Introduction

Après son administration dans l'organisme tout principe actif est soumis à une multitude de processus complexes qui vont déterminer sa biodistribution et par conséquent non seulement son efficacité mais aussi les éventuels effets indésirables et sa toxicité. L'amélioration de l'efficacité des molécules actives peut être recherchée tant par la voie de la pharmaco-modulation que par celle de la vectorisation, en les associant à des vecteurs capables de modifier leur distribution et d'améliorer leur efficacité tout en diminuant leurs effets secondaires. C' est une idée déjà ancienne, proposée il y a plus de 100 ans par le prix Nobel Paul Ehrlich qui proposa de «cibler» de manière spécifique les cellules tumorales ou les organismes provocant des maladies. Cette stratégie a donc pour ambition de restreindre l'effet thérapeutique à un organe ou des cellules pathologiques, c'est-à-dire une modification de la biodistribution naturelle de la molécule, ce qui permettrait en théorie une diminution des doses administrées ainsi qu'une réduction des effets secondaires.

Le présent travail s'inscrit pleinement dans le champ de la nanomédecine, un domaine dans lequel on désire mettre en jeu, à l'échelle nanométrique, des phénomènes variés entre un objet artificiel et l'organisme d'un patient. Plus précisément, ce travail a consisté à concevoir, préparer et caractériser des nanoparticules polymères possédant un tropisme pour les tissus osseux, en vue d'améliorer la distribution des molécules actives vers ces tissus.

Cet objectif nécessite d'être capable de conférer simultanément aux nanoparticules de nombreuses fonctionnalités différentes, capables d'aider les particules dans leur progression vers leur cible, depuis leur point d'administration. Dans ce cadre, lors de thèses entreprises au sein de notre équipe [1-3] il a été montré qu'il était possible de préparer des nanoparticules multifonctionnelles en mélangeant en proportions variables des polymères dérivés du poly (glutamate de benzyle) et portant différentes fonctionnalités. De façon intéressante, il a été montré que les propriétés de surface de ces nanoparticules pouvaient être aisément modulées. En effet, la maîtrise des propriétés de surfaces de
ces particules est indispensable puisque c'est elle qui va induire ou non les phénomènes d'interactions avec les composants du milieu biologique et qui sont souhaités ou non selon leur nature.

Dans ce contexte, l'objectif de ce travail de recherche a été le développement de nanoparticules multifonctionnelles polymères préparées à partir de dérivés du poly (glutamate de benzyle) (PBLG) possédant des propriétés de ciblage des tissus osseux de manière à pouvoir les immobiliser de manière suffisamment longue et d'assurer la délivrance d'un principe actif qui leur est associé dans les tissus osseux, de façon contrôlée dans le temps. De cette manière, ces nanoparticules pourraient constituer des réservoirs de principe actif intéressants en vue d'améliorer le traitement de diverses maladies du squelette.

Dans ce but, une mini-librairie de copolymères dérivés du PBLG et portant différentes fonctionnalités a été synthétisée. Ces copolymères, mélangés dans des proportions différentes ont montré des propriétés d'auto-assemblage pour former des nanoparticules de petite taille, typiquement inférieures à 80 nm et présentant une morphologie souvent ellipsoïdale. Leurs propriétés d'attachement aux tissus osseux, conférées par la présentation en surface de différents ligands ostéotropes (biphosphonates, poly(acide glutamique), ont été évaluées in vitro en utilisant l'hydroxyapatite comme modèle, puis ex vivo et in vivo.

Le traitement des métastases osseuses a été identifié comme une possible application de ces nanoparticules ciblées aux tissus osseux. De nombreux cancers ont une forte tendance à métastaser dans l'os ce qui induit des problèmes majeurs de santé publique, notamment dans le cancer du sein et de la prostate, en raison de leur incidence élevée. Différentes stratégies ont donc été étudiées visant à associer à ces nanoparticules des molécules anticancéreuses et à leur conférer ainsi des propriétés anticancéreuses. Parmi celles étudiées, la complexation du cisplatine aux groupements carboxylates de nanoparticules formées à partir du copolymère PBLG-PGlu a été retenue puisque de cette manière la libération du cisplatine peut être contrôlée très efficacement dans le temps, avec une cinétique de

2 Nanoparticules multifonctionnelles de PBLG destinées au ciblage et à la délivrance
libération compatible avec la stratégie envisagée, où les nanoparticules ciblées aux tissus osseux constituent réellement des réservoirs de principe actif une fois arrivées à leur cible.

