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HAL is a

Résumé

Les problèmes de séquencement et d'ordonnancement forment une famille de problèmes combinatoires qui implique la programmation dans le temps d'un ensemble d'opérations soumises à des contraintes de capacités et de ressources. Nous contribuons dans cette thèse à la résolution de ces problèmes dans un contexte de satisfaction de contraintes et d'optimisation combinatoire. Nos propositions concernent trois aspects différents : comment choisir le prochain noeud à explorer (recherche) ? comment réduire efficacement l'espace de recherche (propagation) ? et que peut-on apprendre des échecs rencontrés lors de la recherche (apprentissage) ?

Nos contributions commencent par une étude approfondie des heuristiques de branchement pour le problème de séquencement de chaîne d'assemblage de voitures. Cette évaluation montre d'abord les paramètres clés de ce qui constitue une bonne heuristique pour ce problème. De plus, elle montre que la stratégie de branchement est aussi importante que la méthode de propagation. Deuxièmement, nous étudions les mécanismes de propagation pour une classe de contraintes de séquencement à travers la conception de plusieurs algorithmes de filtrage. En particulier, nous proposons un algorithme de filtrage complet pour un type de contrainte de séquence avec une complexité temporelle optimale dans le pire cas. Troisièmement, nous investiguons l'impact de l'apprentissage de clauses pour résoudre le problème de séquencement de véhicules à travers une nouvelle stratégie d'explication réduite pour le nouveau filtrage. L'évaluation expérimentale montre l'importance de l'apprentissage de clauses pour ce problème. Ensuite, nous proposons une alternative pour la génération retardée de variables booléennes pour encoder les domaines. Finalement, nous revisitons les algorithmes d'analyse de conflits pour résoudre les problèmes d'ordonnancement disjonctifs. En particulier, nous introduisons une nouvelle procédure d'analyse de conflits dédiée pour cette famille de problèmes.

La nouvelle méthode diffère des algorithmes traditionnels par l'apprentissage de clauses portant uniquement sur les variables booléennes de disjonctions. Enfin, nous présentons les résultats d'une large étude expérimentale qui démontre l'impact de ces nouveaux mécanismes d'apprentissage. En particulier, la nouvelle méthode d'analyse de conflits a permis de découvrir de nouvelle bornes inférieures pour des instances largement étudiées de la littérature.
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Chapter 1 Introduction

Many real world problems involve sequencing a set of operations subject to resource constraints. Depending on the problem at hand, the objective might be optimizing an economic-related cost or simply finding satisfactory solutions. Sequencing and scheduling problems have direct applications in a variety of areas such as manufacturing, project management, and timetabling. The work presented in this thesis considers solving problems of this family in a combinatorial context. From a computational complexity theory perspective, many of these problems are NP-hard. Therefore, there is no known polynomial time algorithm for solving them.

There exist numerous techniques for solving combinatorial optimization problems ranging from heuristic to exact methods. Integer Linear Programming (ILP) is probably the best known and used approach. In this framework, the problem must be formulated as a system of linear equations. Typically, an ILP solver uses a branch-and-bound algorithm in which the lower bound is the optimal solution of the linear relaxation of the problem. Another restricted format is the one used by SAT solvers. The problem is stated using clauses, each of which being a disjunction of literals, where each literal is a propositional variable or its negation. Modern SAT solvers [START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF] are essentially based on the Davis-Putnam-Logemann-Loveland (DPLL) [START_REF] Davis | A Machine Program for Theorem-proving[END_REF] algorithm augmented with resolution [START_REF] Alan | A Machine-Oriented Logic Based on the Resolution Principle[END_REF]. DPLL is a backtracking system using a simple form of inferences called Unit-propagation (UP). The integration of resolution within DPLL enables a strong inference through new clauses derived from conflicts during search. Constraint programming (CP) is another declarative paradigm for solving combinatorial problems based on a far richer language than ILP and SAT. In CP, a problem is defined with a set of relations, called constraints, operating on variables associated to sets of possible values called domains. CP solvers typically rely on propagating the constraints while exploring a search space. Constraint propagation is a fundamental concept in CP aiming at pruning the search space as much as possible. In fact, each constraint is associated to a propagator (or filtering algorithm) responsible for reducing the domains according to some rules. In CP, we often distinguish search from propagation, and slightly more recently, from learning.

I report in this dissertation several contributions on each one of these aspects within constraint programming approaches to sequencing and scheduling problems. This case study strongly supports my thesis, that modern constraint programming solvers may not underestimate any of these three aspects.

Search Constraint programming solvers are typically implemented on top of backtracking systems. The search space is explored via a tree where every node corresponds to a decision restricting the search space to a smaller problem. The tree is often explored following a Depth-First Search (DFS) scheme. Whenever a failure is encountered, the solver backtracks to the last node, reverses the last decision, then resumes the exploration. The 'search' aspect in CP is related to the decisions made to explore the search tree.

A decision in CP is usually performed heuristically by shrinking a specific variable domain to a value. We often make the distinction between variable ordering and value ordering heuristics. Variable ordering heuristics are typically designed following the 'fail-first' principle [73,[START_REF] Smith | Trying harder to fail first[END_REF][START_REF] Beck | Trying again to failfirst[END_REF]: «To succeed, try first where you are most likely to fail.». As such, one tries to prune inconsistent subtrees as soon as possible. Value ordering is usually less important and follows generally an opposite principle, called 'succeed-first' or 'promise' [START_REF] Andreas | Dual viewpoint heuristics for binary constraint satisfaction problems[END_REF]. Indeed, the value with best chances to lead to a solution is preferred. These heuristics can be customized to the problem at hand or follow a standard scheme. Examples of standard variable ordering heuristics include: lexicographical order, minimum domain size, and maximum variable degree (i.e., how much a variable is constrained). General purpose value heuristics are less common, trivial ones (such as branching on the minimum or maximum value in the domain) are often used by default. When we have some information about the structure of the problem, however, dependent heuristics can be useful. We quote for instance [START_REF] Fox | Constrained Heuristic Search[END_REF][START_REF] Smith | Slack-based Heuristics for Constraint Satisfaction Scheduling[END_REF][START_REF] Simonis | Search Strategies for Rectangle Packing[END_REF][START_REF] Fages | The salesman and the tree: the importance of search in CP[END_REF][START_REF] Siala | A study of constraint programming heuristics for the car-sequencing problem[END_REF].

Search strategies can have a dramatic effect on the overall efficiency as they guide the exploration of the search space [73,[START_REF] Bitner | Backtrack programming techniques[END_REF][START_REF] Bacchus | Dynamic variable ordering in csps[END_REF][START_REF] Gent | An Empirical Study of Dynamic Variable Ordering Heuristics for the Constraint Satisfaction Problem[END_REF][START_REF] Pesant | Counting-Based Search: Branching Heuristics for Constraint Satisfaction Problems[END_REF]. In fact, a "bad" decision can cause the exploration to become trapped in an unsatisfiable sub-tree that can take an exponential time to explore.

Propagation Constraint propagation is a fundamental concept in CP aiming at reducing the search space by pruning dead-end branches. The level of pruning is usually characterized by a property called local consistency. The principle is that if an assignment is part of no solution of a relaxation of the problem, then it can not be part of a solution of the complete problem; it is inconsistent. Often, the problem is relaxed simply ac on each constraint separately does not change the domains. However, the fact that all variables must have pairwise different values prevents the assignment of x 3 to 1 or 2 to be part of any solution. Making this inference via stronger local consistencies would take exponential time. However, it is possible to enforce ac on the AllDifferent constraint in polynomial time [START_REF] Régin | A Filtering Algorithm for Constraints of Difference in CSPs[END_REF].

Learning When exploring a search tree, we repeat many times the same decisions. It is therefore natural to try to learn from a failure (a dead-end in the tree), in order to avoid doing the same mistake again. By definition, an exact set of decisions is never explored twice is a search tree. However, it may happen that only a part of the current branch, a 'nogood', entails a failure. When this is the case, it is possible to learn something useful in order to avoid failing more than once with the same reason.

The notion of nogood goes back originally to Stallman in the 70s [START_REF] Stallman | Forward reasoning and dependencydirected backtracking in a system for computer-aided circuit analysis[END_REF]. The first formal adaptation to CP was proposed by Dechter in [START_REF] Dechter | Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset Decomposition[END_REF]. Other approaches to nogood recording were proposed later in [START_REF] Prosser | Hybrid algorithms for the constraint satisfaction problem[END_REF][START_REF] Schiex | Nogood recording for static and dynamic constraint satisfaction problems[END_REF][START_REF] Matthew | Dynamic backtracking[END_REF]. In these approaches, a nogood is defined as a set of assignments that can not lead to any solution. This definition prevented learning from being more broadly used in constraint solvers. The success of nogood learning in the SAT community was, however, spectacular in the decade following Dechter's seminal work. This success is due to papers by Bayardo and Schrag [START_REF] Bayardo | Using CSP Look-Back Techniques to Solve Real-World SAT Instances[END_REF], Marques-Silva and Sakallah [START_REF] João | GRASP -a New Search Algorithm for Satisfiability[END_REF][START_REF] João | Grasp: a search algorithm for propositional satisfiability[END_REF], Moskewicz et al. [START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF] and Zhang et al. [START_REF] Zhang | Efficient Conflict Driven Learning in a Boolean Satisfiability Solver[END_REF]. Conflict Driven Clause 1 The terms 'Domain Consistency' and 'Generalized Arc Consistency' are also used in the literature.

Learning (CDCL) [START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF] constitutes the backbone of modern SAT-solvers. In CDCL, nogoods are built by computing cuts in the graph drawn from the deductions made by Unit-propagation.

Nogood recording has gained considerable attention in the CP literature essentially during the past decade and a half [START_REF] Jussien | Maintaining Arc-Consistency within Dynamic Backtracking[END_REF][START_REF] Jussien | The PaLM system: explanation-based constraint programming[END_REF][START_REF] Jussien | User-friendly explanations for constraint programming[END_REF][START_REF] Jussien | The versatility of using explanations within constraint programming[END_REF][START_REF] Katsirelos | Generalized NoGoods in CSPs[END_REF][START_REF] Cambazard | Identifying and Exploiting Problem Structures Using Explanation-based Constraint Programming[END_REF][START_REF] Lecoutre | Recording and minimizing nogoods from restarts[END_REF][START_REF] Cambazard | Résolution de problèmes combinatoires par des approches fondées sur la notion d'explication[END_REF][START_REF] Cambazard | Solving the Minimum Number of Open Stacks Problem with Explanation-based Techniques[END_REF][START_REF] Cambazard | A reformulation-based approach to explanation in constraint satisfaction[END_REF][START_REF] Ohrimenko | Propagation via Lazy Clause Generation[END_REF][START_REF] Prud'homme | Explanation-based large neighborhood search[END_REF]. The notion of 'explanation' is the central component in these works. In order to compute a nogood, every propagation outcome should be explained in the form of a set of decisions and/or earlier propagations that logically imply it. Learning in CP has taken a new start in the past decade thanks to Katsirelos's Generalized nogoods [START_REF] Katsirelos | Generalized NoGoods in CSPs[END_REF][START_REF] Katsirelos | Nogood processing in CSPs[END_REF] and more recently to Lazy Clause Generation (LCG) [START_REF] Ohrimenko | Propagation = Lazy Clause Generation[END_REF][START_REF] Ohrimenko | Propagation via Lazy Clause Generation[END_REF]. The latter mimics propagators in CDCL by considering them as generators of clauses. Propagators in LCG are allowed to use literals of the form x = v , x ≠ v , x ≤ v , and x ≥ v to express any domain change. All these types of literals can be used to explain any filtering outcome in a clausal form.

CP solvers can benefit from learning by 'discovering' new filtering rules, in the form of clauses, that propagators alone are not able to perform. Potentially, hybrid CP/SAT solvers have features coming from both approaches such as powerful propagation mechanisms, clause learning, adaptive branching, etc. However, this holds only when propagators, including those proposed for global constraints, are able to explain all their pruning.

Thesis Overview

This dissertation shows, by a thorough case-study of a class of sequencing and scheduling problems that all these aspects are important and must all be taken into account in order to design efficient solution methods.

We give a summary of the contributions presented in this thesis.

An empirical heuristic study for the car-sequencing problem

Car-sequencing is a well known sequencing problem coming from the automotive industry. In 2005, a challenge has been organized by the French Operations Research and Decision Support Society (ROADEF2 ) for solving optimization versions of the problem provided by the RENAULT3 automobile manufacturer [START_REF] Solnon | The car sequencing problem: Overview of state-of-the-art methods and industrial casestudy of the roadef'2005 challenge problem[END_REF]. In this problem, a set of cars has to be sequenced on an assembly line subject to capacity and demand constraints. Each car belongs to a class of vehicles that is defined with a set of options to install (like the sunroof and the air-conditioner).

We investigate the 'search' component for efficiently solving this problem. First, we propose a new heuristic classification for this problem. This classification is based on a set of four criteria: branching variables, exploration directions, selection of branching variables and aggregation functions for this selection. Thanks to this classification, we discovered new combinations of existing criteria leading to superior heuristics.

Based on large experimental tests, we indicate with a relatively high confidence which is the most robust strategy, or at least outline a small set of potentially best strategies. Specifically, we show that the way of selecting the most constrained option is critical, and the best choice is fairly reliably the "load" of an option, that is the ratio between its demand and the capacity of the corresponding machine.

Similarly, branching on the class of vehicle is more efficient than branching on the use of an option. Finally, we show that the choice of the heuristic is often as important as the propagation method in this problem.

Propagation in sequencing problems

Motivated by a simple observation in [START_REF] Régin | A Filtering Algorithm for Global Sequencing Constraints[END_REF] about finding failures for the carsequencing problem, we design a simple filtering rule called Slack-Pruning. This filtering relies on reasoning simultaneously about capacity and demand constraints.

However, it is applicable with very limited branching scenarios. We propose therefore to generalize the Slack-Pruning in the form of a complete filtering for a new global constraint that we call AtMostSeqCard. This constraint can be used to model a number of sequencing problems including car-sequencing and crew-rostering.

AtMostSeqCard can in fact be considered as a particular case of well known constraints. In [START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF], two algorithms designed for the AmongSeq constraint were adapted to this constraint with an O(2 q n) and O(n 3 ) worst case time complexity, respectively. In [START_REF] Michael | Flow-based propagators for the SEQUENCE and related global constraints[END_REF], another algorithm similarly adaptable to filter the AtMostSeqCard constraint was proposed with O(n 2 .log(n)) time complexity down a branch of the search tree with an initial compilation of O(q.n 2 ). We propose a complete filtering algorithm for this constraint with an O(n) (hence optimal) worst case time complexity. Furthermore, we show that this algorithm can be adapted to achieve a complete filtering for some extensions of this constraint.

In particular, the conjunction of a set of m AtMostSeqCard constraints sharing the same scope can be filtered in O(nm).

The experimental results on car-sequencing and crew-rostering benchmarks show how competitive and efficient our filtering is compared to state-of-the-art propagators.

Learning in car-sequencing

We investigate the learning aspect for solving car-sequencing instances using our filtering for AtMostSeqCard. In order to use AtMostSeqCard in a hybrid CP/SAT solver, one has to explain every single domain change made by the propagator. We therefore propose a procedure explaining AtMostSeqCard that runs in linear time complexity in the worst case. Any hybrid model using these explanations benefits from the complete filtering for this constraint along with clause learning and potentially many other CP/SAT features.

Our experiments include a variety of models with Pseudo-Boolean and SAT formulations. We show how clause learning improves the global performances in most cases. We witness a strong correlation between advanced propagation and finding solutions quickly for this problem. Moreover, for building proofs, clause learning is the most important ingredient and propagation is less useful.

Revisiting lazy generation

We revisit in this part the lazy generation of Boolean variables for encoding the domains. The issue that we address is related to the redundancy of clauses used when lazily encoding a domain [START_REF] Feydy | Lazy Clause Generation Reengineered[END_REF]. In fact, when a Boolean variable x ≤ u has to be generated, the clauses ¬ x ≤ a ∨ x ≤ u ; ¬ x ≤ u ∨ x ≤ b are added where a and b are the nearest generated bounds to u. After adding these clauses, the clause ¬ x ≤ l ∨ x ≤ u becomes redundant. The DomainFaithfulness constraint that we propose avoids such redundancy while ensuring the same level of consistency without any computational overhead. The novel lazy generation method is used in the next part with a large number of disjunctive scheduling instances.

Learning in disjunctive scheduling

The last part of our contributions addresses the impact of clause learning for solving disjunctive scheduling problems. We propose a novel conflict analysis procedure tailored to this family of problems. In fact, we use a property of disjunctive scheduling allowing to learn clauses using a number of Boolean variables that is not function of the domain size. Our propositions give good experimental results and outperform the standard CP model in most cases. Furthermore, we observe a relationship between the instance size, the branching choice, and the conflict analysis scheme. Our method improved the best known lower bounds on several instances of a classic data set.
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The structure of the dissertation follows globally the contributions order. Chapter 2 introduces the formal background and all notations used throughout the thesis. We present in Chapter 3 our heuristic study for the car-sequencing problem. In Chapter 4, we investigate the propagation aspect in a class of sequencing problems. We present in Chapter 5 our threefold learning propositions: learning in car-sequencing; revisiting lazy generation; learning in disjunctive scheduling problems. Finally, we conclude the thesis in Chapter 6 and give potential future research directions.

Chapter 2

Formal Background Introduction

We present in this chapter the necessary background and notions used throughout the thesis. This chapter is divided in three sections: Constraint programming (Section 2.1), Boolean Satisfiability (Section 2.2), and learning in CP (Section 2.3).

Constraint Programming

Constraint programming is a framework for modeling and solving combinatorial problems. Unknowns are modeled with variables drawing their values from a discrete domain, and the possible relations between variables are represented as constraints. The Constraint Satisfaction Problem (CSP) consists in deciding whether there exists an assignment of the variables satisfying all the constraints. In this section, we formally define this formalism and introduce several notational conventions.

Constraint Network

Domains, Tuples, and Constraints

Let ∆ be a set. We use the notation ∆ to denote the cardinality of ∆. A sequence S defined in ∆ is an ordered list of elements in ∆. We use the same notation S to denote a sequence S or the set of elements in S.

Let n ∈ N * and X = [x 1 , . . . , x n ] be a finite sequence of distinct variables A domain for X , denoted by D, is a mapping from variables to finite sets of values. For each variable x, we call D(x) the domain of the variable x. We suppose that D(x i ) is a finite subset of Z for all i ∈ [1, . . . , n]. We use min(x i ) to denote the minimum value in D(x i ) and max(x i ) to denote the maximum value in D(x i ). A domain D is singleton iff ∀x ∈ X , D(x) = 1. A fail domain is the special domain ⊥ where all variables x ∈ X have a domain equal to ∅ (i.e., D(x) = 0). The domain of a variable x is called Boolean iff D(x) = {0, 1}. In a propositional context, we sometimes denote 0 by f alse and 1 by true. When a domain D(x) is equal to a set of values of the form {l, l + 1, l + 2, .., u} (where l and u are two integers s.t. u ≥ l), we say that D(x) is a range domain and will be denoted by [l, u]. Finally, we say that v is assigned to the variable x iff D(x) = {v}.

Given two domains D 1 and D 2 defined over the same sequence of variables X = [x 1 , . . . , x n ],

we say that D 1 is stronger (respectively strictly stronger) than D 2 iff ∀x, D 1 (x) ⊆ D 2 (x) (respectively ∀x, D 1 (x) ⊆ D 2 (x) and ∃x i , D 1 (x i ) ⊂ D 2 (x i )). In this case, D 2 is said to be weaker (respectively strictly weaker) than D 1 .

A n-tuple (or simply a tuple) τ = ⟨v 1 , . . . , v n ⟩ is a sequence of n values. We use τ [i] to denote the value v i . Given a tuple τ = ⟨v 1 , . . . , v n ⟩ and a sub-sequence S = [x s 1 , . . . , x s k ] ⊆ X , we denote by τ πS the k-tuple τ ′ = ⟨v s 1 , . . . , v s k ⟩ and is called the projection of τ on S.

Let X be a sequence of variables, D a domain for X , and S = [x 1 , . . . , x k ] a sequence of variables in X . A constraint C defined over S is a finite subset of Z k . S is called the scope of C (denoted by X (C)) and S is called the arity of C. We sometimes use the notation C(S) to denote a constraint C having S as a scope. An instantiation of S is a k-tuple τ . τ is said to be:

• consistent for C (or satisfying C) if it belongs to C.

• inconsistent for C (or violating C) if it is not consistent for C.

• valid in D if τ [i] ∈ D(x i ) for all i ∈ [1, . . . , n].
We distinguish two classes of constraints: firstly constraints given in extension (called also Table Constraints) where all the acceptable tuples are given explicitly in a list; secondly constraints expressed intentionally by a formula. Example 2.1 shows two possible representations for the same constraint.

Example 2.1. A constraint defined intentionally and extensionally.

Let x 1 , x 2 and x 3 be three variables s.t. D(x 1 ) = D(x 2 ) = D(x 3 ) = {1, 2, 3}. The AllDifferent(x 1 , x 2 , x 3 ) stating that the three variables should have pairwise different values can be defined intentionally by the formula: x 1 = x 2 ∧ x 2 = x 3 ∧ x 1 = x 3 or extensionally using the following list of acceptable tuples ⟨1, 2, 3⟩, ⟨1, 3, 2⟩, ⟨2, 1, 3⟩, ⟨2, 3, 1⟩, ⟨3, 1, 2⟩, ⟨3, 2, 1⟩.

All constraints used in this thesis are defined intentionally. A constraint type is a family of constraints sharing a general definition. The AllDifferent(x 1 , x 2 , x 3 ) constraint given in Example 2.1 is nothing but an instance of the constraint type AllDifferent where all variables in the scope should have pairwise different values. The AllDifferent constraint type is defined as follows: Definition 2.1. AllDifferent([x 1 , . . . , x n ]): x i = x j for all i = j.

Another typical example of constraint type is the Cardinality constraint given in Definition 2.2 where [x 1 , . . . , x n ] is a sequence of Boolean variables.

Definition 2.2. Cardinality([x 1 , . . . , x n ], d): ∑ n i=1 x i = d
Cardinality is in fact a particular case of a more general constraint type called Pseudo-Boolean. Given a sequence of Boolean variables [x 1 , . . . , x n ], a Pseudo-Boolean constraint 1 has the form of ∑ i=n i=1 a i × x i ◂ k where a i , k ∈ Z and ◂ is an operator in {≤, ≥, =}.

We shall use the term constraint to denote either a constraint or a constraint type where no ambiguity is possible.

Constraint Satisfaction Problem Definition 2.3. Constraint network

A constraint network (CN) is defined by a triplet P = (X , D, C) where

• X = [x 1 , . . . , x n ] is a sequence of variables • D is a domain for X • C is a set of constraints defined over subsets of X . A solution for a constraint network (X , D, C) is an instantiation τ defined in D s.t. for all C ∈ C, τ πX (C) is consistent for C. A constraint network is said to be satisfiable
if it has a solution; unsatisfiable otherwise. We assume throughout the thesis for every variable x ∈ X that x is in the scope of at least one constraint and that x has a non-empty (initial) domain.

A Constraint Satisfaction Problem (CSP) consists of deciding whether a constraint network has a solution or not.

Since the SAT problem [START_REF] Cook | The complexity of theorem-proving procedures[END_REF] can be considered as a particular case of CSP (the domain of each variable is {0, 1} and each clause is considered as a constraint) then the constraint We find mainly three approaches in the literature for solving constraint satisfaction problems: backtracking algorithms, local search and algebraic resolution. We consider in this thesis, only (complete) backtracking algorithms where the solver explores the search tree according to some strategies while performing propagation and possibly learns from conflict.

Backtracking Search

We give in Algorithm 1 a baseline backtracking Solver. The term 'search' is used throughout the thesis to describe any process related to the decisions made to explore the search tree.

With Backtracking Solvers, the domain will be subject to several changes. We will therefore suppose that D (respectively D(x)) denotes the current domain of X (respectively the variable x), and D initial (respectively D initial (x)) the initial domain (respectively of the variable x).

In constraint programming, backtracking solvers are augmented with reduction rules (known as propagators or filtering algorithms) that are usually characterized by some conditions they enforce (called local consistency). Reduction rules aim to reduce the search space using inferences based on the current state of the constraint network. When the constraints are given in intention, CP solvers typically use domain-based tightening.

That is, operations on networks, keeping the same set of constraints and solutions, while returning stronger domains.

Constraint Propagation

Propagators

We use a similar formalism to [START_REF] Schulte | Efficient constraint propagation engines[END_REF][START_REF] Schulte | Chapter 14 -finite domain constraint programming systems[END_REF] for defining propagators.

Definition 2.4. Let C([x 1 , . . . , x k ]) be a constraint. A propagator f for C is a mapping from domains to domains respecting the following properties for any domain D:

• f (D) is stronger than D [Filtering property]. • Any tuple satisfying C that is valid in D is also valid in f (D) [Correctness prop- erty]. • If D(x i ) = {v i } ∀i ∈ [1..k], then f (D) = D if ⟨v 1 , . . . , v k ⟩ satisfies C, and f (D) =⊥ otherwise [Checking property] .
The scope of C is also called the scope of f and is denoted by X (f ). We assume that f

operates only on X (f ). That is, if f (D) ≠⊥, then ∀x ∉ X (C), f (D)(x) = D(x).
Returning a fail domain ⊥ is interpreted as finding a failure. 

if {x j D(x j ) = {1}} > d then D ←⊥ ; if {x j D(x j ) = {0}} > n -d then D ←⊥ ; if {x j D(x j ) = {1}} = d then foreach i ∈ {1..n} do if D(x i ) = {0, 1} then D(x i ) ← {0} ; else if {x j D(x j ) = {0}} = n -d then foreach i ∈ {1..n} do if D(x i ) = {0, 1} then D(x i ) ← {1} ; return D ;
Propagators are executed within backtracking search sequentially before taking any decision. We describe the basic Generic Iteration Algorithm used in [4,[START_REF] Schulte | Chapter 14 -finite domain constraint programming systems[END_REF][START_REF] Bessiere | Constraint propagation[END_REF] to iterate over a set of propagators. Algorithm 5 depicts a possible pseudo-code that returns a Boolean indicating if propagation finish without finding a failure.

In this algorithm, F is a set of propagators and Open is a list, initialized with F, containing a subset of propagators to execute. Each iteration in the main loop chooses Algorithm 5: Propagate()

Open ← F ; while Open = ∅ do Choose f ∈ Open ; Open ← Open ∖ {f } ; D ← f (D) ; if D =⊥ then return f alse ; for x ∈ X (f ) s.t. D(x) changed do Open ← Open ∪ {g g ∈ F ∧ x ∈ X (g)} ;
return true ; a propagator f in Open; executes f ; then updates the list Open. All propagators not in Open and having at least one variable whose domain is changed by f will be added to Open. The filtering property that we used in the definition propagators makes Algorithm 5 terminates [4,[START_REF] Schulte | Chapter 14 -finite domain constraint programming systems[END_REF].

The incorporation of propagators into a backtracking solver is simply done by replacing the checking function in the TreeSearch algorithm (Line 1 in Algorithm 1) with a call to Propagate(). Modern CP-Solvers deploy propagation based on Algorithm 5, however, with several improvements like the notion of idempotency and priority of propagators, among others. We shall not detail further this iterative process. We give, however, more attention on how to «measure» the filtering level between propagators.

Given two propagators f , g , we say that f is stronger than g iff f (D) is stronger than g(D) for all domain D. In this case, we say also that f subsumes the filtering/pruning of g. The filtering of f and g is said to be incomparable iff none of them is stronger than the other. It is common in CP modeling to combine incomparable propagators together in order to prune further the search space. This was for instance the modeling choice in [START_REF] Baptiste | Global constraints for partial csps: A case-study of resource and due date constraints[END_REF][START_REF] Vilím | Global Constraints in Scheduling[END_REF][START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF][START_REF] Bessiere | The balance constraint family[END_REF]. There is of course a tradeoff between filtering strength and computational cost, and it is not always obvious to choose the most practical propagator.

We shall draw a link to this modeling choice later when we introduce the notion of global constraint.

Local Consistency

Characterizing the level of filtering is usually associated with the notion of local consistency. A local consistency is a property that characterizes some necessary conditions on values (or instantiations) to belong to solutions [START_REF] Bessiere | Constraint propagation[END_REF]. The most known and widely used local consistency property is Arc Consistency.

Definition 2.5. Support

A support on a constraint C in a domain D is an instantiation of X (C) satisfying C and valid in D.

We say that an assignment

x i ← v has a support on a constraint C([x 1 , . . . , x k ]) in D iff there exists a support τ on C in D s.t. τ [i] = v.
Another way to look at the notion of support is that if a propagator for C prunes a value v from D(x i ), then necessarily

x i ← v does not have a support in C (due to the correctness property).

Definition 2.6. Arc Consistency

A constraint C([x 1 , . . . , x k ]) is Arc Consistent (ac) on a domain D iff for all i ∈ [1, k], any value v ∈ D(x i ) has a support on C in D.
We shall use the term «complete filtering» to describe a propagator enforcing ac. 

in O(n).
There is a close computational relationship between enforcing ac and solving. Arc Consistency is sometimes very costly to enforce. One may typically consider instead a weaker form of propagation called Bound Consistency.

Definition 2.7. Bound Support A bound support on a constraint C([x 1 , . . . , x k ]) in a domain D is a k-tuple τ satisfying C s.t. ∀i ∈ [1, k], τ [i] ∈ [min(x i ), max(x i )].
Definition 2.8. Bound consistency

A constraint C([x 1 , . . . , x k ]) is bound consistent (bc) in a domain D iff for all i ∈ [1, k],
min(x i ) and max(x i ) have a bound support in D.

Bound Consistency is obviously weaker than Arc Consistency. Note, however, that they are equivalent in some cases. Take for example the constraint x 1 ≤ x 2 . ac and bc are equivalent since for any bound support, we can easily build a support for this constraint.

We shall omit mentioning the domain D when describing supports, ac, and bc as it is supposed to be the current domain.

Decomposition & Global Constraints

Decomposition

We say that a constraint C can be decomposed into a finite set of constraints {c 1 , . . . , c k } iff for any solution τ for the constraint C * defined by c 1 ∧ . . . ∧ c k , we have τ πX (C) is a solution for C. Notice that there might exist some variables X * C in the scope of c 1 . . . c k that do not belong to the scope of C. In this case we use the term channeling to denote the constraints having in their scope variables from both X (C) and X * C .

It is known that decomposing constraints hinders propagation in general. Consider

again the AllDifferent(x 1 , x 2 , x 3 ) constraint in Example 2.1 with D(x 1 ) = D(x 2 ) = {1, 2} and D(x 3 ) = {1, 2, 3}.
Enforcing ac on each constraint of the decomposition would leave the domain as it is whereas there is no possible way to satisfy the original constraint when assigning 1 or 2 to x 3 . In this example, the constraints

x 1 = x 2 , x 2 =
x 3 , and x 1 = x 3 are ac whereas AllDifferent(x 1 , x 2 , x 3 ) is not. Achieving ac on AllDifferent(x 1 , x 2 , x 3 ) in this case reduces the domain of x 3 to {3}.

There exists, however, a few particular cases where the decomposition maintains ac. We use in this thesis two known cases where ac on a constraint C is equivalent to enforcing ac on a decomposition. The first case, described below, is related to the notion of Berge acyclicity in the constraint graph, whereas the second case is related to the notion of monotonicity (a constraint of this type is studied in Section 4.2).

Let P = (X , D, C) be a CN. The constraint graph of P is a hypergraph H P in which one associates each variable to a node and each constraint scope to an hyperedge. A

Berge cycle [START_REF] Berge | Graphs and hypergraphs[END_REF] in 

H P is a sequence [C 1 , x 1 , .., C k , x k , C k+1 ] (k > 1) where : x 1 . . . x k are distinct variables; C 1 . . . C k are distinct constraints; C k+1 is C 1 ; and x i is in X (C i ) and X (C i+1
[C 1 , x 1 , C 2 , x 2 , C 1 ] is a Berge cycle in this case.
Let C be a constraint that can be decomposed into a finite set of constraints {c 1 , .., c k }.

If the constraint graph of the CN formed by c 1 , . . . , c k is Berge acyclic, then C is ac iff

c i is ac for all i ∈ [1, k] [14].

Global Constraints

The notion of global constraint [START_REF] Bessiere | To Be or Not to Be ... a Global Constraint[END_REF][START_REF] Van Hoeve | Global constraints[END_REF] is a fundamental concept in CP. We consider the definition of a global constraint as a constraint type defined over a non-fixed number of variables. In practice, they represent sub-problems or patterns occurring in many problems.

The AllDifferent constraint given in Definition 2.1 is a typical example. There is a wide range of problems in which one can use AllDifferent. Sudoku for instance is a typical example where one can post an AllDifferent constraint for each row, column, and square. The same constraint can also be used in scheduling problems with unary resources. If all tasks of a machine M have a duration of one unit of time, then the resource constraint related to M is nothing but an AllDifferent constraint on the variables representing the start time of each task.

A global constraint is usually introduced in the CP literature together with a polynomial time filtering algorithm. The fact that they occur in several applications has attracted a lot of attention to develop special-purpose propagators making them practical tools for tackling hard combinatorial problems. The global constraint catalog2 [START_REF] Beldiceanu | Global constraint catalogue: Past, present and future[END_REF] contains descriptions (in terms of graph properties, automata, or first order logical formula) for more than 400 global constraints. Such a rich language may sometimes make it difficult to make the best the modeling choices.

We give in the following the definition of the Global Cardinality Constraint (Gcc)

and the Global Sequencing Constraint (Gsc) that are used throughout this thesis.

Let [x 1 , . . . , x n ] be a sequence of variables and ∆ = ⋃ n i=1 D(x i ). Let low and upp be two mappings on integers such that low(j) ≤ upp(j) for all j. The Global Cardinality Constraint Gcc [START_REF] Régin | Generalized Arc Consistency for Global Cardinality Constraint[END_REF] is defined as follows: The Global Sequencing Constraint Gsc is defined with a conjunction between a Gcc and a chain of Among constraints. An Among constraint (Definition 2.10) limits the occurrences of values of a set of integers ν to be bounded between two integer l and u

(l < u). Definition 2.10. Among(l, u, [x 1 , . . . , x q ], ν) ⇔ l ≤ {i x i ∈ ν} ≤ u
The Gsc constraint is defined as follows:

Definition 2.11. Gsc(l, u, q, low, upp, [x 1 , . . . , x n ], ν) ∶ n-q ⋀ i=0 Among(l, u, [x i+1 , . . . , x i+q ], ν) ∧ Gcc(low, upp, [x 1 , .., x n ])
We mention now an important complexity property related to ac for global constraints.

For a more complete background on the subject, we refer the reader to [START_REF] Bessiere | The Complexity of Reasoning with Global Constraints[END_REF]. Definition 2.12. ac-poly-time [START_REF] Bessiere | The Complexity of Reasoning with Global Constraints[END_REF] An ac-poly-time decomposition of a global constraint is a decomposition where ac can be enforced in polynomial time w.r.t. the size of the original constraint and domains. Theorem 2.13. [START_REF] Bessiere | The Complexity of Reasoning with Global Constraints[END_REF] If enforcing ac on a global constraint is NP-Hard, then there is no ac-poly-time decomposition of the original constraint that achieves ac on C. Theorem 2.13 gives a clear statement when to consider lower filtering compared to ac.

Obviously, one does not use in practice ac algorithms when they are NP-Hard. Instead, lower filtering (usually bc) is typically used is this case since any decomposition would hinder propagation anyway. Arc Consistency on Gsc for instance is NP-Hard [START_REF] Bessiere | The Slide Meta-Constraint[END_REF]. Régin and Puget proposed a reformulation of this constraint into a set of Gcc constraints.

Their filtering is therefore hindering propagation.

The modeling choice between several global constraints should take into account the filtering level to enforce along with the complexity of such propagation. This tradeoff is often the motivation behind proposing new global constraints. The latter are usually either extensions or particular cases of other global constraints that might occur in a number of applications. It should be noted that the more general is a constraint, the higher the complexity of enforcing a given level of consistency on it. For instance, enforcing ac on Gcc can be done in O( ∆ .n 2 ) time [START_REF] Régin | Generalized Arc Consistency for Global Cardinality Constraint[END_REF] while enforcing ac on AllDifferent takes O( ∆ .n 1.5 ) time [START_REF] Régin | A Filtering Algorithm for Constraints of Difference in CSPs[END_REF]. Sometimes, generalizing constraints can make them intractable. For example, consider Gcc in which, instead of integer bounds of occurrences (i.e.,low(j) and upp(j) for all j ∈ ∆), we have variables. That is, the occurrence of each value j ∈ ∆ has to be equal to a variable δ j . ac for this constraint is NP-Hard to enforce [START_REF] Quimper | Improved Algorithms for the Global Cardinality Constraint[END_REF].

Search

The search aspect is related to the decisions made to explore the search tree. A decision in CP is often performed heuristically by reducing a specific variable domain to a value (in a similar way to Algorithm 3). Variable ordering heuristics are typically designed following the 'fail-first' principle [73,[START_REF] Smith | Trying harder to fail first[END_REF][START_REF] Beck | Trying again to failfirst[END_REF]: «To succeed, try first where you are most likely to fail.». As such, one tries to avoid inconsistent subtrees as soon as possible.

Value ordering is usually less important and follows generally an opposite principle, called 'succeed-first' or 'promise' [START_REF] Andreas | Dual viewpoint heuristics for binary constraint satisfaction problems[END_REF]. Indeed, the value with best chances to lead to a solution is preferred. These heuristics can be customized to the problem at hand or follow a standard scheme. Examples of problem dependent heuristics can be found in [START_REF] Fox | Constrained Heuristic Search[END_REF][START_REF] Smith | Slack-based Heuristics for Constraint Satisfaction Scheduling[END_REF][START_REF] Simonis | Search Strategies for Rectangle Packing[END_REF][START_REF] Fages | The salesman and the tree: the importance of search in CP[END_REF][START_REF] Siala | A study of constraint programming heuristics for the car-sequencing problem[END_REF]. Examples of standard variable ordering heuristics include: lexicographical order, minimum domain size, and maximum variable degree (i.e., how much a variable is constrained). General purpose value heuristics are less common, trivial ones (such as branching on the minimum or maximum value in the domain) are often used by default.

Search strategies can have a dramatic effect on the overall efficiency as they guide the exploration of the search space [73,[START_REF] Bitner | Backtrack programming techniques[END_REF][START_REF] Bacchus | Dynamic variable ordering in csps[END_REF][START_REF] Gent | An Empirical Study of Dynamic Variable Ordering Heuristics for the Constraint Satisfaction Problem[END_REF][START_REF] Pesant | Counting-Based Search: Branching Heuristics for Constraint Satisfaction Problems[END_REF]. In fact, a "bad" decision can cause the exploration to become trapped in an unsatisfiable sub-tree that can take an exponential time to explore.

Boosting Search through Randomization and Restarts

The authors of [START_REF] Gomes | Boosting Combinatorial Search Through Randomization[END_REF], have shown that the 'hardness' of finding solutions is not entirely related to the instance at hand, but rather to the combination 'instance ⊕ deterministic algorithm'. This observation is supported by the efficiency gain witnessed when adding randomization to a deterministic search algorithm. Randomization is typically performed when making decisions. For instance, one can use randomization when tie breaking choices that rank equally with respect to the heuristic at hand. Another example is to choose randomly across a number of best choices.

It was observed int [START_REF] Gomes | Boosting Combinatorial Search Through Randomization[END_REF] that at any time during the experiment there is a non-negligible probability of hitting a problem that requires exponentially more time to solve than any that has been encountered before [START_REF] Gomes | Boosting Combinatorial Search Through Randomization[END_REF]. This phenomenon explains that runtime distributions on random instances, or on random runs for a given instance, are often heavy tailed.

Restarts has been proposed as a solution to avoid this phenomenon. The search is bounded by a given cutoff. Once the cutoff reached, the exploration is stopped, and restarted from the search root. One usually uses the number of failures as a restart cutoff. Using randomization when branching on nodes makes the explored trees differ from restart to restart.

