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In this research, we address the problem of retrieving services which fulfil users' need expressed in query in free text. Our goal is to cope the term mismatch problems which affect the effectiveness of service retrieval models applied in prior research on text descriptions-based service retrieval models. These problems are caused due to service descriptions are brief. Service providers use few terms to describe desired services, thereby, when these descriptions are different to the sentences in queries, term mismatch problems decrease the effectiveness in classical models which depend on the observable text features instead of the latent semantic features of the text.

We have applied a family of Information Retrieval (IR) models for the purpose of contributing to increase the effectiveness acquired with the models applied in prior research on service retrieval. Besides, we have conducted systematic experiments to compare our family of IR models with those used in the state-of-the-art in service discovery. From the outcomes of the experiments, we conclude that our model based on query expansion via a co-occurrence thesaurus outperforms the effectiveness of all the models studied in this research. Therefore, we have implemented this model in S 3 niffer, which is a text description-based service search engine.

S 3 niffer (a Sniffer dog for Searching Services) is the main contribution of this research. This is a system designed to find services by comparing the similarity between their descriptions1 and users' queries expressed in free text. The name of the system is inspired by sniffer dogs which are able to find preys. In this context, preys are services. The assumption of this research is that descriptions in OWL-S profiles provide the required information to apply IR models for discovering services.

Résumé

Dans cette recherche, nous abordons le problème de le recherche de services qui répondent à des besoins des utilisateurs exprimés sous forme de requête en texte libre. Notre objectif est de résoudre les problèmes qui affectent l'efficacité des modèles de recherche d'information existant lorsqu'ils sont appliqués à la recherche de services dans un corpus rassemblant des descriptions standard de ces services.

Ces problèmes sont issus du fait que les descriptions des services sont brèves. En effet, les fournisseurs de services n'utilisent que quelques termes pour décrire les services souhaités. Ainsi, lorsque ces descriptions sont différentes des phrases dans les requêtes ce qui diminue l'efficacité des modèles classiques qui dépendent de traits observables au lieu de traits sémantiques latents du texte.

Nous avons adapté une famille de modèles de recherche d'information (IR) dans le but de contribuer à accrotre l'efficacité acquise avec les modèles existant concernant la découverte de services. En outre, nous avons mené des expériences systématiques afin de comparer notre famille de modèles IR avec ceux de l'état de l'art portant sur la découverte de service. Des résultats des expériences, nous concluons que notre modèle basé sur l'extension des requêtes via un thésaurus co-occurrence est plus efficace en terme des mesures classiques utilisées en IR que tous les modèles étudiés dans cette recherche. Par conséquent, nous avons mis en place ce modèle dans S 3 niffer qui est un moteur de recherche de service basé sur leur description standard.

ix

Resumen

En esta investigación, nosotros abordamos el problema de extraer servicios que satisfagan las necesidades de los usuarios, las cuales son expresadas en consultas en texto libre. Nuestro objetivo es resolver los problemas relacionados con la correspondencia de términos, los cuales afectan la efectividad de los modelos de extracción de servicios aplicados en previas investigaciones en extracción de servicios basada en descripciones de texto. Tales problemas son causados porque la descripción de servicios son breves. Los proveedores de servicio usan pocos términos para describir los servicios deseados, por ende, cuando las descripciones son diferentes a las frases en las consultas, los problemas de correspondencia de términos reducen la efectividad en modelos clásicos que dependen de las características observables del texto en vez de las características semánticas latentes.

Nosotros hemos aplicado una familia de modelos de extracción de información con el propósito de contribuir a incrementar la efectividad adquirida con los modelos aplicados en previas investigaciones en extracción de servicios. Además, nosotros realizamos experimentos para comparar nuestra familia de modelos de extracción de información con aquellos usados en el estado del arte en descubrimiento de servicios. De los resultados experimentales, se concluye que nuestro modelo basado en expansión de consulta via un tesauros de co-ocurrencias, supera la efectividad de todos los modelos estudiados en esta investigación. Por lo tanto, nosotros hemos implementado este modelo en S 3 niffer, el cual es un motor de búsqueda de servicios basado en descripciones textuales.
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A very special thanks to my dear supervisor in France, Marie-Christine Fauvet. It has been a pleasure and honor to work under her guidance. I love her pragmatic Abstract In this Chapter we state and motivate the problem addressed in this research, in general terms, retrieving services which satisfy users' requirements expressed in free text queries. In special, we delve into the problems which affect the effectiveness of the service retrieval process. Therefore, we aim at applying an Information Retrieval (IR) model which outperforms the effectiveness of models applied in prior research on service retrieval. The contribution of our research is threefold: 1) The application of a family of IR models for retrieving services.

To the best of our knowledge, none of them have been used in prior research on service retrieval. 2) An empirical study conducted to identify the IR model with the highest effectiveness in the context of service retrieval.

3) The implementation of S 3 niffer, which is a text description-based service retrieval system. Furthermore, we define the scope of our research.

Introduction

In this research we aim to cope the problem of finding Web services that fulfil users' requirements expressed in free text queries, i.e., queries composed by one or several terms instead of a specific language with operators. For users, building up query expressions with free text (e.g., I want to book a room for 3 nights) is easier than learning and using a specific language with operators (e.g., SPARQL, RDF query language, Structured Query Language, etc.). S 3 niffer is the resulting tool of this research. S 3 niffer is a service search system based on an Information Retrieval (IR) model proposed in this research. S 3 niffer is part of the system sketched in Figure 1.1. This system is designed to provide mobile users with services [START_REF] Na-Lumpoon | Illustrating some issues raised when designing context-aware personalized services for mobile users[END_REF], 2013). For instance, services to book a room, or reserve the table in a restaurant located in a certain city, etc. The role of each module, and flow of information are detailed as follows:

1. User interaction and query management module aims at managing user connections and getting queries submitted by users and sent using their mobile device. Users' queries, identifications, and context information are received by this module in the data flow (1). This module extracts from the query all necessary information for the discovery, composition, and execution of services. 2. The module User management System is in charge of managing users' context and profile with respect of their privacy. This module receives the users' identifications in the data flow (2). Thereafter, this module sends forward by means of the data flow (3) users' queries, context and class of profile. 3. Discovery system: this is S 3 niffer. Given a user's query (received in the data flow (3)), what are the services which may potentially meet the user's needs expressed in such query? The services which fulfil the user's needs are sent, in the data flow (4), to the next module. 4. Eventually the module Composition and orchestration system composes operations exposed by services returned by the discovery module, and then execute the resulting composite service. During its execution the service might require information from the interaction between the user and the system (see flow ( 5)).

Our research focuses only on the issues raised by the question in the third above mentioned item. Therefore, S 3 niffer is the discovery system in Figure 1.1. The remainder of this chapter is outlined as follows: In Section 1.2, we illustrate an example about a tourist, who uses the system depicted in Figure 1.1. With this example we aim to motivate the need of a system like S 3 niffer to seek services in the context of the tourism domain. In Section 1.3, we present the mathematical notation followed in the rest of the thesis. In Section 1.4, we state the problem addressed in our research. Besides, we presents the aim of this thesis. In Section 1.5, we delve into the reasons which motivated this research. In Section 1.6, we explain the dataset, experiments, and the observed variables. In Section 1.7, we present contributions, assumptions, and limitations of the thesis. Finally, in Section1.8, we outline the next chapters of this work.

An illustrative example

Alice is an American tourist visiting Paris in France. She has forgotten to book a room. Thus, she picks up her smartphone and accesses the system above mentioned (see Figure 1.1), and submits the query: I want to book a room for 3 nights from tonight. Moreover, the system captures Alice's context information, namely: coordinates = "48.2167 • N, 2.3332 • E" and date = "1/06/2014". Besides, the system has the following information about Alice's profile: name = "Alice", citizenship="USA", travelPurpose="tourism", gender="female".

Thereafter, S 3 niffer searches services for booking a room. It gives to the Composition and Orchestration System (COS) a ranked list of candidate services for booking rooms in hotels. The service which has the highest rank in this list contains the following operation: BookARoom, this operation receives as parameters the name of the hotel, the number of nights and persons who shall stay in the room, the date and time to check-in, and the user's name and telephone number. As a result, the operation returns a confirmation whether the room has been booked or not.

COS executes this operation, and Alice successfully book a room in Novotel hotel. The Alice's context information is used by the COS to execute services.

At 4 PM, she wants to book a table at the finest restaurant in the city, and the direction to get there. Once again, she uses the same system and submits the query: I want to book a table for 2 people at the finest restaurant in the city, and the direction to the restaurant. At this time, Alice's profile has not been changed, and the system captures the following Alice's context information: coordinates = "48.8567 • N, 2.3508 • E" and date = "1/06/2014".

This query has two requirements, then the User Interaction and Query Management (UIQM) module splits this query in two subqueries. Therefore, the first query submitted to S 3 niffer is I want to book a table at the finest restaurant in the city. The second query submitted to S 3 niffer is the direction to the restaurant. S 3 niffer shall send to the COS two ranked lists of candidate services, which correspond with each subquery. From the list of candidate services that may fulfil the first subquery, the one which has the highest rank contains the following operations:

• FindFinestRestaurant: This operation receives as a parameter the name of the city where the user is looking for the finest restaurant. The operation returns the name and the address of the restaurant.

• BookRestaurant: This operation receives as parameters the restaurant name, the number of persons, and the user's name and telephone number. As a result, the operation returns a confirmation whether the table has been booked or not.

In the another ranked list of candidate services that fulfils the second subquery, the one which has the highest rank contains the following operations:

• FromCoordinatesToCity: Given the geographical coordinates, this operation returns the name of the city where is allocated the coordinates of certain point of interest.

• CoordinatesFromAddress: Given an address, this operation returns its geographical coordinates.

• GetDirection: This operation provides instructions on how to reach a destination.

This operation receives two parameters, the coordinates of the starting point, and the coordinates of the destination.

COS takes the operations of both services and compose them. The execution of the resulting composite service fulfils both Alice's needs (i.e., booking a table in the finest restaurant of the city, and knowing the direction to go there).

On that night, while she is enjoying a delightful dinner in Le Meurice restaurant, Alice is wondering about the weather in the next day. She needs this information to decide whether she will go to Louvre museum or Euro Disney. One more time, she uses the system and submits the following query: I want to buy a ticket for Euro Disney tomorrow if the weather forecast is sunny, otherwise, buy a ticket for Louvre museum. At this time, Alice's profile is still the same, however, her new context information is as follows: coordinates = "48.8651 • N, 2.3280 • E" and date = "1/06/2014".

Similar to the previous query, this one contains three requirements, therefore the UIQM module splits the query in three subqueries. The first subquery is to buy a ticket for Euro Disney tomorrow. The second subquery is the weather forecast is sunny. The last subquery is buy a ticket for Louvre museum. All three subqueries are sent to S 3 niffer, thereby it sends three lists of services to the COS. From the list of candidate services that may fulfil the first subquery, the one which has the highest rank contains the following operation: BuyTickets4EuroDisney, this operation receives as parameters the name of the customer, the number of required tickets, information of a credit card, etc. As a result, the operation returns a confirmation whether the transaction has been successfully finished or not.

In the another ranked list of candidate services that may fulfil the second subquery, the one which has the highest rank contains the following operation: GetWeatherForecast, this operation returns the weather for a given city of a certain country, and for a given date.

In the ranked list of candidate services that may fulfil the last subquery, the one which has the highest rank contains the following operation: BuyTick-ets4LouvreMuseum, this operation receives similar operation as the one to by tickets for Euro Disney, besides, the result of this operation is the same.

In the same fashion as before, the COS composes all operations of previous services. The execution of the resulting composite service fulfils Alice's requirements regarding her condition.

With the above mentioned system, users are able to consume services accessible on the Internet, from their mobile devices. Besides, service providers do not need to produce front-end applications, which serve as interfaces to access their services. This thesis addresses the problem of searching services for fulfilling specific users' requirements.

Mathematical notation

In this section we introduce the mathematical notation which shall be used in this thesis. Vectors and matrices are denoted by bold letters. However, uppercase letters denote matrices (e.g., Y), while lowercase letters represent vectors (e.g., x). A superscript T is used to denote the transpose of either matrices or vectors (e.g., x T or Y T ).

Vectors are assumed to be column vectors, hence, a vector with m elements is written as w = (w 1 , . . . , w m ) T , whereas the i th element of a vector w is denoted as either w i or (w) i . Besides, x T is a row vector. We will use the notation a ∈ IR to indicate that a is a scalar, likewise, x ∈ IR m is a m-dimensional vector, and Y ∈ IR m×n is a matrix, which has n column vectors, all of them belong to a real-valued m-dimensional vector space. Moreover, an element of the matrix Y, located in the i th row and the j th column, is denoted either Y ij or (Y) ij .

Finally, {b i } n i=1 represents a set of n elements, where i indexes different elements that belong to it.

Problem statement and research aim

Given a query in free text, the problem of discovering services has been addressed with Information Retrieval (IR) models. In this context, collections of WSDL1 documents have been preprocessed, indexed, and used to retrieve services which may fulfil a specific requirement. Such document contains a syntactically-based description. It includes service name, operations name and signature, and sometimes descriptions in natural language are also given, which are commentaries written by programmers. Despite that WSDL is the standard service description, we have adopted OWL-S [START_REF] Burstein | OWL-S: Semantic markup for web services[END_REF] which is an OWL 2 -based format for describing, discovering, composing, enacting, and monitoring services. With OWL-S it is possible to describe WSDL-based services as well as those based on REST-ful 3 architecture.

