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Introduction 

 

 

How is an image formed? Do we really need lenses to generate an image? Obviously, 

this is not necessary. The philosopher Mo Jing in ancient China, during the 5th 

century BC, mentioned the effect of an inverted image forming through a pinhole. 

Nowadays, it is still a well-applied technique but limited by the shape and size of the 

pinhole. What technique would overcome any manufacturing limitation? Modern 

optics brought the answer with diffraction and Fourier optics. Since the advances 

made in the last decades with the introduction of lensless imaging techniques with 

X-rays and particles, imaging science has witnessed extraordinary advancements. 

We are concerned about elucidating structural changes over broad time scales 

(attoseconds to many seconds) and length scales (nanoscale to macroscale). This is of 

interest not only in biology, but also in physics, medicine and in order to create the 

revolutionary materials required for future communication and energy technologies. 

Scientific and industrial innovations depend on our capacity to design, observe, 

control matter at these various space and time scales. Improved or entirely new 

characterization tools increase our understanding of the ‚real‛ world, from complex 

organized systems to a single particle. While various forms of microscopy (TEM, 

SEM, AFM, STM, etc.) can furnish detailed information about morphology, size, and 

on occasion the composition of nanoparticles, none are capable of providing real–

time, on–line information. 

To bridge the gap between conventional diffraction and microscopy, and to image 

single non-periodic objects with atomic/nanometric spatial resolution, coherent 

diffractive imaging (CDI) has demonstrated very high potential. Since its 

demonstration [1-2], many researchers have taken a large step in this direction using 

synchrotron radiation, free electron laser or high harmonic generation [3-8]. The idea 

of CDI came from the successful crystallography diffraction methods. David Sayre 

first raised this question that whether a similar diffraction method could be applied 

to non-periodic objects in 1952 [9]. J.R. Fienup proposed a phase-retrieval algorithm 

to solve the phase problem in 1978 [10]. His algorithm is a modified version of 

Gerchberg-Saxton algorithm that is originally inspired from ideas used in electron 

microscopy [11]. For more details of the historical development of the phase-retrieval 

algorithm, please refer to the review of Henry Chapman and Keith Nugent [12].  

Exploiting coherence in diffraction, scientists have now in hand a revolutionary 

imaging system, an ultimate microscope that can see inside our ‚ultrasmall‛ world 
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with incredible clarity. No lens is needed, it is only necessary to record the intensity 

of the diffraction pattern that emerges after its interaction with the object on a high-

resolution high dynamic range pixelated detector. The diffraction patterns in no way 

resembles the object itself, but a computer can convert this digitized diffraction 

pattern using a calculation known as a "phase-retrieval" to extract the information. In 

this way, it is possible to make much better images than with conventional lens-

based systems. The spatial resolution can be pushed down to the theoretical 

diffraction-limit given by the source wavelength so that potentially atomic vision 

could be available using coherent hard X-rays.   

In-situ images of individual sub-micrometer particles and molecules at 

atomic/nanometre resolution in their native environment can be applied to resolve 

both static and dynamic structures. The dream experiment would consist in 

producing the best-ever pictures of individual atoms, molecules or cells in any 

structure even if it is not crystalline.A first example is given by images of viruses 

recently obtained at the LCLS free electron laser (see fig. below) [13]. This is of strong 

interest as a big gap exists in the knowledge of viruses structures in the range from 

about 30nm to 500nm (see figure below). In fact, these length scales remain 

uncharted territory for many other biological systems.  

First results from the LCLS where single mimivirus particles were injected into the FEL beam. 

Recorded diffraction patterns (left) and image reconstruction of the virus (right). 

Third generation synchrotrons has also given extraordinary pictures, like the 3D 

structural image of a single nanocrystal  [14] or a bone [15], ultrafast coherent X-ray 

flashes provided by free electron lasers (FEL) and high laser harmonic (HHG) 

sources allow dynamical studies. We are dealing with X-ray flashes few 

femtoseconds (10-15s) down to 100 attoseconds (10-18s) short. Spectacular advances in 

the attainment of ultrafast imaging represent a real breakthrough in science in 

particular when the dynamics come into play. Have you ever imagined a camera 

capable of following in space and time an electronic cloud moving as fast as an 

electromagnetic wave or watching the dance of atoms inside a stressed nanocrystal? 

Atomic/nanometric spatial changes on ultrafast time scales will add new dimensions 
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to understanding primary biological or chemical reactions. Ultrafast lensless imaging 

can be applied to follow in real time nanoscale processes; nano-crystal stress, nano-

magnetism or nanoscale phase transitions are few examples. In magnetism, this will 

offer new tools to create and optimize next generation ultrafast storage and 

calculator devices. 

Those illustrations are non-exhaustive and new horizons are opened. Indeed, new 

concepts in imaging have always fascinated mankind while creating significant 

economic impact. We can cite for example the extraordinary adventure of Stanford 

researchers transforming light field and Fourier technology from a scientific theory 

into a reality for everyone (https://www.lytro.com/ ).Lensless imaging has a similar 

potential. Why not a digital lensless camera?  

 

CDI is a powerful tool in many scientific areas ranging from biology to solid-state 

physics. The key words for CDI are ‚coherence‛ and ‚diffraction‛. Indeed, the 

technique uses the measurement of a far field diffraction pattern to retrieve the spatial 

amplitude and phase of a real space object. The large-scale facilities – synchrotron light 

sources and FELs provide a large amount of photons promising a good signal-to-

noise ratio in CDI. The high coherence of FELs and synchrotrons (using a pinhole in 

this case) ensures that the important phase information can be well ‚written‛ in the 

detected diffraction pattern. Moreover, the femtosecond pulse duration of FEL 

sources promises a bright future for ultrafast dynamic imaging at a nanometer or 

sub-nanometer scale. 

 

FLASH in Hamburg (VUV FEL) LCLS in Stanford (X-ray FEL) 

  

However, these large-scale facilities cost expensive resources and have limited access 

beam time. These constraints limit the wide spread of ultrafast coherent diffractive 

imaging. The applications are then restricted. This limits the impact of this research 

for example in the optimization of ultrafast nanoscale devices in communication, 

medicine or even in more industrial environments. Therefore, an inexpensive source 

https://www.lytro.com/
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would provide a very interesting alternative: high-order harmonic generation (HHG) 

sources can provide intense highly coherent soft X-ray photons with ultrafast pulse 

duration. The relatively small size and low cost of such light source makes the HHG 

source an ideal alternative to synchrotrons and FELs. Up to recently, the limited 

brightness of HHG source was a key limitation for a table-top application of CDI. 

However in 2007, Richard Sandberg and colleagues have succeeded in 

demonstrating CDI using a kHz table-top laser driven HHG source with a spatial 

resolution of 214nm [7]. The brightness of the harmonic beam was still limited, and 

the exposure time of this experiment was on the scale of an hour (up to 106 laser 

shots!) that is far from reaching single shot ultrafast nanoscale imaging, required in 

many dynamical studies. In 2009, our research group at CEA (Commissariat à 

l’Energie Atomiqueet aux Energies alternatives) has demonstrated the first single-

shot CDI using a table-top femtosecond soft X-ray laser harmonic source [8]. An 

isolated test nano-object was reconstructed with 119nm spatial resolution in a single 

20fs-long shot. A spatial resolution of 62 nm was obtained from multiple laser shots 

(40 shots). In this context, I have joined the AttoPhysique group of CEA as a PhD 

student of Dr. Hamed Merdji in 2010. 

 

Motivation and outline 

 

The principle objective of this work is to perform extended developments and 

applications of ultrafast coherent imaging techniques using table-top harmonic 

source. I present all the efforts, either on the source, and the imaging techniques to 

build a reliable and powerful ultrafast microscope with nanometer spatial resolution 

and femtosecond temporal resolution. I present then a characterization of magnetic 

nano-domains at a sub-100nmscale in a single femtosecond shot. This illustrates the 

potential of our table-top harmonic beamline for various scientific research areas 

such as material science, biology and chemistry.  

This work is presented in five chapters. 

Chapter 1 is dedicated to the description of the theoretical background of the lens-

less imaging (also called coherent imaging). It starts with a presentation of the 

principle of the lens-less imaging. The first part is the mathematical description of 

diffraction and Fourier Transform that are the basics of diffraction pattern formation 

of the coherent imaging. The second part is the description of basic phase-retrieval 

algorithms and holographic techniques that are used in this work. The third part is a 

discussion of the beam requirements for lens-less imaging, followed by a brief 

description of the HHG process used as light source in this thesis work. This chapter 
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should give a clear description of CDI and help to understand the ideas and methods 

used in the following chapters. 

The main work and experimental results are presented respectively in Chapter 2, 3 

and 4. 

Chapter 2 starts with the description of the experimental setup – the table-top high 

flux harmonic beamline at CEA Saclay. The first step of this thesis work has been a 

complete optimization of the harmonic beam line from the very beginning of the 

infrared pump laser to the focusing optics at the end of the imaging setup. The 

optimization processes and results are presented in Paper I and Paper II attached to 

this chapter. The first one discusses the optimization of infrared pump laser using a 

modal filtering hollow core fiber, which leads to improvement of the HHG efficiency 

and stability. After the beam line optimization, spectrum and far field studies of 

HHG in two different gas mediums (argon and neon) are presented. The first one 

shows the optimization of the HHG and the diffraction stages. The objective has been 

to increase the photon flux, the coherence and the wave front quality of the harmonic 

beam. Statistic studies using a Hartmann wave front sensor and Young double slits 

to characterize the wave front and the coherence show the improvement of the 

harmonic beam and the influence of these beam properties in the image 

reconstruction quality. This chapter concludes with the summary of the optimized 

high flux harmonic beamline and a short discussion of a comparison between large-

scale facilities sources (synchrotron and FELs) and table-top harmonic sources for 

coherent imaging. 

Chapter 3 presents the second step of the thesis work: the validation of different 

coherent imaging techniques at the table-top harmonic beam line. It starts with 

experimental results of classic CDI and discussion of the spatial coherence 

implementation in the reconstructions. The second part is the experimental results of 

Fourier Transform Holography (FTH), which is a complementary imaging technique 

to CDI. The limitation in spatial resolution in FTH inspired several new imaging 

techniques such as Holography with Extended Reference by Autocorrelation Linear 

Differential Operation (HERALDO). HERALDO offers an alternative way for 

ultrafast nanometric imaging, which is easy to implement on all kinds of beam line 

performing coherent imaging. The step-by-step analysis of the HERALDO 

reconstruction process leads to a discussion of the influence of reference design and 

the signal-to-noise ratio issue, which is reported in Paper III. Indeed, the signal-to-

noise ratio gives restrictions in both CDI and holographic techniques for our 

experiments. A comparison between CDI, FTH and HERALDO techniques concludes 

this chapter.  



 9 

Chapter 4 is the last achievement of this thesis work: the extension of 2D coherent 

diffractive to 3D. I present the theoretical study of three-dimensional coherent 

diffractive imaging. Generally, to accomplish a full 3D display, multiple views of 

objects are required. It is worthwhile to discuss the relationship between two 

dimensional and three dimensional diffraction imaging. Recently, a new 3D imaging 

technique, named ankylography, proposed to exploit high angle, single view, 2D 

diffraction to recover 3D amplitude and phase information. Before investigating the 

3D image reconstruction process of an object from its diffraction pattern, some basic 

points in the 2D case are reviewed. We recall the numerical algorithm image 

reconstruction from a coherent diffraction pattern. In addition, we explain the 

numerical developments that play an important role as a bridge from 2D to 3D 

perception. Then we present our first experimental data and image reconstructions. 

Those data allow identifying restrictions in the 3D ankylographic image 

reconstruction.  

 

Chapter 5 draws the perspectives and gives the general conclusion of this thesis. I 

summarize the main conclusions of the harmonic beamline investigations, the 2D 

coherent imaging techniques (CDI, FTH, HERALDO) and the first 3D imaging 

results. Furthermore, we open a new perspective towards 3D coherent imaging using 

a technique based on the stereo vision. In this configuration, 2D stereo images can be 

either reconstructed using coherent diffractive or holographic techniques. 
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Chapter I - Principle of lens-less imaging 

 

I.1 Few basics in lens-less imaging techniques 

In conventional imaging systems, such as optical microscope and photo camera, a 

simple lens or a group of convex and/or concave lenses are used to form the image of 

the target object that is illuminated by a proper light source (Fig. 1.1). In complicated 

imaging systems, the lens system can also contain other optical elements, such as 

mirrors, windows, etc. The image quality is generally limited by the lens system: the 

ensemble of each optic’s aberration determines the possible alterations of the object 

image. This imposes strong constraints on manufacturing of optical elements and 

design of lens system. In X-ray microscopy, the highest spatial resolution to date has 

been obtained using zone plate Fresnel optics. The constraints on optical elements 

become more critical.  First, the resolution of such image-forming optics is limited by 

the smallest outer feature of the zone plate, which raises a real challenge on the 

optics manufacturing if one would like to reach nanometric resolution. Secondly and 

more fundamentally, the material of such optics has strong photon absorption, which 

limits its efficiency to typically less than 10% and often as low a percent [1]. The latter 

one is critical for high resolution imaging of certain specimens that are sensitive to 

radiation damage [2,3]. In this context, the lens-less imaging provides an alternative 

solution for high resolution imaging for various applications from biology to solid-

state physics.    

 

Fig. 1.1.Scheme of conventional imaging systems. Object image is formed by a lens system. 

In lens-less imaging, no optics is required after the illumination of the object. 

Computation algorithms are used to retrieve the object’s image instead of a lens 

imaging system. The isolated object is illuminated by a coherent wave, which ideally 

has to be monochromatic. The object diffracts and induces modifications in 

magnitude and/or in phase of the incident wave. The diffraction pattern is then 

measured in the far field by a pixel-array detector, which is usually a Charge-

Coupled Device (CCD) camera (Fig. 1.2). 
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Fig 1.2.Scheme of a lens-less coherent imaging set-up. The computation algorithms replace 

the lens system conventionally used to image the object. 

 

In the Fraunhofer diffraction regime, the diffraction pattern is proportional to the 

Fourier transform of the exit wave in the image plane. Theoretically, a simple 

inversion of the diffraction pattern should give the image of the object. But the pixel-

array detector is only sensitive to the intensities of the electromagnetic wave field. 

Therefore, the phase information of the wave field is not directly measured by the 

detector. Infinity of possible solutions of the simple inversion can be obtained by 

applying possible phases to the measured diffraction pattern [4]. Here comes the 

famous ‚phase problem‛, which is the main obstacle to extract object information from 

the measured diffraction pattern. Two main techniques have been proposed to 

overcome the ‚phase problem‛: one uses Phase Retrieval Algorithms *6,7,8+ and is 

called Coherent Diffractive Imaging (CDI); the other is Fourier Transform 

Holography (FTH) [5]. 

In CDI, iterative algorithms converge to the spatial phase in the diffraction plane 

using constraints both in real and reciprocal space (the diffraction plane). A scheme 

of the CDI technique is shown in Fig. 1.3. In the reciprocal space, the diffraction 

pattern recorded by the detector is equal to the absolute squared value of the Fourier 

transform of the exit wave. In the real space, the object is contained in a finite 

dimension (called ‚support‛). The autocorrelation defined as the Fourier transform of 

the measured diffraction pattern will give a first constraint to the support (other 

constraint can be found). The relation of Fourier transform links these two 

constraints between real and reciprocal spaces. In general, most phase retrieval 

algorithms use these two kinds of constraints to reconstruct the ‚lost phase‛ in the 

reciprocal space and the object image in the real space. During the detection of the 

diffraction patterns, the coherence of the incident wave plays an important role. It 

creates a characteristic ‚speckle pattern‛ in the diffraction plane. The ‚speckle‛ is the 

‚phase signature‛ of the diffraction pattern that ensures the convergence of iterative 

algorithms. The phase retrieval algorithms reconstruct simultaneously the phase in 
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reciprocal space and the object image in real space. The solution is nearly unique for 

problems that have more than one dimension [9,10].    

 

Fig. 1.3. The scheme of CDI can be separated into two steps: the first one is the detection of 

the object’s diffraction pattern. The second step is to use phase retrieval algorithms to 

reconstruct the ‚lost phase‛ of the diffraction pattern and the object image. 

 

Fourier Transform Holography (FTH) is another lens-less imaging technique, which 

has almost the same experiment setup as the CDI except that the sample geometry 

holds a holographic reference. The principle of FTH is similar to holography 

proposed by Dennis Gabor in 1948 *11+. The FTH is inspired by this idea of ‚full 

recording‛: the incident wave is simultaneously diffracted by the object and the 

reference. The detector located in the far field records the interference between these 

two diffracted waves, which is called ‚hologram‛. The spatial amplitude and phase 

of the object are encoded in this hologram and a simple Fourier transform is required 

to reconstruct the object image [12] (Fig. 1.4). The Fourier transform of the hologram 

is the autocorrelation of the sample (object + pinhole). The reconstructed object image 

is the correlation between the object and the pinhole.  

In my thesis work, I have been focused on an extended reference holographic 

technique initially proposed by S.G. Podorov in 2007 [13], generalized by M. Guizar-

Sicairos [14+ and entitled ‚Holography with Extended Reference by Autocorrelation 

Linear Differential Operator (HERALDO)‛. In HERALDO, the pinhole reference is 

replaced by extended references, such as a slit (1 dimension), a square or a rectangle 

(2 dimensions), a triangle (2D), etc. (Fig. 1.4). The extended references should contain 

sharp features, such as the two extremities of a slit, the corners of a square, a 

rectangle or a triangle. When applying a differential operator to the registered 

hologram (the autocorrelation of the sample), the extended references turn into Dirac 
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delta functions (which correspond to the sharp features at the edges of the extended 

references). Note that the Fourier transform properties of delta function ensure a 

high-resolution reconstruction (Fig. 1.4). By this way, the resolution is no longer 

limited by the reference size, so one can increase the diffraction signal without 

affecting the resolution. Theoretically, the reconstruction resolution is limited by the 

quality of the manufactured references. In particular the sharpness of the edges is 

crucial.  

 

Fig. 1.4.Scheme of FTH and HERALDO: We have used the same experimental setup as in CDI except 

the sample geometry. In FTH, the sample consists in the object and a pinhole reference in the nearby at 

a distance that respects the holographic separation given by the size of the object. In HERALDO, the 

arrangement is similar but the reference is large while keeping the holographic separation. The 

reconstruction step is simple and direct: in FTH, the Fourier transform of the hologram gives the object 

image; in HERALDO, a linear differential operation is applied as a post process of the Fourier 

transform to finally get the object image reconstruction.  

 

I.2 Image formation in lens-less imaging 

 

The image formation is the fundamental of lens-less imaging and all ideas of 

reconstruction techniques are based on it and inspired by its properties. As 

mentioned before, CDI, FTH and HERALDO have the same experimental setup. The 

image formation is thus the same for these techniques from the incident wave 

propagation to the Fraunhofer diffraction process, except that different sample 

preparation for CDI and FTH/HERALDO leads to different diffraction patterns. 

Since the wave propagation and Fraunhofer diffraction are well known, I present 

here the relevant equations, formulas and properties in the case of the lens-less 

imaging to give a clear description of theoretical background with non-exhaustive 

mathematics. One can refer to the books of J.W. Goodman and to the Born and 
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Wolf[12,13] for detailed mathematical and physical deduction of wave propagation 

and Fraunhofer diffraction in general case. More practically, one can also look at 

some excellent thesis work such as P. Thibault [14], M. Guizar-Sicairos[15] or D. 

Gauthier at Saclay [16] that have well-detailed mathematical presentations of the 

image formation in the case of lens-less imaging.   

 

I.2a Image formation in lens-less imaging: Diffraction 

We usually consider in lens-less imaging an isolated object illuminated by a plane 

wave (Fig. 1.5). The exit wave is the wave field transmitted by the object and 

detected in the far field (by a CCD camera in our case). The propagation of the exit 

wave behaves according to the Helmholtz wave equation: 

 (Eq. 1-1) 

where  and . ω is the frequency of the wave ;  and  are 

respectively the electric permittivity and the magnetic permeability of the medium.  

 

 

Fig. 1.5.The wave propagation in lens-less imaging. 

 

Commonly in the X-ray community [17], the refractive index  is expressed by its 

purely refractive (real) and absorptive (imaginary) components, and :  

 (Eq. 1-2) 

is non-zero only in a finite region of the space occupied by the object, and when 

=0, the wave  is the solution of the Eq. 1-1 in free-space propagation condition. 

The Eq. 1-1 has a simple form in the Fourier space: 
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 (Eq. 1-3) 

Obviously, unless , which is called the ‚Ewald sphere‛ *18]. In our 

lens-less imaging experiments, the detection plane is a plane transverse to the wave 

propagation direction. Thus we can separate the free-space propagating wave field 

into transverse and parallel components, respectively and . The general 

solution of Eq. 1-1 is then obtained in Fourier space as follow: 

 (Eq. 1-4) 

where  (Fig. 1.9) and  are two independent functions 

representing forward (+) and backward (-) scattering. In our experiments, back-

propagating terms can be neglected, therefore the solution is: 

 (Eq. 1-5) 

From Eq. 1-5, we can deduce the wave function in far field diffraction (Fraunhofer 

diffraction) [19]: 

 

(Eq. 1-6) 

Since  (far field), the integrand will not disappear unless the phase term is 

stationary, which means: 

 
(Eq. 1-7) 

Therefore, we can get the measured intensity by the detector in the far field: 

 
(Eq. 1-8) 

In our experiments, Eq. 1-6 can be simplified in the case of small-angle scattering (Fig. 

1.6), which is valid when: 

 
(Eq. 1-9) 
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Fig. 1.6.Representation of the wave vector and the diffraction angle relationship in the Ewald 

sphere. 

 

Applying the paraxial approximation, one can expand  to the first non-zero order 

in , and Eq. 1-5 becomes 

 
(Eq. 1-10) 

One gets the small angler scattering version of Eq. 1-8: 

 
(Eq. 1-11) 

Note here that the Fraunhofer diffraction approximation is valid when the Fresnel 

number , which is defined as 

 
(Eq. 1-12) 

where is the characteristic dimension of the object. Small and large Fresnel 

numbers correspond to respectively the far field regime and the near field regime. In 

the Fraunhofer diffraction regime (far field), one should have 

 
(Eq. 1-13) 

 

I.2b Image formation in lens-less imaging: Object transmittance 
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As shown in Eq. 1-11, the measured diffraction pattern is proportional to the 

absolute value of the Fourier transform of the exit wave in the transverse plane. The 

question now is: what is the relation between the object image and the exit wave that 

we can reconstruct by computational algorithms? For our experiments, we use the 

projection approximation: the exit wave is the product of the incident wave and the 

object transmittance: 

 (Eq. 1-14) 

In this approximation, the object can be treated as a two dimensional plane whose 

thickness is negligible, thus there is no diffraction inside the object. The object 

transmittance (in two dimensions with complex values) represents the projection of 

the object on a transverse plane (object plane in Fig. 1.5), which shows how the object 

modifies the incident wave both in amplitude and in phase. Since we assume that the 

incident wave is a plane wave, the detected wave (diffraction wave) in the far field is 

then equal to the Fourier transform of the object transmittance. The reconstruction 

image that we get by computational algorithms should then reflect the object 

transmittance. To valid the projection approximation, the object should be ‚optically 

thin‛. If  is the object thickness and  is the reconstruction resolution that we want 

to attend, then the ‚optically thin‛ condition can be described as 

 
(Eq. 1-15) 

The term  describes the ‚depth of focus‛ (DOF), which is also a function of 

diffraction angle :  

 
(Eq. 1-16) 

When the object thickness is smaller than the DOF, the exit wave is associated to a 

single object plane, which corresponds to the reconstruction plane visualized with 

computational algorithms. Otherwise, there will be more than one object plane, thus 

more than one possible phase associated to the measured diffraction pattern. This 

can prevent convergence of iterative algorithms. One may need additional 

constraints on the object support to associate one and only one object plane for the 

reconstruction. In holographic experiments (FTH, HERALDO), the phase 

information is encoded in the hologram. Thus, there is one unique solution obtained 

in the plane of the object and the reference.  
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To conclude, in our lens-less imaging experiments, objects are ‚optically thin‛ and 

the diffraction wave is detected in the far field regime (Fraunhofer diffraction) in the 

small angle scattering regime.  

 

I.2c Image formation in lens-less imaging: Detection 

 

The detection of the diffraction pattern is realized by a CCD camera, which 

accumulates incoming photons (diffraction and noise) during the exposure time. 

Thus temporal information such as the phase of the wave function is lost during the 

detection. This is the phase problem well known in lens-less imaging. The measured 

term is the photon flux, whose unit is or . Eq. 1-11 becomes (if we omit 

the constant factors) 

 
(Eq. 1-17) 

The measured diffraction signal ( ) is then digitalized with a certain sampling ratio. 

We can use a discrete Fourier transform function to present the numerical data. The 

one-dimensional discrete Fourier transform of a  long vector  is 

 
(Eq. 1-18) 

If a continuous function  is sampled by a sampling interval , and its discrete 

Fourier transform is also sampled by a sampling interval , then we have the 

following relation: 

 
(Eq. 1-19) 

With a given sampling interval , the highest frequency present in a discrete 

Fourier transform is the Nyquist frequency: 

 
(Eq. 1-20) 

In our diffraction experiments, when applying the Fourier transform on the detected 

diffraction signal, we get the autocorrelation of the object (or the object 

transmittance). The Eq. 1-19 becomes 
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(Eq. 1-21) 

where  is the pixel size of the CCD camera which contains  X  pixels, and  

is the pixel size of the autocorrelation of the object transmittance. If the object 

transmittance occupies a region of  X  pixels in the matrix of  X  pixels and 

the object size is X , we can deduce the relation between real physical terms and 

the discrete functions: 

 
(Eq. 1-22) 

During the phase retrieval reconstruction process, the sampling ratio is a key factor. 

