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Plant Growth Models and Methodologies Adapted to
Their Parameterization for the Analysis of Phenotypes

Plant growth models aim at describing the interaction between the growth of plants
and their environment. Ideally, model parameters are designed to be stable for a wide
range of environmental conditions, and thus to allow characterizing genotypes. They
offer new tools to analyze the genotype × environment interaction and they open new
perspectives in the process of genetic improvement.

Nevertheless, the construction of these models and their parameterization remain a
challenge, in particular because of the cost of experimental data collection.

In this context, the first contribution of this thesis concerns the study of plant growth
models. For sunflower (Helianthus annuus L.), the model SUNFLO [Lecoeur et al.,
2011] is considered. It simulates the plant phenology, morphogenesis and photosynthe-
sis under abiotic stresses. An extension of this model is proposed: this new SUNLAB
model adapts into SUNFLO a module of biomass allocation to organs, using the
source-sink concepts inspired by the GREENLAB model [De Reffye and Hu, 2003].
For maize (Zea mays L.), the CORNFLO model, based on the same principles as SUN-
FLO, was also studied. These models helps discriminating genotypes and analyzing
their performances.

On the other hand, in order to parameterize these models, an original methodology
is designed, adapted to the context of plant variety improvement by breeders. The
MSPE methodology (“multi-scenario parameter estimation”) uses a limited number
of experimental traits but in a large number of environmental configurations for the
parameter estimation by model inversion. Issues including identifiability, sensitivity
analysis, and the choice of optimization methods are discussed. The influences of
environmental scenarios amount on the model predictive ability and on estimation
error are also studied.

Finally, it is demonstrated that selecting scenarios in different environmental classes
(obtained by data clustering methods) allows to optimize the multi-scenario parameter
estimation performances, by reducing the required number of scenarios.

Keywords: SUNFLO, CORNFLO, SUNLAB, MSPE, MSPEJ, MSPEE, Crop model,
Plant growth model, Sunflower, Corn, Parameter estimation, Environment clustering
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Modèles de Croissance de Plantes et Méthodologies
Adaptées à Leur Paramétrisation pour l’analyse des

Phénotypes

Les modèles de croissance de plantes cherchent à décrire la croissance de la plante
en interaction avec son environnement. Idéalement, les paramètres du modèle ainsi
défini doivent être stables pour une large gamme de conditions environnementales, et
caractéristiques d’un génotype donné. Ils offrent ainsi des nouveaux outils d’analyse
des interactions génotype × environnement et permettent d’envisager de nouvelles
voies dans le processus d’amélioration génétique chez les semenciers.

Malgré tout, la construction de ces modèles et leur paramétrisation restent un chal-
lenge, en particulier à cause du coût d’acquisition des données expérimentales.

Dans ce contexte, le premier apport de cette thèse concerne l’étude de modèles de
croissance. Pour le tournesol (Helianthus annuus L.), il s’agit du modèle SUNFLO
[Lecoeur et al., 2011]. Il simule la phénologie de la plante, sa morphogenèse, sa pho-
tosynthése, sous les contraintes de stress abiotiques. Une amélioration de ce modèle a
été proposée : il s’agit du modèle SUNLAB, implémentant dans le modèle SUNFLO
les fonctions d’allocation de biomasse aux organes, en utilisant les concepts sources-
puits du modèle GREENLAB [De Reffye et Hu, 2003]. Pour le mäıs (Zea mays L.),
le modèle CORNFLO, basé sur les mêmes principes que SUNFLO a également été
étudié. Ces modèles permettent la différenciation entre génotypes.

D’autre part, afin de paramètrer ces modèles, une méthodologie originale est conçue,
adaptée au contexte de l’amélioration variétale chez les semenciers : la méthode MSPE
(“multi-scenario parameter estimation”) qui utilise un nombre restreint de traits ex-
périmentaux mais dans un grand nombre de configurations environnementales pour
l’estimation paramétrique par inversion de modèles. Les questions d’identifiabilité,
d’analyse de sensibilité, et du choix des mèthodes d’optimisation sont discutées. L’in-
fluence du nombre de scénarios sur la capacité de prévision du modèle, ainsi que sur
l’erreur d’estimation est également étudiée.

Enfin, il est démontré que le choix des scénarios dans des classes environnementales
différentes (définies par des méthodes de classification - clustering) permet d’optimiser
le processus expérimental pour la paramétrisation du modèle, en réduisant le nombre
de scénarios nécessaires.

Mots-clè : SUNFLO, CORNFLO, SUNLAB, MSPE, MSPEJ, MSPEE, Modèles
de croissance de plantes, Tournesol, Mäıs, l’estimation des paramètrique, Clustering
environnemental
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All sciences are now under the obligation to prepare the ground for

the future task of the philosopher, which is to solve the problem of

value, to determine the true hierarchy of values

Friedrich Nietzsche

The scientists of today think deeply instead of clearly. One must be

sane to think clearly, but one can think deeply and be quite insane.

Nikola Tesla

I seem to have been only like a boy playing on the sea-shore, and

diverting myself in now and then finding a smoother pebble or a

prettier shell than ordinary, whilst the great ocean of truth lay all

undiscovered before me.

Isaac Newton
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1. INTRODUCTION

1.1 Context: Breeding and Phenotyping

Increasing needs and requirements for food or raw materials pose grand challenges on

plant derived products. The objective of breeding is to improve plant productivity

across all scales from molecular to field applications by selecting or creating varieties

with improved performance in agricultural environments. These crop improvement

programmes, in particular, where breeding populations and cultivars are characterized

by high genetic diversity and substantial genotype × environment interactions, are

based on precise and efficient phenotyping.

Plant phenotype is the set of observable biophysical characteristics of a plant organism,

as determined by both genes and environmental influences. Phenotyping is the con-

struction, recording and analysis of phenotypes. It is the comprehensive assessment of

plant complex traits such as growth, development, tolerance, resistance, architecture,

physiology or yield. The phenotypic traits of interest can also include less integrated

variables, for example to describe plant architecture or morphology (leaf surface area,

plant height, stem diameter, internode length, leaf angle, seed number and size, tiller

number) or phenology (flowering time, germination time). Phenotyping is thus a

key step in the breeding process, by helping investigate the physiological principles

involved in the control of basic plant functions [Walter et al., 2012].

However, the current limitations of phenotyping hamper the analysis of the existing

genetic resources for their interaction with the environment. Progresses in plant phe-
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notyping are key factors for the success of modern breeding and basic plant research.

Early phenotyping by farmers or breeders to select crops with better yield or stronger

resistance was mostly based on experience and intuition. Classical phenotyping tools

are based on visual observations, measurements or biochemical analyses. A large set of

different aspects led to the development of automated and high-throughput advanced

plant phenotyping. For example, because the overall goal of phenotyping approaches

with respect to plant breeding is to quantify or rank the success of a range of genotypes

in certain environmental frameworks, which needs usually hundreds or thousands of

genotypes to be compared with each other, this requires more rapid measurement

procedures, a high degree of automation and access to appropriate, and well-conceived

databases [Walter et al., 2012]. Different systems and initiatives were built for this

purpose. For example, the ScanAlyzer platform by LemnaTec is a plant phenotyping

system to extract and record plant phenotypic traits. It is capable to image plants in a

greenhouse by automatically moving plants, placing them on beltways, and positioning

them in front of a stereoscopic camera. Proprietary software analyzes the images to

extract phenotypic-related information. Although fully developed and tested, this

proprietary platform is very costly, requires a large investment in the appropriate

infrastructure, and therefore its easy deployment and maintenance are in question

[Tsaftaris and Noutsos, 2009]. Another initiative is PHENOPSIS, a custom growth

chamber phenotyping system, developed by Optimalog, on contract by the Laboratory

of Plant Ecophysiological responses to Environmental Stresses, in Montpellier France

[Granier et al., 2005]. This proprietary system uses a robotic arm to position an

array of sensors on top of a small plant within a growth chamber. As a custom-made

proprietary solution there is limited information about its deployment cost. Many

such systems have been built to facilitate the construction and record of phenotypes.
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1.2 Crop Models Offer New Perspectives in

Phenotyping and Breeding

While the progress of phenotypes recording has been boosted by the above introduced

platforms, the analysis of the produced data still remains quite crude, generally based

on classical statistical comparisons with actual genotyping information to correlate

genotypes to phenotypes, see for instance Tsaftaris and Noutsos [2009]. Moreover, if

the information recorded on plant descriptive variables is clearly enhanced by such

systems, the technical implementation makes the range of environmental variations

that can realistically be explored usually pretty limited, so that the statistical analysis

performed generally lacks some predictive capacity in a wide range of environmental

conditions.

In this context, Hammer et al. [2006] suggests that “while developing a predictive

capacity that scales from genotype to phenotype is impeded by biological complexities

associated with genetic controls, environmental effects and interactions among plant

growth and development processes, organ-level plant growth model can help navigate

a path through this complexity”. The general idea is that plant growth models aim

at describing the ecophysiological processes driving plant growth in interaction with

the environment so that the parameters of the resulting model should be stable in

a large range of environmental conditions and potentially characterize the genotype

under study. As stated by Letort [2008]; Tardieu [2003], one genotype should be

characterized by one set of model parameters. Such idea was declined in a few studies,

on a submodel of maize leaf elongation in Reymond et al. [2003] or at whole plant

level for sunflower in Casadebaig et al. [2011], Lecoeur et al. [2011].

As a consequence, well constructed plant growth models should be able to simulate

phenotypic traits of various genotypes in diverse environments, and thus may provide

an efficient help to analyze phenotype: it can predict crop performance over a range
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of environmental conditions and help explaining the principle causes of phenotypic

features from environment and genotypic factors. The consequence in breeding is

potentially of great interest. A few of the traits manipulated by breeders are controlled

by single genes, but most breeding efforts deal with traits controlled by several genes,

such as organ size, days to maturity, photoperiod sensitivity and yield. In quantitative

genetics, the phenotype is the result of the expression of the genotype, the environment

and the interaction between the genotype and the environment [Messina et al., 2006].

Progress in breeding higher-yielding crop plants would be greatly accelerated if the

phenotypic consequences of making changes to the genetic marker of an organism

could be reliably predicted. Letort [2008] showed how plant growth models could be

used as an intermediate in this process.

1.3 Parameterization of Plant Growth Models for

Phenotyping

To improve the predictive capacity of plant growth models in various environments,

the basic idea is to enrich the mechanistic description of plant ecophysiology [Yin and

Struik, 2010]. However, the more complex the models are, the more troublesome their

parameterization and the assessment of the estimate uncertainty [Chen and Cournède,

2012; Ford and Kennedy, 2011] are, specifically due to the costly experimentation and

the great number of unknown parameters to consider. Likewise, local environmental

conditions (in terms of climatic and soil variables, as well as biotic stresses) and initial

conditions in specific fields are also very delicate to characterize. Consequently, the

propagation of uncertainties and errors, which are related to parameters and inputs of

these dynamic models, may result in unsatisfactory prediction concerning the plant-

environment interaction in real situations.

In the context of breeding, in order to be able to discriminate between genotypes
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based on their corresponding model parameters, the uncertainty on model param-

eters should be as small as possible. On the other hand, implementing the heavy

experimental data collection necessary for model parameterization (see examples of

experimental protocols for the parameterization of the GreenLab model for maize Guo

et al. [2006], grapevine Pallas et al. [2010], rapeseed Jullien et al. [2011] or chrysan-

themum Kang et al. [2012b]) is too costly in an industrial context implying the tests

and characterization of large numbers of genotypes. For this purpose, as suggested

by Jeuffroy et al. [2006b], it would be very useful if a methodology could be devised

to take advantage of farmers’ data (that are classically available at a reduced cost)

for the parameterization of plant models. More generally, a well chosen panel of envi-

ronmental conditions in which a few plant traits are measured should mathematically

provide enough information for model identification.

1.4 PhD objectives and outlines

This thesis focuses on four issues: plant model design, parameter estimation, optimiza-

tion of experimental protocol via environment classification, and model applications on

producing phenotype analysis knowledge. Model analysis methods such as sensitivity

analysis are also used for facilitating above issues.

Model design. The first objective of our research is the study of plant models

adapted to the analyzis of the interaction between environment and genotypes. Chap-

ter 3 is the chapter to introduce general crop modeling and model analysis theories,

and involved models in this thesis. Two models SUNFLO [Casadebaig et al., 2011;

Lecoeur et al., 2011] and SUNLAB [Kang et al., 2012a] are used for the sunflower

crop (Helianthus annuus) and the CORNFLO model for the corn crop (Zea mays

L.). These models are used for model simulation and prediction comparison, model

analysis methodology testing, and model application.
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SUNFLO, CORNFLO and SUNLAB all possess parameters with biological meaning

that can potentially be characteristic of plant genotypes. These models have the

advantage to predict complex plant or crop traits under diverse environmental con-

ditions. Ecophysiological models are required to have more physiological feedback

and accurate simulation of phenotypic features. SUNFLO, CORNFLO and SUNLAB

simulate plant phenology, morphogenesis, photosynthesis, biomass production and

biomass distribution under abiotic stress including temperature and drought stress.

The water deficit, as an unbalance between soil water availability and evaporative

demand, causes a set of decreased plant physiological functions.

The sunflower model SUNLAB is developed mainly to improve the biomass distri-

bution module in SUNFLO, by adopting source and sink mechanism to determine

organ biomasses. Parameters for four genotypes “Albena”, “Heliasol”, “Melody” and

“Prodisol” are estimated based on two field experiments, one of which is under water

deficit situation. SUNLAB computes more phenotypic traits than SUNFLO, such as

all organ biomasses at a daily step. The model can be also used for the simulation

of the specific leaf area variable. Specific leaf area (SLA) is the ratio of leaf area to

dry leaf mass, which is usually an influent input variable often associated with large

uncertainty ranges in most dynamic crop growth models [Rawson et al., 1987]. It is an

important variable in plant growth modeling. In most dynamic models, it is usually

used to determine blade surface area values from blade biomass, as in GREENLAB

[Christophe et al., 2008] or in TOMSIM [Heuvelink, 1999]. Since blade area in turn

determines the biomass production, accurate estimation of SLA is mentioned as a ma-

jor source of error in models and implies difficulties in obtaining a reliable mechanistic

computation of leaf area index, which is the main component of biomass production

modules [Heuvelink, 1999; Marcelis et al., 1998]. It is however generally considered as

constant, although it has been shown, for instance on wheat [Rawson et al., 1987], that

SLA varies with genotypes, leaf ranks and leaf growing periods. Regarding sunflower,
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the variations of SLA and the factors influencing them are still poorly known. As

SUNLAB can simulate the dynamics of individual blade mass profiles independently

from those of blade areas, the SLA can be computed as a model output, contrary to

the classical situation in which it is taken as an input.

Parameter estimation. The second objective of our research is the conception of

an original methodology for model parameter estimation, adapted to the context of

plant variety improvement by breeders. In parameter estimation, an estimator takes

the measured data as input and produces an estimate of the parameters, with an

evaluation of the uncertainty on the parameter estimates (confidence or credible in-

tervals). In crop models’ parameter estimation, a specific problem is the large number

of parameters compared to the amount of field data Makowski et al. [2006], which

also causes data assimilation problem requiring expensive experiments for heavy data

collections.

A methodology, multi-scenario parameter estimation methodology (MSPE), is de-

signed to solve it. It uses a limited number of experimental traits but in a large

number of environmental configurations for the parameter estimation by model inver-

sion. While ecophysiological models of plant growth are widely researched to analyze

genotype-by-environment interactions, the estimation of their parameters is a crucial

issue in order to allow the discrimination between genotypes. In breeding programs,

however, the amount of experimental trait data is usually not sufficient for accurate

parameter estimation. MSPE takes advantage of the multi-environmental trials (po-

tentially large amounts of environmental conditions available) set in place by breeders

to evaluate the performances of their genotypes. The assumption is that such variety

of discriminating scenarios should compensate for the little amount of information

(data) for each scenario.

The methodology is tested on the SUNFLO model with theoretical data confirming

its feasibility. Practical issues for carrying out MSPE are discussed. The first issue



24 1. Introduction

is proposing priorities on the parameters to estimate with sensitivity analysis. The

second includes ensuring the most appropriate numerical optimization methods for

the model (Gauss-newton, Simulated Annealing and Particle Swarm Optimization

methods are compared in the case study) and figuring out the best computation

solution to coordinate with corresponding optimization methods. The use of the

computing mesocenter of Centrale helps enhance the efficiency of the comutation for

this purpose. The last issue is investigating parameters non-estimability problem

under MSPE, resulting from model structural non-identifiability and scenario data’s

information insufficiency (practical identifiability). The hypothesis that “the increase

of scenarios makes estimated parameters possessing better prediction ability” is proved

by a simple test which increases scenario amount for parameter estimation to detect

corresponding prediction error, and by a more rigorous test based on cross validation

method, in which 20000 points are used to measure the prediction error of estimated

parameters for a specific scenario amount. An extended version of MSPE, named

MSPEJ, is the multi-scenario parameters estimation methodology based on delete-m

Jackknife method. The interval estimator’s feasibility is proved. Our tests indicate

that parameter distribution variances are reduced along with the increase of scenario

amount based on Jackknife samples. They are presented in Chapter 4.

Environmental protocols. Environment inputs are of course crucial determinants

for the model and influence a lot model outputs. This obvious idea is used to improve

the experimental protocol for parameter estimation by investigating the choice of the

environmental configurations (the scenarios) for the MSPE methodology. In Chapter

5, environmental scenarios are clustered by hierarchical and centroid-based analysis

respectively based on the environmental information including temperature, radiation,

precipitation, and potential evapo-transpiration, based on their influences on plant

growth features such as crop yield in this thesis, and based on the combination of

both. The three clustering graphs are illustrated and the last strategy is recommended
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since it clusters environmental scenarios taking into account both its environmental

information and its influence on plant growth. Environment clusters can be used

to optimize experiment design. A scenario in one cluster whose correlation is 0.9

can be recognized as the representative scenario for the cluster. Selecting only one

representative scenario from each cluster in experiment design saves experimental cost

and therefore the phenotype construction cost. MSPEE, a multi-scenario parameter

estimation methodology based on environment clustering and scenario selection, is

used to improve the efficiency of MSPE. With fewer scenario amounts, estimated

parameters in MSPEE have the same good prediction ability than MSPE. Fewer

scenario amounts in jackknife samples also produce the same variance than MSPE.

Moreover, the system practical identifiability is improved.

Application. An illustration of how crop models can be applied for phenotypes anal-

ysis is also studied in this thesis. Jones et al. [2006] concluded that four most important

applications of crop model are: prediction, the determination of optimal management,

large spatial-scale applications, and the characterization of plant varieties and plant

breeding. The project in Chapter 6 is an application involving all the four aspects.

SUNFLO is used to produce large phenotypic traits of 20 sunflower genotypes across

large geographies and over large time scales. In particular, crop water demand for

irrigation and yield are investigated. The large geographies include 25 locations with

diverse drought conditions in five European counties: France, Greece, Italy, Portugal

and Spain which account for 12 million ha corresponding to 75% of the total area

equipped for irrigation in EU. The large time scales include a real dataset from 1951

to 2011 and a prediction dataset from 2012 to 2100 (based climatic scenarios simulated

by climatic models).

To sum up, this thesis aims at producing three types of knowledge. Firstly, it explores

models which can well describe the genotype by environment interaction for a better

understanding of phenotypes. Secondly, it researches on modeling analysis method-
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ology to improve model parameterization. Thirdly, it is targeted to use developed

models and methodology on real world phenotypes analysis and prediction.



Part I

MATERIALS AND MODELS





2. FIELD EXPERIMENTS AND DATA

Experimental data is essential in any modeling process, and especially for crop mod-

eling. It is necessary for model design since a first step often consists in data analysis,

before building a conceptual model. Models then need to be calibrated by confronta-

tion to experimental data and model predictions should be evaluated against indepen-

dent sets of data. Two kinds of data are considered in crop modeling: environmental

data and crop data. Environmental data consists of weather data, soil features and

crop management data. More precisely, the weather data considered in this thesis in-

clude maximum and minimum temperature, rainfall, relative humidity, solar radiation.

Weather data are required at daily time steps to assess daily crop growth processes.

Soil data include thickness of soil layer, soil texture, soil moisture, wilting point of soil,

etc. Crop management data include date of crop sowing, irrigation, sowing density,

etc. Crop data consist of the experimental measurements performed on the growing

crop, such as leaf area, seeds biomass etc.

Data determines the effective boundaries of the model applicability. Models developed

for a specific region may not be valid as such in another region. Proper parameter

calibration and model validation is needed before using a model. For example, a

sunflower model fitting to a 2001 French farming field may not work as as well in

2010, or in another farming location. Even for a model designed to fit general cases,

it is necessary to know what data are used to support its universality. It is necessary

to understand the data used to verify the hypothesis and to limit the models, theories

and applications. In this chapter, we are going to introduce three databases of five

datasets. They are used either in model design, model analysis, model validation, or
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model application.

2.1 Experimental Data for Sunflower

2.1.1 Detailed Experimental Data for six Genotypes for two

Years

This dataset is used for the calibration of the SUNLAB model in section 3.3. It in-

cludes three sub datasets, respectively called “2001”, “2002a” and “2002b”. They all

come from field experiments conducted in 2001 and 2002 at SupAgro experimental

station at Lavalette (43◦ 36’N, 3◦ 53’ E, altitud 50 m) on a sandy loam soil for four

genotypes “Albena”, “Heliasol”, “Melody” and “Prodisol”. In “2001”, Sunflowers were

sown on 5 May 2001 at a density of about 6 plants m−2 and a row spacing of 0.6

m, in a randomized complete block design with four replications. Plots measured

5.5m× 13.0m. In the other two datasets, experiments were conducted with the same

plant arrangement. But sunflowers were sown on 15 May 2002 with plots measured

8.0m × 8.0m. During the experiment, meteorological data such as temperatures and

radiation were recorded. FTSW representing the available water in the soil was esti-

mated. Organogenesis was described based on the phenomenological stages that are

recorded every 2-3 days. Once a week, six plants per genotype were harvested. Indi-

vidual leaf areas were estimated from blade lengths and widths. All the above-ground

organs (leaves, stem, capitulum and seeds) were collected and then oven-dried at 80◦C

for 48 h. The dry weights of these organs were measured by compartments. Daily ra-

diation interception efficiency RIE(d) and daily radiation use efficiency RUE(d) were

respectively calculated and estimated based on field measurements [Lecoeur et al.,

2011]. In all experiments, the crop was regularly irrigated and fertilized to avoid

severe water deficits and mineral deficiency. But in practice, the three experiments
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showed different water deficit conditions. The index FTSW of the three experiments

is represented in Fig.2.1. Since the experiment measurements were carried out every

a few days, an interpolation on experimental data was drawn to better highlight the

contrast.

Fig. 2.1: FTSW for three datasets “2001”, “2002a”, “2002b”

2.1.2 Sparse Experimental Data for 90 Genotypes for three Years

This dataset includes experimental data collected for 90 F1 hybrid sunflower geno-

types. This F1 generation is the set of plant offsprings resulting cross matings of two

parental lines. One of the 90 genotypes is the genotype “Melody” whose parameters

has been estimated by the way of direct measurement in Lecoeur et al. [2011]. For

each genotype, plants were grown under around 20 scenarios, chosen among a few lo-

cations and in three years 2008, 2009 and 2010. Each scenario contains environmental

information including temperature, radiation, precipitation and evapo-traspirational

reference. The corresponding crop data consists only of crop yield. This kind of

experimental protocol, with sparse crop information but collected in many different

environmental conditions (scenarios) is typically collected by breeding companies but

is unusual for classical parameter estimation approaches. The multi-scenario parame-
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ter estimation methodology we developed, MSPEJ, described in section 4.6.2, allows

dealing with kind of information and was applied to one genotype, “Melody”, in order

to test its feasibility. For time reasons, this result was not extended to all the 90 geno-

types parameters, which should permit to analyse the linkage between quantitative

trait loci and SUNFLO parameters. This future perspective is discussed in section 7.