With OWL-S, the functional description of a service is given in its profile in a way that it is suitable for a software agent searching for services [START_REF] Burstein | OWL-S: Semantic markup for web services[END_REF]. Figure 1.2 depicts a chunk of code of a service profile described in a OWL-S document. Tags <profile:serviceName> and <profile:textDescription> introduce the name of the service and its description in free text, respectively. The problem is to measure the extent to which this information matches a query, which is the mean utilised by users in an attempt to communicate their needs to a system designed for discovering services. This problem is known in Computer Science as an IR problem. Thus, several service descriptions are collected from their respective OWL-S profiles. Herein the collection of service descriptions is denoted as C = {s d } n d=1 , where s d is a text description of a service, and n is the number of services. Given a query Q, S 3 niffer aims to rank each description s d with a score, which the greatest score is for the most relevant services to the query. Relevant services are what the user would like to find, and their respective descriptions may be regarded as containing the expected answer to a given user's query. Nevertheless, a service is relevant whether, actually, it fulfils a specific user's need rather than its description match most of terms used in the query. The problem is to find a model based on a retrieval function f to score each service description with respect to the query in order to rank all the descriptions according their scores, i.e., ∀s d to compute f (Q, s d ) ∈ IR such that d = 1, . . . , n. Service descriptions are sentences or paragraphs, which are briefer than usual documents (e.g., books, Web pages, etc.) (see Figure 1.2). Indeed, after removing all stop words in the collection called OWLS-TC4 4 , it has:

• minimum 3 terms per description, • 8 terms per description in the first quartile, • a median of 9 terms per description,

4

The OWL-S profiles from the collection named OWLS-TC4 (http://projects.semwebcentral.org/projects/owls-tc/, retrieved on July of 2014)

• 11 terms per description in the third quartile • a mean of 9.99 terms per description,

• with a standard deviation of 4.07 terms, and • maximum 50 terms per descriptions.

So, in the domain of service retrieval there are term mismatch problems (e.g., synonymy and homonymy problems) because of service descriptions are brief. Service providers use sentences (or sometimes short paragraphs) to describe desired services, hence, when these descriptions are different to the sentences in queries, this causes term mismatch problems in classical models which depend on the observable text features rather than the hidden semantic features [START_REF] Ponte | A language modeling approach to information retrieval[END_REF][START_REF] Zhai | A study of smoothing methods for language models applied to information retrieval[END_REF]. For instance, suppose a user submits the query: I want to book an apartment, and assuming the description of the desired service is: This service allows users to reserve a flat. In this example, terms such as book and reserve are synonyms as terms apartment and flat either. In this example, IR models based on the matching among terms (e.g., Vector Space Model or Boolean Retrieval Model) are not able to find services whose descriptions match that sort of query. As a consequence, in this context term mismatch problems affect the effectiveness of a text-based retrieval system applied on service discovery. A service retrieval system with high effectiveness increases the satisfaction of users, therefore, this encourages them to use the service retrieval system. While a system with low effectiveness disappoints users, hence, they might stop to use it permanently.

In this research, we aim to overcome the above mentioned term mismatch problems, in order to outperform the effectiveness of all IR models applied in prior research on text description-based service retrieval. By achieving this goal, our purpose is to implement this model in S 3 niffer in order to encourage users to search services through S 3 niffer.

Motivation

Software development is a complex challenging engineering activity. To cope this underlaying complexity, paradigms of software engineering adopt a reductionism approach [START_REF] Deremer | Programming-in-the large versus programmingin-the-small[END_REF]Heineman and Councill, 2001). With this one, software production consists of assembling components. Each component accomplishes a specific functionality. Components hide their implementation details, and communicate with each others by exchanging messages. For instance, in case of the object-oriented paradigm, engineers design components called objects. Each one has attributes encapsulated by an interface composed by methods. Attribute values describe the state of an object, while an object performs an action when one of its methods is invoked. Through the component-based paradigm, engineers only need to know component interfaces. In this way, components are easy to reuse. Besides, software structured in components is easy to modify, fix, or extend. Thus, the component-based software is more flexible than monolithic-structured software.

Indeed, Service-Oriented Architecture (SOA) comes from the component-based paradigm. Thus, SOA addresses the challenges of developing software in heterogeneous distributed platforms. With SOA, software components may interoperate with each others through computer networks. So, an engineer produces software by assembling different components that are loosely coupled. This kind of components are known as services [START_REF] Papazoglou | Service oriented architectures: Approaches, technologies and research issues[END_REF].

Several technologies have been created for developing SOA products, e.g., Microsoft Distributed Component Object Model (DCOM) [START_REF] Brown | Distributed component object model protocol -dcom/1[END_REF], Sun Remote Method Invocation (RMI) [START_REF] Microsystems | Java remote method invocation[END_REF], and Common Object Request Broker Architecture (CORBA) [START_REF] Boldt | The common object request broker: Architecture and specification[END_REF]. These technologies depend on specific platforms and protocols. For instance, DCOM works only on Microsoft Windows platforms, likewise RMI on Java Virtual Machines, and CORBA depends on its own stack of technologies and protocols. Nevertheless, with the inception of the Web, companies had become potential service providers. Since then, servers have worked on different platforms and protocols over the Internet. Thus, this heterogeneous environment caused challenges which are solved by Web service technology.

A Web service is a software component which can be used over the standard protocol of the Web, i.e., HyperText Transfer Protocol (HTTP) [START_REF] Vaughan-Nichols | Web services: beyond the hype[END_REF]. This technology enables the implementation of distributed software systems at big scale. At this scale, business processes involve usually various companies.

The execution of each business process implies invoking several services provided by these companies, in a loose couple way.

Web services have become the chosen implementation technology for realising the SOA aim of service sharing and interoperability. Currently, the Web service technology is the standard de facto to deliver services through the Web. Indeed, most of companies (including famous ones, such as Amazon, Facebook, etc.) provide their own services, which have become in important building blocks for business integration. This has caused the proliferation of services on the Web. For instance, in 2014, programmableWeb5 provides 12,213 services in several categories and formats (e.g., SOAP and REST-ful).

So, nowadays there is a huge amount of services available on the Web, however, services are useless if these cannot be found and consumed. Besides, reviewing each service description to find the required is an infeasible task for users such as Alice. Thus, for users, searching services through the Web is an issue as challenging as seeking a needle in a haystack. Users would prefer a computer6 to be able interpret their needs and estimate the relevance of services with respect to their expressed needs. This has motivated the prior research on IR-based models for searching services. Systems based on IR-based models match service descriptions with queries (see Chapter 2). Nevertheless, in all studies conducted on prior research, most of these models are evaluated with different test suites instead of a standard test data set with the same experimental setting like in other IR domains. Thereby, from a literature survey is not possible neither identify nor conclude which is the model with highest performance in service retrieval domain. Besides, currently, there is not a work which has completely compared at least the more remarkable prior research. This is due to lack of a standard test collection for IR-based service discovery. Therefore, it is unknown which of these models has the highest effectiveness. Hence, increasing the effectiveness of IR-based service discovery systems is still a research problem.

Effectiveness refers to the ability of a IR system to successfully estimate the degree of relevance of a service regarding user's needs. A service with the lowest relevance degree is irrelevant, whereas the one with the highest relevance degree is obviously the most relevant. Back to the above mentioned example, let us imagine that Alice does not find a service to book a room when she is using S 3 niffer. As a consequence, she might feel disappointed. If this unfortunately scenario is frequently repeated, eventually, she might stop using S 3 niffer due to its low effectiveness, and she will try another alternative to seek services. With this example, we have intuitively illustrated the more effective a service retrieval system is, more satisfied users are. Therefore, avoiding this kind of disappointing situations has motivated us to carry out this research.

Research approach

We apply IR models in order to overcome the term mismatch issue caused by synonymy problems, which are worse in the context of our research, due to service descriptions are briefer than usual documents (see a broader discussion in Section 1.4). The research approach of our research is experimental due to IR field is an empirical discipline of Computer Science (Manning et al., 2008, pg. 151). With experiments, the goal is to identify, through facts (evidences), which one of the models proposed and studied in this research have the superior performance. In our context, the performance of an IR model depends on its effectiveness to predict how much relevant is a service for a user.

To carry out an experiment to measure the effectiveness of an IR model a data set which contains the following things is necessary (Manning et al., 2008, pg. 152):

1. A collection of documents. In this context, each document is a OWL-S profile of a service. In this research, we have used the OWL-S profiles of the fourth version of the OWL-S service retrieval test collection named OWLS-TC4 7 . It contains the descriptions of 1083 Web services from 9 domains (i.e., education, medical care, food, travel, communication, economy, weapon, geography, and simulation). Each description is written in OWL-S 1.1. This collection is the unique one which exists in service retrieval domain which has judgement relev-ance. Besides, previous versions of this collection have been used for carrying out experiments in related recent research [START_REF] Cassar | A probabilistic latent factor approach to service ranking[END_REF][START_REF] Cassar | Probabilistic matchmaking methods for automated service discovery[END_REF]). 2. A set of users' needs, expressible as queries. OWLS-TC4 collection includes 42 queries. 3. A set of relevance judgments. Each query in the OWLS-TC4 collection is associated with their relevance judgment provided by several users. A pooling strategy (as used in TREC8 ) was conducted to collect the relevance judgment set. This set has been collected from the top-100 results of participants of the S3 contest9 in 2008. The judgment relevance has been graded in four different levels, i.e., highly relevant (value 3), relevant (value 2), potentially relevant (value 1), and non-relevant (value 0).

The motivation to achieve the research aim (i.e., to propose a model with superior performance to discover services) is to increase the users' satisfaction (happiness) when they seek for services. In Section 1.5 we discussed the relationship between users' satisfaction and IR model effectiveness, namely, if the model applied in S 3 niffer has a low effectiveness, therefore users might stop using S 3 niffer. In the context of service retrieval, effectiveness is the measure of the ability of a IR-based service discovery system to satisfy users in terms of the relevance of service retrieved. This lead us to assume that the effectiveness of the IR model is the most important factor which affects the satisfaction of S 3 niffer users. Hence, we aim at applying an IR model in S 3 niffer which outperforms the effectiveness of models used in prior research on service retrieval. So, our approach consists of proposing a family of IR models, then conducting experiments to measure the effectiveness of each model in order to choose the one with the highest effectiveness, and compare it with those models used in the-state-of-the-art on service retrieval.

There are several effectiveness measures of an IR model. The most basic measures are precision, recall, and F-measure (Manning et al., 2008, pg. 142-143). The notions of precision and recall are used the first time in [START_REF] Kent | Machine literature searching viii, operational criteria for designing information retrieval systems[END_REF], and the F-measure is introduced in [START_REF] Rijsbergen | Information Retrieval[END_REF]. On one side, precision is the fraction of retrieved services which are relevant according the judgment of the user.

Retrieved services are those in a ranked list of search results for a given query. On the other side, recall is the fraction of relevant services which are retrieved. These measures are formally defined as follows:

Let A = {a i } k i=1 be the set of retrieved services where a i is the description which corresponds with the i th ranked document. Let B = {b i } mr i=1 be the set of all relevant services for a given query. The mathematical formulas to compute precision (denoted as p) and recall (denoted as r) are as follows:

p = |A ∩ B| |A| (1.1) r = |A ∩ B| |B| (1.2)
Moreover, F -measure is a trade-off between precision versus recall. This is the weighted harmonic mean of precision and recall:

F = 1 α p + 1-α r = pr (1 -α)p + αr if α = 1 1+β 2 then F β = (β 2 + 1)pr β 2 p + r where α, β ∈ IR such that 0 ≤ α ≤ 1, thereby, 0 ≤ β ≤ ∞.
In the default balanced F-measure the weights for precision and recall are equal, hence, α = 0.5 or β = 1. It is known as F 1 , which is an abbreviation of F β=1 . Thus, the formula for F 1 is as follows:

F 1 = 2pr p + r (1.3)
All previous measures of effectiveness are defined with respect to the set of retrieved services. As a consequence, a cutoff point is necessary to compute these measures, for instance, the precision at top ten candidate services. In a top ten services, all of them are sorted according their computed rank in descending order. Nonetheless, precision does not perceive this order, thus, there is no difference whether only the last three services are judged as relevant, or if the first three are judged in this way.

The precision is not a good measure for the overall ranking effectiveness. Therefore, in the IR discipline another measure is used to compare two ranked lists more accurately. This measure is called average precision (Manning et al., 2008, pg. 146-147). It perceives any small change in the ranking of relevant services. The formulae to compute the average precision at k (AP @k) is as follows:

AP @k = 1 k k i=1 i r i (1.4)
where r i is the rank of the i th relevant service in the search result. This value is infinite if the i th relevant service is not retrieved. For instance, suppose the relevance status of the top ten services is (

•, •, •, •, •, •, •, •, •, •), herein •
and • denote whether service at that rank is relevant or not. Assuming there are 20 relevant services for this example, on one hand, the precision and recall would be 5/10= 0.5 and 5/20=0.25, respectively. Both measures will not change if the 5 relevant services are retrieved in the top ten services in a different order, e.g., if the relevant services are in the end of the top ten list, therefore the precision and recall are sill 0.5 and 0.25, respectively. On the other hand, the AP @10 would be (1/3 + 2/4 + 3/5 + 4/6 + 5/8)/10 = 0.27, thus, if the same relevant services are retrieved in a different order, then the AP @10 will be different, e.g., if the relevant services are retrieved in the end of the top ten (

•, •, •, •, •, •, •, •, •, •), thereby the AP @10 is (1/5 + 2/6 + 3/7 + 4/8 + 5/9)/10 = 0.20.
In IR, experiments are carried out with a set of queries, hence, the method to evaluate an IR model consists of computing the mean of the AP @k obtained with each query. This measure is called Mean Average Precision (MAP). Even though this measures the precision of an IR model, MAP considers the recall of a model. In other words, MAP is sensible to the recall measure.