We find in the literature two common restart policies. A geometric restart [START_REF] Walsh | Search in a Small World[END_REF] uses a limit of b × f k-1 for the k th restart where b is called a base and f is called a factor. A Luby policy [START_REF] Luby | Optimal speedup of Las Vegas algorithms[END_REF], on the other hand, follows the sequence 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . . multiplied by a base b. The i th element of the luby sequence ψ i is defined recursively by the formula:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 2 k-1 if ∃k ∈ N, i = 2 k -1 ψ i-2 k-1 +1 if ∃k ∈ N, 2 k-1 ≤ i < 2 k -1 (2.1)

Boolean Satisfiability

The Boolean Satisfiability Problem (SAT) is the question of deciding a Boolean expression defined in a Conjunctive Normal Form. That is, a conjunction of clauses, each of which is a disjunction of literals, and each literal represents a Boolean variable or its negation. As such, SAT can be considered as a particular case of CSP. This restriction has made SAT solvers benefit from several enhancements that are not available in pure constraint programming solvers.

We describe in this section the organization of modern SAT solvers by formally defining this formalism and introducing some related notions.

A Background on Propositional Logic

An atom a is a propositional (i.e., Boolean) variable. A literal p denotes either an atom a or its negation ¬a. The former is called positive literal whereas the latter is called negative literal. We use the notations a and ¬a for each atom a to denote its positive and negative literals respectively. We extend the negation operator to literals following the rule ¬¬p = p. A clause c is a disjunction of literals p 1 ∨ . . . ∨ p k . We suppose, without loss of generality, that all literals in a clause are pairwise distinct and there is no literals p, ¬p in the same clause. We use the two notations: p i ∈ c for any literal appearing in the clause c; and c as the size of the clause (i.e., the number of literals in the disjunction). Let c, c ′ be clauses and p be a literal. We denote by: p ∨ c the clause obtained by the disjunction of p with all literals in c; and c ∨ c ′ the clause defined by the disjunction of all literals in c and c ′ . Finally, a propositional formula Φ is given in a Conjunctive Normal Form (CNF) if it is defined by a conjunction of clauses

c 1 ∧ .. ∧ c n .
With that being defined, a CNF can be considered as a constraint network (X , D, C) s.t. X is the set of atoms, and C is the set of clauses. The Boolean Satisfiability Problem (SAT) is to decide the satisfiability of a CNF formula [START_REF] Cook | The complexity of theorem-proving procedures[END_REF].

A literal p is said to be:

• true iff p is positive and its atom is assigned to the value 1 or p is negative and its atom is assigned to the value 0.

• f alse iff ¬p is true.

A literal p is said to satisfy a clause c iff p ∈ c and p is true. Conversely, a literal p is said to strengthen a clause c iff p ∈ c and p is f alse.

A clause c is satisfied iff there exists a literal satisfying c. Similarly, c is violated iff ∀p ∈ c, p falsifies c. A clause c is called unit when it contains exactly one unassigned literal and the rest strengthen c. Finally, an empty clause ⊥ clause is a clause with no literals.

Conflict Driven Clause Learning

Conflict Driven Clause Learning (CDCL) [START_REF] João | GRASP -a New Search Algorithm for Satisfiability[END_REF][START_REF] João | Grasp: a search algorithm for propositional satisfiability[END_REF][START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF][START_REF] Eén | An Extensible SAT-solver[END_REF] is a state-of-the-art complete algorithm underlying most modern SAT solvers. CDCL is essentially based on the Davis-Putnam-Logemann-Loveland (DPLL) [START_REF] Davis | A Machine Program for Theorem-proving[END_REF] algorithm augmented with resolution [START_REF] Alan | A Machine-Oriented Logic Based on the Resolution Principle[END_REF]. DPLL is a backtracking system using one type of propagation called

Unit-propagation (UP).

We associate two values to each assigned literal p: level(p) represents the number of decisions in the path between the root and the node in which p is assigned; and rank(p) represents the rank of p in the sequence of assignments of its level, in chronological order.

We shall start counting rank from 0 at each level. Therefore, any decision has a rank equal to 0.

We introduce the notion of propagation rule as a mechanism to describe the outcome of some propagation.A propagation rule is a logical implication of the form Ψ ⇒ p where Ψ is a conjunction of literals and p is either a literal or a failure ⊥. Ψ is said to be the explanation for (propagating) p and will be denoted by explain(p). UP triggers propagation in two possible ways. First, whenever a clause c becomes unit, it enforces the only unassigned literal p in c to be true since it is the only possible way to satisfy c. The propagation rule describing this filtering is ⋀ q≠p∈c ¬q ⇒ p. Second, when all literals in a clause c falsifies c, a failure ⊥ is triggered (c is said to be the conflict clause in this case). We use ⋀ q∈c ¬q ⇒ ⊥ to describe this propagation. If q is the last propagated literal in the conflict clause, then we call q and ¬q conflicting literals.

Finally a nogood is a conjunction of literals sufficient to make the CN unsatisfiable if they are true. It follows from any propagation rule of the form Ψ ⇒ ⊥ that Ψ is a nogood.

As previously said, modern SAT solvers implement Conflict Driven Clause Learning (CDCL) [START_REF] João | GRASP -a New Search Algorithm for Satisfiability[END_REF][START_REF] João | Grasp: a search algorithm for propositional satisfiability[END_REF][START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF][START_REF] Eén | An Extensible SAT-solver[END_REF], i.e., essentially DPLL in which new clauses are learnt from failures [START_REF] João | GRASP -a New Search Algorithm for Satisfiability[END_REF][START_REF] João | Grasp: a search algorithm for propositional satisfiability[END_REF]. However, CDCL solvers feature many enhancements, we describe the most important.

Conflict Analysis

Whenever a failure occurs during search, a new nogood is computed. The latter is translated into a clause that will be added to the base and used to perform non-chronological backtrack (known with the term backjump). The whole machinery is called conflict analysis and is based on the notion of cuts in the Implication Graph Definition 2.14. Implication graph

The implication graph G(N, E) is a directed acyclic graph built as follows:

• Each assigned literal is associated to a vertex in N .

• There exists a directed edge in E from p to q (p = q) if p ∈ explain(q).

• When a failure is detected by a clause c, we first add a vertex q s.t. q is the conflicting literal in c. Then, any literal p ≠ q ∈ ¬c is associated to a directed edge going from p to q. Finally, there is a special vertex ⊥ having edges coming from q and ¬q.

From Definition 2.14, one can observe that all decisions have no incident edge in G(N, E).

We give an example of implication graph. Suppose that the set of clauses contains the following five clauses, among others: (1) ¬a ∨ ¬b; We suppose that: g and a are true and correspond to decisions made at levels 4 and 9 respectively; ¬h is propagated at level 6; the propagation after assigning a follows the following propagation order: clause 1 propagates ¬b, clause 2 propagates c, clause 3 propagates ¬d, clause 5 propagates e, and clause 4 triggers failure.

We show a part of the implication graph leading to failure. A node p l•r in the implication graph stands for the assignment of p as the r-th consequence of the l-th decision (i.e., l = level(p) and r = rank(p)). Note that decisions will always have the form of p n•0 since their rank is always equal to 0. Grey vertices are decisions while white vertices are propagated literals. The conflicting literals in this example are e and ¬e.

The implication graph is built while searching by recording for each assigned literal p its reason, that is, explain(p) if p is propagated and null otherwise (i.e., p is a decision). During conflict analysis, new nogoods will be produced. They correspond to cuts in the implication graph. We define a cut as a bipartition of G(N, E). We distinguish two disjoint sets: the conflict part and the reason part. The conflict part always contains the ⊥ vertex whereas the reason part contains all decisions. The conjunction of literals in the reason side that have an edge going to at least one literal in the conflict side leads to a contradiction. It is therefore a nogood. The clause equal to the negation of the nogood is therefore logically implied by the CN. Different cuts will therefore produce different clauses. We show in Figure 2.2 two different cuts for the implication graph used in the previous example of Figure 2.1. The two cuts correspond to the nogoods c ∧ g and g ∧ a ∧ ¬h. Hence we can learn the clauses ¬c ∨ ¬g and ¬g ∨ ¬a ∨ h.

When a nogood ¬c is identified, c is firstly learnt and secondly used to perform nonchronological backtracking (called backjumping). The condition for backjumping is that c contain only one literal p in the latest level. In this case, c can be seen as Ψ ⇒ p where Ψ = ¬p 1 ∧ .. ∧ ¬p n s.t. p i = p ∈ c and p i are assigned at previous levels. We first backtrack to the greatest level between level(p i ), then c directly propagates p. For instance, with the clause ¬g ∨ ¬a ∨ h in the previous example, we backtrack to level 6 and assign ¬a to true immediately.

Learning schemes are essentially differentiated by their methods for building cuts. The first method proposed in the literature is the one used in the relsat system [START_REF] Bayardo | Using CSP Look-Back Techniques to Solve Real-World SAT Instances[END_REF] where cuts are built s.t. the literal in the last level is always the latest decision. Modern SAT-solvers, however, use any Unique Implication Point (UIP), that is, a dominator of the conflicting literals in the last level. Definition 2.15. Domination in the Implication Graph [START_REF] Zhang | Efficient Conflict Driven Learning in a Boolean Satisfiability Solver[END_REF] A vertex V dominates another vertex V ′ in the implication graph if any path from the decision vertex of the level of V to V ′ has to go through V . Definition 2.16. Unique Implication point [START_REF] Zhang | Efficient Conflict Driven Learning in a Boolean Satisfiability Solver[END_REF] A Unique Implication point (UIP) is a vertex in the current level that dominates both conflicting literals.

Choosing cuts based on UIPs was originally proposed in Grasp [START_REF] João | GRASP -a New Search Algorithm for Satisfiability[END_REF][START_REF] João | Grasp: a search algorithm for propositional satisfiability[END_REF]. As we can see in Figure 2.3, several UIPs can be found in a same implication graph. In this figure, every path from the latest decision (i.e., a) to the conflicting literals e and ¬e has to pass through a, b and c. Three different UIP cuts are therefore possible in this example.

Among the several possibilities, there exists one UIP cut that is particularly interesting.

By considering all UIPs by their reverse order of propagation, the first one (i.e., the nearest to the conflict), called the first Unique Implication point (1-UIP), guarantees the best backjump level (i.e. the nearest to the root). 1-UIP cuts have been shown to be extremely efficient in practice [START_REF] Zhang | Efficient Conflict Driven Learning in a Boolean Satisfiability Solver[END_REF] and are widely used in modern SAT Solvers.

Algorithm 6: 1-UIP d ← current level; Ψ ← explain(⊥) ; while {q ∈ Ψ level(q) = d} > 1 do 1 p ← arg max q ({rank(q) level(q) = d ∧ q ∈ Ψ}) ; 2 Ψ ← Ψ ∪ {q q ∈ explain(p) ∧ level(q) > 0} ∖ {p} ; return Ψ ;
Algorithm 6 shows a possible algorithm for computing the 1-UIP nogood. It returns a nogood Ψ having one literal assigned at the last decision level d. Ψ is initialized with the explanation of failure. Each iteration in the main loop substitutes a literal in Ψ with its explanation. The choice of the next literal to substitute is performed at Line 1 with the literal of Ψ assigned at the last decision level and of maximum rank. It should be pointed out that modern SAT solvers usually try to reduce the final nogood Ψ [START_REF] Sörensson | Minimizing learned clauses[END_REF]. A common strategy of reduction is to eliminate literals having their explanation in Ψ.

In the example used in Figure 2.1, the 1-UIP clause is ¬g ∨ ¬c, and the literal c is the first UIP. The solver then backtracks to the level of assigning g (i.e., 4 in this case), assigns c to f alse, then continues the exploration. We show a step-by-step execution of algorithm 6 for building the nogood in this example.

1. Ψ ← c ∧ ¬d ∧ e 2. p ← e 3. Ψ ← c ∧ ¬d (i.e., Ψ ← Ψ ∪ {c} ∖ {e}) 4. p ← ¬d 5. Ψ ← c ∧ g
We use the term clause database in the rest of this thesis to denote the set of learnt clauses.

2-Watched Literals

Unit-propagation is typically implemented with lazy data structures. The 2-watched literals [START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF][START_REF] Gent | Optimal Implementation of Watched Literals and More General Techniques[END_REF] is the most known lazy propagation scheme used with modern SAT solvers. Briefly, the idea is associate each clause c to two literals p, q ∈ c (said to be watching c). No propagation check is needed for c as long as the two literals watching c are unassigned. Without loss of generality, if p becomes assigned, but strengthen the clause, Unit-propagation looks for a new unassigned literal to watch c. If no such literal exists, Unit-propagation assigns q to true if q is unassigned and triggers failure if q is assigned but falsifies c.

Activity-Based Branching

One of the most known and widely used variable ordering heuristic in SAT solvers is the so-called Variable State Independent Decaying Sum (VSIDS) [START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF]. This heuristic has been shown to be extremely efficient is practice. One can find a variety of implementations for VSIDS. The first description of a VSIDS ordering follows the following steps [START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF]:

• Each literal has an 'activity' value initialized to 0.

• Whenever a literal occurs in a learnt clause, its activity is incremented.

• The (unassigned) literal with the highest activity is chosen at each decision.

• All activity values are periodically divided by a constant so that literals in recent learnt clauses are preferred.

Clause Database Reduction

Learning clauses without controlling the clause database size can lead to a memory explosion with the increasing number of clauses. This explosion is likely to increase the amount of time required for enforcing UP. Several deletion strategies have been proposed in the literature [START_REF] João | Grasp: a search algorithm for propositional satisfiability[END_REF][START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF][START_REF] Eén | An Extensible SAT-solver[END_REF]7,[START_REF] Jabbour | Revisiting the Learned Clauses Database Reduction Strategies[END_REF]. One usually prefers the shortest clauses, or the most 'active' clauses. The latter are selected based on literal activities computed along with VSIDS. It is important to note that clauses responsible for propagating some literals in the current branch should not be deleted as they might be needed during conflict analysis.

Restarts

We have discussed in Section 2.1.4.1 the importance of restarts for combinatorial algorithms in general. CDCL can benefit further from restarts by using the learnt clauses and activity counting. The learnt clause prevents previous branches to be explored twice. Moreover, the activity of literals can be extremely useful to bring information from previous restarts to the search strategy.

Clause Learning in CP

When exploring a search tree, we repeat many times the same decisions. It is therefore natural to try to learn from failures, in order to avoid doing the same mistake again. By definition, an exact set of decisions is never explored twice is a search tree. However, it may happen that only a part of the current branch entails a failure. When this is the case, it is possible to learn something useful in order to avoid failing more than once with the same reason.

We have seen in the previous section how nogoods are derived from conflicts in SAT solvers. Nogood learning in CP, however, predates CDCL. Indeed, the notion of nogood goes back originally to the 70s in the seminal work of Stallman and Sussman [START_REF] Stallman | Forward reasoning and dependencydirected backtracking in a system for computer-aided circuit analysis[END_REF]. And the first formal adaptation to CP was proposed by Dechter in [START_REF] Dechter | Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset Decomposition[END_REF]. A nogood (or conflict set in [START_REF] Dechter | Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset Decomposition[END_REF]) is defined as a set of assignments that can not lead to any solution. Other approaches to nogood recording were proposed later in [START_REF] Prosser | Hybrid algorithms for the constraint satisfaction problem[END_REF][START_REF] Schiex | Nogood recording for static and dynamic constraint satisfaction problems[END_REF][START_REF] Matthew | Dynamic backtracking[END_REF].

Nogood learning in CP had not the same impact of CDCL in SAT solvers in the early days. It has gained, however, considerable attention progressively during the last decade and a half [START_REF] Jussien | Maintaining Arc-Consistency within Dynamic Backtracking[END_REF][START_REF] Jussien | The PaLM system: explanation-based constraint programming[END_REF][START_REF] Jussien | User-friendly explanations for constraint programming[END_REF][START_REF] Jussien | The versatility of using explanations within constraint programming[END_REF][START_REF] Katsirelos | Generalized NoGoods in CSPs[END_REF][START_REF] Cambazard | Identifying and Exploiting Problem Structures Using Explanation-based Constraint Programming[END_REF][START_REF] Cambazard | Résolution de problèmes combinatoires par des approches fondées sur la notion d'explication[END_REF][START_REF] Cambazard | Solving the Minimum Number of Open Stacks Problem with Explanation-based Techniques[END_REF][START_REF] Cambazard | A reformulation-based approach to explanation in constraint satisfaction[END_REF][START_REF] Ohrimenko | Propagation via Lazy Clause Generation[END_REF][START_REF] Prud'homme | Explanation-based large neighborhood search[END_REF]. The notion of 'explanation' is the central component in these works. In order to compute a nogood, every propagation outcome should be explained in the form of a set of decisions and/or earlier propagations that logically imply it.

Learning in CP has taken a new start in the past decade thanks to Katsirelos's generalized nogoods [START_REF] Katsirelos | Generalized NoGoods in CSPs[END_REF][START_REF] Katsirelos | Nogood processing in CSPs[END_REF]. A generalized nogood extends the notion of nogood to contain both assignments and non-assignments (i.e., pruning). Lazy clause generation3 (LCG) [START_REF] Ohrimenko | Propagation = Lazy Clause Generation[END_REF][START_REF] Ohrimenko | Propagation via Lazy Clause Generation[END_REF] is a similar approach to Katsirelos'. However, propagators in LCG are allowed to use literals of the form x = v , x ≠ v , x ≤ v , and x ≥ v to express domain changes. All these types of literals can be used to explain domain reductions in a clausal form. The explanations are used essentially to mimic CDCL. We give an illustrative example. Let ξ be a Boolean variable and x 1 . . . x 11 be variables with a domain defined by: D Observe that no pruning happens in the initial state of the problem. Now consider the following decisions in the chronological order:

(x 1 ) = [1, 30], D(x 2 ) = [9, 30], D(x 3 ) = [0, 3], D(x 4 ) = [0,
1. Assign x 1 to 1: The only subsequent propagation is to make 3 the lower bound of x 7 by constraint (1), i.e., x 7 ≥ 3 . CP-solvers can benefit from clause leaning by 'discovering' new filtering rules, in the form of clauses, that propagators alone are not able to perform. In the previous example for instance, when enforcing x 7 ≥ 3 , no filtering suggest that ξ should be assigned to 0. It is only by means of the learnt clause x 7 ≤ 2 ∨ ξ = 0 that the solver performs such filtering.

Hybrid CP/SAT solvers may combine features coming from both approaches such as powerful propagation mechanisms, clause learning, and adaptive branching. However, this holds only when propagators, including those proposed for global constraints, are able to explain all their pruning.

In the rest of this section, we cover in more details the principles of Lazy Clause Generation [START_REF] Ohrimenko | Propagation via Lazy Clause Generation[END_REF][START_REF] Ohrimenko | Propagation = Lazy Clause Generation[END_REF][START_REF] Feydy | Lazy Clause Generation Reengineered[END_REF] as it is the framework that we use to design the approach introduced in this dissertation. The latest architecture [START_REF] Feydy | Lazy Clause Generation Reengineered[END_REF] is implemented on top of a CP-solver augmented with most SAT features (clause learning, non-chronological backtrack, adaptive-Branching, etc).

A Baseline Hybrid Solver

Domain Encoding

The atoms on which the learning is performed are related to some propositional facts about the variable domains. These atoms are channeled through a set of clauses to ensure a correct domain representation. The most known domain encodings in the literature are the direct encoding [START_REF] De | A Comparison of ATMS and CSP Techniques[END_REF][START_REF] Walsh | SAT v CSP[END_REF] and the order encoding [START_REF] Crawford | Experimental Results on the Application of Satisfiability Algorithms to Scheduling Problems[END_REF][START_REF] Tamura | Compiling finite linear CSP into SAT[END_REF] .

We assume without loss of generality that x is a variable with a domain

D(x) = {v 1 , v 2 , . . . , v k } where v i < v i+1 for all i ∈ [1, k -1].
The Direct Encoding The direct encoding uses k atoms denoted by x = v j (j ∈ [1, k]) s.t. x = v j is semantically equivalent to assigning x to v j . Two types of clauses are used to represent the different relations between these atoms.

• at-least-one: a clause is used to express the fact that x has to be assigned to a value:

x = v 1 ∨ x = v 2 ∨ . . . ∨ x = v k • at-most-one: k 2 -k 2
clauses are used to express the fact that x has to be assigned to only one value.

∀l < h ∈ [1, k], ¬ x = v l ∨ ¬ x = v k .
The Order Encoding Here also k atoms are used, however, each atom (denoted by

x ≤ v j , j ∈ [1, k]
) is equivalent to have an upper bound for x less than v j . As for the domain clauses, k -1 clauses are used as follows:

∀j ∈ [1, k -1], ¬ x ≤ v j+1 ∨ x ≤ v j
To make the notation lighter, we denote by x ≠ v the literal ¬ x = v and x ≥ v the literal ¬ x ≤ v -1 .

Following lazy clause generation, we use these two types of atoms together. In this case, the domain related clauses have to ensure a complete domain representation between these atoms. For instance, if x ≤ 3 is true, then x = 4 and x = 5 should be set to false. A clausal representation of such relationships can be found in [START_REF] Ohrimenko | Propagation = Lazy Clause Generation[END_REF] under the term Domain Faithfulness (which is essentially a channeling between the direct and order encoding). Without loss of generality, for every variable x s.t. D(x) = [l, u], we have the following clauses (referenced later by dom(x)):

1. ¬ x ≤ d ∨ x ≤ d + 1 , ∀d ∈ [l, u -1] 2. ¬ x = d ∨ x ≤ d , ∀d ∈ [l, u -1] 3. ¬ x = d ∨ ¬ x ≤ d -1 , ∀d ∈ [l + 1, u] 4. x = l ∨ ¬ x ≤ l 5. x = d ∨ ¬ x ≤ d ∨ x ≤ d -1 , ∀d ∈ [l + 1, u] 6. x = u ∨ x ≤ u -1

Solver Description

All domain related atoms and clauses described above are generated before search. The UP engine acts as a global constraint whose scope contains all these atoms, and whose semantics is given by the set of domain related clauses. During search, every propagator is expected to explain each domain change it performs. Since every domain change must be represented by a literal, propagators are limited to changes that can be expressed as conjunctions of literals of the following types:

• Assignment: an assignment operation assigns x to a value v in its domain, written D(x) ← {v}.

• Pruning: conversely to assignments, a pruning operation removes a value v from a variable domain, written D(x) ← D(x) ∖ {v}. Propagation rules are added to the UP-Engine as clauses already propagated. The same behavior applies when a conflict is raised by a propagator. The clause explaining the failure is added to the UP-Engine, however, as the conflict clause. The conflict analysis procedure is performed exactly the same way in CDCL.

It should be pointed out that any assignment by UP is reflected on the domain every time UP successfully terminates propagation. For instance, if UP propagates the literal x ≤ 7 to be true then the upper bound tightening

D(x) ← D(x)∩] -∞, 7] is executed if max(x) > 7.

Engineering a Hybrid Solver: Modern Techniques

We describe here three modern techniques used in hybrid solvers: backward explanations, lazy generation, and semantic reduction.

Backward Explanations

The concept of backward (or lazy) explanations [START_REF] Gange | Fast Set Bounds Propagation Using a BDD-SAT Hybrid[END_REF][START_REF] Gent | Lazy Explanations for Constraint Propagators[END_REF][START_REF] Nieuwenhuis | Solving SAT and SAT Modulo Theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T)[END_REF][START_REF] Feydy | Semantic Learning for Lazy Clause Generation[END_REF] can simply be understood as generating explanations only when they are needed. The main motive behind using backward explanations is that generating a clause for each single propagation might make the clause database grow extremely large. Moreover these clauses do not make any difference to the propagation engine. They are only useful during conflict analysis, where only a fraction of them may be explored. Avoiding generating these clauses could therefore save time. We give a simple way for using backward explanations.

First, as usual, when a domain operation is being executed by a propagator f , the correspondent literal p should be assigned accordingly. However, instead of generating a propagation rule for l, the solver records f as the reason for assigning p. Any propagator using the backward mode is supposed to be able to generate a propagation rule for its actions during conflict analysis. Algorithm 8 depicts a slightly modified version of the 1-UIP procedure in order to handle backward explanations. The difference between Algorithm 8 and Algorithm 6 is the use of a function called reason(p) to return the propagator f responsible for the domain operation represented by p. Moreover, the correspondent propagation rule is expected to be computed by the call to the function explain(f, l). The same behavior applies when explaining a failure with reason(⊥) and explain(f, ⊥).

Note that the way we presented Algorithm 8 allows any propagator to adapt any mode of generating explanations (i.e., eagerly at the moment of propagation, or during conflict analysis).

Algorithm 8: 1-UIP-backward d ← current level; f ← reason(⊥) ; Ψ ← explain(f, ⊥) ; while {q ∈ Ψ level(q) = d} > 1 do p ← arg max q ({rank(q) level(q) = d ∧ q ∈ Ψ}) ; f ← reason(p) ; Ψ ← Ψ ∪ {q q ∈ explain(f, p) ∧ level(q) > 0} ∖ {p} ; return Ψ ;

Lazy (Atom) Generation

In order to have a reasonable number of atoms inside the UP engine, this technique is used to lazily generate atoms related to domain operations only when they are needed [START_REF] Feydy | Lazy Clause Generation Reengineered[END_REF][START_REF] Feydy | Semantic Learning for Lazy Clause Generation[END_REF]. Recall that for a variable domain of size k, the number of atoms is 2k and the number of clauses is about 4k (using the dom(x) encoding). When the domain size is too large, hybrid models becomes hardly efficient because of the amount of time needed for propagating these clauses. The notion of 'lazy generation' appeared recently in the literature as a mechanism dealing with that issue.

We describe this mechanism following the latest propositions in [START_REF] Feydy | Semantic Learning for Lazy Clause Generation[END_REF] which are improvements of [START_REF] Feydy | Lazy Clause Generation Reengineered[END_REF]. We use their term 'lazy generation' to describe this technique.

The main transformation needed for using lazy generation is to reshape propagation rules to contain both literals and domain operations. The gain here is that one does not need the atoms generated from the beginning. Take for instance the propagation rule in Example 2.4 y = 3 ⇒ x ≥ 13 . The propagator does not need to use the atom y = 3 to explain x ≥ 13 . Instead, it can inform the solver that the operation assigning y to 3 is responsible for the lower bound tightening of x to 13. We shall use the notations x = v , x ≠ v , x ≤ v , and x ≥ v for literals associated to generated atoms as well as the correspondent domain operations.

The skeleton of conflict analysis is the same as Algorithm 8. Few adaptations are, however, necessary. First, the nogood under construction Ψ can contain both literals and domain operations and p can be either a literal or a domain operation. Next, one should be able to recover the values of level, rank and reason for each domain constraint operation. Note that the rank is needed only in Line 3 to compute the last assigned literal in Ψ. Finally, before returning Ψ in Line 5, all domain operations in Ψ should either be replaced by their corresponding literals if they are already generated, or be associated to newly generated atoms.

Three scenarios are possible when lazily generating an atom x ≤ u .

If there is no value

a = max{u ′ x ≤ u ′ is generated ∧ u ′ < u}, we add the clause ¬ x ≤ u ∨ x ≤ b if there exists a value b = min{u ′ x ≤ u ′ is generated ∧ u ′ > u}. 2. If there is no value b = min{u ′ x ≤ u ′ is generated ∧ u ′ > u}, we add the clause ¬ x ≤ a ∨ x ≤ u if there exists a value a = max{u ′ x ≤ u ′ is generated ∧u ′ < u} 3. Otherwise, we add the clauses ¬ x ≤ a ∨ x ≤ u and ¬ x ≤ u ∨ x ≤ b where a = max{u ′ x ≤ u ′ is generated ∧u ′ < u} and b = min{u ′ x ≤ u ′ is generated ∧u ′ > u}.
If an atom x = v has to be generated, one first generates x ≤ v and x ≤ v -1 following the above way (if they are not already generated), then posts the clauses 2, 3, and 5 of dom(x).

The main problem with lazy generation is that there is a redundancy regarding the generation of bound literals. After adding the clauses

¬ x ≤ a ∨ x ≤ u and ¬ x ≤ u ∨ x ≤ b the clause ¬ x ≤ l ∨ x ≤ u becomes redundant.
There might be n -2 redundant clauses after generating n atoms for a given variable.

We shall propose in Section 5.2 a new way for using lazy generation in order to avoid this redundancy whilst being computationally equivalent to UP as if the atoms were generated from the beginning.

Recall that if the literals are eagerly generated then for any domain change, one assigns its corresponding literal to true which might trigger UP. Such a procedure is not necessary with lazy generation since not every domain operation is associated to a literal. Instead, the domain changes must be reflected on the generated literals. Feydy et al. [START_REF] Feydy | Semantic Learning for Lazy Clause Generation[END_REF] propose to associate a map for each variable x from values to domain operations 4 .

Whenever D(x) changes, the map can be used to determine the newly executed domain operations already having an associated literal. These literals must then be assigned accordingly.

Semantic Reduction

In general, there is no complete qualitative evaluation for comparing different nogoods/explanations. Take for instance the nogoods a ∧ ¬b ∧ c ⇒ ⊥, e ∧ c ⇒ ⊥, and a ∧ ¬b ⇒ ⊥. Unless we have additional information regarding a, b, and e, we cannot determine the best choice between a ∧ ¬b ∧ c ⇒ ⊥ and e ∧ c ⇒ ⊥ even though the latter is shorter. The strict inclusion, however, gives a simple and straightforward way for comparison. For instance a ∧ ¬b ⇒ p is clearly preferable to a ∧ ¬b ∧ c ⇒ p.

Introduction

Car-sequencing [START_REF] Parrello | Job-Shop Scheduling Using Automated Reasoning: A Case Study of the Car-Sequencing Problem[END_REF] is a well known sequencing problem coming from the automotive industry and has a long history in constraint programming [START_REF] Dincbas | Solving the Car-Sequencing Problem in Constraint Logic Programming[END_REF][START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF][START_REF] Smith | Succeed-first or Fail-first: A Case Study in Variable and Value Ordering[END_REF][START_REF] Régin | A Filtering Algorithm for Global Sequencing Constraints[END_REF][START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF]. In this problem, a set of cars has to be sequenced on an assembly line subject to capacity and demand constraints. Each car belongs to a class of vehicles that is defined with a set of options to install (such as sunroof and air-conditioner). In 2005, a challenge has been organized by the French Operations Research and Decision Support Society (ROADEF1 ) for solving optimization versions of the problem provided by the RENAULT2 automobile manufacturer. We refer the reader to [START_REF] Solnon | The car sequencing problem: Overview of state-of-the-art methods and industrial casestudy of the roadef'2005 challenge problem[END_REF] for a survey regarding exact and heuristic methods used in this challenge.

In this chapter, we are interested in the search aspect for solving the car-sequencing problem. The latter is used as a test benchmark throughout this thesis. Through a comprehensive evaluation of search strategies for this problem. We show the interest of several new branching heuristics and we measure the overall impact of the choice of search strategy.

This empirical study is built on a new classification of heuristics for this problem. This classification is based on a set of four criteria: the type of branching decisions, the exploration directions, the selection of branching values ('options' in this model) and the aggregation function for this selection. In particular, we show that the way of selecting the most constrained option is critical, and the best choice is fairly reliably the "load" of an option, that is the ratio between its demand and the capacity of the corresponding machine. Similarly, branching on the class of vehicle is more efficient than branching on the use of an option. Overall, even though results can vary greatly from instance to instance, we are able to indicate with a relatively high confidence which is the most robust strategy, or at least outline a small set of potentially best strategies.

The remaining of the chapter is organized as follows. In Section 3.1, we describe the car-sequencing problem and discuss the related constraint satisfaction models. In Section 3.2, we propose and classify a number of new and existing heuristics. And finally, we empirically evaluate and analyze the new classification in Section 3.3.

The Car-Sequencing Problem

Problem Description

In the car-sequencing problem, n vehicles have to be produced on an assembly line.

There , that is, the number of occurrences of this class on the assembly line, and a set of options O c ⊆ {1, . . . , m}. Each option is handled by a working station able to process only a fraction of the vehicles passing on the line. The capacity of an option j is defined by two integers p j and q j , such that no subsequence of size q j may contain more than p j vehicles requiring option j.

A solution of the problem is then a sequence of cars satisfying both demand and capacity constraints. This problem is NP-hard [START_REF] Kis | On the complexity of the car sequencing problem[END_REF][START_REF] Estellon | Car sequencing is NP-hard: a short proof[END_REF].

For convenience, we shall also define, for each option j, the corresponding set of classes of vehicles requiring this option 

C j = {c j ∈ O c },
• O c 1 = {1, 2}, O c 2 = {1, 3, 4}, O c 3 = {2}. • d class c 1 = 2, d class c 2 = 2, d class c 3 = 1 • p i q i (lexicographically): 3 4; 2 3; 1 3; 1 2.
From above, we obtain:

• C 1 = {1, 2}, C 2 = {1, 3}, C 3 = {2} and C 4 = {2} • d opt 1 = 4, d opt 2 = 3, d opt 3 = 2 and d opt 4 = 2 The sequence [c 1 , c 2 , c 1 , c 3 , c 2
] is a possible solution for this instance.

Modeling

We use a standard CP model3 with two sets of variables. The first set corresponds to n integer variables {x 1 , . . . , x n } (called class variables) taking values in {1, . . . , k} and standing for the class of vehicles in each slot of the assembly line. The second set of variables corresponds to nm Boolean variables {y 1 1 , . . . , y m n } (called option variables), where y j i stands for whether the vehicle in the i th slot requires option j.

There are three sets of constraints.

1. Demand constraints: for each class c ∈ {1..k}, {i

x i = c} = d class c
. These constraints are usually enforced with a Global Cardinality Constraint (Section 2.1.3.2.

Capacity constraints:

for each option j ∈ {1..m}, no subsequence of size q j involves more than p j cars requiring option j. That is, ∑ i+q j -1 l=i y j l ≤ p j , ∀i ∈ {1, . . . , n-q j +1}. In order to factor out as much as possible the propagation aspect from the study, we use several models in order to diversify the data set. More precisely, we shall consider four models, differentiated by how capacity constraints are modeled and thus propagated. For each option j, these constraints can be expressed in one of the following alternatives: 

Gsc(0, p j , q j , card, card, [x 1 , . . . , x n ], C j )
This model is denoted gsc.

(c) For each option j, we post the following AtMostSeqCard constraint (defined later in Section 4.3):

AtMostSeqCard(p j , q j , d opt j , [y j 1 , . . . , y j n ])
This model is denoted amsc.

(d) We post both Gsc(0, p j , q j , card, card, [x 1 , . . . , x n ], C j ) and AtMostSeqCard(p j , q j , d opt j , [y j 1 , . . . , y j n ]) for each option. This model is denoted gsc⊕amsc.

3.

Channeling: Option and class variables are channeled through simple constraints:

y j i = 1 ⇔ j ∈ C x i , ∀j ∈ {1, ..., m}, ∀i ∈ {1, ..., n}.
Each constraint is implemented using a set of simple binary constraints

x i = c ⇒ y j i = 1, ∀j ∈ O c and x i = c ⇒ y j i = 0, ∀j ∈ {1, . . . , m} ∖ O c .

Related Work

Regarding the search strategy, two main principles are known to be important for the car-sequencing problem. First, the sequence of variables to branch should follow the assembly line itself. Indeed, the structure in chain of capacity constraints makes it difficult to achieve any inference far away from a modified variable in the sequence [START_REF] Smith | Succeed-first or Fail-first: A Case Study in Variable and Value Ordering[END_REF]. Second, one should assign the most constrained class or option first. This has been perceived as a fail-first strategy, hence surprising since succeed-first strategies should be better for selecting the next branch to follow. However, as pointed out in [START_REF] Smith | Succeed-first or Fail-first: A Case Study in Variable and Value Ordering[END_REF], since the solutions to this problem are permutations of a multiset of values, choosing the most constrained one when it is still possible actually yields the least constrained sub-problem. Therefore, in this sense, it is indeed a succeed-first strategy.

In [START_REF] Smith | Succeed-first or Fail-first: A Case Study in Variable and Value Ordering[END_REF], a lexicographical exploration of the integer variables x 1 , . . . , x n , standing for classes of vehicles, was advocated as an interesting search strategy. Three parameters were considered for choosing the most constrained class: the number of options per class (denoted as max option), the tightness of each option (i.e., the capacity constraint q p) and the usage of each option (i.e., usage rate

d.q p n ).
In [START_REF] Régin | A Filtering Algorithm for Global Sequencing Constraints[END_REF], the authors proposed to branch on option variables y j i , exploring the sequence consistently with their position on the assembly line, however starting from the middle towards the extremities. Indeed variables at both ends are subject to fewer capacity constraints than variables within the sequence. Moreover, they introduced for the first time the notion of slack for selecting the most constrained option.

In [START_REF] Gottlieb | A study of greedy, local search, and ant colony optimization approaches for car sequencing problems[END_REF], several heuristics were compared for solving an optimization variant of this problem. These heuristics are based on the usage rate previously defined for selecting the next variables to assign in the sequence. They consider two ways for aggregating these values (using lexicographically the maximum value, or a simple sum) when branching on class variables. Two possibilities of using the usage rate were compared : static and dynamic (i.e., updated at each node). Note that the static values of usage rate, load or slack are all equivalent. Their experiments showed essentially the interest of dynamic heuristics comparatively to static ones. The same observation is made in [START_REF] Boivin | Résolution du problème de car-sequencing à l'aide d'une approche de type FC[END_REF] where a dynamic load was used with class variable branching and a simple summation to aggregate the values.

Heuristics Classification

Classification Criteria

We propose to classify the heuristics related to this problem according to four criteria:

• The type of branching decisions: that is, whether we branch on classes or options.

• The order in which we explore the variables along the assembly line: one can start from the left of the sequence and progress to the right, or start from the middle of the assembly line widen to the sides.

• The measure used to select the most constrained options.

• The function used to aggregate the evaluation of the different options in order to choose the next class of vehicles to branch on.

Notice that among the many combinations of these four criteria, some correspond to existing heuristics, however some are novel. For each criterion, there are several alternatives, we present each of them below.

Branching

We can branch either by assigning a class to a slot, that is, branching on class variables x i , or by assigning an option to a slot, that is, branching on option variables y j i . The former was used in [START_REF] Smith | Succeed-first or Fail-first: A Case Study in Variable and Value Ordering[END_REF], while the latter was proposed in [START_REF] Régin | A Filtering Algorithm for Global Sequencing Constraints[END_REF]. Notice that when branching on option variables, we always set it to the value 1, which amounts at forcing the corresponding option to be represented in that slot. We therefore consider these two cases denoted respectively class and opt.

Exploration

Heuristics that do not follow the sequence of variables along the assembly line generally have poor performances [START_REF] Smith | Succeed-first or Fail-first: A Case Study in Variable and Value Ordering[END_REF]. We find in the literature two main exploration orders: either following a lexicographical order on class variables or from the middle to the sides of the sequence. We therefore consider these two exploration cases denoted respectively lex and mid.

Selection

The best heuristics are those selecting first the most constrained option or class. Observe that since each class is defined by a set of options, then it all goes down to the hardness of the options. We therefore consider the following indicators proposed in the literature to select the most constrained option:

• The capacity q j p j : The greater the ratio q j p j , the more constrained is the option.

In fact, a greater ratio q j p j has more impact on neighboring slots as it is shown in Example 3.2.

Example 3.2.

Let o 1 and o 2 be two options s.t. p 1 = 1, p 2 = 2, and q 1 = q 2 = 3.

Consider now a sequence of 5 slots in which we have to choose between o 1 and o 2

in the third position. The two parts of the following figure show the impact of each option. In fact, by choosing o 1 , all neighboring slots can no longer contain this option because of the at most 1 3 constraints.

y 1 i y 2 i 0 0 1 0 0 . . 1 . .
• The residual demand d opt j : This value is equal to the total demand (of a given option) minus the number of cars containing this option already allocated (d opt j = (d opt j -∑ n i=1 min(y j i )). Clearly, a greater demand makes it more difficult to fit the cars requiring this option on the assembly line.

