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Résumé 

 

La protéine à 7TM GPR50 : un nouveau régulateur de la voie de signalisation TGFβ 

 

La protéine GPR50, qui fait partie de la famille des récepteurs de la mélatonine, est classée, avec une 

centaine d’autres protéines à sept domaines transmembranaires (7TM), dans la catégorie des 

récepteurs couplés aux protéines G hétérotrimériques (RCPG) orphelins, c’est-à-dire pour lesquels 

aucun ligand n’a pu être identifié. De plus en plus d’études montrent que les 7TM peuvent avoir des 

fonctions indépendantes d’un ligand. C’est le cas de GPR50 qui inhibe les fonctions du récepteur de la 

mélatonine MT1 en interagissant directement avec lui. Nous avons cherché à identifier d’autres 

partenaires associés à GPR50 en appliquant la technique de purification par affinité en tandem et 

avons mis en évidence son interaction avec un récepteur du facteur de croissance Transforming 

Growth Factor ß (TGFβ), le récepteur de type I (TβRI). 

Nous décrivons ici la formation d’un complexe entre GPR50 et le récepteur TβRI au niveau de la 

membrane plasmique, avec pour conséquence l’induction d’une activité constitutive du récepteur et 

des voies de signalisation en aval en l’absence de TGFβ, mais également en l’absence du récepteur 

TßRII qui est habituellement indispensable pour l’activation de TβRI par phosphorylation. Cette 

activité constitutive se traduit par la phosphorylation des protéines Smad2 et Smad3, leur intégration 

dans un complexe avec Smad4, la translocation du complexe dans le noyau et finalement l’activation 

de la transcription de leurs gènes-cibles. Nous avons décrypté les mécanismes moléculaires de cette 

activation constitutive en montrant que GPR50 entre en compétition, pour l’interaction avec TβRI, 

avec le régulateur négatif FKBP12, une protéine inhibitrice de l’activité basale du récepteur en 

l’absence de ligand. Nous avons identifié dans la queue intracytoplasmique de GPR50 un motif 

répétitif similaire à la séquence de FKBP12 impliquée dans son interaction avec TβRI, motif qui 

constitue la base moléculaire de cette compétition. 

Nous avons étudié les conséquences fonctionnelles de cette activation en surexprimant GPR50 de 

manière stable dans la lignée cellulaire MDA-MB-231, dérivée d’un cancer de sein. Nous avons 

observé dans ces cellules des effets pro-migratoires et anti-prolifératifs similaires à ceux causés par 

l’administration de TGFβ. 

En conclusion, ce travail décrit un nouveau mode d’activation du récepteur TβRI en l’absence de 

ligand, mais identifie également une nouvelle fonction indépendante d’un ligand pour le RCPG 

orphelin GPR50. En perspective de ce travail, nous allons essayer d’identifier des conditions 

biologiques où cette interaction pourrait prendre place afin de confirmer ces résultats dans un contexte 

plus physiologique.  

 

 

Mots clés : RCPG orphelin, GPR50, voie de signalisation TGFβ, TβRI 



Abstract 

 

The orphan 7TM protein GPR50 as a novel regulator of TGFβ signalling 

 

During the last years, it became more and more accepted that orphan G Protein coupled receptors 

(GPCRs) with a transmembrane spanning heptahelical core (7TM) can have ligand-independent 

functions. One of those 100 orphan GPCRs is GPR50, a 7TM protein with a long cytosolic domain. 

Recently, studies revealed ligand-independent functions for GPR50, where it has the capacity to 

modulate the activity of other proteins upon complex formation. By applying a tandem affinity 

purification approach we sought to identify further putative interacting partners of GPR50. One of the 

identified binding partners is the transforming growth factor β (TGFβ) receptor type I (TβRI). 

The TGFβ-dependent signal transduction pathway of serine/threonine kinases is a pathway with direct 

signal flow from ligand over the receptor to its substrates, the Smads which translocate into nucleus 

where they bind DNA and regulate gene expression. An important question concerns the generation of 

specificity and fine-tuning of TGFβ-dependent signaling. Throughout the years, an important number 

of proteins which regulate the activity of the TGFβ signal transduction pathway in a positive or 

negative manner have been identified. Most of them act in a cell-context-dependent manner, allowing 

the regulation of TGFβ signaling adapted to the particular circumstances. 

We report here the complex formation of GPR50 and TβRI on the plasma membrane. The 

consequence of this interaction is the GPR50-mediated induction of a constitutive activation of the 

TβRI and its downstream signaling in a TGFβ ligand-independent manner. This has been monitored 

by Smad2/3 phosphorylation, Smad2/3-Smad4 complex formation and their subsequent translocation 

into the nucleus, where they activate Smad-dependent gene expression. In order to decipher the 

molecular mechanism that allows this activation, we showed that GPR50 competes with the negative 

regulator, that prevents leaky TGFβ signaling, the gatekeeping molecule FKBP12, for binding to the 

TβRI. We identified a motif in FKBP12 involved in the interaction with TβRI with similarities to a 

motif in GPR50, providing a molecular basis for the replacement of FKBP12 by GPR50 in the TβRI 

complex. We showed that GPR50 is capable of activating the TβRI even in the absence of the TβRII, 

which normally is required for activating the TβRI by phosphorylation. This reveals a previously 

unknown mode of activation of the TβRI in absence of the TGFβ ligand and TβRII. In order to 

identify the functional consequences of this crosstalk, we studied migration and growth of MDA-MB-

231 breast cancer cells stably overexpressing GPR50. In these cells, TGFβ-like pro-migratory and 

anti-proliferative effects have been observed. 

Future research will help to identify tissues and biological circumstances, where this crosstalk could 

take place for putting this novel mode of regulation of TGFβ signaling pathway into a context-

dependent-manner. Additionally our work established another ligand-independent task for the orphan 

7TM protein GPR50, consolidating its function as binding partner and activity modulator. 
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 PROLOGUE 

Every organism from prokaryotes to high eukaryotes has the capacity to sense and to adapt to 

the environmental circumstances. This is the result of a multitude of molecular events that are 

accomplished by the means of cellular communication. Stimuli from outside the cell that 

range from light, ions and small organic substances over to more complex molecules as 

peptides and proteins are translated into an intracellular response via transmembrane proteins 

with a signal-integrating function. This process is termed signal transduction. Advances in 

research during the last years made it possible to identify the core signaling pathways that are 

the basis of cellular communication and biological function. These transmembrane proteins, 

which react upon perception of extracellular signals are grouped into main classes: (I) G 

protein-coupled receptors (GPCRs), which activate intracellular G proteins that pass the 

signal to their effectors; (II) receptors with an intrinsic tyrosine kinase (RTKs) or 

serine/threonine kinase activity (RSTKs) which modulate the activity of intracellular proteins 

through their covalent modification by phosphorylation; (III) ion channels which modulate the 

cellular charge through ion in- or outflow; (IV) an exception are nuclear receptors, which are 

localized in the cytoplasm where they capture the signal from lipophilic molecules that pass 

through the plasma membrane into the cell. The conversion into an intracellular signal can be 

accomplished through various ways, like activation of second messenger molecules (cyclic 

adenosine monophosphate cAMP, calcium ions Ca
2+

, nitrogen monoxide NO), induction of 

activation cascades (like the RTK – Ras – mitogen-activated-protein MAP kinase cascade) or 

the change of intracellular charge and pH. They all often converge in transforming the 

response on the nuclear level into the transcription of genes and their products respond to the 

extracellular stimulus and allow adaption to the environmental circumstances. 

After the core signal transduction pathways and their components had been elucidated during 

the last century, the focus changed on the identification of pathway-associated proteins which 

modulate principal signaling. These proteins are necessary to allow the core pathway to adapt 

a context-specific signaling that fits the requirements of each cell type and the current 

biological conditions. In the age of “omics”, emerging high throughput screening methods 

facilitated the uncovering of pathway associated- and interacting molecules. Identification of 

their function often coincides with discovery of novel regulatory mechanisms, which form the 

basis of common principles in biology, and the revelation of intersection points between 

different signal transduction pathways. It becomes increasingly appreciated that, instead of 
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functioning independently apart, signal transduction pathways are part of a cellular signaling 

network. Thus, a cell responds in a certain cellular context or under specific physiological 

conditions by an adaptation of its signaling upon choosing the appropriate tools out of its 

repertoire.  

The identification of further unexpected protein functions, interplays between the different 

signal transduction pathways and the elucidation of common principles of biology will help to 

gain more precise molecular explanations for the functioning of biological systems in health 

and disease. This knowledge can contribute to the identification of novel drug targets and the 

development of alternative strategies for disease treatment. 
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I. INTRODUCTION 

1. G protein-coupled receptors (GPCRs) 

The family of G protein-coupled receptors (GPCRs) forms the largest entity of receptors 

mediating signal transduction from outside the cell through the plasma membrane into the 

cytosol. In humans they are encoded by about 800 genes, accounting for 3 to 4% of the entire 

genome (Vassilatis et al, 2003). 

GPCRs convey the cellular response for an immense variety of ligands, including hormones, 

neurotransmitters, lipid compounds, chemokines, ions, photons, small organic molecules and 

nucleotides and also tastes and odorants (Figure 1). This diversity of ligands reflects the 

important role of GPCRs to manage diverse physiological processes as vision, smell and taste 

and to regulate neurological, cardiovascular, immune, endocrine and reproductive functions in 

the organism (Bockaert & Pin, 1999). Consequently, GPCRs are a notable therapeutic target, 

which is underlined by the fact that about 30% of the pharmaceuticals on the market direct 

GPCRs (Overington et al, 2006; Tyndall & Sandilya, 2005) 

In recent years the research on GPCRs has shown an impressing dynamic due to structural 

resolutions, which led to an increase in understanding the mechanisms of GPCR signaling and 

could shed light on the various functional capacities of GPCRs. In 2012, these achievements 

have been recompensed by the Nobel prize in chemistry for two of the pioneers in GPCR 

research, Brian Kobilka and Robert Lefkowitz (Benovic, 2012; Bockaert, 2012). 
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Figure 1 Variety of GPCR ligands (Bockaert & Pin, 1999) 

GPCRs are transmembrane proteins that can bind a multitude of different ligands, including large 
molecules as proteins, different small molecules, as peptides, amino acids, amines, lipids, nucleotides 
and also percept signals in form of ions, photons from light or odorants and pheromones.  

 

1.1 Structure of GPCRs 

Despite the variety of ligands and GPCRs sizes that range from 300 to 1200 amino acids 

(Baldwin, 1993), all GPCRs share a common structural core. Rhodopsin sequencing in the 

70’s and cloning of other GPCRs in the late 80’s (Dixon et al, 1986) could prove the existence 

of a shared topology for hormone receptors: all GPCRs are composed of seven 

transmembrane (7TM) spanning helical domains (see Figure 2 for details). The TM region is 

preceded by an N-terminus of variable length that can be involved in ligand binding and 

sometimes presents long sequences that form separate extracellular domains (EC domains) 

that also contribute to anchoring GPCRs to the extracellular matrix (ECM). TM segments are 

linked by three extracellular loops (ECLs) that play a role in ligand binding and three 

intracellular parts (ICLs) that are involved in downstream signaling. Furthermore, a cytosolic 

part in the C-terminus, including the helix #8 (the only known exception is CXCR4) is 

responsible establishing downstream signaling and functions as regulatory element in being a 

target for phosphorylation or a scaffold for binding other proteins. The sequence of the TM 

domain is quite conserved, while the other parts are more variable and form the basis of 

specificity concerning ligand binding, downstream signaling and the binding of modulators. 
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Figure 2 GPCR topology with important structural features of class A GPCRs (Audet & Bouvier, 
2012) 

The common topological core of all GPCRs are the seven transmembrane helices with the 
extracellular N-terminus and interhelical ECLs loops. ICLs loops between the helices range into the 
cytosol, where also the C-terminal part is located. Frequent features of class A GPCRs are the DRY 
motif in TM3 that forms an ionic lock with TM6, the toggle switch and the NPXXY sequence in the 
TM7. Ligand binding is often maintained by cooperation of ECL3 and TM6.  

 

After deciphering the principal structure, further insight into GPCR structure was provided by 

the crystallization of bovine Rhodopsin, the prototypical GPCR, in 2000. (Palczewski et al, 

2000). A breakthrough came in 2007 owing to the techniques that had been developed in the 

previous years that facilitate the obtainment of crystal structures (Cherezov et al, 2010). 

Application of this methods to the GPCR field resulted in discovery of the structure of the 

inactive adrenergic receptor β2 in 2007 (Rasmussen et al, 2007; Rosenbaum et al, 2007), as 

shown in Figure 3, and β1 in 2008 (Warne et al, 2008) bound either to an inverse agonist or an 

antagonist respectively. It was quickly followed by the structure of ligand-free rhodopsin 

(opsin) (Park et al, 2008; Scheerer et al, 2008). Further advances allowed the visualization of 

active structures as for the agonist-bound adenosine A2A receptor (Lebon et al, 2011; Xu et al, 

2011) and the β2 adrenergic receptor in complex with the heterotrimeric G proteins 

(Rasmussen et al, 2011b).  

These and other structures in complex with ligand or coupled to G proteins or β-arrestins led 

the way from a simple observation of the structure to comparative analysis of the structural 

changes depending on the different conformations of GPCRs. 

 

 

 

Figure 3 Crystal structure of β2 adrenergic receptor (Rasmussen et al, 2007) 

The crystal structure of the β2 adrengic receptor bound to an inverse agonist for stabilization of the 
inactive conformation. 
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Currently, more than 20 class A GPCR structures have been obtained (Katritch et al, 2013). 

The structural identification of other GPCR families has progressed slower, but first results 

were achieved with the structure of Smoothened (Wang et al, 2013), extracellular parts of the 

glutamate receptor mGluR7 (Muto et al, 2007) and class B family members (Hollenstein et al, 

2013; Siu et al, 2013). This has helped to identify specific characteristics of each family and 

to describe the structural diversity in the different GPCR classes (Venkatakrishnan et al, 

2013). The beginning of this structure resolution era in GPCRs helped to gain information 

about the flexibility and functionality of GPCRs and revealed structure-function relations.  

 

1.2 Families of GPCRs 

Aside from their common transmembrane core structure, GPCRs vary in their other structural 

elements. Analysis of shared features led to a first categorization into four different main 

classes as shown in Table 1 (Kolakowski, 1994).  

Table 1 Classification of GPCRs (Lagerstrom & Schioth, 2008)  

Current classification of GPCRs (after (Kolakowski, 1994)), with the number of proteins they comprise 
and the chemical nature of their ligands. 
 

 

 

Class A – rhodopsin like GPCRs 

The class A is the largest GPCR family with approximately 700 members, which vary a lot in 

primary structure and ligand specificity. Their common feature is the short extracellular N-

terminal part and conserved regions in the 7TM domain. In TM3 is a D/ERY motif, which is 

also part of the inactivating ionic lock with a Glu-residue in TM6, two cysteines that form a 

disulfide-bond between ECL2 and TM3 and a NPXXY motif that is located at the end of TM7 
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attenuating the helical structure and forming a water pocket, as illustrated in Figure 2 

(Katritch et al, 2012). Further analysis enabled the formation of subgroups among class A 

GPCRs: (I) Subclass α regroups receptors that preferentially bind small ligands, which occurs 

in the 7TM region between TM3 and TM6. (II) Subclass β is responsible for the binding of 

large peptide ligands. (III) Subclass γ is composed of receptors for peptides and lipidic 

substances. (IV) Subclass δ GPCRs bind either nucleotides and glycoproteins or some of them 

are responsible for the perception of odorants and taste. The large amount of nearly 400 

olfactory receptors found in humans is also part of this class. In addition to these 4 subclasses, 

another organization model exists, which divides class A into 19 subfamilies that have 

common characteristic features and often bind similar ligands, like the of melatonin receptors 

family (see Chapter 2). 

 

Class B – adhesion and secretin GPCRs 

This family comprises two different groups of GPCRs:  

(1) Adhesion GPCRs 

This family consists of about 30 members. They display unique elements, like their long N-

termini that are often glycosylated. This N-terminal part is often composed of distinct 

domains, which are also found in other proteins with long extracellular parts like the 

cadherin-, lectin-, IgG- and EGF domains, which serve for binding ECM components and 

maintain ligand-receptor-interactions. Some receptors in this family bind proteins and 

glycosaminoglycans, but most are still orphan receptors (Gupte et al, 2012; Paavola & Hall, 

2012). 

(2) Secretin family of GPCRs 

These 15 family members bind large ligands, such as peptides and proteins, with their 

extracellular domain. Since these ligands are important players in the maintenance of 

organism homeostasis, they form an attractive drug target. 

 

Class C – The glutamate family of metabotropic receptors 

The glutamate family of GPCRs is comprised of 25 members with amino acid ligands, such as 

glutamate and GABA, small organic compounds, and the cation Ca
2+

. Among them are also 

three taste receptors. Their characteristic feature is their extended N-terminus that is 

implicated in ligand binding. Crystal structure analyses demonstrate a possible venus flytrap 

mechanism of this domain (Muto et al, 2007).  
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Others – frizzled GPCRs and taste receptors (TAS) 

This class is composed of 11 frizzled receptors of which are 10 that bind the frizzled ligand, 

which is the glycoprotein Wnt, and one Smoothened ligand binding receptor.  

In this class of receptors are also 25 taste receptors (TAS) that bind small organic compounds. 

 

1.3 Signal transduction of GPCRs 

The evidence that GPCRs couple to G proteins was recognized in 1970 as Martin Rodbell 

discovered that incubation of cells with glucagon in the presence of GTP triggers the 

activation of the adenylate cyclase. This led to a reformation of the concept of the signal flow 

of hormone receptors going from ligand via the receptor over to the G protein and its effector. 

In addition the name “G protein-coupled receptor” for this group of signal transducing 

membrane proteins became established. 

 

1.3.1 Structural basis of GPCR activation 

Ligand binding to a GPCR induces conformational changes which consequently affect its 

activation state. Experimental findings and structural analysis during the last years gave more 

insight into the complexity and the different facets of GPCR activation. This led to the shift in 

seeing GPCR activation as a process implicating a continuum of conformations instead of a 

simple two-state switch. 

The resolution of GPCR structure has aided in revealing the conformational changes that 

occur upon activation. Surprisingly, it was found that there is not only one active 

conformation, but several different ones depending on the progress of activation (Figure 4).  
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Figure 4 Activation mechanism and conformational rearrangements of GPCRs (Katritch et al, 2013) 

R is the inactive ground state, small local changes occur in the inactive low-affinity agonist-bound 
state R’. Achieving R’’ is accompanied by substantial conformational changes and rearrangements in 
the receptor, leading to at least partial exposition of the G protein binding site. R* is the activated 
state where the structural reorganization allows the interaction with the Gα protein. Finally, R*G is 
the fully active receptor conformation in complex with the heterotrimeric G protein. Additionally 
R*GRK and R*A are the conformations that receptors have upon the interaction with GRKs or β-
arrestin. Noteworthy, most processes are bidirectional (indicated with flashes), while the formation 
of the R*G complex is unidirectional since it is accompanied by a non-reversible GTP hydrolysis. The 
TMs that are mainly implicated in the activation process are highlighted in red (5 and 6) and blue (3 
and 7). 

 

As a result of the bidirectionality of the different activation conformations shown in Figure 4, 

there is always equilibrium between receptors in the inactivated and in the activated states.  

 

Structural changes during the activation process 

During the activation process, the helices undergo several substantial rearrangements in the 

helical core in response to ligand binding. Ligand binding induces conformational changes 

that are propagated from the extracellular portion of the GPCR to the cytoplasmic surface. 

These conformational changes take place in several steps: ligand binding occurs upon 

interaction with ECLs and parts of the 7TM domain, the 7TM functions as stabilizing core, 

and the ICLs are responsible for the intracellular transformation of the response. For 

rhodopsin-like GPCRs, the movements during activation process have been shown for 

rhodopsin (Altenbach et al, 2008) and β2 adrenergic receptors (Yao et al, 2006): in the 

inactive state, most of the class A members have an ionic lock between TM3 and TM6 that fix 
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the inactive conformation. Ligand binding then leads to a loss of the ionic lock and an 

important outward movement of TM5 and TM6, that creates a binding site for the Gα protein, 

allowing the active ternary complex formation and the transformation of ligand binding to an 

intracellular effect (Rosenbaum et al, 2009).  

 

1.3.2 Downstream signaling of GPCRs 

The initiating step in signal transduction of GPCRs is the binding of a ligand. Ligand binding 

is incredibly variable, occurs in various regions of the GPCR and each receptor has a binding 

site adapted to the structure of its ligand (reviewed in (Audet & Bouvier, 2012).  

 

1.3.2.1 Ligand efficacy 

Beside this specificity in ligand binding, synthetic ligands of similar chemical structure to the 

natural ligand can differ in their strength to shift the receptor towards the state of full 

activation or even block its activation. The capacity of a ligand to activate a receptor is termed 

ligand efficacy. Every natural or synthetic ligand stabilizes an individual set of receptor 

conformations, which is reflected by its capacities to more or less fully activate or inhibit 

distinct downstream signaling pathways and biological responses. Different efficacy classes 

have been defined according to their effects on receptor activation (Figure 5): 

(1) An agonist is a ligand that leads to the activation of GPCRs, either partial (= partial 

agonist) or completely (= full agonists).  

(2) An antagonist is a ligand that inhibits receptor activity. Within this classification are 

inverse agonists, which inhibit spontaneous activity or counteract the basal activation of the 

receptor. Another type of antagonist are neutral antagonists, which are able to bind the 

receptor, but lack intrinsic activity, thus blocking the receptor binding site for agonists and 

inverse agonists (Rosenbaum et al, 2009). 
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Figure 5 Ligand efficacy and downstream signaling (Rosenbaum et al, 2009) 

It can be differentiated between agonists that activate receptors either partially (partial agonist, light 
blue) or fully (full agonist, dark blue). To counteract GPCR activity, there are neutral antagonists 
which block receptor access and biological response (black), while inverse agonists reduce basal 
activity (red). 
 

Constitutive activity of GPCRs 

In the case of constitutive receptor activity a significant proportion of the GPCR can shuttle 

towards active conformations even in the absence of ligand (Tiberi & Caron, 1994). It is 

described for several GPCRs and goes along with constant coupling to G proteins and 

downstream signaling. A structural explanation for class A receptors could be the absence of 

the inhibitory ionic lock, as in the melatonin receptors. Mutations in GPCRs, that shift the 

balance towards more activated than inactivated receptors are often associated with diseases 

(Seifert & Wenzel-Seifert, 2002).  

 

1.3.2.2 Signaling via G proteins 

After ligand binding has induced conformational changes, the receptor is capable of 

transducing the signal to different intracellular effectors. Classical downstream signal 

transduction includes the heterotrimeric G proteins as mediators between receptor and 

effector. By binding to effectors, like enzymes or channels, they are responsible for 

intracellular signal transduction. 