2.2 Experimental Data for Corn

This experimental dataset, entitled as dataset 2.2, is build from experiments on 11

corn genotypes in around 10000 scenarios comprising around 1000 counties of around

60 American states in 10 years from 2001 to 2010. For each scenario, information

about the environmental information including weather data and soil data, about the

crop practices such as sowing density, date and harvest date, and about the crop

yield are available. Among them, the 10 years daily weather data were obtained

from the database of Syngenta Corporation. Soil data were extracted from the soil

survey geographic database (SSURGO) produced by the Natural Resources Conserva-

tion Service of United States Department of Agriculture (USDA). They have diverse

drought status. Crop practices are also obtained from USDA. Yield data are from

National Agricultural Statistics Service of USDA. We used the 720 experimental sce-

narios with full irrigation for one genotype to test MSPE and MSPEE parameter

estimation methodology in Part II. Then all the available scenarios are used to test

the method based on environment clustering in Chapter 5.
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2.3 Additional Environmental Data

2.3.1 36 Years French Weather Data

To provide meaningful information about the performance of plants in a certain envi-

ronmental context, a set of environmental information needs to be recorded to analyze

genotype × environment interactions. This dataset contains the record of environ-

mental information, including minimal temperature, maximal temperature, radiation,

precipitation, and evapo-transpiration reference on daily basis in Toulouse, France.

The data is available whole year round from 1971 to 2007. It is used for the theoreti-

cal study of multi-scenario parameter estimation methodology (Chapter 4) to produce

corresponding plant phenotypic traits simulations.

2.3.2 Large Scale Environment Database

To illustrate the model potentials for yield predictions at large scales and its ability to

discriminate genotype performances, relevant climatic scenarios are required. These

were obtained from an open source dataset “ENSEMBLES”, which is funded by the

EU FP6 Integrated Project (Contract number 505539). Its climate prediction system

is based on the principal state-of-the-art, high resolution, global and regional Earth

System models developed in Europe. It is validated against quality controlled, high

resolution gridded datasets for Europe, to produce for the first time, an objective

probabilistic estimate of uncertainty in future climate at the seasonal to decades and

even longer timescales. For any European point coordinate of longitude and latitude,

this climate prediction system produces a variety of possible weather information,

such as wind, humidity, cloud cover, snow depth etc. In the context of our crop

modeling research, only the variables of temperature, radiation, precipitation and

evapo-transpirational reference are needed. We picked up 25 locations in five European
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counties - France, Greece, Italy, Portugal and Spain - and large time scales - from 1951

to 2100 - for our phenotype analysis application in Chapter 6.



3. PLANT GROWTH AND BREEDING

MODELS

Plant or crop models, that use systems approach to simulate the interaction between

crops and environment, is an important tool to assimilate knowledge gained from field

experiments, to promote the understanding of biological system behaviors and un-

derlying eco-physiological functions, and to supply mathematical analysis for solving

agriculture and biological problems. This chapter gives a description of the models

considered or developped in the thesis. CORNFLO is a growth model for corn (Zea

mays L.) and will be deeply analysed in Part II. SUNFLO is a sunflower growth model

(Helianthus annuus L.): it will be analysed and compared with other sunflower mod-

els, and used for applications. SUNLAB is a new model developed in this thesis in

order to expand SUNFLO abilities for phenotype analysis.

3.1 Principles of Crop Growth Modeling

3.1.1 Objectives and Constraints of Model Design in a Breeding

Context

Context: models to guide the breeding process. Generating timely, robust, reli-

able and useful information about complex biological systems is the key to address

many of the world’s most pressing policy concerns in diverse areas: public health,
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human and animal disease, food production, and ecological conservation [Tsaftaris

and Noutsos, 2009]. Modeling is a modern approach to provide such information. A

mathematical model is a description of a system using mathematical concepts and

language. It can help to explain a system and to study the effects of different ex-

ponents, and to make predictions about behaviors. More specifically, crop models

aim at describing and understanding one of the most important biological cycles: the

interaction between crop genotypes and agricultural environment.

Assessments of genotype performances in in situ experimental trials hamper the breed-

ing process by temporal, logistic and economical difficulties. Indeed, genotypes per-

form differently depending on the environmental conditions (soil, climate, etc.) and

the management practices (sowing date, nitrogen inputs, irrigation, etc.). Therefore

a large number of trials are needed to explore a sufficiently diverse set of genotypes

x environment x management (GxExM) combinations in order to characterize these

complex interactions. The emerging approach to overcome these difficulties relies on

the use of models that determine the plant phenotype in response to environmental

inputs. These models should simulate the phenotypic traits of interest (e.g. yield)

with good robustness and predictive capacity. They should also present a trade-off

between mechanistic aspect and complexity: Chapman et al. [2003] state that, for such

use, a growth model should include ‘principles of response and feedbacks’ to ‘handle

perturbations to any process an self-correct, as do plants under hormonal control when

growing in the field’ and to ‘express complex behavior even given simple operational

rules at a functional crop physiological level’. For the analysis of phenotypes, it is

expected that crop models can faithfully enough reproduce the wide range of pheno-

typic responses for various genotypes in various environments. They should provide

insights on the causal chain of processes that produce a given phenotypic trait and

help deciphering the relative contributions of different environmental factors. Once

properly calibrated and validated, these models could be used to guide future studies
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on improving agricultural practices and breeding, or to examine the adaptation of

given genotypes to some target environments and to provide recommendations. Con-

sequently, an important question is to identify what kind of models can be used in

that context.

Choice of Model Class. Crop models can be defined as a system representation of

crops. Several classifications can be proposed:

• Static vs. dynamic: Static models do not account for the time variable and

describe a system at an equilibrium or steady state (or at least at a given time

point); on the contrary in dynamic models, states and outputs of the described

system can change with respect to time.

• Discrete vs. Continuous: models can be written under discrete or continuous

formulations depending on the set of definition of their space-time variables.

In particular, for dynamic models, this sub-classification is defined by the time

variable that can be (tn)n∈N or t ∈ R. This choice leads to writing the model

under the form of recurrence or differential equations.

• Deterministic vs. stochastic: deterministic models produce the same outputs

for a given set of inputs, while stochastic models include some random variables

that introduce some non-predictable effects (variability of the outputs can be

described through various statistics, e.g. probability distribution, mean, vari-

ance).

• Empirical vs. mechanistic: empirical models (or descriptive models) are derived

on direct descriptions of observed data. They are usually regression based and

provide a quantitative summary of the observed relationships among a set of

measured variables [course of V. A. Bokil, Department of Mathematics, Oregon

State University, MTH 323: Spring 2009]. Mechanistic models (or explanatory

models) generally arise from approaches relating to the complex system theory:

they consider the individual components of the system and their interactions,
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and what emergent properties appear.

With the different characteristics come different advantages and drawbacks. For ex-

ample, deterministic models do not allow to represent the different sources of residual

variability, which are actually inherent to biological and agricultural systems [Brock-

ington, 1979]. This might look unsatisfactory when variability is an important com-

ponent of model outputs, e.g. in rainfall prediction, or if the degree of uncertainties

or of unexplained variations reaches a high level. However, stochastic models tend to

be technically difficult to handle and can quickly become complex. Moreover, they

can lack some explanatory properties, if random variables are introduced in place of

more mechanistic modules, to describe some processes whose internal mechanisms are

unknown or voluntarily ignored in the modeling work. Therefore, in certain cases,

deterministic models may be adequate despite the intrinsic variability of biological

phenomena. Regarding the choice between empirical or mechanistic models, it is ob-

vious that most models are in fact made of a mixing of these two approaches. Pure

empirical models are mere interpolations of observation data and should be used only

in the range of conditions over which they have been derived [SINCLAIR and SELIG-

MAN, 1996]: it is advisable to avoid extrapolation. For instance, under contrasting

conditions, the above water use efficiency-cane yield relationship may not hold [Keat-

ing et al., 1999]. In general, mechanistic models are often more useful, as they consist

of a quantitative formulation of a set of hypotheses [Wells, 1992] and as they can be

used out of their calibration interval (provided that the model predictive capacities

have been preliminarily checked). However, the consequences of using an inappropri-

ate mechanistic model are worse than for empirical models because the parameters in

mechanistic models provide information about the quantities and properties of real

system components. Thus, the appropriateness of mechanistic models needs close

scrutiny [Christopoulos and Michael, 2000]. For applications, the choice of a model

class is complicated and depends on the project objectives. In this thesis, the studied
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models are all dynamic, discrete, mechanistic and deterministic. We choose them to

be dynamic and discrete because we are interested in daily simulation of crop traits.

They are mainly deterministic because we want to well simulate the statistical average

of crop features and the uncertainty of system and environmental data are comparably

not important for the current phase. We aim to improve the understanding of crop

system mechanisms which are also the most crucial for the analysis of phenotype,

genotype, and environment interactions.

Global flowchart of a discrete dynamic deterministic crop model including a ge-

netic module. For applications in the breeding context, the adequate models should

be able to take into account a representation of the genomic regions associated with

variability in the complex traits of interest [Hammer et al., 2006]. In this thesis, the

studied crop models consider plants as dynamic systems and aim at simulating the

relative contributions of its genotype and of the environmental conditions in the con-

stitution of its phenotype. These models should prove their ability to discriminate

different genotypes by different parameter sets that should be shown to remain sta-

ble under varying environmental conditions. They should simulate plant genotypic

responses to environmental variations by describing crop eco-physiological functions

with mathematical equations. The generic formulation of a dynamic deterministic

plant system model in discrete time can write as:

X(t+∆t) = g(X(t), U(t), θ) (3.1)

where t is time, ∆t is some time increment, X(t) = [X1(t), · · · , Xs(t)] is the vector of

state variables, representing the plant phenotypic characteristics at at time t, U(t) is

the vector of explanatory variables, representing environmental information as input

to dynamic plant system at time t, θ is the vector of parameters, representing biophys-

ical parameters of plant genotypes and g is the set of system functions, representing

the interaction of plant genotypes confronted to environmental input to produce the
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output of plant phenotypic performances.

This can be illustrated through the diagram in Fig. 3.1: U(t) is the environmen-

tal input including weather, density, soil information, etc. An example of the set of

biophysical functions, g, is represented through three modules including organogene-

sis, biomass production and partitioning. There are multiple ways to construct each

module, depending on the considered crop models and output scales. A set of model

parameters θ is representing a genotype: the values of these parameters can be the

output of a ‘genetic’ model whose inputs are genetic information such as quantitative

trait loci (QTL). This kind of modeling approach can simulate the responses of vir-

tual plants carrying diverse combinations of alleles under different scenarios of abiotic

stress.

Fig. 3.1: Flowchart of plant growth modeling.

The main difficulty is to mathematically express the genetic variability of responses

to environmental conditions. Modeling via gene regulatory networks is not feasible

for such complex systems, but plants can be modeled using response curves to en-

vironmental conditions that are ‘meta mechanism’ at plant level. Each genotype is

represented by a set of response parameters that are valid under a wide range of

conditions. Transgenesis of one function experimentally affected one response param-

eter only. Transgenic plants or plants carrying any combination of quantitative trait



3.1. Principles of Crop Growth Modeling 41

loci might therefore be simulated and tested under different climatic scenarios, before

genetic manipulations are performed [Tardieu, 2003].

3.1.2 Methodologies and Mathematical Tools to Develop Crop

Models

The basic procedures for developing any model involve model design, model calibra-

tion, and model validation. Following these procedures, models in this chapter are

designed to fulfill specific objectives, are calibrated to confront to experimental data

and are validated to assess their performances or robustness and to define their usage

scope.

Model Design. Strategies for model design depend on the modeler’s objectives.

The models considered in this thesis are designed to fulfill different combinations

of objectives.

Three models are presented and studied in this chapter: two existing models, CORN-

FLO and SUNFLO [Lecoeur et al., 2011], are analysed, and a new model, SUNLAB

[Kang et al., 2012a], is developed. These models are designed to simulate plant growth

and physiological functions under drought stress. To this end, a current approach con-

sists in building functional-structural plant models (FSPM), which combine two tradi-

tional perspectives (emphasizing either plant function or plant architecture). FSPMs

have several advantages, such as their ability of capturing subtle differences in resource

allocation or structural growth and their consequences for future seedling performance

[Sievanen et al., 2000]. FSPMs also realistically represent the spatial distribution of

plant organs, which is an important aspect in whole-plant resource uptake [Kellomaki

et al., 1985]. Yin and Struik [2010] recommend that crop models should be upgraded

based on understanding at lower organizational levels for complicated phenomena such

as sink feedback on source activity. In this chapter, we will present how the SUNLAB
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model extends SUNFLO by introducing a feedback of allocation processes on the pro-

duction. The modules describing the modelling of water deficit effects are detailed in

section 3.2.5.

Another of our modeling objectives is related to the ability of these models to discrim-

inate genotypes through variations in their parameter values [Jeuffroy et al., 2006a].

This property was analysed for SUNFLO in [Lecoeur et al., 2011] and is explored for

the new model developed in this thesis, SUNLAB, in section 3.3. When designing a

model, a key question is to determine whether parameters should have a biological

meaning. According to Yin and Struik [2010], parameters of many current crop mod-

els only have little biological meaning: they suggest building less empirical models by

exploiting the existing physiological understanding of the growth processes and by em-

ploying mathematical tools. The recent advances of functional genomics and systems

biology enables the elucidation of the molecular genetics bases of different processes

and of the link between so-called “genetic coefficients” and model parameters, thus

showing the promises of using models in analyzing genotype-phenotype relationships

of some crop traits. Most parameters of CORNFLO, SUNFLO, and SUNLAB pos-

sess biological meaning, which should facilitate these models future uses on finding

parameters x QTL linkage to narrow genotype-phenotype gaps.

Model Calibration. Model calibration is the process of setting the values of the

model parameters. It is based on experimental data that are collected at given time

points and under particular sets of environmental conditions. The collected data are

expected to be in adequacy with the modeller’s choice in terms of variables and mod-

elling scales. For plant growth models, two popular approaches coexist for model

calibration: estimation through direct measurements (for the parameters having bio-

logical meanings and that are directly observable) and estimation through mathemat-

ical methods (for the so-called hidden parameters).

Although direct measurement may appear to be the best approach for estimating
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genotypic parameters, it is uncommon in practice. It enables direct access to the

desired parameter via experimental measurements. However, this method often re-

quires specific trials and measurements, and may therefore be complicated, costly

and even impossible to implement for a high number of genotypes [Reymond, 2001].

Routine measurement of these parameters for a large number of varieties may pose

a problem, particularly when measurements require special equipment and controlled

condition experiments [Jeuffroy et al., 2006a]. CORNFLO and SUNFLO parameters

were estimated in this way: SUNFLO parameters’ values are given in section 3.2.6.

The indirect method, involving mathematical and statistical methods, estimates one or

more parameters by confronting observed data to simulation results. Its main advan-

tage is that it can be experimentally less costly and time-consuming than the direct

measurement of parameters [Jeuffroy et al., 2006a]. For instance in most dynamic

models, the direct measurement method would often require frequent measurement

points (e.g. daily), while with the indirect method, data can be collected only at

some given time points and still allow the modellers to retrieve the past growth of

the crop. Parameters can even be estimated from very limited sets of data, as shown

in this thesis with the estimation methodology (MSPE) we developed. Here, a fre-

quentist approach is adopted (i.e., it is assumed that parameters are not random

variables and that there exist ‘true’ fixed values. No a priori information is taken into

account, except possibly by adding constraints or boundaries, in contrast with the

Bayesian approach). Technically speaking, it includes several different methods, such

as computing the least square error estimators or maximum likelihood estimators.

Particular attention must be paid to possible correlations existing between parame-

ters, which may produce estimator values which are satisfactory for prediction under

a limited range of conditions only. Least square estimation is used for SUNLAB pa-

rameters, with the Gauss-Newton algorithm for optimization of the cost functions

(section 3.3.5). In Part II, two other optimization algorithms are also used for the
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tests: Simulated Annealing and Particle Swarm Optimization, as described in section

4.3.2.

Model evaluation and validation. Model evaluation and validation are important

steps since non-validated models may lead to wrong decisions. These include several

aspects. One of them relies on sensitivity analysis: in that context, it can be used to

detect over-parameterization, for selecting the order of priority for parameters to be

estimated, or for analysing the model behaviour (sections 3.3.4 and 4.3.1).

The process of parameter estimation raises the problem of the continuity and con-

vexity of the objective function to the model parameters. Model identifiability and

continuity analysis are presented in section 4.3.1 and are used for selecting the ade-

quate optimization methods to use for given parameters. Finally, an important aspect

of model evaluation consists in testing its predictive ability. To this end, a set of exper-

imental data, distinct from the one used as target for parameter estimation, should

be collected. In this thesis, SUNLAB validation is performed in section 3.3.6) and

then in Part II, squared residuals are examined to produce prediction squared er-

ror. We adopted two methods: the classical method based on an independent sample

validation data from the sample population as the training data, and the cross vali-

dation method, explained in section 4.5.2. The details of these methodologies will be

elaborated when it is used in corresponding sections.

3.2 SUNFLO Model for Sunflower

The SUNFLO model for sunflower (Helianthus annuus L.) consists of five modules:

Phenology Module, Architecture Module, Biomass Production Module, Biomass Al-

location Module, and Water Budget Module [Lecoeur et al., 2011]. It estimates the

biomass production for the crop sunflower under environmental inputs, mainly tem-

perature, precipitation, and evapotranspiration reference. It simulates the plant phe-
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nology and development, the accumulation and distribution of biomass, and the pro-

duction of seeds. It takes into consideration the plant water budget which determines

whether the available water quantity is enough for the plant to grow up in good con-

ditions. A table of parameters can be found in section 3.2.6. In this thesis, it is used

in Part II for model analysis and in Part III for model applications.

The CORNFLO model is a functional plant growth model simulating the growth and

yield of maize (Zea mays L.). It is developed by Jérémie Lecoeur in Syngenta Seeds

Corp. This model is used in all chapters in Part II for testing parameter estimation

strategies. It has five same modules as SUNFLO model and its module formulas have

many similarities with SUNFLO. are not elaborated in this thesis.

3.2.1 Phenology Module

The Phenology Module simulates the timing of the plant growth stages and how these

are influenced by seasonal and interannual variations in climate. Daily average tem-

perature Tmoy(d) (❽ days) is transformed into daily effective temperature Teff(d)

by subtracting a base temperature Tbase which is 4.8 ❽ for sunflower genotypes. It

therefore models the effect of thermal stress on plant development and functions:

Teff(d) = Tmoy(d)− Tbase (3.2)

A variable defined as ‘phenology accelarator’, AP (d) (Eq. 3.3), depends on Teff(d)

and it is dampened by water stress constraint FHTR(d) (Eq. 3.43) on day d:

AP (d) = 0.1 ∗ Teff(d) ∗ (1− FHTR(d− 1)) (3.3)

This variable AP (d) together with Teff(d) intervenes in the calculation of the accu-
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mulated thermal time TT (d) (Eq. 3.4):

TT (d) =
d

∑

t=0

Teff(t) + AP (t) (3.4)

TT (d) is a significant variable determining four plant key physiological stages, ex-

pressed as genotype dependent thermal dates: flower bud appearance (TT E1), be-

ginning of flowering (TT F1), beginning of grain filling (early maturation, TT M0)

and physiological maturity (TT M3). These thermal dates trigger some variations of

plant functions through plant growth periods, such as the emergences of leaf, capitule,

seed etc. (e.g. eq. 3.5) and biological efficiency in different periods (Eq. 3.17).

3.2.2 Architecture Module

The thermal time of blade emergence TI(i) at rank i depends on two parameters:

phyllochron Phy2 and LAI a.

TI(i) = (i− 5) ∗ Phy2 + LAI a (3.5)

The thermal time of capitulum emergence is denoted TT E1. The thermal time of

seed initialization is denoted TT M0. When TT (d) reaches an organ initialization

thermal time, the organ emerges.

To calculate the leaf area expansion curve GRe(i, d) for leaf at rank i on day d, we

need to calculate three variables: the maximal expansion speed Ae(i), the spread

of leaf area expansion curve Ke(i), and the thermal time at which this maximal

expansion rate is reached for each rank Te(i). The total number of leaves is denoted

as NFF . The leaf which has the maximal potential leaf area SFiMax is located at

rank position SFiMax.
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Ae(i) is calculated based on the three parameters.

b = 1.5− 0.22 ∗ position SFiMax− 0.0035 ∗ SFiMax+ 0.08 ∗NFF

a = −2.3 + 0.019 ∗ position SFiMax− 0.0016 ∗ SFiMax+ 0.02 ∗NFF + b ∗ 0.92

Ae(i) = SFiMax ∗ exp
(

a ∗ ( i−position SFiMax

position SFiMax−1
)2 + b ∗ ( i−position SFiMax

position SFiMax−1
)3
)

(3.6)

The spread of leaf area expansion curve Ke(i) is defined as:

Ke(i) =











0.01 i < 7

LAI Kei i ≥ 7
(3.7)

where LAI Kei is a parameter. And the thermal time at which the maximal expan-

sion rate is reached for each rank, Te(i), depends on Ke(i) as follows:

Te(i) =











TI(i) + 70 i < 7

TI(i) + LAI b/Ke(i) i ≥ 7
(3.8)

where LAI b is a parameter. The illustrations of leaf area expansion curves GRe(i, d)

for leaves at different ranks for genotypes “Melody” and “Albena” are given in Fig.

3.2.

GRe(i, d) = Teff(d)∗Ae(i)∗Ke(i)∗exp

(

−Ke(i) ∗ (TT (d)− Te(i))

1 + exp(−Ke(i) ∗ (TT − Te(i)))2

)

(3.9)

Dampened by water stress constraint FHLE (Eq. 3.41) and radiative constraint FLe

(Eq. 3.16) that will be defined later, the accumulation of GRe(i, d) constructs the leaf

surface SFe(i, d) of leaf i on day d:

SFe(i, d) =
d

∑

t=0

(GRe(i, t) ∗ FHLE(t) ∗ FLe(t)) (3.10)
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Fig. 3.2: Leaf area expansion curve (GRe) for leaf ranks 1, 10, 20 of genotypes “Melody”
and “Albena”.

The number of dead leaves NFmortes is a linear function of thermal time TT (d):

NFmortes(d) = NFF ∗
TT (d)− TT F1

TT M3− TT F1
(3.11)

Therefore the active leaves surfaces SF (i, d) include only leaves that are not yet senes-

cent:

SF (i, d) =











0 i ≤ NFmortes(d)

SFe(i, d) i ≻ NFmortes(d)
(3.12)

The sum of living leaf areas SF (i, d) gives the total efficient plant area SFp(d):

SFp(d) =
NFF
∑

i=0

SFe(i, d) (3.13)
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3.2.3 Biomass Production Module

As in Cornflo, the plant daily dry biomass production DBP (d) is estimated by the

energetic approach of Monteith Monteith [1977] as a multiplicative function of radia-

tions Rg(d), radiation absorption efficiency Ea(d), radiation use efficiency Eb(d), and

a climatic efficiency which is taken equal to 0.48:

DBP (d) = 0.48 ∗Rg(d) ∗ Ea(d) ∗ Eb(d) (3.14)

Ea(d) is simulated from the Beer-Lambert law as a function of the leaf area index

LAI(d), which is calculated from total active leave surface area SFp(d) and plant den-

sity to simulate the plant capacity to intercept radiation, and an extinction coefficient

coEff determined for each genotype:

LAI(d) = SFP (d) ∗ density

Ea(d) =
(

1− e−coEff∗LAI(d)
)

∗ 0.95
(3.15)

Daily incident photosynthetically radiation PARi(d) is used to determine the radiation

constraint FLe(d), which influences the leaf surface expansion (see above in equation

3.10). These variables are calculated as:

PARi(d) = 0.48 ∗Rg(d) ∗ Ea(d)/(SFP (d) ∗ density)

FLe(d) = −0.139 +
2.82

1 + exp
(

−PARi(d)−4.134
2.093

)

(3.16)

The potential radiation use efficiency Ebp(d) represents the plant potential ability to

use the radiation after absorption. It varies depending on the phenological stages:
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Ebp =































































0 TT (d) = 0

Eb 0 0 ≤ TT (d) ≺ 300

Eb 0 + (TT (d)−300)∗2
TT F1−300

300 ≤ TT (d) ≺ TT F1

Eb Max TT F1 ≤ TT (d) ≺ TT M0

Eb fin ∗ exp
(

Eb c ∗ (1− TT (d)−TT M0
TT M3−TT M0

)
)

TT M0 ≤ TT (d) ≺ TT M3

0 TT M3 ≤ TT (d)

(3.17)

where Eb 0, Eb c, Eb Max, Eb fin are parameters estimated in Lecoeur et al.