All previous measures have the same shortcoming. These are useful only when the relevance of a service is binary (i.e., relevant or non-relevant), however, relevance might be judged at several levels (e.g., very relevant, relevant, or non-relevant). Due to this, there is another approach defined measure of the overall ranking effectiveness of an IR model in case of various relevance levels, this measure is called Normalised Discounted Cumulative Gain (NDCG) [START_REF] Järvelin | Cumulated gain-based evaluation of ir techniques[END_REF]. According to this measure, each service has an associated gain corresponding to its relevance level, i.e., a highly relevant service has a higher gain than a less relevant one. N DCG@k is a better approach to measure the overall ranking effectiveness of the top k services with the sum of their gains. This sum is named as cumulative gain. N DCG@k has two advantage over M AP @k as follows:

1. It gives a higher weight to a highly ranked service in order to emphasise the importance of ranking services with high relevance values on the top k ranked list. 2. It normalises the overall discounted cumulative gain with its normalised factor. This is computed with the perfect ranking of the services for a given query. This makes N DCG@k more comparable over different queries, whereas M AP @k is an average value dominated by those AP @k values from an easy query with many highly relevant documents.

Moreover, experiments have been conducted to study the stability and sensitivity of evaluation measures, from the outcomes is concluded that N DCG@k is best for evaluating IR models [START_REF] Sakai | On the reliability of information retrieval metrics based on graded relevance[END_REF].

Because of the advantages of N DCG@k over the other measures, we adopted N DCG@k to measure the effectiveness of the IR models proposed for discovering services. Furthermore, the N DCG@k is defined as follows: Let {Q j } l j=1 be a set of l queries such that

N DCG@k = 1 l l j=1 Z kj k i=1 2 f (Q j ,s i ) -1 log 2 (1 + i) (1.5)
where f is the retrieval function (see Section 1.4), Z kj is the normalised factor such way that the best ranking's N DCG@k for a given query Q j is 1.

Contribution, assumptions, and limitations

The contribution of this research is threefold:

1. The application of a family of IR models for indexing and retrieving services.

To the best of our knowledge, none of them have been used in prior research on service discovery. Two of them are based on Latent Semantic Indexing (LSI) via different matrix factorisation models. The other two models are based on query expansion.

2. An empirical study conducted to chose the IR model to be implemented in S 3 niffer. The outcomes of this study are as follows:

a. The results of our experiments suggest that extending queries with terms extracted from a co-occurrence thesaurus is the model which outperforms all the others, also studied in this work. b. We show as well, that the model based on Latent Dirichlet Allocation (LDA) has a lesser effectiveness than all the LSI models considered in this research. c. Our results reveal that there is no difference which is statistically significative in the effectiveness among the LSI-based models assessed in this research. d. Furthermore, LSI-based models have a similar effectiveness than expansion of queries with terms extracted from WordNet.

3. The implementation of S 3 niffer, which is a text description-based service search system based on the IR model which outperforms the others in the above mentioned study.

In this research we assume:

1. Users express their needs through free text queries (e.g., I want to book a room for 3 nights) instead of a specific language with operators (e.g., JQuery). 2. Service descriptions are contained into OWL-S profiles. Hence, the models proposed in this thesis can be applied to services based on WSDL and REST-ful architecture, because both kind of services can be formatted in OWL-S. 3. Service descriptions are documents shorter than those used in other contexts, e.g., books, Web pages, etc. (see Figure 1.2). 4. Service descriptions and queries are expressed in English.

5. The collection OWLS-TC410 is representative for a text description-based service retrieval system in 9 domains including E-Tourism. Besides, previous versions of this collection have been used for carrying out experiments in related recent research [START_REF] Cassar | A probabilistic latent factor approach to service ranking[END_REF][START_REF] Cassar | Probabilistic matchmaking methods for automated service discovery[END_REF].

Finally, the limitations of the research are presented as follows:

1. We do not deal neither with composition nor execution of services. 2. We do not handle recommendations of services according either users' preferences or Quality-of-Services. Recommendation and retrieval of services are two different problems and research trends as we shall discuss in Section 2.2. In recommendation, the relevance estimation of services is based on users' preferences rather than queries. We focus in this research on service retrieval, hence, service recommendation is out of the scope of this research. 3. We do not deal with service crawling because we use the OWL-S service retrieval test collection named OWLS-TC4. 4. We do not infer terms from abbreviations found in OWL-S files. This is another topic that deserves to be investigated and it is out of the scope of the goal of this research. 5. We do not address scalability issues because we only concern the effectiveness of the service retrieval process. We assume there are enough computational resources to apply IR models for retrieving services.

Thesis outline

The thesis is outlined as follows:

• In Chapter 2, we discuss a complete survey of prior research on IR-based service discovery. Besides, we formulate the open research questions, which we address in this research in order to accomplish our aim (see Section 2.7). • In Chapter 3, we delve into the proposed models to achieve the aim proposed in Section 1.4. First at all, we describe how S 3 niffer preprocesses service de-scriptions. After that, we explain two Latent Semantic Indexing (LSI) models via Non-negative Matrix Factorisation (NMF) and Minimising the Squared Error. Furthermore, we describe other two models based on query expansion. The first one based on natural language processing and extraction of synonyms from WordNet. The second one based on the expansion of queries with terms taken from a co-occurrence thesaurus. • In Chapter 4, we describe the experimental setting of the evaluation conducted over the models described in previous chapter, besides the most relevant of prior research. Moreover, we present and analyse the results of the evaluation. Furthermore, we describe the implementation details of the proof-of-concept of S 3 niffer. • In Chapter 5, we summarise the thesis with emphasis upon the findings and the contributions made by the outcomes obtained in the research. Finally, we outline suggestions for further research.

Chapter 2

A literature review on text description-based service retrieval Contents Abstract In this Chapter we present and discuss the prior research on text description-based service retrieval. In some works have been applied Vector Space Model (VSM) [START_REF] Platzer | A vector space search engine for web services[END_REF][START_REF] Lee | A framework for xml web services retrieval with ranking[END_REF][START_REF] Crasso | Easy web service discovery: A query-by-example approach[END_REF][START_REF] Wu | WSDL Term Tokenization Methods for IR-style Web Services Discovery[END_REF][START_REF] Crasso | Easysoc: Making web service outsourcing easier[END_REF], however, this model is unable to capture relations between the terms in the queries and service descriptions. In other works, term mismatch problems have been addressed through the use of WordNet [START_REF] Wang | Semantic structure matching for assessing web service similarity[END_REF][START_REF] Kokash | Leveraging Web Services Discovery with Customizable Hybrid Matching[END_REF], the application of Latent Semantic Indexing (LSI) [START_REF] Sajjanhar | Algorithm for web services matching[END_REF][START_REF] Paliwal | Web Service Discovery: Adding Semantics through Service Request Expansion and Latent Semantic Indexing[END_REF][START_REF] Ma | Web Services Discovery Based on Latent Semantic Approach[END_REF][START_REF] Wu | An empirical approach for semantic web services discovery[END_REF][START_REF] Wu | Latent Semantic Analysis -The Dynamics of Semantics Web Services Discovery[END_REF][START_REF] Pan | Ranked Web Service Matching for Service Description Using OWL-S[END_REF][START_REF] Paliwal | Semantics-based automated service discovery[END_REF], Probabilistic LSI (PLSI) and Latent Dirichlet Allocation (LDA) [START_REF] Cassar | A probabilistic latent factor approach to service ranking[END_REF][START_REF] Cassar | Probabilistic matchmaking methods for automated service discovery[END_REF]. From the literature survey, we state the open questions in the state-of-the-art on service retrieval:

Q1: Which model has the best effectiveness between LDA and classical LSI? Q2: Is it possible to increase the effectiveness of LSI with other matrix factorisation mod-21 els? Q3: Which kind of model has the best effectiveness between LSI-based models or query expansion?

Introduction

In 1998 was the inception of SOAP-based Web services 1 (Snell et al., 2002, pg. 152). Distributed systems at larger scale than ever are developed due to this technology.

Searching for services became an urgent need. This happened because of the increasing adoption of this technology. As a consequence, in 2000 the standard UDDI 2 is proposed for discovering services 3 . It specifies an interface for publishing and looking for services. However, since 2006 this standard is discontinued by Microsoft, IBM, and SAP 4 . Nowadays, any public large-scale UDDI registry does not longer exist.

UDDI has two drawbacks:

1. On one hand, publishing advertisements of services is easier than using UDDI. Advertisements are automatically indexed by search engines (e.g. Google, Yahoo, etc.). On the other hand, with UDDI, users must keep updated the inputs of services. 2. On the other hand, the information stored within UDDI registries is not necessarily friendly enough for being read by humans. Indeed, in the literature about service discovery, authors advice that human users should not access the UDDI repository directly (Chappell and Jewell, 2002, pg. 96-97). Otherwise, users must check the uncountable entries to find the needed services. This is a time-consuming and tedious task.

Thus, discovering services is a motivating research challenge. In Section 2.2 we present the research trends in service discovery, however, we focus in the rest of this chapter only in text description-based service retrieval (a.k.a., IR-based service discovery, or only service retrieval), because it is the main topic of our research. In Sections 2.3, 2.4, 2.5, and2.6 we delve into each Information Retrieval (IR) model applied in prior research on text description-based service retrieval. In Section 2.7 we discuss what has been done in the past to identify the open questions in prior research. Finally, in Section 2.8 we summarise the chapter.

Research trends in service discovery

There are three trends in prior research about service discovery:

1. Recommender Systems-based service discovery. Given the users' preferences, the problem addressed in this trend is to suggest services to a user. Users' preferences are descriptions of long term needs dynamically updated and based on the behaviour of a user community. The recommendation of a service depends on users' preferences (or profiles) but not on queries they submit [START_REF] Manikrao | Dynamic selection of web services with recommendation system[END_REF]Birukou et al., 2007b,a;[START_REF] Kokash | Web Service Discovery Based on Past User Experience[END_REF][START_REF] Chan | Collaborative Filtering Technique for Web Service Recommendation Based on User-Operation Combination[END_REF][START_REF] Chan | A web service recommender system using vector space model and latent semantic indexing[END_REF][START_REF] Chan | A recommender system based on historical usage data for web service discovery[END_REF]. Besides users' preferences, another approach takes into account Quality of Service (QoS) values to compute recommendations of services [START_REF] Zheng | WSRec: A Collaborative Filtering Based Web Service Recommender System[END_REF][START_REF] Zheng | Collaborative Reliability Prediction of Serviceoriented Systems[END_REF][START_REF] Jiang | An effective web service recommendation method based on personalized collaborative filtering[END_REF][START_REF] Chen | Personalized QoS-Aware Web Service Recommendation and Visualization[END_REF]). 2. Semantic service discovery. In this approach, ontologies describe services, then users submit queries in the form of a service, in a specific format such as SPARQL [START_REF] Paolucci | Semantic matching of web services capabilities[END_REF][START_REF] Li | A software framework for matchmaking based on semantic web technology[END_REF][START_REF] Sivashanmugam | Discovery of Web Services in a Federated Registry Environment[END_REF][START_REF] Mouhoub | A Framework for Searching Semantic Data and Services with SPARQL[END_REF]. Services are retrieved if the concepts of its inputs and outputs match those of inputs and outputs of the service requested [START_REF] Ngan | Semantic Web Service Discovery: State-of-the-art and Research Challenges[END_REF]. Other approaches in this stream are hybrid. For instance, the matchmakers called OWLS-MX [START_REF] Klusch | Automated Semantic Web Service Discovery with OWLS-MX[END_REF](Klusch et al., , 2009a)), WSMO-MX [START_REF] Klusch | WSMO-MX: A Hybrid Semantic Web Service Matchmaker[END_REF], and SAWSDL-MX [START_REF] Klusch | Hybrid Adaptive Web Service Selection with SAWSDL-MX and WSDL-Analyzer[END_REF] (herein "X" stands for five different versions, namely, M0-M4). These matchmakers combine logic-based semantic matching with token-based similarity techniques. Another hybrid matchmaker is known as iMatcher [START_REF] Kiefer | The creation and evaluation of isparql strategies for matchmaking[END_REF]. It combines functional properties matching and non-functional properties match-ing. Besides, this matchmaker uses logical reasoning in ontologies about services, statistics, and indexing techniques to match between requests and services. 3. Text description-based service retrieval. Currently, IR has embraced the analysis of several kind of objects in many mediums (e.g., text, images, audio, video, etc.) including Web services. In this thesis, our aim is in the direction of this stream. The problem that we address is to retrieve the most relevant services for a given query (see Section 1.4). In this context, a query is used in order to communicate a need to a service discovery system. The difference between this stream and the previous one (i.e., semantic service discovery) is the kind of query. In text description-based service retrieval, queries are composed by key terms, whereas in the semantic service discovery stream the queries have a specific format. The rest of this chapter, we delve into the state-of-the-art on text description-based service retrieval.

The IR models applied in prior research on service retrieval are as follows:

1. Vector space model (VSM) [START_REF] Salton | A vector space model for automatic indexing[END_REF], 2. Latent Semantic Indexing (LSI) [START_REF] Deerwester | Improving Information Retrieval with Latent Semantic Indexing[END_REF][START_REF] Deerwester | Indexing by latent semantic analysis[END_REF], 3. Probabilistic Latent Semantic Indexing (PLSI) [START_REF] Hofmann | Probabilistic latent semantic indexing[END_REF], or 4. Latent Dirichlet Allocation (LDA) [START_REF] Blei | Latent dirichlet allocation[END_REF].

The general architecture of a text description-based service retrieval system is depicted in Figure 2.1. The components of this kind of systems are described as follows:

• Preprocessor of queries: This component carries out the following steps over each query:

1. remove punctuations and symbols, 2. change to lowercase all terms, 3. stem or lemmatise each term, and 4. remove stop words.

