une banque d’observateur non linéaire à entrées inconnues
(NUIOs) qui est en charge de confiner la défaillance à un sous-ensemble de défauts possibles,
et une logique d’isolement à deux niveaux qui correspond respectivement au moment de torsion
d’un propulseur fixe et des directions de force avec le biais de moment de torsion (estimé en
utilisant un filtre de Kalman étendu, EKF) et du signal résiduel du détecteur de défaut. La
principale caractéristique de ce schéma FDI est le développement d’une classe spéciale de NUIO
pour les dynamiques d’attitude non linéaires incertaines. Sous certaines hypothèses de Lipschitz,
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une contrainte d’atténuation L2 est envisagée pour minimiser l’effet de l’inertie incertaine sur
l’erreur d’estimation de l’état. La factorisation proposée de l’inversion de la matrice d’inertie
incertaine permet à la dynamique de l’observateur à être limitée dans une région dynamique
prévue tandis qu’est maximisée la constante de Lipschitz acceptable entrainant la robustesse
contre les incertitudes non linéaires de Lipschitz. En outre, la dynamique d’erreur d’estimation
est exactement découplée de l’entrée inconnue qui représente l’effet du groupe de propulseur
qui produit les mêmes moments de torsion ou des moments de torsion similaires. La synthèse
NUIO est formulée comme un problème d’optimisation convexe d’inégalité matricielle linéaire
(LMI). La tolérance de défaillance est atteinte par la fermeture du propulseur défectueux par
une soupape de verrouillage et en redistribuant les forces/moment de torsion souhaités parmi
les N-1 vérins sains utilisant un algorithme d’allocation de contrôle (CA). L’avantage de cette
approche est la réduction du nombre de propulseurs (pas d’ensemble redondant) nécessaires
pour contrôler l’engin spatial en toute sécurité qui crée par conséquent un gain de masse, de
volume et de complexité. Plusieurs techniques de CA sont évaluées pour leur pertinence à
atteindre la tolérance aux défaillances précitée. La technique de CA NIPC (Nonlinear Iterative
Pseudoinverse Controller) a été choisie et améliorée à des fins FTC.

Les résultats obtenus à partir de la campagne de simulation MC, effectués à l’aide d’un simulateur
industrielle haute-fidélité du TAS, mettent en évidence la pertinence des approches FDI/FTC
proposées. L’évaluation des critères orientés de mission démontre clairement que la stratégie à
tolérance de défaut proposée est en mesure de faire face à une grande catégorie de défauts de
tuyères malgré la présence de différents types d’incertitudes et de garantir le succès de la capture.
En d’autres termes, les schémas FDI/FTC proposées sont capables de détecter, d’isoler et de
s’adapter à tous les types de défaut de tuyères considérés qui pourraient mettre en danger la
réussite de la mission. Il est également montré que les petits défauts de propulseurs, comme les
petites pertes de poussée (qui sont très difficiles, voire impossibles à détecter et isoler), ont des
effets négligeables sur le maintien de la performance GNC (par exemple en termes de précision
de pointage) et/ou sur les exigences finales de capture MSR.

Pour conclure, tous les résultats obtenus dans cette thèse ont révélé que les deux techniques
FDIR avancé et FTC ont de grands avantages en termes de fiabilité, de sécurité et de succès de la
mission par rapport aux approches classiques FDIR (industriels). Grâce à la bonne connaissance
des sous-systèmes qu’ont les ingénieurs de l’ESA et de TAS, le FMEA (Fault Mode and Effect
Analysis) rend plus facile le développement d’un schéma spécifiques FDI/FTC dédiés à certains
sous-ensemble de défauts survenant dans un vrai vaisseau spatial. C’est une des nombreuses
raisons pour lesquelles les précieuses connaissances des ingénieurs de systèmes de contrôle ayant
collaboré au sein de ce projet furent cruciales.
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Introduction

“You don’t write because you want to say something,
you write because you have something to say.”

— F. Scott Fitzgerald, American writer

Focus of this Study

The research work addressed in this thesis draws expertise from actions undertaken be-
tween the European Space Agency (ESA), the industry Thales Alenia Space (TAS) and
the IMS laboratory (laboratoire de l’Intégration du Matériau au Système) which aims at

developing new generations of integrated Guidance, Navigation and Control (GNC) units with
fault detection and tolerance capabilities. Many future space missions will require autonomous
proximity operations, in which the fault detection, isolation and the subsequent fault tolerance
actions are critically important. Rendezvous and docking/capture missions, such as the Mars
Sample Return (MSR) mission and the Project for Onboard Autonomy No.3 (PROBA 3), are
also inherently concerned with the fail-safe operating conditions of the vehicles. Autonomous
and fault tolerant rendezvous has been recognized by ESA as a key element for the MSR mission,
which will require a highly sophisticated GNC system. For instance, for a success of the critical
rendezvous phase, the chaser vehicle uses a large range of sensors, namely Inertial Measurement
Units (IMU), Star Trackers (STR), Coarse Sun Sensors (CSS), Global Navigation Satellite Sys-
tems (GNSS) sensors, Radio Frequency Sensors (RFS), Light Detection And Ranging (LIDAR)
sensors, Narrow Angle Camera (NAC) and a very precise actuation system composed of sets
of thrusters and reaction wheels. It is then obvious, that the rendezvous mission can be in
danger if faults occur in these sensors and/or actuators and if the GNC system does not ade-
quately compensate them. The research work addressed in this thesis draws expertise in this
context.

More precisely, this thesis focuses on the design and validation of an active Fault-tolerant Control
(FTC) system to detect, isolate and accommodate thruster fault affecting a chasing spacecraft
during the rendezvous with a passive target spacecraft in a circular orbit. A FDIR (Fault/Failure
Detection, Isolation and Recovery) system is also developed to be compliant with the require-
ments and the current state of practice of the space industries. The reference mission considered
here is the ESA Mars Sample Return mission. It consists of two modules directly injected to-
wards Mars by launchers. The first module enters the Martian atmosphere (Entry phase), lands
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on the Mars surface and releases a Mars rover vehicle. Once the rover finishes the collection
procedure of the Martian samples, they are put into a Sample Container and loaded on the
Mars Ascent Vehicle (MAV) which is then launched, by means of rockets, to reach the low Mars
orbit. Meanwhile the second module, composed of the MSR Orbiter and the Earth Re-entry
Capsule (ERC), inserts directly around Mars, and the chaser vehicle catches the target (capture
of the orbiting Sample Container released by MAV) and finally comes back to Earth ejecting the
Sample Container into Earth atmosphere with the Earth Re-entry Capsule (ERC). The research
work addressed in this thesis focuses on the terminal rendezvous phase which corresponds to
the last meters until the capture. The chaser vehicle is the MSR Orbiter, while the target is a
diameter spherical container. During the terminal rendezvous, the control of the attitude and
the position of the chaser is continuous, and applied by thrusters. The attitude is controlled
in order to keep the Sample Container (target) within the LIDAR sensor field of view. The
position is controlled in order to approach the target along its velocity axis. Then, just before
the capture, the guidance is modified in order to align the capture mechanism with the target.
At sensor level, the chaser spacecraft uses IMUs and Star-Trackers for attitude control and a
LIDAR for position control and capture. The set of sensors and actuators used during the ter-
minal rendezvous is minimized to reduce the risk of fault occurrence and to reduce the power
consumption and mass. The capture conditions are driven by the capture mechanism. The
capture mechanism is a basket with a diameter cylindrical aperture, which is part of the Sample
Handling System (SHS). It is oriented along the Orbiter x axis and located with a lateral offset
on the +x face. The analysis is conducted in the context of the terminal rendezvous sequence.
The objective at control level is a capture achievement with an accuracy better than a few
centimeters.

Motivation

The terminal phase of the rendezvous is highly critical, as any fault could possibly lead to a
collision, thus to a mission loss. Thruster faults historically account for a largest percentage of
failures that have occurred on orbit. Following a recent and extensive study based on 129 military
and commercial spacecrafts from 1980 to 2005, thruster faults account for approximatively one
quarter of all Attitude and Orbit Control System (AOCS) failures [272], see Fig. 1 showing the
distribution of various AOCS component failures.

Figure 1 – Distribution of AOCS component faults

Table 1 lists some known on-orbit thruster failures occurred in a real spacecraft [109]. In most
situations the occurrences of these faults could not be prevented, but subsequent analyses often
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reveal that the consequences of faults could be avoided or, at least, that their severity could be
significantly reduced.

Spacecraft Cause of the fault Impact
Galaxy 8i During September 2000, three of four xenon ion thrusters

failed [251]
Shortened
mission life

Iridium 27 During September 1997, thruster anomaly depleted opera-
tional fuel [251]

Total mission
loss

Nozomi During December 1998, thruster valve was stuck partially
open and the propulsion system consumed more fuel than
expected during Earth swing-by [251]

Mission
Interruption

JCSat-1B During January 2005, the spacecraft experienced attitude loss
during maneuver due to thruster anomaly [51]

Mission
Interruption

EchoStar VI During April 2001, the spacecraft was hit by one or more
micrometeorites, in its attitude control system causing a pro-
pellant leak in one of the thrusters [272]

Mission
Interruption

Table 1 – List of on-orbit thruster failures [109]

In general, there are many types of thruster failures that may occur in-flight. Since it is imprac-
tical and relatively hard to create a GNC system that is able autonomously to detect, isolate
and accommodate any kind of thruster fault, it is important to prioritize those faults which most
likely occur in-flight and have a large impact on the mission success and/or GNC performance.
Fortunately, in many cases, possible faults can be known in advance from the Fault Mode and
Effect Analysis (FMEA), but the number of FTC systems increases with the number of faults to
be covered. A solution to this problem may consist in judiciously combining active FTC systems
with passive fault tolerance principles (e.g., robust controller covering some marginal faults). As
an example, the FMEA of the ATVs (Automated Transfer Vehicles) developed by EADS Space
Transportation for the “Jules Verne” flight (docking the 3rd April 2003 and de-docking the 5th
September 2008), revealed 32 000 cases of recovery to be analyzed. 20 000 were relevant cases
according to the mission phase and 300 were recovery actions. This analysis took into account
both the “function context” (breakdown in the functional units such as communication, data
processing, power and propulsion systems) and the “vehicle context” (about 80 vehicle modes).
As it is understood by the academic research community, only few of them were concerned by
the FTC problem, since the majority dealt with FDIR problems.

The investigated faults in this thesis have been defined in accordance with ESA and TAS re-
quirements and following their experiences. Four cases are particularly examined: i) thruster
opening at 100% (in this case thruster provides maximum thrust regardless of the demand and is
obviously very propellant consuming); ii) thruster stucks closed (in this case the faulty thruster
does not generate any thrust regardless of the demanded command by the control authority);
iii) small bi-propellant leakage and iv) loss of effectiveness of the specific thruster (i.e., the
actual thrust is less than demanded).

It is obvious that, if for instance a fully open thruster fault occurs (thruster stucks fully open), it
could lead to a drastic increase of the propellant consumption which is already very constrained
by the travel to Mars. Furthermore, dramatic consequences can occur, e.g., the conventional
GNC system may result in unsatisfactory performance and/or instability, possibly leading the
chaser to lose the attitude and/or the position of the sample container. The problem becomes
highly critical during the last 20 meters of the rendezvous phase when the chaser shall be cor-
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rectly positioned in the rendezvous corridor in order to successfully capture the sample container,
as well as, the chaser attitude needs to be maintained in the rendezvous sensor field of view.
Such faulty situations obviously cannot be diagnosed by ground support using telemetry infor-
mation, due to the potential lack of communication between the chaser and the ground stations
and/or due to significant communication delay. Finally, to increase safety, reliability and mis-
sion success, the research topics should be motivated by applications and the results are for
the applications. This motivates to conduct studies for the development of new on-board fully
autonomous FTC solutions that shall cope with thruster faults which may occur and endanger
the mission whilst maintaining the desirable degree of overall stability and performance.

Approach and Objectives

The ability to ensure the desired performance of a dynamic system both in the absence and
presence of faults is an important task in many applications of control engineering. A cost-
effective way to obtain increased reliability and safety in an autonomous spacecraft whilst keeping
the desired performance level is to introduce active FTC approach. The basic implementation
strategy of an active FTC system involves the design of a model-based Fault Detection and
Isolation (FDI) unit that monitors the behavior of the components such that local incipient faults
are prevented from developing into severe failures that can lead to a total mission loss. A quick
detection and isolation of these faults is the first step towards an efficient fault accommodation
action. The algorithmic simplicity in detecting and isolating faults is also a very important
aspect when considering the need for validation and on-board implementation of a demonstrable
scheme. Only very few FTC algorithms that meet the above requirements have been developed
in practice and applied to a real spacecraft.

One possibility of detecting a thruster fault is through the use of specialized pressure and
temperature sensors in the nozzle of a thruster. This, however, comes at the price of extra
mass, cost and complexity. This thesis instead focuses on solutions of performing thruster
FDI using only additional software and hardware already on board. Thus, the aim of this
thesis is to propose a complete model-based FDI/FTC system able to quickly detect, isolate
and accommodate a single thruster fault and therefore significantly increase the operational
autonomy and safety of the chaser during the rendezvous and more generally, of any spacecraft
involved in a deep space mission. Since redundancy exists in the sensors and since the reaction
wheels are not used during the terminal rendezvous sequence, the work presented in this thesis
deals only on the thruster-based propulsion system.

Thruster fault accommodation (recovery) is traditionally achieved through a fully redundant
thruster set or through an overactuation (functional redundancy). After a thruster fault has
been successfully detected or eventually isolated, the system can attempt to recover from faults.
In general, four tolerance principles against thruster faults can be distinguished:

1. Thruster fault compensation;

2. Completely switching to a redundant thrusters set (requires only fault detection);

3. Switching to a thruster in the redundant thruster set;

4. Control using the remaining N-1 thrusters;
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It is obvious, that the first principle would possibly lead to a drastic increase of the propellant
consumption, which is already very constrained by the travel to Mars, and thus greatly reducing
the spacecraft lifetime and mission success. The second principle does not require any isolation
function, but on the other hand significantly decrease the fault coverage capabilities since only
one single fault can be recovered at all. Moreover, it requires a fully redundant thruster set which
obviously add extra mass, volume and complexity to the spacecraft, and therefore reducing
payload and increasing the cost. Without a dedicated valve to shut off the faulty thruster, the
only way to control the spacecraft is through the first two principles, however, if each thruster
is equipped with a dedicated thruster valve that can disconnect the propellant supply into it,
it is possible to consider the third and fourth principle. The third principle still requires a full
thruster redundancy, but in this approach more than one thruster can be considered faulty. The
last principle requires a functional redundancy thruster set. Here, the fault tolerance relies on
a control redistribution approach, which aims at reallocating the desired control effort among
the remaining N-1 healthy actuators. The advantage of this approach is the reduced number of
thrusters (no redundant set) and therefore mass, volume and complexity savings. Due to the
above mentioned and also other obvious reasons explained later, the focus of this thesis will only
be on methodologies which involves the third and fourth principles only.

Overview of the Chapter Contents

This thesis is comprised of four chapters and is organized as follows:

The first chapter provides a literature review of the main approaches in the field of model-
based fault diagnosis and active fault-tolerant control. It also comes with a decent list of biblio-
graphical references for the main contributions. Application examples from the space community,
that have been successfully demonstrated in flight or in high-fidelity industrial simulators, are
presented where applicable. The chapter is concluded by a summary-like table introduced in
order to compare the presented approaches according to some pre-selected criteria.

The second chapter briefly describes the Mars Sample Return mission, its rendezvous phase
and the vehicles involved in the mission. It describes the GNC unit, that is in charge of con-
trolling the chaser during the rendezvous phase and the failure management unit, that is in
charge of detecting failures and of engaging corrective maneuvers. It is shown how the FDIR
and FTC solutions investigated in the next chapters can be integrated in the failure manage-
ment unit. This chapter also addresses the models of the chaser spacecraft dynamics (relative
position between the chaser and the target and chaser’s attitude), that will be further used in
the following chapters to design model-based FDIR/FTC solutions. Modelling of the chaser
spacecraft thruster-based propulsion is also addressed to outline the effect of the faults. Necessi-
ties on modeling the spacecraft dynamics during the rendezvous phase as well as the rendezvous
requirements in terms of GNC performance and successful capture are introduced.

The third chapter is dedicated to the development of a FDIR solution for thruster fault
recovery. It introduces the baseline thruster configuration of the chaser consisting of a nominal
and a fully redundant thruster set. The design of two distinct model-based FDIR techniques
able to detect, isolate and accommodate (recover) a single thruster fault is addressed. The first
approach is based on the position model whereas the second approach is based on the attitude
model. Both techniques focus on the robustness issue against the unknown time-varying delays
induced by the propulsion drive electronics and uncertainties on thruster rise times. A complete
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description of a robust residual generation design approach based on Eigenstructure Assignment
(EA) technique is discussed in details. Computational procedure and implementation issues of
the FDI schemes design are carefully discussed. A fault accommodation strategy, achieved
by employing the additional hardware redundancy in the thruster-based propulsion system, is
proposed. Finally, Monte Carlo (MC) results demonstrate the feasibility and efficiency of the
proposed schemes. Carefully selected performance and reliability indices allow to compare the
effectiveness of both approaches. Recovery aspects are also studied.

The fourth chapter addresses a different thruster configuration with functional redundancy.
For this configuration, an innovative active FTC strategy is proposed to unambiguously de-
tect, isolate and accommodate any kind of the considered thruster faults. Key features of the
given method are the use of a fault detector based on EA technique for robust and quick fault
detection, a bank of Nonlinear Unknown Input Observers (NUIO) with dynamics assignment
together with an Extended Kalman Filter-based torque bias estimator for fault isolation. An
online Control Allocation (CA) algorithm scheduled by the fault isolation scheme is proposed
for fault tolerance. A MC campaign is conducted in the context of the terminal rendezvous
phase. Mission oriented criteria demonstrate that the proposed FTC strategy is able to cope
with a large class of thruster faults despite the presence of various types of uncertainties.

This PhD was performed in the frame of ESA Networking/Partnering Initiative (NPI) sponsored
project for “Model-based Fault Diagnosis and Fault Accommodation for Space Missions”, contract
number 149-2010, supported during three years by ESA and Thales Alenia Space.
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Chapter 1
State of the Art in Model-based Fault
Diagnosis and Active Fault-tolerant
Control

“It takes a wise man to learn from his mistakes, but
an even wiser man to learn from others.”

— Zen proverb

The aim of this chapter is to provide the reader with an overview of the main techniques
in the fields of model-based fault diagnosis and active fault-tolerant control. A decent
list of bibliographical references for the main contributions is provided too. Application

examples of the methods, that have been successfully demonstrated in flight or in high-fidelity
simulators, are presented from the space community where applicable. A summary-like table
is presented as a conclusion in order to compare the presented techniques according to some
pre-selected criteria.

1.1 Introduction

Fault-tolerance in dynamic systems is traditionally achieved through the use of hardware re-
dundancy. Repeated hardware units (actuators, sensors, process components, etc.) are usually
distributed spatially around the system to provide protection against localized damage. Such
schemes operate typically in a duplex, triplex or quadruplex redundancy configuration and re-
dundant outputs (or measurements) are compared for consistency. For example, three (or more)
sensors measuring the same variable are installed where one would be sufficient if it was entirely
reliable. The signals from these sensors are monitored by a logical system which neglects small
differences in the signals due to noise, manufacturing tolerances of the measurement instruments,
but which declares that a sensor is faulty if its signal deviates too far from the average value
of the others (assuming that the others remain within a small differences from one another).
This approach to fault-tolerance is simple and widely used. In some cases, it can be reasonably
straightforward to apply. It is essential in the control of aircraft, space vehicles and in certain
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process plants. The major problems related to the hardware redundancy are the extra cost and
the additional space required to accommodate the equipment. In spacecraft, for example, the
additional space could be used for more mission-oriented equipment (scientific devices, reserve
propellant, etc.).

Safety-critical applications (such as space vehicles, aircrafts, power plants, cars, rapid transit
trains, etc.) of which reliability, availability and operating safety are primary design require-
ments, application of ultra-high dependable control systems is needed. For such systems, an
important means of increase in dependability is to detect and identify the different types of
faults, and then to accommodate or minimize the impact of them. A control system with this
kind of fault-tolerance capability is defined as a Fault-Tolerant Control System (FTCS).

The FTCS tasks are typically three or four. The first task is the fault detection. Fault detection
indicates the occurrence of a certain fault in a monitored system. The second task is called
fault isolation which determines the type and/or location of the fault. This two tasks are in
literature referred with the common term Fault Detection and Isolation (FDI). Once the fault is
isolated, then the task of fault identification might be considered, too. Fault identification aims
at determining the magnitude and shape of a fault. The term Fault Detection and Diagnosis
(FDD) is an extension of the term FDI in the sense that the procedures of FDD provide an
additional “diagnosis” to the faults in terms of fault identification and sometimes an assessment
of the degree of severity of the fault. In other words, FDD is mainly used to underline the
need for fault estimation. After the fault is detected and diagnosed, in some applications fault
is accommodated (i.e., a self-correcting of the fault) is required, usually through controller re-
design.

Over the last decades, the growing demand for safety, reliability, and maintainability in technical
systems has drawn significant research interest in FDI and FDD. Such efforts have led to the
development of many essential techniques, see for example the survey works [19, 60, 93, 96, 135,
168, 210, 223, 224, 284]. Research on reconfigurable Fault-tolerant Control (FTC) has increased
progressively since the initial research on restructurable control and self-repairing flight control
systems of the early 1980s appeared [36, 84]. More recently, FTC has attracted more and
more attention, in both industry and academic communities [319], due to increased demands for
safety, high system performance, productivity and operating efficiency in a wider engineering
applications. Several survey literature on FTCS have been published [16, 17, 19, 78, 143, 148,
268, 285, 312].

1.2 General Procedure of Fault-tolerant Control Systems

Generally speaking, fault-tolerant control systems can be classified into two main types based
on different methodologies [312]:

• Passive Fault-tolerant Control Systems (PFTCS)
In PFTCS, controllers are fixed and designed to be robust against a class of presumed faults
[84]. This approach needs neither FDD schemes nor controller reconfiguration, but it has
limited fault-tolerant capabilities [312]. Fault-tolerance is obtained without changing the
default controller parameters, therefore it is called passive fault tolerance. From a classical
control theory perspective, passive FTC is close to robust control. Furthermore, a robust
controller works suboptimal for the nominal plant because its parameters are fixed so as to
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get a trade-off between performance and robustness [19]. Further discussions on PFTCS
are beyond the scope of this work and interested readers are referred to [176, 207, 283, 312]
and the references therein.

• Active Fault-Tolerant Control Systems (AFTCS)
In contrary to PFTCS, AFTCS acts to the system component failures actively by controller
re-design so that the stability and acceptable performance of the entire system can be
verified. Indeed, most of the earlier works on AFTCS design deal with the problem of
recovering the pre-fault (before the fault occurs) system performances as much as possible
[2, 209, 224]. The great benefit of the AFTCS approaches is that the fault-tolerance does
not degrade the performance level in normal (fault-free) operating mode. From a classical
control theory point of view, AFTCS can be seen as an adaptive control scheme that reacts
to the fault event. This is the type of FTCS which we will present in Chapter 4 of this
thesis.

The architecture of a general AFTCS is depicted in Fig. 1.1. The two blocks “diagnostic module”
and “controller re-design” carry out the two steps of the fault tolerance. These two blocks operate
in a supervision level. In AFTCS, the information obtained from the diagnostic module is used
in the controller re-design [210]. Hence, system diagnostic module with its diagnostic algorithms
should not only indicate that some faults have occurred but it has to identify the fault locations
(i.e., to do FDI) and in some cases the fault magnitude and the shape (i.e., to do FDD) of the
fault signal with sufficient precision [276]. The re-design block uses the fault information and
make it possible to set up a model of the faulty system, which can be used to determine the
appropriate control law. “Appropriate” is meant with respect to given objectives which depend
on the application, but which in all cases must preserve stability [151].

Controller

re-design

Diagnostic

module

SystemController

Supervision 

level

Execution

level

Figure 1.1 – General architecture of an active fault-tolerant control system [19]

The figure above shows also that the AFTCS extends the regular feedback controller by a
supervision level, which includes the diagnostic module (FDI and/or FDD) and the controller
re-design blocks. In the fault-free case, the nominal controller attenuates the disturbances d and
ensures following the reference signal yref and other performance requirements on the closed-
loop system. In fault-free case, the diagnostic module simply recognizes that the system is not
suffering from any faults and no change in the control law is required. If a fault f occurs,
the supervision level makes the control loop fault-tolerant, i.e., the diagnostic module identifies
the fault and the controller re-design block will try to change the control law in order to cope
with the faulty situation. Afterwards, the execution level alone continues to satisfy the control
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objectives [19].

Controller re-design considers the problem of changing the controller parameters and/or the
control structure after a fault has been diagnosed in the system. The goal is to satisfy the
requirements on the closed-loop system despite the presence of faults. In principal, two ways of
controller re-design have to be distinguished [17, 19, 151, 224].

Fault Accommodation

Fault accommodation means to adapt the controller parameters to the dynamical properties of
the faulty system. The input and output of the system used in the control loop remain the same
as for the fault-free case. The response to the diagnosed faults should be an adequate change
of the controller parameters. The main problem addressed in this approach is to calculate these
new parameters. This step is usually performed on-line, therefore fault accommodation is usually
autonomous [267]. A formal definition of the fault accommodation can be found in Blanke et al.
[17, 19].

A simple, but well established way of fault accommodation is based on pre-designed controllers,
each of which has been calculated off-line for a specific fault. The re-design step then simply
sets the switch among the different control laws. However, the activation/repair mechanism may
happen too quickly and during the whole operation interval which may cause instability of the
control law [80] and might lead to strong real-time constraints [19].

Moreover, the controller re-design has to be made for all possible faults before the system is put
into operation and all resulting controllers have to be stored in the control software. Fortunately,
in many systems, possible faults are known in advance from the Fault Mode and Effect Analysis
(FMEA), but the number of FTC systems increases with the number of faults to cover. A
solution to this problem may consist in judiciously combining PFTCS and AFTCS as it is
proposed by Staroswiecki and Berdjag [266]. In case of severe faults that change the structure
of the system, this approach is no more sufficient because the structure of the controller is not
changed.

Control Reconfiguration

Control reconfiguration is usually necessary in the event of severe faults, such as total failures
in actuators/sensors. If these components fail completely, the fault leads to a break-down of the
control loop. There is no possibility to adapt the controller by simply changing its parameters
to the faulty situation, i.e., a complete control loop has to be reconfigured. A new control law
has to be selected and the controller structure has to be changed where alternative actuators
and sensors have to be found, which are not affected by the fault, and which are able to satisfy
the stability and the performance specifications on the closed-loop system. Note that the pre-
computed FTC solutions mentioned previously can be a viable approach in this case.

Remark 1.1. An important question in the controller re-design step is the analysis of recon-
figurability as a system property. Reconfigurability is a property of faulty systems meaning that
the original control goals specified for the fault-free system can be reached after suitable control
re-design. A structural analysis of the reconfigurability can be found in [104]. The work of
Staroswiecki [263] deals with the reconfigurability on a linear level, based on the solvability of an
optimal control problem with minimal control energy.
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Remark 1.2. The term Fault/Failure Detection, Isolation and Recovery (FDIR) is widely used
in the industrial community when referring to FTC approaches.

System and Fault Modeling

Faults occurring in a system can be generally classified into three types [19, 97, 145, 284]:

• actuator faults;

• sensor faults; and

• component faults.

Actuator and sensor faults are typically referring to faults/failures occurring in the system
actuation and measurement system/subsystems. Component faults usually lead to changes in
the parameters of the system dynamics. Figure 1.2 illustrates a general fault model in the
open-loop system with actuator, system component and sensor faults, respectively.

Actuators SensorsSystem

actuator

faults

component

faults

sensor

faults

Figure 1.2 – Open-loop system with different types of faults

Faults can be categorized into additive faults and multiplicative faults, where the additive faults
are described as additional functions, which are added in the system dynamical equations (see
(1.1) and (1.4)), while the multiplicative faults are represented by the product of a variable with
the faults [10, 145] (see (1.6), (1.5) and (1.2)).

Ignoring the actuator dynamics, vector uf ∈ Rnu of the faulty controlled system input can be
described in terms of an additive fault type, i.e.,

uf (t) = u(t) + fa(t) (1.1)

where u ∈ Rnu is the actuator control input and fa ∈ Rnu represents the additive actuator fault
vector. With regards to modelling multiplicative actuator faults, the following model can be
used [128]

uf (t) =
(
I −Ψ(t)

)
u(t) (1.2)

where Ψ = diag(ψ1, . . . , ψnu) is an unknown matrix and ψi models to the ith actuator fault.
For instance, ψi = 1 means that the ith actuator is out of order and ψi = x% means a loss of
efficiency of x% of the ith actuator. Note that if the controlled system keeps stability, then the
multiplicative-based model can be approximated in terms of an additive fault model according
to [97]

uf (t) = u(t)−Ψ(t)u(t) = u(t) + fa(t) (1.3)
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Without taking into account sensor dynamics, the faulty measured output vector yf ∈ Rny can
be described as

yf (t) = y(t) + f s(t) (1.4)

where y ∈ Rny is the true output vector of the system and f s ∈ Rny represents a vector of
additive sensor faults. Similarly to the actuator case, the multiplicative faults model admits the
following representation

yf (t) =
(
I −Ψ(t)

)
y(t) (1.5)

that can be approximated according to (1.4).

The component faults are commonly modelled as multiplicative faults, i.e., they are modelled as
changes in the parameters of the system matrices. In the linear case and under the assumption
that the (controlled) system keeps stability, the ith row and jth column element aij of the system
matrix A represents a system parameter change, then the component fault can be described as
follows

f c(t) = Ii∆aijxj(t) (1.6)

where xj is the jth element of the state vector x ∈ Rnx , Ii is vector with all zero elements
except ‘1’ in the ith element and ∆aij represents the parameter change around the nominal
value aij .

1.3 Methods for Fault Detection and Isolation

There is a great variety of fault detection and isolation methods, e.g., the parity space approach
[106], methods based on unknown input observer concepts [39], the multiple model method [28],
the geometric approach for detection filter design [190], or methods based on frequency domain
concepts [95]. According to Frank [93], a great variety of methods exists in the literature and
they can be brought down to a four basic classes as follows:

• parity space approach [47, 64, 93, 105, 193, 227].

• observer-based approach and innovation-based approach [19, 60, 93, 96, 103, 210, 228],

• parameter identification approach [144, 260, 305], and

• fault detection filter approach [10, 19, 128, 132, 270].

All these four methods are discussed in more detail in the following sections. Since linear
approaches are special cases of nonlinear methods, nonlinear approaches are preferred. Examples
from space systems are given where available.

1.3.1 Parity Space Approach

The concept of the parity relation-based fault detection approach is to check the parity, i.e., con-
sistency of the mathematical equations (analytical redundancy) of the system by using the actual
measurements. A fault is declared to have occurred once given error bounds are exceeded. Some
parity space approaches are able to achieve fault isolation properties [193]. Several survey papers
have been written on parity relation based fault detection methods [47, 93, 105, 227].
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The following developments give an overview of the general method. Using physical laws, a large
class of engineering systems can be modelled by differential equations of the form

{
ẋ(t) = h

(
x(t),u(t),f(t),d(t)

)

y(t) = g
(
x(t),u(t),f(t),d(t)

) (1.7)

where h ∈ Rnx and g ∈ Rny are smooth1 nonlinear vector functions of their arguments, x ∈ Rnx
is the state vector, u ∈ Rnu the input vector, y ∈ Rny the vector of measured outputs, d ∈ Rnd
the vector of unknown inputs and f ∈ Rnf the vector of faults.

Assuming that the functions h and g are differentiable up to order sh, the following yields

ȳ(sh)(t) = Gsh
(
x(t), ū(sh)(t), f̄ (sh)(t), d̄(sh)(t)

)
(1.8)

where

Gsh
(
x(t), ū(sh)(t), f̄ (sh)(t), d̄(sh)(t)

)
=




g
(
x(t),u(t),f(t),d(t)

)

g1
(
x(t), ū(1)(t), f̄ (1)(t), d̄(1)(t)

)

...
gsh
(
x(t), ū(sh)(t), f̄ (sh)(t), d̄(sh)(t)

)




If the system (1.8) is solvable with respect to x, then it can be written in the equivalent
form

x(t) = Gx
(
ȳ(sh)(t), ū(sh)(t), f̄ (sh)(t), d̄(sh)(t)

)
(1.9)

Gy
(
ȳ(sh)(t), ū(sh)(t), f̄ (sh)(t), d̄(sh)(t)

)
= 0 (1.10)

It can be seen, that (1.10) is an analytical redundancy relation, independent of the state vector
x. In fault-free operation, it yields the necessary condition

Gy
(
ȳ(sh)(t), ū(sh)(t),0, d̄(sh)(t)

)
= 0 (1.11)

If the function Gy
(
ȳ(sh)(t), ū(sh)(t), f̄ (sh)(t), d̄(sh)(t)

)
can be written as the difference of two

functions Gc
y and Ge

y, such as

Gy
(
ȳ(sh)(t), ū(sh)(t), f̄ (sh)(t), d̄(sh)(t)

)
=

= Gc
y

(
ȳ(sh)(t), ū(sh)(t)

)−Ge
y

(
ȳ(sh)(t), ū(sh)(t), f̄ (sh)(t), d̄(sh)(t)

) (1.12)

Then, it is possible to construct the residual r as follows

r(t) = Gc
y

(
ȳ(sh)(t), ū(sh)(t)

)
= Ge

y

(
ȳ(sh)(t), ū(sh)(t), f̄ (sh)(t), d̄(sh)(t)

)
(1.13)

where Gc
y is the computation form and Ge

y is the evaluation form of the residual, respectively.
The necessary condition for proper operation becomes

r(t) = Gc
y

(
ȳ(sh)(t), ū(sh)(t)

)
= Ge

y

(
ȳ(sh)(t), ū(sh)(t),0, d̄(sh)(t)

)
= 0 (1.14)

Remark 1.3. If the disturbances are governed by a stochastic model with zero mean, the residual

1A smooth function has continuous partial derivatives of any order with respect to its arguments
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(1.14) will be, generally, non-zero mean in the absence of faults, since it is linked to disturbances
in a nonlinear manner.

Finally, by decomposing the fault vector f and the disturbance vector d

f(t) =
(
f1(t)
f2(t)

)
, d(t) =

(
d1(t)
d2(t)

)
(1.15)

then the fundamental problem of designing robust and structured residuals boils down to the
solvability of the problem

Gy
(
ȳ(sh)(t), ū(sh)(t), f̄ (sh)(t), d̄(sh)(t)

)
= 0 (1.16)

with respect to f̄(t)(sh) and d̄(t)(sh), the following equivalence yields

G1
y

(
ȳ(sh)(t), ū(sh)(t), f̄ (sh)

1 (t), d̄(sh)
1 (t), f̄ (sh)

2 (t), d̄(sh)
2 (t)

)
= 0 (1.17)

G2
y

(
ȳ(sh)(t), ū(sh)(t), f̄ (sh)

2 (t), d̄(sh)
2 (t)

)
= 0 (1.18)

If the second relation (1.18) can be written as a difference

G2
y

(
ȳ(sh)(t), ū(sh)(t), f̄ (sh)

2 (t), d̄(sh)
2 (t)

)
=

= G2c
y

(
ȳ(sh)(t), ū(sh)(t)

)−G2e
y

(
ȳ(sh)(t), ū(sh)(t), f̄ (sh)

2 (t), d̄(sh)
2 (t)

) (1.19)

then, as in (1.12), the residual (structured and robust) verify that

r(t) = G2c
y

(
ȳ(sh)(t), ū(sh)(t)

)
= G2e

y

(
ȳ(sh)(t), ū(sh)(t), f̄ (sh)(t), d̄(sh)(t)

)
(1.20)

where again G2c
y is the computation form and G2e

y is the evaluation form.

Remark 1.4. From a practical point of view, it should be noted that it is not necessary to derive
all outputs to the same order. A set of equations can be obtained by comparing the derivatives
y1 up to the order s1, y2 up to the order s2, etc.. The only constraint is that the set of obtained
equations (s1 +s2 + . . .) meets the solvability conditions necessary and sufficient for the existence
of an analytical redundancy relations for the desired decoupling.

• Application to Space Missions

The most common application of parity space methods in the aerospace field is based on the
redundancy available in Inertial Measurement Units (IMUs). The redundant measurements
acquired from the IMUs are used for deriving the so-called parity-space relations. In particu-
lar, three configurations are used, i.e., the octahedron, dodecahedron and dedicated pyramidal
configurations, see Fig. 1.3 for an illustration [135].

In the octahedron configuration, each axis (labelled numerically 1 through 6) contains a gyro and
an accelerometer. Complementary axes (i.e., 1 and 2; 3 and 4; and 5 and 6) make angles of 90
deg with each other and are symmetrically placed with respect to the body frame. Consequently
instruments 1 and 2 are both inclined 45 deg with respect to the z body axis. Instruments 3
and 4 are inclined 45 deg with respect to the x body axis and 5 and 6, 45 deg with respect to
the y body axis. This configuration facilitates the determination of 7 (static) parity relations
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Figure 1.3 – The octahedron (left), the dodecahedron (centre) and the dedicated pyramid (right)
configurations [135]

defined as functions of the measurements m1, . . . ,m6 according to

r1 = m1 −m2 −m3 −m4
r2 = m2 +m3 −m5
r3 = m6 +m1 −m3
r4 = m4 +m5 −m1
r5 = m4 +m6 +m2
r6 = m1 +m2 +m6 −m5
r7 = m4 +m5 +m6 −m3

These equations are used to detect and isolate a single axis fault in either gyros or accelerometers
or a simultaneous correlated double axis fault.

The dedicated pyramidal configuration is based on two IMUs arranged in a geometric configura-
tion, so that any single failure (1-axis gyro or 1-axis accelerometer) can be detected and isolated,
through the 7 following (static) parity relations

r1 = (m1 +m4)− (m2 +m5)
r2 = (m2 +m5)− (m3 +m6)
r3 = (m3 +m6)− (m1 +m4)
r4 = 2(m1 +m3 +m5)− 3(m1 +m4)
r5 = 2(m2 +m4 +m6)− 3(m1 +m4)
r6 = 2(m1 +m3 +m5)− 3(m2 +m5)
r7 = 2(m2 +m4 +m6)− 3(m2 +m5)

where measurements m1, m3, m5 are for IMU1 and m2, m4, m6 are for IMU2. For the fault
detection purpose, only ri, i = 1, 2, 3 are used whereas the four last signals ri, i = 4, . . . , 7 are
used for fault isolation in gyros and accelerometers. The dedicated pyramidal configuration FDI
technique is used in the Mars Sample Return mission, see discussion in Chapter 2.

1.3.2 Observer-based Approaches

Observer-based methods are the most popular form of model-based residual generator ap-
proaches. The basic idea is to estimate the output vector of the system (the state vector is
usually unnecessary) from the measurements or from a subsets of the measurements. Then
the estimation error or innovation is used to form a residual signal for fault detection and/or
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isolation. It is well known from observer theory that for state estimation one can use linear
or nonlinear, full or reduced-order state observers in the deterministic case or Kalman filters
in the stochastic case when noise has to be considered. Many different design approaches have
been employed [60, 93, 96, 103, 228, 308]. In the following developments, focus is on robust
methods.

1.3.2.1 Iterative Learning Observer

This kind of observer is different from conventional Luenberger observer where the observer
state is only a function of the actual input, output and the estimation error. Iterative Learning
Observer (ILO) performs state estimation updated online by past system output errors as well.
For the purposes of FDD, an ILO is used for jointly estimate the system state and the fault.

To proceed, let the system be modelled by the following class of nonlinear state space model
{
ẋ(t) = g(x(t)) +Bu(t) +Eff(t)
y(t) = Cx(t)

(1.21)

where the vector function f denotes an additive time varying signal that models the faults to
be estimated. It is assumed that f is bounded and that ‖f(t) −K1f(t − τ)‖∞ is finite. The
structure of the ILO is then defined according to

{ ˙̂x(t) = g(x̂(t)) +Bu(t) +L(y(t)−Cx̂(t)) +Efv(t)
v(t) = K1v(t− τ) +K2(y(t)−Cx̂(t))

(1.22)

where L, K1, K2 are gain matrices to be designed. The parameter τ is the sampling time
interval (updating interval). The signal v is the ILO input that is used to estimate the time-
varying fault. It can be seen that v is updated by both its past information and the output
estimation error.

Several papers are devoted to the problematic of designing an ILO. For example, the work of
Chen and Saif [41] deals with the design of an ILO-based approach to fault detection and fault
accommodation in nonlinear systems. An ILO approach for robust fault detection is proposed in
[42]. Industrial application of fault diagnosis in satellite systems for estimation of time-varying
thruster faults can be found in [44].

1.3.2.2 Unknown Input Observer

The basic idea behind the Unknown Input Observer (UIO) approach is the construction of a
vector z decoupled from disturbances as well as uncertainties which are expressed in terms of
unknown input signals.

One of the most general theory was initially proposed by [257, 258]. In that approach, faults
to be detected are represented by exogenous input signals (additive fault types). The model
is considered to be nonlinear with respect to the state x and control signal u, but linear with
respect to faults and to all unknown inputs as follows

{
ẋ(t) = h(x,u) +K(x,u)f(t) +E(x)d(t)
y(t) = g(x) (1.23)
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h and g are nonlinear vector functions of their arguments, x ∈ Rnx is the state vector, u ∈ Rnu
the input vector, y ∈ Rny the vector of measured outputs, d ∈ Rnd the vector of unknown
inputs to be decoupled and f ∈ Rnf the vector of faults. E(x) and K(x,u) are respectively
the unknown inputs and faults distribution vector functions of appropriate dimensions. It is
assumed that x(t) ∈ C, ∀t ≥ 0, where C ⊆ Rnx is compact, connected, has a nonempty interior
and contains 0.

The approach proposed by [257, 258] consists in finding a nonlinear state transformation z =
T (x) in order to separate the disturbed from the undisturbed portion of the model. This can
be met if the following condition holds

∂T (x)
∂x

E(x) = 0 (1.24)

This relation constitutes a system of first order linear partial differential equations which are to
be solved simultaneously by z = T (x). The theorem of Frobenius [149] can be applied to derive
necessary and sufficient existence conditions for the solution of (1.24):

Theorem 1.1. Assume that the rank of E(x) is equal to nq for all x. Then the searched
transformation T (x) is a (nx − nq) vector, solution of the following system

∂T i(x)
∂x

E(x) = 0, i = 1, ..., nx − nq (1.25)

where T i(x) denote the ith row of T (x). Furthermore, there exists nx − nq independent zi =
T i(x), i = 1 . . . nx − nq if and only if

rank
(
E(x) [ei(x), ej(x)]

)
= nq, ∀i, j = 1...nq (1.26)

where ei(x) denotes the ith column of E(x) and [ei(x), ej(x)] refers to the Lie bracket of two
elements, i.e.,

[ei(x), ej(x)] = ∂ej(x)
∂x

ei(x)− ∂ei(x)
∂x

ej(x), i, j = 1 . . . nq (1.27)

In order to obtain the transformed (decoupled) model, the decoupled state z must be augmented
by a subset of measurements ȳ = φ(y) such that a relation x = ψ0(z, ȳ) exists, where dim(ȳ) <
dim(y). The conditions of the existence of ψ0(z, ȳ) are

rank




∂T (x)
∂x

∂φ(y)|y=g(x)
∂x


 = nx (1.28)

lim
‖x‖→∞

‖
(
T (x) φ|y=g(x)

)T
‖ =∞ (1.29)

It is shown in [258], that (1.28) is satisfied if the number of independent measurements is
greater than nq. In other words, the number of independent measurements should be enough to
decouple completely the unknown input vector d which is a quite classical result in the analytical
elimination theory.
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The dynamical state equation of the decoupled system is then given by

ż(t) = ∂T (x)
∂x

(h(x,u) +K(x,u)f(t))
∣∣∣
x=ψ0(z,ȳ)

(1.30)

Moreover, in order to guarantee that all faults affecting the system are also reflected by the
decoupled state, the following condition must be fulfilled

rank
(
∂T (x)
∂x

K(x,u)
)

= rank (K(x,u)) (1.31)

The structure of a nonlinear UIO for FDI then is given by




˙̂z(t) = ∂ẑ

∂ψ0(ẑ, ȳ)h(ψ0(ẑ, ȳ),u) +HR(ẑ,y)

r(t) = R(ẑ,y)
(1.32)

under the assumption that a relationR(z,y) = 0 exists. In (1.32), r is the residual vector.

Now, the remaining problem is to design a the observer gain matrix H, in such a way that the
equilibrium point e = 0 of the differential equation governing the estimation error e = ẑ − z
is asymptotically stable. [258] proposes to design H, such that the observer is locally stable
(around e = 0). To proceed, let us observe that

ė(t) = ˙̂z(t)− ż(t) = ∂T (x̂)
∂x̂

h(x̂,u)− ∂T (x)
∂x

h(x,u) +HR(ẑ,y)−

− ∂T (x)
∂x

K(x,u)f(t)
∣∣∣
x=ψ0(z,ȳ),x̂=ψ0(ẑ,ȳ)

(1.33)

Denoting

ρ(e, t) = ∂T (x̂)
∂x̂

h(x̂,u)− ∂T (x)
∂x

h(x,u) +HR(ẑ,y)
∣∣∣
x=ψ0(z,ȳ),x̂=ψ0(ẑ,ȳ)

(1.34)

equation (1.33) can be written

ė(t) = ρ(e, t)− ∂T (x)
∂x

K(x,u)f(t)
∣∣∣
x=ψ0(z,ȳ)

(1.35)

Then, under the assumption of a fault-free system (f = 0), a first-order Taylor expansion of
(1.35) around e = 0 gives

ė(t) ≈ F (t)e (1.36)

with

F (t) = ∂

∂ψ0(ẑ, ȳ)

(
∂T (x̂)
∂x̂

h(x̂,u)
)
∂ψ0(ẑ, ȳ)

∂ẑ
+H(x̂,u)∂R(ẑ,y)

∂ẑ
|x̂=ψ0(ẑ,ȳ) (1.37)

Thus, the solution consists in choosingH(x̂,u) so that the time-varying system (1.36) is stable.

Another solution consists in choosing F constant, so that, the real part of its eigenvalues are
strictly negative and in deducing H(x̂,u) from (1.37). This solution allows to adequately man-
age the dynamics of the nonlinear UIO, which is an important aspect from FDI viewpoint.
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An alternative to these solutions is also proposed in [125]. Under the assumptions rank∂y(x)
∂x =

nx and lim‖x‖→∞ ‖y(x)|| =∞ and additionally some Lipschitz conditions, sufficient conditions
for the stability of the nonlinear UIO (1.32) are proposed. A design algorithm based on Linear
Matrix Inequality (LMI) is proposed and FDI performance specifications are also handled in the
design procedure using the concept of LMI regions.

Remark 1.5. The work reported in [43] addresses the particular class of nonlinear systems that
are described by {

ẋ(t) = Ax(t) +Bu(t) + Φ(x) +Ed(t)
y(t) = Cx(t) (1.38)

where the nonlinear function Φ(x) verifies the Lipschitz condition. A full order nonlinear UIO
is proposed by the authors and a sufficient condition for its existence is provided in terms of a
LMI problem. It is shown than the established condition is also necessary when applied to linear
systems (i.e., Φ(x) = 0) and the proposed method becomes the classical ones of linear UIOs,
see for instance [55, 142]. This theory is not presented here since it is used and improved in
Chapter 4.

• Application to the Mars Express Spacecraft

In [233, 234], the UIO approach is used for thruster fault diagnosis of the Mars Express (MEX)
spacecraft subject to disturbance, uncertainty and measurement noises. The main challenge is
the detection and the isolation of faults in any one of the four active thrusters of the spacecraft
during the phases of main engine burn that cause large torque and centre of mass disturbances.
This is the so-called “thruster modulation” problem, which is difficult to solve using classical
robust FDI methods. The structure of the MEX orbiter consists of a cube-shaped spacecraft
together with two solar panel “wings” (see Fig. 1.4 for illustration).

Figure 1.4 – MEX spacecraft structure [234]

The proposed FDI strategy is based on a bank of UIOs (see Section 1.3.6) with minimum
variance state estimation error, where a separate estimation of disturbance torque makes the
isolation possible. Each observer is designed to be sensitive to a subset of faults (that have to
be detected and isolated). The unknown input directions are estimated via additional states
in an augmented state observer structure [39]. Instead of using the nonlinear model of the
spacecraft, a local linear mathematical models are estimated by means of a robust dynamic
system identification approach based on the minimisation of the estimation error [260]. The
unknown inputs are updated in the moving window and the minimum variance estimator is
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re-initialized at the end of each window period. It is assumed that faults do not occur during
the unknown input estimation phase.

1.3.2.3 Eigenstructure Assignment

In a similar way to UIO approach, the Eigenstructure Assignment (EA) technique aims at
decoupling the effects of unknown inputs from the residual r. To the best knowledge of the
author, only linear approaches have been developed. Therefore, consider a LTI system with
faults and unknown inputs

{
ẋ(t) = Ax(t) +Bu(t) +Ef1f(t) +Ed(t)
y(t) = Cx(t) +Du(t) +Ef2f(t)

(1.39)

where Ef1 and Ef2 are entry (fault distribution) matrices multiplying the fault vector f ∈ Rnf ,
d(t) ∈ Rnd is the unknown input (or disturbance) vector entering the system through the
known distribution matrix E assumed to be full column rank. Matrices A, B, C and D are of
appropriate dimensions and (A,C) is assumed to be an observable pair.

Considering the above system, a Luenberger-like full state observer [182]
{ ˙̂x(t) = Ax̂(t) +Bu(t) +L (y(t)− ŷ(t))
ŷ(t) = Cx̂(t) +Du(t)

(1.40)

can be built to create a residual generator vector r ∈ Rnr defined according to the relation

r(t) = Q (y(t)− ŷ(t)) (1.41)

where x̂(t) ∈ Rnx is the state estimate vector, ŷ(t) ∈ Rny is the output estimate vector, and Q
is the residual weighting matrix.

Defining the state estimation error e = x− x̂, then the residual generator is governed by the
following equations

{
ė(t) = Ace(t) +Ed(t) +Ef1f(t)−LEf2f(t)
r(t) = He(t) +QEf2f(t)

(1.42)

where Ac = (A−LC) and H = QC. The Laplace transformed residual response to faults and
unknown inputs is thus

r(s) = QEf2f(s) +H(sI −Ac)−1(Ef1 −LEf2)f(s) +H(sI −Ac)−1Ed(s) (1.43)

There is a conflict between the effects that the uncertainty terms Ed and the fault terms Ef1f

and Ef2f have on the residual response. In order to make the residual r be independent of
unknown inputs d, it is necessary to null the entries in the transfer function matrix between the
residual and the unknown inputs, i.e.,

Grd(s) = QC(sI −Ac)−1E = 0 (1.44)

Once E is known, the problem is to find the matrices L and Q to satisfy (1.44), in addition to
choosing the suitable eigenvalues to optimize the FDI performances [169].
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• Disturbance Decoupling Using Left Eigenvectors Assignment

Disturbance decoupling design via EA is to assign left observer eigenvectors orthogonal to all
columns of E. This method can be briefly summarized as follows:

• Step 1: Calculate the residual weighting matrix Q such that QCE = 0

• Step 2: Determine the eigenstructure of Ac: the eigenvalues of the observer are chosen
according to the desired dynamic property of the residuals. The rows of QC must be the
nr left eigenvectors of Ac. The remaining (nx−nr) left eigenvectors will be chosen so that
one can ensure a design with good conditioning.

• Step 3: Compute the gain matrix L using an appropriate EA technique.

A detailed design procedure for the disturbance decoupling residual generator via left eigenvector
assignment is discussed in Chapter 3.

Remark 1.6. The observer feedback EA problem can be handled by means of a transformation
of the dual control form. On assignment of the right eigenvectors to the dual control problem,
these eigenvectors become the left eigenvectors of the observer system [39, 169]. The assignment
of the right eigenvectors for the control problem is a well-developed technique, see e.g., [168, 169,
177, 262].

• Disturbance Decoupling Using Right Eigenvectors Assignment

If the left eigenvector assignability conditions are not satisfied, an alternative approach can be
used is to assign the columns of the matrix E as right eigenvectors of the observer dynamics.
This approach is given by the following theorem:

Theorem 1.2 (Patton and Frank [229]). The sufficient conditions for satisfying the unknown
input decoupling requirement (for right EA) are

1. QCE = 0,

2. all the rows of the matrix E are right eigenvectors of Ac corresponding to any eigenvalues.

The assignment of the right observer eigenvectors (left eigenvector of dual controller) is a rela-
tively new problem, only few investigators have considered this problem [46, 225]. Some prelim-
inaries to the assignment method proposed in [225] is presented in the following theorem.

Theorem 1.3 (Patton and Chen [225]). A vector vi can be assigned as a right eigenvector of
Ac corresponding to eigenvalue λi ∈ Λ(Ac) only if “one” of the following necessary conditions
is satisfied:

1. vi is not the right eigenvector of A corresponding to λi and Cvi 6= 0

2. vi is the right eigenvector of A corresponding to λi and Cvi = 0.

For the right eigenvector vi of Ac = (A−LC), it is possible to write

(A−LC)vi = λivi (1.45)

and this leads to
LCvi = (A− λiI)vi (1.46)
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The assignment of vi as the right eigenvector of Ac is to find the matrix L to satisfy (1.46).
This equation has solutions only if either condition in Theorem 1.3 holds true.