[2011]. Fig. 3.3 is an illustration of Ebp for genotypes “Melody” and “Albena”. Eb

Fig. 3.3: Potential radiation usage efficiency(Ebp) for genotypes “Melody” and “Albena”.

(Eq. 3.19) is calculated based on Ebp(d), water constraint on radiation use efficiency

FHRUE (Eq. 3.42), PHS which is the genotypic parameter of the photosynthesis ca-

pacity compared with the genotype“Melody”, and a thermal factor FT (d) (Eq. 3.2.3).
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FT (d) =



































































































0 Tmoy(d) ≤ Tbase

Tmoy(d)

Topt1PHS − Tbase
−

Tbase

Topt1PHS − Tbase

Tbase ≺ Tmoy(d) ≤ Topt1PHS

1 Topt1PHS ≺ Tmoy(d) ≤ Topt2PHS

Tmoy

Topt2PHS − TmaxPHS
−

TmaxPHS

Topt2PHS − TmaxPHS

Topt2PHS ≺ Tmoy(d) ≤ TmaxPHS

0 Tmoy(d) ≥ Topt2PHS (3.18)

where Topt1PHS, Topt2PHS, TmaxPHS are parameters estimated in Lecoeur et al.

[2011]. Fig. 3.4 is the illustration of FT for sunflower genotypes.

Fig. 3.4: Thermal factor for sunflower genotypes.
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Eb(d) = Ebp(d) ∗ FHRUE(d) ∗ FT (d) ∗ PHS (3.19)

Based on DBP (d), we get plant total dry biomass TDM(d):

TDM(d) =
d

∑

t=0

DBP (t) (3.20)

3.2.4 Biomass Allocation Module

The total dry biomass TDM(d) is allocated to the capitule by a linear relationship

with the harvest index HIcapitule(d) to get the capitulum biomass MScapitule(d):

HIcapitule(d) =
0.632

1 + (TT (d)−TT E1
774

)−2.827
(3.21)

MScapitule(d) = HIcapitule(d) ∗ TDM(d) (3.22)

3.2.5 Water Budget Module

The water cycle of sunflower is mainly modeled through processes of root water ab-

sorption and transpiration from the plant side, and precipitations, irrigation, and soil

evaporation from the environment side (see Fig. 3.5a).

To model water stress, an index is defined as the fraction of transpirable soil water

FTSW (d), taking values from 0 (no water stress) to 1 (severe water stress). It depends

on the interaction of the root system with the environmental factors that include

soil characteristics (namely particle size on each horizontal layer, humidity capacity

and soil density), soil evaporation, precipitations and irrigation. Evaporation and

plant transpiration decreases the available amount of water in soil. The calculation of

FTSW is done through the following steps:
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Fig. 3.5: Water budget module in SUNLAB: (a) Left: processes considered in the water
cycle model; (b) Right: the three soil layers C1, C2 and C3.

1. Root elongation Root depth zRoot(d) (cm) increases with a daily ratio dRoot(d)

as in equation 3.23:

dRoot(d) = 0.7× Tmoy(d)

zRoot(d) = zRoot(d− 1)× dRoot(d)

(3.23)

2. Definition of three soil layer Soil is modeled into three layers: C1, C2 and C3,

as shown in Fig.3.5b. The depth dC1 (mm) of C1 is fixed to 300 mm. The thickness

dC2 of layer C2 is determined by root length: it is initialized at 1mm and equals root

depth zRoot(d) − dC1 once zRoot(d) becomes larger than dC1. For the last layer,

the maximal soil depth that needs to be considered for modelling the elongation of

sunflower root system is assumed equal to 1800mm so that dC3 = 1800− dC1− dC2.

Effective soil depth z(cm) is equating zRoot(d).

3. Maximal water content at depth z The maximal soil water content at depth z,

expressed in g.cm−1, is denoted MSW (z) and is defined as:

MSW (z) = (Hcc− (Hpf ∗ IEgen))/100× da× z (3.24)
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where MSW (z) depends the maximal soil water content per soil depth, which is

determined by soil humidity capability Hcc (%), the humidity at permanent wilting

Hpf (%), bulk density da (g.cm−3) and an index of water extraction by the plant

IEgen.

4. Available water content in each soil layer The available soil water ASWCi(d, z)

(g.cm−1) is computed for each soil layer Ci, i = 1, ..., 3. Their calculations depend on

the calculations of evaporation EV (d) (g.cm−3) in the first layer, and transpiration

in the first TRC1(d) (g.cm−3) and second layer TRC2(d) (g.cm−3). Evapotranspira-

tion is the loss of water from a vegetated surface through the combined processes of

soil evaporation and plant transpiration. Water lost through soil evaporation passes

directly from the soil to the atmosphere. But water lost by transpiration must enter

the plant via the roots, then pass to the foliage where it is vaporized and lost to the

atmosphere through leaf stomata. The evapotranspiration process is influenced by

multiple factors such as plant type, plant development stages and weather.

In the simulation of soil evaporation EV (d), CumEV jDebut(d) is the cumulated wa-

ter lost through soil evaporation. Its value is cleared out if the daily precipitation is

big enough. The threshold value is determined by a soil-dependent parameter Q0 (in

an environment scenario equating 9 for example):

CumEV jDebut(d) =















































EV (d) if Rain(d) > CumEV jDebut(d− 1)

or Rain(d) > CumEV jFin(d− 1) +Q0

CumEV jDebut(d− 1) + EV (d)−Rain(d)

if Rain(d) ≤ CumEV jDebut(d− 1) (3.25)

The duration of CumEV jDebut(d) from 0 to Q0 is called a “plateau”.
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CumEV jDebut(d) records the water lost from the beginning of a plateau and

CumEV jFin(d) records the water lost from the end of a plateau. It means

CumEV jFin(d) begins to count when CumEV jDebut(d) reaches Q0,

and CumEV jFin(d) is cleared out when daily precipitation is as big as the

CumEV jFin(d) value.

CumEV jFin(d) =



















0 if ksEV j(d) = 1

CumEV jFin(d−1)+EV (d)−Rain(d) otherwise (3.26)

The bigger CumEV jFin(d) is, the lower EV (d) is: this results from the influence of

CumEV jFin(d) on variables DSW (d) and ksEV j(d). ksEV j(d) is the evaporation

coefficient depending on the value of DSW (d) which records the day without water

supply from the beginning of the plateau. The evaporation coefficient ksEV j(d) is

reducing as DSW (d) grows. In the end, EV (d) (Eq. 3.29) is obtained by evapora-

tion coefficient ksEV j(d), radiation interception efficiency Ea(d), and reference crop

evapotranspiration ETref(d).

DSW (d) =



















0 if Rain(d) > CumEV jFin(d− 1)

DSW (d − 1) + 1 otherwise (3.27)
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ksEV j(d) =















































1 if CumEV jDebut(d− 1) ≺ Q0

√

DSW (t) + 1−
√

DSW (t)

if Rain(d) ≤ CumEV jFin(d− 1)

1 otherwise (3.28)

ETref(d) is the estimation of the evapotranspiration from a reference surface, namely

an extensive, hypothetical grass reference crop with specific characteristics [de Bruin

et al., 2010]. It is a day-by-day environmental input in the model.

EV (d) = ksEV j(d) ∗ ETref(d) ∗ (1− Ea(d)) (3.29)

To calculate the transpiration TRC1(d) and TRC2(d), we need to calculate a variable

partC1(d) which is the proportion of the depth of the first layer dC1 to those of layer1

and layer2:

partC1(d) =











1 zRoot(d) ≺ 300

dC1
dC1+dC2

otherwise
(3.30)

The transpiration potential speed vTRp(d) is derived from radiation interception ef-

ficiency Ea(d) and reference crop evapotranspiration(ETref(d)):

vTRp(d) = 1.2 ∗ ETref(d) ∗ Ea(d) (3.31)

Accordingly, TRC1(d) and TRC2(d) are determined by partC1(d), vTRp(d) and the
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constrain FHTR(d) (Eq. 3.43) of water stress on transpiration:

TRC1(d) = partC1(d) ∗ vTRp(d) ∗ FHTR(d)

TRC2(d) = (1− partC1(d)) ∗ vTRp(d) ∗ FHTR(d)

(3.32)

The soil water available in the first layer ASWC1(d, z) depends on precipitation

Rain(d) (g.cm−3), irrigation Irr(d) (g.cm−3), evaporation EV (d) (g.cm−3) and tran-

spiration TRC1(d) (g.cm−3).

ASWC1(d, z) = min{MSW (z), ASWC1(d− 1, zRoot(d− 1))

+
(Rain(d) + Irr(d)− TRC1(d)− EV (d))× z

dC1
} (3.33)

The extra available soil water in layer C1, non-zero if the soil capacity

MSW (z) is exceeded, is denoted D1(d) and is drained to layer C2:

D1(d) =











0 ASWC1(d) ≤ MSWC1

ASWC1(d)−MSWC1 ASWC1(d) > MSWC1
(3.34)

Thus, ASWC2(d, z) depends onD1(d), transpiration TRC2(t) (g.cm−3) and available

usable water UWC3(d) (g.cm−3) from C3:

ASWC2(d, z) = min{MSW (z)−MSW (dC1), ASWC2(d− 1, zRoot(d− 1))

+D1(d)− TRC2(d) + UWC3(d)}) (3.35)

where UWC3(d) represents the influx of water coming from soil layer deeper than the

root length, C3:

UWC3(d) =
ASWC3(d− 1)× dRoot(d)

dC3
(3.36)
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Drainage from C2 at day d is denoted D2(d):

D2(d) =











0 ASWC2(d) ≤ MSWC2

ASWC2(d)−MSWC2 ASWC2(d) > MSWC2
(3.37)

D2(t) is transferred to the available soil water in C3:

ASWC3(d, z) = min{MSW (dC3)−MSW (z), ASWC3(d− 1, zRoot(d− 1))

+D2(d)− UWC3(d)} (3.38)

5. Daily available water content and fraction of transpirable soil water If

zRoot(d) is less than or equal to dC1, ASW (d) only accounts for the available soil

water content in layer C1. Otherwise, it is the sum of available soil water in both

layer C1 and C2:

ASW (d) =











ASWC1(d, zRoot(d)) zRoot(d) ≤ dC1

ASWC1(d, dC1) + ASWC2(d, zRoot(d)) z > dC1
(3.39)

Then, FTSW (d) is the ratio between ASW (d) and MSW (z):

FTSW (d) = ASW (d)/MSW (zRoot(d)) (3.40)

The water stress index FTSW (d) has effects on three processes in this model: leaf

expansion FHLE, radiation use efficiency FHRUE and plant transpiration FHTR.

Depending on genotypes and plant functions, critical values RT and RE regulates the

plant drought tolerance. While FTSW (d) is less than its respective critical value in

any of the three processes, the influential effects of drought to dampen the processes

are as in bellowing equations:

FHLE(d) = FTSW (d)/RE (3.41)
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FHRUE(d) = FTSW (d)/RT (3.42)

FHTR(d) = FTSW (d)/RT (3.43)

3.2.6 Parameters

The SUNFLO parameters were estimated for 20 genotypes in Lecoeur et al. [2011]

using the approach of direct experimental measurements and statistical analysis. Our

studies in the following chapters are based on four of these genotypes: “Albena”,

“Melody”,“Heliasol”and“Prodisol”. These parameters can be classified into two types:

non-genotypic parameters and genotypic parameters. Non-genotypic parameters are

parameters that are constant within the species: they take common values for all the

genotypes. By contrast, genotypic parameters take different values for each genotype.

The class to which each parameter is belonging was determined after analysis based

on experimental observations in [Lecoeur et al., 2011]. Their names and units are

shown in tables 3.1 and 3.2. Parameter values for genotypes will be given when they

are used in the corresponding chapters.

Tab. 3.1: SUNFLO model: non-genotypic parameters

Parameter Unit Meaning
Phy2 ❽days Phyllochrone for leaves above rank 6

LAI a ❽days
The parameters determining leaf emergence time.
Calculated as the thermal time of the third pairs of leaves’
expansion termination

LAI b ❽days Constant for thermal time of leaf maximal expansion rate
LAI Kei ❽days Expansion speed of each leaf ranking above 6
Eb 0

#
The parameter determining the potential radiation use
efficiency Ebp(d) for the different phenology stages

Eb c
Eb Max
Eb fin

TmaxPHS
#

The parameter determining a thermal factor FT (d), which
regulates the potential radiation use efficiency to get the
actual one Eb(d)

Topt1PHS
Topt2PHS
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Tab. 3.2: SUNFLO model: genotypic parameters

Parameter Unit Meaning
E1 ❽days Thermal time of flower bud appearance
F1 ❽days Thermal time of the beginning of flowering
M0 ❽days Thermal time of the beginning of grain filling
M3 ❽days Thermal time of physiological maturity

pos SFiMax # Rank of the leaf with largest area
SFiMax cm2 Largest leaf area
NFF # Total number of leaves
coEff # Extinction coefficient

PHS #
The parameter quantifying the photosynthesis
capacity difference between each genotype and Melody

RE #
Threshold value determining fractional soil water
influence on leaf expansion under water stress

RT #
Threshold value determining fractional soil water’s
influence on plant transpiration and radiation use
efficiency under water stress

HI # Proportion of capitulum biomass in total dry biomass

3.3 SUNLAB Model for Sunflower

Note: Most of this chapter content is from Kang et al. [2012a].

A new functional-structural model SUNLAB for the crop sunflower (Helianthus an-

nuus L.) was developed in this thesis. It is dedicated to simulate the sunflower organo-

genesis, morphogenesis, biomass accumulation and biomass partitioning to organs

(section 3.3.2). It is adapted to model phenotypic responses of different genotypic vari-

ants to diverse environmental factors including temperature stress and water deficit.

A sensitivity analysis was conducted to quantify the relative parameter influence on

the main trait of interest, the yield (section 3.3.4). The model was calibrated for

four genotypes on two experimental datasets collected on plants grown under stan-

dard non-limiting conditions and moderate water stress (section 3.3.5). Its predictive

ability was then tested on an additional dataset in section 3.3.6. The four considered

genotypes - “Albena”, “Melody”, “Heliasol” and “Prodisol” - are the products of more

than 30 years of breeding effort. Comparing the values found for the four parameter
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sets associated to each variant allows identifying genotype-specific parameters. Since

SUNLAB parameters seem to show genotypic variability, it potentially makes the

model an interesting intermediate to discriminate between genotypes. SUNLAB sim-

ulates individual leaf area and biomass as two state variables: an interesting corollary

is that it also simulates dynamically the specific leaf area (SLA) variable, as shown in

section 3.3.7.

3.3.1 Context and Objectives

As one of the major oilseed crops worldwide, sunflower production has to face the

growing social demand in a context of strong ecological and economical constraints:

growers are confronted to the challenge of increasing sunflower productivity under

changing climatic conditions while maintaining low-input levels and reduced costs. A

partial response to this challenge could be found by breeding new genotypes and by

identifying the best genotype, among a set of existing ones, for a given location and

for given management practices; see for instance Allinne et al. [2009]. An emerging

approach for the assessment of genotype performances in in situ experimental trials

is the use of models represented as a set of biophysical functions that determine the

plant phenotype in response to environmental inputs. Models can help in breeding

strategies and management by dissecting physiological traits into their constitutive

components and thus allow shifting from highly integrated traits to more gene-related

traits that should reveal more stable under varying environmental conditions [Ham-

mer et al., 2006; Yin et al., 2004]. Consequently, an important question to examine

is how to design models that can be used in that context. The models should simu-

late the phenotypic traits of interest (e.g. yield) with good robustness and predictive

capacity. The models should also present a trade-off between mechanistic aspect and

complexity. Casadebaig et al. [2011] discuss that question in the case of their model

SUNFLO [Lecoeur et al., 2011], that was presented in section 3.2. It has shown good
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performances to identify, quantify, and model phenotypic variability of sunflower at

the individual level in response to the main abiotic stresses occurring at field level but

also in the expression of genotypic variability [Casadebaig et al., 2011]. The authors

mixed mechanistic and statistical approaches to deal with highly integrative variables

such as harvest index (HI). HI is determined by a simple statistical relationship

dependent on covariables previously simulated by the mechanistic part of the crop

model throughout the growing season. Although this statistical solution and the large

datasets used for its parametrization conferred good robustness to the prediction of

HI and thereby crop harvest, feedback effects of biomass partitioning on other pro-

cesses cannot be taken into account. Moreover, it was shown in Lecoeur et al. [2011]

that HI is the parameter that contributes the most to the coefficient of variation of

the potential yield (14.3%). It was also shown that when ranking the processes in

terms of their impact on yield variability, the first one was biomass allocation (be-

fore light interception according to plant architecture, plant phenology and far behind

photosynthesis). Therefore, Lecoeur et al. [2011] suggest that a better formalisation of

the trophic competition between organs could be a way to improve our understanding

of genotypic variation for biomass harvest index. In order to face this challenge, a

new sunflower model, named SUNLAB, was derived from SUNFLO. The represen-

tation of plant topological development and allocation process at individual organ

scale were inspired by the functional-structural plant model GREENLAB, that has

been designed as a “source-sink solver” [Christophe et al., 2008] and is accompanied

with the appropriate mathematical tools for its identification [Cournède et al., 2011].

SUNLAB thus inherits the flexible rules of sink competition for biomass partitioning

at organ scale (blade, petiole, internode and capitulum) from GREENLAB, together

with the more detailed representation of ecophysiological processes and environmental

stress effects on biomass production and yield from SUNFLO.

This section presents in detail the mechanisms of SUNLAB and parameter estimation
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procedure based on field experimental data. A sensitivity analysis is performed on the

model parameters, using the Sobol method, to investigate the relative contribution of

each parameter and their interactions to the model output uncertainty. The output

that we consider is the main trait of interest in most breeding procedures, that is the

final yield. The potentials of SUNLAB for genotypic characterization are illustrated

by comparing the parameters obtained after the estimation process for four genotypes,

namely “Albena”, “Heliasol”, “Melody” and “Prodisol”. The performances of SUNLAB

to reproduce phenotypic variability coming either from genotypic or from environ-

mental influences are tested against experimental datasets used for calibration. An

additional dataset is then used for model validation. An interesting and uncommon

output of SUNLAB is the specific leaf area (SLA, cm2.g−1), i.e. the ratio of leaf area

to dry leaf mass, which is usually an influential input variable often associated with

large uncertainty ranges in most dynamic crop growth models [Rawson et al., 1987].

We finally discuss the potential benefits of integrating two modelling approaches: that

of SUNFLO, an ecophysiological model whose parameters can be assessed by direct

field measurements, and that of GREENLAB, a mechanistic dynamic model whose

parameters are estimated by optimization methods from experimental data. After fur-

ther tests and improvements, this new SUNLAB model should present robust enough

predictive capacities and ability to differentiate between genotypes in order to be

proposed as a proper tool for the understanding of gene × environment interactions.

3.3.2 Modeling: SUNLAB Modules

SUNLAB consists of five modules: phenology, water budget, organogenesis and mor-

phogenesis, biomass accumulation, and biomass partitioning. Phenology, water bud-

get, and biomass accumulation modules are directly inherited from the SUNFLO

model. The organogenesis and morphogenesis module is modified from the corre-

sponding SUNFLO module by defining for each organ the dates, expressed in thermal
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time, of initialization and termination of its growth. The biomass partition module

is an entirely new module. We describe here equations of these modules, briefly for

those inherited from SUNFLO - we refer to section 3.2 for an exhaustive description

- and in detail for the new contributions. Model parameters, which are mentioned in

the following equations, will be listed in section 3.3.3.

Organogenesis and Morphegenesis Module

From the emergence and senescence blades numbers obtained from SUNFLO module

functions, the thermal times of initiation bladeInitTT (i) and senescence bladeSeneTT (i)

of each blade of rank i can be computed:

bladeInitTT (i) = (i− 1)/R

bladeSeneTT (i) = M3−
i× (M3−M1)

Ntotal

(3.44)

The petiole i and the internode i from the same metamer of blade i have the same

value of initiation thermal time. While petiole i has the same value of senescence time

as bladeSeneTT (i), senescence thermal time of internode i is the same as the accu-

mulative thermal time in the end of the plant life. Capitulum initialization thermal

time equates M0 and it grows until the end. With all the information of initialization

thermal time and senescence thermal time of every organ, a general sunflower struc-

ture can be constructed. For every organ, besides their appearance and senescence

thermal time, their expansion thermal time are also calculated, explained in section

3.3.3: parameter analysis.

Biomass Distribution Module

As in GREENLAB, the biomass produced by leaves is distributed to all organs pro-

portionally. The mechanism is to describe the total above-ground biomass CDM(d)
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as a biomass common pool, which is the total biomass of all blades, petioles, intern-

odes and the capitulum. Blades are “sources” to add the pool’s biomass. Blades,

petioles, internodes, and capitulum are “sinks” to partition biomass of the pool. The

calculation of each organ’s biomass on day d is done through three steps.

1. Sink competition degree Sink ability SAP (d) (equation (3.45)) represents each

organ’s potential sink competition ability on day d.

SAP (d, t, i) =
(CTT (d)−initTT (t,i)

epdTT (t,i)
)sinkA−1 × (1− CTT (d)−initTT (t,i)

epdTT (t,i)
)sinkB−1

( sinkA−1
sinkA+sinkB−2

)sinkA−1 × (1− sinkA−1
sinkA+sinkB−2

)sinkB−1
(3.45)

It varies with different organ type t (blade, petiole, internode or capitulum) and organ

rank i (blade ranking i in the blade organ type for example). This function is simulated

by the density function of beta distribution. Two organ type specific parameters sinkA

and sinkB take charge of the curve shape, as illustrated in the result section Fig. 3.7.

Organ rank affects the function by two variables: initTT (t, i) and epdTT (t, i). For

each individual organ, the duration of sink activity is equal to the organ’s expansion

duration epdTT (t, i) (◦C days), started from its initialization thermal time initTT (t, i)

(◦C days). For example, the blade ranking i germinates around 400 ◦C days earlier

than blade ranking i+1. Therefore blade i+1 has initTT (t, i) 400 bigger than blade i.

The detailed calculations are elaborated in parameter analysis section 3.3.3 because

they are related to our strategy to determine SUNLAB parameters. SAP (d, t, i)

changes according to time and its value ranges from 0 to 1.

