
HAL Id: tel-01163806
https://theses.hal.science/tel-01163806v1

Submitted on 15 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrete Control in the Internet of things and Smart
Environments through a Shared Infrastructure

Mengxuan Zhao

To cite this version:
Mengxuan Zhao. Discrete Control in the Internet of things and Smart Environments through a Shared
Infrastructure. Other [cs.OH]. Université Grenoble Alpes, 2015. English. �NNT : 2015GREAM011�.
�tel-01163806�

https://theses.hal.science/tel-01163806v1
https://hal.archives-ouvertes.fr

THÈSE
pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par
Mengxuan ZHAO

Thèse dirigée par Hassane ALLA
et codirigée par Eric RUTTEN et Gilles PRIVAT

préparée au sein du
Orange Labs, Gipsa Lab et INRIA Rhône-Alpes
et de L’Ecole Doctorale Mathématiques, Sciences et
Technologies de l’Information, Informatique

Discrete Control in the Internet of
Things and Smart Environments through a
Shared Infrastructure

Thèse soutenue publiquement le 7 mai 2015,
devant le jury composé de:

Eric NIEL
Professeur, INSA Lyon, Rapporteur
Thierry MONTEIL
Maître de conférence (HDR), INSA Toulouse, Rapporteur
Frédérique BIENNIER
Professeur, INSA Lyon, Examinatrice
Noureddine ZERHOUNI
Professeur, ENS2M, Examinateur
Hassane ALLA
Professeur, Université Joseph Fourier, Directeur de thèse
Eric RUTTEN
Chargé de recherche, INRIA Rhône-Alpes, CoDirecteur de thèse
Gilles PRIVAT
Ingénieur de recherche, Orange Labs, Co-encadrant de thèse

UNIVERSITÉ DE GRENOBLE

MSTII
Ecole Doctorale Mathématiques, Sciences et Technologies de l’Information,

Informatique

T H È S E
pour obtenir le titre de

docteur en sciences

de l’Université de Grenoble
Mention : Informatique

Présentée et soutenue par

Mengxuan ZHAO

Contrôle Discret pour l’Internet des Objets et les

Environnements Intelligents au travers d’une infrastructure

partagée

Thèse dirigée par Mengxuan ZHAO

préparée au laboratoire
Orange Labs, Gipsa-Lab et INRIA Rhône-Alpes

soutenue le date de soutenance

Jury :

Rapporteurs : Eric NIEL - INSA Lyon
Thierry MONTEIL - INSA Toulouse

Examinateur : Frédérique BIENNIER - INSA Lyon
Noureddine ZERHOUNI - ENS2M

Directeur : Hassane ALLA - Université Joseph Fourier
CoDirecteur : Eric RUTTEN - INRIA Rhône-Aples
Encadrant : Gilles PRIVAT - Orange Labs

Abstract

The Internet of Things (IoT) and Smart Environments (SE) have attracted a lot of research
and development activities during the last decade. Yet many present-day IoT/SE applica-
tions are still limited to the acquisition and processing of sensor data and its context, with
control, if any, using either basic solutions or requiring human intervention, far away from
the automatic control which is an essential factor to promote the technologies. This thesis
targets to bring knowhow from control theory and reactive systems to the IoT/SE domain
to achieve a solution with a formal method for the missing control aspect.

We propose the extension of a framework in order to build a shared generic IoT/SE
infrastructure offering high-level interfaces to reduce design effort, and enabling the self-
configuration and adaptation of control applications over generic properties of the environ-
ment without human interaction by using general knowledge over the domain that applies
to each target instance of IoT/SE system. In this extended framework, individual physical
entities (including all relevant "things", appliances and subsets of space) may be grouped
as virtual entities by shared properties to provide a higher level abstraction for control and
other applications and better adaptation to lower level configuration changes.

Requiring a generic common denominator solution shared by all IoT/SE applications in
a given environment, we propose for this infrastructure, to model by finite state automata
the target entities to be monitored and controlled, including both individual entities and
their groupings, as well as things and space entities, to be able to apply discrete controller
synthesis (DCS) technique over any of these at different levels of abstraction and granu-
larity. DCS is a formal method which constructs automatically a controller, if it exists,
guaranteeing the required control objectives regarding to the given system behavior model
in terms of synchronous parallel automata. The existing BZR programming language and
Sigali tools are employed to perform DCS and generate a controller in an automatic way.

Necessary supporting software modules are proposed in the implementation such as
the relation maintenance module keeping the correct association between individual entity
instances and groups, and dispatching the action orders from the high level control to
corresponding actuators. This module would evolve later to a more generic solution such
as a graph data base including both the general knowledge base and specific environment
instance relations. Conflict resolution between objectives of control coming from concurrent
controllers is also indispensable due to the intended openness of the platform. A java based
context simulator has been developed to simulate the home environment within several
scenarios proposed for the validation, such as electrical load control and activity context
adaptation.

1

2

L’Internet des Objets (IdO) et les Environnements Intelligents (EI) ont attiré beaucoup
d’activités de recherche et développement au cours de la dernière décennie. Pourtant, de
nombreuses applications IdO/EI d’aujourd’hui sont encore limitées à l’acquisition et au
traitement des données de capteurs et de leur contexte, avec un contrôle, le cas échéant,
utilisant soit des solutions de base ou demandant l’intervention humaine, loin du contrôle
automatique qui est un facteur essentiel de promouvoir ces technologies. Cette thèse vise
à apporter le savoir-faire de la théorie du contrôle et des systèmes réactifs dans le domaine
IdO/EI pour arriver à une solution avec une méthode formelle pour l’aspect de contrôle
qui fait défaut.

Nous proposons l’extension d’un canevas logiciel pour une infrastructure générique et
partagée IdO/EI qui offre des interfaces de haut niveau pour réduire l’effort de concep-
tion, et qui permet l’auto-configuration et l’adaptation des applications de contrôle sur
des propriétés génériques de l’environnement sans intervention humaine en utilisant les
connaissances générales sur le domaine qui s’appliquent à chaque instance cible de sys-
tème IdO/EI. Dans cette infrastructure étendue, les entités physiques individuelles (y
compris toutes les "choses", appareils électriques et sous-ensembles de l’espace) peuvent
être regroupées comme des entités virtuelles par des propriétés communes afin de fournir
un niveau d’abstraction plus élevé pour le contrôle et d’autres applications, ainsi qu’une
meilleure adaptation aux changements des configurations au niveau inférieur.

Sur le requis d’une solution générique et commun dénominateur partagée par toutes
les applications de l’IdO/EI dans un environnement donné, nous proposons pour cette
infrastructure, de modéliser les entités cibles supervisées et contrôlées, y compris les entités
individuelles et de leurs regroupements, ainsi que les choses et les entités spatiales, par des
automates à états finis, pour être en mesure d’appliquer la technique de la synthèse des
contrôleur discrets (SCD) aux différents niveaux d’abstraction et de granularité. SCD est
une méthode formelle qui construit automatiquement un contrôleur, s’il existe, en assurant
les objectifs de contrôle exigés concernant le modèle de comportement du système donné
en termes d’automates parallèles synchrones. Les langages de programmation BZR et les
outils Sigali existants sont utilisés pour effectuer la SCD et de générer un contrôleur de
manière automatique.

Les modules logiciels nécessaires sont proposés dans l’implémentation tels que le module
de maintenance de relation qui garde une association correcte entre les instances d’entités
individuelles et les groupes, et répercute des commandes d’action du contrôle de haut
niveau aux actionneurs correspondants. Ce module est destiné à évoluer plus tard vers une
solution plus générique comme une base de données graphes comprenant à la fois la base
de connaissances générales et relations spécifiques d’instance environnement. La résolution
des conflits entre les objectifs de contrôle venant de contrôleurs concurrent est également
indispensable en raison des objectifs de l’ouverture de la plateforme. Un simulateur de
contexte basé sur Java a été développé pour simuler l’environnement de la maison au sein
de plusieurs scénarios proposés pour la validation, tels que le contrôle de la charge électrique
et l’adaptation au contexte de l’activité.

Contents

Abstract 1

List of Figures 8

List of Tables 11

List of Acronyms 12

1 Introduction 1

1.1 Scope Identification . 1

1.2 Problem statement . 2

1.3 Contributions . 3

1.4 Thesis outline . 4

I State of the art 5

2 General background of the IoT and SE 7

2.1 Common characteristics and challenges . 8

2.2 Current standards and references . 9

2.2.1 ITU-T recommendation Y.2060: standard for the IoT in general . . 9

2.2.2 ETSI M2M: Identification & communication oriented 10

2.2.3 Smart Home Environments . 11

2.2.4 Naming/Identification standards . 12

2.3 Technology background . 12

2.3.1 Identification and configuration . 13

2.3.2 Wireless sensor actuator network . 14

2.3.3 Sensor data aggregation and complex event processing 15

2.3.4 Middleware . 16

3

4 Contents

2.3.4.1 System architecture: SOA vs ROA 16

2.3.4.2 An open source platform: OpenHAB 17

2.4 Semantic modeling . 18

2.4.1 Semantic approach for IoT and Smart Environment 18

2.4.2 Domain ontologies . 19

2.4.3 Tools for ontologies . 21

2.5 Data sharing . 22

2.6 Applications . 23

2.6.1 Safety and Security . 23

2.6.2 Energy Management . 23

2.6.3 Comfort enhancement . 24

2.6.4 Health and assistance . 24

2.7 Summary and discussion . 24

3 Models and Discrete Control 27

3.1 Common modeling approaches in IoT/SE 27

3.1.1 Object-oriented modeling . 27

3.1.2 Agent-based modeling . 28

3.2 Automaton-based modeling . 29

3.2.1 Definition of Automata . 29

3.2.1.1 Hierarchical automata . 30

3.2.1.2 StateCharts and UML state machine 30

3.2.1.3 Synchronous composition of automata in parallel 31

3.2.2 Synchronous programming . 31

3.2.2.1 Automaton-based synchronous languages 32

3.2.2.2 Heptagon language . 32

3.3 Supervisory control and Discrete Controller Synthesis (DCS) 33

3.3.1 The Ramadge and Wonham Framework 34

Contents 5

3.3.2 Control objectives . 35

3.3.3 BZR synchronous programming language 35

3.3.4 Discrete control applications . 36

3.4 Related control approaches in IoT/SE . 37

3.4.1 Languages for rule statement and Rule engines 37

3.5 Summary and discussions . 37

II Contributions 39

4 Framework for a shared infrastructure for IoT data abstraction 41

4.1 Modeling framework overview . 41

4.2 Physical plane . 42

4.2.1 Entities/subsystems . 43

4.2.2 ICT devices/connected objects . 43

4.2.3 Devices (sensors and actuators) . 44

4.3 Model plane . 45

4.3.1 Generic entity finite automata models 45

4.3.2 Domain ontology . 47

4.3.3 Virtual entity model . 49

4.3.4 Establishing hierarchical relationship between virtual entity models . 50

4.4 Proxy instance plane . 54

4.4.1 Device abstraction layer . 54

4.4.2 Entity instance proxy layer . 54

4.4.3 Entity group layer . 55

4.4.4 Service and local application layer 56

4.4.5 Remote applications layer . 57

5 Generic models for discrete control based on the shared infrastructure 59

5.1 Control-oriented models . 59

6 Contents

5.1.1 Entity group models . 61

5.1.2 State Mapping of group category VE and member entities 65

5.1.3 Data combination . 70

5.1.4 Control order dispatching towards individual entity instances 70

5.2 Controller generation using BZR . 72

5.2.1 BZR encoding of the system model 72

5.2.2 Control objectives as contract . 74

5.3 Corpus of control rules . 74

5.3.1 Generic rules and their categories . 75

5.3.2 Category of rules . 76

5.3.3 Control rules compatibility . 76

5.3.3.1 Controller by category of rules 77

5.3.3.2 Resolution of conflict from different controllers with differ-
ent priority . 78

5.3.3.3 Example . 79

5.3.3.4 Conclusion of the compatibility resolution 81

III Validation 83

6 Implementation 85

6.1 Overall functional architecture . 85

6.2 Ontology implementation . 86

6.3 Implementation on OGSi . 87

6.4 Context simulator . 89

7 Case studies 91

7.1 Preliminary: discrete control on generic models for a smart home instance . 91

7.1.1 Case study description . 91

7.1.2 System modeling and discrete controller generation 92

Contents 7

7.1.3 Implementation and simulation . 95

7.2 Power control for home: load shedding . 95

7.2.1 Case study description . 96

7.2.2 System modeling and controller generation 96

7.2.3 Closing the control loop using the platform 99

7.2.4 Experiments . 102

7.3 Home office scenario . 105

7.3.1 Case study description . 105

7.3.2 System modeling and controller generation 105

7.3.3 Experiments . 107

IV Conclusion 109

8 Conclusion and perspectives 111

8.1 Conclusion . 111

8.2 Perspectives . 112

8.2.1 Generic and basic control as a "safety guard" service 112

8.2.2 Validation beyond home and Application beyond the initial scope . . 113

Appendices 115

A BZR encoding of the load shedding case study 117

A.1 System behavior modeled by groups . 117

A.2 System behavior as composition of generic individual entities 119

A.3 System behavior as composition of specific individual entities 121

List of Publications 125

Biblography 131

List of Figures

2.1 The IoT reference model of ITU . 10

3.1 Synchronous composition example . 31

3.2 The graphical and textual syntax of a delayable task 33

3.3 The textual syntax of two delayable tasks in parallel 33

3.4 Controlled system with synthesized discrete controller in a closed-loop . . . 34

3.5 Delayable tasks: exclusion contract. 36

3.6 Bulb model with failure . 36

4.1 General framework presentation . 42

4.2 Generic "thing" automaton model: (a)Lamp; (b)Radiator; (c)Washing ma-
chine . 46

4.3 Generic "space" automaton model of room 46

4.4 Ontology/taxonomy graph in an home instance example 47

4.5 Partial ontology of city . 48

4.6 Generic model: (a)light-emitting; (b)electrical appliance 49

4.7 Example of using different abstraction level models 50

4.8 (a)State machine ontology; (b)Example of state mapping of light-emitting
and lamp . 51

4.9 Multiple inheritance: lamp.on inherits values from parents 52

4.10 Ancestor/descendant state mapping in "is a" relationship 53

4.11 Association is made on both intrinsic hierarchical relationship and extrinsic
environment-specific relationship . 56

5.1 High level overview of entity groups and entities with functional supportive
blocks . 60

5.2 Overview of the relationship between entity group and individual entities
via the model plane . 60

9

10 List of Figures

5.3 (a) 2-state VE model; (b) general template for group model of 2-state models
and its simplified version (c) . 64

5.4 Illustration for state mapping procedure: developed from figure 5.2 66

5.5 state data combination of member entities and control order dispatching . . 71

5.6 Partial ontology graph for the example . 79

6.1 Overall functional architecture of the implementation 85

6.2 A piece of the implementation of the ontology DAG by Protégé 86

6.3 FSM "Lamp" implemented by Protégé . 87

6.4 Architecture of the (Home) abstraction platform implemented on OSGi . . . 88

6.5 MiLeSEnS GUI example: a home environment interface 89

7.1 Home environment configuration with control system 92

7.2 Model with control of (a)Door; (b)Lamp; (c)Washing machine; (d)Radiator 93

7.3 Ontology applied for case study 1 and 2, part taken from a more complete
ontology DAG . 94

7.4 Case study 1: Simulation with synthesized controller 95

7.5 Home instance example . 96

7.6 (a)Power observer and (b) grid observer . 97

7.7 Entity group model of (a)light emitting category; (b)high power appliance . 97

7.8 A simulation scenario of safety control . 103

7.9 "Mixed" implementation for the case study: kettle and radiator are hardware
and others are simulated, including the space entity room 104

7.10 Effective ontology DAG for the home office scenario 105

List of Tables

5.1 Table maintaining state mapping of parent/children VE models for a parent. 67

5.2 Target states according to different rules from different category 78

5.3 Target states snapshot when 2 rules execute together 80

5.4 Target states snapshot when 2 rules execute together: another possibility . . 81

7.1 State mapping of ancestor/descendant VE models 100

7.2 The time costs for DCS operations according to different abstraction level . 104

11

List of Acronyms

ABM Agent-based modeling. 28, 37

API Application Programming Interface. 16, 43

CPS Cyber-Physical System. 37

CRUD Create, Read, Update, Delete. 17

DAG Directed Acyclic Graph. 3, 37, 47, 61, 75

DCS Discrete Controller Synthesis. 34, 37, 59

DES Discrete Event System. 29, 33, 37

DNS Domain Name System. 12, 24

FPGA Field-Programmable Gate Array. 36

FSM Finite State Machine. 29, 31, 37, 45

HVAC heating, ventilating, and air conditioning. 20

ICT Information and communications technology. 1, 10, 13, 44

ITU International Telecommunication Union. 24

M2M Machine to Machine. 10, 24

OOM Object-Oriented Modeling. 27, 37, 55

OSI Open System Interconnection. 14

QoS Quality of Service. 20

RDF Resource Description Framework. 22, 45

REST REpresentational State Transfer. 10, 44, 89

RFID Radio Frequency IDentification. 2, 8, 13, 44

ROA Resource-Oriented Architecture. 54

SOA Service-Oriented Architecture. 8

UPnP Universal Plug and Play. 2, 8, 13

URI Uniform Resource Identifier. 12, 21

W3C World Wide Web Consortium. 21

WSAN Wireless Sensor Actuator Network. 14, 25

13

Chapter 1

Introduction

Contents
1.1 Scope Identification . 1

1.2 Problem statement . 2

1.3 Contributions . 3

1.4 Thesis outline . 4

1.1 Scope Identification

Smart Environments (SE) are meant to enhance the interaction between humans and the
physical world in which intelligence is embedded seamlessly through sensor networks and
ICT devices. They have mostly been seen as an extension and evolution of traditional
device-based human interfaces, using generic models of space. On the other hand, the
Internet of Things (IoT) aims to integrate a large number of everyday things, including
non-ICT objects, into the digital world, to make them communicate and interact, thanks to
unique addressing and communication technologies. With an extremely large application
spectrum from supply chain management to transportation assistance, from health care
to social network, the IoT offers great potentialities to development of new services and
applications, in order to not only improve the everyday life of private users, but also to
make benefits to the whole society by increasing the efficiency and productivity in industrial
and public domain. However, it is unfortunately too large to come up with a generalization
over the entire range.

Therefore, the scope of the current thesis is limited to the intersection of the IoT and
Smart Environment, i.e. the IoT restricted to the application domain of Smart Environ-
ment, including Smart Home, Smart building, Smart City, as a trade-off of the genericity
and the usefulness of the proposition in the current thesis. Thanks to the lower and lower
cost, network connectivity equipment becomes more and more accessible to the public,
which makes this intersection of the two domains booming in terms of number of applica-
tions, number of industrial investigators and amount of research interest. They have some
shared characteristics which our proposition will take into account: openness, dynamicity,
heterogeneity, non reproducibility and similarity from one instance to another. In spite of
their common points, the nuance between the IoT and SE makes the practiced research ap-
proaches in the two domains different: in the IoT, a "thing" vision is more adopted while
in SE, it is more environment centric. Very often, to resolve a problem involving both

1

2 Chapter 1. Introduction

"things" in the IoT and "environment" in SE, at least a distinct "thing" model and an
"environment" model are given. This makes the control designing even more complicated
which consists of cutting the problem into two parts to be modeled separately and control-
ling the two parts in a consistent way. Thus, the second reason we choose this intersection
to make contribution is that we would like to propose a uniform modeling method within
the scope to reduce the complexity of modeling procedure.

In the entire document, unless explicitly stated, we try to make our proposition gen-
eralizable to the underlined scope thus defined which is referred to as the target scope or
IoT/SE.

1.2 Problem statement

Many present-day IoT/SE applications are still limited to unidirectional data collection
from sensors for remote monitoring purposes with remote control, if any, using either basic
solutions relying on unquestioned assumptions or requiring human interaction in a human-
in-the-loop fashion, far away from the automatic control which is an essential factor to make
technologies invisible. Besides, they often get limited to specific identification technologies,
such as RFID, UPnP, and network technologies such as lower-power radio. The automatic
control aspect is generally missing in such applications. Two main causes responsible for
this situation are identified:

• First, concerning the classic control in industrial domain, mainstream applications
still rely on fully customized and ad hoc top-down vertical design laying directly on
the physical interface, i.e. sensor and actuator level, which has been so far dominant
in classic automatic control and cyber-physical systems. Control applications in
such case need to be installed and configured by an expert capable to specify the
individual correspondent devices to each application in each individual environment
which is a heavy and tedious procedure and not supposed to be within the ability
of the public. If any configuration change takes place during the run time, which is
unfortunately quite frequent due to the highly dynamic nature of such environment
instances, there is also need of expertise. This individual design and installation, plus
the maintenance expertise makes the total cost of such application extremely high
which is unacceptable to the constraints of mass-market in the IoT/SE domain.

• Second, concerning the emerging consumer SE platforms, weakness of some present
day rule engines for control applications is observed: sequential execution of rules may
create random non-expected results if the order of rules is altered, and no guarantee of
objective achieved if the open loop control approach is adopted. Moreover, the best-
effort and time-insensitive culture inherited from the general information engineering
by generic infrastructures in the IoT/SE domain, which could be disturbing in some
reactive applications with time delay constraints. The lack of formal method makes
the reliability and effectiveness of such control applications not satisfactory.

To release the entire potential of the promising IoT/SE domain, automatic control
which is an important way to make the environment intelligent, should be more accessible

1.3. Contributions 3

to the public in terms of cost and liability. In order to reach this goal, we argue that the
following elements are inevitable to overcome the above issues:

• A shared infrastructure offering high-level interfaces to reduce design effort, and
enabling the self configuration and adaptation of control application on generic prop-
erties of the environment without human interaction by using general knowledge over
the domain and creating horizontal layers according to the abstraction levels of the
physical world.

• Application of new control techniques, possibly from more critical domain such as
real-time embedded systems, on the above proposed infrastructure in the IoT/SE
domain to deal with the liability of desired result and real-time issues present in
many today’s control applications.

1.3 Contributions

In this thesis, we present several contributions to the previous objectives:

We begin with the proposition of a high-level framework using a knowledge base over
the domain and a method of modeling in order to integrate target physical entities into the
ICT system. The invariant knowledge base over different environments of the domain, also
called domain-specific ontology, structured in a directed acyclic graph (DAG), allows to
capture the generic properties over the domain and arrange them following a hierarchical
relationship, which makes it easier to make variable abstraction level of the target environ-
ment according to the demanded need of the given application. Each node of the DAG,
representing either a property or a concrete object type, is provided with a finite state model
which is used as a template during the auto discovery phase, or as instantiation blueprint
for individual objects. Environment entities are presented in the same way as "things" by a
finite state model and occupies a parallel branch to all the "things". The adaptability over
various environment instances is furthermore enhanced by making the change at physical
entity level transparent to high-level applications. The approach is to model the target
group of objects sharing the model at the abstraction level required by the application, i.e.
the node in the DAG that the application addresses. This group model, possibly specific to
each generic application requirements but available in all environment instances, allows the
reuse of these applications without dozens of device-application input/output associations
to do by offering a unified and invariant high-level interface.

To respond to control requirements, we propose a discrete control approach based on
a tool-supported synchronous variant. It favors automatic and correct-by-construction
manager derivation which has been applied in diverse domains. Models of relevant groups
of entities are considered as synchronous parallel automata on which the discrete controller
synthesis (DCS) is performed with the desired objectives expressed formally as logical
equations. A controller is generated if there is a solution, which warrants the objectives
are satisfied. All necessary supporting software modules are also proposed such as the
topology maintenance module keeping the correct association between individual entity
instances and groups of entities and dispatching the action order from the high level control

4 Chapter 1. Introduction

to corresponding actuators. Conflict resolution between different objectives of control is
also indispensable due to the openness of the domain where objectives are from diverse
origins.

1.4 Thesis outline

This thesis is divided into three parts.

Part I presents the state-of-the-art, interleaving background with related work. It has
two chapters. Chapter 2 identifies the common characteristics, the current standards to
which our proposition would made contribution, the enabling technologies as a start point
of our proposition and the most popular applications already available on the market in
our target scope. Chapter 3 presents the existing models, languages and tools that can be
employed to address the targeted design issues. Among them, we identify and introduce
the synchronous models, and discrete control techniques and tools that will be applied in
the thesis.

Part II exhibits the contributions of the thesis. It has two chapters. Chapter 4 first
presents an overview of our proposed framework. The focus is put on the modeling aspect
of "thing", "space" in the target scope, as well as the modeling of an abstract type or a
shared property by finite state machine. Their hierarchical relationship should be correctly
established and a group of same type entities is possibly abstracted by one model to
reduce the complexity of the system. Chapter 5 presents the mechanism implemented
in the proposed framework to enable to use discrete control techniques, and the conflict
resolution over generic control rules taken from a shared corpus.

Part III describes the implementation of such framework extending an existing one on
OSGi. Several case studies using the framework are presented, as well as some discussions
over their results.

Finally, Chapter 8 concludes concludes the thesis and presents some outlook.

Part I

State of the art

5

Chapter 2

General background of the IoT and
SE

Contents
2.1 Common characteristics and challenges 8

2.2 Current standards and references . 9

2.2.1 ITU-T recommendation Y.2060: standard for the IoT in general . . . 9

2.2.2 ETSI M2M: Identification & communication oriented 10

2.2.3 Smart Home Environments . 11

2.2.4 Naming/Identification standards . 12

2.3 Technology background . 12

2.3.1 Identification and configuration . 13

2.3.2 Wireless sensor actuator network . 14

2.3.3 Sensor data aggregation and complex event processing 15

2.3.4 Middleware . 16

2.4 Semantic modeling . 18

2.4.1 Semantic approach for IoT and Smart Environment 18

2.4.2 Domain ontologies . 19

2.4.3 Tools for ontologies . 21

2.5 Data sharing . 22

2.6 Applications . 23

2.6.1 Safety and Security . 23

2.6.2 Energy Management . 23

2.6.3 Comfort enhancement . 24

2.6.4 Health and assistance . 24

2.7 Summary and discussion . 24

This chapter describes the general context and background of the scope of the present
thesis. We begin with the identification of common properties of the addressed domain
which will serve as a base of requirements to our proposition. Current standardization
and reference model effort is then presented. Commonly used enabling technologies are
indispensable to be considered in today’s researches and applications. The application
scope we are aiming is extremely large where research directions are numerous and various.
We hope to make a clear position of our proposition through this chapter.

7

8 Chapter 2. General background of the IoT and SE

2.1 Common characteristics and challenges

The target scope is a particular hardware and software environment. This section describes
the identified shared properties and the challenges raised by each of them.

Openness. Devices in an instance of IoT/SE environment, including sensors/actuators
and smart objects, are often made by different manufacturers. Out-sourced data and infor-
mation are from different providers. Applications that give intelligence to the environment
along with the devices and data are also developed by different developers. One environ-
ment instance is not necessarily managed by only one stakeholder, which is especially true
in building and city scales. The openness enables the data sharing among objects, devices,
applications and systems, which helps improving the artificial intelligence, for example the
accuracy of automated decisions based on the context information, and the accuracy of
pattern recognition. It promotes also the development of such applications. This open-
ness requires the environment modeled as a comprehensive system, supporting different
applications, rather than one by one in a top-down fashion as a set of vertically integrated
solutions for individual applications.

Dynamicity. An IoT/SE environment is supposed to be dynamic during its lifetime, as
devices appear and disappear all the time and some of them can move within the environ-
ment, context information is changing permanently on runtime. The entire system should
be able to detect the changes in the environment, to adapt itself to the new configuration
and to act correctly to keep the whole system respecting current requirements. The la-
tency introduced by the whole reaction chain should respect the temporal constraints that
prescribed by individual applications, i.e. a lot more severe for real time applications than
for time-insensible ones like the update of meteorological information.

Heterogeneity. The devices and applications in an IoT/SE environment provide various
functionalities. Different devices and applications may offer the same functionality. They
use different communication protocols, like Wifi, Zigbee, ZWave for indoor wireless com-
munication, and they may be connected by diverse identification technologies like RFID,
UPnP. Apart from the objects coming with a network connection and some intelligence,
the so-called Smart Objects, there are things of previous generations which do not have
an embedded network connection. To cope with this heterogeneity, there should be a uni-
versal and generic model to capture the invariants from the diversity in a semantic way
in order to represent them independently of the technologies or vendors. The SOA allows
a loose couple between applications and devices to hide the implementation details of a
given functionality or assures a feature faced to the dynamicity.

Non reproducibility. Industrial control applications had manufacturing, dedicated sys-
tems (example: avionics), people with specified needs as their targets in the past. The
common point among those applications is that the design is a case-by-case one and the
costs of such design are recovered by producing a large number of identical items. Unfortu-

2.2. Current standards and references 9

nately in the target scope, almost non of the application instances is identical to another,
even in a block of identically built houses where the inside installation is different according
to the house holder’s need. By contrast to the solutions like luxury residence, production
line which do not have much constraint on cost, an entire case-by-case design does not fit
for the solutions because of its high cost of design and maintenance (money and time) and
the non reproducibility of those instances, in which a self-configurable solution is much
more attractive.

Similarity. Though all instances of IoT/SE environments are rarely identically repro-
ducible, they are structured by a few broad organizational features that are invariant from
one instance to another: all homes are composed by rooms, all buildings are divided into
floors and rooms, all cities are structured by streets, crossings, blocks, etc. The physical
entities in these environments are also similar from one instance to another like all homes
have some generic categories of appliances such as washing machine, lamps, heatings, etc.
This characteristics makes sense of a general solution that can self-configure once installed
in an environment with minimum human input based on generic and reusable models of
entities in these similar environment instances.

2.2 Current standards and references

Facing the above characteristics, especially the openness and heterogeneity, standards are
urgently needed to establish a baseline or a common grounding to improve high-level in-
teroperability. According to the fact that different domains have specific needs, various
standards may exist with higher or lower level abstraction targeting more or less generic
use cases: home, city, personal health, industry, etc. It is an ongoing work with a lot of
activities. Standardization organizations, companies, academic institutions, governments
are all involved and contribute their propositions.