• Preprocessor of descriptions: The collection of service descriptions can not be indexed directly. Firstly, each service must be preprocessed in order to provide the most relevant information to the indexer component. In prior research, service descriptions are given either WSDL documents or OWL-S profiles. In both cases, the relevant terms are extracted from some sections of a WSDL document or an OWL-S profile. For example, in an OWL-S profile (see Figure 1.2, page 8) the relevant terms which describe a service may be extracted from tags <profile:serviceName> and <profile:textDescription> [START_REF] Cassar | A probabilistic latent factor approach to service ranking[END_REF][START_REF] Cassar | Probabilistic matchmaking methods for automated service discovery[END_REF].

Once the terms are extracted, the preprocessor of descriptions carries out the same steps which preprocessor of queries executes over the terms of the query. • Indexer: Given the preprocessed collection of service descriptions, this component makes the index of service descriptions. The index is a real-valued vector space, whose dimensions correspond to terms used to describe services in VSM (see Section 2.3), latent features in models based on LSI (see Section 2.4), or latent topics in LDA (see Section 2.6). Therefore, in the index, each service description has a vector representation. • Matching and ranking: This component computes the retrieval function between the query and each service description. With the retrieval function is assigned a score to each service description. The greater the score of a service is, the service is predicted to be more relevant to a user's query. First, this component compute the vector representation of the query according the indexing model (e.g. VSM or LSI). Thereafter, the cosine similarity is applied as retrieval function in order to compute the similarity of the vector representation of a query and each service description.

The main components of this architecture are in charge of indexing and ranking service descriptions. In the next Sections we emphasise and discuss how a collection of service descriptions are indexed and ranked, according every above mentioned models (i.e., VSM, LSI, PLSI, and LDA).

VSM-based service retrieval

In Vector Space Model (VSM) the index is a multidimensional real-valued vector space [START_REF] Salton | A vector space model for automatic indexing[END_REF]. Each vector into the space represents an indexed service description. Each unique term corresponds with a dimension of the vector space. Each element of a vector is a feature of a service description computed by the Term Frequency (TF) and Inverse Document Frequency (IDF). Let T F td ∈ IR be the number of times which the term ω t appears into the service description s d , and IDF t ∈ IR is defined as follows:

IDF t = log n DF t (2.1)
where n is the number of services, DF t is the document frequency, which is the number of service descriptions that contain the term ω t . According to the equation 2.1, IDF is high for terms used in few descriptions, however, IDF is low for those terms which are frequently used in many descriptions. In other words, IDF gives a lower weight to those terms which trend to be commonly used to describe many services. Such terms are less important during the retrieval process because this kind of terms do not contribute to highlight the differences between descriptions. Then, terms with low IDF are almost similar to stop words in particulars domains.

In VSM the TF and IDF define the weight of a term ω t in a service description s d as follows:

T F IDF td = T F td × IDF t (2.2)
The T F IDF td of a term ω t into a service description s d is high, when the term frequently appears in few descriptions. Whereas T F IDF td is low if the term ω t appears fewer times in a description, or whether it appears in many descriptions. T F IDF td is the lowest one for those terms which appears in almost all descriptions.

We have denoted by C = {s d ⊂ V } n d=1 a collection of service descriptions (see Section 1.4), where n is the number of services, s d is the text document which describes the d th service, and V = {ω t } m t=1 is the vocabulary composed by the m significative terms (i.e., those terms which are not stop words) used to describe all services. Besides, we have denoted the user query as Q ⊂ V ′ , where V ′ is the vocabulary composed by the terms used to submit queries.

Thus, VSM is called in this way because vectors represent service descriptions (or documents in other domains). Let Y c = {y i ∈ IR m } n i=1 be a set of vectors, where each m-dimensional vector y i represents the corresponding service description s d , and m is the number of terms used to describe services. Let Y be a vector space, where the input vectors are given as column vectors. In other words, Y is an m × n matrix such that Y = (y 1 . . . y n ), where the vector y d is the d th column of the matrix. Henceforth, the matrix Y shall be called a term-description matrix.

In other domains of IR, Y is known as a term-document matrix in text retrieval, or a bag of visual features in image retrieval 5 . When VSM is applied to service retrieval, this matrix is the index of services descriptions, and is computed with the equation 2.2 as follows:

Y td = T F IDF td (2.3)
Moreover, in VSM a query is represented by a vector in the same m-dimensional real-valued vector space used to index the service descriptions. Let q ∈ IR m be a vector which represents the query Q. This vector is computed with the equation 2.2. We can note that during the computation of this vector, a VSM-based system takes into account only terms that appear in the query, which are also part of the vocabulary composed by the m terms used to describe the services (i.e. terms that belong to the set Q ∩ V ).

VSM is unable to capture relations between terms submitted in the query and terms used to describe services. As a consequence, term mismatch problems affect the effectiveness of VSM. For instance, in the worse scenario of synonymy problems, the d th service description s d satisfies the query Q, but both sets of terms (s d and Q) are disjoint (i.e., s d ∩ Q = ∅).

Given the vector q and the term-description matrix Y, the retrieval function f most commonly used in prior research on VSM applied to service retrieval is the cosine of the angle between q and each column-vector of Y as follows:

f (Q, s d ) = cos(q, y d ) = q T y d q y d (2.4)
where d = 1, 2, . . . , n. The cosine similarity varies from 0 up to 1 because all elements in vectors are positive real numbers. Then, each time a VSM-based system receives a query, it computes the cosine similarity (i.e., the retrieval function) between the query vector and each description vector. Finally, the system sorts the resulting scores and it selects the top-k services descriptions, where k ∈ IN.

LSI-based service retrieval

Latent Semantic Indexing (LSI) [START_REF] Deerwester | Improving Information Retrieval with Latent Semantic Indexing[END_REF][START_REF] Deerwester | Indexing by latent semantic analysis[END_REF]) is an IR model proposed to index a collection of text documents (i.e., service descriptions in this context) according to their latent or hidden factors which explain the meaning of their contents, i.e., their semantics aspects. LSI aims at reducing the vector space (the original index) in another of lower dimensionality. This new space is known as latent semantic space, such that through hidden semantic factors are modelled the respective orthogonal projections of all column-vectors in a term-description matrix Y onto a semantic space. In Figure 2.2 we show an example where term mismatch problems affect the matching based on terms in VSM. For sake of simplicity, in this example we have considered two services, each of them is described by one term. Let us suppose that both services provide the same functionality, thereby, both terms flat and apartment are synonyms in the example. Figure 2.2 depicts two vectors, y i and y j , which represent two descriptions onto a two-dimensional space. The similarity between both vectors is zero although the retrieval function is cosine or inner product. This is because both descriptions do not have terms in common, albeit the terms in the descriptions have the same meaning. Nevertheless, their projected vectors, x i and x j , are near to each other in the latent semantic space (a onedimensional space in the example, i.e., a straight right). The elements of each projected vector are the latent factors associated to their descriptions. Some basic aspects of linguistic (e.g., synonymy and polysemy) can be captured in latent factors [START_REF] Deerwester | Improving Information Retrieval with Latent Semantic Indexing[END_REF][START_REF] Deerwester | Indexing by latent semantic analysis[END_REF].

With LSI, a set of r latent factors are inferred from patterns found in the T F IDF features of terms for each description. The number of factors are less than the number of either terms or descriptions. These factors explain all T F IDF features by characterising descriptions and terms.

In case of service descriptions, latent factors may measure dimensions, which might be uninterpretable but meaningful. On the other side, for a given term, latent factors measure its occurrence in descriptions related to the corresponding hidden factors.

A joint latent semantic space represents service descriptions and terms. The inner product between their vector representations computes the T F IDF feature.

It measures the extent of the relationship between service descriptions and terms.

Thus, latent factors are linear combinations of the original T F IDF features. Let x d ∈ IR r be the representation of the description s d , and w t ∈ IR r be the representation of the term ω t , both in the latent semantic space. Elements in a vector x d measure the extent to which the description s d expresses latent factors, as well as elements in a vector w t measure the extent to which the term ω t appears in documents related to the corresponding factors. The inner product among both vectors yields the T F IDF td feature of the term ω t into the description s d , i.e., Y td = w T t x d . This can be written in a matrix form as follows:

Y = W T X (2.5) where W ∈ IR r×m , X ∈ IR r×n , Y ∈ IR m×n , W = (w 1 . . . w m ), X = (x 1 . . . x n ),
m is the number of terms into the descriptions, n is the number of services, and r is the number of latent factors such that r < min(m, n). Therefore, behind LSI there is a matrix factorisation problem. This is solved by approximating a target term-document matrix Y as a product of two lower dimensional factor matrices, W and X, where the common dimension r is smaller than m and n.

This problem is fixed in classical LSI by using Singular Value Decomposition (SVD see [START_REF] Deerwester | Indexing by latent semantic analysis[END_REF]). The strategy consists of choosing W T = U r D r and X = V T r , where D r ∈ IR r×r is a diagonal matrix of the r largest singular eigenvalues of YY T and Y T Y, U r ∈ IR m×r and V r ∈ IR n×r are orthonormal matrices, whose column vectors are eigenvectors of YY T and Y T Y, respectively. Due to X is an orthonormal matrix, all its columns vectors in the latent semantic space are constrained to be orthogonal.

After factorising the term-description matrix Y, the query vector q ∈ IR m is projected onto the latent semantic space. Let x ∈ IR r be the projected query vector. Given the following equation the aim is to find x such that:

q = U r D r x multiplying D -1 r U T
r in both sides of the equation yields the projection of the query vector as follows:

x = D -1 r U T r q (2.6)
Given the vector x and the factor matrix X, the retrieval function f used in prior research on LSI applied to service retrieval is the cosine of the angle. This function is computed between x and each column-vector of X as follows:

f (Q, s d ) = cos(x, x d ) = x T x d x x d (2.7)
where d = 1, 2, . . . , n, and x d is the d th column of the matrix X. So, each time a LSI-based system receives a query, after computing its vector representation, and projecting it on the semantic space, the system computes the cosine similarities between the projected query vector and each projected description vector. Finally, akin to VSM-based system, in a LSI-based system, the resulting scores are sorted, and the top-k services descriptions are selected.

PLSI-based service retrieval

In Probabilistic Latent Semantic Indexing (PLSI) model latent factors are called latent topics [START_REF] Hofmann | Probabilistic latent semantic indexing[END_REF]. Thus, let {θ i ∈ IR} r i=1 be a set of r latent topics in a set of service descriptions. Each topic is represented by using a distribution of terms, or unigram language model. In the latter is assumed that the events, when different terms are used in a sequence, are stochastically independent. Therefore, it is assumed that the terms used to describe services may be sampled independently from a mixture of these r topics. So, to generate a term in a description s d , one of the r topics is chosen regarding a topic selection probability distribution {p(i|s d )} r i=1 , where p(i|s d ) is the probability of choosing the i th topic θ i given the document s d , and then sample a term according the chosen term distribution. The probability of generating a term ω t in a service description s d is as follows:

p s d (ω t ) = r i=1 p(i|S d )p(ω t |θ i )
the log-likelihood of generating all the terms in a service description s d is defined as follows:

log(p s d (ω t )) = m t=1 T F td log r i=1 p(i|S d )p(ω t |θ i )
In order to discover the term distribution of r latent topics, is necessary to fit the model to the collection of service descriptions, hence, the log-likelihood of such collection is defined as follows:

log(p(C|Λ)) = n d=1 m t=1 T F td log r i=1 p(i|s d )p(ω t |θ i )
where Λ is the set of parameters, i.e., Λ = {p(i|s d )} ∪ {θ i } ∀ i,d such that i = 1, 2, . . . , r and d = 1, 2, . . . , n. Through the hill climbing algorithm known as Expectation-Maximisation (EM), it is possible to compute either the maximum likelihood or the maximum a posteriori estimator. In order to estimate the maximum likelihood is necessary to solve the following optimisation problem: Given the collection of services descriptions C, the problem is to find the set of parameters Λ which maximise p(C|Λ), namely: max Λ p(C|Λ) (2.8) For this optimisation problem, the updating rules used in the EM algorithms are as follows:

p(z td = i) = p old (i|s d )p old (ω t |θ i ) r j=1
p old (j|s d )p old (ω t |θ j )

(2.9)

p new (i|s d ) = m t=1 T F td p(z td = i) r j=1 m t=1 T F td p(z td = j) (2.10) p new (ω t |θ i ) = n d=1 T F td p(z td = i) r j=1 n d=1 T F td p(z td = j) (2.11)
where z td ∈ IN such that z td ≤ r. z td is a hidden variable, it indicates which latent topic is used to generate the term ω t in service description s d .

For a description s d , its topic distribution {p(i|s d )} r i=1 is the new representation in the r-dimensional latent semantic space. Each dimension in this space is characterised by a term distribution θ i . Thus, service descriptions and queries can be mapped to a semantic space and match them, for instance, through cosine similarity.

One advantage of PLSI over LSI is due to the possibility of incorporating extra knowledge by defining prior on parameters and using a maximum a posteriori.

Another advantage of PLSI over its classical version is that there is the possibility of adding more latent variables to PLSI in order to generate sophisticated semantic structures rather than the flat structure of r latent topics (e.g., a hierarchical structure).

Despite the advantage of PLSI over classical LSI, PLSI has two drawbacks, which we are mentioned below: 1. PLSI is not a generative model, hence, it is unclear how to assign probability to a service description which does not belong to the training dataset. In other words, p(i|s d ) is computed regarding a specific service description s d , thereby, those learned values of p(i|s d ) are not able to be used for generating a new description different from s d . 2. The set of parameter Λ for r latent topics is composed by r multinomial distributions of size m and n, thereby, there are r(m + n) parameters, hence, the number of parameters grows linearly with the number of services. Therefore, there may be many local maximums for the likelihood function. As a result, the EM algorithm might find a non-optimal local maximum.