Function and diversity of heterotrimeric G proteins 

The heterotrimeric G proteins belong to the family of guanine-nucleotide-binding proteins. 

They are highly conserved during evolution and composed of three subunits: α (about 

40kDa), β (about 35kDa) and γ (about 8-10kDa), which can exist in different isoforms and 
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assemble in various combinations in the heterotrimeric G protein complex (Cabrera-Vera et 

al, 2003).  

In the inactive state, the three G protein subunits are associated with the Gα subunit binding 

GDP. Following its recruitment by an activated GPCR, the Gα protein undergoes 

conformational changes leading to a GDP to GTP exchange. This activation step is 

accompanied by the dissociation of the Gβγ complex from Gα, what allows the subsequent 

interaction with their corresponding effectors. Termination of G protein signaling occurs 

through GTP hydrolysis, causing its dissociation from the effector and a reassembly of the 

three subunits, which are ready for another activation-inactivation cycle.  

The capacity of each subunit to interact with different effectors through their protein 

interacting domains allows a broad spectrum of downstream signaling pathways (Kostenis et 

al, 2005). The Gα proteins can be divided into four subfamilies with specific downstream 

signal transduction (see Figure 6 for overview):  

Gαs and Gαi proteins either stimulate (Gαs) or inhibit (Gαí) adenylate cyclaces that convert 

ATP into cyclic AMP (cAMP). cAMP functions as a second messenger, activates protein 

kinase A (PKA), which in turn phosphorylates and activates the transcription factor cAMP 

response element protein (CREB), which regulates the expression of numerous genes.  

Gαq proteins activate the phospho lipase C (PLC) that hydrolyzes phosphatidylinositol 4,5-

bisphosphate (PIP2) to diacylglycerol (DAG) and inositoltriphosphate (IP3). DAG can activate 

the protein kinase C (PKC) and IP3 binds to receptors which triggers the release of calcium 

from internal stores. 

Gα12/13 proteins can direct downstream signaling towards the regulation of Rho GTPase 

activity. 

The Gβ and γ subunits remain associated after dissociation from the Gα protein, and interact 

and activate PLCβ through their pleckstrin-homology (PH) domains, which triggers IP3 and 

DAG production, like the Gαq proteins. Additionally they can also activate ion channels and 

phosphatidylinositide 3 (PI3) -kinases. 

Other possible actions of G protein subunits have been reported like guanylyl cyclase 

activation for cGMP generation, regulation of mitogen-activated protein (MAP) kinase 

activity and the activation of phosphatases, highlighting the diversity of G protein targets 

inside the cell (Milligan & Kostenis, 2006). 

 

http://en.wikipedia.org/wiki/Phosphatidylinositol_4,5-bisphosphate
http://en.wikipedia.org/wiki/Phosphatidylinositol_4,5-bisphosphate
http://en.wikipedia.org/wiki/Diacyl_glycerol
http://en.wikipedia.org/wiki/Inositol_triphosphate
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Figure 6 Signaling of GPCRs via heterotrimeric G proteins (Dorsam & Gutkind, 2007) 

The heteromeric G proteins can direct GPCR signals depending on their subtype towards different 
effectors. The different Gα proteins are indicated in red and the βγ subunit in purple. 

 

Structural basis of G protein coupling to the receptor 

The activation of G proteins requires their coupling to the receptor, which is also subject to 

conformational rearrangements in the receptor. Ligand binding induces the loss of the ionic 

lock between TM3 and TM6 and the outward movement of TM6 creates a binding site for the 

G protein. Thus, a conformation, that allows the binding of the G protein is stabilized (Audet 

& Bouvier, 2012). More specific insights for the receptor-G protein interaction were recently 

gained with β2 adrenergic crystal structures bound to the G protein (Rasmussen et al, 2011a; 

Rasmussen et al, 2011b): Gα protein interaction sites are found on TM3, TM5, TM6, and the 

ICL2 of the receptor. After coupling of G proteins to an active receptor, the nucleotide 

exchange from GDP to GTP for activation is facilitated through structural adjustments and 

interactions between the receptor and the G protein (Bouvier, 2013).  

But the different existing G protein isoforms and the specificity of each ligand and its ability 

to signal via different Gα protein suggest the existence of additional mechanisms to achieve 

the pairing of a ligand with its specific G protein. It will be a future challenge to describe the 

mechanisms that allow the recognition of ligand and associated G protein via the 7TM core. 
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Regulation of G protein activity 

Different classes of proteins control G protein activity in order to regulate GPCR-dependent 

signal transduction. Some proteins can act on the GDP-to-GTP exchange: while guanine-

nucleotide-exchange factors (GEFs) are activating, GDP-dissociation inhibitors (GDIs) have 

an inhibiting function. Activators-of-G protein-signaling (AGS) proteins bind to the βγ 

subunit, to form a quaternary complex (Cismowski, 2006). RGS proteins are regulators of G 

protein activity that mediate their inactivation by promoting GTP hydrolysis, thus functioning 

like a GTPase-activating protein (GAP). Their expression is often induced via a negative 

feedback loop mechanism (Ross & Wilkie, 2000). 

 

1.3.2.3 G protein-independent signaling 

Different G protein-independent pathways have been discovered in the recent years: GPCRs 

can function via the β-arrestin coupling that favors the activation of MAP kinases like 

extracellular-regulated-kinase ERK (see below). GPCRs can also bind to PDZ domain-

containing proteins like MUPP1 that modulate their activity and localization (Guillaume et al, 

2008). The existence of residues that are phosphorylatable can form a binding motif for SH2 

domain proteins like Src and trigger associated downstream signaling events (Marinissen & 

Gutkind, 2001). Upcoming research will surely uncover more presently unexpected 

downstream signaling activities in the absence of G proteins. 

 

1.3.3 Regulation of GPCR activity 

Beside above described proteins that act on the G proteins, further distinct mechanisms to 

modulate GPCR activity and signaling: 

 

1.3.3.1 Receptor trafficking and desensitization  

The receptor desensitization claims to stop ligand binding or to prevent the receptor from 

inducing downstream signaling in response to ligand binding. There exists a canonical way to 

stimulate receptor desensitization.  

 

Receptor phosphorylation 

The first event to stop ligand-dependent effects is a phosphorylation on serine/threonine 

residues in the cytosolic C-terminus of the receptor. Different kinases have been identified to 
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target GPCRs, like PKA, PKC and GPCR kinases, the GRKs. Seven different GRKs have 

been identified and all are activated as a downstream signaling event or by the binding of 

GPCR effectors or second messengers. GRKs also have a GAP domain to inactivate G 

proteins (Luttrell & Lefkowitz, 2002). Typically, GRK-mediated phosphorylation leads to a 

decoupling of G proteins, but can also trigger other signaling cascades (Zanello et al, 1997).  

 

β-arrestin recruitment 

Phosphorylation is a prerequisite not sufficient for inactivation of GPCRs, but it creates a 

binding site for β-arrestin. β-arrestins are responsible for receptor internalization by 

interacting with the adaptor protein AP2 in the endosomes and triggering the formation of 

receptor-containing vesicles that translocate inside the cell. Afterwards, receptors are either 

recycled and inactive receptors shuttle back to the plasma membrane, or otherwise, they can 

also be directed to the lysosomes to be proteolyzed (Luttrell & Lefkowitz, 2002).  

 

β-arrestin-mediated G protein-independent signaling 

Besides blocking further G protein docking and activation of GPCRs, β-arrestin recruitment 

can also have other possible outcomes. They can function as scaffolding proteins for 

diesterases that degrade cAMP and terminate signaling, ubiquitin ligases for a proteasomal 

degradation of the receptor complex (Shenoy & Lefkowitz, 2011), or trigger the activation of 

other pathways by activation of Src (Luttrell et al, 1999) or the PI3K/Akt pathway. 

The β-arrestin-mediated internalization into endosomes can also help for the creation of 

signaling endosomes and prompt ERK activation (DeFea et al, 2000).  

In addition to β-arrestin actions on GPCRs, increasing evidence suggests their involvement in 

other GPCR-independent pathways, as the TGFβ signaling pathway (Chen et al, 2003; 

McLean et al, 2013). 
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Figure 7 Signal transduction of the β2 adrenergic receptor (Rosenbaum et al, 2009) 

The β2 adrenergic receptor can mediate different downstream signaling pathways. Dependent on the 
bound ligand, it can activate Gαi or Gαs proteins that either activate or inhibit cAMP production. The 
subsequent phosphorylation of PKA triggers the activation of Ca2+ channels. The recruitment of β-
arrestin to the receptor can induce different scenarios: a bound phosphodiesterase can attenuate 
adenylate cyclase activity, the MAP Kinases ERK1 and ERK2 can be activated or the receptor can be 
internalized with subsequent recycling or lysosomal degradation. 

 

1.3.3.2 Regulation of GPCR signaling by interacting proteins 

The activity of GPCRs can also be regulated by different classes of interacting proteins: 

GPCR-interacting proteins (GIPS) comprise GRKs and β-arrestin, but a lot of other molecules 

have been identified that can participate in regulation of GPCR localization and activity after 

complex formation (Magalhaes et al, 2012).  

A specific class of proteins are receptor-activity modifying proteins (RAMPs), which were 

found to interact with the calcitonin receptor and alter its activity and pharmacology (Hay et 

al, 2006). Other proteins are GPCR-associated sorting proteins (GASPs) that play a role in 

subcellular localization or influence the trafficking towards the plasma membrane after 

synthesis.  
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The PDZ motif in the C-terminal part of the GPCR can mediate the interaction with PDZ 

proteins like NHERF or MUPP1 that can be required for GPCR activation (Ritter & Hall, 

2009).  

Additionally, a lot of other proteins exist to regulate activity, pharmacology and localization 

of GPCRs and are described in more detail in the literature (Maurice et al, 2011a). 

  

1.3.4 Diversity and special features of GPCR signaling 

The preceding chapter illustrates that one GPCR can adopt different conformations. In 

dependence of each natural or synthetic ligand, a distinct conformation with distinct 

downstream signaling activity is obtained. This diversity of GPCR signaling can be further 

increased by the following opportunities of GPCR signal transduction: 

 

1.3.4.1 Allosteric regulation of GPCR activity 

Allosterism was firstly described for enzymes in 1963 (Monod et al, 1963). This means a 

compound can bind to an allosteric site in the receptor, which is another than the standard, the 

orthosteric one. Thus, an allosteric ligand can influence receptor actions or have an effect on 

the orthosteric ligand activity (Bridges & Lindsley, 2008). The binding of an allosteric 

molecule leads to conformational changes, compared to the orthosteric-ligand-bound-only-

state and is often accompanied by a different signaling outcome. Hence, allosteric ligands also 

play a role in biased signaling (see below). 

Allosteric ligands can be different types of molecules: small compounds but also proteins like 

interacting and regulating proteins described in the preceding chapter and they function either 

as positive allosteric modulators (PAMs) or negative allosteric modulators (NAMs). The 

identification of allosteric modulators and their corresponding binding sites is one of the 

current major interests in GPCR research (Katritch et al, 2012). They bear a huge therapeutic 

potential for the development of a new type of synthetic drug for GPCRs and benefit from in 

silico drug design. Furthermore, bitopic ligands, that occupy more than one binding site in a 

receptor and thus display particular signaling profiles, are another future application of the 

allosterism concept to therapeutics (Valant et al, 2012). An example for a drug with an 

allosteric mode of action are the benzodiazepines binding to GABA receptors (Sebag & 

Pantel, 2012). 
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1.3.4.2 Biased Signaling of GPCRs 

The phenomenon of biased signaling is grounded in the ability of one GPCR to induce several 

downstream signaling pathways. Biased signaling describes the ability of one synthetic ligand 

to direct signaling into a particular pathway, compared to the natural ligand (Rajagopal et al, 

2010). 

The structural basis is the existence of several active conformations of one receptor (see 

1.3.1.). This is also reflected in the ability of each ligand for one GPCR to stabilize a 

particular set of conformations implicating a specific rearrangement of certain parts in the 

receptor in response to ligand, which finds its consequence in a specific ligand-corresponding 

downstream signaling (Wacker et al, 2013). This capacity of a ligand to preferentially activate 

only one signal transduction pathway is termed “functional selectivity” (Rosenbaum 2009). 

Technical developments, like bioluminescence resonance energy transfer (BRET), permit to 

study conformational changes that underlie biased signaling (Galandrin et al, 2008).  

Drug design takes advantage of biased signaling to find suitable ligands with impaired 

efficacy and reduced side effects (Kenakin & Christopoulos, 2013).  

In addition to ligands, receptors can be biased, which is the case in mutated receptors as 

demonstrated for different variants of the melatonin receptor MT2 (Bonnefond et al, 2012). 

The existence of biased signaling supports the concept of multi-functionality of GPCRs and 

its action as a center of integration for different ligands by permitting each of them a specific 

signaling pathway and a different biological response.  

 

1.3.4.3 GPCR variants 

With the development of high throughput sequencing to analyze genomic DNA and their 

application to genetic association studies, it was revealed, that most GPCRs exist in sequence 

variants or display frequent germline mutations (SNPs, single nucleotide polymorphisms) 

(Nelson et al, 2012). These variants are sometimes found associated with a higher risk to 

develop certain diseases. One pioneer study tried to find a connection of variants in melatonin 

receptor genes and the risk to develop type 2 diabetes, these variants are either located in 

intronic sequences (Andersson et al, 2010; Bouatia-Naji et al, 2009; Chambers et al, 2009; 

Sparso et al, 2009) or the coding exon region of the MT2 receptor gene MTNR1B (Bonnefond 

et al, 2012). Variants in the coding region might introduce changes in the amino acid 

sequence that affect the functionality of the protein. The interesting task is now, to 
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characterize the signaling properties of each of those variants and to identify their potential 

for biased signaling.  

Altogether, these findings gave rise to the supposition that the SNPs we naturally find in 

everyone of us, might also evoke different signaling properties and functional effects of 

GPCRs and that this concept could be translated to other receptors and other proteins. In turn, 

this can explain why certain people have a higher tendency to develop certain disorders and 

different sensitivities to medication. To generalize, this concept might not only find its 

application in disease but could also serve as the scientific basis to understand the 

individuality of everyone.  

 

1.4 GPCR Homo- and heteromerisation 

GPCR homo- and heteromerisation means the assembly of two or more monomers into one 

functional complex, either with the same (di- or oligo-homomer) or with different monomers 

(di- or oligo- heteromer) of other GPCRs. 

 

1.4.1 Homodi/oligo-merisation of GPCRs 

The existence of receptor dimers and oligomers is a quite young concept in GPCR research, 

while for several other receptor classes dimerisation is indispensable for signaling activity. It 

is described for different receptor tyrosine kinases (RTKs) like the epidermal-growth-factor 

receptor (EGFR) (Blakely et al, 2000), serine/threonine receptor kinases as the transforming 

growth factor β (TGFβ) receptor (Franzen et al, 1993), cytokine receptors that are coupled to 

soluble tyrosine kinases as found in the januskinase (JAK) - signal transducers and activators 

of transcription (STAT) pathway or even nuclear receptors (Marianayagam et al, 2004). The 

reason is that their ligands are dimeric and have two symmetric binding surfaces that require 

binding to two receptors. This often goes along with the fact, that receptor activation requires 

transphosphorylation from one receptor monomer to the other. For GPCRs, the existence of 

higher-order structures slowly became accepted with turning of the last century (Bouvier, 

2001; Hebert & Bouvier, 1998; Salahpour et al, 2000). A list of GPCRs for whom the 

existence of multimeric states has been proven can be found at http://data.gpcr-okb.org/gpcr-

okb/oligomer/list  

 

 

http://de.wikipedia.org/wiki/Januskinase
http://data.gpcr-okb.org/gpcr-okb/oligomer/list
http://data.gpcr-okb.org/gpcr-okb/oligomer/list
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1.4.1.1 GPCR homodimers 

One receptor monomer is sufficient to perform signaling (Whorton et al, 2007) thus 

questioning the necessity of dimeric complexes. The development of appropriate biophysical 

techniques based on energy transfer between donor and acceptor molecules like BRET 

(Angers et al, 2000; Mercier et al, 2002) and homogeneous time resolved fluorescence 

(HTRF) (Maurel et al, 2004) have become a versatile tool to study and prove GPCR 

dimerisation. Further supporting evidence is provided by recent crystal structures, that 

propose the existence of dimer-interaction surfaces as shown for the opioid receptors 

(Granier, 2012). Consequently, the concept of receptor dimerisation is now established and it 

has been shown that it even can be mandatory for correct functioning, for example for class C 

GABA receptors (Galvez et al, 2001).  

Evidence exists that an organization in dimers can be constitutive and that their formation 

already occurs during protein synthesis (Terrillon et al, 2003). The mechanisms of dimer 

formation are various and can rise from the formation of disulfide bridges between receptors 

over transmembrane interactions to coiled-coil interactions of helices in the cytosol (Bouvier, 

2001). 

 

1.4.1.2 GPCR homooligomers 

The existence of homo-oligomeric assembly of GPCRs has been shown by different 

techniques. Additionally to BRET and FRET, other light based studies like total internal 

reflection fluorescence microscope (TIRF) (Boyer & Slesinger, 2010), fluorescence recovery 

after photobleaching (FRAP) (Dorsch et al, 2009) or single molecule techniques (Calebiro et 

al, 2013) proposed the existence of higher-order states for GPCRs. The technique of HTRF 

also allowed their detection in native tissue (Albizu et al, 2010). These techniques brought 

evidence for GABA receptors being organized as tetramer (Maurel et al, 2008) and M3 

muscarinic receptors as hexamers (Patowary et al, 2013). The crystal structure of the turkey β1 

adrenergic receptors in a lipid membrane displayed oligomeric structures (Huang et al, 2013). 

The functional effect of oligomerisation remains speculative. It might be a mean to facilitate 

ligand binding and signaling complex formation (Maurice et al, 2011b), but also could be a 

way for the receptor to stabilize inactive conformations (Bouvier, 2013). 

 

 

http://en.wikipedia.org/wiki/Total_internal_reflection
http://en.wikipedia.org/wiki/Total_internal_reflection
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1.4.2 Heteromerisation of GPCRs  

GPCRs form high order structures by the assembly of different GPCR mono- or dimers, what 

is called heteromerisation. 

 

Examples of heteromer formation 

As for homomerisation, heteromers are assembled in the endoplasmatic reticulum (ER) before 

their insertion in the plasma membrane (Milligan, 2006). It can take place between different 

types of GPCRs: 

(1) Heteromerisation in the same subfamily is often found between closely related GPCRs. 

The class C GABA receptor GABAB1 and GABAB2 form obligate heterodimers (Bettler et al, 

2004; Kaupmann et al, 1998; White et al, 1998) based on their asymmetric mode of 

activation, where one monomer is responsible for ligand binding and the other manages the 

activation of the G protein (Pin et al, 2009). The example of opioid receptors shows a case 

where both monomers κ and δ are necessary for activation and a strong ligand binding (Jordan 

& Devi, 1999). In the taste receptor subfamily, T1R1 and T1R2 form heteromers with the 

T1R3 ligands and their combination defines the taste we experience (Xu et al, 2004; Zhao et 

al, 2003). 

(2) Heteromerisation in different, but related subfamilies of one class often involves receptor 

transactivation, where ligand binding to one receptor activates the other, despite their different 

ligand preferences. The heteromeric complex formation between the adenosine receptor A2 

and the dopamine receptor D2 is an example of allosteric regulation of one receptor by the 

other (Ferre et al, 1991; Hillion et al, 2002). In contrast, heteromerisation can also have 

antagonistic effects, as in the case of glutamate binding to the complex of receptor mGluR2 

glutamate receptor and the 5-HT2A serotonin receptor heteromer (Gonzalez-Maeso et al, 

2008).  

(3) Heteromerisation in different GPCR classes of families occurs less frequently, but has 

been shown for the adenosine A1/glutamate mGluR1α dimer composed of one class C and 

class A receptor (Ciruela et al, 2001). 

Rare is the case where more than two different receptors assemble into oligomers, but the 

example of the heteromer of adenosine A2A and dopamine D2 receptors with the glutamate 

receptor mGluR5 (Cabello et al, 2009) proposes the existence of more complex heteromeric 

structures for GPCRs. 
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(4) The case of heterodimerisation of with orphan GPCRs will be discussed in more detail 

separately (see 1.6.2.) 

 

Heteromer specific signal transduction and effects 

Heteromer formation increases the spectrum of biological responses and signaling variety of 

GPCRs. It affects signaling either in an antagonistic, synergistic or receptor-biased fashion 

and can induce crossactivation or –inhibition (Smith & Milligan, 2010). Heterodimerisation 

can, for example, change the ligand binding properties. This is accomplished by either 

obligatory heteromers (GABAB) or involves conditional allosteric regulation mechanisms 

where ligand binding to one receptor affects the affinity and efficacy of the other ligand and 

can enhance or impair signaling (Milligan, 2009). Another facet of heterodimerization is the 

creation of novel binding sites upon complex formation, which has been found for opioid 

receptor heteromers (Waldhoer et al, 2005).  

Heteromers can induce a switch in G protein activation or coupling to induce distinct 

downstream signaling pathways. Additionally, they can also be implicated in biasing 

signaling and preferentially activate a specific downstream pathway (Rozenfeld & Devi, 

2011). 

Heteromerisation can also modulate surface delivery of receptors (Achour et al, 2008) by 

inducing a ER retention or inhibiting internalization (Jordan et al, 2001) (Cao et al, 2005). 

 

Physiological and pathophysiological relevance of heteromers 

The description of heteromer formation and function was mainly carried out by the use of 

cellular models, but more and more results prove its in vivo existence: A2A/D2 dimers can be 

found in the central nervous system (CNS) (Agnati et al, 2005) and a recent example proved 

evidence for melatonin receptor heteromers and their functional importance in the retina 

(Baba et al, 2013). 

The detection of 5-HT2a/GluR2 heteromers could provide targets for antipsychotic drugs that 

diminish hallucination symptoms in psychotic patients (Fribourg et al, 2011). 

For the future, the discovery of more heteromer complexes with unique pharmacological 

properties can reveal novel therapeutic targets (van Rijn et al, 2013). The synthesis of 

peptides that interfere with heteromer formation (Rozenfeld & Devi, 2010; Rozenfeld & Devi, 

2011) and selective or bivalent ligands for heteromers (Milligan, 2006) have enormous 

potential and might aim to provide new solutions for disorders which lack specific drugs. 
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1.5 Crosstalk of signal transduction pathways 

In addition to their typical signal transduction pathways, GPCR signaling can cooperate with 

other signaling pathways, which is called signaling crosstalk. A crosstalk is the interplay 

between independent signal transduction pathways that influence or alter the outcome of one 

of the involved signaling pathways. A crosstalk can be achieved by (I) direct interaction of 

members of two different pathways, (II) indirect enzymatic or transcriptional action (III) 

competition events between signal transduction pathways (illustrated in Figure 8).  