When the sampling interval is too large, frequencies higher than the Nyquist 

frequency will be wrapped and will appear as lower frequencies. This is called 

‚aliasing‛. A suitable diffraction pattern for the reconstruction should be 

‚oversampled‛. The notion of ‚oversampling‛ is first proposed by D. Sayre in 1952 *19] 

using the Shannon sampling theorem for the phase problem in crystallography. The 

oversampling is possible only if the object transmittance is contained in a ‚support‛ 

(non-zero inside the support and null outside). We can define the oversampling ratio 

[20] as: 

 
(Eq. 1-23) 

where  is the ‚field of view‛ corresponding to the image containing  

pixels of measured amplitudes, in which the object occupies an area  of  

pixels. Since the object transmittance is a complex-valued, there are  real 

variables to be recovered. The whole image provides  equations. By 

considering the degrees of freedom of such a set of equations, one cannot get a 

unique solution unless: . Therefore,  

 (Eq. 1-24) 

Another approach to the oversampling ratio is based on Nyquist–Shannon sampling 

theorem [21,22]. According the theorem, the sampling interval  (the pixel size of 

the CCD camera) of the diffraction pattern should obey 

 
(Eq. 1-25) 
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where  is the maximum frequency detected in the diffraction pattern. Since in 

the reciprocal space of the diffraction pattern, the maximum frequency is given by 

the size of the autocorrelation of the object that is the double of the object size, we 

deduce from Eq. 1-20: 

 
(Eq. 1-26) 

Applying Eq. 1-26 to Eq. 1-25, we get 

 
(Eq. 1-27) 

From Eq. 1-21, Eq. 1-22 and Eq. 1-23, one can get the relation between  and the 

oversampling ratio: 

 
(Eq. 1-28) 

Therefore, we recover the oversampling condition as Eq. 1-24.  

Note that Eq. 1-24 is a necessary condition for solving a unique reconstruction, but in 

general not sufficient. In one dimension case, the uniqueness is never guaranteed 

[23,24]. Fortunately, in case of more than one dimension, the uniqueness is almost 

guaranteed with an oversampled diffraction pattern [9,10]. 

When a diffraction pattern is taken, the theoretical resolution (which is diffraction 

limited) can be calculated as: 

 
(Eq. 1-29) 

where σmax is the largest spatial frequency of the diffraction signal recorded by the 

CCD camera, Npixel and Ppixel are respectively the corresponded pixel number and 

pixel size. This equation gives the first insight of the diffraction pattern quality.   

 

I.3 Reconstruction: Phase retrieval algorithms 
 

The phase retrieval algorithms for lens-less imaging are inspired by those used in 

crystallography. The first phase retrieval algorithm is proposed by Gerchberg and 

Saxton in 1972 [25]. The Gerchberg-Saxton algorithm can reconstruct an object using 

two intensity measurements (one in Fourier space and one in direct space), which 
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introduced the ‚modulus constraint‛ notion in the iterative process. In late 70’s, 

Fienup has improved this algorithm by using only one intensity measurement in the 

Fourier space (the diffraction pattern) to reconstruct the object *7,8+. Fienup’s hybrid 

input-output algorithm (HIO) has a significant contribution to the imaging 

community and is probably the most popular phase retrieval algorithm nowadays. 

In general, there are four steps in the iterative process (Fig. 1.7) 

 

Fig. 1.7.Scheme of the phase retrieval algorithm. Picture extracted from Ref 6.  

 

1) Apply the Fourier transform to the object ( ):  to get the phase 

term . 

2) Apply the constraint in Fourier space (replace the amplitude by the measured 

diffraction intensity ( : . 

3) Apply inverse Fourier transform on the  to get . 

4) Apply the constraint in direct space (such as the object support) to get object 

( ). 

To start the iteration, one uses a random phase  in step one. During the iterative 

process, an error factor based on the satisfaction of the constraints is calculated. A 

reconstruction solution can be achieved when the error factor is minimized (or under 

a fixed threshold).  

In 2003, V. Elser has proposed a more general phase retrieval algorithm, the 

‚difference map‛ *26+, which is based on the ‚projections‛ of solutions on ‚constraints 

sets spaces‛. The notion ‚constraints sets‛ (presented by , , ,<) are defined as 

subsets of a finite-dimensional Hilbert space ( ). The ‚constraints sets‛ can have two 

or more constraints corresponding to real physical meanings, such as the measured 

diffraction pattern intensity, the object support in direct space, etc. The goal of the 

reconstruction algorithm is to find the solution , which satisfies: 
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 (Eq. 1-30) 

The notion ‚projection‛ (  corresponding to a constraint( ) is then defined as: for 

every  returns a point  and such that  is minimized. The 

condition (1-30) then becomes 

 (Eq. 1-31) 

For a two-constraint problem, the difference map iteration can be defined as: 

 (Eq. 1-32) 

where 

 (Eq. 1-33) 

  

  

where ,  and  are complex parameters.  

Note that the HIO is a special case of the difference map when and , 

which can be presented as 

 (Eq. 1-34) 

where  and  are respectively the constraints on the object support and the 

measured diffraction signal.  

The Relaxed Averaged Alternating Reflections (RAAR) algorithm is another popular 

algorithm proposed by Russel Luke in 2005 [27]. This algorithm can be defined as 

 (Eq. 1-35) 

Note that when , it is equivalent to the HIO.  

During t-he last decade, many algorithms have developed (not presented here) and it 

is hard to say which algorithm is the best. Each algorithm is proposed for specific 

problems and applications. The experiments conditions and criterion of constraints 

for each algorithm is hardly the same. Some works [28, 29] comparing different 
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phase retrieval algorithms suggest that the HIO is the most efficient algorithm for 

well-controlled scattering experiments.  

In this thesis work, phase retrieval reconstructions are realized using two 

computational codes: 

1) The ‚Hawk‛ code *30] developed by our collaborator Filipe Maia in the 

research group of Professor Janos Hajdu in Uppsala University, Sweden. The 

code ‚Hawk‛ contains a set of phase retrieval algorithms, for example HIO 

and RAAR. I usually use the HIO algorithm for preliminary reconstruction of 

experiment data, and a combination of algorithms to get better reconstruction 

results.  

2) The code ‚difference map‛ code developed by Pierre Thibault in the research 

group of Professor Veit Elser in Cornel University, USA. 

Practically, the solution (reconstructed image) is not exactly the same from one 

iteration to the other one. After sufficient iterations (typically several hundreds of 

iterations), each iteration gives a very similar reconstruction solution with a 

corresponding error factor value. The error factor value is calculated based on the 

measured diffraction pattern and shows how ‚close‛ the reconstruction is compared 

to the measured data. One usually averages all reconstruction solutions whose error 

factor values are lower than a defined threshold to get the final image of the object. 

The resolution of reconstructed image is then estimated by the Phase Retrieval 

Transfer Function (PRTF) (Chapter III, section III.4).  

 

I.4 Reconstruction: FTH and HERALDO 

 

The phase problem is easily solved in FTH, which is a great advantage compared to 

the phase retrieval algorithms. But FTH involves more strict constraints on the 

sample preparation, which is not obvious in certain applications. In FTH, a pinhole 

(reference) is placed in the vicinity of the object at a certain distance (holographic 

separation) in the same transverse plane (object plane in Fig. 1.5). The entire sample 

(object + reference) transmittance can be defined as 

 (Eq. 1-36) 

where  and  are respectively the transmittance of the object and the reference. As 

mentioned in the previous section, in Fraunhofer diffraction regime and projection 
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approximation, the measured hologram (the diffraction pattern) by CCD camera is 

the module square of the Fourier transform of the sample transmittance: 

 (Eq. 1-37) 

The holographic lens-less technique offers a direct and non-ambiguous 

reconstruction. When applying the inverse Fourier transform to the measured 

hologram, according to the property of the autocorrelation (presented at the 

beginning of the chapter), we get  

 (Eq. 1-38) 

Developing this equation, we have 

 (Eq. 1-39) 

The first two terms  are the ‚central‛ terms, which correspond to the 

autocorrelations of the object transmittance and the reference transmittance. These 

two terms are centered and overlap at the origin.  The last two terms, i.e. the complex 

conjugates , are the holographic reconstructions located at the opposite 

sides of the ‚central‛ terms. Note that they are not two independent reconstructions, 

since they are complex conjugate ‚mirror‛ of each other. The FTH reconstruction is 

not the object transmittance itself but the cross-correlation between the object 

transmittance and the pinhole reference. In addition, one should respect the 

‚holographic spatial separation‛ between the object and the reference to avoid the 

spatial overlap between the reconstruction terms and the ‚central‛ terms. If  is the 

size of object, then the distance between the object and the pinhole reference should 

be larger than .  

The spatial resolution of the object image is limited by the size of the pinhole 

reference. A large reference will lower the resolution whereas a small one will 

increase it. Since the signal quality of the hologram depends also on the to the 

reference signal strength, there is a contradictory for the choice of the pinhole size. 

To optimize the reconstruction quality, the basic idea is to find strategies to increase 

the reference signal while keeping the reference size small. Various techniques have 

been proposed such as multiple references FTH [31], FTH with a well-prepared 

extended reference and deconvolution operator for reconstruction [32,33,34], 

massively parallel X-ray holography [35], holography with a well-prepared mask 

reference [34,35], etc.  
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HERALDO has been proposed to overcome the ‚paradox‛ in FTH. The pinhole 

reference in FTH configuration is replaced by an extended reference, such as a slit (1 

Dimension), a rectangular (2 Dimensions), a triangle (2D), and etc. The extended 

reference  is placed close to the object  in the same transverse plane with 

a given holographic spatial separation. The measured hologram  has the same 

equation as Eq. 1-37. A linear differential operator  is applied to the Fourier 

transform of the hologram. We then get the sum of a point Dirac delta function at 

 and some other function : 

 (Eq. 1-40) 

where  is an arbitrary complex-valued constant, and  is an 

n-th order linear differential operator and  are constant coefficients. Note that the 

function  can be another Dirac delta function or any extended function.  

Applying such linear differential operator on the autocorrelation (the inverse Fourier 

transform of the measured hologram), we have 

 

 

(Eq. 1-41) 

According to the relation between cross-correlation and convolution when applying 

the differential operator, one get 

 (Eq. 1-42) 

Applying this property on Eq. 1-41, we get 

 

 

(Eq. 1-43) 

As similar to FTH, the last two complex conjugate terms are the reconstructions 

located at opposite sides of the central autocorrelation terms. Unlike FTH, the 

reconstruction resolution is not limited by the reference size. Practically, the 

resolution is closely dependent on the ‚sharpness‛ of the reference edge that 

determines the Dirac delta function. For example, the two extremes of slit and the 

corners of rectangular and triangle define respectively 2, 4 or 3 references.  
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The ‚HERALDO separation conditions‛ have a similar constraint like the FTH one: 

the features of the extended reference that will ‚produce‛ the Dirac delta function 

should have a minimum distance of  to the object, where  is the object size. An 

additional constraint should be respected to avoid the overlap between different 

reconstructions associated to different Dirac delta functions when there is more than 

one Dirac delta function: the distance between any pair of two features that 

‚produce‛ Dirac delta functions should be larger than the object size .  

 

I.5 Beam requirements for lens-less imaging 

 

CDI and HERALDO are both lens-less imaging techniques. As mentioned before, 

these two techniques can be realized using the same experimental setup, only the 

sample arrangement differs. The image reconstructions are performed separately 

using either a phase retrieval algorithm in CDI or direct mathematical operations in 

HERALDO. Obviously, high quality diffraction pattern is the key factor for both CDI 

and HERALDO (also for FTH). For a high-resolution reconstruction, we need a beam 

with the following requirements:  

 Short wavelength          

 High coherence              

 High beam flux 

 Ultrashort pulse duration 

Short wavelength and ultrashort pulse duration are required to get high spatial 

resolution (nanometric scale or even atomic scale) and to perform dynamic studies 

on a femtosecond scale (or even attosecond scale in a near future). High coherence 

and beam flux ensure a high quality diffraction pattern with a good signal to noise 

ratio. Free Electron Laser facilities (FEL), Synchrotron facilities and High order 

harmonics beam lines are all qualified sources. In this thesis work, I have been 

interested in lens-less imaging techniques (CDI and HERALDO) using bright high 

order harmonics (HH) beam source. The High flux harmonic beam line developed at 

Saclay can provide intense coherent photons in the soft X-ray region (from several 

nanometers to several tens of nanometers) with brief pulse duration (typically in the 

femtosecond scale or even down to the attosecond scale). Compared to large-scale 

laser facilities, the inexpensive cost and relatively easy construction of harmonic 

beam line are of great advantage. The full control of beam properties makes it 

accessible to numerous applications from physics to biology. It is becoming a 

powerful imaging tool for users in various scientific domains.  
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I.6 Conclusion 
 

This chapter has presented first the principle of lens-less imaging, in which the main 

obstacle for image reconstruction is the phase problem caused by the detection 

mechanism of the CCD camera. The phase retrieval algorithms and the Fourier 

transform holography are two main approaches to solve the phase problem. The 

former is an iterative process based on oversampling and constraints in both Fourier 

and direct space, while the latter encodes phase information into hologram by 

interference between object and reference. A discussion of the requirements of the 

suitable source for such imaging techniques has shown the potential of the high-

order harmonic beam source, which provides high coherent and ultrafast 

(femtosecond scale) beam of short wavelength with a sufficient photon flux. A brief 

introduction of HHG is then presented, following by an introduction of the imaging 

formation process that occurs in lens-less imaging experiments. I present then 

several phase retrieval algorithms and the principle of holography style techniques 

(FTH, HERALDO) that are used for the scattering experiments realized during my 

PhD studies. A suitable source to perform ultrafast coherent imaging in the soft X-

ray is the high harmonic generation. I briefly recall the principle of the source and 

more details are given about the practical aspects of source in the following chapter. 
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Chapter II -High harmonic generation 
 

 

 

This chapter is a brief introduction to the High order Harmonics Generation (HHG) process. The 

purpose is to give few basics to understand the optimization of the source discussed in Chapter 

II. The more fundamental aspects of HHG are not presented here. We then describe the 

experimental set-up used at the CEA beamline and its performance. 

II.1 Introduction 
 

Thanks to the invention and the fast development of the laser, the research of light-matter 

interaction entered into a new era. At the end of the 20th century, powerful lasers can deliver 

peak intensities up to 1018 W/cm2, which makes it possible to realize the frequency up-

conversion from visible to the extreme ultra violet (XUV) domain. The HHG phenomenon is 

first discovered by research groups in Chicago [1] and in Saclay [2] at almost the same time (in 

1987). They have observed intense harmonic emission by the atoms of a rare gas jet of a focused 

ultra-short infrared laser (Fig. 1.8a). In the studies conducted here, Argon (Ar), Krypton (Kr) and 

Xenon (Xe) gases have been mostly used. A typical spectrum is shown in Fig. 1.8b.      

 

Fig. 1.8. (a) Scheme of HHG observation, picture extracted from Ref  [3]. (b) HHG spectrum 

obtained using Xe gas jet, picture extracted from Ref  [4].     

 

The HHG phenomenon can be described in a semi-classic three-step model:tunnel ionization, 

classical acceleration and recombination (Fig. 1.9) [5,6].  
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Fig. 1.9.Three-step model of high order harmonic generation. 

 

In the first step, when close to the maximum of laser electric field that lowers the potential 

barrier, an electron can go through by tunnel effect. In the second step, the influence of atomic 

Coulomb potential is neglected. The electron is accelerated in the electric field. When the sign of 

the electric field changes, the electron might be driven back towards the ionic core, with whom it 

can recombine in the third step. 

The recombination gives rise to the emission of a burst of soft X-ray light. The photon energy is 

equal to the sum of the electron kinetic energy acquired during its oscillation in the electric field 

and the ionization potential (Ip) of the atom/molecule. The maximum photon energy is governed 

by Eq. 1-44, which is called ‚cut-off‛ *5]. Up is the pondero motive energy -- the cycle averaged 

quiver energy of a free electron in an electric field.  

 (Eq. 1-44) 

Depending on the different behavior of electrons, there are two trajectories of recombination: 

long and short, which contributes differently to HHG. The spatial and spectral properties of the 

harmonic emission differ for each trajectory. 

The spectrum of high order harmonics has a characteristic form, which contains three parts: the 

perturbative region, the plateau and the cut-off (Fig 1.10). It can be well calculated using a semi-

classical model except the behavior of the cut-off region. Accurate HHG calculations are now 

obtained using a quantum model based on the strong field approximation (Lewenstein model) 

[7]. 

Since the HHG process is trigged by the laser’s electric field, the emitted photons are coherent, 

which is the basic for lens-less imaging. HHG has other advantages, such as the attosecond 

pulse structure, which is demonstrated in form of attosecond pulse train in 2001 [8]. We can also 

cite its natural synchronization with the driving infrared laser, which makes it suitable for 

ultrafast dynamics studies in a pump-probe geometry. I also would like to point out that the 
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HHG source has been used to seed a soft X-ray FEL resulting in pulse with improved temporal 

coherence [9].   

 

Fig. 1.10. A typical spectrum of HHG with three parts: perturbative region, plateau and cut-off. 

The original spectrum is extracted from Ref 22.   

 

Practically, in the context of the application of HHG in lens-less imaging, we usually choose the 

harmonics in the plateau. They are usually more intense and stable than the cut-off harmonics. 

We also select through phase matching the short trajectory that exhibits better spatial and 

spectral coherence properties than the long trajectory. 

 

II.2Experimental set-up 
 

All the imaging experiments in this thesis work have been accomplished using the High flux 

harmonic beamline at the CEA Saclay research center, France. The harmonic beamline is a table-

top femtosecond soft X-ray harmonic source driven by the table-top infrared femtosecond laser 

LUCA (Laser Ultra Court Accordable). LUCA is a Ti:sapphire laser system, which delivers up to 

50 mJ energy pulses at 800 nm with a pulse duration of 50 fs and a repetition rate of 20 Hz. The 

experiment is composed of a lens stage (in air) and three experimental chambers (in vacuum). At 

the lens stage, a long focal length lens (f = 5.56 m) focuses the infrared beam into the gas cell 

located in the first experimental chamber. We can adjust the IR beam aperture by a diaphragm 

located in front of the lens. The lens is motorized by a translation stage in the beam propagation 

direction with a movement range of 15 cm, which offers an easy control of the relative position 

of the beam focus and the gas cell.        
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 The three experimental chambers of the High flux harmonic beamline are (Fig. 2.1):  

1) HHG chamber: Up to 50 mJ laser energy can be focused into a gas cell to generate 

harmonics beam. The gas cell is a metal tube with two pinholes at its extremes filled with 

rare gas. We have easy and full motorized control of the gas cell in vacuum: the cell 

length is variable from 0 to 15 cm and its lateral position (y direction) to the beam 

propagation direction (z) is motorized by a translation stage; we can also adjust the 

orientation of the cell in z direction by tilting it in x and y directions (perpendicular to z) 

with precision.  

2) Optics chamber with ‚imaging configuration‛: The harmonics and IR beams propagate 

together into the optics chamber. An IR antireflective mirror separates them and sends 

the harmonics beam to the diffraction chamber. The residual IR is then filtered by 

aluminum filters located between the optics chamber and the diffraction chamber.  

3) Optics chamber with ‚spectrum configuration‛: We can also replace the IR antireflective 

mirror by a pair of toroidal mirror and plane grating for spectrum studies. The thin slit 

and the photomultiplier tube (PMT) are located at the end of the setup. We can also 

replace the PMT by an XUV camera to measure the harmonic beam profile in the far field 

or even an XUV wave front sensor. 

4) Diffraction chamber (Fig. 2.2): The multilayer parabolic mirror (coated by Institut 

d’Optique) selects one harmonic order (25th harmonic in our experiments) and focuses 

the beam onto the sample located at its focus. The CCD camera behind the sample holder 

detects the diffraction pattern in the far field regime.   

This harmonic beamline has delivered its first photons in 2007. First demonstration of CDI 

reconstructions of a test object has been published in 2009. This has encouraged further studies 

in lens-less imaging and beamline optimization. This chapter will follow the time line to present 

the ‚High Flux Harmonic‛ beamline developments. 
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Fig. 2.1.Scheme of the High flux harmonic beamline. The red arrow at left bottom indicates the beam 

propagation direction. The infrared beam is first focused into a gas cell in the harmonic generation 

chamber. The optics chamber separates the harmonics beam from the IR beam and sends it into the 

diffraction chamber where the lens-less imaging experiments will take place. The optics chamber can also 

switch to a TM-PGM (Toroidal Mirror-Plane Grating Monochromator) type spectrometer for HHG 

studies. The entire setup is about 5 meters long. 
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Fig. 2.2.Picture of the diffraction chamber. The parabolic mirror focuses the harmonics beam 

onto the sample, and the CCD camera located behind the sample holder detects the diffraction 

pattern.  

 

II.3 HHG optimization and beamline standardization 

 

I present in this section the effort to build a powerful, stable and reproducible harmonic beamline for 

imaging applications. The principle goal is to realize dynamical visualization (2D or 3D) of 

ultrafast physical phenomena on a femtosecond scale with nanometric spatial resolution. In 

coherent imaging, the X-ray photon flux on sample (single shot or multiple shots) determines 

the signal extension on the diffraction pattern (the maximum spatial frequency of the diffracted 

signal). A high signal extension corresponds to a high theoretical spatial resolution (Eq. 1-29, 

Chapter I). Moreover, the radiation damage of samples (especially biological ones) limits the 

maximum pulse energy for each shot, which is a real limitation for light sources that provides 

high average but low peak flux beam, such as synchrotrons. However, one can achieve high-

resolution imaging with another strategy. The idea is to irradiate the sample with a single pulse 

short enough to capture the image before the onset of the radiation damage. The FEL or XFEL 

facilities can provide such X-ray pulses. HHG source has demonstrated such potential however 

further work was necessary to improve the quality of the CDI diffraction patterns. In this thesis 

work I present the optimization of the entire beamline (HHG process and all the optics) to 

finally get the maximum pulse energy available on sample for high-resolution single-shot 
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imaging. It has been also important to standardize the beamline to have stable beam 

performances, which was at the very beginning of my work unstable from day to day.  

The harmonic beamline optimization has been realized in two steps:  

1) HHG optimization: As mentioned before, we would like to maximize the harmonic pulse 

energy to get higher reconstruction resolution. However, it is not the only factor that 

influences the reconstruction quality. The wave front, the coherence and the spatial 

distribution of the intensity of the harmonic beam are also critical factors. The HHG 

optimization process conducted here has been to find an optimum compromise between 

all these factors to enhance the quality of diffraction patterns or holograms. 

2) Focusing optimization: The sample is located at the focus of the parabolic mirror. The 

phase retrieval algorithms reconstruct the exit wave at the object plane (Chapter I, 

section I.2) that is equal to the sample transmittance in case of a plane wave illumination. 

Thus the harmonic beam focusing quality has a large influence on the reconstruction 

result. We need a homogenous focal spot and a proper spot size compared to samples. 

We have used a Hartmann type wave front sensor to characterize and evaluate the quality of the 

generated harmonics beam before and after focusing optics (the parabolic mirror). The wave 

front sensor measures the wave front and the intensity of the harmonic beam, and reconstructs 

the beam profile using back-propagation functions. First we place the wave front sensor at a 

distance of 5 m from the gas cell without any focusing optics (Fig. 2.3). We measure the direct 

harmonics beam in far field and optimize the wave front as a function the HHG parameters, 

such as IR laser energy, IR beam aperture, gas cell length, gas pressure and etc. Then, we align 

the wave front sensor after the focus of the parabolic mirror to characterize and optimize the 

focal spot.  

After the optimization process with the wave front sensor, we use a Young’s double slits to 

characterize the harmonic beam coherence, and study the influence of the coherence on phase 

retrieval reconstructions. We measure the variations of the beam coherence using a similar 

process as the HHG optimization with the wave front sensor. The results show that it could be 

an alternative way to optimize the beamline, but less efficient and less accurate than the wave 

front sensor, because one has to check manually the fringe visibility of each interference pattern 

and only a small part of the beam is characterized in each measurement.      
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Fig. 2.3.Scheme of the optimization experiment setup. 1) HHG optimization configuration: Movable 

mirror 1 (multilayer plane mirror) is in and the wave front sensor is located at position 1 to measure the 

direct harmonics beam. 2) Focusing optimization configuration: Movable mirror 1 is out and mirror 2 is 

in; the wave front sensor is located at position 2 to measure the focused harmonic beam by the parabola. 3) 

Diffraction configuration: Two movable mirrors are out and no wave front sensor. The sample (Young’s 

double slits) is located at the focus of the parabola and the XUV camera detects the diffraction pattern (far 

field interference of the slits exit waves). 

 

II.3a HHG optimization and beamline standardization: wave front sensor 

 

The Hartmann type wave front sensor ‚HASO‛ (produced by Imagine Optics Corp.) is 

composed of a Hartmann pattern grid and a XUV camera located 20 cm behind the grid (Fig. 

2.4a). The harmonic beam goes through the Hartmann grid, which is an array of holes, and 

projects the ‚beamlets‛ sampled by each hole onto the XUV camera. The positions of the 

individual spot centroids are measured (Fig. 2.4c) and compared with reference positions 

(calibrated with perfect wave front, Fig. 2.4b). The measured local shifts of each beamlet can 

reconstruct the wave front of the harmonic beam. The measured beamlets present also the 

harmonic beam’s intensity profile at a sampling rate of the grid. One can then deduce the 

aberrations of the beam. Using back-propagation functions, the harmonic beam profile at the 

point source can be reconstructed. These numerical calculations are realized within the paraxial 

approximation.  

The wave front sensor is calibrated and provided by the research group of P. Zeitoun at 

Laboratoire d'Optique Appliquée (LOA), France. The Hartmann grid is 19 x 19 mm2 large and 

contains 51 x 51 square holes that each is 80 x 80 μm2 large and separated by 380 μm. The back-

illuminated CCD camera has 2048 x 2048 pixels of 13.5 x 13.5 μm2 each, operating at -40 °C. The 

typical calibration method is presented in Ref 14. In our case, a 10 μm pinhole positioned in the 

beam propagation path at 1 m from the gas cell output diffracts the beam and generates a 
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perfect wave front. The sensor accuracy is then experimentally measured to be λ/50 RMS (root 

mean square) at a wavelength λ = 32 nm, i.e. an accuracy of 0.64 nm RMS [10]. Note that an 

aberration of λ in amplitude corresponds to local phase aberration of 2π. One should be careful 

when using such a sensor to measure a wave front with very strong aberrations. The mismatch 

of beam lets and the reference positions could lead to wrong reconstruction of wave front if the 

aberration exceeds 2π. In our case, the harmonic beam has relatively week aberrations so that 

the sensor is well adapted.      