Corps

Le travail de thèse présenté se décompose en plusieurs chapitres. Un premier chapitre bibliographique a tout d'abord été consacré à une revue des différentes stratégies imaginées pour concevoir et préparer des systèmes d'administration doués d'un tropisme pour l'os. Les maladies squelettiques, qui sont devenus de plus en plus répandues principalement en raison du vieillissement de la population, sont caractérisées par une morbidité très élevée, impliquant des complications métaboliques invalidantes et dont la prise en charge est coûteuse. La manque d'affinité de certaines molécules pour les tissus osseux résulte en une diminution de l'efficacité et l'apparition des effets secondaires. La vectorisation de principes actifs aux tissus osseux constitue donc une stratégie prometteuse dans l'objectif d'obtenir des traitements tout à la fois plus efficaces et dont les effets secondaires seraient moindres. L'hydroxyapatite, composant très spécifique de l'os, qui existe seulement ailleurs dans les dents et dans les calcifications pathologiques constitue une cible très spécifique pour la conception de vecteurs nanoparticulaires douées d'un tropisme osseux. Il existe différents stratégies de vectorisation tel que les conjugués de principe actif et les conjugués polymères ciblés à l'os, qui ont très largement développés par le groupe de Hirabayashi [4] et Kopecek [5, 6] respectivement, ou les nanoparticules ciblées aux tissus osseux, cette dernière approche constituant le centre de cette revue. Ce chapitre, qui comprend premièrement une présentation de l'anatomie et de la physiologie osseuse, présente par la suite une approche rationnelle de la conception de vecteurs nanoparticulaires en considérant les barrières biologiques à franchir pour atteindre leur cible et la manière dont les propriétés physicochimiques des nanoparticules peuvent être ajustées de manière à favoriser leur franchissement. Lors de l'administration intraveineuse des nanoparticules, elles doivent s'affranchir de nombreuses et complexes barrières afin de pouvoir atteindre les surfaces osseuses minéralisées. Tout d'abord les nanoparticules doivent éviter leur capture par les organes réticulo-endothéliales, dont le fois est un
organe majeure. Par la suite pour que les nanoparticules peuvent se retrouver dans le microenvironnement de l'os elles doivent être phago-endocyté par les capillaires de la moelle osseuse, cette propriété étant due à son rôle mineure comme organe réticuloendothélial. Une fois les nanoparticules sont dans le microenvironnement osseuse, les surfaces minéralisés ne sont pas à coté des capillaires, mais il reste encore de barrières à franchir, principalement l'interaction avec toutes les cellules de la moelle osseuse, et plus spécifiquement leur capture par les macrophages. Enfin, l'état de la littérature dans le domaine de cette stratégie émergeante est présentée.

Le deuxième chapitre est ainsi consacré à la préparation de nanoparticules décorées avec des molécules d'alendronate, qui sont des molécules possédant des propriétés osteotropiques et qui sont utilisées largement dans la thérapeutique de maladies osseuses. Le ciblage des nanoparticules aux tissus osseux est une étape importante dans la thérapeutique de maladies squelettiques. L'hydroxyapatite est un composant très spécifique de l'os et donc constitue la cible principale pour conférer des propriétés d' osteotropicité. Des nanoparticules de PBLG $_{10}$-PEG-alendronate ($\sim 75 \mathrm{~nm}$) ont été préparées par une méthode simple de nanoprécipitation. Dans un première temps, l'attachement de ces nanoparticules aux surfaces de hydroxyapatite a été étudié au moyen de nanoparticules fluorescentes. Cette étude a montré une attachement efficace des nanoparticules contenant le ligand ostéotrope tandis que celui est inexistant pour les nanoparticules ne possédant pas de ligands ostéotropique. Par la suite, l'affinité de l'interaction a été étudiée par des isothermes d'adsorption. Puisque l'interaction entre alendronate-hydroxyapatite implique principalement les atomes du réseaux cristalline et plus lors de l'administration intraveineuse les nanoparticules sont confrontées a des concentration physiologiques des ions calcium, l'affinité de ces nanoparticules alendronate a été étudiée en présence et absence des ions calcium. Il a été montré que l'interaction des nanoparticules avec les ions calcium ne modifie pas celle avec les surfaces de HAP. LA constante d'affinité a été estimée à $1.1 \times 10^{10} \mathrm{M}^{-1}$, ce qui est 4000 fois plus fort que l'interaction monovalente entre l'alendronate et les surfaces de hydroxyapatite préalablement décrit dans la littérature. Par la suite, l'affinité pour les