The individual organ’s sink competition degree SA(d, t, i) (equation (3.46)) is the

organ i’s actual sink demand at time d, calculated by multiplying its sink ability

SAP (d, t, i) and an organ type specific parameter: sink ratio parameter SR. Organ

type “capitulum” has normally hundreds of times bigger sink ratio SR than organ

type “blade”.
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SA(d, t, i) =











SAP (d, t, i)× SR initTT ≤ CTT (d) ≤ initTT + epdTT

0 otherwise
(3.46)

2. Total sink demand The plant’s total sink demand sumSink(d) is computed

as the scalar product of the number of appeared organs to their organ sink demand

SA(d, t, i):

sumSink(d) =
∑

t

∑

i

SA(d, t, i) (3.47)

3. Individual organ’s biomass distribution Total dry biomass CDM(d) allocated

to a single organ is calculated as the proportion of the organ’s sink demand SA(d, t, i)

to total sink demand sumSink(d). For example the biomass allocated to individual

blade indBladeMS(d, i) (g.m−2) of blade ranking i is:

indBladeMS(d, i) =
CDM(d)× SAblade(d, i)

sumSink(d)
(3.48)

Total blade biomass bladeMS(d) (g.m−2) is the sum of all individual blade biomass:

bladeMS(d) =
∑

i

indBladeMS(d, i) (3.49)

In total, SUNLAB simulates the individual blade biomass indBladeMS(d, i) and to-

tal blade biomass bladeMS(d), individual and total petiole biomass (petioleMS(d),

g.m−2), individual and total internode biomass (internodeMS(d), g.m−2), and capit-

ulum biomass(capMS(d), g.m−2).
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3.3.3 Related Datasets and Parameter analysis

Experiments and measurements for designing and constructing modules and param-

eters which are directly inherited from SUNFLO are not presented here, as they are

described in detail in Lecoeur et al. [2011]. Data used for SUNLAB parameters esti-

mation, simulation and application include three datasets “2001”, “2002a”and “2002b”

(2.1.1).“2001” and “2002a” as two datasets in discriminated environment are used to

calibrate SUNLAB model and “2002b” is used for model validation.

Four genotypes “Albena”, “Melody”, “Heliasol” and “Prodisol” are considered in this

project. These genotypes have been characterized by a large study of genetic improve-

ment of sunflower over the last 30 years, and they are four of those most widely grown

varieties in France. SUNLAB parameters can be decomposed in two subsets. One

subset contains the parameters inherited from SUNFLO which keep the same values

in SUNLAB (Table 3.3).

Tab. 3.3: Main SUNFLO inherited parameters values.

Parameter Parameter values
Name Albena Melody Heliasol Prodisol

E1 (◦Cd) 510 540 480 510
F1 (◦Cd) 900 920 880 900
M0 (◦Cd) 1160 1160 1150 1120
M3 (◦Cd) 1800 2060 1940 1840
NFF (#) 31 26 24 25

position SFiMax(#) 18.9 15.4 15.3 15.9
SFiMax (cm2) 488 613 670 498
coEff (#) 0.78 0.96 0.88 0.87

The other subset contains 17 additional parameters of SUNLAB that needs to be

estimated from experimental datasets. They include 12 parameters that drive the sink

competition (SR, sinkA, sinkB for four types of organs) and 5 parameters, which are

used to adjust or define initial and final organ expansion thermal times: initTTAdjust

(◦C days), epdTTA (◦C days), epdTTB (◦C days), internodeEpdTT (◦C days), and

capitulumEpdTT (◦C days). Thermal time of blade growth initialization is calculated
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by subtracting initTTAdjust from bladeInitTT (i) (◦C days) which is the thermal time

of blade emergence. The adjustment parameter initTTAdjust is added to the model

because according to the experimental criterion: leaves are recorded when lengths of

their central vein are bigger than 4cm [Lecoeur et al., 2011], bladeInitTT (i) is the

thermal time when the leaf size could be measured, but at then this leaf has already

received a small amount of biomass. The thermal time of blade expansion end is also

measured. The thermal times of blade initialization and end of expansion can vary

with their ranks: the variation is linear and depends on two parameters, epdTTA

and epdTTB. For example, the expansion duration of blade at rank i, expressed in

thermal time, is:

bladeEpdTT (i) = bladeSeneTT (i)− (epdTTB − epdTTA× i)

−(bladeInitTT (i)− initTTAdjust)
(3.50)

where bladeSeneTT (◦C days) is the thermal time of leaf beginning of senescence.

Petioles share the same initial, expansion and end biomass thermal time as the blades

in the same metamers. Internodes have the same initial biomass thermal time as

blades of the same metamers, but they have parameter internodeEpdTT to define

their expansion duration. Capitulum begins its sink competition at plant age M0,

and expands in the thermal time capitulumEpdTT . Regarding the target data for

parameter estimation, only blade areas were measured at organ scale. All other organs

were only weighted at compartment scale. In particular, independent blade mass data

was not available, while these data are required for a better estimation of SUNLAB

parameters. Therefore, profiles of individual blade mass were estimated as follows: at

each date where total blade mass and total blade areas were measured at compartment

level, a virtual SLA value was computed and was used to generate a set of individual

blade mass. The model can thus be viewed as a dynamic interpolation solver that

generates both blade areas and mass between those fixed measurement dates. This



3.3. SUNLAB Model for Sunflower 69

will be detailed in the SLA study in section 3.3.7.

A sensitivity analysis is performed on SUNLAB parameters to understand their rela-

tive influence on determining the main model output, the yield Y . A global method

was used, the Sobol method [Saltelli et al., 2000; WU and Cournède, 2010]. In this

method, parameters are considered as random variables that are drawn from prede-

fined distributions, chosen here as uniform distributions since no a priori information

was available for the SUNLAB parameters. This allows computing an estimator of

the output variance, V (Y ). The first-order sensitivity index of a given parameter Xi

can thus be defined as:

Si =
VXi

(E∼Xi
(Y |Xi)

V (Y )
(3.51)

where the inner expectation operator is the mean of Y taken over the possible val-

ues of all other parameters except Xi (∼ Xi) while keeping Xi fixed. Then outer

variance is taken over all possible values of Xi. Similarly, higher order sensitivity

indices can be defined to characterize the effects of interactions between parameters

on the output variance. Sensitivity indices are normalized thanks to the well-known

formula of variance decomposition. The non-linear generalized least squares method

with Gauss Newton method for optimization [Cournède et al., 2011] is used for es-

timating the parameters using field data including total blade biomass, total petiole

biomass, total internodes biomass, capitulum biomass and individual blade biomass.

The simulations, sensitivity analysis and estimation procedure were performed on a

plant modeling assistant platform, named PYGMALION, developed in Digiplante

team in Ecole Centrale Paris, France.

3.3.4 Result: Sensitivity Analysis

A sensitivity analysis was performed on the 15 parameters of SUNLAB for the yield,

using the Sobol method of variance decomposition. Results are gathered in Table
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3.4 for the most influential parameters. The sum of all first order indices was 0.87,

which means that the part of variance due to parameter interactions is less than 15%:

this justifies that the sensitivity analysis of this model can be grounded on first-order

indices of parameters. The most influential parameters are those driving the dynamics

of capitulum sink variations, sinkAcap and sinkBcap, accounting for 51% and 12%

respectively of the yield variance. The only other parameter with significant sensibility

index is a parameter of internode sink variation, sinkAintern. All other parameters

account for less than 5% of the yield variance. This result suggests that dynamics of

biomass allocation to the capitulum, more than the value of its sink, are important

for yield determination.

Tab. 3.4: Sensitivity analysis of SUNLAB parameters: first-order indices of the most influ-
ential parameters (with index > 1%).

sinkAcap sinkBcap sinkAintern SRcapitulum SRintern sinkBintern internEpdTT

0.51 0.12 0.12 0.05 0.03 0.02 0.02

3.3.5 Result: Model Calibration on Four Genotypes and Two

Environmental Conditions

Parameter Estimation for the Four Genotypes

The SUNLAB parameters were estimated for the four different genotypes (“Albena”,

“Melody”,“Heliasol”, and“Prodisol”) using experimental datasets of“2001”(non-limiting

conditions) and “2002a” (with water deficit). Their values are shown in Table 3.5 with

the associated standard deviation. Since the sink competition model is chosen to be

proportional [Heuvelink, 1996], i.e. all the daily produced biomass is allocated and

there are no reserves, a reference sink value has to be set: conventionally, the sink of

blades SRblade is set to 1.

Parameter values are independently estimated for each genotype, i.e. no a priori geno-
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typic correlations are imposed. This allows comparing the genotypes according to their

parameter values. The standard error could allow testing the significance of differences

between two parameter values, but this would only be an approximate result since the

number of observations that directly influence the estimation of each parameter is

unknown. Qualitative observations can nevertheless be done. For example, blade

parameter sinkAblade in the sink variation function of blades appears significantly

different between four genotypes, while no clear evidence of genotypic variability was

found for capitulum sink ratio SRcapitulum (see also Fig. 3.7). The internode sink

ratio, SRinternode, is found different for genotypes “Albena”and“Melody”, but takes

similar values for “Heliasol” and “Prodisol”.

Tab. 3.5: Estimated parameter values of SUNLAB for four genotypes.

Parameter Param. values (with associated standard error)

Name Albena Melody Heliasol Prodisol
sinkAblade 8.4 (0.22) 2.8 (0.12) 2 (0.1) 4 (0.16)

sinkApetiole 3.4 (0.33) 1.5 (0.22) 1.5 (0.7) 4.3 (0.76)

sinkAintern 2.2 (0.12) 3.5 (0.05) 2.2 (0.07) 3.8 (0.08)

sinkAcap 5.6 (0.12) 4.3 (0.17) 6.5 (0.3 ) 6.5 (0.28 )

sinkBblade 14.8 (0.4) 2.3 (0.16) 2.1 (0.18 ) 3.6 (0.26 )

sinkBpetiole 16.8 (1.8) 4.1 (6.4) 2.7(0.76 ) 4.2 ( 0.5)

sinkBintern 13.8 (3.9) 7.7 (0.29) 1.7(0.07 ) 12.2 ( 0.44)

sinkBcap 3.4 (0.22) 2.5 (0.23) 6.1(0.44) 5.8(0.52 )

SRpetiole 0.5 (0.04) 0.2 (0.03) 0.24(0.03 ) 0.43 (0.04 )

SRintern 1 (0.06) 3 (0.19) 1.6(0.08 ) 1.8(0.09 )

SRcap 1000 (253) 600 (126) 350(54 ) 500( 144)

Model Performances: Reproducing Genotype-induced Variability

Even when grown under non-limiting controlled conditions, the four studied varieties

present some phenotypic variability, that might be intrinsically regulated by genotypic

influences. This phenotypic variability is in particular observed on daily radiation in-

terception efficiency RIE(d), total blade area AA(d), leaf number N(d), accumulated

dry biomass CDM(d) and biomass partitioning. This is illustrated in Fig. 3.6 for dry
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mass compartments (blade, internode and capitulum) with the “2001” experimental

dataset. This figure also illustrates the model ability to reproduce this (presumably)

genotypic variability.

Fig. 3.6: Experimental data (dots) and simulation (lines) comparisons of blade dry mass,
internode dry mass, and capitulum dry mass for the four genotypes - “Albena”,
“Melody”, “Heliasol”, and “Prodisol” - and for dataset “2001”(blue)

The estimated parameter values (Table 3.5) allow tracking back the dynamics of

biomass allocation and analysing the internal mechanisms underlying sink competi-

tion. For instance, compared to“Prodisol”, blades of“Albena”enter earlier in the com-

petition for biomass but the capitulum reaches its maximum demand later (Fig. 3.7):

this may explain that in the end “Albena” has bigger total blade biomass but smaller

capitulum biomass than “Prodisol”(Fig. 3.6). Genotype performance can also come

from the biomass accumulation module: “Melody” has larger internode and capitu-

lum biomass than “Heliasol”, and they have similar blade biomass, as can be seen in

Fig. 3.6. This is due to a higher radiation use efficiency of the “Melody” genotype.

Model Performances: Reproducing Environment-induced Variability

The SUNLAB model was calibrated using “2001” and “2002a” experimental datasets

that included data for plants grown under water deficit. The calibrated SUNLAB
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Fig. 3.7: Sink ability based on SUNLAB parameters and sink competition theory in biomass
distribution module

model ably simulate the phenotypic variability induced by the two contrasted envi-

ronmental conditions of “2001”and“2002a”datasets. This is illustrated in Fig.3.8 that

shows experimental data and simulations of radiation interception efficiency RIE(d),

total blade area AA(d), leaf number N(d), accumulated above-ground dry biomass

CDM(d) and biomass compartments (capitulum, blades, petioles, internodes) for the

“Melody”genotype. It can be noticed that“Melody”is not very sensitive to water stress

since the dry mass accumulation does not significantly vary. The last two graphs of

this figure present some details on two other genotypes: biomass compartments of

“Prodisol” and individual blade mass profile for “Heliasol”. Water stress induces a

decrease in the capitulum biomass of “Prodisol” plants, despite a slight increase in

blade biomass. The effect of water stress can also be observed on the individual blade

mass profile of “Heliasol” plants: blades on the last ranks grow less in water deficit

conditions (“2002a”) than in standard conditions (“2001”).

3.3.6 Result: Model Validation

In order to test the model predictive ability, it was confronted to an additional exper-

imental dataset “2002b”, that was not used for the calibration step. Fig. 3.9 presents
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Fig. 3.8: Graphs A to D: Experimental data (dots) and simulation (lines) comparisons for
the “2001” (blue) and “2002a” (red) conditions of the radiation interception ef-
ficiency RIE(d), total blade area AA(d), leaf number N(d), accumulated above-
ground dry biomass CDM(d) and biomass compartments (capitulum, blades, peti-
oles, internodes) for the “Melody” genotype. Graphs E and F: biomass compart-
ments of “Prodisol” and individual leaf mass profile for “Heliasol”.

some phenotypic traits for the “Albena” genotype: for total blade areas and radiation

interception efficiency, data are underestimated by model predictions, but the results

are reasonable for the biomass compartment dynamics. It has to be noted that this

validation process is still a preliminary step since our additional experimental dataset

was measured on plants growth in conditions similar to those of the “2002a” dataset

which was used to calibrate the model.
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Fig. 3.9: Model validation for genotype “Albena” using an additional experimental dataset:
“2002b”

3.3.7 Result: Model Application: an Exploratory Study on

Specific Leaf Area

Specific leaf area (SLA) is an important variable in plant growth modeling. In most

dynamic models, it is usually used to determine blade surface area values from blade

biomass, as in GREENLAB [Christophe et al., 2008] or in TOMSIM [Heuvelink, 1999].

Since blade area in turn determines the biomass production, accurate estimation of

SLA is mentioned as a major source of error in models and implies difficulties in ob-

taining a reliable computation of leaf area index, which is the main component of

biomass production modules [Heuvelink, 1999; Marcelis et al., 1998]. It is however

generally considered as constant, although it has been shown, for instance on wheat

[Rawson et al., 1987], that SLA varies according to genotypes, leaf ranks and leaf

growing periods. Regarding sunflower, the variations of SLA and the factors influenc-

ing them are still poorly known. As SUNLAB can simulate dynamics of individual

blade mass profiles independently from those of blade areas, the SLA can be com-

puted as a model output, contrary to the classical situation where it is taken as input.
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In Fig.3.10, the simulated and observed values for individual blade areas and masses

of “Melody” in the “2001” dataset are displayed for each blade rank and six differ-

ent growth stages. The SLA was computed at the time when individual blades have

Fig. 3.10: Comparison of simulation and field data for individual blade area and biomass
of genotype “Melody”; the right graph is the simulation of specific leaf area for
the four genotypes

reached their higher mass. It was done only for blades ranking from 9 to 15 which

are those showing the best accordance to the field data (Fig. 3.10). The computed

SLA shows some variability among the four genotypes. Since the current SUNLAB

parameters come from the reconstructed individual blade masses, the simulated SLA

results will need to be improved with better experimental data in the future for more

accuracy on this result.

3.3.8 Discussion

A functional-structural model SUNLAB was developed. It describes the sunflower

topology and morphogenesis at organ level with blades, petioles, internodes, and ca-

pitulum. Coordination of the expansion dynamics of these organs are ruled by their

initiation and senescence time, expressed with respect to thermal time. Ecophys-

iological processes work together with plant structural dynamics to affect biomass
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accumulation and partitioning to organs. The model was applied on data of four

genotypes “Albena”, “Melody”, “Heliasol” and “Prodisol” to evaluate the ability of this

newly-developed model to reproduce observed data of sunflower growth.

As a joint concept between SUNFLO and GREENLAB, SUNLAB has better struc-

tural features than SUNFLO and it succeeds to deal with the biomass distribution at

organ level. Compared to GREENLAB, SUNLAB inherits the ecophysiological func-

tions of SUNFLO that have been validated in different environmental conditions for 26

genotypes [Casadebaig et al., 2011; Lecoeur et al., 2011] and possesses SUNFLO’s fol-

lowing merits. Firstly, SUNFLO contains more genotype-specific parameters. It could

predict well large phenotypic variability of complex genotypic traits. These genotypic

traits, represented as genotypic parameters in the model, have enough genotypic vari-

ability to discriminate between genotypes. In the construction process of SUNFLO,

the authors used the approach of linking a complex phenotype to a set of accessible

genotypic traits. Each genotype is defined by chosen traits which were transcribed

into a set of genotype-specific parameters. These genotypic parameters are thus under

certain genetic control. With the reason of improving the model parameters update

ability for yearly cultivar releases, parameters number is limited while a useful pre-

dictive capacity is maintained. Meanwhile, as most SUNFLO parameters could be

estimated by direct measures, it allows parameter values to be more representative

of crop physiology than those that are estimated indirectly with optimization algo-

rithms. Secondly, SUNFLO and SUNLAB have better ecophysiological functions.

GREENLAB over-simplifies a number of processes, such as photosynthesis and as-

similate conversion to biomass [Guo et al., 2006; Ma et al., 2008], and it is still in its

preliminary stage to include water source influence and root system [Li et al., 2009]. In

SUNFLO and SUNLAB, the radiation use efficiency is taken into account for photo-

synthesis. Many environmental stresses to phenotypic plasticity are considered, such

as temperature and water. The included root sub-model induces water stress, which
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affects crop processes such as leaf expansion, plant transpiration, and biomass produc-

tion. This consideration enriches environment discrimination by taking into account

the effect of soil texture, apparent soil density or stone content.

Modeling crop growth and breeding through empirical experimental analysis and the

parametrization from direct parameter measurements, such as SUNFLO model, bears

clear advantages in terms of ecophysiological relevance and parameter accuracy. The

genotypic variability may also be easier to characterize by considering directly el-

ementary ecophysiological processes. This perspective has led to automated and

high-throughput advanced plant phenotyping (see for example Granier et al. [2005],

Sotirios A and Christos [2009]). However, direct and accurate measures on elementary

processes do not necessarily imply that the combination of these processes will pro-

vide the same accuracy at plant scale. The nonlinear interaction between processes as

well as the necessary simplifications in terms of the number of ecophysiological pro-

cesses considered in the model make the whole plant model not a simple combination

of the elementary models well calibrated by experiments, plants are complex sys-

tems whose description of elementary process interactions, plasticity and robustness

remains an open issue [Yin and Struik, 2010]. Therefore, parametrization methods

relying on model inversion to estimate parameters from experimental data [Cournède

et al., 2011; Guo et al., 2006], at whole plant level offers an interesting alternative.

The parameters thus obtained are less ecophysiologically relevant and contain a part

of empiricism, but are more representative from the point of view of the plant global

behavior, and it may still be possible to use these parameters to differentiate between

genotypes [Letort, 2008]. Moreover, some processes like biomass allocation at organ

level can be difficult to observe experimentally and using inverse methods for parame-

ter estimation may be necessary. While it is hard to find a balance for a model design,

SUNLAB model is an interesting trial.

SUNLAB benefits from both strategies: direct measurements of ecophysiological pa-
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rameters when it is possible, and parameter estimation by inverse methods for others,

and preserves a good capacity for genotypic differentiation. SUNLAB has good cal-

ibration results of discriminating different genotypic and environment scenarios to

simulate multiple phenotypic traits. The genotype “Melody”and “Heliasol” (Fig. 3.6)

were shown to have better drought tolerant ability than the other two genotypes.

They had almost no influence on their yields while the other two had slight reduction

(around 15% of 2001 harvest). While SUNLAB well simulated genotypic variance, the

next step is to investigate the genetic determinism on the model’s genotype specific

parameters which account for the feature as illustrated for example in [Buck-Sorlin

et al., 2005]. SUNLAB is designed to simulate drought stress on the crop sunflower.

In this project, two environment scenarios were used to calibrate the model. 2002a

has a stronger water deficit than 2001 (Fig. 2.1), particularly after beginning of grain

filling M0. With some variation according to plant species, certain stages such as

germination, seedling or flowering could be the most critical stages vulnerable to wa-

ter stress[Hadi et al., 2012]. Seed germination is the first critical stage and the most

sensitive in the life cycle of plants [Ahmad et al., 2009] and seeds exposed to unfavor-

able environmental conditions, such as water stress at this stage may have seedling

establishment compromised [Albuquerque and Carvalho, 2003]. However our simu-

lation and field data suggested that the drought stress on crops was very small. It

is possibly because since sunflower is categorized as a low to medium drought sen-

sitive crop [Turhan and Baser, 2004], the water deficit level is not strong enough to

result in severe influences. An environmental scenario with stronger water deficiency

is required to explore the model’s simulation and predictive capacity.

Finally, in functional structural models, the mechanistic description of ecophysiolog-

ical processes is a key step to improve their predictive capacities and their ability

to differentiate between genotypes, making them proper candidates for the under-

standing of gene × environment interactions (see some efforts in this direction in
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[Allen et al., 2005; Bertheloot et al., 2011; Minchin and Lacointe, 2005]). However,

the parametrization effort of these more and more complex models should always be

taken into account when improving their mechanistic description, to prevent from a

high level of uncertainty in the parameters which may hinder the original purposes of

the model in terms of prediction and genotypic differentiation.

Conclusion. This new model provides a novel way of investigating genotype perfor-

mances under different environmental conditions. These promising results are a first

step towards the potential use of the model as a support tool to design sunflower

ideotypes adapted to the current worldwide ecological and economical challenges and

to assist the breeding procedure.



Part II

ANALYSIS





4. MULTI-SCENARIO METHODOLOGY OF

PARAMETER ESTIMATION (MSPE)

In this Chapter, we propose an innovative parameter estimation methodology adapted

to breeding programs: the Multi-scenario Methodology of Parameter Estimation

(MSPE). The methodology takes advantage of the multi-scenario trials (potentially

large amounts of environmental conditions available, but with the availability of only

a small quantity of experimental plant traits information for each scenario) set in place

by breeders to evaluate the performances of their genotypes. Four research questions

are investigated: the feasibility of MSPE (mostly identifiability), the practical imple-

mentation of the method (with sensitivity analysis and numerical optimization issues),

the effect of the number of scenarios on the estimation error and on model prediction

ability.

4.1 MSPE Context and Objectives

The role of ecophysiological models of plant growth to analyze genotype-by-environment

interactions is now well acknowledged [Hammer et al., 2006; Yin et al., 2004]. The iden-

tification of QTL for model input traits opens new perspectives for breeding [Letort

et al., 2008; Yin and Struik, 2010]. Ideally, ecophysiological models involve biophysical

parameters that are stable for a given genotype in a range of environmental conditions:

“one parameter set, one genotype” [Tardieu, 2003]. A crucial issue is, however, the
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estimation of these parameters. In order to allow the discrimination between geno-

types, model parameter estimation should be accurate enough; this is usually ensured

through heavy experimental work to measure trait data [Reymond et al., 2003]. For

example, for SUNFLO model, detailed leaf surface area every day in sunflower growth

periods are needed to estimate the parameters of the architecture model [Lecoeur

et al., 2011]. Besides, to estimate all significant parameters, other heavy traits data

are needed, such as radiation absorption efficiency and total dry biomass day-by-day.