Remark 1.7. If the desired observer eigenstructure is assignable (using left or right eigenvec-
tors), perfect decoupling can be achieved, otherwise the eigenvectors must be chosen to be close,
in some norm sense, to the desired eigenvectors. In this situation, the residuals also have low
sensitivity to uncertainties due to approximate decoupling

Remark 1.8. The term Ed in (1.39) can be used to describe the additive disturbance as well
as a number of other different kinds of modelling uncertainties. Examples are: noise, non-linear
terms in system dynamics, terms arise from time-varying system dynamics, linearization and
model reduction errors, parameter variations. In the following, two examples in the representa-
tion of modelling errors as additive disturbance term Ed are given.

Example 1: Consider that the system dynamics with parameter perturbations is represented by

ẋ(t) = (A+ ∆A)x(t) + (B + ∆B)u(t) (1.47)

The parameter perturbations considered in the robust control field are often approximated by

∆A ≈
na∑
i=1

αi(t)Ai, ∆B ≈
nb∑
i=1

βi(t)Bi (1.48)

where Ai and Bi are known matrices with proper dimensions and αi and βi are unknown scalar
time-varying factors. In this case, the modelling errors can be approximated by

Ed(t) = ∆Ax(t) + ∆Bu(t) =
[
A1 . . . Ana , B1 . . . Bnb

]




α1(t)x(t)
...

αna(t)x(t)
β1(t)u(t)

...
βnb(t)u(t)




(1.49)

Example 2: Consider the system matrices being functions of the parameter vector α ∈ Rnp,
i.e.,

ẋ(t) = A(α)x(t) +B(α)u(t) (1.50)

If the parameter has a perturbation around a nominal condition α = α0, this equation can be
expanded as

ẋ(t) = A(α0)x(t) +B(α0)u(t) +
np∑

i=1

{
∂A

∂αi
δαix(t) + ∂B

∂αi
δαiu(t)

}
(1.51)

In this case, the distribution matrix and unknown disturbance vector are expressed as

E =
[
∂A
∂α1

∂B
∂α1

. . . ∂A
∂αnp

∂B
∂αnp

]
(1.52)

d(t) =
[
δα1xT (t) δα1uT (t) . . . δαnpx

T (t) δαnpu
T (t)

]
(1.53)

A more detailed study of this problem can be found in [40, 226, 228].

22



Methods for Fault Detection and Isolation

1.3.2.4 Sliding Mode Observers

A special position among observer-based methods is occupied by the sliding mode observer
(SMO). SMOs differ from linear Luenberger observers in that there is a nonlinear discontinuous
term injected into the observer depending on the output estimation error. These observers are
more robust than the Luenberger-like observers, as the discontinuous term enables the observer
to reject disturbances, and also a class of mismatch between the system and the observer. The
importance of the SMOs for FDI lies in their ability to reconstruct unmeasurable signals in a
process, regardless of noise and uncertainty. SMOs force the output of the observer to exactly
track the measured system output. SMOs have a natural fault estimation property [77] since
the “equivalent output error injection” needs to replicate and cancel the fault effects so that the
output estimation error is zero.

In the work of Hermans and Zarrop [138] a SMO was designed such that, in the presence of faults,
the sliding motion is destroyed. Edwards et al. [77] used the same observer to estimate and thus
detect and isolate faults using the so-called “equivalent output error injection” concept. However,
in the presence of other disturbances (unmodelled dynamics, external disturbances, etc.), the
estimation methods described in [77] are no longer accurate. Tan and Edwards [274] proposed a
design method for the observer parameters such that the L2 gain from the disturbances to the
fault estimation is minimised. Other techniques for designing FDI and FDD algorithms using
SMOs can be found in [6].

The system model for the FDI analysis using SMO is based on a LTI system described by
{
ẋ(t) = Ax(t) +Bu(t) +Efafa(t,u) +Ed(t,y,u)
y(t) = Cx(t)

(1.54)

where d(t,y,u) ∈ Rnd represents the disturbance (uncertainty) signal. The matrix E ∈ Rn×nd
provides the disturbance structure. Actuator faults fa(t,u) ∈ Rnfa are assumed to enter in the
system through a distribution matrix Efa ∈ Rn×nfa .

A sliding mode observer for actuator faults proposed by Tan and Edwards [274] has the struc-
ture {

ż(t) = Ax(t) +Bu(t)−Gley(t) +Gnν(t)
ey(t) = Cz(t)− y(t)

(1.55)

with a typical Luenberger gain matrix Gl and the addition of a gain Gn associated with the
nonlinear injection term. The signal

ν(t) = −ρ0(t,y,u)sign(ey(t)) (1.56)

is the “output error injection” signal which forces the state estimation error to reach the sur-
face

S = {e : Ce = 0}
in a finite time, and subsequently maintains the motion on this surface. The actuator fault
reconstruction is defined as

f̂a(t) = Wν(t) (1.57)

where the static gain W ∈ Rnfa×nm must be selected by the designer.

A sensor fault problem can be posed and solved in a similar fashion. Consider a system subject
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to sensor faults f s ∈ Rnfs given by

ẋ(t) = Ax(t) +Bu(t) +Ed(t,y,u) (1.58)

y(t) = Cx(t) + f s(t) (1.59)

The sensor fault reconstruction can be posed in a similar fashion. The approach suggested in
[274] is to transform the problem representation in (1.58) and (1.59) into the actuator formula-
tion. This can be accomplished by first filtering the output

żf (t) = −Afzf (t) +Afy(t) (1.60)

where Af is a positive real matrix of time constants. Augmenting (1.58) with the filtering
equation in (1.60) yields





[
ẋ(t)
żf (t)

]
=
[
A 0
AfC −Af

] [
x(t)
zf (t)

]
+
[
B

0

]
u(t) +

[
0
Af

]
f s(t) +

[
E

0

]
d(t)

yf =
[

0 I
] [ x(t)

zf (t)

] (1.61)

Now f s appears as an actuator fault for the augmented system. Therefore, the observer structure
for actuator faults in (1.55) can be used for the augmented system for sensor fault reconstruc-
tion.

In the further discussion on SMOs, only actuator faults are considered. If Efa from (1.54) has
full column rank and nm ≥ nfa , then if ((A−GlC),Efa ,WC) can be made passive2 by choice
of the gainsW and Gl, a sliding mode observer as described in (1.55)-(1.57) can be obtained so
that the signal z estimates the unmeasurable states despite the presence of the fault. In (1.56)
the gain ρ0(t,y,u) must be sufficiently large to maintain a sliding motion in the presence of the
faults and disturbances.

The observer synthesis is setup to produces a fault reconstruction signal f̂ that minimizes the
effects of uncertainty and noise on the estimation error in an L2-gain fashion. The reconstruction
signal in (1.57) can be designed such that, if d = 0 then ef = f − f̂ and the L2-gain from d

to the estimation error ef = f − f̂ is minimised. This is achieved by casting the problem of
synthesizing the observer gains Gl, Gn and W as a convex optimization problem using LMI
software. Further details can be found in [274].

As in typical L2 minimisation problems, there are tradeoffs between robustness and performance
as part of the design process. Obviously the observer can be designed to be robust against any
uncertainty, but it can be over designed and the observers become insensitive to small magni-
tude and slow varying faults (and causes missed-alarms). However weighting the performance
more over the robustness, can make the observer too sensitive to noise and uncertainty thus
producing false alarms. Therefore careful tradeoffs between robustness and performance need
to be made.

To summarize, the design procedure can be characterized by the following three steps:

• Step 1: Obtaining the model information A,B,C, including the uncertainty matrix E
2This is the assumption made in [274] and can be understood as a requirement that (A,Efa ,C) is minimum

phase and of relative degree one.
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and the fault distribution Efa .

• Step 2: Selecting the observer gains to guarantee the sliding surface is reached in finite
time and that the motion when constrained to the surface is stable. This can be achieved
by obtaining a SMO canonical form through state transformation, see e.g., [6, 77, 273, 274].
The observer gains Gl and Gn which minimize the effect of noise and uncertainty on the
fault estimation is obtained using efficient LMI methods.

• Step 3: The fault signal reconstruction component is achieved through the gainW which
is obtained as part of the LMI optimization process.

Remark 1.9. From the isolation point of view, the above introduced SMO is somewhat different
from other typical model based residual generation schemes. There are two types of estimation
from the SMO; the state (or output) estimate and the fault reconstruction/estimate. The fault
reconstruction signal tries to estimate the magnitude and the shape of the faults and it is therefore
able to distinguish small and short term faults from any noise or uncertainty. Also fault isolation
is inherent. If the fault estimates are “nonzero”, faults are present, and the larger the fault
estimation size, the more severe the faults. As shown in [3], in practice a small threshold is
needed during a fault-free condition to allow for small variations, model mismatches and noise
in the system.

Remark 1.10. It should also be noted, that there are sliding mode observer designs in the
literature which deal directly with nonlinear systems. Although the design synthesis is much
more challenging, for well understood nonlinear systems such as aircraft and spacecraft, these
ideas can be applied directly.

• Application to the Mars Express Spacecraft

A study presented in [5] is concerned with the development of an FDI scheme for the Mars
Express Spacecraft (for more information see Section 1.3.2.2) operating in Sun Acquisition Mode
(SACM). In this study a design of sliding mode observers for gyro and thruster fault detection
and isolation is investigated. The main objective is to distinguish between the actuator and
sensor faults which may occur during the SACM manoeuvre, and in the case of the later, to
isolate the faulty gyro. A Monte Carlo campaign has been performed to assess the performance
and the robustness of the SMO for the rigid satellite model with variations in initial conditions
and parametric uncertainty. No effort were made to implement a threshold logic. In [201] this
problem was further investigated and a fixed threshold was selected. The isolation task was
achieved by a direction cosine vector projection method. A last square approach for an over-
determined system was presented in [202] and used to detect fault in the gyros. A generalized
bank of SMOs was used to isolate all possible sensor faults.

1.3.2.5 Geometric Approaches

The first concepts of geometric system theory were pioneered by Basile and Marro [9] and
Wonham and Morse [299]. The concept was later extended to nonlinear systems where tools
from differential geometry and Lie-algebra are primary used. In many cases, it is possible to
convert the nonlinear and LTV problems into more easier LTI ones. The basic idea of the
geometric approaches is to underline the problem of the residual generation for FDI with a
given geometric interpretation.
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The geometric approach to design detection filters was initiated by Massoumnia [190] for LTI
systems. The geometric approach of the UIO problem was first introduced in [14] and different
solutions were proposed in [94]. In particular, in Massoumnia [190] it was shown that the residual
generation problem can be successfully solved for LTI system, using the geometric concept of
unobservability subspaces. The concepts of invariant subspaces, separability and simultaneous
detectability of the faults have been used for building a LPV FDI design procedure, see [23].
Related results in FDI filter design for LTV systems can be found in [74], for bilinear systems
in [117] and the inversion-based approach for LTI systems in [75, 271].

Consider the state space description of the nominal LTI system subjected to multiple faults




ẋ(t) = Ax(t) +Bu(t) +
nf∑

i=0
Rifi(t)

y(t) = Cx(t)
(1.62)

where Ri is the known fault direction vector via the unknown function fi, representing the fault,
enters. It is assumed that (A,C) is an observable pair. The goal is to detect and isolate faults
by applying a residual generator based on the full-order state observer, as in (1.40) but with
D = 0.
Definition 1.1 (Edelmayer et al. [74]). A detection filter capable of detecting and isolating
multiple faults is a state observer of the form as given in (1.40), whose static gain L is designed
in such a way that the effects of the failure modes fi are assigned to independent subspaces
Wi ∈ Rnx , different from zero. In geometrical terms

ImRi ⊆ Wi, (A−LC)Wi ⊆ Wi, i = 1, . . . , nf (1.63)

such that
ImRi ∩KerC = 0 (1.64)

Moreover, in the output error space, the output image of Wi is decoupled, i.e.,

CWi ∩
nf∑
i 6=j
CWi = 0, i, j = 1, . . . , nf (1.65)

The closed loop transition matrix (A−LC) is required to be stable, more precisely its eigenvalues
λi, i = 1, . . . , nx have all negative real parts assuming its egenvalue spectrum Λ is arbitrarily
assignable with only conjugate symmetry constraints, i.e., max{<(λi) : λi ∈ Λ(A − LC) < 0},
∀i = 1, . . . , nx.

Relations (1.63)-(1.65) are respectively the detectability, input observability and output separa-
bility principles of the design. The subspacesWi, i = 1, . . . , nf are called detection spaces of the
filter. Relation (1.63) shows thatWi is (C,A)-invariant subspace of the pair (A−LC,Ri). For
practical reasons, it is important to use extremal (C,A)-invariant subspaces in the design. It is
advantageous to find the family of the smallest possible subspaces Wi satisfying the principles
(1.63)-(1.65).

The (C,A)-invariance property of Wi implies that the controllable space of Ri with respect to
the closed-loop transition matrix (A−LC) is the infimal (C,A)-invariant subspace containing
ImRi, i.e., inf〈A − LC|Ri〉 3. This will be denoted by W∗i (Ri) in the sequel. That is to say,

3〈A− LC|Ri〉 stands for the family of all (A− LC)-invariant subspaces bounded to the subspace Ri.
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the family of the controllable subspaces of (A−LC|Ri) is a subfamily of the (C,A)-invariant
subspaces of the filter.

Recall that the controllability subspace is the set W∗ ⊆ Rnx of initial points x(0) that can be
controlled by appropriate state feedback K to the origin of the state-space in finite time. W∗ is
always a linear subspace of Rnx . When W∗ = Rnx , the system is said to be controllable. More
precisely, W∗i is the controllable subspace of the pair (A−LC|Ri), i.e.,

W∗i = 〈A−LC|ImRi〉 (1.66)

In order to compute the minimal (C,A)-invariant subspaces a recursive algorithm can be used
[298]

W l+1
i = ImRi +A(W l

i ∩KerC), W0
i = 0 (1.67)

and then the infimal subspace W∗i is given by lim
l→∞
W l
i .

• Inversion-based Detection Filter Design

A view of the inversion-based input reconstruction, with special emphasis to the aspects of fault
detection and isolation by using invariant subspaces, and the results of classical geometrical
system theory is provided in the next. The power of this kind of geometric approach is due to its
direct treatment of the fundamental structural questions at the root of many important synthesis
problems in control and systems theory such as the properties of inverse generation.

The existence of a left inverse for an LTI system is introduced first.

Proposition 1.1 (Wonham [298]). The system Σ : (A,B,C) given in state space form is left
invertible if and only if A is monic (i.e., it has full column rank) and

V∗ ∩ ImB = 0 (1.68)

where V∗ is the supremal (A,B)-invariant subspace in KerB and F is the feedback, such that
(A−BF )V∗ ⊆ V∗ (i.e., (A−BF ) is maximally unobservable).

This proposition, in particular, is equivalent to the condition that the largest controllability
subspace of KerC (noted X ∗4) is zero. The subspace V∗ can be calculated by using the (A,B)-
invariant subspace algorithm without explicitly constructing F .

Proposition 1.2 (Edelmayer et al. [75]). Consider the left invertible system Σ : (A,B,C).
The dynamics of the (left) inverse can be given as the restriction of (A−BF ) on V∗,

Ainv = (A−BF )|V∗ (1.69)

The dimension of the state space for the inverse system is ninv = dimV∗ = nx − np(p), where
nx is the state dimension of Σ, p is its (vector) relative degree and np(p) =

∑m
i=1 pi.

LTI inversion design steps: the inverse dynamics of the system (A,B,C) can be obtained
thanks to the algorithmic procedure described in the following.

4Note that, in the control literature, the controllability subspace is conventionally denoted by R. The different
notation is due to the possible mismatch with the subspace of the faults.
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• Step 1: Calculate V∗ by using the (A,B)-invariant subspace algorithm [73]

• Step 2: Choose a basis for V∗ and compute the state transformation matrix T , i.e.,

z = Tx =
[
ξ

η

]
, ξ ∈ V∗⊥, η ∈ V∗ (1.70)

such that
T−1 = [ B Ξ V ∗ ], ImΞ ⊂ V∗⊥ (1.71)

where V ∗ is the insertion map of V∗. In a new coordinate system the state matrices will
take the form

Ā =
[
Ā11 Ā12
Ā21 Ā22

]
, B̄ =

[
B̄1
0

]
, C̄ =

[
C̄1 0

]
(1.72)

Since B̄1 is monic there exists a unique matrix F 2 such that B̄1F 2 = −Ā12.

• Step 3: Calculate the matrix S = [c̄T1 , . . . , (c̄1Ā
p1−1
11 )T , . . . , (c̄mĀ

pm−1
11 )T ]T

• Step 4: Introduce the vector of derivatives

vinv(t) =
[
wT (t), (y(p1)

1 (t))T , . . . , (ypmny (t))T
]T

(1.73)

as the input of the inverse systems, where

w(t) =
[
y1(t), . . . , y

(p1−1)
1 (t), . . . , yny(t), . . . , y

(pm−1)
ny (t)

]T
(1.74)

Then, the dynamics of the inverse is obtained from

η̇(t) = Ainvη(t) +Binvvinv(t) (1.75)

using the definitions

Ainv = Ā22, Binv =
[
Ā21S

−1

0

]
(1.76)

Finally, the input function u can be obtained from the following equation

u(t) = Cinvη(t) +Dinvvinv(t) (1.77)

where Cinv = F 2, and

Dinv = Z −
[
SĀ11S

−1 0
0 0

]
(1.78)

The matrix Z is given by

Z =




Z1 0 . . . 0 E1
0 Z2 . . . 0 E2
... . . .
0 0 . . . Znp Enp



, Zi =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
... . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 0



, Ei =

[
0
eTi

]
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where ei being the ith unit vector in Rnp .

Remark 1.11. In some situations the derivatives of certain output signals of the system are
directly measured, and these can be utilized in this approach. This procedure can be used in some
cases when other approaches like the (C,A)-invariant subspace based detection filter design
method fails to provide a stable filter. The cost at which it can be obtained is that one needs to
use the integrals of certain output signals in the residual generators as artificial inputs.

Remark 1.12. The method described in this section considers linear geometric approaches.
However nonlinear approaches have been also developed by some authors. The interested reader
can refer to the non exhaustive list of publications [24, 57, 73, 75].

1.3.3 Parameter Identification-based Approaches

To estimate the internal (states or physical parameters) and/or external (outputs) variables of
the system, one is led to apply estimation or filtering techniques. Consider the dynamics of
a nonlinear stochastic system expressed in the following state-space discrete time representa-
tion {

xk = fk
(
xk−1,uk−1

)
+wk

yk = gk
(
xk,uk

)
+ vk

(1.79)

where wk and vk are independent zero-mean white noise sequences. The vector xk ∈ Rnx , uk ∈
Rnu and yk ∈ Rny denotes the state, input and output vector, respectively. The vector function
fk and gk describes the trajectory dynamic of the state and the output vector, respectively.
Both fk and gk are assumed to be continuous and differentiable functions.

In general, considering the fault detection problem, the results of the estimation procedure can
be used in two different ways:

• If one looks at the estimated outputs, the approach would be to form residual signals
defined by the difference between the real measurements and the estimated output vector.
Then performing various tests on the resulting innovation sequence, which can be used
for hypothesis testing [70]. The decision test may be a simple threshold logic, or a more
complex mechanism if the probabilities of wrong decisions are a priori imposed. Commonly
used statistical test are the sequential Wald’s test or the Pearson’s test [10, 12].

• If one is interested in monitoring of the internal variables (states and/or physical parame-
ters), a consistency check in the parameter or state space can be done in order to monitor
(detect) the unusual changes in the system behavior. A geometric solution to derive a
CR2 decision test can be found in [318].

Basically, an estimation problem rests in stochastic estimation of the state vector xk via its a-
posteriori probability density p(xk|Y 1:k), where Y 1:k = {y1,y2, . . . ,yk} is a matrix containing
the past measurements collected on the system and available at time k. According to the Bayes’
theorem, the a-posteriori density p(xk|Y 1:k) can be evaluated using the following recursion

p
(
xk|Y 1:k

)
=
p
(
yk|xk

)
p
(
xk|Y 1:(k−1)

)

p
(
yk|Y 1:(k−1)

) (1.80)
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where p(xk|Y 1:(k−1)) is obtained using the Chapman-Kolmogorov’s relation [167, 221]

p
(
xk|Y 1:(k−1)

)
=
∫
p
(
xk|xk−1

)
p
(
xk−1|Y 1:(k−1)

)
dxk−1 (1.81)

and p(yk|Y 1:(k−1)) is a normalization constant defined by

p
(
yk|Y 1:(k−1)

)
=
∫
p
(
yk|xk

)
p
(
xk|Y 1:(k−1)

)
dxk (1.82)

Solving the recursive relation (1.81) provides an optimum solution to the filtration problem in
the Bayesian sense [175].

Generally, the optimal estimation of (1.81) in finite time horizon is practically not possible
[167, 175]. Solving this problem leads to different approximation techniques. Some of them will
be introduced in the following paragraphs.

Remark 1.13. Note that if the functions f and g are linear, and ones is interested in the
estimation of an augmented state vector (including some physical parameters), then the filtering
problem is naturally nonlinear due to the coupling between the states and the parameters.

1.3.3.1 Extended Kalman Filter

An approach commonly used to solve the estimation problem given by (1.81) rests in using the
Extended Kalman Filter (EKF). This approach is based on linearization of f and g using the
first-order Taylor expansion around the current estimate of x̂k|k [50, 208].

The EKF estimation algorithm is based on the discrete time nonlinear state-space representation
given by (1.79), where wk and vk are the uncorrelated process and measurement noise, respec-
tively, that are assumed to be white Gaussian random processes with zero mean E{wk} = 0,
E{vk} = 0 and with covariance matrix

E

{[
wi

vi

] [
wT
j vTj

]}
=
[
Q 0
0 R

]
δij

E {x0} = x̄0, E
{

(x0 −m0)(x0 −m0)T
}

= P 0

where x0 is a stochastic state vector with mean x̄0 and covariance matrix P 0 uncorrelated with
the state noise wk and the measurement noise vk vectors.

Following the method proposed in [208], the problem of recursively estimating the state vector xk
can be formulated as a nonlinear filtering problem that minimises the conditional mean-square
error, i.e.,

x̂k = arg minE
{
x̃kx̃

T
k |Y 1:k

}
(1.83)

where x̃k = xk− x̂k is the state estimate error. The recursive algorithm of the extended Kalman
filter is then given by the recursive application of the prediction-correction steps given by the
following equations:

• The prediction step

x̂k|k−1 = fk
(
x̂k−1|k−1,uk

)
(1.84)
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P k|k−1 = Ak−1P k−1|k−1A
T
k−1 +Gk−1QG

T
k−1 (1.85)

• The correction step

Kk = P k|k−1C
T
k

(
CkP k|k−1C

T
k +HkRH

T
k

)−1 (1.86)

ŷk = gk
(
x̂k|k−1,uk

)
(1.87)

x̂k|k = x̂k|k−1 +Kk

(
yk − ŷk

)
(1.88)

P k =
(
I −KkCk

)
P k|k−1 (1.89)

where

Ak−1 = ∂f
∂x (x̂k−1|k−1), Ck = ∂g

∂x(x̂k|k−1), Gk−1 = ∂f
∂w (wk−1), Hk = ∂g

∂v (vk)

characterize the system matrices, linearized and evaluated at the current value. Matrix Kk

represents the non-stationary Kalman gain calculated at time instance k.

The main issue of this approach is the linearization process, which could lead to highly unstable
filter performance if the time-step intervals are not sufficiently small. On the other hand, small
time-step intervals could lead to computational overhead. One should also mention that the
derivation of the Jacobian matrices are nontrivial in most practical cases and may lead to signif-
icant implementation burden. Some improved versions of the EKF were developed to avoid these
drawbacks. Mentioned may be the Second-Order EKF (SOEKF) [252], which by calculating the
Hessian matrix, can reduce the risk of divergence of the estimator, but against a larger compu-
tational cost. Another alternative is to use polynomial approximation techniques for nonlinear
functions [208]. In comparison with the Taylor approximation, it does not require Jacobian
calculations, but only function evaluations. This allows for an easier implementation.

Remark 1.14. Although this method presents some optimality proofs, the key feature remains
the a-priori choice of the covariance matrices Q and R. The process covariance matrix Q
controls the flexibility of the model whereas the measurement covariance matrix R controls the
flexibility of the measurement equations.

1.3.3.2 Particle Filtering

The particle filtering approach [65, 178, 242], also called the “Condensation Algorithm” or the
“Markov Chain Monte Carlo Method” is a sequential probabilistic technique for approaching the
distribution of the conditional probability of the state p(xk|Y 1:k). The key idea is to represent
(at any time instance k) the required posterior density function by a set of N random particles
pi, i = 1, . . . , N with associated weights and to compute estimates based on these samples and
weights. At time instance k, each particle pi is characterized by a pair {xik,wi

k}Ni=1 (see Fig. 1.5
for illustration) where xik represents the possible trajectory of the state (known as the support
points) and wi

k denotes the posterior density to this trajectory (weights). The particles evolve
according to the state equation of the system (prediction step) and weights are adjusted at each
iteration k depending on the observations (correction step).

Consider that the monitored system (1.79) is a Markov process5, where wk and vk are the
5A Markov process is a stochastic process with the Markov property, where the distribution of future states

depends only on the present state and not on how it arrived in the present state. It is distinguished from a Markov
chain in that the states of a Markov process may be continuous as well as discrete.
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Figure 1.5 – Evolution of the conditional probability density

process and measurement noise, not necessary Gaussian. The weights are normalized such that
N∑
i=1
wi
k−1 = 1. Then, the posterior density p(xk−1|Y 1:(k−1)) at k − 1 can be approximated

as

p
(
xk−1|y1:(k−1)

) '
N∑

i=1
wi
k−1δ(xk−1 − xik−1) (1.90)

where δ(·) represents the Dirac delta measure. The recursive prediction-correction algorithm
can be summarized as follows (the interested reader can refer [66]):

• The prediction step

If p(xk,xk−1|Y 1:(k−1)) is the joint Probability Density Function (PDF) of the state, then the
marginal PDF of the state xk can be written as follows

p
(
xk|Y 1:(k−1)

)
=
∫
p
(
xk,xk−1|Y 1:(k−1)

)
dxk−1 (1.91)

According to the rule p(x, y) = p(x|y)p(y) and taking up the assumption that the monitored
system is described by a Markov process, it follows that p(xk,xk−1|Y 1:(k−1)) = p(xk|xk−1)
which makes it possible to reformulate the joint PDF (1.91) as follows

p
(
xk|Y 1:(k−1)

)
=
∫
p
(
xk|xk−1

)
p
(
xk−1|Y 1:(k−1)

)
dxk−1 (1.92)

Using the approximation given by equation (1.90), the above equation can be rewritten as
follows

p
(
xk|Y 1:(k−1)

)
=

N∑

i=1
wi
k−1p(xk|xik−1) (1.93)

and makes it possible to write the predicted PDF p(xk|Y 1:(k−1)) according to the following
relation
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p
(
xk|Y 1:(k−1)

)
=

N∑

i=1
wi
k|k−1δ(xk − xik|k−1) (1.94)

where xik|k−1 is obtained from independent realizations of the transition probability law p(xk|xik|k−1)
where wi

k|k−1 = wi
k−1.

• The correction step

Consists in passing the predicted PDF law p(xk|Y 1:(k−1)) with the conditional PDF law p(xk|Y i:k)
by use of the likelihood p(yk|xk,Y 1:k). The conditional PDF can be then approximated by an-
other Dirac delta support xik = xik|k−1 such that

p
(
xk|y1:k

)
=

N∑

i=1
wi
kδ(xk − xik) (1.95)

wi
k =

wi
k|k−1p(yk|xk,Y 1:k)

N∑
i=1
xi
k|k−1p(yk|xk,Y 1:k)

, i = 1, 2, . . . , N (1.96)

Remark 1.15. However, the EKF always approximates p(xk|Y 1:(k−1)) to be Gaussian. If the
true density is non-Gaussian, then a Gaussian can never describe it well. In such cases, particle
filters6 will yield an improvement in performance in comparison to that of an EKF [8].

1.3.3.3 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) represents a derivative-free alternative to the EKF (dis-
cussed in the previous Section 1.3.3.1), and provides superior performance with an equivalent
computational complexity [124, 288]. The state distribution is again represented by Gaussian
random variables, but is now specified using a minimal set of careful chosen sample points. The
sample points completely capture the true mean and covariance of the Gaussian distribution,
and when propagated through the true nonlinear system, captures the posterior mean and co-
variance accurately to the 2nd order (Taylor series expansion) for any nonlinearity. This property
is achieved by the unscented transformation. The idea is then to approximate the a-posteriori
PDF p(xk|Y 1:(k)) by a set of (2n + 1) points, called “sigma points”, chosen so that some of
their statistical properties (e.g., mean, covariance, etc.) are identical to those of the a-priori
distribution. These points are then propagated through the system dynamics, through the ana-
lytical expressions of f and g given by (1.79), in order to evaluate the mean and the covariance
matrix of the predicted state. The algorithm of the unscented transformation is introduced in
[288].

Remark 1.16. It should be noted that this transformation is very similar to the Monte Carlo
used as part of the particle filtering. The main difference lies in the fact that the Sigma Points
(particles in the case of particle filtering) are not random, but deterministically chosen in order
to estimate the distribution of the state with a minimum number of points.

Based on the unscented transformation and considering the random variable xak ∈ Rη defined
as the concatenation of the state vector xk, of the process noise wk and of the measurement

6A number of different types of particle filters exists in the literature, for a more details see [8]
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noise vk, i.e., xak = [xTk ,wT
k ,v

T
k ]T where η = (2n + m), it follows that the unscented Kalman

filter can be described as the recursive form of the unscented transformation obtained through
the correction equation of the Kalman gain [158].

Considering the initial mean and covariance matrix of xak as

x̄a0 = E {xa0} = [E{x0}, 0, 0]T , P a
0 = E

{
(xa0 − x̄a0)(xa0 − x̄a0)T

}
=



P 0 0 0
0 Q 0
0 0 R




where the initial distribution of the Sigma points is given by

χa,ik−1 =
[
x̄a,ik−1 x̄a,ik−1 ±

√
(η + λ)P a,i

k−1

]
, i = 1, . . . , 2η (1.97)

then the prediction-correction algorithm of the UKF is given by the following equations

• The prediction step

χik|k−1 = fk
(
χik−1,uk

)
(1.98)

x̄k|k−1 =
2η∑

i=0
wm
i χ

i
k|k−1 (1.99)

P k|k−1 =
2η∑

i=0
wc
i [χik|k−1 − x̄k|k−1][χik|k−1 − x̄k|k−1]T (1.100)

yik|k−1 = hk
(
χik−1,uk

)
(1.101)

ȳk|k−1 =
2η∑

i=0
wm
i y

i
k|k−1 (1.102)

• The correction step

P ȳkȳk =
2η∑

i=0
wc
i [yik|k−1 − ȳk|k−1][yik|k−1 − ȳk|k−1]T (1.103)

P x̄kȳk =
2η∑

i=0
wc
i [χik|k−1 − x̄k|k−1][yik|k−1 − ȳk|k−1]T (1.104)

Kk = P x̄kȳkP
−1
ȳkȳk

(1.105)

x̄k = x̄k|k−1 +Kk(yk − ȳk|k−1) (1.106)

P k = P k|k−1 −KkP ȳkȳkK
T
k (1.107)

The parameters wm
i and wc

i represent the weights associated with the Sigma points and are
set through different parameter adjustment methods. These allow control the distribution of
Sigma points around the mean and reflect the real distribution of the state (see [158] for more
details).

• Application to HL-20 Reusable Launch Vehicles

The HL-20 Re-entry Launched Vehicle (RLV) (see Fig. 1.6 for an illustration) was defined as a
component of the Personnel Launch System (PLS) mission. This has initially been designed to
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support several manned-space missions including the orbital rescue of astronauts, the Interna-
tional Space Station (ISS) crew exchange and some satellite repair missions.

Wing flap Rudder

Top hatch

Body
  flaps

Body
  flaps

Figure 1.6 – The HL-20 RLV vehicle, c©1998 NASA

In the case of RLV, actuator faults and control effectors damages may lead to substantial per-
formance degradation and instability of the closed-loop system. Information about the failed
control surface position is necessary in order to access the remaining capabilities of the vehicle
to be rotationally trimmed. Since no control surface sensors are today implemented on RLV
(because of weight and thermal constraints), the faulty actuator deflection can be considered
as an unknown input which has to be estimated. The work presented in [85] deals with this
important issue. In this work, it is assumed that the faults in on the control surfaces have been
successfully diagnosed (by any method) and thus the focus is on the fault identification prob-
lem. In order to estimate the position of the faulty actuator deflections, a nonlinear extended
Kalman-type estimator is proposed. The identification scheme is based on a modified EKF
which does not requires derivatives, leading to an easy implementation at each updating time.
A Particle Swarm-based optimization algorithm is used to derive automatically the process and
measurement noises matrices Q and R.

1.3.4 Norm-based Approach

The robust residual generation problem can also be formulated as an optimization problem,
where the sensitivity of the residuals with respect to noise and unknown disturbance is minimized
and the sensitivity with respect to faults is maximized. A good survey paper of this approach
can be found in [128, 187, 270].

1.3.4.1 The Pure H∞ Filtering Formulation

The pure H∞-based fault estimation problem is equivalent to the design problem of a (stable)
dynamic filter F (s) such that, for all model perturbations ∆ ∈ ‖∆‖∞ ≤ 1, f̂ is an optimal
estimate, in the H∞-norm sense, of the fault signal f .

It is then shown in [205] that the problem of estimation of faults can be formulated by the
synthesis scheme given in Fig. 1.7, where the transfer between the input signals u, d and f to
the output signal y, can be written by the following Linear Fractional Representation (LFR)
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Figure 1.7 – The H∞ fault estimation problem

form

y(s) = F u(s)
(
P (s),∆(s)

)


d(s)
f(s)
u(s)


 , u(s) = K(s)y(s) (1.108)

where d denotes the exogenous disturbances (including measurement noise) and f models the
faults to be estimated. The controller is placed in a feedback control loop and is assumed to be
known. The output of the filter F represents an estimate f̂ of the real fault signal f . The filter
F uses the all available signals y and u to construct the estimate signal f̂

f̂(s) = F (s)
(
y(s)
u(s)

)
(1.109)

The known Linear Time-Invariant (LTI) model is denoted by P . The block diagonal operator
∆ specifies how the modelling errors influence the system.

To achieve high FDD performance, some model-based FDD schemes include a fault model in
the design procedure. Then the design objectives, in terms of robustness and sensitivity, can be
specified by a weighting filters W f and W d as

f̃(s) = W f (s)f(s), d̃(s) = W d(s)d(s) (1.110)

Here, the fault model is represented as a colouring filter for f . In other words, f is considered
to be the result of filtering a fictitious signal f̃ through a filter W f . This filter is chosen taking
into account the frequency location of the fault to be detected, e.g., if the energy of the faults
to be detected are located at low frequencies, W f is chosen to be a low-pass filter. The same
assumptions hold for d and W d.

Now, let define the estimation error signal as e = f − f̂ . Then the design problem turns out
to be a minimization problem of the maximal gain of the closed-loop transfers from the signals
f̃ and d̃ to the fault estimation error e. In other words, the goal is to design the filter F so
that

‖T ed̃‖∞ < α, ∀∆ ∈ ∆ : ‖∆‖∞ ≤ 1 (1.111)

‖T ef̃‖∞ < β, ∀∆ ∈ ∆ : ‖∆‖∞ ≤ 1 (1.112)

where T ef̃ and T ed̃ denote the closed-loop transfer functions between e and f̃ , and between
e and d̃, respectively. α and β are two positive constants which are introduced to manage
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separately ‖T ef̃‖∞ and ‖T ed̃‖∞.

Including the weighting filtersW f andW d into the model P and using the small gain theorem,
it is straightforward to verify that the conditions (1.111) and (1.112) are satisfied if and only
if

∃F : ‖F l(P̃ ,F )‖∞ < 1, ∀∆ ∈ ∆ : ‖∆‖∞ ≤ 1 (1.113)

where F l(P̃ ,F ) denotes the lower linear fractional transformation of P̃ and F . P̃ is also deduced
from P , W f and W d by using tools of the LFR algebra.

The problem can by finally solved using two approaches developed in the research community.
The first involves the solution of a Riccati equation (see for instance [186]) and the second
approach uses linear matrix inequality (LMI) optimization techniques [315]. Since an LMI-
based approach has the advantage of eliminating the regularity restrictions attached to the
Riccati-based solution, the LMI-based approach is often preferred.

1.3.4.2 The H∞/H− Approach

The H∞/H− approach considers the problem of designing a structured residual vector r in the
following general form

r(s) = z(s)− ẑ(s) (1.114)

This residual signal is the basis for FDI and should have desired properties. Let y be a subset
of available measurements and u the control inputs, then z is defined as a linear combination
of y and u

z(s) = Myy(s) +Muu(s) (1.115)

whereMy andMu are two residuals structuring (constant) matrices of appropriate dimension.
They can also be called FDD allocation matrices.

The stable dynamical filter, F , is supposed to generate

ẑ(s) = F (s)
(
y(s)
u(s)

)
, u(s) = K(s)y(s) (1.116)

where ẑ(s) is an estimation of z(s) and K denotes the controller.

This approach is based on jointly design of the FDD allocation matricesMy,Mu and the FDD
filter F (s) such that the effects that faults have on the residual r are maximized in the H− norm
sense whilst the influence of the unknown inputs d and model uncertainties are minimized in
the H∞ norm sense. That is

max ‖T rf‖−, and min ‖T rd‖∞, ∀ω ∈ Ω (1.117)

where T rf denotes the closed-loop transfer between r and f , T rd the closed-loop transfer be-
tween r and d, and Ω is the frequency range where the energy of the faults is likely to be
concentrated.

Various design goals and trade-offs can be achieved by using the different combinations of the
norms. The main advantages are:
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• H∞ specifications are convenient to enforce robustness to model uncertainty (disturbances,
parametric uncertainties, neglected dynamics),

• H− specifications are useful for fault sensitivity requirements over specified frequency
ranges,

• H2 specifications are convenient to take into account the stochastic nature of disturbances,
and

• H2g specifications and poles assignment are convenient to tune the transient response and
to enforce some minimum decay rate of the residuals.

The H∞/H− based FDD techniques are generally reputed to give robust but conservative solu-
tions. The problem comes from the fact that, once the diagnostic filter is designed, no systematic
analysis procedure is proposed to refine and manage the design trade-offs. It is clear that if the
design method is associated with a suitable post-analysis process, an iterative refinement process
can be established to get a good balance between different design trade-offs. In addition to get
“as close as possible” to the required robustness/performance specifications, there is no reason
for the final result to be conservative. Similarly to the H∞ design and µ-analysis cycle used
in the robust control community, the method proposed in [126, 128, 131, 132, 134] provides a
solution to the aforementioned problems by providing a complete design/analysis cycle.

With regards to the design task, the procedure aims to generate a structured residual vector r
in the general form (1.114)-(1.116). With regards to the post-design analysis procedure, a test is
proposed to check if all the FDI objectives are achieved in the face of specified structured and/or
unstructured model perturbations. The problem is formulated using an appropriate performance
index, defined with respect to the effects of underlying faults on the residual signal. Testing the
performances of residual generators results in a min-max optimization problem which cannot
be formulated and solved using the classical “µ-analysis” framework. The method proposed
by [131, 132, 134] provides a remarkably powerful solution to the problem by a FDI-oriented
generalized µ-analysis procedure, denoted by the authors the µg-analysis procedure.

This method can be seen as a nice and practically “advanced” framework in which various design
goals and trades-off are formulated and managed. It corresponds to a complete design/analysis
cycle and has the following advantages:

- Systematic formulation of different design trade-offs.

- The residuals structuring matrices are jointly optimised with the dynamical part of the
FDI filter. Their role is to merge optimally the available on-board measurements and the
control signals to build the fault indicating signal.

- The control system can be included explicitly in the design.

- The µg tool is used as FDD-oriented performance measure: similarly to the µ-analysis
procedure that allows for checking the robust performance of any LTI control law, the µg
tool can be used as a general FDD-oriented performance measure for LTI model-based
fault diagnosis scheme.

To go deeper into the method, consider the following model in the LFR form placed in a feedback
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control loop (see Fig. 1.8).

y(s) = (∆(s) ∗ P (s))



d(s)
f(s)
u(s)


 , u(s) = K(s)y(s) (1.118)

The system model consists in a nominal LTI model P and a perturbation block ∆ ∈ ∆ : ‖∆‖∞ ≤
1 acting on the nominal model. ∆ describes the set of all perturbations of a prescribed structure,
i.e.,

∆ =
{
blockdiag(δri Iki , δcjIkji ,∆l)

}
(1.119)

where δri Iki , i = 1, . . . ,mr, δcjIkj , i = 1, . . . ,mc and ∆l, l = 1, . . . ,mc are known respectively as
the “repeated real scalar” blocks, the “repeated complex scalar” blocks and the “full complex”
blocks. It is assumed that all model perturbations are represented by ∆.

Figure 1.8 – The FDI filter design problem

Let f entering in ((∆(s) ∗ P (s)) ∗K) be detectable faults and the residual vector r be defined
according to (1.114)-(1.116). The goal is to derive simultaneously My, Mu and the state
space matrices of the dynamical filter L such that the residual vector r meets the following
specifications:

(S.1) - ‖T rd‖∞ < γ1, for all perturbations model ∆ ∈ ∆ : ‖∆‖∞ ≤ 1

(S.2) - ‖T rf‖− > γ2, over a specified frequency range Ω for all ∆ ∈ ∆ : ‖∆‖∞ ≤ 1

The specification (S.1) represents the worst-case robustness of the residual to disturbances d for
all specified model perturbations, in the H∞ norm sense. Under plant perturbation, the effect
that the exogenous disturbances acting on the system have on the residual, can greatly increase.
The fault detection performance may then be considerably degraded. A robust fault sensitivity
specification is then needed to maintain a detection performance level of the FDI unit. Here the
smallest gain of T rf is used to guarantee the worst-case sensitivity of the residual to faults (see
specification (S.2)). It is clear that the smaller γ1 and the bigger γ2 are, the better the fault
detection performances will be.

Generally speaking, to achieve high FDI performances, model-based FDI schemes use distur-
bance, measurement noise and fault models into the design procedure. Here, such models are
expressed in terms of shaping filters, i.e., of desired gain responses for the appropriate closed-loop
transfers. The objectives are then turned into uniform bounds by means of the shaping filters.
To proceed, letW d andW f be the (dynamical) shaping filters associated to the robustness and
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fault sensitivity objectives defined such that

‖W d‖∞ ≤ γ1, ‖W f‖− ≥ γ2 (1.120)

Assume that W d and W f are invertible (this can be done without loss of generality because
it is always possible to add zeros in W d(s) and W f (s) to make them invertible). Thus, it is
obvious that if the condition

‖T rdW−1
d ‖∞ < 1, ∀∆ ∈ ∆ : ‖∆‖∞ ≤ 1 (1.121)

is satisfied, then the robustness design specification (S.1) yields.

Now, the following proposition is needed to transform the fault sensitivity specification (S.2)
into a H∞ requirement.

Lemma 1.1 (Henry and Zolghadri [132]). Consider the shaping filter W f defined above. Let
W F be a right invertible transfer matrix so that ‖W f‖− = γ2

λ ‖W F ‖− and ‖W F ‖− > λ, where
λ = 1 + γ2. Define the signal r̃ such that r̃ = r −W F (s)f(s) (see Fig. 1.9 for easy reference).
Then a sufficient condition for the fault sensitivity specification (S.2) to hold, is

‖T r̃f‖∞ < 1, ∀∆ ∈ ∆ : ‖∆‖∞ ≤ 1 (1.122)

where T r̃f denotes the transfer between r̃ and f

Figure 1.9 – The quasi standard setup for the design of a robust fault detection filter

Using the above lemma, the H∞/H− filter design problem can be re-casted in a fictitious H∞
framework. Using linear fractional algebra and including γ1, λ,W F ,W d andK into the model
P , one can derive from (1.118) a new model P̃ (My,Mu) depending of the residual structuration
matrices My, Mu so that

(
r(s)
r̃(s)

)
=
((

∆(s) ∗ P̃ (My,Mu, s)
)
∗L(s)

)( d̃(s)
f(s)

)
(1.123)

Then by virtue of the small gain theorem, it follows that a sufficient condition is

‖P̃ (My,Mu) ∗L‖∞ < 1 (1.124)

This equation seems to be similar to a standard H∞ equation. However, this is not the case
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since the transfer P̃ (My,Mu) depends onMy andMu, which are part of the sought solution.
A solution may then consist in choosing them heuristically. However, there is no guarantee of
the optimal solution. To solve this problem, a SDP (Semi Definite Programming) formulation
is derived in [131, 132] by means on the bounded real lemma [29] and the projection lemma
[100].

Since the conditions stated by (1.122) and (1.124) are only sufficient conditions, what is the
degree of conservatism of the obtained solution (My,Mu,L(s))? The FDI filter design method
described in the previous section does not account for the structure of the model perturbation
block ∆. This means that the solution (My,Mu,L(s)) can be conservative in some cases.
Furthermore, the condition γ > 1 does not imply with certainty that the FDI filter does not
meet the desired H∞/H− specifications.

To check if the required performances are achieved, the robust test based on the generalized
structured singular value (denoted µg) proposed in [131, 133, 134] can be used. Robust stability,
i.e., stability of all models in the model set (∆(s) ∗ P ), is analyzed with the µ-function. The
real-valued function µ is the inverse of the size of the smallest destabilizing perturbation ∆ [67].
Consequently, µ-analysis guarantees stability for perturbations up to 1/µ. In a µg-problem,
the perturbation structure ∆ is divided into two parts, say ∆J and ∆K , so that ∆J satisfies a
maximum norm constraint and ∆K a minimum gain constraint [134]. The analogous stability
result is that the system is stable for ‖∆J‖∞ < 1/µg and for ‖∆K‖∞ > µg.

To formalize, consider a block structure ∆ = {diag(∆J ,∆K)} and a complex valued matrix

N =
(
NJJ NJK

NKJ NKK

)
(1.125)

partitioned in accordance with ∆ = {diag(∆J ,∆K)} that satisfies the closed-loop equations

z = Nv, v = ∆z, z =
(
zJ
zK

)
, v =

(
vJ
vK

)
(1.126)

The µg-function is a positive real-valued function of the matrix N and the specified block
structure ∆ defined according to

µg∆(N) = max
‖v‖=1

{
γ : ‖vj‖γ ≤ ‖zj‖, ∀j ∈ J‖vk‖ ≥ ‖zj‖γ, ∀k ∈ K

}
(1.127)

The µg function is defined in a domain dom(µg) given by

N ∈ dom(µg) iff NKKvK = 0⇒ vK = 0 (1.128)

which is equivalent to a nontrivial solution, i.e., the maximisation part in the µg problem is
finite.

To solve the robust fault sensitivity performance analysis problem with no conservativeness,
consider the block diagram depicted in Fig. 1.8 and the shaping filters W d and W f given by
(1.120). Including K, My, Mu, L and the shaping filtersW d andW f into the model P leads
to the set up described by the block diagram shown in Fig. 1.10. Disturbance signald̃ is defined
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Figure 1.10 – The generic structure of robust detection performance analysis problem

as in Fig. 1.9 and f̃ is a fictitious signal defined according to

f̃(s) = W f (s)f(s) (1.129)

The filter performances analysis problem over the plant perturbations Λ ∈ Λ is then a min-max
gain problem over the specified frequency grid Ω. This problem can be formulated as

sup
ω∈Ω

σ
(
T rd̃(jω)

)
< 1, ∀∆ ∈ ∆ : ‖∆‖∞ ≤ 1 (1.130)

inf
ω∈Ω

σ
(
T rf̃ (jω)

)
> 1, ∀∆ ∈ ∆ : ‖∆‖∞ ≤ 1 (1.131)

where T rd̃ and T rf̃ denote respectively the closed loop transfer between r and r̃, and between
r and f̃ . The following theorem gives the solution of the robust fault sensitivity analysis prob-
lem.

Theorem 1.4 (Henry and Zolghadri [132]). Consider the model structure depicted in Fig. 1.10

and partition N according to N =
(
N11 N12
N21 N22

)
, where N22 denotes the transfer between the

signals r and f̃ . Let sup
ω
µ∆ (N11(jω)) < 1 where ∆ = {diag(∆,∆d)} where ∆d ∈ Cdim(d̃)×dim(r)

is a fictitious plant perturbation block introduced to closed the loop between r and d̃, and let
N ∈ dom(µg). Then a necessary and sufficient condition for (1.130)-(1.131) to hold is

sup
ω∈Ω

µg∆̃ (N(jω)) < 1 (1.132)

The block structure ∆̃ is defined according to ∆̃ =
{
diag(∆̄,∆f )

}
, where ∆f ∈ Cdim(f̃)×dim(r) is

a fictitious uncertainty block introduced to close the loop between r and f̃ .

The requirement sup
ω
µ∆ (N11(jω)) < 1 is equivalent to the maximum norm constraint in (1.130)-

(1.131) is satisfied over the block structure ∆, which is strictly equivalent to the robustness
performance specification (S.1), i.e., ∀∆ ∈ ∆ : ‖∆‖∞ ≤ 1.

Because this theorem involves a necessary and sufficient condition which takes into account the
structure of the model perturbations ∆, the robust sensitivity performance (i.e., the specification
(S.2)) can be tested by calculating the µg function of N over the block structure ∆̃. Compu-
tationally inexpensive upper and lower bounds have been developed in [199]. If the bounds are
equal, then an exact value of µg has been found. An upper bound of µg can be formulated as a
convex optimization problem, which results in checking a LMI feasibility [128]. A lower bound
algorithm from the “Power Algorithm” family is also proposed in [199], which seeks to optimize
∆J and ∆K explicitly.
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Remark 1.17. An important point regarding the robust fault sensitivity test given by (1.132) is
that the convergence of the upper bound is much more critical than the lower, as the problem is
to check if µg (or any upper bound) is below 1 or not.

Remark 1.18. The H∞/H− technique has been extended within the LPV setting in a numerous
recent papers. These techniques consider both the so-called polytopic [113, 130, 137] and the LFR
[129, 130, 137] formalism.

• Application to Space Systems

– Satellite Microscope

Microscope is a satellite that has the mission of testing the equivalence principle, which
postulates the equality between gravitational mass and inertial mass with a resolution
almost 3 orders of magnitude more than the best tests so far performed on Earth, see
Fig. 1.11 for an illustration performed by the CNES-France. To control its trajectory,
Microscope uses the coupling of six ultra-sensitive accelerometers, a stellar sensor and a
very precise electric propulsion system composed by 12 Field Emission Electric Propulsion
(FEEP) thrusters. The mission can be in danger if a FEEP thrusters fault occurs, since
the satellite may not compensate for non-gravitational disturbances (i.e., atmospheric drag
and solar radiation) which are indispensable prior conditions for its mission: testing the
Equivalence Principle.

Figure 1.11 – The Microscope satellite, c©2006/2012 CNES

A solution to this problem was proposed in [126], where a bank of 12 H∞/H− residual
generators was used for FDI purposes. To be more precise, the design was done so that
the sensitivity level of the ith residual with respect to the ith FEEP thruster fault fi is
maximised in the H− norm sense, whilst guaranteeing robustness against measurement
noises and spatial disturbances in the H∞ norm sense. Nonlinear simulations show that,
despite the fact that the considered faults are fully compensated by the control law, the
faults are successfully detected and isolated.

– The HL-20 RLV

A HL-20 reusable launch vehicle (RLV) is a launch system which is capable of launching a
launch vehicle into space more than once (for more information see the application para-
graph of Section 1.3.3.1). A typical atmospheric re-entry for a medium or high Lift/Drag
(L/D) vehicle consists of performing three successive flight phases. During the last phase
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of the atmospheric reentry mission (the landing phase), control is achieved using only
aerosurfaces, and the occurrence of faults is a critical issue as they could lead quickly
to vehicle-control loss. The time delay to engage recovery actions is therefore very lim-
ited, and so, a reliable and robust FDI unit appears to be a key feature in the overall
system-health monitoring.

Figure 1.12 – Artist’s concept of an HL-20 at a space station, c©1992 NASA

The work presented in [88] deals with any type of faults in the wing flap actuators during
the landing phase. The strategy proposed by the authors consists of a bank of two H∞/H−
fault detection filters that are designed so that a given filter is made robust against mea-
surement noise, guidance reference signals, winds turbulence, and faults in a given wing
flap actuator, whilst remaining sensitive to all faults in the other wing flap actuator. For
the purpose of estimating the position of the faulty control surfaces, the nonlinear EKF
method presented in [85, 86] is used.

– LISA Pathfinder

The LISA Pathfinder (LPF) will pave the way for a major ESA/NASA mission planned
for the near future: LISA (Laser Interferometer Space Antenna), aimed at detecting low-
frequency gravitational waves of very massive cosmic objects (e.g., black holes) from space.
The primary scientific objectives of the LPF experiment mainly consists in placing two test
masses in a nearly perfect gravitational free-fall, and of controlling and measuring their
motion with unprecedented accuracy of about 3 × 10−14 m/s2/

√
Hz in a measurement

bandwidth between 1 mHz and 30 mHz.

Among key technologies to be tested, attractive and important features rely on high accu-
racy electrostatic-based inertial sensors, high resolution laser interferometer, star trackers.
The electrostatic actuation system consists of a set of 12 FEEP thrusters and of a set
of 8 micro-Newton colloidal thrusters in charge of controlling the spacecraft and the test
masses during the experiment phase. The Fig. 1.13 illustrates the LPF spacecraft and a
internal view of the LISA technology package consisting of the two test masses, the optical
bench, and the metrology systems.