[^0]ions calcium a été évaluée au moyen de la technique de titration calorimétrique isotherme. Ces études ont permis de montrer une interaction spécifique des nanoparticules alendronate qui n'existe pas pour les nanoparticules contrôles, ne possédant pas ce ligand ostéotrope. La stoichiométrie de l'interaction à été estimée à $1.8 \times 10^{4} \mathrm{M}^{-1}$ ce qui est 900 fois plus faible que celle avec les surfaces d'hydroxyapatite. Cette plus faible affinité explique que les nanoparticules ayant interagi avec les ions calcium peuvent s'attacher à l'hydroxyapatite, ceci étant une compétition qui est favorable aux surfaces d'HAP. Dans le but d'approfondir sur les interactions entre alendronate-hydroxyapatite des études de modélisation moléculaire ont été effectués. Ils ont montré qu'effectivement la coordination des atomes de calcium du réseau de l'hydroxyapatite par des atomes oxygène des molécules alendronate est largement responsable de cette interaction, qui est encore favorisée par la formation des ponts hydrogènes entre les hydrogènes des groupements hydroxyle de l'alendronate et les atomes oxygène du réseaux d'hydroxyapatite. Il est suggéré que le nombre de sites d'union disponibles sur la surface d'hydroxyapatite est en large excès par rapport à ceux qui sont nécessaires pour le recouvrement total de la surface par les nanoparticules décorées avec l'alendronate. L'affinité plus faible envers les ions calcium comparativement à celle envers les surfaces d'hydroxyapatite permettrait aux nanoparticles liées aux ions calcium d'interagir avec l'hydroxyapatite. Cela apporte une compréhension plus profonde du comportement des nanoparticules ciblées aux tissus osseux une fois administrées dans l'organisme.

Le troisième chapitre du travail consiste à associer un agent anticancéreux aux nanoparticules dans le but de les rendre cytotoxique en vue du traitement de métastases osseuse. En effet, les cancers de la prostate et du sein ont une tendance élevée à métastaser dans l'os et représentent deux causes majeures de mortalité par cancer. De plus leur traitement par chimiothérapie est souvent inefficace et d'autres stratégies thérapeutiques, tels que la chirurgie, sont seulement envisageables dans certaines cas. C'est pour cela que l'utilisation des nanoparticles ciblées à l'os a été proposée en vue d' améliorer la biodistribution des agents chimiothérapies. Plusieurs stratégies pour associer un agent anticancéreux
aux nanoparticules ont été étudies, dont l'association du cisplatine aux nanoparticules de PBLG-PGlu a été celle retenue puisqu'elle permet une contrôle de la libération du principe actif. Cette deuxième chapitre décrit donc la préparation de nanoparticules décorées avec le poly(acide glutamique), ce ligand conférant aux nanoparticules de façon simultanée des propriétés d'attachement à l'os et d'encapsulation et de contrôle de la libération du cisplatine. Dans ce but, le copolymère amphiphile poly (glutamate de benzyle)-poly (acide glutamique) (PBLG-PGlu) a été synthétisé par une stratégie de polymérisation "living". Une méthode simple de nanoprécipitation a été mise au point et a permis la préparation des nanoparticules de type coeur-couronne, où le cœur est formé par l'auto-assemblage de hélices alpha de PBLG et la couronne par des chaînes amphiphiles de PGlu. Ces nanoparticules ont une morphologie ellipsoïdale, ont été caractérisées par microscopie électronique de transmission et leur diamètre équivalent a été estimée à 34 nm . Les nanoparticules PBLG-PGlu ont permis la complexation du cisplatine aux nanoparticules préformées grâce à une méthode simple d'incubation dan l'eau. La réaction du cisplatine avec les groupements carboxylates de PGlu a été étudiée à différents ratios cisplatine/carboxylate. Un ratio de 1,25 a été sélectionné comme étant le meilleur compromis entre stabilité des nanoparticules et un taux d'association relativement élevé de de $6.6 \pm$ $0.23 \mathrm{p} / \mathrm{p} \%$. La libération du cisplatine a été étudiée par la méthode de dialyse et il a été montré que la libération du cisplatine à partir des nanoparticules PBLG-PGlu était déclenchée par des concentrations physiologiques d' ions chlorures et était parfaitement maîtrisée durant une période de 14 jours selon un cinétique d'ordre quasi zéro. Ces nanoparticules PBLG-PGlu chargées en cisplatine ont montré un effet cytotoxique dans trois lignées cellulaires de cancer de la prostate pouvant potentiellement métastaser dans l'os. Finalement, les nanoparticules cisplatine PBLG-PGlu ont montré de façon simultanée des propriétés in vitro de ciblage osseux par des chaînes PGlu, mises en évidence dans une expérience in vitro avec de l'hydroxyapatite et des nanoparticules fluorescentes. Ces propriétés suggèrent une utilité potentielle des nanoparticules cisplatine PBLG-PGlu comme vecteurs pour le traitement de métastases osseuses dérivées de cancer de la prostate.