 

Fig. 2.4.Scheme of the Hartmann type wave front sensor. (a) The target beam goes through the Hartmann 

pattern grid, which is an array of holes, and projects onto the XUV camera behind. The XUV camera 

detects the sampled intensity of the beam. (b) The wave front sensor should be calibrated with a perfect 

beam before first use. The positions of the beam lets on the camera will be registered as reference positions 

(blue points). (c) The wave front is reconstructed from the measured local shift (red points) of each beam 

let compared to the reference positions.   

In the first step, we have explored systematically several HHG parameters to optimize the 

harmonic flux and the beam wave front RMS value. The wave front RMS value describes how 

the measured wave front is distorted compared to a plane wave. According to the Maréchal’s 

criterion, a beam is diffraction-limited at a given wavelength λ when the aberrant wave front 

amplitude is lower than λ/14 rms. As we assume a plane wave illumination in CDI, if the beam 

is far away from a plane wave, then the reconstruction will not correctly represent the sample 

transmittance but the ensemble exit wave (sample transmittance + incident wave). However, we 

can still extract the sample transmittance if we know the incident wave in priori, which requires 

a measurement of the incident wave front.  

Practically, if the beam is not stable (aberrations change from shot to shot), simultaneous 

measurements of the incident wave and the sample diffraction pattern will be required. If the 
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beam is stable that measurements can be achieved in different shots, the relative position of the 

beam when hitting onto the sample should be known for extracting correctly the sample 

transmittance information. 

In our experiment, we have optimized the wave front RMS value to the diffraction-limited (λ/14) 

and maximized the harmonic flux. The initial IR beam has a diameter of about 40 mm and is 

then limited in aperture by a diaphragm located in front of the focusing lens.  We conclude the 

optimum parameters’ value range: beam aperture = 20~21 mm, gas pressure = 8~9 mbar, gas cell 

length = 5~8 cm, effective laser energy = 15 mJ and the focus position is 2 cm behind the gas cell 

output. The beam aperture of 20~21 mm corresponds to a laser focal radius of 137~143 μm and 

the confocal parameter = 14,7~16 cm. The harmonic flux and the wave front RMS share the same 

optimum value range and are maximized with the same parameter values, which agrees with 

previous work [10]. 

For each wave front measurement, aberration contributions are calculated with Zernike 

polynomials, which is unstable from shot to shot. There is no obvious relation between 

aberration contributions and the harmonic generating conditions. Previously, two groups 

working on HHG optimization with wave front sensor reports trade-off conclusions of harmonic 

aberrations dependence on pump laser aberrations [10]. A further study on the aberration 

dependence of the High flux harmonic beamline is planned and it may lead to new HHG 

optimization.     

The harmonic beam generated with optimum parameters has a wave front RMS of 0.11λ (λ/9), 

compared to a non-optimized harmonic beam whose wave front RMS is 0.79λ (Fig 2.5). 

Meanwhile, the spatial profile of the harmonic beam in far field has also been optimized, which 

is important for coherent imaging. The reconstructions of the harmonic beams at the source are 

shown in the Fig. 1 attached article.  

 



 39 

Fig. 2.5. Generating condition: gas pressure = 8 mbar, gas cell length = 8 cm, laser energy = 15 mJ, beam 

aperture = 24 mm for (a) and (b), and 21 mm for (c) and (d). (a) is the measured intensity and (b) is the 

measured phase of the non-optimized harmonic beam by the wave front sensor in far field. (c) and (d) are 

respectively the intensity and the phase of the optimized harmonic beam. Note that the absolute phase 

scales in (b) and (d) are different. 

 

II.3.b HHG optimization and beamline standardization: Focusing optimization 

In the second step, the wave front sensor is located behind the focus of the parabolic mirror to 

characterize the harmonic focal spot, which represents the illumination condition for coherent 

imaging. In the beam path from the harmonic source (output of the gas cell) to the sample (focus 

of the parabolic mirror), there are only two optics (IR-antireflective mirror and parabola) and 

one aluminum filter. The focusing quality, thus the illumination quality is strongly related to the 

alignment of the parabola. The parabola is motorized by translation stages and goniometers. It is 

initially aligned with residual IR beam as reference. The study with a wave front sensor allows 

direct measurements of the focusing quality with the harmonic beam (25th order) in the same 

condition as the coherent imaging. A fine adjustment is then possible for the parabola motorized 

in all translation and tilt directions to optimize the focal spot. Finally, the wave front sensor 

measurements in this configuration characterize the whole harmonic beam line until the 

diffraction stage by taking account of all elements in the beam line except the detection part. The 

optimization of the detection stage is associated to each particular imaging configuration, 

including sample conditions, imaging technique, final resolution, illumination quality, etc. It 

will be discussed in the following chapter.  

Experimental results show that a fine adjustment of the parabola with the harmonic beam can 

optimize the focal spot’s spatial profile and aberrations. Fig 2.6 shows the enhancement of the 

harmonic beam before and after the fine adjustment of the parabola. We get a harmonic beam of 

0.154λ (~λ/6) RMS (Fig. 2.6d) instead of 0.326λ (~λ/3) RMS (Fig. 2.6b) measured at the Hartmann 

grid. Usually, the dominant aberration of the harmonic beam is the coma, which should be 

associated to the miss-alignment of the parabola. It is clearly observed in the reconstruction of 

the focal spot before fine adjustment. The focal spot after fine adjustment presents a 

homogenous and quasi-circular beam profile, with reduced coma aberration. The beam size (at 

1/e2) is optimized from 7.8 μm to 5 μm, which matches better our samples (usually within a 

window of 5 x 5 μm). Compared to the 20 μm focal spot used in the previous work of ‚music 

note‛ (also within a window of 5 x 5 μm), the effective harmonic photons for diffraction are 

largely increased. 
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Fig. 2.6. (a) is the intensity and (b) is the phase of the 25th harmonic beam with initially aligned measured 

by wave front sensor. (c) and (d) are respectively the intensity and the phase of the harmonic beam with 

finely tuned parabola.  

 

In the beam propagation direction (z direction), the focused harmonic spot changes quickly 

before and after the parabola focus position. The evolutions in both conditions (before and after 

fine adjustment) are similar, while the optimum adjustment provides quasi-circular focal spot in 

a range of ±0.5 mm around the focal position, larger than in the other case (Fig. 2.7). This range is 

important for the coherent imaging as it give flexibility in positioning the sample. Usually, we 

use a sharp edge (for example, the edge of the sample membrane) to look for the focus position 

(Fig. 2.8). Typically, we can find the focus position with a precision of ±0.2 mm, which fits the 

previous range of ±0.5 mm. Note that a daily alignment of the IR laser during the initiating stage 

of the harmonic beam line is required, which could be critical for the harmonic focusing quality. 

The IR laser should be aligned as it was for the fine adjustment with wave front sensor to ensure 

an optimum focal spot. A permanent installation of wave front sensor in focusing optimization 

configuration could be a precise method for daily alignment, especially for experiment projects 

spanning over months. According to our experience, careful daily alignment (without wave 

front sensor) is sufficient for short-term experiments.    
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Fig. 2.7. The top line presents the evolution of the reconstructed harmonic beam spatial profile around the 

focus of the parabola before fine adjustment. The bottom line is for the case after fine adjustment.   

 

 

Fig. 2.8. Practically, to find the focus position of the beam, we move a testing edge (the brown squares) 

from position 1 to position 3 along the beam propagation direction at certain step. In position 1 and 2, the 

beam (blue circles) is cut from one side (for example, the left side). When we path the focus position, the 

beam will be cut from the opposite side (the right side in position 3). Then the focus position is fixed in a 

range and we can get more precise position by repeating the process with smaller step 

 

II.3.d HHG characterization: spatial coherence at the focus 

 

We are now interested in the behavior of the spatial coherence of the harmonic beam generated 

with different HHG conditions. We switch the harmonic beamline to the diffraction 

configuration and place a double Young slits at the sample position. The double slits are 1.5 μm 

long and 300 nm wide, separated by 4 μm, fabricated by a nano-focused ion beam (FIB, CSNSM 

facility in Orsay University). The CCD camera records the interference pattern in the far field (19 

mm behind the double slits). We use the similar exploration process of the HHG parameters as 

the optimization with wave front sensor. The studied parameters are gas cell length, gas 

pressure and beam aperture.  
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The evolutions of the fringe visibility and the diffraction pattern intensity are compared as a 

function of other generating parameters (Fig. 2.9 to Fig. 2.11). All the measurements are in 

single-shot regime. The measured fringe visibility is up to 0.8 ~ 0.84 in optimum range of HHG 

parameters, and lower than 0.5 in certain conditions. The fringe visibility, thus the spatial 

coherence of the harmonic beam, has the same evolution behavior as the diffraction intensity 

(which is proportional to the harmonic beam intensity at focus). We conclude that the harmonic 

flux, wave front quality and the spatial coherence can be optimized under the same HHG 

condition. These three factors are essential for coherent imaging. They influence the diffracted 

signal strength (or signal to noise ratio), the illumination wave front and the accuracy of the 

phase information encoded in the diffraction pattern.  

Compared to the harmonic beam size (5 μm), the Young double slits (separated by 4 μm) 

measurements characterize the beam of its outer part. One should use a set of Young double slits 

separated by different distances to have a full characterization of the beam coherence (one 

measurement for one distance). Otherwise, a coherence-testing pattern can be used to measure 

the beam coherence of several different distances within one measurement.  

 

Fig. 2.9. The black and red curves present respectively the variations of fringe visibility and the diffraction 

pattern intensity as a function of beam aperture. The intensity curve is normalized to the maximum 

intensity detected.   
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Fig. 2.10. The black and red curves present respectively the variations of fringe visibility and the 

diffraction pattern intensity as a function of the gas cell length. The intensity curve is normalized to the 

maximum intensity detected. Note that the diffraction intensity for gas cell length = 4 cm is too weak to be 

detected; however the direct harmonic beam without the presence of the double slits can be detected by the 

CCD camera.     

 

Fig. 2.11. The black and red curves present respectively the variations of fringe visibility and the 

diffraction pattern intensity in function of gas pressure. The intensity curve is normalized to the 

maximum intensity detected.   
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II.4 Laser Modal Filtering  for HHG optimization 

 

We have shown how the harmonic beamline, optics filters and also wave front and coherence 

can be controlled and improved. Is it possible to accomplish further optimization of the HHG 

properties by improving the driving laser beam? Since the HHG phase matching depends on the 

IR laser focusing quality and its propagation in the generating medium, the wave front and the 

spatial profile of IR laser along with its temporal properties have important roles in the HHG 

process. Some previous studies showed some correlation between the IR laser and the generated 

harmonic pulse of their wave fronts [10-11]. Further enhancement of the harmonic beam can be 

expected from spatial and/or temporal improvement of our IR laser beam. In practice, the IR 

beam (LUCA laser described earlier) before and after the temporal compression stage looks 

inhomogeneous with a triangle-like shape in the center part of the beam. There is a clear need of 

improving the spatial profile of the IR beam. The diaphragm that we located before the focusing 

lens to control the beam aperture is somehow a kind of spatial filter of the IR beam, which 

optimizes the HHG by adjusting its focal geometry, ionization and harmonic dipole properties 

[12]. However its application is quite limited. We have shown for example during the wave 

front studies that the HHG beam is strongly affected when the diaphragm is too widely opened. 

Phase matching is in particular destroyed when ‚bad‛ infrared modes superimposes in the 

HHG generating media. 

In this section, studies of further improvement of the IR beam before injection into the gas cell 

will be presented, and followed by the results of HHG in condition of these improvements.  

 

II.4a Modal Filtering: setup 

There are various approaches to improve the IR beam quality. As cited above, the use of a 

diaphragmcan optimize the HHG yield [12], a set of transmission phase plates can be used to 

create a flat-top laser beam to increase the interaction volume and the HHG efficiency [13], or 

using a truncated Bessel beam produced by argon-filled hollow fiber for HHG [14], or 

improving the laser wave front by deformable mirrors and genetic algorithms to optimize HHG 

efficiency [15], and etc. Our approach is inspired by the hollow fiber compression technique [16], 

which generates sub-10 fs laser pulses by a capillary filled with gas, called ‚post compression‛. In 

our case, the fiber will not be filled with gases. We will mainly use the coupling between the 

laser modes and the fiber modes to improve the IR beam. 

In the femtosecond regime, intense laser beam can easily lead to degradation of optical elements 

in the beam path, including the compression gratings. Therefore, we decide to place the hollow 

fiber before the compression stage and after the final amplification stage of LUCA laser. We then 

operate in picosecond regime, where related problems (mainly thermal problems) are easy to 

handle experimentally. The setup is shown in Fig. 2.12. A hollow-core fiber in silica of 30cm-

long with a core radius a = 125μm is located after the amplification stage of LUCA laser, which 
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delivers a laser beam of up to 180 mJ/pulse centered at 795 nm, at a repetition rate of 20 Hz, with 

a pulse duration of about 200 ps. The hollow-core fiber is operated in vacuum of about 10-3 mbar. 

The IR beam is first focused into the hollow-core fiber, then couples with the fiber mode and 

diverges at the fiber output. A set of lenses located after the fiber collimates the filtered IR beam 

into the compression stage. Finally, the compressed femtosecond laser beam (up to 50 mJ/pulse) 

is used for HHG.    

 

Fig. 2.12.Scheme of the modal filtering. The hollow-core fiber is located between the compression stage and 

the amplification stage of LUCA laser to filter the IR beam.   

 

This scheme of hollow-core fiber is based on the theory of propagation of an electromagnetic 

wave in a cylindrical dielectric waveguide. In theory, the laser beam will be coupled with the 

fundamental mode of the fiber, which is EH11 in our case [17,18]. The reason to choose EH11 

mode is because it has a similar transverse distribution as the Gaussian mode TEM00 in both near 

and far field. The optimum coupling efficiency of perfect a Gaussian mode is about 98%, 

corresponding a beam waist . It gives a first idea of the beam size at the entrance of 

the fiber. Moreover, the other guided modes are strongly attenuated during the propagation in 

the fiber. Thus, a spatial filter by modes selection of the laser beam is established. We call this 

technique ‚modal filtering‛.  

 

II.4b Modal Filtering: experimental results 

 

The modal filtering is tested and quantified by several series of measurements of the laser beam 

by beam profilers and wave front sensor. We are interested in the laser beam’s spatial profile, 

the wave front quality, the modal composition, the pulse energy (energy transmission of the 

modal filtering) and its temporal properties after pulse compression stage, which are measured 

by a SPIDER interferometer [19]. The wave front sensor used here is a Shack-Hartmann type 

that the grid is an array of micro-lenses, instead of holes in XUV sensor, and using the same 

principle of wave front measurement. We quantify the laser beam at different stages with and 

without the presence of the modal filtering. Fig. 2.13 is an overview of the laser beam quality 

comparison, measured and simulated by wave front sensor.   
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The measurements and simulations have demonstrated the high efficiency of the modal filtering 

on the laser beam quality improvement. The experimental results and theoretical predictions 

agree with each other. A quasi-mono-mode diffraction-limited beam of up to 50 mJ pulse energy 

and pulse duration of ~ 50 fs is given after the compression stage. In the point of view of laser 

systems, the modal filtering is a successful system of beam spatial quality improvement. With 

respect to our purpose, the modal filtering is made to increase the harmonic phase matching and 

the harmonic beam quality. Since the filtered beam loses about 30% pulse energy compared to 

the non-filtered beam and the highly non-linear property of the HHG process, we are not sure 

whether this modal filtering can optimize the harmonic beam in our generating conditions. A 

campaign of HHG experiments has taken place to compare the harmonic flux and the spatial 

profile of the harmonic beam in far field with and without the modal filtering. Unfortunately, 

we didn’t have the opportunity to do the complete measurements of the harmonic beam with a 

XUV wave front sensor as presented in the previous section. However the previous conclusion 

shows that when the harmonic flux and the beam coherence are optimized, the wave front is not 

far from optimization. A good compromise is then found for coherent imaging.    

 

Fig. 2.13: Wave front measurements and simulations of the beam with and without modal filtering at 

different places on the beam path. Intensity distributions and wave front variations of the beam are 

presented for each position.  

 

The HHG measurements with and without the modal filtering are realized in the ‚spectrum 

configuration‛ of the harmonic beamline (section II.1). A Toroidal mirror and a plane grating are 

located in the optics chamber. We use a thin slit and a photomultiplier tube (PMT) for the 

spectrum measurements and a CCD camera for the harmonic spatial profile measurements. The 

HHG optimization with modal filtering is realized using the same process as presented in the 

section II.3b. We are looking for a good compromise between harmonic flux and the spatial 

profile of the beam by varying different generating parameters, such as gas pressure, gas cell 

length, beam aperture, lens’s focus position and IR pulse energy. Spectrum studies and 

optimization of HHG with Neon are presented here (similar studies have been also conducted in 

argon). The goal was to generate efficient harmonics around 20 nm to be applied for an 

application in single-shot imaging of cobalt magnetic nanodomains. As a result, the harmonic 

photon number generated in neon is increased by a factor ~ 4 when using the modal filtering. 
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Fig. 2.14 presents an example of the 37th harmonic generated in Neon with (a) and without (b) 

the modal filtering. With a beam aperture = 24 mm and a laser energy = 21.5 mJ, 

photons/pulse are measured by the CCD camera with the modal filtering, instead of 

photons/pulse without modal filtering and with a laser energy of 33.5 mJ. The 

harmonic flux ( ) and the HHG efficiency ( ) are both increased. 

 

Fig. 2.14. 37th harmonic generated in Neon without (a) and with (b) the modal filtering in such conditions: 

lens’s focus position is at 2 cm behind the gas cell output, gas pressure = 48 mbar and gas cell length = 7 

cm. The measurements are in single-shot within a window of 3.37 x 3.37 mm2 detected by the CCD 

camera in the far field.   

 

The modal filtering is a successful laser beam optimization system by filtering the laser modes 

with a high coupling efficiency. The filtered laser beam is quasi-mono-mode of EH11, close to 

Gaussian beam, and is diffraction-limited before and after the pulse compression stage. 

Meanwhile, the pulse duration after compression remains comparative with non-filtered case. In 

the point of view of HHG, the modal filtering increases the harmonic conversion efficiency by a 

factor 6 in Neon. The harmonic flux is increased by a factor of 4 in Neon. Similar studies have 

been conducted in argon and we obtained an increase of a factor 2.5 in the conversion efficiency. 

However, it can be further improved in Argon but we had to cut off a large amount of laser 

energy to have a good spatial profile. To increase the harmonic flux in Argon with a proper 

spatial profile, we should change our experiment setup, for example, using a longer focal length 

lens (>5.65 m) to avoid too high laser intensity in the generating medium. 

Another advantage of such device is the stability of the laser beam position on the focusing lens 

and inside the generating medium, which is important for a good alignment between the laser 

beam and the gas cell, and thus a stable HHG during a full day. The harmonic beam detected by 

the CCD camera is more stable in its spatial profile, intensity and position on the camera from 

shot to shot, compared to the case without modal filtering. We have observed a slow movement 

of the beam position in vertical direction after the output of the fiber, which is correlated to the 

working period of the air conditioner in the laser room. This slow movement is then corrected 

by a servomotor mounted on one plane mirror in the beam path before injection into the fiber. 
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II.5 Conclusion 

 

In this chapter, the High flux harmonic beamline is presented with three main parts, the 

historical development, the optimization with XUV wave front sensor and the modal filtering 

device. The actual setup of the harmonic beamline for coherent imaging applications is 

presented in Fig. 2.16. The hollow-core fiber is installed between the amplification stage and the 

compression stage. The filtered beam is then focused into the gas cell by a lens of 5.65 m focal 

length. The harmonic beam is separated from the IR beam by an IR-antireflective mirror and an 

aluminum filter. A multilayer parabola selects one harmonic order and focuses it onto the 

sample located at the focus of the parabola. The CCD camera detects the diffraction pattern of 

the sample in far field. Note that, we have optimized the harmonic transmission of the beamline 

by using a high-tech aluminum filter (purchased from LUXEL Corp.) of 60% transmission for 

concerned wavelength in our case, compared to previous Al filter of 10% transmission (used in 

Ref. 11).  

 

Fig. 2.16.Up-to-date setup of the High flux harmonic beamline for coherent imaging applications. 

 

The High flux harmonic beamline is easy to switch to the spectrum configuration for other 

studies than coherent imaging. In both case, a µ J harmonic source (about 1011 photons per shot 

for 25th harmonic, λ = 32 nm) is generated at the output of the gas cell, with a wave front RMS of 

λ/9 before parabola and λ/6 after focusing, which is two times the diffraction-limited (λ/14). The 

combination of the intense harmonic flux and the good wave front quality promise high-quality 

diffraction pattern for coherent imaging. The campaign of harmonic wave front measurements 

result in an optimized HHG and a standardization of the beamline’s daily operation conditions. 

Different generating parameters have been studied in this campaign. The finely adjusted 

parabola offers a focal spot size with a better quality and with a size well adapted to our 

imaging samples. The Young’s double slits study has demonstrated a high coherent harmonic 

beam (fringe visibility more than 0.8 at the focus) and concludes that the harmonic flux, the 

wave front quality and the beam coherence can be optimized at the same generating condition. 

The modal filtering device provides a quasi-mono-mode laser beam for HHG and leads to 

improvement of the harmonic conversion efficiency. Even though we are actually not able to 

focus all the laser energy into Argon to generate much more harmonic photons than before, 
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some feasible modifications on the beamline (space needed) can potentially resolve the problem. 

Nevertheless, the harmonic flux in Neon is increased 6 times with the modal filtering. In both 

gases, the spatial profile of the harmonic beam in far field and the beam stability from shot to 

shot are better with the modal filtering. Fig. 2.17 is a typical spectrum of the HHG in Argon on 

the High flux harmonic beamline. The measured spectral width of the 25th harmonic (full width 

at half maximum) is 0.65 nm that the temporal coherence (Δλ/λ) is 0.02.    

 

Fig. 2.17. The spectrum of the harmonics generated in Argon. 

 

The harmonic beam used for coherent imaging in the Chapter III is summarized below: 

Wavelength 32 nm 

Pulse energy at the focus of the parabola  photons/pulse, ~ 3 nJ/pulse 

Pulse duration 20 fs 

Repetition rate 20 Hz 

Intensity of the focal spot (5 μm 

diameter) 

~ 1012 W/cm2 

Spatial coherence > 0.8 

Temporal coherence  0.02 

Table 2.2. Summary of the harmonic beam’s properties 
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This ultrafast and brilliant harmonic source promises high-resolution reconstructions of 

coherent imaging with a femtosecond time scale. The imaging experiments will be presented in 

the following chapter.  

Even though our harmonic beam is 3 to 4 magnitude orders less than the beam delivered by the 

FEL facilities (for example, FLASH at Hamburg and LCLS at Stanford). Our beamline facilitates 

the experimental working conditions, with a relative easy control of the harmonic beam. The 

inexpensive cost and compact dimension of such beamline promises wider implementation in 

the world, thus much more beam time for various applications. Dynamic studies can be realized 

by a simple installation of a pump-probe setup. 
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Chapter III -Coherent Diffractive Imaging 

and Holographic imaging 

 

III.1 Introduction 

 

In this chapter, I present the demonstration of different coherent imaging techniques 

(CDI, HERALDO) usingour high flux harmonic beamline. The diffraction 

experiments are accomplished after the wave front sensor HHG optimization 

(Chapter II, section II.3), and without the laser modal filter (which was added into 

the beamline later). CDI and HERALDO share the same experimental setup as 

described in Chapter II (Fig. 2.24 without modal filter). Typical image 

reconstructions in single-shot regime for CDI and HERALDO are respectively 

reported in Paper I and Paper III. The important aspects of coherent imaging, such as 

the beam’s coherence, the signal-to-noise ratio of diffraction patterns, the comparison 

of different extended references in HERALDO, the comparison of CDI and 

HERALDO are also discussed here.   

 

III.2 Sample preparation 

 

All the test objects presented in this chapter have been fabricated using the focused 

ion beam (FIB) facility at the Centre de Spectromètre Nucléaire et de Spectrométrie 

de Masse (CSNSM, Orsay, France). The silicon nitride membranes are supported by 

silicon substrate on one side (Fig. 3.1), which defines the membranes aperture 

varying from 150 x 150 μm2 to 500 x 500 μm2. On such large window, we can 

fabricate more than 100 objects in one membrane. The thickness of the membranes 

varies from 50 nm to 150 nm to ensure that objects are two dimensional for our 

harmonic beam (Chapter I, section I.2b). Before etching, the membranes are covered 

by a gold layer (around 50 nm thick) whose transmission efficiency is less than 1.5 x 

10-3 (Center of X-Ray Optics (CXRO) database) for the 25th harmonic (wavelength of 

32 nm). This layer removes the direct beam and ensures that we have a pure 

transmission object for our imaging tests. Test objects are designed on 512 x 512 

pixels bitmap files, which guide the focused ion beam [1] during the drilling process. 

The object definition is achieved with a precision of about 10 nm. The fabrication 

result can then be observed by scanning electron microscope (SEM) combined with 

the FIB (Fig. 3.2). The manipulation of FIB is delicate and one should respect strictly 
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the precautions and operation rules. For example, the alignment of the membrane 

with the focal plane of the ion beam and the choice of the parameters to tune the ion 

beam directly influence the fabrication quality.  

 

Fig. 3.1.Scheme of test objects fabrication. 

 

 

Fig. 3.2.Example of SEM image of a membrane’s overview after FIB fabrication, with 

a zoom-in on one single object. 

 

As mentioned previously, CDI requires an isolated object located in an extended 

vacuum space to fulfill the oversampling condition. In this case, the measured 

diffraction pattern is composed of the diffracted photons by the object and the direct 

beam, which is not blocked by the object. In our case, the test object acts as an opaque 

mask with a binary transmission. This means that the transmission of etched area is 

‚1‛ and the membrane is ‚0‛. According to the Babinet’s principle *2+, the diffraction 

pattern from an opaque body is identical to that from a hole of the same size and 

shape except for the overall forward beam intensity. Therefore, our test objects can 

be considered as ‚conjugate‛ term of a real object, which would be well isolated. The 
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direct beam for such objects is composed of the transmitted photons of the 

membrane and the photons going through the object hole without diffraction, which 

usually presents as an intense spot in the center of the measured diffraction pattern. 