• The load δ j : This parameter combines the residual demand with the capacity ratio:

δ j = d opt j × q j p j .
In fact the ceiling of δ j is always an upper bound for the number of slots required to mount d opt j times the option j. A greater value of the load is therefore more constrained.

• The slack σ j : Let n j be the number of slots available for option j. The slack of an option j is σ j = n j -δ j . Since we want higher values to indicate more constrained options, we use in fact nσ j .

• The usage rate ρ j : This value is defined as the load divided by the number of remaining slots: ρ j = δ j n j . It therefore represents how much of the remaining space will be occupied by vehicles requiring this option.

Based on these indicators, we consider four methods to evaluate the options. Each method returns an indicative value on how constrained is an option. In other words, the option maximizing the given parameter will be preferred in the next decision. In the following, we denote the above selection criteria by q p, d opt , δ, nσ and ρ, respectively.

Aggregation

In the case of class branching, since classes are defined as a set of options, the decision is most often made by summing up the "scores" of the options for each class. However, there are many ways to aggregate these values. We therefore propose to add the method used for the aggregation as a fourth criterion.

Let f ∶ {1, . . . , m} ↦ R be a scoring function. We denote f (O c ) the tuple formed by the sorted scores of class c's options, i.e., f

(O c ) = ⟨f (j 1 ), . . . , f (j Oc )⟩ such that {j 1 , . . . , j Oc } = O c and f (j l ) ≥ f (j l+1 ) ∀l ∈ [1, . . . , O c -1].
We shall consider the following ordering relations between classes:

• Sum of the elements (≤ ∑ ): c 1 ≤ ∑ c 2 iff ∑ v∈f (Oc 1 ) v ≤ ∑ v∈f (Oc 2 ) v. • Euclidean norm (≤ Euc ): c 1 ≤ Euc c 2 iff ∑ v∈f (Oc 1 ) v 2 ≤ ∑ v∈f (Oc 2 ) v 2 . • Lexicographical order (≤ lex ): c 1 ≤ lex c 2 iff f (O c 2 ) comes lexicographically after f (O c 1 ).
Example 3.3. We give an illustrative example. We consider Example 3.1 and suppose that one branches on classes. In Table 3.1, we give the different values of each selection parameter for all options. 

❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ Selection parameter Options 1 2 3 4 q p 1,33 1.5 3 2 d opt 4 3 2 2 δ 5,32 4.5 6 4 n -σ 5,32 4.5 6 4 ρ
1,064 0.9 1,2 0,8

In order to emphasize the impact of aggregation functions, we propose to study the different scores for each class using the d opt parameter. Recall that each class is defined by a set of options, we obtain in Table 3.2 the corresponding values for each class.

In Table 3.3, we report the order of preferences given by the different aggregations. The class having the higher score will be selected first and so on. 

❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ Options Classes c 1 c 2 c 3 1 4 4 - 2 3 - 3 3 - 2 - 4 - 2 - Table 3.3: Scores & Heuristic decisions Agg. Scores Heuristic preferences c 1 c 2 c 3 ≤ ∑ 7 8 3 [c 2 , c 1 , c 3 ] ≤ Euc 25 24 9 [c 1 , c 2 , c 3 ] ≤ lex [4, 3, -, -] [4, 2,-,-] [3,-,-,-] [c 1 , c 2 , c 3 ]
Although we treat a simple case, one can observe that decisions can be influenced by aggregation functions. The behavior of ≤ ∑ is different from ≤ Euc and ≤ lex . It prefers c 2 whereas the others prefer c 1 .

Heuristics Structure

In the rest of the chapter, we denote the set of heuristics as follows: ⟨{class, opt}, {lex, mid}, {q p, d opt , δ, nσ, ρ, 1}, {≤ ∑ , ≤ Euc , ≤ lex }⟩. Note that we considered the constant function 1 as another possible selection criterion. This is proposed so that our classification also includes the max option heuristic [START_REF] Smith | Succeed-first or Fail-first: A Case Study in Variable and Value Ordering[END_REF] where each class is evaluated simply by its number of options.

Observe, however, that not all combinations make sense. For instance, the aggregation function does not matter when branching on options. Therefore, using the new classification, we obtain 42 possible heuristics:

• ⟨{class}, {lex, mid}, {q p, d opt , δ, n -σ, ρ}, {≤ ∑ , ≤ Euc , ≤ lex }⟩:
The 30 heuristics that branches on class variables with the two exploration strategies {lex, mid}, the five selection parameters {q p, d opt , δ, nσ, ρ} and the 3 aggregation techniques {≤ ∑ , ≤ Euc , ≤ lex }.

• ⟨{opt}, {lex, mid}, {q p, d opt , δ, n-σ, ρ}, ∅⟩: 10 heuristics branching on option variables with the two exploration possibilities {lex, mid} and the five selection parameters {q p, d opt , δ, nσ, ρ}.

• ⟨{class}, {lex, mid}, {1}, {≤ ∑ }⟩: The two possible heuristics related to the particular case of max option.

Among the many combinations defined by this structure, there are several existing heuristics as well as new ones. In the literature, only few heuristics have been studied.

First, the max option heuristic proposed in [START_REF] Smith | Succeed-first or Fail-first: A Case Study in Variable and Value Ordering[END_REF] branches on class variables lexicographically (lex) and the most constrained class is then selected using the sum (≤ ∑ )

aggregation. It therefore corresponds to ⟨class, lex, 1, ≤ ∑ ⟩. Second, in [START_REF] Gottlieb | A study of greedy, local search, and ant colony optimization approaches for car sequencing problems[END_REF], the authors proposed to use the usage rage with class branching, lexicographical exploration (lex)

and ≤ ∑ , ≤ lex for aggregation. They correspond to ⟨class, lex, δ, {≤ ∑ , ≤ lex }⟩. Similarly, the authors of [START_REF] Boivin | Résolution du problème de car-sequencing à l'aide d'une approche de type FC[END_REF] proposed a class branching using ≤ ∑ for aggregation in a lexicographical exploration (lex), however, using the load δ and the capacity q p for selection (i.e., ⟨class, lex, {δ, q p}, ≤ ∑ ⟩). Finally, the heuristic proposed in [START_REF] Régin | A Filtering Algorithm for Global Sequencing Constraints[END_REF] is based on option branching, exploring the sequence from the middle to the sides using the slack as a selection criteria. This heuristic corresponds to ⟨opt, mid, nσ, ∅⟩.

To the best of our knowledge, all other heuristics are new and there is no comparative study for evaluating the impact of each classification criterion.

Evaluating the new Structure

In this section, we evaluate experimentally the impact of the proposed criteria classification for the heuristics. We slightly perform randomization as follows: with a low probability (2% for classes and 5% for options4 ), the second best choice (provided by the heuristic) is taken.

All the experiments were run on Intel Xeon CPUs 2.67GHz under Linux. The detailed results are available via http://homepages.laas.fr/msiala/car-sequencing. For each instance, we launched five randomized runs per heuristic with a 20 minutes time cut-off. All models are implemented using Ilog-Solver 6.7.

We use benchmarks available from the CSPLib [START_REF]CSPLib: A problem library for constraints[END_REF] We say that a run (related to an instance and a given configuration) is successful if either a solution was found or unsatisfiability was proven. For each set of instances, we report the percentage of successful runs (%sol)5 , the CPU time (time) in seconds both averaged over all successful runs and number of instances.

Experimental results are divided in thee parts. We first compare the many combinations of heuristic factors by giving the results for each one. Then, we study the proposed classification by evaluating each factor separately. Finally, we provide a comparison related to the efficiency and confidence of each factor

Impact of each Heuristic

In this paragraph, we report the results of each heuristic separately on each set of instances averaged over the four propagators.

The set of heuristics corresponds to all possible combinations of parameters given by: ⟨{class, opt}, {lex, mid}, {1, q p, d opt , δ, n-σ, ρ}, {≤ ∑ , ≤ Euc , ≤ lex }⟩ leading to the 42 heuristics presented in Section 3.2.

Table 3.4 shows the global results of our experiments. For each heuristic, we indicate in column ('Ref.') whether it is already known (with the corresponding reference) or not (with '-'). Recall that, in these experiments, we consider only dynamic evaluation with the four criteria : demand, load, usage rate and slack. For each set of instances, we report the percentage of successful runs (%sol) and their average CPU time (time).

The last two columns summarize the results over all set of instances. The column (%tot)

gives the total percentage of solved instances and the column (%dev) gives the deviation in percent of a given heuristic to the heuristic solving the maximum number of instances.

Bold values give the best heuristics w.r.t. %sol. For the easiest set (set1 ), 16 heuristics solve all instances in less than a second. Among them, 3 are known heuristics whereas 13 correspond to new combinations. It should be noted that all these configurations use a class branching and a load-based selection (i.e., ρ, δ, nσ). Interestingly, changing a single parameter of a heuristic can have a dramatic effect. For instance, the heuristic ⟨opt, lex, nσ, ∅⟩ resolves only 32, 71% of this set whereas changing only the branching criterion to class (i.e., ⟨class, lex, nσ, {≤ lex , ≤ ∑ , ≤ Euc }⟩) leads to a complete resolution (i.e., 100%).

For set2 and set3, the heuristic ⟨opt, lex, ρ, ∅⟩ gives the best results with 75% in 33.3s for set2 and 25% in 211.3s for set3. Also, the heuristics ⟨class, mid, d opt , {≤ lex , ≤ Euc }⟩ has the same number of successful runs compared to ⟨opt, lex, ρ, ∅⟩ but with higher runtime.

All of these heuristics correspond to new configurations.

Finally, for set4, the best heuristics resolve 25.71% in approximately 3s and correspond to the configurations ⟨class, lex, {δ, ρ, n -σ}, ≤ lex ⟩. Another heuristic ⟨class, lex, d opt , ≤ lex ⟩ obtains the same percentage but with higher runtime (55.3s).

Overall, the heuristic that has the best results across all data sets and therefore seems to be the more robust is ⟨class, lex, δ, ≤ lex ⟩ with 86.8% of solved instances (according to the column 'Total'). More generally, heuristics using load-based selection (i.e., δ, nσ and ρ) and class branching obtain better results than the other configurations.

Criteria Analysis

In this part, we aim to evaluate the relative impact of each classification criterion. For each criterion and each data set, we divide all the runs into as many sets as the number of possible values for this criterion. Then, we average the results within each set. For instance, exploration can be done either lexicographically (lex), or from the middle to the sides (mid). We will thus report two sets of statistics, one for lex and one for mid. Each average corresponds to one run per possible set of heuristics [START_REF] Bessiere | Filtering Algorithms for the NValueConstraint[END_REF], filtering algorithms (4), randomized runs (5), and instances in the data set.

The following Tables (3.5, 3.6, 3.7 and 3.8) are split in two parts. We report in the upper part the results for each set and each possible criterion w.r.t. the criterion being used averaged over all other criteria. The lower part shows the best results obtained for any possible combination of the other criteria. In these tables, we report the percentage of successful runs (%sol), the CPU time (time) in seconds both averaged over all successful runs, instances and heuristic criteria. Bold values indicate best results in terms of successful runs (%sol). Moreover, in the upper tables, the last column (%tot) gives the percentage of solved instances over all the sets.

Branching Strategy

Here we compare the two branching strategies: class and opt. We tested all the possible combinations of heuristics for each strategy. However, as the constant selection parameter 1 is not defined for opt variables, we do not consider its heuristics in this part.

When branching on opt variables, we have defined The upper part of Table 3.5 shows that branching on classes is usually better than branching on options. However, the latter is more efficient on proving infeasibility (i.e., line opt on set3 ). The most efficient branching averaged over the other factors uses the ≤ ∑ aggregation, but the two other aggregation options (≤ lex or ≤ Euc ) are close in performances. This result is confirmed by the lower part of the table.

Exploration

To evaluate the exploration parameters, we consider for each ω ∈ {lex, mid} the following heuristics:

• ⟨class, ω, {q p, d opt , δ, nσ, ρ}, {≤ ∑ , ≤ Euc , ≤ lex }⟩.

• ⟨opt, ω, {q p, d opt , δ, nσ, ρ}, ∅⟩.

• ⟨class, ω, {1}, {≤ ∑ }⟩.

These three sets cover all possible combinations of heuristics leading to 420 tests for each parameter ω ∈ {lex, mid} and each instance. The results are shown in Table 3.6.

In the first part of Table 3.6, we can see that exploring the sequence from the middle then widening to the sides is in average slightly but consistently beneficial. Recall that the rationale for starting in the middle is that variables in the extremities are subject to fewer capacity constraints.

However, in the second part of Table 3.6, we can see that in terms of successful runs, exploring the sequence using the lexicographical order leads to better results for proving unsatisfiability. This could be explained by the fact that when starting in the middle of the sequence, we effectively split the problem into essentially disjoint subproblems (there is actually a weak link through demand constraints).

Overall, the exploration parameter does not seem to be as critical as the branching parameter.

Selection

Here, we evaluate the selection criterion for choosing the most-constrained option. In this case, there are two possible sets of heuristics for each parameter ω ∈ {q p, d opt , δ, n-σ, ρ}:

• ⟨class, {lex, mid}, ω, {≤ ∑ , ≤ Euc , ≤ lex }⟩ • ⟨opt, {lex, mid}, ω, ∅⟩
That is 8 heuristics for each ω combined with the 4 propagators and the 5 runs. We therefore have 160 tests for each instance (reported in Table 3.7).

The special case of max option is presented separately at the end of Table 3.7 because the number of tested heuristics is different. In this case, there is only 2 heuristics ⟨class, 1, {lex, mid}, {≤ ∑ }⟩, that is 40 tests for each instance.

The upper part of Table 3.7 shows that using the load solves more instances in average over all the sets and for satisfiable sets (set1, set2 and set4 ) only. Surprisingly, the load gives better results than slack and usage rate, despite the fact that both slack and usage rate are defined using the load and the number of available slots in the variable's sequence. However the usage rate criteria seems to work better both in average and for the best results for unsatisfiable instances. Moreover, in the second part of the table, one can note that the demand obtains good results.

This can be explained by the manner in which the benchmarks were generated. In fact, these instances, especially the hardest ones, are built in such way that they have a usage rate close to 1 [START_REF]CSPLib: A problem library for constraints[END_REF]. Since the number of available slots is initially identical for all options, values at the root of the search tree. However, recall that the load is defined as the product of the demand and the capacity. These two factors do not contribute equally, and therefore will favor different sets of options. In other words, one of them is bound to take a better decision, whilst the other is bound to take a worse one. We believe that this bias in the generation of the benchmarks explains the surprisingly good results of the demand (d opt ) as well as the bad results of the capacity q p along with the load, the slack and the usage rate.

Aggregation

Aggregation functions are only used with class branching. For each parameter ω ∈ {≤ lex , ≤ ∑ , ≤ Euc }, we have the 10 following heuristics combined with the propagators and the random runs (i.e., 200 tests for each ω and each instance):

• ⟨class, {lex, mid}, {q p, d opt , δ, nσ, ρ}, ω⟩

The constant parameter for selection 1 is not considered in these experiments since it is only defined with the ≤ ∑ aggregation. The results are given in Table 3.8.

As we can see in the first part of this table, the three aggregation functions provide in average similar results except for the hardest instances (set4 ) where ≤ lex solved more instances. Considering all instances, ≤ ∑ solves the largest number of problems. No solution was found for unsatisfiable instances as in our case, only opt branching can solve these instances (i.e., which by default does not use any aggregation function).

However, regarding the best results in the second part of the table, when using ≤ lex and ≤ Euc , one can obtain better performances in terms of resolved instances. 

A Summary Regarding the Criteria

We have previously evaluated the average best choice of each criterion (in terms of solved instances). However, this choice is not the best on each set of instances. Instead, we can determine the best choice for each data set, called the "perfect" choice. The "Confidence" of the average best choice can then be defined by the ratio between the average best choice and the perfect choice. Similarly, we can consider the "worst" choice for each data set, and subsequently, define the "Significance" of a given factor using the ratio between the worst and the perfect choice as 1worst perf ect. In Table 3.9, we give the values of Confidence and Significance for each factor (branching, selection, exploration, and aggregation).This table shows that there is high confidence for each selected average best choice (between 0.989 and 1.0): that is, exploration from middle to sides using a class branching, load selection, and a sum aggregation.

When considering the Significance of each criterion, one can observe that only two of them (branching and selection) have a valuable impact. For the two other criteria (i.e., exploration and aggregation), there is little impact on the results when changing the parameters.

Therefore, the most robust heuristics will be those branching on classes variables and selecting options using the load criterion, that is ⟨class, {lex, mid}, δ, {≤ ∑ , ≤ Euc , ≤ lex }⟩.

Search vs. Propagation

An empirical evaluation of our propositions regarding the propagation aspect is given in the next chapter. We consider here, however, how important is the search strategy compared to propagation. In addition to all the previous models, we consider Table 3.10 shows that the extra filtering of Slack-Pruning, AtMostSeqCard, or Gsc does help a lot. For instance, at least 90% of the instances of the first set are resolved irrespectively of the heuristic being used against 75,89% with the default decomposition (i.e., decompose). The difference is even greater for the other sets.

a
Consider now the propagation method as a fifth criterion (i.e., in addition to the heuristic factors). We calculate its Confidence and Significance according to the same formula given in Section 3.3.3. Their values are equal to 0.996 and 0.217, respectively. This is similar to the other criteria in terms of Confidence (i.e., close to 1.0), but slightly less than the Significance of branching and selection. This emphasizes the importance of these factors which are at least as important as the propagation level.

Overall, we observe that the choice of the search strategy has a very significant impact on the efficiency of the method. For instance, on the set of easiest instances, when averaging

Introduction

Sequence constraints are useful in a number of applications. Constraints of this class enforce upper and/or lower bounds on all sub-sequences of variables of a given length within a main sequence. For instance, in crew-rostering, we may want to have an upper bound on the number of worked days in every sub-sequence to meet working regulations. Several constraints of this class have been studied in the CP literature such as Gen-Sequence and AmongSeq [START_REF] Régin | A Filtering Algorithm for Global Sequencing Constraints[END_REF][START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF][START_REF] Brand | Encodings of the Sequence Constraint[END_REF][START_REF] Michael | Flow-based propagators for the SEQUENCE and related global constraints[END_REF][START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF][START_REF] Narodytska | Reformulation of Global Constraints[END_REF]]. An even more general constraint, Regular, can be used to enforce arbitrary patterns on all sub-sequences.

However, as we explained in Section 2.1.3.2, the more general a constraint is, the higher is the complexity of reasoning about it. In this context, we focus on particular cases of sequence constraints where we have variables subject simultaneously to AtMost (i.e., of the form ∑ i=n i=1 x i ≤ p) and Cardinality (Section 2.3) constraints.

Our contributions start with a simple filtering rule that we call Slack-Pruning, dedicated to the car-sequencing problem. This rule reasons simultaneously about capacity and demand constraints. This simple filtering is generalized later as a new global constraint called AtMostSeqCard. The latter is useful in car-sequencing and crewrostering problems. Following [START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF], ac on this constraint can be enforced with Gen-Sequence in O(n 3 ) time or with cost-Regular in O(2 q n) time where q is the size of the sliding window. Furthermore, the Gen-Sequence filtering of [START_REF] Michael | Flow-based propagators for the SEQUENCE and related global constraints[END_REF] is adaptable to AtMostSeqCard with O(n 2 .log(n)) time complexity down a branch of the search tree with an initial compilation of O(q.n 2 ). We propose a new algorithm achieving Arc Consistency on this constraint with an O(n) (hence optimal) worst case time complexity. Next, we show that this algorithm can be easily modified to achieve Arc Consistency on some extensions of this constraint. In particular, the conjunction of a set of m AtMostSeqCard constraints sharing the same scope can be filtered in O(nm). The efficiency of our filtering is proven through a large experimental evaluation.

We start this chapter with the simple Slack-Pruning rule specially designed for solving the car-sequencing problem. Then, after giving a short background on sequence constraints in Section 4.2, we show how this reasoning can be generalized as a global constraint in Section 4.3. We show in Section 4.4 how to extend the new constraint without a computational overhead. The experimental results in Section 4.5 emphasize the efficiency of our filtering propositions.

Slack-Pruning

When analyzing the heuristics for the car-sequencing problem (Chapter 3), we have seen that selecting the options using load, slack, or usage rate is beneficial. In this section,

we shall see that one can go one step further and use the same idea to prune the search tree at a very cheap computational cost. We suppose in this section that we are using the decompose model (Section 3.1.2) for the car-sequencing problem.

Triggering Failure via Slack

We first recall some of the notations that we used for car-sequencing in Section 3.1:

• n: the number of vehicles that have to be produced on the assembly line.

• k: the number of classes of vehicles.

• m: the number of types of options.

• d class c

: the required demand for the class of vehicles c.

• d opt j : the required demand for the option j.

• O c ⊆ {1, . . . , m}: the set of options defining the class of vehicles c.

• p j and q j : used to represent the capacity constraint related to an option j as follows: no subsequence of size q j may contain more than p j vehicles requiring option j.

• The load of an option j: δ j = d opt j × q j p j .

• The slack of an option j: σ j = n jδ j where n j is the number of slots available for option j.

In [START_REF] Régin | A Filtering Algorithm for Global Sequencing Constraints[END_REF], it is observed that if the slack (σ j ) of an option j is negative, then the problem is unsatisfiable. Indeed, the load (δ j ) tends to represent the number of required slots to mount all the occurrences of an option. Since the slack is the difference between the available number of slots and the load, a negative value suggests infeasibility since we need more slots than are available. However, one has to be careful about boundaries issues since the capacity constraints are truncated at the extremities of the assembly line. For instance, consider an option j with p j = 1, q j = 3 and d opt j = 2. The slack is negative as soon as there are less than six slots remaining (n j < 6). However, a line with only four slots is sufficient if we put the two classes requiring this option on both ends of the line. In other words, the load is an accurate measure of how many slots are needed for a given option, however only for large values of demand and length of the assembly line.

We show in the following how to compute the the exact minimum number of slots to mount d opt j times an option j while respecting capacity constraints. We assume, however, that we explore the assembly line from left to right, and that the unassigned slots are contiguous in the assembly line.

Consider the following greedy rule (called lex_assignment):

1. Assign the first p j variables to 1, and the q jp j next variables to 0.

2. Repeat step 1 (⌈d opt j p j ⌉ -1) times.

Fill the remaining variables with the value 1.

Let δ ′ j be the length of the sequence obtained by lex_assignment. The value of δ ′ j is given by the formula:

δ ′ j = q j (⌈d opt j p j ⌉ -1) + ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ p j if d opt j mod p j = 0 d opt j mod p j otherwise Proposition 4.1.
For each option j, δ ′ j is the minimum number of contiguous slots to mount d opt j times the option j.

Proof. The sequence returned by lex_assignment clearly satisfies all capacity constraints and has a cardinality equal to d opt j . Moreover, every subsequence of length q j has exactly p j times the value 1, therefore, it is not possible to obtain the same cardinality in a shorter sequence. Hence, δ ′ j is the minimum length to mount d opt j times option j. ◻

In the following, the value of δ ′ j is refereed as the 'real' load. Note that an equivalent formula can be found in [START_REF] Boysen | Comments on "solving real car sequencing problems with ant colony optimization[END_REF].

Filtering the Domains

We suppose now that all variables up to a rank i -1 are assigned. To make the notation lighter we rename the sequence of unassigned variables y i , . . . , y n to: y 0 , . . . , y n-i .

When the real load δ ′ is greater than the residual number of slots ni + 1, then we should fail since δ ′ is the minimum number of required slots. Moreover, we can prune inconsistent values in the domains of the option variables when the load is equal to the remaining number of slots. Khichane et al. [START_REF] Khichane | Integration of ACO in a constraint programming language[END_REF] proposed to fix the first unassigned slot to contain the option at hand. We show that this filtering can be extended for many slots in the sequence. We illustrate this situation in Example 4.1.

Example 4.1. Consider a sequence of unassigned variables y j 0 , . . . , y j 16 , with capacity 3 5 and demand 11. Note that the load is δ ′ j = 5 × (4 -1) + 2 = 17, which is precisely equal to the number of unassigned slots. Consider the two slots indexed 5 and 6, corresponding to the variables y j 5 and y j 6 . On the left, there are 5 slots, hence we can fit at most 3 vehicles with the option j since fitting 4 vehicles requires 6 = 5(⌈4 3⌉ -1) + 4 mod 3 slots.

Similarly, on the right, one cannot fit more than 6 vehicles with option j since fitting 7 vehicles would require 11 slots. Therefore, since the total demand is 11, we can conclude that 11 -6 -3 = 2 vehicles with option j must fit in the slots 5 and 6. In other words, both y j 5 and y j 6 must be equal to 1. This example is depicted in Figure 4.1. Now we formally define the Slack-Pruning rule that can detect all such forced assignments (e.g., it detects all bold faced 1's in Figure 4.1).

Theorem 4.2. The following filtering rule is correct:

If δ ′ j = n -i + 1, then if d opt j mod p j = 0,
we impose y j i = 1 for all i such that i mod q j < p j . Otherwise (i.e., d opt j mod p j = 0), we impose y j i = 1 for all i such that i mod q j < (d opt j mod p j ).

Proof. Suppose that (d opt j mod p j ≠ 0). Then there exists two integers k and r such that d opt j = k.p j + r. Notice that in this case, we have δ ′ j = q j .k + r. Consider a subsequence y j a , . . . , y j b such that a mod q j = 0 and b = a + r -1, i.e., such that the rule above applies. Then there exist two integers α and β such that a = α ⋅ q j and nib = β ⋅ q j (since

n -i + 1 = δ ′ j = q j .k + r). Now using n -i -b = β ⋅ q j , we show that n -i + 1 = β ⋅ q j + a + r then n -i + 1 = (α + β) ⋅ q j + r and hence k = α + β (since n -i + 1 = q j .k + r).
However, by definition of α and β, we may argue that the number of occurrences of the value 1 on y j 0 , . . . , y j a-1 is at most α ⋅ p j and at most β ⋅ pj on y j b+1 , . . . , y j n-i . Now since the demand d opt j = (α + β).p j + r then all the p j variables in the subsequence y j a , . . . , y j b must take the value 1.

We use a similar argument for the second case. Suppose that d opt j mod p j = 0, consider a subsequence y j a , . . . , y j b such that a mod q j = 0 and b = a + p j -1. Then there exist two integers α and β such that a = α ⋅ q j and nib = β ⋅ q j . Therefore, the number of occurrences of the value 1 on y j 0 , . . . , y j a-1 is at most α ⋅ p j and at most β ⋅ p j on y j b+1 , . . . , y j n-i . Now using the demand d opt j = k ⋅ p j , and δ ′ = q j (⌈d opt j p j ⌉ -1) + p j we show that

n -i + 1 = q j (k -1) + p. However, since b = a + p j -1, a = α ⋅ q j and n -i -b = β ⋅ q j , then k = α + β + 1
and all p j variables the subsequence y j a , . . . , y j b must take the value 1. ◻ Figure 4.2 and 4.3 depict the proposed pruning. On the one hand, when d opt j mod p j = 0, the only possible arrangement of vehicles that satisfy the capacity constraint is to start the sequence with p j vehicles requiring the option, then q jp j vehicles not requiring the option and repeat (see Figure 4.2). Notice that because of the capacity constraint, all other variables must take the value 0. On the other hand, when d opt j mod p j ≠ 0, one must start the sequence with d opt j mod p j vehicles requiring the option, then the following q j -(d opt j mod p j ) slots can be filled arbitrarily as long as exactly p j vehicles requiring this options are fitted in the q j first slots. Here again, the initial sequence must be repeated throughout (see Figure 4.3). p j q jp j 11 .. 1 00.. 0 p j q jp j 11 .. 1 00.. 0 .. p j q jp j 11 .. 1 00.. 0 p j 11 .. 1 

Time Complexity

This rule is extremely cheap to enforce. Once one has computed the real load, the domain filtering can be achieved in O (k) where k is the number of option variables forced to take the value 1. Indeed, when d opt j mod p j ≠ 0 we can jump over the variables which are not forced to take the value 1, since their position is given by a simple recursion. In the worst case (i.e., when d opt j mod p j = 0), k is equal to the number of unassigned variables and therefore the time complexity can reach O(n).

In the next sections, we generalize the Slack-Pruning rule in the form of an Arc Consistency algorithm for a new global constraint that we call AtMostSeqCard. The latter can be used for solving a large family of sequencing problems. This constraint will be introduced after a short background regarding sequence constraints.

Sequence Constraints

There are several variants of the Sequence constraints. We first review them and then motivate the need for the variant proposed in this chapter: the AtMostSeqCard constraint which extends the Slack-Pruning.

Decomposition via slide

We start with an important decomposition property related to sequence constraints introduced in [START_REF] Bessiere | SLIDE: A Useful Special Case of the CARDPATH Constraint[END_REF] 

where i ∈ [1, n -k + 1].
The slide (meta-)constraint can be used to model many sequencing problems. The idea is to slide the same 'type' of constraints over a sequence of variables. 

Chains of Among Constraints:

In the following definitions, ν is a set of integers and l, u, q are integers. Sequence constraints are conjunctions of Among constraints, constraining the number of occurrences of a set of values in a set of variables.

Definition 4.6. Among(l, u, [x 1 , . . . , x q ], ν)

⇔ l ≤ {i x i ∈ ν} ≤ u
The AmongSeq constraint, first introduced in [START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF], is a chain of Among constraints of width q slid along a vector of n variables.

Definition 4.7. AmongSeq(l, u, q, [x 1 , . . . ,

x n ], ν) ⇔ ⋀ n-q i=0 Among(l, u, [x i+1 , . . . , x i+q ], ν)
Note first that Among is not monotone in general. Therefore Theorem 4.5 does not apply and ac on each Among will not necessarily establish ac on AmongSeq. We use the same example given in [START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF] to show how decomposition hinders propagation.

In AmongSeq(2, 3, 5, [x 1 , . . . , x 7 ], {1}) where

D(x 1 ) = D(x 2 ) = 1, D(x 3 ) = D(x 4 ) = D(x 5 ) = D(x 7 ) = {0, 1}
, and D(x 6 ) = 0, each Among constraint is ac while the assignment x 7 ← 0 does not have a support on AmongSeq.

The first (incomplete) algorithm for filtering this constraint was proposed in 2001 [START_REF] Beldiceanu | Revisiting the cardinality operator and introducing the cardinality-path constraint family[END_REF].

Then, in [START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF][START_REF] Jan Van Hoeve | Revisiting the Sequence Constraint[END_REF], two complete algorithms for filtering the AmongSeq constraint were introduced: firstly, a reformulation using the Regular constraint using 2 q-1 states achieving ac in O(2 q n) time; secondly, an algorithm achieving ac with a worst case time complexity of O(n 3 ). Moreover, this last algorithm is able to handle arbitrary sets of Among constraints on consecutive variables (denoted Gen-Sequence), however in O(n 4 ). Last, two flow-based algorithms were introduced in [START_REF] Michael | Flow-based propagators for the SEQUENCE and related global constraints[END_REF]. The first achieves ac on AmongSeq in O(n 3 2 log n log p), while the second achieves ac on Gen-Sequence in O(n 3 ) in the worst case. These two algorithms have an amortized complexity down a branch of the search tree of O(n 2 ) and O(n 3 ), respectively.

Chain of AtMost Constraints

Although useful in both applications, the AmongSeq constraint does not model exactly the type of sequences useful in car-sequencing and crew-rostering applications. First, there is often no lower bound for the cardinality of the subsequences, i.e., l = 0. Therefore AmongSeq is unnecessarily general in that respect. Moreover, the capacity constraint on subsequences is often paired with a cardinality requirement.

For instance, in car-sequencing, classes of car requiring a given option cannot be clustered together, because a working station can only handle a fraction of the cars passing on the line (at most p times in any sequence of length q). The total number of occurrences of these classes is a requirement, and translates as an overall cardinality constraint rather than lower bounds on each subsequence.

In crew-rostering, allowed shift patterns can be complex, hence the Regular constraint is often used to model them. However, working in at most p shifts out of q is a useful particular case. If days are divided into three 8h shifts, AtMostSeq with p = 1 and q = 3 makes sure that no employee work more than one shift per day and that there must be a 24h break when changing shifts. Moreover, similarly to car-sequencing, the lower bound on the number of worked shifts is global (monthly, for instance). In other words, we often have a chain of AtMost constraints.

Definition 4.8. AtMost(p, [x 1 , . . . , x q ], ν) ⇔ Among(0, p, [x 1 , . . . , x q ], ν)

To simplify notation, when the variables are Boolean and ν = {1}, we denote by

AtMost([x 1 , . . . , x q ], p) the AtMost(p, [x 1 , . . . , x q ], ν) constraint.

Note that

AtMost([x 1 , . . . , x q ], p) is in fact the monotone constraint ∑ i=n i=1 x i ≤ p given in Example 4.2. We can easily show that the general AtMost(p, [x 1 , . . . , x q ], ν) is similarly monotone.

A chain of AtMost constraints can be defined as follows:

Definition 4.9. AtMostSeq(p, q, [x 1 , . . . , x n ], ν) ⇔ ⋀ n-q i=0 AtMost(p, [x i+1 , . . . , x i+q ], ν)
Observe that ac on AtMostSeq is maintained using the decomposition of definition 4.9.

In fact since AtMost is monotone, then Arc Consistency is established on AtMostSeq iff each AtMost is ac.

A good tradeoff between filtering power and complexity can be achieved by reasoning about the total number of occurrences of values from the set ν together with the chain of AtMost constraints. 1 We therefore introduce the AtMostSeqCard constraint, defined as the conjunction of an AtMostSeq with a cardinality constraint on the total number of occurrences of values in ν:

Definition 4.10. AtMostSeqCard(p, q, d, [x 1 , . . . , x n ], ν) ⇔ AtMostSeq(p, q, [x 1 , . . . , x n ], ν) ∧ {i x i ∈ ν} = d
The two ac algorithms introduced in [START_REF] Jan Van Hoeve | Revisiting the Sequence Constraint[END_REF] were adapted in [START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF] to achieve ac on the AtMostSeqCard constraint. First, in the same way that AmongSeq can be encoded with a Regular constraint, AtMostSeqCard can be encoded with a cost-Regular constraint, where the cost stands for the overall demand, and it is increased on transitions labeled with the value 1. This procedure has the same worst case time complexity, i.e., O(2 q n) [START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF]. Second, the more general version of the polynomial algorithm (Gen-Sequence) is used, to filter the following decomposition of the AtMostSeqCard constraint into a conjunction of Among:

AtMostSeqCard(p, q, d, [x 1 , . . . , x n ], ν) ⇔ n-q ⋀ i=0 Among(0, p, [x i+1 , . . . , x i+q ], ν) ∧ Among(d, d, [x 1 , . . . , x n ], ν)
The algorithm of van Hoeve et al. [START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF] runs in O(n 3 ) time complexity on this decomposition. Similarly, the algorithm of Maher et al. [START_REF] Michael | Flow-based propagators for the SEQUENCE and related global constraints[END_REF] runs in O(n 2 .log(n)) down a branch of the search tree with an O(q.n 2 ) initial compilation. The algorithm we propose in this chapter (first published as [START_REF] Siala | An Optimal Arc Consistency Algorithm for a Chain of Atmost Constraints with Cardinality[END_REF]) runs in linear time and is therefore optimal. Finally, another linear time algorithm based on the graph representation of [START_REF] Michael | Flow-based propagators for the SEQUENCE and related global constraints[END_REF] was subsequently proposed by Narodytska and Walsh in [START_REF]The AtMostSeqCard Revisited. Nina narodytska and toby walsh[END_REF].

Global Sequencing Constraint

The Global Sequencing Constraint that we introduced in Definition 2.11 is in fact nothing but a conjunction between an AmongSeq and a Gcc. That is:

Definition 4.11. Gsc(l, u, q, low, upp, [x 1 , . . . , x n ], ν) ⇔ AmongSeq(l, u, q, [x 1 , .., x n ], ν) ∧ Gcc(low, upp, [x 1 , .., x n ])

The AtMostSeqCard Constraint

In this section, we introduce a linear filtering algorithm for the AtMostSeqCard constraint. We first give a simple greedy algorithm for finding a support with an O(nq) time complexity. Then, we show that one can use two calls to this procedure to enforce ac. Last, we show that its worst case time complexity can be reduced to O(n).

It was observed in [START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF] and [START_REF] Michael | Flow-based propagators for the SEQUENCE and related global constraints[END_REF] that we can consider Boolean variables and ν = {1}, since the following decomposition of Among (or AtMost) does not hinder propagation as it is Berge acyclic:

Among(l, u, [x 1 , . . . , x q ], ν) ⇔ q ⋀ i=1 (x i ∈ ν ↔ x ′ i = 1) ∧ l ≤ q i=1 x ′ i ≤ u
Therefore, throughout the chapter, we consider [x 1 , . . . , x n ] as a sequence of Boolean variables, and use the following restriction of the AtMostSeqCard constraint with ν = {1}: Definition 4.12.

AtMostSeqCard(p, q, d, [x 1 , . . . , x n ]) ⇔ n-q ⋀ i=0 ( q l=1 x i+l ≤ p) ∧ ( n i=1 x i = d)

Finding a Support

Let w be an n-tuple in {0, 1} n , w = ∑ n i=1 w[i] its cardinality, and w[i ∶ j] the projection of w on the subsequence [x i , . . . , x j ].

We first show that one can find a support by greedily assigning variables in a lexicographical order to the value 1 whenever possible, that is, while taking care of not violating the AtMostSeq constraint. More precisely, doing so leads to an instantiation of maximal cardinality, which may easily be transformed into an instantiation of cardinality d.

The greedy procedure leftmost (Algorithm 9) computes an instantiation w that maximizes the cardinality of the sequence (x 1 , . . . , x n ) subject to an AtMostSeq constraint (with parameters p and q), Algorithm 9: leftmost

foreach i ∈ [1, . . . , n] do w[i] ← min(x i ); foreach i ∈ [1, . . . , q] do w[n + i] ← 0; c(1) ← w[1]; foreach j ∈ [2, . . . , q] do c(j) ← c(j -1) + w[j]; foreach i ∈ [1, . . . , n] do if D(x i ) > 1 & max j∈[1,q] (c(j)) < p then w[i] ← 1; foreach j ∈ [1, . . . , q] do c(j) ← c(j) + 1; foreach j ∈ [2, . . . , q] do c(j -1) ← c(j); c(q) ← c(q -1) + w[i + q] -w[i];
return w;

Algorithm leftmost works as follows. First, the tuple w is initialized to the minimum value in the domain of each variable in Line 1. Then, at each step i ∈ [1, . . . , n] of the main loop, the cardinality of the j th subsequence involving the variable x i with respect to the current value of w is stored in c(j). In other words, at step i, we have

c(j) = ∑ min(n,i+j-1) l=max(1,i-q+j) w[l].
When exploring variable x i , such that D(x i ) = {0, 1} we set w[i] to 1 iff this would not violate the capacity constraints, that is, if c(j) < p for all j ∈ [1, . . . , q] (Condition Line 2).

In that case, the cardinality of every subsequence involving x i is incremented (Line 3).

Finally, when moving to the next variable, the values of c(j) are shifted (Line 4), and the value of c(q) is obtained by adding the value of w[i + q] and subtracting w[i] to its previous value (Line 5).

From now on, we shall use the following notations:

• → w denotes the instantiation found by leftmost on the sequence x 1 , . . . , x n .

• ← w denotes the instantiation found by the same algorithm, however on the sequence

x n , . . . , x 1 , that is, from right to left. Notice that, in order to simplify the notations, ← w [i] shall denote the value assigned by leftmost to the variable x i , and not x n-i+1

as it would actually be if we gave the reversed sequence as input. Lemma 4.13. leftmost maximizes ∑ n i=1 x i subject to AtMostSeq(p, q, [x 1 , . . . , x n ]).