6 Nanoparticules multifonctionnelles de PBLG destinées au ciblage et à la délivrance

Le quatrième chapitre est axé sur la mise au point de nanoparticules multifonctionnelles décorées simultanément avec des chaînes de poly(acide glutamique) et de poly(éthylène glycol). De manière originale, une technique d'électrochimie a été utilisée comme un outil novateur et complémentaire à d'autres techniques pour le suivi des différents processus impliquant les nanoparticules chargées en cisplatine. Plus spécifiquement, la voltammétrie a été mise en œuvre afin de caractériser à pH voisin de la neutralité et en présence d'ions.des nanoparticules multifonctionnelles de poly(L-glutamate de γ -benzyle)-poly(acide glutamique) conçues pour le ciblage des tissus osseux. L'affinité de ces nanoparticules pour l'hydroxyapatite, c'est-à-dire la composante minérale majoritaire de l'os, a été réalisée grâce à la décoration de la surface des particules par des chaînes de poly(acide glutamique). Des signaux voltammétriques significativement différents ont permis de mettre en évidence l'association du cisplatine aux nanoparticules et d'établir sa cinétique de libération, en concordance avec les expériences de spectroscopie d'absorption atomique. La fixation des nanoparticules à l'hydroxyapatite a été évaluée par marquage en fluorescence des nanoparticules et a été confirmée par la technique d'électrochimie. En conclusion, la méthode électrochimique permet de confirmer les données obtenues par les méthodes de caractérisation par absorption atomique et fluorescence, tout en apportant des informations complémentaires

Le cinquième chapitre de la thèse présente différents types de nanoparticules multifonctionnelles et fluorescentes, possédant des propriétés d'attachement aux tissus osseux grâce à leur décoration à l'aide de l'alendronate ou bien du poly(acide glutamique), ou encore d'une combinaison de deux. La modulation des propriétés de surface et plus spécifiquement des propriétés d'attachement in vitro à l'hydroxyapatite a été effectuée grâce à une méthode versatile de nanoprécipitation. Il a été montré que les propriétés d'attachement in vitro à l'hydroxyapatite dépendait du ligand ostéotropique présent en surface des nanoparticules. Des études de distribution conduites in vivo dans la structure complexe de l'os ont montré que certains types de nanoparticules pouvaient s'accumuler à différents degrés dans ce tissu, sans relation directe avec la présence de ligands ostéotropes. Néanmoins, cette étude quantifie la
fluorescence totale dans l'os, sans faisant distinction entre la moelle osseuse et les surfaces osseuses minéralisées. Afin de pouvoir déterminer leurs capacité à atteindre les surfaces minéralisées, des études histologiques ont été effectués sur des coupes de fémurs non décalcifiés. Cette étude a montré que la présence d'alendronate ou de poly(acide glutamique) en surface des nanoparticules favorisait leur immobilisation sur les surfaces minéralisées osseuses, en accord avec les études ex vivo de fixation sur l'os. Grâce à leur ostéotropicité et à la possibilité de les adresser précisément dans l'os, ces nanoparticules multifonctionnelles constituent donc des vecteurs prometteurs pour le traitement de maladies squelettiques.

Enfin, une discussion générale reprend ces résultats expérimentaux afin de les présenter de manière synthétique et aussi de façon à les mettre en perspective avec des travaux décrits dans la littérature.

Conclusion

L'objectif de ce travail a consisté à concevoir des nanoparticules possédant un tropisme pour l'os, en vue du traitement ciblé de diverses pathologies osseuses. Pour cela, nous avons réalisé: (i) la conception, (ii) la préparation et la caractérisation de nanoparticules possédant un tropisme pour l'os, (iii) l'étude de leur biodistribution dans les tissus osseux et finalement (iv) la mise en œuvre de ces nanoparticules en vue de transporter et délivrer de manière contrôlée du cisplatine aux métastases osseuses. Ce travail a été mené à deux niveaux, avec en premier lieu la problématique d'essayer de comprendre les mécanismes de la distribution de nanoparticules vers et dans les tissu osseux puis, en second lieu, avec l'objectif de mettre en œuvre ces particules dans le cadre du traitement des métastases osseuses.