Such type of experiments is difficult to implement in breeding programs, for which a

lot of genotypes and large ranges of environmental conditions are considered [Jeuffroy

et al., 2006b]. Reducing the amount of data collection to save experimental cost nor-

mally results in sacrificing parameters’ accuracy. In reality, in the field of experimental

agronomy or breeding, there are plant agronomic data in many different environmental

conditions (farmers statistics for example), but for each of them, only a small quantity

of experimental plant traits information are available. We propose and test an origi-

nal strategy built to take advantage of the mathematical formulation of plant growth

models as dynamical systems and of the multi-environmental trials (potentially large

amounts of environmental conditions available) set in place by breeders to evaluate

the performances of their genotypes. The Multi-Scenario methodology of Parameter

Estimation (MSPE) is designed to take large scenarios’ simple data to estimate pa-

rameters, instead of using large collection of detail plant growth data, as shown in

Fig. 4.1. More generally, this methodology aims at proposing an alternative solution

for the strategy of crop model parameterization, when it is hampered by the heavy

cost of experiments and data collection. Four research questions are investigated.

1. The feasibility of MSPE methodology. The hypothesis is that such variety of

discriminating scenarios should compensate for the little amount of information (data)

for each scenario. Therefore the collection of those limited data in many environmen-

tal scenarios is sufficient to estimate model parameters accurately. Our first objective
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Fig. 4.1: Illustration of the idea of MSPE methodology

is to validate this hypothesis and thus check the system identifiability, both struc-

tural (which model parameters can potentially be estimated), and practical (is the

level of statistical information available from experimental data sufficient for model

inversion). For this purpose, two kinds of tests, “proof of concept” test and statis-

tical property test, are conducted for virtual data with the SUNFLO model. The

calibration accuracy with this method is also investigated.

2. Implementation and optimization issues in MSPE. Even if MSPE has been

proved to be feasible in the first research question, the practical usage of MSPE raises

several issues. It is essential to know what significant parameters should be chosen

for MSPE. For this purpose, sensitivity analysis is used. Moreover, the optimization

problem arising from the maximization of likelihood (or minimization of generalized

least squares) is not a simple one that can be solved in the frame of convex opti-

mization. We also study the practical identifiability from a concrete point of view by

investigating how many scenarios are sufficient for model inversion. Several optimiza-

tion algorithms are tested and discussed. Observation data sufficiency is assumed to

be related to the number of scenarios. A presumption is that the insufficiency (and

thus non-identifiability) can be weakened by increasing the number of scenarios.

3. Evaluation of estimation accuracy. The effect of the number of scenarios on

estimation accuracy is investigated by the Jackknife method: we analyze parameter
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distributions, particularly their means and variances, with respect to the number of

scenarios. From an applicative point of view, this may help by fixing the number

of experimental situations necessary for parameter estimation for a desired level of

accuracy.

4. Evaluation of prediction error. It is assumed that the increase in the number

of scenarios in MSPE should result in a better prediction ability of the calibrated

parameter values. A rough illustration based on the test of the number of scenarios

increase and a strict proof based on cross-validation will be presented.

4.2 The Feasibility of MSPE Methodology

4.2.1 Methodology

To validate the hypothesis, and to test the calibration accuracy of the method, two

kinds of tests, “proof of concept” test and statistical property test are conducted, first

based on virtual data.

SUNFLO model, as detailed in Chapter 3, consists of five interacting sub-models:

Phenology, Architecture, Biomass Production, Biomass Allocation, and Water Bud-

get. From environmental inputs, the model predicts the sunflower yield. There are

around 30 parameters and 50 variables in the model. Ten parameters are shown to be

genotype-dependent in table 3.2, while the other parameters are supposed genotype-

independent and are therefore supposed constant for all genotypes. Some of these

parameters are relatively easy to measure, like the maximal number of leaves of a

sunflower for one genotype. On the other hand, some of them are difficult to get

because their computation relies on very heavy collection of field data. SUNFLO

model is used for genotype characterization in this study. Cournède et al. [2011] de-

scribed a formalization of the system observation vector adapted to the irregular and
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composite observations often characterizing experiments on living systems, particu-

larly on plants. Such formalization was implemented in the PYGMALION software,

developed at Ecole Centrale Paris, which offers a framework for the implementation

of dynamic systems of plant growth and their mathematical and statistical analysis,

including the model inversion allowing the consideration of very heterogeneous types

of experimental data. Thanks to this platform, a 2-stage Aitken estimator [Taylor,

1977] adapted to this composite data is used for parameter estimation in these tests.

Datasets in 2.3.1 and 2.1.2 are used as experimental scenarios, and the observation

function of the model is composed of all the experimental data resulting from a family

of scenarios. The square error of this observation function conditional to the parame-

ter vector is then minimized with respect to the parameter vector via a Gauss-Newton

descent method [Walter and Pronzato, 2006].

Proof of Concept Test

The“proof of concept” test is adopted to demonstrate the principle of the method. Its

general strategy is (1) to generate a virtual experimental data set with SUNFLO from

a given set of parameters P1 and a family of experimental scenarios, and (2) test given

an initial parameter set P2, whether the estimation algorithm manages to retrieve the

original vector P1. The strategy is described in Fig. 4.2.

For every experimental scenario, M trait data (Trait1, · · · , T raitM) are generated

with P1. (Obs1, · · · , ObsN) describe the observations of these M traits for all N

environmental scenarios. P2 is then chosen as the initial vector of the estimation

algorithm and the iterative process for parametric estimation from (Obs1, · · · , ObsN)

is run to get a vector of parameters, P3. If P3 is equal to P1 it means that the

experimental data set composed of N scenarios for the M traits (Trait1, · · · , T raitM)

available for each scenario is theoretically sufficient (discriminative enough) to estimate

parameters for the SUNFLO model. This test was used to explore the effects of the
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Fig. 4.2: Flowchart of the general strategy for the “proof of concept” test. Produce M trait
data with P1: named (Trait1, · · · , T raitM ). From N climatic scenarios, we get the
observations set (Obs1, · · · , ObsN ), which are used to calibrate model parameters,
starting the algorithm from an initial value P2. The resulting parameter vector
estimate is P3. If P3 is equal to P1, N scenarios are sufficient to estimate model
parameters.

number of scenarios and amount of observed traits on model inversion. The theoretical

data set is generated from 27 years of real environmental information obtained in a

meteorological station near Toulouse (South of France) from 1971-2007, including day-

by-day information of global radiation, temperatures and rainfall (data described in

section 2.3.1).

A virtual genotype parameter vector is chosen (denoted P1). With the environmental

information for the 27 years, 27 virtual observation data are simulated with SUNFLO

with different kinds of details. Several experiments are designed, choosing different
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amounts of observation scenarios N , diverse observation traits M , to test parameter

estimation functions under a variety of conditions. Likewise, the initial value P2 for

the numerical algorithm of parameter estimation is chosen at different distances from

P1, to test the robustness of the numerical estimator regarding the initial condition.

Statistical Test

Bootstrapping is a statistical method for estimating the sampling distribution of an

estimator by sampling with replacement from the original sample, most often with the

purpose of deriving robust estimates of standard errors and confidence intervals on

parameters. Bootstrapping is adopted for our statistical test to analyze the robustness

and accuracy of the estimation methodology. The general strategy of such statistical

property test is described in Fig. 4.3.

A parameter vector P0 is used to generate virtual experimental data for M observed

traits (Trait1, · · · , T raitM) and in N environmental scenarios (Obs1, · · · , ObsN). Then

random perturbations of the observation vectors (Obs1, · · · , ObsN) are generated to

produce a new groups of observation data: (SampleObs1, · · · , SampleObsN), which

represents noisy observation data. The perturbation process is repeated K times to

generateK samples ofN groups of observation data: (Sample1Obs1 · · ·Sample1ObsN)

, · · · , (SampleKObs1 · · ·SampleKObsN). They represent K samples of virtual exper-

imental data in N environments. For each (SampleiObs1, · · · , SampleiObsN), a pa-

rameter estimation is performed and an estimate Pi is deduced, for all 1 ≤ i ≤ K. We

can then compute the mean value, variance and confidence intervals for P1, · · · , PK .

The difference between the mean value and P0 represents the bias of the method, and

the standard deviation is a good indicator of its accuracy. The same virtual genotype

is chosen as in the“proof of concept”test with its SUNFLO model parameters (denoted

P0 this time) and the same 27 climatic scenarios are chosen. 27 virtual observation

data Obs1 · · ·Obs27 are simulated with SUNFLO, with several levels of details for the
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Fig. 4.3: Flowchart of the general strategy for the statistical test. 1) Generate virtual
experimental data (Obs1, · · · , ObsN ) of plant growth traits (Trait1, · · · , T raitM )
based on parameter vector P0. 2) Give random perturbations on (Obs1, · · · , ObsN )
to produce (SampleObs1, · · · , SampleObsN ). Repeat to generate K samples of
perturbed observations. Each sample is used to produce an estimate, resulting in
P1 . . .PK and their mean value and variance.

observed traits. Several experiments are designed to evaluate the bias and accuracy

of the estimation method by choosing different amounts of traits and scenarios, and

adjusting the level of noise and the number of samples. The perturbation is a multi-

plicative noise with a normal distribution, of mean 0 and standard deviation sigma.

The level of noise is given by sigma (σ = 0.05, σ = 0.1, etc.)
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4.2.2 Results

Proof of Concept Result

Through the “proof of concept” results, it is verified that the model SUNFLO does

not need heavy trait data in every scenario for model inversion. If only one trait

data MS graine lastDay (seed biomass at harvest) is available in two scenarios, two

parameters can be estimated with large initial perturbation. As illustrated in ta-

ble 4.1, parameters SFimax and Eb 0 are changed respectively by ratio 1.1, ratio

1.5 and ratio 2.0 to initialize the estimation algorithm. With two years trait data,

MS graine lastDay in 1971 and 1972, the estimated parameter values are the same

as the original values. The successful calibration works for all genotypes and any two

years in the 27 environmental year input. The choice of MS graine lastDay, corre-

sponding to the sunflower final yield, is of course in keeping with the most important

data of interest in breeding programs. Likewise, if we try to estimate 10 parameters

Tab. 4.1: “Proof of concept” test on 2 parameters

(some important genotype-dependent parameters and some genotype-independent pa-

rameters in contrast as shown in table 4.2), the tests show that 12 year scenarios are

sufficient to retrieve the theoretical values, whatever the level of perturbation, or the

choice of the 12 years among the 27 years.

Tab. 4.2: 10 significant parameters for SUNFLO model and the values for the virtual
genotype used in statistical test
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Statistical Test Result

Based on the positive results of the “proof of concept” test, in the statistical property

test, MS graine is chosen as the main trait for parameter estimation. Different

tests are performed as described in the Material and Methods section, and all show

encouraging results regarding both bias and accuracy of the estimation methodology.

An example of these tests is shown in table 4.3. For the bootstrap analysis, we use

Tab. 4.3: An example of the statistical test results (sigma = 0.05, 100 samples)

a multiplicative normal perturbation (sigma = 0.05) to the trait MS graine for 20

scenarios, and generate 100 perturbed samples. The statistical test is performed for

three parameter sets, SFimax, SFimax and Eb 0, and SFimax, Eb 0 and Eb c. For

the three parameter sets, the bias is quite small as well as the standard error. Test

cases performed with higher levels of noise (sigma = 0.1) showed the same results.

These results show the good robustness property of the methodology.

4.2.3 Conclusion

The proposed parameter estimation methodology MSPE relies on the idea that the

level of information necessary for model inversion in the estimation process of plant

models can be obtained with few trait data in a large number of environmental sce-

narios, and not necessarily with a lot of trait data, thus making this methodology

adapted to breeding programs. This idea already suggested in Jeuffroy et al. [2006b]

is here implemented and tested on the SUNFLO model.
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When the data from which the parameter are estimated are virtual, that is to say

when they are generated by the simulation of the model, the estimation methodology

is extremely efficient (12 environmental scenarios are sufficient for the estimation of

10 parameters). Moreover, the test case was performed with environmental scenarios

recorded in the same location, which means with weaker variations than if they were

obtained in very different locations. It is necessary to note that such virtual experi-

mental data should correspond to a ‘perfect’ model, a model describing perfectly the

real plant growth. The robustness of the method is also very encouraging; little bias

and good accuracy is observed in case of data perturbations. As complex breeding

relationships exist among those genotypes, accurate parameter estimation should help

develop the research to link model parameters and genes.

4.3 Implementation and Optimization Issues in

MSPE.

In this section, we consider real data situations, with issues to consider for efficient

and robust implementation of the method. Contrary to the virtual data case, corre-

sponding to a perfect model, real parameter estimation problems prove more difficult

to solve. It appears difficult to estimate a large number of parameters: system identifi-

ability appears non-trivial. For this reason, we use global sensitivity analysis (Saltelli

et al. [2008]) to select the most important parameters to estimate and thus reduce

the problem of non-identifiability. Moreover, the yield is not a convex function of the

parameters, which makes the use of descent methods (of Newton type) dangerous to

use, since they may converge to local minima. Other non-convex optimization algo-

rithms (simulated annealing, particle swarm optimization) are tested to circumvent

this issue.
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4.3.1 Parameter Selection

Ideally, all the parameters should be estimated. However, in real situations, it appears

impossible, for different reasons. Therefore, the choice of the parameters to estimate

is driven by several considerations. First, models like SUNFLO or CORNFLO have

already been studied in other contexts, so that it is possible to provide reasonable pa-

rameter values. Some of the parameters are also considered as genotype-independent,

so that their values can be fixed a priori from previous studies (for example for SUN-

FLO from the heavy experiments conducted in the first place for model calibration

Lecoeur et al. [2011]). Therefore, the first argument for the choice of the parameters

to estimate is generally given by the list of genotype-dependent parameters.

A few preliminary studies are then conducted to anticipate some estimation difficulties,

particularly continuity and convexity studies. An application of sensitivity analysis

method can finally be used to rank model parameters according to their importance

on the output.

To illustrate the study, we use the CORNFLO model and dataset in section 2.2 as an

example of preliminary model analysis for parameter selection and implementation of

the estimation algorithm.

Continuity and Convexity

The parameter continuity and convexity analysis can be used to detect the estimation

difficulty of model parameters. Each parameter of CORNFLO model was analyzed.

The parameter value range is around its value estimated by direct measurement. Final

grain yield MSgraine in one scenario is simulated as a function of the parameter value

and shown in Fig. 4.4. Since the environmental input is a 100 % irrigated scenario,

water stress parameters RT , RE and RO have no effect on yield, and therefore are

not considered in this analysis.
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Fig. 4.4: Continuity of MSgraine with respect to each parameter in CORNFLO model

Yields for multiple scenarios were also simulated as functions of the model parameters

in their supposed ranges of variation. The example graphs of parameter phyllo de ini

in 2, 4, and 50 scenarios are shown in Fig. 4.5. The x-axis is still the variation of

parameter value. The y-axis is the mean of yield values for all the scenarios. The

increase of the number of scenarios damped the function irregularity.

Based on these graphs, we classify parameters into three classes: 1) parameters

with smooth curves of MSgraine variations, including dens, A2, A3, k coeff , HI,

RUE pot, M0 and M3; 2) parameters with irregular curves of MSgraine variations
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including F1, phyllo fe ini, phyllo de ini and Ratio phyllo fe de; 3) parameters

to which the dependence of MSgraine is discontinuous (discrete functions for exam-

ple) including NFF . Parameters in the first class are easier to estimate.

Fig. 4.5: Continuity of parameter phyllo de ini in CORNFLO model based on multiple
scenarios

Another interesting test is presented in Fig. 4.6, which shows the effect of an in-

crease of the number of scenarios on residual sum of squares RSS(n), which calcu-

lates the discrepancy between the data and an estimation model with RSS(n, p) =
∑n

i=1(Yi(p)− Yi(p0))
2, where n is the number of scenarios (here it is set as 2, 4 and

Fig. 4.6: Convexity test for 2, 4, 50 scenarios of the parameter phyllo de ini
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50); p is the varying parameter values for the convexity test (0 to two times of mea-

sured parameter value in this test), whose simulation of yield for ith scenario is Yi(p); p0

is the original set of measured parameter values, whose yield simulation (Yi(p0))1≤i≤n

are regarded as target observations, i.e. parameters are calibrated to reach the values

which can reproduce such observation. We can see that the regularity of the cost func-

tion curve is improved, with less local minima and a better convexity, thus reducing

the optimization difficulty.

Parameter Sensitivity

Sensitivity analysis is the study of how the uncertainty in the output of a model can

be apportioned to different sources of uncertainty in the model input [Saltelli et al.,

2008]. Sensitivity analysis can be useful in the modeling process for a range of purposes

such as understanding relationships between input and output variables and searching

for errors in the model [Pannell, 1997]. Here we use it to figure out yield sensitivity

to each parameter in order to identify the most important parameters in the model,

regarding yield elaboration.

There are a large number of approaches to performing a sensitivity analysis, including

local methods(e.g. adjoint modeling[Cacuci, 2003; Cacuci et al., 2005] and automated

differentiation [Grievank, 2000]), a sampling-based sensitivity [Helton et al., 2006]

(e.g. input-output scatter plots), methods based on emulators (e.g. Bayesian[Oakley

and O’Hagan, 2004]), screening methods (e.g. elementary effect method [Campolongo

et al., 2007]), variance based methods [Homma and Saltelli, 1996; Saltelli et al., 2000;

Wu et al., 2012], high dimensional model representations [Li et al., 2006, 2002], and

methods based on Monte Carlo filtering [Hornberger and Spear, 1981; Saltelli et al.,

2004]. In general most procedures adhere to the following outline: 1, specify the

target function of interest; 2, quantify the uncertainty in each input (e.g. ranges,

probability distributions); 3, run the model a number of times using some design
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of experiments; 4, select a method for assessing the influence or relative importance

of each input factor on the target function. Here we use a sampling-based method

SRC (standardized regression coefficient,Helton et al. [2006]) as a first step to assess

model nonlinearity. Since nonlinearity can not be neglected, we turn to variance based

method Sobol [Sobol, 1993] for the sensitivity analysis of the models under investi-

gation. Sobol method uses a unique decomposition of the model into summands of

increasing dimensionality. All terms within the decomposition can then be calculated

using multiple integrals. It has advantages of testing parameters sensitivity from indi-

vidual effect and interactions, even though its computational cost is heavy and Morris

method [Morris, 1991] is sometimes preferred for large dimension problems. Sobol

method is used in this thesis for its good performance and the exhaustiveness of the

information it can provide regarding the interactions and different types of effects in

the model. We recall below the basic elements on Sobol’s method.

Variance-based methods are a class of probabilistic approaches which quantify the

input and output uncertainties as probability distributions, and decompose the output

variance into parts attributable to input variables and combinations of variables. The

sensitivity of the output to an input variable is therefore measured by the amount of

variance in the output caused by that input. These can be expressed as conditional

expectations [Homma and Saltelli, 1996; Saltelli et al., 2000]. For example in Sobol

method, considering a model Y = f(X) for X = X1, X2, ...XN , there exist functions

such that the output can be written as in equation 4.1.

f(X1, . . . , XN) = f0+
N
∑

i=1

fi(Xi)+
∑

1≤i≺j≤N

fij(Xi, Xj)+ . . .+f1...N(X1, . . . , XN) (4.1)

The solution to this problem can be written in terms of conditional expectation of Y :
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f0 = E[Y ],

fi(Xi) = E[Y | Xi]− f0,

fij(Xi, Xj) = E[Y | Xi, Xj]− fi(Xi)− fj(Xj)− f0
...

(4.2)

Using formula 4.1, the variance of Y , D = V ar(Y ) can be written as:

D =
N
∑

i=1

Di +
∑

1≤i≺j≤N

Dij + . . .+D1...N (4.3)

where

Di = V ar(E[Y | Xi]),

Dij = V ar(E[Y | Xi, Xj]− E[Y | Xi]− E[Y | Xj]),

...

(4.4)

The Sobol sensitivity indices are defined by

Si =
Di

D
, Sij =

Dij

D
, . . . (4.5)

where

Si ≥ 0, Sij ≥ 0, . . .

∑N

i=1 Si +
∑

1≤i≺j≤N Sij + . . .+ S1...N = 1

(4.6)

Si is the first order index. It explains the part of the variance of Y that can be ex-

plained by the fluctuations of Xi. Sij is the second order index. It explains the part

of the variance of Y explained by the interaction of the fluctuations of the variable

Xi and Xj. The total index STi is the sum of all indices relative to Xi, which ex-

presses the sensitivity of Y with respect to Xi by itself or through its interactions with

other variables [Ammari et al., 2012]. The computation method is based on Monte

Carlo simulation and the estimation algorithm proposed by Wu et al. [2012] which

is implemented in the Pygmalion platform. The results of CORNFLO parameters



100 4. Multi-scenario Methodology of Parameter Estimation (MSPE)

sensitivity to model input “Yield”, analyzed respectively by SRC and Sobol methods,

are shown in table 4.4, and table 4.5. The configuration of our sensitivity analysis is:

1024 samples are taken into account in a Monte Carlo simulation, and two repetitions

of sensitivity analysis are adopted to confirm the result’s convergence. In order to

Tab. 4.4: SRC sensitivity index of the most influential parameters (with index > 1%).

NFF A2 M3 HI RUE pot A3 F1 M0 k coeff

0.25 0.21 0.14 0.06 0.06 0.03 0.03 0.03 0.02

Tab. 4.5: Sobol first order and total order index values for the most influential parameters
(with index > 1%).

NFF A2 M3 HI RUE pot A3 F1 M0 k coeff

First Order Index 0.26 0.21 0.13 0.06 0.06 0.05 0.03 0.03 0.02

Total Index 0.39 0.28 0.13 0.1 0.1 0.12 0.08 0.09 0.1

screen parameters, (select the parameters that can be fixed to some a priori values),

the total order indexes SYi are used: parameter j is screened if STj < ǫ, with ǫ a

threshold, for example 0.01. All these methods show that parameter phyllo fe ini,

phyllo de ini and Ratio phyllo fe de have negligible effect. Therefore they can be

screened and will not be estimated, at least in a first run.

4.3.2 Optimization Issues

In order to find the best optimization method for MSPE application on Cornflo model,

Gauss-newton method [Walter and Pronzato, 2006], Simulated Annealing method

[Laarhoven and Aarts, 1987], and Particle Swarm Optimization algorithm [Shi and

Eberhart, 1998] are compared on their optimization capacity and computation effi-

ciency.
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Optimization Algorithms

Gauss-newton algorithm is able to solve non-linear least squares problems. It iter-

atively searches for the parameter values θ of a vector of m estimated parameters

(θ1, . . . , θm), which get the minimum of the sum square error f(θ):

f(θ) =
n

∑

i=1

r2i (θ) (4.7)

where r is a vector of the residual squared error between n observations and n esti-

mations. The iteration starts from the initial guess of parameters θ(0), with the step

gradient as:

θ(s+1) = θ(s) − (JT
r Jr)

−1JT
r r(θ

(s)) (4.8)

where Jr is a n×m Jacobian matrix equating:

Jr =
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(4.9)

Simulated Annealing algorithm (SA) and Particle Swamp Optimization algorithm

(PSO) are all computational intelligence methods with iterative optimization tech-

niques. Their parameter searching space is all m-dimensional space representing re-

spective values of parameters θ1 . . . θm. Their objective is to find the best position

(with minimum cost function value) in the m-dimensional space.

SA mimics the metallurgical process of annealing. It compares the current solution

θ(s) with a randomly generated potential solution θ(s+1). If the system energy has

decreased (the cost function is more minimized by new solution), θ(s+1) is accepted

and set as the current system position. If not, an acceptance probability PA of the

new solution is calculated:
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PA = exp(−∂f ∗ (
T0

T
)) (4.10)

where ∂f is the change of cost function between existing solution and new solution.