 

 

Figure 8 Crosstalk in signal transduction (Guo & Wang, 2009) 

The figure explains the different possibilities of signal transduction pathways. Compared to 
the signaling in an independent pathway (left side), this signal can be influenced due to an 
interplay with other signaling pathways via (a) direct interaction, (b and c) one being an 
enzymatic or transcriptional target of the other in direct manner or through a mediator M or 
(d) two members of independent signal transduction pathways can compete on another 
protein. 
 
 

1.5.1 Crosstalk between GPCRs 

The crosstalk that occurs between GPCRs can have several origins. One source of crosstalk is 

the above-described formation of heteromers as described above: the physical interaction on 

the level of the plasma membrane often results in altered downstream signaling. This includes 

also the phenomenon of receptor transactivation from one to another (Vischer et al, 2011). 

But the crosstalk between GPCRs can also take place in intracellular downstream signaling. 

GPCRs can, for example, compete for the same G protein subunits as it has been shown for 
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opioid and cannabinoid receptors, which are not assembled as heteromers but counteract on a 

later level of signaling (Canals & Milligan, 2008). Another example of crosstalk is the case of 

heterologous desensitization, which is the downstream activation of protein kinases, like the 

GRKs, by one receptor, which in turn phosphorylates another GPCR and induces their 

silencing (Chu et al, 2010). 

Especially class C GPCRs serve as a good tool to study and understand the different 

mechanisms of inter-GPCR crosstalk (Prezeau et al, 2010) and the example of the mGluR1a-

GABAB crosstalk has been physiologically demonstrated in the CNS (Hirono et al, 2001). 

 

1.5.2 Crosstalk with other signal transduction pathways 

GPCRs are also able to interfere with and to be regulated by signal transduction pathways 

implicating other proteins than GPCRs.  

 

Crosstalk with receptor tyrosine kinases 

Already in the 90’s it has been shown that a GPCRs can transactivate receptor tyrosine 

kinases (RTKs) in the absence of the RTK ligand. A well-described model is the 

transactivation of the EGFR by the lysophospholipid receptor LPA (Daub et al, 1997). The 

dissection of the mechanism showed that non-receptor tyrosine kinases like Src and Pyk 

function as intermediates through direct interaction with the RTK after their GPCR-mediated 

activation. Another mechanism could also pass in a ligand-dependent manner by activation of 

EGF ligand secretion through GPCR stimulation. New models like the triple-membrane-

passing model propose the passage of the signal from the active GPCR over to 

metalloproteases, that act as intermediates for shedding of heparin-binding-EGF which then 

binds and activates its receptor (Fischer et al, 2006). The result of this transactivation is the 

formation of multimeric protein complexes, often with β-arrestins, that concertize in the 

regulation of MAP kinase activity. 

Additionally, other GPCRs, such as LPA-, endothelin- and thrombin receptors can activate 

the platelet-derived growth factor (PDGF)-, the insulin-like growth-factor (IGF)- or the 

neurotrophin TrkA and B -receptors (listed in (Wetzker & Bohmer, 2003).  

Conversely, RTKs can also transactivate GPCRs in the absence of their corresponding ligand, 

like the IGF receptor activates CXCR4 and the nerve-growth-factor (NGF) RTK activates the 

LPA1 GPCR. This occurs mainly through direct interaction, but other mechanisms like ligand 

synthesis or transphosphorylation are possible (Delcourt et al, 2007a). A crosstalk between 
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the fibroblast growth factor (FGF) receptor and GPCRs has been demonstrated in several 

examples and different physiologic consequences: together with D2 in schizophrenia, with 

A2A that has a role in synaptic plasticity (Flajolet et al., 2008) and with 5-HT1A in depression 

(Borroto-Escuela et al., 2011).  

The crosstalk with RTKs explains the implication of GPCRs in growth control and vascular 

remodeling, which are not part of the variety of biological responses rising from independent 

GPCR signaling. 

 

Crosstalk with non-receptor tyrosine kinases 

Crosstalk can also occur with intracellular proteins. First evidence was provided by the 

chemical inhibition of soluble tyrosine kinases that led to a decrease in GPCR-mediated 

activation of MAP kinases, proposing their function as signaling intermediates. An 

involvement of Src kinase in GPCR-mediated activation of the MAP Kinases ERK, c-Jun N-

terminal kinase (JNK) and p38 has been identified (Cao et al, 2000; Ma et al, 2000). Recent 

findings also propose a strong implication of GPCR bound β-arrestin mediating the activation 

of MAPKs. This suggests the creation of physical signaling platforms of RTKs and GPCRs 

and lead to the involvement of GPCRs in growth control (Pyne & Pyne, 2011). 

 

Crosstalk with PI3 kinase pathway 

GPCRs have also been found to transactivate PI3 kinases and their downstream signaling, 

either leading to Akt (Murga et al, 2000) or MAP Kinase (Lopez-Ilasaca et al, 1998) 

activation. 

 

Crosstalk with receptor serine/threonine kinases 

Compared to RTKs, only recent findings provide evidence for an extension of the 

transactivation to the RS/TKs receptors of the TGFβ signaling pathway (Burch et al, 2012), 

further described in chapter 3.4. 

 

Crosstalk with ion channels 

An interaction of the opioid-receptor-like GPCR ORL1 receptor can activate ligand gated 

calcium channels in absence of their ligand (Beedle et al, 2004). 
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Implication of GPCR signaling elements in other signal transduction pathways 

In return, it has been described that RTKs use elements of GPCR signal transduction. 

This is the case the IGF receptors that use the constitutive active CXCR12 GPCR, without its 

CCL12 ligand, to benefit from its Gαi activity in MDA-MD-231 cells (Akekawatchai et al, 

2005). In order to activate adenylyl cyclases, the IGF receptor teams up with the pituitary 

adenylate cyclase-activating polypeptide PAC1 receptor signaling (Delcourt et al, 2007b). 

The physical interaction of the vascular endothelial growth factor (VEGF) receptor and the 

sphingosine1-phosphate receptor S1P1 also leads to a specific downstream signal transduction 

(Bergelin et al, 2010). The transactivation from TrkA to LPA1 even seems to lead to nuclear 

translocation of the complex (Moughal et al, 2004). The existence and physiological 

relevance of the crosstalk has also been demonstrated in the CNS (Shah & Catt, 2004). 

 

These different types of crosstalk add another brick in the multifunctionality concept of 

GPCRs and make them an important element of the cellular network, instead of functioning 

individually apart (Marinissen & Gutkind, 2001). 

 

1.6 Orphan GPCRs 

All these signal transduction pathways and crosstalks are mainly valid for the GPCRs with a 

known ligand. But there is still a part of proteins left that display sequence homology with 

GPCRs and have the same basic 7TM structure, but lack the identification of the 

corresponding natural ligand. The detection of increasing amounts of sequences of 7TM 

proteins without known proper ligand caused the definition of them as orphan receptors 

(Libert et al, 1991). 

Today, we count in total more than 100 orphans, meaning 15% of all the GPCRs, and about 

one third by excluding the ~400 proteins of the olfactory fraction of GPCRs. Most of these 

orphans are members of the rhodopsin class A family (~ 80), nearly all of the adhesion 

GPCRs are still orphans (~30), and also 7 class C GPCRs, a secretin family member and some 

20 taste receptors have currently no identified ligand (see Figure 8). A database that provides 

the up to date information about newly identified ligands can be found at http://www.iuphar-

db.org.  

These orphans build for two reasons an interesting object in research: (I) the identification of 

the matching ligand, their deorphanization, is still of big interest and (II) increasing evidence 

http://www.iuphar-db.org/
http://www.iuphar-db.org/
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exists for ligand-independent functions of orphan receptors. Therefore, orphan receptors are a 

source for the identification of further and formerly unappreciated functions of GPCRs. 

 

Figure 8 Orphan GPCRs (Civelli et al, 2013) 

The figure shows orphan class A GPCRs according to their homology with existing subfamilies. 
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1.6.1 Deorphanization of GPCRs 

A first aim for all the orphan receptors is to identify their natural ligand, the deorphanization. 

With the identification of other putative GPCRs due to their sequence homology and 

following cloning experiments in the early 90’s (Marchese et al, 1994), a repertoire of orphan 

7TM proteins was available. In order to identify suitable ligands, either in silico sequence 

alignment helped to find similarities to existing GPCRs or neurotransmitter molecule libraries 

were matched up with orphan GPCRs (Civelli et al, 2006). 

 

Reverse pharmacology 

The existence of such big collections of receptors without ligands initiated the development of 

new strategies in pharmacology. The approach from an available receptor towards ligand 

identification was termed reverse pharmacology (Mills & Duggan, 1994). It includes the 

heterologous expression of the orphan protein in cells, the incubation with a ligand from 

molecular libraries or tissue extracts and a subsequent analysis by functional assays. (Civelli, 

2005).  

The era of reverse pharmacology led successfully to receptor deorphanization but also the 

discovery of novel classes of ligand and receptors, like new neuromodulator families with 

nociceptin, orexins, prolactin-releasing peptide, ghrelin, apelin and kisspeptin (Civelli, 2012). 

Additionally, deorphanization could identify some lipid-like ligands and surprisingly 

previously unappreciated substances like uridine diphosphate (UDP)-glucose or citric acid 

cycle intermediates as GPCR ligands. Some receptors were found to be able to bind several 

different substances, like for the class C GPRC6A that binds different basic amino acids. This 

induced a shift away from the “one ligand-one receptor” dogma (Civelli et al, 2013). 

 

The post-reverse pharmacology age – new methods for deorphanization and future challenges 

Since 2005, we recognize stagnation in ligand identification, marked by a slower 

deorphanization rate that implemented the development of new approaches that include: 

(1) in silico methods  

to bioinformatically compare expression profiles of receptors and possible ligands and to use 

structure predictions of orphan proteins, which allow a forecast for the chemical structure of 

binding what in turn improves the generation of synthetic ligands. 

(2) functional tests and their coupling to new read outs 
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One way to improve the sensitivity of established assays is the use of light-based methods as 

fluorescent labeling of receptors to assess their internalization, the fluorescence- (Ferguson & 

Caron, 2004) or luminescence- (Southern et al, 2013) based detection of β-arrestin 

recruitment or a combination of the measurement of cAMP production with fluorescence or 

luminescence. Additionally, the technique of reporter gene assay also made its way into 

GPCR deorphanization by the utilization of constructs with cAMP- or the PKC-activation-

dependent transcription-factor-binding elements in their promoter (Yoshida et al, 2012).  

(4) analysis of physiological function of GPCRs 

The use of heterologous expression models (Sugita et al, 2013) or transgenic mice models 

with deletion of the protein of interest (Yang et al, 2013) can give idea about their function 

and physiological relevance and can in turn narrow down the number of ligands to be tested. 

 

Beside the improvement of deorphanization methods, there are still some points that have to 

be paid attention to in the future in order to succeed: the discovery of increasing signaling 

possibilities and unpredictable G protein coupling of GPCRs make it more difficult to choose 

the appropriate method for deorphanization. It also has to be taken in account that 

heterologous expression models represent an artificial cellular environment and that either 

unnatural responses can be detected or additional interacting proteins, co-factors or 

heterodimerisation, which are required for activation, might be missing. The possibility that 

one orphan might only be activated by the simultaneous binding of more than one ligand 

could provide explanation for failure in deorphanization (Levoye & Jockers, 2008).  

In contrast, for some GPCRs a ligand once has been identified, but it could never be proven 

again, as for GPR39 and obestatin binding (Civelli et al, 2013). In the case of GPR37, a first 

putative ligand, the neuropeptide head activator, has been identified in 2006 (Rezgaoui et al, 

2006), what has never been repeated, while recent data provide another ligand possibility with 

the neuroprotective and glioprotective factors prosaptide and prosaposin (Meyer et al, 2013).  

For the future, it will be important to adapt the current state of knowledge about GPCRs and 

their signaling, including all the new concepts and findings, for the deorphanization of orphan 

GPCRs and to develop new techniques and strategies for their ligand identification. 
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1.6.2 Ligand-independent functions of orphan GPCRs 

Even though, Civelli hypothesized that the rules of evolution implicate the existence of a 

ligand for every GPCR (Civelli, 1998), combined with the difficulty to imagine the 

evolutionary survival of receptor-like proteins without ligand, increasing evidence proposes a 

ligand-independent function for GPCRs. For these proteins, the term “orphan 7TM protein” 

seems to be more suitable, because their sequence predicts the existence of the heptahelical 

core, but their coupling to G proteins is not obligatory. 

The characterization of orphan 7TM proteins started with the development of cloning 

techniques in the beginning of the 90’s that enabled overexpression in cells and founds its 

continuation in methods using genetic ablation in cells or transgenic mice, permitting the 

identification of functions and modes of action for the 7TM proteins. 

 

Constitutive activity 

One possibility for the orphan GPCRs is the case of constitutive activity. This concept has 

been proven for virus encoded 7TM proteins like UL33 (Waldhoer et al, 2002) and the 

Epstein-Barr virus-induced G-protein coupled receptor EBI2 (Rosenkilde et al, 2006) and for 

non-viral 7TM proteins like GPR3 (Ledent et al, 2005; Mehlmann et al, 2004), GPR6 and 

GPR12 (Tanaka et al, 2007), GPR26 and GPR78 (Jones et al, 2007) that constitutively 

activate adenylate cyclase. But it remains under speculation whether this could be an artificial 

effect upon overexpression or the result of permanent occupancy with the endogenous ligand 

as it is the case for the fatty acid receptor GPR40 (Stoddart et al, 2007). Whether other ligand-

independent mechanisms exist to regulate their activity or to inhibit their constitutive activity 

is unknown, but constitutive activity of orphan GPCRs can be applied for the design of 

suitable inverse agonists. 

 

Modulation of the function of other proteins upon direct interaction 

Another area for the characterization of the function of orphan 7TM proteins lies in their 

ability to interact with other proteins. The utilization of proteomic approaches can help to 

identify putative binding partners of 7TM proteins. Recently, a lot of techniques specific for 

transmembrane proteins have been developed (Daulat et al, 2013), among them the tandem 

affinity purification (TAP) that allows the isolation under native conditions (Daulat et al, 

2007). Their application to orphan GPCRs and other techniques helped to uncover protein 

complexes. 
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(1) Obligatory formation of heteromers with other GPCRs 

A first role which has been attributed to orphan 7TM proteins, is heteromerisation with other 

GPCRs, which mainly occurs in members of the same subfamily. In some cases the 

interaction of an orphan protein can be absolutely required for the activation of the other 

protein. A well-described system is the one of the GABAB receptors. Heterodimerisation 

between GABAB1 and GABAB2 is mandatory for activation by the GABA ligand. Both 

proteins must be in complex to be able to transduce a signal, since each one has a specific 

function: GABAB1 binds the ligand and GABAB2 is responsible for transducing the signal to 

the G protein. In this case GABAB2, who has no ligand binding domain, functions as the 

orphan receptor (Kniazeff et al, 2002). 

(2) Activity-modulating, inducible heterodimerisation with other GPCRs 

Another possibility is conditional heteromerisation of GPCRs, where the formation of 

heteromers can alter the function of the homomer. Various examples with different modes of 

action have been discovered in the last years. The pioneer work in this field demonstrated the 

heteromer formation of the melatonin receptor MT1 and its orphan family mate GPR50. In 

this case, the orphan GPR50 negatively interferes with melatonin-dependent signal 

transduction (Levoye et al, 2006a) (for more details see Chapter 2). 

The β-alanine binding mas related receptor MrgD can form a complex with its orphan relate 

MrgE. This interaction is associated with potentiation of signaling and inhibition of 

internalization of the receptor (Milasta et al, 2006). 

But there are also some examples which demonstrate a heteromer formation between non-

homologous proteins. This can even occur between the 7TM proteins of different species. The 

orphan receptors UL33 and UL78 from the human cytomegalovirus are able to interact with 

the chemokine receptors CCR5 and CXCR4 of their host cells and modulate their function 

(Tadagaki et al, 2012). Another example for an interaction of proteins of different species has 

been shown with EBI that binds to CXCR5 (Barroso et al, 2012).  

An interesting example is the one of a conditional orphan receptor. A protein with a known 

ligand can behave under certain circumstances as orphan receptor. This was recently 

demonstrated for the ghrelin receptor GHSR1a. In hypothalamic neurons, where ghrelin is not 

present, the receptor forms heteromers with the DRD2 dopamine receptor and modulates its 

activity, which induces the anorexigenic properties of dopamine stimulation. The 

independence of this interaction of the ghrelin ligand was additionally demonstrated with the 

use of ghrelin KO mice (Kern et al, 2012). 
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(3) Association with other proteins 

So far, only few examples describe the interaction of orphan 7TM proteins with other proteins 

than GPCRs. The long-time orphan GPR37 has been shown to interact with the dopamine 

transporter DAT to modulate dopamine uptake (Marazziti et al, 2007). The orphan GPR50 

can interact with neurite-outgrowth-inhibitor Nogo-A (Grünewald et al, 2009) and the 

transcription factor TIP60 (Li et al, 2011), described later in chapter 2.3.3.3. Another example 

is the inhibition of the constitutive activity of the frizzled class GPCR Smoothened by the 

hedgehog ligand. Hedgehog binds via the 12TM protein Patched to smoothened, and Patched 

itself is thereby responsible for inhibiting constitutive activity of Smoothened (Riobo et al, 

2006). 

 

Other functions of orphan 7TM proteins 

Another axe of research is the identification of functions independent of protein-interaction 

for orphans. So far, only little data exist giving information about other potential actions of 

orphan 7TMs proteins. One example is nuclear translocation, either partial or total, which has 

been shown for GPR50 (Li et al, 2011) and GPR158 (Patel et al, 2013) respectively. 

 

1.7 GPCRs as drug targets 

A large part of the available pharmaceuticals target GPCR activity and for about 15 to 30% of 

each molecular class of ligand, appropriate drugs have been developed, most of them for 

receptors of biogenic amines. 

The emerging knowledge about the functionality and diversity of GPCR signaling will allow 

the development of more various and specific drugs at once. Promising possibilities arise 

from biased signaling (Kenakin & Christopoulos, 2013) and allosterism (Valant et al, 2012) to 

design more specific and selective drugs in order to better target the diseases and avoid 

undesired side effects. Additionally, the recent concept of GPCR oligo- and heteromerisation 

can also lead to a development of new classes of curing substances like bivalent ligands or 

substances that interfere with complex formation (Allen & Roth, 2011). Emerging in silico 

use, can help to improve the generation of synthetic drugs, where a design suitable for orphan 

receptors can also be imagined. 

In combination with modern techniques of industry, drug design for GPCRs will reach 

another dimension by shifting from general treatment for a GPCR to one that is adapted to 

target the condition-specific signaling of each receptor.   
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2. The GPCR subfamily of melatonin receptors and GPR50 

MT1 and MT2 receptors for the amine melatonin and the orphan 7TM protein GPR50 form the 

melatonin receptor subfamily of the class A rhodopsin-like GPCRs. 

 

2.1 Melatonin synthesis and function 

The origins of melatonin (5-methoxy-N-acetyltryptamine) go back to 1917, when Allen and 

McCord described that extracts from bovine pineal glands can bleach tadpole skin. Then, in 

1958, Lerner and colleagues successfully isolated melatonin from bovine pineal glands 

(Lerner et al, 1958).  

Melatonin is synthesized during the night primarily by the pineal gland, but also, although to 

a lesser extent, by tissues like retina, intestinal organs, skin, blood cells and lymphocytes. The 

amino acid tryptophan is the precursor of melatonin (see Figure 9) (Klein et al, 1997). Pineal 

melatonin synthesis is regulated by light and the circadian rhythm generated by the 

hypothalamic suprachiasmatic nucleus (SCN).  

 

 

 
Figure 9 Melatonin synthesis 

Melatonin is synthesized out of the essential amino acid L-tryptophan. After enzymatic hydroxylation 
and decarboxylation, serotonin is formed. This intermediate then gets transformed through 
enzymatic addition of an acetyl group by the AANAT, which is the limiting step during melatonin 
synthesis. The HIOMT then transfers a methyl residue, which forms melatonin out of N-
Acetylserotonin. 

 

Melatonin is a lipophilic molecule, which can easily cross the blood-brain barrier and 

circulate through the bloodstream to reach peripheral organs. Its half-life is about 10 minutes 

before it undergoes cytochrome-mediated hepatic transformation into hydroxymelatonin prior 

to excretion (Vanecek, 1998). 
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One of the main tasks of melatonin is the synchronization of circadian rhythms and the 

regulation of reproduction in seasonal animals. The other actions of melatonin in the brain 

also explain its implication in psychiatric and neurological disorders. It plays a role in 

depression, sleep and seasonal affective disorders and jetlag-related effects. An association 

also seems to exist with Alzheimer disease in melatonin decelerating Alzheimer progression 

(Savaskan et al, 2007; Savaskan et al, 2001). Beside its function in the brain, the melatonin 

signal reaches tissues either through their neuronal connection to the SCN, or in a humoral 

manner of melatonin circulating in blood and binding to its corresponding receptors on 

different organs (Hardeland et al, 2011). In the periphery, melatonin regulates functions of the 

cardiovascular and the immune system (Calvo et al, 2013; Markus et al, 2007), metabolism 

and glucose homeostasis (Karamitri et al, 2013). 

 

2.2 The family of melatonin receptors  

The effects of melatonin are mediated by its corresponding receptors present at the cellular 

plasma membrane. The discovery of melatonin receptors became possible with the 

development of radioactively labeled 2-iodomelatonine in 1984 (Vakkuri et al, 1984a; 

Vakkuri et al, 1984b). The radioligand enabled the localization and detection of melatonin 

receptors in different tissues.  

First attempts to clone the melatonin receptor occurred in the first half of the 90’s and the first 

receptor to be cloned was Mel1c from Xenopus (Ebisawa et al, 1994). Cloning of the 

mammalian receptors followed in the next years (Reppert et al, 1995; Reppert et al, 1994). 

The subfamily of melatonin receptors is composed of three family members, MT1 and MT2 

and Mel1c the latter only existing in vertebrates (fish, amphibia, birds and reptiles) and having 

evolved into the orphan 7TM protein GPR50 in mammals. MT1 is expressed in every species, 

while MT2 is not found in hamster. Another melatonin binding protein, called MT3, 

corresponds to the quinone reductase QR2 (Nosjean et al, 2000; Nosjean et al, 2001). 

Compared to MT1 and MT2, MT3 binds melatonin with lower affinity and is structurally very 

different. MT3 might be responsible for the implication of melatonin in detoxification and 

possibly accounts for some of melatonin’s antioxidant effects. 

 

Genetics of melatonin receptors 

The genes for melatonin receptors are composed of two exons separated by one intron and are 

located on different chromosomes for MT1 and MT2. Several studies identified different 
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isoforms or polymorphisms in intronic and exonic regions of the corresponding genes that can 

slightly affect signaling, as demonstrated for Mel1c isoforms (Jockers et al, 1997). Recent 

studies have shown that rare exon variants of MT2 are associated with an increased risk to 

develop type 2 diabetes (Bonnefond et al, 2012). 