Ainsi, des nanoparticules multifonctionnelles ont été préparées par autoassemblage de divers dérivés fonctionnalisés du poly(gamma-benzyl-L-glutamate), préalablement synthétisés et caractérisés. Ces nanoparticules sont qualifiées de multifonctionnelles puisqu'elles ont été dotées simultanément : (i) de molécules d'alendronate ou de poly(acide glutamique), toutes les deux utilisées comme ligands de

8 Nanoparticules multifonctionnelles de PBLG destinées au ciblage et à la délivrance
reconnaissance de l'os (notamment via leurs interactions avec l'hydroxyapatite) et (ii) de poly(acide glutamique) à nouveau, permettant l'association de quantités importantes de cisplatine (jusqu'à 6%) et un contrôle prolongé dans le temps et très efficace de sa libération, déclenchée par un pH acide et/ou la présence d'ions chlorure, (ii) de groupements PEG dans certains cas, destinés à diminuer les phénomènes de reconnaissances non spécifiques dans l'organisme et d'élimination précoce par le système réticuloendothélial, sans oublier (iv), les entités fluorescentes nécessaires à l'imagerie des nanoparticules.

Des études de distribution des différents types de nanoparticules préparées ont été menées chez l'animal sain et ont montré des résultats encourageants puisque les nanoparticules décorées par les ligands ostéotropes (alendronate ou poly(acide glutamique) ont été retrouvées dans les tissus osseux et que leur rémanence a été mise en évidence jusqu'à 5 jours après leur administration intraveineuse grâce à leur capacité d'interagir avec l'hydroxyapatite. Plus précisément, des études histologiques ont permis d'établir que les nanoparticules portant de l'alendronate en surface avaient un tropisme net pour les surfaces en cours de minéralisation dans l'os, très certainement en raison de l'affinité vérifiée de ce biphosphonate pour l'hydroxyapatite. Au total, ces nanoparticules possèdent donc un tropisme osseux intéressant qui pourrait donc leur permettre de constituer localement un réservoir de principe actif et qu'elles pourraient libérer progressivement dans cet environnement, en concentrations plus élevées et soutenues dans le temps.

Clairement, la biodistribution de ces nanoparticules mériterait d'être mieux comprise, notamment en utilisant des modèles animaux pathologiques, afin de pouvoir sélectionner les nanoparticules possédant la microdistribution dans les tissus osseux la mieux adaptée à l'application thérapeutique. De ce point de vue, le traitement des foyers métastatiques osseux, fréquemment disséminés, constitue un objectif extrêmement intéressant au plan thérapeutique mais qui nécessite aussi de poursuivre ces travaux afin de mieux comprendre les mécanismes de la distribution dans les tissus osseux métastatiques. Il s'agira tout particulièrement de mieux comprendre le trafic des particules dans ces
tissus extrêmement complexes, leur microdistribution, les modalités de leur éventuelle capture par les cellules tumorales, afin d'être finalement capables de multifonctionnaliser efficacement ces nanoparticules et qu'elles atteignent au mieux leur objectif.

Références

[1] M.E.M. Barbosa, Synthèse de dérivés du poly(L-glutamate de γ-benzyle) : préparation et caractérisation de nanoparticules multifonctionnelles, in, Physico-chimie, Pharmacotechnie, Biopharmacie, UMR 8612, Université Paris-Sud, Paris, 2006.
[2] F.S. Sanchez, Nanoparticules multifonctionnelles de poly (L-glutamate de ψ-benzyle) conçues pour être aisément décorées par des ligands de reconnaissance par la mise en oeuvre du système biotineavidine, in, Physico-chimie, Pharmacotechnie, Biopharmacie, UMR 8612, Université Paris-Sud 2009.
[3] O. Cauchois, Conception, Préparation \& Caractérisation de Nanoparticules de Formes Complexes. Etude de leur Devenir In Vivo, in, Physico-chimie, Pharmacotechnie, Biopharmacie, UMR 8612, Université Paris-Sud, Paris 2011.
[4] H. Hirabayashi, J. Fujisaki, Bone-specific drug delivery systems: approaches via chemical modification of bone-seeking agents, Clin. Pharmacokinet., 42 (2003) 1319-1330.
[5] D. Wang, S.C. Miller, P. Kopecková, J. Kopecek, Bone-targeting macromolecular therapeutics, Adv. Drug Delivery Rev., 57 (2005) 1049-1076.
[6] S.A. Low, J. Kopeček, Targeting polymer therapeutics to bone, Adv. Drug Delivery Rev., 64 (2012) 1189-1204.

[^0]: 4 Nanoparticules multifonctionnelles de PBLG destinées au ciblage et à la délivrance d'anticancéreux aux tissus osseux.