These shortcomings inspired the model Latent Dirichlet Allocation [START_REF] Blei | Latent dirichlet allocation[END_REF] which is described and discussed in next Section.

LDA-based service retrieval

The Latent Dirichlet Allocation (LDA) is a generative probabilistic model of a collection of discrete data [START_REF] Blei | Latent dirichlet allocation[END_REF] (i.e., service descriptions in the context of this research). This model is proposed to overcome the above mentioned drawbacks of PLSI. The strategy consists of defining p(i|s d ) in a generative way by assuming that the topic distribution p(i|s d ) has a Dirichlet prior. Once p(i|s d ) is drawn from a Dirichlet distribution, it is used to generate all the terms in a service description s d . With this strategy, the main problem of PLSI is addressed, namely, assigning a probability to a service description which does not belong to the training dataset. Besides, this strategy copes the second drawback of PLSI because the number of parameters is significantly reduced, hence, the problem of multiple local maximums is less severe in LDA than in PLSI.

The probability of generating a service description s d is defined as follows:

p(s d |Λ) = ∆ Dir(π|α) m t=1 ( r i=1 p(i|π)p(ω t |θ i ))dπ (2.12)
where ∆ is the r -1-dimensional simplex containing all possible values for π (π ∈ IR r ), such that π i ≥ 0 and r i=1 π i = 1. Let Λ the set of parameters such that Λ = {α} ∪ {θ i } r i=1 . Each θ i is a multinomial distribution over terms, whereas α is the parameter of the Dirichlet distribution.

The procedure to generate a service description s d is as follows:

1. Choose a topic selection distribution π by sampling from the Dirichlet distribution. π is a multinomial distribution over all the r latent topics. If π gives a topic θ i a high probability, as a consequence, θ i is used very frequently to generate a term in the service description.

2. Generate a term by sampling a latent topic θ i by using p(i|π) and thus sampling a term from p(ω t |θ i ). This step is repeated m times to generate all terms in a service description s d .

The topic distribution π serves as a new representation of service descriptions and queries in a r-dimensional latent semantic space.

Finally, we can note that the second step in the procedure is the same as in PLSI (see updating rules in Equations 2.10 and 2.11), however, the first step in PLSI (see updating rule in Equation 2.9) is different to LDA, the probability p(i|π)

does not depend on a specific service description to be generated. This explains why LDA is a generative model which is able to generate a new service description.

Besides, we can note that in LDA there is only a set of r(1 + m) parameters for all the service descriptions, whereas in PLSI there are r(m + n) parameters. As a consequence, in LDA there are more opportunities of finding an optimal maximum than in PLSI.

In next section, we discuss how all these above mentioned IR models have been applied for discovering services.

Discussion

The VSM has been applied in many approaches (see for example: [START_REF] Wang | Semantic structure matching for assessing web service similarity[END_REF][START_REF] Platzer | A vector space search engine for web services[END_REF][START_REF] Kokash | Leveraging Web Services Discovery with Customizable Hybrid Matching[END_REF][START_REF] Lee | A framework for xml web services retrieval with ranking[END_REF][START_REF] Crasso | Easy web service discovery: A query-by-example approach[END_REF][START_REF] Wu | WSDL Term Tokenization Methods for IR-style Web Services Discovery[END_REF][START_REF] Crasso | Easysoc: Making web service outsourcing easier[END_REF]). In these works, a set of WSDL documents composes the collection of service descriptions. Some of these approaches does not tackle the term mismatch problems [START_REF] Platzer | A vector space search engine for web services[END_REF][START_REF] Lee | A framework for xml web services retrieval with ranking[END_REF][START_REF] Crasso | Easy web service discovery: A query-by-example approach[END_REF][START_REF] Wu | WSDL Term Tokenization Methods for IR-style Web Services Discovery[END_REF][START_REF] Crasso | Easysoc: Making web service outsourcing easier[END_REF]. Whereas, these problems have been addressed by expanding queries and WSDL documents with synonyms of their terms [START_REF] Wang | Semantic structure matching for assessing web service similarity[END_REF][START_REF] Kokash | Leveraging Web Services Discovery with Customizable Hybrid Matching[END_REF]. Synonyms are extracted from WordNet lexicon [START_REF] Miller | Wordnet: A lexical database for english[END_REF]. Nevertheless, the query expansion based on the injection of synonyms significantly decreases precision because a term may have synonyms with different meanings depending of the context of the term in the query.

In other approaches, researchers applied LSI to cope term mismatch problems in the context of service discovery [START_REF] Sajjanhar | Algorithm for web services matching[END_REF]. However, factorising a matrix through SVD causes scalability issues in LSI. Therefore, other works handled this shortcoming instead of aiming to increase the effectiveness of LSI [START_REF] Ma | Web Services Discovery Based on Latent Semantic Approach[END_REF][START_REF] Wu | An empirical approach for semantic web services discovery[END_REF][START_REF] Wu | Latent Semantic Analysis -The Dynamics of Semantics Web Services Discovery[END_REF]. However, scalability issues are out the scope of our research (see limitations of our research in Section 1.7, page 18).

LDA is another model based on latent factors in text documents. In this model the latent factors are topics, and their distribution is assumed to have Dirichlet prior. This model is applied to discover the latent topics from concepts contained in service descriptions written in OWL-S [START_REF] Cassar | A probabilistic latent factor approach to service ranking[END_REF][START_REF] Cassar | Probabilistic matchmaking methods for automated service discovery[END_REF]. According to the results obtained in this research, LDA outperforms Probabilistic LSI (PLSI) [START_REF] Cassar | A probabilistic latent factor approach to service ranking[END_REF][START_REF] Cassar | Probabilistic matchmaking methods for automated service discovery[END_REF]. Nonetheless, in the same study LDA has not been compared with other models used in prior research (e.g., LSI).

Another direction to deal with term mismatch problems is to use ontologies. Therefore, several works combine LSI and ontologies [START_REF] Paliwal | Web Service Discovery: Adding Semantics through Service Request Expansion and Latent Semantic Indexing[END_REF][START_REF] Pan | Ranked Web Service Matching for Service Description Using OWL-S[END_REF][START_REF] Paliwal | Semantics-based automated service discovery[END_REF]). An ontology is used as a vocabulary to expand the query [START_REF] Paliwal | Semantics-based automated service discovery[END_REF]. In another hybrid approach K-means algorithm is used to divide the corpus in several clusters of documents [START_REF] Pan | Ranked Web Service Matching for Service Description Using OWL-S[END_REF]. Thereafter, given a query, SVD is applied on the most similar cluster (similar to [START_REF] Ma | Web Services Discovery Based on Latent Semantic Approach[END_REF]). However, this technique is complemented with a semanticbased matching, which is implemented on an ontology of services, by computing the similarity between service input and output parameters. At the end of the procedure, services are ranked according two both techniques.

The drawback of such ontology-based approach is that the human intervention is necessary, as ontologies must be built with the assistance of human experts of the domain. Therefore, the creation of ontologies is an expensive, time-consuming, tedious, and error-prone task [START_REF] Gomez-Perez | Ontological Engineering[END_REF][START_REF] Shamsfard | Learning ontologies from natural language texts[END_REF]. This is why we have decided not to design and build any ontology.

Most of the prior research on IR-based service discovery has been evaluated with different test suites. Some of them had common data sources, such as XMethods6 , which has been a source of WSDL documents for other researches [START_REF] Kokash | Leveraging Web Services Discovery with Customizable Hybrid Matching[END_REF][START_REF] Paliwal | Web Service Discovery: Adding Semantics through Service Request Expansion and Latent Semantic Indexing[END_REF][START_REF] Lee | A framework for xml web services retrieval with ranking[END_REF][START_REF] Ma | Web Services Discovery Based on Latent Semantic Approach[END_REF][START_REF] Wu | Latent Semantic Analysis -The Dynamics of Semantics Web Services Discovery[END_REF][START_REF] Hao | Web services discovery and rank: An information retrieval approach[END_REF][START_REF] Paliwal | Semantics-based automated service discovery[END_REF]. Moreover, in other works, experiments are carried out on the collection of WSLD services descriptions used in [START_REF] Hess | ASSAM: A tool for semiautomatically annotating web services with semantic metadata[END_REF] (see for instance [START_REF] Paliwal | Web Service Discovery: Adding Semantics through Service Request Expansion and Latent Semantic Indexing[END_REF][START_REF] Crasso | Easy web service discovery: A query-by-example approach[END_REF][START_REF] Ma | Web Services Discovery Based on Latent Semantic Approach[END_REF][START_REF] Wu | An empirical approach for semantic web services discovery[END_REF][START_REF] Wu | Latent Semantic Analysis -The Dynamics of Semantics Web Services Discovery[END_REF][START_REF] Paliwal | Semantics-based automated service discovery[END_REF]). Nevertheless, this collection does not include neither queries nor relevance judgments due to this is designed for machine learning applications.

In other research works are carried out experiments over the same test collection. In [START_REF] Kokash | Leveraging Web Services Discovery with Customizable Hybrid Matching[END_REF], researchers collected 40 Web services from XMethods, and they reused part of the set of WSDL documents collected for matching services research conducted in [START_REF] Stroulia | Structural and semantic matching for assessing web-service similarity[END_REF]. In [START_REF] Kokash | Leveraging Web Services Discovery with Customizable Hybrid Matching[END_REF], authors have used 447 services from the original collection composed by 814 services, excluding a group of 366 unclassified WSDL documents, and another one that was not parsed correctly. Whereas in [START_REF] Lee | A framework for xml web services retrieval with ranking[END_REF], authors have been used the same dataset utilised in [START_REF] Kokash | Leveraging Web Services Discovery with Customizable Hybrid Matching[END_REF]. In [START_REF] Sajjanhar | Algorithm for web services matching[END_REF] collected 47 services, 22 with description, and in the rest were assigned default descriptions based on the topic from IBM UDDI registry. In [START_REF] Wu | WSDL Term Tokenization Methods for IR-style Web Services Discovery[END_REF] used the dataset collected in the study conducted in [START_REF] Klusch | Semantic web service selection with sawsdlmx[END_REF]. In [START_REF] Platzer | A vector space search engine for web services[END_REF], researchers did not carry out an evaluation. Finally, in [START_REF] Cassar | A probabilistic latent factor approach to service ranking[END_REF][START_REF] Cassar | Probabilistic matchmaking methods for automated service discovery[END_REF], authors have used the collection named OWLS-TC v3.07 . It is composed by 1007 service descriptions written in OWL-S, 29 queries, and a relevant answer set for each query.

Nowadays, to the best of our knowledge, it does not exist any works which have completely compared all prior research works. This might be because there is no standard test collection for IR-based service discovery. This literature survey raises the following questions which are addressed in this research:

• Q1: Which model has the best effectiveness between LDA and LSI based on SVD? • Q2: Is it possible to increase the effectiveness of LSI with other matrix factorisation models? • Q3: Which kind of model has the best effectiveness between LSI-based models or query expansion?

Summary

In this chapter we introduced the research trends in service discovery, i.e., 1) recommender systems-based service discovery, 2) semantic-matching-based service discovery, and 3) text description-based service retrieval.

In this research, we have focused in the third trend, where the main challenge is to address term mismatch problems between brief service descriptions and queries.

Term mismatch problems have been addressed by expanding queries and service descriptions with synonyms of their terms [START_REF] Wang | Semantic structure matching for assessing web service similarity[END_REF][START_REF] Kokash | Leveraging Web Services Discovery with Customizable Hybrid Matching[END_REF]. Synonyms are extracted from WordNet lexicon [START_REF] Miller | Wordnet: A lexical database for english[END_REF]. However, the query expansion based on the injection of synonyms significantly decreases precision because a term may have synonyms with different meanings depending of the context of the term in the query.

In other approaches, term mismatch problems have addressed by applying LSI [START_REF] Sajjanhar | Algorithm for web services matching[END_REF], PLSI and LDA [START_REF] Cassar | A probabilistic latent factor approach to service ranking[END_REF][START_REF] Cassar | Probabilistic matchmaking methods for automated service discovery[END_REF], or by combining LSI and ontologies [START_REF] Paliwal | Web Service Discovery: Adding Semantics through Service Request Expansion and Latent Semantic Indexing[END_REF][START_REF] Pan | Ranked Web Service Matching for Service Description Using OWL-S[END_REF][START_REF] Paliwal | Semantics-based automated service discovery[END_REF], notwithstanding that the creation of ontologies is an expensive, timeconsuming, tedious, and error-prone task [START_REF] Gomez-Perez | Ontological Engineering[END_REF][START_REF] Shamsfard | Learning ontologies from natural language texts[END_REF].

From this analysis of the literature survey, we have formulated the following open questions in service retrieval which we are addressed in this research: Q1: Which model has the best effectiveness between LDA and LSI based on SVD? Q2: Is it possible to increase the effectiveness of LSI with other matrix factorisation models? Q3: Which kind of model has the best effectiveness between LSI-based models or query expansion?

In the next Chapter we describe two matrix factorisation models, which we have applied to LSI. In order to answer the question Q2, we experimentally compare these variations of LSI and the classical version based on SVD. Besides, in the next Chapter we also describe two models based on query expansion, which we apply for retrieving services. We empirically compare them against our family of LSI models and the models used in prior research on service retrieval. Through this experimental comparison we aim answer the question Q3. Abstract In this Chapter we describe and explain the underlying mathematical models and algorithms of a family of IR models applied to retrieve services. To the best of our knowledge, none of them have been used in prior research on text description-based service retrieval. In order to study the effectiveness of Latent Semantic Indexing (LSI) with other matrix factorisation models, we apply Nonnegative Matrix Factorisation (NMF) over LSI, and we propose a factorisation model based on Minimisation the Squared Error (MSE), which is applied to LSI. Besides, we apply other two models based on query expansion. In the first one, queries are expanded with synonyms from WordNet, but taking into account the parts of speech of the query. In the second model, queries are expanded with terms extracted from a co-occurrence thesaurus.