T0 is the initial temperature value. T is the current temperature, which is high at the

beginning and is gradually cooling down with the cooling speed ratio α. A random

value between [0− 1] is compared with PA. If PA is greater than this value, the new

solution θ(s+1) is accepted. This is repeated until the system freezes into a steady

state. T0 and α are meta-parameters to configure the algorithm’s efficiency.

PSO mimics the biological behavior of a swarm of bees. The swarm of bees (particles)

cooperates to find the target (global minima in optimization) in a partially random

way. Each particle receives information from other members about their swarm’s

best position and records its best position of current minimum. Thereby, a particle’s

movement in search space for each iteration is calculated:

v(s+1) = c1v
(s) + c2(p

(s) − θ(s)) + c3(g
(s) − θ(s))

θ(s+1) = θ(s) + v(s+1)
(4.11)

where v(s) is the particle’s self velocity at sth iteration, p(s) is the minimum position for

this particle, and g(s) is the minimum position for all particles. c1, c2 and c3 are given

parameters, which together with the amount of particles t used for optimization, are

named meta-parameters to configure PSO algorithm. Iterations are executed until a

stable state is achieved.

Optimization Capacity

The limit of the cost function found by Gauss-newton algorithm is a stationary point

if the algorithm converges. However, the convergence is not guaranteed. When the

initial guess is far from the minimum or the Hessian matrix JT
r Jr is ill-conditioned, the
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algorithm converges slowly or cannot converge. In the MSPE tests in this thesis, the

initial guess of SUNFLO and CORNFLO parameters are from another estimation by

direct measurements. To ensure the scenarios provide enough information for reaching

convergence, different combinations of parameter sets are tested and the amount of

scenarios is increased, for example in the feasibility test in section 4.2, 12 scenarios are

used for estimating 10 SUNFLO parameters. Other disadvantages of Gauss-newton

algorithm include that it fails when the derivative of the cost function cannot be

computed (which is the case for example for the NFF parameter, the number of

leaves); it performs well for local minimum optimization problem, but for multi local

minima problems, it is easily stuck at local minima and fails to reach the global

minimum.

SA algorithm is able to deal with highly non-linear models and find global minimum.

In SA processes, T is high at the beginning, which allows the algorithm to search in

a wide range of solutions, including many that are worse than the current solution

to avoid sticking to local minimum. Meta-parameters α and T0 are critical factors.

A low T0 may cause the failure of reaching global minimum; a high T0 may bring

in unnecessary cost of time for the algorithm execution. Similarly, α affects whether

the parameter space are sufficiently searched for finding the global minimum. They

are adapted to concrete optimization problems for ensuring the optimization capacity.

While SA has good functionality in global minimum searching, it has the problem of

costly computing time. For example, in this thesis tests, the configuration of T0 = 1000

and α = 0.0995 succeeds to estimate six CORNFLO parameters, but it costs around

20 hours to achieve one round of parameter estimation. When an experiment involves

many rounds of parameter estimation, such as the one in section 4.4 for the bootstrap

algorithm in order to evaluate the estimation uncertainty, the computation becomes

very heavy.

As another meta-heuristic artificial intelligence based algorithm, PSO has also good
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capacity in finding global minimum. Its meta-parameters are also critical on ensuring

the optimization capacity. In the tests of this thesis, its meta-parameters are c1 = 0.01,

c2 = 0.05, c3 = 0.02, and particle amount t = 3000. The quantitative comparison

between SA and PSO for assessing their capacity in finding global minimum is not

investigated in this thesis. It is only demonstrated here that both algorithms are

able to be well used for MSPE optimization in CORNFLO model. PSO has also the

problem of heavy computational cost. These algorithms’ computational efficiencies

are discussed in the next section.

Computational Characteristics and Efficiency

Two types of computers are used in the thesis. The first computer “Dell P8600”

has an Intel dual core processor with the feature of 2.4 GHz. For the FlOPS (the

floating-point operations per second) benchmark, which is a principle measurement

of computer performance, this computer has 16370 MFLOPS. Another computer is

named “mesocenter”, which is a large computing machine located in Ecole Centrale

Paris, France. It has 10 TFLOPS and comprises nearly 1000 calculation units. The

mesocenter has obviously more computing power than the first computer. For exam-

ple, the 50 scenarios convexity analysis in Fig. 4.6 has 20000 samples to construct the

x-axis and for each sample, 50 simulations need to be produced. In total, it needs 1

million simulations, which takes around 48 hours computed by “Dell P8600”, but only

2 hours 35 minutes computed with the “mesocenter”, i.e. the calculation of a simula-

tion in “Dell P8600” spends around 0.2 seconds, while its calculation spends around

0.01 seconds in“mesocenter”. In our tests, “mesocenter” calculation is around 20 times

faster than the “Dell P8600”. The results for parameter estimation are comparable.

Gauss-newton algorithm has much faster computation than SA and PSO algorithms.

For estimating 6 CORNFLO parameters in MSPE, Gauss-newton spends few min-

utes in “Dell P8600” while SA and PSO take tens of hours in “mesocenter”. But as
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the optimization capacity is the main concern, SA and PSO are preferable choices

despite their slow computations. Between the two algorithms, PSO seems to have

better computational efficiency than SA as already underlined by Qi et al. [2010] in

a plant growth modeling context. With the algorithm configurations detailed in the

previous section, 6 parameters optimization in SA needs around 20 hours, while PSO

needs around 10 hours, showing less computational cost. However, as the algorithms’

optimization capacities are not fully tested, changing meta-parameters for algorithms’

configurations may lead to different performances. Considering tests carried out in

this thesis, PSO is recommended for the excellent balance of its optimization capacity

and computational efficiency.

4.3.3 Parameter Non-Estimability

Identifiability is a property which a model must satisfy in order for inference to be

possible. We say that the model is identifiable if it is theoretically possible to learn the

true value of this model underlying parameter after obtaining an infinite number of

observations from it. Mathematically, this is equivalent to saying that different values

of the parameter must generate different probability distributions of the observable

variables. For example, when a model has been written in such as way that two or

more parameters are nonseparable, the non-separable parameters are not estimable

with any data set. In this case, the parameters are often referred to as non-identifiable

[Ponciano et al., 2012] or structurally non-identifiable. Rannala [2002] showed a simple

exponential modeling case with this type of non-identifiability. Beside the identifia-

bility problem, another situation can lead to parameters’ non-estimability (also called

practical non-identifiability). It takes place when the sampled data contains abso-

lutely no information about the parameter of interest, yet other data sets might. We

term such cases as identifiable but non-estimable [Ponciano et al., 2012] or practically

non-identifiable.
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The identifiable but non-estimable problem makes the determination of data suffi-

ciency important in MSPE. When the environment scenarios for parameter estima-

tion are few, only limited parameters can be estimated. In our parameter estimation

practice, we observed that adopting more environment scenarios can help estimating

more parameters. The sufficiency of observation data limits the amount of parameters

which we can estimate in MSPE. Moreover, when not enough scenarios are available,

MSPE computes parameter estimates outside their validity range (or at the bound-

ary since some constraints are imposed for the parameters to remain in the validity

range). When it occurs, we consider that we are in a non-estimability situation. The

range of validity for five CORNFLO parameters, M0, M3, A2, A3, k coeff is given

in (table 4.6). For example, the parameter A2, representing the leaf rank of biggest

Tab. 4.6: Parameter optimization searching value range

Lower Upper Lower Upper
M0 442 1326 M3 739 2216
A2 7 21 A3 323 968

k coeff 0.27 0.8 RUE pot 1.75 5.25

surface leaf has the range [7; 21]. This is a reasonable setting because of A2’s phys-

ical feature. When using 50 randomly chosen scenarios for the estimation, A2 has

big probability to reach its value boundary, as illustrated in one specific estimation

provided in table 4.7. But some combinations of 50 scenarios do not exhibit such

Tab. 4.7: Estimated parameters values from 50 scenarios: parameters reaching boundary

M0 M3 A2 A3 k coeff
1022 1283 7 385 0.45

problem, as illustrated for another choice of 50 scenarios in (table 4.8). We can see

Tab. 4.8: Estimated parameters values from 50 scenarios: parameters not reaching bound-
ary

M0 M3 A2 A3 k coeff
1157 1200 16 668 0.68
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that estimated parameter values are not close to their value range. The reason that

some combinations of scenarios make it possible to estimate parameters while some

others cannot is the scenarios correlation which determines the information amount

of the scenarios set. It means that scenarios for the table 4.7 have bigger correlations

than those for table 4.8. The environmental scenarios similarity and difference and

their effect on multi-scenario parameter estimation will be explained in Chapter 5.

To estimate more parameters with MSPE, a larger number of scenarios is required.

To estimate four parameters M0,M3, A3, k, as least as 30 scenarios chosen randomly

in the database (real data, as presented in section 2.2 for one sepcific genotype) are

enough for parameter estimation. We do not have the data insufficiency problem.

50 scenarios are generally enough to estimate five parameters M0,M3, A2, A3, k, but

not always. Finally, adopting 500 scenarios make most of cases estimable and 720

scenarios makes it work (table 4.9). More scenarios make it possible to estimate more

parameters.

Tab. 4.9: Estimated parameters values from 500 and 720 scenarios.

M0 M3 A2 A3 k coeff
500 Scenarios: 1134 1339 9 441 0.4
720 Scenarios: 879 1452 9 441 0.4

However, some parameters cannot be estimated no matter how many scenarios are

taken. Because MSPE has the special characteristic that it uses only small amount

of data for each input dataset, some parameters have practical identifiability problem

arising with the MSPE strategy. Since the non-identifiability is practical and not

structural, such problems would not occur if more traits were available. In our case

for example, the calculation of yield MSgraine in CORNFLO, the harvest index

parameter HI cannot be estimated, even by increasing the number of scenarios. It can

be solved by using two traits (data MSgraine and MStot) in one scenario of MSPE,

or by improving harvest index mechanisms, for example as in the the SUNLAB model
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in Chapter 3.3.

4.3.4 Conclusion

From the above analysis, we can see that among all CORNFLO parameters, F1 has

strong oscillating curves in continuity test, which make it more difficult to estimate,

phyllo de ini, phyllo fe ini and Ratio phyllo fe de have low sensitivity, and HI

is non-identifiable when the available data are restricted to crop final yield. Besides,

dens and NFF , representing field density and crop average total amount of leaves,

can be measured from field experiments with low uncertainty. Therefore parameters

in the first priority to estimate are: A2, A3, k coeff ,RUE pot, M0 and M3. These

parameters are used in our following tests to prove MSPE prediction capacity.

From the previous section 4.3.2, we know that MSPE parameter optimization can be

a difficult issue from a numerical point of view. An important reason is the existence

of the multiple local minima in cost function. Increasing scenario amount can help

damping estimation and optimization difficulty in MSPE. Fig. 4.5 has shown that the

increase of scenario amount make an oscillating function curve smoother.

4.4 Evaluation of MSPE Estimation Accuracy

Deriving from the level of information in the experimental data used in model inversion

for parameter estimation, there is a degree of uncertainty for model parameter values.

The distribution of parameter and its statistics are of interest because they represent

the accuracy and confidence of relative parameters’ estimation. In this thesis, we study

the distribution of four CORNFLO model parameters M0, M3, A3, and k coeff

based on 720 real experimental scenarios (dataset in section 2.2), with the following

steps:
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1 A single test TM is to choose randomly a set from the C(n,m) complete combi-

natorial group of m scenario samples among n total scenarios. n is 720 of 100%

irrigated scenarios in this study, for one specific genotype. The m scenario sam-

ples will produce an estimated value for a selected parameter ParamM .

2 We repeat TM 100 times to produce samples of estimation values ParamM 0,

ParamM 1 . . . ParamM 100. A discrete approximation of the distribution is

thus obtained. The mean and standard deviation of the estimate distribution is

denoted as paramMean M and paramSd M .

3 Different values of m are chosen: 40, 50, 70, 100 and 200 in this study. Then

paramMean 40 . . . paramMean 200 and paramSd 40 . . . paramSd 200 can be

obtained to research on the change of parameter distribution due to the increase

in the number of scenarios for the estimation.

Fig. 4.7, Fig. 4.8 and Fig. 4.9 are examples of parameter distributions with m respec-

tively as 40, 70 and 200. Our hypothesis of the m effect on standard deviation values

of parameters distribution is that the bigger m is, the smaller standard deviation will

be. When m reaches big enough value, the variance will converge as in Fig. 4.10.

The standard deviation in our tests with m respectively equal to 40, 50, 70, 100, 200

are shown in Fig. 4.11. Current results show that the variance is not converged yet.

But for all the four parameters, the standard deviation has an obvious tendency to

decrease when m increases. The bigger the number of scenarios is, the more accurate

parameter estimates are.

This study is crucial for the use of the MSPE method to characterize genotypes and to

discriminate between them. For the statistical test to consider whether the estimated

parameters for two different genotypes can be considered as different or not, the power

of the test will be bigger for better estimate accuracy, and thus with a bigger number

of scenarios.
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Likewise, regarding the predictive capacity of the model, a reduction of input un-

certainty (here parameter estimates) should also lead to better performances. The

impact of the number of scenarios used for the estimation is thus considered in the

next section.

Fig. 4.7: Distribution of 100 samples for four CORNFLO parameters based on 40 scenarios

4.5 Evaluation of MSPE Prediction Error

Model evaluation aims at determining how well a model fulfills its initial objectives.

For crop models, whose main purpose is yield prediction, the evaluation consists in
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Fig. 4.8: Distribution of 100 samples for four CORNFLO parameters based on 70 scenarios

comparing between observed and predicted values, graphically and with numerical and

statistical measures of model quality [Wallach, 2006]. Model evaluation is important

because it tells the users and developers the quality of their model and may also give

hints to improve the model quality. For MSPE, a hypothesis is that the scenario

amount can influence the prediction error / predictive ability of the model associated

with its estimated parameters. Two tests based on CORNFLO model were carried

out to research on this feature.
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Fig. 4.9: Distribution of 100 samples for four CORNFLO parameters based on 200 scenarios

Fig. 4.10: The illustration of our hypothesis on the evolution of the standard deviation
value
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Fig. 4.11: The illustration of standard deviation values of parameter distribution in MSPEJ

4.5.1 Number of Scenarios Increase Test

In this test, among the 720 available scenarios (for one genotype, and no water stress),

240 are isolated to serve as the validation set. The remaining 480 scenarios serve

as the learning set. Among these, we choose samples, with an increasing number

of scenarios from 10 to 480. These samples of scenarios are used for MSEP, with

Gauss-Newton method as optimization algorithm. They produce different parameter

estimation result P10 . . . P480. Each parameter set result P is used to simulate the

trait of interest, the yield, on the 240 scenarios of the validation test. For each esti-

mate, the root mean square error of prediction RMSEP =
√

(1/N)
∑N

i=1(Y i− Ŷ i)2

is used to assess the difference between observation and simulation, i.e. model pre-
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diction ability, where N is the total amount of considered scenarios in the validation

test (240 in this test), Y i is the measured experimental value of ith scenario (exper-

imental yield), and Ŷ i is the simulated value with the parameters estimated from a

subsample of the learning set. RMSEP has the same unit as yield. Therefore, the

statistics RMSEP10, . . . , RMSEP480 represent model parameters’ prediction ability

along with the number of scenarios.

Fig. 4.12 illustrates the RMSEP results of two sub tests following the above method-

ology scheme. In the prediction error test 1, the optimization method Gauss-newton is

carried out with initial parameter values as 0.9 times of measured CORNFLO param-

eters and the prediction error test 2 uses 1.1 times of those values. It is demonstrated

Fig. 4.12: Prediction error (Root mean square error) changes along with the increase in
the number of scenarios. In prediction error test 1, the optimization algorithm
Gauss-newton method takes 0.9 times of a priori CORNFLO parameters as initial
parameter values for optimization; Prediction error test 2 takes 1.1 times of those
values

that the increase in the number of scenarios used by MSPE can improve the estimated
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parameters’ prediction ability, as the prediction errors are shown to reduce in both

sub tests. Since the Corn yield is around 1000, the prediction errors with the same

unit reduce from around 200 to 90, showing that the prediction error decreases from

around 20 % of yield to 9 %, which corresponds to what was expected.

However, there are two points in this test that can be improved. Firstly, it was

performed with Gauss-newton optimization method. As explained in section 4.3.2,

the specific cost function of CORNFLO model to optimize decides that the Gauss-

newton method is easily stuck in local minima. The estimation values in this figure

may not be global minima. Although the tests with different initial values used in

Gauss-newton still show that the prediction error is reduced with an increase of the

number of scenarios, even for different local minima combinations, the prediction

ability should be improved if based on global minima. The second problem is that,

since the 480 scenarios for parameter estimation and 240 scenarios for model evaluation

are random scenarios in dataset 2.2, the specific choice of these two sets may affect

the result. For these reasons, we consider a more complex test in the next section.

4.5.2 Cross Validation Test

In this test, PSO algorithm with proper meta-parameters configuration instead of

Gauss-newton is used to ensure reaching global minima in optimization. The root

mean square error of prediction RMSEP (Eq. 4.12) is used to measure the difference

between observation and simulation, which also has the same unit as yield.

RMSEP =

√

E
{

[Y i− Ŷ i(θ̂)]2|θ̂
}

(4.12)

where θ is the estimated parameter set for a specific situation. The RMSEP is

different from the one used in the previous test because it takes into account all possible

interested situations while in the previous section, only a specific configuration for the



116 4. Multi-scenario Methodology of Parameter Estimation (MSPE)

choice of scenarios was considered. In detail, this test takes advantage of the test in

section 4.4, whose steps are adapted as follows: for a single test TM , while m scenario

samples are taken from n for parameter estimation, 200 random scenarios from the

rest of n−m scenario produce prediction simulations; 100 different choices of TM are

realized, and thus 20000 (100×200) scenarios’ simulation points are produced and used

to compute the expectation of prediction error RMSEP (m); setting values for m as

40, 50, 70, 100, and 200, we can get the prediction error’s evolution with the increase

of the number of scenarios (obtaining RMSEP (40), . . . , RMSEP (200)). The test is

designed with cross validation strategy. Cross validation is based on the principle of

data splitting, and aims to remove the bias coming from arbitrarily assigning certain

selected scenarios for estimation and prediction. It has been tested on crop models

by Jones and Carberry [1987] and Colson et al. [1995]. It is used in this thesis to

eradicate the choice of scenarios influence on our prediction error measurement. Under

this strategy, the calculation of prediction error is illustrated in Fig. 4.13. The left

graph shows the reduction of prediction error from scenario amount 40 to 200. The

prediction error from initially 8% is reduced to 7.5%. It proves that more scenarios

used in MSPE cause better prediction ability for its estimated parameters. However,

the gain in prediction is far more reduced with an increase in the number of scenarios,

showing that with this strategy (global minimization + jackknife averaging of the

estimation), 40 scenarios seem sufficient to ensure a good level of prediction.

The mean squared error of prediction MSEP (θ̂), which is the square of RMSEP (θ̂),

can be decomposed into three terms MSEP (θ̂) = λ + δ + α. λ = E [var(Y |X)], is

the population variance term representing the observation trait (Y , yield)’s variance

for fixed values of models’ environmental inputs X, i.e. it measures the missing

consideration of important environmental variable’s effect. δ is the square of model

bias, and depends on the form of the model. α = E
{

var[Ŷ i(θ̂)|X]
}

is the the model

variance due to the variability of model parameters. The variance of model parameters
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Fig. 4.13: Prediction error is reduced with the number of scenarios, from 40 to 200. Left
graph: the prediction error reduction in cross-validation test; Right graph: the
comparison between prediction error in cross validation test(blue line) and in
number of scenarios increase test (in section 4.5.1, red line). Y-axis is the root
mean square error of prediction with the same unit as yield; X-axis is the the
number of scenarios used for MSPE parameter estimation.

var[Ŷ i(θ̂)|X], which has been proved to reduce for the increase of scenario amount,

explains the prediction error’s reduction.

The right graph is the comparison of prediction error in this cross validation test and

in the previous simple test increasing the number of scenarios (in section 4.5.1). For

smaller numbers of scenarios, the improvement made by the cross validation test quite

big (the percentage of error reduction is about 7.5% of yield for 40 scenarios), while

the improvement is lower when the number of scenarios is bigger (for 200 scenarios,

the prediction error in cross validation test is reduced of 2.5% of yield compared to

the simple test with Gauss-Newton and without cross-validation). It demonstrates

the superiority of global optimization and averaging. However, since both convexity

and estimation accuracy are improved when the number of scenarios is increased (as

shown in figures 4.6 and 4.11 respectively), the improvement of global optimization

and averaging is lower. Besides, both methods show that the prediction error converges
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(to λ+δ) when the number of scenarios increase. The quantitative analysis of scenario

amount’s convergence critical values need to be studied in the future: can we compute

an error bound allowing us to decide the proper number of scenarios for an acceptable

error level a priori ?
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4.6 Jackknife Based MSPE: an Extended Version

In this section, we propose an alternative version of the MSPE method, which is

based on the Jackknife strategy. A distribution of the estimate is thus obtained, with

a standard deviation of estimated parameter value and whose mean appears to be a

more stable estimate than the direct MSPE, specifically in the case of low numbers of

scenarios.

4.6.1 Delete-m Jackknife Estimator and MSPEJ Methodology

The jackknife estimator introduced by Quenouille (1949) has become an important

tool in simulation and data analysis. It creates a series of statistics, usually a param-

eter estimate, from a single data set by generating that statistic repeatedly on the

data set leaving each time some data values out (not used for the calibration). It is

used mainly for bias reduction and interval estimation. A generalized definition of

Jackknife estimator is as below: n samples are splitted into g groups of size h where

n = g ∗ h. Let Y1, . . . , Yn be a sample of independent and identically distributed

random variables. Let θ̂ be an estimator of the parameter θ based on the sample of

size n. Let θ̂−i be the corresponding estimator based on the sample of size (g− 1) ∗ h,

where the i-th group of size h has been deleted.

A popular form for many researches is when g = n and h = 1, which is also the case

discussed here. For the bias reduction aspect, define

θ̃i = n ∗ θ̂ − (n− 1) ∗ θ̂−i i = 1, . . . , n. (4.13)

The estimator

θ̃ =
1

n
∗

n
∑

i=1

θ̃i = n ∗ θ̂ − (n− 1) ∗
1

n
∗

n
∑

i=1

θ̂−i (4.14)

has the property that it eliminates the order 1/n term from a bias of the form Miller
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[1974]

E(θ̂) = θ + a1/n+O(1/n2) (4.15)

For its interval estimate aspect, the jackknife confidence interval CI is calculated as

CI(95%) = θ̃ ± 1.96

√

var

n
(4.16)

where

var =
1

n− 1
∗

n
∑

i=1

(θ̃i − θ̃)2 (4.17)

The above jackknife method is called delete-1 jackknife because for the estimator

θ̂n = θ̂n(Y1, . . . , Yn), the θ̂−i is constructed by leaving out one observation Yi. Instead

of removing one single observation from the samples, the delete-m jackknife subsam-

ples are computed by leaving out m observations from Y1, . . . , Yn at a time. The

subsamples of the number
(

n
m
)

= n!
m!(n−m)!

produce the sample distribution for calcu-

lating the corresponding bias reduction or confidence interval. Delete-m jackknife is

adopted normally for non-smooth statistics, such as median of samples. It can fix the

inconsistency problem for jackknife subsamples in delete-1 jackknife method. MSPEJ

adopts delete-m jackknife method, researching on the bias reduction compared with

MSPE and MSPEJ’s interval estimate. It also research the effect of different number

of m on bias and interval estimate features in delete-m jackknife based MSPEJ.