D(x i ) . 0 . 1 . . . 0 . 0 1 . . 1 . . . . . . . 1 → w [i] 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 c(1) 0 1 1 2 1 2 2 1 0 0 2 2 1 2 1 2 2 1 1 2 2 2 c(2) 0 1 2 1 1 2 1 0 0 2 2 1 2 1 1 2 1 0 1 2 2 1 c(3) 0 2 1 1 1 1 0 0 1 2 1 2 1 1 1 1 0 0 1 2 1 1 c(4) 1 1 1 1 0 0 0 1 1 1 2 1 1 1 0 0 0 1 1 1 1 1 max(c) 1 2 2 2 1 2 2 1 1 2 2 2 2 2 1 2 2 1 1 2 2 2
Proof. Let → w be the instantiation found by leftmost, and suppose that there exists another instantiation w (consistent for AtMostSeq(p, q, [x 1 , . . . ,

x n ])) such that w > → w . Let i be the smallest index such that → w [i] ≠ w[i]. By definition of → w , we know that → w [i] = 1 hence w[i] = 0. Now, let j be the smallest index such that → w [j] < w[j] (it must exists since w > → w ).
We first argue that the instantiation w ′ equal to w except that w ′ [i] = 1 and w ′ [j] = 0 (as in → w ) is consistent for AtMostSeq. Clearly, its cardinality is not affected by this swap, hence w ′ = w . Now, we consider all the sum constraints whose scopes are changed by this swap, that is, the sums ∑ a+q-1 l=a w ′ [l] on intervals [a, a + q -1] such that a ≤ i < a + q or a ≤ j < a + q. There are three cases:

1. Suppose first that a ≤ i < j < a + q: in this case, the value of the sum is the same in w and w ′ , therefore it is lower than or equal to p.

2. Suppose now that i < a ≤ j < a + q: in this case, the value of the sum is decreased by 1 from w to w ′ , therefore it is lower than or equal to p.

3. Last, suppose that a ≤ i < a + q ≤ j: in this case, for any l ∈ [a, a + q -1], we have

w ′ [l] ≤ → w [l] since j is the smallest integer such that → w [j] < w[j]
, hence the sum is lower than or equal to p.

Therefore, given a sequence w of maximum cardinality that differs from → w at rank i, we can build a sequence of equal cardinality that does not differ from → w until rank i + 1. By iteratively applying this argument, we can obtain a sequence identical to → w , albeit with cardinality w , therefore contradicting our hypothesis that w > → w . ◻ Corollary 4.14. Let → w be the instantiation returned by leftmost. There exists a solution of AtMostSeqCard(p, q, d, [x 1 , . . . , x n ]) iff the three following propositions hold:

(1)

AtMostSeq(p, q, [x 1 , . . . , x n ]) is satisfiable (2) ∑ n i=1 min(x i ) ≤ d (3) → w ≥ d.
Proof. It is easy to see that these conditions are all necessary: (1) and ( 2 There are n steps and on each step, Lines 2, 3 and 4 involve O(q) operations. Therefore, for each variable x i , a support for x i = 0 or x i = 1 can be found in O(nq). Consequently, we have a naive ac procedure running in O(n 2 q) time.

Filtering the Domains

In this section, we show that we can filter out all the values inconsistent with respect to the AtMostSeqCard constraint within the same time complexity as Algorithm 9.

First, we show that there can be inconsistent values only in the case where the cardinality → w of the instantiation returned by leftmost is exactly d: in any other case, the constraint is either violated (when → w < d) or ac, (when → w > d). The following lemma formalizes this: Lemma 4.15. The constraint AtMostSeqCard(p, q, d, [x 1 , . . . , x n ]) is ac if the three following propositions hold: AtMostSeq(p, q, [x 1 , . . . , x n ]). Consider a subsequence x j , . . . , x j+q-1 . If j + q ≤ i or

1. AtMostSeq(p, q, [x 1 , . . . , x n ]) is ac 2. ∑ n i=1 min(x i ) ≤ d 3. → w > d Proof.
w ′ = w -1 = d
j > i then ∑ j+q-1 l=j w ′ [l] ≤ ∑ j+q-1 l=j w[l]
≤ p, so only indices j s.t. j ≤ i < j + q matter. There are two cases:

1. Either a or b or both are in the subsequence (j ≤ a < j + q or j ≤ b < j + q). In that

case ∑ j+q-1 l=j w ′ [l] ≤ ∑ j+q-1 l=j w[l].
2. Neither a nor b are in the subsequence (a < j and j + q ≤ b). In that case, since D(x i ) = {0, 1} and since AtMostSeq(p, q, [x 1 , . . . , x n ]) is ac, we know that ∑ j+q-1 l=j min(x l ) < p. Moreover, since a < j and j + q ≤ b, there is no variable x l in that subsequence such that w[l] = 1 and 0 ∈ D(x l ). Therefore, we have

∑ j+q-1 l=j w[l] < p, hence ∑ j+q-1 l=j w ′ [l] ≤ p.
In both cases w ′ satisfies all capacity constraints. Hence it is support for the value 1. ◻ Remember that achieving ac on AtMostSeq is trivial since AtMost is monotone. 

If → w [1 ∶ i -1] + ← w [i + 1 ∶ n] < d then x i = 0 is not ac. Proof. Suppose that we have → w [1 ∶ i -1] + ← w [i + 1 ∶ n]
< d and suppose that there exists a consistent instantiation w such that w[i] = 0 and w = d.

By Lemma 4.13 on the sequence x 1 , . . . , x i-1 we know that

∑ i-1 l=1 w[l] ≤ → w [1 ∶ i -1] .
By Lemma 4.13 on the sequence x n , . . . , x i+1 we know that

∑ n l=i+1 w[l] ≤ ← w [i + 1 ∶ n] .
Therefore, since w[i] = 0, we have w = ∑ n l=1 w[l] < d, thus contradicting the hypothesis that w = d. Hence, there is no support for x i = 0. ◻ Lemma 4.17.

If → w [1 ∶ i] + ← w [i ∶ n] ≤ d then x i = 1 is not ac. Proof. Suppose that we have → w [1 ∶ i] + ← w [i ∶ n]
≤ d and suppose that there exists a consistent instantiation w ′ such that w ′ [i] = 1 and w ′ = d.

By Lemma 4.13 on the sequence x 1 , . . . , x i we know that

∑ i l=1 w ′ [l] ≤ → w [1 ∶ i] .
By Lemma 4.13 on the sequence x n , . . . , x i we know that similarly computed by simply running the same procedure on the same sequence of variables, however reversed, i.e., from right to left. Using these values, one can then apply Lemma 4.16 and Lemma 4.17 to filter out the value 0 and 1, respectively. We detail this procedure in the next section.

∑ n l=i w ′ [l] ≤ ← w [i ∶ n] . Therefore, since w ′ [i] = 1, we have w ′ = ∑ i l=1 w ′ [l] + ∑ n l=i w ′ [l] -1 < d,
We first show that these two rules are complete, that is, if AtMostSeq is ac, and the overall cardinality constraint is ac then an instantiation x i = 0 (respectively x i = 1) is inconsistent iff Lemma 4.16 (respectively Lemma 4.17) applies. The following Lemma shows that the greedy rule maximizes the density of 1s on any subsequence starting on x 1 , and therefore minimizes it on any subsequence finishing on x n . Let leftmost(k) denote the algorithm corresponding to applying leftmost, however stopping whenever the cardinality of the instantiation reaches a given value k. Lemma 4.18. Let w be a satisfying instantiation of AtMostSeq(p, q, [x 1 , . . . , x n ]).

If k ≤ w then the instantiation →

w k computed by leftmost(k) is such that, for any

1 ≤ i ≤ n: ∑ n l=i → w k [l] ≤ ∑ n l=i w[l].
Proof. Let m be the index at which leftmost(k) stops. We distinguish two cases. If

i > m, for any value l in [m + 1, . . . , n], → w k [l] ≤ w[l] (since → w k [l] = min(x l )), hence ∑ n l=i → w k [l] ≤ ∑ n l=i w[l]. When i ≤ m, clearly for i = 1, ∑ n l=i → w k [l] ≤ ∑ n l=i w[l] since → w k ≤ w . Now consider the case of i = 1. Since → w k ≤ w , then ∑ n l=i → w k [l] ≤ w -∑ i-1 l=1 → w k [l]. Thus, ∑ n l=i → w k [l] ≤ ∑ n l=i w[l] + (∑ i-1 l=1 w[l] -∑ i-1 l=1 → w k [l]
). Moreover, by applying Lemma 4.13, we show that Proof. Let → w be the instantiation found by leftmost. We consider, without loss of generality, a variable

∑ i-1 l=1 → w k [l] is maximum, hence larger than or equal to ∑ i-1 l=1 w[l]. Therefore, ∑ n l=i → w k [l] ≤ ∑ n l=i w[l]. ◻ Lemma 4.19. If AtMostSeq(p, q, [x 1 , . . . , x n ]) is ac, and → w [1 ∶ i -1] + ← w [i + 1 ∶ n] ≥ d then x i = 0 has a support. = ≥ → w 1 → w [1 ∶ i -1] 0 ← w d-L [i ∶ n] x i x j x j+q-1 L d -L Support for x i = 0 → w [1 ∶ i -1] 0 ← w d-L [i ∶ n]
x i such that D(x i ) = {0, 1} and → w [1 ∶ i -1] + ← w [i + 1 ∶ n] ≥ d
, and show that one can build a support for x i = 0. If → w [i] = 0 or ← w [i] = 0 then there exists a support for x i = 0, hence we only need to consider the case where → w

[i] = ← w [i] = 1. Let L = → w [1 ∶ i -1
] and ← w d-L be the result of leftmost(d -L) on the subsequence

x n , . . . , x i . We will show that w, defined as the concatenation of → w

[1 ∶ i -1] and ← w d-L [i ∶ n] is a support for x i = 0.
First, we show that

w[i] = 0, that is ← w d-L [i] = 0. By hypothesis, since → w [1 ∶ i -1] + ← w [i + 1 ∶ n] ≥ d, we have ← w [i + 1 ∶ n] ≥ d -L. Now, consider the sequence x i , . . . , x n ,
and let w ′ be the instantiation such that w ′ [i] = 0, and [START_REF] Berge | Graphs and hypergraphs[END_REF], we know that w ′ has a higher cardinality than ← w d-L on any subsequence starting in i, hence w

w ′ = ← w [i + 1 ∶ n] otherwise. Since w ′ = ← w [i + 1 ∶ n] ≥ d -L, by Lemma 4.
[i] = ← w d-L [i] = w ′ [i] = 0.
Now, we show that w does not violate the AtMostSeq constraint. Obviously, since it is the concatenation of two consistent instantiations, it can violate the constraint only on the junction, i.e., on a subsequence x j , . . . , x j+q-1 such that j ≤ i and i < j + q.

We show that the sum of any such subsequence is less than or equal to p by comparing with → w , as illustrated in Figure 4.5. We have

∑ j+q-1 l=j → w [l] ≤ p, and ∑ i-1 l=j → w [l] = ∑ i-1 l=j w[l].
Moreover, by Lemma 4.18, since → w Proof. Let → w and ← w be the instantiations found by leftmost, on respectively x 1 , . . . , x n and x n , . . . , x 1 . We consider, without loss of generality, a variable

[i ∶ n] = ← w d-L = d -L we have ∑ j+q-1 l=i ← w d-L [l] ≤ ∑ j+q-1 l=i → w [l] hence ∑ j+q-1 l=i w[l] ≤ ∑ j+q-1 l=i → w [l]. Therefore, we can conclude that ∑ j+q-1 l=j w[l] ≤ p. ◻ Lemma 4.20. If AtMostSeq(p, q, [x 1 , . . . , x n ]) is ac, and → w [1 ∶ i] + ← w [i ∶ n] > d then x i = 1 has a support. = = ≥ → w 1 0 0 . . . 0 → w L-1 0 0 0 . . . 1 ← w d-L 0 0 . . . 0 ← w d-L+1 0 0 0 . . . 1 x i x a x b L -1 d -L + 1 Support for x i = 1 → w L-1 1 ← w d-L
x i such that D(x i ) = {0, 1} and → w [1 ∶ i] + ← w [i ∶ n] > d
, and show that one can build a support for

x i = 1. If → w [i] = 1 or ← w [i]
= 1 then there exists a support for x i = 1, hence we only need to consider the case where → w

[i] = ← w [i] = 0. Let L = → w [1 ∶ i] = → w [1 ∶ i -1] (this equality holds since → w [i] = 0)
. Let → w L-1 be the instantiation obtained by using leftmost(L-1) on the subsequence x 1 , . . . , x i-1 , and let ← w d-L be the instantiation returned by leftmost(d -L) on the subsequence x n , . . . , x i+1 .

We show that w such that w[i] = 1, equal to → w L-1 on x 1 , . . . , x i-1 and to ← w d-L on x i+1 , . . . , x n , is a support.

Clearly w = d, therefore we only have to make sure that all capacity constraints are satisfied. Moreover, since it is the concatenation of two consistent instantiations, it can violate the constraint only on the junction, i.e., on a subsequence x j , . . . , x j+q-1 such that j ≤ i and i < j + q.

We show that the sum of any such subsequence is less than or equal to p by comparing with → w and ← w d-L (see Figure 4.6). First, note that on the subsequence x 1 , . . . , Suppose first that j > a. In that case, ∑ j+q-1 l=j

x i-1 , → w L-1 = → w ,
w[l] = ∑ j+q-1 l=i ← w d-L+1 [l] if j + q -1 ≥ b,
and
otherwise it is equal to 1. It is therefore always less than or equal to p since i ≥ j (and we assume p ≥ 1). Now suppose that j ≤ a. In that case, consider first the subsequence x j , . . . , x i . On this interval, the cardinality of w is the same as that of → w , i.e.,

∑ i l=j w[l] = ∑ i-1 l=j → w L-1 [l] + 1 = ∑ i l=j → w [l]. On the subsequence x i+1 , . . . , x j+q-1 , note that w[i + 1 ∶ n] = → w [i + 1 ∶ n] = d-L, hence by Lemma 4.18, we have ∑ j+q-1 l=i+1 w[l] = ∑ j+q-1 l=i+1 ← w d-L [l] ≤ ∑ j+q-1 l=i+1 → w [l]. There- fore ∑ j+q-1 l=j w[l] ≤ ∑ j+q-1 l=j → w [l] ≤ p. ◻

Algorithmic Complexity

Using Lemmas 4.16, 4.17, 4.19 and 4.20, one can design a filtering algorithm with the same worst case time complexity as leftmost. In this section, we introduce a linear time implementation of leftmost. We denote this algorithm leftmost_count, since we use it to compute an array "count" containing the values of → w [1 ∶ i] for all values of i. We give the pseudo code for this procedure in Algorithm 10. The key idea that allows to reduce the complexity is that, at each step, a single new subsequence is to be considered.

However, we also need to compute the new maximum across current subsequences, and increment all subsequences when assigning the value 1 to w[i], both in constant time.

It is easy to see that leftmost_count has an O(n) worst case time complexity. In order to prove its correctness, we will show that the instantiation computed by leftmost_count is the same as that computed by leftmost. Proof. We first prove the following three invariants, true at the beginning of each step of the main loop:

• The cardinality of the j th subsequence is equal to c

[(i + j -2) mod q] + count[i -1]. • The number of subsequences of cardinality k is equal to occ[n -count[i -1] + k].
• The cardinality maximum of any subsequence is equal to max c . Then, it is easy to check that leftmost_count computes the exact same instantiation as leftmost. Furthermore, at the end of the algorithm, we will have count

[i] = → w [1 ∶ i] for all i ∈ [1, n].

Cardinality of the subsequences.

Let w i denote the assignment w after i-1 steps of the loop. Notice that at the beginning and the end of the sequence of variables, subsequences are truncated. However, to j ∈ [1, . . . , q -1]. In this case, ((i + 1) + j -2 mod q) = (i + j -1 mod q) ≠ (i -1 mod q). Therefore, c[(i + 1) + j -2 mod q] has not changed between step i and step i + 1, and since P (i) holds, we have:

( i+(j+1)-1 l=i-q+(j+1) w i [l]) = (c[i + (j + 1) -2 mod q] + count[i -1])
which can be rewritten as follows:

( (i+1)+j-1 l=(i+1)-q+j w i [l]) = (c[(i + 1) + j -2 mod q] + count[i -1])
Now there are two possibilities. Either count is incremented, i.e., count[i] = count[i -1] + 1, and in that case w i+1 [i] = w i [i] + 1. Or count is not incremented, and in that case

w i+1 [i] = w i [i].
In both cases we have:

(i+1)+j-1 l=(i+1)-q+j w i+1 [l] = (i+1)+j-1 l=(i+1)-q+j;l≠i w i [l] + w i+1 [i] since w i+1 [l] = w i [l]
for all l ≠ i. Hence we obtain:

( (i+1)+j-1 l=(i+1)-q+j w i+1 [l]) = (c[i + (j + 1) -2 mod q] + count[i -1]) -w i [i] + w i+1 [i]
which can be rewritten as:

( (i+1)+j-1 l=(i+1)-q+j w i+1 [l]) = (c[(i + 1) + j -2 mod q] + count[i])
Thus P (i + 1) holds. Now we look at the last case: j = q. Here, at step i the value of c[i -1 mod q] is set to

c[i + q -2 mod q] + w i+1 [i + q] -w i+1 [i]. Since P (i) holds, we can replace c[i + q -2 mod q] by ∑ i+q-1 l=i w i [l]) -count[i -1],
so at the beginning of step i + 1 we have:

c[(i + 1) + q -2 mod q] = ( i+q-1 l=i w i [l]) -count[i -1] + w i+1 [i + q] -w i+1 [i] however, since ∑ i+q-1 l=i w i [l]) = w i [i] + ∑ i+q-1 l=i+1 w i+1 [l]) we have: c[(i + 1) + q -2 mod q] = i+q l=i+1 w i+1 [l] -count[i -1] + w i [i] -w i+1 [i] Therefore, since count[i] = count[i -1] + w i+1 [i] -w i [i], the following holds: c[(i + 1) + q -2 mod q] = i+q l=i+1 w i+1 [l] -count[i]
We have shown that P (i) implies P (i + 1), and we can therefore conclude that at the beginning of each step i of the loop P (i) (that is, the first invariant) holds.

Occurrences of each cardinality.

We proceed as for the first invariant, and prove it by induction. The base case is easy to check since count[0] = 0, and since the array c is properly initialized.

Now we assume that there are exactly occ[ncount[i -1] + k] subsequences involving

x i whose cardinality is equal to k in w i , and we show that at the beginning of step i + 1 there are occ[ncount[i] + k] subsequences involving x i+1 of cardinality k in w i+1 .

There are two reasons for cardinalities to change.

First, when moving up to the next step in the loop, we move from subsequences involving x i to subsequences involving x i+1 . There are q -1 subsequences involving both x i and x i+1 . So we simply need to make sure that the occurrences are updated to reflect the fact that the subsequence x i-q+1 , . . . , x i should not be counted anymore, whilst the subsequence x i+1 , . . . , x i+q should now be. Let k 1 (respectively k 2 ) be the cardinality of the former (respectively latter) subsequence. As established by the first invariant,

k 1 = c[(i-1) mod q]+count[i-1], that is the value prev in Line 2 is set to k 1 -count[i-1]. Moreover, next is given the value c[(i + q -2) mod q] + w[i + q] -w[i]. However, from invariant 1, we have c[(i + q -2) mod q] + count[i -1] = ∑ i+q-1 l=i w[l]. It follows that next = i+q-1 l=i w[l] + w[i + q] -w[i] -count[i -1] = i+q l=i+1 w[l] -count[i -1] therefore next = k 2 -count[i -1]. To maintain invariant (2), we therefore need to increment the value of occ[n -count[i -1] + k 2 ] and decrement the value of occ[n - count[i -1] + k 1 ].
This is precisely what is done in Lines 4 and 5.

Second, when the conditions in Line 1 are met, the value of w[i] is set to 1. Since its value was previously 0, the cardinality of every subsequence involving w[i] should be incremented before starting the next step (i + 1). This happens automatically because in this case the value of count[i] will be set to count[i -1] + 1. Indeed, for any integer k, the number of occurrences of subsequences of cardinality k -1 at the beginning of

step i is occ[n -count[i -1] + k -1]. Therefore, since count[i] = count[i -1] + 1, at the beginning of step i+ 1, we have occ[n -(count[i]-1)+ k -1], that is, occ[n -count[i]+ k].

Cardinality maximum.

Here we show that the maximum value of the cardinalities of the current subsequences is properly maintained. When the number of occurrences of a cardinality k becomes nonnull and if k > max c , then max c is set to k. Similarly, When the number of occurrences of a cardinality k becomes null and if k = max c , then max c is decreased. Last, when the cardinality of all subsequences is incremented, max c is incremented too.

These operations are correct because from one step i to i + 1, the value of max c cannot change by more than 1. Indeed, only the first subsequence is removed, the other q -1 subsequences remain unchanged. Moreover, the first subsequence is replaced by the last subsequence to which a value a ∈ [0, 1] is added, and another value b ∈ [0, 1] is subtracted. Therefore its value cannot change by more than 1, hence max c .

Now having these three invariants, one can check that at each step i the values of w[i]

will be the same as in Algorithm 9. Second, in Line 2, we achieve ac on the cardinality constraint, in order to satisfy the second condition of Lemma 4.15.

◻

Achieving Arc-Consistency on

Third, in Line 4 we compute the vector L that maps each index i to the value of → w [1 ∶ i] -∑ j=i j=1 min(x j ). This is given by the array count returned by leftmost_count on the sequence [x 1 , . . . , x i ]. Notice that, we work with the residual demand, computed in Line 3, rather than the original demand. At this point, the third condition of Lemma 4.15 can be checked, and we know whether the constraint is ac, inconsistent, or if some pruning may be possible.

In the latter case, we compute the vector R, that maps each index i to the value of ← w [i ∶ n] -∑ j=n j=i min(x j ), in Line 5.

Finally, we can activate the pruning rules that are shown to be correct and sufficient by Lemmas 4.16 and 4.19 for Line 6, and Lemmas 4.17 and 4.20 for Line 7. The first line stands for current domains, dots are unassigned variables (hence d res = 10).

Algorithm 11: ac(AtMostSeqCard(p, q, d, [x 1 , .., x n ])) if ac(AtMostSeq(p, q, [x 1 , . . . , x n ])) =⊥ then return ⊥ ; if ac(∑ n i=1 x i = d) =⊥ then return ⊥; d res ← d -∑ n i=1 min(x i ); L ← leftmost_count([x 1 , . . . , x n ], p, q); if L[n] = d res then R ← leftmost_count([x n , . . . , x 1 ], p, q); foreach i ∈ [1, . . . , n] such that D(x i ) = {0, 1} do if L[i] + R[n -i + 1] ≤ d res then D(x i ) ← {0}; if L[i -1] + R[n -i]<d res then D(x i ) ← {1}; else if L[n] < d res then return ⊥ ; return D ;
The two next lines give the instantiations → w and ← w obtained by running leftmost_count from left to right and from right to left, respectively. The third and fourth lines stand for the values of

L[i] = → w [1 ∶ i] -∑ j=i j=1 min(x j ) and R[n -i + 1] = ← w [i ∶ n] -∑ j=n j=i min(x j
). The fifth and sixth lines correspond to the application of, respectively, Lemma 4.16 

D(x i ) . 0 . . . . . . 0 1 0 . . . . . . . . . . 1 → w [i] 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 ← w [i] 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1 L[i] 0 1

Extensions

In this section, we show that the filtering algorithm described in the previous section can be extended in a number of ways to enforce ac on more general constraints.

Some generalizations are straightforward. For instance, the parameter p does not need to be the same for all subsequences. Indeed neither Algorithm 9 nor Algorithm 10 relies on the fact that p is constant across all subsequences. We can easily give a list of upper bounds, one for each subsequence. Another relatively straightforward generalization is to have a variable, rather than a single value, for the demand d.

The AtMostSeq∆Card Constraint

Let δ be a variable, we define the AtMostSeq∆Card as follows:

Definition 4.23.

AtMostSeq∆Card(p, q, δ, [x 1 , . . . , x n ]) ⇔ n-q ⋀ i=0 ( q l=1 x i+l ≤ p) ∧ ( n i=1 x i = δ)
We show how one can achieve ac on the above generalization. The changes to Algorithm 11 required to handle this generalization are minimal. Indeed, tight lower and upper bounds on δ are easy to compute.

They are given, respectively by ∑ n i=1 min(x i ), and → w . Moreover, by Lemma 4.15, we know there can be inconsistent values for a variable x i only if → w ≤ d. It follows that we only need to care about the lower bound of δ. We show these changes in Algorithm 12.

The domain of δ is updated in Line 2 for the lower bound, and Line 5 for the upper bound. Also, the lower bound of δ (min(δ)) is used to compute the residual demand to reach in Line 3 instead of d. ). These bounds are therefore tight.

Algorithm 12: ac(AtMostSeq∆Card(p, q, δ, [x 1 , .., x n ])) if ac(AtMostSeq(p, q, [x 1 , . . . , x n ])) =⊥ then return ⊥ ; if ac(∑ n i=1 x i = δ) =⊥ then return ⊥ ; d res ← min(δ) -∑ n i=1 min(x i ); L ← leftmost_count([x 1 , . . . , x n ], p, q); D(δ) ← D(δ) ∩ [0, L[n] + ∑ n i=1 min(x i )]; if L[n] = d res then R ← leftmost_count([x n , . . . , x 1 ], p, q); foreach i ∈ [1, . . . , n] such that D(x i ) = {0, 1} do if L[i] + R[n -i + 1] ≤ d res then D(x i ) ← {0}; if L[i -1] + R[n -i]<d res then D(x i ) ← {1}; else if L[n] <
Second, we need to prune values in D(x i ) for all i in 1, . . . , n that are not supported by any value in D(δ). A naive algorithm for checking that would be to run leftmost for each value in D(δ) and compute the union of possible values for the variables x i .

However, one can avoid this by distinguishing two cases after line 5. Suppose that D(δ) > 1, in this case, Line 1 and Line 2 and 5 imply that Lemma 4.15 holds for d = min(δ). Hence all values for the variables x i are consistent and in this case we will never enter lines 6 and 7. Suppose now that D(δ) = 1, in this case, we can simply apply the same filtering (Line 6) that we proposed previously for a fixed cardinality.

The whole procedure requires at most two calls to leftmost_count, which takes O(n) time. ◻ Table 4.1: Maximal cardinality instantiations.

x i : . . . . . . . 0 . . . . . 0 . . . . . 0 . . → w on 4.1: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 → w = 11 → w on 4.2: 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 → w = 10 → w on 4.1 & 4.2: 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 → w = 8

The MultiAtMostSeqCard Constraint

We show here that we can easily modify Algorithm 11 (or Algorithm 12) to achieve ac on the conjunction of several AtMostSeqCard constraints.

For instance, in crew-rostering problems, the work pattern of an employee might require a conjunction of AtMostSeqCard: one to limit the number of shifts per day, and another to limit the number of shifts per week. In the crew-rostering benchmarks that we consider in Section 4. Proof. The main argument to show that this theorem holds is that all previous proofs and algorithms can be easily adapted to this case. We therefore only sketch its proof.

, .., q m , d, [x 1 , . . . , x n ]) ⇔ m ⋀ k=1 n-q k ⋀ i=0 ( q k l=1 x i+l ≤ p k ) ∧ ( n i=1 x i = d)
First, note that one can modify the procedure leftmost (or leftmost_count) to handle a conjunction of AtMostSeq constraints instead of a single one. All we need to do is to duplicate m times the structures maintaining the cardinalities of the subsequences.

We obtain a procedure that checks m chains in O(nm) if we use Algorithm 10.

Second we show that Lemma 4.13 still holds with this new procedure, and with respect to several chains of AtMost constraints. In other words, greedily assigning the value "1" while respecting m chains of AtMost will produce a sequence of maximal cardinality.

The argument used in the proof of Lemma 4.13 generalizes without modification to several chains. We show that if we make the hypothesis that an instantiation w of cardinality higher than of → w found by the greedy procedure leads to a contradiction. For each value of q, the same three cases arise, and can be analyzed in exactly the same way. Hence we can show that w can be made equal to → w without changing its cardinality, hence a contradiction.

In all subsequent proofs, we check subsequences of length q and show that they do not violate capacity constraints. Obviously, these proofs hold for any value of q (within [1, n]). In fact, the only difference is that when considering multiple chains, we might have to check subsequences of different lengths. ◻ ◻

Experimental Results

We tested our filtering algorithms on two benchmarks: car-sequencing and crew-rostering.

Since Slack-Pruning is a particular case of AtMostSeqCard and in all cases cannot filter more than AtMostSeqCard then it will be omitted in these experiments. All models are implemented using Ilog-Solver 6.7. All experiments ran on Intel Xeon CPUs 2.67GHz under Linux. Since we compare propagators, we averaged the results across several branching heuristics to reduce the bias that these can have on the outcome.

Moreover, these heuristics were randomized and for each instance and each heuristic we launched 5 randomized runs with a 20 minutes time cutoff 2 . For each considered data set, we primarily compare the total number of successful runs, denoted "#solved". Then, we consider the CPU time in seconds and number of backtracks, denoted #backtracks, both restricted to successful runs. When appropriate, we emphasize the statistics of the best method using bold face fonts.

Car-Sequencing

We use the same configuration used in the previous chapter (Section 3. 4.2 shows that in all cases, the best method is either gsc⊕amsc or amsc. In some cases a stronger filtering seems to be key and gsc⊕amsc solves more instances than other methods: 95.46% of set1 and 3.04% of set3. In other cases, exploration speed is more important and amsc is better: 55.95% and 14.55% of solved instances for set2 and set4, respectively. Overall, as witnessed by Table 4.4, gsc and gsc⊕amsc usually require exploring a much smaller tree than amsc. However, the propagator for Gsc slows down the search by a substantial amount. Considering Table 4.3 as well as data from unsolved instances, we observed a factor 12.5 on the number of nodes explored per second between these two models. Moreover, the level of filtering obtained by these two 2 The approximate total CPU time is one year. methods are incomparable. Therefore combining them is always better than using Gsc alone.

In [START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF] the authors applied their method to set1, set2 and set3 only. For their experiments, they considered the best result provided by 2 heuristics. When using cost-Regular or Gen-Sequence filtering alone, 50.7% of problems are solved and when combining either cost-Regular or Gen-Sequence with Gsc, 65.2% of problems are solved (with a time out of 1 hour). In our experiments, in average over the 42 heuristics and the 5 randomized runs, AtMostSeqCard and Gsc solve respectively 84.29% and 87.19% of instances and combining AtMostSeqCard with Gsc solves 87.42% instances in a time out of 20 minutes. Moreover, using the model gsc⊕amsc,

the best heuristic was able to solve 96.20% of these instances.

Crew-Rostering

Problem Description In this problem, working shifts have to be attributed to employees over a period, so that the required service is met at any time and working regulations are respected. The latter condition can entail a wide variety of constraints.

Previous work [START_REF] Menana | Sequencing and Counting with the multicostregular Constraint[END_REF][START_REF] Pesant | Constraint-Based Rostering[END_REF] used allowed (or forbidden) patterns to express successive shift constraints. For example, with 3 shifts of 8 hours per day: D (day), E (evening) and N (night), ND can be forbidden since employees need some rest after night shifts. We consider here a simple case involving 20 employees with 3 shifts of 8 hours per days where no employee can work more than one 8h shift per day, no more than 5 days per period of 7 days, and the break between two worked shifts must be at least 16h. The planning horizon is of 28 days, and each employee must work 17 shifts over the 4 weeks period (i.e., 34 hours per week in average).

Models and Heuristics

We use a model with one Boolean variable e ij for each of the m employees and each of the n shifts stating if employee i works on shift j. The demand d s j on each shift j is enforced through a sum constraint ∑ m i=1 e ij = d s j . The other constraints are stated using two AtMostSeqCard constraints per employee, one with ratio p q = 1 3, another with ratio 5 21, and both with the same demand d = 17. We compare four models. In the first (decompose), we use a decomposition in a chain of AtMost constraints. In the second (amsc) we use two AtMostSeqCard constraints per employee j, of the form:

AtMostSeqCard(p, q, d, [e i1 , .

. . , e in ])

In the first constraint we have p = 1, q = 3, d = 17 and in the second constraint we have p = 5, q = 21, d = 17. Both are propagated using Algorithm 11. In the third model (gsc), we use the following Gsc constraint to encode the constraint AtMostSeqCard(p, q, d, [e i1 , . . . , e in ]):

Gsc(0, p, q, {0 ∶ n -d, 1 ∶ d}, {0 ∶ n -d, 1 ∶ d}, [e i1 , .

. . , e in ], {1})

Note that in this case, since the domains are Boolean, the Gsc is in this case equivalent to AtMostSeqCard. Therefore, it cannot prune more since the latter enforces ac. However, it is stronger than the decomposition. Last, in the fourth model (mamsc) the conjunction of the two AtMostSeqCard constraints is propagated using Algorithm 12. We used the following four variable ordering heuristics.

1. Lexicographic: Explores shifts chronologically and picks an employee at random; 2. Middle: Similar as above, however we start exploring shifts from the middle; 3. Employee: Picks an employee with min slack, then a possible shift of max demand; 4. Shift: Similar as above, however, the shift is selected before the employee.

In all cases, we branch by assigning the value 1 to the chosen pair (employee, shift).

Benchmarks

We generated 341 instances, with worker availability ranging from 82% to 48% by increment of 0.1. This value denotes the probability that a given employee is willing to work during a given shift. It allows to vary the constrainedness of the problem.

228 of these instances were found feasible, 77 infeasible and 36 remain open. We report results for the satisfiable and unsatisfiable sets with 5 random runs per instance. 

Summary

We first proposed a simple filtering rule that reasons about capacity and demand constraints simultaneously for solving the car-sequencing problem. This pruning is then generalized to an optimal Arc Consistency algorithm for the AtMostSeqCard constraint.

Introduction

In the past decade, hybrid CP/SAT solvers have been redesigned to benefit from CP and SAT features as much as possible. In this chapter, we show that enabling clause learning via hybrid models can greatly improve the performances of CP models in many sequencing and scheduling problems.

Lazy Clause Generation is a general framework for hybrid solvers in which propagators should be able to explain their pruning in a clausal form. A trend has subsequently emerged aiming at proposing effective and efficient explanations for (global) constraints (see for instance [START_REF] Downing | Explaining Flow-Based Propagation[END_REF][START_REF] Downing | Explaining alldifferent[END_REF][START_REF] Schutt | Explaining Time-Table-Edge-Finding Propagation for the Cumulative Resource Constraint[END_REF][START_REF] Gange | Explaining Propagators for Edge-Valued Decision Diagrams[END_REF][START_REF] Francis | Explaining circuit propagation[END_REF]). In this context, we investigate the learning aspect for solving car-sequencing benchmarks using our filtering for AtMostSeqCard in Section 5.1. We propose a procedure explaining AtMostSeqCard that runs in linear time complexity in the worst case. Any hybrid model using these explanations benefits from the complete filtering for this constraint along with clause learning and potentially many other CP/SAT features. We show experimentally how clause learning improves the global performances in most cases. We confirm a strong correlation between advanced propagation and finding solutions quickly for this problem. Moreover, for building proofs, clause learning appears in these experiments to be the most important ingredient while propagation is less useful.

The rest of the contributions presented in this chapter are related to the question of designing 'lazy' data structures in order to efficiently tackle large scaled instances. Backward explanations and lazy generation (see Section 2.3.2) are typically the type of 'lazy' data structures that we address. However, these techniques are relatively new in hybrid solvers and might be improved in a number of ways.

We revisit in Section 5.2 the lazy generation of Boolean variables for encoding the domains. The issue that we address is related to the redundancy of clauses used when lazily encoding a domain [START_REF] Feydy | Lazy Clause Generation Reengineered[END_REF] (detailed in Section 2.3.2.2). The DomainFaithfulness constraint that we propose avoids such redundancy while ensuring the same level of consistency without any computational overhead.

Section 5.3 addresses the impact of clause learning for solving disjunctive scheduling problems. We consider a large number of disjunctive scheduling instances, on which we test the lazy generation method proposed in Section 5.2. Furthermore, we propose a novel conflict analysis scheme, called Disjunctive-based learning, tailored to this family of problems. Disjunctive-based learning uses a property of these problems allowing to learn clauses using a number of Boolean variables that is not function of the domain size.

Our propositions give good experimental results and outperform the CP model in most cases. Furthermore, we confirm a correlation between the instance size, the branching choice, and the conflict analysis scheme. State-of-the-art lower bounds for a traditional benchmark are improved thanks to the new conflict analysis scheme.

Learning in Car-Sequencing

We investigate in this section the impact of clause learning for solving the car-sequencing problem. We first show how to explain our complete filtering for AtMostSeqCard.

These explanations are later used in several hybrid models for solving the car-sequencing problem.

Explaining AtMostSeqCard

We first recall the definition of AtMostSeqCard. Given a sequence of Boolean variables [x 1 , . . . , x n ] and three integers p, q, d, AtMostSeqCard is defined by a conjunction between a chain of AtMost constraints (called AtMostSeq) and Cardinality.

AtMostSeqCard(p, q, d, [x 1 , . . . , x n ]) ⇔ n-q ⋀ i=0 ( q l=1 x i+l ≤ p) ∧ ( n i=1 x i = d)
To explain AtMostSeqCard, we briefly recall the complete filtering that we proposed in Section 4. This explanation can be reduced as follows. Since p + 1 assignments of the type x i = 1 are sufficient to have a failure on AtMost([x 1 , . . . , x q ], p), then any conjunction defined on a subset of { x i = 1 D(x i ) = {1}} of size p + 1 is a valid explanation of the failure.

On the other hand, any assignment made by this propagator (only of the type D(x i ) ← {0} in this case) in Line 3 is triggered because of the p assigned variables to 1 (i.e., the test in Line 2). We therefore return the set of assigned variables to 1 as an explanation for x i = 0 .

⋀ D(x j )={1} x j = 1 ⇒ x i = 0
Explaining Cardinality Notice first that filtering AtMost (Algorithm 13) is very close to filtering Cardinality as we proposed earlier in Algorithm 4. We use therefore similar reasoning to explain the following scenarios:

If a failure is raised in Line 1 (Algorithm 4):

⋀ D(x i )={1} x i = 1 ⇒ ⊥
Similarly to failures on AtMost, this explanation can be reduced by considering any

subset of size d + 1 from { x i = 1 D(x i ) = {1}}.
If a failure is raised in Line 2 (Algorithm 4):

⋀ D(x i )={0} x i = 0 ⇒ ⊥
This explanation can also be reduced by considering any subset of size nd + 1 from

{ x i = 0 D(x i ) = {0}}.
To explain assignments, we return the set of assigned variables responsible for the domain change at hand:

⋀ D(x j )={1} x j = 1 ⇒ x i = 0 (propagated at Line 3, Algorithm 4) ⋀ D(x j )={0}
x j = 0 ⇒ x i = 1 (propagated at Line 4, Algorithm 4)

Explaining the Extra-Filtering

We move now to explaining the extra-filtering of AtMostSeqCard. We start by giving a procedure explaining the failure triggered when L[n] < d res . Next, we show how to use this procedure to explain domain reductions.

Explaining Failure The set of current assignments is a possible naive explanation for the failure. We propose in the following a procedure generating more compact explanations.

In example 5.1, the sequence [x 1 , .., The second explanation is clearly preferable since it is strictly included in the first one.

Example 5.1. Irrelevant assignments D 1 . 0 . . 0

w 1 1 0 0 0 0 L 0 1 1 1 1 1 d res = 2 L(6) = 1 → Failure D ′ . . . . . 0 w 1 1 0 0 0 0 L 1 2 2 2 2 2 d res = 3 L(6) = 2 → Failure
The idea behind our algorithm for computing shorter explanations is to characterize some assignments with no impact on the behavior of the propagator, and thus can be removed from the naive explanation. The domain obtained by the assignments in the shorter explanation is clearly weaker than the domain from which the failure is triggered.

We need to recall and define some notations related to leftmost in order to define this weaker domain and to prove our propositions.

Recall that leftmost computes an instantiation of maximum cardinality w that is consistent with all AtMost constraints. The instantiation w is initialized with min(x i ) for all i. Afterwards, we greedily assign (from i = 1 to i = n) w[i] to the value 1 if the following holds:

1. x i is unassigned.

max j∈[1,q]

(c(j)) < p where c(j) is the cardinality in w of the jth subsequence including i.