Introduction

In order to fulfil the aim proposed in this research, we apply IR models for discovering services. To the best of our knowledge, none of them have been used in prior research on text description-based service retrieval. Among these models, two of them are based on Latent Semantic Indexing (LSI) via two different factorisation models, i.e., Non-negative Matrix Factorisation (NMF), and factorisation based on Minimisation the Squared Error (MSE). Both models are proposed to be empirically compared with the classical LSI applied in the state-of-the-art on service retrieval. With the results of this empirical comparison, we aim to answer the research question Q2, hence, knowing whether the underlaying matrix factorisation model influences the effectiveness of the LSI model. The other two models are based on query expansion. The first one is based on natural language processing techniques and the extraction of synonyms from the lexicon called WordNet. In the second model, queries are expanded with terms extracted from a co-occurrence thesaurus. The last both models are proposed to be empirically compared with the two firsts in order to answer the research question Q3, thereby identify which kind of models has the best effectiveness between those based on LSI or query expansion.

The rest of the chapter is outlined as follows: First at all, in Section 3.2 we explain the preprocessing of service descriptions, which precedes the indexing process. In Sections 3.3 and 3.4 we describe Latent Semantic Indexing (LSI) models via minimising the square error and Non-negative Matrix Factorisation (NMF), respectively. In Sections 3.5 and 3.6 we detail the models based on the expansion of queries via WordNet and a co-occurrence thesaurus, respectively. Finally, in Section 3.7 we summarise the chapter.

Preprocessing of service descriptions

Preprocessing of a collection of service descriptions based on OWL-S documents involves the following steps:

1. Extract all terms from tags <profile:serviceName> and <profile:textDescription> (see Figure 1.2, page 8). In this study the first tag was assumed to be codified ac-cording to camel case convention, i.e., the practice of writing identifier composed by several terms that start with a capital letter (e.g., nonNegativeMatrixFactorisation). Besides, it was assumed the terms in first tag to be separated by spaces or underscore character. 2. Remove punctuations and symbols. 3. Change to lowercase and lemmatise all terms. Stemming increases recall but decreases precision, hence, we adopted lemmatisation instead of stemming in order to get the base of dictionary form (a.k.a., lemma) of each term. We used the Northwestern University lemmatiser called MorphAdorner1 . 4. Remove stop words. 5. Compute the Term Frequency and Inverse Document Frequency (TFIDF) [START_REF] Salton | A vector space model for automatic indexing[END_REF] in order to obtain the term-description matrix Y ∈ IR m×n , where m and n are the number of terms and documents, respectively.

Latent Semantic Indexing via Minimising the Squared Error

Latent Semantic Indexing (LSI) aims at inferring a set of r latent (hidden) factors from patterns found in the T F IDF features (see Section 2.4, page 28). The number of factors is less than the number of either terms or documents. These factors explain these T F IDF features by characterising documents and terms. In case of documents, latent factors may measure dimensions, which might be uninterpretable but meaningful. For a given term, latent factors measure its occurrence in service descriptions related to the corresponding hidden factors.

Let x d ∈ IR r be the vector representation of a service description s d , and w t ∈ IR r be the vector representation of the term ω t , both in a r-dimensional latent semantic space. As we have mentioned in Section 2.4, elements of the vector x d measure the extent to which the service description s d expresses r latent factors, as well as elements of the vector w t measure the extent to which the term ω t appears in service descriptions related to the corresponding r factors. The in-ner product between both vectors yields the T F IDF td feature of the term ω t into the service description s d :

Y td = T F IDF td = w T t x d + E(w t , x d ), here E(w t , x d ) = Y td -w T t
x d is an error function, which measures the misfit between the T F IDF td feature Y td and the inner product between both vectors w t and x d .

Thus, computing these vectors (w t and x d ) can be defined as an optimisation problem as follows: Given T F IDF td feature Y td , the aim is to estimate both vectors w t and x d such that minimise the absolute error function |E(w t , x d )| or the squared error (E(w t , x d )) 2 . We formalise this problem through the introduction of a cost function (a.k.a. loss function), which is the overall measure of the risk (or cost) incurred in making any of the available decisions. The decision stage consists of choosing a specific estimate w T t x d of the value of Y td for each couple of vectors w t and x d . So, our choice of cost function is the regularised squared error, hence, the optimal solution is the one which minimise the following cost function:

J(w 1 , . . . , w m , x 1 , . . . , x n ) = 1 2 m t=1 n d=1 (Y td -w T t x d ) 2 + + λ 2 m t=1 w T t w t + n d=1 x T d x d (3.1)
where the factor 1/2 is used for later convenience, m is the number of terms used to describe services, and n is the number of services. Moreover, the cost function J is quadratic therefore its derivatives with respect to both vectors are linear. As a result, the minimisation of the cost function J has a unique solution. λ is a regularisation parameter, whose value is empirically chosen to give the right tradeoff between making the squared error function (E(w t , x d )) 2 small, and avoiding that the coefficients m t=1 w T t w t and n d=1

x T d x d reach large magnitudes. The cost function in 3.1 can be written in a matrix form as follows:

J(X, W) = 1 2 Y -W T X 2 F + λ 2 ( X 2 F + W 2 F ) (3.2)
where W ∈ IR r×m , X ∈ IR r×n , Y ∈ IR m×n , W = (w 1 . . . w m ), X = (x 1 . . . x n ), vectors w t and x d are the t th and d th columns in the matrices W and X, respectively. Besides, as we have mentioned in Section 2.4, the number of latent factors r is less than number of terms m and services n. The term-description matrix Y is approximated to the product of the two lower dimensional factor matrices W and X (i.e., Y ≈ W T X) when the cost function J (as defined in Equation 3.2) is minimised, namely. arg min X,W J(X, W)

(3.3)
All the terms in J (see Equation 3.2) are squared, hence, the cost function has a minimum global, i.e., J is a convex cost function. This is useful because gradient descent may be used to find the minimum global instead of more costly heuristics such as simulated annealing or genetic algorithms. Therefore, to minimise the cost function, the gradient descent is calculated by setting the derivative of the cost function J (see Equation 3.2) with respect to W as follows:

∂J(X, W) ∂W = X(W T X -Y) T + λW (3.4)
As a result, the gradient descent is:

W ← W -η(X(W T X -Y) T + λW) (3.5)
where η is the learning rate. This updating rule is used to estimate W. Moreover, taking the derivative of the cost function J (see Equation 3.2) with respect to X and setting it equal to zero is obtained X as follows:

∂J(X, W) ∂X = W(W T X -Y) + λX = 0
carrying out the multiplication between matrices W and (W T X -Y) yields WW T X -WY + λX = 0 adding WY in both sides of the equality produces (WW T + λI)X = WY we obtain X by multiplying for in both sides of the equality by (WW T + λI) -1

as follows

X = (WW T + λI) -1 WY (3.6)
This Equation is used to compute X, whereas W is updated with the rule given in Equation 3.5.

The Algorithm 1 estimates the factor matrices by minimising the cost function J in order to solve the matrix factorisation problem in concern, i.e., finding the factor matrices such that Y ≈ W T X. In classical LSI the latent semantic representation of service descriptions X is orthonormal. In contrast, the factorisation model described in this Section does not require the latent semantic space to be orthogonal. Figure 3.1 illustrates the geometrical differences between both matrix factorisation models. We expect that by factorising matrixes by minimising the square error is more likely to capture the latent semantic factors which better describe services than through classical LSI, because vectors in the latent semantic space might not be constrained to be orthogonal. Once the index is created, the latent factor representation of a query q ∈ IR m is computed as follows:

Given:

• The term-description matrix Y ∈ IR m×n , where m and n are the number of terms and services.

• The initial learning rate η 0 .

• The regularisation parameter λ.

• The number of iterations L, for which the algorithm converges on a optimal solution.

• The number of latent factors r.

Goal: Estimate the factor matrices W ∈ IR r×m and X ∈ IR r×n which minimise the cost function J (in Equation 3.2), causing that the algorithm to converge on a reasonable set of factor matrices such that solve the matrix factorisation problem (Y ≈ W T X).

1. Initialise W to small random values 2. For each value i such that i ∈ {l} L l=1 repeat the following a. Compute the latent factor representation for service descriptions (X), by applying the analytic solution in Equation 3.6

X ← (WW T + λI) -1 WY b.
Update the learning rate. This decreasing rate depends on the number of iterations, the regularisation parameter, and the initial learning rate [START_REF] Bottou | Large-scale machine learning with stochastic gradient descent[END_REF]. As a result, the gradient descends faster at the beginning. Thereafter, the learning rate is smaller with each iteration to avoid oscillations or divergence η ← η 0 /(1 + η 0 λi) c. Update W according to the rule presented in Equation 3.5, with X fixed at the last known version

W ← W -η(X(W T X -Y) T + λW) 3.
Return the factor matrices W and X Algorithm 1: Matrix factorisation via minimising the squared error

x = (WW T + λI) -1 Wq (3.7)
With this latent factor representation x ∈ IR r , the similarity between service descriptions and the query, all of them projected onto the latent semantic space, is computed by using similarity cosine between x and each column vector of the factor matrix X (see Equation 2.7 in Section 2.4).

Latent Semantic Indexing via Non-negative Matrix Factorisation

Another method to factorise Y is by estimating the factor matrices (X and W)

as two non-negative matrices which minimise the cost function:

J(X, W) = 1 2 W T X -Y 2 F (3.8)
This function can be written in a convenience way as follows:

1 2 W T X -Y 2 F = 1 2 T r((W T X -Y)(W T X -Y) T ) = 1 2 T r(W T XX T W -2W T XY T + YY T ) = 1 2 (T r(W T XX T W) -2T r(W T XY T ) + T r(YY T )) Thus: J(X, W) = 1 2 (T r(W T XX T W) -2T r(W T XY T ) + T r(YY T )) (3.9)
In Non-Negative Matrix Factorisation (NMF) the problem is to minimise J subject to X ij ≥ 0 and W kl ≥ 0, where 1

≤ i ≤ r, 1 ≤ j ≤ m, 1 ≤ k ≤ r, 1 ≤ l ≤ n.
This constrained minimisation problem is solved with a Lagrange multiplier. Let A ∈ IR m×m and B ∈ IR n×n be the Lagrange multipliers for constraints X ij ≥ 0 and W kl ≥ 0, respectively. The Lagrange is as follows:

Λ(X, W, A, B) = J(X, W) + T r(AX T ) + T r(BW T ) (3.10)
By setting the derivatives of Λ with respect to W and X is obtained:

∂Λ(X, W, A, B) ∂W = XX T W -XY T + A (3.11) ∂Λ(X, W, A, B) ∂X = WW T X -WY + B (3.12)
By using the Kuhn-Tucker conditions A ij X ij = 0 and B ij W ij = 0 is obtained the following Equations for X ij and W ij :

(XX T W) ij W ij -(XY T ) ij W ij = 0 (3.13) (WW T X) ij X ij -(WY) ij X ij = 0 (3.14)
From both equations the following updating rules are yielded

W ij ← W ij (XY T ) ij (XX T W) ij (3.15) X ij ← X ij (WY) ij (WW T X) ij (3.16)
The cost function J is non-increasing with these updating rules, and the convergence is guaranteed (for a proof, see [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF]).

The Algorithm 2 carrys out NMF on the term-description matrix Y to estimate the two non-negative factor matrices X and W with the above mentioned updating rules in Equations 3.16 and 3.15.

The Algorithm 3 estimates the projection of a query q ∈ IR m on a r-dimensional latent semantic space, x ∈ IR r , by using the following updating rule:

x i ← x i (Wq) i (WW T x) i (3.17)
With the query and service descriptions projected onto the same latent semantic space, the cosine similarity (see Equation 2.7 in Section 2.4) is applied to identify relevant results.

Given:

• The term-description matrix Y ∈ IR m×n , where m and n are the number of terms and services, respectively.

• The number of iterations L, for which the algorithm converges on a optimal solution.

• The number of latent factors r. Goal: Estimate the factor matrices W ∈ IR r×m and X ∈ IR r×n which minimise the cost function J (in Equation 3.9), causing the algorithm to converge on a reasonable set of factor matrices such that solve the matrix factorisation problem (Y ≈ W T X).

1. Initialise W and X to small non-negative random values 2. For each value k such that k ∈ {l} L l=1 repeat the following a. Given X estimate W with the updating rule in Equation 3.15.

W ij ← W ij (XY T ) ij (XX T W) ij , ∀ i,j∈IN such that 1 ≤ i ≤ r and 1 ≤ j ≤ m b.
Given W estimate X with the updating rule in Equation 3.16

X ij ← X ij (WY) ij (WW T X) ij , ∀ i,j∈IN such that 1 ≤ i ≤ r and 1 ≤ j ≤ n 3.
Return the factor matrices W and X Algorithm 2: Non-Negative Matrix factorisation algorithm

In the same way as the model presented in Section 3.3, we expect that by factorising matrixes through NMF is more likely to capture the latent semantic factors which better describe services than by mean of classical LSI, because vectors in the latent semantic space might not be constrained to be orthogonal, besides, with NMF is guaranteed that each vector in latent semantic space has only nonnegative values in every direction (see Figure 3.2).

Given:

• The query q ∈ IR m , where m is the number of terms used to describe services.

• The number of iterations L, for which the algorithm converges on a optimal solution.