MSPEJ is defined as follows: there are totally n sample scenarios Y1, . . . , Yn. m

scenarios (m <= n) are used to produce a point estimator θ̂m(i), where n−m sample

scenarios are taken out from n. Since the complete combinatorial group number c =

(
n
m), there produced θ̂m(1), . . . , θ̂m(c), totally c estimated point values which construct a

distribution of parameter values relating to m. It is denoted MSPEJm. An example

on SUNFLO model parameters SFiMax and position SFiMax is obtained with

this estimation, whose parameter distribution are shown in Fig. 4.14. Note that the
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Fig. 4.14: The distribution of all combinatorial samples for using 17 scenarios out of 21
scenarios in MSPEJ for SUNFLO Model

method used in section 4.2.2 to compute parameter distributions and uncertainty is

pretty similar to the MSPEJ here proposed, except for the sampling strategy among

the whole set of scenarios.

4.6.2 A Real Data Test

Compared with MSPE, besides the fact that MSPEJ offers mean and standard de-

viation of parameter distribution, it is derived to overcome the problem raised when

only small numbers of environmental scenarios are available in MSPE. Normally in

breeding programs the number of available environmental scenarios for a given geno-

type is large enough, resulting in estimated parameters with acceptable estimation

and prediction errors. Even though some well designed models such aim at predict-

ing crop yields in a large range of environmental conditions, its predictive ability

still face some limitations resulting from the impossibility to handle all local environ-

mental conditions precisely. Uncertainty also comes from experimental data. Huge
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scenarios used in estimation will diminish these influence of uncertainty. When the

number of scenarios is small, the uncertainty influence is amplified. For example, a

series of tests are carried out on the Sunflower genotype “Melody” with the SUNFLO

model. Detailed experiments were conducted in SupAgro Montpellier to determine

via direct measurements the SUNFLO parameters of the genotype ’Melody’ [Lecoeur

et al., 2011], denoted P0. For the same genotype, 21 experimental scenarios recorded

in different places and years (Chapter 2.1.2) are available, with environmental data,

crop management information, and final seed yield. In each scenario, only the trait

MS graine lastDay) is used for parameter estimation. Gauss-newton algorithm is

utilized for generalized least square error optimization. The estimation of two param-

eters SFimax and Eb 0 based on 21 scenarios produce an unreasonable results that

SFimax obtains the value 4904, which is unrealistic from a biological point of view.

Two strategies to manage the limited scenario data based on MSPEJ are tested.

The first strategy screens scenarios to keep those whose yield simulations are good

compared with experimental observations. Six scenarios are selected. A test takes two

out of the six scenarios producing 15 combinatorial groups to estimate two parameters

SFimax and Eb 0. The seed yields in the six selected scenarios are supposed to have

errors coming from field measurements. To correct the effect of measurements errors on

resulted parameters, the six scenarios are grouped two by two, and it thus obtains 15

combinatorial groups (corresponding to the number of different choices of two elements

in a group of six). Every group has two scenarios to calibrate 2 parameters. Calibrated

parameters values in every group are recorded. At last, the average of parameter values

in all groups is admitted as the final estimated parameter for this genotype, and is

compared to the original value of P0. The standard error is a measure of parameter

uncertainty. Table 4.10 shows the estimation result. Likewise, the 6 scenarios can

be grouped three by three, 20 combinatorial groups are thus obtained, which provide

three scenarios to estimate three parameters SFimax, Eb 0, and Eb c in every group
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Tab. 4.10: Measured value of two parameters, their estimated values in 20 samples and
the calculation of mean and standard error by MSPEJ.

(20 is the number of 3-combinations from the set of 6 scenarios), the results are shown

in table 4.11; Grouped by four, 15 combinatorial groups are obtained to calibrate four

Tab. 4.11: Measured value of three parameters, their estimated values in 20 samples and
the calculation of mean and standard error by MSPEJ.

parameters SFimax, Eb 0, Eb c, and LAI Kei (see table 4.12). There is a good

agreement between the estimated values and the measured values of the parameters.

But the standard errors of parameters are quite high, thus showing that the number

of scenarios from which the parameters are estimated is not sufficient. For a practical

usage case, this strategy is not possible to be carried out because while our aim is

to estimate parameters, we don’t have produced simulation for screening scenarios

depending on their prediction ability. Here it is used to verify the possibility to use

MSPEJ for small amount of scenarios under a realistic situation.

Tab. 4.12: Measured value of four parameters, their estimated values in 15 samples and
the calculation of mean and standard error by MSPEJ.
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The second strategy screens the estimated result samples. A test takes 12 scenarios

from 21 scenarios to estimate 10 parameters shown in table 4.13. The knowledge of

parameters obtained from direct measurement gives us reasonable ranges for param-

eter values. The interval area of parameter values (around 0.5 times and 1.5 times

of the measured value) screens out the estimated samples with parameter values out-

side of the range. Estimated parameters values are reasonable compared with direct

measurement values. Their standard errors are also reduced compared with the first

strategy. Those estimated result samples are screened out possibly for two reasons.

One is that those scenarios used for estimation may include too many scenarios with

bad prediction. Another is that those scenarios used for estimation do not provide

sufficient information level and we face non-estimability / practical non-identifiability

problems, as explained in section 4.3.3. The environment selection methodology in-

troduced in Chapter 5 can assess the cause of data insufficiency in scenario sets. This

methodology is more robust than using directly MSPE by discarding estimated result

samples suffering from this effect.

Tab. 4.13: Measured value of ten parameters, the calculation of their estimation values’
mean and standard error by MSPEJ.
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In conclusion, we have carried out tests on estimating SUNFLO parameters con-

fronting to data in Chapter 2.1.2 based on MSPEJ methodology. Up to ten param-

eters can be calibrated with good agreement to the measured values. Parameters

SFimax,Eb 0, Eb c, LAI Kei. SFimax are chosen since they are key parameters in

the model, with important differences between genotypes [Lecoeur et al., 2011] and

with a very direct biological meaning and potential accurate direct measurements to

check the validity of our approach. The others are important parameters that are

not easy to compute from field measurements, and for which the method has a strong

interest. MSPEJ helps us to test the capacity to calibrate complex parameters. These

tests indicate the potential to calibrate unknown parameters for new genotypes with

this type of dataset.

4.7 Conclusion

In this chapter, an original parameter estimation methodology MSPE (Multi-scenario

Parameter Estimation Methodology) is designed to overcome the difficulty of crop

model parameter estimation by model inversion when the experimental cost is heavy.

The principle of the methodology is to use large numbers of environmental scenarios

with simple traits to estimate parameters rather than detailed experimental data.

Its feasibility has been demonstrated by the theoretical test on SUNFLO parameters.

Practical solutions for carrying out MSPE are discussed, including optimization issues

and the analysis of parameters sensitivity, continuity, convexity, and identifiability.

The effect of the number of scenarios used in MSPE on the accuracy of estimation

and the prediction error are investigated, indicating that more scenario amount leads

to more accurate parameter estimation and better prediction capacity. Finally, an

extended version Jackknife based MSPE, entitled as MSPEJ, is developed for a special

case of parameter estimation with only small numbers of scenarios, with simple traits.
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5. ENVIRONMENT CLUSTERING AND

INTERACTION WITH CROP MODELING

The MSPE methodology relies on the level of information available from the different

scenarios used for model inversion. This level of information can be enhanced by

well choosing the environmental scenarios on which is based the estimation. In this

chapter, based on data clustering methods, environment scenarios are studied for two

purposes:

• the visualization of environment clusters provides suggestions to multi-environmental

trials (section 5.2). We consider a classification of the experimental locations

based on climatic / soil data or crop yield information;

• multi-scenarios parameter estimation methodology is improved by selecting sce-

narios from environment clusters (section 5.3). In this section, we consider

clusters of scenarios, based on one year climatic data.

5.1 Data Clustering Methods

The objective of data clustering is to group data objects with more similarity into

clusters. It can be achieved by many clustering methods. Typical classes of clustering

methods include connectivity based clustering [Hastie et al., 2009] and centroid based

clustering [Kanungo et al., 2002].

Connectivity based clustering connects objects based on their distances. Objects are
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more related to nearby objects in the clustering result than those farther away (An

example result is in Fig. 5.1). Hierarchical clustering method used in section 5.2 is a

connectivity based clustering method. The user can visualize the similarity between

objects and get a clue of the number of clusters with this method. But it does not

provide a clear partitioning of objects dataset. The clusters are chosen by the user

according to the similarity hierarchy.

Centroid based clustering is based on an iterative search of the centers of each cluster

and each object’s distance to the center until it converges, and thus provides the

final clustering. K-means clustering method used in section 5.3 is a centroid based

clustering method. It produces a clear partitioning of objects, but it needs the input

of the number of clusters before the method begins. There are algorithms to guess

reasonable number of clusters according to the dataset.

We recall the principle of the algorithms of hierarchical method and k-means methods

as used in this thesis.

Hierarchical Clustering. Two strategies can be used to build a hierarchy of objects

clusters. Agglomerative strategy is a “bottom up” strategy. It considers each object

as a cluster at first, and merge gradually other clusters to build up hierarchy. Di-

visive strategy is a “bottom down” strategy, which considers all objects as a cluster

at first and split them step by step. The merge or split of sets of objects depends

on their dissimilarity, i.e. their distances. Two factors are taken into account for

calculating the dissimilarity: metric and linkage criteria. The metric approach con-

siders the distance between two objects a and b. Common metrics are euclidean

distance
√

∑

i(ai − bi)2, squared euclidean distance
∑

i(ai − bi)
2 or Manhattan dis-

tance
∑

i |ai − bi|, where ai and bi are coordinates of a and b. Linkage criterion

determines the distance between two sets of objects. Common criteria include com-

plete linkage max {d(a, b) : a ∈ A, b ∈ B}, single linkage min {d(a, b) : a ∈ A, b ∈ B}

or average linkage 1
|A||B|

∑

a∈A

∑

b∈B d(a, b), where d is the chosen metrics, a and b are
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objects in sets A and B.

K-means Clustering. K-means clustering considers every object as a n-dimensional

vector. To cluster m objects X1, . . . , Xm into k groups G1, . . . , Gk, we solve the

following optimization problem:

argmin
G

k
∑

i=1

∑

Xj∈Gi

‖Xj − µj‖
2 (5.1)

where µj is the mean n-dimensional position of group j. The optimization is an

iterative process. Before the iteration begins, each group is given a random mean

position to produce groups’ mean positions µ1, . . . , µk. Each iteration includes two

steps:

Step 1, Assign each object to the group whose mean position is closest to this object’s

position. Each group Gi contains a set of objects:

Gi = {Xp such that ‖Xp − µi‖ ≤ ‖Xp − µj‖∀ j 6= i, 1 ≤ j ≤ k} (5.2)

Step 2, Calculate new mean positions for each group:

µi =
1

|Gi|

∑

Xj∈Gi

Xj (5.3)

The two steps are iterated until it converges to get stable k means and groups.

5.2 Environment Scenarios Clustering Based on

Different Information Strategies

Multi-environmental trials are traditionally used to assess cultivar adaptation within a

target population of environments [Messina et al., 2006]. The adequate selection of en-
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vironment scenarios to represent the target environmental space is therefore becoming

a significant process in the development of better-adapted genotypes. The decisions

about which environments should be selected to conduct field trials are based on

the understanding of environments’ characterizations and representative environment

scenarios in each category. The need to characterize the environments used for multi-

environmental trials has been widely documented (e.g. Comstock [1977]; Cooper et al.

[1993]; Loffler et al. [2005]). Attempts to characterize crop environments largely fall

into three categories [Messina et al., 2006]: 1, Classification based on climatic and soils

data. It is useful for describing environmental variables, but it does not identify the

environments’ influences on crops ecophyiological functions. 2, Classification based on

the statistical analysis of variety performance data. This approach has been widely

used, but it does not provide a measure of the environment independent of crop perfor-

mance. 3, Classification using crop models to integrate weather, soil and management

information. Model outputs can be used to produce categorical variables that describe

environments [Messina et al., 2006]. In this section, the first and second approaches

are adopted to classify environments for Corn, based on the US database presented in

2.2. Another involved approach combining the first and second approaches, considers

both climatic, soil data and crop performance data to classify the environments. We

entitle the three kinds of approaches as A, B and C Classification.

The clustering results for the environment scenarios is not unique, it depends on the

method and the information data used for the classification. Based on hierarchical

clustering methods, we adopt three approaches to cluster locations used for the crop

field experiments in USA (data described in section 2.2). The variables considered for

A-type classification include daily minimal temperature Tmin, daily maximal temper-

ature Tmax, daily radiation RG, daily precipitation P , and daily evapo-transpiration

reference ET0. Each location contains 10 years’ daily data of the five variables, there-

fore a ’data’ has 365∗10∗5 = 18250 dimensions. The data clustering method classifies
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in total 720 locations, each of which has 18250 dimensions. B-type classification con-

siders only crop yield data because this trait is our main research concern. For others

test, more traits could be considered for the classification. Each ’data’ has thus 10

dimensions. C-type classification considers all the information involved in A and B

classification. Each location has 18260 dimensions. Fig. 5.1 is an example of the vi-

sualization of environmental clusters under the third approach.

Fig. 5.1: County scenario’s clustering based on the combination of environment information
and yield

We consider that a level of correlation above 0.9 is signficative enough to make each

scenario representative of the cluster. With this 0.9 level, A, B, and C classifications

all indicate that six clusters exist for our scenarios. The obtained clusters however are

not similar.
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For example, scenario county No. “17095”, “17063”, “17105” are all from Illinois state.

They belong to the same cluster in both A, B and C classification methods (this

group is named “Cluster1” here). County “17131” is also from Illinois state. But it

does not belong to the same cluster “Cluster1” as the other three Illinois counties in A

classification approach. In B classification approach considering yield, “17131”belongs

to “Cluster1”. In C classification approach considering both information, the balance

between the two sides finally decides that “17131” should be in “Cluster1”.

Likewise, for example, scenario counties“18113”and“18087”of Illinois state belongs to

“Cluster1” in A classification method, but they both belong to a different cluster in C

classification method. Among the three classification approaches, clustering results of

C classification are recommended because it combines environment and crop features

information. Each scenario in the analysis adopts ten years data, which is to avoid the

categorization variation from year to year, or at least get a classification result based

on long-term historical samples. In further study, a quantitative comparison among

the three approaches based on a more advanced clustering method can be carried out

to confirm the advantage of C classification.

5.3 Multi-Scenario Parameter Estimation based on

Scenario Selection

In practical applications of the multi-scenarios estimation method, facing large amount

of crop yield data for estimation, there come two significant questions: “how many

scenarios should be used” and “which scenarios should be chosen”. The first question

about the influence of the number of scenarios was investigated in Chapter 4 and

the second one is discussed in this section. An adjusted methodology “environment

scenario selection based multi scenarios parameter estimation methodology (MSPEE)”

is proposed here. The strategy of MSPEE is to use data clustering methodology to
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cluster environmental scenarios. Then we choose representative scenarios from each

cluster in order to make the selected scenarios as different as possible from each other.

The hypothesis is that using data clustering selected scenarios in MSPEE instead of

random scenario in MSPE can improve the numerical efficiency of the method. Three

aspects are supposed to be improved:

1. improvement on practical identifiability. Data insufficiency problem coming from

lack of scenarios is supposed to be weakened;

2. improvement on estimation accuracy. The estimation uncertainty (represented

by the variance of the estimated parameter) should be reduced in MSPEE com-

pared to MSPE when using the same number of scenarios;

3. improvement on prediction error. Fewer selected scenarios based on data clus-

tering can represent the population of environments. Therefore using the same

number of scenarios, the prediction error of estimated parameters in MSPEE

should be less than in MSPE.

All tests are based on CORNFLO model and its parameters.

5.3.1 Practical Identifiability

In the MSPE tests of the previous chapter, only four CORNFLO parameters were

estimated because for more parameters, the data insufficiency problem arised, specif-

ically for small numbers of scenarios, like 40: six parameters cannot be estimated in

most combinations of 40 scenarios.

In this section, K-means Clustering method is used to make scenario categories. Note

that contrary to the previous section, we really consider scenarios: two different years

for the same county count for two scenarios. Taking one representative scenario from

each category provides for the group of selected scenarios better properties in terms

of identifiability. For example, 6 parameters can be estimated with the multi-scenario
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parameter estimation methodology with 40 scenarios, selected from 40 clusters ob-

tained by environment clustering of the US dataset (described in 2.2), while it was

not possible when the scenarios were chosen randomly, see results in Table 5.1.

Tab. 5.1: Parameters estimated from scenarios with high diversity, selected from 40 different
environment clusters.

M0 M3 A2 A3 k coeff RUE pot
960 1073 14 541 0.5 4

To illustrate the idea, we reversely choose 40 scenarios from the same cluster whose

correlation is 0.91. Table 5.2 shows that it has nonestimibility difficulty, as explained

in section 4.3.3: parameters reach the boundary values of the optimization interval,

meaning a wrong estimation. Other similar tests have shown the same identifiability

problem.

Tab. 5.2: Parameters estimated from scenarios with high similarity, selected from one single
environment cluster (of correlation level >0.91).

M0 M3 A2 A3 k coeff RUE pot
664 2027 14 323 0.35 5.25

Since scenarios clustered for MSPEE correspond to one year environmental data (two

years in one county count for two scenarios), we found that the clustering tends to

classify among years rather than counties. So scenarios from the same year tend to

have more similarity than those from the same county or state. It indicates that when

choosing scenarios database for MSPEE estimation, scenarios from multiply years are

recommended for obtaining widely-used model parameters. However, from a practical

point of view in a breeding context, this solution is not optimal in terms of cost. A

clustering based on experimental location should be more interesting.
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5.3.2 Improvement on MSPE Estimation Accuracy

A similar test as described in section 4.4 to investigate MSPE parameter estimates’

distributions and statistics is carried out. It also takes m scenarios from n total

scenarios to estimate a set of parameter values, entitled as a single test TM . Repeating

the single test TM for 100 times can produce 100 sets of parameter values, thus

approximating the parameter estimates’ distributions. The difference in the MSPEE

test is that a single test TM is not taking m random scenarios from the total n

scenarios as in MSPE. It requires the following steps to complete a single test TM :

1 Categorize n scenarios into m groups based on k-means clustering.

2 Take a random scenario S0 from n total scenarios. Find its group ranking G in

m groups.

3 Every scenario’s distance is defined by parameters number n building the n-

dimensional space. Add S0 in a set S which will contain all the m selected

scenarios. The center position of S is the position of S0 currently.

4 From one of the m − 1 groups excluding the Gth group, take a scenario which

is the longest distance (Euclidean distance) from the center position of S; add

this selected scenario in S; recalculate the center position of S.

5 Repeat the same strategy in step 4 to take one scenario from all the other groups,

resulting in the S withm scenarios. S is used to produce a parameter estimation.

MSPEE manages to estimate 6 parameters. The parameter estimates’ distributions

based on m = 40 scenarios are illustrated in Fig. 5.2. The standard deviations of

parameters are different, as shown in the figure, from around 1% (M0) to 10% (A3)

of parameter value. It indicates that most parameters have already good confidence

intervals, while for some of them, the uncertainty may still be reduced by testing with

higher number of scenarios.
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Fig. 5.2: Parameter estimates distributions and their standard deviations for six SUNFLO
parameters based on 40 scenarios

To compare with parameter estimation in MSPE, four parameters are estimated with

40 and 100 scenarios. Fig. 5.3 is the example of four parameters’ distributions based

on m = 40 scenarios.

The comparison of standard deviations with MSPE based on m equal to 40 and

200 scenarios, and MSPEE based on m equal to 40 scenarios is illustrated in Fig. 5.4.

MSPEE improves significantly the accuracy of parameters by reducing estimates’ vari-

ance and uncertainty, with less scenarios used for multi-scenario parameter estimation.
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Fig. 5.3: MSPEE parameters’ distributions and their standard deviations for four SUNFLO
parameters based on 40 scenarios

5.3.3 Improvement on MSPE Prediction Ability

A similar cross-validation test as described in section 4.5.2 is carried out. The method’s

difference with the test in MSPE is still how to choose scenarios for estimation. In

MSPE, scenarios are chosen randomly, while here in MSPEE it is based on data

clustering and it picks scenarios with longest distance to each other. The set of

scenarios for validation and prediction test is selected with the same cross-validation

strategy as in MSPE.

Fig. 5.5 shows the model prediction error based on the estimation of four parameters

from 40 scenarios and 100 scenarios with the MSPEE strategy compared with the
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Fig. 5.4: The comparison between MSPEE parameters’ standard deviations (40 scenarios)
and MSPE parameters standard deviation (40 scenarios and 200 scenarios)

prediction errors in MSPE. It is demonstrated that both in MSPE and MSPEE, larger

number of scenarios improves the model predictive capacity. In MSPEE, the prediction

error decrease from around 8% of yield from the test of 40 scenarios to around 7% of

yield from the test of 100 scenarios. However, the results are not striking since the he

prediction ability converges to a limit, which is nearly reached with 40 scenarios. The

MSPEE improves the parameter estimation efficiency in terms of using less scenarios

for estimation while achieving similar prediction ability.

5.4 Conclusion

Environmental scenarios are clustered based on data clustering methods. The clus-

tering results provide suggestions for multi-environmental trials in order to select the

optimal experimental locations. Three clustering strategies, respectively based on

weather and soil information, crop performance information, and the combination of

both information, are tested and their clustering results are discussed. Another im-

portant usage of environmental clustering is to improve the efficiency of multi-scenario

parameter estimation methodology. By categorizing scenarios in order to increase the
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Fig. 5.5: Model prediction error based on the estimation of 4 parameters from 40 and 100
scenarios with MSPEE methods, compared with prediction error in MSPE meth-
ods. Y-axis is the root mean square error of prediction with the same unit as yield;
X-axis is the the number of scenarios used for multi-scenario parameter estimation
methods.

level of discriminative information for model inversion, we derived the adapted ver-

sion of MSPE, named scenario selection based multi-scenario parameter estimation

(MSPEE). It is demonstrated to improve the identifiability, estimation accuracy and

prediction ability of MSPE.
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Part III

APPLICATIONS AND DISCUSSION





6. MODEL SIMULATIONS OVER LARGE

GEOGRAPHICAL AREAS AND TIME

SCALES

Jones et al. [2006] state that the four most important applications of crop model

are (i) prediction, (ii) determination of optimal management, (iii) large spatial-scale

applications, and (iv) characterization of plant varieties and plant breeding. The

application presented in this chapter deals with irrigation problem, therefore involving

all the four aspects.

A non-negligible and increasing amount of water is unsustainable. As the majority

of water use is dedicated to agriculture, optimizing irrigation strategies plays a key

role in water sustainability. This chapter presents a tool to simulate irrigation de-

mand of sunflower crop for large-scale geographic areas and time scales. Simulations

were carried out on 20 genotypes of sunflower, 25 European farming regions and a

time span from year 1951 to 2100. These results provide insights into the impact of

the choices of farming regions and crop genotypes on irrigation. They also bring to

a deeper understanding of irrigation demand evolution for researching future water

management scenarios. We propose a way of optimizing irrigation water use by select-

ing crop genotypes and farming regions, whilst taking harvest yield constraints into

consideration.
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6.1 Context

Water is essential for growing food; for household water uses, including drinking, cook-

ing, and sanitation; as a critical input into industry; for tourism and cultural purposes;

and for its role in sustaining the earth’s ecosystems. The supply of water, an essential

resource for agriculture and industry, is under threat [Rosegrant et al., 2002]. Towards

35% of human water use is unsustainable, drawing on diminishing aquifers and reduc-

ing the flows of major rivers: this percentage is likely to increase if climate change

impacts become more severe, populations increase, aquifers become progressively de-

pleted and supplies become polluted and unsanitary [Clarke and King, 2004]. Water

security and food security are inextricably linked. In the 1990s, it was estimated that

humans were using 40-50% of the globally available freshwater in the approximate pro-

portion of 70% for agriculture, 22% for industry, and 8% for domestic purposes with

total use progressively increasing [Shiklamov and Baser, 1998]. Agricultural behaviors

have significant impacts on the global water cycle, especially irrigation, accounting,

for example, for about 80 percent of global and 86 percent of developing country wa-

ter consumption in 1995 [Rosegrant et al., 2002]. Population and income growth will

boost demand for irrigation water to meet food production requirements, household

and industrial water demand. From 1961 to 2001 water demand doubled - agricul-

tural use increased by 75% [Millennium Ecosystem Assessment, 2005]. By 2025, global

population will likely increase to 7.9 billion. In response to population growth and

rising incomes, calorie requirements and dietary trends will translate to even greater

water demand if the food produced is to supply adequate nutrition [Rosegrant et al.,

2002]. Therefore, the study of irrigation optimization significantly influences water

sustainability and agricultural sustainability.