2.2.1 ITU-T recommendation Y.2060: standard for the IoT in general

ITU (International Telecommunication Union) is the United Nations specialized agency
for information and communication technologies – ICTs1. Its Standardization sector (ITU-
T) develops international standards known as ITU-T Recommendations, some well known
examples are JPEG for imaging coding, H.264/MPEG-4 for video coding, (x)DSL for
internet access via a telephone line.

The current Y.2060 provides an overview of the IoT by giving a brief introduction of the
IoT concept, identifying its common characteristics and high-level requirements in order
to establish the IoT reference model (in figure 2.1) which has 4 horizontal layers together
with 2 transversal supporting modules corresponding to identified requirements arranged
from the closest to software application to the closest to physical things. This very high
level and general reference model will be the basis of our proposition of architecture.

1http://www.itu.int/

10 Chapter 2. General background of the IoT and SE

Figure 2.1 – The IoT reference model of ITU

While standards for IoT in general are kept quite abstract to enable different concrete
architectures, technologies responding specific requirements coming from the broad appli-
cation domains that general IoT covers, more specific standards are also under work to
provide more practical and concrete reference and guidelines.

2.2.2 ETSI M2M: Identification & communication oriented

The term M2M takes its origin in the telecom industry as firstly an extension of services
using the cellular network to connect terminal with embedded SIM cards. M2M services
are now understood as potentially using all kinds of networking and technology to enable
data exchange among machines and considered having a large range of applications. ETSI
M2M2 has have published standards for from overall functional architecture to detailed
communication interfaces, together with semantic models and use case identification. A
large part of ETSI M2M standards have been taken by OneM2M3, a global organization
developing standards for M2M communications and the IoT, which encompasses ETSI and
other organizations as active partners.

ETSI M2M standardization aims to provide a horizontal Service Capability Layer (SCL)
which is a set of services accessible from shared and open interfaces: instead of a vertical
ICT infrastructure developed by each vendor for its proper applications, a shared service
and network platform is provided which takes care of the supportive functionalities so that
developers or users only have to declare the objects in a standardized way and use the
common interfaces to implement the applications. The entire architecture is divided into
3 main domains: network, gateway and device, which interact among themselves via mId
interface and interact with applications with mIa or dIa interfaces. These interfaces are
generic and extensible. It adopts a RESTful architectural style (2.3.4.1) in the sense that
each SCL contains a standardized resource tree where each resource is accessible via a URI
by standard CRUD (Create, Read, Update, Delete) requests.

OM2M [Ala+14] is an open source M2M service platform which implements the ETSI
M2M standards, especially the part over the functional architecture and communication

2http://www.etsi.org/technologies-clusters/technologies/m2m
3http://www.onem2m.org

http://www.etsi.org/technologies-clusters/technologies/m2m
http://www.onem2m.org

2.2. Current standards and references 11

interfaces, for the first time. It is built on top of the OSGi Equinox4 runtime adopting a
modular architecture that features or functions of an SCL specified in the standards are
implemented as a "plugin" to facilitate the SCL extension as required in the standard.
Services are exposed via RESTful API and an object oriented database is provided. This
implementation provides also a self-configuration mechanism using autonomic computing
plugin, which facilitates the despoilment of a M2M network.

The present OM2M solution’s advantage is that it is an implementation of a well
known standard ETSI M2M which makes it easy to be accepted by application developers
and compatible with other M2M solutions. However, ETSI M2M defines services and
interfaces addressing individual devices such as sensors, smart or legacy devices without
recommendations on how to manage these devices and how to use data they provide. A pre-
normative study on semantics for M2M data is ongoing. Therefore, OM2M implementation
does not provide any support for M2M data processing apart from the autonomic self-
configuration mechanism following basic SWRL (Semantic Web Rule Language) rules to
bind sensor/actuator to monitor/controller. Application developers should at their own
charge to define the signification behind each individual resource and use them properly.

2.2.3 Smart Home Environments

The two following are either reference model or pre-standardization activity which are
susceptible to be a standard in the future .

HGI (Home Gateway Initiative)5 is an industrial alliance of service providers target-
ing the digital home aims to provide a flexible Smart Home delivery platform connecting
home devices and the internet where services from various vendors can be deployed easily
and interoperate. It has published reference Smart Home architecture, requirements for
network connection and service support collected from members. It is also a partner of
OneM2M.

IEEE-SA IC, Convergence of Smart Home and Building Architectures. Both
the similarities among Smart home and building architectures and a gap preventing the
internetworking between these domains have been observed during the latest years. This
ongoing per-normative activity6 aims to offer a seamless experience over multiple domains
by converging the Smart Home and Building architectures to enable inter-domain inter-
networking which creates benefits in many aspects such as increased granularity, visibility
and awareness, increased level od usability, etc.

Smart Appliances7 is a project trying to result a reference ontology that fits the ETSI
M2M architecture, with the scope of the consumer market of the home, public buildings

4http://www.eclipse.org/equinox/
5http://www.homegatewayinitiative.org
6http://standards.ieee.org/develop/indconn/activities.html
7https://sites.google.com/site/smartappliancesproject/home

http://www.eclipse.org/equinox/
http://www.homegatewayinitiative.org
http://standards.ieee.org/develop/indconn/activities.html
https://sites.google.com/site/smartappliancesproject/home

12 Chapter 2. General background of the IoT and SE

and offices, as well as the standard appliances in such environment. It has studied a range
of existing semantic assets and use case assets to be translated and mapped to make up
a common reference ontology, called "Smart Appliances REFerence (SAREF) ontology"
(c.f.2.4.2). This resulting ontology is to be contributed to ETSI as a future standard.

2.2.4 Naming/Identification standards

An identifier which does not create confusion in a reasonable range is essential for manag-
ing things in the IoT/SE scope. According to the nature of different application domains,
requirements and approaches can be different. Scalability, searchability and the capabil-
ity to provide basic configuration information are some identified requirements for such
standards.

Domain Name System (DNS) is a hierarchical distributed naming system to identify
resources connected to the Internet or any network, standardized as an RFC (Request for
Comments) document published by IETF (Internet Engineering Task Force)8. It translates
easily memorized domain names to IP addresses needed for the purpose of locating services
and devices. The domain names are arranged in a tree structure, the Domain Name Struc-
ture, that reflects in the syntax that we see in every single name like www.example.com.
There are components for registering, storing and resolving domain names like a database.
It can be used in the domain of IoT/SE for finding the knowledge data for a given entity
by the URI associated to it.

Electronic Product Code (EPC)9 is a universal identifier that gives to a physical
object an identity unique among all objects. It was first build in the context of supply
chain item tracing and management, but expanded and gained its popularity thanks to
RFID in which the EPCs are encoded in most of the cases. The main idea of EPC is to
attribute each object a globally unique code that two identical objects can be distinguished.
In an EPC identifier, numerous information can be found, such as information about the
EPC code (generation, length), manufacturer, object class and unique serial number. These
informations are accessible via several services coming with the EPCglobal Architecture
Framework (EPCAF), such as the Object Name Service (ONS) which is an automated
networking service similar to the DNS.

2.3 Technology background

The IoT or Smart Environments would not been existing without any of the following tech-
nologies. The development of IoT qnd SE has also promoted the research and development
of these technologies. This technology background will establish the base and the start line
of our research.

8available on http://www.rfc-editor.org/
9http://www.epc-rfid.info/

http://www.rfc-editor.org/
http://www.epc-rfid.info/

2.3. Technology background 13

2.3.1 Identification and configuration

Things should be first identified in order to be integrated into the network to provide
data and get control. Nowadays, most identification technologies consist of a naming,
addressing or tagging phase as a prerequisite, either during manufacturing like attributing
a MAC address for classical network devices, embedding a SIM card in a telco style, or
giving attached tag later like Barcode, RFID tag. Unfortunately this tagging process can
be very costly and tedious since the number of "things" is potentially in the order of trillion.
Automatic identification and data capture technologies based on nature features like using
biometric data are under exploitation [CAS] to extend the IoT which has been originally
defined as the "global networking connecting any smart object" by the IoT-A project10 to
all sense-able things without necessary a digital interface [Pri12] like a legacy appliance or
a human.

The identification is not the final objective. After this phase has been accomplished, the
configuration process takes place to integrate the newly identified object into the network
to enable monitoring and control over it through the discovered interface. The plug&play
basis which assumes "zero configuration" discovery and integration of new devices is now
adopted in many network and distributed infrastructures. The self-configuration capability
may be in low level like the automatically assigned private network IP address by DHCP
(Dynamic Host Configuration Protocol) when a new device with network interface arrives,
or in a higher level, such as in UPnP where networked devices are assigned by a unique
address, advertise the services it supports to get discovered. After the discovery, the
descriptive in XML format coming together with the device details its information and
capabilities to be get controlled by the system.

However, these solutions are limited to digital things with a network-ready interface or
tag. What’s more, devices should be fully identified to very specific types to get things to
work. An approximate identification of a general category like kettle, TV is not enough
to be integrated in a regular Service oriented architecture. In fact, it is often sufficient for
applications to work with an approximate identified thing to get things speed up, as long as
the basic required features are available in the approximate type. It should also be noted
that the fashionable unique ID does not provide metadata such as the knowledge of the
context, which brings an other challenge that useful contextual data should be carefully
and efficiently associated with the ID.

In [Hu14] the authors propose an approximate and contextual identification and con-
figuration mechanism. The target entities are physical things or subsets of space without
a native network interface. They are the sense-able and actionable (if possible) objects
through the intermediate of sensors and actuators playing the role of network interface.
Target entities do not need to be tagged in advance, instead, they are to be discovered:
models of generic categories (like "printer") are available in the system as identification
templates with which the classification algorithm, like energy consumption pattern recogni-
tion, compares the available sensor data to determine the type of the entity to be integrated.
An ICT shadow11 is automatically created as representative of the target physical entity

10www.iot-a.eu
11We will take this notion of ICT-shadow renamed as proxy in our proposition

www.iot-a.eu

14 Chapter 2. General background of the IoT and SE

for the ICT system which is capable of self-configuring, monitoring and controlling these
entities. The advantages of this proposition are (a) no need of digitization for everything
to get integrated in the network; (b) no need of complete identification: a very generic
model will be given to the discovered entity until more available data enabling a finer and
precise identification as a re-configuration process.

2.3.2 Wireless sensor actuator network

A wireless sensor network (WSN) consists of a certain number of sensors to monitor the
physical environment and pass their measurement data to where they are needed through
the network. With the decreasing price of small and low-power sensors thanks to the sig-
nificant progress of micro-electro-mechanical systems (MEMS) technology in recent years,
WSNs, which become WSANs including actuators, have promoted and become a basic
enabler and crucial part of the IoT and Smart Environment.

As the N its names reveals, a WSAN is at first a network which has similar character-
istics than other classical networks like IP network, as well as open issues. In a survey over
the WSN [Aky+02], a communication architecture of sensor networks is presented where
individual sensor nodes with data collecting and routing capabilities form a sensor field
connected to the Internet through a sink playing the role of a gateway. The presented
protocol stack with 5 layers is very similar to the OSI reference stack model. Common
issues including:

• Scalability. The number of potential sensors and actuators can be very large like a
person can carry hundreds of sensor nodes embedded in glasses, clothes, shoes, watch,
etc. [Aky+02], the current addressing system, mostly based on the IEEE 802.15.4
standard, may fail to identify, integrate and manage in a efficient way. Research
directions includes semantic approaches, new addressing systems like IPv6 addressing
been proposed within the 6LoWPAN [SB11] context.

• Security. Security has been widely studied in all traditional computing and communi-
cation systems, yet it remains a study topic and the WSN is extremely vulnerable to
attacks as (a) its wireless communication making eavesdropping very simple; (b) its
nodes are with limited in terms of both energy and computing capabilities that they
cannot support complex scheme of security like complex encrypting or authentication
process. Current standards or technologies mentioned earlier in the chapter all take
this problem into account and have a dedicated module for the security, as well as
for privacy.

WSANs also have some particularities due to its nature:

• Power consumption constraint. Depending on the application, WSANs can be very
different in size, in fault tolerance, in accessibility, etc. from one to the other. In any
case, changing battery would be an expensive operation considering the total number
of sensor/actuator nodes, the embedded aspect, or even impossible like the WSAN for
battlefield surveillance, meteorological inspection, tracking of movement of animals,

2.3. Technology background 15

etc, which infers that the life time of such network may depend on the power resource
of the component devices. Thus an important requirement on such devices is that
they work at extremely low power du to the limitation in their (battery) size.

• Limited computational capabilities. Though technological progress is making higher
and higher computational power in smaller and smaller unit, processing and mem-
ory are still precious resources in sensor/actuator nodes. For example, in a Texas
Instruments system-on-chip solution for Zigbee, the processing unit is a 8051 micro-
controller with up to 256 KB Flash memory and 8 KB of RAM. Therefore, these
capabilities are needed for sensing, actuating, communication and other data pro-
cessing objectives to interact with their surroundings. This feature should limit the
data processing rate for the devices.

Facing these issues, protocols designed specifically for WSAN are many according to
various application domains. For example, Wireless HART (Highway Addressable Remote
Transducer)12 protocol is very popular in industrial implementations for its capability of
communicating over legacy analog instrumentation wiring, while Bluetooth is widely used
for communications between personal terminals. Zigbee13 is a suite of of high level com-
munication protocols based on an IEEE 802.15 standard, the same as mentioned Wireless
HART and 6LoWPAN. It is a low-rate and short-distance technology which meets the
requirements of WSAN. It is mostly suitable for Wireless Personal Area Network (WPAN)
as its range is 10–100 meters line-of-sight. Z-Wave14 is also an extensively used WPAN
protocol built upon ITU-T G.9959 specification, sharing the same position as the 802.15
family.

2.3.3 Sensor data aggregation and complex event processing

Sensor data aggregation consists of a preliminary data processing of low level information,
often the raw data directly from sensors. This processing aims to provide more accurate
and meaningful information about the physical world without complex data processing
algorithms or extra knowledge. A lot of work has been done in this research direction,
here are some examples. In the work of [Tap+06], a flexible kit of wireless sensing de-
vices for pervasive computing research in natural settings is developed. In [Gur+08], a
service-oriented middleware is put forward for heterogeneous sensor data aggregation and
management. The authors of [TIL04] propose an aggregation of raw data coming from ei-
ther sensors or other sources in order to recognize activities in home areas. [LF09] uses data
from a variety of wireless sensors to build up a robust location-aware activity recognition
for smart home applications.

By contrast to sensor data aggregation, the complex event processing which takes mul-
tiple continuous and discrete data from on-site sensors to compute a result with the help of
external data about the environment. Among numerous FIWARE generic enablers (GE),
a CEP (Complex Event Processing) GE15 analyses event data in real-time, reacts to situ-

12http://en.hartcomm.org/
13http://www.zigbee.org
14http://www.z-wavealliance.org/
15http://catalogue.fiware.org/enablers/complex-event-processing-cep-proactive-technology-online

http://en.hartcomm.org/
http://www.zigbee.org
http://www.z-wavealliance.org/
http://catalogue.fiware.org/enablers/complex-event-processing-cep-proactive-technology-online

16 Chapter 2. General background of the IoT and SE

ations based on a series of events that have occurred within a dynamic time window called
processing context, rather than to single events. It is implemented by the Proactive Tech-
nology Online, a scalable integrated platform providing tools and web user interface for
performing the CEP GE.

The two methods can do their job individually, or be combined in a given context in
order to realize the context-awareness for a specific application.

2.3.4 Middleware

Sensors and actuators come from various vendors, using different protocols and are not
necessarily interconnected. To be truly useful, they need to be ubiquitously and seamlessly
integrated into the network. On the other hand, application programmers are not assumed
expert in sensor and actuator protocol to be able to develop applications. Thus, an inter-
mediate layer or several sub layers are needed between the device and the application layers
to provide a unifying platform. This layer or sub layers, defined as middleware, should hide
technological details, provide abstraction of things, useful services and high-level APIs to
applications such as interoperation at network, syntactic and semantic level, basic data
aggregation, resource discovery, security management, available command on the physical
things [Ban+11]. As the application development become more and more rapid and devices
become more and more divers, the middleware has become more and more indispensable
for simplifying development of applications using heterogeneous devices. It enhances the
separation of concerns by horizontalizing the infrastructure. Programmers no longer need
to have the exact knowledge of the technologies adopted in the low level and develop various
versions for the same application to adapt the low level.

2.3.4.1 System architecture: SOA vs ROA

In the current literature, the Service Oriented Architecture approach is widely adopted by
middleware architectures in IoT and Smart Environments [Spi+09]; [VM11]; [Mar+13];
[Tei+11]. It is based on services which are units of functionality and can be consumed
by client not necessarily from the same vendor or using the same protocol. SOA gains its
popularity for several reasons. First, it decouples the service consumer (client) and service
provider. Secondly, interaction is done by simple messages over common interfaces and
standard protocols instead of whole object reference and data exchange which is specific
to implementation and may be influenced by network performance. At last, a significant
advantage of SOA is that it allows software and hardware reusing as it does not impose
a specific technology for the service implementation as long as the services respect the
required interface for the clients. Resource Oriented Architecture (ROA) is an other archi-
tectural style as an evolution of SOA after some weakness observed in SOA such as pool
performance of message translation due to heavy data structure of XML and the need of
knowledge of the contract of service before using it [Ove07]. Instead of transferring a SOAP
message with a heavy overhead like in a typical SOA, ROA makes every entity a resource
and interactions are around the stateless representations of the resources [Fie00]. Here,
the signification of stateless is that a system state representation responding to a request

2.3. Technology background 17

is independent of the previous system state. Unlike SOA which has several possibilities in
choice of transport protocols, including HTTP, ROA is built upon a unique protocol which
permits it to provide a uniform interface, like in the famous and widely applied example
REpresentational State Transfer (REST) and RESTful Web Services which uses HTTP
and its vocabulary (POST, GET, PUT, DELETE respectively for CRUD) for requests.
Another weakness of SOA is that what matters in SOA seem to be the functionality sup-
posed to be provided by hidden resources without ever worrying about what really can be
provided by the resource at the moment of the request due to its internal semantics and
constraints. ROA deals with this issue by providing a state of the resource as response
to a request with all the information and functions that can be accessed at the moment.
In [Del14] a new architectural style is proposed by combining REST and SOA to get the
advantages of both to improve interoperability and facilitate the implementation in IoT.

In this thesis, our proposition will adopt the ROA approach in different abstraction
and service level to conserve the flexibility coming from the loose coupling and reusability
of SOA while respecting the internal semantics and eventual temporal constraints of each
resource entity.

2.3.4.2 An open source platform: OpenHAB

OpenHAB (open Home Automation Bus)16 is an open source platform running on top
of OGSi Equinox, the same as the previously introduced OM2M in 2.2.2, which makes it
modular and extensible in functionalities. Its goal is to integrate home automation systems
and technologies in a single solution so that they can communicate and be managed via
a uniform interface. It uses the notion of item, a data centric functional atomic building
block, which represents a source of data: if an appliance provides two sources of data, say
temperature and energy consumption information, it is modeled by 2 items. These items
are the ones users see on the user interface and implied in the control rules in form of
script.

OpenHAB connects devices or sub-systems using different technologies by bindings
which are OSGi plugins running on top of the core and other basic modules of Open
HAB and added/removed on runtime according to the need. Today, the available bindings
include most of the popular protocols, such as KNX, Z-Wave, Insteon, and smart devices,
such as Koubachi (plant care) and Netatmo (weather station). Items can be related to
specific user-defined groups so that they can be monitored, displayed and controlled as an
integrated body. OpenHAB allows user to define their own control rules in form of a script
concerning the already connected items. It uses Drools open source Java rule engine17

where rules are described in the format of Condition-Action.

The fact that OpenHAB is a java based platform makes it run on any operating sys-
tem with a java virtual machine, including embedded platforms such as Raspberry Pi ,
BeagleBone Black. It also provides multi-platform UI (iOS, Android, Web browser) to
monitor and control home devices. OpenHAB joint the Eclipse SmartHome project for
better support and further development.

16http://www.openhab.org
17http://www.drools.org/

http://www.openhab.org
http://www.drools.org/

18 Chapter 2. General background of the IoT and SE

OpenHAB provides a platform that puts together the fragmented Smart Home market
by establishing a common interface to access all. It is flexible, modular and lightweight that
can run on embedded systems. It provides also user-friendly UI and programming support
for end users to see the state of the system and to define their control rules easily. However,
its original goal makes it focus on connecting smart objects to provide interfaces based on
unified device abstraction (here the term "device" means also the individual sensors and
actuators). Service, in the sense of generic functions provided to applications, and self-
configuration are not in its scope. Objects should be declared explicitly to be connected
and groups should be specified manually. The notion of item may also create confusion
because it is not equivalent to an object, which is the opposite to intuition.

2.4 Semantic modeling

The term Ontology takes its origin in philosophy which studies the nature of being, existing
and their categories and relations. It is used in computer science and information science
to represent a knowledge about the world. It is defined as a formal specification of the con-
cepts and relationships of terms and consists often of taxonomic hierarchies to categorize
terms, class definitions, subsumption relations [Gru93]. Moreover, it provides a priority
knowledge, most coming from the real world, defining the semantics over the categoriza-
tion and the relations, which makes it differ from traditional information classification or
organization which may be arbitrary. In the scope of this thesis, the term ontology is used
in the sense in computer science or information science.

2.4.1 Semantic approach for IoT and Smart Environment

In our target scope of application domain, we should expect the number of entities to
be managed extremely high that the issues in maintaining the interoperability of these
entities becomes more and more challenging, such as how to present, store, interconnect,
organize information generated by the entities. To deal with these problems, semantic
approaches could play a key role. Semantic technologies aim to provide a globally under-
standing between "things" to enable the self-capabilities of the target context, for instance
self-discovery, auto-configuration, context awareness in the domain of IoT. Semantic solu-
tions can reduce greatly the amount of work to make the devices implementing the current
existing various standard inter operate and do not require any extra work from the man-
ufacture. The importance of semantics to the research and development of IoT from dif-
ferent aspects including interoperability, resource discovery, reasoning and interpretation,
has been shown and discussed in [Bar+12].

Some experimental platforms for IoT and Smart Environments have been developed
in the recent years. SESAME-S aims to enhance energy optimization and efficiency in
Smart Home and Office using semantical technologies [Fen+13]. Together with energy ef-
ficiency applications, the platform hosts ontologies, rules and services to create a flexible
and user-friendly system, and has already been installing in real building in the trail phase.
In [SCM10], the authors propose a solution of semanticization of multiple existing stan-
dards to make them interoperate. The main idea is to extract the semantics provided by

2.4. Semantic modeling 19

the specifications of the standard and wrap them into a universally understood semantic
language, which makes heterogeneous devices work together without modifying the native
standards.

2.4.2 Domain ontologies

Multiple definitions of the term ontology exist in the literature with some slight differences
[Gru93]; [NM+01]; [Gua98]. To be simple, we take the basic and common parts of these
definitions for the purpose of this thesis: an ontology describes a hierarchy of concepts
(classes or categories) related by subsumption relationships or other relationships, which
may be described as a triple conceptA − relationship − conceptB. Properties may be
added to each concept to describe their features and attributes as well as restrictions. An
ontology is an abstract model of the reality, together with the individual instances of
classes, establishing a knowledge base over the modeling target domain.

By contrast to an upper or foundation ontology which tries to describe the very general
concepts with a widely understood common vocabulary across multiple domains, a do-
main ontology or domain-specific ontology only tries to model one domain of interest with
particular vocabulary and semantics, for example, an ontology for the sensor network, an
ontology for Smart Home that we will present in the following part of this section. A
domain ontology can be considered as an under ontology with more details a finer-grained
version of one part of an upper ontology which provides a semantic interoperability over its
under ontologies. Domain specific ontology is more practical to use as it provides more de-
tailed and useful information/knowledge about the domain, whereas an top-level ontology
is often domain- and problem-independent that may not suit for a particular application.

In the target scope of the thesis, a semantic solution is often dependent of a domain
specific ontology, as presented in the examples in 2.4.1. Apart of those coming with a
systematic solution, a lot of research work has been dedicated to proposition and establish-
ment of functional domain ontologies that can be used as an input resource to a system.
The following are just some examples among many propositions.

Sensor network ontology. Sensor networks are essential and enabling technologies for
IoT and Smart Environment. Data collected by a sensor network are direct information
about the context and things in the context. The Semantic Sensor Network Ontology (SSN
ontology)18 is developed by the W3C Semantic Sensor Networks Incubator Group (SSN-
XG) and has been admitted since several years in the domain. It can describe sensors,
sensing, the measurement capabilities of sensors, the observations that result from sensing,
and deployments in which sensors are used. These modules are all inter-connected in the
ontology. Sensors are not limited to physical sensing devices: any device or a computational
process that can estimate or calculate the value of a phenomenon can play the role of sensor.
As sensors are often constrained by its memory, computation capability, power availability,
semantics which is basis of inference or reasoning techniques is needed to formally represent
these constraints. That’s why SSN ontology also aims to extend the Sensor Model Language

18http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

20 Chapter 2. General background of the IoT and SE

(SensorML), one of the four SWE languages, to support semantic annotations to improve
semantic interoperability. Another approach to establish a sensor ontology is to create an
ontology that links other domain ontologies. SenMESO ontology (Sensor Measurements
Ontology) [Gyr13] is such an ontology which interfaces other ontologies at semantically
identical categories in both ontologies to have additional information.

Ontology for Smart Environment. There is very active work on smart environment
ontology proposals with various emphasis. Some of them try to cover a sub domain of the
smart environment, like homeActivity19 and homeWeather20 in the Linked Open Vocabular-
ies (LOV) project21; some of them try to accomplish a goal like home energy management
[Rei+11]. An survey[GNP13] has shown that ontologies from different horizons can be
connected and extended to create a comprehensive knowledge base that covers all the
facets of a very rich domain like the Smart Home. We describe in the following 2 wildly
cited Smart Environment ontologies which gave us inspiration for the ontology described
in Contribution.

• DogOnt[BC08] is a house modeling ontology designed to fit real world domotic sys-
tem capabilities and to support interoperation between currently available and future
home automation system solutions. It has several particularities which make it more
flexible and more appreciated by the community: (a) it dedicates a branch of hier-
archical tree to controllable objects including appliances and house plants like HVAC
system, which facilitates the implementation of control applications by knowing the
controllability of addressed objects; (b) it suggests the concept of state representing a
stable functional state of the modeling target, which provides more information and
some restrictions during not only instantiation phase but also runtime. This ontology
gives us some inspiration of properties and common entities to take into account for
our ontology.

• BONSAI[Sta+12] is an ontology for enabling Ambient Intelligence in a Smart Build-
ing. It relies and extends existing ontologies in the domain such as CoDAMos and
OWL-S in order to create a comprehensive and more operation-able ontology for
Smart Building service-oriented system. It has 5 sub-clusters which are linked to-
gether to model every aspect needed in a SOA Smart building system: (1) Hardware,
like appliance and device, which are able to offer or receive services; (2) Context, like
location and other contextual parameters; (3) Functionality, including parameters
like power consumption and actions by actuators; (4) Service, imported from OWL-
S; (5) QoS, system performance related concept enabling optimization solutions. The
target domain of this ontology has intersection with our proposition.

A new reference ontology, Smart Appliances REFerence (SAREF) ontology22,
targeting the appliances in the home and building areas is under work. It started from
existing semantic assets, tries to separate and recombine them, with the ultimate objective

19http://sensormeasurement.appspot.com/ont/home/homeActivity
20https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/WeatherOntology.owl
21http://lov.okfn.org/dataset/lov/
22https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology

http://sensormeasurement.appspot.com/ont/home/homeActivity
https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/WeatherOntology.owl
http://lov.okfn.org/dataset/lov/
https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology

2.4. Semantic modeling 21

to become a part of ETSI M2M standard as a unified reference ontology. The basic blocks
of SAREF are device, function and service. The start point is device, which is an object
designed to accomplish one or more functions, and provide a service representing a function
to a network to make it discoverable, registrable and remotely controllable.

2.4.3 Tools for ontologies

Exploitation of ontology would not be possible without any tools: from standardized format
for description to query language for retrieve useful information, from local data structure
for managing one or several limited-size ontologies to access technologies and methods to
link distributed ontology resources on the internet.

Representation and description. The most popular and adopted language is the
W3CWeb Ontology Language (OWL), designed to represent rich and complex knowl-
edge about things, groups of things, and relations between things, and readable by com-
puter programs to facilitate machine-to-machine information exchange without human in-
ference. It uses RDF/XML as the primary exchange syntax with vocabularies defined as
OWL formal semantics to describe the knowledge to make the knowledge more accessible
to automated processes. At the very beginning of the language conception, it is assumed
to allow information to be collected from distributed resources, which is, ontologies can be
referenced by URI, imported by other ontologies, and complemented and extended. Re-
source Description Framework (RDF) is a W3C standard model for data interchange
on the Web. Its core data structure is a set of triples (subject-predicate-object) which
can be easily visualized and transformed as a directed labeled graph (called RDF graph)
where resources are represented by the graph nodes linked by the edges representing the
named link. URI are applied to both resources and links that can be easily accessed on the
Web. These characteristics make document in a format of any of the RDF-based languages,
including OWL, easily exploitable as a graph and easily reusable over the entire Web as
linked data. Also, another data model is defined in RDF: RDF dataset, which is a collection
of RDF graphs known as named graphs. To reach a resource in a named graph, instead of
using a triple subject-predicate-object as in a single RDF graph, a quad having the form
graphname-subject-predicate-object is more adequate. In our contribution, our ontology
consists relationships at different levels. In order to separate them based on their nature,
we will consider that these edges belong to separated graphs sharing the same nodes.

Query and inference. Queries are made to retrieve and manipulate useful information
from the knowledge base built on relative ontology(ies). Inferences are needed to gener-
ate new knowledge from existing one according to pre-defined rules. SPARQL (SPARQL
Query Language for RDF) is a W3C Recommendation23, whose name indicates that it
is created for making queries against data stored as native RDF or viewed as RDF via
middleware. It has numerous implementations including Jena that we choose for our im-
plementation. SPIN (SPARQLE Inference Notation) defines a systematic framework on

23AW3C Recommandation is a mature standard endorsed by W3C that deployment and implementation
are encouraged.

22 Chapter 2. General background of the IoT and SE

how to use SPARQL queries to constraint the values of a class, to generate new triples
based on existing RDF graph according to inference rules and to initiate new instances
with default values. It takes the object-oriented approach in which embedded SPARQL
queries play a similar role to functions and methods. As SPIN is entirely represented in
RDF, rules and constraints can be shared on the web together with the class definitions
they are associated with.