The colloidal thrust system is a real cornerstone for the success of the experiment and the
occurrence of faults could lead to significant experiment objectives degradation or mission
unavailability according to the in-placed controllers fault accommodation capabilities. Fal-
coz et al. [87] considered the problem of faults affecting the micro-Newton colloidal thrust
system of the LPF experiment. The first FDI scheme consists of a bank of eight Kalman-
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Figure 1.13 – LISA Pathfinder and its technology package, c©2011 ESA

based observers and the second strategy is based on a bank of eight H∞/H− filters to
generate residuals robust against spatial disturbances (i.e., third-body disturbances, J2
disturbances, atmospheric drag and solar radiation pressure), measurement noises and
sensor misalignment phenomena, whilst guaranteeing fault sensitivity performances.

– Telecom Satellites

The FDIR strategies used in the telecommunication satellite market requires a strong ro-
bustness and minimization of mission outage. One of the most fault sensible subsystem is
the Attitude and Orbit Control System (AOCS) that needs to be more deeply investigated.
The telecommunication satellite consists of a set of Gyro (measuring roll and yaw axis an-
gular rates) and IRES (roll and pitch attitude angles) sensors. A typical telecom satellite
is also equipped with 3 reaction wheels and two chains of 7 thrusters (10N) to control
the position. The industrial reconfiguration logic rest in cold redundancy, i.e., the faulty
thruster chain is passivated and switched on the redundant thruster chain. The develop-
ment of robust and reliable model-based FDI rest in quick thruster fault detection during
the station keeping manoeuver to limit the mission outage, as well as in improvement of the
fault coverage in order to optimize spacecraft life cycle and telemetric bandwidth saving.
A common FDI techniques for telecom satellites are based on a bank of H∞/H−, pure H∞
or Kalman filters, respectively.

– The MSR Rendezvous Mission

The work reported in [136] addresses the design of model-based FDI schemes to detect
and isolate faults occurring in the orbiter thruster unit during the rendezvous phase of the
Mars Sample Return (MSR) mission. The proposed fault diagnosis method is based on
a H(0) filter with robust poles assignment to detect quickly thruster faults and a cross-
correlation test between the residuals and the thrusters signals to isolate them. Simulation
results from the high-fidelity nonlinear simulator demonstrate that the proposed method
is able to diagnose thruster faults with a detection and isolation delay less than 1.1 s for
a certain type of faults (single thruster opening at 100%).

1.3.5 Decision Test

The first step of a fault diagnosis procedure is to evaluate the residuals. A fault can be de-
tected by comparing the residual evaluation function Jev(r(t)) with a threshold function Jth(t)
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according to the following hypothesis test:

H0 : Jev(r(t)) ≤ Jth(t) if fault-free
H1 : Jev(r(t)) > Jth(t) if faulty

(1.133)

where H0 corresponds to the zero hypothesis meaning normal operation (f(t) = 0) and H1 to
the hypothesis that the system is in abnormal operation mode (f(t) 6= 0).

There are many ways of defining Jev(r(t)) and Jth(t). The simplest approach is to decide that
a fault has occurred when the instantaneous value of a residual evaluation function Jev(r(t))
exceeds a constant threshold Jth.

When a constant threshold is used, the sensitivity to faults will be intolerably reduced if the
threshold is chosen too high, whereas the false alarm rate will be too large when the threshold
is chosen too low. The proper choice of the threshold is a delicate problem [223].

One of the approach to overcome the above proposed difficulty is to use a time varying threshold
function Jth(t). This approach is also called the adaptive threshold approach and can be found
in many publications [81, 95, 141]. This concept is illustrated in Fig. 1.14 which also shows the
typical shape of an adaptive threshold for direct residual evaluation.

false alarm

residual

adaptive threshold

fixed threshold

missed fault

fault

Figure 1.14 – Adaptive threshold

Due to uncertainty, disturbance and noise encountered in a practical application, one will rarely
find a situation where the conditions for a perfectly robust residual generation are met. It is
practically impossible to detect a fault with unlimited sensitivity. Obviously, finding a com-
promise between the sensitivity and disturbance attenuation of the methods is an important
design issue. It is therefore necessary to provide sufficient robustness not only in the residual
generation stage, but also at the decision-making stage [223].

In some applications, stochastic system models are considered and the residuals generated are
known or assumed to be described by some probability distributions [143]. Most statistical
tests assume a normal distribution for r and require the knowledge of its nominal mean µ0
and variance σ2

0. Robust decision making tools use the history and trend of the residual and
make use of powerful or optimal statistical test techniques. The well-known examples of these
statistical test techniques are the following7.

• Statistical thresholding (3-sigma rule) test: The idea behind this test is to choose
the two-sided threshold according to: Jth = µ0 ± kσ0, where k ≥ 3 [247]. This approach

7To present the main statistical tests, a scalar residual r is considered.
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relies on the fact that 99.7% of the points of a Gaussian distribution lie within 3σ of its
mean. Thus, this simple test is able to detect large deviations in r, but is likely to miss a
detection when the size of the change is within the same order of magnitude as the 3σ0 of
the process. When bounds on model uncertainties, disturbances and noise are available,
then the approach given in [81] provides a robust version of statistical thresholding in the
worst-case sense (thus conservative). A similar problem is addressed in [63], where the
threshold calculation is based on LMI-technique.

• Generalized Likelihood Ratio (GLR) test: The evaluation function Jev(r(t)) of this
test is based on the likelihood ratio of the probability that the mean of r is µ1 6= µ0 to
the probability that it is µ0, where µ1 is the mean of r in faulty situation [10, 60]. This
test still assumes that, both µ0 and σ2

0, are known a priori. See a more detailed discussion
about this test in the Appendix B.

• Sequential Probability Ration Test (SPRT): Similarly to the GLR test, this test
utilizes the likelihood ratio. The advantage of this method is that the threshold is fully
determined by fixing the desired false alarm and desired the non-detection rate [10, 287].
Compared to GLR, this test introduces a no decision stage, when more data are collected in
order to decide between H0 and H1. In the frame of fault diagnosis, this can be interpreted
as a non-faulty behaviour, i.e., H0. This test is also known as Wald’s sequential test, see
Appendix B for further discussion about this test.

• CUSUM test: This test was announced few years after the publication of Wald’s SPRT
algorithm by Page [220]. Only few statistical hypotheses are needed for this two-sided
test, which is expressed as follows [10, 19]

S+(t) = max
(
S+(t− 1) + r(t)− µ0 − δµ0/2, 0

)

S−(t) = max (S−(t− 1)− r(t)− µ0 − δµ0/2, 0) (1.134)

where δµ0 is assumed to be know and represents the shift in the mean value after the fault,
i.e., either an increase µ+

1 = µ0 + δµ0 or a decrease µ−1 = µ0 − δµ0 in the mean. Then, the
H1 hypothesis is accepted at the alarm time

ta = min{t : (S+(t) ≥ Jth) ∪ (S−(t) ≥ Jth} (1.135)

where Jth is again some tunable threshold reflecting the desired false-alarm rate.

• Student’s t-test: This test the null hypothesis H0, i.e., checks whether the residual
follows a normal distribution r ∼ N (µ0, σ2

0). This leads to an automatic thresholding given
by Student’s table with a required confidence level (e.g., 95%) [112]. If this threshold is
crossed, then the H1 is adopted.

A good survey about other statistical decision making tools can be found in [10, 116, 143].

1.3.6 Fault Isolation

The residuals generated should not only be able to detect the faults, they need to be able to
determine the exact location of the fault (which component has failed). The conditions for a

47



Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC

existence of a perfect fault isolation can be found in Ding [60]. In the FDI8 literature two main
approaches for fault isolation exist:

• Directional residual approach: The directional residual approach achieves the isolation
task by generating residual vectors that lie in a specified direction in the residual subspace
corresponding to each type of fault (see Fig. 1.15a for illustration). The fault isolation
problem is then transformed into one of determining the direction of the residual vector
[39, 282].

• Structured residual approach: The structured residual approach is focused on devel-
oping a bank of residual generators (see Fig. 1.15b for illustration) to be sensitive to a
single or selective set of faults, and insensitive to the rest [48, 93, 106]. Various design
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Figure 1.15 – Fault isolation

schemes exists [93]. A popular approach is the dedicated observer scheme proposed by
Clark [48] where each observer is driven by a different single sensor output and the com-
plete output vector y is estimated. This scheme is capable to detect and isolate multiple
simultaneous faults by checking properly structured sets of observer errors with the aid of
a threshold logic [93]. If, for example, a certain sensor fault occurs, then the related out-
put estimate reconstructed by the corresponding observer will be destroyed which can be
then identified by an appropriate isolation logic. This philosophy is known as the “column
matching” approach [105].

Frank [92] developed an alternative version, i.e. the so-called generalized observer scheme
that provides an observer dedicated to a certain sensor fault and driven by all outputs
except that of the respective sensor. This scheme allows one to detect and isolate only
a single fault in any of the sensors, but with increased robustness with respect to the
unknown inputs.

The application of the UIO (see Section 1.3.2.2) philosophy to actuator, sensor or com-
ponent Fault Detection and Isolation can bring a trade-off to the above mentioned two
approaches. The general structure of the robust observer scheme based on UIOs is de-
picted in Fig. 1.16. For the sake of simplicity, assume that m different faults fi can occur
in the system where m is also the number of measurements available. There exists three
extremes [93]:

Faults have to be only detected: The FDI scheme reduces to a single UIO that
8There exists an other community called DX for Diagnosis, that addresses the problem of fault isolation. Their

approaches use AI-based tools to perform the diagnosis task, see e.g., [15, 52, 56, 211, 212, 249]
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Figure 1.16 – General structure of the UIO scheme

generates a residual that is sensitive to all faults whilst being robust to m − 1 unknown
inputs. This design freedom can be used to generate a residual that is robust to the
maximum number of unknown inputs, but not providing isolation properties.

Only a single fault is to be detected and isolated: Here the FDI scheme allows fault
isolation and let the maximum design freedom for the generation of robustness to unknown
inputs. Thus, the ith observer (i = 1, 2, . . . ,m) is designed to be insensitive to the ith fault
fi and to m − 2 unknown inputs. Here the fi is interpreted as an unknown input and
the remaining design freedom is used for generating invariance to the unknown inputs.
Repeating this design m times one arrives at an UIO scheme according to Fig. 1.16. Here
the first residual r1 depends on all faults except of the first f1, the second residual r2 on
all except the second fault f2 and so on. Mathematically speaking





r1 = q1(f2, f3, . . . , fm)
...

ri = qi(f1, . . . , fi−1, fi+1, . . . , fm)
...

rm = qm(f1, . . . , fm−1)

Hence a simple decision logic can be implemented [93]. Note, that only a single fault at a
time can be detected.

All faults are to be detected and isolated: To be able to detect and isolate all faults
occurring simultaneously, one has to implement all faults, except the ith fault, in the ith
UIO as unknown inputs. Therefore the rank of the unknown input distribution matrix E
is increased by m−1, which is the largest possible rank of E for which complete invariance
can be achieved. In this case, the observer cannot be made robust with respect to any
unknown input. The residuals depend on the faults according to the following relations





r1 = q1(f1)
r2 = q2(f2)

...
rm = qm(fm)
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This allows to uniquely detect and isolate m faults even if they occur simultaneously. The
price to pay is the loss of robustness with respect to unknown inputs [93].

1.3.7 Fault Identification

Fault identification (also called fault estimation) follows after fault isolation and is defined as
the procedure of determination of the size (magnitude) and time-variant behaviour (shape)
of the faults [147]. The fault identification methods generally obey to the ones presented in
Section 1.3.2.4 and Section 1.3.3. Fault identification is needed in certain fault accommodation
approaches, i.e., the control law is adapted based on the FDD in order to recover acceptable
control of the system subject to faults [19].

Several methods for fault estimation [312] have been developed, such as:

• sliding mode observer [6, 76, 77, 273, 274],

• learning methods based on neural network [165, 243, 244], and

• adaptive observer technique [151, 291, 307, 309].

Nonlinear approaches, especially SMOs, have good robustness and are completely insensitive to
matched uncertainty [76, 281]. However, some systems may fail to satisfy the condition of the
coordinate transformations [307]. Learning methods based on neural network require that all of
the system states are measurable [243]. Adaptive methods for actuator faults were developed in
Wang and Daley [291] and Jiang et al. [151].

1.4 Active Fault-tolerant Control Approaches

As an emerging and active area of research in automatic control, fault-tolerant control has
recently attracted more and more attention. This section gives a review of different meth-
ods of controller re-design approaches and mechanisms achieving fault tolerance, ranging from
projection-based methods to control signal redistribution. Since FTCSs involve many disci-
plines, there are many related publications in each individual topic in AFTCS and it is difficult
to include all of them in the state of the art. However, it is believed that the references on
articles and books cited in this section would serve the reader as good resources for entry and
further study.

An overview and introduction into the field has been proposed by [183, 224]. A recent and very
extensive bibliographical review has been published by Zhang and Jiang [312]. Other recent
bibliography references can be found in [19, 151, 210, 285, 303]. Historically, FTC solutions
have been developed for civil and military aircrafts, and recently UAVs and Re-entry vehicles,
see [33, 188] and the book [78] written by the GARTEUR FM-AG16 members.

Despite the fact that some survey papers exist on FTC, the approaches are not very well classified
as opposed to the FDI/FDD methods. Thus, the classification illustrated in Fig. 1.17 is proposed
in this thesis. This classification is inspired by the work of Lunze and Richter [183] and serves
as a guideline for the here considered methods. An approach which is not introduced in the
following is based on the primal and dual-Youla parametrization, proposed by Niemann and
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Stoustrup [206]. It is to be discussed since it represents some attractive advantages for FTC.

Figure 1.17 – Control re-design approaches

1.4.1 Projection-based Paradigm

1.4.1.1 Multiple-Model Approach

The multiple-model (MM) approach belongs to the so called projection-based techniques [192,
203, 277]. This approach is used for systems, where the nominal (robust) controller cannot
provide all the goals (stability and performance) in the presence of faults. The main idea is based
on the existence of a suitable set of pre-computed controllers for each fault mode, as shown in
the Fig. 1.18. In this sense, this approach can be classified into the class of pre-computed FTC
solutions.
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Figure 1.18 – Structured scheme of the multiple-model approach

In the MM approach, a bank of parallel models is used to describe the system under normal
conditions and under a finite set of failure modes, such as actuator or component faults. A
reasonable controller is designed for each of these models. A suitable chosen switching logic is
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used to determine the mode of the system at each time step, and to select the corresponding
controller that has been designed for that particular mode. This results in robust and improved
performance under various operating conditions. Note that this scheme can principally only
cover a set of anticipated faults. This approach, however, assumes that for each fault an ap-
propriate controller has been designed before the plant is put into operation. From a practical
aspect, this is not reasonable if a large number of faults has to be considered.

A solution to this problem may consist in approach proposed by Staroswiecki and Berdjag [266]
that proposed to use jointly and adequately passive and active FTC laws. This may allow one
to cover a large number of faulty situations.

In the area of AFTC, two main approaches can be distinguished: Multiple Model Switching and
Tuning (MMST) and Interacting Multiple Models (IMM). When a fault occurs MMST switches
to a pre-computed control law corresponding to the current failure situation. Rather than using
the model which is closest to the current fault scenario, IMM computes a fault model as a convex
combination of all pre-computed fault models and then uses this new model to make control
decisions. These methods are further presented in the following sections.

• Multiple Model Switching and Tuning

In the MMST technique shown in Fig. 1.19, the dynamics of each fault scenario are described
by a dedicated model. Each model is paired with its respective controller. The general form of
this approach with a linear system is shown in the following equations

S :
{
ẋ(t) = A0(p(t))x(t) +B0(p(t))u(t)
y(t) = C0(p(t))x(t) (1.136)

where the vector p(t) ∈ S ⊆ Rl represents the unknown plant parameters which may vary in
time in an abrupt fashion and represents the various failure scenarios.

Figure 1.19 – Multiple model switching and tuning scheme

LetM be the finite set of n linear models

M : {M1, . . . ,Mn} (1.137)
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such that
Mi :

{
ẋi(t) = Aixi(t) +Biu(t)
yi(t) = Cixi(t)

(1.138)

where model Mi corresponds to a set of parameters pi ∈ S. For each model Mi a stabilizing
controller Ki is designed (off-line).

A switching logic module computes for each modelMi a performance index Ji, which is a function
of the error ei between the model Mi and the measurements data at time t. The performance
index Ji is of the following form [203]

Ji(t) = αe2
i (t) + β

∫ t
0 e
−λ(t−τ)e2

i (τ)dτ, α ≥ 0, β > 0, λ > 0 (1.139)

The coefficients α and β are responsible for the tradeoff between instantaneous and long-term
contributions of the error ei in the calculation of the index Ji. The coefficient λ is used as a
forgetting factor.

The model Mi producing the smallest performance index J is the closest to the current system,
and therefore the controller Ki becomes active.

Most of the MMST reconfigurable schemes also include a tuning part, which is based on a sep-
arate identification algorithm that updates the parameters of the model Mi while the controller
Ki is active.

The MMST technique has the advantages of being fast and usually stable if the actually occurring
fails match the predefined fault scenarios. However, the main limitation is that there may
be faulty scenarios that were not modelled, which would likely be the case for multiple or
structural faults. Moreover, the number of individual pairs of Mi/Ki to be designed, may
become excessively large if the system has to be successfully operate over a wide range of fault
scenarios [27, 69].

Remark 1.19. Note that such a control switching structure is classified by some authors as the
supervisory FTC structure [19, 26]. In this case, the main problem is concerned by the global
stability of the overall FTC scheme [301, 302] A solution to this problem is given by Efimov
et al. [79, 80] using the so-called dwell-time approach. This technique will be discussed in more
details in Section 1.4.4.1.

• Interacting Multiple Models

The IMM approach attempts to deal with the main limitation of the MMST technique, i.e., that
every fault scenario must belong to the model setM.

The primary assumption of IMM is that every possible fault can be modelled as a convex
combination of models [306] in a pre-determined model setM as defined in (1.138). The faulty
system can be expressed as

Mf =
n∑

i=1
µiMi = µT




M1
...
Mn


 , Mi ∈M, µi > 0 ∈ R,

n∑

i=1
µi = 1 (1.140)

Fault detection and modelling is then done online by identifying the variables µi in (1.140).
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Several methods for computing the coefficients µ were proposed in the literature. One is known
as Multiple Model Adaptive Estimation (MMAE) method (see e.g., [69, 191]). Here, a bank
of Kalman Filters is designed for each Mi ∈ M, running in parallel. A hypothesis testing
algorithm uses the residuals from each Kalman Filter to assign a conditional probability to each
fault hypothesis.

Once a fault model has been identified, there are a variety of methods for control law calculation.
Ones can use Model Predictive Control (MPC) [159, 161, 184, 185] scheme or EA, see [164, 279,
290, 306] for details. One application of IMM approach has been used to design an integrated
fault detection and fault tolerant aircraft flight control [310].

1.4.1.2 Bank of Observers for Sensor Faults

If only sensor faults are considered, it seems intuitive to replace the missing signal by an observed
value, since, according to the linear system theory, this should not affect the stability of the
control loop. The generalized observer scheme (see Section 1.3.6) provides the framework for
this approach: a bank of dim(y) output observers is used, where every observer relies on a
different set of measurements [92, 93, 144]. Once a sensor fault is detected, an observer is
activated which does not depend on this sensor, and the output of this observer is used to
replace the faulty sensor, see Fig. 1.20.

This setup solves the diagnosis and reconfiguration problems in an integrated manner, which is
advantageous. However, this approach is limited to sensor faults. Clearly, the measurements
will be of better quality than the observed values, since disturbances act on the observers. For
this reason, the nominal controller should use the measurements. Note that it is predominant
to make the best-possible use of certain knowledge, such as using reduced observers whenever
possible [183].
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Figure 1.20 – Bank of observers for sensor faults
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1.4.2 Automatic Design

1.4.2.1 On-line Controller Re-design

This paradigm covers approaches that perform a complete controller re-design after the detection
and identification of a fault. It is clear that in case of a complete component fault, the control
structure must change. Both analytical and physical redundancy can be utilized through this
paradigm. The computational cost varies according to the specific method.

Several controller re-design methods are available in the literature [183]. Few of them are pre-
sented in the following sections: The Pseudo-inverse Method (PIM) with two extensions (mod-
ified and admissible), the eigenstructure assignment, the perfect and adaptive model following,
the optimal controller design using Linear Quadratic (LQ) optimal control techniques, and the
model predictive control. Notably, the model predictive control is not limited to linear systems,
whereas most other approaches to date are.

• Pseudo-inverse Method

The PIM addresses actuator and component faults. It is set in a linear control framework with
state-feedback control. The basic idea is to match the closed-loop system matrix of the faulty
system to the matrix of the nominal system without introducing new states.

Let the nominal system be given by

M0 : ẋ(t) = A0x(t) +B0u0(t) (1.141)

Assume that the nominal closed-loop system is designed by using the linear state feedback of
the form

u0(t) = −K0x(t) (1.142)

where K0 ∈ Rr×n is the static feedback gain matrix. The closed-loop system is

M̂0 : ẋ(t) = (A0 −B0K0)x(t) (1.143)

which is stable and provides the nominal dynamic performance.

Suppose that the model of the system, in which faults have occurred, is described by the pair
(Af ,Bf ) provided by an on-line FDI/FDD module, that is, after the fault estimation time tf ,
the post-fault system operation and the model is given by

M̂f : ẋ(t) = Afx(t) +Bfuf (t) (1.144)

In post-fault operation, the aim is to design a new control law

uf (t) = −Kfx(t) (1.145)

where Kf is the new state-feedback gain to be determined. In the PIM due to Ostroff [218], the
objective is to find a Kf such that the resulting closed-loop transition matrix approximates in
some sense to the one in (1.143), which represents the reference model M̂0. The resulting new
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closed-loop system is
M̂f : ẋ(t) = (Af −BfKf )x(t) (1.146)

The solution to this problem is obtained by solving the following matrix equation

Af −BfKf = A0 −B0K0 (1.147)

whose necessary and sufficient condition for a solution to exist if

Im(Af −A0 +B0K0) ⊆ Im(Bf ) (1.148)

and an approximate solution for Kf is given by [218]

Kf = B†f (Af −A0 +B0K0) (1.149)

where B†f denotes the pseudoinverse of Bf , see Appendix A.3.1.

The solution for Kf is then plugged into the loop instead of nominal controller, see Fig. 1.21.
For many anticipated faults the feedback gainKf can be computed off-line and be stored in the
control computer. Once the fault has been detected, isolated and identified, the feedback gain
is modified. This PIM method has also been used for on-line accommodation for unanticipated
faults [32, 218] although it appeared in different forms.

Controller System

FDI/FDD

Figure 1.21 – Pseudo-inverse method

Regarding solution (1.149), condition (1.148) will obviously hold only for very particular faults
and therefore no exact solution will exist in most fault cases. For this reason, approximate rather
than exact solutions might be of interest, i.e., when exact model matching is not possible, an
approximate control solution [101] may be computed as

K]
f = arg min

Kf

J(Kf ) (1.150)

by minimizing the criterion

J(Kf ) = ‖(A0 −B0K0)− (Af −BfKf )‖F (1.151)

where ‖ · ‖F stands for the Frobenius matrix norm.

However, the distance in the state space between the closed-loop system matrices has no known
direct relation to the stability of the system. There is however a connection based on Gershgorin’s
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theorem on eigenvalue localization [183]. Loosely speaking, if the nominal control loop is robust
enough and the norm (1.151) is sufficiently small, then PIM will find a stable solution where
the bound in the variations of the closed-loop eigenvalues duo to faults is minimized [101].
One advantage of the PIM is its simplicity in computing the reconfigured feedback controller
gain.

The solutions (1.148) and (1.150) are called by some authors as the “Exact Model Matching”
and “Approach Model Matching” solutions respectively, see [32, 218, 248, 265, 269].

• Modified Pseudo-Inverse Method

A major drawback of the PIM method is that the stability of the reconfigured system cannot
be guaranteed. The method has been modified by Gao and Antsaklis [101] in the manner of
restrictions on the computation of Kf to guarantee the stability of the post-fault system while
achieving as much of the closed-loop nominal performance as possible.

The modification is based upon a consideration of structured uncertainty in the state-space
model, i.e., by considering the state-space model with perturbation a matrix ∆A0, such that

ẋ(t) = (A0 + ∆A0)x(t) +B0u0(t) (1.152)

Let assumed that (Af ,Bf ), given in (1.144), is a stabilizable pair. It is assumed that a stability
bound δf can be found such that if

|k̂fi,j | < δf , i = 1, 2, . . . , r and j = 1, 2, . . . , n (1.153)

then the system in (1.146) will be stable. Gao and Antsaklis [101] describe in more detail how
the bound δf can be derived using the method of Zhou and Khargonekar [316] or the method
developed by Yedavalli [304].

The algorithm for the Modified Pseudo-inverse Method (MPIM) then becomes as follows:

• Step 1: Calculate Kf from (1.149)

• Step 2: Check the stability of the closed-loop (1.146) for Kf

• Step 3: If (1.146) is stable, stop; otherwise calculate Kf using:

kfi,j =
{
k̂fi,j if |k̂fi,j | ≤ δf
sgn(k̂fi,j )δf otherwise

(1.154)

The Fig. 1.21 can also serve as an illustration for this method, since the structure is the same
as for PIM. The only difference lies in the details of the design procedure. MPIM solves the
stability issue, but it is computationally too intensive to be considered for on-line application
[183].

• Admissible Pseudo-Inverse Method

As mentioned above, the main shortage of the PIM method is the lack of stability guarantees.
The MPIM basically solves the problem under the additional constraint that the resulting closed-

57



Chapter 1. State of the Art in Model-based Fault Diagnosis and Active FTC

loop system remains stable. This, however, results in a constrained optimization problem that
increases the computational burden.

In [265] the classical PIM and the modified PIM have been extended, by using a set of admissible
models, rather than searching for an optimal one which does not provide any guarantee about
the post-fault system behavior. The approach results in the unique and efficiently computable
solutions as well as allows one to characterize the set of accommodable faults, and to quantify
the robustness of the fault adaptation scheme with respect to unanticipated faults.

• Eigenstructure Assignment

To ensure the closed-loop stability in presence of component failure and to maximize the per-
formance recovery, an eigenstructure assignment based algorithm has been developed under the
state [153] and output feedback [68] configurations as an alternative to the pseudo-inverse ap-
proach. In this approach, the stability is always guaranteed. Eigenvalues and eigenvectors of the
post-fault system can be placed such that the optimal performance recovery is obtained.

More specifically, consider the state space representation of the nominal system given in (1.141).
If λ(Ac

0) = {λi ∈ C, i = 1, 2, . . . , n} are the eigenvalues of the nominal closed-loop system
Ac

0 = A0 − B0K0, and vi ∈ Cn, i = 1, 2, . . . , n are the corresponding eigenvectors, the EA
method computes the state-feedback gain Kf for the faulty model (1.144) as the solution to the
following problem:

Kf :





(Af −BfKf )vfi = λiv
f
i

vfi = arg min
vfi
‖vi − vfi ‖2, i = 1, 2, . . . , n (1.155)

In other words, the new gain Kf needs to be such that the eigenvalues of the resulting closed-
loop system correspond to the eigenvalues of the nominal closed-loop system and, in addition,
the eigenvectors of the closed-loop are as close as possible.

In case of stabilizing output-feedback law

u0(t) = K◦0C0x(t) (1.156)

whereK◦0 ∈ Rr×m is the static output-feedback gain, the goal is to design a stabilizing controller
K◦f for the faulty closed-loop system Af − BfK

◦
fCf such that the new eigenstructure is as

close as possible to that of the original closed-loop system A0 −B0K
◦
0C0. Generally the most

dominant eigenvalues of the faulty system, {λfi , i = 1, . . . ,max(r,m)} are made to exactly match
those of the nominal system λ, while the remainder are kept stable. Similarly, the most important
eigenvectors vfi , i = 1, . . . ,max(m, k) of the faulty system are made close to those of the original
system vi, i = 1, . . . ,max(m, k) in the least squares sense.

There are several limitations to this approach when applied to reconfiguration. Firstly, only
linear systems have been considered and actuator limitations have not been taken into account.
Secondly, the fault model and FDD uncertainties cannot be easily incorporated in the optimiza-
tion problem and the effects of possible uncertainties have not been extensively studied. Finally,
the effect of the eigenvectors in the faulty system not being exactly equal to those in the nominal
system is not well understood. The reference [164] further describes the use of EA.
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• Model-following Approaches

The basic idea of the linear model-following [280] is an attractive candidate for the re-design
process associated with FTC because the goal is to emulate the performance characteristics of
a reference model as closely as possible, even in the presence of faults, see [102].

There are basically two strategies:

• Implicit Model Following (IMF): The attempt is to change and to adapt the output
dynamics of the system using a feedback action in order to equal the output dynamics of
a desirable reference model.

• Explicit Model Following (EMF): The controller design is based on a real model,
which means that the reference model is implemented as part of the actual controller.

The adaptive model following method [163] is a further extension of the basic idea behind PIM.
Instead of the closed loop system matrix alone, a closed loop reference model including the
reference signal is attempted to be restored.

Consider the nominal system dynamic (1.141) and the output equation given by

y(t) = C0x(t) (1.157)

Assuming that the reference model and the system are of the same dimension, let the reference
model be described by the following state-space equations

{
ẋM (t) = AMxM (t) +BMref(t)
yM (t) = xM (t)

(1.158)

where ref is a reference trajectory signal. The goal is to compute matrices K1 and K2 such
that the feedback interconnection of the open-loop system (1.141), (1.157) and the state-feedback
control action

u(t) = −K1x(t) +K2ref(t) (1.159)

matches the reference model. To this end, reference model and closed-loop system are written
in the form {

ẏM (t) = AMxM (t) +BMref(t)
ẏ(t) = (C0A0 −C0B0K1)x(t) +B0K2ref(t)

(1.160)

so that perfect model following (PMF) can be achieved by choosing

K1 = (C0B0)−1(C0A0 −AM ) (1.161)

K2 = (C0B0)−1BM (1.162)

on the assumption that the system has the same number of inputs and outputs (i.e., m = r),
and that the inverse of matrix (C0B0) exists.

If the exact system matrices (A0,B0) in (1.161),(1.162) are not known, they can be substituted
by some estimated values (Â0, B̂0), resulting in the indirect (explicit) method [22]. In order to
avoid the need for estimating the system parameters, the direct (implicit) method of the model
following can be used, which directly estimates the controller gain matrices K1 and K2 by
means of an adaptive scheme. Two approaches to direct model following exist, the output error
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method [275] and the input error method [114].

• LQ-optimal Re-design

An intuitive approach to the reconfiguration problem is the use of LQ-optimal control. The
basic idea is depicted in Fig. 1.22. Before the system is put into operation, a nominal controller
is designed off-line using an LQ-optimal design, where the common cost function

J =
∫ ∞

0
(xT (t)Qx(t) + uT (t)Ru(t))dt (1.163)

is minimized. The weight matrices Q and R penalize the state error and the control energy.
These matrices are stored for later online reuse. After a fault is detected and identified by the
FDI/FDD module, a new controller is designed by solving the Algebraic Riccati Equation (ARE)
again with an updated plant model (Af , Bf ) that reflects the faults. If the faulty system is
still controllable, the design will find a controller that solves the control problem with respect to
the original criteria (weights) in the best possible way. The main drawback of this approach is
that the discarding of the nominal controller completely and the amount of computing resources
necessary for LQ design. There are also numerical issues to be aware of, such as the rank
deficiency problem [183].

Controller System

FDI/FDD

 

Figure 1.22 – LQ-optimal control re-design

Staroswiecki [264] proposed a progressive accommodation strategy, based on the Newton Raph-
son scheme for solving the ARE which significantly reduce the risk of instability during the
computation of the new accommodated controller. One of the lack of this method is that it
works only for actuator or component faults.

• Model Predictive Control Approach

MPC can easily solve the reconfiguration problem with little extra effort in comparison with its
use for control [185]. MPC refers to a class of algorithms which make explicit use of a system
model to optimize the future predicted behaviour of a plant. At each sampling time t, a finite
time optimal control problem is solved over a prediction horizon N , using the current state x
of the system as the initial state. The on-line optimization problem takes account of system

60



Active Fault-tolerant Control Approaches

dynamics, constraints and control objectives. The optimization yields an optimal sequence of
control inputs, and only the control action for the current time is applied while the rest of the
calculated sequence is discarded.

To achieve control reconfiguration after the fault occurrence, using the information from the
FDI/FDD unit, it is necessary to update the internal plant model of the MPC controller to
reflect the system fault. The solution for the actuator faults is simple; actuator limit and rate
constraints can be written as

umini ≤ ui(t) ≤ umaxi (1.164)

u̇mini ≤ u̇i(t) ≤ u̇maxi (1.165)

If the actuator i becomes jammed at position u∗i , the MPC controller can be easily redefined by
changing the constraints on input i to

u∗i ≤ ui(t) ≤ u∗i (1.166)

0 ≤ u̇i(t) ≤ 0 (1.167)

As a consequence, the MPC controller will find the optimal control sequence using the fault
information within the updated model.

This approach is not limited to linear systems, nonlinear or even hybrid systems can be controlled
in principle, thus also reconfigured by means of MPC controller. The major drawbacks are: high
computing power requirements which limits the applicability to slow plants, and the requirement
to know the reference trajectory. A reduction of the real-time computation requirements for
MPC results from multi-parametric extensions to MPC, see the survey of Morari et al. [198] or
the recent work of Kvasnica et al. [171], where the affine representation of a MPC feedback law
is approximated by a single polynomial.

1.4.2.2 Fault-hiding Paradigm

The fault-hiding paradigm, also known as virtual actuator or virtual sensor paradigm, was
mentioned by Steffen [267] and implicitly used before by Looze et al. [179] in the form of LQ
weights. This approach is highly advantageous since it aims at applying a minimal change in
the control loop when faults occur. Thus, the method uses a single nominal controller, designed
for the nominal or fault-free system, which is always present in the closed-loop system.

The key idea is to put a reconfiguration block between the faulty plant and the controller, as
depicted in Fig. 1.23, to hide the fault from the controller. Hence the nominal controller may
remain in the loop. Therein, uc and yc are the control input and the plant output seen from
the controller, uf and yf are the same quantities acting on the plant, d is a disturbance and f
represents the faults acting on the plant.

The advantage of this approach is that any existing nominal controller which has been designed,
and possibly fine-tuned and tested, to satisfy the desired specifications for the system, can be
used and kept in the loop at all times. All algorithms are suitable for online use with problems
of medium size (up to 50 states) due to medium computational cost [183]. Both analytical and
physical redundancy can be exploited.

All approaches presented in [267] depend on a linearity assumption for the system. Recently, the
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Figure 1.23 – Fault-hiding paradigm scheme

fault-hiding approach has been extended for two classes of nonlinear systems by Richter [250].
For a class of Hammerstein-Wiener’s systems, the stability recovery problem after combined
actuator and sensor faults has been investigated by Richter [250].

1.4.3 Control Allocation

Control Allocation (CA) is an approach to manage the actuator redundancy in over-actuated
systems and is the most famous used for aircrafts, spacecrafts and marine vessels. In the
aerospace community, it is probably the most “ready to be implemented” FTC approach. The
main reason is that, even if this technique has been used only for a few space experiments9,
the computational complexity is already within the limits of today’s off-the-shelf embedded
computer systems, see [20, 21, 71, 99, 127, 156, 216, 219]. A recent and complete bibliographical
review on CA techniques can be found in [157]. Other reviews can be found in [21, 120, 157]. A
comparison study of 16 different CA methods is performed in [219].

The objective of CA is to choose the configuration of actuators to meet a specified objective,
subject to saturation and rate constraints (operational ranges of the actuators). In the case
of actuator faults, it is desirable to reconfigure the control allocation scheme (re-allocation) in
order to make the best use of the remaining healthy actuators [4, 69, 71, 120, 215].

Most CA algorithms assume a linear effector model in the form of a matrix, i.e., a thruster
configuration matrix. Thus, control allocation is fundamentally concerned by the inverse com-
putation of the thruster configuration matrix. Since this matrix has more columns than rows
(overactuated systems are of interest), there exists an infinite number of solutions. However, by
minimizing some “measure” of it, it is possible to have a unique solution. Actuator faults can
then be dealt with by control allocation principle so that it is not required to re-design the con-
troller itself (assuming that the CA is feasible to produce the requested control). A consequence
is that CA can be used as a FTC solution with a little extra effort on the original techniques.
Reference [? ] also exploits this idea using sliding mode techniques.

9For instance, a SIMPLEX–based method is implemented in the ATV developed by EADS Astrium Space
Transportation, to carry out a prescribed set of thruster faults.
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The following section introduces the main principles of the control allocation technique from a
mathematical perspective. Details about implementation issues are given in Chapter 4.

1.4.3.1 The Control Allocation Problem

The concept of CA is to solve undetermined, and typically constrained, systems of equations.
The task is to generate the real control input u ∈ Rnu for the corresponding virtual control input
v ∈ Rnv , which is the input of the control allocator. When a set of actuators is actuated by
vector u, it generates the total control effort vsys ∈ Rnv . If the CA is successful (feasible), then
v = vsys. Mathematically, for a given v, the vector u must be found such that

h
(
u(t)

)
= v(t) (1.168)

where h : Rnu → Rnv is the mapping from the real to the virtual control inputs performed by
the actuators and rank

(
Jacobian(h)

)
= nv [215].

In the literature, the majority of applications considers a linear case. Let’s consider a LTI system
with nu inputs

ẋ(t) = Ax(t) +Bou(t) (1.169)

where the overall input matrix Bo ∈ Rnx×nu is assumed to have rank(Bo) = nv. As shown in
[119], the input matrix Bo can be factorized as

Bo = BvB̄ (1.170)

where Bv ∈ Rnx×nv , B̄ ∈ Rnv×nu and both matrices have rank equal to nv. Now, the total
control effort vsys, produced by the actuators, is decided by the control effectiveness matrix B̄,
i.e.,

vsys(t) = B̄u(t) (1.171)

The control law v is designed based on the pair (A,Bv). Each actuator is assumed to be
physically limited by upper and lower position limits, so it is required that

umini ≤ ui(t) ≤ umaxi , i = 1, . . . , nu (1.172)

If actuator rate constraints also exist, it is further required that

u̇mini ≤ u̇i(t) ≤ u̇maxi , i = 1, . . . , nu (1.173)

When a digital controller is used, the rate constraint can be threaded as a time-varying position
constraint to adjust “how far can the actuator move during the next sampling period”. This
results in the following constraint formulation

umini (t) ≤ ui(t) ≤ umaxi (t), i = 1, . . . , nu (1.174)

Equation (1.171) constrained by (1.172) and (1.173) (or by (1.174)) constitute the standard
formulation of the linear CA problem. Solving this problem might result in three possible
situations:

• If nv < nu there is an infinite number of solutions. This is the overactuated case, which
can degenerate to the exactly actuated case or eventually to the underactuated case in
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presence of faults.

• If nv = nu there is only one and unique solution. This represents the exactly actuated
case.

• If nv > nu no solution exists. There are not enough degrees of freedom in the number of
control inputs and so a compromise must be made, for example by minimizing a distance
between the required control effort and the effort that can be physically achieved. This
becomes a crucial aspect within the FTC setting since this means that the impact of the
solution has on the control performance should be perfectly known. For example (e.g., in
case of rendezvous corridor).

1.4.3.2 Control Allocation Methods

The proposed methods in literature correspond to different ways of computing the solution for
a certain CA objective, rather than for different objectives. The most common approaches are
the following.

• Optimization-based methods: These methods rely on the following pragmatic inter-
pretation of the control allocation problem: given a virtual control command v, the goal
is to determine a feasible control input u such that (1.171) constrained by (1.172) and
(1.173) (or by (1.174)) yields. If there are several solutions, decide the best one by means
of a predefined criteria, e.g., l2 criteria in order to minimize the mean energy consumption,
l∞ criteria to minimize the peak energy consumption. If there is no solution, resolve u
such that B̄u approximates v as well as possible [120], e.g., by means of a norm.

• Direct control allocation: Here, the choice of control input is made using the knowledge
of the geometry of the actuators. This method was firstly introduced by [71].

• Daisy Chain control allocation: The allocator suite is divided into groups which are
successively employed to generate the total control effort [30]. It can prevent the use of
certain actuators until all other actuators have saturated [120].

In the quadratic programming approach to CA, also known as l2-optimal CA, the control allo-
cation problem is threaded as the following Sequential Least-Squares (SLS) problem

M = arg min
u
‖W v(B̄u− v)‖, s.t. umin ≤ u ≤ umax

u? = arg min
u∈M

‖W u(u− ud)‖
(1.175)

The above optimization problem (see Fig. 1.24 for an illustration when nu = 2) should be
interpreted as follows: given M, the set of feasible control inputs that minimize (B̄u − v)
(weighted by W v), pick the control input that minimizes u− ud (weighted by W u). Here, ud
is the desired control input and W u and W v are weighting matrices. The weighting matrix
W u gives some specific priority to the actuators and W v affects the prioritization among the
virtual control components when (B̄u− v) cannot be attained for example due to the actuator
constraints.

If no actuator constraints exist, the above optimization problem has a unique and closed form
solution in the least square sense, see Appendix A.3.2. If, however, actuator constraints are
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Figure 1.24 – The SLS optimization problem

present, the problem (1.175) can be reformulated into a Weighted Least-Squares (WLS) problem
according to

u∗ = min
u

(
‖W u(u− ud)‖2 + γ‖W v(B̄u− v)‖2

)
, s.t. umin ≤ u ≤ umax (1.176)

As γ goes to infinity, the two formulations have the same optimal solution u∗.

The MATLABr implementations of the Quadratic Programming Control Allocation Toolbox
(QCAT) provides a number of algorithms for control allocation that can be found in the literature
[21, 25, 31, 71, 121, 122, 180, 236, 286]. Seven different solvers, suitable to solve the CA problems
dealt with in this thesis, have been selected:

SLS Active set solver for the sequential least-squares formulation above. This algorithm deter-
mines the optimal solution in a finite number of iterations [122],

MLS Active set based solver for the SLS problem reformulated as a minimal least-squares prob-
lem. A limitation is that W u is required to be diagonal [180],

DIR Direct control allocation solver is based on a simple algorithm which differs from the SLS
and WLS formulation. The idea is to determined u such that the two vectors B̄u and v
are exactly collinear and their magnitude is as close as possible [21],

WLS Active set based solver for the weighted least-squares formulation. It is based on an
algorithm determining the optimal solution in a finite number of iterations [122],

IP Interior point solver for the WLS formulation. Uniform convergence to the optimum in
the number of iterations is established in [236],

CGI Heuristic method solver based on cascading generalized inverses (or redistributing pseudo-
inverses) for the SLS formulation. It is based on an algorithm requiring only a finite
number of iterations but not guaranteing that the optimal solution is found [25, 286],

FXP Fixed-point iteration solver for the WLS formulation. It is based on an algorithm con-
verging to the optimal solution as the number of iterations goes to infinity [31].

The above solvers have been implemented by Härkegård [120] into the QCAT toolbox and will
serve as a benchmark in order to compare the results with CA approach proposed in Chap-
ter 4.
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1.4.3.3 Control Allocation for Fault-tolerant Control

In order to make use of the remaining healthy actuators in case of actuator faults, it is required
to reconfigure the control allocation scheme (re-allocation) by including the constraints due to
the faults. As a consequence, the CA principle will find the optimal control combination using
the fault information. This means that a FDI or a FDD unit should be joined with the CA
algorithm in order to identify the faulty situation. This principle is illustrated in Fig. 1.25.

FDI/FDD

Controller System
Control

allocation

Figure 1.25 – Control allocation scheme

As it can be seen on this figure, the control allocation module takes as inputs the desired
virtual signal v and an estimation B̄f of the actuator configuration matrix B̄. This matrix is
provided by the FDI/FDD module. Thus, the CA module has the ability to adapt the available
actuators to the faults that have occurred. For example, if the effectiveness of a certain actuator
becomes 0% due to a fault, the corresponding column in B̄f becomes 0. This actuator is then
not considered anymore by the CA algorithm. The goal is then to produce the desired virtual
signal v by selecting the appropriate actuator inputs u without considering the faulty actuator.
Whether this can be done depends on the situations discussed previously in Section 1.4.3.1, i.e.,
nv < nu, nv = nu or nv > nu.

In terms of control re-allocation techniques, a method based on a PIM and fixed-point algorithm
(FXP) were proposed and evaluated for a realistic and nonlinear ADMIRE aircraft model in
[313]. An on-line sliding mode control allocation scheme for FTC has been developed in [4]. In
[72], the problem of CA with magnitude and rate limits on the actuators is considered. The
method proposed in [314] looks at restoring as much as possible the performance of the original
B̄ matrix after an actuator fault. In [162], the integration of reliability indicators into the CA
framework was considered.

One of the major advantages of the control re-allocation is that the controller itself does not
have to be modified, since it does not change the closed-loop dynamics of the system, assuming
that it is feasible to produce the requested virtual control input. However, there are two major
limitations to this approach. Firstly, the dynamics and limitations of the actuators after a fault
are not taken into account in the control law. This means that the controller will still attempt
to achieve the nominal system performance even though the actuators are not able of achieve it.
Secondly, there is no guarantee of stability, even with a stabilizing control law, when nv > nu,
as the input seen by the system may not be equal to that intended by the controller [69]. A
counterpart of this aspect is that, when there exists redundancy in the actuators, CA technique
succeeds and the stability follows. That is why industrials from the space community design
their spacecraft with redundant thrusters. It allows, for instance, to guarantee tolerance to
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thruster faults.

Note that one of the useful functionality of the CA theory for FTC is the possibility of visualizing
the feasible virtual control set V = {v : v = B̄u, ∀u ∈ {umin ≤ u ≤ umax}} allowing one
to prior analyze the fault recoverability/compensability property that is the possibility of the
remaining fault free actuators to recover/compensate the fault. This becomes a crucial aspect
from a practical point of view and leads the CA technique to be suitable for FTC solutions in
spacecrafts.

1.4.4 Enhanced and New Theories in FTC

In this section, two different approaches are briefly introduced to tackle some limitations of the
methods described in the previous sections. These two approaches are however out of scope of
this thesis.

1.4.4.1 The Supervisory FTC Approach

The major limitations of the classical FDI/FTC methods are: i) the problem of guaranteeing
stability and performances of the overall FTC scheme taking into account the FDI, the switching
and the re-configuration mechanisms is less considered even if it is an important aspect outlined
by many authors. In other words, the majority of existing FTC approaches are built on the
assumption that each individual unit is assumed to operate correctly, i.e., its output is instan-
taneously available to provide decisions and/or actions to other subsystems. From a practical
point of view, the coupling properties are studied only by means of a Monte Carlo campaign.
ii) as a direct consequence, even if the stability can be ensured, there exists no direct proof
of global optimality of the FTC scheme since the controllers and the FDI/FDD schemes are
designed separately.

The method proposed by Efimov et al. [80] deals with the above limitations, particularly:

• Formal stability proofs are established for the overall FTC scheme taking into account the
plant model switching, the control reconfiguration switching and the influence of uncer-
tainties and unknown inputs.

• The method allows to design both the FDI and FTC unit taking into account their cou-
pling. Further, it allows to derive a global FDI/FTC scheme with guarantee of stability
and well established performance in terms of robustness, fault detection and tolerance.

• Finally, it is proved that the global stability of the FTC system is preserved even if the
FDI scheme fails to identify the correct fault. In this case, a system chattering effect may
exist that can be reduced by choosing some adequate parameters.

The proposed technique addresses the FDI/FTC design problem for uncertain LTI systems
under arbitrary faults since a fault is considered to be a system operating mode. It is assumed
that faults cause either instability or performance degradation of the nominal (already in-place)
control law, so that the activation of a new controller is required. The main problem is the
relation between the fault detection and isolation time and the reconfiguration time so that it
is required to detect the smallest possible fault and to accommodate it in an earlier way.
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The FTC design problem is formulated within the supervisory framework. The structure of the
supervisory FTC architecture that is proposed in [80] is shown in Fig. 1.26.

Figure 1.26 – The structure of the supervisory FTC architecture

The supervisor is based on the switching logic that is a decision map H : Rnu×Rny×Rnx×N → I
generating the switching signal

σ(t) = H(u,y, z1, . . . ,zN ) (1.177)

which assigns the control algorithm. In ideal case, the control index matches the plant one
(σ(t)→ i). The supervisor has to ensure right continuity of the signal σ, i.e., the signal has to
be piecewise continuous and between any two jumps a time delay should exist. The design of
the map H differs depending on the operation conditions. Then, a converging observer exists
that solves the detection problem. Typically in the FTC theory these blocks are designed
independently, optimizing some performance functionals. As it is well known, the optimality of
the subsystems does not imply the same property for the whole system. In the proposed method
the optimal properties are critically dependent on switching and, hence, on the supervisor.

The main advantage of the method proposed in [80] is concerned by an approach oriented on
the mutual performance optimization of this switched system. For this purpose, the method
chooses a characteristic of the hybrid system to be optimized in parallel with the conventional
ones used for the observer and the control design. The criterion to be minimized is the minimal
admissible time between switches among controls. It is well known that switching among stable
linear systems does not lead to instability if the delay between switches are big enough (the
minimum delay between switches is called dwell-time). This is why the strategy oriented on
this delay increasing is frequently applied in practice to ensure stability in switched systems.
However, for FTC systems such approach is not admissible, since it results in an increasing time
of reconfiguration, which is dangerous if another fault would appear. This is especially the case
for the intermittent faults where the dwell-time value has to be at least smaller than the time
variation of two successive faults. Additionally, it may lead to a longer period of wrong control
activation for the faulty plant. The both properties are inadmissible for the FTC systems from
a practical point of view. Thus, the minimization of the dwell-time value for the supervisory
FTC system has to be carefully adequate.

Stability theorems and corollaries are established for both constant and time varying plant index
i ∈ I. The influence of the dwell-time value on the overall system performance is evaluated and
a computation procedure for verification of the stability conditions and of the FTC system
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synthesis is formulated as a global optimization problem. Norms are used to formulate the
problem, but others criteria can be used since the procedure involves a general formulation of a
multi-objective optimization problem whereby the choice of the designed parameters is guided
by the Pareto optimal points.

Remark 1.20. An alternative to the dwell-time theory to solve the supervisory-based approach
is to use the so-called falsification theory [58, 253–255]. However, as it is proved in [80], the
case of the supervisor (1.177) involves some restrictive conditions when analysing the stability
property of the overall FTC scheme. Thus, the falsification supervisory approach is thought by
Efimov et al. [80] to be not a viable candidate for practical FTC solutions.

Remark 1.21. Another solution that aims at proposing an enhanced FTC scheme under global
stability is the so-called backstepping approach for fault tolerance [154, 292, 293, 320]. However,
at this time, only preliminary results exist and the advantage and the application of the method
is not well established.

1.4.4.2 The Trajectory Re-planning Approach

Whatever the selected FTC strategy, a fault cannot be accommodated without sufficient re-
sources in the system. The majority of the existing FTC methods continue to force the system
to follow the pre-fault trajectories without considering the reduction in available control re-
sources caused by actuator faults. Forcing the system to follow the same trajectories as before
fault occurrence may result in actuator saturation and system’s instability. Pre-fault objectives
should be redefined in function of the remaining resources to avoid potential saturation. Any
reference generation technique can be potentially used. However, in the context of trajectory re-
planning for FTC, it is of prime interest to consider the reduction in available control resources
caused by the faults.

For systems with input and/or state related constraints, a reference governor or reference man-
agement is proposed in the literature. In [13], a command governor based on tools of predic-
tive control is designed for solving set-point tracking problems wherein pointwise-in-time input
and/or state inequality constraints are present. A reference governor is designed in [108] for
general discrete-time and continuous-time nonlinear systems with uncertainties. It relies on
safety properties provided by sub-level sets of equilibria-parameterised functions. In the context
of FTC, a reference input management is introduced in [311] to determine appropriate reference
inputs in the presence of actuator faults to avoid potential saturation. The idea is to determine
the relationship between the closed-loop control signals and the associated reference inputs at
steady state and to translate the limits of actuator saturation to the desired requirements on
the reference inputs. An on-line adjustment strategy of reference input trajectories is developed
using MPC techniques in [278]. Another reference input generation method is proposed using
feedback linearization in [54]. The reference input generation, which leads the damaged system
to its optimal operating point, corresponds to a nonlinear quadratic programming optimisation
problem. The objective is to minimise the distance between the desirable output vector before
and after failure occurrence while distributing most equitably the energy among the healthy
actuators.

Chamseddine et al. [35] established a relation between the reference trajectory to follow and
the remaining resources after fault occurrence. In their work [35], a flatness-based trajectory
planning/re-planning method that can be combined with any active FTC approach is proposed.
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The work considers the case of over-actuated systems where a new idea to evaluate the severity
of the occurred faults is proposed. In addition, the trajectory planning/re-planning approach is
posed as an optimisation problem based on the analysis of attainable efforts domain in fault-free
and fault cases.

The proposed approach in [35] is applied to two satellite systems in rendezvous mission. The
flatness-based trajectory planning/re-planning approach is formulated as an optimisation prob-
lem to minimise the total time (tf−t0) of the mission while avoiding hitting actuator constraints,
i.e., 



Minimise tf − t0
Subj. to ‖v∗(t)− c‖ < ρ2R2, ∀t

(1.178)

where t0 is the initial and tf the final time of the mission, and v ∈ Rnv is the vector of desired
efforts (the application of [35] considers only the position dynamics, i.e., nv = 3). The parameters
c ∈ Rnv and R ∈ R+ are used to determine a sphere S with a center c and radius R. This sphere
is the largest sphere included in the set of attainable efforts Φ = {v ∈ Rnv : v = B̄u, ∀u ∈ Ω},
where Ω stands for the set of attainable control inputs u and B̄ is the actuator effectiveness
matrix. The parameter 0 < ρ < 1 is used to consider model uncertainties. The desired effort
v∗(t) can be generated by the control inputs u if v∗(t) ∈ Φ. If the optimization problem (1.178)
is feasible, then v(t)∗ ∈ Φ,∀t ∈ [t0, tf ] since S ⊆ Φ. When actuator faults occur, the set Φ
shrinks. The idea of the proposed method is to use the reduction in the domain Φ (and thus of
S) to evaluate the severity of faults.