 

Structural features of melatonin receptors 

The three melatonin receptors MT1, MT2 and Mel1c share a sequence homology of 60% that 

increases up to 73% in the TM region (Gubitz & Reppert, 2000). They are about 350 amino 

acids longs and have a molecular weight of 40 kDa.  

Sequence analysis allowed their classification as rhodopsin-like receptors. They share some 

common features with other class A GPCRs like the existence of the N-terminal glycosylation 

sites, cysteine residues in ECLs to form disulfide bonds with the 7TM core, phosphorylation 

sites and palmitoylation sites in the C-terminal part of the receptor. Distinctive structural 

features only found in the melatonin receptor subfamily are the presence of the NRY motif 

instead of the E/DRY motif in TM3 and the NAXXY motif instead of the NPXXY motif in 

TM7. 

 

Tissue distribution and signal transduction of MT1 and MT2 

Melatonin receptors generally display low expression levels. By lacking a good antibody, 

information about expression of the receptors was obtained mainly from in situ hybridization 

and radioligand binding studies. MT1 is more abundantly expressed than MT2. The highest 

amounts of MT1 are found in the pars tuberalis, SCN and retina, and it is also expressed in 

hippocampus, cortex and the tanycytes (von Gall et al, 2002). Furthermore, the receptors are 

found in many of the peripheral tissues. MT2 displays similar expression patterns with lower 

levels, but it still remains challenging to distinguish between both receptors. 

 

Signal transduction of melatonin receptors 

The studies to decipher melatonin receptor function were carried out in tissue with elevated 

MT receptor expression or appropriate cellular models. It was proven, that melatonin 

receptors signal via Gαi proteins by the decrease of cAMP due to inhibition of the adenylate 

cyclase and its sensitivity to Pertussis toxin (Vanecek & Vollrath, 1989). The Gαi downstream 

activity has been shown with inhibition of PKA activity and the lack of CREB 

phosphorylation (Witt-Enderby et al, 2003). Additionally, melatonin can inhibit cGMP 
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production via MT2 (Petit et al, 1999). Other signaling pathways that are activated upon 

Melatonin stimulation implicate Gαq coupling and Gβγ-dependent PLC activation with 

subsequent IP3 production and calcium release from internal stores. Also the coupling to β-

arrestins and subsequent ERK activation has been demonstrated (Kamal et al, 2009).  

 

Receptor heteromerisation 

A co-expression of MT1 and MT2 in several tissues led to the suggestion, that they might form 

heterodimers. Utilization of the BRET technique (Ayoub et al, 2002) helped for to the 

successful detection of homo- and heteromeric structures with a preferential formation of 

MT1/MT2 or MT1/MT1 dimeric structures (Ayoub et al, 2004). Recently, the occurrence and 

relevance of heteromers in retinal physiology was demonstrated in vivo (Baba et al, 2013). 

Another aspect is the heteromerisation with the orphan family member GPR50 that negatively 

influences melatonin binding and signaling, which will be discussed in detail below. 

 

2.3 The orphan 7TM protein GPR50 

The subfamily of melatonin receptors contains another member, which for the first time 

appeared in rodents during evolution, the orphan 7TM protein GPR50. It was discovered by 

screening a bank of human pituitary cDNA with degenerated primers in order to amplify 

proteins with high sequence homology to MT1 and MT2. The protein of 613 amino acids was 

named melatonin-related-receptor, that later became GPR50 (Reppert et al, 1996). 

 

2.3.1 Origins and structure of GPR50  

Phylogenetic origins of GPR50 

GPR50 is a protein that is exclusively found in mammals and for long time, its evolutionary 

origins remained unclear. Sequence analysis revealed, that it developed out of the Mel1c 

melatonin receptor, which is only found in lower metazoa as reptilia, fish and chicken. The 

finding that GPR50 is the mammalian ortholog of Mel1c was unexpected because of the low 

percentage of sequence homology. Further analysis could show that GPR50, compared to 

Mel1c, underwent translocation from chromosome 4 to chromosome X and fusion with 

another gene, that is supposed to be an ancestor of the RNA polymerase II (Dufourny et al, 

2008). Sequence comparison of Mel1c and GPR50 in the 7TM part revealed, beside the amino 

acid changes that are the result of evolutionary pressure that a surprisingly high amount of 
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neutral evolution of 28% occurs in GPR50. One might speculate, that these relaxed 

substitutions occurred probably because melatonin binding to Mel1c was not required anymore 

in higher species, diminishing the pressure for amino acid conservation or directed exchange 

(Tian et al, 2009). 

A comparison between the sequences of the different species, which contain the gene for 

GPR50 shows that its sequence is less conserved among different species compared to the 

other melatonin receptors. While the 7TM part exhibits about 90% sequence homology 

between mouse, sheep and humans, the cytosolic region has more evolved. For example, the 

591aa long mouse GPR50 (Gubitz & Reppert, 1999a) and the 575aa long sheep GPR50 

(Drew et al, 1998) both share only 74% homology in total with the human sequence. 

 

Genetic and protein structure of human GPR50 

The GPR50 gene is organized like the other melatonin receptors and composed of two exons 

separated by one intron. Exceptions are found in horse, where exon 1 is splitted into four 

exons and in opossum, where it is composed of 7 smaller exons. In the 3’ region of the 

GPR50 gene, an important region for the regulation of gene transcription, a consensus site for 

a specific micro RNA, the has-mir185 has been recognized (John et al, 2004). This miRNA is 

implicated in regulation of circadian genes like cryptochrome1 (Cry1) (Lee et al, 2013) and 

might probably be related to cancer by inhibiting tumor growth (Takahashi et al, 2009; Yoon 

et al, 2013). Additionally, the identification of CpG islands that are targets of DNA 

methylation, in the intronic region, propose epigenetic regulation mechanisms for GPR50 

gene expression. Indeed transcription of GPR50 is regulated by the DNA methyltransferase 

Dnmt3a1 (Kotini et al, 2011). The human gene product of GPR50 has a size of 67 kDa and 

displays in total 45% homology with MT1 and MT2. In the hydrophobic transmembrane core 

part, it rises up to 55% (see Figure 10). 
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Figure 10 Structure and topology of GPR50 

GPR50 is composed of a heptahelical core with extracellular and intracellular loops and a 
characteristic C-terminus. It shares common features that are unique for the subfamily of melatonin 
receptors as the NRY motif in the ICL2 and the NAVIY motif. The C-tail is 318 aa long and derived 
from gene fusion with an ancestor of RNA polymerase II. 
 

The comparison to the melatonin receptor structure shows common characteristics as cysteine 

residues to form a disulfide bridge between ECL2 and ECL3, the NRY motif in TM3 and the 

NAVIY sequence in TM7. But some features are also altered or missing. GPR50 has no N-

glycosylation site in the N-Terminus and the ECLs (Barrett et al, 2003).  

 

Long C-terminal region 

GPR50 has a 318 amino acid long cytoplasmatic C-terminal tail, which is much longer than 

the typical size of class A GPCRs of 20 to 90aa. This part is the product of genetic fusion with 

an ancient RNA polymerase II. It contains a highly repetitive sequence of several degenerated 

heptapeptides (see Figure 11):  
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Figure 11 Heptapeptid repeats in the C-terminus of human GPR50 (Dufourny et al, 2008) 

The C-terminal part of human GPR50 presents a repetitive heptapeptid structure: in the first and last 
position is an aromatic amino acid, the sixth is aliphatic and hydrophobic one, the second is a basic 
lysine and the fifth one with a hydroxyl-residue like Ser. Below are represented consensus repetitive 
sequences of the RNA Pol II, the gene of origin of GPR50, displaying similar amino acids. 

 

Furthermore, SH dipeptides in the distal region might be putative phosphorylation sites. 

Especially this repetitive part is strongly resembling the C-terminal repetitive domain of RNA 

Pol II, that functions as scaffold for factors that regulate transcription in a phosphorylation-

dependent manner (Dufourny et al, 2008). These features lead to the hypothesis that this part 

of GPR50 might be subject to phosphorylation and form a scaffold for other proteins 

 

Existence of sequence variants 

A first targeted gene approach carried out by Thomson in 2005 (Thomson et al, 2005) 

revealed the existence of sequence polymorphisms in GPR50. Three of them in the coding 

region of the exons: one insertion/deletion of 12 base pairs that encode for the four amino 

acids Thr-Thr-Gly-His at position 502 to 505 TTGH, a Thr>Ala exchange at position 532 that 

is in complete linkage disequilibrium with the deletion. At position 606 we find another 

substitution of Val>Ile that occurs independently from the other ones (see Figure 12).  

These polymorphisms occur with a high frequency of about 40% in the population, 

consequently one prefers to speak of sequence variants instead of polymorphisms, that usually 

only account for 1% or less. Another consequence is the denomination of the insertion variant 

with 617aa as GPR50 wildtype, while the other, originally cloned version of 613aa, is the 

mutant form of GPR50.  
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Figure 12 Localization of polymorphisms in the exons of GPR50 (Thomson et al, 2005) 

The GPR50 can occur in different sequence variants of the exon 2: (I) A 12 base pair deletion, that 
leads to deletion of the TTGH amino acids from position 502 to 505 and is always accompanied by (II) 
an Thr>Ala exchange rising from one A to G base substitution. (III) Another sequence variant is the 
replacement of a G by an A that changes Val to Ile. All polymorphisms occur with about 40% in the 
population, classifying them as sequence variants. 

 

2.3.2 Expression pattern and tissue distribution of GPR50 

An interesting question is, whether GPR50 displays similar expression pattern as the 

melatonin receptors or if the evolution also led to an altered tissular distribution. First analysis 

started with mRNA in situ hybridization, northern blot and tissue reverse transcriptase (RT)-

PCR based on mRNA levels. Only later, with the development of antibodies against GPR50 

(Hamouda et al, 2007a) a characterization of protein localization was performed.  

 

GPR50 expression in the brain 

First studies concentrated on the localization of GPR50 mRNA in the brain. It was found in 

the pituitary and the mediobasal hypothalamus (ventromedial, paraventricular and arcate 

nucleus) which is overlapping with expression of MT1 and MT2 (Reppert et al, 1996). 

Additionally, a lot of cells around the 3
rd

 ventricle, the tanycytes contain GPR50 mRNA. 

Sheep studies showed additional expression in retina, pars distalis and pars tuberalis of the 

pituitary, the region coordinating reproduction (Drew et al, 1998). 

Later studies by RT-PCR and in situ hybridization in rodents detected GPR50 in additional 

regions like the amygdale, the chorioid plexus, the subfornical organ, the preoptic area, the 
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bed nucleus of stria terminalis, the olfactory bulb, the parabrachial nuclei and the vascular 

organ of lamina terminalis (Drew et al, 2001).  

Later studies using the first GPR50 specific antibody (Hamouda et al, 2007b), allowed to 

detect regions of GPR50 protein expression. Analysis by immunofluorescence could confirm 

strong expression of GPR50 in the dorsomedial hypothalamus (DMH), tanycytes and the 

median eminence (Sidibe et al, 2010). A later study showed that GPR50 is among the 6 

highest genes expressed in the DMH (Lee et al, 2012), a region with an important role in 

energy homeostasis under circadian regulation. In the human brain, GPR50 was found also in 

the CA4 region of the dentate nucleus of the hippocampus (Hamouda et al, 2007b). The use of 

another antibody provided precise data for mouse, rat and sheep brain, that confirmed existing 

data obtained from mRNA expression studies (Batailler et al, 2011). 

A recent study also investigated the expression of GPR50 in developing and adult mouse 

brain, that was based on the findings that GPR50 holds a role in neurite-outgrowth regulation 

(Grünewald et al, 2009). It was found that GPR50 is expressed throughout all developmental 

stages with peaks at E18, a late stage in embryonic development with axon formation. 

Furthermore, this study could identify new regions of GPR50 expression, that are involved in 

neurotransmission, as monoaminergic neurons (Grunewald et al, 2012). 

 

Regulation of GPR50 expression in the brain 

In the seasonal Siberian hamster a down-regulation of GPR50 expression was detected in 

short-day periods in cells of the ependymal layer of the 3
rd

 ventricle, proposing a regulation 

by photoperiod (Barrett et al, 2006). A later study in a transgenic mouse where the lacZ gene 

replaced the GPR50 gene, showed that GPR50 expression in the 3
rd

 ventricle is decreased 

upon high fat diet or fasting (Ivanova et al, 2008). Both studies suggest a regulation of GPR50 

expression dependent on environmental and metabolic circumstances.  

 

Expression in peripheral tissues 

Expression levels of GPR50 in peripheral tissue were barely investigated. One study could 

reveal by RT-PCR that eye, testis, kidney, adrenal, intestine, lung, heart, ovary and skin 

express GPR50 mRNA (Drew et al, 2001). Most of these data could be confirmed by another 

PCR analysis (Li et al, 2011). For the future, the detection of GPR50 protein level in 

peripheral tissue will hopefully be achieved to gain information about possible functions 

outside the brain. 
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2.3.3 Physiological importance and function of GPR50 

Identifying the function of an orphan receptor is always challenging. As a first approach the 

expression pattern of the protein can already give some hints about its function. These data 

suggest for GPR50 a strong implication in neuroendocrine functions, like food intake, energy 

homeostasis, thermoregulation, behavior and reproduction. In addition, different strategies 

detailed below have profitably helped to find out about different functions of GPR50 during 

the last years. 

 

2.3.3.1 The molecular basis of GPR50 being an orphan 7TM protein 

After the successful cloning of GPR50, studies to test melatonin binding for the melatonin-

related-receptor in COS cells remained negative (Reppert et al, 1996). This result could be 

confirmed by other groups for the mouse GPR50 (Gubitz & Reppert, 1999a) and the sheep 

protein (Drew et al, 1998). Also other screening assays by reverse pharmacology did not 

result in finding a cognate ligand for GPR50, and still nowadays modern techniques failed 

(Southern et al, 2013). Therefore, GPR50 currently seems to be a genuine orphan 7TM 

protein.  

After having established the absence of melatonin binding in GPR50, further studies tried to 

identify the structural differences between melatonin receptors and GPR50. The construction 

of chimeric proteins helped to reveal the regions and amino acids, which are important for 

high-affinity melatonin binding and which are altered in GPR50. It was shown that especially 

TM6 of GPR50, notably the Gly257Thr- and some other amino acid substitutions seem 

critical for losing melatonin high-affinity binding (Conway et al, 2000; Gubitz & Reppert, 

2000), as illustrated in Figure 13. Since high-affinity binding depends on the binding of the 

ligand and the G protein to the receptor, it still remains unclear whether these residues are 

involved in melatonin binding or in receptor activation leading to G protein engagement.  

Later sequence analysis and comparison of amino acids between GPR50 and its Mel1c 

ancestor revealed amino acids that have positively evolved (see Figure 13). Their 

juxtaposition to the extracellular side indicates that they might be involved in a gating 

function, necessary to permit melatonin access to the ligand binding pocket inside the 7TM 

region. Probably, the evolution of these gating amino acids in GPR50 explains its loss of 

melatonin binding. Experimental validation of these predictions and the importance of sites in 

the ECL loops, especially ECL2 is still in progress (Clément, Guillaume & Jockers, 

unpublished data). 
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Figure 13 Structural prediction of GPR50 and sequence alignment with melatonin receptors 
(Dufourny et al, 2008)  

(A) A structure prediction of GPR50 that highlights that the amino acids changes compared to the 
melatonin receptor. Most of them are located in TM6, as Thr257 (red) and Val258 (light blue). The 
analysis of amino acids that underwent positive evolutionary pressure (pink) are mainly localized in 
regions and face the extracellular site.  
(B) The sequence alignment reveals amino acids that are important for melatonin binding in MT1 

(dark blue stars), MT2 (light blue stars) or both (red stars). Comparison with the GPR50 sequence 
reveals some amino acids, which are changed and might account for the loss of melatonin binding 
ability in GPR50.  
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2.3.3.2 Physiological role of GPR50 

To determine the physiological impact of GPR50, several research axes and strategies can 

help to shed light on this question. Transgenic mice with deleted or non-functional GPR50 

can serve to reveal an altered phenotype. Furthermore, genetic association studies with 

GPR50 variants or SNPs can also give us information about its physiological importance. 

Expression – function relation of GPR50 

A first idea about the function of GPR50 can arise from its expression pattern. The 

hypothalamic DMH is an important area of the brain to regulate food intake: it has a circadian 

clock that is food entrainable and additionally, it has an important role in stress responses. 

Another region with strong GPR50 expression are the tanycytes surrounding the 3
rd

 ventricle. 

They form the connection between the cerebrospinal fluid (CSF) and the pituitary. Hence, 

these cells are important in sensing molecule concentration (like glucose) in the CSF, 

responsible for molecule transport from the CSF into the brain and they govern release of 

hypothalamic hormones. Additionally, tanycytes are part of the hypothalamus-pituitary-

thyroid axe, and express a deiodinase for thyroid hormone activation. 

 

Genetic association studies of GPR50 polymorphisms 

The region of GPR50 localization on the X chromosome, Xq28, is associated with some 

neuroendocrine disorders (Dufourny et al, 2008), which is also supported by GPR50’s 

expression pattern. The findings of the existence of GPR50 sequence variants opened the gate 

for genetic association studies of different disorders. 

(1) Mental disorders 

The first study in 2005 established a correlation of GPR50 polymorphisms with different 

mental disorders, as bipolar affective disorder (BPAD), major depression disorder (MDD) and 

schizophrenia in a Scottish population (Thomson et al., 2005). The mutant ΔTTGH variant 

holds a higher risk for BPAD and MDD, especially in females. A later study with further 

Scottish subjects also demonstrated an association in females with two ΔTTGH alleles with 

age of onset, increase in episode number and hypomanic periods (Macintyre et al, 2010). 

Another intronic polymorphism, rs2072621 is associated with schizophrenia development in 

females. The strong sex specific component could be underlined by the observation of 

additive effects of two identical alleles, even though one X chromosome possibly undergoes 

inactivation. Later studies had difficulties to repeat the association in a Swedish cohort 

(Alaerts et al, 2006; Thomson et al, 2005), but the findings for association of the rs2072621 
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intron polymorphism in a French population (Delavest et al, 2012) and another intronic 

rs1202874 variant in Scottish people (Macintyre et al, 2010) with seasonal affective disorder 

(SAD) suggest a correlation between GPR50 function and the neuronal activities underlying 

these disorders. 

A tendency for an association of the deletion variant with autism spectrum disorder was also 

be shown but did not reach statistical significance (Chaste et al, 2010).  

With regards to neurological disorders, an increase of GPR50 immunoreactivity was found in 

the brain of Alzheimer patients (Hamouda et al, 2007a). 

(2) Lipid metabolism 

The results obtained from KO mice, that GPR50 is an important player in energy homeostasis 

got further support by genetic association studies. Even though, no differences in body mass 

index were observed, higher levels of fasting triglycerides in the blood of subjects with 

homozygous alleles of either intronic, ΔTTGH or V>I GPR50 variants (Bhattacharyya et al, 

2006). 

 

Transgenic Knock-Out mice 

A preferential tool to study the physiological role of a protein consists in the utilization of 

mice where the gene of interest is deleted. The first KO mice for GPR50 was described in 

2006 (Barrett et al, 2006). This mouse has a GPR50 gene that is interrupted through insertion 

of the LacZ gene, leading to expression of LacZ, which can be visualized, instead of GPR50. 

This mouse has been studied extensively with regards to metabolism (Ivanova et al, 2008). 

Mice lacking functional GPR50 show lower body weight, resistance to weight gain after high 

energy diet and less fat mass development while higher food intake, which makes them have a 

lower energy efficiency but a higher metabolic rate. Surprisingly, the GPR50 KO mice lose 

less weight under fasting conditions. In addition they display a tendency for hyperactivity 

with increase in oxygen consumption and CO2 production. This is also supported by higher 

corticosterone concentration in the blood that might reflect higher stress levels. Unfortunately, 

this study could not clarify whether this hyperactivity is the reason for higher metabolic rate 

or whether less weight gain enables for higher activity. Additional expression analysis of the 

GPR50-LacZ protein revealed that GPR50 levels adapt to the energy status: both, high fat diet 

and fasting conditions lead to decrease in GPR50 expression. Taken together, these results 

suggest a role of GPR50 in energy homeostasis. Another study with KO mice (Bechtold et al, 

2012) revealed the implication of GPR50 in torpor, a possibility for the body to cope with 
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difficult environmental conditions as reduced food availability and harsh climatic situations 

upon reduction of physical activity. Mice that lack GPR50 enter faster torpor and generally 

display lower body temperatures during sleep and fasting, due to less warmth producing 

uncoupling protein-1 (UCP1) expression and higher active thyroid hormone levels, which 

lead to a decrease in body temperature. Furthermore, it has been shown that GPR50 

expression can be controlled by leptin levels. These findings support the role of GPR50 in 

energy homeostasis and propose an additional role of GPR50 in adaptive thermogenesis that 

might prevent the entry into hypometabolic states. 

 

Microarray data 

Another way to get information about a protein function are microarray data that try to 

identify changes in gene expression at the transcriptome level in cells or tissues under specific 

experimental conditions. A comparative analysis by microarray of mRNA expression in 

fibroblasts of normal skin and hypertrophic scar could reveal a strong increase of GPR50 

expression under hypertrophic conditions in wound healing (Zhang et al, 2010). 

A microarray of cells silenced for the regulator of G protein signaling 4 (RGS4) protein, 

which terminates opioid receptor signaling and is associated with schizophrenia, showed 

increased expression of GPR50 (Vrajová et al, 2011).  

The detection of a highly enriched GPR50 in the trophoblast membrane of placenta proposes 

a role in pregnancy associated disorders as preeclampsia (Cox et al, 2011). 

With regards to cancers, some studies detected an upregulation of GPR50 in early cancer 

states or tumorigenic tissue in pancreatic neoplasia (Buchholz et al, 2005) and nicotine 

induced cellular transformation (Bavarva et al, 2013). 

 

2.3.3.3 Molecular function of GPR50 

To dissect the molecular role GPR50, proteomic approaches have been used to identify 

putative binding partners and associated complexes. One example is the yeast two-hybrid 

(Y2H) screen, which is applicable for the cytosolic part of a protein. In addition, recent 

techniques were developed that target specifically membrane protein complexes like the TAP 

Assay (Daulat et al, 2007). 

One first hypothesis came up with the emerging evidence that GPCRs form heterodimers 

(Levoye et al, 2006b). It was discovered, that GPR50 can form heteromers with MT1 and 

MT2, with a functional influence on MT1 receptors. GPR50 represses melatonin binding to 
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MT1 and inhibits downstream signaling, which is depending on the GPR50 cytosolic C-

terminus, which impairs coupling to G proteins and causes constitutive coupling to β-arrestin. 