It should not confuse the inference rule/constraint with the control rule/constraint
that will be used later to express control objectives in the target domain ensured by formal
method.

2.5 Data sharing

Data sharing is essential for future research in many fields, including in the present IoT and
SE. Data can be reused for multiple objectives, more accurate information can be retrieved
from big amount of data, research results can be directly accessed by other researchers.
Traditional database such as SQL rational database for data storing and sharing have met
the bottleneck due to its nature which makes it not adequate for the very fashionable "big
data" and other types of data sharing.

Linked data and persistence support Linked data is about to link every piece of
data so that person or machine can easily explore the web of data. The idea is to use
URI to name every piece of data descried in a standard format (RDF) in which links to
other URIs are provided to make a huge web. For the ontologies, as OWL is a RDF-based
language, they can be linked and accessed over the web as well as every class, relationship
and instance on the basis of linked data.

Graph database A graph database is a database that uses graph structures with nodes,
edges, and properties to represent and store data. By definition, a graph database is any
storage system that provides index-free adjacency. This means that every element con-
tains a direct pointer to its adjacent element and no index lookups are necessary. Graph
databases are based on graph theory that can be used to solve different types of problem,
include shortest path calculation, the geodesic calculation (Geodesic Path), concentration
measurement (such as intimacy, relationship degree, etc.). a triplestore or a set of triple-
stores described in RDF can be considered as a specialized graph database. However it has
performance problem when the data amount becomes really big and the manipulation on
RDF, which is a conceptual data model, depends totally on the chosen implementation.
Neo4j24 is a general graph database implementation in Java that has its property data
model (Blueprints) with features that implement results of graph theory mentioned above.
Its performance has been tested satisfied in traversing the graph (2000 relationships per
millisecond according to its manual). As RDF is a standard and widely used, tools are
developed for storing and querying RDF in Neo4j25.

24http://www.neo4j.org/
25https://github.com/tinkerpop/blueprints/wiki/Sail-Ouplementation

http://www.neo4j.org/
https://github.com/tinkerpop/blueprints/wiki/Sail-Ouplementation

2.6. Applications 23

Our proposition is designed to be able to evolve in the future to receive and support
the above data sharing and storage technologies with planned interfaces. For the present
time, some more traditional solutions will be used for a first validation of the proposition.

2.6 Applications

Applications in the domain of IoT and SE are numerous that we are not able to list them
all individually. Thus, we show in the following some common categories of applications
according to their main objective.

2.6.1 Safety and Security

Safety and security are essential for living people in all environment, without which any
comfort or efficiency is only empty talk. Sensors deployed in the environment can detect
events and significant parameters continuously. Thanks to these raw data, the intelligence
in the environment could determine the potential or present danger according to a single
event or a temporal coincidence of several events and parameters which avoids inappropriate
false alarm. Following the revealed potential or present danger, the system reacts according
to the given plan by actuating the relevant pieces of equipment via actuators. Some typical
example applications are: home/building anti-intrusion system responding to detection of
breaking in; fire prevention system reacting to detection of smoke or an over-heating due
to dysfunction of a piece of equipment; auto-lighting system switching on a lamp when
the presence of some one is detected in the corridor. These examples are taken from
the home/building area, however, they are transposable to city scale. For instance, light
control in a corridor is easily applicable to a street, over-heating detection at one node
of the home/building scale system is similar to detection of an over-consumption at one
location in a block to prevent a black-out at a larger scale.

We can notice that these applications have a strong temporal constraint: the system
should react quickly enough to stop any damage, which makes the popular "cloud-based"
solutions not appropriate because of the uncontrolled delay. Moreover, they should respond
to a minimum level of reliability to ensure the effectiveness of such critical functionality
that the "best-effort" approach is not adequate.

2.6.2 Energy Management

Like safety and security management, energy management applies at different scales in the
domain of IoT and SE: from the highest level of the global (smart) grid to the lower level
of micro-grid covering a neighborhood with the capability of energy generation (i.e. solar
photovoltaics), down to the smallest scale of individual building or home. The benefit of
the applications in this category is intuitive and obvious because they reduce the energy
bill, which makes a great number of such applications or equipment already available on the
market. These applications can be very complex taking into account of multiple sources of
information, for example, an adjustment of a heating system power depending on the time

24 Chapter 2. General background of the IoT and SE

in the day, inside and outside temperature, presence and activity detected and current and
future meteorological information. Also, they can be every basic prevention of waste of
energy, for example, switch light off when it is not needed.

2.6.3 Comfort enhancement

The objective of the applications in this category is to provide a better living experience
for inhabitants. They adjust the environment parameters, like sound, light, temperature,
in accordance with the ongoing activity. They can take over repetitive or tedious tasks
using automation logic in order to save people’s time. The detection of ongoing activity is
crucial for this category because the definition of "comfort" would be opposite in different
situations. For example, the light should be adjusted to bright when someone is working
to have a better productivity whereas it should be faint when someone is watching TV or a
film. Sometimes the applications in this category can also have opposite objective than the
ones in energy management category, for example, the comfort enhancement application
aims a higher temperature while the other aims a lower temperature to save energy. There
is no absolute manner to manage this kind of conflicts that the choice should be left to the
end user to make the compromise.

2.6.4 Health and assistance

Health and assistance applications were first developed to improve the life quality of elder
and ill people. These people are vulnerable and often lack of companion. Health and
assistance applications can track their daily activities to verify if they respect the routine,
i.e. taking medications, eat properly, doing exercises. Moreover, their health conditions
can be sensed automatically by available devices or raised explicitly by the monitored
person to be sent to the doctor, which enables telemedicine solutions, such as remote
medication prescription. For normal people, benefits of these applications are numerous as
they facilitate the monitoring of daily body conditions and the tracking of daily activities
to encourage them to keep healthy. Many solutions are available on the market, including
numerous connected devices, such as connected bracelet/watch, smart balance, etc.

2.7 Summary and discussion

In this chapter, we first introduced the common characteristics of our target scope based
on which is built our contributions: openness, dynamicity, heterogeneity, similarity. These
characteristics bring challenges and requirements for research and development of infras-
tructures and applications in this specific domain.

Facing the above properties and challenges, especially openness and heterogeneity, there
are numerous on-going activities in standardization. Some of them define the general
architecture and requirements for the entire domain in a high level abstraction, like the
ITU-T reference model; others are more specific in application domain such as ETSI M2M
for M2M, HGi for Smart Home, or in technology such as DNS for resource identification.

2.7. Summary and discussion 25

While the standards design the outline of the development in the target domain, enabling
technologies such as WSAN and identification technologies build the base and provide the
guidelines following which we are able to make our proposition in the thesis.

In order to deal with the dynamicity problem and the quantity of entities to be managed
in the domain, the concept of ontology is used to enable and facilitate the self-identification,
self-organization and self-management among potentially numerous entities. Some work
on the semantics and ontology research in IoT/SE domain, such as ontologies for sensor
network (SSN) and those for Smart Home/Building (DogOnt, BONSAI) are cited which
have inspired us to design our ontology and will be used as external ontologies in our
proposition, as well as some common practice and tools for ontology design, implementation
and usage.

We have also noticed through this chapter that IoT and SE is such an immense research
and application field where problems are numerous, everything is still evolving and changing
though some standards or references are present. Research activities are dynamic that
various propositions exist for one problem in different circumstances. Disciplines meet
here to provide new idea and new capabilities for this emerging field. Concerning our
proposition, it is clear that some existing approaches cited in this chapter are not adopted
even their results have been proved, such as EPC-RFID framework, and that some work
will be taken as a priori knowledge even there are a lot of ongoing work going much deeper,
such as sensor data fusion, ontology. Our proposition and contribution will concentrate on
the control aspect of the target scope treated until today as a "naive" problem which is in
reality not. In the next chapter, we will discuss this aspect more in detail.

Chapter 3

Models and Discrete Control

Contents
3.1 Common modeling approaches in IoT/SE 27

3.1.1 Object-oriented modeling . 27
3.1.2 Agent-based modeling . 28

3.2 Automaton-based modeling . 29
3.2.1 Definition of Automata . 29
3.2.2 Synchronous programming . 31

3.3 Supervisory control and Discrete Controller Synthesis (DCS) . . . 33
3.3.1 The Ramadge and Wonham Framework 34
3.3.2 Control objectives . 35
3.3.3 BZR synchronous programming language 35
3.3.4 Discrete control applications . 36

3.4 Related control approaches in IoT/SE 37
3.4.1 Languages for rule statement and Rule engines 37

3.5 Summary and discussions . 37

3.1 Common modeling approaches in IoT/SE

The target domain has a great intersection with the so-called Cyber-Physical System (CPS)
which integrates computation and physical processes. Its potentials have been recognized
recent years attracting a lot of investments. Challenges of CPS modeling have been iden-
tified and studied from which the IoT/SE can benefits a lot for its own modeling prob-
lems. Numerous models and modeling methods have been applied to cope with different
objectives in IoT/SE either by adopting a software engineering oriented approach or an
embedded system oriented one. No method dominates the others as long as it provides
a appropriate level of abstraction, understandability and accuracy to the given problem
[Sel03].

3.1.1 Object-oriented modeling

Object-oriented modeling (OOM) is a widely applied approach in software engineering to
model applications, services and systems using object-oriented paradigm throughout the

27

28 Chapter 3. Models and Discrete Control

entire development life cycles. The Object-oriented programming paradigm consists of
using the concept of object which is an abstract data type with data fields (attributes) and
codes (procedures or methods), as well as some fundamental principles: class inheritance
and encapsulation. A class is a user-defined data type used as template to instantiate
an object. Encapsulation is the feature that each object, an instance of a class, has its
own data and is responsible for its own behavior. Two objects of the same class do not
share their encapsulated data or methods and any change to one object does not affect
the other. Class inheritance allows code reuse by making one class "dependent" on an
other one using the same implementation or extending it. This inheritance only consists of
implementation and interface inheritance, but not of the behavioral inheritance or behavior
conformity, that no guarantee is provided in objected-oriented philosophy that an object of
class B inheriting class A would produce the same result as an object of class A[CHC89].
This modeling approach is supported by modeling languages such as Unified Modeling
Language (UML). It is also valuable in realizing finite state machine that we will present
in more details in 3.2.1.2.

3.1.2 Agent-based modeling

Agent-based modeling (ABM), also known as individual-based modeling, can be understood
as a "bottom-up" decentralized and individual-centric approach paying attention to the in-
teractions between individuals. This modeling approach has emerged facing the higher and
higher system complexity that makes the design too difficult. At meanwhile, decentraliza-
tion has been more and more often as infrastructure like micro grid equipped with its own
generators in the general electricity grid, as well as in social networks and systems since
we pass from the era of web 1.0 to web 2.0 where everyone contributes the content to be
consumed by everyone. ABM focuses directly on the modeling of individual entities, called
agents, their behaviors and possible interactions between them and the context. They
are then put them into an environment and the simulation is run with assumption that
complex global system behavior can be built from local behavior interactions. Applica-
tion domains are various such as biology, ecology, social science. By definition, the agents
in ABM refers to autonomous decision-making units with diverse characteristics[Cas06].
This diversity of individuals and the focus on "bottom-up" interactions make perfect anal-
ogy to the IoT and Smart Environments whose characteristics have been identified in 2.1,
which makes this modeling approach widely applied and developed in this domain such as
[Bat07][For+13][Per+12].

JADE (JAVA Agent DEvelopment Framework) is an open-source framework to fa-
cilitate the implementation and deployment of multi-agent applications. It provides an
implementation of agent model quite "primitive" implementing only the very essential
properties such as autonomy and inter-agent messaging mechanism which are easily to be
specified in a given implementation. It offers a communication architecture based on the
peer-to-peer communication model using the state-of-the-art distributed object technology
embedded in Java Runtime. Besides, it offers graphical tools for debugging and deploy-
ing. Its scalability has been proven with respect to the number of agents and the number
of simultaneous conversations for a single agent [Cor+02]. This platform has been used
and maintained for over 10 years, and extended to other active platforms such as WADE

3.2. Automaton-based modeling 29

(Workflows and Agents Development Environment) and AMUSE (Agent-based Multi-User
Social Environment).

Weakness and requirements. Having a closer look to the two above mainstream in-
formational modeling approaches, we notice that they have been more or less developed
within transformational systems where design methods are naive relying on unquestioned
assumptions compared to modeling methods practiced in reactive systems. Though the
applications in our target domain do not present as much constraint as in reactive sys-
tems, formal method from reactive systems integrating a temporal semantics of modeling
targets is more than welcome in order to overcome the weakness coming from the nature
of transformational systems.

3.2 Automaton-based modeling

The proposed modeling framework for IoT/SE is based on automaton after the identifi-
cation of weakness of classic modeling approaches in the previous paragraph. The choice
of this model is generally because the IoT/SE system can be conveniently modeled as an
DES and automaton is a formal description of DES behavior. In this specific domain, a lot
of information is discrete such as the command by a human or an automatic rule, pieces of
data sensed by sensors at a given frequency, and the states of physical entities are discrete
like on/off of an appliance by nature. Discrete information can be considered as discrete
events occurring at time instances instead of overtime which will cause changes of discrete
states of the systems.

In this section, we begin with the definition of automata that we use in the present
thesis, then we introduce some common operations and extensions on automata, finally
we describe the language that we use for the rest of the thesis. Note that in the thesis,
the term automaton is used interchangeably with state machine. If it is not specifically
indicated, automaton and state machine mean finite automaton and state machine, which
is often referred by the abbreviation FSM (Finite State Machine).

3.2.1 Definition of Automata

There are many variations of automata such as deterministic/nondeterministic on tran-
sition, finite/infinite on state. Automaton is also often considered as a representation of
formal language according to well-defined rules, thus definitions of automata can take a
formal language approach. In this thesis, we consider only the deterministic finite state
automaton and adopt the definition in [LS11] from a discrete dynamics approach which is
a machine reacting to input and producing output.

A finite state machine is a 5-tuple

S =< Q, q0, I,O, T >

where:

30 Chapter 3. Models and Discrete Control

• Q is a finite set of states;

• q0 ∈ Q is the initial state of the S;

• I is a finite set of input events;

• O is a finite set of output events;

• T is transition relation that is a subset of Q×Bool(I)×O*×Q, such that Bool(I)
is the set of Boolean expressions of I and O* is the power set of O.

Transitions between states govern the discrete dynamics of the FSM. Each transition,

denoted by q
g/a−−→ q′, is labeled by g/a, where guard g ∈ Bool(I) should be evaluated true

when the transition should be taken, and action a ∈ O* is a conjunction of output events,
emitted when the transition is taken.

3.2.1.1 Hierarchical automata

Hierarchical automata consist of FSMs whose states are themselves an FSM and semantics
should be defined specifically to describe how the component FSM reacts regarding to the
superstate which nest it. The advantage of a hierarchical state machine instead of using its
equivalent flattened version [Yan00] is that it is a more compact notation so that it is more
"human-readable" especially when the number of states grows. It is also very convenient
to model something hierarchical or modular by nature such as the example of a digital
watch which has several functional modes given in [Mar91].

We will not detail any specific semantics of hierarchical automata here because there
are various and the choice should be made in accordance with what is being modeled. In
3.2.2, we will describe the semantics of hierarchy of the given languages.

3.2.1.2 StateCharts and UML state machine

StateCharts [Har87] first emerged in 1983 to specifying the behavior of an avionics system
which is a typical example of reactive system [Har07]. It provides a visual tool (dia-
grams, graphs) based on rigorous and precise mathematical meanings for the fundamental
concepts in a reactive system such as a state, a transition. It supports modular and hi-
erarchical description of system behavior and orthogonality between components. These
two operations can be mixed at any level. However, it was still a specification language
for real-time embedded systems without a precise semantics until the StateMate [Har+90]
which implements a specific semantic adopting the synchrony hypothesis (see: 3.2.2).

StateCharts has object-oriented variants among which the most famous example is the
UML state machine. The main idea of OO variant of StateCharts is to use class diagram
to structure the object classes and each class is associated to a statechart which describes
precisely its behavior based on a rigorous semantic definition. The semantics in these OO
variations are not completely the same: StateCharts, implemented by StateMate is not
OO and is synchronous, while OO variants are basically asynchronous as the transitions

3.2. Automaton-based modeling 31

are executed in a run-to-completion manner where the events are queued up to be handled
to the system when a previous event has been completely treated [HG96].

StateCharts is well tool-supported that the models can be directly translated into exe-
cutable codes like C, C++, Java. It is also the origin of some automaton-based synchronous
languages such as Argos [MR01].

3.2.1.3 Synchronous composition of automata in parallel

Synchronous composition of automata in parallel is one pattern of concurrent composition
of state machines and is denoted by ‖.The result of a synchronous parallel composition of
automata is itself an automaton and this operation conserves the determinism held by com-
ponent automata (it means the result is deterministic if the components are deterministic).
Given 2 FSM Si =< Qi, qi0, Ii,Oi, Ti >, i = 1, 2, with Q1

⋂
Q2 = ∅. Their synchronous

composition in parallel is S1 ‖ S2 =< Q1 × Q2, (q10, q20), I1 × I2,O1 × O2, T >, where

T = {(q1, q2)
g1∧g2/a1∧a2−−−−−−−−→ (q′1, q

′
2)|q1

g1/a1−−−→ q′1 ∈ T1, q2
g2/a2−−−→ q′2 ∈ T2}. Composed state

(q1, q2) is called a macro state, where q1 and q2 are its component states. Figure 3.1 shows
an example of synchronous composition.

A0

A1

a/

not a/

B0

B1

b/

not b/

A B

A0B0

A1B1

A1B0 A0B1

not a.not b/

a.b/

a.not b/ not a.b/

a/b/

(A||B)

Figure 3.1 – Synchronous composition example

3.2.2 Synchronous programming

The synchronous approach dates from the mid 1980s and was first proposed to provide
a rigorous mathematical semantics for reactive systems, distinct from transformational
systems which take input data, perform computation and produce output data. It models
reactive systems by synchronous-reactive model which is a discrete system where signals
occur at ticks of a global clock, and each reaction to such signals is considered simultaneous
and instantaneous. The output of the system is assumed as simultaneous with their input,
called the synchrony hypothesis. Real executions do not literally occur simultaneously nor
instantaneously, and outputs are not really simultaneous with the inputs, but a correct
system behavior model must behave as if the output has been computed to reach a new
global system state before the next clock tick. A number of synchronous languages have
been developed since based on the hypothesis, such as Esterel [BG92], Lustre [Hal+91],
Signal [LeG+91], Agos. Note that synchronous languages are high level programming
languages whose programming environments provide compilers towards target software

32 Chapter 3. Models and Discrete Control

or hardware environments, as well as validation tools as these languages rely on formal
semantics. StateCharts has also many features of synchronous languages but it is for
model specifications. The automaton-based synchronous languages (e.g. Agos, Heptagon)
will be described in the next subsection.

3.2.2.1 Automaton-based synchronous languages

Argos[MR01] is a synchronous language allowing to combine Boolean Mealy machine in
parallel and hierarchical way. It takes its origin in StateCharts with a very similar graphical
syntax, however, it does not support the multi-level arrows which represent the transitions
between two states in different hierarchical levels. It solves causality (similar to deadlock)
and modularity issues in StateCharts based languages. It has verification tools and auto
code generation compiler which produces data-flow equations under a format which can be
compiled into C.

An other example is the Heptagon synchronous language inspired by Lucid Syn-
chrone [CPP05] and mode automata which aims to help building system to declare clear
"running modes" [MR03]. It is the programming language we use in this thesis to describe
the FSMs for the discrete control synthesis to perform with. Thus, we will introduce it with
more details in the next subsection. Some data-flow languages provide also automaton-
based formalism to deal with control-oriented designs, such as Synchart [Cha96], Esterel
[BG92].

3.2.2.2 Heptagon language

Heptagon language programs behave as synchronous automata, with both parallel and hi-
erarchical composition. For scalability and abstraction purpose, the synchronous programs
are considered structured in nodes, which has a name, a set of input and output flows, and
equations defining outputs as functions of inputs describing the component behavior. The
node type considered here is used to encode mode automata which is a mix of dataflow
equations and more imperative automaton-based programming. Each state of an automa-
ton is associated with such a node with equations or a mode automaton. Its basic behavior
is that at each reaction step, according to inputs and current state values, equations asso-
ciated to the current state produce outputs, and conditions on transitions are evaluated in
order to determine the state for the next step.

An example of Heptagon node is a delayable task control, for which figure 3.2 gives a
graphical and a textual syntax. The node’s name is delayable, with 3 input flows r, c, e
and 2 output flows a, s. It has 3 states: Idle, Wait and Active. At the initial state Idle,
transition can be taken upon the condition given on the inputs: if r and c are true then
it goes to state Active, until e becomes true to get it back to Idle; if r is true and c is
false which blocks the request, it goes to Wait until c is true to be Active. The outputs
are defined by equations: a (active) is defined by different equation in each state and s
(starting) is true when transition towards Active is taken.

The nodes can be reused by instantiation, and composed in parallel or in a hierarchical

3.3. Supervisory control and Discrete Controller Synthesis (DCS) 33

delayable(r,c,e) = a,s

Idle Wait

e r and c/s

Active
c/s

r and not c

a = true

a = falsea = false

node delayable(r,c,e:bool)
returns(a,s:bool)
let

automaton
state Idle do

a=false; s=r and c;
until r and c then Active
| r and not c then Wait
state Wait do

a=false; s=c;
until c then Active
state Active do

a=true; s=false;
until e then Idle

end
tel

Figure 3.2 – The graphical and textual syntax of a delayable task

node twotasks (r1 ,c1,e1,r2,c2,e2:bool)
returns (a1 ,1s,a2 ,s2: bool)
let

(a1 ,s1) = delayable(r1 ,c1 ,e1);
(a2 ,s2) = delayable(r2 ,c2 ,e2);

tel

Figure 3.3 – The textual syntax of two delayable tasks in parallel

way. In the parallel composition, the global behavior is defined as a step by having com-
ponent nodes taking a step simultaneously. An example of parallel automaton is shown
in figure 3.3: a global node twotasks with 2 delayable node instances put in parallel
(noted by ";"). In the case of hierarchical composition, a node instance is inside a state
and defined the behavior of the state when it is active.

The Heptagon compilation produces executable code such as C or Java. The generated
code has 2 main functions: step and reset. reset initializes the state of the program
and step executes one reaction. It takes input values, computes the next state on internal
variables and returns output values of current state of the program.

3.3 Supervisory control and Discrete Controller Synthesis
(DCS)

For a DES whose behavior must be modified by feedback control to respect a given set of
specifications, a feedback control loop needs to be designed with a supervisor, also called
supervisory controller, whose goal is to alter the behavior of the uncontrolled DES to make

34 Chapter 3. Models and Discrete Control

System S
Ctrlr

state
Xc

Xuc

YX

Figure 3.4 – Controlled system with synthesized discrete controller in a closed-loop

it satisfactory. DCS is a formal operation on DES to find such a supervisor. The advantage
of this approach is that it separates the concept of open loop dynamics (here the DES)
from feedback control , which allows the autonomic analysis and control of DES w.r.t. a
given specification of control objectives.

3.3.1 The Ramadge and Wonham Framework

Discrete Controller Synthesis was first introduced in the 80’s in [RW87] to deal with con-
trol and coordination problems of DES presented as e.g. a set of automata (originally
uncontrolled). It defines constructive methods that ensure, a priori, required properties on
a system behavior: it does not only verify if a supervisor exists to enforce the property,
it constructs one if it exists. From a such a DES and a set of properties to be satisfied,
the synthesis produces the constrained system so that only behaviors respecting required
properties are authorized. The principle of DCS is as follows. The inputs X of the DES
are partitioned into two subsets: X = Xc ∪Xuc, where Xc is the set of controllable events
which can be disabled by the controller, and Xuc is the set of uncontrollable events which
cannot be prevented from happening. It is applied with a given control objective: a prop-
erty that has to be enforced by control, which is expressed in terms of the system’s output
Y . A controller Ctrlr is calculated by DCS algorithm which consists of exploration of the
complete state space, the constraint (also called control pattern) controllable variables, de-
pending on current state, for any value of uncontrollable ones, so that remaining behaviors
satisfy the objective. It is then composed with the original system S, taking Xuc and the
current state of S1 as input to produce the values of Xc which are enforcing the control
objective.

There can be several controllers that meet the same control objective. In the extreme
case, a controller can inhibit any state transition in order to avoid the invalid states,
which is apparently not interesting for the target system. The controller resulted from the
DCS process is called maximally permissive which means it inhibits the minimum possible
behaviors to respect the constraints to ensure a largest set of correct behaviors of the
originally uncontrolled system.

DCS procedure is automatic and implemented in the tool Sigali [Mar+00].

1The current state of S is not equivalent to the output values of S. For graphical clarity and pedagogical
reason, we consider here that the output values contain both the information of current state and the "real"
output Y .

3.3. Supervisory control and Discrete Controller Synthesis (DCS) 35

3.3.2 Control objectives

In the thesis, we will consider logical control objectives, defined in terms of states and
transitions of a discrete event system modeled as automata. The synthesis algorithms
corresponding to these objectives exist in the literature and have been implemented in
Sigali.

The following two logical control objectives are considered:

• invariance of a subset of states E. A function S′ = make_invariant(S,E) that
synthesizes and returns a controllable system S′ such that the controllable transitions
leading to states qi+1 /∈ E are inhibited, as well as those leading to states from where
a sequence of uncontrollable transitions can lead to such states qi+1 /∈ E.

• reachability of a subset of states E. A function S′ = keep_reachable(S,E) that
synthesizes and returns a controllable system S′ such that the controllable transitions
entering subsets of states from where E is not reachable are disabled. Note that
making E invariant is equivalent to making states not in E unreachable.

3.3.3 BZR synchronous programming language

BZR2 is a high level programming language extending the Heptagon language with a new
behavior contract which enables the separation of concerns between description of system
to be managed (in Heptagon nodes) and the control objectives (expressed as contract). The
language is a mixed of imperative and declarative styles: the system behavior is described in
imperative automaton-based programming and the contract specifying control objectives is
enforced in a declarative way. It encapsulates DCS in its compilation process and constructs
a controller following the compilation if it exists, which makes DCS accessible to those who
do not know the its detail techniques. The synthesized controller produced as a BZR
program is then compiled towards sequential code (C, Java) as which has already been
done on the synchronous imperative part (automata and equations) of the initial BZR
program.

Figure 3.5 shows concretely an example of a BZR program with a contract coordinating
two instances of the delayable node presented in figure 3.2. The twotasks node has a with
part that declares controllable variables c1 and c2, and the enforce part that asserts the
property to be enforced by DCS. Here, we want to ensure that the two tasks running in
parallel will not be both active at the same time: not (a1 and a2). Thus, c1 and c2 will
be used by the computed controller to block some requests, leading automata of tasks to
the waiting state whenever the other task is active. The constraint produced by DCS may
have several solutions: the BZR compiler generates deterministic executable code by giving
priority, for each controllable variable, to value true over false, and between them, by
following the order of declaration in the with statement (in the present example c1 over
c2).

2http://bzr.inria.fr

http://bzr.inria.fr

36 Chapter 3. Models and Discrete Control

twotasks(r1, e1, r2, e2)

= a1, s1, a2, s2
enforce not (a1 and a2)

with c1, c2

(a1, s1) = delayable(r1, c1, e1) ;

(a2, s2) = delayable(r2, c2, e2)

Figure 3.5 – Delayable tasks: exclusion contract.

3.3.4 Discrete control applications

Control over DES with feedback loop using a synchronous approach is traditionally applied
in real-time embedded systems, in safety-critical industries like for nuclear power plants
and aircraft control software, or manufacturing systems. The discrete controller synthe-
sis approach has been recently applied in more "ordinary" computing systems concern-
ing component-based modeling [DR10], coordination of autonomic administration loops
[Del+14], reconfiguration of adaptive systems implemented on FPGA [An+13], etc. It is
still emerging in the emerging IoT/SE domain.

In [GBB13], the authors propose a solution of smart home using the modeling and
verification methods of DCS in order to improve the safety in home for disabled people.
The main idea of this proposition is to correctly model the system with both "working
normally" and "failure" modes and if the system has a problem observed by an observer
(in "failure" mode), some behavior should be ensured: for example at least one bulb is
on to prevent the "black out" in home. To achieve that, compared to a simple model
of bulb with basic OFF and ON states, a new state "fail" is added to keep track on the
failure (figure 3.6). This state is uncontrollable, which means the entering and leaving of
the state are all triggered by uncontrollable inputs of the system. Thus the control of the
system is able to be applied only on transitions between ON and OFF where a controllable
variable is placed in order to respect the constraint that at least one bulb is on when there
is a problem assuming that two bulbs would never fail on the same time. Such solution
ensures a correct automatic adaptation facing a given smart home environment with given
characteristics and constraints. However, as pointed out also by the authors, to be able to
use this approach, a knowledge of the synchronous framework, DCS, etc. is required which
should not be expected from system designers. Also, this solution needs a case-by-case
design which is costly.

Figure 3.6 – Bulb model with failure

3.4. Related control approaches in IoT/SE 37

3.4 Related control approaches in IoT/SE

3.4.1 Languages for rule statement and Rule engines

Event-Condition-Action (ECA) rules are defined as a set of active rules which have the
structure in the form of: ON Event IF Condition DO Action. When an Event occurs
triggering the invocation of the rule, Conditions such as system runtime variable values are
verified to decide the execution of Action such as variable value update. It is a widely used
language for the high level specification of controllers in adaptive systems, such as CPS
and Smart Environments, where devices equipped with sensors and actuators are controlled
according to a set of rules. ECA rules are derived from practice, and not constructed from a
formal definition in the beginning. Another simplified form of ECA rules are the "if-then"
rules which can be considered as the Condition part is always true.

ECA rules are used in many rule engines, especially in those implementing the Rete
algorithm [For82] and its variants. An open source example is the Drools3. The Rete
algorithm consists of traveling a DAG where each node represents a condition or a matching
to be verified with entities in the working memory. Rules are executed in the runtime
following a "sequential" principle which is to execute the rules in some order (arbitrary
from a declarative language or prescribed from an imperative language) commonly adopted
in many commercial business rule engines.