The major limitations of this approach is that the obtained trajectories are suboptimal since
the reference trajectories are restricted to polynomial functions of time (Bézier polynomial func-
tions of degree three) leading to a less smooth control efforts. Moreover, the set of attainable
control efforts is approximated by a spherical subset and a perfect FDI unit is assumed (detec-
tion/isolation delay and the coupling between the FDI and FTC units are not addressed).

1.5 Conclusion

In this chapter, the state of the art of the main model-based FDI/FDD and FTC techniques
has been presented. Bibliographical references are given for the main contributions. Some
application examples from aerospace field have been introduced to highlight the applicability
of the selected methods. In the following, a summary of the previously introduced FDI/FDD
and FTC techniques is given in tabular forms. The next chapters address the main content and
contributions of the work presented in this thesis.

1.5.1 Summary of the FDI/FDD Approaches

It is believed that the described FDI/FDD methods can also be classified according to seven
criteria (see below) which lead to the classification proposed in Table 1.2.

1. Detection Time Performance (DTP) measure, defined as the time to detect (detection
delay) normalized with respect to the maximum allowed time to detect. Statistics of this
index, such as mean, minimum and maximum values, variance, etc., can for example be
used with respect to the number of Monte Carlo (MC) runs.
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2. The missed detection rate, which is a ratio of missed fault cases with respect to the total
number of MC runs,

3. The false alarm rate, which is the ratio of false alarm cases with respect to the total number
of MC runs without faults.

4. The executive time (in number of processor cycles), allowing the required executive time
to be measured once a FDI design is coded using a oriented processor language.

5. The tuning complexity index, which is a metric allowing the re-use capacity of the FDI
technique to be measured from a user point of view. It includes the number of input
parameters to tune for a given scenario (e.g., the dimension of the Q and R matrices for
a Kalman Filter-based algorithm).

6. The “formal proof for performance” criterion. This criterion indicates if there exists a
formal proof of a given FDI algorithm to cover a specified set of faults.

7. Finally, the last criterion aims at quantifying if an FDI technique is suitable for FTC
approaches described in the next section.

These metrics allow the existing approaches (described in this thesis) to be easily compared in
terms of application criteria. The signs indicate that an approach fulfils a requirement very well
(++), well (+), in a limited fashion (0), not favorable (-) or not applicable (--).

1.5.2 Summary of the FTC Approaches

With respect to the AFTC approaches, an attempt was made to do a classification that can be
a be a possible guideline to choose the adequate solution for a given problem. This classification
can be found in Table 1.1. In this table, the explanation of the signs corresponds to the ones
presented in Table 1.2.

Note that since FTCS design is a recent topic in the research community, there is lack of a
clear and recognized classification. There only exist some disseminate studies and applications.
Especially in terms of space applications, there only exist a few published papers.

Table 1.1 – Classification of the introduced AFTC approaches

Method/Criteria Reusable Tuning
complexity

On-line
solution

Guaranteed
stability

Computational
burden

MMST + + -- 0? ++
IMM + ++ - +? ++
Bank of observers + + + 0? 0
PIM + 0 + --? +
Modified PIM + 0 ++ ++? -
Admissible PIM + + ++ ++? +
EA + + ++ ++? -
Model following ++ + ++ +? 0
LQ-redesign + ++ + +? -
MPC ++ ++ ++ +? –
Fault hiding ++ + + +? 0
CA ++ ++ ++ + 0

?These techniques have been studied only under the assumption of perfect FDI which is though a negative aspect since the
global stability of the overall FTC scheme (i.e., taking into account the FDI unit performance) cannot be formally proved.
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Table 1.2 – Classification of the existing FDI approaches
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Chapter 2
MSR Mission Description and Modelling

“We choose to go to the Moon in this decade and do the other
things, not because they are easy, but because they are hard!”

— John F. Kennedy, American president

This chapter describes the Mars Sample Return (MSR) mission, its rendezvous phase and
the vehicles involved (i.e., the target and chaser spacecraft) in the mission. It describes the
Guidance Navigation and Control (GNC) unit that is in charge of controlling the chaser

during the rendezvous phase and the failure management unit that is in charge of detecting
failures and of engaging corrective maneuvers. It is shown how the FDIR and FTC solutions
investigated in the next chapters, can be integrated in the failure management unit. This
chapter also addresses the models of the chaser spacecraft dynamics (relative position between
the chaser and the target and chaser attitude) that will be further used in the following chapters
to design model-based FDIR/FTC solutions. Modelling of the chaser spacecraft thruster-based
propulsion is also addressed to outline the effect of the faults. The considered fault scenarios are
also discussed. It should be outlined that the work presented in this thesis does not consider the
solar panel flexible modes, the slosh phenomena and the time-variations of the center of mass
(it considers uncertain center of mass) of the chaser spacecraft. These problems are currently
studied within the iGNC project (Integrated GNC Solutions for Autonomous Mars Rendezvous
and Capture), see [213, 240].

2.1 Overview of the MSR Mission

The Red Planet has been an object of fascination and mystery since ancient times and still
remains a primary goal for space robotic explorations. Rovers and other space vehicles do a
great job studying Martian geological structures and biology. However, bringing samples of
Mars back to Earth is still challenging for answering critical scientific questions that cannot
be addressed by purely “in situ” missions, where it is not possible to effectively use the large
international capabilities in scientific instrumentation.

The Mars Sample Return mission is one of the most exciting challenges in the international
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Chapter 2. MSR Mission Description and Modelling

effort on the Solar System exploration. The mission concepts have been studied for years by
NASA (D’Amario et al. [53]), French National Space Agency (CNES) (Cazaux et al. [34]) and
ESA. Its main goal is to collect samples of Martian rocks, soils and atmosphere, and to return
these samples safe and intact back to Earth for analysis. The importance and complexity of this
mission calls for a global effort, with particular collaboration between ESA and NASA, as well
as the participation of other space agencies [82].

The mission consists of two spacecrafts directly injected towards Mars by launchers [11]. The
descent module is released on the Martian atmosphere (Entry phase), lands on the Mars surface
and a Mars rover vehicle is released. Once the rover finished the collecting procedure, the
samples are put into the sample container and loaded on the Mars Ascent Vehicle (MAV) which
is then launched, by means of rockets, into a low Mars orbit. Meanwhile the second module,
the rendezvous system (chaser) and the Earth Re-entry Capsule (ERC), is injected towards the
Mars planet to rendezvous with the sample container (target) and bring it back to Earth. The
chaser achieves the sample capture as soon as it is released by the MAV, which performs the
last maneuver in order to avoid any interference with the rendezvous operation. Finally, after
successful capture, the sample container is inserted into ERC inside the chaser vehicle and the
chaser starts its interplanetary cruise towards the Earth. Figure 2.1 provides an overview of the
mission.

Figure 2.1 – Illustration of the principal steps of the MSR mission, c©2012 TAS

The target is a diameter spherical container whereas the chaser capture mechanism is a basket
with cylindrical aperture which is part of the sample handling system. During the capture, the
chaser aperture must face towards the target. The objective is obviously to successfully capture
the target. To achieve this, the capture conditions in terms of position and velocity, and of
attitude error and angular rates must be achieved within a certain precision, see Table 2.1 for
numerical values of the considered capture requirements. These values are driven by the capture
mechanism.
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Overview of the MSR Mission

Capture condition Nominal value Max variation Unit

Translational
conditions

Position misalignment on +X face 0.0 0.20 m
Longitudinal X velocity accuracy 0.1 0.05 m/s
Lateral Y and Z velocity error 0.0 0.04 m/s

Rotational
conditions

Angular rate error 0 0.3? deg/s
Angular misalignment 0 2? deg

Table 2.1 – MSR conditions for successful capture (? are 3σ requirements)

In terms of mission performance, the critical constraints are the size of the approach corridor
driven by the light detection and ranging (LIDAR) sensor field of view and the velocity profile
of the chaser (the capture should be done at velocity very close to zero). Therefore, during the
whole rendezvous phase, the chaser spacecraft must maintain its trajectory inside the rendezvous
corridor (see Fig. 2.17 for an illustration), its velocity along the capture axis is close to 10 cm/s
for capture, and must keep its attitude pointing towards the target with maximum attitude
misalignment of 20o on all the three axis. The minor objective for the rendezvous problem is to
minimize the fuel consumption.

A number of new technologies are required to successfully accomplish this pioneering mission.
One of them is the rendezvous and capture system, which will be able to detect, approach and
capture the sample container, previously put in a predefined orbit by the MAV. See Fig. 2.2 for
an illustration.

Figure 2.2 – Artist’s view of the chaser spacecraft (left) and of the Mars ascent vehicle (middle)
lifting off from Mars surface with the Martian soil samples (right), c©2006/2013 ESA

2.1.1 Terminal Rendezvous Phase

Figure 2.3 – Mars rendezvous orbit

The mission scenario considered in this thesis corre-
sponds to the last twenty meters of the rendezvous
phase, where the target vehicle, containing samples
from the Mars surface, has to be successfully captured
by the controlled spacecraft (chaser). The terminal ren-
dezvous/capture phase starts at the point (final holding
point) where the chaser has been brought into approx-
imately the same orbit as the orbit of the target, i.e.,
approximately 20 m from the target. The initial condi-
tions, expressed in terms of Keplerian orbital elements
[89, 197, 259] are enumerated in Table 2.2.
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Orbital parameter Chaser Target Unit
Semimajor axis 3893 3893 km
Eccentricity 0 0 n/a
Inclination 30 30 deg
RAAN 0 0 deg
Argument of periapsis 0 0 deg
True anomaly −32.16× 10−5 0 deg

Table 2.2 – Keplerian orbital parameters (initial) of the chaser and target

Here, the guidance law is tasked with accelerating the chaser to reach the required velocity
profile (10 cm/s) and with moving the chaser to a position of 3 m from the target. At a distance
less than 3 m of separation, the remainder of the maneuver is passive (no active position control)
and the chaser trajectory shall freely drift upwards to intercept the Y axis. During the whole
length of this phase, the chaser must maintain its line of sight pointing towards the target. It is
necessary for the short-range relative navigation sensors to function correctly. At the last tenths
centimeters, the attitude guidance will align the capture mechanism towards the target. The
simulation, however, stops at the point when this phase begins.

Combination of high control accuracy due to the tight capture tolerances together with the
distances involved, and the resulting communication delays (up to 20 minutes in each direction),
there is a particularly strong motivation to perform this operation autonomously.

2.2 Chaser Spacecraft GNC

The rendezvous GNC unit of the chaser spacecraft corresponds to a 6 Degree of Freedom (DOF)
control. It ensures the application of both commanded torque and force using thrusters only.
Figure 2.4 shows the general setup of the GNC system of the chaser vehicle.

6 DOF

Control loop
Guidance

Propulsion

system

Navigation

(NAV)

Position

dynamics

Attitude

dynamics

LIDAR

RFS

STRs

IMUs

Disturbances Noises

Chaser dynamics Sensors

+

−

Figure 2.4 – General setup of the chaser’s GNC system during the rendezvous

The set of sensors and actuators during the terminal rendezvous is minimized to reduce the
risk of fault occurrence and to reduce the power consumption and mass [240]. The control unit
during the rendezvous phase relies on a precise on-board sensor systems composed of:

• two 3-axis Inertial Measurement Units (IMUs) in hot redundancy,
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Chaser Spacecraft GNC

• two Star Trackers (STR) in cold redundancy, and

• two short-range rendezvous sensors with a functional hot redundancy:

– a Light Detection and Ranging (LIDAR) sensor, and

– a Radio Frequency Sensor (RFS) as back-up.

The IMU is an electronic device that is in charge of measuring the chaser angular velocity ω =
[p, q, r]T using a combination of accelerometers and gyroscopes, sometimes also magnetometers.
The quaternion-producing STR provides the measurement of the (normalized) chaser attitude
quaternion qc which can be easily converted to Euler angles Θ = [ϕθ ψ]T , see Appendix A.5.2
for conversion details. The LIDAR unit is in charge of the measurement of the relative position
ρ = [ξ η ζ]T between the chaser and target. The RFS sensor is used to monitor the chaser
trajectory, and it can trigger a Collision Avoidance Maneuver (CAM), if necessary.

The role of the navigation unit (NAV) is to perform reliable estimates q̂c, Θ̂, ω̂, and ρ̂ of qc,
Θ, ω, and ρ, respectively, by removing the misalignment phenomena, sensor bias and noises
on these measurements. The navigation unit also provides an estimate of the target attitude
quaternion q̂t, that will be used later for the design of the FDI unit. It is assumed that the NAV
unit is decoupled from thruster faults, but providing “non-perfect” state estimates, i.e., there
still exists some unfiltered noises on ω̂, ρ̂, q̂t and q̂c (and therefore on Θ̂) and also there exists a
constant delay between the NAV unit and the controller, see Section 2.2.1 about measurement
noise modelling.

In terms of actuators, the chaser spacecraft is equipped with a very precise chemical propulsion
system composed of N bi-propellant thrusters.

In this thesis, two distinct thruster configurations with different number of thrusters and different
geometrical layout are considered. The properties of these configurations are introduced at the
beginning of each chapter where they are considered. The chaser is also equipped with a set of
reaction wheels in a classical pyramidal configuration. However they are not used during the
rendezvous phase, therefore they are not considered in this thesis and the terms “actuator” and
“thruster” are used interchangeably.

Remark 2.1. In the delivered version of the simulator that was used for all simulations in
Chapter 3 and Chapter 4, the NAV block is not modelled and therefore an appropriate model of
the coupling between the sensor blocks and NAV is considered. This is the purpose of the next
section.

2.2.1 Sensors and Navigation Modelling Issues

The purpose of this section is to describe the models of the sensors used during the terminal
rendezvous phase to capture the target. As explained previously, see Fig. 2.4 if necessary, those
sensors are the LIDAR, the STR and the IMU sensors. The case of the RFS is not considered
in the following since, again, it is only used to monitor the chaser trajectory and thus is not
involved in the control loop. All the sensors, which are a part of the navigation unit too, are
assumed to deliver their measures synchronously at sampling frequency of 10 Hz.
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Chapter 2. MSR Mission Description and Modelling

2.2.1.1 LIDAR Modelling Issues

Today’s modern short rendezvous LIDAR devices dispose of high accuracy level. As such, that
most space agencies (NASA, ESA, CNES) have already identified LIDAR as a viable candidate
instrument for autonomous rendezvous [172, 235]. It seems to be a justified, precise and robust
device for the MSR mission success [200]. Therefore, all along this thesis, the LIDAR model is
assumed to correspond to a perfect measure corrupted by an error. This error is assumed to be
an additive zero-mean Gaussian white noise, i.e.,

ρ̂(k) = ρ(k) +wρ(k) (2.1)

where wρ ∈ R3 is a random process following a normal distribution N (0, σ2
ρ).

High demand is put on the LIDAR to meet the navigation accuracy required for a close range
rendezvous. This motivated some researchers to consider a relatively small noise variance for
this device [123, 261]. In this work, the corresponding 3-sigma values are 3σρ = 0.035/

√
2 (m)

for all three axes (ξ η ζ).

Remark 2.2. Despite the fact that the velocity measurements are not used in any of the proposed
FDI/FTC schemes developed in this thesis, the same noise model was assumed for the velocities
(used by the nominal controller) with the following 3-sigma values: 0.009 (m/s) for ξ̇ axis and
0.007 (m/s) for the remaining two axes η̇ and ζ̇, respectively.

2.2.1.2 Attitude Quaternion Modelling Issues

The STRs are in charge to deliver the attitude quaternion. The model considered in this thesis
corresponds to the perfect quaternion measure corrupted by a noise.

To proceed, let the chaser (or the target) attitude be represented by the unit quaternion (see
Appendix A.5 for quaternion definitions and algebras)

q = (q0, q1, q2, q3), q ∈ H q ∈ {qc, qt} (2.2)

satisfying the unity constraint

‖q‖ =
√
q2

0 + q2
1 + q2

2 + q2
3 = 1 (2.3)

Let a random variable wq ∈ R3 follow a uniform distribution U(−u, u), where u > 0. The vector
wq can be regarded as a rotation vector. This means, that wq represents a random rotation
with the angle

αw = ‖wq‖ (2.4)

around the axis
ew = wq

‖wq‖
(2.5)

The quaternion representation qw of this rotation is

qw =
(

cos
(
αw
2

)
, ew sin

(
αw
2

))
(2.6)
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This noise quaternion can be now used to correctly corrupt a deterministic quaternion q (rep-
resenting the real attitude in our case) to obtain a disturbed quaternion q̂, i.e.,

q̂(k) = q(k)� qw(k) (2.7)

where � stands for a quaternion product (see Appendix A.5.3). A noisy quaternion q̂ obtained
in this way with u = 10−4 aims to model the imperfections of the sensor/navigation unit when
speaking about the target or chaser quaternion. This type of measurement model is often used
by the industry to model the coupling between the unmodelled sensor and the navigation blocks.
Note, that since both quaternions q and qw are unit, the resulting quaternion q̂ will keep this
property too.

2.2.1.3 Angular Rate Measurement Model

Gyros (part of the IMU) are subject to different kind of uncertainties, such as noise and bias.
In accordance with the literature [173], a widely used gyro model is considered in this thesis,
such as {

ω̂(k) = ω(k) + b(k) +wr(k)
ḃ(k) = wb(k)

(2.8)

where b ∈ R3 is a slowly varying gyro bias vector, wr ∈ R3 and wb ∈ R3 are independent zero-
mean Gaussian white noise processes following a normal distribution N (0, σ2

r ) and N (0, σ2
b ), re-

spectively. The 3-sigma values are 3σr = 0.0016 (deg/s) and 3σb = 0.2282×10−5 (deg/s2)

2.2.2 Translation and Attitude Guidance

The guidance function which fundamentally is nothing else than a path planning algorithm,
is in charge of generating the position/velocitiy profiles ρr = [ξr ηr ζr]T /ρ̇r = [ξ̇r η̇r ζ̇r]T and
quaternion attitude/angular velocity profiles qr = [q0r q1r q2r q3r ]T /ωr = [pr , qr , rr]T for the
rendezvous and capture phases. Its function is to provide the reference state vectors as well as
to compute and provide any feed forward control signals, if required.

• Position Guidance

In terms of position, the guidance for the final approach consists successively of a station keeping
phase, an acceleration part followed by a constant velocity part which corresponds to the final
docking velocity and a free drift. Past research has focused on various acceleration profiles
to have smooth velocity profiles with indifferent results. The profile used for the terminal
rendezvous of the MSR mission between the chaser and the target, is based on having constant
accelerations leading to a simple and fast profile. This profile is defined in the local frame
Fl = {OT ; ~X l, ~Y l, ~Z l}, see Fig. 2.5 for an illustration. This frame is fixed at the center of the
target OT , with its ~Z l axis be perpendicular to the ~X l and ~Y l axis and oriented as shown in
Fig. 2.5.

The phase plane profiles for the final approach is illustrated in Fig. 2.6. The guidance profile is
generated for each separate segments as illustrated, each segment corresponding to a rendezvous
phase. The first segment defined for times t ∈ [t0, t1] corresponds to the station keeping phase,
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Chapter 2. MSR Mission Description and Modelling

Figure 2.5 – The Mars rendezvous orbit with the associated frames

the second segment t ∈ [t1, t2] refers to the constant acceleration phase, the third segment
t ∈ [t2, t3] is the constant velocity phase and finally, the fourth segment t ∈ [t3, t4] refers to the
free drift phase. The target is reached at time t4. Fig. 2.6 illustrates the phase plane profiles
along the X and Y axes. The profile along the Z-axis is not presented since it is quite evident:
since the rendezvous is done in the X-Y orbit plane, the Z-axis profile has to be fixed to zero.
Thus ζr = 0 and ζ̇r = 0. In other words, the guidance profile is specified so that there is no
motion in the out-of-plane of the orbit plane.

−25 −20 −15 −10 −5 0
0

0.02

0.04

0.06

0.08

0.1

0.12

η
r
(m)

d
 η

r
/ 
d
t 
(m

/s
)

Y phase plane profile

t
4

t
3

t
2

t
0
t
1

−21.85m

−7 −6 −5 −4 −3 −2

0.0992

0.0994

0.0996

0.0998

0.1

0.1002

η
r
(m)

d
η

r
/ d

t (
m

/s
)

t
2

t
3

t
4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
−5

−4

−3

−2

−1

0

1
x 10

−3

ξ
r
 (m)

d 
ξ r / 

dt
 (

m
/s

)

X phase plane profile

t
4

t
3

t
2

t
0
t
1

Figure 2.6 – The phase plane profiles for the final approach: Y plane (left) and X plane (right)

During station keeping, i.e., t ∈ [t0, t1], the reference vector signal ρr will keep the spacecraft
at a chosen location, i.e., the position reference are the coordinates of that point. This point
corresponds to the initial position given in the Table 2.2. The reported coordinates are given in
the inertial frame Fi = {OM ; ~Xi, ~Y i, ~Zi} which is attached to the centre of the Mars OM , see
Fig. 2.5 for an illustration. However, it can be verified that, in the local frame, those coordinates
are given according to ρr = [0 − 21.85 0]T m. Such coordinates indicate that the chaser is in
the same orbit plane of the target but is put behind the target at a distance of 21.85 m. During
station keeping, the velocity reference is zero along all axes, i.e., ρ̇r = 0.
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For the other segments, it is necessary to find the time ti, i = 1, ...4 and the location ηr(ti) and
ξr(ti) at the shift points. Regarding the Y profile, this is all done based on the standard kinematic
solution under constant acceleration that can be written in the general form as s = s0+v0t+ 1

2at
2,

where s is the distance, v0 is the initial speed, and a, the applied acceleration. The following
gives the solution of the problem for the constant acceleration phase. The intermediate calculus
are omitted since they are well known.

ηr(t) = ηr(t1) + 1
2 η̈0t

2 ∀t ∈ [t1, t2] (2.9)

ηr(t1) = −21.85 m being the coordinate of ηr at the end of the station keeping phase and
η̈0 = 0.33.10−3 m/s2 being the required acceleration. The speed is then given by

η̇r(t) = η̈0t (2.10)

The solution of the constant velocity phase is

ηr(t) = ηr(t1) + η̇r(t2)(t− t2) ∀t ∈ [t2, t3] (2.11)

the speed being η̇r(t2) = 0.1 cm/s. The last phase (free drift) corresponds to a (progressive)
deceleration phase until the target is reached.

ηr(t) = ηr(t4)− η̇r(t2)(t3 − t2)− d

2(t3 − t2)2 + η̇r(t2)(t− t3) + d

2(t− t3)2 ∀t ∈ [t3, t4] (2.12)

where d refers to the slope of the required deceleration. The X profile (i.e., the definition of
ξr(t)) follows exactly the same principle. Figure 2.7 illustrates the overall profiles in the time
domain. The different phases, i.e., station keeping phase for t ∈ [t0, t1], constant acceleration
phase for t ∈ [t1, t2], constant velocity phase for t ∈ [t2, t3] and free drift phase for t ∈ [t3, t4],
can also be easily identified.

• Attitude Guidance

The attitude guidance loop is very simple. Since the navigation unit provides the attitude
quaternion of the target q̂t, the attitude guidance loop obeys simply to the rule “follow the
attitude quaternion of the target with a shifted angle for ϕ equal to 90o”, i.e.

qr = q̂t + q90o (2.13)

The reason of the shift of 90o for ϕ is due to the position of the capture mechanism, i.e., its
entry is placed perpendicular to the face of the chaser spacecraft. In this equation, q90o is
the quaternion associated to ϕ = 90o, see Appendix A for quaternion’s algebra. The reference
angular velocity ωr is derived from the relation

[
0
ωr

]
= 2˙̂qtq̂∗t (2.14)

Figure 2.7 (bottom right) illustrates the attitude profile in the inertial reference Fi. For better
understanding, the quaternion qr is converted into Euler angles ϕ, θ, ψ. Furthermore, the differ-
ent shifting points of the position profiles (station keeping for t ∈ [t0, t1], constant acceleration
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Figure 2.7 – The translation profiles (top and bottom left) and the attitude profile (bottom
right) of the guidance loop

phase for t ∈ [t1, t2], constant velocity for t ∈ [t2, t3] and free drift for t ∈ [t3, t4]) is reported for
better understanding of the coupling between the position and the attitude trajectories.

2.2.3 Control and Actuator Management Functions

To carry out the mission and to ensure the required performance, the chaser spacecraft has a
fine 6 DOF manoeuvring capability. This is ensured by a 6 DOF control law whose architecture
is illustrated on Fig. 2.8.

It mainly consists of two linear controllers, Kpos and Katt, a Thruster Modulator Unit (TMU)
and a Thruster Management Function (TMF). The role of the matrix rotation R(q̂c, q̂t) will
be explained later. The controller Kpos is in charge of controlling the position and Katt is in
charge of controlling the chaser attitude. They cope too with the attitude/position couplings in
the chaser spacecraft. Couplings have several origins, e.g., flexible modes of the solar arrays and
slosh phenomena (not considered in this thesis as already outlined), transverse inertia, relative
orbital dynamics, capture mechanism offset with respect to the center of mass, etc..
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Figure 2.8 – GNC of the chaser spacecraft

2.2.3.1 Attitude Control Loop Katt

Suppose that the attitude of the chaser spacecraft is expressed in terms of the direction cosine
matrix Ac relative to the reference frame in which the attitude manoeuvre is to be commanded
and achieved (see Appendix A.4 for details on cosine direction matrix issues). Suppose that
an attitude vector Θ̄ has the components ϕ̄, θ̄, ψ̄ in a given frame and that the chaser is to be
manoeuvred so that its final direction cosine matrix will coincide with a known matrix Ar. In
the following, this matrix is called the reference matrix and will refer to the frame in which Ar

is defined. From a practical point of view, Ar is computed by the attitude guidance law.

According to the developments presented in Appendix A.4, the vector Θ̄ can be expressed in the
chaser frame and in the reference frame as Θc and Θr (respectively) in the following way:

Θc = AcΘ̄ (2.15)
Θr = ArΘ̄ (2.16)

Combining both equations, it yields

Θc = AcA
−1
r Θr = AcA

T
r Θr = AεΘr (2.17)

The matrix Aε, as defined in (2.17), has the following meaning: if the components of two non-
collinear vectors Θi are identical in both the chaser frame and the reference frame, then these
frames coincide and the chaser body axes have reached the desired attitude in space. Hence, Aε

is the direction cosine error matrix. When this matrix becomes an identity matrix, thenAc = Ar

and the chaser has reached the desired attitude. To clarify the meaning of this statement, the
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matrix multiplication (2.17) is expanded as follows:

Aε =



a11c a12c a13c
a21c a22c a23c
a31c a32c a33c






a11r a12r a13r
a21r a22r a23r
a31r a32r a33r


 =



a11ε a12ε a13ε
a21ε a22ε a23ε
a31ε a32ε a33ε


 (2.18)

For the last matrix to become diagonal, the off-diagonal elements must be zeroed and the
diagonal elements must become unit.

To understand the meaning of zeroing the off-diagonal elements, let examine Fig. 2.9 and in-
terpret correctly the meaning of the elements aijε in (2.18). For example, a12ε is the scalar dot
product between the ~Xc and the ~Y r axes. Hence, a12ε = 0 is equivalent to making the ~Xc axis
perpendicular to the ~Y r axis by increasing the angle α in Fig. 2.9. This may be achieved by
rotating the spacecraft about the ~Zc axis until the following equality is satisfied:

a12ε = ~Xc. ~Y r = 0 (2.19)

In the same way, it is easily seen that zeroing a13ε is equivalent to the scalar dot product

a13ε = ~Xc.~Zr = 0 (2.20)

which means geometrically that the spacecraft is to be rotated about its ~Y c axis until the ~Xc

axis becomes perpendicular to the ~Zr reference axis. Finally, rotation of about the ~Xc axis will
make the ~Y c axis perpendicular to the ~Zr axis, thus zeroing a23ε

a23ε = ~Y c.~Zr = 0 (2.21)

Figure 2.9 – Geometrical interpretation of zeroing the off-diagonal elements of Aε.

By similar reasoning, it can be shown, that if both the reference and the chaser axis frames
coincide, then the elements of the error matrix Aε, that lie below the matrix diagonal are
also zeroed. Thus, with the completion of the manoeuvre, the error matrix becomes the unit
diagonal matrix. Simultaneous satisfaction of (2.19), (2.20) and (2.21) tends to rotate the chaser
axis frame, so that it coincides with the desired target axis frame, thus achieving the desired
attitude manoeuvre in space. Since the basic attitude dynamics of any spacecraft consists
of two integrations per axis (see the modelling Section 2.4 addressed later), rate terms, i.e.,
ω = [p q r]T , must be used in order to stabilize the spacecraft orientation along the three axes,
leading to the following attitude control law:

Tdx = Ka
xa23ε +Ka

xdpε (2.22)
Tdy = Ka

ya13ε +Ka
ydqε (2.23)

Tdz = Ka
z a12ε +Ka

zdrε (2.24)
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The terms pε, qε, rε are also used for damping purposes, the index ε being used to refer to errors
(difference between desired and measured angular velocities, in the chaser frame).

In the beginning of a manoeuvre, the error elements may be quite large, depending on the
initial relative attitude orientation of the chaser with respect to the reference frame. At the
final stages of the attitude manoeuvre, when the axes are closely aligned with the reference
frame axes, the error elements a12ε, a13ε and a23ε approach the errors of the Euler angles ϕ, θ, ψ.
The control gains Ka

x ,K
a
y ,K

a
z ,K

a
xd,K

a
yd and Ka

zd should be designed so that, at the end of the
large manoeuvre in space, the time responses will be well behaved. Also, sufficient stability
margins in the frequency domain must be procured. These gains mainly depend on the inertia
matrix.

There exists an equivalent quaternion error vector that can be associated to the cosine direction
error matrix Aε, see Appendix A.5 for quaternion definition and algebra.

As explained above, when dealing with direction cosine matrices, two consecutive attitude trans-
formations are achieved by matrix multiplication of the two individual rotations, see (2.17).
These two rotations can be expressed in the quaternion terminology by A(qr) for the first ro-
tation and by A(qc) for the second one. The following expression holds for the overall attitude
transformation in terms of direction cosine matrices

A(qε) = A(qr)A(qc)−1 = A(qr)A(q−1
c ) (2.25)

In terms of quaternion notation, this equation leads to

q−1
c qr =




qr0 qr3 −qr2 qr1
−qr3 qr0 qr1 qr2
qr2 −qr1 qr0 qr3
−qr1 −qr2 −qr3 qr0







−qc1
−qc2
−qc3
qc0


 = qε (2.26)

where qε , qr and qc are the error, reference and chaser quaternions, respectively. Since there is
a one-to-one equivalence between the direction cosine matrix elements and the elements of the
quaternion vector, i.e., a given direction cosine matrix A = [aij ], i, j = 1, 2, 3 and a quaternion
q = (q0, q1, q2, q3)

q0 = ±
√

1 + a11 + a22 + a33
2 (2.27)

q1 = a23 − a32
4q0

(2.28)

q2 = a31 − a13
4q0

(2.29)

q3 = a12 − a21
4q0

(2.30)

then equations (2.22)-(2.24) lead to the following attitude control law

Tdx = 2Ka
xq1εq0ε +Ka

xdpε (2.31)
Tdy = 2Ka

y q2εq0ε +Ka
ydqε (2.32)

Tdz = 2Ka
z q3εq0ε +Ka

zdrε (2.33)

Performing the computation of qε in (2.26) requires fewer algebraic operations than computing
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the elements in Aε. This is one reason why the control law of (2.31)-(2.33) is preferred to that
of (2.22)-(2.24) in the case of the MSR mission, although they are equivalent from a physical
point of view.

Finally, since the advantages of an integral part in control laws are well known, the attitude
control law Katt of the chaser is given by

Tdx = 2Ka
xq1εq0ε + 2Ka

xi

∫
q1εq0εdt+Ka

xdpε (2.34)

Tdy = 2Ka
y q2εq0ε + 2Ka

yi

∫
q2εq0εdt+Ka

ydqε (2.35)

Tdz = 2Ka
z q3εq0ε + 2Ka

zi

∫
q3εq0εdt+Ka

zdrε (2.36)

where the gains Ka
xi,K

a
yi,K

a
zi are designed to manage the dynamics of disturbances rejec-

tion.

Finally and as it can be noted on Fig. 2.8, the control law (2.34)-(2.36) is followed by a low pass
filter which is also useful in order to prevent high frequency behaviour of the controller outputs
Td = [Tdx Tdy Tdz]T .

Remark 2.3. Note, that usually another role of this filter is to reject the flexible modes of the
solar arrays. However, since the solar arrays modes are not implemented in the MSR simulator
provided by Thales Alenia Space, this aspect is not considered in this thesis.

Remark 2.4. The directional cosines based formulation of (2.31)-(2.33) is given by

Tdx = −1
2K

a
x(a32ε − a23ε) +Ka

xdpε (2.37)

Tdy = −1
2K

a
y (a13ε − a31ε) +Ka

ydqε (2.38)

Tdz = −1
2K

a
z (a21ε − a12ε) +Ka

zdrε (2.39)

When small angles are considered, the terms aijε can be linearly approximated and the control law
behaves as a classical linear controller (PD controller in this case or PID when considering an
integral part). This approximation is useful, since it enables to analyse the degree of stability of
the control law by computing the minimum gain margin, phase margin and associated crossover
frequencies over each axis X, Y , Z considering that the other axes are in closed loop. This is
usually the practical analysis done in space industries, even if it is more relevant to consider the
controller in its MIMO form.

2.2.3.2 Position Control Loop Kpos

The design of the chaser position control law Kpos obeys to the classical theory of the PID
controllers. Consider the theoretical developments given in Section 2.4.1 that addresses the
modelling of the relative motion of the chaser with respect to the target spacecraft. As it
is shown, under the assumption of a rendezvous on a circular orbit, the nonlinear equations
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governing the dynamics of the chaser are given in the local frame according to

ξ̈(t) = 3n2ξ(t) + 2nη̇(t) + Ftξ(t) + Fpξ(t) (2.40)
η̈(t) = −2nξ̇(t) + Ftη(t) + Fpη(t) (2.41)
ζ̈(t) = −n2ζ(t) + Ftζ(t) + Fpζ(t) (2.42)

where the X-axis is along the radius vector of the target spacecraft, the Z-axis is along the
angular momentum vector of the target spacecraft, and the Y -axis completes the right handed
system. With this definition, the central body is towards the negative X direction and the
Y -axis points along the velocity vector of the target spacecraft, see Fig. 2.5 for an illustration.
F t = [Ftξ Ftη Ftζ ]T is the control input vector that is due to the thruster-based propulsion unit
and F p = [Fpξ Fpη Fpζ ]T is a generalized disturbance vector, both given in the local frame. The
definition of F p is considered later, since it is not of prime interest here.

Since equations (2.40)-(2.42) define a linear state-space model, it is natural to think about linear
methods from the robust control community to design the position control law. This leads to the
definition of the control structure as depicted on Fig. 2.8, i.e., the position control law consists
of two successive functions:

• a linear controller that is designed on the model given by equations (2.40)-(2.42) and that
generates F t, and

• a rotation matrix that is in charge to transform the outputs F t of the linear controller
Kpos(s) into the chaser frame, i.e

F d = R(q̂c, q̂t)F t (2.43)

q̂c and q̂t also denote the quaternion of the chaser and the target respectively. The notation
”•̂” indicates that these quaternions are estimated by the navigation unit.

So the major concern is the design of the linear controller Kpos(s).

One solution that is well mastered by the space industries obeys to the so-called “in-plane” and
“out-of-plane” separation principle. Noting that (2.42) is autonomous, the system of (2.40) -
(2.42) can be split into two independent systems of equations, i.e.,

ξ̈(t) = 3n2ξ(t) + 2nη̇(t) + Ftξ(t) + Fpξ(t) (2.44)
η̈(t) = −2nξ̇(t) + Ftη(t) + Fpη(t) (2.45)

and

ζ̈(t) = −n2ζ(t) + Ftζ(t) + Fpζ(t) (2.46)

Motions along X-axis and Y -axis are “in-plane” and are concerned by (2.44)-(2.45) and motion
along the Z-axis is out-of-plane and is concerned by (2.46). Note, that motion along the Y -axis
is referred as along-track due to the capture scenario.

Finally, considering that the term 2nη̇ can be neglected in (2.44), (2.44)-(2.46) become a simple
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system of three SISO systems. A PID control law immediately follows such as

Ftξ = Kp
ξ ξε +Kp

ξi

∫
ξεdt+Kp

ξdξ̇ε (2.47)

Ftη = Kp
ηηε +Kp

ηi

∫
ηεdt+Kp

ηdη̇ε (2.48)

Ftζ = Kp
ζ ζε +Kp

ζi

∫
ζεdt+Kp

ζdζ̇ε (2.49)

The parameters Kp
ξ ,K

p
η ,K

p
ζ ,K

p
ξi,K

p
ηi,K

p
ζi,K

p
ξd,K

p
ηd and K

p
ζd are designed to ensure some control

objectives, e.g., to ensure the required capture performance requirements. Signals ξε = ξr − ξ̂,
ηε = ηr− η̂ , ζε = ζr− ζ̂, ξ̇ε = ξ̇r− ˆ̇ξ, η̇ε = η̇r− ˆ̇η, and ζ̇ε = ζ̇r− ˆ̇ζ refer to the position and velocity
errors. Signals ρr = [ξr ηr ζr]T , ρ̇r = [ξ̇r η̇r ζ̇r]T and ρ̂ = [ξ̂ η̂ ζ̂]T , ˆ̇ρ = [ˆ̇ξ ˆ̇η ˆ̇ζ]T are provided by
the guidance and navigation units respectively.

2.2.3.3 Robustness Margins and Performances

The stability and performance of the resulting controllers are illustrated on Fig. 2.10 and 2.11
which plot the open-loop transfers on each axis considering, that the other axes are in closed
loop. Figure 2.10 is concerned by the attitude control and Fig. 2.11 is concerned by the
position control. Zooms are presented for a better illustration of the robustness margins and
performances. A scattering of the uncertainties is performed following the numerical values
reported in Table 2.3. The red large curve corresponds to the nominal cases.

Property Nominal value Unit Uncertainty Distribution
Mass (mc) 1575 kg ±10% N (1, 0.1/3)

Inertia matrix (J)




1450 −20 5
−20 1800 −5

5 −5 1200


 kg ·m2 ±20% N (1, 0.2/3)

CoM (dCoM )
[
0.880 0.035 0.035

]T
m ±3cm N (0, 0.03/3)

Thrust (‖FT ‖) 22× (N -thrusters) N ±1% N (1, 0.01)
Cartesian coordinates (xp) Converted orbital ele-

ments, see Table 2.2
m, m/s ±10% N (1, 0.1/3)

MIB 0.068 s n/a n/a
ON-time quantisation step 0.01 s n/a n/a

Table 2.3 – Considered parameter uncertainties of the chaser spacecraft

Each color in the plot (magenta, red and blue for the X ,Y and Z-axes, respectively) corresponds
to a stack of the same SISO transfer obtained with different numerical values of the plant
parameters. These plots show that the obtained range of the phase margin Pm, of the gain
margin Gm, and the bandwidth ωu are given according to

- Attitude: Gm ≈ [−14.5 dB ; 14.5 dB], Pm ≈ [49o ; 58o], ωu ≈ 0.1 rad/s

- Position: Gm ≈ [−15 dB ;−10.6 dB], Pm ≈ [54o ; 68o], ωu ≈ 0.1 rad/s
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Figure 2.10 – Robustness margins and performances of the attitude control loop
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Figure 2.11 – Robustness margins and performances of the position control loop

2.2.3.4 Actuator Management Functions

The controller outputs, the desired force F d and the desired torque T d, (see Fig. 2.8) are next
sent to the Thruster Modulator Unit (TMU), that integrates the small commanded pulses which
are below the Minimum Impulse Bit (MIB) and releases a pulse (F d̃ or/and T d̃) when the total
reaches a momentum threshold. The MIB shall not be too large as this corresponds to a delay
from the controller viewpoint. The TMU is widely used to compensate actuator nonlinearities
and to increase control accuracy [238, 239]. The purpose of on-board Thruster Management
Function (TMF) is to select specific thrusters at each control cycle and to compute their scaled
firing times ũi to realize force F d̃ and torque T d̃ command impulses coming from the TMU.

Thruster

Modulator

Unit

(TMU)

Thruster

Management

Function

(TMF)

H(s)I B̄

Katt(s)

Kpos(s) R(q̂t, q̂c)

T d

F d

T d̃

F d̃

ũ1

ũN

ǫatt

ǫpos

Propulsion system

CPDE Thrusters

T

F

.

.

.

6DOF control law

Figure 2.12 – Control law (left) and the propulsion system (right) of the chaser vehicle
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Note, that the TMF is nothing else than an online control allocation algorithm, see Section 1.4.3
which addresses the state of the art of CA methods1. The baseline TMF algorithm relies on a
simplified approach with respect to the Simplex and thruster non-linearities (minimum On/Off
times) [239]. The chaser control law and propulsion system are summarised in Fig. 2.12.

Regarding the propulsion system, all thrusters have fixed direction di ∈ R3, i ∈ Sall. The set
Sall = {1, 2, . . . N} denotes the set of all thruster indices. Each thruster is able to produce a
maximum thrust of ||FT || = 22 N. The Chemical Propulsion Drive Electronics (CPDE), that
drives the thrusting actuators, initiates the opening of the thruster valves for the commanded
durations 0 ≤ ũi ≤ 1, ∀i ∈ Sall. Variables ũi are in fact scaled ON times (firing intervals).
The scaling is done versus the sampling period T of the control unit and is defined according
to ũi(tk) = Toni(tk)/T , where Toni(tk) is the actual/real firing duration (ON time) of the ith
thruster at control cycle tk = kT , see Fig. 2.13 for an illustration.

Figure 2.13 – Scaled ON-times versus real thruster firing durations

The propulsion system is obviously a source of uncertainty in the system. The linear parameter-
varying transfer function

H(s) = e−τ(t)s (2.50)

aims to model the effect of the unknown time-varying delays induced by the CPDE electronic
device and the uncertainties on the thruster rise times [110, 237]. The delay τ(t) is assumed
to be unknown and time-varying, but upper bounded by a known constant τ̄ , i.e., τ(t) ≤ τ̄ .
Furthermore, it is assumed that each thruster is delayed with the same delay τ(t). This is a
reasonable assumption from the practical point of view, since for all nominal thrusters, the same
CPDE device is used to control the openings of the thruster valves.

To proceed, let ũk(t − τ(t)) be the commanded open duration of the kth thruster delayed by
τ(t), then the net forces and torques generated by the thrusters (in fault free case) are given in
the chaser body fixed frame according to (see Fig. 2.12)

F (t) = BF ũ(t− τ(t)), T (t) = BT ũ(t− τ(t)) (2.51)

In this equation ũ(t) = [ũ1(t), ũ2(t), . . . , ũN (t)]T , and

BF =
[
bF1 , bF2 , . . . , bFN

]
, BT =

[
bT1 , bT2 , . . . , bTN

]
(2.52)

are the thruster sensitivity (configuration) matrices with2

bFk = −dk||FT ||, bTk = (dpk − dCoM )× bFk, ∀k ∈ Sall
1The “TMF” is a more general term linked with control allocation and used within an industrial context.
2Due to confidential reasons, the numerical values with regards to the spacecraft geometry and characteristics

are omitted.
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where ”× ” denotes the cross product of vectors, dCoM ∈ R3 is the position vector of the CoM
from the chaser geometrical center, and dpk ∈ R3, ∀k ∈ Sall are the position (location) vectors
of the thrusters. The overall, 6 DOF, thruster configuration matrix B̄ is defined by

B̄ =
[
BT

BF

]
∈ R6×N (2.53)

The columns of BF and BT are the influence coefficients defining how each thruster affects each
component of F and T , respectively.

2.3 Failure Management and Fault Considerations

The GNC unit described in the previous sections is also an important system to carry out the
success of the rendezvous and to guarantee the necessary performance for the capture. However,
it is clear that to prevent a mission avoidance, the chaser has to be equipped by a failure
detection and recovery management unit, able to cover any failures in its different systems and
subsystems.

Common fault diagnosis and accommodation architectures used by space industries, rely on a
hierarchical implementation of failure detection and management. This is also the case of the
chaser spacecraft [83, 239].

Figure 2.14 – Failure management unit with the location of the failure detection units

Recent study Peuvédic et al. [240] demonstrate that the failure management system tend to cover
completely all the system and subsystem failures in the case of the MSR mission, consisting
of two separate (main) functions, see Fig. 2.14 for an illustration. The Autonomous Mission
Management (AMM) function is not considered here, since it is completely out of the scope of
this study.

• The first failure detection set of functions, implemented at the GNC level (and more
precisely at the navigation level) is in charge to detect faults at subsystem level. The main
functions are:

– the detection of sudden sensor death,

– the detection of sudden frozen signals (lock-in-place fault type) coming from a sensor,

– the consistency check between the two IMUs, and
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– the consistency check between IMUs in “hot redundancy” configuration and STRs in
“cold redundancy” configuration. Hot and cold redundancy is a terminology used by
space industries to outline, that all redundant sensors are switched on (hot) or only
one of the redundant sensor is switched on, the others being switched off and waiting
for a possible use (cold).

• The second failure detection set of functions, implemented at the Safety Monitoring level,
is in charge of the detection of failures at actuator level or at higher level. The main
functions of this set are:

– checking the consistency between the tachometers and the commands sent to the
reaction wheels (not used in this study as already mentioned),

– checking the consistency between the IMUs and the commands sent to the thrusters,

– checking the chaser trajectory with respect to predefined rendezvous corridors,

– checking the approach velocity,

– checking the trajectory of the chaser with respect to collision risks,

– checking the convergence of the controller output signals during the whole rendezvous
phase, and

– finally, monitoring the power.

All these functions are hierarchized into five levels. These levels with the functions they are
concerned by, are summarized in Table 2.4.

Levels Interest
Level 1 sensor checks Monitoring of the outputs of all the sensors. This level covers

most of the sensor faults such as sudden sensor death and
lock-in-place fault types.

Level 2 IMU/IMU Interest is limited to the detection of failures not seen by
level 1 (i.e., unlikely slow drifts of IMUs).

Level 2 IMU/STR Interest is limited to the detection of failures not seen by
level 1.

Level 3 thruster/IMU Check is done during the whole rendezvous. The IMU
hot redundancy enables to discard IMU failures in the
thruster/IMU inconsistency, leading model-based tech-
niques viable candidates.

Level 3 wheel/tachometer This check covers most of wheels faults. The isolation is
immediate since a tachometer is available on each wheel.

Level 4 approach corridors Monitor the position/velocity of the chaser versus the ap-
proach corridors.

Level 4 collision risks Detect if a collision may occur between the spacecraft.
Level 4 mode success Detect the divergence of the controller outputs.
Level 5 power alarm Protection against ground operation errors and electrical

subsystem failures.

Table 2.4 – Hierarchical fault detection levels
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Failure accommodation and recovery are managed by the System Health Management (SHM)
unit, see Fig. 2.14. This unit manages the type of corrective actions to be applied

• at equipment level: switching to a redundant set of equipments, e.g., sensor in hot re-
dundancy (IMU case), or propagation of last valid measurement during the switch-on of
the redundant module in cold redundancy (STR case), switching to a redundant set of
actuators, etc.,

• at GNC level: switching to a different guidance mode/sub-mode, or new control allocation,
and

• at mission level: triggering a collision avoidance maneuver and transfer to a safe waiting
orbit, or simple retreating.

In this thesis, model-based FDI solutions, that fit the above described fault management ar-
chitecture are proposed. More precisely, Chapter 3 will address a FDIR solution that can be
integrated in level 3 as it is, the recovery principle being exactly those used by the SHM, i.e.,
switching to a redundant set of equipments. Chapter 4 will address a more enhanced solution,
since it relies on an active FTC approach. However, since an active FTC approach involves an
FDI unit, it is guaranteed that the FDI part can be embedded at level 3. In other words, all
solutions proposed in this thesis must be understood to be an integral part of the overall failure
management unit currently developed by Thales Alenia Space for the MSR mission.

2.3.1 Description of the Set of Detection Functions at the Subsystem Level

The lowest fault detection function implemented as the subsystem level (level 1) is concerned by
the sensors. It monitors directly their outputs. If a signal becomes null, while the sensor state
is operational, an alarm “dead sensor” is raised.

To detect a lock-in-place fault type in the sensors, the technique is based on the comparison
between the output of a sensor and its time derivative. Let si(t) denote the output of the ith
sensor, then si(t)− dsi(t)

dt defines a fault indicating signal for the lock-in-place fault type. Similarly
to the “dead sensor” fault monitoring technique, the lock-in-place monitoring is activated if the
sensor is operational. Furthermore, this monitoring is activated only if si(t) is not null (i.e.,
dead sensor), providing a hierarchical approach between these two kinds of faults.

The higher monitoring level (level 2) is concerned by the IMU/IMU and the IMU/STR consis-
tency checks. This monitoring is also activated if the IMUs and the STRs are operational and
if a fault has not been detected at the previous level.

The IMU/IMU consistency check relies on the (static) parity space approach, see Chapter 1 if
necessary. To proceed, let us denote FIMU1 = {OIMU1; ~XIMU1, ~YIMU1, ~ZIMU1} and FIMU2 =
{OIMU2; ~XIMU2, ~YIMU2, ~ZIMU2} the frames in which the measurement signals of the first and
second IMU are delivered, and consider the body frame Fb = {OB; ~Xb, ~Y b, ~Zb} illustrated
in Fig. 2.18 (the center of this frame is fixed to the center of mass of the chaser). Then, it
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follows

ω̇Fb(t) = R1ω̇
FIMU1(t) (2.54)

ω̇Fb(t) = R2ω̇
FIMU2(t) (2.55)

ωFb(t) = R1ω
FIMU1(t) (2.56)

ωFb(t) = R2ω
FIMU2(t) (2.57)

where R1 ∈ R3 and R2 ∈ R3 are rotation matrices in charge of mapping the signals from FIMU1
and FIMU2 to Fb3. These four relations allow to define the following residual vectors

rω̇1(t) = ω̇FIMU1(t)−R−1
1 R2ω̇

FIMU2(t), rω̇1 ∈ R3 (2.58)
rω̇2(t) = ω̇FIMU2(t)−R−1

2 R1ω̇
FIMU1(t), rω̇2 ∈ R3 (2.59)

rω1(t) = ωFIMU1(t)−R−1
1 R2ω

FIMU2(t), rω1 ∈ R3 (2.60)
rω2(t) = ωFIMU2(t)−R−1

2 R1ω
FIMU1(t), rω2 ∈ R3 (2.61)

For residual evaluation, the GLR test is applied to each component of the residual vectors,
see Appendix B for some issues about the GLR test. The decision making is done through a
threshold based approach, i.e., if the GLR test is higher that a given threshold, then a Boolean is
set. Because in a given frame, accelerometers (providing ω̇ = [ṗ q̇ ṙ]T ) and gyroscopes (providing
ω = [p q r]T ) can be diagnosed axis per axis and IMU per IMU, it leads to the isolation of the
faulty axis to be immediate.

A special case is concerned by the case of simultaneous drifts on the three axes of a given IMU,
say the accelerometer to illustrate the technique. In such a case, because the fault manifests
itself on all components of rω̇1 and rω̇2, it is necessary to have a dedicated signal-based tech-
nique to identify which accelerometer (IMU) is faulty. The basic of the principle is to look for
the maximum covariance of the augmented residual vector [rTω̇1 r

T
ω̇2]T and the measurements

ω̇FIMU1 and ω̇FIMU2 separately. Those that admits the maximum covariance is retained to be
faulty. Figure 2.15 (left) illustrates a sensor drift in the 1st accelerometer on all the 3 axes
simultaneously. This corresponds to the most difficult fault to be diagnosed since, in this case,
both the residuals are affected. Thus, in order to make a final decision about the faulty IMU,
the maximum covariance principle explained above is used. Figure 2.15 (right) considers a per-
formance degradation (increased noise) in the z-axis of the second gyro. In this case, the GLR
test plays an important role to identify which axis is faulty.

Similarly to the fault monitoring technique explained above, the IMU/STR consistency check is
activated if no fault is declared by the IMU/IMU consistency check. The IMU/STR consistency
check relies on a H∞ observer based on the relation between the rotational velocities ω and the
rate of the Euler angles Θ̇ = [ϕ̇ θ̇ ψ̇]T , in the body frame Fb. Its inverse relationship describes
the kinematic equations for the attitude [296]. For clarity, the notation superscript Fb is omitted
in the following developments.

Θ̇(t) = h
(
Θ(t)

)
ω(t) = 1

cos(θ)




cos(θ) sin(ϕ) sin(θ) cos(ϕ) sin(θ)
0 cos(ϕ) cos(θ) − sin(ϕ) cos(θ)
0 sin(ϕ) cos(ϕ)


ω(t) (2.62)

Since the IMUs and the STR deliver the measure of ω and Θ, this equation suggests the following

3The numerical values of R1 and R2 are not given there due to confidential reasons.
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Figure 2.15 – Sensor drift in the 1st accelerometer (left) and performance degradation of the 2nd
gyro (right)

observer–based fault detector for STR faults:




˙̂Θ(t) = h
(
Θ̂(t)

)
ω(t) +L(y(t)− ŷ(t))

ŷ(t) = Θ̂(t)
rΘ(t) = y(t)− ŷ(t), rΘ ∈ R3

(2.63)

The problem then turns out to be the design of the matrix gain L. Here, a linear approximation
of (2.62) is used so that equation (2.63) becomes a linear observer in a form that is suitable for
the design of the gain L using H∞ techniques.