This chapter is concerned with two questions related to irrigation optimization. The

first is to produce knowledge of irrigation demand under various scenarios. Water
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management relies on reasonable information on water availability as well as on wa-

ter demands by different sectors. Estimation of irrigation demand at large scale is

therefore a key need for more precise water management. The second problem is to

optimize irrigation demand under the requirement of a satisfactory harvest. Besides

irrigation techniques, two determinants significantly affect irrigation demand: these

are drought tolerance capacity of genotypes and environmental conditions of farm-

ing regions. The usage of irrigation could be significantly reduced by appropriate

selections of crop genotypes and farming locations. To address the two questions,

our investigation relies on a spatially distributed modeling of crop growth and water

balance. We propose a tool to simulate irrigation demand and carry out a prelimi-

nary study on large scenarios. These simulations thus provide affluent knowledge of

geographical, genotypic and time influences on simulated irrigation demand, which

provides materials for water sustainability and sustainable agricultural study. In de-

tail, the research was carried out on large data set of scenarios on 20 genotypes of

a crop Sunflower, 25 farming regions in Europe, and weather information across 150

years from 1951 to 2100. These simulation results are useful for the study of irrigation

optimization and enable us to analyze advantages of specific genotype and farming

region, in order to give recommendations in term of irrigation saving and strong har-

vest yields for irrigation water management and agricultural strategy decisions. An

interesting contribution of this research is the effect of crop genotype diversity on

irrigation demand, whereas previous studies tend to focus on irrigation intensity of

various farming regions. Due to the large variation of irrigation demand over different

genotypes, research on irrigation optimization needs to consider both genotype and

farming region diversity.
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6.2 Irrigation Demand Simulation

The sunflower model SUNFLO (Chapter 3.2) is the core to simulate sunflowers’

growth, with considering environmental impacts and genotype diversity. It models

plant photosynthesis, morphogenesis, biomass production, and biomass distribution.

Thanks to its water budget module, SUNFLO is able to simulate the sensitive influ-

ences of water deficit scenarios on plant growth. Its water cycle is mainly co-functioned

by root water absorption and transpiration from the plant side, and rain, irrigation,

and evaporation from the environment side (Fig. 3.5). Fractional soil water index

(FTSW ) represents the crop water stress. Its value ranges from 0 to 1. The bigger

the value is, the more water deficiency the crop has. Depending on genotypes and

plant functions, critical values RT and RO determine the plant drought tolerance.

For example, for a sunflower genotype “Albena”, the critical value of radiation usage

efficiency is 0.32. When FTSW is below 0.32, the radiation usage is badly affected.

When FTSW indicates that crops will be under water deficiency, irrigation is supplied

to give the plant minimum water with keeping normal plant development. Fig. 6.1

illustrates simulated FTSW differences between the case with irrigation and without

irrigation. Clearly the irrigation case improved FTSW and relieved water stress.

Fig. 6.1: (a) Left picture: FTSW value in plant growth period in the scenario with irrigation;
(b) Right picture: without irrigation
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The irrigation information is integrated to analyze agricultural water use and agri-

cultural impacts on water resources. The simulations of irrigation amount and crop

harvest are paid the most attention. Executing plenty of simulations produces data

for researching irrigation evolution, and genotype and region selection in term of water

saving optimization, under conditions of multiple genotypes, farming locations, and

environment scenarios.

6.3 Simulation Experiments

Three series of data are utilized, including a European irrigation map, an environ-

mental information database, and genotypic parameters. The European irrigation

map supplies knowledge for location selections in our experiments. The majority of

irrigated areas are concentrated in the Mediterranean region. France, Greece, Italy,

Portugal, and Spain account for 12 million ha corresponding to 75% of the total area

equipped for irrigation in EU [Gunter et al., 2008]. From a global irrigation map,

named GMIA [Siebert et al., 2007], 25 regions with different irrigation density in

above 5 countries are chosen (see Fig. 6.2).

Fig. 6.2: (a) Left: irrigation regions in GMIA map (yellow to blue: more irrigation); (b)
Right: 25 farming regions (stars) in simulation

The environmental information used as a simulation input comes from ENSEMBLES

dataset (detailed in section 2.3.2). There are environmental data for the above Eu-
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ropean locations, including temperature, radiation, precipitation, evaporation. Data

from 1951 to 2011 are used for past irrigation examination, and those from 2011

until 2100 are used for irrigation evolution prediction, based on climatic data simu-

lation. Genotypic parameters, representing sunflower genotypic diversity and diverse

interactions with environment, are measured parameters of botanical experiments by

SupAgro Montpellier [Lecoeur et al., 2011]. 20 sunflower genotypes are concerned

(see table 6.1). The tool Pygmalion is used to simulate irrigation demand and plant

growth features for multiple scenarios. It can compare irrigation and harvest for cho-

sen scenarios and recommend a corresponding genotype and region. It also produces

harvest and irrigation evolution graphs.

Tab. 6.1: Names of 20 sunflower genotypes concerned for irrigation demand simulations.

Peredovik INRA6501 Remil Airelle Relax
Mirasol Primasol Cargisol Viki Frankasol
Albena Vidoc Euroflor Santiago DK3790
Prodisol Melody LG5660 Allstar Heliasol

6.4 Results

Using the above data and our simulator, we produced a collection of irrigation demand

simulations. Our irrigation demand simulations qualitatively agree with real observa-

tions. In Fig. 6.3, two irrigation maps are contrasted. The left is an irrigation map

GMIA. The right is our irrigation demand simulation. They have a similar pattern

of irrigation demand differences between regions. This result provides support for the

reliability of our irrigation simulation tool.

The evolutions of irrigation demand and harvest amounts have been produced for 1951

to 2100. An example illustrated in Fig. 6.4 is the harvest and irrigation evolution of

all genotypes from 1990 to 2100. The genotype “Melody” offers the biggest harvest in

the future, but its irrigation amount is also high. There are two levels of irrigation
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Fig. 6.3: Contrast of irrigation demand between GMIA map and simulations; (a) Left:
GMIA map; (b) Right: simulation map

demand. Most genotypes are in the smaller one. So it’s possible to find a genotype

with the small level irrigation, but with a comparably big harvest. The genotype

“Euroflor” fits the standard. It has the second largest harvest. Although this amount

is less than the one from “Melody”, its large irrigation saving could make up for the

loss. Especially in drought regions, it could be a good selection for water sustainability

reasons. Generally speaking, the harvest evolution is decreasing, and the irrigation

evolution has a slight tendency to increase in simulations. This is not in agreement

with reality as the sunflower harvest has increased in the last few decades, because

the simulation ignores genotype evolution and other positive factors. This statement

of harvest evolution is made by only considering climate change in long time range. It

predicts a negative influence of future climate in both harvest and irrigation. While

harvest has been widely recognized to face potential declines because of water short-

age and potential increase of farming land, this conclusion puts more pressure. Our

irrigation optimisation strategy on appropriate genotype and farming region selection

is one way to mitigate it.

Comparisons are carried out among genotypes for particular regions. For example, for

two farming regions location 3 in France and location 16 in Greece, the total irrigation

demand and harvest of 20 genotypes is shown in Fig. 6.5.
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Fig. 6.4: Evolution graphs for 20 sunflower genotypes from 1990 to 2100 and their moving
average; (a) Top left: irrigation demand evolution; (b) Top right: harvest evolu-
tion; (c) Bottom left: irrigation moving average; (d) Bottom right: harvest moving
average

Fig. 6.5: Harvest and irrigation comparisons; Horizontal axis is ordered genotypes in ta-
ble 6.1; (a) Left: region 3; (b) Right: region 16

For location 3, the genotype “Melody” has a distinctly higher harvest and a slight

higher irrigation demand than the others. Therefore it is recommended for this re-

gion. For location 16, the biggest harvest genotype is still “Melody”, but it requires

substantial irrigation. Searching for a genotype that has smaller irrigation demand

will result in a reduced harvest. The genotype “Heliasol” has the second largest har-

vest with a clear decrease of irrigation. This genotype is preferred considering the

drought condition in this area. Comparisons are also made among regions for partic-

ular genotypes. For example, Fig. 6.6 illustrates the irrigation demand and harvest

for genotype “Remil” and “Melody” in 25 farming region.
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Fig. 6.6: Harvest and Irrigation for sunflower genotypes in 25 regions; (a) Left: genotype
“Remil”; (b) Right: genotypes “Melody”

Irrigation amounts vary widely among regions, whilst harvest levels are sorted in

little various levels. The best farming region for “Melody” is location 19 in Portugal,

because it has a low irrigation demand and a comparably good harvest. Compared

with location 16 in Greece, its irrigation amount is 10 times smaller, and its harvest

is bigger. Compared with location 1 in France, its harvest is a slightly smaller, but

its irrigation demand costs 10 times less. Selections require a compromise between

irrigation and harvest, and depend on the project objectives and actual situation, such

as the irrigation capacity.

6.5 Discussion

In this chapter it is proposed to use crop genotype selection and farming region con-

trol for irrigation optimization and improving water sustainability. A tool is developed

for offering irrigation demand and harvest amount information for three dimensional

scenarios: diverse genotypes, multiple farming regions, and a long timeframe. A pre-

liminary study and analysis are carried out on a crop sunflower with 20 genotypes, 25

European farming regions, and over 150 years, in order to demonstrate the proposition

and to test the tool. This study results in a methodology usable in future research,

to study interactions between irrigation, crop genotypes and the environment.

These results are very encouraging. Firstly, this kind of simulation offers a large

number of characteristic features for various contrasting scenarios. Moreover, for
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diverse genotypes and farming regions, the simulation results predict a variety of

distinct irrigation demands and harvest amounts. This indicates that appropriately

selecting a combination of these parameters can result in improved results. Secondly,

these simulations qualitatively produce a good fit to real data. This suggests that it is

reliable to use simulated information and that we may have confidence in our analysis.

Lastly, rules to achieve optimal results are explored. Particular analyses proved that

proper selection of the genotype and farming region may save a considerable amount

of water for irrigation. For concrete policy decisions, selection rules integrate the

project objective, the yield requirements, the irrigation budget, and the technological

level available in the target location. Using the dynamic system formulation of the

plant growth model, the tool develops numerical optimisation techniques to determine

multi-constraint optimal farming strategies [Qi et al., 2010; Wu et al., 2005].

This simulation tool can be applied easily to irrigation demand problems for other

crops in other scenarios. An effective water sustainability management requires global

crop and farming region control. The water cycle modeling used in the tool simulates

the interactions among environment, plants, and human operations. Although the

tool produces reasonable simulation results, it can still be improved. The quantity of

irrigation and harvest amount forecast by our simulations should not be considered as

scientifically proven at this stage. More real data for sunflower harvest and irrigations

need to be gathered for model calibration. Moreover, the modeling could consider

more factors such as irrigation techniques and management.
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One of the challenges of modern plant breeding is to provide genetic solutions to

increase plant productivity. A breeding program can be considered as the process

of developing improved cultivars by manipulating available genetic variability to cre-

ate new allelic combinations best adapted to target environments and applications

[Messina et al., 2006]. Traditionally, breeding is based only on phenotypic observa-

tions, which makes the work costly, long, and highly based on breeder’s experience.

This is particularly true when breeding populations and cultivars are characterized by

high genetic diversity and substantial genotype × environment interactions: breeding

programs in that case require precise and efficient phenotyping [Walter et al., 2012].

Most current efforts therefore focus on developping sophisticated high-throughput

phenotyping equipements. But genotypic information is also a key point. As stated

in [Messina et al., 2006], the breeding of higher-yielding crop plants would be greatly

accelerated if the phenotypic consequences of changes at some genetic markers of an

organism could be reliably predicted. Plant growth models, which aim to simulate

the genotype × environment interactions in order to predict the corresponding phe-

notypes, naturally appear as relevant tools to advance the analysis of phenotypes and

breeding strategy. They can be used to assist genetic improvement in four main ways:

environmental characterization for testing genotypes, assessment of specific putative

traits for designing improved plant types, analysis of responses of probe genotypes for

improved interpretation of multi-environment trials, and optimizing combinations of

genotype and management for target environment [Messina et al., 2006].

In this context, this thesis addresses the development of plant growth models and
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model analysis methodologies in order to facilitate phenotype analysis and breeding

strategies. Four objectives were mentionned in the introduction 1.4: each of them will

be discussed on the basis of our results and perspectives will be evoked.

Modeling. We used two ecophysiological crop models, SUNFLO for sunflower (He-

lianthus annuus L.) and CORNFLO for corn (Zea mays L.). They simulate plant

phenology, morphogenesis, photosynthesis, biomass production and biomass distribu-

tion under temperature and drought stress. Model parameters have biological meaning

and are designed to be grounded potentially in gene-level understanding. Since they

had been previously validated on several genotypes and different conditions, we mainly

used them in this thesis for our tests and applications. One of our contributions con-

sists also in the analysis of these models (section 4.3.1).

In an attempt to build a more mechanistic model on the basis of SUNFLO, an origi-

nal sunflower model, SUNLAB, has been developed: it mainly improves the biomass

allocation process, by adopting a classical source and sink approach. SUNLAB is a

joint concept of SUNFLO and GREENLAB. While it is hard to find a balance for

a model design, SUNLAB model is an interesting trial. It produces more details on

organs structure and mass than SUNFLO. It models ecophysiological functions of pho-

tosynthesis and morphogenesis to ensure a more accurate and a better representation

of crop physiology for biomass production than GREENLAB. SUNLAB proves that

this combination of concepts is effective. The parameters of four sunflower genotypes

were estimated in SUNLAB based on two years experimental data, including one with

drought stress. It helped to explain the internal competition for biomass by simulat-

ing organ biomass distribution. The parameter estimation procedure, benefiting from

both direct measurements and model inversion strategies, preserves a good capacity

for genotypic differentiation and is provides robust results on multiple phenotypic

traits.

For testing of predictive capacity, SUNLAB outputs were confronted to an additional
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experimental data set. However, this remains a weak point of our study since the

validation dataset is clearly not independent of the training set: more diverse datasets

are expected for further exploration of this predictive aspect.

SUNLAB is able to simulate specific leaf area (SLA). SLA is an important variable

in plant growth modeling since it usually determines blade surface area values based

on blade biomass for further simulation loops, such as for instance in GREENLAB

[Christophe et al., 2008]. SLA is usually considered constant in those models. In

reality, SLA varies according to genotypes, leaf ranks and leaf growing periods, as

it has been observed for instance for the SLA variations of wheat [Rawson et al.,

1987]. For sunflowers, the variations of SLA and the factors influencing them are

still poorly known. Accurate estimation of SLA is mentioned as a major source of

error in models and implies difficulties in obtaining a reliable computation of leaf

area index, which is the main component of biomass production modules [Heuvelink,

1999; Marcelis et al., 1998]. As SUNLAB simulation outputs include, independentely,

individual blade mass and blade areas, variations of SLA at every simulation steps can

be produced. However, these preliminary results have to be considered with caution

since the current SUNLAB parameters were estimated using reconstructed data of

individual blade mass (that were not measured individually). Besides, this feature

would need to be reconsidered when one aims at taking into account a feedback effect

of biomass allocation on production: in the current model, blade mass do not play

a role in the determination of blade area and therefore do not have effect on the

produced biomass.

This raises interesting questions in terms of how mechanistic a model should be, in our

context of phenotype analysis to assist breeding programs. With more mechanistic

models generally come hidden parameters that cannot be experimentally measured,

because feedback effects can produce emergent properties that can be difficult to dis-

antangle a posteriori from the resulting phenotype. Therefore, modeling crop growth
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through empirical experimental analysis and direct parameter measurements has the

advantage that parameters have a biological meaning but hampers the consideration

of complex mechanisms or internal regulations. For instance, biomass partitioning

was not modeled in SUNFLO because of the heavy experiments and the difficulty

to understand the organs interaction, while it could be done when introducing hid-

den parameters, sinks, that cannot be measured but had to be estimated relying

on optimization algorithms, as done in SUNLAB. Hidden parameters of mechanistic

models, that can simulate the internal processes regulating plant growth, are more

likely to be genetically determined (or, at least, stable under varying environmental

conditions) than directly measured parameters that can be strongly influenced by

the environment. They could therefore offer more potentials on the development of

genotype-to-phenotype predictive models. However, practical considerations should

also be examined in our context of model application, i.e. transferring model-based

informations to breeders. This kind of information could be for instance recommen-

dations on optimal environmental conditions or management practices for a given

genotype; or identification of particular features (a subset of the model parameters,

for instance) to focus on in the breeding process in order to create variants with some

targeted traits. A highly mechanistic and complex model whose parameters cannot be

observed might appear as a ‘black box’ whose results would not be easily trusted by

end users that have not participated to its development. It also implies that, because

of their interactions, parameters cannot be obtained independentely from each other:

the whole estimation process needs to be performed on all the data at the same time

(it is not possible to optimize sequentially on data for different types of organs, for

instance). Therefore, there is a balance to find between an empirical model that would

be easily applied but with limited ability to represent the plant internal regulations

and a fully mechanistic model that would reveal too complex to be of practical use.
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Parameter estimation. Multi-scenario Parameter Estimation Methodology (MSPE)

is designed to overcome the problem of difficult model inversion coming from insuffi-

cient complex experimental data. It is able to deal with limited or aggregated kinds of

data as soon as they are collected under a large amount of diverse scenarios. Practical

issues for carrying out MSPE are discussed, including setting priorities on parameters

to be estimated, optimization and computation solutions, and parameter identifiabil-

ity. The hypothesis that “the increase of scenarios amount makes estimated param-

eters possessing better estimation accuracy and better prediction ability” is explored

by cross-validation tests. However, the convergence of these estimation accuracy and

prediction ability could not be fully tested, because of its heavy computational re-

quirements.

The MSPE methodology relies on the level of information available from the different

scenarios used for model inversion: the more different and diverse the environmental

scenarios are, the more robust model inversion will be. This issue on information level

was central in several points of the thesis: the issue of non-estimability / practical

non-identifiability (see section 4.3.3), the convergence of parameter estimation with the

number of scenarios available (see section 4.4) and the optimal choice of environmental

scenarios based on clustering techniques (see section 5.3). However, the approach

developed in this PhD regarding the concept of ‘information’ was purely empirical:

numerical tests were used to illustrate the behavior of the methodology in virtual or

real test cases. An important perspective of this research work would thus be to make

stronger links with the statistical information theory, in order to determine a priori

results on convergence, error bounds or uncertainty estimation based on a theoretical

analysis of the system and data.

An interval estimator MSPEJ was developed, based on the delete-m Jackknife method:

m scenarios are taken from n scenarios to produce nCm combinatorial parameter distri-

bution samples. The methodology was tested on SUNFLO parameters. A perspective
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of this work would be to study the estimation and prediction features of MSPEJ, par-

ticularly the effect of n andm on estimation accuracy and prediction ability. Jackknife

methods are generally used to test the bias and variance of some statistics, as done

in the estimation and prediction tests of MSPE. Compared with single estimation,

Jackknife methods have been shown to reduce bias for some statistics: it would be

interesting to investigate that point in our application. Identifiability issues could also

be compared with MSPEJ and with MSPE.

Values, not converge

Choice of environmental protocols. Environmental scenarios were clustered by hi-

erarchical and centroid-based clustering analysis based on weather and soil information

including temperature, radiation, precipitation, and evapo-transpirational reference,

and its influence on plant growth features, such as crop yield. For experimental design,

selecting one representative scenario from each cluster can help deciding necessary tri-

als in field experiments. MSPEE, a multi-scenario parameter estimation methodology

based on environment clustering and scenario selection, improved practical identifia-

bility of parameters in comparison with the basic MSPE. It also improved the efficiency

of MSPE, in term of utilizing fewer scenarios for getting the same prediction ability

and variance of parameter distribution. However, for reason of the heavy computation

cost of the cross-validation method used in MSPEE tests, only few data points have

been calculated to support our conclusion. Calculations on more data points should

be carried out.

Applications of phenotype analysis based on crop models. SUNFLO was used to

simulate phenotypic traits of 20 sunflower genotypes over large geographical areas (25

locations) and time scales (150 years). In particular, it predicts irrigation demand of

different genotypes and potential yields under varied scenarios. This illustrates several

aspects of future model use.

A final perspective to discuss concerns the study of linking crop model parameters to
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genetic information: the application was planned but was regretfully not completed

in this thesis. Models in agriculture systems are characterized by having many or-

ganizational levels. From the individual components within a single plant or animal

cell, through constituent plants or animals to farms or a whole agricultural region

or nation, and finally to the world agricultural economy, lies a whole range of agri-

cultural systems [Cheeroo-Nayamuth, 1999]. Organ-level plant growth models can

help ’navigate a path through this complexity’. They provide means to link pheno-

typic consequence to changes in genomic regions via stable associations with model

coefficients. If they can capture the system dynamics and much of the fine detail is

not directly required, robust coarse-grained models might be the tool needed to inte-

grate phenotypic and molecular approaches to plant breeding [Hammer et al., 2006].

Recently, quantitative trait loci (QTL) information has been incorporated into some

organ-level crop models. For example, to connect model coefficients to genomic re-

gions (or genes), Reymond et al. [2003] dissected the parameters of a model of maize

(Zea mays) leaf elongation rate into effects of quantitative trait locus. Yin et al.

[2006] has identified a few quantitative trait locus to model-input traits in the model

of predicting spring barley (Hordeum vulgare L.) flowering time. To address the link

between model parameters and QTL, well designed models and suitable experimental

data are required. Appropriate model structures allow sufficient physiological feed-

back features to be incorporated. Model input parameters should be designed to be

grounded potentially in gene-level understanding [Yin et al., 2004]. It always requires

the plant growth model parameters having biological meaning to represent genetic

coefficients [Tardieu, 2003; Yin and Struik, 2010]. The organ-level model SUNFLO

and its parameters meet the requirements. The experimental database of 90 sunflower

genotypes (section 2.1.2) is a good dataset to study the subject. These 90 genotypes

are F1 hybrid of the first filial generation resulting from a cross mating of 9 × 10

distinctly different parental types. A main obstacle to this study was coming from
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the insufficiency of the collected experimental traits in this dataset for a proper para-

metric estimation: this problem is now solved by our MSPEJ parameter estimation

methodology. It was tested on one genotype, “Melody”, among the 90 genotypes: the

results were compared to those obtained by direct measurements, in order to validate

the parameter estimation methodology. Since it was proved to be a successful at-

tempt, this thesis paves the way to this promising study. The next steps would be to

estimate SUNFLO parameters for the 90 genotypes, then perform statistical analyses

to study the correlations between parameters of different genotypes. Similarities or

differences in parameter values could reveal genetic links.

To sum up, this thesis produced promising results on crop modeling and crop model’s

multi-scenario parameter estimation. Further studies on these perspectives will boost

the development of phenotype analysis’ tools to move towards cheaper, faster, and

more efficient breeding processes.
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