We use in this paragraph slightly modified notations compared to Chapter 4. In fact, many notations are parametrized by the input domain D and even sometimes depend on the ith iteration when computing leftmost. We therefore need to refer to D in d res , w and L with d resD , w D and L D respectively. Furthermore, at the beginning of any iteration i, we denote by:

• w i D the current instantiation w.

• max D (i) the value of max j∈[1,q] (c(j)).

• card D (I, i) the cardinality of a sub-sequence I.

Now we have all the notations needed to describe the shorter explanations and to prove our results. 

Let

D(x i ) = {0, 1} if D(x i ) = {0} ∧ max D (i) = p D(x i ) = {0, 1} if D(x i ) = {1} ∧ max D (i) ≠ p D(x i ) = D(x i ) otherwise
We prove in the following that the outcome of leftmost on D and D is the same. Hence the propagator behavior is the same on both domains. is less than p. From this we deduce that there exists a variable

x j ∈ I such that w k D [j] = 1 and w k D[j] = 0.
We show by contradiction that the latter statement cannot hold. Observe first that j must be greater than k because k is the smallest index where leftmost behaves differently. Next, from w k D [j] = 1 and w k D[j] = 0, only two cases are possible:

1. x j is unassigned in D and D: In this case, since j > k, then at iteration k both w k D (j) and w k D(j) are equal to 0 because leftmost changes the values of w greedily following the lexicographical order. Hence the first contradiction. Recall now that card D (I, k) = p, therefore max D (j) = p which is impossible.

◻ Theorem 5.2. If a failure is raised because L D [n] < d resD , then ⋀ D(x i )={1} x i = 1 ∧ ⋀ D(x i )={0}
x i = 0 ⇒ ⊥ is a valid explanation.

Proof. We show that the set of assignments in D is sufficient to have a failure. In other words, we show that L D Example 5.2. Reducing the default explanation D 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 . . .

1 max D 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2
w D 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 L D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

d resD = 2 and L D [25] = 1 < d resD ⇒ Failure D 1 1 . . . . . . 1 1 . . . . 0 0 0 0 . 0 0 . . . 1
w D 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 L D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 3 3 3 3

d res D = 4 and L D[25] = 3 < d res D ⇒ Failure
We illustrate here the explanation of a failure on AtMostSeqCard(2, 5, 9, [x 1 .. 

Red values in the max D line represent the indices corresponding to variables being unassigned in D.

As we can see, w D is identical to w D . Therefore, the propagator behaves the same way on both domains. As a result, we reduce the size of the explanation from 22 to 11.

Note that this reduction is not optimal w.r.t. the explanation size. For instance, the first assignment x 1 = 1 in Example 5.2 can be removed from the reduced explanation and the rest of the assignments still lead to a failure.

Explaining Pruning

Suppose that an assignment x = v was triggered by the propagator for an input domain D at level l with a rank r. Consider the new domain D ′

identical to D at level l and rank r -1 except for x with D ′ (x) = {1-v} (i.e., the opposite of v). Since the pruning is correct, the constraint is unsatisfiable on D ′ . Let Ψ ⇒ ⊥ be the propagation rule explaining this failure using the previous mechanism. Observe that x = 1v has to be in Ψ, otherwise we have a failure without assigning x to 1v which contradicts our first hypothesis that x = v was triggered by the propagator on D at level l and rank r. The propagation rule can be reformulated as follows:

Ψ ′ ∧ x = 1 -v ⇒ ⊥ (s.t. Ψ ′ = ⋀ q≠ x=1-v ∈Ψ ) which is equivalent to Ψ ′ ⇒ x = v .
We can therefore use the same algorithm to explain failures and pruning.

Pseudo-Boolean & SAT Models for the Car-Sequencing Problem

We show first a Pseudo-Boolean model for the car-sequencing problem that serves as a starting point for the SAT formulations. The SAT models that we use are those proposed by Mayer-Eichberger and Walsh in [5,[START_REF] Mayer | SAT Encodings for the Car Sequencing Problem[END_REF].

A Pseudo-Boolean Formulation

The decompose model (Section 3.1) of this problem can be easily translated into a Pseudo-Boolean model since all constraints are in fact sum expressions. We use the same Boolean variables y j i standing for whether the vehicle in the i th slot requires option j. Moreover, the integer domains of class variables x 1 , . . . , x n are expressed based on the direct encoding with n × k Boolean variables c j i standing for whether the ith vehicle is of class j. Since we use a Pseudo-Boolean model, we have the choice between using clauses to encode the different relationship between c j i or simply post one constraint per class variable using ∑ j c j i = 1 for all i ∈ [1.

.n]. The Pseudo-Boolean formulation of this problem that we adopt is the following.

Demand constraints: ∀j

∈ [1..k], ∑ i c j i = d class j 2.
Capacity constraints: ∑ i+q j -1 l=i y j l ≤ p j , ∀i ∈ {1, . . . , nq j + 1} 3. Channeling:

• ∀i ∈ [1..n], ∀l ∈ [1..k],
we have: [START_REF] Sinz | Towards an optimal CNF encoding of boolean cardinality constraints[END_REF][START_REF] Eén | Translating Pseudo-Boolean Constraints into SAT[END_REF][START_REF] João | Towards robust CNF encodings of cardinality constraints[END_REF]6,[START_REF] Abìo | A Parametric Approach for Smaller and Better Encodings of Cardinality Constraints[END_REF]). We use, however, the three SAT encodings proposed for this problem by Mayer-Eichberger and Walsh in [5,[START_REF] Mayer | SAT Encodings for the Car Sequencing Problem[END_REF]. They correspond in fact to three different ways of encoding AtMostSeqCard. All of them are based on the Sequential Counter [START_REF] Sinz | Towards an optimal CNF encoding of boolean cardinality constraints[END_REF]. We give a brief description for these models and refer the reader to [5] for more details.

-∀j ∈ O l , c l i ∨ y j i -∀j ∉ O l , c l i ∨ y j i • ∀i ∈ [1..n], j ∈ [1..m], y j i ∨ ∨ l∈C j c l i 4. Class constraints: ∀i ∈ [1..n], ∑ j c j i = 1 5 
The first step is to show the encoding used for Cardinality([x 1 , . . . , x n ], d).

• Variables: Adapting this encoding for an AtMost constraint is quite simple. In fact, it is sufficient to change the initial value of s n,d from true to unassigned. This way makes the constraint

-s i,j : ∀i ∈ [0..n], ∀j ∈ [0..d + 1], s i,j is true iff ∑ k∈[1..i] x k ≥ j • Clauses: ∀i ∈ [1..n] -∀j ∈ [0..d + 1] 1. ¬s i-1,j ∨ s i,j 2. x i ∨ ¬s i,j ∨ s i-1,j -∀j ∈ [1..d + 1] 3. ¬s i,j ∨ s i-1,j-1 4. ¬x i ∨ ¬s i-1,j-1 ∨ s i,j
satisfied iff ∑ i∈[1..n] x i ≤ d.
Recall that AtMostSeqCard is defined by a conjunction of Cardinality and a set of AtMost constraints. We denote by: SAT Card the (above) encoding for Cardinality; and SAT Atmost the encoding applied to all AtMost constraints. Note that each AtMost constraint is encoded independently with new variables channeled only to option position variables.

Another possible way for encoding the chain of AtMost constraints can use similar encoding of the Gen-Sequence constraint [START_REF] Bacchus | GAC via unit propagation[END_REF][START_REF] Brand | Encodings of the Sequence Constraint[END_REF]. For each subsequence of size q whose latest index is i, we have the clause:

6. ¬s i,j ∨ s i-q,j-u
This encoding is denoted SAT Seq .

Mayer-Eichberger and Walsh showed not only that the level of pruning of SAT Seq is incomparable with SAT Atmost but also combining SAT Card , SAT Atmost , and SAT Seq maintains Arc Consistency on AtMostSeqCard [5]. Three SAT models for the carsequencing problem are therefore proposed. They all encode the basic model using the following encodings of AtMostSeqCard:

1. CNF A uses SAT Card and SAT Atmost .

2. CNF S uses SAT Card and SAT Seq .

3. CNF A+S combines SAT Card , SAT Atmost and SAT Seq .

Experimental Results

We test the different approaches on the previous benchmarks of car-sequencing (used in Chapters 3 and 4). We reorganize the instances into three categories.

1. EasySat: It contains all instances from set1 and set2. All these instances (70 + 4) are satisfiable and easy for all the methods tested here.

2. HardSat: It contains the instances of set4. These instances ( 7) are known to be satisfiable but very hard to solve.

3. Unsat: It contains all unsatisfiable instances from set3 in addition to the 23 unknown instances form set5.

We ran the following models:

Hybrid CP/SAT We use Mistral-2.01 as a hybrid CP/SAT solver with backward explanations. Our hybrid model is based on the Pseudo-Boolean formulation of the problem, however, by using AtMostSeqCard for capacity constraints. Note that the rest of the constraints are either Cardinality or AtMost constraints. We explain them in the same way we proposed previously in Section 5.1.1.1.

Using a hybrid solver has the advantage of using adaptive branching coming from the SAT component as well as problem-specific heuristics. We therefore propose to test the following configurations differentiated by the heuristic being used:

1. Hybrid(VSIDS): using VSIDS.

2. Hybrid(Slot): using the heuristic ⟨opt, mid, δ, ∅⟩ (see Chapter 3).

3. Hybrid(Slot/VSIDS): using first Hybrid(Slot), then switching after 100 non-improving restarts to Hybrid(VSIDS).

Hybrid(VSIDS/Slot): the reverse of Hybrid(Slot/VSIDS)

SAT We use the three SAT models CNF A , CNF S , and CNF A+S using Minisat [START_REF] Eén | An Extensible SAT-solver[END_REF] (version 2.2.0) with default parameter settings.

CP and Pseudo-Boolean Models

We compare against the following «reference» approaches:

1. CP AM SC : The pure CP model using AtMostSeqCard without clause learning with the same heuristic used in Hybrid(Slot) and the same solver Mistral-2.0.

PBO-clauses:

A Pseudo-Boolean method relying on SAT encoding. We used Min-iSat+ [START_REF] Eén | Translating Pseudo-Boolean Constraints into SAT[END_REF] on the Pseudo-Boolean encoding described in Section 5.1.2.1.

PBO-cutting planes:

A Pseudo-Boolean method with dedicated propagation and learning based on cutting planes [START_REF] Dixon | Inference Methods for a Pseudo-Boolean Satisfiability Solver[END_REF]. We used SAT4J [START_REF] Le | The Sat4j library, release 2.2[END_REF] on the same model, with the «CuttingPlanes» algorithm.

All experiments are realized on Intel Xeon CPUs 2.67GHz under Linux. For each instance, we ran 5 randomized runs with Luby restarts and a 20 minutes time cutoff. The summary of these results is given in Table 5.1. Recall that a run is said to be 'successful' iff a solution is found or the search space is completely explored without finding any solution. For each category of instances, we report: the total number of successful runs (#suc); the averaged number of failures (avg fails) and the averaged CPU time (time) in seconds. The statistics «time» and «avg fails» are computed only for the successful runs. We emphasize the statistics of the best method (w.r.t. #suc, ties broken by time)

for each category using bold face fonts. simulates ac on AtMostSeqCard. It is worth mentioning the importance of using the crafted heuristic compared to VSIDS, at least within hybrid models. For instance, on the dataset "HardSat", we move from solving 16 instances with Hybrid(VSIDS) to 35 instances with Hybrid(Slot). In general, the results of satisfiable instances show that propagation is by far the most crucial factor for finding solutions. Moreover, the use of built-in heuristics is clearly beneficial compared to «blind» branching when using hybrid models.

Conversely to these observations, the results on the dataset "Unsat" instances clearly show that clause learning is the most important ingredient for proving unsatisfiability.

There are a number evidences supporting this claim. First, while the CP model fails to build proofs on any instance for this set, its equivalent hybrid model (Hybrid(Slot))

succeeds on 23 instances. We stress here the impact of VSIDS with hybrid models as we move from 23 to 37 instances with Hybrid(Slot/VSIDS) or Hybrid(VSIDS/Slot).

Next, the PBO-clauses model, which relies essentially on basic SAT encoding without any extra filtering, performs better that hybrid models on this set with 43 successful runs. Finally, the best results on this set come from the SAT models. Specifically, the «lightest» model CNF A is, surprisingly, the best model for proving unsatisfiability with 85 instances.

To summarize the experimental findings, we first observed that clause learning improves the global performances generally. This is specially true when proving unsatisfiability.

Second, we confirm a strong correlation between advanced propagation and finding solutions quickly for this problem. However, for building proofs, clause learning is the most crucial factor and propagation is less useful. Finally, regarding the choice of heuristic, adaptive-branching is very beneficial for building proofs while problem-specific heuristics are much helpful for finding solutions efficiently.

Revisiting Lazy Generation

We move now to the second part of our contributions regarding clause learning. We revisit the lazy generation of Boolean variables for encoding the domains. In particular, we show how to avoid the issue mentioned in Section 2.3.2.2. Recall that when lazily generating variables, clauses encoding the domains become redundant (see Section 2.3.2.2 for more details). The DomainFaithfulness constraint that we propose in this section avoids such redundancy while ensuring the same level of consistency without computational overhead.

This novel lazy generation is used in the next section with our hybrid models for solving scheduling problems. We consider only the lazy generation of atoms of the type x ≤ u since all propagators in our models performs only bound tightening operations. Note that this type of domain reduction is the most used for scheduling problems in general.

Nevertheless, the generalization of our propositions with atoms of the type x = v is quite simple and straightforward.

The DomainFaithfulness Constraint

We first recall the redundancy issue related to lazy generation. When an atom x ≤ u has to be generated, we add the clauses ¬ x ≤ a ∨ x ≤ u ; ¬ x ≤ u ∨ x ≤ b where a and b are the nearest generated bounds to u with a < u < b. After adding these clauses, the clause ¬ x ≤ l ∨ x ≤ u becomes redundant. We show how to avoid this redundancy.

Instead of generating clauses to encode the different relationships between the newly generated atoms, we propose to encode such relations through a new constraint called DomainFaithfulness. This constraint has a twofold role: firstly, it simulates UP as if the atoms were generated eagerly; secondly it performs a complete channeling between the range variable and all its domain atoms.

Let x be a Range variable (i.e., with a domain of the form [l, u]). Let [v 1 , . . . , v n ] be a sequence of integer values, and [b 1 . . . b n ] be a sequence of lazily generated Boolean variables s.t. b i is the atom x ≤ v i . We assume that b i is the ith generated Boolean variable for all i. We define the DomainFaithfulness constraint as follows.

Definition 5.3. DomainFaithfulness(x, [b 1 . . . b n ], [v 1 , . . . , v n ]) ∶ ∀i, b i ↔ x ≤ v i
For each Range variable x, we use one DomainFaithfulness constraint (denoted by DomainFaithfulness(x)). Initially, the scope of DomainFaithfulness(x) contains only x. Afterwards, whenever an atom b ⇔ x ≤ v has to be generated, we simply add b to the scope of DomainFaithfulness(x).

Propagating DomainFaithfulness

We present first a complete filtering procedure for DomainFaithfulness in Algorithm 14 running in O(n) time complexity. Next, we show that one can enforce the same propagation level with a constant amortized time complexity down a branch of the search tree.

Algorithm 14: AC(DomainFaithfulness(x, [b 1 . . . b n ], [v 1 , . . . , v n ])) ub ← min(max(x), min(v i D(b i ) = {1})); lb ← max(min(x), 1 + max(v i D(b i ) = {0})); if ub < lb then return ⊥ ; D(x) ← D(x) ∩ [lb, +∞[ ; D(x) ← D(x)∩] -∞, ub] ; for i ∈ [1, n] do if v i ≥ ub then D(b i ) ← {1}; if v i < lb then D(b i ) ← {0}; return D ;
We assume that n >= 1, otherwise no propagation is needed since no atom is generated.

The first step is to look for the tightest possible bounds for x. The new upper bound ub is the minimum between the current upper bound of x and the minimum value v i where b i is assigned to 1. Similarly, the new lower bound lb is the maximum between the current lower bound and the maximum value v i + 1 where b i is assigned to 0. These new bounds are computed at the first two lines of Algorithm 14.

Regarding failure, there is only one way to make the constraint violated. This case corresponds to the situation when ub is less that lb (Line 3). The rest of the propagator is quite straightforward. First, we update the domain of x with the new bounds (Line 4

and Line 5). Then, we assign the atoms b i in the natural way (Line 6). That is, any Proof. The time complexity for this algorithm is clearly O(n). We show how to build supports for any possible assignment after propagating DomainFaithfulness. Assigning x to any value v ∈ [lb, ub] has clearly a support by assigning any atom b i to 1 if v i ≥ v and to 0 otherwise. For the rest of assignments, it is also easy to find supports. We distinguish two cases for building supports for assignments of the type b i = 1 .

variable b i is assigned to 1 if v i ≥ ub and to 0 if v i < lb.
{b i v i < lb} {b i lb ≤ v i < ub} {b i v i ≥ ub}
• If v i ≥ ub (i.e., b i is already assigned to 1), we assign x to ub, and all unassigned b j to 0.

• If v i < ub (i.e., b i is unassigned), we assign x to lb, and all unassigned b j to 1.

Similarly, we build supports for the assignments of the type b i = 0 as follows:

• If v i < lb (i.e., b i is already assigned to 0), we assign x to lb, and all unassigned b j to 1.

• If v i ≥ lb (i.e., b i is unassigned), we assign x to ub, and all unassigned b j to 0. ◻

Incrementality

We introduce here an incremental procedure to propagate DomainFaithfulness in a constant amortized time complexity down a branch of the search tree.

We use two arrays called s and g defined as follows: For each i ∈ [1, n]:

• If {v k v k < v i } = ∅, then s[i] = λ where v λ = max{v k v k < v i }, otherwise s[i] = 0.
That is, the value of s[i] represents the index j of the greatest value v j that is smaller than v i if such index exists, and 0 otherwise.

• If {v k v k > v i } = ∅, then g[i] = λ where v λ = min{v k v k > v i }, otherwise g[i] = 0. That is, g[i]
represents the index j of the smallest value v j that is greater than v i if such index exists, and 0 otherwise.

Consider now the example of D(x) = [START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF][START_REF] Khichane | Integration of ACO in a constraint programming language[END_REF] and an atom b k corresponding to x ≤ 64 (i.e., v k = 64). Suppose now that assigning b k to 1 is the only new event before propagating DomainFaithfulness. It is easy to see that the only changes needed to maintain ac on this constraint are the tightening of the upper bound of x to 64 and the assignment of some atoms to 1. These atoms correspond to the set

η = {b g[k] , b g[g[k]] , b g[g[g[k]]] . . . b last k }
where b last k is unassigned and b g[last k ] is assigned to 1. The time complexity needed for this propagation is O( η ). Take now the same example, however, by having in addition to assigning b k to 1, a new upper bound ub * = 48 as an event. In this case, one can proceed exactly as in the previous example by assigning all atoms in (U pdate_Range(i lb , i ub , lb, ub)).

η = {b g[k] , b g[g[k]] , b g[g[g[k]]] . . . b last k } to 1,
In Line 1 (respectively Line 2) of Algorithm 15, we setup i ub (respectively i lb ) as the index of literal standing for the maximum (respectively minimum) value in {v j j ∈ [1, n]}.

This initialization happens only in the first call. In subsequent calls, we use their updated values coming from the previous call. Moreover, these values are re-established when backtracking 2 .

Algorithm 18: U pdate_Range(i lb , i ub , lb, ub) ) Let η be the set of all atoms assigned by our algorithm. The worst case time complexity for simulating UP is clearly O( η ) which is the same as if UP propagates with the 2-watched literals. Therefore, the time complexity of this part is O(n) down a branch of the search tree, and subsequently corresponds to a constant amortized complexity.

next ← i ub ; bound ← max(x) ; if not(ub) then while next = 0 do if v next ≥ bound then D(b next ) ← {1} ; next ← s[next] ; else next ← 0 ; next ← i lb ; bound ← min(x) ; if not(lb) then while next = 0 do if v next < bound then D(b next ) ← {0} ; next ← g[next] ; else next ← 0 ;

Channeling Between x and b 1 , . . . , b n :

There are two cases to distinguish when performing this channeling. This is done by means of an index i ub as follows: We first make sure that every atom with a value that is greater than v i ub is already assigned to 1.

Afterwards, we assign all atoms in the sequence

[b i ub , b s[i ub ] , b s[s[i ub ]] . . . , b last ub ] to 1 where v last ub = min(v k v k ≥ max(x))
. This is exactly what happens in the loop of Line 1 in Algorithm 18. Now regarding the index i ub , recall that it has to guarantee that all atoms with a value greater than v i ub are already assigned to 1. Therefore, we initialize i ub to the be the index of the greatest possible value v i (Line 1 in Algorithm 15). Then, whenever we find an atom b k newly assigned to 1 and associated to a value v k that is smaller than the current v i ub , we update i ub with the value s [k]. Recall that the part simulating UP guarantees that all atoms with a value v ≥ v k are assigned to 1.

Regarding the complexity of this part, observe that considering i ub and i lb as reversible integers makes the running time of this part also O(n) down a branch of the search tree and therefore corresponds to a constant amortized complexity.

Explaining DomainFaithfulness

Since DomainFaithfulness is used in a Hybrid CP/SAT Solver, we must explain all possible domain changes and failures triggered by this constraint.

Explaining Failure

There are several cases to find a failure by our algorithms. We give for each one a possible explanation using the current values of next, min(x), max(x), and i at the moment of propagation.

• Line 4 in Algorithm 16:

b next = 0 ∧ b i = 1 ⇒ ⊥ • Line 7 in Algorithm 16: x ≥ min(x) ∧ b i = 1 ⇒ ⊥ • Line 4 in Algorithm 17: b next = 1 ∧ b i = 0 ⇒ ⊥ • Line 7 in Algorithm 17: x ≤ max(x) ∧ b i = 0 ⇒ ⊥

Explaining Pruning

Tightening the bounds of the range variable x is possible only when a Boolean variable with the same bound value was previously set to true / f alse. We therefore use the following rules to explain x ≥ l and x ≤ u without saving any information (i.e., typically used with backward explanations):

• b k = 0 ⇒ x ≥ l s.t. v k = l -1 • b k = 1 ⇒ x ≤ u s.t. v k = u
For the assignments of the type b = 1 and b = 0 , we make a clear distinction whether they are assigned by Algorithms U B(i, i ub )/LB(i, i lb ) or by Algorithm U pdate_Range(i lb , i ub , lb, ub).

• Line 5 in Algorithm 16:

b i = 1 ⇒ b next = 1 • Line 2 in Algorithm 18: x ≤ max(x) ⇒ b next = 1 • Line 5 in Algorithm 17: b i = 0 ⇒ b next = 0 • Line 4 in Algorithm 18: x ≥ min(x) ⇒ b next = 0
All these explanations are computed eagerly and saved in an internal structure for later use during conflict analysis. The reason we compute them at the moment of propagation is to recover the exact literal responsible for assigning every b next .

Learning in Disjunctive Scheduling

We investigate in this part the impact of clause learning for solving disjunctive scheduling problems. We introduce a novel learning mechanism tailored to this family of problems.

Specifically, we use a property of these problems allowing to explain a conflict using a number of Boolean variables that is not function of the scheduling horizon. The novel conflict analysis procedure along with the alternative lazy generation mode that we proposed in Section 5.2 are experimentally tested on well known academic benchmarks.

Both approaches give good experimental results and outperform the CP model in most cases. While the prior target of this study is the evaluation of the new learning mechanisms that we propose, numerous observations are made based on the experimental results. These observations include relations between the instance size, the heuristic choice, and the conflict analysis scheme. State-of-the-art lower bounds for a traditional benchmark are improved thanks to our approach.

Disjunctive scheduling refers to a large family of scheduling problems having in common the Unary Resource Constraint. That is, for each machine, no pair of tasks can overlap.

For a long time, the focus in constraint programming was to design dedicated propagation algorithms for the Unary Resource Constraint. For instance, the Edge-Finding filtering [START_REF] Carlier | An algorithm for solving the job-shop problem[END_REF][START_REF] Nuijten | Time and resource constrained scheduling: a constraint satisfaction approach[END_REF][START_REF] Vilím | Edge Finding Filtering Algorithm for Discrete Cumulative Resources in O(kn log(n))[END_REF] is inferring relationships of the form « T must precede any task in Θ » where: T is a task, and Θ is a set of tasks to be scheduled on the same machine of T. We refer the reader to [START_REF] Baptiste | Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems[END_REF] for a comprehensive introduction to filtering techniques used in scheduling in general.

We are interested in this section in the impact of clause learning rather than propagation.

Our models use minimalist propagation mechanisms. Our approach is implemented on top of the so called light model used in [START_REF] Grimes | Closing the Open Shop: Contradicting Conventional Wisdom[END_REF][START_REF] Grimes | Job Shop Scheduling with Setup Times and Maximal Time-Lags: A Simple Constraint Programming Approach[END_REF][START_REF] Grimes | Models and Strategies for Variants of the Job Shop Scheduling Problem[END_REF]. We shall use the classical job shop problem (JSP) and open shop problem (OSP) as illustrations. The objective in both problems is to minimize the total scheduling duration (i.e., the makespan C max ). We start by describing the 'light' CP model for these problems.

Modeling

In the rest of this chapter, n and m denote two integers in N * . We consider the definition of a job as a set of tasks. Let J = {J i 1 ≤ i ≤ n} be the set of jobs, and

M = {M k 1 ≤ k ≤ m} be the set of machines. Each job J i is defined by m tasks {T ik 1 ≤ k ≤ m} s.t. T ik requires machine k. Conversely, each machine M k is associated to n tasks {T ik 1 ≤ i ≤ n}.
Each task T ik is associated to a processing duration p ik in which the machine M k is allocated to job i. Let t ik be the variable representing the starting time of task T ik . For all k ∈ [1, m], the Unary Resource Constraint for machine M k can be expressed as follows:

∀i ∈ [1, n], ∀j ∈ [1, n] s.t. i < j t ik + p ik ≤ t jk ∨ t jk + p jk ≤ t ik (5.1)
We use a simple decomposition into reified constraints with O(n 2 ) Boolean variables δ kij per machine M k channeled to task variables as follows:

∀i ∈ [1, n], ∀j ∈ [1, n], i < j δ kij = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0 ⇔ t ik + p ik ≤ t jk 1 ⇔ t jk + p jk ≤ t ik (5.2)
In the following, we shall refer to this channeling with the Disjunctive(b, x, y, d x , d y ) constraint instantiated to (δ kij , t ik , t jk , p ik , p jk ).

The Job Shop Problem

In addition to the Disjunctive constraints, this problem requires for each job a total order on its tasks. We therefore suppose that T iva is the a th task required by job J i . Modeling the order of tasks for each Job is expressed by means of Precedence constraints. Let x, y be variables and d be an integer. The Precedence(x, y, d) constraint is defined as follows:

x + d ≤ y (

For each job i, we have the set of Precedence constraints:

∀a ∈ [1, m -1] Precedence(t iva , t iv a+1 , p iva ) (5.4) 
The JSP having the minimization of the makespan C max as an objective can be defined as follows:

minimize

C max subject to ∀i ∈ [1, n] t ivm + p ivm ≤ C max ∀k ∈ [1, m], ∀i ∈ [1, n], ∀j ∈ [1, n], i < j Disjunctive(δ kij , t ik , t jk , p ik , p jk ) ∀i ∈ [1, n], ∀a ∈ [1, m -1] Precedence(t iva , t iv a+1 , p iva ) (5.5)

The Open Shop Problem

The only difference compared to the JSP problem is that the order between tasks of the same job is part of the decision. In other words, two tasks of a same job cannot be executed at the same time but we are free to choose the processing order. A job can therefore be considered as a unary resource. Similarly to the disjunctions on machines, we introduce O(m 2 ) Boolean variables ξ iab for each job i and post the constraints Disjunctive(ξ iab , t ia , t ib , p ia , p ib ) for all a < b ∈ [1, m]. The OSP can therefore be defined as follows:

minimize

C max subject to ∀i ∈ [1, n], ∀k ∈ [1, m] t ik + p ik ≤ C max ∀k ∈ [1, m], ∀i ∈ [1, n], ∀j ∈ [1, n], i < j Disjunctive(δ kij , t ik , t jk , p ik , p jk ) ∀i ∈ [1, n], ∀a ∈ [1, m], ∀b ∈ [1, m], a < b Disjunctive(ξ iab , t ia , t ib , p ia , p ib ) (5.6)

Search

Our search strategies are essentially based on those proposed in [START_REF] Grimes | Closing the Open Shop: Contradicting Conventional Wisdom[END_REF][START_REF] Grimes | Job Shop Scheduling with Setup Times and Maximal Time-Lags: A Simple Constraint Programming Approach[END_REF].

The Global Search Scheme

Exploring the search space is performed in three steps. Firstly a greedy algorithm is used to compute an initial upper bound (u init ) for C max . The initial lower bound (l init ) is initialized to be the largest sum of durations between all jobs/machines. Second, a dichotomic search is used to improve the initial upper/lower bounds for C max . Each iteration is limited by a cutoff on CPU time and on the number of propagation calls. The initial dichotomy step starts with [l init , u init ] as a domain for C max . In each dichotomy step i we try to solve the decision version of the problem (i.e., without an objective function) where the upper bound of C max is equal to (l i-1 + u i-1 ) 2 s.t. the values l i-1 and u i-1 are the best bounds found after step i -1. We update the bounds of C max depending on the outcome of a dichotomic step i. If it is satisfiable then we store the value of C max in the solution as u i and change the upper bound of C max accordingly. Otherwise, we set l i to (l i-1 + u i-1 ) 2. However, observe that we change the lower bound of C max only if the problem has been proven unsatisfiable at step i, but not if the limit has been reached. Finally, a branch and bound algorithm is launched with the best real lower/upper bound found (i.e., [min(C max ), max(C max )]).

Branching

It is very common in disjunctive scheduling to branch by fixing one of the possible precedences in the unary resource constraints. The authors of [START_REF] Grimes | Closing the Open Shop: Contradicting Conventional Wisdom[END_REF] proposed to branch on the Boolean variables in the Disjunctive constraints which simulates that behavior.

Note that it is sufficient to have all these Boolean variables assigned to decide the problem. In fact, assigning all the tasks, along with the variable standing for makespan, to the minimum possible value in their domain returns a solution with the minimum possible value for C max w.r.t. the assignment of the Boolean variables.

Variable Ordering

The variable ordering heuristics are inspired from the conflictdriven domain/weighted-degree heuristic proposed in [START_REF] Boussemart | Boosting Systematic Search by Weighting Constraints[END_REF]. The idea is to assign first the variables involved in previous failures. The domain size dom(t ik ) of a task T ik is equal to max(t ik )min(t ik ) + 1. The weight w x of a variable x is equal to the number of times x is in the scope of the constraint triggering a failure. Every Boolean variable b in a Disjunctive(b, x, y, d x , d y ) constraint can be evaluated using the following two heuristics:

1. taskDom bw:

dom(x)+dom(y) w b

taskDom tw: dom(x)+dom(y) wx+wy

In both heuristics, the final decision is randomly chosen between the two Boolean variables with minimum values.

We use slightly modified versions of the above heuristics in our hybrid models. First, following a remark in [START_REF] Grimes | Models and Strategies for Variants of the Job Shop Scheduling Problem[END_REF] stating that «the greater the minimum arity of constraints in a problem, the less discriminatory the weight-degree heuristic can be», we propose to update the variables weight in the conflicting clauses as follows. When a failure is triggered by a clause c, the weight of each variable in the clause is increased by ).

We shall also consider VSIDS as another variable ordering alternative in our hybrid models.

Value Ordering Similarly to the solution guided approach proposed in [START_REF] Beck | Solution-guided multi-point constructive search for job shop scheduling[END_REF], we assign the chosen variable to the same value it has in the latest solution.

Explaining Constraints

Observe first that the constraints related to the makespan can be considered are

Precedence constraints (i.e., of the form x + d ≤ y). We therefore have two types of constraints to explain: Precedence, and Disjunctive. We give in the following how to generate explanations for these constraints. To make the notation lighter, we denote l x (respectively u x ) the lower (respectively upper) bound in D(x).

Explaining Precedence(x, y, d)

To propagate Precedence, we need to update the upper bound of x and the lower bound of y. We give in Algorithm 19 a BC propagator for this constraint. Explaining Failure The only way to have a failure in this constraint is when max(x) is greater that max(y)d (Line 1 in Algorithm 19). The obvious explanation for this failure is:

x ≥ l x ∧ y ≤ u y ⇒ ⊥
Explaining Pruning This propagator only tighten the upper bound of x and the lower bound of y. Let v be an integer. To explain the literal y ≥ v , it is clear that

x ≥ vd ⇒ y ≥ v is a valid explanation. Similarly, if x ≤ v is propagated by this constraint, then we use y ≤ v + d ⇒ x ≤ v as an explanation for this propagation.

Disjunctive-Based Learning

We introduce a novel learning scheme as an alternative to the lazy generation mode.

The main advantage offered by this novel learning mechanism is that the final nogoods do not contain any domain related atom.

Recall that our search strategies branch only on Boolean variables of the Disjunctive constraints. It follows that any bound literal (i.e., of the form x ≤ v and x ≥ v ) does not correspond to a decision. Therefore such literals are either propagated, hence have a non-null explanation, or have a level equal to the search root. Our new learning method exploits precisely this property. Instead of generating bound atoms before learning a new clause, we propose to start a second phase of conflict analysis.

The first step in the new Disjunctive-based learning is to perform conflict analysis as usual to compute the 1-UIP nogood Ψ. Next, we make sure that the latest literal in Ψ is not a bound literal. Otherwise, we keep explaining the latest literal in Ψ until having such UIP. We know that this procedure terminates because the worst case would reach the last decision which corresponds to a UIP that is not a bound literal. Let Ψ * be the resulting nogood. Observe that the backjump level in Ψ * might be different from the one given by the 1-UIP nogood.

Consider now I = {l 1 , . . . , l n } to be the set of bound literals in Ψ * before generating atoms. Instead of performing lazy generation, we call the procedure «Substitute(I, Ψ * )» (algorithm 21) as a second phase of conflict analysis. This procedure keeps replacing any bound literal with its explanation until having a nogood composed by only literals related to some Boolean variables of the Disjunctive constraints. In Algorithm 21, we use:

• visited: to represent a set containing bound literals already explained

• ω: to represent the explanation of the current bound literal to resolve ; ω ← explain(f, l) ; ϕ = {q q ∈ ω ∧ q is a bound litteral} ;

I ← I ∪ {q q ∈ ϕ ∧ level(q) > 0 ∧ q ∉ visited} ; ω ← ω ∖ ϕ ; Ψ ← Ψ ∪ {q q ∈ ω ∧ level(q) > 0} ;
return Ψ ;

The advantage of this approach is that the tasks' domains do not matter any more in size. The SAT engine focuses on learning clauses with only Boolean variables coming from the Disjunctive constraints. Note, however, that in this case conflict analysis is likely to take more time to finish compared to the lazy generation mode since there are more literals to explain.

Experiments

We implemented the learning mechanisms we propose within Mistral-2.0. This solver supports backward explanations and semantic reduction. The source code is available online via https://github.com/siala/Hybrid-Mistral and the tests can be reproduced following the guidance in Appendix A. All the experiments were performed on Intel i7-4770 processors running on Ubuntu 12.04. We compare the previous CP models against our new learning methods. The two heuristics taskDom bw and taskDom tw are tested in both CP and hybrid solvers. V SIDS is also used as another hybrid model.

We use a geometric restart with a base of 256 failures and a factor of 1.3. The total time limit is fixed to 3600s for all the experiments. Each dichotomy step is limited to a cutoff of 300s and 4 * 10 6 propagation call. We ran 10 randomized runs with different seeds for each instance and configuration.

We use a clause reduction strategy based on the Size-Bounded Randomized (SBR) method [START_REF] Jabbour | Revisiting the Learned Clauses Database Reduction Strategies[END_REF]. θ is the heuristic and is denoted by: * vsids if we use VSIDS * bool if we use taskDom bw * task if we use taskDom tw σ indicates the learning method with 'disj' in the case of using the Disjunctivebased learning and 'lazy' with the lazy generation approach with DomainFaithfulness.

We use a limit of 2.5 * 10 5 generated atoms with the models Hybrid(θ, lazy). Once this limit is reached, we forget all clauses, delete the generated atoms, and restart.

We use the following format for all tables. Each instance results (i.e., using different seeds) is depicted in one line. Each model is associated to a column. We report for each model and instance: the average CPU time (T); the percentage of instances found optimal (%O); the minimum (min) and average (avg) upper bound (UB) across the different seeds. We shall denote in bold the minimum makespan found for each instance (can occur in different models). Furthermore, we add a line 'average' at the bottom of each table to show the average CPU time T and the average percentage of optimality %O for each model. The last line contains the average PRD (percentage relative deviation) of each model. The PRD of a model m for an instance C is computed with the formula: 100 * Cm-C best C best , where C m is the minimum makespan found by model m for this instance (among the several randomized runs); and C best is the minimum makespan found by all models for the instance C. The average PRD can be considered as an 'efficiency' measure for the models. The bigger this value, the less efficient a model is. The minimum possible value of a PRD is 0 and means that the model returns always the best makespan.

JSP Results

We use two well studied benchmarks for the job shop problem: Lawrence [START_REF] Lawrence | Supplement to Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques[END_REF] and Taillard [START_REF] Taillard | Benchmarks for basic scheduling problems[END_REF]. The former is much easier than the latter. We observed in these instances that taskDom tw performs slightly, but constantly, better than taskDom bw. Therefore, the results that we report in this paragraph concern the models: Mistral(task), Hybrid(vsids, disj), Hybrid(vsids, lazy), Hybrid(task, disj), and Hybrid(task, disj).

Lawrence Instances

The detailed results of Lawrence instances are shown in Tables 5.2 and 5.3. The model Hybrid(vsids, disj) has the best PRD with a value of 0.01 and the greatest percentage of optimal solutions (92%). The only case where the CP model returns the best makespan was with instance la27, however, without obtaining the best average. As a comparison between the different hybrid models, we observe that the Disjunctive-based learning outperforms the lazy approach regardless of the branching strategy. We are not able, however, to argue on a best heuristic here since VSIDS performs better with the Disjunctive-based learning whereas taskDom tw is the best choice of branching with lazy generation.

Taillard Instances These instances are much harder than Lawrence benchmark since a large number of them are still open in the literature and only 10 out of 70 instances are proved optimal in our experiments. We start by giving a global view analysis before empirically evaluating subsets of these instances.

The detailed results are given in Tables 5.4, 5.5, and 5.6. According to the global average PRD (shown at the end of Table 5.6), the best models for these instances are those using taskDom tw. The CP model is completely outperformed by hybrid models with a PRD equal to 1.5474 compared to an average of 0.9487 with the models Hybrid(vsids, θ) and an average of 0.30185 with the models Hybrid(task, θ). Clearly, the branching choice is the most important criteria for hybrid models. The choice of the conflict analysis scheme does not seem to impact much the global behavior, although lazy generation performs slightly better. These results do not confirm our earlier claim with Lawrence instances stating that Hybrid(vsids, disj) is the best learning configuration. We therefore propose to classify the results according to the instance size.

Taillard Statistics

In table 5.7, each line depicts several statistics for a given set of instances having the same number of disjunctions. We report for each model: the speed of exploration in terms of nodes explored by second (Nodes/s); the average size of learnt clauses (Size); and a performance metric M equal to the pair <%O,T> (%O is Now regarding the overall efficiency, we can see that Hybrid(vsids, disj) seems to be the best choice with small instances and Hybrid(task, lazy) is by far the best choice with large instances. Moreover, taskDom tw is in general more efficient than VSIDS when the size of the instance grows. Finally, the Disjunctive-based learning performs much better than the lazy mode with small/medium-sized instances and vice versa.

Lawrence Statistics

In order to confirm our latest claims, we show the same statistics described above with Lawrence instances. We propose to give these statistics for the hardest instances in this set. An instance is considered «hard» if at least one model fails to prove its optimality at least once (i.e., using any seed). The hardest instances in this set are divided in two sets: 1. Open: the set of instances for which all models fail to prove optimality. This set contains the instances la07, la27, and la29

2. Opt: the rest of hard instances. This set contains the instances la21, la26, la28, la31, and la34.

It should be noted that the number of disjunctions in these sets ranges from 525 to 4350.