A physiological impact of this heteromer might be found in tanycytes, where colocalisation of 

GPR50 and the MT1 has been shown. Probably, the seasonally expressed GPR50 (Barrett et 

al, 2006) can negatively regulate the response to melatonin during the long photoperiod.  

This prototypic paper gave rise to the concept that the orphan GPR50 could be an interacting- 

and activity modulating protein and was supported by further findings in the following years: 

With Nogo-A, another interacting protein was revealed in 2009 in a Y2H-screen with the C-

tail of GPR50 with both variants in a human adult brain cDNA library (Grünewald et al, 

2009). Nogo-A is known to inhibit neurite outgrowth and deviant expression levels were 

found in schizophrenia, bipolar disorders and Alzheimer disease. Nogo-A and GPR50 are 

both localized in postsynaptic fractions of neurons and GPR50 overexpression leads to 

significant increase in neurite outgrowth concerning their number and length and is 

accompanied by filopodia- and lamellipodia formation. This suggests, that the interaction of 

GPR50 with Nogo-A might probably block its proper function. Further studies have to 

establish a connection to brain function and psychiatric disorders. 

Another interaction was demonstrated for GPR50 and the transcription factor TIP60 by a 

Y2H assay of the C-tail with a mouse testis cDNA library (Li et al, 2011). TIP60 functions as 

a transcriptional co-activator with histonacetylase activity for nuclear receptors as the 

glucocorticoid receptor. Surprisingly, this interaction occurs in the nucleus, suggesting a 

nuclear translocation of GPR50. Further studies in this paper proved, that the cytosolic C-

terminal part of GPR50 can indeed localize in the nucleus, like its genetic ancestor RNA Pol 

II. Functionally, it was shown in cellular models and KO mouse, that the presence of GPR50 

increases glucocorticoid receptor-dependent gene expression, supporting an involvement of 

GPR50 in cellular stress response.  

The data from the Y2H assay revealed more potential interacting partners implicated in neural 

developments, stress response, lipid- and steroid metabolism, neurotransmission and signal 

transduction. Together with other proteomic assays, this can form an ideal basis for future 

work in order to reveal more molecular functions for GPR50 and to find its place in cellular 

signaling and protein networks. 
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3. Transforming growth factor β signal transduction 

The transforming growth factor β (TGFβ) superfamily of cytokines-induced signal 

transduction pathway is composed of membrane localized receptors with an intrinsic 

serine/threonine kinase activity. Activated upon binding of the TGFβ ligand, they 

phosphorylate their substrates, the Smads, transcription factors, which then translocate to and 

accumulate in the nucleus, where they regulate the expression of target genes. The actions of 

TGFβ signaling are essential for maintenance of cellular- and tissue homeostasis, hence 

supporting its important role in development, growth and differentiation and its 

pathophysiological implications, for example in cancer development and progression (Feng & 

Derynck, 2005; Shi & Massagué, 2003b).  

 

3.1 The TGFβ signal transduction pathway 

 

 

Figure 14 The TGFβ signaling pathway (Massagué & Wotton, 2000) 

The TGFβ ligand binds to the type II receptor which recruits and transphosphorylates the type I 
Receptor. Activated type I receptor in turn phosphorylates the Smads which form complexes that 
translocate into the nucleus and regulate gene transcription. Termination of signaling occurs with 
proteasomal degradation of the Smads. Proteins that negatively regulate TGFβ signaling (FKBP12, 
BAMBI, Smad6/7, Smurf, MAPK) are indicated with red bars.  
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3.1.1 TGFβ ligands 

In humans, the TGFβ family of cytokines counts 33 members divided into two main 

categories, discriminated by their sequence similarity and the distinct signaling pathways they 

activate: (I) TGFβ/Activin/Nodal- and (II) the bone morphogenetic protein (BMP) / growth 

differentiation factor (GDF) / muellerian-inhibiting substance (MIS) subfamily. The 

prototypic ones are TGFβ 1, 2 and 3. 

Although eliciting various cellular responses, all ligands share common features: they are 

produced in the cell as dimeric precursors, where they form the C-terminal part of a 

propeptide. Though getting cleaved during secretion, they get released into the extracellular 

matrix (ECM) still associated to the N-terminal part (therefore also named the latency-

associated polypeptide, LAP) and further proteins like the latent-TGFβ-binding-protein 

(LTBP), retaining the TGFβ from binding to their receptors. The activation process requires 

either acidic conditions, cleavage by extracellular proteases (as metalloproteases) or 

interaction with the Arg-Gly-Asp (RGD) sequence of integrins (Annes et al, 2003). The active 

TGFβ ligands form dimers and one monomer is composed of several β strands that are 

associated by disulfide-bonds, a structure known as the cysteine-knot (Sun & Davies, 1995). 

The presence of the TGFβ ligand as a dimer suggests that the ligand is binding to 

homodimeric structures of its cognate TGFβ receptors. 

 

3.1.2 TGFβ receptors 

The receptors for the TGFβ ligands are membrane-localized kinases with serine/threonine 

activity, thus forming the only existing family of receptor serine/threonine kinases (RSTK). In 

humans, 12 genes are encoding for the different receptors, divided into two subfamilies, with 

seven type I and five type II receptors (Manning et al, 2002). The different type I receptors are 

further subdivided upon the ligand-specific downstream cascades, they activate. The small 

number of receptors compared to the high number of ligands is quite surprising, but the 

existing specificity for each of the 33 ligands is established by the receptor promiscuity, 

allowing different heteromeric combinations, as illustrated in Figure 15. The best-described 

and -studied system is the one for the TGFβ-1/2/3 ligands that bind TβRII and signal through 

TβRI (former ALK5). 
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Figure 15 TGFβ ligands and their receptors (Shi & Massagué, 2003b) 
 

The TGFβ superfamily of cytokines is composed of 33 members, divided into two groups, the 
TGF/Activin/Nodal and the BMP/GDF/MIS group. These ligands are bound by only 12 receptors 
(seven RI and five RII), which are either activating TGFβ/Activin/Nodal- or BMP/GDF/MIS-dependent 
signaling. Different Type II receptors can combine with different RI receptors, thus forming 
combinations that are specific for each ligand. Furthermore, accessory receptors like Betaglycan, 
Cripto and Endoglin are implicated in ligand activation. 

 

Receptor structure 

The TGFβ receptors TβRI and TβRII receptors are composed of 503 (TβRI) or 567 (TβRII) 

amino acids, respectively. They are divided into a short, cysteine-rich, extracellular domain 

responsible for ligand binding, a single-pass transmembrane part and a long dominating 

cytosolic portion which is enzymatically active (Massague, 1998). Interestingly, sequence 

analysis and comparison revealed that the receptors have a dual kinase specificity, with a 

stronger affinity to phosphorylate Ser- and Thr-residues, but a phosphorylation on Tyr-

residues has also been demonstrated for the RII. (Hanks & Hunter, 1995; Lawler et al, 1997). 

Between the TβRI and TβRII exist important structural differences, which are reflected in the 

mechanism of activation: the TβRI has a characteristic, conserved glycine and serine rich GS 

region preceding the kinase domain, which is composed of several serines and threonines that 

form the target of phosphorylation by the TβRII. This GS domain is the activity-regulating 

unit and the flexible ankle in conformation, explaining the constitutive activity of the TβRII 
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and the necessity of TβRI being activated. The TβRI also carries an additional L45 loop for 

Smad recognition (Figure 16). 

 

 

Figure 16 Schematic overview of the TβRI- and TβRII structure (Runyan et al, 2006) 

The TGFβ receptors are composed of an extracellular part, a single transmembrane spanning 
segment and a long cytosolic tail. The cytosolic part bears the kinase domain. In TβRI, additional 
characteristic parts are the GS domain which is the phosphorylation target for TβRII and the L45 loop 
for Smad binding. 

 

Mechanism of ligand binding - 2 different models 

The different type I- and type II- receptors also diverge in their mode of ligand binding and 

activation, depending on the ligand. The BMP ligand family has a quite weak affinity for both 

of their receptors, resulting in a cooperative binding model, where the ligand binds both 

receptors together to form a stable complex (Rosenzweig et al, 1995). In contrast, the loss of 

the Phe85 residue, which is creating hydrophobic interactions between ligand and receptor in 

the BMP receptors (Kirsch et al, 2000), the TGFβ receptor TβRI has no ability to bind the 

TGFβ ligand alone. TGFβ has a much higher affinity for binding to the TβRII (Attisano et al, 

1993). Thus, complex formation occurs in a sequential manner, induced by a strong binding 

of TGFβ ligand to the TβRII, which subsequently enables the recruitment of the TβRI to the 

complex (Hart et al, 2002). 

 

Mechanism of receptor activation 

The heteromeric complex composed of ligand, homomeric TβRII and homomeric TβRI, 

which is formed after ligand binding, induces a juxtaposition that favors the 
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transphosphorylation of the inactive TβRI by the constitutive active TβRII (Franzen et al, 

1993; ten Dijke et al, 1994). These phosphorylations occur in the characteristic GS domain of 

TβRI (Wieser et al, 1995), rendering the TβRI in the active conformation and enabling the 

signal propagation through its kinase function. This ligand binding induced phosphorylation 

of TβRI by TβRII is absolutely required for signal transduction (Luo & Lodish, 1996; 

Okadome et al, 1994; Vivien et al, 1995). In contrast to the TβRII, no evidence for an in vivo 

autophosphorylation of TβRI exists (Weis-Garcia & Massague, 1996; Wieser et al, 1995; 

Wrana et al, 1994). This phosphorylation of TβRI in its GS domain induces a conformational 

inhibition-to-activation switch, a crucial step in transmission of TGFβ signals (Huse et al., 

2001a). The phosphorylations lead to a conformational change in the GS domain, 

accompanied by a disappearence of the binding site of the negative regulator FKBP12 (see 

Chapter 3.2.3.4.), which causes its dissociation. Consequently, the nine amino acid L45 loop, 

which forms the binding surface for the TGFβ effectors, the Smads (Persson et al, 1998), 

becomes accessible.  

 

3.1.3 Smad transcription factors 

The signal of TGFβ is then transmitted via the type I receptors to their substrates, the Smads 

(short for: small mothers against decapentaplegic homolog), which first have been discovered 

in 1996 (Derynck et al, 1996). The family of Smad Proteins is composed of eight different 

members, divided into three different classes: (I) the receptor-regulated R-Smads, Smad1, 2, 

3, 5 and 8 which bind to the type I receptor, are a substrate for phosphorylation and form 

homo- or heteromeric complexes. The R-Smads are furthermore categorized upon their ligand 

response: Smad2 and Smad3 are phosphorylated after TGFβ ligand stimulation, while Smad1, 

5 and 8 are BMP-ligand effectors; (II) the common-mediator co-Smad, Smad4, which is 

indispensable for formation of nuclear translocating complexes with the R-Smads that 

together bind to DNA and influence gene transcription. (III) The inhibitory I-Smads, Smad6 

and 7, compete with R-Smads on receptor binding and target the receptor complex for 

degradation by recruiting ubiquitin ligases. Smad7 can bind all receptor I subtypes, whereas 

Smad6 has a specificity for the BMP binding receptor I (Heldin & Moustakas, 2012). 

 

Structure and sequence of the Smads 

The R- and Co-Smads comprise about 500 to 600 amino acids and are divided into two major 

structural entities, the N-terminal MH1 (for Mad-homology) and the C-terminal MH2 
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domain, connected through a less conserved linker domain (see Figure 17). The MH1 domain 

of both, R-Smads and Co-Smads, allows nuclear translocation and mediates DNA binding. 

The MH2 domains of all Smad classes are similar in their sequence and are, in the case of R- 

and I-Smads, responsible for receptor binding, complex formation with other Smads, nuclear 

shuttling and transcriptional activation. Also most of the protein interactions are maintained 

by the MH2 domain. A distinct feature of the R-Smads is their C-terminal SXS motif, which 

forms the target for phosphorylation by type I receptors. This strong homology of the 

different MH2 domains also allows the I-Smads to bind the receptor. But lacking the SXS 

motif explains a part of their inhibiting effect: in the absence of this phosphorylation, no 

downstream signaling is possible. The domains are connected by the less conserved proline-

rich linker region, which is important for crosstalk with other signaling pathways by being a 

phosphorylation target and implicated in interaction with other proteins (Moustakas & Heldin, 

2009). 

 

 

Figure 17 Smad3 structure (Massague, 2012; Shi & Massagué, 2003b)  
 

The Smads are composed of two main domains, MH1 and MH2 that are connected by a flexible linker 
region. The MH1 mediates DNA binding and the L3 loop in the MH2 domain is responsible for RI 
binding in R- and Co-Smads. The C-terminal SXS motif target in R-Smads is the target of 
phosphorylation by RI (indicated by yellow circle). The linker region is a substrate for phosphorylation 
by other kinases.  
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Receptor recognition, activation and nuclear translocation of the Smads 

The type I receptor-Smad recognition is obtained between the exposed L45 loop of the type I 

receptor and the L3 loop in the MH2 domain of the Smads. The interactions between the L45 

and the L3 loop and their specific sequences in each type I receptor and Smad-subtype 

explain the preference of Smad 1,5 and 8 to bind to BMP receptors and of Smad2 and 3 to 

bind TGFβ receptors (Feng & Derynck, 1997; Wu, 2000). After binding to the type I receptor, 

the Smads get directly phosphorylated by the type I receptor in the serines of the C-terminal 

SXS motif (Abdollah et al, 1997; Kretzschmar et al, 1997; Macias-Silva et al, 1996), which is 

enabling the complex formation with Smad4 and leading to the exposure of a domain that is 

important for nuclear translocation (Wu et al, 2001; Xu et al, 2000). 

After phosphorylation has triggered the formation of heteromeric complexes (mainly 

composed of two R-Smads and one co-Smad4), they translocate to the nucleus. This nuclear 

import is mediated by a conserved nuclear localization signal (NLS) of the R-Smads (Xiao et 

al, 2000a), leading to translocation either via the uncommon Importin β pathway for Smad3 

(Xiao et al, 2000b), or, in the case of both Smad2/3, by direct binding to the nucleoporin-

complex proteins (Xu et al, 2002). For Smad4, the classical importin α pathway is supposed. 

An important feature is the occurrence of dynamic nuclear-cytosolic shuttling for the co- and 

R-Smads, permitting repeated cycles of receptor-binding, phosphorylation, complex 

formation and translocation, explaining the persistence of the TGFβ signal for several hours 

(Inman et al, 2002; Pierreux et al, 2000).  

 

3.1.4 TGFβ-dependent regulation of gene expression 

Once located in the nucleus, Smad proteins mediate the TGFβ ligand-dependent regulation of 

gene expression by acting as transcription factors. 

 

DNA binding 

Binding of Smads to DNA occurs for all R-Smads (except Smad2) and the co-Smad through a 

common DNA harbored binding motif: the Smad-binding-element (SBE) that is consisting of 

only 5 bases, 5’-CAGAC-3’ (Yingling et al, 1997). This interaction is carried out by a 

conserved β-hairpin structure in the MH1 domain. In contrast, Smad2 is bearing an additional 

30 amino acid long insert, abolishing its DNA binding ability and explaining the requirement 

of additional proteins for DNA binding, like the forkhead transcription factor FoxH1. 

Together they bind DNA at the Smad2-activin-response-element (ARE) together with the 
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activin-response factor ARF (Chen et al, 1996). With regards to this quite short and unspecific 

sequence and the weak intrinsic DNA binding affinity of Smads, further mechanisms are 

essential to achieve specificity in their regulation of transcription. 

Regulation of activation and repression 

This regulation is made up by the interaction with transcriptional co-factors, who can bind 

DNA and other transcription factors at once. The interaction with these co-activators or co-

repressors occurs between the Smad-interacting-domain (SID) in the MH2 domain and a 

proline-rich Smad interacting motif (SIM), found in some transcription factors, as FoxH1. 

The interactions with co-factors are responsible for establishing the different Smad responses 

in a cell type- and context-dependent manner. These interacting proteins can be either (I) 

general transcription factors, that regulate activation or repression and amplitude, like the co-

activators as CBP/p300 and co-repressors like the TGFβ-induced factor TGIF or c-Ski and 

SnoN that can also modulate chromatin structure through their intrinsic histoneacetylase- or 

histonedeacetylase-activity respectively, or (II) specific transcription factors, that allow the 

regulation of specific genes, like proteins of the basic-helix-loop-helix bHLH family like 

TFE3, the basic leucine zipper domain bZIP family like ATF3, c-Fos, c-Jun and c/EBP, the 

forkhead family, homeodomain proteins like Dlx and Hox, nuclear receptors like the estrogen 

receptor, zinc finger proteins like GATA and Sp1, or signal integrators, which are responsible 

for mediating crosstalk with other signaling pathways as β-catenin, HIF, NFκB, p53 and SRF 

(Feng & Derynck, 2005).  

 

Regulated genes 

These various interactions and the sequence alterations in the different R-Smads enable for 

each of it a regulation of an own subset of genes, which underlines that the Smads, dependent 

on the cellular context, can control the expression of a myriad of genes. Some of the abundant 

events are activation of the cell cycle inhibitors p21kip and p15Ink4b or the extracellular 

matrix protein plasminogen activator inhibitor PAI-1 and the repression of c-myc. 

Furthermore, some of the regulated genes are “selfenabling genes” which later get involved in 

regulating or participating in the TGFβ signaling pathway, like Smad6/7 or ATF3. An 

overview is given in Table 2. 
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Table 2 TGFβ regulated genes in epithelial cells (Siegel & Massague, 2003) 

Overview of common regulated genes in epithelial cells of breast, skin and lung 
 
 

 

 

Besides the regulation of genes that encode for proteins, Smads were also reported, to be 

involved in the regulation of the expression of certain microRNAs or other regulatory nucleic 

acids (Blahna & Hata, 2012).  

End of signaling 

Once the Smads exerted their role as signal transducers by regulating gene expression, the 

question arises, how signaling gets terminated. With regards to Smads, either 

dephosphorylation that induces nuclear export or their degradation after ubiquitination leads 

to abolishment of signaling. Other mechanisms involve the action of interacting proteins or 

negative regulators are discussed in chapter 3.2.4 

 

3.2  Regulation of TGFβ signaling - the establishment of signaling 

specificity and diversity 

 

The TGFβ signaling pathway is, in addition to being the only described receptor 

serine/threonine kinase pathway, also marked by other characteristic features, discriminating 
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it from other classical signal transduction pathways. In the TGFβ pathway, we observe a 

straight forward linear signaling flow after ligand binding from type II receptor to type I 

receptor via the Smads into the nucleus, while other pathways like the RTK EGF-Ras-ERK 

pathway, display more complex cascades with a multistep transmission including several 

enzymes and scaffolding proteins. This case is termed “wiring” with a non-linear signal 

amplification as a consequence (Schmierer & Hill, 2007). However, in contrast to RTK 

pathways, the TGFβ signals are converted into a cellular effect in a slow manner, grounded in 

the need to establish a Smad nuclear accumulation for a response to the ligand. But signals are 

highly sustained, because signal termination necessitates not only a switch-off mechanism, 

but a longtime degradation process. Comparing these distinct modes of signal transduction 

pathways gives rise to the question, how specificity and fine-tuning of signaling are obtained 

in the case of TGFβ signaling. Furthermore, the contrast of the large number of ligands, their 

cognate receptor combinations and the small number of signal transducing Smads stirs up the 

issue how they can be capable of reflecting this ligand diversity. The solution lies in three 

characteristic features of the TGFβ signaling pathway: (I) the pleiotropy of interaction 

partners and regulating proteins (II) their coordination and (III) the context dependency based 

on the cell type specific distribution of signaling components, which place the TGFβ signaling 

from a linear pathway into a network (Massague, 2012). In the following, these different 

components of the network and their TGFβ-signaling specific effects will be explained: 

 

3.2.1 Mechanisms of regulation 

The regulation of the TGFβ signaling can be obtained through a multitude of regulatory 

mechanisms: 

(I) Regulation of expression of pathway components 

The amount of available signaling components is a critical part of signaling, enforcing a 

regulation on the genetic level. This regulation of expression of their genes is often induced as 

an effect of other signaling pathways. For example, the expression of inhibitory Smads is 

regulated through cytokines via the JAK/STAT (Ulloa et al, 1999) or the tumor necrosis 

factor (TNF)-α/ nuclear factor (NF) κB pathway (Bitzer et al, 2000). Moreover, epigenetic 

regulatory mechanisms gain more attention in influencing the amount of translated protein for 

example through miRNA regulated gene expression. 
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(II) Enzymatic covalent modification of pathway components 

Enzymatic actions are a much quicker possibility to regulate the activity of a signal 

transduction pathway than genetic events. Numerous possibilities of modifications like 

phosphorylation/dephosphorylation, ubiquitylation/deubiquitylation/sumoylation, acetylation, 

methylation, glycosylation and ADP-ribosylation of the TGFβ signaling pathway components 

have been reported (Xu et al, 2012). Especially the dynamics and the interplay of these 

posttranslational modifications add a strong touch of flexibility to TGFβ signaling. 

(III) Protein interactions  

In addition to these protein-mediated modifications, direct interactions of the TGFβ signaling 

core proteins with other proteins can be another possibility for affecting their activity or 

subcellular localization. 

(IV) Crosstalk 

A further step is the integration of the TGFβ signaling pathway into the signaling network of a 

cell, meaning the crosstalk with other signaling pathways, which will be discussed in chapter 

3.3. 

 

These modes of regulation can occur on every level of TGFβ signaling, which is going to be 

dissected in the following: 

 

3.2.2 Ligand activity and availability 

The TGFβ ligand, existing as latent complex associated with the LAP and anchored by 

LTBPs in the extracellular matrix (see 3.1.1), requires further processing for activation. This 

occurs either by cleavage through extracellular proteases like metalloproteases or upon 

integrin interaction - steps which can be subject of regulations (ten Dijke & Arthur, 2007). 

Furthermore the interaction of the ligand with other extracellular or transmembrane proteins 

can interfere with ligand activation: (I) Soluble proteins like noggin (acting on BMP7) or 

inhibin (acting on activin) function as ligand traps, that sequester the ligand and thus impede 

receptor binding (Groppe et al, 2002), (II) membrane bound proteins that often operate as co-

receptors (see also Figure 15): one group of them is often referred as type III receptor, 

receptors with ligand binding ability but without intrinsic signaling activity, like betaglycan 

and endoglin. Betaglycan, a membrane anchored proteoglycan (Brown et al, 1999a) can either 

participate in presenting the TGFβ ligand for the receptor (Lopez-Casillas et al, 1993) or 

otherwise, after its shedding into the extracellular matrix, apply antagonistic affects as a 
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ligand scavenger (Lopez-Casillas et al, 1994). The homologic endoglin is mainly expressed in 

endothelial cells (Cheifetz et al, 1992), Cripto proteins binds the Nodal and Activin ligands 

(Gray et al, 2003). Connective-tissue growth factor (CTGF) is a selfenabling gene induced by 

TGFβ, that enhances its receptor binding, with an important role in ECM formation (Abreu et 

al, 2002). Another ligand availability regulating protein is the pseudoreceptor Bambi 

(Onichtchouk et al, 1999), which acts as a decoy receptor for BMP and competes with the 

BMP-RI upon incorporation into the heteromeric receptor complex. 