An ECA rule-based system is the system whose behavior is controlled by ECA rules.
In [CDR14] coordination problems of rules from different origins have been pointed out
and an approach to solve these problems has been proposed by using formal methods such
as model checking and DCS.

3.5 Summary and discussions

Model-based design has become popular in IoT/SE domain. In this chapter, we first had
a closer look at the most popular modeling approaches in IoT/SE: OOM or ABM which
present some limits by their nature such as do not implement entity’s internal temporal
constraints or have no formal verification. Then we presented the approach we use in
the proposition: automaton-based modeling often applied in reactive system. Automaton,
implicitly finite state in the scope of this thesis, also called FSM, is suitable for system
modeling for the target scope as explained in 3.2. In order to obtain a supervisory controller
by automatic and formal means, the DCS technique is adopted which is applied on DES
whose behavior is described in synchronous language. The BZR synchronous language
extending the Heptagon language to describe system behavior encapsulates the DCS in its
compilation that produces a restricted system (uncontrolled system + controller) respecting
the properties inscribed in the contract.

Based on the models and methods presented in this chapter, and the technologies and
semantic tools in the previous chapter, the following chapters will present our contributions

3http://drools.jboss.org/

38 Chapter 3. Models and Discrete Control

over the control aspect in IoT/SE domain.

Part II

Contributions

39

Chapter 4

Framework for a shared
infrastructure for IoT data

abstraction

Contents
4.1 Modeling framework overview . 41
4.2 Physical plane . 42

4.2.1 Entities/subsystems . 43
4.2.2 ICT devices/connected objects . 43
4.2.3 Devices (sensors and actuators) . 44

4.3 Model plane . 45
4.3.1 Generic entity finite automata models 45
4.3.2 Domain ontology . 47
4.3.3 Virtual entity model . 49
4.3.4 Establishing hierarchical relationship between virtual entity models . . 50

4.4 Proxy instance plane . 54
4.4.1 Device abstraction layer . 54
4.4.2 Entity instance proxy layer . 54
4.4.3 Entity group layer . 55
4.4.4 Service and local application layer . 56
4.4.5 Remote applications layer . 57

In our target scope, we have already recognized their main shared characteristics, in-
cluding heterogeneity and dynamicity, which implies that they should firstly be organized
and managed in an efficient way to be able to hide and reduce the complexity for control
service and application. In Chapter 2 we have seen some methods practiced in the domain
for this purpose such as horizontalized infrastructure, self-configuration, ontology, based
on which we propose our shared infrastructure to enable and support the application of
formal control method for generic control objectives.

4.1 Modeling framework overview

In Figure 4.1 we describe a general framework to establish the kind of horizontalized shared
infrastructure aiming a systematic and generic bi-directional mediation platform between

41

42 Chapter 4. Framework for a shared infrastructure for IoT data abstraction

Figure 4.1 – General framework presentation

ICT applications and target physical environments that may be instances of smart homes,
buildings or cities, or other IoT environments with similar characteristics.

It is structured conceptually through 3 planes, each representing relationships between
physical entities and their informational proxies as a graph in its own dimension. Inter-
plane relations are also captured by the infrastructure. These planes correspond to, re-
spectively (figure 4.1, from front to back):

• Physical plane. The physical entities of the environment that are represented in
the infrastructure and the sensors and actuators used to interface to them.

• Proxy instance plane. The instances of software representations (proxies) main-
tained in the ICT system for these physical entities and devices; external applications
interface on this plane.

• Model plane. The generic reference models upon which this representation relies;
external ontologies and knowledge bases would interface on this plane, providing at
least the anchoring of upper categories of this representation.

In this section, most examples illustrating the concept are taken from a home environ-
ment instance of one possible configuration among many others. But taking these examples
does not exclude the application of the framework to other application domains with sim-
ilar characteristics, such as building and city. Automata models adopt the notation and
style used in the BZR language.

4.2 Physical plane

Entities on this plane have a physical location and an extension in the target physical
environment. Also represented in this plane are networked devices that have an effect on
their environment through specific sensors and actuators, or separate networked sensors

4.2. Physical plane 43

and actuators . They will also be used, as shown in the following, to provide a surrogate
network interface to other entities, including non-networked legacy entities as well as space
entities.

4.2.1 Entities/subsystems

In the context of the thesis, entity (short for physical entity) refers not only to material
things like pieces of furniture or equipment, legacy home or office appliances, but also
to relevant subsets of space like rooms [Hu14]. The targets of modeling include entities
themselves and the subsystems constituted by several of them which are relevant from a
user’s or an application’s perspective. They are assumed without network connection of
their own and can be monitored and controlled only through available networked sensors
and actuators.

If we give a closer look to our modeling target entities, most of the electrical appliances
are equipped with an embedded micro-controller (e.g. washing machine, electrical kettle,
micro-oven) which can be considered as well as an autonomous subsystem with control on
different components which are microscopical entities. Thus, the border between individual
entities and subsystems has become blurred. In the following parts of this thesis, entity
will denote for both individual entities and subsystems of entities.

4.2.2 ICT devices/connected objects

Nowadays, it is common or even inevitable to have both legacy entities and ICT/connected
objects in the same environment. These smart objects have themselves the capability of
communication with the network, equipped with a universal identity attributed by the
manufacturer and network interface based on specific protocols. Examples are the weather
station Netatmo1, the smart bulb Philips Hue2, connected watches, etc. which are in
absolute blooming today. Though they do not need sensor or actuator as intermediary
to be integrated into the network, it is possible to model them in the same way as for
the legacy entities once they are identified in order to have a more uniform and accurate
view of the current target environment and to make more coherent control decision on the
global system. The connectivity function part of ICT objects or their embedded sensors
and actuators may be considered as an independent part if necessary.

API. Some connected objects are provided with a list of available APIs which enable
users or developers to access its features by customized means. For example, we can get
the temperature reading of a Netatmo by its API for further use, we can impose a light
temperature/brightness to a Hue by giving a value through its API. Not all the objects
offer an API. As for the FSM modeling for these entites, the models depend on the available
APIs which play the same role as the available sensors and actuators in the modeling of
legacy entities. And similar to the principle of legacy entity modeling, not all the available
APIs, which correspond to different internal states, are taken into account by the model

1https://www.netatmo.com/
2http://www2.meethue.com/

https://www.netatmo.com/
http://www2.meethue.com/

44 Chapter 4. Framework for a shared infrastructure for IoT data abstraction

as only basic and general states should be captured.

Remark 1. We notice that among the numerous APIs provided with each product, they
most adopt a REST style. This is not a coincidence, as we introduced in 2.3.4.1 that REST
is very suitable for managing resources whose internal state can evolve without being fully
observed or followed by the applications requiring its data. For the same reason, the API
towards the outside of the implementation of our proposition will also adopt the REST
style.

4.2.3 Devices (sensors and actuators)

Within the current modeling framework, devices refer to the basic pieces of equipment
with network connection which are not the direct target of our proposed modeling3. They
are typically shared sensors and actuators connected to the ICT network by embedded
wireless network interface such as ZigBee, Z-Wave4, which can play the role of network
interface for legacy appliances and entities without one. Thanks to the devices, interactions
between the ICT system and entities are made possible indirectly for legacy appliances and
other non-networked entities such as rooms. These devices are considered to be stateless5

transducers and are not themselves the direct target of monitoring and control. They are
used as intermediaries to monitor and control other entities. If we take the example of
a passive infrared motion sensor, the infrared-radiating objects detected by the sensor,
which may be all kinds of complex appliances as well as warm-blooded animals, are the
“interesting” target of detection and monitoring whereas the sensor itself is but a dumb
transducer. As to RFID technology6, the thing with an attached RFID tag (e.g. a piece of
furniture) is the modeling target, whereas the RFID reader is the networked device which
is only used as an intermediary to address it.

Devices can be dedicated to one piece of equipment, but are most often shared, espe-
cially for sensors, to provide a consolidated view about the behavior of several "things"
(e.g. the home water meter providing clues about all appliances that use water in a home)
or about the context (e.g. the ongoing activity in a room or the occupation of a street based
information of number of people, light intensity, noise, etc). Some interesting examples of
these devices are:

• A sensor in the classical sense which makes measurement on physical quantity and
converts it into a signal to be used further. They can be separated ones, e.g. mo-
tion/presence detector (based on ultrasound, infrared or other technologies), electric
current sensor, water flow sensor, luminosity sensor, or embedded , e.g. the thermo-
stat in a radiator.

• A virtual sensor, extending the classical definition, which represents a useful infor-
mation provided by the network, e.g. adjusted available power per home during rush
hours of electricity consumption provided by the grid.

3The distinction between an entity and a device has been understood and taken up in a similar way by
the EU FI-ware (www.fi-ware.eu) and IoT-A (www.iot-a.eu) projects.

4Z-Wave is a wireless communications protocol for home automation. http://www.z-wave.com/
5Stateless means the data transmitted are independent of any historical data
6Standard description ISO/IEC 19762

www.fi-ware.eu
www.iot-a.eu
http://www.z-wave.com/

4.3. Model plane 45

• A separated actuator, e.g. a smart plug7 attached to the mains cord of an electrical
appliance, or an embedded one.

We put explicitly the "device" module between the physical plane and the proxy in-
stance plane in order to underline its position as interface between the physical and the
information world.

4.3 Model plane

This plane maintains structured knowledge that may be applied to the target environment,
taking advantage of the genericity of environments such as homes, buildings or , cities and
other environments with similar characteristics that are sufficiently similar for this general
knowledge to apply to their different instances. Generic models and their relationships are
stored in the plane, eventually interfaced to external ontologies and other knowledge bases
able to enrich and complement the current knowledge repository.

Remark 2. The maintained knowledge is not necessarily maintained in the system runtime
memory as not all knowledge is required for a given environment instance. It is used as a
reference to be consulted by the system runtime which can make the decision of duplicating
part of the structure in the memory if needed. It could be considered in someway as a
knowledge database often stored in RDF or as a graph database.

4.3.1 Generic entity finite automata models

Models to be taken into account by the framework are meant to be as generic as possible
that only some of its most basic and essential properties are captured. FSM is used for these
models. Opposite to the technologies attempting to provide an exact and comprehensive
model for every existent entity like EPC, UPnP presented in 2.3.1, these "modal" models
make it possible to fully identify target entities by the most approximate generic model
which may serve as their dynamic proxies for a large set of applications and services.

• Thing. Its states are observable and controllable either by the end user, e.g. pushing
a button, from the physical world, or by a service or a controller from the ICT system.
Control orders are delivered to the entity through either a networked smart plug for
mains-connected appliances, or a direct network interface if available. Following are
some model examples of home appliances whose input values can be set either by
end user or by the system commands :

– Lamp. Its model has 2 states off and on, also relevant for most electrical and
ICT appliances.

– Washing machine. Washing machine has 2 states without power consumption:
off and stand by. The latter allows a temporary pause in the middle of one

7A device integrating both an electric current sensor and an actuator which connects to the existing
home area power line and allows other equipment to be connected in order to monitor and control them.

46 Chapter 4. Framework for a shared infrastructure for IoT data abstraction

OFF ON

turn_on

turn_off

turn_on

state

lamp

turn_off

off
frost

protection
state

rad

high

turn_on

turn_off

turn_down turn_high

turn_off

turn_on

turn_off

turn_down

turn_high

off washing

rinse

spin

standby

start
standby

end

washing machine

end

start

standby

state

endend standby

standby

go_on &
s'=wash

go_on &
s'=rinse

go_on & s'=spin

s'

go_on

s'=wash

s'=rinse

s'=spin

s'=off

Figure 4.2 – Generic "thing" automaton model: (a)Lamp; (b)Radiator; (c)Washing ma-
chine

empty ocupied
presence_on

presence_off

room

presence
_on state
presence
_off

Figure 4.3 – Generic "space" automaton model of room

functional washing phase (upon the reception of a standby signal) with the
possibility of returning when permitted (go_on signal and global variable s’ for
memory). 3 states washing, rinsing and spinning represent the different steps
in a washing cycle existing in all modern washing machines.

– Radiator. A radiator has state off without power consumption and 2 states
frost protection, high with different set temperature.

• Subset of space. Subset of space is usually modeled through states corresponding
to different activities, such as empty/occupied for a room or a street. These states
are non-controllable, yet observable through an aggregation and consolidation of data
from multiple sensors or external data sources providing useful context information,
such as in the example in fig 4.3 the input presence_on and presence_off which
are not a simple value as they appear but are a resulting value from multiple data
sources. Another difference is that the subset of space is not directly associated to
any actuator which is the case in "thing", such as the switch is controlled when the
lamp is commanded to commit a state transition.

• Observer. An observer observes/monitors the behavior of a physical entity without
the possibility to be controlled8. To be more general of this capability, it can be used
to observe a set of entities or just useful context information, and can be modeled
as an FSM, such as the aggregate power monitor on a general electrical counter of
the house whose threshold can be offset by external message or event via the grid
interface.

Remark 3. The output in the above models (shown in figure 4.2 and 4.3) is denoted by
state for the graphical clarity reason. It is in fact a set of value assignments state = {si =
vi}i∈[1...n] where {si}i∈[1...n] is the set of states of the model and vi is the Boolean value

8In the European project IoT-A (www.iot-a.eu), an observer is defined as "anything that has the
capability to monitor a Physical Entity, like its state or location".

www.iot-a.eu

4.3. Model plane 47

Figure 4.4 – Ontology/taxonomy graph in an home instance example

assigned to each state. In the following of this document, the notation e.si represents
vi of si at the current state. In the example of the lamp model, the output state is
{off = true, on = false} when it is in off state, lamp.off = true, lamp.on = false.

These generic models will be used as the common denominator model for the leaf
categories in the structure described in 4.3.2.

4.3.2 Domain ontology

In the scope of this thesis, an ontology of the concerned domains (home, building, city as
application domain of the IoT) aiming to classify target entities is described in the following
part for generic control purpose, with the possibility to be enriched by relevant external
ontologies, like the ones introduced in 2.4.2.

The primary role of an ontology is to provide categories over entities of interest and
their relationships. In our case, the most basic categories of entities are the well-known
generic categories of appliances or subsets of space: home appliances, rooms, windows,
traffic lights, street, etc. Another way to categorize them highly relevant to the purpose
of their representation in a generic infrastructure is by properties that may cut cross pri-
mary categories. In Figure 4.4, the property light-emitting category includes not only the
category lamp whose primary functionality is to emit light, but also, less obviously, all
categories which emit light by side effect of their primary function, like LCD screen. Fig-
ure 4.5 shows a part of an example of city ontology, which is also possible to be combined
with the home ontology example to form a more comprehensive one, where a property oc-
cupable category captures the common characteristic of street, lane and residential rooms,
and property light-emitting for street light, urban signage and lamp, display.

The categorization of entities from such generic features is structured as a DAG which
is a representation of the domain specific ontology. This graph makes it possible to follow a
path from the most generic ancestor categories (closer to the root nodes) to the most specific
descendant ones (closer to the leaf nodes), which establishes a hierarchical relationship.
According to the received interpretation of a DAG, descendants d inherits properties from
or “traits”/interfaces their ancestors a following an upward path of d Is_A a (“is_a” on
the edge) or d has property a (“h p ” on the edge) relationships.

48 Chapter 4. Framework for a shared infrastructure for IoT data abstraction

Figure 4.5 – Partial ontology of city

The two underlined relationships are not always absolutely distinguishable, and are
in some cases interchangeable. For example, in the current ontology graph, the electrical
appliance can be considered as a generic type of display following the relationship "is_a"
(a display device is an electrical appliance), or as a property of display following "h.p."
(a display device consumes electricity). Both interpretations make sense with nuance in
terms of interpretation. A common criterion to distinguish them is that the transitions in a
"property" FSM are often abstract and not-directly-controllable, e.g. light, heat, whereas
the "classical" taxonomic FSM’s transitions react to concrete and controllable event, like
electrical switch position change. Therefore, we will consider that one descendant category
"has only one" "subsumption" ancestor whereas it may "has multiple properties". For
readability and simplicity of notation, in the following part, we will use the predicate
hasParentStateMachine to denote both relationships if no distinction is necessary, and
note it as [child : hasParentStateMachine : parent].

Some advantages of such way of structuring generic (concrete or abstract) characteris-
tics of the physical world into an ontology are the following:

• This DAG can be easily interpreted as a graph database to get the full benefits of its
high accessibility and other supported properties of a normal graph [RWE13].

• It is possible to automatically attribute features to concretely existing object types by
traveling the graph, comparing to the more classical and common practiced method
which consists of making a explicit declaration for every feature. For example, if we
complement the current ontology by associating a sub-DAG to one or several nodes,
the entry node(s) will automatically inherit the properties of the ones they attach to,
so as their children.

• By contrast to functional groups made manually by declaration in configuration file
and static during runtime like in openHAB (cf 2.3.4.2) which is a tedious procedure
when the number of entities to be grouped increases, groups can be automatically
constructed according to the nodes in the ontology. By doing so, a type of entity
with multiple physical aspects may be included in different groups which are man-
aged independently by different services. Dynamic changes of group members during
runtime are also possible by the dynamic nature of the group assignment method.

4.3. Model plane 49

no
light lighting

light
_event

state

light-emitting

no_light
_event

light_event

no_light_event

OFF ON

turn_on

turn_off

turn_on
state

electrical appliance

turn_off

Figure 4.6 – Generic model: (a)light-emitting; (b)electrical appliance

4.3.3 Virtual entity model

Virtual entities (VE in the following) refer to the nodes, i.e. the general categories including
the leaves, in the ontology DAG. Each VE has a common denominator finite-state model of
its own which is meant to be as generic as possible for its features, in order to model all the
entities, with more specific features or not, which belong to this category. For example,
the general light-emitting category has a finite-state model with two states lighting and
no-light (figure 4.6(a)), and electrical appliance category has two basic states off and on
(figure 4.6(b)). The leaf nodes in the DAG are considered as the most specific categories
in the ontology without any descendant. The generic entity models described in 4.3.1 are
maintained by the framework as the common denominator model for the leaf nodes.

The VE model, i.e. the common denominator finite-state model associated to each
node in the DAG, has two main uses:

1. Identification template. A physical entity in the environment should be firstly
identified by the system to be then controlled, which makes the identification an
essential step. According to available information in the possession of the system
(sensor data, discovered relationship with other entities, id code provided by the
entity itself, etc), the identification can be precise or approximate. Some behavior
patterns can be extracted from observed data, for example, the entity has 3 distinct
functional states and emits heat to be determined as a radiator. The VE model which
matches the patterns the most will be taken to model this entity, and the entity is
considered as instance of the virtual entity until some more precise identification is
made.

2. Intermediary abstraction. Though the most exact model of an entity instance
depends on the identification process, it can be considered, according to the monitor-
ing/control objective, as an instance of its own model’s ancestor without creating a
new instance of this model, by omitting some objective-non-relevant properties of the
more exact model. This intermediary abstraction helps reduce the system model’s
complexity in case of no need of precise model.

Remark 4. In case of need of very specific model, the framework does not forbid to use
more detailed model which is not provided, but the genericity and the capability of using
ancestor models will be lost.

50 Chapter 4. Framework for a shared infrastructure for IoT data abstraction

no
light lighting

dim

bright
lighting with
intensity control

lightingBasic lighing
control

It enforces "no
light" when
nobody,
and "lighting"
when someone.
It doesn't
care the
indensity of light

Light intensity
control

It adjust the level
of light intensity
according to
activity.

equivalent state
in a hierarchical
relationship

no
light

Figure 4.7 – Example of using different abstraction level models

4.3.4 Establishing hierarchical relationship between virtual entity mod-
els

In order to practically use a more generic FSMmodel instead of a more specific one in case of
general level monitoring/control on instances’ states, the states should be carefully mapped
between ancestor and descendant models to keep every operation on one abstraction level
valid on the other level as well. Taking an example of the indoor light control consisting
all the light-emitting (natural or artificial) instances in the room, including the three-level-
controllable bulbs (Philips Hue kit for example) with 2 levels of brightness when they
are on. When the control needs to cut all light, all the instances should go to the no-
light equivalent state, including the three-state bulbs to their off state, whereas when the
lights are allowed to be on, three-level bulbs can choose to stay either in dim or on state
equivalent to lighting state in the general model. Some state changes coming from other
sources (user pushed the switch for example) involving transition between equivalent states
in the ancestor model will be detected by the control, e.g. from dim to off, while the others
make no difference to it, e.g. from dim to on. This example is illustrated in figure 4.7.

Which states to be mapped? Hierarchical model pairs following either the basic sub-
typing relationship "is-a" or the protocol-like relationship "has property" map their states
according to the physical meaning presented by the state. For example, by common knowl-
edge we know that a lamp emits light when it consumes electricity, thus a link is estab-
lished to connect lighting in the model of light-emitting and on in lamp. The state off and
standby in washing machine both consume no electricity (the very low power consumption
in standby is ignored in our scope of application), it is obvious to map them with the
state off in its ancestor high power electrical appliance. The mapping is directly declared
by the states in the child model, and is considered as one part of the following state ma-
chine ontology illustrated in figure 4.8, based on the ontology proposed in [Dol04], with
the predicate hasMappedState declaring its corresponding state in one of its parents. In
the following, we will adopt the notation [childName].[stateName] hasMappedState
[parentName].[stateName] to denote this hierarchical relationship between two states.

Note that the mapping of states only makes sense when they are respectively in FSMs
in a hierarchical relationship described by the current ontology. Thus, within the present

4.3. Model plane 51

Figure 4.8 – (a)State machine ontology; (b)Example of state mapping of light-emitting and
lamp

thesis, when we talk about sub-/super-state, we mean implicitly that they are states of a
pair of descendant/ancestor FSMs.

The states between the already known ancestor/descendant models should to be
mapped in the way that state transition in the descendant model would never go out
of the state space of the ancestor, and every state of the ancestor model can always find
its corresponding state in any of its descendants. The choice of such assumption may be
arbitrary. Nevertheless, there is one important reason to make us make this choice to keep
our modeling framework general and consistent instantaneously. A specific model at the
bottom or the lower part of the DAG should be at every moment able to be considered
as its ancestor which is more generic, for generic monitoring or control purpose. While it
works as a specific modeled entity going to a state having no corresponding state in its
ancestor model, and this ancestor is one of the subjects of a general control objective, the
underlined control has no possibility to accomplish the objective as this entity is in an
unknown state to it. To avoid such control failure due to inconsistency in state mapping,
a strong hypothesis of descendant staying in ancestor’s state space is necessary.

This mapping procedure (declaration of mapped states in parent models by each state
of the child) is done manually for every parent/child pair and is just one method among
the others which are valid as long as they satisfy the above assumption, without the need
of knowledge of the method’s details.

How to map two states? The principle of the proposed method is to consider ances-
tor/descendant models as hierarchical state machines where every state in a descendant
model is a substate or nested state of a state in its ancestor. The substate inherits the
entire behavior (actions and property values to take) of its superstate like in the semantic
of Heptagone, if a state Sn of a sub-automaton nested in the superstate Ss is active, both

52 Chapter 4. Framework for a shared infrastructure for IoT data abstraction

no
light lighting

light-emitting

OFF ON

electrical-appliance

OFF ON

lamp

on=true
lighiting=true

hasMappedState

hasMappedState

Figure 4.9 – Multiple inheritance: lamp.on inherits values from parents

Sn and Ss are considered active, thus the result behavior of Sn to an outside observer is
as if Sn has it own specialized behavior plus all the behavior of its superstate Ss. This
behavioral inheritance [SM00] in hierarchical state machines is very similar to the concept
of inheritance in Object-Oriented programming (OOP). Substate is analogue to subclass
in OOP which only needs to implement the differences compared with its superclass whose
entire properties are inherited by the subclass. If there is no proper behavior to the state of
the descendant model, the state’s behavior is processed and obtained automatically: it in-
herits the behavior of all its parents, similar to the concept of multiple inheritance in OOP.
It should be marked here that behavioral inheritance describes the hierarchical relationship
between sub-/super-states and should not be confused with state machine inheritance.

Taking the example of lamp which is child of lighting and electrical appliance at
a time. As declared explicitly in the model of lamp, lamp.on hasMappedState {light-
emitting.lighting, electrical-appliance.on} and lamp.off hasMappedState {light-emitting.no-
light, electrical-appliance.off}, lamp.on inherits the value "lighing=true" from light-
emitting.lighting and "on=true" from electrical-appliance.on, and lamp.off inherits
the value "no-light=true" from light-emitting.no-light and "off=true" from electrical-
appliance.off. As result, lamp.on has 2 inherited values from parent states as illustrated in
figure 4.9.

Following this method of state mapping, we notice that from the top-down point of
view, a descendant is a refinement of its ancestor, and from the bottom-up point of view,
an ancestor is an abstraction of its descendant in the level of state [Har87]. Every state
of a topmost model in the ontology DAG consists of one or several descendant states.
Every state of a bottommost model is inside of one state of an ancestor. Every state
of a mid-level model is at a time inside of one ancestor state and consists one or several
descendant states. This is illustrated in Figure 4.10 showing a branch in the ontology DAG
consisting electrical appliance, high power electrical appliance and washing machine. The
states washing, rinsing, spinning all inherit the behavior "keep electricity consumed" of
state on in high power electrical appliance which is identical to on in electrical appliance.
This also ensures the transitivity of behavior inheritance from superstate which is many
levels away.

4.3. Model plane 53

off

pasue

washing

rinsing

spinning

turn_on
turn_off

turn_on

turn_off

start

end

end

end

standby
standby

standby

go_on

go_on

go_on

off on

off on
electrical
appliance

high power
appliance

washing
machine

Figure 4.10 – Ancestor/descendant state mapping in "is a" relationship

Multiple inheritance issues. If two parents both have one property but with different
value, ambiguity or value conflict on this property occurs when a child inherits both of
them9. Some constraints should be added to the state mapping which will be checked for
the validity before use. Consider that B and C are children of A, and D is child of both
B and C. Assume that in our scope of application, inherited properties are not modified
along its life because the physical meaning behind stays the same. It should be guaranteed
that if a property exists in D, it cannot have two different values inherited respectively
from B and C. The property in question can be expressed as following:

{p ∈ (propsB.key ∩ propsC.key) | (”p = x” ∈ propsB) ∧ (”p = y” ∈ propsC)}

where:

• p is the name of the property10;

• propsB and propsC denote respectively the set of properties B and C;

• them followed by .key denote the set of names of their properties;

• x and y are the values of the property

It should be made sure that x = y in any situation. As:

propsB.key ∩ propsC.key

=(propsBown.key ∪ propsA.key) ∩ (propsCown.key ∪ propsA.key)

=(propsBown.key ∩ (propsCown.key ∪ propsA.key)) ∪ (propsA.key∩
(propsCown.key ∪ propsA.key))

=((propsBown.key ∩ propsCown.key) ∪ (propsBown.key ∩ propsA.key)︸ ︷︷ ︸
∅

)∪

9It is referred as the "diamond problem"
10A property is a pair in the form ”propertyName = propertyV alue”

54 Chapter 4. Framework for a shared infrastructure for IoT data abstraction

((propsA.key ∩ propsCown.key)︸ ︷︷ ︸
∅

∪ (propsA.key ∩ propsA.key)︸ ︷︷ ︸
propsA.key

)

=(propsBown.key ∩ propsCown.key) ∪ propsA.key

where:

propsA is the property set of A; propsXown = propsX − propsA and by assumption
that a child does not override a parent’s property, propsXown ∩ propsA = ∅.

In order to guarantee x = y, we should only to make propsBown.key ∩
propsCown.key = ∅ because by definition, if p ∈ propsA.key, it takes a unique value
defined in A, which implies that B and C should not have a same property other
than the ones in their common parent.

4.4 Proxy instance plane

The word proxy is used as its literal meaning in the context of the thesis: a representative
for someone/something else. Located in the middle of the physical world and the abstract
world on paper, this plan aims to "represent" the physical world by creating individual
"representatives" based on "template" noted on the paper.

This plane captures and maintains direct, instantiated informational representations
of entities from the physical plane, drawing upon generic models from the model plane to
provide a shared interface of the physical world to applications. The system architecture has
five layers depending on different abstraction level and function, from the device proxy layer
to the application layer. It takes the ROA approach where each proxy and their current
state (of device or of entity) is considered as a resource which provides the information in
accordance with the current internal semantics via a uniform interface like a URI.

4.4.1 Device abstraction layer

Devices are taken in the same sense as in 4.2.3 with focus on their upper level interface
independent of the protocols used to connect them and of the technology details of their
actual implementation, as proposed by various standardization bodies. They are virtualized
and used through their proxy which is an "object" regrouping accessible software interface
variables of the device. For example, the proxy of a smartPlug is a set of upward data
interface of instantaneous power reading and downward interface of "turn on/off" action
sending. The mapping between devices and their proxies is one to one, unless these devices
are never used separately (e.g. an array of identical sensors used for array processing).

4.4.2 Entity instance proxy layer

This layer provides a one to one mapping between physical entities and a set of proxies
that maintain their states by instantiating corresponding models from the model plane.

4.4. Proxy instance plane 55

An entity proxy maps directly to a corresponding node in the model plane that provides a
template, as an object maps to a class in OOM. It provides an interface both to relevant
devices to get actual sensor readings or forward control orders to actuators, and to higher
layers of the infrastructures to provide information about current state and relevant variable
values. Several instances of the same automaton model can co-exist.

In this layer, entity instance proxies may have relationships other than the hierarchical
ones captured from the model plan, e.g. the relationship located in links a lamp proxy
and a room proxy if the lamp is in the room, the relationship owned by links several
object proxies and a person if the objects belong to the person. These relationships are
purely dedicated to the current environment that we call them extrinsic relationship against
intrinsic relationship referring to environment-independent ones. Entity instance proxies
together with the extrinsic relationships connecting them make a graph of instances that
is maintained in the infrastructure and ready to be explored.

4.4.3 Entity group layer

While virtual entities (VEs) are a categorization of identified physical entities by a specific
type or by an intrinsic property which have a common denominator behavior model, entity
group models associated to a VE represent the collective behavior of all the entities modeled
by the underlined VE model since one of the original purposes of the classification is to
manage a set of entities together instead of each one individually. Thus they involve the
composition of several identical individual VE models. More details of the models for entity
group made by entities having identical VE model will be given in 5.1.