We can therefore consider then as small and medium-sized instances (w.r.t. Taillard instances). Table 5.8 gives the statistics for each set of instances in a separate line. 

(l i-1 + u i-1 ) 2.
We propose to alter this particular behavior so that the purpose becomes finding better lower bounds. This is simply done by starting the next iteration after setting u i (instead of l i ) to (l i-1 + u i-1 ) 2.

We ran again the tests with the new dichotomy strategy for all open Taillard instances.

We change the dichotomy breaking conditions to be only a 1400s time limit. All other settings are the same.

The new results are presented in Table 5.9. For each model and instance, we report the maximum (max) and average (avg) lower bound found for the 10 randomized runs. The best bound found by our models is shown in bold fonts for each instance. Moreover, the last column stands for the best known lower bound for each instance [1]3 It should be noted that in general the difference between the average and the maximum bound per instance is not large. In fact, almost all averages for the instances with new lower bounds are better than the best known lower bound.

OSP Results

We use three benchmarks for this problem: Gueret and Prins [START_REF] Guéret | A new lower bound for the open shop problem[END_REF]; Taillard [START_REF] Taillard | Benchmarks for basic scheduling problems[END_REF];

and Brucker et al. [START_REF] Brucker | A branch & bound algorithm for the open-shop problem[END_REF]. Note that all these instances were previously closed thanks to [START_REF] Grimes | Closing the Open Shop: Contradicting Conventional Wisdom[END_REF]. Conversely to the previous problem, we observed that taskDom bw was slightly better than taskDom tw for this problem. We shall therefore report the results of:

Mistral(bool), Hybrid(vsids, disj), Hybrid(vsids, lazy), Hybrid(bool, disj), and Hybrid(bool, disj).

The first two benchmarks are extremely easy for all the models. Gueret and Prins instances are all solved to optimality within an average CPU time less than 0.02s for each instance with any model and any seed. Taillard instances are also solved to optimality, however, with slightly longer runtime. Their detailed results are shown in Appendix B.

We shall give more attention to Brucker et al. instances in the rest of this evaluation.

The number of disjunctions ranges from 18 to 448 in these instances. We can therefore consider them as (very) small instances. Tables 5.10 and 5.11 present the detailed results of these instances.

These tables show clearly that clause learning is particularly not helpful in these instances. First, the lazy generation mode decreases clearly the performances on these instances since only Mistral(bool), Hybrid(vsids, disj), and Hybrid(bool, disj) succeed to prove optimality to all configurations. Moreover, the average running time per instance is equal to 31.21s with Mistral(bool) and 119.71s with Hybrid(θ, disj).

To investigate further the of impact of clause learning in this set, we propose to decrease the clause database size from a limit of 75000 to 10000. The new parametrized reduction strategy is < 5000, 10000, 500, 12, 8, 90% > instead of < 5000, 75000, 50000, 12, 8, 90% >.

The new results are shown in Tables 5.12 and 5. In order to understand the behavior of the different models in this set, we propose to analyze the results of the two reduction strategies on the hardest instances in this set (j7-per0-0 and j8-per0-1). We give for each model: the average runtime T; the speed of exploration (Nodes/S); and the average learnt clauses size (Size). Table 5.14 presents these statistics.

Using lighter clause database improves the overall efficiency by essentially increasing the speed of exploration. For instance, with j7-per0-0, Hybrid(vsids, disj) explores 6605 Nodes/s with the default strategy and 24498 Nodes/s with the reduced strategy.

The latter is approximately the half of the speed in the CP model. The speed of explorations is clearly the most influential element in these instances. This explains the bad performances of lazy generation since it slows down considerably the speed of exploration. With j7-per0-0 for example, the factor of speed between Mistral(bool)

and any model Hybrid(θ, lazy) is about 45 with the default strategy and 13, 5 with the reduced strategy. That is, the CP model explores about 45 (respectively 13, 5) faster the search space compared to any model using the lazy mode for the default (respectively reduced) strategy. In conclusion, the «Light» CP models that we used from [START_REF] Grimes | Closing the Open Shop: Contradicting Conventional Wisdom[END_REF][START_REF] Grimes | Job Shop Scheduling with Setup Times and Maximal Time-Lags: A Simple Constraint Programming Approach[END_REF][START_REF] Grimes | Models and Strategies for Variants of the Job Shop Scheduling Problem[END_REF] are extremely efficient with small sized instances. These models benefit essentially from the fast exploration speed. The impact of clause learning is more and more glaring when the size of the instance grows. It is very interesting to see how the hybrid model using Disjunctivebased learning along with VSIDS outperforms the other models on medium sized instances. Conversely, the lazy generation mode with our variants of the weighted degree heuristic is by far the most efficient approach for large instances.

Summary

We showed in this chapter that the performances of CP models in many sequencing and scheduling problems can be greatly improved by means of clause learning.

First, we investigated the impact of clause learning for solving car-sequencing benchmarks via AtMostSeqCard. The explanation algorithm that we proposed for this constraint runs in O(n) time complexity and generates compact explanations compared to a naive one. We compared the new hybrid model against CP, Pseudo-Boolean, and SAT encodings for this problem. The experimental results emphasize the importance of clause learning specially for building proofs. Furthermore, we observed a strong correlation between advanced propagation and finding solutions quickly for this problem. The experiments showed also that adaptive-branching is very beneficial for building proofs while problem-specific heuristics are much helpful for finding solutions efficiently.

Next, we revisited lazy generation by proposing a solution to the redundancy issue regarding the generation of domain clauses. The issue is avoided by means of a constraint called DomainFaithfulness simulating UP and performing a complete channeling between the domains and the lazily generated atoms. We showed also that one can enforce ac on this constraint in a constant time amortized complexity down a branch of the search tree.

Finally, we studied the impact of clause learning for solving disjunctive scheduling problems. We introduced a novel conflict analysis scheme, called Disjunctive-based learning, tailored to this family of problems. This method guarantees the learning of clauses without encoding the tasks domains. A large number of experiments were carried out on common job shop and open shop benchmarks using the new learning propositions.

These experiments showed how CP models can greatly benefit from clause learning when the instance size grows. We observed that the new Disjunctive-based learning with VSIDS outperforms the other models on medium sized instances. Conversely, the lazy generation mode with our variants of the weighted degree heuristic is by far the most efficient approach for large instances. Finally, we were able to find new lower bounds for 7 open instances using VSIDS along with our Disjunctive-based learning.

constraint. In particular, the conjunction of a set of m AtMostSeqCard constraints sharing the same scope [x 1 , . . . , x n ] can be filtered in O(nm). The experimental results on car-sequencing and crew-rostering benchmarks showed how competitive and efficient our filtering is compared to state-of-the-art propagators.

Finally, we investigated clause learning by introducing this method in our constraint programming approach for the car-sequencing problem. In order to use AtMostSeqCard in a hybrid CP/SAT solver, one has to explain every single domain change made by the propagator. We therefore proposed a procedure explaining AtMostSeqCard that runs in linear time in the worst case. We used this procedure in the design of a hybrid model for the car-sequencing problem. The experiments in this part included a variety of models with Pseudo-Boolean and SAT formulations. We showed, in particular, how clause learning improves the global performances in most cases. We observed a strong correlation between advanced propagation and finding solutions quickly for this problem.

Moreover, for building proofs, we observed that clause learning was the most important ingredient and propagation became less useful.

Clause Learning in CP Learning is relatively recent and not as established in CP as propagation and search. We introduced two new techniques useful for embedding clause learning techniques into a constraint programming approach.

The first contribution is a general purpose method for implementing the lazy generation of Boolean variables representing a domain. We addressed the issue related to the redundancy of clauses used when lazily encoding a domain [START_REF] Feydy | Lazy Clause Generation Reengineered[END_REF]. The DomainFaithfulness constraint that we proposed avoids such redundancy while ensuring the same level of consistency as UP without any computational overhead. The novel lazy generation method was empirically evaluated on a large number of disjunctive scheduling instances.

The second contribution is a learning mechanism tailored for disjunctive scheduling problems. We used a property of disjunctive scheduling allowing to design a novel conflict analysis scheme that learns clauses using a number of Boolean variables that is not function of the domain size. Our approach outperforms the CP model introduced in [START_REF] Grimes | Closing the Open Shop: Contradicting Conventional Wisdom[END_REF][START_REF] Grimes | Job Shop Scheduling with Setup Times and Maximal Time-Lags: A Simple Constraint Programming Approach[END_REF][START_REF] Grimes | Models and Strategies for Variants of the Job Shop Scheduling Problem[END_REF] in most cases. Several best known lower bounds for a traditional benchmark have been improved thanks to our method.

Future Research

There are a number of potential future research directions in each of the questions tackled in this dissertation.

• Car-Sequencing

It would be interesting to adapt our threefold propositions for the car-sequencing problem to 'real' industrial situations such as those proposed in the ROADEF'05 challenge [START_REF] Solnon | The car sequencing problem: Overview of state-of-the-art methods and industrial casestudy of the roadef'2005 challenge problem[END_REF]. Furthermore, since we have isolated good branching criteria in particular, the combination of these heuristics with discrepancy search algorithms such as LDS [START_REF] Harvey | Limited Discrepancy Search[END_REF], IDS [START_REF] Korf | Improved Limited Discrepancy Search[END_REF], and DDS [START_REF] Walsh | Depth-bounded Discrepancy Search[END_REF] seems promising. 

Modélisation

Nous nous sommes basés sur le modèle standard implémenté avec Ilog-Solver 6.7. Ce modèle comporte n variables entières représentant les classes de véhicules de chaque position dans la ligne d'assemblage et nm variables booléennes y j i représentant le fait que le véhicule placé en i ieme position nécessite l'option j. La demande de chaque classe est exprimée avec une contrainte de cardinalité globale (Gcc) et l'arc-consistance de cette contrainte est réalisée avec Ilog Solver [START_REF] Régin | Generalized Arc Consistency for Global Cardinality Constraint[END_REF]. Quatre modélisations pour les contraintes de capacité sont comparées (exprimant que pour chaque option j, chaque sous-séquence de taille q j contient au plus p j variables d'option fixées à 1) associées aux contraintes de demande de chaque option (déduites des contraintes de demande sur chaque classe).

La première modélisation (sum) comprend une simple décomposition en une séquence de contraintes de somme pour les contraintes de capacité ainsi qu'une contrainte de somme supplémentaire exprimant la demande. La seconde modélisation, (gsc) utilise une contrainte de séquencement global Gsc [START_REF] Régin | A Filtering Algorithm for Global Sequencing Constraints[END_REF] par option. La troisième, (amsc) est une application de la procédure d'ac introduite dans la prochaine section pour la contrainte AtMostSeqCard. Enfin, la quatrième modélisation, (amsc+gsc) combine les contraintes AtMostSeqCard et Gsc.

Nouvelle structuration des heuristiques

Nous proposons de classifier les heuristiques de branchement selon quatre critères :

• Exploration : La manière d'explorer la ligne d'assemblage soit de manière lexicographique (lex) soit depuis le milieu vers les bords (mid).

• Branchement : L'affectation d'une classe (class) ou d'une option (opt) à une position dans la ligne.

• Sélection : Le paramètre d'évaluation pour les options. Cinq choix sont possibles : la capacité p j q j ; la demande résiduelle (d opt j ) ; la charge δ j = d opt j . q j p j ; la marge σ j = n -(n jδ j ) ; et le taux d'utilisation ρ j = δ j n j (où n j représente le nombre de positions libre dans la séquence pour l'option j).

• Agrégation : Lorsqu'on utilise un branchement de type class, on a besoin d'agréger les scores des options pour chaque classe. Nous proposons d'utiliser les trois choix suivants : la somme(≤ ∑ ) ; la somme euclidienne (≤ Euc ) ; et l'ordre lexicographique (≤ lex ). L'ensemble des heuristiques est noté par ⟨{class, opt}, {lex, mid}, {1, q p, d opt , δ, n-σ, ρ}, {≤ ∑ , ≤ Euc , ≤ lex }⟩.

Expérimentations

Nous considérons 3 groupes d'instances de la CSPLib [START_REF]CSPLib: A problem library for constraints[END_REF] x i+l ≤ p) ∧ ( 

C.5.1 Apprentissage de clauses pour le car-sequencing

Nous nous intéressons dans cette partie à l'aspect apprentissage de clauses pour résoudre le problème de car-sequencing en utilisant l'algorithme de filtrage de AtMostSeqCard que nous avons proposé. Nous montrons dans la suite comment expliquer les nouvelles règles de filtrage de l'algorithme 4. Nous allons montrer dans un premier lieu comment expliquer l'échec provoqué à la ligne 5, puis comment utiliser cette dernière pour expliquer le filtrage des lignes 3, 4.

Explication pour l'échec

L'explication de cet échec est calculé en deux étapes.

D'abord on considère l'ensemble des affectations comme raison initiale. Dans un deuxième temps, on utilise une procédure linéaire qui permet de réduire la raison initiale en supprimant certaines affectations.

On va utiliser max D (i) pour noter la cardinalité maximale des q sous-séquences contenant x i au début de la i eme itération de leftmost. Nous allons aussi mentionner le domaine sur les vecteur finaux → w and L avec la notation → w D and L D respectivement.

• PBO-clauses : Un modèle pseudo-booléen implémenté dans MiniSat+ [START_REF] Eén | Translating Pseudo-Boolean Constraints into SAT[END_REF] basé sur un encodage SAT.

• PBO-cutting planes : Un deuxième modèle pseudo-booléen implémenté dans SAT4J [START_REF] Le | The Sat4j library, release 2.2[END_REF] basée sur les coupes [START_REF] Dixon | Inference Methods for a Pseudo-Boolean Satisfiability Solver[END_REF].

• 

C.5.3 Apprentissage dans les problèmes d'ordonnancement disjonctifs

Nous étudions dans cette partie l'apport de l'apprentissage de clauses pour la résolution des problèmes d'ordonnancement disjonctifs. Dans cette famille de problèmes, chaque ressource (ou machine) est caractérisée par une contrainte d'accès exclusif. En d'autres termes, deux tâches qui demandent la même machine ne peuvent pas s'exécuter en même temps. L'aspect filtrage de contraintes a été largement étudié dans la littérature (voir par exemple [START_REF] Baptiste | Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems[END_REF]). Nous nous intéressons ici plutôt à l'apprentissage de clauses qu'à la propagation. Pour cela, nous utilisons un modèle basé sur une décomposition en contraintes réifiées simples. Ce choix de modélisation a été l'objet d'une analyse détaillée dans [START_REF] Schutt | Why cumulative decomposition is not as bad as it sounds[END_REF][START_REF] Grimes | Closing the Open Shop: Contradicting Conventional Wisdom[END_REF] 

  If deciding whether a given constraint C is satisfiable or not costs O(ξ) time complexity, then enforcing ac on this constraint can run in O(ξ × ∑ x∈X (C) D(x) ) by checking every possible assignment on X (C). The reverse sense works as follows: if ac runs in O(ξ) time, then deciding the constraint runs in O(ξ) and finding a solution costs O( X (C) × ξ).

Definition 2 . 9 .

 29 Gcc(low, upp, [x 1 , . . . , x n ]) ∶ ⋀ j∈∆ low(j) ≤ {i x i = j} ≤ upp(j) Gcc(low, upp, [x 1 , . . . , x n ]) limits the occurrences of any value j ∈ ∆ in the sequence [x 1 , . . . , x n ] to be in the interval [low(j), upp(j)]. It can be seen as a generalization of AllDifferent if we restrict the intervals [low(j), upp(j)] to be [0, 1]. Arc Consistency on Gcc can be enforced in O( ∆ .n 2 ) [110]. Quimper et al. showed a Bound Consistency algorithm for this constraint running in O(t + n) where t is the time to sort the bounds of the domains of the variables [107].

  (2) b ∨ h ∨ c; (3) ¬g ∨ ¬c ∨ ¬d; (4) ¬c ∨ d ∨ ¬e; and (5) ¬c ∨ e.

Figure 2 . 1 : 9

 219 Figure 2.1: Example of implication graph

Figure 2 . 2 :

 22 Figure 2.2: Cuts in the implication graph

Figure 2 . 3 :

 23 Figure 2.3: Unique Implication Points in an implication graph

  30], D(x 5 ) = [24, 50], D(x 6 ) = [5, 10], D(x 7 ) = [2, 10], D(x 8 ) = [9, 30], D(x 9 ) = [13, 16], D(x 10 ) = [0, 3], and D(x 11 ) = [15, 100]. These variables are subject to the following constraints: (1) x 1 + x 7 ≥ 4, (2) x 2 + x 10 ≥ 11, (3) x 3 + x 9 = 16, (4) x 5 ≥ x 8 + x 9 , (5) ξ ↔ (x 9x 4 = 14), (6) ξ → (x 6 ≥ 7), (7) ξ → (x 6 + x 7 ≤ 9), and (8) x 11 ≥ x 9 + x 10 .

2 .

 2 Assign x 2 to 9: Constraint (2) propagates x 10 ≥ 2 .

3 .

 3 Assign x 3 to 2: In this case, constraint (3) enforces x 9 = 14 , then constraint (8) propagates x 11 ≥ 16 .

4 .

 4 Assign x 4 to 0: Constraint (5) propagates ξ to 1. Constraint (6) enforces x 6 ≥ 7 . And constraint (7) finds failure. The implication graph corresponding to this example is shown in Figure 2.4. The solver learns the new clause x 7 ≤ 2 ∨ ξ = 0 following the 1-UIP scheme, backtracks to the first level, assigns ξ to 0, and resumes the exploration of the search space.

Figure 2 . 4 :

 24 Figure 2.4: Example of an implication graph with a hybrid CP/SAT solver

Example 2 . 5 .

 25 Explaining Failure Consider the same constraint x ≥ y + 10 with D(x) = [3, 8] and D(y) = {3}. In this case, the propagator f when triggering a failure (Line 1 in Algorithm 7)) can generate the explanation y = 3 ∧ x ≤ 8 ⇒ ⊥ which gives the conflict clause y ≠ 3 ∨ x ≥ 9 .

  are k classes of vehicles and m types of options. Each class c ∈ {1, . . . , k} is associated with a demand d class c

.Example 3 . 1 .

 31 and the option's demand d opt j = ∑ c∈C j d class c Consider a simple case of 5 slots (i.e., n = 5) with 3 classes {c 1 , c 2 , c 3 } and 4 options such that:

  (a) A naive decomposition using sum constraints. This model is denoted decompose. (b) Let card be a mapping on integers such that card(c) = d class c , ∀c ∈ {1, . . . , k}. For each option j, we post the following Global Sequencing Constraint (Section 2.1.3.2):

Figure 4 . 1 :

 41 Figure 4.1: Instantiation of an option with capacity 3 5.

y j 0 1 1 1 2 1

 2 3 0 4 0 5 1 6 1 7 1 8 0 9 0 10 1 11 1 12 1 13 0 14 0 15 1 16 1 3 2 6

Figure 4 . 2 :

 42 Figure 4.2: Filtering when d opt j mod p j = 0

Figure 4 . 3 :

 43 Figure 4.3: Filtering when r = d opt j mod p j ≠ 0

Theorem 4 . 5 .

 45 Arc Consistency on slide[START_REF] Bessiere | SLIDE: A Useful Special Case of the CARDPATH Constraint[END_REF] If C is monotone then ac on slide(C, [x 1 , . . . , x n ]) is equivalent to ac on each constraint C. Theorem 4.5 gives an easy sufficient condition for making the decomposition of slide not hindering propagation. This property is used in Section 4.2.2.1 to decompose a chain of AtMost constraints.

Example 4 . 3 .

 43 We illustrate the behavior of leftmost on a simple example (see Figure 4.4). Let [x 1 , . . . , x 22 ] be a sequence of variables with a capacity constraint of 2 4, that is, constrained by: AtMostSeq(2, 4, [x 1 , . . . , x 22 ]). Dots in the first row stand for unassigned variables. The second row shows the computed instantiation → w , and the next rows show the state of the variables c(1), c(2), c(3) and c(4) at the start of each iteration of the main loop. The last row stands for the maximum value of c(j). The bold values indicate that leftmost assigns the value 1.

Figure 4 . 4 :

 44 Figure 4.4: Sequence of maximum cardinality obtained by leftmost.

  and since AtMostSeq(p, q, [x 1 , . . . , x n ]) was satisfied by w it must be satisfied by w ′ . Hence, for every variable x i such that D(x i ) > 1, there exists a support for x i = 0. Suppose that w[i] = 0, and let a (respectively b) be the largest (respectively smallest) index such that a < i, w[a] = 1 and D(x a ) = {0, 1} (respectively b > i, w[b] = 1 and D(x b ) = {0, 1}). Let w ′ be the instantiation such that w ′ [i] = 1, w ′ [a] = 0, w ′ [b] = 0, and w = w ′ otherwise. We have w ′ = d, and we show that it satisfies

  thus contradicting the hypothesis that w ′ = d. Hence there is no support for x i = 1. ◻ Lemmas 4.16 and 4.17 entail a pruning rule. In a first pass, from left to right, one can use an algorithm similar to leftmost to compute and store the values of → w [1 ∶ i] for all i ∈ [1, . . . , n]. In a second pass, the values of ← w [i ∶ n] for all i ∈ [1, . . . , n] are

Figure 4 . 5 :

 45 Figure 4.5: Illustration of Lemma 4.19's proof. Horizontal arrows represent assignments.

Figure 4 . 6 :

 46 Figure 4.6: Illustration of Lemma 4.20's proof. Horizontal arrows represent assignments.

  except for the largest index a such that → w [a] = 1 and w[a] = 0. Similarly on x n , . . . , x i+1 , we have ← w d-L = ← w d-L+1 , except for the smallest b such that ← w d-L+1 [b] = 1. There are two cases:

Lemma 4 . 21 .

 421 Algorithms 9 and 10 return the same instantiation w.

Theorem 4 . 22 .Example 4 . 4 .

 42244 Algorithm 11 achieves ac on AtMostSeqCard with an optimal worst case time complexity. Proof. The soundness of Algorithm 11 is a straight application of Lemmas 4.16 and 4.17. Its completeness is a consequence of Lemmas 4.15, 4.19 and 4.20. Achieving ac on AtMostSeq (Line 1) can be done with one call to leftmost_count. Achieving ac on a simple cardinality constraint (Line 2) can be done trivially in O(n) time. Finally, pruning the domains requires at most two calls to leftmost_count, plus going through the sequence of variable to actually change the domains, that is, O(n) time. The worst case time complexity of Algorithm 11 is then O(n), hence optimal. ◻ ◻ We give an example of the execution of Algorithm 11 in Figure 4.7 for computing the ac of constraint AtMostSeqCard with p = 4, q = 8 and d = 12.

Figure 4 . 7 :

 47 Figure 4.7: ac on AtMostSeqCard(p = 4, q = 8, d = 12, [x 1 , . . . , x n ])

Theorem 4 . 26 .

 426 One can achieve ac on MultiAtMostSeqCard in O(nm) time.

x 6 ]

 6 is subject to AtMostSeqCard(2, 5, 3, [x 1 ..x 6 ]). The left part of the example shows the propagator triggering a failure on a domain D defined as follows: D(x 1 ) = {1}, D(x 3 ) = D(x 6 ) = {0}, and all other variables are unassigned. The current sequence is unsatisfiable since L[6] < d res . Consider now the same sequence, however, with a domain D ′ where all variables are unassigned except D ′ (x 6 ) = {0}. This corresponds to the right part of the example. The results of leftmost on D and on D ′ are identical. Therefore the set of assignments in D and the set of assignments in D ′ are both valid explanations for this failure. They correspond respectively to the propagation rules x 1 = 1 ∧ x 3 = 0 ∧ x 6 = 0 ⇒ ⊥ and x 6 = 0 ⇒ ⊥.

Lemma 5 .

 5 1. w D = w D . Proof. Suppose that there exists an index i ∈ [1..n] s.t. w D[i] ≠ w D [i] and let k be the smallest index verifying this property. Since D is weaker than D and leftmost is a greedy procedure assigning the value 1 whenever possible from left to right, it follows that w D [k] = 0 and w D[k] = 1. Hence max D (k) = p and max D(k) < p. In other words, there exists a subsequence I containing x k s.t. card D (I, k) is equal to p, and card D(I , k)

2 .

 2 x j is assigned in D but not in D: It follows that D(x j ) = {1} since w k D [j] = 1. Moreover, since D(x j ) = {0, 1} then the definition of D implies that max D (j) = p.

  [n] < d res D. Let α be the number of variables having {1} as a domain in D but unassigned in D. It is clear that d res D = d resD + α. By Lemma 5.1, we know that w D and w D are equal. It follows that L D[n] = L D [n] + α. Therefore, since L D [n] < d res then L D[n] < d res D. ◻ Theorem 5.2 gives us a linear time procedure to explain a failure. In fact, it is sufficient to compute the values max D (i) in order to construct D. All these values can be computed using one call to leftmost_count which is linear in time. Example 5.2 illustrates the explanation procedure.

  x 25 ]) triggered using the extra-filtering rules. Observe first that AtMostSeq and Cardinality are both ac. Next, the propagator returns a failure since L D (25) = 1 < d resD = 2. The default explanation corresponds to the set of all the assignments in D, whereas our procedure generates a more compact explanation by considering only the assignments in D.

Figure 5 .

 5 1 visualizes the effect of propagating DomainFaithfulness on [b 1 . . . b n ].

Figure 5 . 1 :

 51 Figure 5.1: Assigning b 1 , . . . , b n 0 0 . . . 0 {0, 1} {0, 1} . . . {0, 1} 1 1 . . . 1

Theorem 5 . 4 .

 54 Algorithm 14 enforces ac for DomainFaithfulness in O(n).

2 .

 2 then continue assigning other atoms to 1 to be consistent with the new upper bound. The new set of atoms isη * = {b s[k] , b s[s[k]] , . . . , b ub } where v ub = min(v k v k ≥ ub * ). The time complexity in this case is O( η + η * ).Our incremental filtering is organized in two parts: 1. Simulating UP as if the atoms b 1 , . . . , b n were eagerly generated with all domain clauses. Performing the channeling between x and b 1 , . . . , b n . Algorithm 15 depicts the main procedure for this incremental propagator. It uses algorithms 16, 17, and 18 as follows: Any event related to assigning an atom b i to 1 is handled by Algorithm 16 (U B(i, i ub )); an event of assigning b i to 0 is handled by Algorithm 17(LB(i, i lb )); and the changes on D(x) are handled by Algorithm 18

• b i becomes assigned to 0 :

 0 Conversely to the previous case, UP propagates the clause ¬b s[i] ∨ b i by assigning b s[i] to 0 or triggers failure if D(b s[i] ) = {1}. If b s[i] becomes assigned, then UP should trigger propagation for clauses watched by b s[i] . This scenario is triggered at Line 4 in Algorithm 15 and executed at Line 2, and Line 3 in Algorithm 17.

1. 8 in Algorithm 17 . 2 . 15 «

 817215 Changing D(x) based on newly assigned atoms: When an atoms b i ↔ x ≤ v i becomes assigned to 1, one have to check: (a) If enforcing v i as a new upper bound for x can make D(x) empty, and hence failure should be triggered. This test is performed at Line 6 of Algorithm 16. (b) If v i can be the new upper bound of x. This is performed at Line 8 of Algorithm 16. The case where b i becomes assigned to 0 is similarly handled at Line 6 and Line Assigning some atoms from b 1 , . . . , b n to be coherent with D(x). This propagation is handled by Algorithm 18 (U pdate_Range(i lb , i ub , lb, ub)). Clearly, Propagate(DomainFaithfulness(x, [b 1 . . . b n ], [v 1 , . . . , v n ]))», then no propagation is needed. This is exactly what happens at Line 5 in Algorithm 15 using the Boolean changed. In the case where D(x) changed, we treat each type of domain change separately. We show the procedure used when the change concerns a new upper bound. The case of a new lower bound is similar. Let u be the new upper bound of x. We show that every atom b i such that v i ≥ u is assigned to 1 when the algorithm ends. (a) If there exists an atom b j in the initial Θ list s.t. Algorithm 16 changes the upper bound of x to be v j at Line 8, then no further propagation is needed. (b) Otherwise, every atom b i with a value v i ≥ max(x) should be assigned to 1.

1 c

 1 instead of 1. Next, with taskDom tw, instead on incrementing the weight of any Boolean variable b in c, we share this value between the two tasks in the Disjunctive constraint reified by b. This is proposed because the weight of the Boolean variables in these cases would not bring new information to taskDom tw. Finally, if we use lazy generation, instead of updating the weight of the generated atoms a ↔ t ik ≤ v , we consider increasing the weight of task T ik (by 1 c

Algorithm 19 :

 19 Precedence(x, y, d) if min(x) + d > max(y) then D ←⊥ ; else if max(x) > max(y)d then D(x) ← D(x)∩] -∞, max(y)d] ; if min(y) < min(x) + d then D(y) ← D(y) ∩ [min(x) + d, +∞[ ; return D ;

•Algorithm 21 :

 21 ϕ: to represent the set of bound literals in ω. Starting from the first line in Algorithm 21, we split the nogood under construction in two parts: I to contain bound literals; and Ψ for the rest of literals (i.e., literals associated to Boolean variables coming from the Disjunctive constraints). The idea of Algorithm 21 is to explain every bound literal in I until no such literal exists. This is exactly what happens at each iteration of the main loop. I is updated to contain new bound literals from ϕ at Line 2. The rest of literals in the current explanation ω goes in Ψ at Line 3 and Line 4. The final nogood Ψ contains only some Boolean variables from the Disjunctive constraints without any bound literal. It should be noted that the backjump level remains the same as in Ψ * since resolving a literal l replaces it with a set of literals assigned at least at the same level of l. Substitute(I, Ψ * ) Ψ ← Ψ * ∖ I ; visited ← ∅ ; while I > 0 do l ← choose l ∈ I ; visited ← visited ∪ {l} ; f ← reason(l)
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 33 ac) ssi, pour toute valeur j de chaque variable x i qu'elle met en jeu, il existe une instanciation cohérente w telle que w[i] = j.Nous considérons la résolution des CSPs avec des méthodes de recherche complètes basées sur une exploration en profondeur avec des mécanismes de branchement et de propagation de contraintes. Chaque contrainte est associée à au moins un propagateur. Chaque propagateur (ou algorithme de filtrage) réduit l'espace de recherche en supprimant des valeurs qui n'appartiennent à aucune solution par rapport au domaine courant. Pour chaque variable x, on suppose que les propagateurs utilisent uniquement les contraintes unaires suivante :x ≤ v , x ≥ v , x = v et x ≠ v . Analyse de conflit hybride f ← propag(⊥) ; Ψ ← explication(f, ⊥) ; while {l ∈ Ψ | level(l) = d} > 1 do l = arg max l∈Ψ (r(l)) ; f ← propag(l) ; Ψ ← Ψ ∪ {q q ∈ explication(f, l) ∧ n(q) > 0} ∖ {l} ;return Ψ ; façon retardée (sur demande) ou bien au moment de la propagation. Chaque propagateur a la liberté d'adopter un mode de génération d'explications approprié selon les spécificités de la contrainte en question. D'autre part, la génération des atomes peut également s'effectuer d'une façon proactive (avant de commencer la recherche) ou bien d'une façon retardée (juste avant d'apprendre les clauses). Dans tous les cas, tous les atomes générés doivent être associés à des clauses qui encodent les différentes relations entre ces atomes. Par exemple, si on génère dès le début tous les atomes possibles associés à une variables x telle que D(x) = [l, u], il va falloir ajouter les clauses suivantes pourtout d ∈ [l, u] : ¬ x ≤ d ∨ x ≤ d + 1 ; ¬ x = d ∨ x ≤ d ;¬ x = d ∨ ¬ x ≤ d -1 ; x = d ∨ ¬ x ≤ d ∨ x ≤ d -1 ; x = l ∨ ¬ x ≤ l ; x = u ∨ x ≤ u -1 .Heuristiques de branchement pour le problème de carsequencingLes premières descriptions du problème de car sequencing remontent aux années 80[START_REF] Parrello | Job-Shop Scheduling Using Automated Reasoning: A Case Study of the Car-Sequencing Problem[END_REF][START_REF] Dincbas | Solving the Car-Sequencing Problem in Constraint Logic Programming[END_REF]. Nous disposons d'un nombre de véhicules à fabriquer. Tous les véhicules sont issues d'un modèle de base auquel on ajoute différentes options (climatisation, toit ouvrant, etc). Ainsi, les voitures sont regroupées par classe (chacune requiert un ensemble d'options prédéfinies). Le nombre de voitures par classe est fixé. Des stations de travail dédiées à la réalisation des options sont placées sur la chaîne d'assemblage (une station de travail par option). Les équipes de travail sont placées sur chaque station et une limite de temps est imposée pour installer l'option spécifique. Toutefois, les voitures demandant une certaine option ne doivent pas être groupées ensemble, sinon la station ne sera pas capable d'installer toutes les options.

  ont été considérés. Le premier groupe, appelé set1 par la suite, comporte 70 instances à 200 véhicules, toutes satisfiables. Dans le second groupe, il y a 9 instances de 100 véhicules réparties en 4 instances satisfiables, notées set2 et 5 instances insatisfiables, noté set3. Le troisième groupe contient 30 instances de plus grande taille (jusqu'à 400 véhicules). Parmi elles, nous considérons les 7 instances connues pour être satisfiables, notées set4. Nous avons testé toutes les combinaisons possibles d'heuristiques et de modèles avec 5 graines de randomisation pour chaque instance. Ces tests ont montré en moyenne que : • Le meilleur choix de branchement est celui basé sur les variables de classes • L'exploration mid est légèrement meilleure que l'exploration lexicographique • Le meilleur paramètre de sélection est celui basé sur la charge δ • La fonction d'agrégation ≤ ∑ est légèrement meilleure que ≤ lex et ≤ Euc . Notons que ces observations ne constituent pas nécessairement le meilleur choix pour chaque groupe d'instances. On peut déterminer plutôt le meilleur choix pour chaque groupe, appelé le choix parfait. Nous introduisons alors deux métriques d'évaluation de critère appelé confiance et importance définit comme suit. La confiance du meilleur choix en moyenne est définit par le quotient entre le meilleur choix en moyenne et le choix parfait. De même, on peut considérer le pire choix pour chaque groupe et par conséquence, introduite l'importance d'un critère comme le quotient entre le pire choix et le choix parfait choix avec la formule 1 -

  AtMostSeqCard peut être considérée comme un cas particulier d'autres contraintes de séquence. Les meilleurs complexités de la littérature pour un filtrage complet de cette contraintes sont de O(n 3 )[START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF], O(2 q n)[START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF] et O(n2 .log(n)) dans une branche de l'arbre de recherche avec une initialisation de O(q.n 2 )[START_REF] Michael | Flow-based propagators for the SEQUENCE and related global constraints[END_REF]. Nous proposons un algorithme de filtrage complet pour cette contrainte avec une complexité linéaire dans le pire cas, donc optimale.Cet algorithme se base sur une règle gloutonne qu'on appelle leftmost. Le rôle de leftmost est de retourner une instanciation w qui maximise ∑ n i=1 x i tout en respectant les contraintes AtMost. Nous avons proposé une implémentation linéaire de leftmost appelée leftmost_count retournant un vecteur L tel que L[i] représente le nombre de 1 ajoutés par leftmost de x 1 à x i . De la même façon on définit le vecteur R comme le résultat de leftmost_count sur la séquence [x n , . . . , x 1 ]. L'Algorithme 4 détermine l'ac de la contrainte AtMostSeqCard(p, q, d,[x 1 , . . . , x n ]).On établit dans les deux premières lignes de cet algorithme l'ac de la chaîne de contraintes AtMost ainsi que la cardinalité ∑ n i=1 x i = d. Ces deux procédures peuvent être implémentées en temps linéaire. La suite de l'algorithme complète le filtrage. La complexité au pire cas de l'Algorithme 4 est clairement O(n). Un exemple d'exécution de l'algorithme 4 pour p = 4, q = 8, d = 12 est donné dans la Figure C.2. Dans cette figure, la première ligne représente les domaines courants, les points représentent des variables non instanciées.

C. 5

 5 .1.1 Explications pour AtMostSeqCard Afin d'utiliser AtMostSeqCard dans un solveur hybride, il est nécessaire d'expliquer la contrainte sous forme de règles de propagations pour tous les changements possibles provoqués par algorithme 4. Pour cela, nous classifions ces changements en deux types : d'une part on a les changements dus au filtrage des contraintes AtMost ou de cardinalité (lignes 1 et 2) et d'autre part, on a les nouvelles règles de filtrage (lignes 3, 4 et 5).Le premier cas d'explication est assez simple (i.e. pour AtMost et cardinalité). Il suffit de renvoyer l'ensemble des variables assignées à 1 pour expliquer les affections de type x = 0 ; et l'ensemble des variables assignées à 0 pour expliquer les affections de type x = 1 . L'explication des échecs s'effectue par exemple à travers la règle de propagation :⋀ D(x i )={1} x i = 1 ⇒ ⊥ pour les contraintes AtMost et ⋀ D(x i )={1} x i = 1 ⇒ ⊥ ou ⋀ D(x i )={0} x i = 0 ⇒ ⊥pour la contrainte de cardinalité.

C. 5 . 2 Definition C. 2 .

 522 Le problème de redondance de clauses et l'apport de la contrainte DomainFaithfulnessNous décrivons d'abord la problématique de redondance liée à la génération retardée d'atomes. Dans cette approche, quand un atome x ≤ u doit être généré, on ajoute lesclauses ¬ x ≤ a ∨ x ≤ u et ¬ x ≤ u ∨ x ≤ boù a et b sont les bornes les plus proches de u telles que a < u < b et toutes les deux ont déjà un atome généré. Après l'ajout de ces clauses, ¬ x ≤ a ∨ x ≤ b devient clairement une clause redondante. Nous montrons dans ce paragraphe comment éviter cette redondance. Au lieu de générer des clauses pour encoder les différentes relations entre les atomes, nous proposons d'utiliser une nouvelle contrainte appelé DomainFaithfulness qui assure le même niveau de cohérence. Soit x une variable ayant comme domaine D(x) = [l, u], [x 1 , . . . , x n ] une séquence de variables booléennes (générées d'une façon retardée) et [v 1 , . . . , v n ] une séquence de valeurs tel que x i est la variable qui représente x ≤ v i . Nous définissons la contrainte DomainFaithfulness de la façon suivante : DomainFaithfulness(x, [x 1 , . . . , x n ], [v 1 , . . . , v n ]) ∶ ∀i, x i ↔ x ≤ v i Pour chaque variable x, nous utilisons une contrainte DomainFaithfulness (notée par DomainFaithfulness(x)). Initialement, la contrainte DomainFaithfulness(x) ne concerne que la variable x. Par la suite, chaque fois qu'on génère un atome x i ⇔ x ≤ v i , on ajoute x i à la contrainte et sa structure interne est mise à jour. La contrainte DomainFaithfulness a un double rôle. D'abord, elle simule UP comme si les clauses de domaines étaient générées d'une façon proactive. Ensuite, elle assure une cohérence entre le domaine de la variable x et tout les atomes x i . Pour cela, il suffit de changer la borne supérieure (respectivement inférieure) de x à v i (respectivement v i + 1) s'il existe x i ⇔ x ≤ v i avec D(x i ) = {1} (respectivement D(x i ) = {0}) et v i < max(x) (respectivement v i >= min(x)).