In FEL facilities, due to the high intensity of the pulse, the direct beam even in single-

shot saturates the CCD camera so that one should place a beam stop to block it. 

However, the beam stop blocks also the low frequencies of the object diffraction. 

Since our harmonic beamline is less intense than a FEL, the beam stop is not 

necessary and the measured diffraction pattern contains all information. Note that 

even if our test objects used here are pure transmission object without phase 

modulation, CDI is also suitable for resolving objects presenting phase modulation 

(Chapter I, section I.2b).  

 

III.3 Detection of the diffraction pattern 

 

During the diffraction experiments, the first difficult task is to find the test objects. 

The objects (having a size smaller than 5 x 5 μm2) are located in a membrane window 

of hundreds μm large, which is held by a sample holder with motorized translation 

stages. First without pumping, we use a HeNe laser, which is pre-aligned with the IR 

pump laser at a distance of ~ 8 m, to find the membrane window position by 

checking the different transmission of the silicon nitride membrane and the silicone 

substrate. Then in vacuum, we use the harmonic beam to find the position of the 

membrane window’s edges. Note that the translation stages of the sample holder 

used in this chapter provide a precision of 1 μm, which has been upgraded to 1 nm 

during my thesis work (new sample holder used in Chapter IV). With the help of the 

SEM image (such as presented in Fig. 3.2), we scan over the possible regions 

containing objects with harmonic beam (size of ~ 5 x 5 μm2) to find one first object. 

Since the objects have been etched in a strict line frame, it is then easy to find other 

ones with a pre-calculation of the objects separation shown in SEM image. At last, we 

align the object with the harmonic focal spot in the beam propagation direction. 

Considering the spectral range (10 – 100 nm) explored during our experiments, we 

use a UV-X PI-MTE CCD camera fabricated by Princeton Instruments. It has a chip 

size of 2048 x 2048 pixels with a pixel size of 13.5 x 13.5 μm2. The compact CCD 

camera (about 10 cm in the longest direction) can be located inside the experiment 

chamber and operates with a vacuum down to 10-7 mbar. It is then easy to motorize 

the CCD camera with translation stages. The camera can be cooled down to -40°C by 

water-cooling system to reduce the readout noise. The detection efficiency can be 

presented as: 
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(Eq. 3-1) 

The intensity IADU of the diffraction pattern on each pixel corresponds to the analog-

to-digital unit (ADU), which is the CCD’s output count. The ADU (or the count) is 

linearly proportional to the incident photon number on each pixel (Nphoton), and has a 

dynamic range from 0 to 65535 encoded on 16 bits. G is the system gain defines the 

relationship between the number of electrons acquired on a CCD and the ADU 

generated. Q is the quantum efficiency of the CCD camera presenting its probability 

to produce electrons from incident photons, Nphoton. is the number of electrons 

generated by one incident photon, described as: 

 
(Eq. 3-2) 

For the 25th harmonic beam (38.74 eV), 10 electrons are generated for one incident 

photon. For the 39th harmonic beam (60.45 eV) used in Chapter IV, 16 electrons are 

generated. The quantum efficiency is ~ 40% for the spectral range from 30 eV to 100 

eV. The system gain is 1.3 electrons/ADU as designed and measured by the 

manufacturer. The relation can then be simplified to IADU = 3Nphoton for H25.      

 

III.4 Implication of the spatial coherence in the CDI 

reconstructions 

 

As presented in Chapter II, we have estimated the spatial coherence of our harmonic 

beam using Young’s double slits (fabricated by FIB, Fig. 3.3a). The idea is to optimize 

the HHG for CDI with a good compensation between photon flux, wave front quality 

and beam coherence. Since the Young’s double slits can also be considered as a CDI 

object, I have tried to reconstruct them using diffraction patterns (interferogram) 

taken under different HHG conditions (Fig. 3.3). This procedure will evaluate the 

sensibility of the CDI reconstruction process to the beam coherence. The double slits 

are 1.5 μm long and 300 nm wide, separated by 4 μm which is close to the size of the 

beam (about 5µm). The measured diffraction photons in these single-shot detections 

range from 105 (Fig. 3.3b,c,g) to 106 (Fig. 3.3d-f). The spot in the center is the direct 

beam transmitted by the membrane, which does not influence significantly the CDI 

reconstruction process.     
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Fig. 3.3. (a) SEM image of the Young’s double slits. (b) to (g) typical fringes measurements 

corresponding to different HHG conditions presented in Fig. 2.19. The gas pressure varies 

from 11 mbar (b) to 16 mbar (g). All fringes are measured with a window size of 800 x 800 

pixels. Here they are cropped for a better presentation.  

A reconstruction of the double slits has been possible only in certain cases. In the 

case of poor visibility combined with poor intensity (such as Fig. 3.3g), the iterative 

process cannot converge. Good reconstructions are achieved for HHG conditions 

combining both intensity and visibility optimization (such as Fig. 3.3c-e). 

Reconstructions are less good for fringes with a visibility around 0.5 (such as Fig. 

3.3b and f), even for fringes with maximized diffraction photons (such as Fig. 3.3f).  

The reconstruction with best resolution (138 nm) is presented in Fig. 3 of Paper I. 

Here, Fig. 3.4 presents the two reconstructions for Fig. 3.3c and d, corresponding to a 

fringe visibility respectively 0.6 and 0.67, and the measured diffraction intensity of 

Fig. 3.3d is about 1.3 times higher than the other. Note that Fig. 3.3f has similar 

diffraction intensity as Fig. 3.3d, but a poor fringe visibility of ~ 0.5 makes the 

iterative algorithm not able to identify the two slits. For all slits reconstructions, the 

initial support is calculated by the Fourier transform of the measured diffraction 
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pattern, which corresponds to the autocorrelation of the double slits (Fig. 3.5). If the 

beam is totally coherent, based on the definition of the autocorrelation, the ratio 

between the maximums of the center part (green circle) and the side part (red circle) 

should be equal to 2. This ratio is directly related to the beam coherence, which 

becomes smaller when the coherence is limited. During the iterative process, the 

support is refined (reduced in space) for each iteration with a threshold, usually 

defined by its intensity distribution. Thus, for fringes with limited coherence, the 

side parts will have a weak intensity. In such case, the information will be eliminated 

by the threshold, which is set to avoid any unreliable reconstruction. In such case we 

usually obtain only one slit reconstruction, the second slit being missed by the 

artificially truncated support used in the algorithm. This is a standard problem in 

CDI when using a symmetric object. CDI applies better for non-symmetric objects as 

the support ambiguity is removed. 

 

 

Fig. 3.4. (a) and (b) are respectively the reconstructions of Fig. 3.3c,e. The resolution 

estimated is 296 nm and 173 nm.  

 

 

Fig. 3.5. Autocorrelation of the Young’s double slits, calculated from a measured diffraction 
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pattern.  

 

We estimate the reconstruction resolution in CDI using the phase retrieval transfer 

function (PRTF), which is the ratio between the absolute value of the Fourier 

transform of the reconstruction and the square root the measured diffraction 

intensity: 

 
(Eq. 3-3) 

The resolution is given at the ratio of 1/e, according to the PRTF criterion [3]. is the 

spatial frequency of the diffraction pattern, equal to D/λz, where D is the distance of 

the concerned pixel to the center of the diffraction pattern, and z is the distance 

between the detection plane and the object plane.  

 

III.5 Experimental results of CDI 

 

After the beamline optimization, we have performed CDI experiments using texts 

objects, such as the ‚lambda‛ presented in Paper I. We have been able to reconstruct 

the ‚lambda‛ (3.2 μm x 2 μm) from a single-shot acquisition (20 fs pulse duration) 

with a spatial resolution of 78 nm (equal to 2.5λ), which is largely improved 

compared to the 119 nm reported in A. Ravasioet al. [4], which was realized with a 

non-optimized beam and focus. The object ‚note‛ (3 μm x 2.8 μm) in the latter has 

been retested and we got a single-shot reconstruction with 75 nm spatial resolution, 

which is close to the 40-shot reconstruction reported in previous work. The final 

reconstruction presented in Fig 3.6 is an average of 14 best different reconstructions 

output after 1000 iterations of the RAAR algorithm. The original diffraction pattern is 

recorded in a window size of 2048 x 2048 pixels. It is cut into a size of 848 x 848 pixels 

and then binning 4 x 4 (16 pixels integrated into one large pixel) for the 

reconstruction to accelerate the algorithm calculation. Thus, each pixel of the 

reconstruction has a size of 53 nm (pobject), calculated by following equation: 

 
(Eq. 3-4) 

where Npixel is the number of pixels of the window size and pcamera is the pixel size of 

the camera. Note that, the oversampling ratio for these CDI objects is about 10, thus 
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the 4 x 4 binning still qualifies for the oversampling condition. The improvement of 

the reconstruction quality is mainly due to the increased photon flux. Indeed, we 

have detected a few 107 diffracted photons in the single-shot measurements of 

‚lambda‛ and ‚note‛, compared to 5 x 105 photons in the previous work. Since there 

is no measurement of the beam’s wave front and coherence in the former experiment, 

the comparison on these aspects is not possible. Note that the relative poor 

reconstruction quality of Young’s double slits (with good coherence) is due to the 

lack of diffracted photons (~ 106 photons are detected in the best case). The low 

diffraction efficiency is caused by the geometry of the double slits, which are situated 

at the edges of the beam when well aligned. On the contrary, our test objects are 

perfectly aligned with the more intense part of the soft X-ray focused beam.        

 

Fig. 3.6. (a) The ‚note‛ reconstruction in single-shot detection with a presentation of its SEM 

image. The missing slit is due to the radiation damage after long time exposure. The radiation 

damage is an important constraint on FEL facilities, especially for biological samples. 

Discussions have arisen on this subject [5,6]. (b) and (d) are respectively the autocorrelation 

for ‚note‛ and ‚lambda‛. During the iterations, the reconstruction of the object can flip 

horizontally or vertically due to the symmetry of the autocorrelation. Thus non-symmetry 

masks (c and e) are applied to the autocorrelation when calculating the support to avoid the 

flip. 

In fact, the object geometry is another important factor for the CDI reconstruction, 

beside the three-coupled factors of the harmonic beam (wave front, coherence and 

photon flux). For example, ‚note‛ and ‚lambda‛ are simple objects that present in 

general two main directions of diffraction. Compared to objects that have diffraction 

signals extended in all directions (such as the Airy disk of a circle), the diffraction 

pattern of objects like ‚note‛ and ‚lambda‛ will have higher photons/pixel values, as 
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the photons are mainly located in the main diffraction axes. Thus better signal-to-

noise ratio and higher spatial frequencies are obtained for the reconstruction under 

the same illumination condition. Fig. 3.7 illustrates the importance of the object 

geometry for CDI with comparison between objects ‚note‛ and ‚phos‛. The latter is 

composed of 3 Greek letters with a total size of 3.2 μm x 2.5 μm. The red rectangles in 

the diffraction patterns show the spatial extension of the diffracted signal: 1100 x 850 

pixels for ‚note‛ and 460 x 460 pixels for ‚phos‛. The maximum spatial frequencies 

of the diffracted photons are ± 12.2 μm-1 and ± 9.4 μm-1 for ‚note‛, and ± 5.1 μm-1 for 

‚phos‛. The theoretical resolution is then limited to 53 nm for ‚note‛ and 98 nm for 

‚phos‛. However, the measured diffracted photons are the same: 2.8 x 107 for ‚note‛ 

and 2.7 x 107 for ‚phos‛. The reconstruction of ‚phos‛ is not satisfying: only the ‚ω‛ 

is resolved while the other two letters are partially or non-resolved at all. Since the 

objects have similar size, the poor reconstruction should not be related to 

illumination problem or coherence problem. The object geometry could be therefore 

a constraint for single-shot CDI experiments at our harmonic beamline. In multiple-

shot regime, we are able to accumulate enough signals to have sufficient spatial 

extension of the diffraction pattern for high-resolution reconstructions, as 

demonstrated in previous work of A. Ravasio et al.. The other method to amplify the 

diffraction signal is to use extended reference, which still keeps the possibility of 

high-resolution reconstruction (section III.10). 

 

Fig. 3.7. (a) and (b) Diffraction patterns of ‚note‛ and ‚phos‛, displayed with the same color 

scale. The red rectangles present the extension of the diffracted signals. Images are taken with 

a window size of 2048 x 2048 pixels. The two half-circle at the edge of the red rectangle in (a) 

are parasite signals. (c) is a typical reconstruction after 2000 iterations of object ‚phos‛. The 

SEM image of ‚phos‛ is on the top corner.  

We have tested another object ‚Eiffel tower‛ (Fig. 3.8a), which has a size of 5 μm x 4 

μm and is more complex than ‚note‛ and ‚lambda‛. The single-shot diffraction 

pattern presented here has three main diffraction directions and is more 

‚homogeneous‛ than ‚note‛ and ‚lambda‛ with signal extension size of 800 x 800 

pixels. The maximum spatial frequency is ± 8.88 μm-1, corresponding to a theoretical 
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resolution (Chapter I, section I.2c) of 56 nm. The calculated autocorrelation (Fig. 3.8b) 

shows a high agreement with the simulation (Fig. 3.8c). Thanks to the presence of the 

star beside the tower, which acts like a holographic reference in the autocorrelation 

calculation, we can clearly identify the Eiffel tower in the autocorrelation. However 

no FTH or HERLADO reconstructions can be processed, except that applying a 

particular de-convolution operator well adapted to the star shape on the 

autocorrelation may probably lead to reliable reconstruction. Fig. 3.8d is the CDI 

reconstruction of the single-shot diffraction pattern after 3000 iterations, compared to 

the reconstructions of 400-shots (Fig. 3.8e) accumulation taken before the harmonic 

beamline optimization. The single-shot reconstruction presents a lack of illumination 

on the top and the bottom part of the tower, which can also be observed in the 

autocorrelation. The star is blurred which could be related to the radiation damage 

suffered by the object during long time exposure. Due to the instability of the beam 

before optimization, the reconstruction of the multi-shot detection does not show 

significant improvement, but is in fact more blurred. However, the accumulated 

illumination provides more photons and thus a ‚clearer‛ vision over the entire object.              

 

Fig. 3.8. (a) Single-shot detection of the ‚Eiffel tower‛ object with its SEM image on the top. 

(b) Autocorrelation calculated from (a), compared to the numerical simulation of the SEM 

image (c). (d) Reconstruction of single-shot detection with a spatial resolution of about 110 

nm. (e) Reconstruction of 400-shots detection obtained before the harmonic beamline 

optimization. The reconstruction has been realized by Pierre Thibault (Cornell Univ. and 

now TU Munchen).  

 

III.6 Experimental results of Fourier Transform Holography 
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We have prepared two test objects to perform Fourier Transform Holography (FTH) 

experiments. Object ‚h‛ has a size of ~ 1.6 μm x 2.4 μm and the other is a ‚geometry 

grid‛ object with a size of 1 μm x 1 μm (Fig. 3.9). For each test object, we have etched 

two identical reference pinholes in vertical and horizontal directions. Different 

pinhole sizes have been combined to the objects: 300 nm or 240 nm (diameter) for ‚h‛; 

110 nm or 145 nm for ‚geometry grid‛. The FTH experiment will be then confronted 

to the HERALDO technique using different extended references. The comparison of 

these two techniques is discussed in Paper IV. Here, I would like to show some 

complementary experimental results that are not presented in the manuscript.          

 

Fig. 3.9. SEM images of holographic objects ‚h‛ and ‚geometry gird‛. 

 

The ‚h‛ object can be constructed from single-shot detection as shown in Fig. 3.10. 

The diffraction pattern is recorded in a window size of 2048 x 2048 pixels with a 

signal extension of ~ 350 x 350 pixels, corresponding to a maximum spatial frequency 

of 3.89 μm-1. The hologram contains ~ 7 x 106 photons and presents no privilege 

diffraction directions and contains the full speckles that encodes the phase 

information. Applying a Fourier transform on the hologram, we get the two pairs of 

reconstructions associated to the two pinholes references. Note that there are only 

two independent reconstructions in this case, since the reconstructions in opposite 

positions are the complex conjugates. In the case of Fig. 3.10, the images obtained 

with the vertical pinhole are much intense than the ones by the horizontal pinhole. 

This is due to a misalignment between the object (including the references) and the 

harmonic beam. To estimate the spatial resolution, I plot the profile of the 

reconstruction along the white line (Fig. 3.10). This allows us to visualize the noise 

and the sharpness of the object edges. According to the 10%-90% Rayleigh criterion, 

the resolution is estimated to be around 220 nm, which is close to the resolution 

limitation defined by the pinhole size of 300 nm. A low-pass filter (Gaussian filter) 

has then been applied on the hologram to knock out the noise in high frequencies 

where no diffractive signals are recorded. The width of the Gaussian filter is chosen 

to adapt the maximum diffraction extension and the filtered hologram is presented 

in Fig. 3.10b. The reconstruction of the filtered hologram highly agrees with the non-
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filtered one. The profile plotted at the same position is the smooth ‚version‛ of the 

previous one, which is the convolution between the noised profile and the Gaussian 

filter. The two profiles have same contrast of ~ 0.64. In the case of FTH, the low-pass 

filter only leads to a more comfortable vision of the reconstruction, the spatial 

resolution being the same. But in the case of HERALDO of two-dimensional 

references, the low-pass filter is essential for the reconstruction (section III.9). 

However, in all cases, it imposes a resolution limit related to the filter width.   

 

Fig. 3.10. (a) A zoom-in (400 x 400 pixels) of the original single-shot detection (2048 x 2048 

pixels) of ‚h‛ object with pinholes of 300 nm. (c) Reconstructions from the original data, with 

the profile plotted at the white line position. (b) Hologram filtered by a low-pass filter with 

respect to the diffraction signal extension. (d) Reconstructions of the filtered data, which 

presents the same profile as the previous one.  

The ‚geometry gird‛ is also reconstructed from single-shot measurement (Fig. 3.11b). 

The measured diffraction photons is ~ 2 x 106 that is less than the ‚h‛ diffraction due 

to the smaller object size and smaller pinholes. The diffraction pattern (Fig. 3.11a) is 

recorded with a binning ratio of 2 (4 pixels integrated into a large one). The signal 

extension of 320 x 200 ‚large‛ pixels (thus, 640 x 400 normal pixels) corresponds to 

maximum spatial frequencies of 7.1 μm-1 and 4.4 μm-1 respectively. A low-pass filter 

has been applied onto the hologram to have a better vision of the reconstruction. All 

the components of the grid are well reconstructed (Fig. 3.11c). The profiles in vertical 

and horizontal directions show a contrast of ~ 0.6. Note that the tree horizontal slits 

have a width of 95 nm and are separated at a center-to-center distance of 95 nm. Fig. 
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3.11d is another single-shot diffraction pattern obtained for the same object which 

contains ~ 3.2 x 106 diffracted photons, higher than Fig. 3.11a. However, we cannot 

observe fringes in the speckles in Fig. 3.11d, compared to the clear interference 

signature in Fig. 3.11a. The lack of interference fringes leads to worse reconstruction 

quality so that the components of the gird are ‚missed‛ in the reconstructions (Fig. 

3.11e). The zoom-in of the two independent reconstructions shows that the big circle 

and the three small holes are not resolved in different reconstructions. Moreover, the 

other components are also less resolved, compared to Fig. 3.11c. We can obtain the 

‚missed‛ components by averaging coherently (complex value calculation) the two 

independent reconstructions, as shown in Fig. 3.11f. However, the final 

reconstruction present a contrast of ~ 0.4 in vertical and horizontal profiles, which 

demonstrates a worse resolution compared to that in Fig. 3.11c. The lack of 

interference fringes should be related to a coherence problem of the harmonic beam 

for this acquisition. Note that these two diffraction patterns were taken before the 

modal spatial filter upgrade of the harmonic beam (Chapter II, section II.4). Indeed, 

the statistics over ten single-shot acquisitions recorded consecutively for the same 

object show a total of three holograms lacking of interferences. Still, the stability was 

enough for the data recorded during this campaign. The comparison here 

demonstrates the importance of the balance between the photon flux and the beam 

coherence in coherent imaging. A relatively less intense beam but with a higher 

coherence can lead to a better reconstruction quality than a more intense beam with 

less coherence.  

 

Fig. 3.11. (a) A zoom-in (400 x 400 pixels) of the single-shot acquisition (600 x 600 pixels) 

with clear interference fringes of test object ‚geometry grid‛. (b) Reconstructions of (a) and 
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its zoom-in (c). (d) A zoom-in (300 x 300 pixels) of the single-shot acquisition (682 x 682 

pixels) of the same object, with a higher diffraction signal and a lack of interference fringes. 

The signals at the top and bottom corners are parasite light. (e) Reconstructions of (d) with 

non-resolved components of the object. (f) The final reconstruction by coherent averaging of 

the two independent reconstructions in (e).  

 

III.7 Experimental results of holography with extended reference 

 

Holography with extended references (HERALDO) has been tested with a linear slit 

reference. In this configuration, the reconstruction resolution is limited by the slit 

width in the direction perpendicular to the slit orientation. By applying a linear 

differential operator along the slit reference shown in Fig. 3.12, we get two Dirac 

functions that are similar to the pinhole reference in FTH at its extremities (Fig. 

3.12b). The holographic separation condition requires that our test object (letter ‚φ‛) 

should be separated from the reference slits at a distance at least equal to two times 

the object size (Fig. 3.12d). The object ‚φ‛ covers an area of 2 μm x 1.7 μm and the slit 

width is 130 nm and 145 nm respectively for horizontal and vertical one with a 

length slightly longer than the object. The total object and references are within a 

window size of 4.5 μm x 4.5 μm.  

 

Fig. 3.12.(a) Applying linear differential operator ( ) on slit reference (at angle α) leads to 

two Dirac functions (b) at the extremities of the slit. (c) The test object ‚φ‛ with two slit 

references. (d) The slits’ length and the distance to the object are chosen to satisfy the 

holographic separation condition. There should be no recovery between the blue rectangles, 

which is the object size.  
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Fig. 3.13 show both single-shot and multiple-shot acquisitions of the HERALDO 

holograms. In Fig.3.14, we see that by applying a linear differential in each direction 

given by the slits to the autocorrelation of the hologram (a) we get four independent 

reconstructions (b,c). They can be averaged to enhance the reconstruction quality. 

The single-shot reconstructions are shown in Fig. 2 and 3 in Paper III. The estimated 

resolution is 110 nm, corresponding to a spatial frequency of 4.55 μm-1, while the 

multiple-shot (10 shots) reconstructions have a resolution of 80 nm (corresponding to 

6.25 μm-1 spatial frequency, red circle in Fig. 3.13b), which is limited by the width of 

the slit reference. However, the signal extension in multiple-shot (yellow circle in Fig. 

3.13b) is much larger than the limit given by the spatial resolution of the recovered 

image. Indeed, in the reconstruction process, the spatial resolution is limited by the 

manufactured size and quality of the references. It is possible to estimate this limit by 

applying a linear differential operator to the slits presented in the high resolution 

SEM image (Fig. 3.15). The particular shape of the calculation result is our reference. 

The deviation from a perfect pinhole (or a Dirac function) will affect the final 

reconstruction resolution. In the case of a slit reference, the resolution limit is not 

uniform for all orientations. The longest side of the ‚point source‛ imposes a 

resolution limitation of ~ 85 nm, which agrees with the estimated reconstruction 

resolution.  

 

Fig. 3.13. (a) Single-shot diffraction pattern of the HERALDO object ‚φ‛. (b) 10-shot 

diffraction pattern of the same object presented in the same color scale. The signals of two 

half-circle outside the yellow circle are parasite light. Red circles shows the spatial frequencies 

corresponding to the estimated reconstruction resolutions. The yellow circle shows the signal 

extension given by the resolution limit.    
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Fig. 3.14. (a) Autocorrelation for the 10-shot acquisition hologram. (b) is the derivation along 

the horizontal slit (yellow arrow) of the autocorrelation (a). (b) is the derivation along the 

vertical slit (green arrow) of the autocorrelation (a). Each reconstruction (b) and (c) shows 

two independent reconstructions. The crossed terms between the object and the reference 

show already the shape of ‚φ‛. The crossed term between the two references (the square at left 

top and right bottom) shows that the illumination is not uniform for the entire sample. This 

can also be observed in the reconstructions (b, c) where the object ‚φ‛ is more intense in the 

inner part.   

 

Fig. 3.15.SEM image of the sample. The derivations of the slits are shown in the rectangles at 

the right of the blue arrow. They exhibit four moon shape patterns, which are the deviation 

from an equivalent ‚point source‛ of the slit references simulated from the SEM image by 

applying linear differential operator. The green square is the result of vertical linear 

differential operator, and the yellow square is the horizontal one.  

 

III.8 Signal-to-noise ratio (SNR) analysis 

 

For all the three imaging configurations (CDI, FTH, HERALDO), the signal-to-noise 

ratio is a key factor for the reconstruction quality. In our experimental conditions, the 

noise can be separated into four independent components according to their nature: 
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1) The parasite light noise: as shown in the measured diffraction patterns, we 

have sometimes detected parasite light signals, usually at the outer part of the 

diffraction pattern (Fig. 3.13b). It is due to the IR and/or harmonic reflections 

inside the experimental chamber, and/or the transmission of the parasite light 

through the sample holder. 

2) The photon noise: it is directly related to the diffraction signal and obeys to 

the Poisson distribution. The signal-to-noise ratio can be described as 

, where N is the photon flux (or photon numbers).  

3) The readout noise: it is related to the CCD camera readout quality, which is 

the uncertainty introduced during the process of quantifying the electronic 

signal. The readout noise mainly arises from the on-chip preamplifier [7]. It is 

characterized by its standard deviation  (or its variance ). 

4) The dark noise (dark current): it is introduced by the thermally generated 

electrons within the silicon layers of the CCD. The dark current describes the 

statistical variation of the thermal electrons at a given CCD temperature and a 

given exposure duration, obeying also to the Poisson law. It is characterized 

by electrons/pixel/sec.   