• The factor matrix W ∈ IR r×m .

• The number of latent factors r. Goal: Estimate the x ∈ IR r , which is the vector representation of a query q in a r-dimensional latent semantic space.

1. Initialise x ∈ IR r to small non-negative random values 2. For each value k such that k ∈ {l} L l=1 repeat the following • Given the factor basis matrix W estimate x with the updating rule in Equation 3.17 

x i ← x i (Wq) i (WW T x) i , ∀ i∈IN , such that 1 ≤ i ≤ r

Query Expansion via WordNet

The model presented in this section is based on VSM and query expansion rather than LSI. The query is expanded in order to cope synonymy problems. Notwith-standing the problem with models based on query expansion is that this kind of models might significantly decrease precision [START_REF] Wang | Semantic structure matching for assessing web service similarity[END_REF][START_REF] Kokash | Leveraging Web Services Discovery with Customizable Hybrid Matching[END_REF] (see Section 2.7). For instance, suppose a user submits a query like book a room, if the term book is considered a noun it may be expanded with WordNet with synonyms likewise: record, ledger, lever, Word of God, account book, Bible, al-Qur'an, etc. If all these synonyms are included into the query the system will retrieve services which are not related to reserve or book a room. However, if the same term is correctly identified as a verb, it may be expanded with WordNet with the following synonyms: hold and reserve. In this latter, the system will retrieve services for booking a room described with these synonyms, thus, the precision is increased.

Therefore, the problem in this context consists of tagging the parts of speech of the query in order to look for the synonyms in the thesaurus that will be injected into the query. In this study this problem has been tackled by using Apache OpenNLP2 library to tag the parts of speech of a query. This library uses a probability model to predict the tag of a term based on its corresponding word type and its context in the query sentence. Thereafter, the synonyms associated with the term are sought in WordNet but considering it as an adverb, verb, noun or adjective.

Once the query is expanded, its vector representation is computed with the TF-IDF. Finally, services descriptions are ranked according their cosine similarity (see Equation 2.4 in Section 2.3) with the vector which represents the query.

Query Expansion via Co-Occurrence Thesaurus

Another alternative to WordNet consists of automatically generating a thesaurus by computing the Terms Similarity Matrix Θ = YY T , where Θ ∈ IR m×m and each element Θ ij represents the similarity score between two different terms ω i and ω j , where i = j. This similarity score Θ ij is the extent to which the term ω i co-occurs with the term ω j (i = j) in several service descriptions. Thereafter, the latent factors of each column vector of a term-description matrix are computed, by factorising it through the above mentioned methods in order to obtain factor matrices W ∈ IR r×m and X ∈ IR r×m , such that Θ = W T X. Let V = {ω i } m l=1 be a set of terms used to describe services (a.k.a. vocabulary), and let Q be a query such that Q ⊂ V ′ , where V ′ is the vocabulary composed by the terms used to issue queries. In this model, a term ω i is used to expand a query whether it fulfils all the following conditions:

Given:

• The term-description matrix Y ∈ IR m×n , where m and n are the number of terms and services.

• The query Q ⊂ V ′ , where V ′ is the vocabulary composed by the terms used to issue queries.

• The number of latent factors r.

• The threshold ρ.

• The vocabulary used to describe services V .

Goal: Expand the query Q with terms from a co-occurrence thesaurus. The expanded query shall be denoted as Q e 1. Initialise the expanded query Q e ← Q 2. Factorise the term similarity matrix Θ, where Θ = YY T . The aim is to estimating the factor matrices W ∈ IR r×m and X ∈ IR r×m such that Θ = W T X 3. For each term ω j in the query Q which is also part of the vocabulary V (i.e., ω j ∈ Q ∩ V ) repeat the following • For each term ω i in the vocabulary V repeat the following -If cos(x i , x j ) > ρ and i = j, then assign Q e ← Q e ∪ {ω i } 4. Return the expanded query Q e Algorithm 4: Query expansion via co-occurrence thesaurus

• the term ω i is not used in the query (i.e., ω i / ∈ Q), • the term ω i belongs to the thesaurus (i.e., ω i ∈ V ), and • the term ω i is similar to another term ω j included in the query. Besides, the term ω j is part of the vocabulary used to describe services (i.e., ω j ∈ Q ∩ V ).

The similarity between both terms depends on the extent of similarity between their vector representations in the factor matrix X. Therefore, if all previous conditions are accomplished, and the cosine similarity between x i and x j (the i th and j th columns of X) is bigger than a certain threshold ρ, then the term ω j is injected in the query. The threshold ρ is estimated by means of experiments.

The Algorithm 4 carries out the expansion of queries. Once the query has been expanded, its vector representation is computed. Thus, given this vector, cosine similarity is applied to rank each vector which represents a service description.

Summary

In this chapter we have described our approach for preprocessing service descriptions in order to built an index for retrieving services.

Moreover, we have proposed two LSI-based models for retrieving services, whose underlying matrix factorisation models have not been applied in prior research on text description-based service retrieval. We have proposed both models to be compared with the classical LSI applied in the state-of-the-art on service retrieval. With this experimental comparison, our goal is to answer the open question Q2 (see page 38) in order to know whether the matrix factorisation approach used to implement a LSI model affects its effectiveness.

In the first LSI-based model, we have defined the factorisation of a termdescription matrix as an optimisation problem, whose aim is to minimise the squared error yielded from the projection of vectors, which represent service descriptions, onto the latent semantic space. In the second LSI-based model, we have applied NMF in order to factorise the term-description matrix.

Besides, we have proposed other two models based on query expansion. We aim to experimentally compare them with the above mentioned LSI-based models. The purpose of this experimental comparison is to answer the open question Q3 (see page 38), hence, identify which kind of models have the best effectiveness between these two based on query expansion or those based on LSI.

In the first model based on query expansion, we apply natural language processing techniques to tag parts of speech in the query. In this way, each term in a query is identified as a verb, adjective, noun or adverb. According to the sense of each term, its synonyms are retrieved from the lexicon named WordNet. These synonyms are injected into the query.

In the second model based on query expansion, we generate a co-occurrence thesaurus by computing a term similarity matrix from a term-description matrix. Each component of the term similarity is the extent to which two different terms co-occur in several service descriptions. Thereafter, the term similarity matrix is factorised in order to estimate the latent semantic factors of each term used to describe services. Thus, each term is represented in a vector space, therefore, the similarity between terms is determined by comparing their vector representations with cosine distance. Finally, the query is expanded with terms which are similar to those used to issue the query.

In classical LSI, service descriptions are orthonormal vectors into a latent semantic space. In contrast, factorisation models proposed in this section do not require the latent semantic space to be orthogonal. We expect that by factorising matrixes, either by minimising the square error or through NMF, it is more likely to capture the latent semantic factors which better describe services than through classical LSI, because vectors in the latent semantic space might not be constrained to be orthogonal, besides, with NMF is guaranteed that each vector in latent semantic space has only non-negative values in every direction.

In the next Chapter we present and analyse the results of the evaluation of all the models presented in this Chapter, and the most representative in the state-ofthe-art on service retrieval.

Introduction

In this Chapter we report and discuss the outcomes of this research. We have conducted an experimental evaluation of each Information Retrieval (IR) model described in the previous chapter. Besides, we have evaluated those prominent models used in the state-of-the-art on service retrieval.

Our purpose with the empirical study discussed in this chapter is twofold. First of all, verifying the fulfilment of the goal of this research, secondly, to answer the research questions raised from the literature survey on service retrieval (see Chapter 2).

Moreover, among the IR models proposed in this research, we have implemented in S 3 niffer the model with highest effectiveness. This selection is done according the results achieved in this study.

We have implemented the proof-of-concepts of all models in R1 language. We evaluated each IR model with its respective proof-of-concept. Whereas we have implemented the final version of S 3 niffer in Java 2 language. In this chapter we delve into the implementation details of S 3 niffer.

The rest of this chapter is outlined as follows: In Section 4.2 we present the experimental setting of the evaluation of the family of IR models. In Section 4.3 we present the results of the research. In Section 4.4 we analyse the results achieved through experiments conducted in this research. In Section 4.5 we describe the implementation details of S 3 niffer. Finally, we summarise the chapter in Section 4.6.

Experimental setting

During experiments, we have used the fourth version of the OWL-S service retrieval test collection called OWLS-TC4 3 . This collection provides the descriptions of 1083 Web services from 9 different domains (i.e., education, medical care, food, travel, communication, economy, weapon, geography, and simulation). All services are written in OWL-S 1.1, however, these are still compatible with OWL-S 1.0. Besides, this collection includes a set of 42 test queries associated with their relevance judgment provided by several users. A pooling strategy (as used in TREC 4) is conducted to collect the relevance judgment set which is obtained from the top-100 results of participants of the S3 contest5 in 2008.

Due to the judgment relevance has been graded in four different levels (i.e., value 3 for highly relevant, value 2 for relevant, value 1 for potentially relevant, and value 0 non-relevant), we have adopted the Normalised Discounted Cumulative Gain at 10 (NDCG@10) to measure the overall ranking effectiveness of each model rather than the Mean Average Precision (MAP).

OWLS-TC4 is the unique collection which exists to be applied service retrieval domain which has judgement relevance. Moreover, previous versions of this collection have been used for carrying out experiments in related recent research [START_REF] Cassar | A probabilistic latent factor approach to service ranking[END_REF][START_REF] Cassar | Probabilistic matchmaking methods for automated service discovery[END_REF].

On the other hand, we have tuned all the models, then the best settings for LSI via SVD (LSI-SVD), Minimising the Squared Error (LSI-MSE), and Nonnegative Matrix Factorisation (LSI-NMF) are achieved when the number of latent factors are 147, 200, and 150, respectively (see Figure 4.1). The best setting for LDA is achieved with 180 latent topics (see Figure 4.1). Besides, we assessed LDA with several value for α. We found the best setting for α is the same suggested in [START_REF] Griffiths | Finding scientific topics[END_REF]. Moreover, to factorise matrixes by minimising the squared error, the best setting is obtained for the initial learning rate η 0 and the regularisation parameter λ, when their values are 0.2 and 0.001, respectively. Furthermore, the co-occurrence thesaurus is generated with the same three matrix factorisation models above mentioned. Several values of ρ are set for this approach (0.85, 0.90, 0.95, and 0.99). The best effectiveness of this models is obtained by generating the thesaurus and factorising the term similarity matrix via the technique to Minimise the Squared Error with 200 latent factors, and ρ equal to 0.95. 

The research results

Table 4.1 presents the results we obtained from the experiments. The three first rows show the retrieval effectiveness we obtained for those models applied in prior research on service retrieval, i.e., Vector Space Model (VSM), Latence Dirichlet Allocation (LDA), and Latent Semantic Indexing (LSI). Then the six last rows show results for our model extensions: Query Expansion via a Co-Occurrence Thesaurus (QECOT) automatically generated through SVD is called QECOT-SVD, QECOT generated using the method to Minimise the Squared Error (MSE), QECOT-MSE, QECOT generated through NMF, QECOT-NMF. Similarly, henceforth we denote LSI-SVD the classical Latent Semantic Indexing (LSI) via SVD, LSI-MSE LSI via MSE, LSI-NMF LSI via NMF. Eventually, WordNet-based Query Expansion is shortened to WN-QE, Latent Direchlet Allocation to LDA, and Vector Space Model to VSM. The outcomes of the experiments suggest that QECOT-MSE outperforms all the above mentioned models in terms of effectiveness (see Table 4.1). 

Yes

The results we got suggest that QECOT-MSE outperforms all the models studied in the paper. Indeed, Table 4.2 shows that the effectiveness of QECOT-MSE is better than LDA and VSM, which are the models applied for service retrieval in [START_REF] Wang | Semantic structure matching for assessing web service similarity[END_REF][START_REF] Platzer | A vector space search engine for web services[END_REF][START_REF] Kokash | Leveraging Web Services Discovery with Customizable Hybrid Matching[END_REF][START_REF] Lee | A framework for xml web services retrieval with ranking[END_REF][START_REF] Crasso | Easy web service discovery: A query-by-example approach[END_REF][START_REF] Wu | WSDL Term Tokenization Methods for IR-style Web Services Discovery[END_REF][START_REF] Cassar | A probabilistic latent factor approach to service ranking[END_REF][START_REF] Cassar | Probabilistic matchmaking methods for automated service discovery[END_REF], and the difference is statistically significative. Despite there is no difference which is statistically significative between the effectiveness of QECOT-MSE and LSI-SVD, the first model outperformed the second one in more queries. Indeed, in 5 queries both models had the same effectiveness, in 24 queries QECOT-MSE outperformed LSI-SVD, and only in 13 queries LSI-SVD has better effectiveness than QECOT-MSE (see Figure 4.2). Figure 4.2 depicts a comparison of the effectiveness of both models regarding each query used in the experiments. Points below the diagonal line correspond with queries where LSI-SVD outperformed QECOT-MSE (13 points). Whereas points above the line correspond with queries where QECOT-MSE outperformed LSI-SVD (24 points). Finally, points in the diagonal line correspond with queries where both models had the same effectiveness (5 points).

Another remarkable result suggest that LDA is outperformed by LSI-SVD (see Table 4.3), although the first models has been proposed to improve LSI in other IR domains. Perhaps the low effectiveness of LDA is due to the low frequency of the terms in the descriptions of the services. This fact answers the question Q1 stated in Section 2.7 (see page 38).

LSI-NMF outperformed LSI-MSE, likewise the latter has a NDCG@10 greater than the one achieved with the classical LSI-SVD. This suggests that vectors in the latent semantic space might not be constrained to be orthogonal. Besides, with NMF is guaranteed that each vector in this space has only non-negative values in every direction. Notwithstanding the difference between NDCG@10 values is not statistically significant as it is shown in Table 4.3. This fact answers the question Q2 stated in Section 2.7 (see page 38).