C. 6 Conclusion 9 D

 69 Nous avons contribué à la résolution des problèmes de séquencement et d'ordonnancement dans un contexte hybride SAT/PPC. Nous avons présenté une étude approfondie des heuristiques de branchement pour le problème de séquencement de chaîne d'assemblage de voitures. Dans un deuxième temps, nous avons étudié les mécanismes de propagation pour une classe de contraintes de séquencement à travers la conception de plusieurs algorithmes de filtrage. En particulier, nous avons proposées un algorithme de filtrage optimal, complet et efficace pour la contrainte AtMostSeqCard. Ensuite, nous avons développé un algorithme linéaire de génération d'explications réduites pour cette contrainte ce qui permet de l'utiliser dans un solveur hybride et bénéficier des avantages offerts par SAT. Finalement, nous avons proposé de nouvelles alternatives d'analyse de conflit pour les problèmes d'ordonnancement disjonctifs. Ces nouvelles méthodes ont permis d'améliorer l'état-de-l'art d'un nombre d'instances ouvertes de la littérature. Différentes perspectives sont ouvertes à l'issue de ces travaux de recherche. D'abord, il est intéressant de voir l'apport de AtMostSeqCard avec d'autres types de problème de séquencement comme la planification d'horaires de travail. Ensuite, les nouvelles méthodes d'analyse de conflit que nous avons proposé peuvent facilement être adaptées avec d'autres problèmes de décision et d'optimisation combinatoire. Finalement, nous pensons que la relation entre décomposition de contraintes, propagation globale et apprentissage de clauses nécessite encore des recherches à la fois théoriques et expérimentales. i ), 10 min(x i ), 10 D,

  That is, there is no possible way to satisfy the constraint under the domain D. We suppose that all propagators return ⊥ if there exists a variable whose domain is empty. By default we denote any propagator with the same name as the constraint.

Example 2.2. Propagating Cardinality([x 1 , . . . , x n ], d) We show in Algorithm 4 a possible propagator for Cardinality([x 1 , . . . , x n ], d). This algorithm satisfies the filtering, correctness, and checking properties. Algorithm 4: Cardinality([x 1 , . . . , x n ], d)

Table 3 . 1 :

 31 Values of the selection criteria for each option

Table 3 . 2 :

 32 Classes' scores using the parameter d opt

Table 3 . 4 :

 34 Comparison of heuristics averaged over propagation rules

		Heuristics		Ref.			Instances		Total
						set 1 (70, S) set 2 (4, S)	set 3 (5, U )		set 4 (7, S)
	Sel. Br. Expl. Aggr.		%sol time %sol time %sol time	%sol time %tot %dev
				≤ lex	[68]	100.00 0.6 52.50 59.1	0.00	-25.71	2.9 85.93 1.00
			lex	≤ ∑	[68]	100.00 0.6 48.75	0.2	0.00	-10.71 84.4 84.53 2.61
	ρ	class	mid	≤ Euc ≤ lex ≤ ∑	---	100.00 0.6 30.00 99.92 0.5 53.75 163.5 0.2 100.00 0.5 51.25 236.6	0.00 0.00 0.00	-12.85 156.3 83.84 3.42 -16.42 50.0 85.17 1.88 -18.57 5.4 85.29 1.74
				≤ Euc	-	100.00 0.5 51.25 249.3	0.00	-17.14 30.2 85.17 1.88
		opt	lex mid	--	--	87.00 1.9 75.00 33.3 25.00 211.3 87.64 2.9 31.25 0.4 23.00 233.6 14.28 171.1 75.29 13.26 5.71 533.4 76.22 12.19
				≤ lex	-	100.00 0.6 52.50 59.2	0.00	-25.71 2.8 85.93 1.00
			lex	≤ ∑	-	100.00 0.6 48.75	0.2	0.00	-10.71 78.6 84.53 2.61
	n -σ	class	mid	≤ Euc ≤ lex ≤ ∑	---	100.00 0.6 48.75 100.00 0.6 53.75 169.7 0.1 100.00 0.5 51.25 236.9	0.00 0.00 0.00	-10.71 79.4 84.53 2.61 -18.57 33.1 85.41 1.61 -22.14 29.0 85.58 1.41
				≤ Euc	-	99.92 0.5 51.25 236.3	0.00	-22.14 28.8 85.52 1.48
		opt	lex mid	--	-[111]	32.71 21.7 43.75 236.8 13.00 190.7 38.14 13.0 26.25 33.7 18.00 260.8	0.00 0.00	-29.42 66.11 -33.31 61.62
				≤ lex	-	100.00 0.6 71.25 42.4	0.00	-25.71	3.0 86.80 0.00
			lex	≤ ∑	[29]	100.00 0.6 48.75	0.3	0.00	-10.71 100.2 84.53 2.61
	δ	class	mid	≤ Euc ≤ lex ≤ ∑	---	100.00 0.6 48.75 100.00 0.5 37.50 38.2 0.3 100.00 0.5 68.75 167.9	0.00 0.00 0.00	-10.71 87.3 84.53 2.61 -15.00 51.5 84.36 2.81 -20.71 42.8 86.28 0.60
				≤ Euc	-	100.00 0.5 68.75 166.5	0.00	-20.00 16.2 86.22 0.67
		opt	lex mid	--	--	98.57 1.2 36.25 111.7 98.92 3.7 43.75 3.8	0.00 0.00	-22.85 -21.42 88.8 84.29 2.89 5.8 83.78 3.48
				≤ lex	-	82.85 7.8	0.00	-	0.00	-	0.00	-67.44 22.31
			lex	≤ ∑	[29]	83.35 10.1 18.75	0.1	0.00	-	0.00	-68.72 20.84
	q p	class	mid	≤ Euc ≤ lex ≤ ∑	---	83.42 11.3 18.75 0.09 84.71 7.9 18.75 95.7 85.35 7.7 18.75 100.9	0.00 0.00 0.00	---	0.00 0.00 0.00	-68.77 20.77 -69.82 19.56 -70.34 18.96
				≤ Euc	-	84.64 7.5 18.75 96.0	0.00	-	0.00	-69.77 19.63
		opt	lex mid	--	--	65.71 73.3 70.71 29.8 12.50 606.4 0.00 -	0.00 0.00	--	0.00 0.00	-53.48 38.38 -58.14 33.02
				≤ lex	-	90.92 1.2 37.50 47.4	0.00	-25.71 55.3 77.84 10.32
			lex	≤ ∑	-	95.07 1.9 41.25 48.5	0.00	-17.14 21.5 80.70 7.03
	d opt	class	mid	≤ Euc ≤ lex ≤ ∑	---	94.50 0.7 43.75 106.5 90.64 1.9 75.00 83.4 94.71 0.6 67.50 68.9	0.00 0.00 0.00	-23.57 40.2 80.87 6.83 -24.28 5.3 79.24 8.71 -13.57 53.9 81.33 6.30
				≤ Euc	-	94.57 0.6 75.00 83.2	0.00	-15.71 50.7 81.74 5.83
		opt	lex mid	--	--	73.78 2.9 56.25 79.5 77.28 13.7 43.75 5.2	0.00 0.00	--	0.71 282.0 62.73 27.73 7.85 16.5 65.58 24.45
	1 class	lex mid ≤ ∑ ≤ ∑	[128, 29] -	86.92 13.2 18.75 89.92 8.3 63.75 20.3 0.1	0.00 0.00	--	0.00 0.00	-71.62 17.49 -76.16 12.26

Table 3 . 5 :

 35 Evaluation of the branching variants

	Av. Bran.	set1 (70, S)	set2 (4, S)		set3 (5, U )	set4 (7, S)	Global
	(×200)	%sol avg bts time	%sol avg bts time %sol avg bts time %sol avg bts time %tot
	opt	73.0 102023.9 14.1	36.8 287139.5 82.0 7.9 53275.4 225.6	7.2 207502.8 107.9 62.2
	class, ≤ lex	94.9 26120.0 2.0	45.2 481410.8 84.9	0.0	-	-17.7 98707.8 22.5 80.7
	class, ≤ ∑	95.8 27209.1 2.1 46.3 327601.5 95.7	0.0	-	-12.4 156300.3 44.6 81.1
	class, ≤ Euc	95.7 27563.3 2.1	45.5 463196.6 107.9	0.0	-	-13.2 107599.7 52.9 81.0
	Best Bran.					
	opt	100.0 98577.4 10.3	75.0	7251.3	0.5 40.0 46211.8 261.8 25.7 629016.8 130.7
	class, ≤ lex 100.0	184.7 0.0 100.0 730687.4 89.5	0.0	-	-28.5 29632.6 58.5
	class, ≤ ∑ 100.0	184.2 0.0	95.0 904739.2 96.3	0.0	-	-25.7 34705.3 54.8
	class, ≤ Euc 100.0	184.4 0.0 100.0 211830.5 128.8	0.0	-	-28.5 47435.1 75.4

Table 3 . 6 :

 36 Evaluation of the exploration variants

	Av. Expl.	set1 (70, S)	set2 (4, S)	set3 (5, U )	set4 (7, S)	Global
	(×420)	%sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot
	lex	89.2 50617.6 5.6	40.0 259229.0 46.6	1.8 52295.1 204.3 11.3 120652.6 54.2 75.5
	mid	90.3 42167.0 4.1 46.7 479360.9 126.5 1.9 54184.0 245.5 12.7 139829.4 42.8 76.8
	Best Expl.					
	lex	100.0	184.8 0.0 100.0 730687.4 89.5 40.0 46211.8 261.9 28.5 29632.6 58.5
	mid	100.0	183.5 0.0 100.0 213028.8 129.1 36.0 63984.8 307.6 28.5	1357.4 9.2

Table 3 . 7 :

 37 Evaluation of the selection variants

	Av. Selec.	set1 (70, S)		set2 (4, S)		set3 (5, U )			set4 (7, S)		Global
	(×160)	%sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot
	ρ	96.8	1628.8 1.0	49.2 480035.3 99.9 6.0 49922.8 222.0 15.1 136850.7 81.7	82.6
	n -σ	83.8	5773.4 2.3	47.0 699885.1 126.9	3.8 58466.5 231.4 13.7 103897.2 33.3	71.7
	δ	99.6	3292.6 1.0	52.9 254264.1 74.8	0.0	-	-18.3 98161.0 41.5	85.1
	q p	80.0 195896.5 17.7	13.2 135511.2 123.0	0.0	-	-	0.0	-	-	65.8
	d opt	88.9 25988.2 2.7 55.0 254347.0 68.8	0.0	-	-16.0 185381.6 36.8	76.2
	1 (×40)	88.4 130722.2 10.7	41.2	28165.2 15.8	0.0	-	-	0.0	-	-	73.8
	Best Selec.											
	ρ	100.0	184.8 0.0	75.0	7251.3	0.5 40.0 46211.8 261.9 25.7	4843.0 0.4
	n -σ	100.0	184.8 0.0	75.0 1009607.4 124.1 32.0 75445.9 351.0 25.7	4843.0 0.4
	δ	100.0	184.8 0.1 100.0 730687.4 89.5	0.0	-	-25.7	4843.0 0.4
	q p	98.8	7208.4 3.4	25.0	68.2	0.1	0.0	-	-	0.0	-	-
	d opt	100.0	178.7 1.2 100.0 213028.8 129.1	0.0	-	-28.5 29632.6 58.5
	1	99.7 58773.0 9.9	85.0	51740.9 36.9	0.0	-	-	0.0	-	-

they also have the same (low) slack and the same (high) load. Therefore the heuristics based on these criteria (ie. load, slack and usage rate) cannot effectively discriminate

Table 3 . 8 :

 38 Evaluation of the aggregation variants

	Av. Agg.	set1 (70, S)	set2 (4, S)	set3 (5, U )	set4 (7, S)	Global
	(×200)	%sol avg bts time	%sol avg bts time %sol avg bts time %sol avg bts time %tot
	≤ lex	94.9 26120.0 2.0	45.2 481410.8 84.9	0.0	-	-17.7 98707.8 22.5	80.7
	≤ ∑	95.8 27209.1 2.1 46.3 327601.5 95.7	0.0	-	-12.4 156300.3 44.6	81.1
	≤ Euc	95.7 27563.3 2.1	45.5 463196.6 107.9	0.0	-	-13.2 107599.7 52.9	81.0
	Best Agg.						
	≤ lex	100.0	184.7 0.0 100.0 730687.4 89.5	0.0	-	-28.5 29632.6 58.5
	≤ ∑	100.0	184.2 0.0	95.0 904739.2 96.3	0.0	-	-25.7 34705.3 54.8
	≤ Euc	100.0	184.4 0.0 100.0 211830.5 128.8	0.0	-	-28.5 47435.1 75.4

Table 3 . 9 :

 39 Confidence and Significance for each factor

		Confidence Significance
	Branching	0.989	0.247
	Selection	0.995	0.231
	Exploration	1.000	0.017
	Aggregation	0.995	0.015

  new one incorporating the Slack-Pruning (proposed in the next chapter, Section 4.1) within the decompose model. As we mention in Section 4.1, this rule can be applied only with lex branching. Therefore, we use the following set of heuristics ⟨{class, opt}, lex, {1, q p, d opt , δ, n-σ, ρ}, {≤ ∑ , ≤ Euc , ≤ lex }⟩. That is 21 different heuristics for each filtering algorithm. The experiments concern 9030 configurations per propagator.

Table 3 .

 3 10: Evaluation of the filtering variants (averaged over all heuristics)

	Filtering (×21)	set1 (70 × 5) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time set2 (4 × 5) set3 (5 × 5) set4 (7 × 5)
	decompose	75.8 190636.0 11.2 22.6 792179.8 44.4	0.0	-	-	7.7 194651.7 17.0
	gsc	94.8	1639.4 4.2 44.0	38673.7 49.2 2.8 49417.9 260.8 12.1	35302.0 64.3
	amsc	91.2 36285.7 3.9 49.2 411514.8 46.2	1.5 68873.9 15.1 13.1 239317.8 41.4
	gsc ⊕ amsc	95.1 1585.1 4.3 44.0	35711.3 45.4 2.8 46330.2 248.6 12.5	32258.4 80.9
	slack-pruning 90.5 55384.8 3.8 43.3 627443.4 43.9	1.7 82815.9 16.1 12.2 356073.4 34.8

Table 3 .

 3 11: Best results for filtering variants

	Filtering	set1 (70 × 5) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time set2 (4 × 5) set3 (5 × 5) set4 (7 × 5)
	decompose	100 184.8	0	75	7251.3	0.5	0	-	-25.7	4843	0.4
	gsc	100	184.8	1.2	75	18073.7 58.2	40 46211.8 261.9 28.5 29632.6 58.5
	amsc	100 184.8	0 100 730687.4 89.5	20 60460.4	13.5 28.5 31617.6	6
	gsc⊕amsc	100	184.8	1.2	75	16923.7	55	40 46196.7 259.7 28.5 17252.6 40.8
	slack-pruning 100 184.3	0	75 510189.0 35.1	20 70573.6	14 28.5 332430.9 34.3

  . For any constraint C, we denote by D ∪ We show that this constraint is monotone. The total order ≺ chosen here is the 'less than' (i.e. <) operator on integers. It is clear that the value 0 can replace the value 1 in any support for this constraint.

	Example 4.2. A monotone constraint
	Let ∑ i=n i=1 x

C the set of values ⋃ x∈X (C) D(x). Definition 4.3. Monotonicity A constraint C is said to be monotone iff there exists a total order ≺ on D ∪ C s.t. for any two values α ≺ β, α can replace β in any support on C. i ≤ p be the constraint ensuring that the sum of the Boolean variables x 1 . . . x n is at most p. ◻ Definition 4.4. The slide meta-constraint Let C be a constraint of arity k. The slide(C, [x 1 , . . . , x n ]) constraint is defined by the conjunction of all C([x i , . . . , x i+k-1 ])

  AtMost constraints as the value 1 is assigned to x i only if all subsequences involving x i have cardinality p -1 or less. Moreover, since ∑ n i=1 min(x Assigning them to 0 in → w does not violate the AtMostSeq constraint. Hence we can build a support for Lemma 4.13 and Corollary 4.14 give us a polynomial support-seeking procedure for AtMostSeqCard. Indeed, the worst case time complexity of Algorithm 9 is in O(nq).

	AtMostSeqCard.	◻

) come from the definition, and (3) is a direct application of Lemma 4.13. Now, we prove that they are sufficient by showing that if these properties hold, then a solution exists. Since AtMostSeq(p, q, [x 1 , . . . , x n ]) is satisfiable, → w does not violate the chain of i ) ≤ d ≤ → w , then there are at least → wd variables such that min(x i ) = 0 and → w [i] = 1.

  Therefore we focus of the case where AtMostSeq is ac, and → w = d. In particular, Lemmas 4.16, 4.17, 4.19 and 4.20 only apply in that case. The equality → w = d is therefore implicitly assumed in all of them.

	Lemma 4.16.

  Moreover, because of the cardinality constraint, ∑ n i=1 min(x i ) is a valid lower bound. It is easy to see that any value d within these bounds satisfies the conditions of Lemma 4.14. In other words, we can assign δ to any value in the interval

	[∑ n i=1 min(x i ), → w ]	and	extend	it	to	an	ac	support	of

d res then return ⊥ ; return D ; Theorem 4.24. Algorithm 12 achieves ac on AtMostSeq∆Card with an optimal worst case time complexity. Proof. First, we need to filter inconsistent values from the domain of δ. By Lemma 4.13, the cardinality → w of the instantiation returned by leftmost is a valid upper bound for δ. AtMostSeq∆Card(p, q, δ, [x 1 , . . . , x n ]

  We define the constraint MultiAtMostSeqCard, and show that the algorithm introduced in this chapter can be adapted to enforce ac on this constraint in O(nm) time, where m is the number of chains of AtMost constraints.

	Definition 4.25. MultiAtMostSeqCard(p 1 , .., p m , q 1
	AtMostSeq(2, 5, [x 1 , . . . , x 22 ]). It is obtained using the same principle as leftmost,
	however by checking two sets of subsequences, one for each AtMostSeqCard con-
	straint. It is easy to see that the arguments of Lemma 4.13 are still valid when consid-

5

, we have a variable x i for each working shift i. Moreover, we want each employee to work at most one shift per day, at most five shifts per week, and between 17 and 18 shifts on the whole period. We model this with two AtMostSeq∆Card constraints:

AtMostSeq∆Card(1, 3, δ, [x 1 , . . . , x n ])

and AtMostSeq∆Card(5, 21, δ, [x 1 , . . . , x n ]) s.t. D(δ) = {17, 18}. However, ac on these two constraints is not equivalent to ac on their conjunction. We illustrate this in Example 4.5 (using smaller instances of the constraints). Example 4.5. Consider the conjunction of the two following AtMostSeqCard constraints: AtMostSeqCard(1, 2, 9, [x 1 , . . . , x 22 ]) & (4.1) AtMostSeqCard(2, 5, 9, [x 1 , . . . , x 22 ]) (4.2) Now, suppose that D(x 8 ) = D(x 14 ) = D(x 20 ) = {0}, whilst all other domains are equal to {0, 1}. The first line of Table 4.1 shows the domains of [x 1 , . . . , x 22 ], with a dot (.) standing for a full domain ({0, 1}) and the value 0 standing for the domain reduced to the singleton {0}. The second and third lines show the results of leftmost on [x 1 , . . . , x 22 ] for p q = 1 2 and p q = 2 5, respectively. Since the demand d is equal to 9, both constraints 4.1 and 4.2 are ac. Last, the third line shows an instantiation of maximum cardinality respecting simultaneously AtMostSeq(1, 2, [x 1 , . . . , x 22 ]) and ering any number of subsequences. Therefore, the total cardinality of 8 is a valid upper bound, and since d is equal to 9, the conjunction of the two constraints has no solution.

  3). That is, 4 models (decompose, gsc, amsc, and gsc⊕amsc) and 42 heuristics. For each model, we report the average number of solved instances in Table 4.2, the average CPU time on solved instances in Table 4.3 and the average number of backtracks in Table 4.4. In

each table, we also report the minimum and maximum value (for any heuristic, though averaged over randomized runs) as well as the standard deviation over the different heuristics.

Table 4 . 2 :

 42 Evaluation of the filtering methods (solved instances count)

	propagation	#solved in set1 (70 × 5) avg min max dev	#solved in set2 (4 × 5) avg min max dev
	decompose 268.33 70.00 350.00 88.95	2.95 0.00 15.00 3.66
	gsc	333.52 154.00 350.00 42.16 10.11 0.00 20.00 5.25
	amsc	321.35 80.00 350.00 64.05 11.19 0.00 20.00 5.22
	gsc⊕amsc 334.11 154.00 350.00 41.88 10.45 0.00 20.00 5.06
	propagation	#solved in set3 (5 × 5) avg min max dev	#solved in set4 (7 × 5) avg min max dev
	decompose	0.00	0.00	0.00 0.00	2.35 0.00 9.00 2.65
	gsc	0.73	0.00 10.00 2.35	4.64 0.00 10.00 3.69
	amsc	0.38	0.00	5.00 1.21 5.09 0.00 10.00 3.75
	gsc⊕amsc	0.76	0.00 10.00 2.41	4.80 0.00 10.00 3.65
	Table				

Table 4 . 3 :

 43 Evaluation of the filtering methods (CPU time on solved instances)

	propagation	CPU time (in sec.) on set1 (70 × 5) CPU time (in sec.) on set2 (4 × 5) avg min max dev avg min max dev
	decompose 10.49 0.02 1145.20	80.39 58.74 0.01 766.25	178.88
	gsc	3.16 0.52 1100.54	33.17 109.45 0.11 1096.37	237.46
	amsc	3.79 0.03 1197.88	51.49 70.56 0.01 1014.57	186.87
	gsc⊕amsc	3.03 0.53 1017.74	33.60 99.71 0.11 1155.40	222.85
	propagation	CPU time (in sec.) on set3 (5 × 5) CPU time (in sec.) on set4 (7 × 5) avg min max dev avg min max dev
	decompose	-	-	-	-30.85 0.03 985.75	136.43
	gsc	276.06 29.22 988.79	308.64 53.61 1.63 975.03	147.35
	amsc	8.62 1.06	18.07	6.72 38.45 0.03 1171.78	124.29
	gsc⊕amsc 285.43 6.01 1131.19	337.24 61.61 1.62 1180.53	175.23

Table 4 . 4 :

 44 Evaluation of the filtering methods (search tree size on solved instances)

	propagation	#backtracks on set1 (70 × 5) avg min max dev	#backtracks on set2 (4 × 5) avg min max dev
	decompose 174017 148 25062202 1341281 1101723 78 15324348 3439897
	gsc	1408	99 2320312	34519 131062 58 1595137 306448
	amsc	33600	92 13888040 468527 665205 61 10254401 1827516
	gsc⊕amsc	1007	92 1180605	23649 104823 56 1055307 244135
	propagation	#backtracks on set3 (5 × 5) avg min max dev	#backtracks on set4 (7 × 5) avg min max dev
	decompose	-	-	-	-378475 170 13767766 1754180
	gsc	55365 5852	218590	63211	23897 151	467396	75097
	amsc	40326 5991	83454	29690 215349 146 5624744 653498
	gsc⊕amsc	57725 1120	244787	69705	22974 146	428523	71552

Table 4 . 5 :

 45 Evaluation of the filtering methods: static branching (highest success counts are in bold fonts)We report the results for the static heuristics in Table4.5 and for the dynamic heuristics in Table4.6. The first column indicates the total number of successful runs (#sol), then we report CPU time and number of backtracks, averaged over all instances and runs, as well as the standard deviation on this sample. Clearly, achieving ac on the (Multi)AtMostSeqCard constraint have a significant impact on the efficiency of the model. The decomposition into sum constraints cannot solve any satisfiable instance with lexicographic branching, and only one when starting from the middle of the sequence. The model using Gsc offers a much more potent filtering, however, it is not as strong as ac on the AtMostSeqCard constraint and moreover, it is much slower.On the other hand, the model using Algorithm 11 for the AtMostSeqCard constraint achieves ac whilst being as fast as the decomposed model in terms of exploration. Moreover, combining the two AtMostSeqCard constraints and using Algorithm 12 allows to solve about four times more satisfiable instances with Lexicographic branching and six times more with Middle branching.The cost-Regular constraint could be used to enforce the same level of consistency as the combination of two AtMostSeqCard constraints. The possible patterns can be encoded through a finite automaton whilst the overall cardinality is encoded by the counter. Notice that using a Regular constraint (i.e., without cost) and modeling the overall work load with a cardinality constraint would not enforce a higher level of consistency than the decomposition into cardinality constraints (i.e., model decompose) since AtMost constraints are monotone. A worst case analysis would indicate that the number of states in the automaton is too large.

					Lexicographic	
			satisfiable (1140)			unsatisfiable (385)
	Model	#sol	CPU time avg dev	#backtracks avg dev	#sol	CPU time #backtracks avg dev avg dev
	decompose	0	-	-	-		-170 0.05 0.02	86
	gsc	25 308.93 344.29	74074	84301 175 2.56 9.71	262
	amsc	125 164.36 239.56 1828347 2759080 213 1.76 21.95 22621
	mamsc	534 87.29 188.81 685720 1491867 271 2.80 45.02 27150
				From the middle to the sides
	Model	#sol	satisfiable (1140) CPU time #backtracks avg dev avg dev	#sol	unsatisfiable (385) CPU time #backtracks avg dev avg dev
	decompose	1 166.76	0.00 5716015		0 160 0.04 0.00	0
	gsc	7 253.20 301.63	53763	63110 165 1.07 0.08	0
	amsc	57 161.38 267.23 2207676 3621762 201 0.20 1.46 1622
	mamsc	336 134.95 239.11 1410458 2525422 265 0.05 0.00	0

Table 4 . 6 :

 46 Evaluation of the filtering methods (dynamic branching) When using dynamic heuristics (see Table4.6), the difference between the different models becomes much less spectacular. However, the trend is the same, with the model combining the pairs of AtMostSeqCard constraint dominating the other models.

			Most constrained employee	
			satisfiable (1140)			unsatisfiable (385)
	Model	#sol	CPU time avg dev	#backtracks avg dev	#sol	CPU time avg dev	#backtracks avg dev
	decompose	772 21.93 104.91 205087 1000794 165 0.06	0.00	0
	gsc	746 65.75 180.29 14133	42235 175 0.98	0.09	0
	amsc	818 20.51 103.76 147479 761261 215 0.13	0.55	330
	mamsc	842 20.78 111.00 125886 676061 270 0.05	0.01	0
			Most constrained shift	
			satisfiable (1140)			unsatisfiable (385)
	Model	#sol	CPU time avg dev	#backtracks avg dev	#sol	CPU time avg dev	#backtracks avg dev
	decompose	987 20.76 102.53 169964 853020 352 19.74 99.61 180161
	gsc	1006 33.30 107.08	8875	31586 335 15.97 95.36	5145
	amsc	1061 10.07 65.02 90247 593928 362 12.19 77.37 108797
	mamsc	1074 10.94 77.37 91222 667176 377 14.63 107.58 110244

  3. Let [x 1 , .., x n ] be a sequence of Boolean variables subject to

	AtMostSeqCard(p, q, d, [x 1 , .., x n ])).	The first step is to make sure that

AtMostSeq(p, q, [x 1 , . . . , x n ]) and Cardinality([x 1 , . . . , x n ], d) are ac. The remaining of the filtering is based on a greedy rule called leftmost. The outcome of leftmost is an instantiation w with a maximum cardinality on [x 1 , .., x n ] respecting all AtMost constraints. We use a linear time implementation of leftmost called leftmost_count

.1.2.2 From Pseudo-Boolean to SAT

  

Notice that the above Pseudo-Boolean model contains only clauses, AtMost, and Cardinality constraints. A simple and straightforward way to formulate this problem into SAT is to encode each AtMost/Cardinality constraint into a CNF. The latter has been intensively studied in the last decade (see for instance

  In this encoding, (n + 1) × (d + 1) atoms s i,j are used in addition to the variables [x 1 , . . . , x n ]. An atom s i,j is semantically equivalent to have a lower bound at least equal to j in the sum ∑ k∈[1..i] x k . The clauses 1 & 3 ensure the monotonicity of the sum, while clauses 2 & 4 perform a channeling between the variables x i and s i,j .

• Initial values: 5. s 0,0 ∶ true ; s 0,1 ∶ f alse ; s n,d ∶ true ; s n,d+1 ∶ f alse ;

Table 5
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	.1: Experimental comparison of CP, SAT, hybrid, and Pseudo-Boolean mod-
			els for the car-sequencing problem			
	Method	EasySat (74 × 5) #suc avg fails time #suc avg fails time #suc avg fails HardSat (7 × 5) Unsat (28 × 5) time
	CNF A	370	2073 1.71	28 337194 282.35	85 249301 105.07
	CNF S	370	1114 0.87	31	60956 56.49	65 220658 197.03
	CNF A+S	370	612 0.91	34	32711 36.52	77 190915 128.09
	Hybrid(VSIDS)	370	903 0.23	16 207211 286.32	35 177806 224.78
	Hybrid(VSIDS/Slot) 370	739 0.23	35	76256 64.52	37 204858 248.24
	Hybrid(Slot/VSIDS) 370	132 0.04	34	4568 2.50	37 234800 287.61
	Hybrid(Slot)	370	132 0.04	35	6304 3.75	23 174097 299.24
	CP AM SC	370 43.06 0.03	35	57966 16.25	0	-	-
	PBO-clauses	277 538743 236.94	0	-	-	43 175990 106.92
	PBO-cutting planes	272	2149 52.62	0	-	-	1	5031 53.38
	From							

Table 5

 5 

.1, we first note that CP and hybrid models outperform other approaches on satisfiable instances (i.e., EasySat and HardSat). The best method in average for both sets is the hybrid model using CP branching. By considering all the results on these instances, one can observe that models enforcing Arc Consistency on AtMostSeqCard are the best choices for finding solutions quickly. In fact, this claim is confirmed by the poor performances of Pseudo-Boolean models on satisfiable instances together with the distinguished results of CNF A+S compared to other SAT models. Recall that CNF A+S

  Every f failures, we check whether the size of the clause database reached a is performed as follows. A clause c is considered 'locked' if there exists a literal p such that c is the reason for propagating p. All locked clauses are not removed. The last α non-locked clauses are also kept. Afterwards, the clauses with size less than a parameter k are not deleted. The other clauses are deleted with a probability ρ. If the resulting number of clauses still greater than ω, we call again reduceClauses, however, after decreasing k by ǫ. We iterate this process until the clause database is of size smaller than w. The default values used for all the experiments for

	given We shall evaluate experimentally the following models: parameter ω. If so, a parametrized • Mistral(θ): The pure CP model using θ as a heuristic. The latter is denoted by deletion procedure -bool if we use taskDom bw -task if we use taskDom tw reduceClauses(f, ω, α, k, ǫ, ρ) < f, ω, α, k, ǫ, ρ > are < 5000, 75000, 50000, 12, 8, 90% >. • Hybrid(θ, σ): The hybrid model where:

Table 5 .

 5 

							2: Job Shop: Lawrence (la-01-20) detailed results
		Mistral(task)	Hybrid(vsids, disj) Hybrid(vsids, lazy)	Hybrid(task, disj)	Hybrid(task, disj)
		T %O	UB	T %O	UB	T %O	UB	T %O	UB	T %O	UB
		avg avg min avg avg avg min avg avg avg min avg avg avg min avg avg avg min avg
	la01	0 100 666 666	0 100 666 666 0.01 100 666 666	0 100 666 666	0 100 666
	la02 0.21 100 655 655 0.21 100 655 655 0.46 100 655 655 0.19 100 655 655 0.26 100 655
	la03 0.06 100 597 597 0.07 100 597 597 0.15 100 597 597 0.08 100 597 597 0.11 100 597
	la04 0.05 100 590 590 0.07 100 590 590 0.11 100 590 590 0.07 100 590 590 0.09 100 590
	la05	0 100 593 593	0 100 593 593	0 100 593 593	0 100 593 593	0 100 593
	la06 0.01 100 926 926 0.05 100 926 926 0.13 100 926 926 0.02 100 926 926 0.03 100 926
	la07 3600	0 890 890 3600	0 890 890 3600	0 890 890 3600	0 890 890 3600	0 890
	la08 0.03 100 863 863 0.07 100 863 863 0.09 100 863 863 0.03 100 863 863 0.04 100 863
	la09	0 100 951 951 0.01 100 951 951 0.06 100 951 951 0.01 100 951 951 0.03 100 951
	la10	0 100 958 958	0 100 958 958	0 100 958 958	0 100 958 958	0 100 958
	la11 0.04 100 1222 1222 0.71 100 1222 1222 0.70 100 1222 1222 0.05 100 1222 1222 0.05 100 1222
	la12 0.11 100 1039 1039 0.22 100 1039 1039 0.36 100 1039 1039 0.07 100 1039 1039 0.09 100 1039
	la13 0.03 100 1150 1150 0.18 100 1150 1150 0.13 100 1150 1150 0.07 100 1150 1150 0.05 100 1150
	la14	0 100 1292 1292	0 100 1292 1292	0 100 1292 1292	0 100 1292 1292	0 100 1292
	la15 0.27 100 1207 1207 3.29 100 1207 1207 49.27 100 1207 1207 0.54 100 1207 1207 0.33 100 1207
	la16 0.31 100 945 945 0.27 100 945 945 0.53 100 945 945 0.26 100 945 945 0.48 100 945
	la17 0.08 100 784 784 0.07 100 784 784 0.11 100 784 784 0.11 100 784 784 0.16 100 784
	la18 0.03 100 848 848 0.04 100 848 848 0.06 100 848 848 0.05 100 848 848 0.06 100 848
	la19 0.37 100 842 842 0.27 100 842 842 0.57 100 842 842 0.40 100 842 842 0.62 100 842
	la20 0.11 100 902 902 0.06 100 902 902 0.12 100 902 902 0.10 100 902 902 0.15 100 902

Table 5 .

 5 .[START_REF] Dechter | Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset Decomposition[END_REF] 100 1244 1244 121.97 100 1244 1244 533.13 100 1244 1244 116.84 100 1244 1244 288.61 100 1244 tai03 116.05 100 1218 1218 59.30 100 1218 1218 304.75 100 1218 1218 115.11 100 1218 1218 412.97 100 1218 tai04 62.39 100 1175 1175 35.23 100 1175 1175 179.47 100 1175 1175 34.89 100 1175 1175 84.88 100 1175 tai05 1212.27 100 1224 1224 480.54 100 1224 1224 2573.16 70 1224 1224 1071.65 100 1224 1224 3169.86 50 1225..34 100 1227 1227 201.76 100 1227 1227 1112.44 100 1227 1227 226.89 100 1227 1227 1066.6 100 1227 tai08 141.51 100 1217 1217 105.44 100 1217 1217 665.31 100 1217 1217 130.74 100 1217 1217 609.06 100 1217 tai09 491.77 100 1274 1274 117.27 100 1274 1274 744.97 100 1274 1274 339.96 100 1274 1274 1450.87 100 1274 tai10 161.88 100 1241 1241 46.87 100 1241 1241 243.83 100 1241 1241 104.35 100 1241 1241 457.

	3: Job Shop: Lawrence (la-21-40) detailed results

Table 5 .
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				5: Job Shop: Taillard (tai26 -tai50) detailed results		
	Mistral(task)	Hybrid(vsids, disj) Hybrid(vsids, lazy)	Hybrid(task, disj)	Hybrid(task, lazy)
	T %O	UB	T %O	UB	T %O	UB	T %O	UB	T %O	UB
	avg avg min avg avg avg min avg avg avg min avg avg avg min avg avg avg min	avg
	tai26 3600 0 1689 1696.1 3600 0 1679 1685.8 3600 0 1676 1693 3600 0 1672 1684.5 3600 0 1689.20
	tai27 3600 0 1701 1714.1 3600 0 1697 1704 3600 0 1701 1727 3600 0 1693 1704.8 3600 0 1718.40
	tai28 3600 0 1623 1633.9 3600 0 1616 1621.9 3600 0 1603 1622.9 3600 0 1617 1621.9 3600 0 1621.80
	tai29 3600 0 1642 1650.2 3600 0 1635 1639.2 3600 0 1635 1651.1 3600 0 1630 1640.3 3600 0 1647.30
	tai30 3600 0 1608 1633.8 3600 0 1608 1617.						

Table 5 .

 5 percentage and T is the average CPU time) for the set tai-01-10 and to the average PRD for the rest of sets. The choice of M is based on the fact that almost all instances have been proven optimal in the set tai-01-10 whereas the others are much harder and are not proved optimal (except one). We show the best values of M in bold values. We indicate also the number of disjunctions per set of instances in a separate column (Disj).There are a number of clear observations from Table5.7. First, as expected, the CP model is less efficient in general than any hybrid model for the instances tai11, . . . , tai70. Second, the average size of the learnt clauses is always shorter with VSIDS than disj) learns clauses with size 31 (in average) whereas Hybrid(task, disj) learns clauses with size 41. Third, according to the number of nodes explored by second, the CP model is faster than any hybrid model in general. As an illustration, with instances tai11-20, the speed of exploration of Mistral(task) is 6509 Nodes/s while the fastest hybrid model Hybrid(vsids, disj) explores 3970 Nodes/s. This behavior is expected because of the amount of time to propagate clauses and to learn from conflict.Next, we observe that lazy generation slows down considerably the exploration speed compared to Disjunctive-based learning. For instance, with tai11-20, Hybrid(vsids, disj) explores 3970 Nodes/s whereas Hybrid(vsids, lazy) explores 520 Nodes/s. Furthermore the exploration speed seems to be constant on hard sets (tai-11 . . . tai-70) irrespectively of the instance size. Indeed, it ranges from 413 to 698 Nodes/s. We believe that this behavior is due to the additional amount of time needed to propagate DomainFaithfulness constraints compared to Disjunctive-based learning.Finally, this table shows that taskDom tw is always slower than VSIDS with Disjunctive-based learning. Take again the set of instances tai-11-20, we move from 3970 Nodes/s with Hybrid(vsids, disj) to 2715 Nodes/s with Hybrid(task, disj).

	6: Job Shop: Taillard (tai51 -tai70) detailed results

Table 5 . 7 :

 57 Job Shop: Taillard statistics

	Instances	Mistral(task)		Hybrid(vsids, disj) Hybrid(vsids, lazy)	Hybrid(task, disj)	Hybrid(task, lazy)
		Disj M Nodes/S Size	M		Nodes/S Size	M	Nodes/S Size	M	Nodes/S Size	M	Nodes/S Size
		%O T			%O	T		%O T		%O T	%O	T
	tai 01-10 1575 90 616	8871	0 90 477	6814 18 87 999	1213 25 90 574	4869 21 85 1115	1261 34
		PRD			PRD			PRD		PRD	PRD
	tai 11-20 2850 3.2381	6509	0 3.0350	3970 31 1.8937	520 43 0.4808	2715 41 0.1169	539 66
	tai 21-30 3800 0.7302	3935	0 0.2769	2424 33 0.4756	413 46 0.2485	1752 45 0.1557	437 73
	tai 31-40 6525 1.7227	4503	0 0.7109	2598 51 0.3043	555 65 0.6016	1517 76 0.4103	566 111
	tai 41-50 8700 2.2161	2570	0 0.4798	1530 70 0.3036	413 86 0.5420	994 97 0.6163	443 140
	tai 51-60 18375 2.0798	1952	0 2.2847	2602 57 2.7990	562 44 0.1621	1131 91 0.2419	698 89
	tai 61-70 24500 3.2381	1349	0 3.0350	2183 64 1.8937	522 50 0.4808	920 121 0.1169	584 123

Table 5 . 8 :

 58 Job Shop: Lawrence Statistics

		Mistral(task)	Hybrid(vsids, disj)	Hybrid(vsids, lazy)	Hybrid(task, disj)	Hybrid(task, lazy)
		%O T Nodes/S Size %O T Nodes/S Size %O T Nodes/S Size %O T Nodes/S Size %O T Nodes/S Size
	Opt	70 1362	11520 0 96 768	8507 26 64 1683	1746 31 84 891	6745 35 72 1170	3380 40
		PRD Nodes/S Size PRD Nodes/S Size PRD Nodes/S Size PRD Nodes/S Size PRD Nodes/S Size
	Open 0.4280	18581 0 0.1343	10159 23 0.6530	1000 31 0.1393	6782 31 0.4969	1322 49

Table 5 .

 5 [START_REF] Bacchus | GAC via unit propagation[END_REF] shows clearly that Hybrid(vsids, disj) outperforms the other models on these instances. This model proves 96% of the instances in Opt to optimality and has a PRD of 0.1343 on the set of instances Open. Overall, the statistics presented in this table supports our previous observations with Taillard instances such as the speed of exploration, the average size of learnt clauses, and more importantly the outstanding performances of Disjunctive-based learning compared to lazy generation with small/medium-sized instances.