Also, an entity group can present a group constituted following an extrinsic relationship
recognized and maintained in the entity instance proxy layer. However, il would be difficult
to find a common denominator model for this kind of group because they do not necessarily
share any common behavior.

Entity group models can be dedicated to one purpose of use, and one VE could have
more than one instantiated entity groups based on different models. For example, both on
a group of radiators, an instance of entity group model containing a state some radiator
in frost protection mode would be interesting for a safety control scenario (preventing frost
danger in pipes), but totally insignificant for a comfort control scenario whose goal is to
maintain the temperature at 24 degree. If in an environment instance, the above safety and
comfort objectives coexist, each of them uses the entity group instance of its corresponding
model, thus 2 different entity group instances exist which are associated to the same VE.

If we consider the entity instance proxies which have a 1-to-1 mapping to physical entity
as something "real", an entity group can be considered as a view of a set of entity instance
proxies which is something "abstract". Thus different views are as direct consequence as
they are taken from different points of view, e.g. different objectives.

Connect entity groups and entity instance proxies. Associations between entity
groups and entity instance proxies depend on both intrinsic and extrinsic relationships,

56 Chapter 4. Framework for a shared infrastructure for IoT data abstraction

Figure 4.11 – Association is made on both intrinsic hierarchical relationship and extrinsic
environment-specific relationship

i.e. the hierarchical DAG in the model plan and the graph of instances maintained in the
runtime environment which respectively does a filtration of existing entity instance proxies
for a given entity group according to entity type and perimeter/scope of application. Both
relationships are indispensable: only the category that the entity group is associated to or
its sub-categories may provide compatible inputs for entity group and react correctly to the
outputs; only one specific part of all the entity instance proxies of the category is interesting
for one given application. Unlike the category relationship which is directly reflecting the
model plan, the necessary extrinsic relationships are specified in a configuration file of the
given environment instance. In the example of indoor light control in 4.3.4 addressing to
light-emitting group (in figure 4.11), the mapping between the group and entity instance
proxies is done by taking the intersection of all the proxies whose model is descendant of
or is light-emitting itself and the ones which is connected to the target room by a located
in relation in the graph of instances.

Observer as a group. In 4.3.1, an observer is a monitor on a physical entity or a
piece of context information which is often used to determine if a condition is satisfied to
trigger an action. It is more logic to consider them instantiated in the entity group layer
as: first, in the current infrastructure, physical entities are already monitored by their
proxies in the entity instance proxy layer, which implies that there is no need to have a
second observer for each of them individually and if there are observers, they are about
information directly from sensors without physical entity support, like the temperature;
second, a context property is most time contributed by more than one physical entity,
which can be considered as a "collective behavior" of the contributor-entities; third, their
result of observation is often used directly by services which try to interface only with
entity group layer.

4.4.4 Service and local application layer

This layer hosts services and other applications that are tightly coupled to the infra-
structure. They need more knowledge of the semantics of entity models and may also
mandate bounded latency constraints between system responses and actions. They can
read all information from output of state model instances and perform actions directly on
the available inputs of the state models. Examples of services and applications in this layer
are local light control (quick reaction to turn on light when presence is detected arrives),

4.4. Proxy instance plane 57

real-time electrical load shedding control from detection of overload.

This layer does also provide north bound interface to remote loosely-coupled applica-
tions which have less strict temporal constraints and may be content with a “best-effort”
REST interface through a wide-area network.

4.4.5 Remote applications layer

Most monitoring and control applications that are loosely coupled with the physical plane
are not supposed to be part of the proposed infrastructure, or to be co-hosted with it.
The infrastructure is used to separate them from the particulars of sensors, actuators,
devices and other pieces of equipment that they operate on. As represented in Figure 4.1,
such applications operate on top of the instance plane, which provides them the required
interface to observe and control the states of individual entities through their proxies, or
the entity groups they belong to.

Chapter 5

Generic models for discrete control
based on the shared infrastructure

Contents
5.1 Control-oriented models . 59

5.1.1 Entity group models . 61
5.1.2 State Mapping of group category VE and member entities 65
5.1.3 Data combination . 70
5.1.4 Control order dispatching towards individual entity instances 70

5.2 Controller generation using BZR . 72
5.2.1 BZR encoding of the system model . 72
5.2.2 Control objectives as contract . 74

5.3 Corpus of control rules . 74
5.3.1 Generic rules and their categories . 75
5.3.2 Category of rules . 76
5.3.3 Control rules compatibility . 76

5.1 Control-oriented models

We have seen generic FSM models for physical entities and even more abstract models for
intermediate categories in the domain ontology presented in 4.3.1. These models capture
the essential states and possible actions of the modeling target entities according to their
nature. However, if we want to use DCS technique directly on these models, controllable
variables which represent the control decision from the discrete controller should be identi-
fied on these models, so that some transitions between states can be prohibited or enforced
to make the entire system stay in a legal state. Also, as we introduced in 4.4.3, entity
groups are made to make it possible to manage a set of physical entities sharing the same
property together instead of managing them individually in order to have a higher level
of abstraction and less complexity, especially to avoid the combinatorial explosion of state
space due to the nature of DCS method, DCS should also apply on the models of entity
group, which implies that these models should be FSM with controllable variables on their
transitions1. We suppose that the actions triggered by each transition or in each state are
effective that no asynchronous verification for the effectiveness is needed.

1We do not deal with the case where group is constituted by extrinsic relationship because there is no
common denominator model as explained in 4.3.3.

59

60Chapter 5. Generic models for discrete control based on the shared infrastructure

Figure 5.1 – High level overview of entity groups and entities with functional supportive
blocks

This section will be organized following the number given in figure 5.1: 5.1.1 will
describe the template for forming an entity group model; 5.1.2 will explain how to establish
the state mapping between the entity group and the entities belonging to it so that in 5.1.3
the input of entity group in terms of logical combination of states of individual entities can
be calculated; 5.1.4 will give more details about how a control order from the supervisory
controller on the entity group will arrive at individual entities which need to be actuated.

Vocabulary definition . Before going into details of construction of entity group models
and working mode of entity group instances, we introduce some vocabularies that are
applied during the entire explanation, with the help of the a "toy" example illustrated in
figure 5.2.

Figure 5.2 – Overview of the relationship between entity group and individual entities via
the model plane

• Entity group. It is located in the entity instance proxy plane, and is an instance of
one entity group model associated to the group category. In figure 5.2, EG_A is
the entity group associated to the group category A.

5.1. Control-oriented models 61

• Group category. It is short for "the category in the ontology DAG in the model
plane used to defined an entity group in which all individual entities have the shared
property of the category". In figure 5.2, A is the group category.

• Group category VE. It refers to the VE model (see 4.3.3) of the group category.
In figure 5.2, it means the VE model of A which is not shown.

• Member entity. A member entity of an entity group is an individual entity, known
as an entity proxy, which is an instance of the VE model of the group category
itself or one of its descendant categories. In figure 5.2, group category A has B, C and
D as descendant categories. Thus, entity instances a, b, c, d which are respectively
instances of VE model of A, B, C, D are member entities of entity group EG_A.

5.1.1 Entity group models

One entity group model is one perspective of seeing how several individual entity in-
stances behave together. According to different objective (monitoring or control), the
manner of abstracting a complex collective behavior may differ a lot from each other to
have just the necessary information to keep the system as simple as possible. An example
is given in 4.4.3 about different models of a group of radiators for different goals. Thus, no
entity group model is directly associated to a node in the ontology DAG in the model plane
as it varies to meet the correct level of abstraction according to objectives. However, absent
of any more specific model, a very generic and basic template provided by the framework
may be used as a modeling tool for entity group model of a general category representing
multiple entity instances which could be modeled by the VE model of this category.

Remark 5. This generic template given and described in the following is just one choice
among many others, which has already been mentioned in 4.4.3. For example, it is use-
ful to consider a state of "one street lamp is on every two lamps" for energy efficiency
management, which does not exist in the template we present. Nevertheless, we think our
template is useful in a lot of cases related to the current application scope, Home, and
it presents a correct trade-off between reduction of complexity and reservation of useful
information related to the type of control we intend to do, basic and supportive discrete
control which stay valid in most of the environment instances in the domain.

The generic template is designed to reflect all the possible combinations of the group
category VE’s states in which member entities are in. A state of the template is distin-
guishable from others when the set of active states of the entity group VE is different. It

62Chapter 5. Generic models for discrete control based on the shared infrastructure

takes as input the logical conjunction (and, noted by
∧
) and disjunction (or, noted by

∨
)

of the Boolean variables indicating the member entities’ current states to determine the
current group state which is, as an output, interpreted as a logical combination of member
entities’ states in which they are or should be in. The result of logical combination of
Boolean values does not depend on the number of passed variables, but on the truth value
of each variable and the applied operation.

Property 1. The number of states in the entity group model using the above template is

N =
n∑

k=1

Ck
n = 2n − 12, n is the number of states of the group category VE.

Explanation. Let S = {si}i∈[1...N] be the set of states of the entity group, SV E =

{sV Ei}i∈[1...n] the set of states of the group category VE model. By construction, si is
defined as a subset of SV E representing the distinguishable states of the group category
VE present in all its member entities. The problem of finding S is then reduced to finding
all the subset of SV E (∅ excluded). The number of combination of k distinct elements
chosen from a set of n elements is Ck

n, where k ∈ [1 . . . n]. So for all the possible values of

k, the total number of subsets of SV E is
n∑

k=1

Ck
n.

The number of input variables of the entity group model is 2n+ 2, where 2n variables
are

∨
e.sV Ei and

∧
e.sV Ei (the definition of e.si is given in 3) and 2 controllable variables

c1 and c2, one for inhibition and the other for enforcing. We will see further in the chapter
that the number of input variables can be reduced if the relationship among elements of
SV E is known.

Remark 6.
∨
e.s is a simplified notation for

∨
i∈[1...n] ei.s which denotes the OR operation,

and the
∧

e.s denotes the AND operation. The initial state of the entity group model
based on this template is the one where all the member entities are in their initial state.

The significance and the entering condition (combined with controllable variables to
constitute the complete guard of the transition towards the state) for each state si of the
entity group model should be expressed in terms of the logical combination of the states
of all the member entities. For doing so, we distinguish 3 cases:

1. si represents that all the member entities in the same state sV Ej , which can be
interpreted easily as

E1 =
∧

e.sV Ej

There are in total n (C1
n) states of the entity group model in this case.

2. All the states in the entity group VE model are present in si, which can be interpreted
as at least one member entity in every sV Ej . In Boolean expression,

E2 =
∧

j∈[1...n]

(
∨

e.sV Ej)

There are in total 1 (Cn
n) state of the entity group model in this case.

2Ck
n is also equivalent to the binomial coefficient denoted by

(
n

k

)
=

n!

k! (n− k)!

5.1. Control-oriented models 63

3. si represents that some sV Ej are present and some are absent. If we define the
present states are S′ = {sV E_present_k}k∈[1,m] and the absent states are S \ S′ =
{sV E_absent_l}l∈[1,n−m] where 1 < m < n. For those states which are present, there is
at least one member entity in this state, expressed as (

∧
k∈[1...m](

∨
e.sV E_present_k) =

true), and for those states which are absent, there should be no member entity in
this state, expressed as ¬(

∨
l∈[1...n−m](

∨
e.sV E_absent_l)). The complete

E3 =
∧

k∈[1...m]

(
∨

e.sV E_present_k)
∧
¬

∨
l∈[1...n−m]

(
∨

e.sV E_absent_l)

The following algorithm 1 summarizes the above procedure:

Algorithm 1 Significance and entering condition of entity group model state in terms of
group category VE state combination
1: let SV E = {sV Ei}i∈[1...n] be the set of group category VE model states
2: for every entity group model state s do . N states in total
3: let S′V E = {sV E_present_k}k∈[1,m] ⊆ SV E be the set of group category VE model

states present in s, 1 ≤ m ≤ n

4: if m = 1 then . all the member entities in the same state
5: s← E1

6: else if m = n then . all group category VE states are present
7: s← E2

8: else if 1 < m < n then . some group category VE states are present, some are
not

9: s← E3

10: end if
11: end for

Remark 7. The procedure automated by the algorithm is about generating a model which
could be maintained in the same format as other VE models in the DAG. The entity group
used in the proxy plane is the instance instantiated from the generated model just as the
entity proxies instantiated from their corresponding VE models.

The simplest case is the entity group template for a set of instances of a 2-state FSM
model with states X and Y as illustrated in fig 5.3(a). This model takes a and b as input
to enable a transition, and outputs the value of Boolean variables x and y, where {x =

true, y = false} for state X and {x = false, y = true} for state Y. The resulted group model
has thus 3 states: All X, X or Y and All Y as all the possible combinations of X and Y. The
useful inputs enabling the transitions between such states are as shown in fig 5.3(b). The
last two input variables c and c’ are controllable whose value is given by the controller
in order to enforce or inhibit the transition. The output variable value indicating the
current state of the group is interpreted as the result of the logical combination of member
entities’ state value that they should make. In this case, All X =

∧
e.x, All Y =

∧
e.y and

X or Y =
∨

e.x ∧
∨
e.y.

Property 2. With a 2-state FSM where the true value of two Boolean variables x and
y indicates respectively the active state X and Y, the expressions on e.x (or e.y) can be
replaced by e.y (or e.x):

∨
e.x = ¬(

∧
e.y) and

∧
e.x = ¬(

∨
e.y)

64Chapter 5. Generic models for discrete control based on the shared infrastructure

YX

x= true,
y = false

x= false,
y = true

x

y

a

b

a

b

x=¬y

(a)

All X

entity group template for 2-state models

X or Y

c

∨e.x ((∨e.x)∧(∨e.y))∨c'∧c

(∧e.x)∨c'∧c
state

All Y

∧e.y

c'

∧e.y∨c'∧c

((∨e.x)∧(∨e.y))
∨c'∧c

∨e.y
∧e.x

(∧e.x)∨c'∧c

((∧e.y)∨c')∧c

(b)

All X

entity group template for 2-state models

X or Y

c

((¬(∧e.y))∧(∨e.y))∨c'∧c

¬(∨e.y)∨c'∧c
state

All Y

∧e.y

c'

(∧e.y)∨c'∧c

((¬(∧e.y))∧(∨e.y))
∨c'∧c

∨e.y

¬(∨e.y)∨c'∧c

(∧e.y)∨c'∧c

∨e.x = ¬(∧e.y)
∧e.x = ¬(∨e.y)

(c)

Figure 5.3 – (a) 2-state VE model; (b) general template for group model of 2-state models
and its simplified version (c)

Proof. We know that X = {x = true, y = false} and Y = {x = false, y = true}, thus
e.x = ¬e.y. So we have: ∨

e.x =
∨

(¬e.y) = ¬(
∧

e.y)∧
e.x =

∧
(¬e.y) = ¬(

∨
e.y)

The above property 2 makes the simplified entity group template for 2-state VE models
as illustrated in 5.3(c).

Advantage of control on group models Entity group models are the ones provided
to the upper level services, especially the synthesized controller service, as the system’s
behavior model. The advantages of managing entities by group are especially:

• Flexibility in configuration change. The entity group hides completely the individual
entities from upper level services or applications that any change in entity instance
proxy level, e.g. a new extra radiator in the room during winter, is transparent
for them. Only an update of mapping between present entity instance proxies and
their group is solicited to get the correct input value for the entity group and to
transmit the output value to a valid entity instance proxy, instead of a re-design or
re-compilation of services.

5.1. Control-oriented models 65

• Reduction of state space for the procedure of synthesis of controller on top of these
system behavior models. The state space increases exponentially to the number of
models. Even the parallel composition of the most simple 2-state models would lead
to a state explosion when the number of automata grows. A model with states
representing the significant collective behavior after the parallel composition is one
solution to reduce the state space that the DCS should deal with. A every simple
example can make it very obvious. Taking the first control objective in the current
example scenario with n 2-state light-emitting instance proxies under control. The
DCS performed directly on the individual instances gives a space of 2n states, while
the one on the entity group model gives 3 states with assumption that the group
model adopts the basic 3-state template for composition of 2-states state machines.
When n goes up, this difference becomes significant. A simple comparison will be
given in 7.2.4 to illustrate this advantage.

5.1.2 State Mapping of group category VE and member entities

An entity group model, no matter being specific to a given objective or using the generic
template, is always expressed in terms of the group category VE model and its states, while
its member entities are actually instances of more specific descendant categories. From the
point of view of the entity group instance, all the member entities are as if they were
instances of the group category VE. This over-abstraction is enabled thanks to the state
mapping explained in 4.3.4 guaranteeing the compatibility of using an ancestor model in
lieu of a descendant model which has actually instantiated the recognized entity. The
parent(ancestor)/child(descendant) relationship between categories in the ontology is used
to determine which individual entity instances are to be included by the entity group, as
already explained in 4.4.3. And the state mapping between the group category VE and
the member entities is used to determine the right input value of the group and the correct
output value interpretation in terms of child model’s state if necessary.
Remark 8. In the above illustration we notice that the "state mapping" module is delimited
by dotted line, different from the others. This is a "semi"-static module in the runtime: the
information held does not change as long as there is no configuration change such as new
added member entity, more detailed and specific entity type identification. This module
does not directly participate the dataflow within the closed loop made by other modules,
however, it verifies the configuration updates and is consulted by "data combination" and
"dispatcher" blocks to ensure the right interpretation in both upwards and downwards
directions.

To get the state mapping correctly and efficiently, two steps are needed: (1) map the

66Chapter 5. Generic models for discrete control based on the shared infrastructure

states of the group category VE and the member entity’s VE; (2) map the states of group
category VE instance (what a member entity is seen by the entity group) and the member
entity using the result of the first step. We will explain the 2 steps in the following with
the help of an illustration in figure 5.4 which is a detailed version of figure 5.2, to finally get
an integrated algorithm which does the procedure for a given entity group and its member
entities in the system runtime.

EG_A

All

A1
A1/A2

All

A2

a

A1 A2

b

B1 B2 B3

c

C1 C2

d

D1 D2

A

A1 A2

B

B1 B2 B3

C

C1 C2

D

D1 D2

Figure 5.4 – Illustration for state mapping procedure: developed from figure 5.2

Step 1: state mapping between the group category VE and member entity
VEs. Though all the information about state mapping in a pair of parent/child categories
is available in the DAG, it is still indispensable of doing this step in order to make the
following instance states mapping procedure more efficient for 2 reasons:

• The ontology DAG is an external data structure (database or RDF file) to be accessed
with necessary tool. It could be very inefficient if the access frequency is high.

• The state mapping information in the ontology DAG is only expressed explicitly
between parent and child. If two categories have intermediary levels between them,
the state mapping should be deducted by traveling the path connecting them. It is
obviously more quick to store in the runtime memory the state mapping information
of ancestor/descendant pairs to avoid retrieving it by traveling the DAG each time
required.

The data structure for storing the state mapping information can be a table which
is easy to be implemented and used in runtime. The objective of step 1 is to obtain a
table as in table 5.1 for the very generate example in figure 5.4, knowing already from the
ontology DAG the state mapping of A/B, A/C and C/D. Given a child VE (1st column)
and a parent state (2nd column), the mapped child(ren) state(s) can be accessed in the
3rd column.

5.1. Control-oriented models 67

Parent VE A

Child VE Parent State Child(ren) State(s)

B
A.A1 B.B1

A.A2 B.B2, B.B3

C
A.A1 C.C1

A.A2 C.C2

D
A.A1 D.D1

A.A2 D.D2

Table 5.1 – Table maintaining state mapping of parent/children VE models for a parent.

There are 2 cases to fulfill the table which is initially with only one entry: mapping of
the parent VE itself. They are distinguishable by the existence of intermediary categories
between the parent VE and the VE to be mapped.

Case 1: direct parent/child. In this situation, it is enough to refer to the information
registered in the DAG by invoking the predicate hasMappedState of each state in the child
VE which gives a list of mapped states in all its parents (cf. 4.3.4). To get the mapped
state to the current given parent VE, a filter on the obtained list by the given parent VE is
applied (remind that the returned mapped states are in form of [ancestorName].[stateName]
that the information of the model containing the state is also available). This procedure
is detailed in algorithm 2 line 1 as procedure ParentChildStateMapping.

Case 2: ancestor/descendant with intermediate categories. In this situation,
a path should be determined first from the descendant VE to the ancestor (D → A1 →
· · · → An → A) before applying several iterations of direct parent/child state mapping
process to get the final required state mapping. This path can be found by using basic
operation on a generate directed graph that we suppose well known. It is described in the
procedure AncestorDescendantStateMapping in algorithm 2 line 12.

Step 2: state mapping between the instance of group category VE and member
entities. After the step 1, the table 5.1 is fulfilled for all the present categories in the
system runtime, which we can use to find the state mapping between instances following
the algorithm 3. In the example in figure 5.4, the result state mapping of member entities
is:

A.A1 = {a.A1, b.B1, c.C1, d.D1}

A.A2 = {a.A2, b.B2, b.B3, c.C2, d.D2}

The integrated algorithm 4 is composed of the 2 previous steps to finally find the set
of entity member states corresponding to each state of group category VE.

68Chapter 5. Generic models for discrete control based on the shared infrastructure

Algorithm 2 VE state mapping
1: procedure ParentChildStateMapping(P ,C) . P is the parent VE, C is the

child VE
2: temp . a two column table for parentState/childState pairs
3: SP ← P.getStates() . SP is the set of states of the parent
4: SC ← C.getStates() . SC is the set of states of the child
5: for all sCi ∈ SC do
6: listOfMappedStates← sCi.hasMappedState

7: mappedState← listOfMappedStates.filter(P) . get ont the mapped state of
P among multiple parents

8: temp.addEntry(mappedState, sCi)

9: end for
10: return temp

11: end procedure

12: procedure AncestorDescendantStateMapping(A,D) . A is the ancestor VE,
D is the descendant VE

13: temp . a two column table for ancestorState/descendantState pairs
14: SA ← A.getStates() . SA is the set of states of the ancestor
15: SD ← D.getStates() . SD is the set of states of the descendant
16: path←findDirectedGraphPath(A,D,graph) . path is an ordered list of

intermediate categories from D to A

17: for all sDi ∈ SD do
18: childState = sDi

19: for j ← 1, |path| do . |path| is the number of elements in the list
20: parent← Pj . Pj is the jth element of path
21: childState← childState.hasMappedState.filter(Pj)

22: end for
23: mappedState← childState.hasMappedState.filter(A)

24: temp.addEntry(mappedState, sDi)

25: end for
26: return temp

27: end procedure

5.1. Control-oriented models 69

Algorithm 3 State mapping of group category VE instance and member entities
1: procedure InstanceStateMapping(G,e,table,mapping) . G is the group category

VE, e is the member entity, table is the complete state mapping table like table 5.1
2: StatesG← G.getStates() . StateG is the list of states of G
3: for i← 1, |StatesG| do
4: correspondingStates← getCorrespondingStates(table, e, statesGi)
5: mapping.get(statesGi).add(correspondingStates) . added to the set of all

corresponding state instances
6: end for
7: return mapping

8: end procedure

9: procedure getCorrespondingStates(table, e, state)
10: E ← e.getV E() . VE model of member entity
11: mappedStates← table.get(E).get(state) . get the 3rd column of the table for

parent state
12: correspondingStates← e.getStateInstances(mappedStates) . get the state

instances of e
13: return correspondingStates

14: end procedure

Algorithm 4 State mapping of entity group level VE model and their member entity VE
models and instances
1: let G be the group category VE, {ei} the set of member entities of the entity group

attached to G

2: let resultMapping be a 2-column table where the 1st one represents the group category
VE state and the 2nd one represents its corresponding member entities’ states

3: table←CreateTable(G) . creates and initializes a table for this group category if
not exist

4: for i← 1, |{ei}| do
5: E ← ei.getV E()

6: if Entry E does not exists in table then
7: AddEntry(E,G,table)
8: end if
9: InstanceStateMapping(G,ei,table,resultMapping)
10: end for
11: return resultMapping

12: procedure AddEntry(E,G,table)
13: path←findDirectedGraphPath(G,E,graph)
14: if |path| = 0 then . there is no intermediate category
15: ParentChildStateMapping(G,E)
16: else
17: AncestorDescendantStateMapping(G,E)
18: end if
19: end procedure

70Chapter 5. Generic models for discrete control based on the shared infrastructure

5.1.3 Data combination

Having the result from previous subsection, the input of the entity group can be ex-
pressed in terms of member entities’ state by replacing the group category VE state by its
corresponding state in the member entity. In the example in figure 5.4 where we consider
the entity group model has been built from the generic template we introduced in 5.1.1, its
input, initially expressed all in states of A, can be expressed in member entities’ (a, b, c, d)
states: ∨

e.A2 = a.A2 ∨ b.B2 ∨ b.B3 ∨ c.C2 ∨ d.D2 = ¬(
∧

e.A1)∧
e.A2 = a.A2 ∧ b.B2 ∧ b.B3 ∧ c.C2 ∧ d.D2 = ¬(

∨
e.A1)

5.1.4 Control order dispatching towards individual entity instances

So far, we have seen how to make an entity group model and how to associate it to
its member entity instances by using their hierarchical relationship in the ontology. The
combination of outputs of member entity instances seems straightforward (the module
"data combination" in fig 5.5). However, a big question remains: how to pass an order
from the discrete controller applied on the entity groups onto some of its member entity
instances to get the control done in the physical world? The actions to be taken should be
just necessary to respond to the control, more concretely, if turning off one lamp shall be
enough, a second lamp should not be turned off.

In order to meet the above requirements, a module called "dispatcher" is located be-
tween entity group output and input of member entity instances to send necessary action
signal to designated entity instances. This module has the knowledge of the entity group’s
input/output expressions in terms of states of member entities or some specific value, to-
gether with the output value of each member entity and the one of the entity group under
control, as shown in fig 5.5.

5.1. Control-oriented models 71

Entity Group

All X X or Y All Y

D
is

p
a

tc
h

e
r

D
a

ta
 c

o
m

b
in

a
ti
o

n
Individual entity 1

X Y

Individual entity n

X Y

...

input

entity

group

state

entity

group

state entity 1

state entity n

input entity 1

input entity n

Figure 5.5 – state data combination of member entities and control order dispatching

Algorithm 5 Control dispatching for 3-state general entity group
Require: known state expressions: All X = ¬(

∨
e.y), All Y =

∧
e.y and X or Y =

¬(
∧
e.y) ∧

∨
e.y

Require: the result mapping of algorithm 4 for entity group eg and its member entities
{ei}

1: if eg.All X &
∨
e.y then . eg is controlled to go to All X state

2: for all ei do
3: if ei.y then . every member entity in state Y should go to state X

4: ei.go(X);
5: end if
6: end for
7: else if eg.All Y &¬

∧
e.y then . eg is controlled to go to All Y state

8: for all ei do
9: if ¬ei.y then . every member entity in state X should go to state Y

10: ei.go(Y);
11: end if
12: end for
13: else if eg.X or Y then . entity group is in the intermediate state
14: if

∧
e.y then . All member entities are in state Y

15: {ei}.getOneEntity().go(X) . one entity going to X is enough
16: else if ¬

∨
e.y then . All member entities are in state X

17: {ei}.getOneEntity().go(Y) . one entity going to Y is enough
18: end if
19: end if

72Chapter 5. Generic models for discrete control based on the shared infrastructure

The dispatcher takes the uncontrolled member entities state values to calculate the
eventual "uncontrolled" result of entity group state to be compared to the controlled one.
If they are different, which means the controller has interfered, the dispatcher should send
the action signal to those entity instances with a target state to be reached in order to make
the "uncontrolled" group state value identical to the controlled one which is the true value
of the given expression. We explain this procedure though the 3-state generic entity group
for those 2-state entity instances as in 5.3. Algorithm 5 shows the procedure in detail.

Remark 9. The algorithm does not necessarily need to know the exact input of the target
member entity that should be actuated. In fact, the specific logic of state transition is
encapsulated inside the function or method whose API is provided by the member entity.
In the present case, the available API is the function go(targetState). This API is called
service in OSGi that we will see in chapter 6 about the implementation,

In the example in figure 5.4, if the entity group EG_A is commanded to state All A2

which imposes ∧
e.A2 = a.A2 ∧ (b.B2 ∨ b.B3) ∧ c.C2 ∧ d.D2

while the actual states of the member entities a.A2, b.B1, c.C2, d.D1 which make the
above value false. By applying algorithm 5, an inconsistence of control result and real
value is detected, so that actions are sent to those entities which are not in the correct
state: b.go(A2) and d.go(A2). As state A2 has 2 corresponding states in b, it chooses one
arbitrarily, e.g. b.B3.

5.2 Controller generation using BZR

The controller acting on entity groups is automatically generated using BZR. This gener-
ation consists of three steps: first, encode the system model in BZR; second, translate the
control objectives into BZR contracts; finally, compile the above codes to get a executable
program of the controller with the modeled system. This section describes briefly this
process by using the toy example in figure 5.4.

5.2.1 BZR encoding of the system model

In general cases, for the entity group models which are obtained following the very generic
template introduced in 5.1.1, they can be translated into BZR code easily as a node which
takes the form like the follows:

node entityGroupModel (v1_and ,v1_or ,...,vn_and ,vn_or ,c1 ,c2:bool)
returns (s1 ,...,sN)
let

automaton
state S1 do

s1 = true; s2 = false; ...; sN = false;
until (s2_condition) then S2

|...
| (sN_condition) then SN

5.2. Controller generation using BZR 73

state SN do
s1 = false; s2 = false; ...; sN = true;

until (s1_condition) then S1
|...
| (sN -1 _condition) then SN -1

end;
tel

in which s1_condition to sN_condition are the entering condition in terms of state
combination of member entities (here v1_and, v1_or,..., v1_and, v1_or) explained in
algorithm 1.