 

3.2.3 Regulation of TGFβ receptor activity 

A huge number of proteins is implicated into the modulation of receptor activity, either by 

exerting enzymatic modifications or regulation of activity and downstream signaling due to a 

direct interaction. 

 

3.2.3.1 Enzymatic receptor modifications 

Regulation by ectodomain shedding 

Enzymatic shedding can have, dependent on the involved enzymes, different possible 

outcomes. Shedding of the TβRI via the metalloproteinase TACE/ADAM17 leads to a 

decrease of cell surface receptor levels and thus negatively influences the sensitivity of cells 

for the ligand (Liu et al, 2009a). 

 

Regulation by phosphorylation and dephosphorylation 

In addition to the transphosphorylation of type I receptors by type II receptors, which is 

crucial for signal transduction, further regulatory phosphorylations on both receptors have 

been described. The TβRII can autophosphorylate itself not only in an activity-promoting- (on 

Ser213 and 409), but also in an inhibiting manner (Ser416). Also tyrosine phosphorylation 

can be found, either as a result of the dual specificity by an autophosphorylation that is 

supposed to be necessary for activation (Lawler et al, 1997), or it can be carried out by other 

proteins like Src what leads so subsequent activation of the p38 protein (Galliher & 

Schiemann, 2007). For TβRI a phosphorylation on Ser165 was reported, that is associated 

with modulation of the cellular response (Souchelnytskyi et al, 1996). These regulatory 

phosphorylations in both receptors are often involved in the creation of binding sites for other 

interacting partners.  
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The other way round, desphosphorylation is a mean to inactivate the receptor and to arrest 

signaling. Concerning this, evidence exists that proteinphosphatases PP1c, together with 

Smad7 binding (Shi et al, 2004), and PP2a are involved enzymes (Griswold-Prenner et al, 

1998). 

Regulation by ubiquitylation and sumoylation 

Typically, polyubiquitylation targets proteins for proteasomal degradation by the sequential 

action of the enzymes E1 and E2 and the ubiquitin ligase E3. For proteasomal degradation of 

the TGFβ receptor complex, the inhibitory Smad7 functions as an adaptor by recruiting 

Smurf1/2 (Kavsak et al, 2000) and WWP1 (Komuro et al, 2004) ubiquitin ligases. Reversion 

of this effect can be achieved by deubiquitinating enzymes, as the deubiquitinases USP15 

(Eichhorn et al, 2012) and UCH37 (Wicks et al, 2005). In addition to the polyubiquitylation, 

evidence exist for a regulatory receptor monoubiquitylation: it was shown that the 

combination of metalloproteinase ADAM12/TACE-dependent TβRI shedding and a TRAF6 

E3-ligase-mediated monoubiquitylation leads to a nuclear translocation of the TβRI, where it 

regulates gene transcription (Mu et al, 2011). Another covalent protein modification is 

sumoylation that influences subcellular localization. Sumoylation by Ubc9 was found on 

phosphorylated TβRI that further enhanced its activity (Kang et al, 2008).  

 

3.2.3.2 Regulation of subcellular localization of the receptors 

Another important step in signaling is the subcellular localization of receptors. Compared to 

RTK signaling, an increase of internalization and the constitutive formation of signaling 

endosomes as a consequence of ligand binding is not described for the TGFβ signaling 

pathway. Nevertheless, receptor endocytosis exists to modify activity for which two distinct 

mechanism were shown (Di Guglielmo et al., 2003): (I) clathrin-dependent internalization, 

involving a dileucin motif which locates the TβRI to early-endosome-antigen1 (EEA) positive 

endosomes that can cycle back to the membrane via Rab11 endosomes. This mode of 

internalization is a way of receptor recycling and can favor enhancement or endurance of 

signaling. In contrast, (II) clathrin-independent internalization via calveolar-positive vesicles 

in lipid rafts is favoring proteasomal or lysosomal degradation of the receptor complex. An 

additional mechanism for degradation of the receptor complex is the possibility of a β-arrestin 

2-mediated internalization, a protein responsible for GPCR trafficking (see Chapter 1.3.), 

carried out by interaction of the short cytoplasmic tail of the TβRIII betaglycan with β-arrestin 

2 (Chen et al, 2003). 
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3.2.3.3 Regulation by interacting proteins 

During the last years a huge number of proteins that interfere with TGFβ signaling by 

interaction with receptors have been identified. Their effects can be enhancing and repressing 

and their modes of action and interaction are various: they can act as scaffolds, influence 

subcellular localization, others direct signaling towards non-canonical pathways or mediate 

the crosstalk with other pathways (Runyan et al, 2006). 

(I) NEGATIVE REGULATION 

Interactions with proteins exerting a negative regulation can either act to prevent the 

occurrence of signaling or to restrict its duration.  

 

Bambi, is the BMP decoy receptor, which inhibits downstream signaling by competing with 

BMP-RI for binding to BMP-RII as a result of their sequence homology. This leads to the 

formation of inactive Bambi/RII complexes (Onichtchouk et al, 1999). Later findings suggest 

cooperative mechanism of Smad7 and Bambi in inhibiting signaling what might extend the 

role of Bambi towards TGFβ-ligand-induced signaling (Yan et al., 2009). 

 

Smad 6 and 7, the inhibitory Smads are signaling antagonists which are expressed under the 

control of R-Smads, thus being part of a negative feedback loop of TGFβ signaling (Hayashi 

et al, 1997; Nakao et al, 1997a). Like the R-Smads, they bind to the receptor (Hanyu et al, 

2001), but lacking the SXS motif, they cannot be phosphorylated, what is resulting in a 

competition with R-Smads, that blocks downstream signaling (Hayashi et al., 1997). 

Furthermore, they can serve as scaffold for the recruitment of other proteins: GADD34 which 

binds the phosphatase PP1c and causes receptor dephosphorylation (Shi et al, 2004), the E3 

ligases Smurf1 and 2 (Kavsak et al, 2000; Suzuki et al, 2002) and WWP1 (Komuro et al, 

2004), that are polyubiquitylating the receptors, which triggers the proteasomal degradation of 

the complex. Other synergizing proteins are STRAP, which binds Smad7 and can also bind 

TβRI and TβRII with its WD40-domain repeats and negatively regulates Smad2/3 (Datta et al, 

1998) and YAP65, a member of the Hippo pathway, that increases the TβRI-Smad7 

association (Ferrigno et al, 2002). Further roles are also described for inhibiting complex 

formation of R-Smads and DNA (Zhang et al, 2007). 

DRAK2 (DAP kinase-related apoptosis-inducing protein kinase) is a recently identified 

TGFβ-inducible protein kinase, which constitutively interacts with TβRI and gets increased 
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upon ligand stimulation. DRAK2 seems to be an important player in attenuation of TGFβ 

signaling (Yang et al, 2012). 

 

Further proteins that were described to negatively regulate signaling upon receptor interaction 

are the chimeric oncoprotein ETV6-NTRK3 (Jin et al, 2005) and the RTK TrkC (Jin et al, 

2007) that both interact with TβRII, thus preventing interaction with TβRI. Dpr2 binds to the 

receptor I and targets it for lysosomal degradation (Su et al, 2007b), and c-Ski, that beside its 

nuclear function (see below) can also negatively regulate the receptors (Ferrand et al, 2010). 

Further examples are described in Table 2. 

 

3.2.3.4 FKBP12 as a signaling-preventing negative regulator 

A regulator, which holds an important role as inhibitor of basal TGFβ signaling activity is the 

immunophilin FKBP12. The immunophilins are a group of proteins that can bind 

immunosuppressive substances and function as peptidyl-prolyl-cis-trans-isomerases (PPI). 

Their main role is associated with protein folding and -refolding and stabilization of distinct 

protein conformations. FKBP12 (FK506 binding protein 12) is able to bind the macrolides 

FK506 (tacrolimus) and rapamycin and has a size of 12kDa. The structure of FKBP12 is 

highly conserved among the different species and is composed of five β turns and two 

extremities, the 40s and 80s loop, flexible regions and essential parts for binding to other 

proteins. By being a PPI, the recognition sequence in other proteins is composed of at least 

one proline, but preferentially composed of a Pro-Leu dipeptide. Most functions of FKBP12 

arise from its complex forming properties together with FK506 and calcineurin, a calcium 

activated phosphatase, or together with rapamycin FKBP12 can bind PI3K like kinases 

RAFT. Another function is the regulation of Ca
2+

 channels by binding to ryanodine- and IP3-

receptor-calcium channels and influencing their closure kinetics (Ivery, 2000). 

 

The interaction of FKBP12 with the TβRI 

An interaction that is maintained independently from macrolides is the one with the TβRI. By 

performing yeast two-hybrid assays all five type I receptor family members were found to 

interact with FKBP12, but none of the type II receptors (Wang et al, 1994). The interaction 

has been further studied especially for the TβRI. FK506 and rapamycin inhibit this 

interaction, suggesting a competition for the same binding site in FKBP12. Mutation studies 

have shown, that FKBP12 binds to the 
193

Leu-Pro-Leu-Leu
196

 motif in the GS domain of the 
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TβRI, what is coherent with its PPIase-activity, requiring a Leu-Pro motif for interaction 

(Charng et al, 1996; Chen et al, 1997). This got support by the publication of the crystal 

structure (see Figure 18), revealing more details about the interaction (Huse et al, 1999): The 

extreme 40s and 80s loop in FKBP12 recognize a distinct structure, the VI β turn of the TβRI, 

lying the GS domain and bearing the 
193

LPLL
196

 motif as recognition site for FKBP12. 

FKBP12 is directly interacting with two Leu residues (195 and 196) and Pro194 is assisting in 

stabilization. Additionally, a contact is made between the exposed His87 and Pro88 of the 80s 

loop in FKBP12, which directly contact the β3 and β4 sheet in the L45 loop, the surface for 

R-Smad binding. Upon this interaction, TβRI gets stabilized in an inactive conformation by 

the formation of an inhibitory wedge in the GS domain, providing a structural explanation for 

FKBP12 locking the inactive conformation and constraining the TβRII-mediated 

transphosphorylation in the GS domain and R-Smad binding to the L45 loop. 

 

 

Figure 18 Crystal structure of FKBP12 and TβRI (Huse et al, 1999)  
 

The crystal structure of FKBP12 and the cytoplasmic domain of the TβRI provides important 
information about the interacting domains. FKBP12 (in red) contacts the TβRI with its 40s and 80s 
loop in the GS domain of the TβRI at the 193LPLL196 sequence (light green). Another side of interaction 
is made between the H87 and P88 of the 80s loop in FKBP12 and the L45 loop of the β turns 3 and 4 
(in blue). 

 

Functional effect of the TβRI-FKBP12 interaction 

If the binding site for FKBP12 in the TβRI is mutated, a basal, ligand-independent signaling 

can be observed. That is suggesting a role of FKBP12 in preventing signaling instead of 

actively participating in the ligand-induced response (Charng et al., 1996). Treatment with 

FK506 also leads to tonic TGFβ signal transduction and an increased response to low doses of 
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ligand, whereas overexpression of FKBP12 can block or diminish the TGFβ signaling 

response, an effect also described for BMP receptors (Gruendler et al, 2001; Spiekerkoetter et 

al, 2013). It was show that depletion of FKBP12 from the TβRI induces its hypersensitivity 

for TβRII-mediated transphosphorylation in the GS domain (Chen et al, 1997). These findings 

suggest that FKBP12 is important for blocking basal TGFβ signaling in the absence of ligand. 

FKBP12 KO mice further support this function of FKBP12: These mice display defects in 

heart function and neural tube closure (Shou et al., 1998) and mouse-derived cells display a 

higher amount of TGFβ downstream signaling effects such as increased p38 phosphorylation 

(see Chapter 3.3.1) and p21 expression, leading to increased cell cycle arrest (Aghdasi et al, 

2001; Shou et al, 1998). 

Additional functions of the TβRI-FKBP12 interaction are the blocking of TβRI internalization 

(Yao et al, 2000), probably through an orchestration of TβRI degradation in complex with 

Smad7 (Yamaguchi et al, 2006) or still unsolved issues as the influence of its PPI-activity or a 

role in the recruitment of other proteins. 

 

Mechanism of FKBP12 release 

A still unsolved part of the puzzle is the exact mechanism that triggers FKBP12 release. 

Studies have shown that the release of FKBP12 occurs (I) upon ligand stimulation and (II) by 

transphosphorylation of the GS domain in TβRI by TβRII, but the exact point of FKBP12 

release could not be determined. This release should be preceding any GS domain 

phosphorylation event, because mutating all GS domain phosphorylation sites does not 

prevent the release of FKBP12. But a deletion of the TβRII-kinase domain locks FKBP12 

bound to the TβRI, evoking the possibility of other TβRII-mediated events like 

phosphorylation of another residue outside the GS domain or the binding of other proteins, 

that trigger the release of FKBP12 (Wang & Donahoe, 2004; Wang et al, 1996).  

 

(II) POSITIVE REGULATION 

Another group of interacting proteins are positive regulators that are either essential for TGFβ 

signaling or that can potentiate and prolong signaling. 

 

TRAP1 (TGFβ receptor associated protein) and TLP (TRAP1 like protein) are two 

proteins that are similar in their sequence (25%) and that can bind to TβRI and TβRII. TRAP1 

is supposed to be implicated into the recruitment of Smad4 upon ligand binding via direct 
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interaction, thus facilitating formation of heteromeric Smad complexes (Wurthner et al, 

2001). TLP, in contrast, is a protein that seems to have important functions in specifying 

TGFβ signaling responses by its ability to preferentially activate Smad3- and inhibit Smad2 

dependent signaling (Felici et al, 2003).  

 

Dab2, is an adaptor molecule that constitutively interacts with TβRI, which is indispensable 

for active signaling by functioning as Smad2/3 adaptor (Hocevar et al, 2001). Together in 

complex with AP2, it can also favor receptor endocytosis to clathrin-coated vesicles 

(Penheiter et al, 2010).  

 

The molecular chaperon heat shock protein HSP90 is binding to the TβRI/II complex, to 

protect it from Smad7/Smurf binding and the following receptor degradation (Wrighton et al, 

2008).  

 

The metalloprotease ADAM12 facilitates signaling by inhibiting Smad7 association with the 

receptor (Atfi et al, 2007). 

 

Other proteins are important for the mediation of crosstalk with other signal transduction 

pathways (see Chapter 3.3.) or to induce non-canonical signal transduction pathways, like 

TGF β-activated protein kinase TAK1 (Yamaguchi et al, 1995) that mediates TGFβ-induced 

MAPK activation of p38 and JNK, or Daxx, that induces apoptosis by favoring JNK 

activation (Perlman et al, 2001). The cell polarity protein Par6 can be directly phosphorylated 

by TβRII to promote RhoA degradation by the Smurfs (Ozdamar et al, 2005), and the 

scaffolding protein SHC1 that binds to TβRII and gets phosphorylated by RI leads to MAPK 

activation (Lee et al, 2007).  Further positive regulating proteins are explained in Table 2. 

 

3.2.4 Regulation of Smad activity 

The Smads are also an important object of positive and negative regulation of TGFβ signaling 

either through modifications or complex formation with proteins. 

 

Regulation by covalent modifications 

Despite the classical Smad phosphorylation by the type I receptors, phosphorylation on the 

SXS motif can be carried out by other kinases like RTKs (de Caestecker et al, 1998) or the 
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kinase Mps1 (Zhu et al, 2007) , which were reported to induce a ligand-independent 

activation of the Smads. The Smad linker region is another part of the molecule that can be 

subject to activity modulating phosphorylations. ERK (Kretzschmar et al, 1999) and the Ca
2+

 

/calmodulin-dependent protein (CaM) kinase II (Wicks et al, 2000) -mediated 

phosphorylations negatively regulate the Smads, whilst via JNK-mediated phosphorylation 

contributes to Smad activity (Brown et al, 1999b). The cyclin-dependent kinase CDK 2/4- 

(Matsuura et al, 2004) or CDK 8/9- (Alarcon et al, 2009) dependent phosphorylation in the 

linker region can either inhibit (CDK 2/4) or enhance Smad transcription activity (CDK 8/9). 

Also dephosphorylation is an important step for modifying Smad activity: The phosphatases 

PPM1A (Lin et al, 2006) or PP2a dephosphorylate serines in the C-terminal SXS motif 

(Heikkinen et al, 2010), while small C-terminal domain phosphatases (SCPs) act on linker 

phosphorylations (Sapkota et al, 2006; Wrighton et al, 2006). 

Similar to the receptors, polyubiquitylation of the R-Smads by different E3 ligases like 

Smurf2 (Zhang et al, 2001), ROC1 (Fukuchi et al, 2001), WWP1 (Komuro et al, 2004) and 

NEDD4 (Kuratomi et al, 2005) can trigger proteasomal degradation. A monoubiquitination of 

R-Smads by Itch/AIP4 that interacts with the receptor TβRI increases Smad activity (Bai et al, 

2004). In contrast, monoubiquitination of Smad4 is supposed to promote their nuclear export 

(Moren et al, 2003). Smad3-Sumoylation by PIAS is another possibility for negative 

regulation by targeting Smads for nuclear export (Lin et al, 2006). 4 

 

Regulation by interacting proteins 

(I) NEGATIVE REGULATORS 

TMEPAI was found to be a TGFβ-induced negative regulator of Smads by sequestering them 

in the cytoplasm through direct binding and inhibition of complex formation with SARA, an 

endosomal protein (Watanabe et al, 2010). 

 

c-Ski and SnoN, part of the family of the proto-oncogene of the Ski family, function as 

inhibitors of Smad-dependent gene transcription by impairing the interaction of Smad4 and 

the R-Smads in the cytoplasm (Ferrand et al, 2010; Krakowski et al, 2005; Prunier et al, 2003) 

or upon the recruitment of co-repressors in the nucleus (Sun et al, 1999). During signaling, 

this negative regulation is abandoned by either Smurf2- or APC-mediated degradation of Ski 

and SnoN (Bonni et al, 2001; Stroschein et al, 2001). 
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TGIF, a homeobox transcription factor competes with p300/CBP to R-Smad binding and also 

recruits repressors and HDACs (Wotton et al, 1999a; Wotton et al, 1999b). TGIF is 

additionally implicated in a negative crosstalk regulation: an ERK-triggered activating 

phosphorylation of TGIF can negatively regulate Smad-dependent transcription (Lo et al, 

2001).  

 

(II) POSITIVE REGULATORS  

SARA is an endosomally (EEA1 positive endosomes) located FYVE domain protein, which 

functions as anchor between Smads and the receptor, by having both, a Smad-binding-domain 

(SBD) and an receptor-interacting motif. It is described to induce proximity of R-Smads and 

the receptor and to be necessary for their phosphorylation by the TβRI (Tsukazaki et al, 

1998). Further studies showed, that SARA might be dispensable for Smad3 signaling and 

only essential for Smad2-dependent signaling (Bakkebo et al, 2012; Goto et al, 2001; Lu et al, 

2002). 

 

Other proteins, such as Hrs (Miura et al, 2000) and cPML, the cytoplasmic form of the 

promyelocyticleukemia tumor suppressor, (Lin et al, 2004) act as enhancer of SARA activity. 

 

Axin1, an RGS/DIX domain protein, interacts with the MH2 domain of Smad3, possibly also 

Smad2 to facilitate signaling (Furuhashi et al, 2001). Further evidence exists that it also 

promotes TGF signaling by negatively regulating Smad7 through inducing its degradation via 

the E3 ligase Arkadia (Liu et al, 2006) (Koinuma et al, 2003).  

 

Other interacting proteins are summarized in the following tables 2 and 3 and for interaction 

with transcription factors on the nuclear levels, further information can be found in (Feng & 

Derynck, 2005) 

 

Table 3 Proteins negatively regulating TGFβ signaling by receptor- or Smad interaction 

Proteinname Target Proteintype Mode Of Action Reference 

 

Receptor interacting 

 

   

Bambi RI Decoy receptor Competes for BMP binding and formation of 

nonfunctional RII complexes 

Onichtchouk et al., 

1999 

file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_135
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c-Ski  RI Adaptor protein Promotes formation of nonfunctional 

receptor/R-Smad complexes 

Ferrand et al. 2010 

Dpr2 RI Adaptor protein Triggers lysosomal degradation of receptor Su et al., 2007b 

DRAK2 RI Kinase Attenuation of TβRI activity Yang et al., 2012 

ETV6-

NTRK3 

RII chimeric 

oncoprotein 

Prevents interaction with of RII with RI Jin et al., 2005 

FKBP12 RI Peptidyl-prolyl-

isomerase 

Prevents ligand-independent RI activation Wang & Donahoe, 

2004 

PP1c RI Phosphatase RI dephosphorylation Shi et al., 2004 

PP2a RI Phosphatase RI dephosphorylation Griswold-Prenner 

et al., 1998 

Smad 6/7 RI I-Smad Competes with R-Smads, mediates receptor 

ubiquitylation and dephosphorylation 

Nakao et al., 1997, 

Kavsak et al. 2001 

Smurf1/2 RI/RII Ubiquitinligase Ubiquitin-mediated proteasomal degradation Kavsak et al. 2001 

STRAP RI/RII WD 40 adaptor 

protein 

Potentiates Smad7 effects and inhibits R-

Smads 

Datta et al. 1998 

TACE/ 

ADAM17  

 

RI Metalloprotease Shedding of TβRI extracellular domain Liu et al., 2009a 

TrkC RII RTK Prevents interaction of RII with RI Jin et al., 2007 

WWP1 RI/Smads Ubiquitinligase Ubiquitin-mediated proteasomal degradation Komura et al., 

2004 

YAP65 RI/RII SH3 adaptor 

protein 

Increase of Smad7 association Ferrigno et al. 

2002 

 

Smad interacting 

 

   

c-Ski S2/3/4 Adaptor protein Impairment of heteromeric Smad complex 

formation 

Prunier et al.,2003 

Erbin S2/3 PDZ-domain 

protein 

Sequesters Smads in the nucleus Dai et al.,2007 

NEDD4 S2/3 Ubiquitinligase Ubiquitin-mediated proteasomal degradation Kuratomi et 

al.,2005 

PIAS S3 Sumoligase Nuclear export Lin et al., 2006 

PP2a S3 Phosphatase SXS dephosphorylation Heikkinen et al. 