Practically, the noise reduction has been realized at the detection stage through 

several steps. The parasite light noise can be easily removed after detection, since it is 

usually located in the region without diffraction signal in our experiment. We have 

also added light shields and filters (as what we did for magnetism experiments in 

Chapter IV) to stop the parasite light before detection. We cannot reduce the photon 

noise due to its nature, but we can increase the associated SNR by increasing the total 

photon number (beamline output, light transport and focus optimization) because of 

the square root relation of the photon noise SNR. One can also bring the CCD camera 

closer to the object plane to have a higher photons/pixel ratio to enhance the SNR 

associated to the photon noise. Note that, the CCD-object distance should always 

fulfill the sampling ratio for FTH/HERALDO or the oversampling condition for CDI. 

Moreover, multiple-shot accumulation can also enhance the SNR. The dark noise can 

be reduced by cooling down the CCD camera, which is 0.05 electrons/pixel during 

100 seconds exposure at -40°C, according to the CCD camera fabricant. The readout 

noise depends on the readout frequency of the camera. Our CCD camera has two 

available readout frequencies: 1 MHz and 100 kHz. The reference value (standard 

deviation) given by the CCD camera fabricant is 8.8 electrons for 1 MHz and 4 

electrons for 100 kHz, corresponding respectively to 6.8 ADU and 3.1 ADU. The 

disadvantage of using 100 kHz is the long CCD readout time, which is up to 30 

seconds, compared to the 4.5 seconds for 1 MHz. Note that the readout time depends 

on the CCD chip size (or total pixel numbers).The CCD camera offers an option to 

read only a part of the CCD chip defined by users (called region of interest) to reduce 



 68 

the readout time. In practice, according to the measurement in dark condition (Fig. 

3.16), the measured readout noise for 1 MHz and 100 kHz is respectively 9.2 ADU 

and 3.2 ADU, thus ~ 12 electrons and ~ 4 electrons. The other option provided by the 

CCD camera to enhance the readout SNR is the hardware binning, which combines 

charge from adjacent pixels into a single large pixel during the readout process. In 

the ideal case, the enhancement is equal to the binning ratio. For example, if each 

normal (non-binning) pixel has signal of 20 electrons and a readout noise of 10 

electrons, then a single large pixel of 3 x 3 binning ratio will have a signal of 180 

electrons and a readout noise of 10 electrons (it is introduced only once during the 

readout process). The SNR of a large pixel is then 9 times larger than that of a basic 

pixel unit. Note that the hardware binning is different to the software (or numerical) 

binning, which combines adjacent pixels after the readout process, thus the software 

binning does not change the SNR associated to the readout noise, but still increases 

the SNR of photon noise for each large pixel. One should again be careful of the 

sampling ratio when binning the pixels. The measured diffraction pattern is the 

superposition of the diffracted signal and the different noises, among which the dark 

noise and the parasite light noise are easy to handle. Usually, with a low diffraction 

signal, the noise is dominated by the readout noise, which is called readout-noise 

limited; with a high diffraction signal, the photon noise is dominant, which is called 

photon-limited. For the wavelength used in our imaging experiment (H25, 32 nm), 

one detected photon generates 10 electrons (Eq. 3-2), which is comparable to the 

readout noise at 1MHz. In our experiment, the measured diffraction patterns are 

mainly influenced by the readout noise and the photon noise. The SNR of the 

diffraction pattern is then 

 

(Eq. 3-5) 

Overall, we distinguish in our diffraction patterns two regions: the region of low 

spatial frequencies is photon limited and the region of high spatial frequencies is 

readout-noise limited.  
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Fig. 3.16. Measurements in dark condition at 1 MHz (a) and 100 kHz (b) and the respective 

histogram (c) and (d).  

 

III.9 HERALDO reconstruction and noise 

 

An analysis of the photon noise influence in the HERALDO technique can be found 

in the thesis of M. Guizar-Sicairos ([8], Chapter 5, section 5.6). The SNR is analyzed in 

photon-limited statistics with theoretical discussions and numerical simulations. The 

findings are that the HERALDO technique is robust to the photon noise, and the bulk 

of noise contribution by the extended reference is effectively filtered during the 

reconstruction procedure. However, in our experiment, the diffraction patterns are 

far from photon-limited, due to the harmonic flux and its relatively low photon 

energy. An important step in the HERALDO reconstruction process is to apply the 

linear differential operator associated to the reference shape in the object space (the 

autocorrelation). This step, in practice, is realized by applying a point-by-point 

multiplicative filter, , in the Fourier domain (the diffraction pattern or the 

hologram), where p and q is the index of the diffraction pattern pixel. Then, the object 

image is reconstructed by applying an inverse Fourier transform on the ‚filtered‛ 

diffraction pattern. In fact,  is a high-pass filter, as presented in Fig. 3.17. This 

kind of high-pass filter will amplify the high spatial frequency region that is 

dominated by the readout noise. As a consequence this will degrade the HERALDO 

reconstructions of our recorded holograms. To eliminate the amplified readout noise, 

one can apply a low-pass filter, such as a Gaussian filter. In Fig. 3.17, the high-spatial-
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frequency region of the multiplicative filters is eliminated by a super Gaussian filter 

(third order) with a diameter of 2000 pixels (full width at half maximum).  The 

multiplicative filters are calculated in a window size of 2200 x 2200 pixels. In the 

following example of experimental data, I will show that the low-pass filter is 

essential to the HERALDO reconstruction process, especially with diffraction 

patterns significantly influenced by readout noise.  

 

 

Fig. 3.17. Numerical simulation of the multiplicative filters (b and e) associated to one-

dimensional slit reference (a) and two-dimensional square reference (d). The ‚star‛ is the 

object. (c) and (f) are the results of applying a super Gaussian filter (third order) on the 

multiplicative filters.  

 

Fig. 3.18. (left) Test object A: SEM image of the geometry grid object with two square 

references. (right) Measured single-shot diffraction pattern of test object A. 

 

The test object A (Fig. 3.18 left) is a geometry grid object (1μm x 1μm) with two 

square references (slightly larger than 1 μm x 1μm). The object-reference distances 
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are slightly larger than the object size (holographic separation). The two squares can 

provide eight independent reconstructions (associated to the eight corners of the two 

squares) in one acquisition. We obtained a single-shot diffraction pattern with a 

readout frequency of 100kHz and within a window size of 600 x 600 pixels of 2 x 2 

binning ratio (corresponding to 1200 x 1200 non-binned pixels). The measured 

diffraction signal is ~ 6 x 107 photons. The readout noise has a standard deviation of 4 

ADU and an average of 14 ADU, measured in the red square (Fig. 3.18 right) where 

there is no diffraction signal. 

Fig. 3.19 presents the effect of the low-pass filter during the reconstruction process. 

When no low-pass filter is used (left column), the high spatial frequencies of the 

hologram are significantly amplified after applying the multiplicative filter. The 

reconstructions are completely covered by the noise. When applying a low-pass filter, 

whose diameter is too large (800 pixels) to eliminate all the amplified readout noise 

(middle column), the object is reconstructed but with a low quality. Applying a 

suitable low-pass filter (right column), whose diameter (400 pixels) is small enough 

to eliminate most readout noise at high spatial frequencies, the object is then clearly 

reconstructed. To quantify the noise contribution, we can use the power SNR of the 

reconstructed image [8]: 

 
(Eq. 3-6) 

SNRr is the ratio between the signal energy and the noise energy presented in the 

reconstruction image. The signal energy is calculated by integrating the 

signals inside the object region No (bleu square in Fig. 3.19), and the noise energy is 

the multiplication of No and its variance calculated in the region without signals 

(white square). Here, the noise energy is the total contribution of photon noise and 

readout noise. Note that SNRr only accounts for the statistical noise and does not 

include the effects of resolution loss.        
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Fig. 3.19. Influence of the low-pass filter during the reconstruction process. (first row) 

Multiplicative filter with and without Gaussian filter. (second row) Results of the 

multiplication (in Fourier space) of the measured diffraction pattern by the HERALDO 

multiplicative filter with and without Gaussian filter. (third row) Inverse Fourier transform 

of the second row, giving the reconstructions. The eight independent reconstructions are 

within the green and the yellow square (each associated to a square reference). The bad 

reconstructions in the yellow square should be due to a miss-alignment that one reference has 

not been sufficiently illuminated. Note that the multiplicative filter is slightly tilted to agree 

with the diffraction axis. 

 

I have then reconstructed the object A with different diameter of the low-pass filter 

(from 200 to 1000 pixels, every 100 pixels). The reconstructions are shown in Fig. 3.20. 

When the filter diameter increased, it is more difficult to reconstruct the object and 

more noise appears. We also note that the reconstruction is more blurred with 

smaller filter diameter. To estimate the resolution, I have plotted the profile of the 

reconstruction at the white line position in Fig. 3.21, and compared it to the 
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calculated SNRr. The SNRr increases with smaller filter diameter that high spatial 

frequencies (dominated by the readout noise) are eliminated. But the measured 

contrast (reflecting the resolution) does not always increase. It is maximized (0.76) at 

a filter diameter = 400 pixels, then decreases quickly at smaller diameters. The 

corresponding theoretical resolution for different filter diameter is presented in Table 

3.1. Note that the measured contrast for diameter = 300 pixels (2 x 2 binning) is 0.65 

and the period of the three horizontal slits of the object is ~ 190 nm. It means that the 

reconstruction resolution is worse than 95 nm, which is not limited by the filter 

diameter (75 nm). Therefore, the contrast decrease should be related to other factor 

like a loss of constructive diffraction signal.  

 

Fig.3.20. Reconstructions with different low-pass filter diameter. (first row from left) 

Diameter = 200, 300 and 400 pixels. (second row from left) Diameter = 500, 600 and 700 

pixels. (third row from left) Diameter = 800, 900 and 1000 pixels. All images are presented 

with the same color scale. 
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Filter diameter 

 

Non-binning 

400 600 800 1000 1200 1400 1600 1800 2000 

2 x 2 binning 200 300 400 500 600 700 800 900 1000 

3 x 3 binning 130 200 260 330 400 470 530  600 670 

Theoretical resolution 

(nm) 113 75 56 45 38 32 28 25 23 

Table 3.1. Theoretical resolution for different low-pass filter diameter with different binning 

ratio. 

 

Fig. 3.21. (right) For each reconstruction, the measured contrast corresponds to the white line 

position. (left) Evolution of the SNRr and the contrast with different low-pass filter diameter.   

Since the readout noise is not correlated from one pixel to another, we can classify 

the pixels of the diffraction pattern by choosing two reasonable thresholds. To 

simplify the calculation, I use the ADU as the signal and noise unit in this section. I 

assume that for one pixel, it is readout-limited when there is no diffraction signal, 

which means that the ADU count of this pixel is within the readout noise 

distribution. The latter can be measured in a region far away from the diffraction 

signals, such as the red square in Fig. 3.18. A pixel is photon-limited when the ADU 

count of the pixel gives a photon noise 10 times higher than the readout noise. For 

example, with 1MHz readout frequency, the readout noise is equivalent to one 

photon signal (see section<). Moreover, a pixel whose ADU count is between these 

two thresholds is said to be mixed-noise. And a pixel is non-ADU if its ADU count is 
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zero after applying the low-pass filter. Therefore, all pixels are classified into four 

types, among which photon-limited and mixed-noise pixels provide useful signals for 

the reconstructions, and non-ADU pixels have no contribution to noise or useful 

signal. Fig. 3.22 presents the evolution of these four kinds of pixels when different 

filter diameters are used. Clearly, tighter low-pass filter turns more readout-limited 

pixels to non-ADU pixels, and that’s the reason why the contrast of the reconstruction 

increases. However, for filter diameter smaller than 600 pixels, the photon-limited and 

mixed-noise pixels begin to decrease (eliminated by the tight filter, turned to non-ADU 

pixels). This can explain why the contrast decreases after the maximum. Therefore, 

one should find a good compromise between eliminating more readout-limited pixels 

and keeping more photon-limited and mixed-noise pixels. Fig. 3.23 shows the three 

kinds of pixels’ distribution for a filter diameter of 400 pixels, where mixed-noise 

pixels are as important as photon-limited pixels for reconstruction. The sum of these 

two kinds of pixels presents almost the entire diffraction signals. The mixed-noise 

pixels are more influenced by the low-pass filter, as we can see in Fig. 3.22 where it 

decreases two times quicker than the photon-limited pixels.     

 

Fig. 3.22.Evolution of the four kinds of pixels with different filter diameters. The curves are 

the ratios between each kind of pixel number to the total pixel number. The reconstruction 

contrast curve is also plotted here for comparison.     
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Fig. 3.23. (Top row) Distribution of readout-limited pixels (left) and mixed-noise pixels 

(right). (Bottom row) Distribution of photon-limited pixels (left) and total pixels (right). 

Images are filtered by a super Gaussian filter of 400 pixels diameter.   

I present now another example (test object B), which is a geometry grid (1μm x 1μm) 

with two slits reference (slightly longer than 1μm) separated from the grid far 

enough to fulfill the holographic separation conditions (Fig. 3.24). The presented 

single-shot diffraction pattern (Fig. 3.24) is obtained with a readout frequency of 

1MHz and within a window size of 600 x 600 pixels at a 2 x 2 binning ratio. The 

measured diffraction signal is ~ 1.2 x 107 photons. The readout noise has a standard 

deviation of 9.8 ADU and an average of 38 ADU.  
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Fig. 3.24. SEM image of the test object B (left) and the measured diffraction pattern (right). 

 

 

Fig. 3.25.Evolution of the four kinds of pixels with different filter diameters. The curves are 

the ratios between each kind of pixel number to the total pixel number. The reconstruction 

contrast curve is also plotted here for comparison.     

Fig. 

3.26. (left) The blue curve presents the evolution of the ratio between (photon-limited + 

mixed-noise) pixels and the readout-limited pixels. (right) SNRr evolution (blue curve) and 

the reconstruction contrast (red curve).  

Using the same analysis method, similar results are obtained for the four kinds of 

pixels evolution (Fig. 2.25). The reconstruction contrast is again maximized (0.8) at a 

diameter = 400 pixels. Fig. 2.26 presents the variation of the ratio between (photon-

limited + mixed-noise pixels) and readout-limited noise. The reconstruction contrast is 

enhanced to a relatively good range (> 0.6) when this ratio begins to increase. And 

the latter has a good agreement with the SNRr in their evolution behavior. It confirms 

that the noise energy in the reconstruction image has a large contribution from the 

readout noise, which limits the reconstruction quality. Fig. 3.27 is a reconstruction of 
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object B with filter diameter = 400 pixels. Note that, reconstructions without low-pass 

filter are also resolved (Fig. 3.27 left) for this object due to the one-dimensional 

reference.  The multiplicative filter is order 1 for one-dimensional reference and two 

for two-dimensional references. Therefore, the amplification of the readout noise is 

less important with slit reference than square reference, which is the advantage of 

one-dimensional reference. However, the resolution of the two-dimensional 

reference is theoretically non-limited, compared to the resolution limitation in the 

perpendicular direction of the slit reference.  

 

Fig. 3.27.Reconstruction of test object B without (left) and with (center) a low-pass filter 

diameter of 400 pixels. (right) Profile of the reconstructed object at the white line position. 

 

III.9a HERALDO reconstruction and noise: Detection stage optimization  

with multiple shot acquisition 

 

As demonstrated in the previous examples, the reconstruction of our diffraction 

patterns is mainly limited by the amplified readout noise. Therefore, the 

optimization of the detection stage will then focused on the readout noise. First, we 

can increase the incident harmonic beam flux by shots accumulation to have a higher 

signals/pixel ratio. Thus more pixels are then photon-limited or mixed-noise. Fig. 3.28 

presents a comparison between single-shot and multiple-shot acquisition of the test 

object C, which is the same geometry grid (1μm x 1μm) with two square references 

(slightly larger than the object) just beside it, which offer four independent 

reconstructions in one acquisition. Please refer to the caption of Fig. 3.28 for the 

detailed explanation of the reconstruction geometry. The measured 5-shot diffraction 

pattern has 2.9 x 108 photons and the single-shot acquisition has 5.9 x 107 photons. 

The ratio between the measured photons is ~ 4.9. The standard deviation of the 

readout noise is 8.8 ADU and 9.6 ADU respectively for the single-shot and the 5-

shots detections, with a same average of 33 ADU. Both images are recorded within a 
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window size of 1200 x 1200 non-binning pixels and the readout frequency is 1MHz. 

Comparing the analysis result (Table 3.2) of the 1-shot and 5-shot best 

reconstructions (Fig. 3.28 second row), which correspond to the highest 

reconstruction contrast, the photon-limited and mixed-noise pixels are increased by 3.4 

and the SNRr is increased by 1.5. Applying the Equation 3-6, we can get following 

equations: 

 

 

where S is the signal energy, P and L are noise energy contributed respectively by the 

photon noise and the readout noise. And we have and . Since the 

readout frequency and hardware binning ratio is the same, we have . Thus  

 

 

The single-shot acquisition has equivalent photon noise and readout noise 

contributions in its reconstruction, while the 5-shot reconstruction is mainly 

influenced by the photon noise. The disadvantage of the accumulation is the 

eventual blur of the diffraction pattern due to the instable beam position, and 

radiation damage for certain samples.   

 

 

 

Filter 

diameter   SNRr 

Theoretica

l 

resolution 

Reconstructio

n contrast 

1-shot 

600 

pixels 0.12 2.73% 2.95 75 nm 0.61 

5-shot 

800 

pixels 0.26 9.38% 4.51 56 nm 0.75 

Table 3.2. Analysis results of 1-shot and 5-shot best reconstructions. 
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Fig. 3.28.Diffraction patterns (first row) and best reconstructions (second row) for single-

shot (left) and 5-shot (right) detections of object C. The SEM image of object C is presented at 

the left-top. (third row) Reconstruction geometry: the yellow, red, blue and green rectangles 

(object with one square reference) are 4 independent reconstructions related to the 4 corners of 

the two orange hollow-squares (object centered on the corner). The orange full-square presents 

the object position. Yellow and red reconstructions are in the same direction, and the green 

and blue ones in the other. There is signal superposition of yellow reference and red object at 

B3, of green reference and blue object at C2, and of red reference and blue reference at C3. 

Moreover, the C1 and C2 corners are Dirac functions of opposite sign (+ and -) after 

derivation (refer to slit reference). Therefore, we observe the positive and negative 

reconstructions at C1 and C2 in the experimental results.       
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III.9b HERALDO reconstruction and noise: Detection stage optimization 

with hardware binning 

 

The detection can also be optimized with the hardware binning option. The test object 

D (Fig. 3.29. top left) has the same geometry grid with one square reference close to 

the object. The total test object size is ~ 2μm x 2μm, and the reference can provide 

three independent reconstructions. Considering the sampling ratio limit, I choose the 

hardware binning ratio of 1x1, 2x2 and 3x3. The detected diffraction patterns are 

presented in Fig. 3.29, with a zoom-in of a region (white square) where signals are 

confused with noises in 1x1 binning and are then emphasized in 2x2 and 3x3 binning. 

Note that the measured diffraction signal is 2.7 x 107, 1.5 x 107 and 1.2 x 107 photons 

respectively for 1x1, 2x2 and 3x3 binning. With less diffracted signals, hardware 

binning is still able to extract the signal out of the noise, which can then be used for 

the image reconstruction. The readout noise for different hardware binning ratio is 

similar, with measured values of 8.8, 10 and 9.6 respectively for 1x1, 2x2 and 3x3 

binning ratio.   

 

Fig. 3.29. Diffraction patterns for 1x1, 2x2 and 3x3 binning ratio (from left to right) of the 

test object D (top left). The zoom-in pictures correspond to the white square in each image and 

the red circle indicates the region where signals are extracted using higher binning ratio. The 

window size for each hologram (from left to right) is respectively 1200 x 1200 pixels, 600 x 

600 pixels and 467 x 467 pixels. All the images are presented with the same color scale.  

The reconstructions are realized with the same low-pass filter diameter of 400 pixels 

for 1x1 binning, 200 pixels for 2x2 binning and 130 pixels for 3x3 binning. The results 

(Fig. 3.30) present clear improvement of the SNRr when applying a higher binning 

ratio. Since the SNRr does not take account of the resolution, I plot the profile at the 

white line position for each reconstruction to compare the achieved resolution (Table 
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3.3). The contrast is improved by hardware binning but the effect is not dramatic. 

Comparing the (photon-limited + mixed-noise)/total pixels percentage, 3x3 binning 

ratio does not extract more signal from noise and in this case, the 2x2 binning is 

enough. Note that the three horizontal slits of the object are not resolved in any of the 

three reconstructions. 

 

Fig. 3.30.Reconstructions of the diffraction patterns in Fig. 3.29 with 1x1, 2x2 and 3x3 

binning ratio (from left to right). The plotted profile corresponds to the white line position. 

All images are presented with the same color scale.  

 

  

Analysis 

Binning 

Filter 

diamet

er   

SNR

r 

Theoretica

l 

resolution Contrast 

1x1 

400 

pixels 0.11 1.14% 2.55 113 nm 0.64 

2x2 

200 

pixels 0.33 2.76% 4.8 113 nm 0.68 

3x3 

130 

pixels 0.35 2.80% 7.55 113 nm 0.69 

Table 3.3.Analysis results of 1x1, 2x2 and 3x3 binning ratio reconstructions, with the same 

low-pass filter diameter (400 non-binning pixels).  
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After tuning the different parameters, the best reconstruction is achieved with a filter 

diameter of 200 pixels on 3x3 binning diffraction pattern (Fig. 3.31 white square). The 

measured reconstruction contrast is 0.67 and 0.71 for horizontal and vertical 

directions, with SNRr = ~ 3. All the components of the object is resolved, especially 

the three slits and the three small holes.  

This example shows clearly the signal improvement by using a proper hardware 

binning. Higher binning ratio does not always lead to more signals extracted from 

noise. And, one should always remember to respect the sampling ratio of the 

diffraction pattern. The other advantage of hardware binning is to reduce the long 

readout time when using 100kHz readout frequency.  

 

 

Fig. 3.31. Best reconstruction (white square) realized with a low-pass filter of 200 pixels 

diameter on the 3x3 binning diffraction pattern.  

 

III.9c HERALDO reconstruction and noise: Detection stage optimization 

with the readout frequency 

 

We consider now the test object A (Fig. 3.18). The diffraction patterns recorded with 

1 MHz and 100 kHz readout frequencies are shown in Fig. 3.32. The two diffraction 

patterns have equivalent signals (~ 2 x 107 photons). The readout noise’s standard 

deviation is 10 ADU and 4ADU respectively for 1 MHz and 100 kHz, with the same 

noise average (~ 30 ADU). Images are taken with 2x2 binning ratio and a window 

size of 600 x 600 pixels. Reconstructions (Fig. 3.33) are made with a low-pass filter of 

respectively 300, 400 and 500 pixels diameter. According to the analysis results 

(Table 3.4, correspond to the reconstructions in the yellow square), SNRr is increased 
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by a factor of ~ 1.4 for 100 kHz reconstructions, with about 2 times more photon-

limited and mixed-noise pixels. The resolution (contrast) is also better with 100 kHz 

readout frequency. Moreover, the reconstructions associated to another reference (in 

green square), which is difficult to be resolved (due to bad illumination of the 

reference), are better reconstructed at a 100 kHz readout frequency.      

 

Fig. 3.32.Diffraction patterns taken with 100 kHz (a) and 1 MHz (b) on test object A. 

 

 

Fig. 3.33.Reconstructions of 100 kHz (first row) and 1 MHz (second row). They are made 

with filter diameters of 300, 400 and 500 pixels (from left to right). Green and yellow squares 

are associated to different square reference. The reconstruction contrast in Table 3.4 is 
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measured at the white line position.  

 

Analysis 

Frequency 

Filter 

diamet

er   

SNR

r 

Theoretica

l 

resolution Contrast 

1 MHz 

300 

pixels 0.36 6.73% 3.83 75 nm 0.66 

100 kHz 

300 

pixels 0.91 11.42% 5.1 75 nm 0.65 

1 MHz 

400 

pixels 0.19 7.24% 2.24 56 nm 0.71 

100 kHz 

400 

pixels 0.47 13.54% 3.33 56 nm 0.76 

1 MHz 

500 

pixels 0.12 7.76% 1.7 45 nm 0.59 

100 kHz 

500 

pixels 0.30 15.25% 2.45 45 nm 0.71 

 

Table 3.4. Analysis results of the reconstructions. 

 

III.9d HERALDO reconstruction and noise: other reference configurations 

 

We have tested other HERALDO reference configurations. The test object E (Fig. 

3.34E) is a geometry grid (1 μm x 1 μm) located in a large square (2 μm x 2 μm), 

which offers three independent reconstructions. The test object F (Fig. 3.34F) has the 

same geometry grid with two right-angled and isosceles triangles (1 μm x 1 μm), 

which also offers three independent reconstructions associated to their corners. Note 

that the reconstruction associated to the right angle is the same as the one associated 

to a square reference. Diffraction patterns of the test object E is taken within a 

window size of 1200 x 1200 pixels without binning (Fig. 3.34a) and 600 x 600 pixels 

with a 2x2 binning ratio (Fig. 3.34b). The measured diffractions have a 1.5 x 107 
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photons and 2.1 x 107 photons with and without binning, respectively. 

Reconstructions are made with the same low-pass filter diameter: 400 pixels for non-

binning and 200 pixels for 2x2 binning. Similar to previous results, the 2x2 binning 

provides a better reconstruction quality. In fact, two reconstructions of the non-

binning diffraction pattern are not clearly resolved and the measured contrast of the 

other one is only 0.48, compared to 0.5 ~ 0.63 for the three reconstructions of 2x2 

binning. 

The test object F is imaged with a lower flux harmonic beam than that of the object E 

(Fig. 3.34) The 10-shot acquisition of the object F contains about 8 x 107 photons. It is 

due to the low optimization of the harmonic generation, probably caused by the 

position deviation of the IR laser beam before the focusing lens. In fact, IR beam 

properties are influenced by its propagation in the air before the focusing lens. The 

beam position at the lens plane is influenced by the room temperature, which is 

supposed to remain stable and cool during the experimental time. However, 

sometimes the strong temperature variation outside the building influences the room 

temperature that is tuned by air-conditioners (especially during the summer). This 

problem is later corrected by the laser modal filter with a servo system. The 

diffraction pattern is recorded within a window size of 1300 x 1300 pixels without 

binning. The readout noise is 9.5 ADU (standard deviation). Reconstructions from 

different references (blue and green square) are presented in Fig. 3.34f-g. The 

reconstruction quality is not comparable to the 5-shot acquisition of test object C (Fig. 