To proceed, consider equation (2.62) linearly approximated around Θ = 0. From a practical
point of view, since there exists noises and misalignment errors in the sensors, it can be verified
that (2.62) can be written according to

{
Θ̇(t) = AΘΘ(t) +BΘω(t) + Γw(t)
y(t) = Θ(t) + v(t)

(2.64)

The state noise w distributed by Γ aims at modelling the errors due to the linearization and
the IMUs misalignments and noises, whereas the measurement noise v aims at modelling STRs
misalignment errors and noises.

The H∞ techniques consider that the state and measurement noises w and v have frequency
spectrum which can be approximated by linear dynamics with normalized inputs di, i.e.,

{
ẋw(t) = Awxw(t) +Bwd1(t)
w(t) = Cwxw(t) +Dwd1(t)

,

{
ẋv(t) = Avxv(t) +Bvd2(t)
v(t) = Cvxv(t) +Dvd3(t)

(2.65)

where di, i = 1, 2, 3 are assumed to be of arbitrary spectrum with unit 2-norm. Since d2 acts like
a state noise through the shaping filter dynamics, a separate noise, d3, is used in the feed-forward
term of the model of v to prevent the state and measurement noise from being correlated. With
these shaping filters, the design problem can be formulated within the H∞ setting according to
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the following equations with the normalized input d = [dT1 dT2 dT3 ]T :



Θ̇(t)
ẋw(t)
ẋv(t)


 =



AΘ ΓCw 0
0 Aw 0
0 0 Av







Θ(t)
xw(t)
xv(t)


+



ΓDw 0 0
Bw 0 0
0 Bv 0


d(t) = Ax(t) + [Γ1 0]d(t) (2.66)

y(t) =
[
I 0 Cv

]
x(t) +

[
0 0 Dv

]
d(t) = Cx(t) + [0 Γ2]d(t) (2.67)

e(t) =
[
I 0 0

]
x(t)−

[
I 0 0

]
x̂(t) = M(x(t)− x̂(t)) (2.68)

Note, that e refers to the state estimation error Θ − Θ̂. The design objective is the follow-
ing

L = arg min ‖T de‖∞ (2.69)

The solution to this problem can be found in the H∞ literature [60]. Assume that Γ2ΓT2 is
invertible, the solution is

L = PCT (Γ2ΓT2 )−1 (2.70)

where P is the solution of the algebraic Riccati’s equation

AP + PAT + Γ1ΓT1 − P
[
CT (Γ2ΓT2 )−1C − 1

γ2M
TM

]
P = 0 (2.71)

Once L is computed,
||T de||∞ < γ (2.72)

and the nonlinear form (2.63) is used for STR fault detection and isolation. It should be outlined
that the IMU/IMU consistency check done at the lower level enables to discard IMU failures,
leading this technique suitable for STR fault diagnosis. For residual evaluation, the test is
applied to each component of rΘ and the decision making is done through a threshold based
approach, i.e., if the GLR test is higher that a given threshold, then a Boolean is set. Due to
the definition of rΘ in (2.63), the isolation of the faulty axis of the STRs is implicit. In order to
illustrate an IMU/STR fault, Fig. 2.16 (left) considers a drift in the first axis of the STR, i.e.,
ϕ. Figure 2.16 (right) shows how this drift affect the quaternion measure.
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Figure 2.16 – Sensor drift in the STR (left) and the corresponding quaternion (right)
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2.3.2 Description of the Set of Detection Functions at the Safety Monitoring
Level

The higher level (level 3) is concerned by the thruster/IMU and wheel/tachometer consistency
checks. At this level, it is assumed that all sensor faults have been detected and accommodated
by the lower levels, so that all measures are deemed to be reliable.

As explained previously, Chapters 3 and 4 are dedicated to the problem of thruster fault detec-
tion, isolation and accommodation. So this problem is not considered here, since it is extensively
discussed in the next chapters.

The wheel/tachometer consistency check, it is based on the following principle: since each wheel
is equipped by a velocity sensor, namely a tachometer, that performs the measurement Ωw, the
following relation provides a residual dedicated to each wheel (isolation is thus immediate)

rw(t) = Jw
dΩw(t)
dt

− Tw(t) (2.73)

In this equation, Jw is the inertia of the considered wheel and Tw is the (controlled) torque
requested to deliver by the wheel. For decision making, a simple threshold–based approach has
been revealed to be sufficient.

The higher level, level 4, is concerned by the check of the chaser spacecraft trajectory and
velocity with respect to corridors and collision risk. During the last phases of the rendezvous
(hopping and terminal rendezvous approach), the trajectory shall be kept within predefined
corridors. Two corridors are defined: a smaller inner corridor with a slope at 8% that is used to
trigger a corrective manoeuvre, and a wider corridor with a slope at 10% including the smaller
one, that is used to trigger a collision avoidance maneuver. Figure 2.17 (left) shows the shape
of the two corridors with the nominal trajectory of the chaser spacecraft. The corridors are
centered on the approach direction and they have a conical shape. Similarly, the velocity of the
chaser spacecraft is monitored. The capture velocity and the nominal velocity requirements of
the chaser are illustrated on the Fig. 2.17 (right). If the chaser velocity exceeds the requirements
(velocity along the capture axis between 5 cm/s and 15 cm/s and along the other axes, below 4
cm/s), a corrective maneuver is engaged.
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Finally, the highest level, level 5, monitors the power to protect the overall systems and subsys-
tems of the chaser against electrical failures and ground operation errors.

2.3.3 Thruster Fault Modelling

Following the fault management system described in the previous section, the main concern is
now to develop FDI(R)/FTC algorithms for thruster faults to be implemented on level 3.

With regards to the possible faults occurring in the thruster-based propulsion system, the focus
is on the so-called “open-type” (fully open and leaking thruster) and “closed-type” (blocked-
closed and loss of efficiency) thruster faults. These faults have been defined in accordance with
the industrial partners and follow both the TAS and ESA experiences. More precisely, the
following thruster fault scenarios are considered:

• Case 1: fully Open Thruster (stuck open valve)
- provides maximum thrust regardless of the demanded command by TMF

• Case 2: thruster Closing Itself (blocked-closed)
- thruster does not generate any thrust regardless of the demand

• Case 3: leakage (bi-propellant residual leakage)
- leaking thruster of size mleak(t), starting from 0 and reaching the maximum leakage size
m̂leak > 0 with a given slope ms > 0, i.e., mleak(t) = min{ms(t − tf ), m̂leak}, where tf
denotes the time of fault occurrence

• Case 4: loss of Efficiency (thrust loss)
- loss of efficiency of a particular thruster by a value m̂loss > 0.

Assuming no simultaneous faults, the considered thruster faults can be mathematically modelled
in a multiplicative manner according to4 (index “f” is used to outline the faulty case)

(
F f (t)
T f (t)

)
= B̄

(
I −Ψ(t)

)
ũ(t− τ(t)) (2.74)

with Ψ(t) = diag
(
ψ1(t), . . . , ψN (t)

)
, where 0 ≤ ψk(t) ≤ 1, ∀k ∈ Sall are unknown. The health

status of the kth thruster is modeled by ψk(t) as follows

ψk(t) =
{

0 if healthy
1− ϕk(t)/ũk(t) if faulty

where ϕk(t) allows to consider all the four fault cases, mentioned earlier, as follows

ϕk(t) =
{

max{ũk(t),mleak(t)} if open-type
(1− m̂loss)ũk(t) if closed-type

In this formalism, 0 < m̂leak < 1 models a leakage fault and 0 < m̂loss < 1 an efficiency loss fault.
It is obvious that mleak(t) = 1, ∀t ≥ tf refers to a fully open, and m̂loss = 1 to a blocked-closed
thruster fault.

4It should be noted that a fault in one of the thrusters may generate an uncommented force/torque variation
in all the 3 axes of the spacecraft.

98



Modelling the Chaser Dynamics during the Rendezvous Phase

The GNC unit, the failure detection and recovery management unit and the faults to be diag-
nosed being described, the main concern is now to derive the suitable mathematical models of
the chaser motion. This is the purpose of the next section.

2.4 Modelling the Chaser Dynamics during the Rendezvous Phase

This section addresses the modelling the motion of the chaser spacecraft during the rendezvous
phase. A linear relative position model and an attitude model of the chaser dynamics, that
will be used in Chapters 3 and 4, are introduced for FDI purpose. These two models are able
to describe the dynamics of the chaser spacecraft in both, fault-free and faulty situations. The
relative position model is well known and mastered for control, but rarely used for fault diagnosis.
The reason is quite simple: the attitude model “seems to be” more sensitive to thruster faults.
The position model compared to the attitude model has the advantage that it is naturally
robust against uncertainties of the inertia tensor and of the center of mass. In Fonod et al.
[90], a sensitivity/robustness analysis campaign was performed to asses the reliability and the
efficiency (in terms of detection times) of a position model-based fault detector. Encouraging
results were obtained.

For the sake of brevity, only the necessary developments about the spacecraft dynamics mod-
elling are introduced. The interested reader might refer to the extensive space literature about
spacecraft modelling, see for instance [115, 256, 259, 296, 297].

2.4.1 Relative Position Model

The relative motion of one object with respect to another has gained a great interest over the past
decades. The problem has been present since the use of Hill’s equations [140]. The linearized
Hill’s equations around the null solution were introduced by Clohessy and Wiltshire [49] to
analyze satellite rendezvous, and are now known as Hill–Clohessy–Wiltshire (HCW) equations
[296]. The HCW equations propagate the relative position and velocity of the chaser with respect
to the target in a Cartesian reference frame centered on a target object in a circular Keplerian
orbit. These equations can also be used to form a linear time-invariant state space model of the
relative dynamics. The key assumptions in the HCW equations are that: a) the two spacecraft
are in close proximity, i.e., the distance between the chaser and target is very small compared
with the distance to the centre of Mars, b) the target’s orbit is near circular (orbital eccentricity
e = 0) and c) the radial and out–of–plane separations are small [123].

Consider the illustration of the rendezvous between the chaser and target spacecraft around
Mars given by Fig. 2.5. The translation motion of the chaser can be derived from the 2nd
Newton law. To proceed, let a, mc, G, and mM denote the radius of the circular orbit of the
target, the mass of the chaser during the rendezvous, the universal gravitational constant and
the mass of Mars, respectively. Then, the orbit of the rendezvous being circular, the velocity of
the target is given by the relation √

µ

a
(2.75)

where µ = G·mM
5. Let us recall the definition of the local reference frame Fl = {OT ; ~X l, ~Y l, ~Z l}.

5Considered values: G .= 6.67384× 10−11 N.m2 kg−2 and mM
.= 6.4173× 1023 kg.
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It is fixed at the center of the target OT , with its ~Z l axis be perpendicular to the ~X l and ~Y l

axis and oriented as shown in Fig. 2.5.

The linear velocity of the target is given by the relation a.n, where n = ν̇ stands for the uniform
orbital rate of the target (hence the orbital period is 2π/n). This velocity is given in the
inertial frame Fi = {OM ; ~Xi, ~Y i, ~Zi}, see Fig 2.5 if necessary. From the Kepler’s third law it
follows:

a.n =
√
µ

a
⇒ n =

√
µ

a3 (2.76)

During the rendezvous phase, it is assumed that the chaser motion is due to the five following
forces, all given in the local frame Fl = {OT ; ~X l, ~Y l, ~Z l} (note that the rendezvous orbit is
circular):

• the Mars attraction force ~F a = −mc
µ

((a+ξ)2+η2+ζ2)3/2

(
(a+ξ) ~X l+η ~Y l+ζ ~Z l

)
, where ξ, η, ζ

denote the elements of the relative position vector ρ = [ξ, η, ζ]T of the chaser from the
origin of the target frame OT ;

• the centripetal force ~F e = mc

(
n2(a+ ξ) ~X l + n2η ~Y l

)
;

• the Coriolis force ~F c = mc

(
2nη̇ ~X l − 2nξ̇ ~Y l

)
;

• the non-gravitational force (spatial perturbations) ~F p = Fpξ ~X l + Fpη ~Y l + Fpζ ~Z l;

• the thruster-based propulsion system force ~F t = Ftξ ~X l+Ftη ~Y l+Ftζ ~Z l. (This force vector
is nothing else than the one given by (2.51) expressed in Fl.)

Then, from the 2nd Newton law, it follows




ξ̈ = n2(a+ ξ) + 2nη̇ − µ(
(a+ξ)2+η2+ζ2

)3/2 (a+ ξ) + Ftξ+Fpξ
mc

η̈ = n2η − 2nξ̇ − µ(
(a+ξ)2+η2+ζ2

)3/2 η + Ftη+Fpη
mc

ζ̈ = − µ(
(a+ξ)2+η2+ζ2

)3/2 ζ + Ftζ+Fpζ
mc

(2.77)

Because the distance between the target and the chaser, during the rendezvous, is negligible
compared to the radius of the target orbit, i.e., ‖ρ‖ � a, therefore it is possible to derive the
HCW equations from (2.77) by means of a first order approximation of the nonlinear state space
model[49]. Finally, by introducing the fault model (2.74) and the CPDE unknown time-varying
delay τ(t), the translation motion of the chaser can be modeled in the target (local) frame Fl, in
both fault-free (i.e., Ψ(t) = 0) and faulty (i.e., Ψ(t) 6= 0) situations, according to the linear 6th
order state space representation with state vector xp = [ξ η ζ ξ̇ η̇ ζ̇]T . It can be verified that
from (2.77) it follows

{
ẋp(t) = Apxp(t) +BpR

(
qt(t), qc(t)

)
F f (t) +EppF p(t)

yp(t) = Cpxp(t)
(2.78)
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where

Ap=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0




, Bp=Epp= 1
mc




0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1




, Cp=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




In (2.78), qt ∈ H and qc ∈ H stand for the attitude quaternion of the target and the chaser,
respectively. These quaternions describe the orientation of the target body frame (qt) and the
chaser body frame (qc) with respect to the inertial frame Fi. The estimates q̂t and q̂c of these
signals are assumed to be available on-board since they are computed online by the navigation
unit, see Section 2.2. The quaternion-dependent rotation matrix R(·) performs the projection of
the three-dimensional force vector F f from the chaser body-fixed frame on to the target frame
Fl, see its equivalence F t in (2.77). Let us remind the reader that F f denotes the forces due to
the propulsion system of the chaser spacecraft that can be possibly faulty, see (2.74). The output
vector yp = ρ = [ξ η ζ]T is the relative position of the two spacecrafts expressed in Rl and is
assumed to be measured by the LIDAR device. Spatial disturbances (solar radiation pressure,
gravity gradient and atmospheric drag) are represented by F p. Moreover, it is assumed that
the navigation unit is decoupled from thruster faults. This is a reasonable assumption since, as
previously explained, sensor faults are diagnosed and accommodated at the lowest level of the
failure management unit.

2.4.2 Attitude Model

To fully describe the rotational motion of the chaser, dynamic and kinematic equations of motion
are required [256, 259, 295–297]. The attitude control system works in a target pointing mode,
which means that the chaser keeps one face of the spacecraft pointed to the target and maintains
it during the whole rendezvous phase (see Fig 2.18 for illustration).

Target

Chaser

Mars

Figure 2.18 – Chaser attitude target pointing mode

Let’s consider the spacecraft as a rigid body, the rotational motion of this body caused by an
applied moment (sum of all external torques acting on the body) can be derived in the inertial
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frame Fi from the Euler’s second law. This law says that the time derivative of the angular
momentum L of any rotating body equals the sum of all applied torques about its center of
mass, i.e.,

L̇ =
∑

k

(T k)Fi (2.79)

where (T k)Fi , k = 1, 2 . . . are the external torques acting on the body center of mass and given
in Fi. In practice, it is more convenient to simply express L in a frame of reference whose
axes are fixed to the rotating body. Therefore, the mathematical model of the chaser rotational
dynamics (flex modes and slosh phenomena are not considered) in the body-fixed reference
frame Fb = {OB; ~Xb, ~Y b, ~Zb} (the center of this frame is fixed to the center of mass of the
chaser and their axes are parallel to those of the local target reference frame) can be derived
from (2.79)

ω̇(t) = J−1(T (t) + T p(t)
)− J−1ω(t)× Jω(t) (2.80)

where ω = [p, q, r]T is the angular velocity vector of the frame Fb relative to the inertial frame
Fi, and J ∈ R3×3 is the inertia dyadic about the chaser CoM. In (2.80), T and T p describe the
external torques about the CoM that are due to the thrusters (i.e., ~T ) and due to the orbital
perturbations (i.e., T p). Note that, in (2.80), both ω and J are given in Fb.

Using the individual rotation matrices from an Euler’s rotation of type (3,2,1), it is possible
to express the relation between the rotational velocities ω and the rate of the Euler angles
Θ̇ = [ϕ̇ θ̇ ψ̇]T . Its inverse relationship then describes the kinematic equations for the attitude
[296]

Θ̇(t) = 1
cos(θ)




cos(θ) sin(ϕ) sin(θ) cos(ϕ) sin(θ)
0 cos(ϕ) cos(θ) − sin(ϕ) cos(θ)
0 sin(ϕ) cos(ϕ)


ω(t) (2.81)

Note that (2.81) becomes singular when the pitch angle approaches θ = π/2 ± kπ, k ∈ Z+.
A solution to avoid singularities in the kinematics equations is to describe the attitude by by
quaternion representation, see Appendix A.

Considering that, during the rendezvous phase, the chaser spacecraft is controlled around the
equilibrium points6 Θ = Θ0 (with θ 6= ±90◦) and ω = 0, choosing xa = [ϕ θ ψ p q r]T as the
attitude model state vector and by introducing the fault model (2.74) together with the CPDE
unknown delay τ(t), the rotational motion (both kinematics and dynamics) of the chaser can
be derived by means of a first-order approximation of the nonlinear equations (2.80) and (2.81)
around the equilibrium points, in both fault-free (i.e., Ψ(t) = 0) and faulty (i.e., Ψ(t) 6= 0)
situations, according to the following 6th order linear state space model

{
ẋa(t) = Aaxa(t) +BaT f (t) +EapT p(t)
ya(t) = Caxa(t)

(2.82)

where matricesAa,Ba=Eap andCa result from the linearization process around xa0 = [Θ0 0],
i.e.

Aa=
(

0 I

0 0

)
, Ba=Eap=

(
0
J−1

)
, Ca=Cp

6This is a reasonable assumption from practical point of view since the chaser spacecraft works in an attitude
target pointing mode and the distance between the two spacecrafts is very small (≤ 20 m), thus the pointing
guidance is a straight line like.
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Let us recall the reader that T f denotes the torques due to the propulsion system of the chaser
spacecraft that can be possibly faulty, see (2.74).

The attitude model (2.82) and the position model (2.78) will be used in the following chapters
to design robust FDIR/FTC solutions.

2.5 Conclusion

This chapter described the Mars Sample Return mission, its rendezvous phase and the vehicles
involved in the mission (i.e., the target and chaser spacecraft). It described the GNC unit that
is in charge to control the chaser during the rendezvous phase and the failure management unit
that is in charge to detect failures and to engage corrective maneuvers. It is shown how the
FDIR and FTC solutions investigated in the next chapters, can be integrated in the failure
management unit. This chapter further addressed the models of the chaser spacecraft dynamics
(relative position between the chaser and the target and chaser attitude) that is used in the fol-
lowing chapters to design model-based FDIR/FTC solutions. Modelling of the chaser spacecraft
thruster-based propulsion is also considered to outline the effect of the faults. All investigated
fault scenarios are discussed, too.

All models and functions described in this chapter have been embedded in a “high-fidelity” indus-
trial simulator developed by TAS. The simulator is implemented in the MATLABr/Simulinkr en-
vironment. It consists of a nonlinear model of the rigid body dynamics of the chaser and target
in a Mars orbit. The simulator assumes that the Mars planet is in a Keplerian orbit about
the sun. The chaser and target orbits around the Mars are modelled using Gauss’ equations,
with the gravitational field of Mars calculated using a spherical harmonic expansion with the
Mars50c coefficients [123]. The attitude dynamics are modelled assuming that the target and
chaser are rigid bodies [89, 259]. The effects of external disturbances (earlier referred as orbital
perturbations) due to gravity gradient, solar radiation pressure and atmospheric drag (assuming
an exponential atmospheric model) are also included in the simulator. A number of uncertain-
ties are considered in the simulator, from the variations of the initial conditions, parametric
uncertainties in the different components of the spacecraft (e.g., mass, CoM, moment of inertia,
thrusters, see Table 2.3), up to navigation uncertainties (on LIDAR, STR, IMU).

This simulator will be considered to validate the theoretical developments proposed in the next
chapters in which model-based FDIR and FTC solutions are investigated. The solutions that
will be proposed, fit the fault management architecture that is described in this chapter. More
precisely, Chapter 3 will address a FDIR solution that can be integrated in the level 3, the
recovery principle being exactly those used by the SHM, i.e., switching to a redundant set of
equipments. Chapter 4 will also address a more enhanced solution since it relies on an active
FTC approach. However, since an active FTC approach involves an FDI unit, it is guaranteed
that the FDI part can be embedded at level 3. In other words, all solutions proposed in this
thesis must be understood to be an integral part of the overall failure management unit currently
developed by Thales Alenia Space for the MSR mission.
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Chapter 3
Advanced Model-based FDIR Solution for
the Baseline MSR Thruster Configuration

“Prepare your proof before you argue.”
— Jewish proverb

In this chapter, the design and implementation of two distinct model-based FDIR techniques
to detect, isolate and accommodate (recover) a single thruster fault affecting the chaser
spacecraft propulsion system are addressed. The first approach is based on the position

model whereas the second approach is based on a pure attitude model. Both techniques focus
on the robustness issue against the unknown time-varying delays induced by the propulsion drive
electronics and uncertainties on thruster rise times. A complete description of a robust residual
generation design approach based on eigenstructure assignment technique is discussed in details.
Computational procedure and implementation issues of the FDI scheme design are carefully
discussed. Particular novelty of the work presented in this chapter is the development of a new
method for estimating the unknown input directions used to enhance robustness property of the
diagnosis scheme. The fault accommodation is achieved by employing the additional hardware
redundancy in the thruster-based propulsion system. Finally, Monte Carlo results demonstrate
feasibility and efficiency of the proposed FDI schemes. Carefully selected performance and
reliability indices allow to compare the effectiveness of both approaches. Recovery aspects are
also studied.

3.1 Problem Statement and Motivation

In space systems, fault tolerance is usually achieved by FDIR (Fault/Failure Detection Isolation
and Recovery). This approach relies on hardware-based redundancy in actuators and sensors. At
the present time, the fault detection task of in-flight spacecraft is based on cross, consistency,
and limit-value checks, respectively. Monitored variables are verified with respect to certain
tolerances of nominal values. Alarms are triggered if the thresholds are exceeded. Different
architectures for an industrial state of practice FDIR have been suggested in the literature, see
[189, 214, 217, 245] for good surveys.
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Actuator faults are detected at higher level through consistency checks, see discussion in Sec-
tion 2.3. The classical thruster fault detection is based on the comparison of the commanded
torque and force with the IMU measurements. An alarm is raised when a thruster is opened
during a too long time. Fixed thresholds are used for recognition of out-of-tolerance condition
[214].

Space literature reports that conventional FDIR techniques (present-day techniques) are suf-
fering from significant shortcomings, like often missing isolation capabilities of faults on-board
[214]. The classical FDIR approach for a thruster configuration as in Fig. 3.2 consists of a “half
satellite” strategy, where only fault detection is performed on-board [214]. If a fault is detected,
the nominal thruster set is switched to a redundant one (see Fig. 3.1) and the spacecraft mode
is changed to a predefined system safe mode, waiting for a ground intervention. However, in
mission critical phases like rendezvous capture/docking phase, the transition to safe mode could
possibly lead to collision with the target, thus the safe mode is switched off during the rendezvous
phase and a collision avoidance maneuver is triggered rather.

System

Nominal

actuator set

FDIR

Redundant

actuator set A

Redundant

actuator set Z

Figure 3.1 – “Half satellite” strategy for thruster faults

In some cases, “industrial approaches” exist for on-board fault isolation. For instance:

• One possibility is through the use of specialized pressure and temperature sensors in the
nozzle of the thruster. This, however, comes at the price of extra mass, cost and complexity
[245]. Therefore, only methods allowing to perform thruster FDIR using only additional
software and/or hardware already on-board are considered in this chapter.

• Another industrial method is based on sending thruster commands (in addition to the com-
mand produced by the control law) to all thrusters and assuming that the faulty thruster
has no effect on the spacecraft dynamics. Then, the observation of the IMU measurements
over a some period of time enables to isolate the failed thruster. This approach, how-
ever, has several drawbacks, like extra fuel consumption, degraded control accuracy and
it might not work for closed-type thruster failures (stuck closed or thrust loss). All these
shortcomings discourage the usage of this method for close range rendezvous.

In non-critical mission phases, common (industrial) methods are well-proven, but for critical
mission phases like rendezvous and docking, advanced model-based FDIR techniques shall be
particularly developed to cope with the necessary robustness/stability of the spacecraft con-
trol, the necessary trajectory dynamics and the vehicle nominal operation. To ensure normal
operation, real-time fault diagnosis is essential to provide information for the spacecraft to ac-
commodate the fault in time [289].

The enhanced model-based FDIR approaches take advantage of the available on-board input-
output relations, analytical and informational redundancy. The expected benefits of these meth-
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ods are to provide additional and more precise fault indicators to assess the occurred faulty situ-
ation. In [289], a gap analysis has been discussed on drawback of classical FDIR methods in deep
space applications. It suggests that in critical mission phases, an interesting approach would be
to assist the innovative FDIR methods of the system with traditional methods [289].

Obviously, there is a natural tendency to take profit from the continuously increasing spacecraft
on-board computational resources that sets the scene for the application of more sophisticated
and powerful FDIR techniques, based on modern estimation/decision tools. These advanced
techniques enable to respond to faults in a timely manner, increase spacecraft autonomy and
thus offering prospect of reducing the overall operational cost. The FDIR approach proposed in
the next sections follows this philosophy. As explained in the previous chapter, the focus of this
study is on thruster faults, sensor faults being assumed to be diagnosed and accommodated at
lower levels.

Baseline MSR Thruster Configuration

The baseline MSR thruster configuration that is considered in the following developments was
designed for full redundancy. Particularly it means that for this configuration, the chaser is
equipped with a propulsion system composed of 2 × 8 thrusters arranged in two sets. The
nominal set ‘A’ is used for the nominal vehicle control and the redundant set ‘B’ is reserved for
the recovery actions, i.e., the set ‘A’ is switched off and the set ’B’ becomes active as soon as a
fault has been detected. The thruster configuration is illustrated in Fig. 3.2.

Z
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Y

1A

1B

2A

2B
4A

4B

5A

5B

6A

6B

7A

7B

8A

8B

Figure 3.2 – Baseline MSR thruster configuration of the chaser spacecraft

The design of this configuration was driven by the following industrial aspects:

a) The need to minimize the interaction of the thrusters plume with payloads, optical sensors,
solar arrays or a chaser first stage that is jettisoned before rendezvous operation.

b) The need to minimize the number of thrusters while ensuring a full redundancy: A conse-
quence is that there is no need to isolate the thruster fault. Whatever the thruster fault,
the recovery consists in switching to the redundant set.

c) The need to cope with center of mass evolutions during the chaser life.

This configuration enables a full 6 DOF control (attitude and translation) using any of the
thruster set (nominal or redundant). As mentioned earlier, the propulsion system uses only 8
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of the 16 thrusters to control the spacecraft in normal operation. Thus, for the FDI design and
implementation in the next section, only the nominal thruster set ‘A’ is considered and the total
number of (active) thrusters will be denoted by N = 8. It should be noted, that every thruster in
the configuration of Fig. 3.2 has a partner thruster that produces a force in exactly the opposite
direction and torque in the exactly same direction, see Fig. 3.3 for illustration.
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Figure 3.3 – Torque directions (left) and force directions (right)

Justification of the FDIR Approach

The nominal thrusters set of the baseline configuration has just enough thrusters to produce any
necessary force and torque in order to cope with the demand of the 6DOF control law (in normal
operation). So this configuration is in some sense “optimal”, meaning that even if only a single
thruster fails, the nominal set may become underactuated1. This, however, cannot be checked
with the classical controllability test. For example, in the case of a single fault (i.e., 7 >DOF),
the controllability test will indeed result as positive (controllable). This misinterpretation is due
to the fact that all thrusters are unilateral, meaning that they cannot produce negative thrust
and therefore actuator saturation limits must be considered for such a test.

Figure 3.4 – Set of attainable moments (left) and forces (right) using all the 8 nominal thrusters
(blue polyhedron) and using only 7 thrusters (red polyhedron). In both cases the thruster limits
are taken into account.

Taking into account thruster limits, Fig. 3.4 demonstrates the set of attainable forces/moments
1For instance, if a single thruster suffers from a partial (small) loss of efficiency, the spacecraft might still

perform close to the nominal case, therefore “may become underactuated”.

108



Robust FDI Scheme Design

using all the 8 nominal thrusters (Ω8
a) as well as the subset of this set when thruster No.1 is not

considered (Ω1/8
a ⊂ Ω8

a). This figure clearly illustrates that a big portion of nominally attainable
forces/moments (quasi control authority) is lost if only N − 1 = 7 thrusters are considered to
control the spacecraft. It can be also verified by means of closed-loop simulations that, if any
combination of 7 thrusters is considered for control, the GNC performance is very degraded and
the required rendezvous objectives cannot be met. This justifies the need for an FDIR approach
instead of an FTC one, i.e., an approach where fault accommodation is performed by using some
thrusters from the redundant thruster set ‘B’.

From the above reasoning, it becomes clear that the crucial element of the FDIR approach is the
FDI unit. It decides which component of the system or subsystem is faulty. Then one activates
the redundant sub-system in order to recover the initial performance. That is what “R” means
in the acronym FDIR.

3.2 Robust FDI Scheme Design

Due to the central role of the FDI scheme in the FDIR architecture, robustness issues must be
rigorously addressed. In this section, two model-based FDI schemes are presented with enhanced
robustness against the uncertain time-varying delay τ(t) which, as mentioned earlier, aims at
modelling the uncertainties on the thruster rise times and delays induced by the CPDE device,
see Section 2.2.3 for discussion about these uncertainties.

The first FDI scheme is based on the position model (2.78) and the second one uses the attitude
model (2.82). For both schemes, decision making is done using the GLR test (see Appendix B)
and the isolation task is achieved by evaluating a cross-correlation like criterion between the
component of the residual and the commanded thruster opening intervals. Finally, fault recovery
is based on redirecting the control input to the redundant thruster and switching off the faulty
thruster with a dedicated closing mechanism.

3.2.1 Overview of the Time-delay Problematic

Considering FDI of time-delay systems, only limited results have been developed in recent years
in the literature. Among the contributions, an UIO was designed for fault detection of state-
delayed systems with “known” delays [300]. The well known parity space approach was extended
for fault detection of retarded time-delay systems [166]. In [62, 150], a two-objective optimization
approach was considered for LTI systems, again considering constant time-delays aiming at a
formulation of the optimization problem as: enhancing sensitivity of the residual to faults and
at the same time suppressing the undesirable effects of unknown inputs and uncertainties in
L2-gain sense. In [152], a robust fault diagnosis approach based on an adaptive observer was
developed for uncertain continuous LTI systems with multiple discrete time-delays in both states
and outputs. Recently, a geometric approach for FDI of retarded and neutral time-delay systems
was developed [194]. Problem of robust fault detector design for a class of LTI systems with
some nonlinear perturbations and mixed neutral and discrete time-varying delays is investigated
in [160] using a descriptor technique, Lyapunov-Krasovskii functional and a suitable change of
variables.
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Often, uncertain time-varying delays occur in the input channels of the system. This is also
the case of the thruster-based propulsion system of the chaser spacecraft considered in this the-
sis. Dealing with FDI, one of the main difficulty lies in the fact that the uncertainty caused
by such delays is unstructured. Therefore, robustness cannot be achieved by applying directly
existing robust unknown input (disturbance) decoupling approaches directly. There is an im-
portant assumption for all such approaches, i.e., the distribution matrix through which the
uncertainty affects the system state must be known. However, a generalized approach to ob-
tain the distribution matrix is still lacking, see e.g., [222, 230] for further discussion about this
problematic.

This chapter provides a solution to this problems by introducing a Cayley-Hamilton’s theorem-
based and h-order Taylor series expansion-based polytopic transformations, the influence of the
time-varying delay (uncertainty) on the system state is summarized as an unknown input. This
is (thought to be) a novel approach of estimation of the distribution matrix related to the uncer-
tain time-varying input delay which is a prior condition for the application of unknown inputs
decoupling techniques. For residual generation, Patton and Chen shown that by assigning the
eigenstructure of an observer-based scheme, the residuals can be decoupled from these unknown
inputs [222]. The solutions investigated here follow this strategy. More precisely, some left
eigenvectors of the observer are assigned to be orthogonal to the unknown input entry directions
(columns of the distribution matrix) and thus providing a robust fault detector.

3.2.2 Problem Formulation

Consider the position model (2.78) and the attitude model (2.82) derived in the previous chapter.
Due to the quaternion-based rotation matrix R(qt, qc) (for position model only) and due to the
presence of the time-varying delay τ(t) in the control signal ũ, suitable model transformations
and manipulations have to be addressed so that both models are in a general and unified form
(1.39) (see Chapter 1) that is suitable for the unknown input decoupled residual approach using
the EA technique. This is the purpose of the following developments.

To proceed, consider the relative position model (2.78), the multiplicative fault model (2.74)
and the model (2.51) relating the thruster ON-times ũ with the forces ~F (due to the thrusters).
Then, a new system input vector up ∈ R3 can be defined according to

up(t) = R
(
qt(t), qc(t)

)
BF ũ(t− τ(t)) (3.1)

and the fault model can be approximated in terms of an additive fault vector fp ∈ R3 as
follows

fp(t) = −R(qt(t), qc(t)
)
BFΨ(t)ũ

(
t− τ(t)

)
(3.2)

where BF ∈ R3×8 is the lower block of the thruster configuration matrix B̄ related to the
considered thruster configuration, see (2.53) and Fig. 3.2 if necessary. This type of approximation
is widely used in the literature. The interested reader can refer to Isermann [145] and Frank
et al. [97] for a discussion of such an approximation.

Considering (2.78) together with (3.1) and (3.2), the relative position model which suits the FDI
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scheme design purposes can be written in the following form
{
ẋp(t) = Apxp(t) +Bpup(t) +Epffp(t)
yp(t) = Cpxp(t)

(3.3)

where fp is acting on the state via a constant distribution matrix Epf = Bp. The output vector
is defined as yp = [ξ η ζ]T (the relative position between the chaser and the target) and the
input vector is defined as the delayed control signals (3.1) given in the local frame Fl.

Taking similar steps as for the position model, the attitude model (2.82) can be rewritten
according to {

ẋa(t) = Aaxa(t) +Baua(t) +Eaffa(t)
ya(t) = Caxa(t)

(3.4)

where fa ∈ R3 stands for the additive fault vector, Eaf = Ba and ua ∈ R3 is the new input
vector defined as

ua(t) = BT ũ(t− τ(t)) (3.5)

fa(t) = −BTΨ(t)ũ
(
t− τ(t)

)
(3.6)

withBT ∈ R3×8 being the upper block of the MSR thruster configuration matrix B̄. The output
vector is defined as ya = [ϕ, θ, ψ]T (the chaser attitude Euler’s angles) and the input vector is
defined as the delayed control signals given by (3.5). The model (3.4) is now suitable for the
FDI filter design technique proposed in the next section and has exactly the same structure as
the position model given by (3.3).

From (3.3) and (3.4) it is clear that both models admit the following general description of a
continuous LTI system {

ẋ(t) = Ax(t) +Bu(t) +Eff(t)
y(t) = Cx(t) (3.7)

where x ∈ Rnx , u ∈ Rnu , y ∈ Rny , and f ∈ Rnf is system state, system input, measurement,
and unknown fault vector, respectively. The quadruplet {A,B,C,Ef} represents the state-
space matrices either of the position (3.3), or the attitude (3.4) model. It is assumed that all
considered faults f are detectable (see [190] for more details on fault detectability) and that the
pair (A,C) is observable.

Now, consider the TMF described in Section 2.2.3 in Chapter 2. Since the TMF generates the
thruster opening times equidistantly with a fixed sampling interval T > 0, the system (3.7) can
be seen as a discrete-time controlled system. Modelling of continuous time systems with digital
control and delayed control input was for example introduced in [195]. Under the assumption
that τ(t) is constant during each control cycle “k”, i.e., τ(t) = τ(k),∀t ∈ [kT, (k + 1)T ), the
same philosophy can be employed here.

Noting that the control signal ũ(k), generated at time t = kT, k ∈ Z+, arrives to the actuator
at time instant t = kT + τ(k) (i.e., with the delay of τ(k)). It is then kept unchanged by the
zero-order-hold until the next control signal arrives. Noting that the time-varying delay τ(k) is
upper bounded, i.e., τ(k) ≤ τ̄ , ∀k ∈ Z+, it follows that the system input, affected by delays, is
given by

u(t) =




uc(k − 1), t ∈ [kT, kT + τ(k)

)

uc(k), t ∈ [kT + τ(k), (k + 1)T
) (3.8)
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where uc depends on the considered model so that

uc(k) =




R
(
qt(k), qc(k)

)
BF ũ(k), if position model is considered

BT ũ(k), if attitude model is considered
(3.9)

The residual generation problem under the unknown input decoupling constraint can then be
formulated as follows.

Problem 3.1. Design a discrete time residual generator of the form

r(z) = Hy(z)y(z) +Hu(z)uc(z) (3.10)

with Hy/Hu being observer-based transfer functions, such that the residual signal r lends ro-
bustness against the uncertain delay τ(k).

To solve Problem 3.1, the influence of the uncertain parameter τ(k) is first approximated as an
unknown input which acts on the system state via a constant distribution matrix. This unknown
input is then decoupled by means of the left EA technique. In the following, two approaches
are proposed, the first uses a Cayley-Hamilton theorem-based, whereas the second considers a
h-order Taylor series expansion-based polytopic transformation of τ(k). As already mentioned,
the decision making is done using the GLR test and the isolation is performed using a cross-
correlation like test between the residual and the commanded thruster opening intervals.

Figure 3.5 illustrates general overview of the proposed FDI scheme based on the position model
together with its internal and external signals. The red coloured blocks are concerned with
the robust residual generation whereas the yellow coloured blocks corresponds to the evaluation
function of the residual (fault detection and isolation). The green coloured blocks represent
the necessary signal transformations for the FDI. The explicit meaning and operation of each
particular block in Fig. 3.5 will be explained in details in the following developments.

Confirmation 

Window

Figure 3.5 – Position model-based FDI scheme

Similarly as for the position model, Fig. 3.6 illustrates the general overview of the proposed FDI
scheme based on the attitude model. The differences and advantages of either schemes will be
discussed in the sequel.

Figure 3.6 – Attitude model-based FDI scheme
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Remark 3.1. It is important to note that spatial disturbances (perturbations) ~F p and ~T p are
omitted from (3.3) and (3.4). The reason is simple. Since exact disturbance (unknown input)
decoupling techniques are considered in the following developments and since the spatial distur-
bances act on the state via the same distribution matrix (in the same directions) as those of
the inputs and thruster faults, i.e., Bp = Epf = Epp and Ba = Eaf = Eap, so decoupling
these disturbances means decoupling the inputs and faults, too. This is a well know issue (fact)
in the space community when considering robust fault diagnosis problem against spatial distur-
bances2. Robustness against these disturbances can be checked a-posteriori, for instance using a
huge number of Monte Carlo simulations.

3.2.3 Uncertainty Transformation

Assume that τ(k) can be partitioned as follows

τ(k) = lT + δ(k) ≤ τ̄ (3.11)

where l ∈ Z+ is known and δ(k) ∈ R is the time-varying part of τ(k) assumed to be unknown
and bounded by 0 ≤ δ(k) < mT , with m ∈ Z+ being also known.

In the next developments, the case when m = 1 is assumed. This means that the variation part
of the delay is less than one sampling interval. Note that the theory can be easily extended for
m > 1 by employing some steps presented in [294].

To proceed, let’s assume that the fault f is constant during each sampling interval T , what is a
reasonable assumption from a practical point of view3, then the discrete representation of (3.7)
and (3.8) is

{
x(k + 1) = Āx(k) + Γ0(δ(k))uc(k − l) + Γ1(δ(k))uc(k − l − 1) + Ēff(k)

y(k) = C̄x(k)
(3.12)

where

Ā = eAT , Γ0(δ(k)) =
T−δ(k)∫

0
eAtdtB, Ēf =

T∫
0
eAtdtEf

C̄ = C, Γ1(δ(k)) =
T∫

T−δ(k)
eAtdtB

It is obvious that the following holds

B̄ = Γ0(δ(k)) + Γ1(δ(k)) =
∫ T

0
eAtdtB (3.13)

Introducing a new augmented state vector z(k) =
[
xT (k) uTc (k − l − 1)

]T
and using (3.13),

(3.12) can be rewritten as



z(k + 1) =

(
Â0 + Â(δ(k))

)
z(k) +

(
B̂0 + B̂(δ(k))

)
uc(k − l) + Êff(k)

y(k) = Ĉz(k)
(3.14)

2Note that there exist frequency (norm) based approaches to tackle this problem in an approximative (decou-
pling) manner, see Section 1.3.4 of Chapter 1

3The counterpart of this assumption is that the sampling interval T is chosen adequately so that (3.12) holds.
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where
Â0 =

[
Ā 0
0 0

]
,

B̂0 =
[
B̄

I

]
,

Â(δ(k)) =
[

0 Γ1(δ(k))
0 0

]
,

B̂(δ(k)) =
[
−Γ1(δ(k))

0

]
,

Ĉ =
[
C̄ 0

]

Êf =
[
Ēf

0

]

The system (3.14) is an uncertain linear parameter-varying system, where Γ1 is strongly depen-
dent on the uncertain parameter δ(k). The task is now to transform this system to an uncertain
polytopic system for which structured properties can be extracted in terms of unknown inputs.
The polytopic system is then rewritten as a LTI system subject to an unknown input with a
suitable distribution matrix.

3.2.3.1 Uncertainty Transformation Using Cayley-Hamilton Theorem

The following proposition gives a way to transform the uncertainty Γ1(δ(k)) as an convex poly-
tope. (The index a outlines that the first, a-method is considered.)

Proposition 3.1. The Cayley-Hamilton theorem based transformation of Γ1(δ(k)) can be ex-
pressed as the convex matrix polytope

Γa1(δ(k)) =
2nx∑
i=1

µai (k)Ua
i (3.15)

where µai (k) > 0, i = 1, ..., 2nx,∀k ∈ Z+ are uncertain scale factors satisfying
∑2nx
i=1 µ

a
i (k) =

1,∀k ∈ Z+, and Ua
i , i = 1, . . . , 2nx are known constant matrices defined as

Ua
2i−1 = nxs

min
i Ai−1B, Ua

2i = nxs
max
i Ai−1B (3.16)

with
smax
i = max

0≤δ(k)≤T

∫ T

T−δ(k)
si(t)dt, i = 1, 2, . . . , nx (3.17)

smin
i = min

0≤δ(k)≤T

∫ T

T−δ(k)
si(t)dt, i = 1, 2, . . . , nx (3.18)

where si(t), i = 1, 2, . . . , nx are the solutions to the nx-th order homogenous scalar differential
equation

dnxs(t)
dtnx

+ cnx−1
dnx−1s(t)
dtnx−1 + . . .+ c1ṡ(t) + c0s(t) = 0 (3.19)

satisfying the following initial conditions

di−1si(0)
dti−1 = 1, djsi(0)

dtj
= 0 for j 6= i− 1, 0 ≤ j ≤ nx − 1

Proof. Consider first the Cayley-Hamilton theorem, according to which the characteristic poly-
nomial of a matrix A can be expressed as follows

p(λ) = det(λI −A) = λnx + cn−1λ
nx−1 + . . .+ c1λ+ c0 (3.20)
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then according to Leonard [174], eAt can be written as

eAt = s1(t)I + s2(t)A+ . . .+ snx(t)Anx−1 (3.21)

where si(t), i = 1, 2, . . . , nx are solutions to (3.19). Using (3.21), it is possible to express Γ1(δ(k))
as follows

Γa1(δ(k)) =
T∫

T−δ(k)

eAtdtB =
nx∑

i=1







T∫

T−δ(k)

si(t)dt


Ai−1B


 (3.22)

Considering (3.17) and (3.18), then (3.22) can be rewritten as

Γa1(δ(k)) =
nx∑

i=1

(
αi,0(k)smin

i + αi,1(k)smax
i

)
Ai−1B (3.23)

where αi,0(k), αi,1(k), i = 1, . . . , nx are two time-varying unknown parameters satisfying 0 ≤
αi,0(k) ≤ 1, 0 ≤ αi,1(k) ≤ 1, and αi,0(k) + αi,1(k) = 1 for ∀k ∈ Z+. It can be verified [294] that∫ T
T−δ(k) si(t)dt, i = 1, 2, . . . , nx are Lipschitz-continuous on 0 ≤ δ(k) ≤ T , i.e., they satisfy

∣∣∣∣∣

∫ T

T−δ1(k)
si(t)dt−

∫ T

T−δ2(k)
si(t)dt

∣∣∣∣∣ ≤ γi |δ1(k)− δ2(k)| , ∀δ1(k), δ2(k) ∈ [0, T ]

where γi, i = 1, 2, ..., nx are the Lipschitz constants.

Considering (3.16) together with µa2i−1(k) = αi,0(k)/nx and µa2i(k) = αi,1(k)/nx, it can be
verified that (3.23) yields (3.15) and µai (k) > 0,

∑2nx
i=1 µ

a
i (k) = 1 holds ∀k ∈ Z+. �

Remark 3.2. Note that the Lipschitz constants are not unique, they can be any finite constants
satisfying the Lipschitz inequality. Therefore, according to [294], when smaxi and smini cannot
be obtained analytically, reliable Lipschitz global optimization algorithms (e.g., Piyavskii’s al-
gorithm), which can guarantee a global convergence for all Lipschitz-continuous functions in a
closed interval [241], can be adopted to find smax

i and smin
i no matter si(t), i = 1, 2, . . . , nx are

convex or not.

Remark 3.3. From the derivation above, it can be concluded that the number of vertices of the
polytopic representation is 2nx (when considering 0 ≤ δ(k) ≤ T ), which is a linear function of
the system order.

3.2.3.2 Uncertainty Transformation Using Taylor Series Expansion

The second transformation is based on the h-order Taylor series expansion [139] and is given
the following proposition. (Here the index b denotes the second, b-method.)

Proposition 3.2. The h-order Taylor series approximation of Γ1(δ(k)) can be expressed as the
convex matrix polytope

Γb1(δ(k)) .=
h+1∑
i=1

µbi(k)U b
i (3.24)

where µbi(k) > 0, i = 1, ..., h + 1, ∀k ∈ Z+ are uncertain scale factors satisfying
h+1∑
i=1

µbi(k) =
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1,∀k ∈ Z+, and U b
i , i = 1, . . . , h+ 1 are known constant matrices, i.e.:

U b
i =

[
Gh, . . . ,G1

]
Φi, i = 1, . . . , h+ 1 (3.25)

with
Gi = (−1)i+1A

i−1

i! eATB, i = 1, . . . , h

Φ1 =
[
δhminI δh−1

minI , ..., δ2
minI δminI

]T

Φ2 =
[
δhminI δh−1

minI , ..., δ2
minI δmaxI

]T

...

Φh+1 =
[
δhmaxI δh−1

maxI , ..., δ2
maxI δmaxI

]T

Proof. Consider

F (x) =
T∫

T−x
eAsds (3.26)

then using the Taylor series expansion, one can write

F (x) = F (0) + Ḟ (0)x+ F̈ (0)x
2

2! + . . .+ diF

dxi
(0)x

i

i! + . . . = −
∞∑

i=1

(−x)i

i! Ai−1eAT (3.27)

Taylor series expansion of the uncertainty Γ1(δ(k)) =
∫ T
T−δ(k) e

AtdtB can be obtained from
(3.26) and (3.27) using x = δ(k) as follows

Γb1(δ(k)) = −
∞∑

i=1
(−δ(k))iA

i−1

i! eATB

Then, the h-order approximation of the Taylor series expansion for the uncertainty Γ1(δ(k)) can
be expressed as a finite sum of the first h elements

Γb1(δ(k)) .= −
h∑

i=1
(−δ(k))iA

i−1

i! eATB (3.28)

The approximation error is given by the remainder Ξh, i.e.,

Ξh = −
∞∑

i=h+1
(−δ(k))iA

i−1

i! eATB =
(

h∑
i=1

(−δ(k))iA
i−1

i! eAT − ∫ T−δ(k)
T eAtdt

)
B

In [139], it was shown that if

µb1(k) = 1− δ(k)− δmin
δmax − δmin

,

µbi(k) = δi−1(k)− δi−1
min

δi−1
max − δi−1

min

− δi(k)− δimin
δimax − δimin

, i = 2, . . . , h
(3.29)

where δmin=min{δ(k)}, δmax=max{δ(k)}, and thus δ(k) ∈ [δmin, δmax], ∀k ∈ Z+, then µbi(k) >
0, i = 1, ..., h + 1 and

∑h+1
i=1 µ

b
i(k) = 1,∀k ∈ Z+. Using (3.29), (3.28) and (3.25), the convex
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matrix polytope (3.24), given in Proposition 3.2, yields. �

3.2.4 Approximation of the Uncertainty in Terms of Unknown Inputs

Taking into account the structure of the uncertain matrices Â(δ) and B̂(δ) in (3.14) and the
two transformations of Γ1(δ) introduced in Proposition 3.1 and Proposition 3.2, the influence of
the uncertain scalar factors µai and µbi on the state x can be approximated in terms of unknown
inputs as follows

2nx∑

i=1
µai (k)Ua

i

(
uc(k − l − 1)− uc(k − l)

)
= Ea

dda(k) (3.30)

h+1∑

i=1
µbi(k)U b

i

(
uc(k − l − 1)− uc(k − l)

)
= Eb

ddb(k) (3.31)

where

da(k) =
[
µa1(k)

(
uTc (k − l − 1)− uTc (k − l)), . . . , µa2nx(k)

(
uTc (k − l − 1)− uTc (k − l))

]T

db(k) =
[
µb1(k)

(
uTc (k − l − 1)− uTc (k − l)), . . . , µbh+1(k)

(
uTc (k − l − 1)− uTc (k − l))

]T

Ea
d =

[
Ua

1, . . . ,U
a
2nx
]
, Eb

d =
[
U b

1, . . . ,U
b
h+1

]

These two distribution matrices, Ea
d and Eb

d, aim to model the uncertainty-entry directions
in two different ways. Therefore, in order to preserve all these directions, i.e., not use only a
single approach, an augmented distribution matrix Êd and an augmented unknown input d is
considered so that

Êd =
[
Ēd

0

]
, d(k) =

[
da(k)
db(k)

]
(3.32)

where Ēd =
[
Ea
d Eb

d

]
. The elements (columns) of Êd define the directions how each component

of d affects the augmented state z. This kind of approach gains advantage of combining two
techniques to model the effect of the complex uncertainty δ on the state.

Finally, the augmented model with lumped unknown inputs can be expressed as
{
z(k + 1) = Â0zk + B̂0uc(k − l) + Êff(k) + Êdd(k)
y(k) = Ĉz(k)

(3.33)

This model is a quasi-equivalent representation of the augmented system given in (3.14). In
other words, using two polytopic transformations, the influence of the uncertainty Γ1(δ) (that
models the effect of the unknown time-varying delays induced by the CPDE electronic device)
on the augmented state z is approximated in terms of the unknown input d.

By closer examining the structure of Â0, B̂0, Êf , Êd in (3.33), one can see that only the upper
state of z, i.e., the system state x, is influenced by f and d. It means that there is no coupling
between the lower and upper state. This allows to consider only the upper state x in (3.33) for
residual generator design.
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3.2.5 Residual Generator Design with Decoupled Unknown Inputs

To solve Problem 3.1, the following observer-based residual generator is considered
{
x̂(k + 1) = (Ā− L̄C̄)x̂(k) + B̄uc(k − l) + L̄y(k)
r(k) = Q̄

(
y(k)− C̄x̂(k)

) (3.34)

where r ∈ Rnr is the residual signal, x̂ ∈ Rnx the estimation of the state vector x, L̄ ∈ Rnx×ny
the observer gain and Q̄ ∈ Rnr×ny the residual weighting matrix, respectively.

Remark 3.4. The residual generator given in the observer-like form (3.34) can be easily trans-
formed into a transfer function-like form (3.10), i.e., Hu(z) = −Q̄C̄[zI − (Ā− L̄C̄)]−1B̄ and
Hy(z) = Q̄

[
I − C̄[zI − (Ā− L̄C̄)]−1L̄

]
.

The Z-transformed residual response to faults and unknown inputs is

r(z) = Grf (z)f(z) +Grd(z)d(z) (3.35)

where
Grf (z) = Q̄C̄(zI − Ā+ L̄C̄)−1Ēf (3.36)

Grd(z) = Q̄C̄(zI − Ā+ L̄C̄)−1Ēd (3.37)

In (3.35), Grf (z) and Grd(z) denote the transfers between f(z) and r(z), and d(z) and r(z),
respectively.

Once Ēd is known, the remaining problem is to find matrices L̄ and Q̄ so that (Ā − L̄C̄) is
stable, and Grd(z) = 0 holds. The assignment of the observer eigenvectors and eigenvalues is a
direct way to solve this design problem. Additionally, the assignment of the eigenvalues enables
to adequately manage the dynamics of the observer. Note that, because this technique does not
consider a sensitivity constraint in the design procedure, the fault sensitivity performance of the
proposed residual generator can only be verified a posteriori. Especially, the subspace of the
considered faults should not intersect the subspace of decoupled disturbances, i.e., Im(Ēf ) 6⊂
Im(Ēd) (separability condition). See the discussion in [61] if necessary.