In the example in figure 5.4, the entity group model of EG_A is encoded following the
above template:

node entityGroupModelA (a2_and ,a2_or ,c1 ,c2:bool)
returns (all_a1 ,all_a2 ,a1_a2)
let

automaton
state AllA1 do

all_a1 = true; all_a2 = false; a1_a2 = false;
until (not a2_and & a2_or) or c1 & c2 then A1A2

| a2_and or c1 & c2 then AllA2
state A1A2 do

all_a1 = false; all_a2 = false; a1_a2 = true;
until not a2_or or c1 & c2 then AllA1

| a2_and or c1 & c2 then AllA2
state AllA2 do

all_a1 = false; all_a2 = true; a1_a2 = false;
until not a2_or or c1 & c2 then AllA1

| (not a2_and & a2_or) or c1 & c2 then A1A2
end;

tel

The system model used by the DCS process consists of the parallel composition of entity
groups and relevant observers. If we develop the current example to include an observer
Obs of a contextual variable cv, its global system behavior model is:

S = EG_A ‖ Obs

The BZR encoding of the global system behavior can be obtained by composing all the
above models by putting them in parallel denoted by ;, as shown in the following structured
in a node named globalSys (we don’t describe the model of Obs that its presence is only to
illustrate the principle of parallel composition to obtain a global system behavior model):

node globalSys (a2_and ,a2_or ,cv:bool)
returns (all_a1 ,all_a2 ,a1_a2 ,scv:bool)
contract

var ...
assume ...
enforce ...
with (c1,c2:bool)

74Chapter 5. Generic models for discrete control based on the shared infrastructure

let
(all_a1 ,all_a2 ,a1_a2) = inlined entityGroupModelA(a2_and ,a2_or ,c1 ,c2);
scv = inlined Obs(cv);

tel

The contract part in the above encoding will be detailed in the next section. The 2
controllable variables are declared within the contract, and the keyword inlined indicates
that the marked node instance are taken into account when DCS is performed.

5.2.2 Control objectives as contract

The contract should formalize the constraints on the global system by Boolean expressions
in terms of the output of node instances or the input of the global system. This translation
of rules to BZR contract is specific to each rule and each global system. We consider a
constraint on the current system that the EG_A can never be in AllA1 while the observer
is in the state where scv=true, this rule is translated in Boolean expression in terms of
states combination:

¬(EG_A.AllA1 ∧ obs.Scv)

The omitted contract part of the above BZR encoding for the global system is then
encoded in terms of output of the two instances as follows:

contract
var constraint:bool;
let

constraint = not (all_a1 & scv);
tel
assume true (*no specific assumptions on the system *)
enforce constraint
with (c1,c2:bool)

Taking together the system model and the contract, the BZR compiler can synthesize
a controller in C or Java code automatically satisfying the defined objectives if it exists.

5.3 Corpus of control rules

We are interested in control applications consisting similar categories of subsystems in one
domain, which makes them applicable to different instances of the specific domain. Thus
we suppose that it is profitable for end users or the application developers to put these kind
of rules in a common base shared among themselves, which is inspired by the mechanism
of sharing available software libraries. If anyone else needs rules for similar purpose of
control, he can look into the base to find rules which may fit, or to have some inspirations
for developing his own rules. This common base of rules is called the corpus of control
rules in the thesis.

Two requirements have been identified for the corpus of rules:

5.3. Corpus of control rules 75

• Rules should be expressed in terms of generic categories or properties corresponding
to the nodes of the DAG representing the domain ontology in 4.3.2, to make sure
that they are also applicable in other instances of the same domain without further
customization.

• Rules should be classified into categories by their purpose of control to facilitate the
search of rules and the eventual management of priorities of them in case of conflicts.

5.3.1 Generic rules and their categories

Most of today’s control applications are about to manage directly the entities and sub-
systems one by one. Connected objects are identified either by their serial number (ex.
RFID) or by IP address in the local network, thus it is natural to manage them in the same
way. It is similar to the traditional industrial control where controlled subjects are wired
to control unit one by one: any control logic is expressed naturally in terms of atomic
controllable unit of object, like a valve, a robot. It is profitable in industrial implants
because the configuration stays the same for a long life cycle and a high level reliability is
required. However, such analogy is not suitable for our target scope as its characteristics
are so different from those ones from industrial domain. Rules should be changed to fol-
low the differences from one environment instance to another. Any configuration change,
which is often especially in the home environments, will lead to a re-edition of related rules,
which should not be expected as expertise of the target users. Moreover, we think it is
more direct concern for the final users about the environmental properties integrally like
the level of light, the temperature, the noise than the details of these concerns like the n-th
lamp to turn on to light up the room.

Taking an example in home that we meet in our everyday life:

• for safety, when there is someone in the room, there should be some light.

• for security, close/lock wall opening things (window, door, shutter, etc.).

• for energy efficiency, shut down heating equipment if window open

• for comfort, heating equipment is working when the temperature is lower than 18℃
and some one is present.

We can notice that these rules are expressed in terms of generic categories or properties
such as light, wall-opening, heating corresponding to the nodes in a shared ontology that
may apply not only to particular instances of entities in this home environment instance,
but also in most home instances which share the same generic entity categories. More-
over, even in the same home environment instance, this particularity allows to make a
configuration change at individual entity level transparent to the rules and the controller
constructed from these rules, because the categories under control stay the same.

It should be noted here that we are only addressing logical control which ensures the
reachability and invariance (cf.3.3.2) in a discrete event system. More concretely in this
thesis, it is about to forbidden the controlled subsystems to stay in a state, to enforce them

76Chapter 5. Generic models for discrete control based on the shared infrastructure

to go to a state, or to choose another state to ensure the next evolutions of the subsystem
stay only in permitted states.

5.3.2 Category of rules

When several generic rules are picked up from the corpus to define the control objectives in
a given environment instance, they may constrain each other mutually. For example, one
rule may require heating the room while another constrains the maximum instantaneous
power. In the corpus, rules may be grouped into categories with different priorities. We
identify four essential categories of control objectives in the IoT/SE:

• Safety. The rules in this category are for the objective of preventing any harm to
people in the environment. For example, light up a room whenever some one is
inside to prevent the person from falling in the dark. This category is with the
highest priority and cannot be overridden by other categories.

• Security. The rules in this category are for the objective of preventing any harm to
properties, material or intellectual, in the environment. This category should have
second highest priority following the safety one by default, but could be adjusted by
user according to specific need even it is not recommended.

• Energy efficiency. The rules in this category are for the objective of reducing the
energy consumption in a given environment by using renewable energy or by a more
dynamic and reactive management. It is encouraged and recommended for the users
to put this category at a higher priority than the next category comfort.

• Comfort. The rules in this category are for the objective of providing high level
comfort for the human in the environment. The consequence may be a higher energy
consumption. Its priority is lower than the previous energy efficiency category by
default, but can be adjusted by end user.

This classification does not include the health and assistant category which a lot of
applications address. Some of the rules for personal assistance objectives may be covered
by the above categories. For example, medication reminder can be classified in comfort,
as well as for adaptation of environment according to recognized activities, warning or
alarm triggered by not done routine activities in case of monitoring of elder people can be
included in safety, etc.

The priority affected to each category will be used to determine which rule overrides
the other in a case where two rules imply contradictory actions on the same target. We
will elaborate this aspect later in the next section.

5.3.3 Control rules compatibility

Rules are formulated and contributed to the corpus by different contributors at different
moments, so that they are not supposed to be all consistent in terms of control result under

5.3. Corpus of control rules 77

the same situation. A very typical example is that a energy efficiency rule tries to keep
the indoor temperature between 18 and 20 degree (in winter) while a comfort rule tries
to keep it between 22 and 24 degree. A solution to deal with the compatibility problems
among the rules is indispensable for a correct system execution and a good acceptance of
the whole system. Such coordination problem among rules in a given rule engine has been
recognized since long time. Many methods have been proposed since, including the one
treating it by a DCS approach by verification and control based on behavior models to avoid
static (compilation time) and dynamic (in runtime) problems of redundancy, inconsistency,
circularity described in [CDR14]. We will address this problem by a different approach by
using the concept of entity group which does not represent one entity to be controlled, but
a set of entities.

5.3.3.1 Controller by category of rules

Contradictory actions on the instances of models given to the DCS tool to generate a
controller would be detected during the compilation time. Regarding to the Heptagon/BZR
contracts, one or more inlined nodes, a.k.a. the model instances, should be in more than one
state to satisfy the constraints, which would lead to failure of generating such a controller
by DCS.

As we are using entity group as behavior model to provide to the DCS tool with con-
tracts being expressed directly on them, contradictory behaviors at this level are already
verified and eliminated when the controller is generated. If the generation fails, the con-
tracts should be re-verified by someone with the expertise to make the controller generation
succeed. When the controller starts to get big with many entries of rules, it would be more
and more complicated and challenging for a human being to get constraints expressed in
the contract compatible with each other to finalize a compilation. On the other hand,
the absence of contradictory actions at the level of behavior models on which the DCS is
performed does not mean the absence of contradictory actions at the level of individual
member entity instance. In fact, two states of two different entity groups can be totally
independent and consistent (ex. one rule requires light-emitting group to be in some-light
state and another rule requires the noise-making group in no-noise state), while the mem-
ber entities belonging to both groups could be required in different states (ex. supposing
that TV belongs to both light-emitting and noise-making group, it could be asked in ON
state by the former while in OFF state by the latter). However, this situation would not
always leads to a conflict at the entity instance level because it will depend on the concrete
type, state of each member entity instances in the group. In the above example, if the
light-emitting group includes other types of member entities other than TV, like lamp, so-
lutions exist to avoid contradictory orders on TV instance while keeping the constraints on
entity groups satisfied by ordering lamp instance to be ON, while there is no other solution
if TV is the only member of light-emitting group.

In order to make controller of smaller size and have a method to resolve the conflict
problem among different rules, instead of one centralized controller for all the necessary
rules, we make a controller per category of rules which work together and if there are
contradictory actions coming from different controllers, the most priority ones get executed

78Chapter 5. Generic models for discrete control based on the shared infrastructure

knowing that each category of rules has a priority compared to the others. As for the rules
belonging to the same category, they are considered as equal in priority that if there is a
conflict, the first action on the same entity instance gets executed.

5.3.3.2 Resolution of conflict from different controllers with different priority

We will still use two 3-state entity groups to illustrate the resolution process. Some modi-
fications will be applied in the algorithm 5 to determine the one and correct action signal
to be sent to necessary member entities. In the current algorithm, actions are directly
sent to the corresponding entities by invoking the go(target_state) function. Therefore,
to avoid sending inappropriate actions, the target state of one member entity desired by
one rule will be temporarily held to be finally verified with all target states on the same
entity ordered by others rules and execute the most priority one, which consists of replac-
ing go(target_state) by holdTemporarily(target_state) in the algorithm. Sometimes
there is no desired specific target state for one member entity according to one rule, which
implies the member entity can be in any state without any affect on the state of the entity
group. If we call the procedure described in algorithm 5 with the above modifications
Procedure preDispatching, the conflict resolution algorithm is presented in the follows
which is executed by the dispatcher module replacing the simple dispatching procedure.

Algorithm 6 Rule conflict resolution
Require: Rule priority
1: temp . temp is the table storing temporarily the target state of every member entity
2: for all entity group do
3: PreDispatching() . result stored in temp

4: end for
5: for all entity member ei do
6: finalState← highestPriorityTargetState(ei, temp)

7: ei.go(finalState)

8: end for

Suppose that there are two rules from respectively "safety" and "energy efficiency"
category where the former has higher priority than the latter. Entity group A over the
category A including a list of entities listA = {ei}i=1···nA is invoked by the safety rule and
the entity group B over the category B including a list of entities listB = {ei}i=1···nB

is invoked by the energy rule. Some entities belong to both groups and denoted by
listcommon = {ei}i=1···nc,nc≤Min(nA,nB). The table to store the temporary target state
from each rule is shown in table 5.2.

e1 e2 · · · enc enc+1 · · · enB enB+1 · · · enA+nB−nC

Rsafety N/A S1 · · · S1 N/A · · · N/A S1 · · · S2, S3

Renergy S1 S1 · · · S2 S1 · · · S1 N/A · · · N/A

Result S1 S1 · · · S1 S1 · · · S1 S1 · · · S2, S3

Table 5.2 – Target states according to different rules from different category

5.3. Corpus of control rules 79

The safety rule has higher priority. In the column enc , the two rules define different
target state for the entity enc , the final target state is obviously S1 defined by the safety
rule. For entity e1, as the safety rule does not specify a target state, any state would be
fine for it, so the result target state is the one defined by energy rule. For e1, two rules
have the same target state, the final state is straightforward. For those entities specific to
each group, there would not be any conflict in final target state because they are under
only one rule. Taking the last row of the table to be compared to the state value of the
entities before control, the go(target state) function can be thus called to trigger the
necessary and effective actions.

5.3.3.3 Example

We have already mentioned an example in 5.3.3.1 where 2 rules co-exist with potential
conflict:

• For safety, when there is someone in the room, there should be some light.

• For comfort/productivity, when someone is working in the room, noise-making things
should be turned in "silence" mode.

After a brief observation of the trigger conditions of the two rules, it’s obvious that Working
(in the 2nd rule) is a substate of Occupied (in the 1st rule) of the room, so that when the
room is in Working state, both rules are triggered. Remind here that the two rules belong
to two co-existing controllers for different category of rules.

As for the configuration in the room, in this example instance there are 2 lamps, 1
TV and 1 vacuum cleaner following the simplified ontology graph in fig 5.6 (the complete
ontology will be given in the case study 7.3).

Figure 5.6 – Partial ontology graph for the example

We have seen the VE models for TV, lamp (cf.4.3.1) and light-emitting (cf.4.3.3). Noise-
emitting and vacuum cleaner have also 2-state VE model: {no−noise, noise−making} and
{off, on}. Member entity instances of entity group noise-emitting and light-emitting are
quite straightforward to get following the graph as the control is over the scope of one room
and all the entity instances are in the single room: light−emitting : {lamp1, lamp2, tv},
noise−emitting : {tv, vacuumcleaner} among which the entity instance tv belongs to
both groups.

80Chapter 5. Generic models for discrete control based on the shared infrastructure

tv lamp1 lamp2 vacuumcleaner

Rsafety N/A on N/A N/A

Rcomfort off N/A N/A off

Result off on N/A off

Table 5.3 – Target states snapshot when 2 rules execute together

By applying the method introduced in 5.1.2 to determine the state mappings between
parent(ancestor)/child(descendant) VE models of categories (not shown in fig 5.6), we can
get the list of mapped member entity instance states to each state of the 2 group category
VE models:

lightEmitting.NoLight = {lamp1.off, lamp2.off, tv.off}

lightEmitting.Lighting = {lamp1.on, lamp2.on, tv.on}

noisemitting.NoNoise = {tv.off, vacuumCleaner.off}

noisemitting.NoiseMaking = {tv.on, vacuumCleaner.on}

The model for both entity groups is the 3-state model following the general template
for a set of 2-state-modeled entity members. We are not detailing their input/output
interpretation in terms of logical combination of states of member entity instances here,
which can be referred to 5.1.2 where the similar equations have been detailed.

Suppose a scenario where at initial instant, there is no body in the room, all the lights
are off but the vacuum cleaner is working itself (a robot). At one moment, a person walks
in to start working (event detected by analyzing some sensor data), the room passes to
Working state and the two rules are executed with the output of the entity groups being:

lightEmitting.Lighting =
∨

e.lighting

noiseEmitting.NoNoise =
∧

e.no−noise

According to the modified algorithm 5, the first step is to get the target state of each
member entity instance assigned by each rule: (table 5.3 and tab:example state compare
2)

The result in table 5.3 shows no contradiction because one of the rules does not need to
address the only common entity instance (TV) to get the rule validated (the ON state of
entity lamp1 is enough to make the "OR" combination true) , so that the result state of
each entity instance is compared to the same state before control to trigger the necessary
action on entities. If unfortunately the safety rule chooses to get the common entity
instance TV to state on, the result will be different as shown in table 5.4. We notice that
the two rules gives the contradictory target state to TV. Taking the priority into account,
the result target state is the one from the more priority rule. The rule with lower priority
is partially executed.

5.3. Corpus of control rules 81

tv lamp1 lamp2 vacuumcleaner

Rsafety on N/A N/A N/A

Rcomfort off N/A N/A off

Result on N/A N/A off

Table 5.4 – Target states snapshot when 2 rules execute together: another possibility

5.3.3.4 Conclusion of the compatibility resolution

The method we propose here to resolve the compatibility problem is a basic one in the
runtime as we suppose the off-line one has already been done by the DCS. Its takes also
a "best-effort" approach in a conservative way, which means it does not ever question the
decision made by a rule with higher priority before discarding a contradictory action from
a rule with lower priority, even there might exist another possibility of solution that satisfy
both. In the above example, if the method knew that it could coordinate the decisions
of two rules by changing the decision from the safety rule to get tv on to get a lamp on,
the decision from the comfort rule could have been completely executed on both TV and
vacuum cleaner instances. The reason why this coordination functionality is not integrated
is that it turns to re execute the DCS method to find the maximally permissive solution by
analyzing all the possible combinations of the states, which we have proposed the concept
of "entity group" to get rid of. However, the native non-integration of this feature does not
prevent an application-specific configuration given to the dispatcher to tell it how it deal
with it in the specific situation, for example, to give a priority to each child category the
entity group category for each rule that the entity instances belonging to the most priority
category always get order in the first.

Part III

Validation

83

Chapter 6

Implementation

Contents
6.1 Overall functional architecture . 85

6.2 Ontology implementation . 86

6.3 Implementation on OGSi . 87

6.4 Context simulator . 89

This chapter will describe the implementation of the concept presented in the previous
two chapters. This implementation develops the prototype implemented in [Hu14] and
works together with other modules in lower layers to realize a complete functional loop
from the physical world up to the supervisory control block.

6.1 Overall functional architecture

Figure 6.1 – Overall functional architecture of the implementation

85

86 Chapter 6. Implementation

We focus on the implementation of the 3 layers colored by orange in figure 6.1 with the
support of lower-level layers colored in gray. The two parts make up the physical plane
and the proxy instance plane presented in the general framework. The model plane is
considered as knowledge to the platform which is static and external, that’s why it is not
shown in this functional architecture.

The platform encompassing the 3 superior layers maintains a 1-to-1 mapped vir-
tual representation for each physical entity as a PEIR (Physical Entity Information
Representative), an instance for each entity group as well as the controllers generated
by the DCS process together with the entity groups on which they apply. The n-to-n map-
ping between PEIRs and groups are illustrated clearly in the figure. This platform exposes
RESTful interfaces to external applications at entity group or entity proxy level, and it
accesses to the device abstraction layer to get sensor data or connected/ICT equipment’s
reading, and to send command to actuators or connected/ICT equipment’s settable API.
The device abstraction layer is hosted in a home gateway, such as a home set-top box,
which may host on the meanwhile the platform itself.

6.2 Ontology implementation

The ontology implementation consists of the description of the domain ontology DAG and
the virtual entity model of each node of the DAG in common ontology description language
OWL, using the graphical ontology modeling and editing tool Protégé1. We will show two
pieces of our ontology in the form of Protégé graphical ontology representation, with the
help of the plug-in OntoGraf2. The first one is a part of the entity categorization in our
scope, the second one shows the composition of ontology elements to obtain an automaton.

Figure 6.2 – A piece of the implementation of the ontology DAG by Protégé

Figure 6.2 shows a small piece of ontology DAG we implement for one of our study
cases. The blue arrows pointing from the top to the bottom denote the relationship "is a"
as we explained in 4.3.2 (in an opposite direction as the software interprets the relationship

1http://protege.stanford.edu
2http://protegewiki.stanford.edu/wiki/OntoGraf

http://protege.stanford.edu
http://protegewiki.stanford.edu/wiki/OntoGraf

6.3. Implementation on OGSi 87

as "has subclass") and the orange arrows denote the "has property" relationship. We can
notice that the DAG is divided in three mains branches: appliance, space and property,
which correspond respectively to ""thing", "space" and "shared property" that are the
three highest-level general classifications in the domain-specific ontology. The yellow arrow
provides an additional relationship between the categories "appliance" and "space" which
is inherited by all their descendants.

Figure 6.3 – FSM "Lamp" implemented by Protégé

We implement an FSM by instantiating the state machine elements provided in the
general state machine ontology proposed by [Dol04] and introduced in 4.3.4, and connecting
them by the appropriate relationship also predefined in the same ontology, as shown in 6.3.
This "lamp" FSM model composed by the instances of state machine elements is equivalent
to the one shown in figure 4.2.

6.3 Implementation on OGSi

OSGi3 is a component model that enables building component-based Java applications,
and running them side-by-side on the same Java Virtual Machine. The OSGi framework
is a platform that provides various services to running applications, and enables installing,
updating and uninstalling individual applications without restarting the platform. Core
features of OSGi are based on an original Java class loader architecture that allows code
sharing and isolation between modules called bundles. A bundle contains Java classes that
implement zero or more services which are published by the Declarative Services component
model to be consumed by other bundles within the same OSGi platform.

The choice of OSGi for the prototype implemented in [Hu14] which serves as a base of
the current implementation was the need of creating and reconfiguring the proxy represent-
ing each recognized physical entities without stopping and restarting the entire platform
to get the reconfigurations applied. This criterion is still valid for current need. Hence we
continue the implementation on OSGi by improving the identification and reconfiguration
features for the entity proxy level, and adding the entire layers of entity group and su-
pervisory controller as well as some components of supportive functions such as ontology
interpretation.

Figure 6.4 shows the modules actually implemented on the OSGi platform (the part
surrounded by the blue dotted rectangle) to achieve the full functionality, working together

3www.osgi.org

www.osgi.org

88 Chapter 6. Implementation

Figure 6.4 – Architecture of the (Home) abstraction platform implemented on OSGi

6.4. Context simulator 89

with external modules via available interfaces. We recognize the orange modules the ones
already presented in the functional architecture in figure 6.1 while other white ones ensure
the correct performance of the orange blocks by connecting the physical world, interpreting
the external knowledge, etc.

Each white block on the platform is implemented as an OSGi bundle providing a service,
as well as each PEIR, which can be required and consumed by other bundles. One controller
and the entity groups it controls generated together by DCS as an integrated executable
function is considered as a bundle. Bundles communicate by intra-OSGi interfaces and the
primary bundles hosting the orange modules also provide RESTful interface that can be
directly invoked by external applications to get corresponding information on the bundle.

The current implementation is using the Apache Felix implementation of OSGi frame-
work hosted in a Java Virtual Machine 1.6.

6.4 Context simulator

We have developed MiLeSEnS (Multi Level Smart Environment Simulator) as a testing
ground based on Siafu, an open-source context simulator written in Java[MN06], which
provides a GUI and basic and simple physical models such as moving people and physical
areas. Figure 6.5 shows an example. These are toy models with no pretense of physical
plausibility, yet they may provide enough environmental elements and interactions between
actuators and sensors to validate key properties of the models and controllers.

Figure 6.5 – MiLeSEnS GUI example: a home environment interface

The simulated environment includes already the physical environment in the physical
plane (c.f. figure 4.1) and the device layer between the two planes as it provides also
simulated sensors and actuators. From the point of view of the OSGi-based platform,
it is hidden by the device abstraction layer which it sends sensor readings to and takes
actuator orders from. A simulation can provide a complete test environment or co-exist in
parallel with some pieces of physical equipment monitored and controlled via sensors and
actuators thanks to the unification of different sensor/actuator communication protocols (if
we consider the simulation output as a "protocol") made by the device abstraction layer.

Chapter 7

Case studies

Contents
7.1 Preliminary: discrete control on generic models for a smart home

instance . 91

7.1.1 Case study description . 91

7.1.2 System modeling and discrete controller generation 92

7.1.3 Implementation and simulation . 95

7.2 Power control for home: load shedding 95

7.2.1 Case study description . 96

7.2.2 System modeling and controller generation 96

7.2.3 Closing the control loop using the platform 99

7.2.4 Experiments . 102

7.3 Home office scenario . 105

7.3.1 Case study description . 105

7.3.2 System modeling and controller generation 105

7.3.3 Experiments . 107

7.1 Preliminary: discrete control on generic models for a
smart home instance

This preliminary case study consists of applying the DCS technique on the generic entity
models for IoT/SE in a home environment with some rules initially on groups in which
members share the same property and then interpreted manually in terms of individual
entities based on the available ontology. The objective of this study is to validate the
generic models without using the complete functionality of the proposed framework.

7.1.1 Case study description

We consider a home environment of one room, with several non-networked appliances:
a TV, a lamp, a radiator, a washing machine and an oven, and several infrastructural
elements: a window and a door, connected to the control system through the intermediary
of networked sensors and actuators, as shown in figure 7.1. Apart from the sensors and

91

92 Chapter 7. Case studies

Figure 7.1 – Home environment configuration with control system

actuators connecting "things", there are several infrared sensors detecting the presence and
the movement of a living person.

Several control objectives are considered:

1. For safety, at least one light source is on when room is occupied;

2. For security, close window and door when room isn’t occupied;

3. For energy efficiency, if any window or door is open, the radiator should not be
heating;

4. For energy efficiency, if the room is not occupied, no light is on and the radiator is
not heating;

7.1.2 System modeling and discrete controller generation

In this preliminary case study, the concept of "entity group" is not considered as a "system
behavior model" to be instantiated and controlled by the controller, but as a "intermedi-
ary" to translate rules expressed in terms of generic properties to BZR contract expressed
in terms of individual entities. Thus, the generic models for entities in this domain as
introduced in 4.3.1 should have controllable variables on their state transitions in order to
be controlled directly.

• Door behavior model. It has an initial state Closed and a second state Open. Input
push is uncontrollable command from people while the other input c is controllable
which will prevent the door from opening or force it to shut, to meet the objectives.
Window has the same behavior model. (figure 7.2(a))

• Lamp behavior model. It has an initial state OFF and a second state ON. Input
turn_on and turn_off are uncontrollable inputs from the switch signal while the

7.1. Preliminary: discrete control on generic models for a smart home instance 93

Figure 7.2 – Model with control of (a)Door; (b)Lamp; (c)Washing machine; (d)Radiator

other input c is controllable. TV and oven have the same behavior model. (fig-
ure 7.2(b))

• Washing machine behavior model. Washing machine has 2 states without power
consumption: off and stand by, 3 states washing, rinsing and spinning represent the
different steps in a washing cycle existing in all modern washing machines. Con-
trollable variable c forces the machine to go to stand by states instead of the next
working state when necessary. (figure 7.2(c))

• Radiator behavior model. A radiator has state off without power consumption and
2 states frost protection, high with different set temperature hence different electrical
power. Controllable variable c forces some transitions and prevent some transitions.
(figure 7.2(d))

• Room behavior model. The state transition of a room is uncontrollable as we can
not prevent a person from entering or leaving the room. Thus, its behavior model is
exactly the same as the one presented in figure 4.3 with 2 states empty and occupied,
and two inputs presence_on and presence_off which may be the result of several
presence sensors.

We formalize the rules for the system in terms of generic properties, eventually shared
by more than one individual entities:

1. room.occupied⇒ lightEmitting.on;

2. room.empty ⇒ opening.closed;

3. opening.open⇒ ¬radiators.high;

4. room.empty ⇒ lightEmitting.off ∧ ¬radiators.high

94 Chapter 7. Case studies

Figure 7.3 – Ontology applied for case study 1 and 2, part taken from a more complete
ontology DAG

The domain ontology DAG for this case study is shown in figure 7.3 where the dotted
lines mean "has property" and solid blue lines mean "has subclass", according to which
we can make groups of individual entities by their shared properties relevant to the rules
the system should respect:

• lightEmitting = {lamp, tv};

• opening = {window, door}

Therefore, we can translate the expressions in terms of generic properties used in the
rules:

• lightEmitting.on = lamp.on ∨ tv.on;

• opening.closed = window.closed ∧ door.closed;

• opening.open = window.open ∨ door.open;

• radiators.high = radiator.high, in this case, there is only one entity in the group
radiators;

• lightEmitting.off = lamp.off ∧ tv.off

With the above models and rule expressions, the global system is the parallel compo-
sition of all the individual entities with control specified by the BZR contract:

var safety , security , energy1 , energy2:bool;
let

safety = not roomOccupied or (lamp_on or tv_on);
security = roomOccupied or (window_closed & door_closed);
energy1 = not (window_open or door open) or not radiator_high;
energy2 = roomOccupied or (lamp_off & tv_off) and not radiator_high;

tel
assume true;
enforce safety & security & energy1 & energy2
with (c1,c2 ,...: bool)

7.2. Power control for home: load shedding 95

Figure 7.4 – Case study 1: Simulation with synthesized controller

7.1.3 Implementation and simulation

By feeding the BZR program to the BZR compiler, it generates a controller in Java code
automatically which has 2 main functions: step and reset. reset initializes the state of
the program and step executes one reaction where all necessary events are represented by
an input of step which, after one execution, returns output values of current state of the
program.

We programmed a simulation on MiLeSEnS which represents the target environment
with all entities and possible system behaviors in absence of control, providing the input
for step function via available interfaces. Unlike the executions without control where
undesired system behaviors are observed, e.g. the radiator is heating with high power
while the window is open, the controlled executions respect all the objectives. We can see
on the GUI that, as illustrated in Figure 7.4, every time the person does some action or
an event occurs, the system never goes to a forbidden state.

7.2 Power control for home: load shedding

Load shedding refers to monitor the energy consumption continuously and disconnects
automatically the electric current on some lines in case of overload. It is now a common
controlled alternative response to excessive demand in the Grids to avoid a complete black
out. It is selective to ensure the continuity of crucial services.

Usually, we identify two main types of load-shedding: power-based and energy-based.
The former one consists of controlling the instant total power to avoid a over voltage while
the latter one consists of controlling the total energy consumption in a defined period to
avoid a complete run out of energy storage especially in the energy-autonomy cases.

Concerning the individual grid connected environments, load shedding is often used,
today, in industrial, large commercial, and utility operations monitoring and shutting down
some pre-arranged electric loads when some upper threshold is approached or reached,
especially for economic reasons. Though the scope of application is currently in larger

96 Chapter 7. Case studies

Figure 7.5 – Home instance example

scales of environment, it is certainly applicable in home area by analogy and profitable for
the individual end users as well as for the power companies.

The objective of this study is to realize a discrete control on generic environmental
properties through the proposed framework. We will describe more in details the procedures
introduced in chapter 5 in a general way through the present case study.

7.2.1 Case study description

In the present load shedding scenario, two rules of safety are considered (chosen from the
corpus of generic rules):

• When there is someone in the room, there should be some light.

• The instantaneous total power of electrical appliances shall not exceed a threshold
set by the grid operator

with two lamp instances, one tv, two radiators, an kettle, an oven, a washing machine in
a room, shown in figure 7.5. This home environment instance adopts the ontology DAG
already presented in the previous case study in figure 7.3.