3.28), probably due to a combination effect of low flux and low coherence harmonic 

beam generated in non-optimized conditions.   
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Fig.3.34. The test object E is reconstructed from a single-shot acquisition (b). The 

reconstructions (e) of 2x2 binning ratio present better quality than non-binning ones (d). The 

test object F is reconstructed with 10-shot acquisition (c). The reconstructions in green (f,h) 

and blue squares (f,g) are respectively associated to the references in green and blue square in 

the SEM image.  

 

III.9e HERALDO reconstruction and noise: conclusion 

 

We have first tested HERALDO with one-dimensional reference (slit) and two-

dimensional reference (square). The step-to-step reconstruction process shows that 

the main obstacle for our experiment is the amplified readout noise located at high 

spatial frequency region. The amplification is introduced by the multiplicative filter 

applied on the diffraction pattern in the Fourier space, which corresponds to a 

differential operator for the autocorrelation in object space. The amplified noise then 
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degrades significantly the reconstructions after the inverse Fourier Transform. Thus, 

a low-pass filter in the Fourier space is required to eliminate the amplified noise. The 

analysis of different type pixels (photon-limited, mixed-noise and readout-limited pixels) 

presents the effectiveness of the low-pass filter with different diameter in Fourier 

space. In object space, the SNRr and the contrast of the reconstruction characterize 

the reconstruction quality and the resolution. However, the latter is limited by the 

low-pass filter. Secondly, we have investigated the detection parameters (hardware 

binning, readout frequency, accumulation) to reduce the readout noise in the 

diffraction patterns. Different object-reference positions for two-dimensional 

references have been tested. In summary, the square reference does not provide 

higher reconstruction ability, compared to the slit reference. Due to the higher 

amplification of the readout noise by the former, the slit reference is a better choice 

for HERALDO technique on our harmonic beamline. However, the square or two-

dimensional references are probably better for FEL facilities. Indeed, since the 

radiation flux and the photon energy are much higher, the diffraction pattern will be 

close to photon-limited. Compared to the FTH, which can also be considered as a 

special case of HERALDO, the latter presents higher reconstruction quality due to 

the signal amplification by the extended reference.  

 

III.10 CDI reconstructions of HERALDO objects 

 

To compare the reconstruction ability of CDI and HERALDO, we have made test 

objects of the geometry grid without any references. The diffraction pattern of such 

object (Fig. 3.35a) has much lower signal (2 ~ 4 x 106 photons) than HERALDO objects, 

which has additional signal contribution from the extended references. The 

diffraction surface of the CDI geometry grid (1 μm x 1 μm) is 8 times smaller than the 

lambda object (3 μm x 2.8 μm). It has similar surface as the Young’s double slits (2 x 

1.5 μm x 0.3 μm) but with more complex structures. In this case, the phase retrieval 

code is not able to converge. 

 Meanwhile, the phase retrieval code succeeds in reconstructing the HERALDO 

geometry grid with its references. The test object is similar to object A (the geometry 

grid is 1 μm x 1 μm large), but with fabrication default for the square references (the 

material inside the square is not completely removed) (Fig. 3.35d). It limits the 

HERALDO reconstruction from the corner close to it but in principle should not 

degrade the reconstruction by the phase retrieval code. 

Fig. 3.35 presents two reconstructions (e,f) corresponding respectively to single-shot 

diffraction patterns containing 2.3 x 107 photons (b) and 1.1 x 107 photons (c). 
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Diffraction patterns are taken within a window size of 2048 x 2048 pixels without 

binning and at a readout frequency of 1 MHz. The difference of the reconstruction 

quality is due to the different signal strength. In the better reconstruction (Fig. 3.35e), 

the geometry grid is well resolved with a contrast equivalent to HERALDO results, 

and the defaults of the two references has also been reconstructed. Note that the 

curved edge at the left side of the square above the geometry grid is the 

reconstruction of the fabrication default. The little space between the non-removed 

material and the square edge in the SEM image is not resolved in the reconstruction. 

The noise in the red square of Fig. 3.35f is due to the ambiguity of the phase retrieval 

code. During the iterative process, the reconstructions of each iteration switched 

between three configurations so that the geometry grid is sometimes at right bottom, 

sometimes at left top and sometimes at both positions. With more diffraction signals, 

the code is able to go beyond this problem, as presented in the better reconstruction. 

Note that both CDI reconstructions use high software binning (5x5 for f and 4x4 for e) 

to get higher SNR (associated to the photon noise), which means that the extraction 

of the diffraction signal is more difficult in CDI process.    

 

Fig. 3.35. (a) Single-shot diffraction pattern of CDI geometry grid. (b,c) Single-shot 

diffraction patterns of the HERALDO geometry grid. (d) SEM image of the sample. (e,f) 

reconstructions by phase retrieval code. The reconstruction (e) and (f) are respectively 

coherent averages of 37 and 50 reconstructions after 1000 iterations.  

The following example is another demonstration of the CDI reconstruction of a 

HERALDO object. The test object (Fig. 3.36a) is ‚lambda‛ (1.3 μm x 1.8 μm) with two 

slits slightly larger than the lambda. The slit width is 150 nm. The single-shot 
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diffraction pattern has ~ 1.2 x 107 photons, recorded within a window size of 2048 x 

2048 pixels without binning. The CDI reconstruction (Fig. 3.36b) shows equivalent 

quality as the HERALDO reconstructions (Fig. 3.36c,d). The former is made with 4x4 

software binning and the latter is made with low-pass filter of 400 pixels diameter. 

Note that in the CDI reconstruction, the lambda looks like a superposition of a 

vertical slit and itself. This is also due to the ambiguity of the phase retrieval code. 

Indeed, the position of the vertical slit is difficult to identify during the iteration 

process, since the center part of the lambda has a similar geometry as the vertical slit. 

It has no problem to identify the horizontal slit because no similar structure presents 

in the ‚lambda‛ object. The resolution of the CDI reconstruction is estimated to be ~ 

115 nm by the PRTF, which is equivalent to the HERALDO ones (10%-90% criterion). 

From these examples, we can conclude that extended references amplify the signals 

diffracted from the object that can help the convergence of the phase retrieval code. 

Moreover, the latter need higher SNR of the diffraction pattern to reconstruct the 

object than the HERALDO process. However, CDI does not require a reference, 

which is an advantage for certain applications.    



 91 

 

Fig. 3.36. (a) Single-shot diffraction pattern of the HERALDO object (inset). (b) CDI 

reconstruction result, which is the average of 50 reconstructions after 1000 iterations. (c,d) 

HERALDO reconstructions. 

 

III.11 Conclusion 

 

In this chapter, I have presented the experimental results of CDI, HERALDO and 

FTH techniques. In the CDI section, coherence requirement has been discussed and 

analyzed quantitatively using Young’s double slits diagnostics. I showed that the 

reconstructions are not converging for a contrast of interference fringes lower than 

0.5. In the second part, the HERALDO process has been investigated step-by-step. 

Our finding is that the readout noise is the main obstacle in our experiments. A low-

pass filter is the solution for this problem, which compensate the amplification of the 
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readout noise by the multiplicative filter. Various demonstrations show that the 

reconstruction quality can be improved by the optimization of the detection stage 

and a carefully chosen low-pass filter diameter. The comparison between FTH, one-

dimensional and two-dimensional HERALDO shows that the slit reference is the best 

holographic configuration for our harmonic beam, according to its photon energy 

and photon flux properties. Finally, application of phase retrieval code on the 

HERALDO samples demonstrate that the extended reference amplifies the signals 

diffracted from the object. It also shows the higher requirement of SNR for CDI 

reconstruction compared to HERALDO. In conclusion, both CDI and HERALDO 

have their own advantage and default depending on the experimental conditions. 

This careful analysis presented here will guide us in choosing the best imaging 

technique for the imaging application of magnetic nano-domains (Chapter IV).    

 



 93 

 

Chapter IV- Towards single shot 3D 

Coherent Imaging 

 

IV.1 Introduction 

In nature, most of the materials are three dimensions objects. At a nanometer scale, 

the ability to visualize the 3D organization and the properties of artificial or 

biological systems is of high impact in science, medicine and technology. The field of 

coherent X-ray diffractive imaging is expected to realize high-resolution three-

dimensional imaging because of it requires no optics. The imaging techniques 

presented in previous chapters are two-dimensional reconstruction of the object. For 

many scientific applications, especially in biology and medical imaging, 3D 

information of the object is necessary. The typical way to make 3D reconstruction of 

the object is the tomography method [1,2], in which object is scanned section by 

section. It requires multiple acquisitions at different observation angles of the object. 

For dynamic studies in pump probe experiment, if the object will irreversibly de 

transformed or be destroyed after being pumped, one should prepare enough 

quantity of identical samples for tomography experiment, which could be a problem 

for unique objects or processes that are not possible to be reproduced. To overcome 

this problem, retrieving 3D information from single acquisition is necessary.  

A solution has been given by a novel imaging concept proposed by the research 

group of J. Miao, called ankylography, which ‚under certain circumstances enables 

complete 3D structure determination from a single exposure using a monochromatic 

incident beam‛ *3]. Ankylography is a coherent imaging technique based on the 

oversampling method. It shares a similar experimental arrangement as CDI. The 

difference is that ankylography requires one more oversampling condition 

corresponding to the third dimension, which is the beam’s propagation direction. 

The phase retrieval algorithm is processed in three dimensions. In principle, a finite 

object illuminated by a coherent beam scatters light on a sphere called the Ewald 

sphere (see the definition in next section). The measured 2D diffraction pattern 

recorded by the CCD camera is a projection of it in which the 3D structure 

information of the object is encoded. The 3D reconstruction is then possible by 

transforming the measured 2D diffraction pattern into a 3D spherical pattern. Fig. 

4.1shows a demonstration of the ankylography on experimental data obtained using 

an HHG source. The fabrication defaults observed in the SEM image of the object 

(Fig. 4.1e) are reconstructed by ankylography (Fig. 4.1b,c) using the spherical 

diffraction pattern (Fig. 4.1a) calculated from one acquisition.    
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Fig. 4.1 Demonstration of Ankylography on experimental data from Ref. 9.  

 

These results have been obtained in multishot acquisition (about 105 shots) 

Preliminary single shot studies of this technique has been launched using our 

harmonic beamline. The demonstrations of coherent diffraction imaging techniques 

(CDI and HERALDO) on simple test objects in the previous chapter have shown 

robust image reconstruction quality and the potential of resolving concrete problems 

in various scientific areas from physics to biology. The optimization and 

standardization of the high flux harmonic beamline (Chapter II) provide a reliable 

high soft X-ray flux with a stable beam quality (intensity, pulse duration, spatial 

profile, beam position, etc.) from shot to shot, all combined with a natural 

synchronization with the IR pump laser. The HHG beamline competes well with FEL 

facilities, which suffer from synchronization jitter and instabilities of the beam 

quality. We present here the progresses in 3D imaging using our harmonic beamline.  

 

 

IV.2 Basics in three dimensional coherent imaging 

 

In three-dimensional coherent diffraction imaging, a coherent beam of wavelength λ 

illuminates a 3D periodic or non-periodic object. Here we describe the 3D structure 

of an object by its complex electronic density . The interaction between the 

beam and the object can be represented by the scattering potential of the object 

:  

 

   eq.1 
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where re is the classical electron radius. 

 

The scattering wave after its interaction by the object propagates freely. We will 

describe the light propagation under the Born approximation. 

 

As shown in Fig. 2, kin represents the incoming wave vector and kout the scattered 

wave vector at an angle 2ϴand projected onto the detector plane. In the far field, the 

object scattering function may be decomposed into a Fourier representation of 3D 

volume spatial frequencies , with complex amplitudes. 

 

 eq.2 

 

In the experiment, this continuous far field scattering function is detected in intensity 

I(k) by a 2D pixelated detector such as a CCD (charge-coupled device) camera.  Thus 

this measured intensity is sampled numerically on the detector pixels p=(pi, pj) (see 

Fig. 2). 

 

 eq.3 

 

Where F(k) represents the numerical magnitude of the Fourier transform : 

 

  eq.4 

ki=0, . . . ,l-1 ; kj=0, . . . , m-1 ; kz= 0, . . . , n-1 

 
Fig. 4.2: Scattering geometry for coherent x-ray diffraction imaging. The sample is rotated 

about the y axis by an angle. 
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From Bragg’s law, we know that the light scatters at an angle 2ϴ from the incident 

beam direction along the forward direction (the z axis).The volume grating is tilted 

by an angle ϴ from perpendicular to the forward direction [4,5]. Then, to have 

constructive interference, the magnitude of the wave-vector transfer difference 

should be equal to:  where d is the increment size (or the smallest 

object detail) for periodic object. Since the grating spatial frequency can be expressed 

with k with magnitude , for elastics scattering, the wave-vector transfer is 

equal to the grating spatial frequency,  that means only the volume gratings that 

satisfy Bragg’s law will scatter , that is q= k.  

In order to get information from all different plane spacings in which the object can 

be decomposed, one has to change the angle ϴ. One therefore has to rotate the 

specimen and record holograms at each rotation angle. In this context, a sphere 

called Ewald is constructed as shown below in fig. 4.3: 

 

 

 
Fig.4.3: Geometrical construction of the wave vectors and the Ewald sphere.  

 

where the S0and S are the incident and scattered wave vectors with magnitudes 

equal to 1/λ, and these spatial frequencies k lie on the Ewald sphere of radius 1/λ, 

[22,23] where λ is the incident coherent radiation wavelength.  

 

Here we note that one Ewald sphere is constructed for one direction of the beam 

towards a 3D object at a fixed angle and position. If either the beam rotation (ex: in 

crystallography) or the object rotation (tomography) is changed, the Ewald sphere is 

no longer the same. In this case, a new Ewald sphere is constructed. This notion is 

extremely important when choosing an appropriate 3D imaging technique. In 

general 3D imaging method, we rotate the sample to the beam axis to accomplish all 
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the full 3D Fourier reciprocal space of object. For each angle, the Ewald sphere has to 

be constructed. This is well explained by the scheme in Fig. 4.4: 

 

 
Fig.4.4: Scheme of the 3D data assembly: Left: we present the projection of the Ewald sphere 

fields in reciprocal space (closed dots) on a regular grid that simulate a pixelated detector (a 

CCD camera for example). Right: we show different Ewald sphere sections from three 

different sample orientations. 

 

From fig.4.4.a, we see that the diffraction data can only be recorded in two-

dimensional slices which are the closed dots. First, we need to realize an inverse 

gnomonic projection for this two dimensional plane to one Ewald sphere: that means 

each magnitude, recorded on a plane, has a correct location in the reciprocal space. 

However, the set of correct locations embedded in the regular array of recorded 

magnitudes is not itself a regular array but rather a series of points on a sphere. Thus 

the irregular series of points on the Ewald sphere sections should be interpolated to 

the regular grid points (this step will be crucial for further Fourier transform 

computation). We repeat this operation for each sphere with different orientations. 

So the calculation of the correct locations for the measured magnitudes in the three 

dimensional reciprocal space (3D cube data) is well realized and accomplished.  

Finally, from this 3D Fourier reciprocal data, we can see that the level of sampling of 

the diffraction pattern is a sharp function of frequencies. This results from the 

overlap of slices near the origin. At higher spatial frequencies there will be regions 

between the slices which are completely unsampled (or unmatched).  

 

We note that in 3D tomography, there is no limit on the focal depth. This means that 

the focal depth is much longer than the thickness of 3D object. Thus we can image a 

thick 3D object without limits in depth which are requested in other 3D imaging 

domains such as confocal microscopy and scanning electron microscopy. 
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IV.3 CDI reconstruction algorithm in 2D and 3D 
 

Until now, I have discussed the Fourier space data assembly both in 2D and 3D case. 

We can see that 2D is the basic stone to go to 3D, since 3D is just doing sometimes the 

repeated step over several 2D cases. Before presenting the 3D image reconstruction, 

2D reconstruction from 2D plane diffraction pattern is reviewed. Here I explain the 

basic notions since there is a very close relationship between the ideas of 

reconstruction algorithm development in 2D and 3D. We will see that in the phase 

retrieval approach, the notion of oversampling ratio is crucial both in 2D and 3D 

images reconstruction [6-9].  

 

- The phase problem: phase retrieval using the oversampling method   

 

The examples shown in section IV.2, shows that only the diffracted intensity is 

recorded by plane detector. Obviously, the phase in each pixel (2D) or voxel (3D) in 

Fourier space measurement is lost. Thus we cannot inverse directly these values 

(Fourier magnitudes) in Fourier space either 2D plane or 3D cube to recover the 

complex-valued objet in real space. Phase retrieval algorithms are then used to 

retrieve the lost phase.  

 

We know that reconstructing the object consists essentially in solving a set of 

equations at each point [6]. This means that the magnitude value (square root of 

measured intensity by detector such as CCD) located at each point (pixel in 2D and 

voxel in 3D) is a function of all the points of the object in real space. If there areN 

points in each dimension of the object in real space, then a 2D object hasN2 points 

and a 3D object have N3 points. This function is non-linear. If the number of the 

points in Fourier space is equal to that in real space, thus we have N, N2, N3 equations 

corresponding respectively to 1D, 2D, 3D objects.  

 

If the electron density of an object is a complex-valued, each point in real space has 

two unknown variables: the real part and the imaginary part. Thus for a 2D and 3D 

complex-valued object, we need to resolve 2N2 and 2N3 unknown variables 

respectively with a total number of equations equal to N2 and N3 respectively.  

If the electron density of an object is real, thanks to the Friedel’s law, the magnitude 

of its Fourier transform as F(k) in eq.4 has a central symmetry. Therefore the equation 

number for a 2D and 3D real object drops to N2/2 and N3/2 respectively, and the 

number of unknown variables is N2and N3, respectively. [6,7] 

If the object is infinite with a period size of a (as for example in crystallography), by 

the convolution theorem of Fourier theory, we know that its Fourier distribution (or 

diffraction intensity or magnitude) is given by an array of delta functions with a 

period 1/a: 
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This period is also called Bragg sampling interval. Bragg peaks correspond to the 

discrete position of this period. Therefore the detector need to sample at least with a 

frequency equal to Bragg sampling , that means sampling the diffraction pattern over 

N pixels each having a width 1/a. In this context, the phase problem is however 

underdetermined by a factor of 2 for all the 1D, 2D, 3D objects. Thus a priori 

information about the object needs to be known to have a unique solution for the 

phase problem in eq.4. For this, The first strategy is to decrease the number of 

unknown variables by using objects with some known scattering density (i.e., some 

known valued pixels) inside them. The ratio σ is defined as the threshold to 

determine how many valued pixels in real space are necessary to solve eq.4: 

 

 
 

The set of equations (eq.4) should be solvable, at least in principle, as long as the ratio 

σ>2. Since each equations of eq.4 is nonlinear, having two solutions because of the 

modulus sign, an application of positivity constraints can be used to eliminate one 

the two.  

 

 
 

The second strategy to increase the number of known quantities (point values in 

object real space) is to use the oversampling method. The idea of oversampling is to 

sample the magnitude of a Fourier transform (diffraction pattern) more densely than 

the Bragg frequency to generate a no-density region surrounding the electron density 

of the object. Practically, that means a finite support for the object in which the pixel 

value outside the finite support is zero. σ is also called oversampling ratio [6]:  

If the object is a single, isolated object of width a, the Fourier pattern results in a 

continuous distribution. To recover the phase for this case, we can extend the 

method of oversampling in crystallography as presented above since isolated object 

can be expressed by an object surrounded by zero values outside the object electron 

density region. Therefore, if the diffraction pattern is sampled on a finer scale than 

1/2a, the unique phase can be retrieved. Furthermore, itis demonstrated in [6] that the 

requirement to recover the complex-valued object is that 21/2 in each dimension for a 

2D square object, and 21/3in each dimension for a 3D square object are enough in 

principle.  
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- Phase retrieval iterative algorithms  

To find the unique solution of the set of equations from eq. (4) one can use a phase 

retrieval algorithm. It starts from an initial guess with a random phase φ(k)applied to 

the Fourier measured magnitude . This gives a complex Fourier transformation 

value F’n(k)= φn(k). An inverse Fourier transformation is applied to enter in the 

real object domain ρ’n(r), where another real-space object constraint (outside support 

region set to zero) is used to create a new objet estimation as a current object ρn+1(r). 

A direct Fourier transform restitute a new diffraction pattern Fn+1(k). However, the 

magnitude of Fn+1(k) will not be conform to the measured one . Therefore a 

Fourier constraint is employed so that F’n+1(k) = φn+1(k), which is then inverse 

Fourier transformed to form ρ’n+1(r). The solution is obtained when ρ’n+1(r) =ρn’(r) that 

means hereρ’n+1(r) = PM PSρn(r), where PS (the support constraint) is applied during 

the first set of iteration and PM (the Fourier modulus support) the second.  

 

Normally this requires a lot of repeated iterations between Fourier domain and real 

domain projections with ‘Fourier modulus constraint’ and ‘support constraint’ 

respectively.  

 

Fig.4.4: scheme of basic phase retrieval algorithms  

 

 

- Coherence requirement of the oversampling method 

 

The oversampling method described in section 2.3.1 is ruled by the oversampling 

parameter: 
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The transverse spatial coherence length of the source is defined:     

 

 

where ΔӨ is the beam divergence.  

 

In the object plane, this needs to be at least larger than the overall object with a 

largest size of a:                   , therefore we have the following requirement : 

 

 

 

 

 

The temporal coherence length of source is defined:  

With a desired resolution of d, the requirement about the temporal coherence can be 

then expressed as:  

 

 

 

 

 

IV.4 The ankylography : a 3D single view imaging technique 
 

Usually, multiple views are requested for full 3D structure identification or image 

formation. However, under certain circumstances, 3D information from a single view 

is enough and available in the diffraction pattern.  

 

IV.4.1 Principle of the effect of the Ewald sphere curvature on the 2D projection 

reconstruction  

 

In a real physical case, a 3D object in a single view produces one 3D Ewald sphere. 

This sphere is projected (inverse gnomonic projection) onto the 2D planar detector (a 

CCD camera in our case). How to reconstruct 3D object using this measured 2D 

diffraction pattern?  

 

First, the capability of retrieving 3D information will depend on the depth of the 3D 

object. If the depth is small, the information will be available below a limited zone in 

the detector plane. This limited zone can be surrounded by highest spatial frequency. 

σ: total oversampling ratio 
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Out of this zone, there is a large artifact in high frequency accuracy between the 

recorded data and the true value located on the Ewald sphere shell. This limit is 

given by the following formula [1]: 

      
Where D is the maximum thickness of object, which should be less than a depth of 

focus DOF (analogy to a lenses based imaging system) and DOF=λ/2NA2. And here 

the numerical aperture NA identifies the highest scattering signal that the detector 

can collect, NA=kx,maxλ. Its calculation is based on the half-width of the square rather 

than the diagonal.  

 

According to the oversampling ratio principle, an object of finite thickness D will 

have a coherent diffraction pattern with a speckle width of 1/(2D) in the longitudinal 

direction (along the normal view of the object).If the Ewald sphere surface 

substantially cuts through a speckle centered at kz=0 ((also called Ewald departure) at 

the highest transverse frequencies, the value on the Ewald sphere shell will be 

equivalent to the two dimensional planar diffraction intensity at the kz=0 plane. We 

can consider an object to be thin or 2D if the Ewald departure is no more than half 

the longitudinal speckle 1/(4D). (see Fig. 4.5): kz<1/2(1/(2D)). This means that a two 

dimensional image projection reconstruction of a 3D object is valid only when the 

object thickness is less than the depth of focus of the imaging system. This is one 

restriction of the ankylography imaging technique.  
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Fig.4.5: Available 2D projection image reconstruction of a 3D object by a single Ewald sphere, 

and the data on the Ewald sphere shell is equivalent to the 2D plane at kz=0 in reciprocal 

space.  

 

In addition, when the projection reconstruction of a 3D object by a planar detector is 

valid, a low pass filter applied to the planar diffraction pattern gives the lowest 

reconstructible theoretical resolution dx. This resolution will limit the depth of view 

of an object of thicknesse according the following relation: 2 . 

 

However if the thickness is too large so that the near center speckle is too thin, the 

Ewald sphere curvature cuts no longer one single speckle along z (beam direction) 

axis. In this condition, the 2D projection reconstruction from the direct 2D detector 

measured data is no longer valid.  Several rotations of the object or the beam are 

requested to accomplish all the 3D diffraction pattern assembly. The 3D image is 

then reconstructed from the whole 3D Fourier assembly of the projected 2D images 

[1].  

 

IV.4.2 Ankylographic reconstruction 

 

Before investigating ankylography, we need to check its feasibility. Compared to 2D 

CDI, ankylography has more restrictions. To perform an ankylographic 3D 

reconstruction, the planar diffraction pattern needs to be projected onto the Ewald 

sphere. As analyzed above, the departure of Ewald sphere has to fit close to the 2D 

planar plane at kz=0 in the reciprocal space to ensure a 3Dreconstruction. From fig.4.6, 

one can see that with different distances between the object and the detector plane, 

the Ewald spheres evolve with different circles radius centered at the position of the 

object. Therefore, each experimental configuration will have a given oversampling 

ratio and Ewald sphere geometry.  
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Fig.4.6: Gnomonic projection: from two dimensional planar detectors onto the Ewald sphere. 

Left: evolution of Ewald spheres with different distance between object (situated in the center 

of sphere) and detector. Right: side view of the projection of an oversampled 2D diffraction 

pattern from a planar detector onto the Ewald sphere. 