To proceed, two lemmas which relate the eigenstructure properties of the system are intro-
duced.

Lemma 3.1 (Chen and Patton [39]). Any transfer function matrix (resolvent matrix) can be
expanded in term of eigenstructure:

(zI − Āc)−1 = v1pT1
z − λ1

+ v2pT2
z − λ2

+ . . .+
vnxp

T
nx

z − λnx
(3.38)

where vi is the right and pTi is the left eigenvector of Āc = Ā − L̄C̄, both corresponding to
eigenvalue λi ∈ Λ(Āc).

Lemma 3.2 (Patton and Frank [229], Chap.4). A given left eigenvector pTi corresponding to
eigenvalue λi of Āc is always orthogonal to the right eigenvectors vj corresponding to the re-
maining (nx − 1) eigenvalues λj of Āc, where λi 6= λj.

Remark 3.5. Note that Lemma 3.1 is only valid for cases when all eigenvectors of Āc are
different, however this requirement does not impose any restriction on the residual generator
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design.

Based on Lemma 3.1, the transfer functionGrd(z) can be expanded in terms of the eigenstructure
as

Grd(z) =
nx∑

i=1

Υi

z − λi
=

nx∑

i=1

H̄vip
T
i Ēd

z − λi
(3.39)

where H̄ = Q̄C̄ and Υi = H̄vip
T
i Ēd, i = 1, . . . , nx.

It is obvious that the unknown input decoupling is feasible if and only if

H̄vip
T
i Ēd = 0, ∀ i = 1, . . . , nx (3.40)

Let’s define the left P̄ and right V̄ eigenvector matrices of Āc as

P̄ =
[
p1, p2 . . . pnx

]T
, V̄ =

[
v1, v2 . . . vnx

]
(3.41)

Based on Lemma 3.2, the following relation holds

P̄ V̄ =




pT1 v1 0 . . . 0
0 pT2 v2 . . . 0
...

... . . . ...
0 0 . . . pTnxvnx




(3.42)

If vectors pTi and vi (i = 1, . . . , nx) are properly scaled, the above equation becomes

P̄ V̄ = I (3.43)

This also means that P̄ = V̄
−1. Using this property, (3.40) implies

H̄

(
nx∑

i=1
vip

T
i

)
Ēd = H̄V̄ P̄ Ēd = H̄Ēd = QC̄Ēd = 0 (3.44)

Hence, one of the necessary conditions for designing an unknown input decoupled residual is
given by (3.44) and restated in the following theorem.

Theorem 3.1 ([225]). If the necessary condition

Q̄C̄Ēd = H̄Ēd = 0 (3.45)

holds and all the rows of the matrix H̄ are left eigenvectors of Āc corresponding to any nr
eigenvalues of Āc, then Grd(z) = 0 is satisfied.

Proof. If the rows of H̄ are the nr left eigenvectors (pi, i = 1, . . . , nr) of Āc, i.e.,

H̄ =
[
p1 p2 . . . pnr

]T
(3.46)

then using Lemma 3.2 the following must hold

H̄vi = 0, i = nr + 1, . . . , nx
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According to the necessary condition (3.45), the following must hold too

pTi Ēd = 0, i = 1, . . . , nr

From Lemma 3.1 it can be shown that Υi = 0, ∀i = 1, . . . , nx and thus Grd(z) = 0 �

3.2.5.1 Left Eigenstructure Assignment

Unknown input decoupling design via EA is to assign left observer eigenvectors orthogonal to
all the columns of Ēd. Following Theorem 3.1, the first step for the design of the unknown input
decoupled residual generator (3.34) is to compute the weighting matrix Q̄ such that (3.45) is
satisfied. If C̄Ēd = 0, any weighting matrix can satisfy (3.45). A general solution is however
given by

Q̄ = Q̄1
(
I − C̄Ēd(C̄Ēd)†

)
(3.47)

where Q̄1 ∈ Rnr×ny is an arbitrary design matrix and (C̄Ēd)† is the pseudoinverse of (C̄Ēd)
given in Appendix A.3.1. The maximum row rank of Q̄ is ny − rank(C̄Ēd), thus the residual
signal dimension should be chosen according to

nr ≤ ny − rank(C̄Ēd) (3.48)

since the linearly dependent rows do not provide any useful information for fault diagnosis.

Remark 3.6. For most cases, the rank condition (3.48) is not satisfied [39]. This condition
also implies that if the number of independent columns Ēd is larger than the independent row
number of C̄, i.e., the number of independent unknown inputs that should be decoupled is larger
than the number of independent measurements, then an approximate decoupling procedure should
be used (i.e., Ēd should be approximated by a lower-rank matrix), see e.g., [107].

The second step is to determine the eigenstructure of the observer. All rows of H̄ must be the nr
left eigenvectors of Āc. For the given (stable) eigenvalue spectrum Λ(Āc) = {λi, i = 1, . . . , nx},
the following relation holds

pTi (λiI − Ā) = −pTi L̄C̄ = −mT
i C̄, i = 1, . . . , nx (3.49)

where mT
i = pTi L̄. The assignability condition says that for each λi, the corresponding left

eigenvector pTi should lie in the column subspace spanned by {C̄(λiI− Ā)−1}, i.e., a vectormT
i

exists such that
pTi = mT

i K̄i, i = 1, . . . , nr (3.50)

where K̄i = −C̄(λiI − Ā)−1, i = 1, . . . , nr. The projection of pi in the subspace span{K̄i} is
denoted by

p◦Ti = m◦Ti K̄i, i = 1, . . . , nr (3.51)

where m◦Ti = pTi K̄
T
i (K̄iK̄

T
i )−1, i = 1, . . . , nr.

If pTi = p◦Ti , then pTi is in span{K̄i}, the required observer eigenstructure is assignable and
perfect decoupling can be achieved. Otherwise, the eigenvectors must be chosen to be close,
e.g., in a least-square sense ‖pTi − p◦Ti ‖, to the desired eigenvectors, i.e., an approximative
procedure must be considered in order to replace pTi by its projection p◦Ti . In this situation, the
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residual is not perfectly decoupled, but has low sensitivity to unknown inputs due to approximate
decoupling [222].

The remaining nx − nr eigenvalues (λi, i = nr + 1, . . . , nx) and the corresponding eigenvectors
(pTi , i = nr + 1, . . . , nx) can be chosen freely from the assignable subspace, e.g., using Singular
Value Decomposition (SVD). Finally, the observer matrix L̄ can be computed as follows

L̄ = (P ])−1M ] (3.52)

where
M ] =

[
m◦1 . . . m◦nr mnr+1 . . . mnx

]T

P ] =
[
p◦1 . . . p◦nr pnr+1 . . . pnx

]T

It is obvious that, the first nr eigenvalues corresponding to the required eigenvectors pTi , i =
1, . . . , nr must be real because all these eigenvectors are real-valued.

Remark 3.7. There is no loss of generality in assuming that Ēd has a full column rank. When
this is not the case, the following decomposition can be applied: Ēdd = Ēd1Ēd2d, where Ēd1 is
a full column rank matrix and d1 = Ēd2d can be considered as a new unknown input (see, e.g.,
[39]).

3.2.6 Computational Procedure and Comments on Implementation Issues

First, the position model (3.3) and the attitude model (3.4) are transformed into the discrete
form (3.12) with T = 0.1 s, l = 0 and m = 1. Practically it means that the unknown time-
varying delay τ(k) is assumed to be in the closed interval [0, T ). Using the Cayley-Hamilton
theorem-based transformation (given in Proposition 3.1) and the 2nd-order (h = 2) Taylor
series expansion-based approximation (given in Proposition 3.2), the uncertainty Γ1(δ(k)) is
transformed into an unknown input as in (3.32).

The resulting matrix Ēd has a large number of columns and the rank condition given by (3.48)
cannot be explicitly satisfied, see also Remark 3.6. Hence, choosing the desired residual di-
mension equal to one, i.e., nr = 1, the following low rank factorization is performed for both
models:

Ē
∗
d = arg min ‖Ēd − Ē∗d‖2F , s.t. nr = ny − rank(C̄Ē∗d) (3.53)

By this factorization, the most significant directions are kept. Equation (3.53) is easy to solve
using Singular Value Decomposition (SVD) of Ēd as follows [181]:

Ēd = Ū sS̄sV̄
T
s (3.54)

where S̄s = [diag(σ1, . . . , σnx), 0], σ1 ≤ σ2 ≤ . . . ≤ σnx are the singular values of Ēd, and
Ū s, V̄ s are orthogonal matrices. Matrix Ē∗d which solves the constrained optimization problem
(3.53) is given by [181]

Ē
∗
d = Ū s

[
diag(0, . . . , 0, σnr+1 , . . . σnx)

]
V̄
T
s (3.55)

Finally, following Remark 3.7, a full column rank decomposition is performed on Ē∗d using again
the SVD technique.
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The obtained distribution matrix Ēd is then used for the residual generator (3.34) design. The
left eigenvectors of the observer are assigned to be the rows of the matrix H̄ = Q̄C̄, where the
weighting Q̄ is determined such that (3.45) holds. In order to be able to compare the perfor-
mances of both FDI schemes (first based on the position and the second based on the attitude
model), the assigned stable eigenvalues, which determine the observer dynamics, are selected to
be exactly the same for both models, i.e., Λ(Āc) = {0.85, 0.87, 0.89, 0.91, 0.93, 0.95}.

In order to avoid using an optimization procedure to determine smaxi and smini in (3.22), the solu-
tions si(t), i = 1, . . . , nx of the differential equation (3.19) are found numerically, and therefore,
smaxi and smini can be found using a simple iterative method.

Remark 3.8. It is worth noting that other exact unknown input (disturbance) decoupling meth-
ods exist, see for instance the book of Chen and Patton [39]. In our particular case only the
left EA technique appeared to be a viable candidate. Other methods, such as UIO or right EA
technique, violated some necessary conditions of the solution existence.

3.2.7 Residual Evaluation - Fault Detection

Once the residual generation problem is solved, the problem is to make a decision about the fault
presence. The GLR test is used here to detect changes in the residual statistical properties. The
decision is made based on two hypotheses: the null hypothesis (H0) means no fault is present,
while the alternative hypothesis (H1) indicates some anomaly in the system considered due to
the thruster fault. In this case, the decision test %Jth is defined according to

%Jth(k) =
{

1, SNd(k) > Jth ⇒ H1 is accepted
0, SNd(k) ≤ Jth ⇒ H0 is accepted (3.56)

where Jth is a fixed threshold selected by the designer and SNd(k) is the GLR algorithm for the
variance, see (B.50) and (B.53) in Appendix B. A higher value of Jth will obviously increase the
non-detection rate while a lower threshold will increase the false alarm rate. The optimal value
of Jth can be selected through Monte Carlo simulation. This approach is widely used in the
FDI community to analyze the efficiency and performance of the designed algorithm [232]. The
interested reader can refer to the monograph of Basseville and Nikiforov [10] for details on the
threshold determination.

The following developments propose a solution to this problem. An isolation strategy is devel-
oped to uniquely isolate the faulty thruster. Moreover, it should be recalled that simultaneous
faults are not considered here.

3.2.8 Residual Evaluation - Fault Isolation

As it has been already noted, in the considered thruster configuration, each thruster has its
partner which provides the same torque directions but force in exactly opposite direction, see
Fig. 3.3 for illustration. Therefore, a residual subspace approach (see Section 1.3.6) cannot
guarantee a full coverage of the considered isolation problematic [190], because this approach
cannot distinguish between faults in either thruster, but only in the thruster pair4. The same can

4However, this claim is valid only if the same initial design conditions are considered as stated in this chapter,
i.e., when only a single 3DOF model (either position or attitude) is considered for fault diagnosis instead of a full
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be concluded for the so-called “structured observer schemes” (see Section 1.3.6) which are based
on making each residual signal sensitive to a subset of faults while being insensitive to another
subset [93]. Moreover, this strategy requires a bank of observers to be designed and run in
parallel, and thus, can pose some constraints on the on-board computational equipment.

3.2.8.1 Proposed Isolation Strategy

The proposed isolation strategy requires only one observer to be designed and run. It relies
on a minimum σNsj or maximum σ̄Nsj cross-correlation criterion between the jth residual signal
rj (a general case when nr > 1 is considered here) and the associated controlled thruster open
durations ũi, i ∈ Sall, i.e.,

σNsj (k) =




σNsj (k) if open-type thruster fault

σ̄Nsj (k) if closed-type thruster fault
(3.57)

where

σ̄Nsj (k) = arg max
∀i∈Sall

∣∣∣∣∣∣
1

Ns + 1

k∑

l=k−Ns+1
rj(l)ũi(l)

∣∣∣∣∣∣
, j ∈ {1, . . . , nr}, ∀k ∈ Z+ (3.58)

σNsj (k) = arg min
∀i∈Sall

∣∣∣∣∣∣
1

Ns +$Ns
i (k)

k∑

l=k−Ns+1
rj(l)ũi(l)

∣∣∣∣∣∣
, j ∈ {1, . . . , nr}, ∀k ∈ Z+ (3.59)

with

$Ns
i (k) = 1−

k∑

l=k−Ns+1
φi(l), where φi(l) =

{
0 if ũi(l) 6= 0
1 if ũi(l) = 0

, i = 1, . . . , N

These cross-correlation functions are statistical quantities that try to find the associated thruster
index that has the smallest/greatest impact on the resulting residual signal. For real-time reason,
these criteria are computed on a Ns-length sliding-window. An increase in the value of Ns results
in an elongated isolation delay. An optimal value of Ns has to be selected and it can be done
through a MC campaign. The resulting index σNsj (k) ∈ {1, 2, . . . , N} refers to the identified
faulty thruster using the jth residual signal at time instance k.

Note that if the ith thruster is not used by the TMF, i.e., ũi = 0, the minimum cross-correlation
function will possibly result in σ(k) = i. This fact is taken into account by introducing the
penalty function $Ns

i (k) in (3.59). Furthermore, if the TMF does not consider the MIB con-
straint, then this fact should be incorporated in the penalty function$Ns

i (k) as follows: φi(l) = 1
if ũi(l) ≤MIB,∀i ∈ Sall.

Considering the residual dimension being nr > 1, then one of the following three approaches
can be used to determine a unique σNs(k), i.e.,

1) take the smallest/greatest cross-correlation among all the residuals;

2) use only one residual signal rj , j ∈ {1, . . . , nr}, e.g., the first one σNs = σNs1 ;

6DOF model.
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3) using a “voting” scheme where, for each residual entry rj a σNsj is computed separately,
and a “majority voting rule” is implemented, i.e., the resulting index by the most σNsj , j =
1, . . . , nr is the identified faulty thruster.

Finally, the resulting thruster index is confirmed at time instant ti = kT , if the following
holds

σNs(k) = σNs(k − 1) = . . . = σNs(k −Nc + 1) (3.60)

where a confirmation window of length Nc > 1 is introduced in order to avoid initial transition
phenomena. It also allows to increase the robustness property of the proposed FDI scheme.

Algorithm 1 Thruster Fault Detection and Isolation Algorithm
1: if %Jth(kd) = 1 then
2: Decision = Declare the fault presence at time td = kdT ;
3: Start collecting the isolation signals σNs(k), k ≥ kd;
4: if For a given Nc, (3.60) holds at time ti = kiT then
5: Decision = Declare the i = σNs(ki)-th thruster to be faulty;
6: end if
7: end if

A key feature of this isolation strategy is that it is static, and thus it has a low computational
burden. The whole fault detection and isolation strategy is summarized in Algorithm 1

Remark 3.9. It should be noted that an event resolution algorithm must be implemented for
the decision given in (3.61), since it is required to distinguish the fault cases 1-3 (open-type
fault) from the case 2-4 (closed-type fault). Fortunately, because cases 1-3 imply a propellant
overconsumption and since the chaser is equipped with a set of dedicated sensors (tank pressure
and tank temperature sensors) that can be used to monitor the overall propellant consumption P,
this problem can be easily solved as follows: using the reading from these sensors and combining
some laws of fluid mechanics, a “measurement-based estimate” P̂m of the actual fuel consumption
can be computed. On the other hand, using the knowledge of the thrusters Specific Impulse (ISP)
and the available (on-board) thruster firing times ũ, another “firing-times-based estimate” P̂f can
be established. Comparing these two quantities, the following event resolution logic is suggested

σNsj (k) =




σNsj (k) if P̂m ≥ P̂f
σ̄Nsj (k) if P̂m < P̂f

(3.61)

Another solution is to apply an additional, second threshold on the likelihood estimate SNd(k)
or directly to the norm of the residual signal ‖r(k)‖.

3.2.9 Tuning of the FDI Scheme

In order to ensure robustness, whilst being sensitive to faults, the threshold Jth has to be selected
carefully. As suggested in Section 3.2.7, the optimal value of Jth can be selected through MC
simulation. Here, a set of 200 fault-free closed-loop MC simulations was performed using a GLR
sliding window of 10 samples, i.e., Nd = 10. In the following, the notation S10 is used to denote
the considered GLR test. Figure 3.7 illustrates the obtained results of the MC analysis. It can
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be clearly seen from this figure that, for both models, the GLR signal S10(k) is very unlikely to
exceed the value 20 during the whole length of the simulation5. Therefore, a threshold Jth = 20 is
chosen to ensure (ideally) a zero false alarm rate. For the isolation function σNsj given by (3.61),
a sliding window of Ns = 10 and a confirmation window of Nc = 15 samples is considered. Note
that the residual dimension is nr = 1, thus the index j is omitted for σNsj in the following.
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Figure 3.7 – GLR signals based on a set of 200 Monte Carlo simulations for fault-free case

3.3 Simulation Results

The two FDI schemes described in the previous section are next implemented within the MSR
simulator to detect and a isolate single thruster fault affecting the chaser thruster-based propul-
sion system. The first scheme is based on the position model and the second on the attitude
model one, respectively. Carefully selected robustness and FDI performance indices together
with the Monte Carlo simulation campaign allow one to compare these schemes among each
other.

3.3.1 Residual Behaviour

In order to provide a qualitative analysis of the position model-based and attitude model-based
residual behaviour, a comparison of four different scenarios is shown in Fig. 3.8. This figure
illustrates the time behaviour of the residual signal, both in fault-free and faulty cases.

Fig. 3.8a corresponds to a fault-free situation. It can be observed that both residuals are very
similar in terms of their variances. This allowed to select very similar parameters for the GLR
test, i.e., for the parameters µ and σ0 (see Appendix B.2.1.2). It also justifies why the selected
threshold Jth = 20 resulted to be the same for both model-based schemes, see Section 3.2.9 for
details.

Three other simulations have been performed in order to compare the fault-free residual with
faulty cases. Fig. 3.8b corresponds to a blocked-closed thruster fault affecting thruster No.5.
from tf = 1000s. The rest two figures, i.e., Fig. 3.8c and Fig. 3.8d, correspond to a leak-
ing thruster of size 10% and a loss of efficiency by 40%, respectively. In all the three cases,

5One can attach a certain false alarm probability (Pf ) to the selected threshold Jth from the Cumulative
Distribution Function (CDF) of the GLR test statistic plotted in Fig. 3.7. For example in [118], based on real
flight data of an Unmanned Aerial Vehicle (UAV), the CDF of the GLR test statistics was found to be best fitted
using a Weibull distribution. Using the fitted distribution, the detector threshold linked with a certain Pf was
determined by looking at the right tail distribution to find the probability of exceeding a chosen threshold.
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Figure 3.8 – Position and attitude model-based residual behaviours for different scenarios

thruster No.5 is considered to be faulty. All faults are maintained during the whole length of
the simulation and are not accommodated (recovered).

In these particular cases, the blocked-closed thruster fault has the greatest impact on the residual
behaviour (in terms of total magnitude), however the effect when this fault influences the residual
is slightly later as it is in the later cases. As explained earlier, this can be due to the fact that
an uncommanded thruster, which is deemed to be stuck-closed, has no effect on the spacecraft
dynamics.

Figure 3.8c and Fig. 3.8d show that these fault types (leakage and thrust loss) have exactly op-
posite effect on the spacecraft dynamics, both in terms of rotational and translational dynamics
since the residual behaves in opposite directions. A fully open thruster fault is not considered
here. It is obvious that due to the direct link between the fully open thruster fault and a leakage
type fault, i.e., without loss of generality a fully open thruster can be understood as a leakage
fault with size 100%, the residual would have a very similar behaviour as the one depicted in
Fig. 3.8c but obviously with much greater magnitude.

3.3.2 Monte Carlo Campaign

A Monte Carlo simulation campaign is used to test and validate the performance of the pro-
posed FDI schemes when applied on a huge number of simulation models with randomly drawn
dynamics. All considered simulations are carried out under realistic conditions except the event
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resolution algorithm introduced in Remark 3.9, which is considered to work perfectly. For each
run, model parameters, e.g., mass, CoM, inertia, etc. are altered within a specific limit, see
Table 2.3 in Section 2.2.3. Navigation imperfections, spatial disturbances, time-varying delays
induced by the CPDE electronic device and uncertainties on thruster rise times are also consid-
ered, see Chapter 2 for more details.

All together, a set of four nmc = 1600 Monte Carlo simulations for each faulty case (4 × nmc)
has been performed in order to assess the performance of the proposed FDI schemes. These
fault scenarios correspond to:

• Case 1: fully open thruster (mleak(t) = 1,∀t ≥ tf )

• Case 2: blocked-closed thruster (mleak(t) = 1,∀t ≥ tf )

• Case 3: residual leakage ranging from 10% to 30% (m̂leak ∼ U(0.1, 0.3), ms = 0.1)

• Case 4: loss of efficiency ranging from 40% to 90% (m̂loss ∼ U(0.4, 0.9))

Thruster faults have been uniformly distributed among all the 8 thrusters, see Fig. 3.11a for
thruster indices distribution for all considered fault cases separately. Correspondingly, the leak-
age and the thrust loss size have been drawn from the uniform distribution with the following
intervals: m̂leak ∈ [10%, 30%] and m̂loss ∈ [40%, 90%]. The leakage is implemented as a dynamic
lower saturation to the commanded thruster open rate, where this saturation starts at value 0
and ends at m̂leak with a slope of ms = 0.1, see Section 2.3.3 about fault modelling. In all cases,
fault occurs at time tf = 1000 s. Note that in this section, the recovery aspects are not consid-
ered, i.e., the fault remains present in the system during the whole length of the simulation and
is not recovered.

Figures 3.9 and 3.10 illustrate the behaviour of the most important characteristics of the FDI
units and their internal signals. Both the position model-based (left figures on Fig. 3.9 and 3.10)
and attitude model-based (right figures on Fig. 3.9 and 3.10) FDI units are considered. These
characteristics are:

i) the GLR signal S10(k) represented at each sample k and for a detection sliding window of
length Nd = 10 samples, see (B.53);

ii) the decision (alarm) signal %20(k) with the defined threshold Jth = 20, see (3.56);

iii) the thruster declared to be faulty by an isolation unit which is represented by the signal
σ10(k) for a computation sliding window of length Ns = 10 samples, see (3.61)-(3.59).

The confirmation time window of length Nc = 15 samples is also considered. Figures 3.9 and
3.10 illustrate (from top to bottom) the above listed characteristics for the following set of four
arbitrary chosen faulty scenarios from the MC campaign:

1. A fault that corresponds to a stuck open valve, occurring in the thruster No.8., i.e., the
thruster No. 8 is fully opened so that it provides a maximum thrust.

2. A fully blocked-closed fault occurs in thruster No.3. In this case, the thruster does not
generate any thrust regardless of the command by the TMF.

3. The third faulty situation corresponds to thruster No.2 suffering from a leakage with a
final magnitude of 19.2%.
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Figure 3.9 – Behaviour of the internal signals of the position (on the left) and attitude (on the
right) model-based FDI scheme, respectively

4. The fourth faulty situation corresponds to the case when the thruster No.7 loses its thrust
level by a value of 54.7%.

Figure 3.9 is concerned with the two first situations whereas Fig. 3.10 considers the two last
cases. Clearly, the nonlinear simulations show that faults are detected and isolated by the
proposed FDI units within a reasonable time. Moreover, Fig. 3.10 shows the ability to detect
and isolate small (thrust loss) and incipient (residual leakage) thruster faults.

To evaluate and compare the performance and reliability of the two proposed FDI schemes, some
statistical indices are computed. These indices are evaluated for the detection delay τd (time
from fault occurrence to fault detection) and isolation delay τi (time from fault occurrence to
fault isolation). The considered performance indices are listed below:

• mean(τd)/mean(τi) - mean detection/isolation time,

• std(τd)/std(τi) - standard deviation of the detection/isolation,

• pi - true isolation rate (number of correctly isolated thrusters divided by nmc),

• pf - false alarm rate (number of wrongly detected faults divided by nmc),

• pnd - non-detection rate (number of non-detections divided by nmc).

These performance indices are calculated for each fault scenario and model separately. Table 3.1
presents complete results obtained from the Monte Carlo simulation campaign. As it can be
seen from this table, the two proposed FDI schemes present good reliability characteristics since
no false alarms pf = 0 and non-detections pnd = 0 have been revealed. Furthermore, all thruster
faults were correctly isolated at the end of the campaign (i.e., pi = 1). These achieved results
also demonstrate that each FDI scheme is able to successfully detect and isolate thruster faults
affecting the chaser baseline thruster-based propulsion system.
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Figure 3.10 – Behaviour of the internal signals of the position (on the left) and attitude (on the
right) model-based FDI scheme, respectively

Table 3.1 – Evaluated FDI performance indices based on 4x1600 Monte Carlo runs

Criterion/ Position model-based FDI Attitude model-based FDI
Scenario Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4
mean(τd) 1.6 16.3 3.6 18.8 1.4 11.7 2.9 12.2
std(τd) 0.017 3.803 0.167 6.594 0.048 2.895 0.076 3.064
mean(τi) 3.4 17.9 5.5 20.4 3.6 15.0 5.5 15.6
std(τi) 0.207 3.799 0.399 6.592 0.237 3.231 0.459 3.456
pf/pnd/pi 0/0/1 0/0/1 0/0/1 0/0/1 0/0/1 0/0/1 0/0/1 0/0/1

In order to better appreciate the results presented in Table 3.1, histogram plots graphically
demonstrate the distributions of the detection (τd), isolation (τi) and pure isolation (ti-td) delays.
Figure 3.11b shows a comparison of the obtained results in terms of detection times, Fig. 3.12a
in terms of isolation times and finally Fig. 3.12b in terms of pure isolation times. This visual
representation allows to evaluate the FDI performances in terms of minimum and maximum
detection/isolation times, as well as to observe the median values.

It can be seen from Fig. 3.11b that (as expected) the FDI unit based on the attitude model
presents a greater sensitivity towards all the faulty situations. This can be easily explained by
the fact that the attitude dynamics reacts more quickly to small faults. By closer examining
Fig. 3.12a, it can be revealed that the final performance (isolation times) of both FDI schemes
are only slightly different from each other. Furthermore, from Fig. 3.12b, it can be seen that in
terms of pure isolation times, the position model-based approach performs better. This can be
simply explained by the fact that the position model-based residual evolves more likely in the
direction of the fault.
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Figure 3.11 – Histograms for thruster indices distribution and detection delays

3.3.3 Concluding Remarks on the Obtained FDI Results

The obtained results indicate that both proposed model-based FDI schemes are effective and
applicable for on-board implementation. They also show that all considered fault scenarios are
covered with the suggested model-based FDI schemes, i.e., they are able to unambiguously isolate
all considered faults with high probability. However, this is in contrast with the classical FDIR
approaches used in satellite systems. Moreover, the carefully selected performance indicators
also reveal that the position model-based scheme tends to achieve very similar FDI performance
as the scheme based on the attitude model.

The position model-based FDI scheme succeeded thanks to the judiciously chosen linear model,
i.e., a model that takes into account both the rotational and translational motions of the chaser.
In other words, the dynamics of the attitude of the chaser is not modeled, but the chaser quater-
nion is introduced in the residual computation (quaternion-based force vector scheduling, see
equation (3.1) for details). This allows to propose a fault diagnosis solution with a very similar
performances to those based on the attitude model. Moreover, the position model is naturally
robust against the model uncertainties, such as center of mass and inertia, whilst the attitude
model not. The linearity of the attitude model during the fault presence is also questionable.
Since only one observer is used for both fault detection and isolation, the computational burden
is kept relatively low which is an a prior condition for on-board implementation.

It should be also note that the occurrence of incipient or relatively small size thruster faults
(e.g., small propellant leakage or thrust loss) may be covered by (robust) control actions, which
lead to the selection of the minimum interval limits for m̂leak and m̂loss, respectively. The
early detection of such faults is clearly more challenging. Another problem can arise when a
blocked-closed thruster is not commanded and thus a fault detection is almost impossible. Such
behaviour was not observed, since the TMF unit respects the thruster non-linearities (minimum
On/Off times) of each thruster in the set.

Finally, all considered faults are detected and isolated by the proposed FDI units within a
reasonable time (see the results presented in Table 3.1), i.e., within a time interval which allows
the GNC system to keep its required performance (e.g., in terms of pointing accuracy and
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(a) Histograms for isolation delays
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(b) Histograms for pure isolation delays

Figure 3.12 – Histograms for isolation and pure isolation delays

trajectory keeping) and meet the final capture requirements (see Chapter 2). The purpose of
the next section is to illustrate the impact of the isolation delay on the recovery action.

3.4 Recovery Aspects

After the faulty thruster has been successfully detected and isolated by the FDI unit, the system
can attempt to recover from the fault. The strategy of recovery is the last element of the proposed
fault tolerant scheme and is ensured by switching to the fault-free thruster, thanks to the full
hardware redundancy in thrusters. More precisely, the strategy is based on redirecting the
control input ũi of the faulty thruster (with index ‘i’) from thruster set ’A’ to the thruster in the
redundant set ’B’. This makes the fault recovery without any change in the nominal controller
or/and in the in-placed TMF.

Without a valve to switch off the faulty thruster, there is only one way to control the spacecraft,
i.e., try to on-line compensate the force and torque of the faulty thruster. However, this would
lead to a drastic increase of the propellant consumption which is already very constrained by the
travel to Mars. Therefore, a thruster which has been failed must be switched off by a dedicated
Thruster Latch Valve (TLV). Fortunately, each thruster is equipped with a TLV leading the
proposed FDIR solution to be a viable solution. Note that, in contrast to the “half-satellite”
strategy, this approach can be (re-)used for each thruster separately, and thus, significantly
increase the fault coverage capabilities.

In the following, a set of 4 × 100 randomly chosen simulation scenarios from the Monte Carlo
campaign presented in Section 3.3.2 is considered. This set is used to analyse the effect of the
isolation delay on the fault recovery, and thus, on the overall GNC performance as well as on
the final capture requirements. For each scenario, two simulations are required. One for the
recovery built on the position model-based FDI unit (further denoted as FDI-P) and the other
built on the attitude model-based FDI scheme (further denoted as FDI-A). In total, a set of 800
simulations has been considered.
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Figure 3.13 – Capture position requirements and GNC performances for fault Case 1

Figures 3.13-3.18 illustrate the fault recovery aspects of the two FDIR strategies, i.e., the one
based on the FDI-P and the other based on FDI-A scheme, respectively. The capture conditions
in terms of position and velocities are given in Fig. 3.13a, Fig. 3.14a, Fig. 3.16a, and Fig. 3.17a for
fully open thruster, blocked-closed thruster, leaking thruster and loss of efficiency thruster fault,
respectively. Figure 3.13b, Fig. 3.14b, Fig. 3.16b and Fig. 3.17b illustrate, that in all faulty cases,
the chaser maintains the required trajectory, i.e., stays inside the rendezvous corridor (right on
the figures), and that the chaser keeps its attitude pointing towards the target leading to a
successful capture (left on the figures). Finally, Fig. 3.15 and Fig. 3.18 show that the proposed
strategy is able to meet the required 3σ capture accuracy in terms of angular misalignment and
angular rate errors.

The obtained simulation results on the recovery aspects indicate that the isolation performances
given by Table 3.1, for both FDI schemes (FDI-P and FDI-A), are reasonable when considering
the coupling of the isolation delay with the GNC system performance and capture accuracy.
In other words, the obtained results suggest that both FDI units are able to perform fault
detection/isolation (for the considered fault profiles) within a time interval less than the time
during which the system becomes saturated (e.g., the LIDAR sensor is out of sight) or the
control accuracy becomes intolerable (e.g., the capture requirements are not met).

3.5 Conclusion

This chapter presented a complete design and implementation of two different model-based
FDIR strategies for thruster fault diagnosis and accommodation (recovery). The focus of both
approaches is on the robustness issue against the unknown time-varying delays induced by the
propulsion drive electronics and uncertainties on thruster rise times. The idea is to transform
these unstructured uncertainties into unknown inputs and to decouple them from the residual by
means of EA technique. Two polytopic transformations to the original system are introduced.
The first transformation is based on the Cayley-Hamilton theorem whereas the second relies on
the h-order Taylor series expansion. Based on these transformations, the effect of the uncertain-
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Figure 3.14 – Capture position requirements and GNC performances for fault Case 2

(a) Angular misalignment (left) and angular rate error
(right) at capture

(b) Angular misalignment (left) and angular rate error
(right) at capture

Figure 3.15 – Capture angular requirements for fault Case 1 and Case 2
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Figure 3.16 – Capture position requirements and GNC performances for fault Case 3
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Figure 3.17 – Capture position requirements and GNC performances for fault Case 4

(a) Angular misalignment (left) and angular rate error
(right) at capture

(b) Angular misalignment (left) and angular rate error
(right) at capture

Figure 3.18 – Capture angular requirements for fault Case 3 and Case 4

ties on the state is summarized as an unknown input linked with its corresponding distribution
matrix. The estimation of the complex unknown input distribution matrix can be considered as
a contribution to the theory. The robust (in the sense of unknown input decoupling) observer-
based residual generation for FDI is achieved by assigning some left eigenvectors of the observer
to be orthogonal to the unknown input directions (columns of the distribution matrix).

The faulty thruster isolation is achieved by cross-correlation-like test between the residual signal
and the commanded thruster open rates. To reduce computational burden, the isolation test
is based on a sliding window and thus having a low computational complexity which is a prior
condition for an on-board implementation. Fault accommodation is achieved by employing the
additional hardware redundancy in the thrusters, i.e., as soon as the faulty thruster is isolated
by the FDI unit, it is switched off using a dedicated thruster latch valve and the redundant
thruster from the back-up set is used instead. This makes the fault recovery without any change
in the nominal controller or/and TMF. Additionally, the thruster fault isolation is made without
requiring any valve position sensors. The core element of this chapter is the judiciously chosen
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position model. This model was used to design the first FDI scheme and was compared (in
terms of well established FDI performance indices) to the second one, the attitude model-based
scheme.

A Monte Carlo simulation campaign has been performed under realistic conditions considering
measurement noises, delays, spatial disturbances and parameter uncertainties. Four different
fault scenarios were injected throughout simulations. The obtained results demonstrated hight
reliability (no false alarms) and the efficiency (reasonable detection times) of the proposed FDI
schemes. Moreover, the simulation campaign on recovery issues revealed that the isolation delay
of both FDI schemes has only minor effect on the GNC system performance and that the final
capture requirements can be fully met since the system is recovered to its pre-fault condition
(nominal operation). The following chapter addresses an enhanced fault detection, isolation and
accommodation solution based on an active FTC scheme.

135



136



Chapter 4
Active FTC Approach for a New Thruster
Configuration without Redundant Set

“All stable processes we shall predict. All unstable processes
we shall control.”

— John von Neumann, Hungarian-born mathematician

This chapter addresses the design and implementation of an active fault tolerant control
system strategy to detect, unambiguously isolate and accommodate a single thruster fault
occurring in the thruster-based propulsion system. Since the thruster configuration used

in the previous chapter has not enough degrees of freedom to deal with such an advanced so-
lution, a new layout of thrusters is considered. Key features of the proposed method are the
use of the following components: a fault detector based on eigenstructure assignment technique
for robust and quick fault detection, a bank of nonlinear unknown input observers with dynam-
ics assignment together with an extended Kalman filter-based torque bias estimator for fault
isolation and an online control allocation unit scheduled by the fault isolation scheme for fault
tolerance. A Monte Carlo campaign is conducted in the context of the terminal rendezvous
phase. Mission oriented criteria demonstrate that the proposed FTC strategy is able to cope
with a large class of thruster faults, despite the presence of various types of uncertainties.

4.1 New Thruster Configuration

The considered thruster configuration in this chapter is different from the baseline MSR config-
uration introduced in Chapter 3. It is a special one designed by Thales Alenia Space industries,
in order to study active fault-tolerant strategies. This configuration is composed of N = 12
thrusters and is physically organised in four groups, see Fig. 4.1 for illustration.

This configuration disposes of some degrees of freedom to achieve fault tolerance (functional
redundancy). Particularly, the set of 12 thrusters is placed on the chaser such that the nominally
attainable set Ωa of propulsion torques T and forces F is likewise attainable by combining the
thrusts of any N − 1 = 11 thrusters. From practical viewpoint, it means that it is possible
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Figure 4.1 – Thruster configuration of the chaser spacecraft

to achieve the required capture accuracy and the necessary GNC performance with only 11
(healthy) thrusters. This fact will be justified in the next section. The main drawback of this
new thruster configuration is, that in terms of FTC, it requires a fault isolation function and
also that the TMF and/or the already in-placed controller must be changed in order to cope
with the fault.

Considering the thruster configuration illustrated in Fig. 4.1 by analysing the sensitivity matrices
BF and BT (attached to this configuration) in terms of directional properties, the following can
be concluded: the torque directions of the thrusters having index inside the sets STk, k = 1, . . . , 4
are the same and those having index inside the set ST5 are similar. In our case, the above subsets
are defined as follows

ST1 = {1, 11}, ST3 = {4, 8}, ST5 = {3, 6, 9, 12}
ST2 = {2, 10}, ST4 = {5, 7}, (4.1)

In terms of force directions, the following property is revealed

bF1 = −bF11, bF4 = −bF8, bF3 = −bF12
bF2 = −bF10, bF5 = −bF7, bF6 = −bF9

(4.2)

which means that thruster pairs given by STk, k = 1, ..., 4 produce exactly opposite forces. The
last thruster group, i.e., ST5, has the following properties

bF3 · bF6 = 0, bT3 ≈ −bT6 ≈ −bT9 ≈ bT12 (4.3)

where ” · ” denotes the dot product. Relations in (4.3) mean that thrusters belonging to the
ST5 group produce a) forces perpendicular to the forces of their neighbours b) nearly collinear
torques. Directional properties given by (4.1)-(4.3) are visualised in Fig. 4.2 and will be later
used to derive an explicit fault isolation strategy.

Note, that not only the number of thrusters and the absence of the redundant set differs from
the configuration considered in Chapter 3, but also the fact that there are two thruster pairs
in the fifth group, which produce torques in a very similar directions. This makes the fault
diagnosis task (especially the isolation) very challenging.
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Figure 4.2 – Torque directions (left) and force directions (right)

4.1.1 Feasibility of the Attainable Forces and Moments

Let Ωa be the set of attainable forces/moments linked with the here investigated thruster con-
figuration and Ωk

a be the set of attainable forces/moments using all thrusters but the kkt one,
then Ωk

a ⊆ Ωa,∀k ∈ Sall. Then, it is revealed that sets Ωk
a, ∀k ∈ Sall are very close to Ωa. This

can be also illustrated by a simple example, see Fig. 4.7.

Figure 4.3 – Set of attainable moments (left) and forces (right) using all 12 thrusters (blue
polyhedron) and using only 11 thrusters (red polyhedron) and in both cases taking into account
the thruster limits

This figure illustrates the set of attainable moments and forces in the case of a single example
using all the 12 thrusters (i.e., the set Ωa) and in the case when thruster No.1 is not considered
(i.e., the set Ω1

a). Note, that these sets were generated taking into account the upper thruster
limits, see the discussion at the beginning of Chapter 3.

Figure 4.7 shows that only a small portion of the “quasi control authority” is lost when con-
sidering Ω1

a for control1. Thus, it is guaranteed that this new thruster configuration is capable
of achieving admissible GNC and capture/rendezvous performances, whenever 11 thrusters are
available, that is for all Ωk

a,∀k ∈ Sall.
Remark 4.1. The MIB constraint was not taken into account when computing Fig. 4.7. Ba-
sically, it would create a dead zone-like subset (polyhedron) around the origin of the coordinate
system. This, however, does not invalidate the claims mentioned above.

1It should be noted, that Fig. 4.7 illustrates only the thruster configuration physical capabilities and not the
real control authority which is obviously dependent on the selected control law (controller and/or TMF).
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4.2 Context and motivations

Following the previous discussion, it seems clear that the major problem turns out to be the
design of FTC scheme able to detect, isolate and accommodate a faulty thruster. This is
the main purpose of this chapter where an active FTC solution is provided. The idea is that
instead of trying to redesign the already in-placed nominal controller (in the presence of thruster
faults), the control allocation module is reconfigured with the use of the baseline 6DOF control
law, such that the control effort is redistributed (re-allocated) to the remaining operational
thrusters.

Note, that the problem of designing an active FTC system for thruster faults has been rarely
studied for space systems (or very few papers have been published). In terms of model-based
FDI, numerous techniques have been studied in the past decades in the academic community,
see Chapter 1 or [19, 60, 231] for good surveys.

Additionally to works presented in Chapter 1, one can mention [246] that proposes a torque
bias vector matching FDI algorithm. The torque bias is estimated using an EKF and directly
matched with the torque directions of each thruster. The main drawback of this approach is
that it is unable to consider a thruster configuration where some thrusters generate same or very
similar torques, which is the case of the new thruster configuration presented earlier. A similar
idea is presented in [5], where instead of estimating the torque bias, the sliding mode injection
term is matched with the thruster directions. This method has similar drawbacks like the
previous method. Additionally, the isolation performance strongly depends on the measurement
noise. In [240], a robust model–based H∞/H− FDI filter is used for thruster fault detection and
fault isolation is performed using a bank of linear thruster–direction decoupling observers.

In the aero-space community, the control allocation technique is probably the most “ready to
be implemented” FTC approach. The major reason is that, even if the technique has been used
only for FTC purpose for a few space experiments, the computational complexity is already
within the limits of today’s off-the-shelf embedded computer systems, see [20, 21, 99, 127, 156,
157, 216, 219]. Thruster faults can be dealt with using CA principle so that it is not required to
re-design the control law itself. A consequence is that CA can be used as a FTC solution with
a little extra effort on the original techniques. This chapter follows this idea.

4.3 Robust Fault Detector Design

Since in any FTC scheme, it is required a fault detection and isolation scheme, this section
addresses the design of a robust fault detector. The fault detector shall indicate the fault
occurrence in the thruster-based propulsion system. The proposed fault detector is based on
a robust residual generator and a statistical decision test that evaluates the residual. The
residual is designed such that it lends robustness against the uncertain delay τ(t) introduced
in Section 2.2.3. Following the reasoning about the position model-based fault detector in
Chapter 3, the proposed residual generator in this chapter is based on the relative position
model2. Robustness is achieved by employing a different approach, i.e., the uncertain delay

2This, however, poses no limits on the applicability of the proposed fault detector approach to position model
only. In fact, attitude model can be equally used. The usage of the position model will be further justified in
Section 4.4.
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is modelled using a first-order Padé approximation. This uncertainty is next approximated
in terms of unknown inputs and decoupled by means of an EA technique. The whole design
procedure is derived in the continuous time domain rather than in the discrete time as it was
the case in Chapter 3.

4.3.1 Problem Setting

Consider the position model given by (3.3) with additive thruster fault model (3.1) and input
delays (3.8) (the index “p” is omitted here for clarity)

{
ẋ(t) = Ax(t) +Bu(t) +Eff(t)
y(t) = Cx(t) (4.4)

The system input u is considered in the continuous fashion as

u(t) = uc(t− τ(t)) (4.5)

where uc(t) = uc(k),∀t ∈ [kT, (k + 1)T ) is the continuous time version (piecewise-continuous)
of the discrete time system input uc(k), see (3.9) if necessary.

Compared to (3.8), it can be noted that, here the discrete time unknown delay τk is considered
to be a time-varying piecewise continuous (continuous from the right) delay τ(t) = τ(k), ∀t ∈
[kT, (k + 1)T ). Thus, (4.5) is an equivalent representation of (3.8) in the continuous time
domain.

The robust residual generation problem is then formulated as follows:

Problem 4.1. Design a continuous time residual generator of the form

r(s) = Hy(s)y(s) +Hu(s)uc(s) (4.6)

with Hy/Hu being observer-based transfer functions, such that the residual signal r lends ro-
bustness against the uncertain time-varying delay τ(t).

4.3.2 Derivation of the Solution

In order to solve Problem 4.1, the influence of the uncertain time-varying delay is first expressed
as an unknown input. This is achieved by using a first-order Padé approximation and introducing
a new augmented state space description. Second, the unknown input is decoupled by means of
EA technique.

To proceed, consider the transfer function

H(s) = u(s)
uc(s)

= e−τ(t)s (4.7)

of the time delay τ(t) being an irrational transfer. Therefore, it is useful to substitute e−τ(t)s

with an approximation in form of a rational transfer function. The most common approximation
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is the Padé approximation

e−τ(t)s .= 1− k1s+ k2s2 + . . .± kpsp
1 + k1s+ k2s2 + . . .+ kpsp

(4.8)

where p is the order of the approximation and the coefficients ki are functions of p.

Here, a first-order Padé approximation of the time delay is considered when the Padé coefficients
become: k1 = τ(t)

2 and ki = 0, i = 2, . . . , p. The irrational transfer can be then approximated
as

e−τ(t)s .=
1− τ(t)

2 s

1 + τ(t)
2 s

(4.9)

If this approximation is considered for all system inputs, then the transfer function (4.9) is
equivalent to the following state space representation

{
ẋd(t) = Ad(τ)xd(t) +Bduc(t)
u(t) = Cd(τ)xd(t) +Dduc(t)

(4.10)

where xd(t) is the delayed state and the matrices Ad(τ),Bd,Cd(τ) and Dd are given as fol-
lows

Ad(τ) = − 2
τ(t)I, Bd = I, Cd(τ) = 4

τ(t)I, Dd = −I

The augmented state-space description of the system (4.4) and the delayed inputs (4.10) with
the state vector zT =

[
xTxTd

]
is:




ż(t) = Â(τ)z(t) + B̂uc(t) + Êff(t)
y(t) = Ĉz(t)

(4.11)

where

Â(τ) =
[
A BCd(τ)
0 Ad(τ)

]
, B̂ =

[
BDd

Bd

]
, Ĉ =

[
C 0

]
, Êf =

[
Ef

0

]

It can be seen, that thanks to the chosen state-space representation (4.10), the uncertainty τ is
present only in Â(τ). The task now is to decompose this matrix into a constant and parameter-
varying part.

More precisely, the task is to decompose the matrix Â(τ) in the following form

Â(τ) = Â0 + ∆Â(τ) (4.12)

where Â0 is a constant matrix and ∆Â(τ) is the parameter-varying (uncertain) part of Â(τ).

Let be considered that τ(t) can be expressed as

τ(t) = τ0 + δ(t) : |δ(t)| ≤ δ̄ (4.13)

where τ0 > 0 is the nominal delay, δ(t) is the variation around τ0, and 0 < δ̄ < τ0 is the upper
bound of the variation part.
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Proposition 4.1. The inverse of the uncertain time-delay τ(t) can be expressed as

(τ(t))−1 =
(
τ0 + δ(t)

)−1 = 1
τ0
− 1
τ0
δ∗(t) (4.14)

where δ∗(t) = δ(t)
τ0+δ(t) .

Proof. Let a ∈ R and b ∈ R be two real scalars, where a 6= 0 and a + b 6= 0. Then based on
Miller’s lemma [196] (see Appendix A) the following holds

(a+ b)−1 = a−1 − a−1 b

a+ b
(4.15)

Using (4.13) and (4.15), Proposition 4.1 yields. �

Based on Proposition 4.1, (4.12) is defined as follows

Â0 =
[
A BCτ0

d

0 Aτ0
d

]
, ∆Â(τ) =

[
0 −BCτ0

d

0 −Aτ0
d

]
δ∗(t) (4.16)

where Aτ0
d = − 2

τ0
I and Cτ0

d = 4
τ0
I.

Now, the parameter-varying part ∆Â(τ) can be expressed as an unknown input d(t), entering
the augmented dynamics (4.11) through Êd, by:

∆Â(τ)z(t) =
[

0 −BCτ0
d

0 −Aτ0
d

]
δ∗(t)z(t) = Êdd(t) (4.17)

where
Êd =

[
−BCτ0

d

−Aτ0
d

]
, d(t) = δ∗(t)xd(t) (4.18)

Finally, the uncertain system described by (4.11) can be rewritten as an LTI system with un-
known inputs 



ż(t) = Â0z(t) + B̂uc(t) + Êff(t) + Êdd(t)
y(t) = Ĉz(t)

(4.19)

This model is an equivalent representation of the initial model (4.4)-(4.5) which approximates
the effect of the uncertain time-varying delay τ(t) on the state in terms of an unknown input
d(t) and a first-order Padé approximation. The problem then turns out to be the design of the
fault detector.

To proceed, consider the following residual generator based on a full-order observer




˙̂z(t) = (Â0 − L̂Ĉ)ẑ(t) + B̂uc(t) + L̂y(t)
r(t) = Q̂

(
y(t)− Ĉẑ(t)

) (4.20)

where r ∈ Rnr is the residual signal and ẑ is the augmented state z estimate. The matrix
Q̂ ∈ Rnr×ny is the output estimation error (residual) weighting matrix.
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In order to solve Problem 4.1, the residual generator (4.20) must be designed such that

Grd(s) = Q̂Ĉ(sI − Â0 + L̂Ĉ)−1Êd = 0 (4.21)

holds. To achieve this, the left EA approach introduced in Section 3.2.5 is used to compute L̂
and Q̂. The only difference using this (EA) approach for the continuous case is that the assigned
eigenvalue set Λ(Â0 − L̂Ĉ) = {λi, i = 1, . . . , nz} must belong to the stable left complex half
plain, i.e., λi ≤ 0,∀i.

By this, the resulting residual r can be designed such that it is (approximately) decoupled from
the unwanted effects of the time-varying delay τ(t). Furthermore, if the unknown input d is
completely decoupled from r, i.e., if (4.21) holds, then the resulting residual r is robust against
the uncertain variations δ(t) ∈ (−τ0, τ0) of the delay τ(t), see (4.13).

Remark 4.2. In the author’s work [90], a robustness/sensitivity analysis campaign has been
performed in order to compare the efficiency of two fault detectors, one based on the polytopic
approach (Cayley-Hamilton) introduced in Section 3.2 and the other based on the Padé approach
introduced in this section. The simulation results revealed that the Padé method offers greater
sensitivity/robustness level towards all considered fault scenarios than the polytopic method.

Implementation of the Residual Generator

A reasonable value of the nominal time delay τ0 has been determined to be exactly one sampling
interval, i.e., T = 0.1 s. Therefore, the distribution matrix Êd is calculated with τ0 = 0.1 as
in (4.18). This practically means that if the unknown input d is completely decoupled from r,
then the resulting residual r is robust against the uncertain time varying delay τ(t) ∈ (0, 0.2).
Following the discussion in Section 3.2.5, the residual weighting matrix was determined to be
Q̂ = I and the dimension of the residual nr = 3, i.e., r = [r1, r2, r3]T . All the assigned
eigenvalues were chosen to be close to −0.22. Finally, the residual generator (4.20) is converted
to discrete time (t = kT ) using a Tustin approximation [98] to be implemented within the
nonlinear simulator of the MSR mission.

4.3.3 Residual Evaluation - Fault Detection

The residual evaluation function considered here is a slightly modified version of the scalar
valued GLR test for the variance, see Appendix B. The proposed decision test %Jth is defined
by

%Jth(t) =





1 if Sw(r(k)) > Jth ⇒ fault declared
0 if Sw(r(k)) ≤ Jth ⇒ fault not present

(4.22)

where
Sw(r(k)) =

nr∑

i=1
wiS

Nd (ri(k)) (4.23)

is the weighted GLR algorithm with wi ≥ 0, i = 1, . . . , nr being the normalized weight factors
used to prioritize certain elements (axes) of the residual. SNd (ri(k)) is the estimated log likeli-
hood of the GLR algorithm applied to the ith element of the residual signal ri(k) and evaluated
on the sliding window Nd, i.e., using k − Nd + 1, . . . , k samples. The fixed threshold Jth is an
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additional design parameter. The fault is declared at time td, i.e.,

td = arg inf
t≥t0

{%Jth(t) = 1} (4.24)

where t0 ≥ 0 is the time required for r to achieve steady state (settle down) when Ψ(t) = 0,∀t ∈
[0, t0).

The next step of the FDI algorithm is concerned by the isolation task which is addressed in the
following section.

4.4 Design of the Isolation Scheme

Recall the thruster configuration properties given by (4.1)-(4.3) and taking into account the fact
that thrusters cause both linear and rotational motions, a set of explicit rules can be derived
to unambiguously isolate a single thruster fault. These rules are implemented on a hierarchical
basis as follows:

i) The first stage is based on a bank of five NUIOs which is used to confine the faulty thruster
into a single group STk (subset of thrusters). The proposed NUIO approach is adopted
because of its decoupling properties, adjustable error dynamics and ability to take into
account both nonlinearities and uncertainties of the attitude dynamics.

ii) The second stage uses jointly an Extended Kalman Filter (in charge of estimating the
torque bias due to the fault, torque bias matching or Wald’s sequential test) and a resid-
ual/force vector matching approach (to uniquely isolate the faulty thruster within the
already isolated subset STk).