7.2.2 System modeling and controller generation

By analyzing the two control rules, the target models directly invoked by the discrete
controller are the room as observer, the power observer, the light-emitting entity
group and the high power entity group. The room observer has only one room, so that
it has the same behavior model as the generic room FSM model with 2 states (shown
previously in figure 4.3). The power observer monitors the high power appliance entity
group (figure 7.6(a)), taking as input the sum of the power of each member entity instance
and the threshold value which is given by a grid observer transmitting the constraints

7.2. Power control for home: load shedding 97

U O

total>=limit

total<limit

total

limit

state

powerObserver

N U

normal
=true
limit=LIMIT_MAX

normal=false
limit=limit_input

constaint
_mode

normal
_mode

normal

gridObserver

constaint_mode

normal_mode
limit

limit_input

Figure 7.6 – (a)Power observer and (b) grid observer

no light

LightEmitting Group

some
light

c

∨e.lighting ((∨e.lighting)
∧(¬(∧e.lighting))∨¬c'∧c

¬(∨e.lighting)∨¬c'∧c state

all
lighting

(∧e.lighting)
∨¬c'∧c

∧e.lighting
((∨e.lighting)
∧(¬(∧e.lighting))
∨¬c'∧c

¬(∨e.lighting)
∨¬c'∧c

(∧e.lighting)
∨¬c'∧c

all
off

((∨e.on)∨¬c)∧c'

(¬(∨e.on) ∨¬c)∧c'
state

highPower Group

some
on

remove

remove
c

(∨e.on)∧c'
/¬remove

¬(∨e.on)

c'

(∨e.on)∧¬c'
/remove

∨e.on

remove =true

Figure 7.7 – Entity group model of (a)light emitting category; (b)high power appliance

over the entire/partial grid from the electricity supplier. More precisely, the grid observer
(figure 7.6(b)) takes the order from the external grid by the binary input constraint_mode
and normal_mode indicating the current situation of the grid: if it is in a normal mode,
the threshold of power depends only on the capacity of the individual home, which is a
constant LIMIT_MAX; if there is constraint outside, the threshold is then defined by the
supplier by the input limit_input. We can notice that these models are uncontrollable.

As for our target of control, the group of light-emitting and high power, a FSM model
with controllable variables is needed for each of them. The former will be constructed from
the generic template, and the latter will be designed specifically for particular objective.

Light-emitting group model is made based on the 2-state group category VE model
no-light/lighting (shown in fig 4.6). The entity group model is shown in fig 7.7, with 3
states no light/some lighting/all lighting, representing respectively the member en-
tities "all in no-light", "some in no-light and some in lighting" and "all in lighting",
taking as input the logical “OR” and “AND” operation on the state value of members and
outputting the actual collective state that the member entities are or should be in. The
transitions are controllable which may be inhibited by the Boolean variable c or enforced
by c’, placed on transition labels taking the controller’s order. The output state values
interpreted in terms of combination of member entity states are:

lightEmittingGroup.noLight =
∧

e.noLight = ¬(
∨

e.lighting)

lightEmittingGroup.someLight =(
∨

e.lighting) ∧ (
∨

e.noLight)

=(
∨

e.lighting) ∧ ¬(
∧

e.lighting)

lightEmittingGroup.allLighting =
∧

e.lighting

High power group category VE has 2 states OFF/ON. Its entity group model (fig-

98 Chapter 7. Case studies

ure 7.7(b)) is designed to be able to turn off its member entities one by one until the
total instantaneous power falls below the threshold, hence a dedicated state REMOVE is cre-
ated in addition compared to the basic model. It takes as input the logical “OR” operation
on the state value of high power member entities, and outputs the actual collective state
that the members are or should be in, as well as the remove variable whose true value in-
dicates one high power entity should be turned off. When the state is REMOVE, the variable
remove is assigned true. When the total power is above the threshold, the entity group
should go to the REMOVE state, and go back to the normal working state Some_on as soon
as the threshold is respected. 2 Boolean controllable variables c and c’ are placed on the
transition labels to inhibit or enforce the transition to take place. Its output state value
can be expressed in terms of member entity states and specific action value:

highPowerGroup.allOff =
∧

e.off ∧ ¬remove

highPowerGroup.someOn =
∨

e.on ∧
∨

e.off ∧ ¬remove

highPowerGroup.remove =
∨

e.on ∧
∨

e.off ∧ remove

The global system behavior of the control target system is the parallel composition of
the above models which represents all the possible behaviors in the absence of controller:

S = lightEmittinggroup ‖ highPowergroup ‖ room ‖ powerObserver ‖ gridObserver

The BZR encoding of the global system behavior can be obtained by composing all the
above models by putting them in parallel denoted by ;, as shown in the following structured
in a node named globalSys:

With the above models (detailed BZR encoding in A.1), observers and entity groups,
the global system is their parallel composition with controllable variables specified by the
BZR contract:

node globalSys (lighting_and ,lighting_or ,on_or ,presence_on ,
presence_off ,normal_mode:bool;total ,limit_input:int)
returns (no_light ,all_light ,all_off remove ,presence ,overload ,normal:
bool;limit:int)
contract

var ...
assume ...
enforce ...
with (cl1 , cl2 , ch1 , ch2:bool)

let
(no_light ,all_light) = inlined lightEmittingGroup(lighting_and ,
lighting_or , cl1 , cl2);
(all_off ,remove) = inlined highPowerGroup(on_or ,ch1 ,ch2);
presence = inlined room(presence_on ,presence_off);
overload = inlined powerObserver(total ,limit);
(normal ,limit) = inlined gridObserver(constraint_mode ,normal_mode ,
limit_input);

tel

7.2. Power control for home: load shedding 99

The 2 control objectives can be formalized as Boolean expressions based on the states
of the behavior models and observers:

1. ¬(room.occupied∧ lightEmittingGroup.noLight), exclusivity of the two underlined
states

2. ¬(powerObserver.overload∧highPowerGroup.someOn), exclusivity of the two un-
derlined states

The omitted contract part of the above BZR encoding for the global system is then
encoded as follows:

contract
var exlusiveLight , exclusiveHighPower:bool;
let

exlusiveLight = not (presence & no_light);
exclusiveHighPower = not (overload & (not all_off & not remove));
(*not all_off & not remove refers to some_on state of high power group *)

tel
assume true (*no specific assumptions on the system *)
enforce exlusiveLight & exclusiveHighPower
with (cl1 , cl2 , ch1 , ch2:bool)

Taking together the system model and the contract, the BZR compiler can synthesize
a controller in C or Java code automatically satisfying the defined objectives if it exists.

7.2.3 Closing the control loop using the platform

Once the models used by DCS are ready, the second step is to establish the connection
between entity groups and member entities so that the entity group would represent the
actual behavior of the system and the actions would get to the right entity. We apply the
method introduced in 5.1.2 over the ontology to get the VE model state mapping tables and
instance state mapping which is maintained in the State Mapping module. We illustrate
then how the Data Combination and Dispatcher module work through this case study.

Table 7.1 shows, respectively for the two group category VEs, the state mapping of
their descendant VE models which are instantiated in the current environment.

According to the above state mapping in 7.1, the two sets of mapped states of member
entities respectively to the two states of light-emitting VE model are:

lightEmitting.NoLight = {lamp1.off, lamp2.off, tv.off}

lightEmitting.Lighting = {lamp1.on, lamp2.on, tv.on}

And the two sets for high-power VE model are:

highPower.off = {kettle.off, oven.off, waterHeater.off, washingMachine.off,

washingMachine.standby, radiator1.off, radiator2.off}

100 Chapter 7. Case studies

highPower.on = {kettle.on, oven.on,waterHeater.on,washingMachine.washing,

washingMachine.rinse, washingMachine.spin,

radiator1.frostProtection, radiator.high,

radiator2.frostProtection, radiator2.high}

High power
Descendant VE Parent State Child(ren) State(s)

Kettle(boiler)
OFF OFF
ON ON

Oven
OFF OFF
ON ON

Water heate
OFF OFF
ON ON

Washing machine
OFF OFF, stand-by
ON Washing, rinse, spin

Radiator
OFF OFF
ON Frost-protection, high

Light emitting
Descendant VE Parent State Child(ren) State(s)

Lamp
No light OFF
Lighting ON

Display
No light OFF
Lighting ON

Table 7.1 – State mapping of ancestor/descendant VE models

With the above sets of mapped states maintained in the State Mapping module, the
expressions of input/output of the entity groups can be translated:∧

lightEmitting.lighting =¬(
∨

lightEmitting.noLight)

= lamp1.on ∧ lamp2.on ∧ tv.on

=¬(lamp1.off ∨ lamp2.off ∨ tv.off)

∨
lightEmitting.lighting =¬(

∧
lightEmitting.noLight)

= lamp1.on ∨ lamp2.on ∨ tv.on

=¬(lamp1.off ∧ lamp2.off ∧ tv.off)

∨
highPower.on =¬(

∧
highPower.off)

= kettle.on ∨ oven.on ∨ waterHeater.on ∨ (washingMachine.washing

∨ washingMachine.rinse ∨ washingMachine.spin)

∨ (radiator1.frostProtection ∨ radiator1.high)

∨ (radiator2.frostProtection ∨ radiator2.high)

=¬(kettle.off ∧ oven.off ∧ waterHeater.off

7.2. Power control for home: load shedding 101

∧ (washingMachine.off ∨ washingMachine.standby)

∧ radiator1.off ∧ radiator2.off)

Remark 10. If several states of the same descendant VE model share the same parent state,
in the member entity instantiating this model, one and only one state can be active at one
time, which explains why they are combined by the "OR" operation to make the parent
state active, like (radiator1.frostProtection ∨ radiator1.high) = highPower.on in the
last equation.

Replace the right part of the entity group output state expressions by above equations
to get the state interpretation in terms of states of present member entities

The total instantaneous power of high power group for the power observer is obtained
by:

total =
∑

highPower_n.power

=kettle.power + oven.power + waterHeater.power

+ washingMachine.power + radiator1.power + radiator2.power

where the value of each highPower_n.power is provided by electrical sensor associated to
the entity instance.

Since this moment, the input values can be calculated by Data Combination module
without difficulties by applying directly the above equations. The Dispatcher module
compares the output of Data Combination module and the entity group output value, in
order to identify the controller’s interference, if any, it sends action signal to necessary
member entities existing as a PEIR in the runtime.

Remark 11. The entity group high power is specifically designed that it has its own order
dispatching policy which is not necessarily the same as the policy applied on the entity
groups from the generic template. In the present case, the dispatcher sends a turn_off
signal to one of the member entities which is still on whenever it receives a remove from
the entity group.

For example, when the controller enforces the entity group light-emitting group
to go to state some light from state no light according to the first rule, the out-
put state value is equivalent to (

∨
lightEmitting.lighting) ∧ (

∨
lightEmitting.noLight)

while the uncontrolled values would make the left part of the equation, more specifically∨
lightEmitting.lighting, false. So it turns one entity’s state to lighting-equivalent state

by invoking the entity’s go(lighting-equivalent) function.

This process of associating member entities to their entity group as well as the corre-
spondence between their input/output values is completely automatic which does not need
a case-by-case configuration phase, because all the information needed is in the ontology
or in the descriptive file providing necessary knowledge of the entity group models.

102 Chapter 7. Case studies

7.2.4 Experiments

A graphical tool sim2chro1 is available in BZR to allow user to perform simulations of
the controlled system combined of the generated controller and the global system behavior
model by providing the possible sequence of input value. Fig 7.8 shows a scenario of the
controlled system implementing the above example by using entity group models.

The first part (marked by 1 with three circles) shows the effects of the safety rule over
the light. At initial instant, the detection of person’s presence is positive (presence_on=1)
while the light-emitting group is still in no light state (no_light=1, all_light=0) as
there is no light-emitting entity instance is on (lighting_or=0). This situation does not
fit the constraint defined in the contract where the controller enforces the light-emitting
group to go to the state some light (no_light=0, all_light=0). Note that on the graph
made by sim2chro, the change of state is only visible at step 2 because the values of
these input and output taken to draw the graph are the ones at the beginning of each step,
which means the state change taking place at the end of the step would not be seen until
the beginning of the next step. The feedback of the actual light-emitting entities’ state
is only effective on step 3 (lighting_on=1), which shows that the delay could be non
negligible from the moment when the command is sent to the moment when the actions
are executed of which the system gets a feedback , but it does not prevent the controller
from keeping the constraint respected.

The second part (marked by 2 and 3) shows the effects of the rule preventing the
total electrical power from exceeding a threshold. When the system is in a non-constraint
mode where the limit depends only on the capacity of the house (normal_mode=1), the
total power does not exceed the limit ((total=56)<(limit=90)), so that the high power
group will go to some on state (all_off=0, some_on=1, remove=0) without problem. When
constraint from the external grid detected (constraint_mode=1), the threshold falls to the
value given by the input limit_input which is lower than the actual consumption. The
power observer thus goes to the overload state (overload=1), which leads the high power
group to go to the remove state (all_off=0, some_on=1, remove=1) until the total power
is brought below the threshold (at step 8).

A other implementation of the above system is performed by using directly the individ-
ual entity instances as system components to be put in parallel. However these individual
entities are instantiated from the more generic level models, which are highPower and
lightEmitting. The control objectives are re-written to take the individual entity in-
stances into account. The objective of this implementation is to compare the cost of the
compilation of a controller based on entity group models and the one based on individual
entities. The following is the encoding of this program.

The details of the program are given in the A.2. Very intuitively, at encoding level, the
program is more complex to manage and error-prone, even the 9 entities are all instances of
2-state models. With such implementation, this controller and the global system behavior
model is specific for one configuration of environment instance. Moreover, the size of state
space for the synthesis of controller to verify is an exponential function of the number of the

1http://www.irisa.fr/vertecs/Logiciels/sigali.html

http://www.irisa.fr/vertecs/Logiciels/sigali.html

7.2. Power control for home: load shedding 103

Figure 7.8 – A simulation scenario of safety control

104 Chapter 7. Case studies

+ +

Figure 7.9 – "Mixed" implementation for the case study: kettle and radiator are hardware
and others are simulated, including the space entity room

instances put in parallel and their number of states. As a result, the time cost of compilation
for such a controller increases. The following table 7.2 illustrates this consequence.

abstraction level state space size compilation time (s) (average
of 3 executions)

entity group 48 1.0
individual entity component
using group category VE

4096 7.0

individual entity component
using specific VE

23040 16.0

Table 7.2 – The time costs for DCS operations according to different abstraction level

Another implementation is made as well on individual entity components but this time,
they are not all instantiated from more abstract common models, but their own specific
"generic" model, like the washing machine has a model with 5 states: OFF, standby,
washing, rinse and spin, which makes the state space of the global system even bigger. We
will not give the detailed encoding here (cf. A.3). The result is also put in table 7.2 to be
compared.

This case of study is validated by a "mixed" implementation: the complete home
configuration is composed by some pieces of home equipment are implemented in the
MiLeSEnS simulator and some are real hardware connected by networked sensors and
actuators, as shown in figure 7.9. Thanks to the device abstraction layer hiding the physical
world from the platform, the whole system makes no difference between the simulated
environment and the hardware. The scenarios mentioned above which have validated the
discrete control at the entity group level, are re-performed together with simulation and
the complete platform. The system constraints are well respected which is visible on the
graphical interface of the simulator: when the person moves into a room, the lamp of this
room is lighted; when the kettle is turned on making the global power exceed the threshold,
we can observe the water heater or the washing machine turned off or put to standby.

7.3. Home office scenario 105

Figure 7.10 – Effective ontology DAG for the home office scenario

7.3 Home office scenario

Thanks to the progress of technology the resent decades, working at home has been enabled
by various cooperation tools, such as remote access through VPN, video conference, remote
assistance, etc. In order to provide a similar environment as physically in the office to
improve productivity, the home environment, at least the room used as working place,
should be adapted. In the current scenario, a typical home office context is considered with
some common ICT devices for work and other pieces of home equipment. The objective is
to provide a quiet, brightly lit environment when the person is identified in work.

7.3.1 Case study description

In the current scenario, 3 points of effect are desired (high level rules):

• The person should not be bothered with non crucial noise (e.g. application notifica-
tions, loud appliance noise), but can be bothered by crucial one (e.g. fire alarm);

• Bright light for working ambiance;

• Temperature should be 24℃ because the person has no physical activity, and should
not be more than 26℃

The home appliances or devices taken into account are: 1 ventilator, a roomba (vacuum
cleaning robot), a PC, a TV, a Philips Hue, a simple bulb, and a radiator. The effective on-
tology (showing only the categories which have one or more direct or descendant instances)
for this scenario is shown in figure 7.10.

7.3.2 System modeling and controller generation

The interesting entity groups invoked in the rules are non-crucial noise, crucial noise
or alarm, bright-light, dimmable-Light, heating, and necessary observers are room,
temperature.

106 Chapter 7. Case studies

Some of the relevant entity or category VE models have already been described in
other sections, like simple lamp (equivalent to lamp), light emitting, room, radiator.
Vacuum cleaner uses the basic 2-state (ON/OFF) model of a normal appliance. The following
lists other VEs not yet described in the current DAG, as well as state mapping information
registered in the ontology.

• Dimmable light and dimmable lamp. Dimmable light is a child category of the
property lighting emitting. It has more specific states about the general state
lighting by distinguishing the light intensity: dim and bright. This state mapping
is shown in figure 4.7. Dimmable lamp (figure) also has 3 states corresponding to
the 3 states in the property model dimmable light.

• Computer. The integrated state of a computer would be the full reading of its mem-
ory. We simplify it by identifying the current "scene" when it is working: game,
multimedia, work, to adapt most of the basic home control. The "scene" is identified
either explicitly by the user or implicitly by the activation of some software.

• Noise, alarm and non crucial. The generic model for these 3 categories are identi-
cal. It has 2 states: no noise and noise emitting. The former is mapped by the
state off of vacuum cleaner and tv, and the latter is mapped by the state on.

• Living room. It is child of the room category introduced in the previous case study.
It develops the generic occupied state to distinguish a working state for the home
office scenario. There could be other activities in the living room to be identified as
a state. We are not presenting them for the clarity reason for this case study.

• Heat radiating. This property model has 2 states no heat and heating which
correspond respectively to radiator’s off state and on state.

The entity group models are all established applying the generic template on the above
group category VEs, as shown in. We do not detail these models as they follow the same
principle as the light-emitting group model explained in the previous case study. The global
system behavior of the control target system is the parallel composition of the above models
which represents all the possible behaviors in the absence of controller:

S =brightlightGroup ‖ dimmablelightGroup ‖ non− crucialnoiseGroup ‖ alarmGroup ‖
livingRoom ‖ heatingGroup ‖ temperature

Remark 12. The computer is neither a member of an entity group nor an observer directly
used in the composition of the global system for the DCS procedure. However, it is useful
for the identification of the room’s current "scene". From the point of view of the room,
the computer is considered as a virtual sensor providing some information, as explained in
4.2.3.

The 3 control objectives can be formalized as Boolean expressions based on the states
of the behavior models and observers:

1. livingroom.working ⇒ noncrucialGroup.noNoise;

7.3. Home office scenario 107

2. livingroom.working ⇒ (dimmablelightGroup.somebright

∨dimmablelightGroup.allbright ∨ dimmablelightGroup.allMix

∨brightlightGroup.someLight ∨ brightlightGroup.allLighting)

3. ¬(livingroom.working ∧ temperature.cold ∧ heatingGroup.noHeating)

(livingroom.working ∧ temperature.hot)⇒ heatingGroup.noHeating

Taking together the system model and the rules transcribed in BZR contract, the
BZR compiler can synthesize a controller in C or Java code automatically satisfying the
defined objectives if it exists. This controller together with the entity groups are then
encapsulated as a bundle in the platform, connecting to individual PEIRs thanks to the
supportive functional modules.

7.3.3 Experiments

The validation at the entity group level is done within the simulation tool sim2chro. We
can observe that the rules are well respected. We do not show the full screenshot of the
sim2chro result because it demonstrates the similar idea as the load shedding example.
The same reason for not showing the screenshot of the simulation in MiLeSEnS.

The implementation of this case study is also realized in a "mixed" environment: the
global context with moving person, alarm system, simple lamps, roomba, is simulated in
MiLeSEnS while the dimmable lamp Philips Hue, radiator and TV (replaced by a LCD
screen) are hardware equipment. We can observe that if the person is identified as working,
the roomba and TV are turned off if they were working, one lamp turned on or Philips
Hue turned to bright if it was the only light source in dim mode. And if the temperature
is too low or too high, the radiator is actuated.

Part IV

Conclusion

109

Chapter 8

Conclusion and perspectives

Contents
8.1 Conclusion . 111

8.2 Perspectives . 112

8.2.1 Generic and basic control as a "safety guard" service 112

8.2.2 Validation beyond home and Application beyond the initial scope . . 113

8.1 Conclusion

The objective of this thesis was to propose a generic modeling framework for monitoring and
controlling physical entities in the domain of IoT and Smart Environments in a dynamic
and reliable way. We began with identifying the 2 main causes preventing the automatic
control applications in this domain from being widely adopted:

• First, mainstream applications of industrail control still rely on fully customized and
ad hoc vertically solutions, which makes the cost of a control application too high
that of the general public cannot afford it.

• On the other hand, the effectiveness and reliability of current control solutions in
the consumer IoT and Smart Environments domain is not satisfying as they adopt
the "best-effort" and time-insensitive culture. Non-expected results are sometimes
observed due to the lack of formal method.

Our contributions are made to try to fill the huge gap between the above two completely
different approaches for control design.

We propose an extension of a framework for a shared generic IoT/SE infrastructure
offering high-level interfaces to reduce design effort, and enabling the self-configuration
and adaptation of control applications over generic properties of the environment without
human interaction. This framework has the general knowledge over the domain which is
valid in each target instance of IoT/SE system. Generic FSM models for a type of entity
or a shared property are proposed and considered as part of the general knowledge, also
called the "domain-specific ontology". An instance of one model can also be considered
as an instance of the model of any parent category thanks to the state mapping between

111

112 Chapter 8. Conclusion and perspectives

parent and child FSM models. This hierarchical relationship enables the individual phys-
ical entities (including all relevant "things", appliances and subsets of space) sharing the
same properties, a.k.a. could be modeled by the FSM of the same parent category, be-
ing grouped as an integrated virtual entity to be controlled in order to provide a higher
level abstraction for control and other applications and better adaptation to lower level
configuration changes.

In order to enable applying discrete controller synthesis (DCS) technique at different
levels of abstraction and granularity, the groups of entities should also be modeled as
FSM. The modeling of an entity group can vary as long as the resulted model represents the
desired collective behavior of the given group for one or more control objectives. In absence
of specific group model, a general template to help construct a group model is provided
within the framework that, according to our point of view, may work for most of the
basic control applications in the specific domain. Necessary supporting functional modules
are available, such as dynamic state mapping register of the actually present entities and
groups, the data combination to provide input data to entity groups and the dispatcher
to send command to adequate entities. According to the information registered in the
available ontology, they establish the connection between entity groups and individual
entity instances and ensure the correct upwards data flow and downwards control command
conduction.

A corpus of rules is also proposed in which the rules are expressed on general prop-
erties of the environment in order to be useful in most environment instances. Rules are
categorized by their priority such as safety and energy efficiency that in case of conflicts of
two rules, the one with higher priority is executed.

We implemented the proposed infrastructure by expanding the implementation in
[Hu14] and realized several experiments. Models used in these experiments are the generic
ones proposed in the framework or designed following the template. For each experiment,
a controller is synthesized by applying the DCS technique on the relevant models and a
simulation of the target environment, possibly mixed with some pieces of hardware, is
performed to validate the scenario. Through these experiments, we showed the feasibil-
ity of the approach and the validation of the controller at the level of entity groupings
corresponding to rules drawn from the generic corpus.

8.2 Perspectives

8.2.1 Generic and basic control as a "safety guard" service

The trend of the evolution of IoT and Smart Environment platforms is becoming more
and more open to host various applications in order to build up an ecosystem satisfying
different requirements of different end users. All the applications are obviously developed
by numerous developers and like current on line app stores, they should be verified as not
malicious before being put on the market by the administrator of the platform. However,
the development of each application is completely within the isolated development environ-
ment that the developers do not necessarily and cannot predict neither all the interactions

8.2. Perspectives 113

with other co-existing applications, nor all the possible combinations of runtime environ-
ment parameters. The random system behavior due to the unpredictable interaction results
causes serious problem of system safety and reliability.

We mentioned throughout the thesis that we aimed at a control solution which could
realize some basic and generic functionalities as individual applications, like the load shed-
ding control in 7.2 and the home office in 7.3. From the point of view of an open platform,
its only duty is to provide a friendly environment for third-party applications and ensure
the safety of the global system. Hence, the control solution which is minimum and generic
can be considered as a "safety guard" under the application layer which does not substitute
any applications and prevents the commands coming from the applications from causing
any catastrophic consequence, for example, the "guard" service for safety and energy ef-
ficiency in 7.1, or locking the householder inside the house or the basement because of
an event resulting from an other application. The "dangerous" combinations of a set of
"separatedly safe" actions from co-existing applications are filtered by the discrete control
in the "safety guard" layer with higher priority which preempts the command of the ap-
plications. This interference from the discrete control occurs only in case of "catastroph"
which is specified formally as a system invariant or constraints in the DCS method. Con-
trast to third-party applications which only have knowledge of their own execution status
or relevant environmental parameters, this "safety guard" layer has the full picture of the
global system depending on which it can take action before any danger would take place.

8.2.2 Validation beyond home and Application beyond the initial scope

The validation of the proposed framework has been performed with scenarios in the domain
of Home. However, the issues that we addressed by this framework through this thesis are
common in the domains of home, building and city, as we identified in chapter 1. Hence,
this framework is also applicable in all these domains. For example, in the domain of city,
the devices and subsystem such as street light and parking are possible to be modeled and
controlled in the framework if a corresponding ontology is available.

However, there are some issues which are more present in the domain of city than in the
domain of home or building. The most obvious one is the "multiple stakeholders" problem.
In a home or building environment, there are rarely more than one "administrator" or
manager in the system (the owner of the house for example), while in a city, the subsystems
are managed by different operators which have different expertise. How to manage the
potential conflicts between these very "closed" subsystems and how to balance their interest
(for example, we cannot say in a definitive way that the street lighting system is more/less
important than the public parking lighting system to be more/less priority in case of a
electricity consumption restriction) should be carefully studied. Secondly, the safety and
the time-sensitive aspect is more accentuated in city as a failure of the control system
could cause heavier consequence. In order to validate the applicability of the proposed
framework, more attention should be payed to the additional issues compared to home,
and a simulation should be deployed for the first step of the validation.

We envisage the application of the proposed framework in wider scope of applications,
such as classical logistic chain or inventory management, where the infrastructure is cur-

114 Chapter 8. Conclusion and perspectives

rently designed closed and vertically with one only stakeholder. When the platform in
such domain becomes open to host applications from different origins, a comprehensive
control application will be meaningless and impossible because there will be always new
third-party applications that would have not been taken into account during the control
development, therefore a "safety guard" service as mentioned in the previous section will
be useful and necessary.