 

Each pixel of the planar detector integrates the diffracted photons within a solid 

angle , and this solid angle decreases with the spatial frequency. Before doing 

the projection on the Ewald sphere, the diffraction intensities have to be normalized 

as follow: 

 

 
 

After the normalization, the relationship between vectors on the Ewald sphere and 

the vectors on the detector plane is given by: 

 

where =(kx, ky, kz) is a vector on the Ewald sphere, =(k’x, k’y) is a vector on the 

2Dplanar detector, and R the distance from the sample to the detector.  
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From the analysis in section 2.2, the points related to vector   are located on an 

irregular 3D grid. Since a regular 3D grid in Fourier space is mandatory for the phase 

retrieval algorithm processing due to the use of the FFT, we need to interpolate I(k) 

onto a regular 3D Cartesian grid by using a linear interpolation method. 

 

Details of the interpolation:  

When doing the interpolation, there are two steps involved in the process before 

doing the phase retrieval iterations: 

 

1) The projection: each point from 2D plane has to be projected onto the 3D Ewald 

sphere. Each measured data point in 2D plane detector is a planar pixel, when 

projecting onto the Ewald sphere, the data is located on a spherical pixel. The 

solid angle comprising each spherical pixel is equal to the corresponding planar 

one (shown in fig. 6.b). The spherical shell pixel is smaller than that from the 

planar detector pixel. Furthermore, at higher spatial frequencies, the surface of 

the spherical pixels decreases less since the corresponding solid angle is smaller. 

The sampling on the 2D planar detector is linear with a stable increment in size of 

detector pixel. However, the sampling on the Ewald sphere shell is non-linear.  

 

2) The interpolation: the spherical shell is interpolated to 3D Cartesian grids. Each 

spherical shell volume pixel (called voxel) is curved in spherical surface with a 

thickness of one voxel size, which is equal to the pixel size along one dimension. 

Thus, the spherical voxel is smaller than one grid in Cartesian geometry. When being 

interpolated into a 3D Cartesian geometry, each spherical voxel of Ewald sphere 

shell can occupy several parts of different grids or can be just comprised in each grid. 

Therefore, the value on the position of the 3D Cartesian grid is a function of different 

spherical voxel values. This interpolation method is similar to [2]. 

Here we call w (i,j,Өm,n) the volume overlap factor (or coefficient). The Cartesian 

voxel (i,j,z) (z is a given coordinate in Fig. 4.7) overlaps with two pixels in which the 

overlapped regions are in yellow and orange. The volume overlap factor w(i,j,Өm,n) 

is equal to 1 when voxel (i,j,z) and spherical shell pixel (Ө,n) are completely over-

lapped, and 0 when they do not overlap. Therefore, the value on the voxel (i,j,z) can 

be expressed by G(i,j) (z is a given coordinate):  
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Fig.4.7. Schematic layout of the mapping of a 3D array from a series of diffraction pattern 

projections, the value on the 3D Cartesian voxel (i,j,z) is calculated from the values of 2 pixels 

part of which are shown in orange and yellow.  

 

 

IV.5 First experimental data at the CEA HHG beamline 
 

We have tried some sequences of ankylography measurements with our harmonic 

beamline at both 32 nm and 20 nm wavelengths (generated in argon and neon 

respectively). The photon flux and the coherence at 32nm are higher than that at 

20nm, however the later presents a better spatial resolution since the wavelength is 

shorter. Harmonic orders 25 (  =32 nm) or 39 (  =20 nm) are selected by a 

multilayer coating on the parabola. The alignment of the off axis parabola and the 

position of its focus are also optimized by the wave front sensor (optimized RMS, 

highest photon energy in the diffraction limited portion). The focus spot size of the 

soft X-ray beam on the sample is then equal to 5µm in diameter, with 5 x 108 photons 

per laser shot at  =32 nm.  This is a critical parameter in SNR analysis in which it 

shows the linear relation between the SNR and the incident photon intensity. The 

focal spot at  =20 nm has a diameter of 3-4 µm and a total photon number of 106. 
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IV.5.1 The double grid sample. 

The 3D sample is composed of two membranes (each one having the same type as 

the one used for CDI and HERALDO in chapter III). Each membrane has a ‚grid 

pattern‛ realized using the FIB facility CSNSM laboratory (Orsay) after assembling 

the two membranes at a distance of about 2µm (see Fig. 4.8). 

 

 

Fig. 4.8.Up: Double grid sample geometry. Each grid plane is composed of 100 nm Si3N4 

layer with a 50 Nm gold layer. The transmission is in the order of 10-3. Down: MEB image of 

the sample. 

 

Simulations of the 3D reconstruction: 

The phase retrieval code that we have used has been developed by the group of Prof. 

J. Miao at UCLA. I did most of the calculation during a 1 month stay in their 

group.The first idea was tovalidate the 3D image reconstruction from our sample 

using a single 2D planar diffraction pattern image.  

(a) (b) 
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a) b)  

c) d)  

Fig 4.9. Simulation of the double grid sample (two membranes). a)3D object representation b) 

Simulated 3D diffraction pattern from the object in (a). c) Reconstruction result panel 

extracted from the code using the diffraction data in (b) d) 3D ankylographic image 

reconstruction showing a very good accuracy compared to image shown in (a). 

 

The object is an odd cubic 3D object of which the width, the length and the depth are 

the same (7*7*7). The figure above shows the simulation with the object which has 

two membranes. In fig.4.9.a top and bottom green color part presents the vacuum 

part of the object where the incident X-UV harmonic beam light can go through. The 

transparent part (white area) represents the membranes that block the incident light). 

The 3D diffraction from the object has been simulated and is represented in Fig. 4.9.b. 

In fig.4.9.d, the top line review the top layer of the 3D two-membrane composed 

object, the bottom line shows the reconstruction after 500 iterations by HIO algorithm 

for the 3D reconstruction. At the same time, we can see that the space between the 

two membranes has no reconstruction since the value is obviously below 10-3. 

Therefore the depth information is well retrieved. This proves the great ability of 

ankylography to reconstruction the depth information of 3D object. From this 

simulation, we obtain the successful 3D ankylographic reconstruction with just 500 
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iterations. This is a good proof for the design of our test 3D object and it also gives 

confidence in the 3D ankylographic reconstruction.  

 

First measurements and reconstruction 

Fig. 4.10 presents the first test configuration that I have used at the HHG beamline. 

The data are collected at a wavelength of 32 nm in 5 shots. The samples are placed on 

a rotation stage to obtain different observation angles since the incident beam’s 

direction is fixed. 

 

Fig. 4.10.Experimental scheme for ankylography imaging. a) 2D CDI image reconstruction 

for 0° angle (sample normal to the incident beam). The grey grid shows to the effective 

position of the double grid. b) 2D CDI image reconstruction for 7° angle (with the normal to 

the sample). c) 3D image reconstruction. We show in green the photon flux. 

 

Single shot was not possible as the signal was too low. To increase the signal to noise 

ratio in diffraction pattern acquisition in single shot, we configured in detector 

parameters with a readout frequency of 100 kHz (minimum of readout detector 

noise) and within a window size of 600 x 600 pixels of 2 x 2 binning ratio 

(corresponding to 1200 x 1200 non binned pixels). The hardware binning used here 

can increase the detected scattering signal without sacrificing the oversampling ratio 

requested in ankylography and the spatial resolution. Fig. 4.10 (a,b) are CDI 
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reconstructions of two diffraction patterns taken at observation angles of 0° and 7° 

respectively. The first one indicates well-aligned grids, while the second one is totally 

different. Indeed, at 7° the slits of the forward membrane are partially covered by the 

backward membrane. Fig. 4.10.c is the ankylography reconstruction of the diffraction 

pattern taken at an incident beam angle of 0°. The green part of the reconstruction 

indicates the double grid volume where photons went through the membrane, which 

reconstruct the shape of the slits on two membranes. The ankylography 

reconstruction was performed by the group of J. Miao at UCLA. Fig. 4.11 presents 

different views of the reconstructed image. The spatial resolution along the z axis 

(depth) is of 200nm and 70nm in the lateral direction. Since our signal to noise is low 

at high frequencies, the reconstruction of the object cannot achieve a very high 

spatial resolution. The phase retrieval requires a powerful computer cluster for 3D 

phase retrieving calculations. The algorithm processing takes several hours. This is 

one major disadvantage of ankylography: it is not possible to run a reconstruction 

process on a standard PC. The convergence of the phase retrieval has not been 

straightforward. The initial parameters have to be set carefully. In particular one has 

to set to the order of magnitude of the object thickness so that the voxel size is 

correctly matched. This is another constraint. 

 

Fig.4.11: Different views of the 3D reconstruction from left to right:Top, lateraland side angle 

views. 

 

IV.5.2 The “light” sample. 

I have tested another 3D sample which is shown on Fig 4.12.To design this object we 

incline a 2D object in X-Y plane from the membrane plane. We open the 2D plane by 

a controlled angle to produce different kinds of 3D object with different depth 

information along optical axis. The Chinese character ‚light‛ has been patterned 

using a focused ion beam (FIB). The silicon nitride membranes are supported by 

silicon substrate on one side, which defines the membranes aperture varying from 

150 x 150 μm2 to 500 x 500 μm2with a thickness of 100µmOn such large window, we 

can fabricate more than 100 test objects in one membrane. Before etching, the 
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membranes are covered by a gold layer (around 50 nm thick). The membrane 

transmission efficiency is less than 1.5 x 10-3 (CXRO database) for the 25th harmonic 

(wavelength of 32 nm).This layer removes the direct beam and ensures that we have 

a pure amplitude object for our imaging tests. The 3D test objects are etched from a 

2D object by generating a nano-door around the pattern as shown in Fig. 4.12. 

 

   
 

Fig 4.12: Left: picture of the JPG image used as an input for the FIB patterning. The white 

area corresponds to a high ion dose irradiation zone creating a total hole on the membrane. 

The grey area: partial ion dose, few 10nm layers are removed allowing the door to be opened. 

The control of this dose allows opening more or less the door. The black area: zero dose. Right: 

SEM image of the 3D sample created from opening a 2D object to 3D by controlling the dose 

in the grey area seen on left side picture. The Chinese character means ‘light’ in English. 

 

Simulations: 

The object size in the X-Y plane is chosen is such a way that it respects the 

oversampling ratio requested for 3D coherent diffractive imaging. We insert this 3D 

object into a cubic volume to simulate the diffraction pattern by a simple 3D Fourier 

transformation. We have to pay attention to the impact of the thickness of the layer 

(thickness of the membrane). For example, we generate a 3D object with a total width 

and length of 80x80 pixels in the X-Y plane (513x513 pixels) and with a layer 

thickness of 1 pixel. After rotating the X-Y plane with respect to the membrane plane 

by an angle of 15 degree, the object occupies around 20 pixels along the Z axis. Thus, 

a cubic volume is generated (513x513x513), the center of which is the center of this 

3D object with a size of 80x80x20.  
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Fig. 4.13. Different views of the simulation object, from left to right:  View in X-Y plane (one 

pixel of layer thickness), view in X-Z plane, and view in Y-Z plane. From Y-Z plane, we see 

here that the rotation angle is around 15°. 

 

 

Fig. 4.14 3D view the data used as an input in the Matlab code.  The object is an amplitude 

object. The color in green represents the membrane that blocks the beam, thus this value is 

equal to 0. The white part is equal to 1 with a transmission of 100%.. 

 

Fig. 4.15 shows the 2D planar diffraction pattern evolution as a function the out of 

plane rotation angle. They are shown in the same contrast and color code. From the 

2D planar projection, we can see that the central part signal is smaller when the 

rotation angle increases. More interestingly, we see that the sphere projection onto 

the 2D plane is more and more obvious since the depth increases when the rotation 

angle increases. The diffraction lines are not anymore straight in some areas of the 

diffraction pattern. This illustrates the effect of the projection of the 3D Ewald sphere 

on a 2D detector plane. 



 113 

0°   5°  

10°   15°  

20°   30°  

Fig. 4.15: 2D diffraction pattern for different rotation angles varying from 0° 5° 10° 15° 20° 

30°. 

 

3D Ewald spheres can be than generated from the 2D projection with a thickness of 1 

pixel. The result for different rotation angles of the 3D object are presented in Fig. 

4.16. 



 114 

  

5°        10° 

 

  

 20°     30° 

Fig. 4.16: Ewald spheres for different rotation angles:  5° 10°  20° 30°. They are obtained from 

the projection of the 2D diffraction data shown in Fig. 4.15. 

From the figure above, we can see that the more the object is tilted, the more the 

sphere Ewald is curved. Thus the diffraction information to perform a 2D 

reconstruction will be altered for large angles as the low diffraction angle 

approximation fails. We have performed 2-dimensionnal images reconstruction 

using the CDI code (Pierre Thibault’s code). This is illustrated in Fig. 4.16 with 

images reconstruction with angle varying from 5 to 30 degrees where a serious 

degradation of the image is observed when increasing the angle.  
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5   degree     10 degree  

   

20 degree    30 degree 

Fig. 4.17:2D image reconstructions using the ‚Pierre Thibault‛ phase retrieval code for 

different rotation angles varying from 5°, 10°, 20° and 30°. The input data are the 2D 

diffraction data presented in Fig. 4.15. 

 

We see in the images presented in Fig. 4.17 that the 5 degree case fits with the planar 

approximation. We obtain almost the same quality of image reconstruction as for the 

pure 2D case. At 10 degree, we can still identify the reconstructed 2D pattern but 

with already a strong loss of information. When the rotation angle gets larger, the 2D 

projection reconstruction is not correct as the Born approximation fails and the image 

is altered.  

From these simulations we conclude that the connection between 2D and 3D space is 

restricted to low angles. This will limit the 2D reconstruction when the object has a 

too extended 3D structure. Additionally, the 2D data projection on the Ewald sphere 

will lose some 3D information if the sample is too extended in 3D (wide open angle 

in the case of the ‚opened door‛ sample). 

 



 116 

Experimental results: 

The simulations have discussed the validity of the projection from a 2D diffraction 

pattern to the Ewald sphere but also the limitation of a 2D reconstruction when the 

object stays out of the Born approximation (object too thick). We present in this 

section the first results of the single shot ankylography campaign. The data have 

been collected at the LUCA high energy beamline at 32nm (25th harmonic generated 

in argon) and at 20nm (39th harmonic generated in neon). 

a)= 32nm data: 

Fig. 4.17.a shows a SEM image of the sample. The total size of the square is 3x3µm². 

The Chinese pattern ‚light‛ is included in a plane tilted by 5° with respect to the 

membrane plane. 

a)   b)  

Fig. 4.17: a: SEM image of the sample. b: Single shot diffraction pattern. 

 

The sample is illuminated at a wavelength of 32 nm using the same experimental 

setup reported in the CDI chapter. The diffraction pattern measured in single shot is 

shown in Fig. 4.17.b.It is well contrasted and present many features related to the 

geometry of the object. A clear one is the two main directions corresponding to the 

diffraction by the edges of the gate surrounding the object. We then compute from 

the measured diffraction pattern the autocorrelation (see Fig. 4.18) which will create 

the object support used in the CDI reconstruction code. 
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Fig. 4.18: Left: Autocorrelation of the measured diffraction pattern. Right: Effective support 

used as an input in the phase retrieval code. 

As show in Fig. 4.19, the phase retrieval converges quite fast. We obtain an image 

after about 50 iterations. The final reconstruction is shows in Fig. 4.20.  

 

Fig. 4.19: Iterative process from the first iteration (up, left) to the 60th. The convergence is 

obtained after 50 iterations (down, right). 

 

 

Fig. 4.20: Reconstructed image from the measured diffraction pattern. 

The second step is to start a 3D reconstruction from this data. The spatial 

resolutionalong XY is about 200nm and 600 nm along the depth direct (Z axis). This 

is not enough to run an ankylography reconstruction as the object is not resolve in 

depth. Indeed, the large diffraction angle do not respect the born approximation and 

will not be correctly projected onto, the Ewald sphere. To circumvent this issue we 

have several options, either changing the sample geometry or the soft X-ray 

wavelength. 



 118 

b) = 20nm data: 

We have performed the same experiment using the 39th harmonic, at a wavelength of 

20nm. The signal being lower, we had to accumulate over 20 shots. The object has 

almost a 30 degrees opening angle (Fig. 4.21.a). The diffraction pattern is shown in 

Fig. 4.21.b. We see a curved diffraction line arising from the interference between in 

and out of plane diffracted light. This is a clear signature of the 3D geometry of the 

sample. The 2D reconstruction is shown in Fig. 4.21.c. We can identify the square 

shape of the gate but the details of the object cannot be really resolved. This is clearly 

due to the failure of the Born approximation because of the large opening angle in 

the Z direction. 

a)  b)  c)  

Fig. 4.21: a): SEM image of the sample showing the 30° opening of the gate. b): measured 

diffraction pattern. c):Reconstructed image. 

 

We have then processed the data for a 3D reconstruction. The projection onto the 

Ewald sphere is shown in Fig. 4.22 with different views. The data are then processed 

for the 3D ankylographic reconstruction. However, after many attempts with various 

parameters, we have not obtained a satisfying image. A partial result is shown in Fig. 

4.23. One of the problems is that three dimensional structure determination using 

single view diffraction imaging data has restriction. In particular a dimensional 

deficiency limits the applicability of ankylography to objects that are small-sized in at 

least one dimension or that are approximately two-dimensional in some other way. 

This was already observed in the simulations presented in the first section. In our 

case, the 30° opening of the gate make the sample a full 3D sample in 3 directions. 

The rate of reliable information transfer is limited by the degrees of freedom 

available and by the signal to noise ratio. In our case, increasing the signal would not 

improve the reconstruction capability. The restriction is imposed by the large angles 

involved in the sample geometry. Through oversampling the spherical diffraction 
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intensities, ankylography can reconstruct the 3D structure from a single view only if 

the physical constraints are strong enough. Compared to coherent diffraction 

microscopy (or coherent diffractive imaging), the phase retrieval problem in 

ankylography is in principle more difficult to deal with. The reason is related to the 

facts that the distribution of singular values decays fast. This has also been seen the 

simulation. The conclusion of this very preliminary experimental campaign is that 

ankylography has strong applicability restriction. It cannot be applied to a full range 

of sample geometry. In particular, ankylography works well if the 3D object is 

restricted in the depth dimension. 

 

 

Fig. 4.22 : Projection onto the Ewald sphere from an up-oblique view (left) and lateral view 

(right). 

 

 

 

Fig. 4.23:Ankylography image reconstruction from projection data shown in Fig. 4.22. 
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IV.6 Conclusion 
 

A single view named ‘ankylography’ has demonstrated a good potential for future 

single shot 3D coherent imaging [3; 10-16+. Based on the analysis above, I’ve pushed 

our 2D imaging towards 3D coherent imaging. At the same time, the optimization of 

harmonic beamline in our group allows to achieve a high coherent beamline down to 

20nm. Our numerical simulations suggest that ankylography works well for small 

3D objects in 7x7x7 voxels. However, the signal to noise in the experiment is not 

good to obtain a correct ankylographic reconstruction as shown in the simulations. 

As ankylography is such a new complicated idea, it is certainly impossible for us to 

envision and address all the problems. In order to fully understand the potential and 

limits of ankylography, follow-up studies are still needed in theory, experiment and 

algorithm development. Ankylography, which recovers 3D structure information 

from oversampled diffraction intensities on the spherical shell, can detect the depth 

information signals from the very high spatial frequency zone compared to CDI. The 

projection from 2D planar CCD to 3D spherical shell needs more complicated 

applied mathematical knowledge. Different algorithms for this projection lead to 

almost different 3D sphere volumes before entering iterative into the 3D full 

reconstruction process. From some numerical simulation and experimental data, we 

can see that increasing the shell thickness can improve both the ankylographic 

reconstruction and 2D projection image reconstruction for larger 3D object (it means 

larger opening angle for pseudo-3D object). However, the photon flux in 20nm is less 

than 32nm, the signal to noise is worse, thus this decreases the quality of the 

reconstruction. Even though our harmonic beamline optimized until 20nm shows 

good coherence for coherent imaging. 

Chapter V -General Conclusion and 

Perspectives 

 

 

The objective of this thesis work is to develop and analyze the coherent imaging 

techniques using XUV high-order harmonic beam. SNR implication in image 

reconstruction has been deeply studied as well as perspectives in 3D imaging.  

The theoretical background of the coherent imaging (or lens-less imaging) is 

presented in the first chapter from the image formation in the Fraunhofer diffraction 

regime to the different reconstruction processes of CDI, FTH and HERALDO. The 

two main branches of lens-less imaging, CDI and holographic techniques, have their 

own advantage. The latter provides quick, direct and non-ambiguous reconstruction 
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of the object, while the iterative algorithms usually converge to reliable solutions 

after thousands loups. However, the need of a proper reference in holographic 

techniques limits the application in cases that reference fabrication is technically 

difficult or not possible. In both reconstructions, the coherence of the light source is 

the key factor, deciding whether the phase information can be retrieved or not from 

the measured diffraction pattern. Since different kinds of noise are introduced during 

the detection, the signal-to-noise ratio of the diffraction pattern is another key factor, 

deciding whether reconstruction algorithms can extract or not the effective signal 

from the noise. High-order harmonic source, which I used during the thesis work, is 

intrinsically qualified for the coherent requirement and is able to deliver high flux 

beam thanks to the recent development of the HHG scheme. Compared to free 

electron laser facilities, HH sources are compact and inexpensive, and offer easier 

access and more beam time for users.  

Chapter II introduces the historical research work and progress of the beamline, 

which provided a 25th harmonic beam (wavelength of 32 nm) and achieved 120 nm 

spatial resolution in CDI reconstruction of a test object from single-shot acquisition in 

2009. This encouraging first lens-less imaging demonstration led to open questions 

about the CDI and the harmonic beamline, which has been one of the starting point 

of this thesis work. A complete discovery of the harmonic generation quality has 

been carried out to understand the harmonic beam behavior under different 

generation conditions. This resulted in optimization at each stage of the beamline, 

and standardized the harmonic generation for future experiments to avoid the large 

instability of the beam quality. The two beam characterization methods (XUV wave 

front sensor and Young’s double slits) provide various information such as the wave 

front quality, the beam flux, the spatial coherence and the reconstructed harmonic 

focal spot profile. HHG parameters are optimized for a good compromise between 

the triple key factors: the coherence, the beam flux and the wave front quality. CDI 

reconstruction analysis of the interferogram of the Young’s double slits confirmed 

the coupled influence of these beam properties. The optimization of the IR pump 

laser is realized by a laser modal filtering system. The IR laser presents a quasi-

Gaussian beam after the propagation in hollow core fiber, which improved the HHG 

efficiency by a factor of 2.5 in Argon and 6 in Neon. In addition, the filtered laser 

beam position is stable that ensures a continuous high HHG quality during long time 

experiment.  

The harmonic beamline enhancement has improved the reconstruction ability of the 

imaging techniques. Chapter III presents the demonstrations of CDI and holographic 

imaging techniques, followed by quantitative analysis. In the CDI section, 

reconstructions have achieved sub-80 nm spatial resolution from single-shot 

acquisition, which is ~ 2.5λ (λ=32 nm). Coherence requirement for CDI has been 
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discussed using Young’s double slits that the phase retrieval algorithms are not 

converging for a contrast of interference fringes lower than 0.5. The importance of 

the coherence has been again demonstrated in the FTH reconstructions of a geometry 

grid test sample, in which different components of the grid are respectively missed in 

two independent reconstructions associated to two pinhole references. However, 

another diffraction pattern of the same sample with lower diffractive signals 

provided well-resolved reconstructions. The compromise between the beam 

coherence and the beam flux is the main issue for lens-less imaging. HERALDO 

configuration can amplify the diffractive signal of the object by extended references 

and uses ‚mathematical tricks‛ to overcome the resolution limitation imposed by the 

reference size. Step-by-step analysis of the reconstruction process shows the 

significant influence of the readout noise, which is amplified by the HERALDO 

operator in Fourier space. A low-pass filter is the solution to overcome this main 

obstacle in our reconstructions. Meanwhile, detection stage optimization has been 

discussed, which is valid for all the coherent imaging techniques. The comparison 

between FTH and HERALDO showed that HERALDO with a slit reference is the 

best holographic configuration for our harmonic beam, since we are mainly limited 

by the beam flux in single-shot regime. The comparison between CDI and 

HERALDO confirmed the effectiveness of the signal amplification by extended 

reference. It is not possible to say one is better than the other without a given 

experimental condition. CDI and HERALDO are not only alternative but also 

complementary to each other. Choice of the imaging technique for a concrete 

application should base on careful analysis of the experimental conditions.    

The development of a versatile harmonic beamline, which is now a standardized, 

stable and powerful beamline providing harmonic beams of high coherent, photon 

flux and wave front quality, with tunable harmonic wavelength. Combining with the 

CDI, HERALDO, our high flux harmonic beamline is suitable and ideal for a wide 

range of applications from physics to biology. We foresee a bright future for ultrafast 

dynamic studies with real space reconstructions of nanometric spatial resolution.  

The last part of my thesis work has been dedicated to extending 2D to 3D imaging. 

Ankylography has shown a remarkable performance and is a promising imaging 

method for 3D single shot coherent imaging by single view in some circumstances. 

This can prevent the sophisticated request for precise tilting of sample holder which 

is requested in most traditional 3D tomographic imaging. Using numerical 

simulations, we have reviewed the limitation of ankylography. The technique can be 

well applied to thin 3D object. When object are too large we observe that the 

projections onto the 3D EWALD sphere deviates largely from the Born 

approximation which leads to systematic errors. The convergence, as shown by the 

simulation, is then ensured only in restricted conditions. In this case, the algorithm 
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converges well but still with large CPU computing time which is one drawback of 

the technique. Indeed, during the ankylographic reconstruction, the 3D HIO iterative 

process operates along many constraints which prevent from a fast convergence. 

Even good initial parameters have to be chosen and controlled. The large data 

volumes request a super-PC to handle the process. In this context, even some 

preliminary results are shown in my thesis, there is still more space to improve the 

final 3D reconstruction.   

 

 

Perspectives in 3D stereo imaging 

We propose here to extend our actual 2D ultrafast nanoscale microscope to obtain 

3D images. Indeed, most samples of physical interest require 3D perception. 

However, the usual method based on many orientation projections of the specimen 

suffers from extended exposure time to X-rays which could induce damages. 

Ultrafast Single shot 3D stereo imaging would allow lowering the impact of X-ray 

exposure in image reconstruction. Moreover, when dynamics are studied, the single 

shot regime is mandatory: some phenomena are not reversible and solid state 

samples are often not perfectly reproducible.  