2010 

PPM1A S2/3 Phosphatase SXS dephosphorylation Lin et al., 2006 

ROC1 S2/3 Ubiquitinligase Ubiquitin-mediated proteasomal degradation Fukuchi et al.,2001 

SCP S2/3 Phosphatase Smad linker region dephosphorylation Sapkota et al., 

2006, Wrighton et 

al. 2006 

Smurf2 S2/3 Ubiquitinligase Ubiquitin-mediated proteasomal degradation Zhang et al., 2001 
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SnoN S2/3/4 Adaptor protein Impairment of heteromeric Smad complex 

formation 

Krakowski et 

al.,2005 

TGIF S2/3/4 Homeobox 

protein 

Competes with Smads for transcriptional co-

factor binding 

Wotton et al.,1999 

TMEPAI S2/3 Adaptor protein Competes with RI for R-Smad binding Watanabe et 

al.,2010 

 

Table 4 Proteins positively regulating TGFβ signaling by receptor- or Smad interaction 

Proteinname Target Proteintype Mode Of Action Reference 

 

Receptor interacting 

    

ADAM12 RI Metalloprotease Protects from Smad7 binding Atfi et al., 2007 

Dab2 RI/Smads Adaptor protein Required as Smad adaptor and facilitates 

endosomal trafficking 

Hocevar et al., 

2001 Penheiter et 

al., 2010 

Daxx RI Death domain 

protein 

Favors apoptosis induction Perlman et al., 

2001 

HSP90 RI Chaperone Protects from Smad7 binding Wrighton et al., 

2008 

Itch-AP4 E3  RI/Smads E3 ligase Associates with RI and monoubiquitinates 

Smads for signaling potentiation 

Bai et al., 2004 

Par6 RII Adaptor protein RhoA degradation Ozdamar et al., 

2005 

Shc RII SH2 docking 

protein 

MAPK pathway activation (ERK) Lee et al. 2007 

Src RII Kinase Tyrosine phosphorylation inducing p38 

activation  

Galliher and 

Schiemann, 2007 

TAK1 RI Kinase MAPK pathway activation (p38, JNK) Yamaguchi et 

al., 1995 

TLP RI/RII Adaptor protein Promotes Smad3 but impairs Smad2 

phosphorylation 

Felici et al., 2003 

TRAF6 RII Monoubiquitinase Targets intercellular domain of RI Mu et al. 2011 

TRAP1 RI/RII Adaptor protein Facilitated Smad4 recruitment Wurthner et al., 

2001 

Ubc9 RI Sumoylation Sumoylated RI and enhances Smad 

recruitment 

Kang et al. 2008 

UCH37 RI Deubiquitinase Reverses Smurf-mediated ubiquitination Wicks et al., 

2005 

USP15 RI Deubiquitinase Reverses Smurf-mediated ubiquitination Eichhorn et al., 

2012 

XIAP RI Multidomain 

protein 

Cooperates with TAK1 Neil et al., 2009 

 

Smad interacting 

 

   

Arkadia Smad7 Ubiquitinligase Targets Smad7 for degradation Koinuma et al., 

2003, Liu et al. 

2006 

Axin Smad2/3 RGS/Dix domain 

protein 

Associates with Smads to facilitate signaling Furuhashi et al., 

2001 

file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_10
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_78
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_78
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_78
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_141
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_141
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_194
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_194
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_12
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_136
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_136
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_55
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_55
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_207
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_207
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_46
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_198
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_198
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_187
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_187
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_131
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_94
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_94
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_94
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_54
file:///C:/Users/Stefanie/Dropbox/These/InteractingModifying%20Proteins.xlsx%23RANGE!_ENREF_54


Introduction   70 

 

 

cPML Smad2/3 Adaptor protein Enhances SARA actions on Smads, favors 

endosomal localisation of receptor complexes 

Lin et al., 2004 

Elf Smad2/3/4 Beta spectrin Required for Smad activation and nuclear 

localisation 

Tang et al., 2003 

Hrs Smad2/3 FYVE domain 

protein 

Enhances SARA actions on Smads Miura et al., 

2000 

JNK Smad2/3 Kinase Linker region phosphorylation Brown et al., 

1999b 

Mps1 Smad2/3 Kinase SXS motif phosphorylation Zhu et al., 2007 

SARA Smad2/3 FYVE domain 

protein 

Favors Smad association with RI Tsukazaki et al., 

1998 

                                                                            

                                                                                                                                                                                                          

3.3 Crosstalk of TGFβ signaling  

Another possibility for the creation of diversity in TGFβ signaling relies on the phenomenon 

of crosstalk with other signal transduction pathways (for definition see Chapter 1.4.).  

 

3.3.1 Non-canonical signaling of TGFβ receptors 

Non-canonical signaling of the TGFβ signal transduction pathway is a Smad-independent 

signaling, that implies all the events, where a TGFβ ligand does not signal via the traditional 

pathway, but other molecules being part of another signal transduction pathway. The 

activation of these pathways is also often correlated with a distinct functional outcome of the 

ligand binding. The molecules that are interacting with the TGFβ core components have also 

an important impact on directing signaling into a specific direction (Zhang, 2009) 

 

Activation of MAP kinases 

The possibility of a signaling through MAP kinases came up with the findings that Smad KO 

mice or cells with Smad-activation-deficient receptors could yet evoke a cellular response to 

ligand binding. As signaling mediators could be identified the MAPK members JNK, which 

mediates the TGFβ-dependent synthesis of extracellular matrix (Atfi et al, 1997; Hocevar et 

al, 1999) and p38 (Hanafusa et al, 1999; Yu et al, 2002) that is responsible for inducing 

TGFβ-mediated apoptosis. The TβRI interacting proteins TAK1 and TAB, a MAP3K and its 

activator respectively, have been found to be responsible for converting the ligand binding 

into the activation of the MAP kinases JNK and p38 (Hanafusa et al, 1999; Shibuya et al, 

1996) independent of receptor kinase activity (Sorrentino et al, 2008). Additional regulators 
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that are essential for the induction of apoptosis of the complex are the TβRI-interacting XIAP 

(Yamaguchi et al, 1999) and the TβRII-interacting Daxx (Perlman et al, 2001). 

It has also been shown, that TGFβ signals can lead to activation of the MAP kinase ERK by 

two different mechanisms: One mechanism seems to involve a transcriptional regulation 

occurring only late after stimulation by regulating the expression of Ras-like protein RLP, a 

receptor binding protein that favors ERK activation (Piek et al, 2004). Another mechanism is 

a short-term response, which is accomplished by the adaptor protein SHC1 that binds through 

its SH2 domain to a p-Tyr site in TβRII that, after being phosphorylated by the TβRII, can 

recruit other proteins that activate ERK by phosphorylation. This direct activation seems to be 

important in the process of epithelial-to-mesenchymal-transition.  

 

Activation of Rho GTPases 

An effect of the Rho family of small GTPases RhoA, Cdc42 or Rac1 by TGFβ has also been 

reported (Bhowmick et al, 2001; Edlund et al, 2002). A mechanism, implicating Par6 binding 

to the TβRII and subsequent Par6 phosphorylation seems to be important for the induction of 

RhoA degradation, allowing membrane ruffling and lamellipodia formation through Rac1 and 

Cdc42 during epithelial-to-mesenchymal transition (see Chapter 3.5.1). 

 

Activation of others pathways 

Further reports could show, that TGFβ signaling can also imply activation of NFκB that is 

phosphorylated by TAK1. PI3K activation occurs via direct association with the receptor 

complex and a following Akt phosphorylation (Bakin et al, 2000). 

 

3.3.2 Crosstalk of TGFβ signaling with other signal transduction pathways 

The TGFβ signaling pathway can be the object of activity modulation in a synergistic or 

antagonist fashion through the crosstalk with other signal transduction pathways (Guo & 

Wang, 2009). 

 

Crosstalk with MAPK pathways 

One of the most important crosstalk occurs upon interplay with the MAP kinase ERK. The 

basis is, that both evoke opposed responses in epithelial cells (TGFβ: cytostatis vs. Erk: 

proliferation), leading to antagonizing effects of the EGF-Ras-Erk axe on TGFβ signaling. 

Activated Erk can phosphorylate Smads in their linker region, attenuating nuclear import, thus 



Introduction   72 

 

 

inhibiting Smad-dependent transcription (Kretzschmar et al, 1999). Ras was also described to 

decrease Smad4 protein stability (Saha et al, 2001), which can also be maintained by JNK/p38 

in cancer cells (Liang et al, 2004). In contrast, during processes like epithelial-to-

mesenchymal transition, synergistic effects with Ras-Erk signaling have been observed. TGFβ 

can elicit an increase in cytokine secretion like PDGF. A phosphorylation of R-Smads in their 

SxS motif induced by RTKs has been be detected (de Caestecker et al, 1998). 

Other MAP kinases, with a role in growth inhibition as apoptosis have also been described to 

affect Smad activity. On one hand, JNK-mediated phosphorylation of Smad3 in the linker 

region can have enhancing effects (Brown et al, 1999b), while the JNK effector c-Jun blocks 

Smad activity (Dennler et al, 2000; Pessah et al, 2001).  

 

Crosstalk with the PI3K/Akt pathway 

Different activators of the PI3 Kinase like insulin and IGF can decrease TGFβ-dependent 

cytostatic effects by mainly targeting Smad3 (Chen et al, 1998). The discovery of an 

inhibitory interaction of Akt with Smad3 further supports this negative interplay of both 

pathways (Conery et al, 2004; Remy et al, 2004). PTEN, a lipid phosphatase that is a negative 

regulator of the PI3K pathway, was described to be repressed by TGFβ signaling (Chow et al, 

2007). 

 

Crosstalk in embryonal development: Wnt, hedgehog and notch 

Due to the effects of TGFβ on embryonal development, crosstalk occurs with other pathways 

having an important role in development. The most important is the Wnt pathway, composed 

of Wnt, a lipid ligand, with its GPCR frizzled, that regulates β-catenin activity and nuclear 

translocation. During development a reciprocal regulation of ligand concentration of Wnt and 

TGFβ has been observed, and synergistic effects can be obtained through gene transcription-

mediated by complexes of R-Smad/β-catenin/Lef. Furthermore, interactions between TGFβ 

and the hedgehog- and notch pathways seem to be critical for accurate embryonic 

development (Wu & Hill, 2009). 

 

Crosstalk with interleukins (IL), TNF and interferon (IFN)-γ pathways 

Acting also on the immune systems, crosstalk with pathways responsible for the immune 

reaction of a cell, like IL-pathways, the TNFα/β or IFNγ pathway are also occurring (Li et al, 

2006). 
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Crosstalk on a nuclear level 

In the nucleus, crosstalk has been observed with the AP-1 transcription factor complex, 

required for apoptosis (Schuster & Krieglstein, 2002). Another important crosstalk that 

synergizes the cytostatic effects of TGFβ signaling occurs due to the interplay with tumor 

suppressor p53 related signaling (Atfi & Baron, 2008). 

 

Pathways involving Smad phosphorylation 

As for example the crosstalk with MAP kinases has shown before, the Smads and their 

multiple phosphorylation sites are a key target for integrating signals of other pathways. 

Further kinases were identified to modulate Smad activity by their phosphorylation: a 

negatively regulating phosphorylation can be exerted by the calcium-calmodulin dependent-

kinase. (Wicks et al, 2000), and a PKC phosphorylation on the MH1 domain has a negative 

effect by abolishing DNA binding (Yakymovych et al, 2001). Also the cyclin-dependent-

kinases CDK2 and CDK4 phosphorylate Smad and inhibit Smad-dependent gene transcription 

and thereby their cytostatic effects (Matsuura et al, 2004). In addition, also the casein kinase I, 

glycogen synthase kinase GSK3 or GRK2 (see below) can modify Smad activity through 

phosphorylation (Wrighton et al, 2009). 

 

3.3.2.1 Crosstalk with GPCR signaling and transactivation by GPCRs 

So far, only little information exists concerning the phenomenon of crosstalk and 

transactivation of TGFβ signaling pathways and GPCR-mediated signaling.  

 

Crosstalk between GPCRs and TGFβ signaling 

Some work could provide evidence for the existence of crosstalk between GPCRs and TGFβ 

signaling. The GPCR regulating protein β-arrestin 2 has also been linked to the modulation of 

TGFβ signaling: the association of β-arrestin 2 with the TβRIII betaglycan can induce 

internalization of the TβRII/TβRIII complex and subsequently downregulate TGFβ signaling 

(Chen et al, 2003). Another work reported also its direct association with the TβRII, even in 

the absence of the RIII, that might have promoting effects in directing signaling towards non-

canonical pathways, like p38-induced apoptosis (McLean et al, 2013). This goes along with 

the role of β-arrestins in GPCR signaling by favoring MAP kinase activation (see Chapter 

1.3.). Furthermore, evidence is provided for TGFβ signaling regulating GPCR signaling 

proteins, such as GRK2 for being a TGFβ response gene. As a result of its TGFβ-stimulated 
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expression, GRK2 associates with and phosphorylates the linker region of Smads, hence 

inhibiting their nuclear translocation (Ho et al, 2005). So far, there has been no proof, whether 

GRK2 might also have an effect on receptor phosphorylation, what might trigger the 

described β-arrestin 2 association with the receptors.  

Besides, studies have shown, that the Serotonin receptors 5-HT1B/D can induce, after 

stimulation with serotonin, a phosphorylation of Smad1, 5 and 8, which normally signal 

through BMP ligand (Liu et al, 2009b), in a RhoA Kinase (ROCK) -dependent manner. An 

example for TGFβ-induced regulation of GPCRs was shown for the TGFβ-induced delay of 

neurokinin receptor internalization in T-cells leading to prolonged signaling (Beinborn et al, 

2010). 

 

Receptor transactivation 

Compared to crosstalk, transactivation is a more limited term, to describe the interplay of 

signaling pathways. While a crosstalk also implies de novo gene transcription or signal- 

mediator-dependent responses, a transactivation is “where one receptor activates a 

heterologous receptor” (Wetzker & Bohmer, 2003), meaning an immediate effect on the 

receptor level. Compared to the big amount of sources describing an interplay between GPCR 

signaling and RTK-triggered pathways (see Chapter 1.3.), just recently the group of Peter 

Little demonstrated an association of TGFβ- and GPCR-mediated signaling pathways on the 

receptor level, what led to the expansion of the transactivation concept of GPCR towards 

serine/threonine kinases (Burch et al, 2012). They have shown, both for endothelin and 

thrombin GPCRs, that ligand binding induced a transactivation of the TGFβ signaling 

pathway via Smad phosphorylation. The transmission of the signal from the GPCR to the 

TGFβ receptor was proven by inhibition of the TβRI kinase activity that abolished these 

events (Burch et al, 2010; Little et al, 2010). But the exact mechanisms underlying this 

transactivation remain unknown and so far, their studies form the only example for GPCR-

ligand-induced transactivation of the TGFβ receptor. 

 

3.4 TGFβ signaling in physiology and pathophysiology 

TGFβ ligands are multifunctional molecules that are known to regulate many cellular 

processes like proliferation, cell fate determination, differentiation, motility, adhesion, that are 

essential for the development and maintenance of tissue and organism homeostasis. TGFβ 

cytokines act mainly in an autocrine or paracrine manner and virtually all cells can respond to 
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ligand stimulation. In contrast, the physiological effects strongly dependent on the cellular 

context and the expression pattern of different molecules implicated in TGFβ signaling, 

leading to the variety of possible TGFβ signaling outcomes that can be completely opposite 

dependent on the physiologic environment. These pleiotropic actions of TGFβ also explain its 

large implication in human disease (Massague, 2012). 

 

3.4.1 Biological actions of TGFβ signaling  

TGFβ ligands have been found to be implicated in a huge variety of processes in organisms, 

the most important ones will be highlighted in the following and are summarized in Figure 

20: 

  

3.4.1.1 Cytostasis and apoptosis 

In most of the cell types, the cellular response to TGFβ is an inhibition of cell proliferation. 

This can observed in epithelial, endothelial, hematopoietic and immune cells, while in 

mesenchymal cells as fibroblasts, the opposite effect can take place. On the molecular level, 

the TGFβ-induced cytostatis is the result of activation and repression of gene expression of 

important players of cellular proliferation in the G1 phase of the cell cycle (see Figure 19). An 

early TGFβ response effect is the repression of the expression of the proto-oncogene c-myc 

(Alexandrow et al, 1995). This is accompanied by a loss of the repressive actions of myc on 

cell cycle inhibitors p15INk4b and p21kip. TGFβ promotes additionally the expression of 

p15Ink4b that inhibits cyclin D/CDK4 and CDK6 in early G1 stage and p21Kip  that acts on 

cyclin E/A-CDK2 activity. This repression-activation cascade is the result of concerting 

actions: in order to repress myc transcription, a preformed cytoplasmic complex composed of 

the transcription factors E2F4/5, DP1 and p107 exists, which translocates with activated 

Smads to the nucleus, binds to the myc promoter and represses it expression. Myc itself is a 

repressor of p15Ink4b. By inhibiting myc transcription, the formation of the repressive 

complex with the miz protein is abolished, conducting to the feedback activation of p15Ink4b 

(Seoane et al, 2001; Staller et al, 2001).  
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Figure 19 Mechanism of TGFβ-induced cell cycle arrest (Massague et al, 2000) 

TGFβ induces a repression of the growth promoting protein c-myc. This in turn leads to an arrest of 
the repressive actions of myc on the cell cycle inhibitors p15, p21 and cdc25A. Their expression is 
also stimulated by TGFβ signaling. Their activity leads the repression of the cell cycle promoting 
cycline dependent kinases CDK2 and CDK4, thus explaining the cytostatic effects of TGFβ. 

 

Other events that play a role in exerting cytostatic effects are the repression of the ID proteins 

(ID1, ID2, ID3), performed by a complex of Smads with the selfenabling ATF3 protein (Kang 

et al, 2003a). Also the interaction with the transcription factor Runx3 and the crosstalk with 

p53 participate in growth control by TGFβ (Pardali & Moustakas, 2007). 

Under certain conditions, TGFβ can not only induce a block of the cell cycle, but can also 

directly induce apoptosis. So far, several mechanisms have been discovered that propose an 

involvement of caspases, Bcl-2 family members like the protein BIM, and death-associated 

protein kinase (DAPK) triggering the mitochondria associated pathway of apoptosis (Chen & 

Chang, 1997; Jang et al, 2002; Ohgushi et al, 2005). The TβRII-interacting protein Daxx 

seems to be important to direct signals towards apoptosis via JNK- and p38 activation 

(Perlman et al, 2001). Physiologically this induction of apoptosis occurs for example in the 

mammary gland size reduction after pregnancy. 

 

3.4.1.2 Development and embryonal stem-cell differentiation 

TGFβ signaling is strongly implicated in the orchestration of embryogenesis and 

development. The occurrence of ligand gradients is fundamental for correct developments at 

specific stages. Different ligands are required for establishment of the left-right (nodal), 

correct vascular, cardiac, lung and craniofacial development (TGFβ) and the Smads have been 

shown to be required for the anterior-posterior axe establishment and endoderm formation 

(Wu & Hill, 2009). 
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With regards to embryonic stem cells, BMP-dependent actions promote self-renewal of stem 

cells by inducing a feed-forward cycle with the differentiation repressing triad of the 

transcription factors OCT4/SOX2/NANOG (Chen et al, 2008). In contrast, Smad2 can drive 

me endodermal differentiation by activating transcription of genes with an ARE motif, 

recognized by a Tripartite motif-containing 33 (TRIM33)-Smad2 complex (Xi et al, 2011). In 

progenitor cells, the synergistic action of identity factors and Smads on gene expression 

implements differentiation programs like for myoblast (MYOD1), mesenchymal and 

lymphoid (PU.1), myeloid (C/EBPα) and erythroid (GATA) progenitors (Watabe & 

Miyazono, 2009).  

 

3.4.1.3 Epithelial-to-mesenchymal transition (EMT) 

EMT is a process mainly driven by TGFβ, meaning the switch from epithelial cells into a 

migratory mesenchymal phenotype like in (myo)fibroblasts. During development, it is 

necessary for gastrulation, embryonic tissue formation and in adult tissues required for 

regenerative processes. The molecular events underlying EMT are on the one hand a loss of 

cell polarity, which is mediated by Par6 that interacts with and gets phosphorylated by TβRII 

and then induces RhoA degradation (Ozdamar et al, 2005). On the other hand, the Smads also 

induce the expression of the selfenabling transcriptional repressors Snail and Slug that 

together repress the expression of E-cadherin, a marker of epithelial cells and favor the 

expression of N-cadherin, marker of invading and migrating cells. Additionally, a preceding 

crosstalk with Wnt signaling activity creates an environment favoring TGFβ to induce EMT 

instead of growth arrest. Also other crosstalks are implicated to realize a switch from the 

proapoptotic Smad-pathway to pathways that favor migration (Heldin et al, 2009). Besides the 

beneficial effects of EMT in tissue repair and wound healing, EMT is a process crucial for 

cancer progression and occurs pathologically in fibrosis (see below). 

 

3.4.1.4 Regulation of extracellular matrix (ECM) 

The ECM is surrounding the cells, forms the major component of the connective tissue and is 

composed of characteristic proteins as collagen, elastin, fibrillin, fibronectin, lamin and 

proteoglycans. A lot of genes encoding for ECM components are found to be regulated by 

Smads, as collagens (Chen et al, 1999), making TGFβ a critical regulator of ECM synthesis 

(Verrecchia & Mauviel, 2007). The plasminogen-activator-inhibitor 1 (PAI-1), is a TGFβ 
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response gene important in maintenance of ECM and inhibition of fibrinolysis (Laschinger et 

al, 1991). This TGFβ-stimulated ECM formation is of big importance in wound healing 

(O'Kane & Ferguson, 1997), but can turn out negatively by excessive signaling and 

consequently lead to fibrosis.  

 

3.4.1.5 Angiogenesis 

Though having a repressive effect on proliferation in endothelial cells, TGFβ acts as potential 

angiogenic factor by favoring endothelial cell migration (Roberts et al, 1986). But things are 

much more complex, because TGFβ effects seem to depend on ligand concentration and the 

receptor they choose for signaling: in endothelial cells, TGFβ can signal either via the classic 

TβRI with its anti-proliferative actions, while signaling through ALK1 is associated with pro-

proliferative actions. The endothelial cells are an example where the balance of receptor 

utilization is important for the functional outcome (Pardali et al, 2010). In order to promote 

angiogenesis, TGFβ has been found to induce transcription of angiogenesis stimulation 

vascular endothelial growth factor VEGF (Ferrari et al, 2009) . 

 

3.4.1.6 Hematopoiesis 

TGFβ acts as potent inhibitor of hematopoietic stem cell proliferation. The TGFβ-1 ligand 

inhibits hematopoietic stem cell (HSC) proliferation, leaves them in a quiescent state and 

downregulates receptors for hematopoietic cytokines that would promote their differentiation 

(Yamazaki et al, 2009). This in turn also affects immune cell development that arise from 

HSCs. 