	Improving the Lower Bounds for Taillard Open Instances Many of the Taillard
	instances are still open in the literature. Our results do not improve any upper bound

for these instances, but what about the lower bound? Recall that the way we perform dichotomy steps is focused only on improving the current upper bound. Indeed, if step i ends without finding a solution nor proving unsatisfiability, then we set l i to

Table 5 . 9 :

 59 Lower bound experiments for open Taillard instancesThe old lower bounds are based on the work of[START_REF] Gharbi | Extending the single machine-based relaxation scheme for the job shop scheduling problem[END_REF] and are reported in[1]. The model Hybrid(vsids, disj) solely find these new bounds and is by far the best choice for building proofs for all instances.

	Instance	Mistral(task) Hybrid(vsids, disj) Hybrid(vsids, lazy) Hybrid(task, disj) Hybrid(task, lazy) Lower bound Lower bound Lower bound Lower bound Lower bound	Best known
		max	avg max	avg max	avg max	avg max	avg
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		10: OSP results: Brucker et al. instances (j3-per0-1 -j5-per20-2)	
	Instance	Mistral(bool) T %O UB	Hybrid(vsids, disj) Hybrid(vsids, lazy) Hybrid(bool, disj) Hybrid(bool, lazy) T %O UB T %O UB T %O UB T %O UB
		avg avg min avg avg avg min avg avg avg min avg avg avg min avg avg avg min avg
	j3-per0-1	0 100 1127 1127	0 100 1127 1127	0 100 1127 1127	0 100 1127 1127	0 100 1127
	j3-per0-					
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 5 11: OSP results: Brucker et al. instances (j6-per0-0 -j8-per20-2)

	Instance	Mistral(bool) T %O UB	Hybrid(vsids, disj) T %O UB	Hybrid(vsids, lazy) T %O UB		Hybrid(bool, disj) T %O UB	T	Hybrid(bool, lazy) %O UB
		avg avg min avg	avg avg min avg	avg avg min	avg	avg avg min avg	avg avg min	avg
	j6-per0-0	6.31 100 1056 1056 13.57 100 1056 1056 83.34 100 1056 1056 14.97 100 1056 1056 76.84 100 1056 1056
	j6-per0-1	0 100 1045 1045	0 100 1045 1045	0.01 100 1045 1045	0 100 1045 1045	0 100 1045 1045
	j6-per0-2	0.05 100 1063 1063	0.04 100 1063 1063	0.09 100 1063 1063	0.06 100 1063 1063	0.13 100 1063 1063
	j6-per10-0 0.04 100 1005 1005	0.04 100 1005 1005	0.09 100 1005 1005	0.05 100 1005 1005	0.10 100 1005 1005
	j6-per10-1	0 100 1021 1021	0 100 1021 1021	0 100 1021 1021	0 100 1021 1021	0 100 1021 1021
	j6-per10-2 0.02 100 1012 1012	0.02 100 1012 1012	0.04 100 1012 1012	0.03 100 1012 1012	0.04 100 1012 1012
	j6-per20-0 0.02 100 1000 1000	0.04 100 1000 1000	0.07 100 1000 1000	0.03 100 1000 1000	0.06 100 1000 1000
	j6-per20-1	0 100 1000 1000	0 100 1000 1000	0 100 1000 1000	0 100 1000 1000	0 100 1000 1000
	j6-per20-2	0 100 1000 1000	0 100 1000 1000	0 100 1000 1000	0 100 1000 1000	0.01 100 1000 1000
	j7-per0-0 547.13 100 1048 1048 2684.99 100 1048 1048	3600	0 1048 1049.40 2258.20 100 1048 1048	3600	0 1048 1048.80
	j7-per0-1	2.04 100 1055 1055	1.84 100 1055 1055	6.25 100 1055 1055	2.38 100 1055 1055	6.30 100 1055 1055
	j7-per0-2	1.01 100 1056 1056	0.98 100 1056 1056	2.96 100 1056 1056	1.11 100 1056 1056	3.15 100 1056 1056
	j7-per10-0 1.78 100 1013 1013	1.97 100 1013 1013	7.63 100 1013 1013	2.78 100 1013 1013	8.27 100 1013 1013
	j7-per10-1 0.06 100 1000 1000	0.10 100 1000 1000	0.13 100 1000 1000	0.08 100 1000 1000	0.16 100 1000 1000
	j7-per10-2 70.52 100 1011 1011 148.98 100 1011 1011 1026.13 100 1011 1011 260.55 100 1011 1011 1106.26 100 1011 1011
	j7-per20-0	0 100 1000 1000	0 100 1000 1000	0.01 100 1000 1000	0 100 1000 1000	0 100 1000 1000
	j7-per20-1 0.41 100 1005 1005	0.23 100 1005 1005	0.65 100 1005 1005	0.46 100 1005 1005	0.89 100 1005 1005
	j7-per20-2 1.30 100 1003 1003	0.68 100 1003 1003	2.48 100 1003 1003	1.11 100 1003 1003	2.48 100 1003 1003
	j8-per0-1 723.60 100 1039 1039 2399.62 100 1039 1039	3600	0 1039 1041.30 2775.71 100 1039 1039	3600	0 1039 1040.30
	j8-per0-2	9.78 100 1052 1052 10.94 100 1052 1052 43.34 100 1052 1052 16.40 100 1052 1052 49.25 100 1052 1052
	j8-per10-0 22.46 100 1017 1017 40.56 100 1017 1017 186.31 100 1017 1017 66.05 100 1017 1017 201.28 100 1017 1017
	j8-per10-1 58.68 100 1000 1000 283.50 100 1000 1000 1442.98	90 1000 1000.10 302.86 100 1000 1000 907.38	90 1000 1000.10
	j8-per10-2 177.67 100 1002 1002 519.64 100 1002 1002 2330.50 100 1002 1002 638.96 100 1002 1002 2827.89 100 1002 1002
	j8-per20-0 0.12 100 1000 1000	0.12 100 1000 1000	0.29 100 1000 1000	0.32 100 1000 1000	0.19 100 1000 1000
	j8-per20-1 0.01 100 1000 1000	0.02 100 1000 1000	0.02 100 1000 1000	0.02 100 1000 1000	0.02 100 1000 1000
	j8-per20-2 0.04 100 1000 1000	0.06 100 1000 1000	0.10 100 1000 1000	0.11 100 1000 1000	0.07 100 1000 1000
	average	31.21 100	117.46 100	237.18 95.96		121.97 100	238.29 95.96

Table 5 .

 5 13: OSP: Brucker et al. reduced clause database results (j6-per0-0 -j8-per20-2)

	Instance	Mistral(bool) T %O UB	Hybrid(vsids, disj) T %O UB	Hybrid(vsids, lazy) T %O UB		Hybrid(bool, disj) T %O UB	T	Hybrid(bool, lazy) %O UB
		avg avg min avg	avg avg min avg	avg avg min	avg	avg avg min avg	avg avg min	avg
	j6-per0-0	6.31 100 1056 1056 8.23 100 1056 1056 49.62 100 1056 1056 8.26 100 1056 1056 46.24 100 1056 1056
	j6-per0-1	0 100 1045 1045 0.01 100 1045 1045	0.01 100 1045 1045	0 100 1045 1045	0 100 1045 1045
	j6-per0-2	0.05 100 1063 1063 0.05 100 1063 1063	0.09 100 1063 1063 0.07 100 1063 1063	0.13 100 1063 1063
	j6-per10-0 0.04 100 1005 1005 0.04 100 1005 1005	0.09 100 1005 1005 0.05 100 1005 1005	0.09 100 1005 1005
	j6-per10-1	0 100 1021 1021	0 100 1021 1021	0.01 100 1021 1021	0 100 1021 1021	0 100 1021 1021
	j6-per10-2 0.02 100 1012 1012 0.02 100 1012 1012	0.04 100 1012 1012 0.03 100 1012 1012	0.05 100 1012 1012
	j6-per20-0 0.02 100 1000 1000 0.03 100 1000 1000	0.07 100 1000 1000 0.03 100 1000 1000	0.06 100 1000 1000
	j6-per20-1	0 100 1000 1000	0 100 1000 1000	0 100 1000 1000	0 100 1000 1000	0 100 1000 1000
	j6-per20-2	0 100 1000 1000	0 100 1000 1000	0 100 1000 1000	0 100 1000 1000	0.01 100 1000 1000
	j7-per0-0 547.13 100 1048 1048 736.57 100 1048 1048	3600	0 1048 1048.60 735.44 100 1048 1048	3600	0 1048 1048.20
	j7-per0-1	2.04 100 1055 1055 1.84 100 1055 1055	5.57 100 1055 1055 2.14 100 1055 1055	5.09 100 1055 1055
	j7-per0-2	1.01 100 1056 1056 1.02 100 1056 1056	2.65 100 1056 1056 1.09 100 1056 1056	2.75 100 1056 1056
	j7-per10-0 1.78 100 1013 1013 1.83 100 1013 1013	6.35 100 1013 1013 2.38 100 1013 1013	6.08 100 1013 1013
	j7-per10-1 0.06 100 1000 1000 0.11 100 1000 1000	0.12 100 1000 1000 0.07 100 1000 1000	0.15 100 1000 1000
	j7-per10-2 70.52 100 1011 1011 50.65 100 1011 1011 545.65 100 1011 1011 91.14 100 1011 1011 486.95 100 1011 1011
	j7-per20-0	0 100 1000 1000 0.01 100 1000 1000	0.01 100 1000 1000	0 100 1000 1000	0 100 1000 1000
	j7-per20-1 0.41 100 1005 1005 0.22 100 1005 1005	0.58 100 1005 1005 0.45 100 1005 1005	0.78 100 1005 1005
	j7-per20-2 1.30 100 1003 1003 0.67 100 1003 1003	2.10 100 1003 1003 1.08 100 1003 1003	2.06 100 1003 1003
	j8-per0-1 723.60 100 1039 1039 819.17 100 1039 1039	3600	0 1039 1039.80	916 100 1039 1039	3600	0 1039 1039
	j8-per0-2	9.78 100 1052 1052 8.08 100 1052 1052 30.05 100 1052 1052 10.16 100 1052 1052 33.73 100 1052 1052
	j8-per10-0 22.46 100 1017 1017 17.81 100 1017 1017 92.44 100 1017 1017 29.01 100 1017 1017 105.55 100 1017 1017
	j8-per10-1 58.68 100 1000 1000 68.93 100 1000 1000 309.52 100 1000 1000 86.46 100 1000 1000 607.19 100 1000 1000
	j8-per10-2 177.67 100 1002 1002 154.13 100 1002 1002 1352.30 100 1002 1002 208.54 100 1002 1002 1366.40 100 1002 1002
	j8-per20-0 0.12 100 1000 1000 0.12 100 1000 1000	0.34 100 1000 1000 0.34 100 1000 1000	0.20 100 1000 1000
	j8-per20-1 0.01 100 1000 1000 0.02 100 1000 1000	0.03 100 1000 1000 0.02 100 1000 1000	0.02 100 1000 1000
	j8-per20-2 0.04 100 1000 1000 0.06 100 1000 1000	0.12 100 1000 1000 0.11 100 1000 1000	0.08 100 1000 1000
	average	31.21 100	35.95 100	184.57 96.15		40.25 100	189.69 96.15

Table 5 .

 5 14: Open Shop Brucker et al. instances: Statistics

	Default reduction strategy

•

  Propagation via AtMostSeqCardThe first direct future work regarding AtMostSeqCard is to consider incrementality. Designing an ac algorithm for AtMostSeqCard with a constant time amortized complexity (i.e., O(n) time down a branch) would be a great result.Next, as for any new global constraint, proposing new extensions/particular cases is always an important research avenue in CP. We have already proposed two useful extensions , namely AtMostSeq∆Card and MultiAtMostSeqCard.

	• Explaining AtMostSeqCard
	First, we know that reducing the explanations is always interesting especially
	when learning with global constraints. Recall that our explanation algorithm for
	AtMostSeqCard does not guarantee minimality w.r.t. the size nor does it guar-
	antee it in the inclusion sense. It would be interesting to investigate the question
	of how hard is generating minimal explanations for AtMostSeqCard? Next,
	the application of these explanations to other sequencing problems might be very
	helpful in practice. The crew-rostering problem that we introduced in Section 4.5.2
	is a typical example.
	• Generalizing DomainFaithfulness
	Recall that DomainFaithfulness was proposed to avoid the redundancy issue
	of lazy generation. The proposed version in this thesis supports only bound lit-
	erals. Its generalization is quite simple to conceive following the semantics of the
	constraint. In fact, we only have to perform a complete channeling between the

Other related constraints might also be useful in numerous applications. For instance, it is possible to have a circular form of AtMostSeqCard to model cyclic timetabling and crew-rostering problems. This can be modeled by having a few more AtMost constraints to transform the 'chain' into a 'cycle', however, achieving ac on this constraint in linear time is a tough challenge. Another extension consists in having Among constraints instead of AtMost. The global constraint built this way corresponds to a particular case of Gen-Sequence defined by a conjunction between Sequence and Cardinality. literals x = v , x ≠ v , x ≤ u , and x ≥ l with the corresponding domain. The resulting proposition can be used within any (standard) hybrid CP/SAT solver.

• Learning in Scheduling Problems

  avg avg avg min avg avg avg min avg avg avg min avg avg avg min avg tai10_10_01 0.09 100 637 637 0.07 100 637 637 0.[START_REF] Beck | Trying again to failfirst[END_REF] 100 637 637 0.06 100 637 637 0.13 637 637 tai10_10_02 0.05 100 588 588 0.06 100 588 588 0.08 100 588 588 0.05 100 588 588 0.07 588 588 tai10_10_03 0.06 100 598 598 0.07 100 598 598 0.10 100 598 598 0.04 100 598 598 0.05 598 598 tai10_10_04 0.03 100 577 577 0.05 100 577 577 0.06 100 577 577 0.02 100 577 577 0.03 577 577 tai10_10_05 0.07 100 640 640 0.07 100 640 640 0.11 100 640 640 0.06 100 640 640 0.08 640 640 tai10_10_06 0.03 100 538 538 0.06 100 538 538 0.06 100 538 538 0.03 100 538 538 0.04 538 538 tai10_10_07 0.05 100 616 616 0.05 100 616 616 0.07 100 616 616 0.04 100 616 616 0.04 616 616 tai10_10_08 0.06 100 595 595 0.06 100 595 595 0.11 100 595 595 0.05 100 595 595 0.06 595 595 tai10_10_09 0.05 100 595 595 0.06 100 595 595 0.08 100 595 595 0.05 100 595 595 0.08 595 595 tai10_10_10 0.05 100 596 596 0.06 100 596 596 0.09 100 596 596 0.06 100 596 596 0.06 596 596 tai15_15_01 0.63 100 937 937 0.37 100 937 937 0.45 100 937 937 0.58 100 937 937 0.73 937 937 tai15_15_02 0.54 100 918 918 0.52 100 918 918 0.51 100 918 918 0.45 100 918 918 0.50 918 918 tai15_15_03 0.43 100 871 871 0.35 100 871 871 0.42 100 871 871 0.48 100 871 871 0.49 871 871 tai15_15_04 0.47 100 934 934 0.35 100 934 934 0.44 100 934 934 0.47 100 934 934 0.50 934 934 tai15_15_05 0.64 100 946 946 0.41 100 946 946 0.52 100 946 946 0.58 100 946 946 0.61 946 946 tai15_15_06 0.53 100 933 933 0.35 100 933 933 0.46 100 933 933 0.49 100 933 933 0.53 933 933 tai15_15_07 0.47 100 891 891 0.37 100 891 891 0.46 100 891 891 0.47 100 891 891 0.48 891 891 tai15_15_08 0.47 100 893 893 0.37 100 893 893 0.49 100 893 893 0.45 100 893 893 0.52 893 893 tai15_15_09 0.73 100 899 899 0.51 100 899 899 0.52 100 899 899 0.54 100 899 899 0.74 899 899 tai15_15_10 0.67 100 902 902 0.40 100 902 902 0.54 100 902 902 0.63 100 902 902 0.68 902 902 tai20_20_01 3.63 100 1155 1155 2.37 100 1155 1155 3.10 100 1155 1155 2.96 100 1155 1155 3.31 1155 1155 tai20_20_02 5.93 100 1241 1241 2.44 100 1241 1241 3.67 100 1241 1241 3.74 100 1241 1241 4.62 1241 1241 tai20_20_03 3.02 100 1257 1257 2.15 100 1257 1257 3.01 100 1257 1257 3.06 100 1257 1257 3.21 1257 1257 tai20_20_04 3.51 100 1248 1248 2.19 100 1248 1248 2.65 100 1248 1248 3.34 100 1248 1248 3.17 1248 1248 tai20_20_05 2.92 100 1256 1256 2.21 100 1256 1256 2.85 100 1256 1256 2.72 100 1256 1256 2.87 1256 1256 tai20_20_06 3.57 100 1204 1204 2.44 100 1204 1204 3.19 100 1204 1204 3.47 100 1204 1204 3.41 1204 1204 tai20_20_07 3.93 100 1294 1294 2.59 100 1294 1294 3.35 100 1294 1294 4 100 1294 1294 3.41 1294 1294 tai20_20_08 4.99 100 1169 1169 2.56 100 1169 1169 3.28 100 1169 1169 3.50 100 1169 1169 4.26 1169 1169 tai20_20_09 3.68 100 1289 1289 2.33 100 1289 1289 2.71 100 1289 1289 3.31 100 1289 1289 3.56 1289 1289 tai20_20_10 3.21 100 1241 1241 2.18 100 1241 1241 2.76 100 1241 1241 3.18 100 1241 1241 3.

		Table B.5: OSP: Taillard instances (tai10_10_01 -tai20_20_10)	
	Instance	Mistral(bool) T %O UB	Hybrid(vsids, disj) Hybrid(vsids, lazy) Hybrid(bool, disj) Hybrid(bool, lazy) T %O UB T %O UB T %O UB T %O UB
	avg avg min 18 1241 1241 valeur affectée à la variable x
	average	0.75 100	0.48 100	0.63 100	0.66 100	0.73

i . Une contrainte C ∈ C portant sur un ensemble de variables X caractérise une relation, i.e., un sous-ensemble de tuples du produit cartésien du domaine des variables de X . Une instanciation w est dite cohérente pour une contrainte C ssi elle appartient à la relation correspondante. Une contrainte C est dite arc-consistante

  pire parf ait . La table C.1 présente les valeurs de confiance et d'importance pour chaque critère (y compris la propagation). Cette table montre qu'il y a une grande confiance pour chaque meilleur paramètre en moyenne. Toutefois, les critères de branchement et de sélection sont beaucoup plus importants que les autres. On peut donc considérer les heuristiques ⟨class, {lex, mid}, δ, {≤ ∑ , ≤ Euc , ≤ lex }⟩ comme les plus robustes.

Propagation dans une classe de problèmes de séquen- cement

  Table C.1: confiance et importance pour chaque critère Dans cette section, nous introduisons un algorithme de complexité temporelle optimale pour effectuer la cohérence d'arc sur la contrainte AtMostSeqCard. Nous présentons par la suite des expérimentations pour évaluer l'efficacité de nos propositions sur le problème de car-sequencing. Enfin, nous décrivons deux adaptations de cet algorithme avec des contraintes plus générales.

	C.4		
		confiance importance
	Branchement	0.989	0.247
	Sélection	0.995	0.231
	Exploration	1.000	0.017
	Agrégation	0.995	0.015
	Propagation	0.996	0.217

C.4.

1 Propagation de la contrainte AtMostSeqCard

  p, q, d ∈ N et [x 1 , . . . , x n ] une séquence de variables booléennes. La contrainte AtMostSeqCard que nous proposons se définit par une conjonction d'une chaîne de contraintes AtMost (i.e. de type ∑

	Soit n-q ⋀ i=0	(	q l=1

q l=1 x i+l ≤ p) avec une contrainte de cardinalité. Definition C.1.

AtMostSeqCard(p, q, d, [

x 1 , . . . , x n ]) ⇔

  pure-CP : Le modèle PPC sans apprentissage en utilisant AtMostSeqCard et la même heuristique que hybrid (Slot). La table C.3 présente un résumé pour ces tests. Pour chaque groupe d'instances, nous présentons le nombre total de tests réussis (#suc), le nombre d'échecs rencontrés (fails) et le temps CPU (time) en secondes. Nous montrons les statistiques des meilleures configurations (par rapport à #suc) en gras.En considérant la moyenne générale entre les deux premiers groupes, la meilleure configuration est celle qui utilise l'apprentissage de clauses avec l'heuristique spécifique à ce problème. Cette étude montre que la propagation est très importante pour trouver rapidement des solutions en évitant les branches inutiles de l'arbre de recherche. Pour prouver l'insatisfiabilité, les modèles purement SAT sont de loin les meilleurs configurations. En ce qui concerne les modèles hybrides, on note qu'elles sont beaucoup plus performantes que le modèle PPC. Ce dernier n'est pas capable de trouver des preuves pour la moindre instance. Ces résultats montrent clairement que l'apprentissage de la clauses est le facteur le plus important pour prouver l'insatisfiabilité.

Table C . 3 :

 C3 Apprentissage de clauses appliqué au Car-sequencing

	Méthode	sat[easy] (74 × 5) #suc avg fails time #suc avg fails sat[hard] (7 × 5) time #suc avg fails unsat (28 × 5)	time
	CNF A	370	2073	1.71	28 337194 282.35	85 249301 105.07
	CNF S	370	1114	0.87	31	60956 56.49	65 220658 197.03
	CNF A+S	370	612	0.91	34	32711 36.52	77 190915 128.09
	hybrid (VSIDS)	370	903	0.23	16 207211 286.32	35 177806 224.78
	hybrid (VSIDS → Slot)	370	739	0.23	35	76256 64.52	37 204858 248.24
	hybrid (Slot → VSIDS)	370	132	0.04	34	4568	2.50	37 234800 287.61
	hybrid (Slot)	370	132	0.04	35	6304	3.75	23 174097 299.24
	pure-CP	370	43.06	0.03	35	57966 16.25	0	-	-
	PBO-clauses	277 538743 236.94	0	-	-	43 175990 106.92
	PBO-cutting planes	272	2149 52.62	0	-	-	1	5031	53.38

  où il a été montré que ce modèle est compétitif et parfois meilleur que des modèles utilisant des méthodes de propagation plus sophistiquées. Nous considérons le problème d'ordonnancement d'atelier de type «Job shop». Nous considérons la définition d'un job comme un ensemble de tâches. Soit n, m ∈ N* , J = {J i 1 ≤ i ≤ n} un ensemble de jobs et M = {M k 1 ≤ k ≤ m}un ensemble de machines. Chaque job J i est défini par m tâches {T ik 1 ≤ k ≤ m} tel que T ik nécessite la machine k. Inversement, chaque machine M k est associée à n tâches {T ik 1 ≤ i ≤ n}. Chaque tâche T ik a une durée de traitement p ik au court de la quelle la machine M k est allouée exclusivement au job i. Soit t ik la variable représentant le début de la tâche T ik . Pour tout k ∈ [1, m], la contrainte de ressource unaire associée à la machine M k peut être exprimée de la façon suivante : ∀i ∈ [1, n], ∀j ∈ [1, n] tel que i < j t ik + p ik ≤ t jk ∨ t jk + p jk ≤ t ik (C.1) Nous utilisons une décomposition simple utilisant des contraintes réifiées avec O(n 2 ) variables booléennes δ kij par machine M k liée avec les variables de tâches de la façon Dans ce qui suit, nous utilisons la notation Disjunctive(b, x, y, d x , d y ) pour noter la contrainte exprimée dans C.2 instanciée à (δ kij , t ik , t jk , p ik , p jk ). En plus des contraintes de type Disjunctive, ce problème nécessite pour chaque job un ordre total sur ses tâches. Nous allons donc supposer que T ik j est la j eme tâche demandée par le job J i . L'ordre des tâches pour chaque job est exprimée par des contraintes de précédence. Soit x, y deux variables et d un entier. La contrainte de précédence Precedence(x, y, d) est définie de la façon suivante : x + d ≤ y.Le problème de job shop à minimisation de makespan peut etre défini comme suit :minimiser C max tel que : ∀i ∈ [1, n] ∶ Precedence(t ikm , C max , p ikm ) ∀k ∈ [1, m], ∀i ∈ [1, n], ∀j ∈ [1, n], i < j ∶ Disjunctive(δ kij , t ik , t jk , p ik , p jk ) ∀i ∈ [1, n], ∀a ∈ [1, m -1] ∶ Precedence(t ik j , t ik j+1 , p ik j ) old new old new old new old new old new old 1305 1282 1613 1573 1514 1474 1543 1518 1561 1558 1573 1525 1508 1485

	C.5.3.1 Modélisation Table C.5: Nouvelles bournes inférieures	
	tai13	tai21	tai23	tai25	tai26	tai29	tai30
	new old new					
							(C.3)

suivante : ∀i ∈ [1, n], ∀j ∈ [1, n], i < j δ kij = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0 ⇔ t ik + p ik ≤ t jk 1 ⇔ t jk + p jk ≤ t ik (C.2)
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This part constitutes a joint work with Valentin Mayer-Eichberger and Toby Walsh. While the experimental observations were discussed together, the rest of the paper is organized in two clear different parts. The SAT part is solely proposed by Mayer-Eichberger and Walsh while the hybrid propositions constitutes our own contributions.

The latest version is available via http://sofdem.github.io/gccat/.

Note that the term "lazy" might refer to completely different notions depending on the context (such as Integer Linear Programming). We therefore insist to mention that we use this term to respect the exact terminology used in[START_REF] Ohrimenko | Propagation = Lazy Clause Generation[END_REF][START_REF] Ohrimenko | Propagation via Lazy Clause Generation[END_REF][START_REF] Feydy | Lazy Clause Generation Reengineered[END_REF][START_REF] Feydy | Semantic Learning for Lazy Clause Generation[END_REF].
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This model can be found for instance in Ilog-Solver 6.7.

Those values were arbitrarily chosen. The impact of branching on an option variable being lower, a higher probability was necessary.

Since set3 contains only unsatisfiable instances, then %sol corresponds to the percentage of instances for which the solver proves unsatisfiability.

This modeling choice is used in[START_REF] Jan Van Hoeve | New filtering algorithms for combinations of among constraints[END_REF] on car-sequencing.

http://homepages.laas.fr/ehebrard/mistral.html

i ub and i lb are implemented as a "reversible" integer.

As by March 15th, 2015, we noticed an accepted paper to the CPAIOR'15 conference[START_REF] Vilím | Failure-directed search for constraint-based scheduling[END_REF] in which the authors report several new bounds for these instances (and many other scheduling benchmarks). Their lower bounds are greater than or equal to the values found in our experiments. It should be noted, however, that they use a 30000s time cutoff, a parallelization phase with two threads, in addition to starting search by using the best known bounds as an additional information. Our approach is quite different since we start search from scratch without parallelization, and each instance is limited to 3200s time cutoff.

https://help.github.com
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across all heuristics, the "worst" filtering method (decomposition into sum constraints) is successful in about 20% less runs than the best (Gsc+ AtMostSeqCard). However, now averaging across all four models, the worst heuristic ⟨opt, lex, nσ, -⟩, is successful 56% less runs than one of the many heuristics solving all easy instances (see Table 3.4).

For harder instances (set2, set3 and set4 ), these choices are even more important, with a 42% gap between the best and worst model, whilst the worst heuristics (in this case ⟨opt, lex, p q, -⟩) do not solve any instances.

It is hardly a surprise to observe that the choice of search strategy is a critical one.

However, whilst the aim of this study was to better understand what makes a good heuristic for the car-sequencing problem, it was relatively surprising to find out that minor variations around known heuristics would bring such a substantial gain.

Summary

We empirically studied in this chapter a large set of heuristics for the car-sequencing problem and proposed to classify these heuristics using 4 criteria: the type of branching decisions; the exploration order; the selection of the most constrained options; and the aggregation function for the options. Several new heuristics arise from this classification as untested combinations. Our experiments show that a single criterion can drastically impact the behavior of the heuristic. Moreover, it also gives a clear separation between the most important criteria (branching and selection) and the other factors (exploration and aggregation). Furthermore, this study shows that branching and variable ordering are as important as the propagation aspect in this problem.

Chapter 4

Propagation in Sequencing Problems

Algorithm 10: leftmost_count Data: p, q, [x 1 , . . . , x n ] Result: count ∶ [0, . . . , n] ↦ [0, . . . , n] foreach i ∈ [1, . . . , n] do w[i] ← min(x i ); occ[i] = 0;

simplify the notations, we will consider that w[-q], w[-q + 1], . . . , w[-1] exist and are equal to 0. Thus we can write that the cardinality of the j th is equal to

We prove the first invariant by induction, i.e., let P (i) denote the fact that the following equalities hold at the beginning of a step i:

. , q]

The base case P (1) is easily checkable from the initialization of c. Now suppose that P (i) holds, and consider the state of c at the beginning of step i + 1.

First, note that at step i of the loop, only the value of c[i -1 mod q] changes. Consider to complete the filtering. The procedure leftmost_count returns an array L where

). The value of L[i] represents the maximum possible cardinality that the sequence [x 1 , .., x i ] might additionally have while respecting all the AtMost constraints. We define the array R to be the result of leftmost_count on the reverse sequence [x n , .., x 1 ]. Let d res = d -∑ n i=1 min(x i ) be the remaining cardinality to satisfy. To complete the filtering, we use the following rules:

1. If L[n] < d res , then a failure is raised.

If L[n]

= d res , then for all unassigned variable x i :

Now in order to explain AtMostSeqCard, we make the distinction between the possible changes made by AtMostSeq or Cardinality on one hand, and the extra filtering that we obtain using leftmost_count on the other hand.

Explaining AtMostSeq & Cardinality

Explaining

AtMostSeq

We proceed here by propagating

AtMostSeq(p, q, [x 1 , . . . , x n ]) with the decomposition into all possible AtMost constraints of size q. Recall that this decomposition does not hinder propagation (Section 4.2). Algorithm 13 shows an ac propagator for AtMost([x 1 , . . . , x q ], p).

On the one hand, when a failure is raised because of Line 1, the set of all variables assigned to 1 constitutes a possible reason triggering the failure. We therefore use the following propagation rule to explain a failure:

lb ← f alse; ub ← f alse; changed ← f alse; //i ub and i lb can be modified later with U B(i, i ub ) and LB(i, i lb ) respectively.

We use a list Θ containing indices of newly assigned variables in the scope of the constraint. We assume that Θ is globally modifiable by all algorithms and that the index of the variable x is 0 and b i is i for all i ∈ [1.

.n].

We show how the two parts of filtering are maintained by one call to Algorithm 15.

Simulating UP:

Suppose that all atoms b 1 , . . . , b n are eagerly generated with all domain clauses. The set of these clauses can be described with {¬b

There are two possible scenarios of propagation depending on the assignment of a variable b i .

• b i becomes assigned to 1: In this case, UP propagates the clause We start again by giving a full description of the filtering used for this constraint. We show a BC propagator in Algorithm 20. The only missing explanations to generate are the ones related to the assignments of b.

We explain them using the following propagation rules:

The values l x , u x , l y , and u y must be those used at the time of propagation. We store these values once the propagator assigns b. 

Conclusion

We brought contributions to each of the three aspects of constraint programming that are 'search', 'propagation' and 'learning' for efficiently solving sequencing and scheduling problems. This case study strongly supports my thesis, that modern constraint programming solvers may not underestimate any of these three aspects.

Case Study: Car-Sequencing We proposed a complete approach for tackling the car-sequencing problem, with contributions on search, propagation and learning. This approach represents the state of the art for complete methods for this problem.

We proposed a new classification of search heuristics for this problem. This classification is based on a set of four criteria: branching variables, exploration directions, selection of branching variables and aggregation functions for this selection. Thanks to this classification, many heuristics were used for the first time in the form of untested configurations. We were able to indicate with a relatively high confidence the most robust strategies. Furthermore, we showed that the choice of the heuristic is often as important as the propagation method.

We then introduced a family of filtering algorithms for a class of sequence constraints.

We first designed a simple filtering rule called Slack-Pruning that can be used only when using a specific type of branching choices for the car-sequencing problem. This filtering relies on reasoning simultaneously about capacity and demand constraints. We proposed next a generalization of this pruning in the form of a complete filtering for a new global constraint that we called AtMostSeqCard. This constraint can be used to model a number of sequencing problems including car-sequencing and crew-rostering.

The filtering that we proposed for AtMostSeqCard runs in O(n) time in the worst case which is optimal, whereas the previously best known method required a cubic compilation phase and then ran in O(n 2 log(n)). Furthermore, we showed that this algorithm can be adapted to achieve a complete filtering for some extensions of this There are three possible research avenues:

▸ Application to other scheduling problems.

It is quite straightforward to apply our learning models with other disjunctive scheduling problems. Examples of direct extensions include mainly variants of job shop scheduling with time lags, sequence dependent setup times, and earliness/tardiness costs. There are perhaps additional constraints to explain, however the underlying models/solver is essentially the same.

Furthermore, it would be interesting to adapt our learning propositions for more (general) scheduling problems such as the Resource Constrained Project Scheduling Problem (RCPSP).

▸ Learning with global constraints.

The learning mechanisms that we introduced for disjunctive scheduling are implemented on top of the 'Light' models proposed in [START_REF] Grimes | Closing the Open Shop: Contradicting Conventional Wisdom[END_REF][START_REF] Grimes | Job Shop Scheduling with Setup Times and Maximal Time-Lags: A Simple Constraint Programming Approach[END_REF][START_REF] Grimes | Models and Strategies for Variants of the Job Shop Scheduling Problem[END_REF]. These models use very limited propagation mechanisms. It would be interesting to add some extra filtering, such as edge-finding and detectable precedences [START_REF] Vilím | Global Constraints in Scheduling[END_REF],

and evaluate the impact of clause learning with such models.

▸ Hand-crafted learning.

The experimental results of the Disjunctive-based learning showed that classical conflict analysis is not necessarily the best choice in practice. An interesting future research avenue is to study possible hand-crafted learning schemes with other problems.

Appendix A

Reproducing the Disjunctive Scheduling Experiments

We give in this appendix sufficient details to reproduce the scheduling experiments. The source code is available via github at https://github.com/siala/Hybrid-Mistral.

After cloning the repository 1 , the following command line is needed to use the exact version of the solver for all the tests: The command used to compile the source is the following:

$ make scheduler

The general command syntax for the tests is the following:

where BENCHNAME is the instance file location and '-type [jla jsp osp]' indicates its type. The option '-seed v' is needed to precise the value of the randomisation seed 'v'. The 10 seeds that we used in these tests range from 11041979 to 11041988.

The instances are available in: 

Résumé étendu

Nous décrivons brièvement les contributions principales de la thèse dans ce résumé étendu.

C.1 Introduction

La Programmation Par Contraintes (PPC) est un paradigme riche et générique pour résoudre les problèmes combinatoires d'une manière efficace. Face à l'explosion combinatoire, la PPC s'appuie typiquement sur des mécanismes de filtrage (ou de propagation) afin de réduire l'espace de recherche. De plus, des approches hybrides récentes de type SAT/PPC ont montré des résultats remarquables pour résoudre des problèmes largement dominés par d'autres approches (voir par exemple [START_REF] Schutt | Solving rcpsp/max by lazy clause generation[END_REF]). Ces méthodes déploient essentiellement des procédures d'analyse de conflits permettant l'apprentissage de nouvelles contraintes sous forme de clauses ce qui permet un élagage avancé de l'espace de recherche. L'analyse de conflit se base essentiellement sur la notion d'explication de contrainte afin de simuler le comportement des solveurs SAT.

Cette thèse vise à contribuer à la résolution des problèmes de séquencement et d'ordonnancement dans un contexte de Programmation Par Contraintes avec apprentissage de clauses. Les contributions présentées dans cette thèse se résume en sept points.

1. Une étude approfondie des heuristiques de branchement pour le problème de carsequencing 2. Une nouvelle règle de filtrage simple et efficace dédiée au problème de car-sequencing.

3. Un algorithme de filtrage complet et optimal pour une classe de problèmes de séquencement tel que le car-sequencing ou encore les problèmes de type «confection d'horaires d'équipages» (crew-rostering).

C.2.2 Apprentissage de clauses dirigé par les conflits

Nous allons donner une description générale du fonctionnement des solveurs SAT avant de passer aux méthodes hybrides. 

C.2.2.1 SAT

C.2.2.2 Méthodes hybrides SAT/PPC

Il existe une multitude de systèmes hybrides SAT/PPC dans la littérature. Nous allons utiliser un formalisme très récent en se basant sur les travaux de la 'Génération de Clauses Retardée' désignée par (LCG) pour «Lazy Clause Generation» [START_REF] Ohrimenko | Propagation via Lazy Clause Generation[END_REF][START_REF] Ohrimenko | Propagation = Lazy Clause Generation[END_REF][START_REF] Feydy | Lazy Clause Generation Reengineered[END_REF][START_REF] Feydy | Semantic Learning for Lazy Clause Generation[END_REF].

L'idée principale est de garder l'utilisation des propagateurs et de les considérer comme générateurs de clauses afin de simuler CDCL.

Nous allons utiliser la notion de littéral l pour représenter une contrainte unaire de type x ≤ v , x ≥ v , x = v , x ≠ v . Dans LCG chaque propagateur est sensé être capable d'«expliquer» toutes ses actions en termes de règles de propagation. Une règle de propagation est une implication logique sous la forme Ψ ⇒ l telle que la contrainte unaire associée à l est appelée par le propagateur en question et Ψ est une conjonction de littéraux suffisante pour propager l. Pour chaque littéral l, nous allons noter par • propag(l) : le propagateur responsable au changement de domaine représenté par l.

• explication(f, l) : la prémisse Γ de la règle de propagation Γ ⇒ l retournée par le propagateur reason(l).

Les notions de propag et explication sont étendues pour l'échec ⊥. D'une façon très similaire à l'analyse de conflit décrite précédemment pour CDCL, nous introduisons dans algorithme 2 un pseudo-code d'analyse de conflit utilisé dans les solveurs hybrides modernes (par exemple [START_REF] Feydy | Semantic Learning for Lazy Clause Generation[END_REF]).

Cet algorithme est présenté d'une manière assez flexible afin de supporter différents modes d'apprentissage. D'abord la génération des explications peut être effectuée d'une 

C.4.2 Expérimentations avec le problème de car-sequencing

Nous présentons dans cette section les résultats expérimentaux de l'algorithme de propagation appliqué au problème de car-sequencing. Ces expériences ont été effectuées sur un processeur Intel Xeon à 2.67GHz sous Linux. Les développements ont été faits avec Ilog-Solver 6.7 avec 5 exécutions aléatoires de chaque instance de 20 minutes. 

C.5 Apprentissage de clauses

Nous présentons dans cette section nos contributions liées à l'apprentissage de clauses.

Soit [x 1 , . . . , x n ] une séquence de variables booléennes sujette à la contrainte AtMostSeqCard(p, q, d, [x 1 , . . . , x n ]). Nous associons tout domaine D pour x 1 . . . x n à un domaine plus large D défini de la façon suivante : Différent modèles sont expérimentalement testés. Ils sont organisés de la façon suivante :

• Mistral(task) : Le modèle PPC sans apprentissage en utilisant taskDom tw comme heuristique.

• Hybrid(θ, σ) : Le modèle hybride SAT/PPC avec :

θ ∈ {vsids, task} l'heuristique de branchement.

σ : égale à disj si on utilise la nouvelle méthode d'analyse de conflit et lazy si on utilise la génération retardée d'atomes via DomainFaithfulness.

Nous utilisons deux types de jeux de données largement étudiés dans la littérature : les instances de Lawrence [START_REF] Lawrence | Supplement to Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques[END_REF] et les instances de Taillard [START_REF] Taillard | Benchmarks for basic scheduling problems[END_REF]. Les dernières sont beaucoup plus difficiles et contiennent encore 32 instances ouvertes. Nous avons lancé toutes les instances avec 10 graines différentes pour le générateur de nombres aléatoires.

Les expériences sont organisées en deux parties : une qui respecte la description que nous avons donnée de la stratégie de recherche et l'autre conçue spécifiquement pour améliorer les bornes inférieures pour les instances ouvertes de la littérature.