Appendices

115

Appendix A

BZR encoding of the load shedding
case study

A.1 System behavior modeled by groups

node powerObserver (exceed:bool)
returns (overload:bool)
let

automaton
state U do

overload = false;
until exceed then OVERLOAD
state OVERLOAD do

overload = true;
until not exceed then U

end;
tel

node gridObserver(constraint_mode ,normal_mode:bool;limit_input:int)
returns (normal:bool;limit:int)
let

automaton
state N (* normal mode*) do

normal = true; limit = 90;
until constraint_mode then U
state U (*under normal *) do

normal = false; limit = limit_input;
until normal_mode then N

end;
tel

node highPowerGroup (on_or ,c1 ,c2:bool)
returns (off ,onn ,remove:bool)
let

automaton
state AllOFF do

off = true; onn = false; remove = false;
until (on_or or not c1) & c2 then SomeON
state SomeON do

off = false; onn = true; remove = on_or & not c2;
until on_or & not c2 then REMOVE

| (not on_or or not c1) & c2 then AllOFF
state REMOVE do

off = false; onn = true; remove = not (on_or & c2);
until not on_or then AllOFF

| on_or & c2 then SomeON

117

118 Chapter A. BZR encoding of the load shedding case study

end;
tel

node lightEmittingGroup(lighting_and ,lighting_or ,c1,c2:bool)
returns (no_light ,all_light:bool)
let

automaton
state NoLight do

no_light = true; all_light = false;
until (lighting_or or not c1) & c2 then Some_light
state Some_light do

all_light = false; no_light = false;
until (not lighting_or or not c1) & c2 then NoLight

| (lighting_and or not c1) & c2 then All_lighting
state All_lighting do

all_light = true; no_light = false;
until (not lighting_and or not c1) & c2 then Some_light

end;
tel

node room (presence_on , presence_off:bool)
returns (presence:bool)
let

automaton
state Empty do

presence = false;
until presence_on then Occupied
state Occupied do

presence = true;
until presence_off then Empty

end;
tel

node globalSys (lighting_and , lighting_or , on_or , presence_on , presence_off ,
normal_mode ,constraint_mode:bool; total , limit_input:int)
returns (no_light , all_light , all_off , some_on , remove , presence , overload , normal:bool;
limit:int)

contract
var exlusiveLight , exclusiveHighPower:bool;
let

exlusiveLight = not (presence & no_light);
exclusiveHighPower = not (overload & (not all_off & not remove));

tel
assume (on_or or not overload)
enforce exlusiveLight & exclusiveHighPower
with (cl1 , cl2 , ch1 , ch2:bool)

let
(no_light , all_light) = inlined lightEmittingGroup(lighting_and , lighting_or ,cl1 , cl2);
presence = inlined room (presence_on , presence_off);
(normal , limit) = inlined gridObserver (constraint_mode , normal_mode ,limit_input);
overload = (total >limit);
(all_off , some_on , remove) = inlined highPowerGroup(on_or , ch1 , ch2);

tel

A.2. System behavior as composition of generic individual entities 119

A.2 System behavior as composition of generic individual en-
tities

node highPower(turn_on , turn_off , c1, c2:bool)
returns (onn , removed:bool)
let

automaton
state OFF do

onn = false; removed = false;
until (turn_on or not c1) & c2 then ON
state ON do

onn = true; removed = not c1;
until (turn_off or not c1) & c2 then OFF

end;
tel

node lightEmitting(turn_on , turn_off , c1, c2:bool)
returns (lighting:bool)
let

automaton
state No_light do

lighting = false;
until (turn_on or not c1) & c2 then Lighting
state Lighting do

lighting = true;
until (turn_off or not c1) & c2 then No_light

end;
tel

node powerObserver (exceed:bool)
returns (overload:bool)
let

automaton
state U do

overload = false;
until exceed then OVERLOAD
state OVERLOAD do

overload = true;
until not exceed then U

end;
tel

node gridObserver(constraint_mode ,normal_mode:bool; limit_input:int)
returns (normal:bool;limit:int)
let

automaton
state N (* normal mode*) do

normal = true; limit = 90;
until constraint_mode then U
state U (*under normal *) do

normal = false; limit = limit_input;
until normal_mode then N

end;
tel

node highPowerGroup (on_or ,c1 ,c2:bool)
returns (off ,onn ,remove:bool)

120 Chapter A. BZR encoding of the load shedding case study

let
automaton

state AllOFF do
off = true; onn = false; remove = false;

until (on_or or not c1) & c2 then SomeON
state SomeON do

off = false; onn = true; remove = on_or & not c2;
until on_or & not c2 then REMOVE

| (not on_or or not c1) & c2 then AllOFF
state REMOVE do

off = false; onn = true; remove = not (on_or & c2);
until not on_or then AllOFF

| on_or & c2 then SomeON
end;

tel

node lightEmittingGroup(lighting_and ,lighting_or ,c1,c2:bool)
returns (no_light ,all_light:bool)
let

automaton
state NoLight do

no_light = true; all_light = false;
until (lighting_or or not c1) & c2 then Some_light
state Some_light do

all_light = false; no_light = false;
until (not lighting_or or not c1) & c2 then NoLight

| (lighting_and or not c1) & c2 then All_lighting
state All_lighting do

all_light = true; no_light = false;
until (not lighting_and or not c1) & c2 then Some_light

end;
tel

node room (presence_on , presence_off:bool)
returns (presence:bool)
let

automaton
state Empty do

presence = false;
until presence_on then Occupied
state Occupied do

presence = true;
until presence_off then Empty

end;
tel

node globalSys (k_turn_on , k_turn_off , o_turn_on , o_turn_off , wh_turn_on ,
wh_turn_off , wm_turn_on , wm_turn_off , r1_turn_on , r1_turn_off , r2_turn_on , r2_turn_off ,
l1_turn_on , l1_turn_off , l2_turn_on , l2_turn_off , t_turn_on , t_turn_off , presence_on ,
presence_off ,normal_mode ,constraint_mode:bool; total , limit_input:int)
returns (kettleOn ,kremoved , ovenOn ,oremoved , waterheaterOn ,whremoved , washingmachineOn ,
wmremoved , radiator1On ,r1removed , radiator2On ,r2removed , lamp1lighting ,lamp2lighting ,
tvlighting , presence , overload , normal:bool;limit:int)

contract
var exlusiveLight , exclusiveHighPower:bool;
let

exlusiveLight = not (presence & not (lamp1lighting or lamp2lighting or tvlighting));

A.3. System behavior as composition of specific individual entities 121

exclusiveHighPower = not (overload & not (kremoved or oremoved or whremoved
or wmremoved or r1removed or r2removed));

tel
assume ((kettleOn or ovenOn or waterheaterOn or washingmachineOn or radiator1On
or radiator2On) or not overload)
enforce exlusiveLight & exclusiveHighPower
with (ck1 ,ck2 ,co1 ,co2 ,cwh1 ,cwh2 ,cwm1 ,cwm2 ,cr11 ,cr12 ,cr21 ,cr22 ,cl11 ,cl12 ,cl21 ,
cl22 ,ct1 ,ct2:bool)

let
(kettleOn ,kremoved) = inlined highPower(k_turn_on ,k_turn_off ,ck1 ,ck2);
(ovenOn ,oremoved) = inlined highPower(o_turn_on ,o_turn_off ,co1 ,co2);
(waterheaterOn ,whremoved) = inlined highPower(wh_turn_on ,wh_turn_off ,cwh1 ,cwh2);
(washingmachineOn ,wmremoved) = inlined highPower(wm_turn_on ,wm_turn_off ,cwm1 ,cwm2);
(radiator1On ,r1removed) = inlined highPower(r1_turn_on ,r1_turn_off ,cr11 ,cr12);
(radiator2On ,r2removed) = inlined highPower(r2_turn_on ,r2_turn_off ,cr21 ,cr22);
lamp1lighting = inlined lightEmitting(l1_turn_on ,l1_turn_off ,cl11 ,cl12);
lamp2lighting = inlined lightEmitting(l2_turn_on ,l2_turn_off ,cl21 ,cl22);
tvlighting = inlined lightEmitting(t_turn_on , t_turn_off , ct1 , ct2);
presence = inlined room (presence_on ,presence_off);
(normal ,limit) = inlined gridObserver(constraint_mode ,normal_mode ,limit_input);
overload = (total >limit);

tel

A.3 System behavior as composition of specific individual en-
tities

node highPower(turn_on , turn_off , c1, c2:bool)
returns (onn , removed:bool)
let

automaton
state OFF do

onn = false; removed = false;
until (turn_on or not c1) & c2 then ON
state ON do

onn = true; removed = not c1;
until (turn_off or not c1) & c2 then OFF

end;
tel

node lightEmitting(turn_on , turn_off , c1, c2:bool)
returns (lighting:bool)
let

automaton
state No_light do

lighting = false;
until (turn_on or not c1) & c2 then Lighting
state Lighting do

lighting = true;
until (turn_off or not c1) & c2 then No_light

end;
tel

node powerObserver (exceed:bool)
returns (overload:bool)
let

122 Chapter A. BZR encoding of the load shedding case study

automaton
state U do

overload = false;
until exceed then OVERLOAD
state OVERLOAD do

overload = true;
until not exceed then U

end;
tel

node gridObserver(constraint_mode ,normal_mode:bool;limit_input:int)
returns (normal:bool;limit:int)
let

automaton
state N (* normal mode*) do

normal = true; limit = 90;
until constraint_mode then U
state U (*under normal *) do

normal = false; limit = limit_input;
until normal_mode then N

end;
tel

node washingMachine(start , e, c1 ,c2:bool)
returns (off , ws , rs, sp, removed:bool)
var mode_ws ,mode_rs ,mode_sp:bool;
let

automaton
state OFF do

off = true; ws = false; rs = false; sp = false; removed = false;
mode_ws = false; mode_rs = false; mode_sp = false;

until (start or not c1) & c2 then WS
state Standby do

off = false; ws = false; rs = false; sp = false; removed = false;
mode_ws = false; mode_rs = false; mode_sp = false;

until c2 & mode_ws then WS
| c2 & mode_rs then RS
| c2 & mode_sp then SP

state WS do
off = false; ws = true; rs = false; sp = false; removed = not c2;
mode_ws = true; mode_rs = false; mode_sp = false;

until not c2 then Standby
| e & c2 then RS

state RS do
off = false; ws = false; rs = true; sp = false; removed = not c2;
mode_ws = false; mode_rs = true; mode_sp = false;

until not c2 then Standby
| e & c2 then SP

state SP do
off = false; ws = false; rs = false; sp = true; removed = not c2;
mode_ws = false; mode_rs = false; mode_sp = true;

until not c2 then Standby
| e then OFF

end;
tel

node radiator (up1 , down1 , up2 , down2 ,(*input events *)
c1 ,c2:bool (* control events , c1 c2 never all true*))

A.3. System behavior as composition of specific individual entities 123

returns (fp,hi ,removed:bool)
let

automaton
state OFF do

fp = false; hi = false; removed = false;
until (up1 or not c1) & c2 then FP
state FP do

fp = true; hi = false; removed = not c1;
until down1 or not c1 then OFF

| up2 & c2 then HI
state HI do

fp = false; hi = true; removed = not c1;
until down1 or not c1 then OFF

| down2 or not c2 then FP
end;

tel

node room (presence_on , presence_off:bool)
returns (presence:bool)
let

automaton
state Empty do

presence = false;
until presence_on then Occupied
state Occupied do

presence = true;
until presence_off then Empty

end;
tel

node globalSys (k_turn_on ,k_turn_off ,o_turn_on ,o_turn_off ,wh_turn_on ,wh_turn_off ,
wm_turn_on ,wm_turn_off ,r1_turn_on ,r1_turn_off ,r1_turn_up ,r1_turn_down ,r2_turn_on ,
r2_turn_off ,r2_turn_up ,r2_turn_down ,l1_turn_on ,l1_turn_off ,l2_turn_on ,l2_turn_off ,
t_turn_on ,t_turn_off ,presence_on ,presence_off ,normal_mode ,constraint_mode:bool;
total , limit_input:int)
returns (kettleOn ,kremoved ,ovenOn ,oremoved ,waterheaterOn ,whremoved ,wmOff ,wmws ,
wmrs ,wmsp ,wmremoved ,r1fp ,r1hi ,r1removed ,r2fp ,r2hi ,r2removed ,lamp1lighting ,
lamp2lighting ,tvlighting , presence , overload , normal:bool;limit:int)

contract
var exlusiveLight , exclusiveHighPower:bool;
let

exlusiveLight = not(presence & not(lamp1lighting & lamp2lighting & tvlighting));
exclusiveHighPower = not(overload & not(kremoved or oremoved or whremoved or
wmremoved or r1removed or r2removed));

tel
assume ((kettleOn or ovenOn or waterheaterOn or wmws or wmrs or wmsp or r1fp or
r1hi or r2fp or r2hi) or not overload)
enforce exlusiveLight & exclusiveHighPower
with (ck1 ,ck2 ,co1 ,co2 ,cwh1 ,cwh2 ,cwm1 ,cwm2 ,cr11 ,cr12 ,cr21 ,cr22 ,cl11 ,cl12 ,cl21 ,
cl22 ,ct1 ,ct2:bool)

let
(kettleOn ,kremoved) = inlined highPower(k_turn_on ,k_turn_off ,ck1 ,ck2);
(ovenOn ,oremoved) = inlined highPower(o_turn_on ,o_turn_off ,co1 ,co2);
(waterheaterOn ,whremoved) = inlined highPower(wh_turn_on ,wh_turn_off ,cwh1 ,cwh2);
(wmOff ,wmws ,wmrs ,wmsp ,wmremoved) = inlined washingMachine(wm_turn_on ,wm_turn_off ,
cwm1 ,cwm2);

124 Chapter A. BZR encoding of the load shedding case study

(r1fp ,r1hi ,r1removed) = inlined radiator(r1_turn_on ,r1_turn_off ,r1_turn_up ,
r1_turn_down ,cr11 ,cr12);
(r2fp ,r2hi ,r2removed) = inlined radiator(r2_turn_on ,r2_turn_off ,r2_turn_up ,
r2_turn_down ,cr21 ,cr22);
lamp1lighting = inlined lightEmitting(l1_turn_on ,l1_turn_off ,cl11 ,cl12);
lamp2lighting = inlined lightEmitting(l2_turn_on ,l2_turn_off ,cl21 ,cl22);
tvlighting = inlined lightEmitting(t_turn_on ,t_turn_off ,ct1 ,ct2);
presence = inlined room (presence_on ,presence_off);
(normal ,limit) = inlined gridObserver (constraint_mode ,normal_mode ,limit_input);
overload = (total >limit);

tel

List of Publications

[Pri+13] Gilles Privat, Mengxuan Zhao, Eric Rutten, and Hassane Alla. “Configura-
tion automatique du contrôle discret d’entités physiques dans un système de
supervision et de contrôle”. Pat. FR 1361235. Nov. 2013.

[PZL14] Gilles Privat, Mengxuan Zhao, and Laurent Lemke. “Towards a Shared Soft-
ware Infrastructure for Smart Homes, Smart Buildings and Smart Cities”. In:
1st International Workshop on Emerging Trends in the Engineering of Cyber-
Physical Systems, part of CPSWEEK. (Berlin). Apr. 2014.

[Zha+13a] Mengxuan Zhao, Gilles Privat, Eric Rutten, and Hassane Alla. “Discrete Con-
trol for the Internet of Things and Smart Environments”. In: Presented as
part of the 8th International Workshop on Feedback Computing. San Jose,
CA: USENIX, 2013.

[Zha+13b] Mengxuan Zhao, Gilles Privat, Eric Rutten, and Hassane Alla. “Modèles
génériques applicables à la synthèse de contrôleurs discrets pour l’internet
des objets”. In: Journal Européen des Systèmes Automatisés 47.1-3 (2013),
pp. 211–225.

[Zha+14] Mengxuan Zhao, Gilles Privat, Eric Rutten, and Hassane Alla. “Discrete Con-
trol for Smart Environments Through a Generic Finite-State-Models-Based
Infrastructure”. English. In: Ambient Intelligence. Ed. by Emile Aarts et al.
Lecture Notes in Computer Science 8850. Springer International Publishing,
2014, pp. 174–190.

125

Bibliography

[Aky+02] Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci.
“Wireless sensor networks: a survey”. In: Computer networks 38.4 (2002),
pp. 393–422 (cit. on p. 14).

[Ala+14] M. Ben Alaya et al. “OM2M: Extensible ETSI-compliant {M2M} Service Plat-
form with Self-configuration Capability”. In: Procedia Computer Science 32.0
(2014). The 5th International Conference on Ambient Systems, Networks and
Technologies (ANT-2014), pp. 1079 –1086 (cit. on p. 10).

[An+13] Xin An et al. “Autonomic Management of Dynamically Partially Reconfig-
urable FPGA Architectures Using Discrete Control.” In: ICAC. 2013, pp. 59–
63 (cit. on p. 36).

[Ban+11] Soma Bandyopadhyay, Munmun Sengupta, Souvik Maiti, and Subhajit Dutta.
“Role of middleware for internet of things: A study”. In: International Journal
of Computer Science and Engineering Survey 2.3 (2011), pp. 94–105 (cit. on
p. 16).

[Bar+12] Payam Barnaghi, Wei Wang, Cory Henson, and Kerry Taylor. “Semantics
for the Internet of Things: early progress and back to the future”. In: Inter-
national Journal on Semantic Web and Information Systems (IJSWIS) 8.1
(2012), pp. 1–21 (cit. on p. 18).

[Bat07] Michael Batty. Cities and Complexity: Understanding Cities with Cellular
Automata, Agent-Based Models, and Fractals. The MIT Press, 2007 (cit. on
p. 28).

[BC08] Dario Bonino and Fulvio Corno. Dogont-ontology modeling for intelligent do-
motic environments. Springer, 2008 (cit. on p. 20).

[BG92] Gérard Berry and Georges Gonthier. “The Esterel synchronous programming
language: Design, semantics, implementation”. In: Science of computer pro-
gramming 19.2 (1992), pp. 87–152 (cit. on pp. 31, 32).

[CAS] EU CASAGRAS. FP7 Project, RFID and the inclusive model for the Internet
of Things. Tech. rep. Technical report, 2012. www. grifs-project. eu. 1 (cit. on
p. 13).

[Cas06] F. Castiglione. “Agent based modeling”. In: Scholarpedia 1.10 (2006), p. 1562
(cit. on p. 28).

[CDR14] Julio Cano, Gwenaël Delaval, and Eric Rutten. “Coordination of ECA Rules by
Verification and Control”. In: Coordination Models and Languages. Springer.
2014, pp. 33–48 (cit. on pp. 37, 77).

[Cha96] ANDR Charles. “Representation and analysis of reactive behaviors: A syn-
chronous approach”. In: Computational Engineering in Systems Applications,
CESA. Vol. 96. 1996, pp. 19–29 (cit. on p. 32).

[CHC89] William R Cook, Walter Hill, and Peter S Canning. “Inheritance is not sub-
typing”. In: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM. 1989, pp. 125–135 (cit. on p. 28).

127

128 Bibliography

[Cor+02] Elisabetta Cortese, Filippo Quarta, Giosue Vitaglione, and P Vrba. “Scalabil-
ity and performance of jade message transport system”. In: AAMAS Workshop
on AgentCities, Bologna. Vol. 16. 2002 (cit. on p. 28).

[CPP05] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. “A conservative exten-
sion of synchronous data-flow with state machines”. In: Proceedings of the 5th
ACM international conference on Embedded software. ACM. 2005, pp. 173–
182 (cit. on p. 32).

[Del+14] Gwenaël Delaval, Soguy Mak-Karé Gueye, Eric Rutten, and Noël De Palma.
“Modular coordination of multiple autonomic managers”. In: Proceedings of
the 17th international ACM Sigsoft symposium on Component-based software
engineering. ACM. 2014, pp. 3–12 (cit. on p. 36).

[Del14] José C Delgado. “Improving Data and Service Interoperability with Structure,
Compliance, Conformance and Context Awareness”. In: Big Data and Internet
of Things: A Roadmap for Smart Environments. Springer, 2014, pp. 35–66 (cit.
on p. 17).

[Dol04] Peter Dolog. “Model-Driven Navigation Design for Semantic Web Applications
with the UML-Guide.” In: ICWE Workshops. 2004, pp. 75–86 (cit. on pp. 50,
87).

[DR10] Gwenaël Delaval and Eric Rutten. “Reactive model-based control of reconfigu-
ration in the fractal component-based model”. In: Component-Based Software
Engineering. Springer, 2010, pp. 93–112 (cit. on p. 36).

[Fen+13] Anna Fensel et al. “Sesame-s: Semantic smart home system for energy effi-
ciency”. In: Informatik-Spektrum 36.1 (2013), pp. 46–57 (cit. on p. 18).

[Fie00] Roy Thomas Fielding. “Architectural styles and the design of network-based
software architectures”. PhD thesis. University of California, Irvine, 2000 (cit.
on p. 16).

[For+13] Giancarlo Fortino et al. “An agent-based middleware for cooperating smart
objects”. In: Highlights on Practical Applications of Agents and Multi-Agent
Systems. Springer, 2013, pp. 387–398 (cit. on p. 28).

[For82] Charles L Forgy. “Rete: A fast algorithm for the many pattern/many object
pattern match problem”. In: Artificial intelligence 19.1 (1982), pp. 17–37 (cit.
on p. 37).

[GBB13] Sébastien Guillet, Bruno Bouchard, and Abdenour Bouzouane. “Correct by
construction security approach to design fault tolerant smart homes for dis-
abled people”. In: Procedia Computer Science 21 (2013), pp. 257–264 (cit. on
p. 36).

[GNP13] Marco Grassi, Michele Nucci, and Francesco Piazza. “Ontologies for Smart
Homes and Energy Management: an Implementation-driven Survey”. In: Pro-
ceedings of the IEEE Workshop on Modeling and Simulation of Cyber-Physical
Energy Systems 2013, May 20, 2013, Berkeley, CA. 2013 (cit. on p. 20).

[Gru93] Thomas R Gruber. “A translation approach to portable ontology specifica-
tions”. In: Knowledge acquisition 5.2 (1993), pp. 199–220 (cit. on pp. 18, 19).

Bibliography 129

[Gua98] Nicola Guarino. Formal ontology in information systems: Proceedings of the
first international conference (FOIS’98), June 6-8, Trento, Italy. Vol. 46. IOS
press, 1998 (cit. on p. 19).

[Gur+08] Levent Gurgen et al. “SStreaMWare: a service oriented middleware for het-
erogeneous sensor data management”. In: Proceedings of the 5th international
conference on Pervasive services. ACM. 2008, pp. 121–130 (cit. on p. 15).

[Gyr13] Amelie Gyrard. “A machine-to-machine architecture to merge semantic sensor
measurements”. In: Proceedings of the 22nd international conference on World
Wide Web companion. International World Wide Web Conferences Steering
Committee. 2013, pp. 371–376 (cit. on p. 20).

[Hal+91] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. “The
synchronous data flow programming language LUSTRE”. In: Proceedings of
the IEEE 79.9 (1991), pp. 1305–1320 (cit. on p. 31).

[Har+90] David Harel et al. “Statemate: A working environment for the development of
complex reactive systems”. In: Software Engineering, IEEE Transactions on
16.4 (1990), pp. 403–414 (cit. on p. 30).

[Har07] David Harel. “Statecharts in the making: a personal account”. In: Proceedings
of the third ACM SIGPLAN conference on History of programming languages.
ACM. 2007, pp. 5–1 (cit. on p. 30).

[Har87] David Harel. “Statecharts: A visual formalism for complex systems”. In: Sci-
ence of computer programming 8.3 (1987), pp. 231–274 (cit. on pp. 30, 52).

[HG96] David Harel and Eran Gery. “Executable object modeling with statecharts”.
In: Proceedings of the 18th international conference on Software engineering.
IEEE Computer Society. 1996, pp. 246–257 (cit. on p. 31).

[Hu14] Zheng Hu. “Self-configuration, Monitoring and Control of Physical Entities
via Sensor and Actuator Networks”. Université de Lyon, 2014 (cit. on pp. 13,
43, 85, 87, 112).

[LeG+91] Paul LeGuernic, Thierry Gautier, Michel Le Borgne, and Claude Le Maire.
“Programming real-time applications with SIGNAL”. In: Proceedings of the
IEEE 79.9 (1991), pp. 1321–1336 (cit. on p. 31).

[LF09] Ching-Hu Lu and Li-Chen Fu. “Robust location-aware activity recognition
using wireless sensor network in an attentive home”. In: Automation Science
and Engineering, IEEE Transactions on 6.4 (2009), pp. 598–609 (cit. on p. 15).

[LS11] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to embedded
systems: A cyber-physical systems approach. Lee & Seshia, 2011 (cit. on p. 29).

[Mar+00] Hervé Marchand, Patricia Bournai, Michel Le Borgne, and Paul Le Guernic.
“Synthesis of discrete-event controllers based on the signal environment”. In:
Discrete Event Dynamic Systems 10.4 (2000), pp. 325–346 (cit. on p. 34).

[Mar+13] José-Fernán Martínez, Jesús Rodríguez-Molina, Pedro Castillejo, and Rubén
De Diego. “Middleware architectures for the smart grid: survey and challenges
in the foreseeable future”. In: Energies 6.7 (2013), pp. 3593–3621 (cit. on p. 16).

130 Bibliography

[Mar91] F Maraninchi. “The Argos Language: Graphical Representation of Automata
and Description of Reactive Systems”. In: In IEEE Workshop on Visual Lan-
guages. 1991 (cit. on p. 30).

[MN06] Miquel Martin and Petteri Nurmi. “A generic large scale simulator for ubiqui-
tous computing”. In: Mobile and Ubiquitous Systems: Networking & Services,
2006 Third Annual International Conference on. IEEE. 2006, pp. 1–3 (cit. on
p. 89).

[MR01] Florence Maraninchi and Yann Rémond. “Argos: an automaton-based syn-
chronous language”. In: Computer languages 27.1 (2001), pp. 61–92 (cit. on
pp. 31, 32).

[MR03] Florence Maraninchi and Yann Rémond. “Mode-automata: a new domain-
specific construct for the development of safe critical systems”. In: Science of
Computer Programming 46.3 (2003), pp. 219–254 (cit. on p. 32).

[NM+01] Natalya F Noy, Deborah L McGuinness, et al. Ontology development 101: A
guide to creating your first ontology. 2001 (cit. on p. 19).

[Ove07] Hagen Overdick. “The resource-oriented architecture”. In: Services, 2007 IEEE
Congress on. IEEE. 2007, pp. 340–347 (cit. on p. 16).

[Per+12] Camille Persson, Gauthier Picard, Fano Ramparany, and Olivier Boissier.
“A multi-agent based governance of machine-to-machine systems”. In: Multi-
Agent Systems. Springer, 2012, pp. 205–220 (cit. on p. 28).

[Pri12] Gilles Privat. “Phenotropic and stigmergic webs: the new reach of networks”.
English. In: Universal Access in the Information Society 11.3 (2012), pp. 323–
335 (cit. on p. 13).

[Rei+11] Christian Reinisch, Mario J. Kofler, Félix Iglesias, and Wolfgang Kastner.
“ThinkHome Energy Efficiency in Future Smart Homes”. In: EURASIP J.
Embedded Syst. 2011 (Jan. 2011), 1:1–1:18 (cit. on p. 20).

[RW87] Peter J Ramadge and W Murray Wonham. “Supervisory control of a class of
discrete event processes”. In: SIAM journal on control and optimization 25.1
(1987), pp. 206–230 (cit. on p. 34).

[RWE13] I. Robinson, J. Webber, and E. Eifrem. Graph Databases. O’Reilly Media,
Incorporated, 2013 (cit. on p. 48).

[SB11] Zach Shelby and Carsten Bormann. 6LoWPAN: The wireless embedded Inter-
net. Vol. 43. John Wiley & Sons, 2011 (cit. on p. 14).

[SCM10] Zhexuan Song, Alvaro A Cárdenas, and Ryusuke Masuoka. “Semantic middle-
ware for the Internet of Things”. In: Internet of Things (IOT), 2010. IEEE.
2010, pp. 1–8 (cit. on p. 18).

[Sel03] Bran Selic. “The pragmatics of model-driven development”. In: IEEE software
20.5 (2003), pp. 19–25 (cit. on p. 27).

[SM00] Miro Samek and Paul Y Montgomery. “State oriented programming”. In: Em-
bedded Systems Programming 13.8 (2000), pp. 22–43 (cit. on p. 52).

[Spi+09] Patrik Spiess et al. “SOA-based integration of the internet of things in en-
terprise services”. In: Web Services, 2009. ICWS 2009. IEEE International
Conference on. IEEE. 2009, pp. 968–975 (cit. on p. 16).

Bibliography 131

[Sta+12] Thanos G Stavropoulos, Dimitris Vrakas, Danai Vlachava, and Nick Bassil-
iades. “Bonsai: a smart building ontology for ambient intelligence”. In: Pro-
ceedings of the 2nd International Conference on Web Intelligence, Mining and
Semantics. ACM. 2012, p. 30 (cit. on p. 20).

[Tap+06] Emmanuel Munguia Tapia, Stephen S Intille, Louis Lopez, and Kent Larson.
“The design of a portable kit of wireless sensors for naturalistic data collec-
tion”. In: Pervasive Computing. Springer, 2006, pp. 117–134 (cit. on p. 15).

[Tei+11] Thiago Teixeira, Sara Hachem, Valérie Issarny, and Nikolaos Georgantas. “Ser-
vice oriented middleware for the internet of things: a perspective”. In: Towards
a Service-Based Internet. Springer, 2011, pp. 220–229 (cit. on p. 16).

[TIL04] Emmanuel Munguia Tapia, Stephen S Intille, and Kent Larson. Activity recog-
nition in the home using simple and ubiquitous sensors. Springer, 2004 (cit. on
p. 15).

[VM11] Bruno Valente and Francisco Martins. “A middleware framework for the In-
ternet of Things”. In: AFIN 2011, The Third International Conference on
Advances in Future Internet. 2011, pp. 139–144 (cit. on p. 16).

[Yan00] Mihalis Yannakakis. “Hierarchical state machines”. In: Theoretical Computer
Science: Exploring New Frontiers of Theoretical Informatics. Springer, 2000,
pp. 315–330 (cit. on p. 30).

	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Scope Identification
	Problem statement
	Contributions
	Thesis outline

	I State of the art
	General background of the IoT and SE
	Common characteristics and challenges
	Current standards and references
	ITU-T recommendation Y.2060: standard for the IoT in general
	ETSI M2M: Identification & communication oriented
	Smart Home Environments
	Naming/Identification standards

	Technology background
	Identification and configuration
	Wireless sensor actuator network
	Sensor data aggregation and complex event processing
	Middleware
	System architecture: SOA vs ROA
	An open source platform: OpenHAB

	Semantic modeling
	Semantic approach for IoT and Smart Environment
	Domain ontologies
	Tools for ontologies

	Data sharing
	Applications
	Safety and Security
	Energy Management
	Comfort enhancement
	Health and assistance

	Summary and discussion

	Models and Discrete Control
	Common modeling approaches in IoT/SE
	Object-oriented modeling
	Agent-based modeling

	Automaton-based modeling
	Definition of Automata
	Hierarchical automata
	StateCharts and UML state machine
	Synchronous composition of automata in parallel

	Synchronous programming
	Automaton-based synchronous languages
	Heptagon language

	Supervisory control and Discrete Controller Synthesis (DCS)
	The Ramadge and Wonham Framework
	Control objectives
	BZR synchronous programming language
	Discrete control applications

	Related control approaches in IoT/SE
	Languages for rule statement and Rule engines

	Summary and discussions

	II Contributions
	Framework for a shared infrastructure for IoT data abstraction
	Modeling framework overview
	Physical plane
	Entities/subsystems
	ICT devices/connected objects
	Devices (sensors and actuators)

	Model plane
	Generic entity finite automata models
	Domain ontology
	Virtual entity model
	Establishing hierarchical relationship between virtual entity models

	Proxy instance plane
	Device abstraction layer
	Entity instance proxy layer
	Entity group layer
	Service and local application layer
	Remote applications layer

	Generic models for discrete control based on the shared infrastructure
	Control-oriented models
	Entity group models
	State Mapping of group category VE and member entities
	Data combination
	Control order dispatching towards individual entity instances

	Controller generation using BZR
	BZR encoding of the system model
	Control objectives as contract

	Corpus of control rules
	Generic rules and their categories
	Category of rules
	Control rules compatibility
	Controller by category of rules
	Resolution of conflict from different controllers with different priority
	Example
	Conclusion of the compatibility resolution

	III Validation
	Implementation
	Overall functional architecture
	Ontology implementation
	Implementation on OGSi
	Context simulator

	Case studies
	Preliminary: discrete control on generic models for a smart home instance
	Case study description
	System modeling and discrete controller generation
	Implementation and simulation

	Power control for home: load shedding
	Case study description
	System modeling and controller generation
	Closing the control loop using the platform
	Experiments

	Home office scenario
	Case study description
	System modeling and controller generation
	Experiments

	IV Conclusion
	Conclusion and perspectives
	Conclusion
	Perspectives
	Generic and basic control as a "safety guard" service
	Validation beyond home and Application beyond the initial scope

	Appendices
	BZR encoding of the load shedding case study
	System behavior modeled by groups
	System behavior as composition of generic individual entities
	System behavior as composition of specific individual entities

	List of Publications
	Biblography