On the other hand, the evaluation reveals that LSI-NMF had a similar performance than WN-QE (see Table4.3). Maybe, due to this fact, LSI and query expansion have been the two main streams in the state-of-the-art on service retrieval. Nevertheless, QECOT-MSE has the best effectiveness, this suggests that query expansion might outperform LSI-models. This fact answers the question Q3 stated in Section 2.7 (see page 38). Furthermore, between QECOT-MSE and WN-QE, the first has a better effectiveness. This might be due to QECOT-MSE automatically generates a thesaurus which is adapted to the knowledge of a specific domain. In this thesaurus the relationship among terms is determined by semantic latent factors, whereas WordNet is a general purpose thesaurus, which is not enable to be adapted to specific domains. For example, let us consider a query for orange services. With WordNet, this query may expand to orange services river tree orangeness. Nonetheless, if the original query refers to services provided by the French multinational telecommunications company, the query expanded with WordNet shall decrease the effectiveness of the retrieval process. On the other hand, the QECOT-MSE model is enable to learn from the collection of service descriptions, the latent factors which explain the correlation among terms like orange and telecommunication, therefore this model might expand a query with terms that explain better a specific need. • Preprocessor: This component executes the procedure described in Section 3.2. This is written in R language and it is carried out off-line, before the creation of the index. • Co-occurrence thesaurus creator: This component computes the factor matrix X from the term similarity matrix Θ (see Section 3.6). The factorisation model implemented is Minimising the Squared Error (MSE), because with this method we achieved the best effectiveness (see Section 4.3). The factor matrix X is stored in a file to expand queries. This component is written in R language.

• Indexer: This component creates the index through the Vector Space Model.

This component is written in Java with the Apache Lucene library 6 . • Service search engine: This component is indeed a Web service which has an operation called searchServices. This operation receives a text query and the number of candidate services (10 for default), and it returns a ranked list of candidate services. As the previous component, this one is also written in Java with the Apache Lucene library. However, before ranking services, this component expands the query with the stored matrix X through the Algorithm 4

explained in Section 3.6.

Taking into account the results we got from experiments, we have implemented the QECOT-MSE model in S 3 niffer. We have adopted Apache Lucene library to implement the last two above mentioned components of S 3 niffer. We made this decision because this library has been used in famous projects such as Krugle, SIREn, and LinkedIn (McCandless et al., 2010, pg. 383, 394, 409). Besides, Lucene supports the creation of optimised indexes, which are structured in several segments (McCandless et al., 2010, pg. 36). Hence, during the ranking process is not the whole index is not allocated in memory, instead of that, each segment is processed separately and the results are mixed later.

Another advantage of S 3 niffer, which is derived from Lucene is that its query syntax supports:

• Wildcard characters (? and *) in the terms that belong to a query, e.g., to look for flash or flush, the query fl?sh may be used. But, if a wildcard for multiple characters is required, e.g., to seek surfing, surfer, or surf, then the query surf* may be used. Both wildcard characters might be used in the middle of a term. Nonetheless, any of them can not be used at the beginning. • Fuzzy search query based on the Damerau-Levenshtein similarity. In Lucene, at most, the query shall match terms up to 2 edits. It is useful to find terms which are similar in spelling. It is indicated in the query by using the tilde character (˜) at the end of a single term, e.g., the query aide˜matches terms such as eider, aid, aim, aida, or ail.

Both features supported in the Lucene query syntax are useful when a user is not sure about how to spell terms to query services.

Summary

In this Chapter we have presented a study conducted to assess the effectiveness of a family of IR models, which we have applied for retrieving services. To the best of our knowledge, these models have not been applied in prior research on IR-based service discovery. Moreover, we have compared the family of IR models with those models used in the state-of-the-art on service retrieval.

With this evaluation we aim to answer the questions raised from the state-of-theart on service retrieval, and fulfil the goal of this research, namely, to implement in S 3 niffer a model which outperforms the effectiveness of those used in prior research on service retrieval.

In this chapter were have described the experimental setting used for testing all the studied IR models. Besides, in this chapter presented and discussed the results of the research. The findings of the research results are as follows:

1. The outcomes of the experiments suggest the expansion of queries via cooccurrence thesaurus outperforms the effectiveness of the other models studied in this work. 2. The results suggest that LDA has a lesser effectiveness than all the LSI-models evaluated in this work. However, for further research, this model might be used for expanding queries. 3. The results reveal there not exist a statistically significative difference in the effectiveness between the underlying factorisation technique used in this study to implement LSI models. Moreover, LSI-based models had a similar effectiveness than the injection of synonyms from WordNet taking into account the parts of speech of the query.

Finally, due to the results suggest the expansion of queries via co-occurrence thesaurus outperforms the other models studied in this research, we have detailed its implementation in S 3 niffer. Thus, S 3 niffer is a IR system for discovering services, whose components have been written in R and Java languages. All its components are in charge of procedures like preprocessing of service descriptions or service retrieval. The searching component is a Web service which may be invoked to retrieve a ranked list of candidate services.

Chapter 5

Conclusions

Summary and conclusions

The main contribution of this research is a service search system named S 3 niffer, whose Information Retrieval (IR) model has been designed to outperform the effectiveness of those models used in prior research on service retrieval. The effectiveness of service retrieval systems is affected by term mismatch problems, which are worse in the context of this research, due to service descriptions are shorter than usual documents (e.g., books, Web pages, etc.).

In prior research on service retrieval have been applied the following IR models:

1. Vector space model (VSM) [START_REF] Salton | A vector space model for automatic indexing[END_REF], 2. Latent Semantic Indexing (LSI) [START_REF] Deerwester | Improving Information Retrieval with Latent Semantic Indexing[END_REF][START_REF] Deerwester | Indexing by latent semantic analysis[END_REF], 3. Probabilistic Latent Semantic Indexing (PLSI) [START_REF] Hofmann | Probabilistic latent semantic indexing[END_REF], or 4. Latent Dirichlet Allocation (LDA) [START_REF] Blei | Latent dirichlet allocation[END_REF].

Term mismatch problems in VSM have been tackled by expanding queries and WSDL documents with synonyms of their terms [START_REF] Wang | Semantic structure matching for assessing web service similarity[END_REF][START_REF] Kokash | Leveraging Web Services Discovery with Customizable Hybrid Matching[END_REF]. Synonyms are extracted from WordNet lexicon [START_REF] Miller | Wordnet: A lexical database for english[END_REF]. Nevertheless, the query expansion based on the injection of synonyms significantly decreases precision because a term may have synonyms with different meanings depending of the context of the term in the query.

In other works, term mismatch problems have been handled through LSI [START_REF] Sajjanhar | Algorithm for web services matching[END_REF][START_REF] Ma | Web Services Discovery Based on Latent Semantic Approach[END_REF][START_REF] Wu | An empirical approach for semantic web services discovery[END_REF][START_REF] Wu | Latent Semantic Analysis -The Dynamics of Semantics Web Services Discovery[END_REF]. Besides, PLSI and LDA have been applied to overcome term mismatch problems. According to the results obtained in [START_REF] Cassar | A probabilistic latent factor approach to service ranking[END_REF][START_REF] Cassar | Probabilistic matchmaking methods for automated service discovery[END_REF], LDA outperforms Probabilistic LSI (PLSI) [START_REF] Hofmann | Probabilistic latent semantic indexing[END_REF]. Nonetheless, in [START_REF] Cassar | A probabilistic latent factor approach to service ranking[END_REF][START_REF] Cassar | Probabilistic matchmaking methods for automated service discovery[END_REF] did not compare LDA with other models used in prior research (e.g., LSI).

Moreover, ontologies have been built and applied in prior research on service retrieval to deal with term mismatch problems [START_REF] Pan | Ranked Web Service Matching for Service Description Using OWL-S[END_REF][START_REF] Paliwal | Web Service Discovery: Adding Semantics through Service Request Expansion and Latent Semantic Indexing[END_REF][START_REF] Paliwal | Semantics-based automated service discovery[END_REF]. Nevertheless, we have decided not to design and build any ontology because of the creation of ontologies is an expensive, time-consuming, tedious, and error-prone task [START_REF] Gomez-Perez | Ontological Engineering[END_REF][START_REF] Shamsfard | Learning ontologies from natural language texts[END_REF].

Thus, from the literature review on service retrieval has raised the following questions which have been addressed in this research:

• Q1: Which model has the best effectiveness between LDA and LSI based on Singular Value Decomposition (SVD)? • Q2: Is it possible to increase the effectiveness of LSI with other matrix factorisation models? • Q3: Which kind of model has the best effectiveness between LSI-based models or query expansion?

In order to answer the open question Q1, we have carried out experiments to compare the effectiveness of LDA and the classical LSI based on SVD. From the results of the research, we conclude that LDA is outperformed by classical LSI.

The another contribution of this research aim to answer the research question Q2. We have applied two LSI models based on matrix factorisation which are different to SVD, namely, LSI-models via Non-negative Matrix Factorisation (NMF) and Minimising the Squared Error (MSE). From the results of the research, we conclude there not exist a statistically significative difference in the effectiveness between the underlying factorisation technique used in this study to implement LSI models.

For the purpose of answering the last research question Q3, we have applied two models based on query expansion. The first one expands the query by injecting synonyms extracted from WordNet, by taking into account the parts of speech of the query. The second one expands the query with terms extracted from a cooccurrence thesaurus. From the results of the research, we conclude that LSI-based models have a similar effectiveness than the injection of synonyms from WordNet taking into account the parts of speech of the query. Furthermore, we conclude that the expansion of queries via co-occurrence thesaurus outperforms the effectiveness of the other models studied in this research.

Therefore, we have implemented in S 3 niffer the expansion of queries via cooccurrence thesaurus. We have implemented S 3 niffer in R and Java with Apache Lucene library. As a consequence, S 3 niffer supports two important features of Lucene query syntax, i.e., wildcard characters and fuzzy search query. Both features are useful when a user is not sure about how to spell terms to formulate a query.

Another remarkable conclusion of this research is that S 3 niffer may be used by software engineers and software developers to search services in order to consume them in their applications.

Suggestions for further research

For future research we suggest:

• study the effectiveness of models based on the expansion of queries and service descriptions through a co-occurrence thesaurus, which is generated from a collection of documents that belong to an external source of knowledge, such as Wikipedia.

• design other matrix factorisation models based on the kernel trick, and apply them on LSI and query expansion models based on a co-occurrence thesaurus.

• study the effectiveness of the integration among term similarity and language models for expanding queries.
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 4 1 Retrieval effectiveness.

	Model	NDCG@10	Gain (%)
	Models applied in prior research on IR-based service discovery
	VSM (baseline)	0.5435	N/A
	LDA	0.6661	22.55
	LSI-SVD	0.7586	39.57
	Proposed family of models for text-based service retrieval
	LSI-MSE	0.7621	40.22
	WN-QE	0.7645	40.66
	LSI-NMF	0.7649	40.73
	QECOT-NMF	0.7792	43.37
	QECOT-SVD	0.7804	43.59
	QECOT-MSE	0.7897	45.29
	4.4 Analysis of the results	

Table 4 . 2

 42 Student's paired t-test on NDCG@10, with p < 0.05, to compare QECOT-MSE with other models applied in prior research on IR-based service discovery

	Model	NDCG@10	p-value	is statistically
	QECOT-MSE	0.7897		significant?
	VSM LSI-SVD	0.5435 0.7586	3.47 × 10 -7 0.08039	Yes No
	LDA	0.6661	7.613 × 10 -5	

Table 4 . 3

 43 Student's paired t-tests on NDCG@10, with p < 0.05, to compare LSI-NMF with other LSI-based models, WN-QE, and LDA

	Model	NDCG@10	p-value	is statistically
	LSI-NMF	0.7649		significant?
	Models applied in prior research on IR-based service discovery
	LSI-SVD	0.7586	0.6855	No
	LDA	0.6661	8.37 × 10 -4	Yes
		Proposed family of models for text-based service retrieval
	LSI-MSE WN-QE	0.7621 0.7645	0.8466 0.9718	No

No

4.5 Implementation details of S 3 niffer S 3 niffer is a service search system composed by four components as follows:

The word cloud in the figure was drawn by using a corpus composed by OWL-S profiles from the collection named OWLS-TC4 (http://projects.semwebcentral.org/projects/owlstc/, retrieved on July

of 2014) 

Michael Crichton, The andromeda strain, Chapter 20: Routine, pg.245, Harpercollings publishing, 1969. xiii 

Web Service Description Language, see http://www.w3.org/TR/wsdl20/, retrieved on February

of 2015 2 Web Ontology Language, a.k.a. DAML-S, see http://www.w3.org/TR/owl-features/, retrieved on February of 2015 3 Representational State Transfer, REST, see http://www.w3.org/2012/ldp/charter, retrieved on February of 2015
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Currently, due to the pervasive computing phenomenon, mobile devices are a kind of computer
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 Chapter 4Implementation and evaluation Abstract In this Chapter we present and analyse the results of systematic experiments carried out in our research. Firstly, the outcomes of our study suggest the expansion of queries via co-occurrence thesaurus outperforms the effectiveness of the other models studied in this research, hence, we have adopted this model to implement S 3 niffer. Secondly, the outcomes reveal that the models based on Latent Semantic Indexing (LSI) outperform the effectiveness of Latent Dirichlet Allocation (LDA). Thirdly, despite the results reveal LSI via Non-negative Matrix Factorisation (LSI-NMF) outperforms the other LSI models, there not exist a statistical significative difference in the effectiveness between the underlying factorisation technique used in this study to implement LSI models. Finally, in this Chapter we describe the implementation details of S 3 niffer.