Stereo imaging is based on the human eye vision. Our right and left eyes take two 2D 

images at different observation angles of the object and the brain combines these 

images to give the perception of 3D depth. It is not a real 3D imaging but already 

provides much more interesting information about the object than 2D image. Fig. 5.3 

presents stereo imaging examples of nanoplankton samples realized by a scanning 

electron microscope [1]. After taken an image (photos in gray scale), the biological 

samples are tilted about 5 degrees to take the second image. These two images are 

then turned into red and green, and combined by the red-green anaglyph method [2]. 

With red-green glasses, one can see 3D planktons from the combined image. In 

principle, the stereo imaging is compatible with the coherent diffractive imaging that 

two CDI or holographic reconstructions at different observation angles are sufficient 

to make 3D perception. 
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Fig. 5.1 Stereo image (red-green photos) of plankton samples made by digital 

combination of SEM images (gray scale) taken at different observation angles. Picture 

extracted from Ref. 1. 

I have been working in the implementation of the first single shot stereo imaging 

using high harmonic generation. The idea is to realize two parallel beams before 

focusing using off-axis parabola.  The separation of the main beam is realized with 

two grazing incidence silicon mirrors (mirror 1 in Fig. 5.4) before the parabolic 

mirror. Half of the harmonic beam is reflected and the other half go straight to the 

parabola. The reflected half-beam is then reflected by a second multilayer mirror 

(mirror 2) toward the parabola. The two half-beams are focused by the parabola onto 

the sample. The distance between the two beams is about 20 mm which acceptable 

for the numerical aperture of the parabola. As the two beams are parallel they are 

focus at the same point with an angle of ~ 6°. Note that in this geometry the two 

beams are not synchronized. A new setup with a femtosecond synchronization of the 

two beams is currently under design. 

After interaction with a sample the two beams generate two diffraction patterns that 

are collected by our CCD camera in a single acquisition (Fig. 5.5a and b). The first test 

object is a 3D HERALDO samples with slit references. We use an up-warped etching 

process to have 3D depth, with different motif, such as a grid presented in Fig. 5.5c. 

Since the half-beams have lower flux due to the beam separation and additional 

mirror reflection, we use the slit references to increase the reconstruction ability. Fig. 

5.5b presents a preliminary result of HERALDO reconstructions associated to the 

diffraction pattern at the top of the acquisition image. Slit references and the borders 

of the up-warped pattern are well resolved, but the grid motif is not clear. Further 
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work on the reconstruction is under progress. Further work on biological samples 

will also be realized.   

Time-resolved three dimensional imaging studies that are currently limited by the 

need for multiple views of the same sample will be then possible. It is expected to get 

single shot images with 3D perception down to sub-100 nm spatial resolution. 

 

 

Fig. 5.2 Picture of the experimental setup for stereo imaging. In the left one, blue lines 

indicate the beam propagation and yellow squares are the silicon mirrors installed 

for beam separation. The two-mirror system is also shown in the picture at right (red 

circles) as well as the parabola (yellow circle) and the sample (blue circle). 

 

 

Figure 1.3 : Stereo-imaging. (a) MEB image of a test sample with two schematized 

incident XUV beams. The two black lines are HERALDO references. (b) First 

experimental diffraction pattern (September 2012). (c) and (d): Inversion of the 
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holograms taken at observation angles of 0° and 7° respectively. The red squares 

delimit one reconstruction. 

 

Application in biology:  

My thesis work has been based a strong expertise in higher harmonic generation 

(HHG) sources and in coherent soft X-ray imaging on test samples. However, no 

application in biology has been performed. I have started to collect and isolate 

nanoplanktons fished in the Indian Ocean (collaboration with Hannover University). 

We have already set a protocol to isolate these species on few nanometers thick 

carbon membranes which facilitates their transport into the vacuum chamber. 

Nanoplankton skeletons, similar to the ones in the figure below, will be studied.  

 

 

Fig. 5: Images of nanoplankton samples. 

 

These biological species are of interest as their shape, structure and abundance 

monitor the climate change.  The focal spot will be around few µm for these studies. 

The CEA HHG source can be tuned from 40 to 10 nm to increase the spatial 

resolution. We will collect data from nanoplanktons of few µm size. Our aim will be 

to collect 3D data sets at resolutions beyond conventional damage limits to get image 

of isolated nanoplanktons with 20 nm spatial resolution. 

 

Application in ultrafast nanoscale phase transition:  

An application in magnetism domain has then been studied as the first physical 

application realized on the harmonic beamline using coherent imaging techniques. I 

have been involved in this experiment. The results are reported on the two papers 

attached at the end of the manuscript. This has not been a central work for my Phd. 

Briefly, these articles report the magnetic scattering studies of the nanodomain 

structures on ferromagnetic (Co/Pd) multilayers. The HHG spectral studies with Ar 

and Ne gases was in purpose to adapt our harmonic beam to the cobalt absorption 

M-edge, followed by the HHG optimization of the selected 39th harmonic beam. A 
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comparison between HHG quality using filtered and non-filtered IR beam has been 

carried out in the meantime. The HHG optimization procedure and conclusions 

presented in Chapter II have been applied (except the wave front sensor) on these 

studies. Measurements of magnetic scattering from nanodomain structures have 

been realized over a large spectral bandwidth in both single-shot and multiple-shot 

acquisitions, from which magnetic properties of the nanodomain samples have been 

deduced. Spectral analysis showed an unexpected resonant peak, which corresponds 

to the palladium component of the sample instead of the cobalt. Scattering patterns 

are not made for real space reconstruction since the oversampling condition is not 

respected in the experiment, but promise the single-shot imaging of nanodomains 

structure, which may be performed in the parabola setup. It also paved the way for 

dynamic study of such magnetic samples in the under-construction pump probe 

experiment setup. The combination of dynamic and real space imaging in the near 

future will open the gate for understanding the spin-orbital and exchange 

interactions. 

This magnetic application also resulted in the development of a versatile harmonic 

beamline, which is now a standardized, stable and powerful beamline providing 

harmonic beams of high coherent, photon flux and wave front quality, with tunable 

wavelength from 10 to 40 nm. Combining with the CDI, HERALDO and the under-

developing 3D imaging techniques, our high flux harmonic beamline is suitable and 

ideal for a wide range of applications from physics to biology. We foresee a bright 

future for ultrafast dynamic studies with real space reconstructions of nanometric 

spatial resolution.      

 



 128 



 129 

References 
 

Introduction 
 

1. J. W. Miao et al., “Extending the methodology of X-ray crystallography to allow 

  imaging of micrometre-sized non-crystalline specimens”, Nature400342-344 (1999). 

2. H. Chapman et al., “Femtosecond diffractive imaging with a soft-X-ray free-electron 

laser” Nature Physics2839-843 (2006)  

3. H. Chapman et al., “High-resolution ab initio three-dimensional x- ray diffraction 

microscopy”, J. Opt. Soc. Am. A231179-1200 (2006)  

4. A. Bartyet al., “Ultrafast single-shot diffraction imaging of nanoscale dynamics”, 

Nature Photonics2415-419 (2008) 

5. H. Jiang et al., “Quantitative 3D imaging of whole, unstained cells by using X-ray 

diffraction microscopy”, Proc. Natl. Acad. Sci. U.S.A.107 11234-11239 (2010)  

6. A.P. Mancuso et al., “Coherent imaging of biological samples withfemtosecond 

pulses at the free-electron laser FLASH”,New J. Phys.12035003 (2010) 

7. R.L. Sandberg et al., “Lensless Diffractive Imaging Using Tabletop Coherent High-

Harmonic Soft-X-Ray Beams”,Phys. Rev. Lett.99098103 (2007) 

8. A. Ravasioet al., “Single-Shot Diffractive Imaging with a Table- Top Femtosecond 

Soft X-Ray Laser-Harmonics Source”, Phys. Rev. Lett.103028104 (2009) 

9. D. Sayre, “The squaring method: a new method for phase determination”, 

ActaCryst.5 60-65 (1952) 

10. J.R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform”, 

Optics Letters3 27-29 (1978) 

11. R.W. Gerchberg and W.O. Saxton, “A practical algorithm for the determination of 

phase from image and diffraction plane pictures”, Optik35 237-246 (1972) 

12. H. Chapman and K. Nugent, “Coherent lensless X-ray imaging”, Nature Photonics4 

833-839 (2012) 

13. Seibert, M. M. et al., Nature 470, 78–81 (2011) 

14. Chamard, V. et al.,PhysRevLett104, 165501 (2010) 

15. Dierolf, M. et al., Nature 467, 436-439 (2010) 

 

Chapter I 
 

1. K. Burkhard,et al., “Transmission and emission x-ray microscopy: operation modes, 

contrast   mechanisms and applications”, Journal of Physics: Condensed Matter23 

083002 (2011) 

2. M.R.Howells,et al., “An assessment of the resolution limitation due to radiation-

damage in X-ray diffraction microscopy”,Journal Of Electron Spectroscopy And 

Related Phenomena170 4-12 (2009) 

3. Q. Shen, et al., “Diffractive imaging of nonperiodic materials with future coherent X- 

ray sources”,Journal Of Synchrotron Radiation11 432-438 (2004) 

4. J.C.H. Spence, et al., “Phase recovery and lensless imaging by iterative methods in 

optical, X-ray and electron diffraction”,Phil. Trans. R. Soc. Lond. A360 875 (2002) 



 130 

5. I. McNulty, et al., “High-Resolution Imaging by Fourier Transform X-ray 

Holography”,Science256 1009-1012 (1992) 

6. J.R.Fienup, “Phase retrieval algorithms: a comparison”,Appl. Opt.21 2758 (1982) 

7. J.R.Fienup, “Reconstruction of an object from the modulus of its Fourier 

transform”,Opt. Lett.3 (1) 27 (1978) 

8. J.R.Fienup, “Reconstruction of a complex-valued object from the modulus of its 

Fourier transform using a support constraint”,J. Opt. Soc. Am. A4 (1) 118 (1987) 

9. Y.M. Bruck and L.G. Sodin, “On the ambiguity of the image reconstruction problem”, 

Opt. Commun.30 304–8 (1979) 

10. R.H.T.Bates, “Fourier Phase Problems Are Uniquely Solvable In More Than One 

Dimension”, Underlying   Theory. Optik61 (3) 247-262 (1982) 

11. D. Gabor, “A New Microscopic Principle”,Nature161 (4098) 777-778 (1948) 

12. J.W. Goodman, “Introduction to Fourier optics”,Roberts & Co. (2005) 

13. M. Born and E. Wolf, “Principles of Optics: Electromagnetic Theory of Propagation, 

Interference and Diffraction of Light”,Cambridge University Press 7th edition (1999) 

14. P. Thibault, “Algorithmic Methods In Diffraction Microscopy”, thesis work at 

Faculty of the Graduate School, Cornell University (2007) 

15. M. Guizar-Sicairos, “Methods for Coherent Lensless Imaging and X-Ray Wavefront 

Measurement”, thesis work atThe Institute of Optics Arts, Sciences and Engineering, 

Edmund A. Hajim School of Engineering and Applied Sciences, University of 

Rochester, Rochester, New York (2010) 

16. D. Gauthier, “Imagerie nanométrique ultra-rapide par diffraction cohérente de 

rayonnement extrême-UV produit par génération d‟harmoniques d‟ordre élevé”, 

thesiswork at Université Paris Sud XI, Orsay, France, (2012) 

17. D. Attwood, “Soft X-Rays and Extreme Ultraviolet Radiation: Principles and 

Applications”,Cambridge University Press (2007) 

18. P. P. Ewald,“ZurTheorie der Interferenzen der R ̈ontgenstrahlen in 

Kristallen”,PhysikalischeZeitschrift14 465–472(1913) 

19. D. Sayre,“Some implications of a theorem due to Shannon”,ActaCrystallographica5 

843 (1952) 

20. J. Miao and D. Sayre,“On possible extensions of x-ray crystallography through 

diffraction-pattern oversampling”,ActaCryst. A56 596–506 (2000) 

21. H. Nyquist, “Certain topics in telegraph transmission theory”,Proceedings of the 

IEEE90 (2) 280 (2002) 

22. C.E. Shannon, “Communication in the Presence of Noise”, Proceedings of the IRE37 

(1) 10 (1949) 

23. E. Wolf,“Is a Complete Determination of the Energy Spectrum of Light Possible 

from Measurements of the Degree of Coherence?”,Proceedings of the Physical 

Society80(6) 1269–1272 (1962) 

24. A. Walther, “The Question of Phase Retrieval in Optics”,ActaOptica10 (1) 41–49 

(1963) 

25. R.W. Gerchbergand W.O. Saxton, “Practical Algorithm For Determination Of Phase 

From Image And Diffraction Plane Pictures”,Optik35 (2) 237 (1972) 

26. V. Elser, “Phase retrieval by iterated projections”,J. Opt. Soc. Am. A20 (1) 40 (2003) 

27. R. Luke,“Relaxed averaged alternating reflections for diffraction imaging”,Inverse 

Problems21 (1) 37–50 (2005) 

28. S. Marchesini,“Benchmarking iterative projection algorithms for phase retrieval”, 

arXiv:physics/0404091 (2004) 



 131 

29. G.J. Williams, “Effectiveness of iterative algorithms in recovering phase in the 

presence of noise”,ActaCryst. A63 36-42(2007) 

30. F.R.N.C. Maia, et al., “Hawk: the image reconstruction package for coherent X-ray 

diffractive imaging”,Journal of Applied Crystallography43 (6) 1535-1539 (2010) 

31. W.F. Schlotter, “Multiple reference Fourier transform holography with soft x 

rays”,Appl. Phys. Lett.89 (16) 163112 (2006) 

32. H. He, et al., “Use of extended and prepared reference objects in experimental 

Fourier transform x-ray   holography”,Applied Physics Letters85 (13) 2454 (2004) 

33. S.G. Podorov, et al.,“A non-iterative reconstruction method for direct and 

unambiguous coherent diffractive imaging”,Opt. Express15(16) 9954 (2007) 

34. M. Guizar-Sicairosand J.R. Fienup, “Holography with extended reference by 

autocorrelation linear differential operation”,Opt. Express15 (26) 17592 (2007) 

35. S. Marchesini, et al., “Massively parallel X-ray holography”, Nat. Photon.2 (9) 560 

(2008) 

 

 

 

Chapter II 
 

1. A. McPherson, et al., “Studies of multiphoton production of vacuum-ultraviolet 

radiation in the rare gases”,J.   Opt. Soc. Am. B4 (4) 595 (1987) 

2. M. Ferray, “Multiple-harmonic conversion of 1064nm radiation in rare gases”, J. 

Phys. B21 L31 (1988) 

3. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear 

optics”,Rev. Mod. Phys.72 545 (2000) 

4. J.L. Krause, et al., “High-order harmonic generation from atoms and ions in the high 

intensity regime”,Physical Review Letters68 (24) 3535 (1992) 

5. P.B. Corkum, “Plasma perspective on strong field multiphoton ionization”, Phys. 

Rev.Lett.71 1994 (1993) 

6. K.J. Schafer, et al., “Above threshold ionization beyond the high harmonic 

cutoff”,Phys. Rev. Lett.70 1599-1602 (1993) 

7. M. Lewenstein, et al., “Theory of high-harmonic generation by low-frequency laser 

fields”,Physical Review A49 (3) 2117 (1994) 

8. P.M. Paul, et al., “Observation of a train of attosecond pulses from high harmonic 

generation”,Science292 1689–1692 (2001) 

9. G. Lambert, et al., “Injection of harmonics generated in gas in a free-electron laser 

providing intense and coherent extreme-ultraviolet light”, Nature Physics4 296-300 

(2008)  

10. J. Gautier, et al., “Optimization of the wave front of high order harmonics”, Eur. 

Phys. J. D48 459-463 (2008) 

11. C. Valentin, et al., “High-order harmonic wave fronts generated with controlled 

astigmatic infrared laser”, J. Opt. Soc. Am. B25 (7) B161 (2008) 

12. S. Kazamias, et al., “High order harmonic generation optimization with an apertured 

laser beam”,The European Physical Journal 21 (3) 353 (2002) 



 132 

13. W. Boutu, et al., “High-order-harmonic generation in gas with a flat-top laser beam”, 

Physical Review A84 (6) 063406 (2011) 

14. M. Nisoli,et al., “High-Brightness High-Order Harmonic Generation by Truncated 

Bessel Beams in the sub-10-fs Regime”, Phys. Rev. Lett.88 033902 (2002) 

15. P. Villoresi,et al., “Optimization of high-order harmonic generation by adaptive 

control of a sub-10-fs pulse wave front”, Opt. Lett.29 207 (2004) 

16. M.Nisoli,et al., “Generationofhighenergy10fspulsesbyanewpulsecompression 

technique”, Appl. Phys. Lett.682793 (1996)  

17. E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long 

distance optical transmission and lasers”,Bell Syst. Tech. J.431783–1809 (1964) 

18. E.Snitzer,“CylindricalDielectricWaveguide Modes”, J. Opt. Soc. Am.51491-498 

(1961) 

19. C. Iaconis and I.A. Walmsley, “Spectral Phase Interferometry for Direct Electric-

Field Reconstruction of Ultrashort Optical Pulses”,Opt. Lett.23 792–794 (1998) 

 

Chapter III 
 

1. “Introduction: Focused ion beam 

systems”http://www.fibics.com/fib/tutorials/introduction-focused-ion-beam-systems/4/ 

2. M. Born and E. Wolf, “Principles of Optics: Electromagnetic Theory of Propagation, 

Interference and Diffraction of Light”, Cambridge University Press 7th edition(1999) 

3. D. Shapiro,et al., “Biological imaging by soft x-ray diffraction microscopy”, Proc. 

Natl. Acad. Sci. U.S.A.102 (43) 15343-15346 (2005) 

4. A. Ravasio, et al., “Single-Shot Diffractive Imaging with a Table- Top Femtosecond 

Soft X-Ray Laser-Harmonics Source”, Phys. Rev. Lett.103028104 (2009) 

5. S. Marchesini, et al., “Coherent X-ray diffractive imaging: applications and 

limitations”,Opt. Express11 (19) 2344 (2003) 

6. M.R. Howells, et al., “An assessment of the resolution limitation due to radiation-

damage in X-ray diffraction microscopy”,Journal Of Electron Spectroscopy And 

Related Phenomena170 (1-3) 4-12 (2009) 

7. “Signal-to-noise ratio” 

Http://www.princetoninstruments.com/cms/index.php/ccd-primer/172-signal-to-

noise-ratio 

8. M. Guizar-Sicairos, “Methods for Coherent Lensless Imaging and X-Ray Wavefront 

Measurement”, thesis work at The Institute of Optics Arts, Sciences and Engineering, 

Edmund A. Hajim School of Engineering and Applied Sciences, University of 

Rochester, Rochester, New York (2010)  

 

Chapter IV 
 

1. H.Chapman, A. Barty, S.Marchesini et al. 2006. “High-resolution ab initio three-

dimensional x-ray diffraction microscopy”, J. Opt. Soc. Am. A23 (5) 1179 

2. J.Miao, T.Ishikawa, B.Johnson et al. 2002. “High Resolution 3D X-Ray Diffraction 

Microscopy”, Phy.Rev.Let. 89 (8) 088303 

http://www.fibics.com/fib/tutorials/introduction-focused-ion-beam-systems/4/
http://www.princetoninstruments.com/cms/index.php/ccd-primer/172-signal-to-noise-ratio
http://www.princetoninstruments.com/cms/index.php/ccd-primer/172-signal-to-noise-ratio


 133 

3. K.Raines, S.Salha, R.Sandberg et al. 2010. “Three-dimensional structure 

determination from a single view”, Nature 463 (7278) 214-7 

4. R. W. James, The Optical Principles of the Diffraction of X-Rays (Bell, 1962) 

5. E. Wolf, ‚Three-dimensional structure determination ofsemi-transparent 

objects from holographic data,‛ Opt. Commun. 1, 153–156 (1969). 
6. J.Miao, D. Sayre, H.N.Chapman et al. 1998. “Phase retrieval from the magnitude of 

the Fourier transforms of nonperiodic objects”, J. Opt. Soc. Am. A15 (6) 1662 

7. J.Miao, K. Hodgson, D. Sayre. 2001. “An approach to three-dimensional structures of 

biomolecules by using single-molecule diffraction images”, P.N.A.S. 98(12) 

8. I.Robinson, J.Miao. 2004. “Three-Dimensional Coherent X-Ray Diffraction 

Microscopy”, March, 177-181 

9. D.Shapiro, P.Thibault, T.Beetz et al. 2005. “Biological imaging by soft x-ray 

diffraction microscopy.” P.N.A.S. 102 (43) 15343-6 

10. Chen, C.-C., Jiang, H., Rong, L., Salha, S., Xu, R., Mason, T.G. and Miao, J. 

Threedimensional imaging of a phase object from a single sample orientation using 

an 

optical laser. Phys. Rev. B, 84, 224104 (2011).. 

11. M.Seaberg, D.Adams, E.Townsend et al. 2011. “Ultrahigh 22 nm resolution coherent 

diffractive imaging using a desktop 13 nm high harmonic source”, Opt. Exp. 19(23) 

22470-9 

12. J.Miao, R. Sandberg, C.Song. 2011. “Coherent X-ray Diffraction Imaging”, IEEE 

selected topics in quantum electronics , page (1-12) 

13. C.Chen, H.Jiang, L.Rong et al. 2011. “Three-dimensional imaging of a phase object 

from a single sample orientation using an optical laser”, Phy.Rev.B84 (22) 224104 

14. J.Miao, C.Chen, Y.Mao et al. “Potential and Challenge of Ankylography” 

15. Wei, H. 2011. Fundamental limits of “Ankylography” due to dimensional deficiency. 

Nature 480, E1 doi:10.1038/nature10634  

16. Wang, G, Yu, H. & Cong, W. 2011. Non-uniqueness and instability of 

„ankylography‟. Nature 480, E2–E3 doi:10.1038/nature10635. 

 

Chapter V 
 

1. H. Andruleit, et al., “Stereo-microscopy of coccolithophores - modern applications 

for imaging and morphological analysis”, J. Nannoplankton Res.28(1) 1-16 (2006) 

2. M. Geisen, et al., “Three- dimensional imaging of coccoliths and coccospheres.” 

Abstract for poster presented at the 8th Conference of the International 

Nannoplankton Association, 11th-15th September, 2000, Bremen, Germany, Journal 

of Nannoplankton Research, 22: 100. (2000) 

 

 

 



 134 

 

Articles List 

 

Article I 

“Spatial quality improvement of a Ti:Sapphire laser beam by Modal Filtering” 

 

Benoit Mahieu, David Gauthier, Michel Perdrix, Xunyou Ge, Willem Boutu, 

Fabien Lepetit, Fan Wang, Bertrand Carré, Thierry Auguste, HamedMerdji, David 

Garzella, and Olivier Gobert 

 

Abstract. We present a study on the improvement of the spatial quality of a laser 

beam, called modal filtering. The method is theoretically compared to the classical 

pinhole filtering technique in the case of an astigmatic Gaussian beam, illustrating, in 

this particular case, its efficiency for filtering low spatial frequencies. Experimental 

study of the modal filtering of a high energy, temporally–chirped beam from a 

Ti:Sapphire chirped–pulse–amplification system is presented. Beam profile, 

wavefront and pulse duration after compression were measured, showing a dramatic 

improvement of beam qualityand no modifications of the temporal distribution. 

High–order harmonic generation in a rare gas, ahighly nonlinear process which is 

phase matching dependent, was used to test the effect of the filterand showed a clear 

enhancement of the generation. 

Applied Physics B: Lasers and Optics, 118:47-60 (2015). 

 

Article II 

"Impact of wave front and coherence optimization in coherent diffractive imaging" 

X. Ge, W. Boutu, D. Gauthier, F. Wang, A. Borta, B. Barbrel, M. Ducousso, A. 

Gonzalez, B. Carré, D. Guillaumet, M. Perdrix, O. Gobert, J. Gautier, G. Lambert, F. 

Maia, J. Hajdu, P. Zeitoun and H. Merdji, Opt. Express 21, 11441–11447 (2013). 

 

Article III 

“Impact of the signal-to-noise ratio and noise processing in holographic and 

coherent diffractive imaging” 

F. Wang, A.I. Gonzalez, I. Bianca, X. Ge, D. Gauthier, W. Boutu, M. Ducousso, M. 

GuizarSicairos, M. Kovacev and H. Merdji 

Abstract. Signal-to-noise ratio is a key factor in lens-less imaging, particularly for low 

signal detection experiments. We present our recent study of the noise impact on 



 135 

holography with extended reference and Fourier Transform Holography and 

coherent diffractive imaging. Experimental data have been measured either in single 

or multi- shot acquisition using an intense coherent soft X-ray high harmonic source. 

Hardware and software noise processing during and after the diffraction figure 

detection are discussed. The comparison of experimental results of the three imaging 

techniques concludes the advantages and inconvenient of each configuration. 

 

Article in preparation, the core of the article is presented in Chapter III (holographic 

techniques section) of the thesis. 

 

Article IV 

“Single-shot studies of a Co/Pd thin film’s magnetic nano-domain structure 

usingultrafast x-ray scattering “ 

 

M Ducousso, X Ge, W Boutu, D Gauthier, B Barbrel, F Wang, A Borta, A-I Gonzalez, 

M Billon, B Vodungbo, J Gautier, R Hawaldar, B Tudu, R Delaunay, M Tortarolo, P 

Zeitoun, J Lüningand H Merdji 

 

Laser Physics 24,025301 (2014). 

 

Article V 

"Sub-100 nanometer lensless probing of Co/Pd magnetic nanodomains using a table-

top femtosecond soft X-ray harmonic source",  

X. Ge, M. Ducousso, W. Boutu, B. Tudu, B. Barbrel, D. Gauthier, A. Borta, A. 

Gonzalez, F. Wang, B. Iwan, M. Billon, M. Perdrix, D. Guillaumet, F. Lepetit, B. 

Vodungbo, J. Gautier, R. Hawaldar, M. Tortarolo, R. Delaunay, P. Zeitoun, J. Lüning 

and H. Merdji,  

Journal of Modern Optics 10, 09500340 (2013). 

 

 