4.4.1 Attitude Dynamics with Inertia Uncertainty

Let’s recall here the model of the attitude dynamics (2.80) (no kinematic equations are considered
in this chapter/approach) without taking into account the spatial disturbances (see Remark 3.1)
and the time delay τ(t), i.e.,

ω̇(t) = J−1BT ũf (t)− J−1ω(t)× Jω(t) (4.25)

where ũf (t) =
(
I − Ψ(t)

)
ũ(t) is the control input (thruster opening times) that takes into

account the fault model given in (2.74).

Since the attitude model involves the inertia matrix J (and its inverse), robustness issue against
uncertainties in J is a key problem. In aerospace industry, the real inertia is newer known
precisely on-board, therefore the control laws are always validated in the presence of uncertainty
on inertia to confront modelling errors. Similarly, in terms of FDI/FTC, it is important to
analyse and incorporate into the design procedure the influence of the uncertain inertia for
conditions of successful rendezvous.
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To proceed, let J be of the general form

J =



Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jyz Jzz


 (4.26)

First, a factorization of J is defined by introducing a diagonal matrix Jd ∈ R9×9 with the
uncertain terms of J , i.e.,

Jd = diag(Jxx, Jyy, Jzz, JxyI2, JxzI2, JyzI2) (4.27)

where I2 is an identity matrix of size 2. The Jd matrix can now be associated with two placement
matrices RJ and SJ ,

RJ =




1 0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0 1


, STJ =




1 0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0 1
0 0 1 0 0 1 0 1 0




to give the factorized expression of J as follows

J = RJJdSJ (4.28)

Remark 4.3. The factorization (4.28) can be used to factorize any symmetric matrix of size
3× 3.

The inertia uncertainty can be expressed by direct multiplicative uncertainty as [38]

Jd = Jd0(I + ∆J) (4.29)

where Jd0 consists of nominal values of Jd and ∆J represents the considered uncertainty in the
diagonal form

∆J = diag(∆Jxx,∆Jyy,∆Jzz,∆JxyI2,∆JxzI2,∆JyzI2) (4.30)

with |∆Jij | ≤ δ̄ij ,∀i, j ∈ {x, y, z}, where 0 ≤ δ̄ij ≤ 1 is the upper bound of the considered
uncertainty level in the given axis. If δ̄ij < 1 for any i, j couple, it is possible to reduce
conservatism by introducing the following scaling

∆J = W∆∗J , ∆∗TJ ∆∗J ≤ I (4.31)

where
W = diag(δ̄xx, δ̄yy, δ̄zz, δ̄xyI2, δ̄xzI2, δ̄yzI2)

In [38], the multiplicative uncertainty (4.29) was used to build a Linear Fractional Representation
(LFR). In this work, the concern is about the additive uncertainty. Therefore, inserting (4.29)
into (4.28) gives the inertia matrix expressed in the additive uncertainty form

J = J0 +R∗J∆∗JSJ (4.32)
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with

J0 = RJJd0SJ

R∗J = RJJd0W

Since the inverse of J appears in (4.25), it is essential to express this inverse in a factorized
form. Proposition 4.2 provides a method to achieve it.

Proposition 4.2 (Uncertain inertia inverse factorization). If ‖J−1
0 R∗J‖‖SJ‖ ≤ 1, then the

inverse of the uncertain inertia matrix (4.32) can be expressed as

J−1 = J−1
0 +R2∆2S2 (4.33)

where R2, S2 are constant matrices given by R2 = J−1
0 R∗J‖(I + SJJ

−1
0 R∗J)−1‖ and S2 =

SJJ
−1
0 . Matrix ∆2 satisfies ∆T

2 ∆2 ≤ I.

Proof. The real inertia matrix J is always invertible and symmetric, thus J0 and J0 +R∗J∆∗JSJ
are invertible and symmetric, too. Now, multiplying (4.32) with J−1

0 from the left, yields

J−1
0 J = I + J−1

0 R∗J∆∗JSJ (4.34)

and inverting both sides gives

J−1J0 = (I + J−1
0 R∗J∆∗JSJ)−1 (4.35)

Since ∆∗TJ ∆∗J ≤ I ⇒ ‖∆∗J‖ ≤ 1, following bound yields

‖J−1
0 R∗J∆∗JSJ‖ ≤ ‖J−1

0 R∗J‖‖∆∗J‖‖SJ‖ ≤ ‖J−1
0 R∗J‖‖SJ‖ (4.36)

Thus, if ‖J−1
0 R∗J‖‖SJ‖ < 1, then the right-hand side of (4.35) can be expressed according to

Neumann series Lemma A1 (see Appendix A) as follows

(I − (−J−1
0 R∗J∆∗JSJ))−1 =

∞∑

k=0
(−1)k(J−1

0 R∗J∆∗JSJ)k (4.37)

Now, pre-multiplying (4.35) by J−1
0 from the right and substituting (4.37) gives

J−1 =
∞∑
k=0

(−1)k(J−1
0 R∗J∆∗JSJ)kJ−1

0

= J−1
0 +

∞∑
k=1

(−1)k(J−1
0 R∗J∆∗JSJ)kJ−1

0 = J−1
0 +R1∆1S1

(4.38)

where

R1 = J−1
0 R∗J (4.39)

S1 = SJJ
−1
0 (4.40)

∆1 = ∆∗J(−I + SJJ−1
0 R∗J∆∗J − (SJJ−1

0 R∗J∆∗J)2 + . . .) (4.41)

Now, it is necessary to check if ∆T
1 ∆1 ≤ 1. Considering the worst-case uncertainty, i.e., ∆∗J = I,
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and inserting it in (4.41) yields to

∆̄1 = −I + SJJ−1
0 R∗J − (SJJ−1

0 R∗J)2 + . . . = −
∞∑

k=0
(−1)k(SJJ−1

0 R∗J)k (4.42)

which gives the upper bound of ∆1, i.e., ‖∆1‖ ≤ ‖∆̄1‖. According to Lemma A1, the right-hand
side of (4.42) is equivalent to

∆̄1 = −
∞∑

k=0
(−1)k(SJJ−1

0 R∗J)k = −(I + SJJ−1
0 R∗J)−1 (4.43)

if ‖SJJ−1
0 R∗J‖ < 1, which is true since ‖SJJ−1

0 R∗J‖ ≤ ‖J−1
0 R∗J‖‖SJ‖ < 1. It is obvious that

‖∆̄1‖ = ‖(I +SJJ−1
0 R∗J)−1‖ > 1, thus a new scaling matrix W 2 must be introduced such that

∆1 = W 2∆2, ∆T
2 ∆2 ≤ I (4.44)

where ∆2 is unknown. One of the possible choice of W 2 is to take the norm upper bound of
∆1, i.e.,

W 2 = ‖∆̄1‖I = ‖(I + SJJ−1
0 R∗J)−1‖I (4.45)

Then, the following holds

‖∆1‖ = ‖W 2∆2‖ = ‖∆̄1‖‖∆2‖ ≤ ‖∆̄1‖ ⇒ ∆T
2 ∆2 ≤ I

Inserting (4.44) into (4.38) and setting R2 = R1W 2, S2 = S1, (4.38) yields (4.33). �

Using proposition 4.2 with the definition of the state vector x = ω, it can be verified, that
equation (4.25) can be represented in the following nonlinear state space representation

ẋ(t) = Ax(t) + Φ(x(t)) + ∆Φ(x(t)) + (B + ∆B)ũf (t) (4.46)
y(t) = Cx(t) (4.47)

with the following assignments

Φ(x(t)) = −J−1
0 x(t)× J0x(t)−Ax(t), ∆B = R2∆2S2BT , A = ∂ẋ

∂x

∣∣∣∣
(x0,J0)

∆Φ(x(t)) = −J−1x(t)× Jx(t) + J−1
0 x(t)× J0x(t), B = J−1

0 BT , C = I

(4.48)

This formulation is also suitable for the NUIO theory proposed in the following section.

4.4.2 Robust Nonlinear Unknown Input Observer Design

In this section, a nonlinear unknown input observer approach for a class of uncertain Lipschitz
systems is considered. The result is an observer with an L2 attenuation level κ from ∆Bũ
to the estimation error e, i.e., ‖e‖l2 ≤ κ‖∆Bũ‖l2, guaranteing asymptotic stability of the
estimation error dynamics and robustness against Lipschitz nonlinear uncertainties as well as
against time-varying parametric uncertainties in the input matrix. Furthermore, the estimation
error dynamics is adjustable and is exactly decoupled from the considered unknown inputs. The
admissible Lipschitz constant is maximized through LMI optimization.
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4.4.3 Problem Statement

Consider the model given by (4.46)-(4.47) without the nonlinear uncertainty ∆Φ(x), but with
a disturbance vector d occurring in the state equation (this will be justified later, see Section
4.4.7), i.e.,

ẋ(t) = Ax(t) + Φ(x(t)) + (B + ∆B)uf (t) +Ed(t) (4.49)
y(t) = Cx(t) (4.50)

As usual in UIO theory, the design of the UIO parameters is done without fault consideration,
i.e., Ψ = 0 ⇒ ũf = ũ. Thus, fault sensitivity performance can only be checked “a posteriori”.
This usually results in some rank conditions, see for instance [60, 231].
Assumption 4.1. It is assumed that Φ(x) ∈ Rn is Lipschitz in a region S containing the origin,
i.e.,

‖Φ(x1)−Φ(x2)‖ ≤ γ‖x1 − x2‖, ∀(x1,x2) ∈ S
where γ > 0 stands for the Lipschitz constant. If S = Rn, Φ is globally Lipschitz. Otherwise, it
is locally Lipschitz.
Assumption 4.2. It is assumed that E is of full column rank and that the system satisfies

rank(CE) = rank(E).

Remark 4.4. Assumption 4.1 is reasonable in our case, since Φ(x) = Φ(ω) in (4.46) is contin-
uously differentiable on R3 and thus, it is locally Lipschitz, see [7]. This means that the angular
velocity shall be bounded in magnitude which is a reasonable assumption from a practical point
of view, too. Assumption 4.2 can be done without loss of generality, see Remark 3.7 if necessary.

Under assumptions 4.1-4.2, the goal turns out to be the design of the following NUIO

ż(t) = Nz(t) +Gũ(t) +Ly(t) +MΦ (x̂(t)) (4.51)
x̂(t) = z(t) +Hy(t) (4.52)

in such a way that x̂ lends robustness against the uncertainties ∆Bũ and is decoupled from
the unknown inputs d. In (4.51)–(4.52), x̂ ∈ Rn stands for the estimate of x and z ∈ Rn is an
auxiliary signal.

To proceed, define the estimation error as

e(t) = x(t)− x̂(t) (4.53)

For notation simplicity let
Φ(x̂(t)) = Φ̂, Φ(x(t)) = Φ (4.54)

The estimation error dynamics is governed by (omitting the time dependency here)

ė = Ne+
(
(I −HC)A+N(I −HC)−LC)x+ (I −HC)∆Bũ

+
(
(I −HC)B −G)ũ+ (I −HC)Φ−MΦ̂ + (I −HC)Ed (4.55)

To make the error dynamics (4.55) independent of the state x, of the unknown input d, and of
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(
(I −HC)B −G)ũ, respectively, the following must hold

N = MA−KC, (4.56)
L = K(I −CH) +MAH, (4.57)
M = I −HC, (4.58)
G = MB (4.59)

(I −HC)E = 0 (4.60)

It can be verified that (4.55) reduces to

ė = Ne+M(Φ− Φ̂) +M∆Bũ (4.61)

Equation (4.60) can be rewritten as
HCE = E (4.62)

and the necessary condition for this equation to have a solution is that Assumption 4.2 is
satisfied. The general solution of (4.62) can be written according to [55]

H = U + Y V (4.63)

where Y must be chosen such that it does not cause rank deficiency of H. Matrices U and V
are given by

U = E(CE)†, V = I − (CE)(CE)† (4.64)

where (CE)† is the generalized pseudoinverse of the matrix CE.

The aim is now to design the parameters K and Y in such a way that the estimation error
dynamics (4.61) is asymptotically stable with maximum admissible Lipschitz constant γ∗ and
such that the L2 gain from ∆Bũ to the estimation error e is bounded by

‖e‖l2
‖∆Bũ‖l2

≤ κ, ∀ũ ∈ L2[0,∞), ‖∆Bũ‖l2 6= 0 (4.65)

for a given κ > 0.

4.4.4 LMI-based Synthesis

The following theorem provides a LMI-based design method for the NUIO.

Theorem 4.1. Consider the (Lipschitz) nonlinear system (4.49)-(4.50). The NUIO (4.51)-
(4.52) is asymptotically stable with maximum admissible Lipschitz constant γ∗ and the L2 gain
from ∆Bũ to e is bounded by κ > 0, if there exists a positive definite matrix P = P T > 0 and
matrices K̄, Ȳ as solutions of the following optimization problem:

max
P,K̄,Ȳ

ξ (4.66)
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s.t.




Ψ11 + Γ11 Ω12 Ω13 0 0
∗ −I 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −κ2I S2BT
∗ ∗ ∗ ∗ −I



< 0,

[
ξ γ

∗ 1

]
≥ 0 (4.67)

where

Ψ11 = ((I −UC)A)TP + P (I −UC)A+ (1 + ξ)I (4.68)

Γ11 = −(V CA)T Ȳ T − Ȳ V CA−CT K̄
T − K̄C (4.69)

Ω12 = P (I −UC)− Ȳ V C (4.70)
Ω13 = P (I −UC)R2 − Ȳ V CR2 (4.71)

(4.72)

Once the problem is solved, then

K = P−1K̄ (4.73)
Y = P−1Ȳ (4.74)
γ∗ =

√
ξ (4.75)

Proof. Assume that H is chosen such that (4.60) holds. Under the assumption that ∆B =
R2∆2S2BT with ∆T

2 ∆2 ≤ I, the error dynamics of the NUIO (4.61) can be rewritten as

ė = Ne+M(Φ− Φ̂) +MR2∆2S2BT ũ (4.76)

Considering a quadratic Lyapunov function V (t) = e(t)TPe(t), where P = P T > 0. The time
derivative of V (t) along the trajectory of (4.76) is given by

V̇ = eT (NTP + PN)e+ 2eTPM(Φ− Φ̂) + 2eTPMR2∆2S2BT ũ (4.77)

Using the Lipschitz condition stated in Assumption 4.1 and Lemma A4 (see Appendix A) with
ε = 1, it follows that

2eTPM(Φ̂−Φ) ≤ 2γ‖eTPM‖‖e‖ ≤ eTPMMTPe+ γ2eTe

2eTPMR2∆2S2BT ũ ≤ eTPMR2R
T
2M

TPe+ ũT (S2BT )TS2BT ũ

and (4.77) can be bounded as follows

V̇ ≤ eT (NTP+PN + PM(I +R2R
T
2 )MTP + γ2I

)
e+ ũT (S2BT )TS2BT ũ (4.78)

If the H∞ performance criteria is considered

min
κ

:
∫ Tf

0
eT (t)e(t)dt ≤ κ2

∫ Tf

0
ũT (t)ũ(t)dt ∀Tf ≥ 0 (4.79)

then it is straightforward to verify that the L2 gain from ∆Bũ to e is bounded by κ > 0 if and
only if

eTe− κ2ũT ũ+ V̇ =
[
eT ũT

] [Ψ1 0
∗ Ψ2

] [
e

ũ

]
< 0 (4.80)
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where

Ψ1 = NTP + PN + (1 + γ2)I + PM(I +R2R
T
2 )MTP

Ψ2 = (S2BT )TS2BT − κ2I

The following LMI [
Ψ1 0
∗ Ψ2

]
< 0 (4.81)

should hold to satisfy (4.80). Then, by virtue of the Schur’s complement Lemma A3, (4.81) is
equivalent to




NTP + PN + (1 + γ2)I PM PMR2 0 0
∗ −I 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −κ2I S2BT

∗ ∗ ∗ ∗ −I



< 0 (4.82)

It can be seen that there is no systematic way to obtain the observer parameters directly from
(4.82) due to coupled terms. To reformulate (4.82) as an LMI, we substitute H given by (4.63),
and use the following assignments Ȳ = PY , K̄ = PK and ξ = γ2. Additionally, it is desired to
achieve the maximum possible Lipschitz constant γ∗ and simultaneously to respect the constraint
γ∗ ≥ γ. This constraint can be rewritten by defining a new variable ξ = (γ∗)2 as

ξ − γ2 ≥ 0 (4.83)

Then, using the Schur’s complement, (4.67) follows. It is then obvious that maximizing ξ is
equivalent to maximizing γ∗. This concludes the proof. �

4.4.5 Robustness Against Nonlinear Uncertainty

Consider here the fully uncertain attitude dynamics given by (4.46). Recalling the nonlinear
terms, i.e.,

Φ∆(x) = Φ(x) + ∆Φ(x) (4.84)

where Φ∆ is the uncertain nonlinear function and ∆Φ is the unknown part of Φ∆ . Suppose
that

‖∆Φ(x1)−∆Φ(x2)‖ ≤ ∆γ‖x1 − x2‖, ∀(x1,x2) ∈ S (4.85)

Proposition 4.3 (Abbaszadeh and Marquez [1]). Assumming that the actual Lipschitz constant
of the system is γ and the maximum admissible Lipschitz constant achieved by Theorem 4.1 is γ∗.
Then, the observer designed based on Theorem 4.1, can tolerate any additive Lipschitz nonlinear
uncertainty ∆Φ(x) with Lipschitz constant less than or equal to γ∗ − γ.

Proof. Based on Schwartz inequality, it follows

‖Φ∆(x1)−Φ∆(x2)‖ ≤
‖Φ(x1)−Φ(x2)‖+ ‖∆Φ(x1)−∆Φ(x2)‖ ≤ (γ + ∆γ)‖x1 − x2‖

152



Design of the Isolation Scheme

According to Theorem 4.1, Φ∆(x) can be any Lipschitz nonlinear function with Lipschitz con-
stant less than or equal to γ∗,

‖Φ∆(x1)−Φ∆(x2)‖ ≤ γ∗‖x1 − x2‖, ∀(x1,x2) ∈ S

so there must be (γ + ∆γ) ≤ γ∗ → ∆γ ≤ γ∗ − γ. �

For any continuously differentiable function ∆Φ the following holds

‖∆Φ(x1)−∆Φ(x2)‖ ≤ ‖∂∆Φ
∂x

(x1 − x2)‖, ∀(x1,x2) ∈ S

where ∂∆Φ/∂x is the Jacobian matrix. Therefore, according to [1], ∆Φ can be any additive
uncertainty with ‖∂∆Φ/∂x‖ ≤ γ∗ − γ.

4.4.6 NUIO Dynamics Adjustment

The maximization of the admissible Lipschitz constant γ∗ may result in unsatisfactory dynamical
behaviour of the state estimation error. To overcome this problem, the D-stability concept
proposed by Chilali and Gahinet [45] can be used jointly with Theorem 4.1, thanks to the LMI
formulation (4.67). First, the definition of an LMI region is recalled here and some results on
the pole placement LMI constraints are introduced in order to prove the proposed proposition
to come.
Definition 4.1 (LMI region [45]). A subset D of the complex plane is called an LMI region if
there exist two symmetric matrices α = [αkl] ∈ Rp×p and β = [βkl] ∈ Rp×p, such that

D = {z ∈ C : fD(z) = α+ βz + βT z̄ < 0} (4.86)

where fD(z) is called the characteristic function of D.
Theorem 4.2 (Chilali and Gahinet [45]). Eigenvalues of a real matrix X lie in D, if and only
if there exists a symmetric positive definite matrix P > 0, such that

MD(X,P ) = α⊗ P + β ⊗ (XP ) + βT ⊗ (XP )T < 0 (4.87)

where ⊗ stands for the Kronecker product of two matrices.

Proof. The proof can be found in [45]. �

Corollary 4.1 (Chilali and Gahinet [45]). Given two LMI regions D1 and D2, the eigenvalues
of a matrix X lie in D1 ∩ D2 if and only if there exists a positive definite matrix P such that
MD1(X,P ) < 0 and MD2(X,P ) < 0.

In Theorem 4.1, the NUIO gain matrix N , which controls the dynamical behaviour of the state
estimation error, directly depends on the LMI variables P , K̄ and Ȳ , thus offering extra degree
of freedom to place the eigenvalues of N in a prescribed region D.
Proposition 4.4. Consider the NUIO design based on Theorem 4.1. If there exists a common
Lyapunov matrix P = P T > 0 and matrices K̄, Ȳ such that the LMI optimization problem
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Figure 4.4 – LMI Region D(α, q, r, β) = D1 ∩ D2 ∩ D3

given in Theorem 4.1 has a solution while the set of n LMIs

αk ⊗ P + βk ⊗ (ATP − (UCA)TP − (Ȳ V CA)T − (K̄C)T )+
βTk ⊗ (PA− P (UCA)− Ȳ V CA− K̄C) < 0, k = 1, 2, . . . , n (4.88)

is simultaneously satisfied, then all eigenvalues of the matrix N will be assigned into a prescribed
LMI region D = ∩nk=1Dk. In this expression, αk and βk are matrices of appropriate dimension
defining each region Dk.

Proof. Substituting (4.58),(4.63),(4.73) and (4.74) into (4.56) and transposing it yields

NT = AT − (UCA)T − (Ȳ V CA)TP−1 − (K̄C)TP−1 (4.89)

If the LMI conditions (4.67) and (4.88) are satisfied at the same time, then the proof of Proposi-
tion 4.4 directly follows from Theorem 4.2, from Corollary 4.1, and from the fact that eigenvalues
of any square matrix are equal to eigenvalues of its transpose, i.e., Λ(N) = Λ(NT ). �

Remark 4.5. In Proposition 4.4, the use of NT instead of N was motivated by elimination
possibility of P−1 from (4.89). The product NTP in (4.87) thus yields: NTP = ATP −
(UCA)TP − (Ȳ V CA)T − (K̄C)T .

To modify the NUIO dynamics, results related to Proposition 4.4 are used. Here, the intersection
of three elementary LMI regions Dk, k = 1, 2, 3 are considered, which restrict the eigenvalues of
N in the region D = D1 ∩ D2 ∩ D3. This region is illustrated in Figure 4.4 and represented by
the following LMIs:

• Left-half plane delimited by a vertical line −α, with α > 0

MD1(NT ,P ) = 2αP +NTP + PN < 0 (4.90)
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• Disk with center at (−q, 0) and radius r

MD2(NT ,P ) =
(
−rP qP +NTP

∗ −rP

)
< 0 (4.91)

• Conic region with center at the origin and with inner angle 0 < β < π/2 pointing left

MD3(NT ,P ) =
(

sin β(NTP + PN) cosβ(NTP − PN)
∗ sin β(NTP + PN)

)
< 0 (4.92)

The four degrees of freedom (α, q, r, β), used to determine D, allow us to fix the desired region
of all the eigenvalues of N , i.e., Λ(N) ∈ D(α, q, r, β).

4.4.7 Comments on NUIO Implementation and Computational Issues

For each thruster group STk, k = 1, ..., 5 (see (4.1) for definition), a dedicated NUIO is designed
based on Algorithm 2. The Lipschitz constant γ for Φ(ω) is computed using a constrained
optimization algorithm over the set Sω = {ω ∈ R3 : |ωk| ≤ ω̄, k = 1, 2, 3}, where ω̄ is the upper
bound of the angular velocity for each axis. The LMI region assignment approach given in
Proposition 4.4 is considered to adjust adequately the dynamics of the NUIOs. In other words,
the four LMI parameters (α, q, r, β) have to be chosen carefully such that the observer error
dynamics reacts quick enough to any type of thruster fault, allowing early distinction among
the healthy/faulty thruster groups STk, k = 1, ..., 5 (see the following section about the proposed
thruster group isolation strategy).

Algorithm 2 Design of the bank of 5 NUIOs
1: Compute γ for Φ(ω) over Sω and choose the attenuation level κ;
2: for k = 1 to 5 do
3: B?

k = [b∗1, ..., b∗12] where b∗i = J−1
0 bT i,∀i ∈ Sall\STk and b∗i = 0, ∀i ∈ STk;

4: Set E , J−1
0 bT i for any arbitrary i ∈ STk and B , B?

k;
5: Compute U and V according to (4.64);
6: Prescribe the desired dynamics using D(α, q, r, β);
7: Solve the optimisation problem (4.66) under LMI constraints (4.67) and (4.88)
8: Then K = P−1K̄, Y = P−1Ȳ and γ∗k ,

√
ξ;

9: Using K and Y , gains for the kth NUIO are given by (4.56)-(4.59) and (4.63);
10: end for

The kth NUIO is such that it can fully estimate the angular velocity ω with all control inputs
but those associated with STk, i.e., with ũi, ∀i ∈ Sall\STk. On the other hand, d in equation
(4.49), stays for the control inputs associated with STk (i.e., ũi,∀i ∈ STk). As a result, the NUIO
dedicated to the group STk shall not be affected by faults occurring in the thrusters belonging
to STk due to the decoupling property, while all the other NUIOs will be (are expected to be, to
be more precise, since the design of the NUIOs are done without fault sensitivity specifications,
see [131, 133, 134] for discussion about guaranteed sensitivity performances).

It is important to note that d can be exactly decoupled only if the columns of ∆B related to d
are zero. If this is not the case, only the known directions, i.e., b∗i = J−1

0 bT i, i ∈ STk, can be
exactly decoupled, while the uncertain columns ∆b∗i , i ∈ STk (columns of ∆B associated with
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STk) are attenuated in L2 sense (with upper bound κ) since the entire ∆B matrix is considered
in (4.65). Furthermore, if a constant γ∗ linked to a given NUIO verifies γ∗ > γ, then the
associated observer tolerates an additional nonlinear uncertainty in Φ∆(ω), see discussion in
Section 4.4.5.

Note, that the all observers estimate only the angular rate ω of the chaser. Therefore, the
computational burden is reduced since there is no need to process the entire state vector (i.e.,
the linear position/velocity and the attitude in addition). For real-time reasons, the bank of 5
NUIOs is triggered only when the decision signal %Jth (see (4.22)) indicates the fault occurrence,
i.e., when %Jth(t) = 1 for t ≥ td. Even if only ω is estimated, keeping the NUIOs switched off
before the fault is detected seems to be a good strategy, concerning the nonlinear nature of the
observer.

4.4.8 Thruster Group Isolation Logic - First Stage

It is obvious that, in case of (small) truster faults, the spacecraft attitude dynamics is more
likely prone to dynamic deviations than the translation one. This gives the motivation to derive
the first isolation rule using the angular velocity measurement rather than the one obtained
from the LIDAR device. On the other hand, due to the fact that some thrusters produce
exactly the same or very similar torques, it is very hard to obtain a global isolation strategy
based exclusively on angular velocity measurements. Therefore, the second isolation rule of the
proposed (global) isolation strategy uses the information about the position dynamics contained
in the fault detector’s residual. This chronology of isolation steps gives to the fault an extra
time to propagate into the translation dynamics.

To proceed, let SG = {1, 2, ...5} be the set of all the thruster group indices linked with ST1, . . . ,ST5.
Each observer is initialized with the (known) measurement at detection time td, i.e., ω̂k(td) =
ω(td), ∀k ∈ SG. By this, all observers have a zero initial estimation error. Hence, the ob-
server initial convergence (transient phase) problem is avoided. Defining the angular velocity
estimation error ek associated with the kth NUIO as

ek(t) = ω̂k(t)− ω(t) (4.93)

then, it seems obvious, that the observer with the minimum estimation error ek (in some norm
sense) should reveal that the fault occurred in the associated thruster group STk. Such property
provides an efficient isolation rule that can be written according to

σg(t) = arg min
k

‖ek(t)‖, t ≥ td (4.94)

where σg(t) : R+ → SG represents the identified faulty thruster group index at time “t”.

To avoid initial transition phenomena and to ensure robustness against noise, a confirmation
time window, δg > 0, is introduced, i.e.,

tg = arg inf
t≥td+δg

{σg(t) = σg(ϑ), ∀ϑ ∈ (t− δg, t]} (4.95)

where tg is the isolation time of the faulty thruster group. For notation simplicity, let j = σg(tg).
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At this isolation stage, in the ideal case, the minimum time (td − tf ) + δg has elapsed from the
true fault occurrence time, i.e., t = tf , thus allowing additional time for the fault to induce
observable dynamic deviation in the translation dynamics that is contained, e.g., in the fault
detector’s residual r given by (4.20). Therefore, as soon as the faulty thruster group index “j”
is confirmed, the faulty thruster can be uniquely isolated by simply examining the degree of
alignment between r and the fixed force vector directions bFk, k ∈ STj (see (2.52) for definition
of bFk) under the assumption that the fault type is known. This is the purpose of the next
section.

Remark 4.6. It is assumed that the time-varying delay has no big effect on the isolation per-
formance. Therefore, τ(t) is not considered in (4.25). Nevertheless, the isolation process is
triggered by the decision test %Jth(t), which already has enhanced robustness against τ(t).

4.4.9 Final Thruster Fault Isolation - Second Stage

In this section, a method to uniquely isolate a single thruster fault is proposed by evaluating the
EKF-based torque bias estimate together with the directional cosine approach. This method
represents the second stage of the overall isolation strategy.

As soon as the faulty thruster group STj is identified at the first stage, the faulty thruster can
be easily isolated by examining the angle of the vector r given by (4.20) along the fixed force
directions bFk, ∀k ∈ STj . If the kth thruster is faulty, then vectors r ∈ R3 and bFk ∈ R3 should
be collinear (owing the fault model (2.74)). The degree of collinearity can be computed using
the direction cosine approach: θkd = bFk · r/(‖bFk‖‖r‖), where θkd is the angle between the
vectors r and bFk. If r and bFk are collinear, then cos(θkd) = 1 (i.e., the angle between the
two vectors θkd = 0). Thus, the following isolation rule is proposed to isolate the faulty thruster
uniquely:

σ(t) = arg min
k∈STj

(
ρ(t) bFk · r(t)
‖bFk‖‖r(t)‖

)
, t ≥ tg (4.96)

In this equation, ρ determines whether an “open-type” or “closed-type” thruster fault has oc-
curred, see Section 2.3 about fault considerations. The notation “t ≥ tg” indicates that this rule
is applied only when the NUIO–based strategy (first stage) subscribed and confirmed the fault
to the subset STj .

With respect to ρ, the following two definitions are adopted depending on the identified thruster
group STj , i.e.,

a) Definition for j=1,...,4

Recalling the geometrical properties in terms of torque directions (see Fig. 4.2), i.e., that
thrusters belonging to the same group STk,∀k ∈ SG\{5} generate torques in the same direction,
i.e., bTk = bTh,∀k, h ∈ STj , where j ∈ SG\{5}. This property allows to consider the following
definition for ρ when j ∈ SG\{5}, i.e.,

ρ(1:4)(t) = sign
(
bTk · T̂ bias(t)

)
, for any k ∈ STj , j 6= 5 (4.97)

where T̂ bias ∈ R3 is the estimate of the real torque bias T bias and sign(·) stands for the signum
function. This bias is due to the faulty thruster, see (2.74), and should be understood as
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follows3
T bias(t) = −BTΨ(t)ũ(t), Ψ(t) 6= 0 (4.98)

It is obvious that the two fault types, i.e., “open-type” and “closed-type”, result in exactly
opposite torque bias (shift) relative to the torque direction bTk,∀k ∈ STj , j 6= 5.

The bias (4.98) can be estimated using an EKF based on the nominal (J , J0) attitude
dynamics model (4.25), see for instance [246] for realisation details. Note that in (4.97), the
direction vector bTk can be any from STj since they are equal for all j ∈ SG\{5}, see discussion
in Section 4.1.

b) Definition for j=5

Considering the thruster group 5, it is obvious that the previous strategy cannot be used since
bTk, k ∈ ST5 are not the unique/same-valued direction vectors, see equation (4.3). However, a
special property of thrusters belonging to this subset is that they barely produce any torque in
the x- and y-axis. This enables to focus only to z-axis and thus, the following definition of ρ
when j = 5 is proposed:

ρ(5)(t) = fWald

(
rbias(tk)

)
, j = 5 (4.99)

where rbias(tk) = T̂ zbias(tk) − T̂ zbias(tk−1), T̂ zbias is the third component (i.e., the component on
the z-axis) of T̂ bias and fWald(·) stands for the sequential Wald test for the variance applied on
rbias. This test can result in three possible situations:

fWald

(
rbias(tk)

)
=





1 if decision in favour of “closed-type”
0 if no decision has been adopted
−1 if decision in favour of “open-type”

(4.100)

For implementation details of the sequential Wald’s test, see Appendix B.1.

Improvement of the Strategy

For the thruster group number 5, taking into account (4.3), it is possible to slightly improve
the reliability of the isolation algorithm (4.96) by dividing the set ST5 into two smaller subsets
defined as follows

SaT5 = {3, 12}, SbT5 = {6, 9} (4.101)

Now, the isolation rule (4.96) can be redefined for j = 5 as follows

σ(t) =





arg min
k∈SaT5

(
ρ(5)(t) bFk·r(t)

‖bFk‖‖r(t)‖

)
, if min

k∈SaT5
ρ(5)(t)

(
bTk ·T̂ bias

)
≥ min

k∈SbT5

ρ(5)(t)
(
bTk ·T̂ bias

)

arg min
k∈SbT5

(
ρ(5)(t) bFk·r(t)

‖bFk‖‖r(t)‖

)
, otherwise

Now, the logic (4.96) is able to isolate any of the four considered fault scenarios (see Section 2.3),
i.e., thruster fault of both types, within any truster group STj ,∀j ∈ SG (supposing that the

3In other words, this bias can be also understood as a difference (bias) between the real torques applied on
the spacecraft and the torques as seen from the controller point of view.
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thruster group isolation j = σg was successful).

Since the residual r in (4.96) is matched with the force directions within the already isolated
group STj , in which the force directions are either exactly opposite (j ∈ SG\{5}, see (4.2))
or orthogonal (j = 5, see (4.3)), this makes the isolation logic σ(t) : R+ × SG → Sall very
reliable.

Finally, another confirmation window, δ > 0, is introduced according to

ti = arg inf
t≥tg+δ

{σ(t) = σ(ϑ), ∀ϑ ∈ (t− δ, t]} (4.102)

where ti is the isolation time of the faulty thruster. Let i = σ(ti) for future reference.

4.5 Implementation and Tuning of the overall FDI Scheme

Figure 4.5 illustrates the overall structure of the proposed global FDI scheme. It consists of the
robust residual generator and the GLR test, both introduced in Section 4.3. The decision test
%Jth (see (4.22)) triggers the bank of 5 NUIOs and the EKF-based torque bias estimator. Follow-
ing, the residual signal r, torque bias estimate T̂ bias and the NUIOs estimation errors are being
processed by the two-stage isolation logic introduced in Section 4.4.8 and Section 4.4.9.

Residual

Generator

Figure 4.5 – The overall structure of the proposed FDI scheme

The residual generator (4.20) has been designed following the discussion in Section 4.3. The
GLR decision test (4.22) has been implemented with Jth = 33, T = 0.1 s, Nd = 10 t0 = 100
s and wk = 1/3,∀k ∈ {1, 2, 3}. The chosen threshold Jth has been determined through Monte
Carlo simulations to ensure (ideally) a zero false alarm rate. Following the design steps given in
Algorithm 2 and the implementation comments in Section 4.4.7, a bank of 5 NUIOs has been
designed with the numerical values for α, q, r, β, and κ being fixed to 0, 0.18, 0.05, π/4, and
0.9 for all NUIOs, respectively. The numerical values of γ and γ∗ are found to be 0.9047 and
1.4039e4.

The well known EKF approach, introduced in Section 1.3.3.1, has been used to estimate the
torque bias vector T bias. The fourth-order Runge-Kutta integration method has been used
to propagate the nonlinear equations [170]. This estimate, i.e., T̂ bias, is achieved such that
the state of the nonlinear (nominal) attitude dynamics is augmented with T̂ bias, and the so
obtained model is used in (1.79). The EKF covariance matrix Q has to be tuned such that the
estimated torque bias “directions” are as close as possible to the real ones. This problem can be
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mathematically expressed as follows

Q = arg min
Q∈R6×6

atan2
(
‖T bias × T̂ bias(Q)‖, T bias · T̂ bias(Q)

)
(4.103)

where the atan2(, ) function is defined in Appendix A.5.2. It is obvious that, the solution to
(4.103), taking into account all the possible fault scenarios and uncertainties, is almost impossible
to find. Therefore, the state covariance matrix Q is chosen to be Q = diag(Qω,Qbias), where
Qω = I and Qbias = 0.1I, and the initial covariance matrix P 0 is fixed to P 0 = I. The
measurement covariance matrix R is selected based on the knowledge of the gyro model, see
Section 2.2.1.3 for details.

For the two-stage isolation logic, a confirmation window δg = 1.5 s in (4.95) and δ = 0.5 s in
(4.102) has been considered, respectively. The whole FDI strategy is summarized in Algorithm 3,
see Fig. 4.5 for an illustration.

Algorithm 3 Thruster fault detection and isolation
1: if %Jth(t) = 1 then
2: Decision = declare the fault presence and run the bank of NUIOs;
3: if σg(t) = σg(ϑ), ∀ϑ ∈ (t− δg, t] then
4: Decision = declare the thruster group STj , j = σg(t) to be faulty;
5: if σ(t) = σ(ϑ), ∀ϑ ∈ (t− δ, t] then
6: Decision = declare the ith thruster to be faulty, where i = σ(t);
7: end if
8: end if
9: end if

4.6 Thruster Fault Accommodation

Once a faulty thruster is diagnosed by the aforementioned FDI algorithm, a fault accommodation
mechanism has to be engaged in order to maintain the rendezvous/capture objectives of the
MSR mission. The nominal 6DOF control law, that is planned to be implemented on-board,
is designed to guarantee some predefined performance criteria such as: the chaser attitude
misalignment versus the target, the longitudinal and lateral capture velocity errors, the position
keeping in the rendezvous corridor, the precise capture accuracy, etc., thus, it is desirable to
keep the nominal controller in the loop. For further details, see Chapter 2.

Since the control allocation techniques, introduced in Section 1.4.3, do not require any modi-
fications in the control law (assuming feasibility of the virtual control inputs), it motivates to
propose a fault accommodation strategy based on this philosophy. Moreover, the CA solution is
further justified by the fact that all the thrusters are individually equipped with a dedicated TLV
able to disengage the propellant arrival, switching off de facto the associated thruster.

In the next sections, a simple strategy for accommodating the fault effect by changing some
functionalities in the TMF function to an online control allocation algorithm is proposed, based
on the use of the existing baseline 6DOF controller and TLVs. Figure 4.6 gives an overview of
the proposed accommodation solution together with the FDI scheme implemented within the
GNC architecture.
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Figure 4.6 – FDI-based fault accommodation strategy implemented within the GNC architecture

4.6.1 Control Re-allocation

During the rendezvous, the chaser control is done on position and attitude and makes use of
thrusters only. Thus, a 6DOF control allocation algorithm has to be considered. The on-board
CA algorithm shall determine in real-time, i.e., at each control cycle (10 Hz frequency), the
proper thruster selection and their firing durations to achieve the controller-commanded torque
and force impulses. Hence, the CA algorithm has to perform the following tasks4:

• select thrusters capable of performing the controller demand with minimization of the
propellant consumption (or another criterion) as far as possible, and

• compute the thruster firing durations while taking into account their firing constraints.

In order to make use of the remaining healthy thrusters in case of an actuator fault, it is required
to reconfigure the control allocation scheme (re-allocation) by including the constraints due to
the faults. Thus, as soon as the ith thruster is confirmed to be faulty through σ(t), see (4.96) and
(4.102), the faulty thruster is switched off using the dedicated TLV. The desired forces ~F d̃ and
torques ~T d̃ are then re-allocated among the remaining N−1 healthy thrusters. This re-allocation
can be achieved very easily by changing the constraints in the existing CA algorithm, i.e., if the
ith thruster is faulty, then

0 ≤ ũi ≤ 0 (4.104)

can counteract the effect of the fault in a simple manner. Additionally, this makes the fault
accommodation without any change in the nominal controller or any additional valve position
sensor.

Existing CA algorithms which have potential to be used for reconfigurable control allocation (re-
allocation) include pseudo-inverse, modified pseudo-inverse, direct allocation, constrained opti-
mization methods based on linear programming or quadratic programming, fixed-point method
or their combinations [312]. In the next section, an existing CA approach has been modified
and improved in order to cope with the considered FTC problematic.

4Note, that what is here called as “Control Allocation (CA) algorithm” is often referred as “Thruster Man-
agement Function (TMF)” in the industrial community.
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4.6.2 Nonlinear Iterative Pseudoinverse Controller Approach

Here, a modified Nonlinear Iterative Pseudoinverse Controller (NIPC) approach whose original
version was proposed by Jin et al. [155], is considered. The NIPC method tries to solve the
following optimization problem

ũ = arg min
ũ

‖W v

(
B̄ũ− vd

)
‖p

s.t. 0 ≤ ũk ≤ ũmaxk , ∀k ∈ Sall
(4.105)

where B̄ is the overall thruster configuration matrix (see (2.53)), vd = [T T
d̃
F T
d̃

]T is the vector
of the desired torque and force commands of the 6DOF control law5, and ũmaxk is the maxi-
mum opening duration of the kth thruster. The core of the fault tolerance principle is that if
the ith thruster is faulty, then ũmaxi is set to “0”. The weighting matrix W v affects the pri-
oritization among torque/force components when B̄ũ − vd cannot be attained due to thruster
constraints.

The different choice of the vector p-norm in (4.105) results in [155]:

1. Minimum flow rate allocation: min ‖ũ‖1
2. Minimum power allocation: min ‖ũ‖2
3. Minimum peak torque/force allocation: min ‖ũ‖∞

Using the minimum-flow-rate allocation will yield the greatest control authority for flow-rate-
limited thruster systems. Similarly for the other two allocations. It is known that stability of
the closed-loop system can be guaranteed as long as the constraints of the optimization problem
(4.105) are met (feasibility implies stability).

The proposed NIPC method that solves the re-allocation problem to ensure thruster fault tol-
erance, is given in Algorithm 4. This algorithm also solves the optimization problem (4.105).
It terminates if a certain precision ε ≥ 0 of the allocated torques/forces, weighted by W v, is
achieved (typical choice is ε → 0) or if the maximum number of iterations Nmax

iter is reached.
Nmax
iter can be considered to reflect the max computation burden. In Algorithm 4, MIB (Mini-

mum Impulse Bit)stands for the minimum impulse (minimum shooting time that a thruster can
execute), λ > 0 allows the algorithm to manage the convergence time of the algorithm and B̄p+

i

stands for the generalized inverse of B̄i given in step 3 (optimal in the sense of the considered
p-norm).

It is obvious, that both Nmax
iter and λ influence the computational burden of the algorithm. Note,

that B̄p+
i , ∀i ∈ Sall are fixed, thus it is possible to pre-compute them off-line for all i ∈ Sall. This

enables also to reduce the computational burden, however the price to pay is a higher memory
consumption.

Fault tolerance is achieved due to step 3 and consequently to steps 9 and 12, the index “i” being
determined by the FDI unit. Changing the minimization objective in (4.105) is very simple since
it results in changing the criterion p ∈ {1, 2,∞} in steps 7 and 9.

Remark 4.7. It should be noted, that there is no formal proof that the solution of Algorithm 4
will be optimal in the sense of (4.105). Moreover, this algorithm concerns only a finite number of

5Synthesized by the 6DOF controller and followed by the thruster modulator unit, see Section 2.2.3.

162



Thruster Fault Accommodation

Algorithm 4 NIPC control allocation with fault tolerance principle
1: Set iter = 0 and v = vd;
2: if the ith thruster is declared to be faulty then
3: Construct B̄i from B̄ such that b̄i = 0 and set ũmaxi , 0;
4: else
5: Set B̄i , B̄;
6: end if
7: while ‖W v ∗ error‖p > ε and iter < Nmax

iter do
8: v = v + λ ∗ error;
9: ũpc = B̄

p+
i v;

10: ũc = (ũpc + |ũpc|)/2;
11: for k = 1 to N do
12: if ũck > ũmaxk then ũck = ũmaxk ; end if
13: if ũck < MIB/2 then ũck = 0; end if
14: if MIB/2 ≤ ũck < MIB then ũck = MIB; end if
15: end for
16: error = B̄iũ

c − vd;
17: iter = iter + 1;
18: end while
19: Set ũ , ũc;

iterations. Thus, stability proof cannot be provided as stability regards behaviour for iter→+∞.

The form in which the NIPC algorithm has been reported here is slightly different with respect
to the one in the original reference [155]. Especially because of:

• inclusion of the fault tolerance principle described earlier,

• inclusion of the two stopping rule parameters (i.e., ε and Nmax
iter ), and

• taking into account thruster nonlinearities such as MIB.

In the next section, the effectiveness of the NIPC algorithm is evaluated and compared to other
approaches.

4.6.3 Comparison of the NIPC Algorithm with the Existing Methods

Figure 4.7 illustrates the performance of 7 CA algorithms introduced in Chapter 1 together with
the NIPC algorithm presented earlier. The error signals in blue correspond to ‖B̄ũ(t)− vd(t)‖
over the time interval t ∈ [0, 1331.1], where ũ are generated in different ways depending on the
considered CA algorithm. These results consider only 11 thrusters for CA purposes. To be more
precise, thruster No.1 is considered to be unavailable, thus not taken into account in the CA
formulations (ũmax1 = 0). This, in terms of FTC, corresponds to a situation when the FDI unit
correctly identified the faulty thruster. The thruster was then immediately closed and the CA
was modified accordingly, i.e., a perfect accommodation was achieved.

A sequence of desired force/moment vectors, vd(k), k = 0, 1, . . ., has been used as the virtual
input for these algorithms. This sequence corresponds to a real flight scenario of the rendezvous
phase. The desired (virtual) control inputs (vd), synthesized by the 6DOF controller, have been
simulated and stored in closed loop, while the results presented in Fig. 4.7 have been performed
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Figure 4.7 – Comparison of the NIPC approach with 7 other CA algorithms taking into account
only N-1 thrusters

off-line using the stored sequence (open loop). To better appreciate the pure CA performances,
uncertainties on CoM and thruster rise times, as well as constraints such as quantization step
and MIB, were not considered in the open loop simulations. On the other hand, all considered
CA methods have taken into account the thrusters’ saturation limits.

As it can be seen from Fig. 4.7, all the CA methods deliver only approximate solutions of
varying accuracy. This, however, to certain amount is not an issue since the final precision
highly depends on the considered uncertainties. For instance, the thruster configuration matrix
(necessary for all CA algorithms) is not precisely known on-board, therefore even if the CA
produces an exact solution, the real torques/forces applied to the spacecraft will differ from the
ones supplied to the CA algorithm.

The computational requirements of a particular CA algorithm are a concern if it has to be
used on-board. Table 4.1 compares the computational burden of the 8 CA algorithms used to
produce Fig. 4.7. The computational load of each algorithm is expressed as a percentage ratio
with respect to the SLS algorithm considered to be the reference time (since the SLS algorithm
is one of the most computational expensive algorithms).

CA algorithm NIPC SLS MLS DIR WLS IP CGI FXP
Computational burden (%) 1.65 100 1.64 31.97 0.85 2.48 0.57 2.01

Table 4.1 – Comparison of the CA algorithms in terms of computational burden

All the simulations have been performed in MATLABr7.3 running on 2.53GHz Intelr CoreTM i5
CPU. The tic and toc commands were used to compute the timing properties which were
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evaluated over the whole length of the simulation. The selected parameters for the NIPC
algorithm correspond to: W v = I, Nmax

iter = 350, λ = 1.89, ε = 1e − 7 and p = 2, i.e., the
2nd norm was chosen leading to a minimum power allocation (see Section 4.6.2 for details about
norm selection). The parameters for the other 7 algorithms have been selected to be the same
as those of the NIPC algorithm, whenever applicable.

From Fig. 4.7 and Table 4.1 it turns out that the NIPC approach constitutes a good trade-
off between accuracy and computational burden. This is mostly because it makes use of the
pseudoinverse to make the algorithm conceptually very simple. Another alternative is the WLS
algorithm showing very low computational burden and high accuracy.

Remark 4.8. Note that the MIB constraint was not used in the open loop simulations. Thus,
it is expected that the NIPC algorithm might perform even better in real flight scenario (closed
loop simulation) when compared with these 7 algorithms. In the next section, the NIPC algo-
rithm is further evaluated/justified in a closed loop manner. However a comparison with the
other algorithms is omitted due to very heavy computational complexity of some algorithms, see
Table 4.1.

4.7 Simulation Results

The overall FTC strategy described in the previous sections and illustrated in Fig. 4.5 and
Fig. 4.6 has been implemented within the MSR simulator. The NIPC algorithm has been
selected and implemented as an integral part of the TMF. All the simulation examples in this
section are carried out under realistic conditions (see discussion in Chapter 2) and during the
last 20m of the rendezvous phase.

4.7.1 Illustrative Examples

Figure 4.8 serves as the first simulation example and aims to highlight the need for an active FTC
solution. This example corresponds to a fully open thruster fault (thruster provides maximum
thrust regardless of the control signal) occurring at tf = 1100 s and affecting thruster No.7. To
emphasize the relevance of the engagement of the proposed FTC scheme into the GNC system,
two identical simulations are carried out. First, when the proposed FTC strategy is active (FTC
on), and second, when it is disengaged (FTC off).

Figure 4.8 – Chaser trajectory within the MSR rendezvous corridor
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Figure 4.8 clearly illustrates the consequence when such a fault is not accommodated, i.e., the
chaser misses the target and the mission fails. On the other hand, when the proposed approach
is engaged, the chaser maintains nominal trajectory, i.e., stays inside the rendezvous corridor
and the MSR capture requirements are met. Furthermore, it can be inferred from Fig.4.8 that
the chaser keeps its attitude pointing towards the target all the time.

The second and third simulation example aim to illustrate the time behaviour of the inter-
nal signals of the proposed FDI scheme in the case of “open-type” and “closed-type” thruster
fault. In order to better visually appreciate the obtained FDI signals, the fault accommodation
mechanism is switched off for this purpose.

Open-type Thruster Fault Example

Figure 4.9 and Figure 4.10 correspond to a 15% leakage fault affecting the thruster No.2 from
tf = 1000 s. The fault is maintained during the whole length of the simulation and is not
accommodated (FTC off). The fault presence is declared at td = 1003.9 s and the faulty thruster
index clearly isolates and confirms at ti = 1006 s. It should be noted that the torque bias
estimate, shown in Fig. 4.10b, is tuned such that it attains the real torque bias “directions” and
is not considered to deliver a trustworthy estimate of the bias magnitude. The same reasoning
is valid for Fig. 4.12b.

0 200 400 600 800 1000 1200
−5

0

5

← t0 =100(s)

r(
t)

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2
x 10

4

S
w
(k
)

 

 

Sw(k)
Jth = 33

0 200 400 600 800 1000 1200
0

0.5

1

̺3
3
(t
)

Time (s)

td =1003.9(s)→

50x

(a) Residual (top), GLR test (middle) and decision test (bottom)

0

2

x 10
−12

‖ω
−

ω̂
1
‖

 

 
NUIO 1

0

2

x 10
−12

‖ω
−

ω̂
2
‖

 

 
NUIO 2

0

2

x 10
−12

‖ω
−

ω̂
3
‖

 

 
NUIO 3

0

2

x 10
−12

‖ω
−

ω̂
4
‖

 

 
NUIO 4

1000 1005 1010 1015 1020 1025
0

2

x 10
−12

Time (s)

‖ω
−

ω̂
5
‖

 

 
NUIO 5

(b) Norms of the NUIO estimation errors

Figure 4.9 – Fault detection algorithm and NUIOs’ dynamics behaviour for “open-type” fault

Closed-type Thruster Fault Example

Figure 4.11 and Figure 4.12 correspond to a fully blocked thruster failure. The selected faulty
thruster is the thruster No.9. This is to illustrate the more complex isolation logic used for the
5th thruster group since {9} ∈ ST5. Again, the fault starts from tf = 1000 s and is maintained.
In this case, since this type of fault is much harder to detect and isolate, the fault presence is
declared later than in the previous example, i.e., at td = 10018.5 s. As it can be seen from
Fig. 4.12a, there exists a chattering phenomena in the thruster group isolation rule σg. Thanks
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Figure 4.10 – The overall isolation logic behaviour for “open-type” fault

to the judiciously chosen confirmation time (δg = 1.5 s), this phenomenon is correctly managed
and the correct group is isolated. As it can be further inferred, despite the external disturbances,
uncertainties, delays, navigation imperfections, etc., the right thruster index has been isolated
at ti = 1029.4s.
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Figure 4.11 – Fault detection algorithm and NUIOs’ dynamics behaviour for “closed-type” fault

4.7.2 Monte Carlo Campaign

Several uncertainties are involved in the validation of the FDI/FTC system, from the varia-
tion of the initial conditions to the parametric uncertainties in the different components of the
chaser spacecraft, see Table 2.3 from Chapter 2 that gives a list of the considered uncertainties.
Therefore, a Monte Carlo simulation campaign is used to test and validate the performance of

167



Chapter 4. Active FTC Approach for a New Thruster Configuration

1000 1005 1010 1015 1020 1025 1030 1035 1040 1045
0

2

4

6
σ
g
(t
)

tg =1022(s) −→

1000 1005 1010 1015 1020 1025 1030 1035 1040 1045
−1

−0.5

0

0.5

1

co
s(
θ d
)

 

 
k = 3

k = 6

k = 9

k = 12

1000 1005 1010 1015 1020 1025 1030 1035 1040 1045
0

5

10

← ti =1029.4(s)σ
(t
)

Time (s)

(a) Faulty thruster group isolation (top), directional
cosines within the isolated group (middle) and isolation
rule signal (bottom)

0 200 400 600 800 1000 1200 1400
−1

0

1

2
x 10

−3

T̂
b
ia

s
(t
)

 

 
x
y

z

0 200 400 600 800 1000 1200 1400
−0.01

0    

0.01 

−0.01

0    

b T
k
·T̂

b
ia

s
(t
)

 

 
k = 3

k = 6

k = 9

k = 12

0 200 400 600 800 1000 1200 1400

−1

0

1

ρ
5
(t
) t =1028.9(s) →

Time (s)

(b) Torque bias direction estimates (top), bias directions
relative to torque directions within the isolated group
(middle) and the Wald’s test behaviour (bottom)

Figure 4.12 – The overall isolation logic behaviour for “closed-type” fault

the proposed FDI/FTC system when applied on a number of simulation models with randomly
drawn dynamics. In this simulation study, the considered thruster fault scenarios are associated
with (see Section 2.3.3 for details on fault modelling):

• Case 1: fully open thruster (mleak(t) = 1,∀t ≥ tf );

• Case 2: bipropellant leakage ranging from 7% to 20% (mleak(t) ∼ U(0.07, 0.2),∀t ≥ tf );

• Case 3: loss of efficiency ranging from 30% to 100% (m̂loss ∼ U(0.3, 1)).

The selected leakage and efficiency loss intervals have been determined based on the author’s
study presented in [91], where it was shown that if the FDI unit fails to detect or isolate a small
thruster fault (e.g., mloss . 15%), the effect that this fault has on the GNC system and/or on
the final MSR capture performance requirements is negligible. This is due to the fact that such
relatively small fault has a very little impact on the system dynamics and shall be compensated
by a robust control law. On the other hand, such faults are very hard or even impossible to
detect and isolate.

For each above mentioned fault case, a set of nmc = 1000 Monte Carlo simulations has been
carried out in order to assess the performance of the proposed FTC strategy. Thruster faults are
uniformly distributed among all the 12 thrusters. In all the cases, fault occurs at time tf = 1000
s and is maintained.

All simulations (3 × nmc) have been carried out under realistic conditions, i.e., the navigation
unit is considered to deliver “non-perfect” state estimates, therefore all the signals used by the
FDI scheme, by the NIPC algorithm and by the 6DOF controller are replaced with their respec-
tive uncertain values, see Section 2.2.1 for navigation uncertainty models. Time-varying delays,
uncertainties on thruster rise times and spatial disturbances are also considered. For each run,
the nominal model parameters, e.g., mass, center of mass, etc., were scattered within a specific
limit (see Table 2.3 for details). Since the real configuration matrix B̄ is never precisely known
on-board, an uncertain configuration matrix B̂ is considered for on-board computational pur-
poses (control law, FDI/FTC). Therefore, B̂ is considered instead of B̄ in the NIPC algorithm.
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Metric Fully open Leakage Thrust loss
µ(τd)/σ(τd) 2.36/0.14 (s) 4.97/0.75 (s) 48.44/53.29 (s)
µ(τg)/σ(τg) 1.50/0.86 (s) 1.75/0.37 (s) 3.37/5.16 (s)
µ(τi)/σ(τi) 0.40/0.00 (s) 3.70/11.39 (s) 4.20/8.21 (s)
µ(τo)/σ(τo) 4.27/0.87 (s) 10.41/11.71 (s) 56.01/54.57 (s)
pf 0 0 0.11

Table 4.2 – FDI performances based on 3× 1000 Monte Carlo runs

This matrix is computed similarly as B̄ in (2.53), but using a worst-case scenario when an offset
of −3 cm is added to each axis of the nominal CoM (see Table 2.3).

To evaluate the performance and reliability of the proposed FDI scheme, some statistical indices
have been used, e.g., the mean detection delay and its corresponding standard deviation. The
considered indices are listed below:

• µ(τd)/σ(τd) - mean/standard deviation (st.dev.) of the detection delay (i.e., τd = td− tf ),

• µ(τg)/σ(τg) - mean/st.dev. of the thruster group isolation delay (i.e., τg = tg − td),

• µ(τi)/σ(τi) - mean/st.dev. of the thruster isolation delay (i.e., τi = ti − tg),

• µ(τo)/σ(τo) - mean/st.dev. of the overall detection and isolation delay (i.e., τo = ti − tf ),

• pf - FDI fail rate, i.e., the number of wrongly isolated thrusters divided by the total
number of Monte Carlo runs (1000 for each fault scenario).

These performance indices have been calculated for each fault case separately. Table 4.2 presents
complete results obtained from the simulation campaign. This table demonstrates that the pro-
posed FDI scheme is able to detect and isolate the considered thruster faults within reasonable
times. Moreover, it presents a good reliability since no fail detection/isolation has been revealed
for the first two faulty scenarios, i.e., pf = 0. Considering the thrust loss scenario, in about
110 simulation cases, the FDI unit failed to either detect or correctly isolate the faulty thruster.
As it will be shown in the next, this fact does not violate any capture conditions nor endan-
ger the mission success. Therefore, it can be concluded that the nonlinear simulations clearly
demonstrate that all severe faults are detected and isolated by the proposed FDI units within
a reasonable time, i.e., such that the required GNC performances are kept (e.g., in terms of
pointing accuracy).

Figures 4.14-4.18 illustrate the fault tolerant capabilities of the proposed technique. The capture
conditions in terms of position and velocities are given in Fig. 4.13a, Fig. 4.15a, and Fig. 4.17a
for fully open thruster, leaking thruster and loss of efficiency thruster fault, respectively. Fig-
ure 4.13b, Fig. 4.15b and Fig. 4.17b illustrate, that in all faulty cases, the chaser maintains
the required trajectory, i.e., stays inside the rendezvous corridor, and that it keeps its attitude
pointing towards the target leading to a successful capture. Finally, Fig. 4.14b, Fig. 4.16b and
Fig. 4.18b show that the proposed strategy is able to meet the required 3σ capture accuracy in
terms of angular misalignment and angular rate errors.

Note, that the early detection of the occurrence of incipient or small size thruster faults (e.g.,
small thrust loss) is clearly more difficult. Another problem can arise when a fully blocked
thruster (i.e., m̂loss = 1) is not commanded and thus a fault detection is almost impossible. As
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Figure 4.13 – Capture position requirements and GNC performances for fault the Case 1
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Figure 4.14 – Considered distributions and capture angular requirements for fault the Case 1

seen in Fig. 4.17a and Fig. 4.17b, despite the fact that in some cases the FDI unit failed, the
required capture tolerances and attitude/trajectory conditions are fully met.

On the other hand, in some particular cases, the attitude misalignment requirement (3-sigma)
is not met even if the FDI unit succeeded. This is the case when it takes too long time for the
FDI unit to detect and/or isolate the faulty thruster, thus the fault accommodation unit has not
enough time to fully recover the faulty system or when the control accuracy has been degraded,
e.g., due to a worst case uncertainty or strong disturbance. Based on the FDI performances
given in Table 4.2, this case has been very rarely observed. In such cases, the solution may
consist in a corrective maneuver that is engaged at the higher level of the fault management
unit, see Chapter 2 if necessary.
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Figure 4.15 – Capture position requirements and GNC performances for fault the Case 2
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Figure 4.16 – Considered distributions and capture angular requirements for fault the Case 2
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Figure 4.17 – Capture position requirements and GNC performances for fault the Case 3
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(b) Angular misalignment (left) and angular rate error
(right) at capture

Figure 4.18 – Considered distributions and capture angular requirements for fault the Case 3
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4.8 Conclusion

In this chapter, a systematic procedure has been presented for the theoretical design and ap-
plication of a model-based approach to FDI/FTC of an autonomous rendezvous system in the
terminal phase. The aim is to detect and isolate a single thruster fault affecting the chaser
propulsion system and to accommodate it as quick as possible. The proposed FDI scheme is
based on a robust fault detector and a NUIO-based isolation logic. The NUIO gains are given
by an LMI optimization, which ensures maximization of the admissible Lipschitz constant while
simultaneously satisfying the L2 gain bound and the pole constraints on the observer dynamics.
The L2 attenuation is considered to minimize the effect of the uncertain inertia on the state
estimation error. The NUIO design together with the derivation of the uncertain inertia inverse
can be considered as a contribution to the theory. The thruster fault tolerance is achieved by
an improved version of the NIPC control allocation algorithm scheduled by the robust FDI
scheme. A Monte Carlo simulation campaign has been performed to assess the performance
and robustness of the NUIO-based FDI/FTC system subject to parameter uncertainties, spa-
tial disturbances, delays and imperfect navigation. The results indicate that, for all considered
fault profiles, which are those considered to be the most relevant by the industrial partners, the
proposed strategy can carry out the terminal rendezvous successfully and meet all the required
capture specifications.
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“You cannot create experience. You must undergo it.”
— Albert Camus, French Nobel Prize winner

This thesis dealt with the design and validation of advanced model-based methodologies
for an integration of FTC capabilities within the GNC system of a chaser spacecraft to
ensure a success rendezvous with a target in a circular orbit around the planet of Mars.

The main objective, conclusive work of a three years research period focused on the major of
fault diagnosis and fault-tolerant control, was to present a collection of results which should
lead towards a unified framework for FTC of an autonomous spacecraft involved in a safety
critical mission, like MSR mission, PROBA 3, etc.. The analysis is conducted in the context of
a terminal rendezvous sequence for the Mars Sample Return mission.,

In space systems, fault tolerance is usually achieved by Fault/Failure Detection Isolation and
Recovery approach. FDIR solutions are preferred to FTC ones due to their availability and
simplicity. In the FDIR problem, when a fault is diagnosed and subscribed to a subsystem,
the redundant subsystem is activated in order to recover the initial performance. That is what
the “R” means in the acronym FDIR. The FTC solutions differ fundamentally from the FDIR
ones, since they are not based on a redundant system/subsystems (e.g., actuators and sensors),
but they are rather based on analytical (software) redundancy (e.g., model-based approaches
for fault detection and isolation and/or functional redundancy in actuators for fault tolerance).
Due to the increasing mission demands and the strict constraints on weight, power and cost,
providing full hardware redundancy for all actuators is difficult. In order to overcome these
limitations, this thesis investigated some methodologies required to design and incorporate an
FTC system that performs its functions autonomously and it is based on analytical redundancy,
where applicable.

The review of the available state of the art on existing FTC system concepts and FDI ap-
proaches, and their possibility to be applied for space systems, has concluded that there exist
some important learned lessons:

i) The first is that the tolerance to both sensor and actuator faults cannot be achieved at
the same level. The reason is quite evident: since any model-based FDI/FTC scheme uses
the sensor measurements y, one has to be sure that these measurements are fault-free.
Similarly for tolerance to sensor faults, because FTC scheme like observer-based method
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uses the control signals u, one has to be sure that no faults occur in the actuators. As a
direct consequence, for space systems, it is better to hierarchize the fault diagnosis task
into different levels and to use hardware redundancy in sensors or signal-based techniques
in order to guarantee sensor fault tolerance. A direct consequence of this is that a global
FTC system should ensure tolerance to sensor faults first, and then if the measurements are
deemed to be “fail-safe”, the second step should consist in ensuring tolerance to actuator
faults that is at an upper level than sensor fault tolerance. Here, advanced model-based
techniques for FDI and control allocation are proposed for fault accommodation.

ii) Another lesson is that the FTC requirements should not be decoupled from mission objec-
tives. If the already in-placed robust GNC system is able to compensate some subset of
thruster faults (e.g., small losses of thruster efficiency), then there is no need to develop a
FTC system for this subset (see Fig. 4.17 and Fig. 4.18b in Chapter 4 or Fonod et al. [91]
if necessary).

iii) Finally, because of the lack of formal proofs, both in terms of global stability and per-
formance, for many methods (see Table 1.2 and Table 1.1 in Chapter 1), the control re-
allocation approach for FTC purpose seems to be the more advantageous one in the case of
functional redundancy based thruster configuration, since it requires a little modification
of the existing GNC system.

The solutions investigated in this thesis followed these kinds of strategies.

This work has conducted a survey chapter which illustrated some concepts, definitions and
classical results as well as some examples from successful implementation of FDI and FTC
approaches in some space missions. Then, a complete description of the already in-placed GNC
system and of the failure management unit has been addressed. Within the studies conducted
in this thesis, two different thruster configurations have been studied. The first (baseline)
configuration disposes with a fully redundant thruster set of 2x8 thrusters, whilst the second
configuration is composed of 12 thrusters with functional redundancy. Starting from these
concepts, two architectures for FDIR and FTC have been considered. These architectures have
been developed in order to accomplish the task of fault tolerance in the more efficient way.

For the baseline configuration, two distinct model-based FDIR schemes for thruster fault diag-
nosis and accommodation have been proposed. The first scheme is based on the position model
whereas the second scheme is based on the attitude model. Effects of unknown time-varying
delays induced by the propulsion drive electronics and uncertainties on the thruster rise times
have been taken into account during the robust FDI scheme design procedure. The proposed
FDI strategy is based exclusively on one observer and uses a cross-correlation like isolation test
computed on a sliding window. Therefore, the computational burdens is kept low, which is an
a priori condition for real time on-board implementation. The proposed recovery action con-
sists in disengaging the faulty thruster using a dedicated thruster latch valve and redirecting
the control signal to the back-up thruster in the redundant thruster set. This solution to fault
accommodation does not require any change in the nominal controller or TMF, which leads the
solution being very attractive from an industrial perspective. For the validation purposes, four
different real fault scenarios were investigated. The obtained results from a Monte Carlo sim-
ulation campaign, performed under realistic conditions considering imperfect navigation unit,
delays, spatial disturbances (gravity gradient, atmospheric drag, and solar radiation pressure)
and parameter uncertainties (mass, inertia, center of mass, and uncertainties on the thruster
rise times), revealed that the proposed FDI strategies are effective. They also showed that all
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the considered fault scenarios are covered with the suggested model-based FDI schemes, i.e.,
they are able to unambiguously isolate all considered faults with high probability. Moreover,
the carefully selected FDI performance indices also reveal that the position model-based scheme
tends to achieve very similar performance as the scheme based on the pure attitude model. The
position model-based scheme succeeded thanks to the judiciously chosen linear model, i.e., a
model that takes into account both the rotational and translational motions of the chaser. In
this model, the attitude quaternion plays the role of a scheduling parameter for the residual
generation.

An active FTC system strategy to detect, isolate and accommodate a thruster fault has been
proposed for the second thruster configuration. A robust fault detector, based on a residual
generator with enhanced robustness against the uncertain input delay, has been suggested for
fault detection purposes. For fault isolation, a bank of robust NUIOs has been proposed. Based
on a set of explicit rules, an isolation strategy has been given to unambiguously isolate a sin-
gle thruster fault affecting the chaser propulsion system. The main challenge of the isolation
problem inhered in the fact that the considered thruster configuration consists of a subset of
thrusters which produce torque in almost the same directions. The thruster fault tolerance was
achieved by an improved version of the NIPC control allocation algorithm scheduled by the
robust NUIO-based FDI scheme. A Monte Carlo simulation campaign has been performed to
assess the performance and robustness of the proposed FDI/FTC system subject to parameter
uncertainties, spatial disturbances, delays and unperfect navigation. The results indicate that,
for all considered fault profiles, the proposed strategy can carry out the terminal rendezvous
successfully and the required capture accuracy is maintained. Moreover, it was shown that in
case of small thruster faults, the required GNC performances are kept (e.g., in terms of pointing
accuracy) despite wrong isolation or non-detection. On the other hand, all the severe faults have
been detected and isolated by the proposed FDI unit within a reasonable time.

To conclude, all the results obtained in this thesis revealed that both advanced FDIR and
FTC techniques have great advantages in terms of reliability, safety and mission success when
compared to the classical FDIR approaches. Thanks to the good knowledge of the subsystems
that the engineers at ESA and TAS have, the FMEA (Fault Mode and Effect Analysis) made
it easier to develop a more specific FDI/FTC schemes dedicated to certain subset of occurring
faults in a real spacecraft. This is one of the many reasons why the valuable knowledge of the
control system engineers collaborating within this project was crucial.

Future developments should include the study of more complex verification and validation tools
that could enlighten more the distributed and uncertain nature of the complex spacecraft systems
(variation of the center of mass, more realistic model of the navigation unit, etc.) and also the
stochastic nature of the faults. Robustness against other model parameters like flexible modes,
slosh phenomena, uncertain mass, variation of the center of mass, etc. should be incorporated at
the design stage of the FDI scheme. Moreover, robustness and sensitivity constraints should be
considered too, for instance using H∞/H− filtering theory. The implementation, performance,
reliability and certification issues slow down the use of these techniques in space, therefore the
complexity and computational burden should be further reduced or at least kept at the current
level.
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List of Main Contributions

In the following, a list of contributions in point fashion is presented. At the end of each list
entry, a reference number is given which corresponds to the reference number of the author’s
list of publication given earlier (see page xxiii).

The contributions of this thesis are mainly concerned by:

• the development of two distinct approaches for the FDI of any kind of thruster faults
(“open-type” and “closed-type”) [1],[2],

• the comparison study of the position model-based FDI scheme with the pure attitude
model-based scheme [2],

• the analysis of the impact of small thruster faults on the GNC performance and capture
accuracy [4],

• the development of a method for estimating the complex distribution matrix Ed (used to
decouple the effect of uncertain input delays from the residual signal) using:

– LPV transformation based on the first-order Padé approximation [6],

– polytopic transformation based on the CH (Cayley-Hamilton) theorem [5],[6],[7],

– combination of two polytopic transformations, one based on the CH theorem and the
other based on the h-th order Taylor series expansion [2].

• the derivation of the uncertain inertia matrix inverse decomposed form J−1 = J−1
0 +

R2∆2S2 [1],

• the development of a NUIO with constrained observer dynamics, bounded L2 gain from
∆Bũ to the estimation error e and maximization of the admissible Lipschitz constant γ∗
[1], [3], [4],

• the improvement of the NIPC control allocation algorithm for FTC purposes [1].
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Mathematical Details

The purpose of this appendix is to introduce some mathematical results that are used throughout
this thesis.

A.1 Lemmas

A.1.1 Neumann Series

Lemma A1 (Neumann Series, [37]). Consider a square matrix A such that ‖A‖ < 1. Let λ be
any eigenvalue of A. It is clear that (I −A) is invertible if λ 6= 1,∀λ ∈ Λ(A). The condition
‖A‖ < 1 implies that |λ| < 1,∀λ ∈ Λ(A). Thus, (I −A) is invertible and the Neumann series

(I −A)−1 =
∞∑

k=0
Ak = I +A+A2 + . . .

converges. When ‖A‖ ≥ 1, (I − A) is still invertible if λ 6= 1,∀λ ∈ Λ(A), but the Neumann
series does not converge because lim

k→∞
Ak 6= 0.

Proof. Since ‖A‖ < 1, the series
∑∞
k=0 ‖A‖k converges. Since ‖Ah‖ ≤ ‖A‖h, the series∑∞k=0A

k

converges, too. Denote by Z its limit. ZA = AZ =
∑∞
k=0A

k+1; therefore (I − A)Z =
Z(I −A) = I, which proves Lemma A1. �

A.1.2 Millers’s Lemma on the Inverse of the Sum of Matrices

Lemma A2 (Inverse of the Sum of Matrices, Miller [196]). Let A and (A+B) be nonsingular
matrices and let B have positive rank r. Let B = E1 +E2 + . . .+Er where each Ek has rank
one and Ck+1 = A+E1 +E2 + . . .+Er is nonsingular for k = 1, . . . , r. Then if C1 = A,

(A+B)−1 = C−1
r − grC−1

r ErC
−1
r

with
C−1
k+1 = C−1

k − gkC−1
k EkC

−1
k , k = 1, . . . , r
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gk = 1
1 + tr(C−1

k Ek)

where tr(·) stands for the sum of the elements on the main diagonal.

Proof. The proof can be found in Miller [196]. �

A.1.3 Schur’s Complement

Lemma A3 (Schur’s Complement). Consider a matrix X ∈ Rn×n partitioned as

X =
[
Q S

ST R

]
> 0

where Q ∈ Rp×p and Q ∈ Rq×q, with n = p+ q. If R is nonsingular, the Schur complement of
X with respect to R is defined as

X/Q , Q− SR−1ST

Q− SR−1ST > 0, R > 0

Proof. The proof of Schur’s complement lemma can be found in [111]. �

A.1.4 Matrix Inequality Lemma

Lemma A4 (Zhou and Khargonekar [317]). Let D, F , and Σ(t) be matrices with appropriate
dimensions. If ΣT (t)Σ(t) ≤ I,∀t, then for any scalar ε > 0 the following inequality holds:

DΣ(t)F + F TΣT (t)DT ≤ 1
ε
DDT + εF TF

Proof. It can be verified that the following yields
(
ε

1
2DT − ε 1

2 Σ(t)F
)T (

ε
1
2DT − ε 1

2 Σ(t)F
)
≥ 0

then expanding the above yields

ε−1F TΣT (t)Σ(t)F + εDDT ≥DΣ(t)F + F TΣT (t)DT

It is obvious that ‖Σ‖ ≤ 1⇔ λmax(ΣTΣ) ≤ 1⇔ ΣTΣ ≤ I, thus

εDDT + 1
ε
ETE ≥ ε−1F TΣT (t)Σ(t)F + εDDT ≥DΣ(t)F + F TΣT (t)DT

This concludes the proof. �
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A.2 Norms and Singular Values

A.2.1 Vector Norms

Let u ∈ Rr, the p-norm ‖u‖p of the vector u is defined as follows

‖u‖p =
(

r∑

i=1
|ui|p

)1/p

, 1 ≤ p ≤ ∞

For p = {1, 2,∞} the following vector norms are obtained

‖u‖1 =
r∑

i=1
|ui|

‖u‖2 =

√√√√
r∑

i=1
u2
i =
√
uTu

‖u‖∞ = lim
p→∞

(
r∑

i=1
|ui|p

)1/p

= max
1≤i≤r

|ui|

The 2-norm ‖u‖2 defined above is also called the Euclidian or spectral norm and is used without
subscript, i.e., ‖u‖.

A.2.2 Matrix Norms

Let A ∈ Rn×r, the matrix p-norm ‖A‖p of the matrix A is defined as

‖A‖p = sup
u6=0

‖Au‖p
‖u‖p

, ∀u ∈ Rr

where sup stands for supremum (least upper bound). The norm of a matrix A is defined through
the norm of a vector u, thus it is called an induced norm. For p = {1, 2,∞} the following matrix
norms are obtained

‖A‖1 = max
1≤j≤r

n∑

i=1
|aij |

‖A‖2 =
√
λmax(ATA) = σmax(A)

‖A‖∞ = max
1≤i≤n

r∑

j=1
|aij |

where λmax and σmax denote the largest eigenvalue and singular value of the matrix A, respec-
tively.

The Frobenius norm ‖A‖F of the matrix A is defined as

‖A‖F =

√√√√
n∑

i=1

r∑

j=1
|aij |2 =

√
tr(AHA)
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where AH is the conjugate transpose of A.

A.2.3 Signal Norms

Definition A1 (Lp Space). The space Lp consists of all Lebensque measurable functions u(t) :
R+ → Rr having a finite Lp norm ‖u‖lp.

Let u(t) : R+ → Rr be a Lebensque measurable function, then the Lp-norm ‖u‖lp of the signal
u(t) is defined as

‖u‖lp =
(∫ ∞

0
‖u(t)‖ppdt

) 1
p

For p = {1, 2,∞} the following signal norms are obtained

L1 : ‖u‖l1 =
∫ ∞

0
‖u(t)‖1dt

L2 : ‖u‖l2 =
√∫ ∞

0
‖u(t)‖2dt

L∞ : ‖u‖l∞ = sup
t≥0
‖u(t)‖∞

A.2.4 Singular Values

The singular values of A are given by the positive square roots of the eigenvalues of ATA,
i.e.,

σi(A) =
√
λi(ATA), i = 1, . . . , r

ordered such that σ1 ≥ ... ≥ σl > σl+1 = ... = σr = 0, where l = rank(A).

A.3 Pseudoinverses

Let B ∈ Rl×r, where r ≥ l and l = rank(B). Consider solving

Bu = v

for u ∈ Rr, with given v ∈ Rl. If l < r, there is no unique solution. Any generalized inverse G
of B, satisfying BG = I, i.e., any right inverse of B, gives the solution

u = Gv

To make the choice of u unique, a minimum norm of the solution can be used, i.e., min
u
‖u‖p,

where p is chosen e.g., as p = {1, 2,∞}.
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A.3.1 Moore-Penrose Pseudoinverse

Lemma A5 (The Moore-Penrose pseudoinverse). The problem

min
u
‖u‖2

subject to Bu = v

where l = rank(B) and r ≥ l, has the unique solution

u = B†v

where
B† = BT (BBT )−1

is the pseudoinverse, or the Moore-Penrose inverse of B.

Proof. Define the Lagrangian of this problem as

L(u,λ) = 1
2u

Tu+ λT (v −Bu)

where λ denotes the Lagrange multipliers. By differentiating the Lagrangian L with respect to
u ones get

∂L(u,λ)
∂u

= u−BTλ

∂L(u,λ)
∂u

= 0⇒ u = BTλ

v = Bu = BBTλ

Since rank(B) = l, matrix BBT is non-singular and the optimal solution for the Lagrange
multiplier is

λ = (BBT )−1v

Finally, the optimal solution of the given optimization problem is

u = BTλ = BT (BBT )−1v

�

A.3.2 The Least Square Problem

Lemma A6 (Pseudoinverse - the least square problem). The problem

min
u
‖W (u− ud)‖2

subject to Bu = v

where ud ∈ Rr is an arbitrary vector. The solution of this problem is [120]

u = Fu0 +Gv

183



Appendix A. Mathematical Details

where
F = I −GB

G = W−1(BW−1)+

Proof. The substitution e = W
(
u − ud

)
yields u = ud + W−1e and gives the equivalent

minimum norm problem formulation
min
e
‖e‖2

subject to B
(
ud +W−1e

)
= v ⇔ (

BW−1)e = v −Bud
Again, using Lemma A5 we get

e =
(
BW−1)†(v −Bud

) ⇒ u =
(
I −W−1(BW−1)†B

)
ud +W−1(BW−1)†v

�

A.4 Cosine Direction Matrix for Attitude Modelling

A.4.1 Definitions

The basic three-axis attitude transformation is based on the direction cosine matrix. Any
attitude transformation in space is actually converted to this essential form [259]. In Figure A.1,
the axes 1, 2, and 3 are unit vectors defining an orthogonal, right-handed triad. This triad is
chosen as the reference inertial frame. Next, a similar orthogonal triad is attached to the center
of mass of a moving body, defined by the unit vectors u, v, and w.

Figure A.1 – Definition of the orientation of the spacecraft axes u,v,w in the reference frame
1,2,3.

In the context of Fig. A.1, the matrix A is defined as follows:

A =



u1 u2 u3
v1 v2 v3
w1 w2 w3




In this matrix, u1, u2, u3 are the components of the unit vector u along the three axes 1,2,3 of
the reference orthogonal system: u = [u1 u2 u3]T . In a similar way, v and w have components
v1, v2, v3 and w1, w2, w3 along the same reference axes: v = [v1 v2 v3]T and w = [w1 w2 w3]T .
The direction cosine matrix A, also called the attitude matrix has the important property of
mapping vectors from the reference frame to the body frame. Suppose that a vector a has
components a1, a2, a3 in the reference frame: a = [a1 a2 a3]T . The following matrix vector
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multiplication expresses the components of the vector a in the body frame

Aa =



u1 u2 u3
v1 v2 v3
w1 w2 w3






a1
a2
a3


 = ab

where ab is the vector a mapped into the body frame. Since u is a unit vector, it follows that
the scalar product ~u.~a is the component au of the vector a along the unit vector u. By the
same reasoning, the components of the vector a on the remaining unit vectors of the body triad
are av and aw.

A.4.2 Basic Properties

Some basic properties of the matrix A may be stated as follows:

- Each of its elements is the cosine of the angle between a body unit vector and a reference
axis; its name is derived from this property.

- Each of the vectors u,v,w are vectors with unit length, hence

3∑

i=1
u2
i = 1,

3∑

i=1
v2
i = 1,

3∑

i=1
w2
i = 1

- The unit vectors u,v,w are orthogonal to each other, hence

3∑

i=1
uivi = 0,

3∑

i=1
uiwi = 0,

3∑

i=1
viwi = 0

- These relationships lead to the useful identity AAT = I and thus AT = A−1. Of course,
transposition of a matrix is a much simpler process than inversion of the same matrix.

- It is well known that det (A) = u · (v ×w). Since u,v,w form a cubic orthogonal triad, it
follows that det (A) = 1. Thus,

a = ATab

- Finally, A is a proper real orthogonal matrix. Such a matrix transformation preserves the
lengths of vectors and also the angles between them, and thus represents a rotation. The
product of two proper real orthogonal matrices A = A2A1 is the result of two successive
rotations, first by A1 and then by A2. This property is useful in modelling spacecraft attitude
since a chain of successive rotations is common.

A.5 Quaternions

A.5.1 Definition

The quaternion basic definition is a consequence of the properties of the direction cosine matrix
A. It is shown by linear algebra that a proper real orthogonal 3 × 3 matrix has at least one
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eigenvector with eigenvalue of unity. This means that, since one of the eigenvalues λi, i = 1, 2, 3
is unity, the eigenvector is unchanged by the matrix A:

Av1 = 1.v1

The eigenvector v1 has the same components along the body axes and along the reference frame
axes (see Fig. A.1 for an illustration). The existence of such an eigenvector is the analytical
demonstration of Euler’s famous theorem about rotational displacement [259]: "The most general
displacement of a rigid body with one point fixed is a rotation about some axis". In this case,
the rotation is about the eigenvector v1. Any attitude transformation in space by consecutive
rotations about the three orthogonal unit vectors of the coordinate system can thus be achieved
by a single rotation about the eigenvector with unity eigenvalue, i.e., v1.
The quaternion is defined as a vector in the following way

q = q0 + q1~i+ q2~j + q3~k

where the unit vectors ~i,~j, and ~k satisfy the following equalities:

i2 = j2 = k2 = −1
~i.~j = −~j.~i = ~k

~j.~k = −~k.~j =~i

~k.~i = −~i.~k = ~j

In the definition of the quaternion q, q0 is a scalar. These equations show that the order of
multiplication is important. The conjugate of q is also define as

q∗ = q0 − q1~i− q2~j − q3~k

A.5.2 Conversion from Quaternion to Euler Angles

Consider the attitude be represented by a unit quaternion q = (q0, q1, q2, q3), then the mapping
from a unit quaternion to a set of Euler (3,2,1) angles is given by [59]



ϕ

θ

ψ


 =




atan2
(
2(q0q1 + q2q3), 1− 2(q2

1 + q2
2)
)

arcsin (2(q0q2 − q3q1))
atan2

(
2(q0q3 + q1q2), 1− 2(q2

2 + q2
3)
)




where

atan2(y, x) =





arctan
( y
x

)
x > 0

arctan
( y
x

)
+ π y ≥ 0, x < 0

arctan
( y
x

)− π y < 0, x < 0
+π

2 y > 0, x = 0
−π

2 y < 0, x = 0
undefined y = 0, x = 0
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A.5.3 Quaternion Product

Quaternion product � between quaternions qa ∈ H and qb ∈ H is defined as follows [59]

qa � qb =
[

qa0q
b
0 − (qa1:3)Tqb1:3

qa0q
b
1:3 + qb0q

a
1:3 − qa1:3 × qb1:3

]

=
[
qa0 −(qa1:3)T
qa1:3 +qa0I + C(qa1:3)

] [
qb0
qb1:3

]

=
[
qb0 −(qb1:3)T
qb1:3 +qb0I + C(qb1:3)

] [
qa0
qa1:3

]

where the skew-symmetric cross product matrix function C(·) : R3 → R3×3 of x ∈ R3 is defined
by

C(x) =




0 −x3 x2
x3 0 −x1
−x2 x1 0




Note that quaternion product is non-commutative.
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Appendix B
Hypothesis Testing

The task of the statistical hypothesis testing of the residual is to determine the presence and the
time occurrence of a fault in the system. The fault indicating residual signal can be generated
by different ways, see Section 1.3. The decision is based on accepting or rejecting one of the
following two possible hypotheses:

• H0 : normal operation (the system is fault-free),

• H1 : abnormal operation (the system is faulty).

One can ask, how to choose between these two hypotheses with a given risk. Let p(r|H0) and
p(r|H1) be the conditional PDF (Probability Density Function) associated with the residual
r under the condition of H0 and H1, respectively. Consider a fixed decision threshold chosen
based on a priori knowledge of the decision problem, then the decision process can result in four
possible scenarios, see Table B.1.

H0 declared H1 declared
H0 is true right decision false alarm Pf
H1 is true non-detection Pnd right decision

Table B.1 – Decision situations in a two-hypothesis test

A hypothesis test is then a rule that, for a given measurement, makes a decision as to which
hypothesis best “explains” the data. Figure B.1 illustrates the overlap of the two PDFs and the
selected threshold.

B.1 Wald’s Sequential Probability Ratio Test

A Sequential Probability Ratio Test (SPRT), also known as Wald’s sequential test, is a diagnostic
algorithm generally used when the residual of the system follows a Gaussian distribution. Non-
sequential diagnostic tests are dependent on the number of observed samples being tested. In
practice, a moving window is used on the residual. For Wald’s sequential test, the width of the
sample size is not fixed a priori, but depends upon the data that have been already observed.
A decision is made as soon as there are enough observations in the actual step so that error
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decision 

threshold

Figure B.1 – Definition of the probability of non-detection and false alarm and the decision
threshold

probabilities are inferior to set values. These values are the non-detection Pnd and false alarm
Pf probabilities. The sequential decision-making theory was developed by Abraham Wald in
his famous book [287] as a statistical tool for sequential hypothesis testing. A good survey on
hypothesis testing can be found in [10].

B.1.1 Decision Test

Assume that r(k) is a random variable, and S1 and S2 are two decision thresholds (S1 < S2)
such that:1

• Situation No.1: if r(k) ≤ S1, then H0 is accepted;

• Situation No.2: if S1 < r(k) < S2, then no decision is adopted;

• Situation No.3: if r(k) ≥ S2, then H1 is accepted.

Wald’s sequential test relies on the connection of the two decision thresholds S1 and S2 with the
probability of non-detection Pnd and false alarm Pf , defined by:

Pnd = probability(H0 is declared|H1 true)

Pf = probability(H1 is declared|H0 true)

The detection probability, denoted as Pd, is defined by:

Pd = probability(H1 is declared|H1 true)

B.1.2 Calculation of the Decision Thresholds

Assume that the probability density functions associated with H0 and H1 have been determined
and are noted as p(r(k)|H0) and p(r(k)|H1), where r(k) is the residual at the time instant k.
Then, the probability Pf , Pnd and Pd are mathematically given by:

Pnd =
∫

E0
p(r(k)|H1)dr(k) (B.1)

1A scalar discrete time residual signal r(k) is considered.
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Pf =
∫

E1
p(r(k)|H0)dr(k) (B.2)

Pd =
∫

E1
p(r(k)|H1)dr(k) = 1− Pnd (B.3)

and the likelihood ratio λ(k) for Wald’s sequential test is given by:

λ(k) = p (r(1), r(2), . . . , r(k)|H1)
p (r(1), r(2), . . . , r(k)|H0) (B.4)

Situation No.1

In this case, it is assumed that at sample k the system is normal functioning (r(k) ≤ S1). The
threshold is determined by considering the extreme case when the likelihood ratio λ(k) is equal
to A. Then from (B.4), for all samples from 1 to k, the following yields:

p(r(k)|H1) = Ap(r(k)|H0) (B.5)

Now, integrating (B.5) over the space E0, it follows that
∫

E0
p(r(k)|H1)dr(k) = A

∫

E0
p(r(k)|H0)dr(k) (B.6)

Considering (B.1) and (B.2), it yields

Pnd = A(1− Pf ) (B.7)

and thus
A = Pnd

1− Pf
(B.8)

Situation No.2

Here, the case when no decision is adopted (S1 < r(k) < S2) is considered. Supposing that sam-
ples r(i), i = 1, ..., k are independent of each other, then (B.4) can be rewritten as follows:

λ(k) = p(r(1)|H1)p(r(2)|H1) . . . p(r(k)|H1)
p(r(1)|H0)p(r(2)|H0) . . . p(r(k)|H0) (B.9)

or alternatively

λ(k) =
k∏

i=1
λ◦(i), where λ◦(i) =

k∏

i=1

p(r(i)|H1)
p(r(i)|H0) (B.10)

Situation No.3

It is assumed that at sample k the system is faulty (r(k) ≤ S1). Similarly as in situation No.1,
the limit case λ(k) = B is considered. From (B.4), for all samples from 1 to k, it follows
that:
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p(r(k)|H1) = Bp(r(k)|H0) (B.11)

and integrating (B.11) over the space E1, it follows that
∫

E1
p(r(k)|H1)dr(k) = B

∫

E1
p(r(k)|H0)dr(k) (B.12)

Thus, considering (B.1) and (B.2), it yields

Pd = BPf (B.13)

and from (B.3), it follows:
B = 1− Pnd

Pf
(B.14)

B.1.3 Wald’s Test for the Mean Value

Let r be a Gaussian random variable regardless of the operation mode of the system (faulty or
fault-free). The idea of this test is to find out whether the statistical mean of this signal has
been changed.

Let be assumed that under hypothesis H0, r has a mean value µ0 and a variance σ2, and under
the hypothesis H1, r has a mean value µ1 and variance σ2, i.e.,

E{r} = µ0 under H0 (B.15)

E{r} = µ1 under H1 (B.16)

E
{

(r − µ0)(r − µ0)T
}

= E
{

(r − µ1)(r − µ1)T
}

= σ2 (B.17)

The probability density function are then expressed as:

p(r(k)|H1) = 1
σ
√

2π
exp

{
− 1

2σ2 (r(k)− µ1)2
}

(B.18)

p(r(k)|H0) = 1
σ
√

2π
exp

{
− 1

2σ2 (r(k)− µ0)2
}

(B.19)

The expression of the likelihood ratio given by (B.10) for the mean value becomes (the index
“m” indicates the mean value):

λm(k) =
k∏

i=1
exp

{
− 1

2σ2 (r(i)− µ1)2 + 1
2σ2 (r(i)− µ0)2

}
= (B.20)

=
k∏

i=1
exp

{
− 1

2σ2

[
(r(i)2 − 2r(i)µ1 + µ2

1)− (r(i)2 − 2r(i)µ0 + µ2
0)
]}

=

=
k∏

i=1
exp

{
− 1

2σ2

(
µ2

1 − µ2
0
)

+ 1
σ2 (µ1 − µ0) r(i)

}
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Simplifying (B.20) results in

λm(k) = exp
{
− k

2σ2 (µ2
1 − µ2

0) + 1
σ2 (µ1 − µ0)

k∑

i=1
r(i)

}
(B.21)

The sequential Wald’s test for the mean value can be now written as

A ≤ λm(k) ≤ B (B.22)

Substituting (B.21) into (B.22) yields

A ≤ exp
{
− k

2σ2 (µ2
1 − µ2

0) + 1
σ2 (µ1 − µ0)

k∑

i=1
r(i)

}
≤ B (B.23)

Applying natural logarithm

ln(A) ≤ µ1 − µ0
σ2

{
−k2 (µ1 + µ0) +

k∑

i=1
r(i)

}
≤ ln(B) (B.24)

Finally after some tedious calculations the following holds

σ2

µ1 − µ0
ln(A) + k

2 (µ1 + µ0) ≤
k∑

i=1
r(i) ≤ σ2

µ1 − µ0
ln(B) + k

2 (µ1 + µ0) (B.25)

where A and B are fixed as given in (B.1) and (B.2) using the probabilities Pnd and Pf .

B.1.3.1 Graphical Interpretation

The graphical interpretation of the sequential Wald’s decision test for the mean value is depicted
in Figure B.2. The time varying thresholds are defined according to

g1(k) = σ2

µ1 − µ0
ln(A) + (µ1 + µ0)

2 k (B.26)

g2(k) = σ2

µ1 − µ0
ln(B) + (µ1 + µ0)

2 k (B.27)

These equations represent two parallel lines with gradient µ1+µ0
2 and origin in σ2

µ1−µ0
ln(A) for

g1(k), and in σ2

µ1−µ0
ln(B) for g2(k), respectively.

B.1.3.2 Modification to the Change of the Mean

By subtracting kµ0 from (B.25), the following yields

σ2

µ1−µ0
ln(A) + k

2 (µ1 − µ0) ≤
k∑

i=1
(r(i)− µ0) ≤ σ2

µ1−µ0
ln(B) + k

2 (µ1 − µ0) (B.28)
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Hypothesis H0

σ2

µ1−µ0
ln(B)

σ2

µ1−µ0
ln(A)

Hypothesis H1

k∑
i=1

ri

k

µ1+µ0
2

gradient

Figure B.2 – Graphical interpretation of the Wald’s decision test for the mean value

Introducing a new parameter ∆µ = µ1 − µ0, (B.28) can be rewritten as

σ2

∆µ ln(A) + k
∆µ
2 ≤

k∑

i=1
(r(i)− µ0) ≤ σ2

∆µ ln(B) + k
∆µ
2 (B.29)

where it is required that ∆µ > 0, therefore ∆µ = |µ1 − µ0| has to be considered.

B.1.4 Wald’s Test for the Variance

This test deals with a change detection in the variance of the residual signal r. Let’s assume
that under the hypothesis H0, r has a mean value µ and a variance σ2

0, and under the hypothesis
H1, r has a mean value µ and variance σ2

1, i.e.,

E{r} = µ under H0 and H1 (B.30)

E
{

(r − µ)(r − µ)T
}

= σ2
0 underH0 (B.31)

E
{

(r − µ)(r − µ)T
}

= σ2
1 underH1 (B.32)

The probability density function are then expressed as

p(r(k)|H0) = 1
σ0
√

2π
exp

{
− 1

2σ2
0

(r(k)− µ)2
}

(B.33)

p(r(k)|H1) = 1
σ1
√

2π
exp

{
− 1

2σ2
1

(r(k)− µ)2
}

(B.34)

The expression of the likelihood ratio given by (B.10) for the variance becomes (the index “v”
indicates the variance)

λv(k) =
k∏

i=1

σ0
σ1

exp
{
−1

2

( 1
σ2

1
− 1
σ2

0

)
(r(i)− µ)2

}
(B.35)
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Hypothesis H0

2 ln(B)
1

σ2
0

− 1
σ2

1

2 ln(A)
1

σ2
0

− 1
σ2

1

Hypothesis H1

k∑
i=1

(ri − µ)2

k

ln
(

σ2
1

σ2
0

)

1
σ2

0
− 1

σ2
1

gradient

Figure B.3 – Graphical interpretation of the Wald’s decision test for the variance

Simplifying (B.35) results in

λv(k) =
(
σ0
σ1

)k
exp

{
−1

2

( 1
σ2

1
− 1
σ2

0

) k∑

i=1
(r(i)− µ)2

}
(B.36)

The sequential Wald’s test for the variance can be written as:

A ≤ λv(k) ≤ B (B.37)

Substituting (B.36) into (B.37) the following yields

A ≤
(
σ0
σ1

)k
exp

{
−1

2

( 1
σ2

1
− 1
σ2

0

) k∑

i=1
(r(i)− µ)2

}
≤ B (B.38)

Further, applying the natural logarithm on (B.38) results in

ln(A) ≤ k ln
(
σ0
σ1

)
− 1

2

( 1
σ2

1
− 1
σ2

0

) k∑

i=1
(r(i)− µ)2 ≤ ln(B) (B.39)

which, after some arithmetic operations, leads to

2
(
ln(A) + k

2 ln
(
σ2

1
σ2

0

))

(
1
σ2

0
− 1

σ2
1

) ≤
k∑

i=1
(r(i)− µ)2 ≤

2
(
ln(B) + k

2 ln
(
σ2

1
σ2

0

))

(
1
σ2

0
− 1

σ2
1

) (B.40)

where A and B are again fixed as given in (B.1) and (B.2).

B.1.4.1 Graphical Interpretation

The time varying thresholds are again defined as two parallel lines according to the following
equations:

g1(k) = 2 ln(A)(
1
σ2

0
− 1

σ2
1

) +
ln
(
σ2

1
σ2

0

)

(
1
σ2

0
− 1

σ2
1

)k (B.41)
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g2(k) = 2 ln(B)(
1
σ2

0
− 1

σ2
1

) +
ln
(
σ2

1
σ2

0

)

(
1
σ2

0
− 1

σ2
1

)k (B.42)

The graphical interpretation of the sequential Wald’s decision test for the variance is depicted
in Figure B.3.

Remark B.1. In order to avoid that the cumulative sum in the above mentioned methods will
tend to infinity, one has to reset the cumulative sum and the thresholds as soon as a decision is
taken, i.e., when H0 or H1 is accepted.

B.2 Generalized Likelihood Ration Test

One of the main drawbacks of the Wald’s decision test is that some knowledge is required about
the residual distribution in faulty situation. In practice, once the residual generation problem
is solved and the distribution of the fault-free residual is known, a Generalized Likelihood Ra-
tion (GLR) test statistic can be formed without a priori knowledge about the faulty residual
distribution. Similarly as the SPRT test, the GLR test is built on the Neyman-Pearson’s lemma
[204].

B.2.1 Decision Test

Let’s consider the two hypotheses H0 and H1, and assume that r(k) is a random variable, then
the GLR decision test can be expressed as:

• Situation No.1: if r(k) ∼ N (µ0, σ0), then H0 is accepted;

• Situation No.2: if r(k) ∼ N (µ1, σ1), then H1 is accepted.

where µ0 and σ0 are the (known) mean and standard deviation of r(k) in fault-free situation,
respectively and µ1 and σ1 are assumed to be unknown.

By the same reasoning as in the case of the Wald’s test, the likelihood ratio λ(k) between
hypotheses H0 and H1, can be computed as in (B.4).

B.2.1.1 GLR Test for the Mean Value

This test deals with a change detection in the mean of the residual signal r(k). Assume that
(B.15) - (B.17) hold, i.e., the variance of the residual is assumed to be the same in both situations
σ2 = σ2

0 = σ2
1, then the natural logarithm of the likelihood ratio (log LR) λ(k) is described by

[60]

ln p(r(k)|H1)
p(r(k)|H0) = 1

2σ2

[
(r(k)− µ0)2 − (r(k)− µ1)2

]
(B.43)

where p(r(k)|H1) and p(r(k)|H0) are given by (B.18) and (B.19), respectively.
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In case of N samples of r, r(k), k = 1, . . . , N , are available, the log LR is defined by [60]

SN1 =
N∑

i=1
ln p(r(i)|H1)
p(r(i)|H0) = 1

2σ2

N∑

i=1

[
(r(i)− µ0)2 − (r(i)− µ1)2

]
(B.44)

= µ1 − µ0
σ2

N∑

i=1

(
r(i)− µ1 + µ0

2

)
(B.45)

In practice, µ1 is unknown. Thus, µ1 is replaced by its maximum likelihood estimate. The
maximum likelihood estimate µ̂1 of µ1 is an estimate achieved under the cost function that the
LR is maximized, i.e., max

µ1
SN1 ⇒

∂SN1
∂µ1

= 0, which yields to

µ̂1 = arg max
µ1

SN1 = r̄ = 1
N

N∑

i=1
r(i) (B.46)

where r̄ is the mean value of the residual r, i.e., r̄ = 1
N

∑N
i=1 r(i). With (B.46) the LR is

maximised [60]. It can be seen that the maximum likelihood estimate of µ1 is in fact the
estimate of the mean value r̄. Substituting µ̂1 for µ1 in (B.44) gives the GLR algorithm for the
mean value

SN1 = 1
2σ2N

(
N∑

i=1
(r(i)− µ0)

)2

(B.47)

B.2.1.2 GLR Test for the Variance

This test deals with a change detection in the variance of the residual signal r. To proceed,
assume that (B.30) - (B.32) hold, i.e., the mean of the residual is assumed to be the same for
both situations µ = µ0 = µ1, and the log LR for the first N samples is given by [10, 60]

SN1 =
N∑

i=1
ln p(r(i)|H1)
p(r(i)|H0) = N ln σ0

σ1
+ 1

2σ2
0

N∑

i=1
(r(i)− µ)2 − 1

2σ2
1

N∑

i=1
(r(i)− µ)2 (B.48)

where p(r(i)|H1) and p(r(i)|H0) are given by (B.33) and (B.34), respectively. Since σ2
1 is un-

known, its maximum estimate σ̂1 is considered, i.e., max
σ1

SN1 ⇒
∂SN1
∂σ1

= 0, which yields to

σ̂2
1 = arg max

σ1
SN1 = 1

N

N∑

i=1
(r(i)− µ)2 (B.49)

Substituting (B.49) into (B.48) gives the GLR algorithm for the variance

SN1 = N ln(σ0)− N

2

[
1 + ln

(
1
N

N∑

i=1
(r(i)− µ)2

)]
+ 1

2σ2
0

N∑

i=1
(r(i)− µ)2 (B.50)

Remark B.2. Another algorithm exists in the literature to test the change in variance according
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to the χ2 statistics. The statistics

SN1 = (N − 1)s2

σ2
0

, s2 =

N∑
i=1

(r(i)− r̄)2

N − 1 (B.51)

has a standard χ2 distribution with the degree of freedom equal to N − 1. Thus, for a given
significance level α, the threshold is determined by

Jth = χ2
α,γ , prob{SN1 > χ2

α,γ} = α (B.52)

where χ2
α,γ is given by the standard χ2 distribution table corresponding to the significance level

α and degree of freedom γ equal to γ = N − 1. This algorithm was used for the decision test in
[90].

B.2.2 On-line Realization

The above presented GLR algorithms can be realized on a fixed sliding window Nd ∈ Z+. In
this framework, (B.47) and (B.50) become

SNd(k) =




Sk1 if k < Nd

Skk−Nd+1 if k ≥ Nd

(B.53)

The sliding window Nd is introduced to tackle on-line realization aspects.
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Titre : Diagnostique de défaut à base de modèle et accommodation de défaut pour
missions spatiales

Résumé : Les travaux de recherche traités dans cette thèse s’appuient sur l’expertise des actions
menées entre l’Agence spatiale européenne (ESA), l’industrie Thales Alenia Space (TAS) et le laboratoire
de l’Intégration du Matériau au Système (IMS) qui développent de nouvelles générations d’unités intégrées
de guidage, navigation et pilotage (GNC) avec une fonction de détection des défauts et de tolérance des
défauts. La mission de référence retenue dans cette thèse est la mission de retour d’échantillons martiens
(Mars Sample Return, MSR) de l’ESA. Ce travail se concentre sur la séquence terminale du rendez-vous de
la mission MSR qui correspond aux dernières centaines de mètres jusqu’à la capture. Le véhicule chasseur
est l’orbiteur MSR (chasseur), alors que la cible passive est un conteneur sphérique. L’objectif au niveau
de contrôle est de réaliser la capture avec une précision inférieure à quelques centimètres. Les travaux de
recherche traités dans cette thèse s’intéressent au développement des approches sur base de modèle de dé-
tection et d’isolation des défauts (FDI) et de commande tolérante aux défaillances (FTC), qui pourraient
augmenter d’une manière significative l’autonomie opérationnelle et fonctionnelle du chasseur pendant le
rendez-vous et, d’une manière plus générale, d’un vaisseau spatial impliqué dans des missions située dans
l’espace lointain. Dès lors que la redondance existe dans les capteurs et que les roues de réaction ne sont
pas utilisées durant la phase de rendez-vous, le travail présenté dans cette thèse est orienté seulement
vers les systèmes de propulsion par tuyères. Les défaillances examinées ont été définies conformément aux
exigences de l’ESA et de TAS et suivant leurs expériences. Les approches FDI/FTC présentées s’appuient
sur la redondance de capteurs, la redirection de contrôle et sur les méthodes de réallocation de contrôle,
ainsi que le FDI hiérarchique, y compris les approches à base de signaux au niveau de capteurs, les ap-
proches à base de modèle de détection/localisation de défauts de propulseur et la surveillance de sécurité
de trajectoire. Utilisant un simulateur industriel de haute-fidélité, les indices de performance et de fiabilité
FDI, qui ont été soigneusement choisis accompagnés des campagnes de simulation de robustesse/sensibilité
Monte Carlo, démontrent la viabilité des approches proposées.
Mots clés : Diagnostic des défauts; commande tolérante aux défauts rendez-vous spatial.

Title: Model-based Fault Diagnosis and Fault Accommodation for Space Missions

Abstract: The work addressed in this thesis draws expertise from actions undertaken between the Euro-
pean Space Agency (ESA), the industry Thales Alenia Space (TAS) and the IMS laboratory (laboratoire
de l’Intégration du Matériau au Système) which develop new generations of integrated Guidance, Navi-
gation and Control (GNC) units with fault detection and tolerance capabilities. The reference mission is
the ESA’s Mars Sample Return (MSR) mission. The presented work focuses on the terminal rendezvous
sequence of the MSR mission which corresponds to the last few hundred meters until the capture. The
chaser vehicle is the MSR Orbiter, while the passive target is a diameter spherical container. The objective
at control level is a capture achievement with an accuracy better than a few centimeter. The research work
addressed in this thesis is concerned by the development of model-based Fault Detection and Isolation
(FDI) and Fault Tolerant Control (FTC) approaches that could significantly increase the operational and
functional autonomy of the chaser during rendezvous, and more generally, of spacecraft involved in deep
space missions. Since redundancy exist in the sensors and since the reaction wheels are not used during
the rendezvous phase, the work presented in this thesis focuses only on the thruster-based propulsion
system. The investigated faults have been defined in accordance with ESA and TAS requirements and
following their experiences. The presented FDI/FTC approaches relies on hardware redundancy in sen-
sors, control redirection and control re-allocation methods and a hierarchical FDI including signal-based
approaches at sensor level, model-based approaches for thruster fault detection/isolation and trajectory
safety monitoring. Carefully selected performance and reliability indices together with Monte Carlo sim-
ulation campaigns, using a high-fidelity industrial simulator, demonstrate the viability of the proposed
approaches.
Keywords: Fault diagnosis; fault-tolerant control; space rendezvous.
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