 

3.4.1.7 Bone formation  

Bone is the tissue that gives us mechanical support and organ protection, regulates calcium 

levels and hematopoiesis. The bone is composed of osteoblasts and osteoclasts. The role of 

TGFβ1 as predominantly expressed isoform lies in osteoblast progenitor recruitment, 

stimulation of proliferation and differentiation and inhibition of apoptosis, as revealed with 

TGFβ KO mice that lead to reduced bone growth and mineralization (Janssens et al, 2005). 

Also the BMP ligand has important functions in bone homeostasis and its deletion leads to 

impairment in bone formation. 
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3.4.1.8 Reproduction 

TGFβ signaling also has critical functions in the female reproductive system: it regulates 

ovarian follicle development, gonadotropin receptor expression, oocyte maturation, ovulation 

and luteinization (Abassi & Vuori, 2002). These actions are mainly mediated by the activin-

inhibin-follistatin system: activin is the ligand, while inhibin functions as a decoy ligand and 

follistatin directly sequesters activin through direct binding. An important role in controlling 

reproduction role might also be assigned to TGFβ signaling in the tanycytes, the brain cells 

surrounding the 3
rd

 ventricle that are implicated in the regulating of reproduction (Bouret et 

al, 2004; Bouret et al, 2002; Prevot et al, 2000).  

 

3.4.1.9 Immune system 

The importance of TGFβ signaling in the immune system becomes obvious with regards to 

TGFβ ligand KO mice, displaying a strong immune deregulation with hyperactivity of the 

immune system and infiltration of organs with immune cells, showing that TGFβ is an 

important immunosuppressant agent. It is acting negatively on the proliferation, 

differentiation and activation of T cells, B cells, natural killer (NK) cells, monocytes, 

macrophages, neutrophils and eosinophils. In contrast, it can exert pro-inflammatory effects, 

by directing immune cells into the development of a secretory phenotype, leading to the 

secretion of IL-6, IL-11 (Li et al, 2006). 

 

3.4.1.10 Nervous system 

TGFβ ligands are implicated in the establishment of synaptic plasticity and play a role in 

cognition and behavior. They are supposed to have neurotrophic and neuroprotective roles 

and are involved in excitatory and inhibitory neurotransmission. Furthermore, TGFβ 

influences neurite outgrowth and synaptogenesis (Krieglstein et al, 2011). TGFβ mediates 

axon specification during axon development in a Par6-dependent manner (Yi et al, 2010). 

 

3.4.1.11 Energy homeostasis 

Recently actions of TGFβ in energy homeostasis were proposed, by showing a role for Smad3 

in inhibiting the transformation of white adipose into adult brown adipose tissue through 

negative regulation of expression of markers of the brown adipose tissue (Yadav et al, 2011).  
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Figure 20 Effects of TGFβ on different cell types (Siegel & Massague, 2003) 

The effects of TGFβ are cell type specific. In epithelial cells (yellow), mainly cytostatic and apoptotic 
actions are observed and adhesion and ECM production are supported. In endothelial cells (brown) 
their migration is promoted. Immune cells (blue) mainly receive proliferation- and differentiation- 
inhibitory signals. In fibroblasts (red), TGFβ can stimulate proliferation and ECM production. 

 

3.4.2 Pathophysiological implication of TGFβ signaling 

Being such a pleiotropic molecule, malfunctioning of the TGFβ pathway can result in 

numerous diseases. Germline or somatic mutations and alterations in expression of signaling 

components can result in abnormal physiological function. Dissecting the effects of TGFβ 

signaling in disease helps to reveal and understand the physiological functions and their 

analysis can lead to identification of underlying mechanisms and the development of 

appropriate therapeutic strategies (Gordon & Blobe, 2008). 

 

Cardiovascular processes and cardiovascular disease 

TGFβ ligands are implicated in cardiac development and angiogenesis, as supported by KO 

mice of the TGFβ ligand (1,2,3) that show ventricular septum defects, myocardial thinning, 

double outlet right ventricles, failed coronary vessel and epicardial development. Smad4 KO 

in the heart leads to a hypocellular myocardial wall defect (Bobik, 2006). Disorders that were 



Introduction   81 

 

 

found to be associated with TGFβ are hereditary hemorrhagic teleangiectasia, with a vascular 

dysplasia that results in teleangiecstasia and arteriovenous malformation, based on 

inactivating mutations in the type I receptor ALK1 (Abdalla & Letarte, 2006). Impairment of 

receptor activity was also found to take place in aorta diseases or pulmonary hypertension. 

Loss of TGFβ signaling activity is associated with a higher risk to develop pre-eclampsia 

during pregnancy and atherosclerosis. In contrast, hypertension seems to be correlated to an 

increase of TGFβ levels, which might also rely on the effects by the blood pressure regulating 

actions of the renin-angiotensin-system to upregulate TGFβ expression (Wolf, 2006).  

 

Connective tissue diseases 

By positively regulating the production of ECM molecules and being dependent on ECM 

molecules for its activation, TGFβ signaling malfunction can lead to different disease 

phenotypes.  

The Marfan Syndrome is a hereditary disorder, displaying a mutation of the ECM protein 

fibrillin-1, that leads to altered anchoring of inactive TGFβ ligand and reduction in TGFβ 

release, resulting phenotypically in aneurysms, aortic dissections and skeletal manifestations 

(Lindsay & Dietz, 2011) 

Another disorder that is associated with TGFβ actions on ECM is fibrosis. Fibrosis occurs 

when the positive effects of TGFβ-mediated disposition of ECM molecules by 

myofibroblasts, for example during wound healing, lose their balance and become excessive. 

In combination with the pro-proliferative effect of TGFβ on myofibroblasts, an accumulation 

of fibroblast that produce too many ECM molecules is the consequence. A specific type of 

fibrosis is restenosis, a fibrotic response to revascularization therapies, where TGFβ can have 

a contributing effect, but the increased ECM production is often leading to complications 

(Verrecchia & Mauviel, 2007). 

 

Other diseases 

The other important functions of TGFβ in different organs listed in 3.4.1. can give rise to 

other diseases associated with TGFβ signaling.  

TGFβ and BMP ligands are indispensable for a proper bone homeostasis. Therefore, defective 

TGFβ signaling can lead to diseases as osteoporosis (Su et al, 2007a). In contrast, 

hyperactivity of the signaling pathway due to an amino acid substitution mutation in the GS 

domain of the ACVR1 type I receptor, which leads to its constitutive activation causes 
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increased bone mass and ossification as in fibrodysplasia ossificans progressiva (Groppe et 

al, 2007; Groppe et al, 2011) 

A dysfunction of TGFβ can also lead to altered development of reproductive organs, as shown 

for impaired testis or female maturation. A non-functional MIS ligand or its corresponding 

receptor causes a loss of regression of the Mullerian duct, leading to male persons having both 

male and female reproductive system, resulting in complete infertility, the persistent 

Mullerian duct syndrome (Josso et al, 2005). 

A failure of appropriate signaling during embryogenesis at the stages of blastula formation, 

gastrulation or organ development can either have lethal consequences, lead to mild disorders 

as the cleft palate, where palate fails to undergo EMT, or cause severe deformations, as the 

inversion of human organ asymmetry (situs inversus and situs ambiguus), caused by 

mutations of the ligands important for their establishment as the TGF superfamily members 

Nodal, GDF and Lefty (Lowe et al, 1996). 

Due to its huge immunosuppressant actions, defective TGFβ signaling can be the reason for 

diverse autoimmune diseases (Li et al, 2006). 

Alterations of TGFβ signaling have also been associated with neurological and psychiatric 

disorders as parkinson, multiple sclerosis, schizophrenia and Alzheimer disease (Vivien & 

Ali, 2006). 

 

3.4.2.1 TGFβ signaling in cancer  

One of the cruelest diseases and one of the main challenges of modern civilization is cancer. 

Cancer is the occurrence of malignant neoplastic transformations in one organ that can lose 

growth control and invade throughout the whole body. This is affecting proper function of the 

organism and often leads to death of the concerned individuals. Cancer development, 

progression and therapy are among the most researched fields and the findings helped to 

reveal the unique properties of cancer cells (“hallmarks of cancer” (Hanahan & Weinberg, 

2000; Hanahan & Weinberg, 2011)).  

With its growth inhibitory function, the TGFβ signaling pathway is supposed to be an 

important actor in cancer development and progression. The huge amount of data that 

correlate malfunction or inactivation of TGFβ signaling components as a result of mutations 

found in tumor cells, is coherent with its important tumorsuppressing role. But the actions of 

TGFβ are paradox: while in early stages, TGFβ functions as a tumorsuppressor, in late stages, 

TGFβ signaling can enhance cancer progression and metastasis via its ability to support 
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cellular migration and EMT. A cancer must overcome the barrier established by TGFβ 

signaling in order to develop, but then it can benefit of TGFβ signals in progressing and 

spreading. Thus, maintenance of homeostasis in TGFβ signaling is vital for inhibition of 

cancer development. Consequently, the understanding of TGFβ signaling is a notable research 

objective to help to increase the knowledge about cancer and to identify possible therapeutic 

targets, either to prevent cancer onset in early stages or to limit its progression. 

 

  

 

Figure 21 Pleiotropic actions of TGFβ in cancer (Massague, 2008) 

During cancer development, TGFβ has multiple roles. While acting as a tumorsuppressor in 
early stages, through its cytostatic actions, malignant tumors can profit from TGFβ signaling 
with its abilities to promote migration, suppress immune response and to induce EMT to 
favor invasion and metatasis. 
 

A - Tumor suppressing actions of TGFβ signaling 

In early stage tumors, TGFβ exhibits growth inhibitory function and protects against tumor 

progression through autocrine and paracrine mechanisms. In autocrine, cell autonomous 

mechanisms of suppression, TGFβ signaling induces its cytostatic program by myc-

repression, p15 and p21 activation and ID1 downregulation. Furthermore, the induction of 

cellular differentiation for certain cell lines can have, dependent on cancer type and cell, 
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cancer-limiting effects. In conditions of excessive proliferation, as we find them in cancer 

with strong proliferating phenotypes e.g. as a result of Ras mutation, TGFβ can even induce 

apoptosis of cells in order to eliminate these deviant cells (Massague et al, 2000). 

In a paracrine manner, the interplay of tumor and stroma can also generate suppressing 

effects, which emphasizes the influence of cellular communication of the tumor environment 

on cancer development. The tumor adjacent cells secret TGFβ in order to protect the tumor 

development by inducing cytostasis and repression of the expression of fibroblast derived 

mitogens (Massague, 2008). 

 

Loss of TGFβ dependent tumor suppression  

Cancer cells are genetically unstable and selective pressure gives advantage to those cells, 

who gained a surviving function due to the occurred modifications in their DNA. TGFβ 

signaling pathway related genes display an important target for a cancer to gain forces, 

explaining the high amount of genetically based dysfunction of the TGFβ signaling in cancer 

samples. Growing significance concerns the incidence of epigenetic changes that affect 

expression levels in cancer (Inman, 2011). The loss of TGFβ tumorsuppressing effects can 

have two distinct reasons: 

 

(1) Loss or inactivation of core components and signaling 

This type of defective TGFβ signaling is mainly found in colorectal, pancreatic, ovarian, 

gastric, head & neck cancer and elicits the complete loss of tumorsuppressing effects. 

Evidence was obtained from transgenic KO mouse models that display an increase of tumor 

progression (Pardali & Moustakas, 2007). Also human studies revealing inactivating germline 

and somatic mutations in TGFβ signaling core components show the connection of TGFβ and 

its tumorsuppressing role in cancer. Concerning the receptors, a frequent TβRII microsatellite 

instability in a polyadenine region, that is leading to expression of a non-functional receptor, 

can, as germline mutation lead to the hereditary non-polyposis colorectal cancer (HNPCC), or 

as somatic mutation to gastric tumors (Chang et al, 1997). Also other inactivating mutations 

in TβRI and TβRII or a decrease in their expression was found to be associated with lung, 

ovarian or pancreatic cancer. Additionally, Smad mutations are often referred to be tumor 

promoting. A Smad4 deletion, loss of heterozygocity or inactivating mutations are found in 

50% of pancreatic carcinomas (Hahn et al, 1996; Schneider & Schmid, 2003) and other 
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intestinal forms, as colon carcinoma. In contrast, the R-Smad mutations are less frequent in 

cancer (Massague et al, 2000).  

 

(2) Loss or disabling of the tumor suppressor arm  

Another possibility is only the loss of the tumor suppressing arm of TGFβ signaling. This 

form is mainly observed in breast and prostate cancer, glioma, melanoma and hematopoietic 

neoplasias. A partial loss of growth inhibiting actions of TGFβ signaling often occurs beyond 

the core signaling pathway of ligand, receptor and Smads, and enables a cell to still benefit 

from the intact core parts of TGFβ signaling. This gain of function transforms TGFβ to a 

tumor promoting factor. Thus, a tumor can take advantage of pro-tumorigenic actions of 

TGFβ and incorporate them to increase its proliferative, metastatic and invasive capacities. 

One reason for this transformation lies in the affection of TGFβ signaling regulating proteins 

(see 1.3.3.) concerning their expression levels or activity. Negative regulators of TGFβ 

signaling are often proto-oncogenes and an increase in activity or expression can lead to a loss 

of effectiveness of TGFβ signaling, as show for DRAK2 or the Ski/SnoN complex. The other 

way round, TGFβ signaling enhancing molecules can function as tumorsuppressors and a 

decrease in their activity or expression, can lead to a loss of growth inhibition, as known for 

example for Runx3. 

A loss of the cytostatic response can also be completely independent from TGFβ signaling 

molecules, but due to a deregulation of non-signaling parts (Gomis et al, 2006). Reasons can 

be an increased myc-expression that is minimalizing the effect of TGFβ on myc repression 

and consequently blocks the upregulation of cell cycle inhibitors. These cell cycle inhibitors, 

being TGFβ effector genes, can also be the object of genetic loss or disabling mutations. Also 

signaling crosstalk plays another role: an increasing amount of proteins that accomplish 

inhibitory phosphorylations on Smads can diminish their activity, as for example an often 

described Ras or CDK overexpression (Matsuura et al, 2004). Generally, an imbalance of 

tumorpromoting and tumorsuppressing events in tumorous tissue can lead to a weakening of 

the tumorsuppressing effects of TGFβ.  

 

B- Tumor promoting actions of TGFβ signaling 

The paradoxon: a switch from tumor suppression to tumor promotion 

The described loss of tumor suppression is the first step to accomplish the vicious change of 

TGFβ from being a tumor suppressor to becoming a tumor promoter. Having lost the growth 
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inhibitory branch of signaling, but remaining intact in its components, a cancer cell can 

benefit from the TGFβ core pathway to pursue its aggressive and invasive actions. There is 

also correlation of TGFβ expression and severeness of tumor. And tumors, often displaying 

an overproduction of TGFβ for growth inhibitory purposes, can utilize this amount for their 

own advantage. 

 

TGFβ-induced secretion of mitogens 

Under certain conditions, TGFβ can also become a pro-proliferative agent, as it does in 

mesencyhmal and vascular smooth muscle cells. By stimulating the autocrine or paracrine 

production of mitogenic substances as PDGF or HGF in gliomas or liver, TGFβ can stimulate 

cell growth (Ikushima & Miyazono, 2010).  

 

Immune-suppressive actions of TGFβ 

The paracrine TGFβ actions on tumor stroma can also be advantageous for tumor progression 

via suppression of the immune system. This is harbored in the suppressing effect of TGFβ on 

hematopoietic stem cell differentiation and with regards to the tumor environment in a 

suppression of immune cell maturation (CD4+ and CD8+ cells) and immune cells secreting 

pro-apoptotic factors like dendritic cells, cytotoxic T lymphocytes and natural killer cells. 

This renders a tumor being partially protected from immune surveillance (Torre-Amione et al, 

1990). 

 

TGFβ-induced renewal of tumor-initiating cells (TICs) 

Another important tumorpromoting effect of TGFβ lies in the occurrence of the cells that gain 

pluripotent stem-cell-like capacities during tumor progression, the tumor-initiating cells (TIC) 

(Iwasaki & Suda, 2009). TGFβ can promote their self-renewal and inhibit their proliferation 

and differentiation, what promotes the persistence of this cancer-promoting cell type. This 

was reported to be especially of relevance in glioma-initiating and leukemia-initiating cells 

(Yamazaki et al, 2009). Another contributing TGFβ-mediated action is the epithelial-to-

mesenchymal-transition that breeds cells with a similar phenotype as the TICs. 

 

Role of epithelial-to-mesenchymal transition on tumor progression and metastasis 

A process that resembles TIC formation is the transformation of epithelial cells into 

mesenchymal-like cells (Mani et al, 2008). The EMT implies the creation of a motile cell 
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type, the myofibroblast (or “tumor associated fibroblast”) with migratory and invasive 

capacities that can contribute to the metastatic capacities of tumors.  

Metastasis is a succession of migrations in different compartments: first local invasion from 

epithelial cells into lymph- or blood vessels, then circulation and invasion into the metastatic 

site and finally adaption and growth in a new environment. For each tumor subtype, 

depending on their tissue of origin, exist distinct patterns and organ preferences in metastasis, 

as breast cancers preferentially spread into bone or lung. The survival rate of a tumor patient 

decreases with its associated metastasis rate. The function of TGFβ in the onset of metastasis 

is backed by the existing correlation of increasing TGFβ concentrations in invading tumors 

compared to primary ones and the association of metastasis with higher levels of TGFβ. Also 

mouse models with TGFβ overexpression tend to have more invasive and aggressive cancer 

forms (Heldin et al, 2012).  

Generally, EMT is a crucial step for metastasis: the cells escape the contact with the 

environment by disassembly of cell-cell junctions and develop migratory abilities what allows 

the transformation into invasive carcinomas (Thiery, 2002; Thiery et al, 2009). 

In addition to the described mechanisms, especially the p53 crosstalk (Adorno et al, 2009), 

epigenetic alterations, and the involvement of TACE-induced cleavage of TβRI and its 

translocation to the nucleus can support the TGFβ-dependent expression of genes for EMT 

induction (Mu et al, 2011). 

Once, the motile phenotype is generated, the cells require further priming for their dispersion 

in the organism. A molecular target, that has been identified to be relevant for breast cancer 

cell priming for distant metastasis into lung is effected by Angiopoietin-4 induction (Padua & 

Massague, 2009). These spreading cells then need to use their invasive capacities in order to 

enter and colonize in the new tissue. This has been well studied for the metastasis of MDA-

MB-231 breast cancer cells as well as the mechanism they use to invade into bone tissue. The 

cells induce the production of substances that promote osteolysis and enable their nesting in 

the bone (Yin et al, 1999). 

Tumor angiogenesis 

Another hallmark of cancer and necessity for survival is neoangiogenesis, providing a tumor 

with new blood vessel for ensuring metabolism and oxygen provide. A lot of evidence exists 

for correlation of angiogenesis and TGFβ levels (de Jong et al, 2001). TGFβ can also promote 

the expression of VEGF, an important angiogenic driving force. However, dependent on the 

cancer subtype, also inhibiting effects have been described. 
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With all these described actions of TGFβ, we can conclude that it is a main actor in cancer, 

with its protecting functions in early stages and its supporting actions on late stage tumors to 

generate an aggressive and invasive phenotype. This underlines the importance to study the 

signaling of TGFβ in suitable cellular models. 

 

3.4.3 TGFβ signaling as therapeutic target 

This multitude of implications of TGFβ signaling in physiology and pathophysiology makes 

clear that TGFβ is an interesting therapeutic target. It might also function as biomarker, to 

identify cancer stages and their malignancy, and TGFβ serum levels can serve as marker in 

cardiovascular diseases or preeclampsia.  

The huge beneficial actions of TGFβ can claim for a curative enhancement of signaling, for 

example in osteoporosis, diseases with a hyperactive immune system or in early cancer 

stages. This can be obtained by administration of ectopic agonist or by the means of gene 

therapy via an increase of the expression of signaling components.  

But with regards to disorders where TGFβ signaling is not desired, strategies for its inhibition 

are required. A lot of effort has been put into the development of antagonizing methods and 

they include neutralizing antibodies, ligand traps, soluble receptors that function as scavenger, 

receptor antagonists, antisense oligonucleotides or small molecule receptor inhibitors. Their 

application can be beneficial to cancer treatment, especially in the late state, the Marfan 

syndrome or fibrosis. Antibodies against the TβRII to treat glioblastoma are already in the 

clinical trial phase (Akhurst & Hata, 2012). But still being in its infancy, a further description 

of the TGFβ signaling pathway and the identification of more context-specific molecular 

targets that are part of the signaling network can improve the development of further 

therapeutic strategies. 
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OBJECTIVES OF THIS WORK

 

After having gained evidence for ligand-independent functions of GPR50 within the 

heterodimer with the melatonin receptor MT1 and additional reports on Nogo-A and TIP60, 

proposing that GPR50 behaves as an interacting and activity-modulating protein, our 

laboratory tempted to identify further putative binding partners of GPR50. Upon application 

of the tandem affinity purification (TAP) technique, native GPR50 complexes were purified 

and subsequent mass spectrometric analysis revealed several potential interaction partners. 

Among these proteins was the transforming growth factor β receptor type I (TβRI). After a 

first in vitro verification of this interaction, the objectives of my work where the following: a 

further characterization of the interaction, including revelation of the interacting domains and 

the establishment of an endogenous complex formation. Another important part of my work 

was to characterize the impact of GPR50 on TβRI-dependent signal transduction on different 

levels of the pathway by the use of different methods. After having deciphered GPR50’s role 

in signal transduction, the unraveling of the underlying mechanism displayed another 

objective of the work. Finally, after the accomplishment of the mechanistic part, the last aim 

was, to establish a functional role for GPR50 in relation to TGFβ-dependent 

(patho)physiological effects. A first model concerned the TGFβ-signaling-deficient gastric 

cancer cell line SNU638 to gain further insight in signaling mechanisms and the effect of a 

presence of GPR50. Furthermore, we chose the MDA-MD-231 breast cancer cells as a model 

to study differences in the absence and presence of GPR50. The idea behind was, to determine 

the impact of GPR50 on TGFβ signal transduction and to correlate this to functional effects 

for this novel regulator of TGFβ-dependent signal transduction. Research based upon the 

described axis during this thesis project should enable us to gain information about how and 

when the complex of GPR50 and TβRI is formed and which are its consequences on signal 

transduction and (patho)physiological processes. 
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II. RESULTS 

 

Article 

 

Ligand-independent activation of type I TGFβ receptor (TβRI) by the 

orphan 7-transmembrane protein GPR50 in the absence of the TβRII 

 

1. Introduction 

 

Emerging evidence exists that the orphan 7TM protein GPR50, a member of the melatonin 

receptor GPCR subfamily that lost its melatonin binding ability during evolution, has ligand-

independent functions. This consists in the binding of other proteins and the modulation of 

their activity, as it has been shown on the membrane level for heteromerisation with the MT1 

(Levoye et al, 2006a) and in the cytosol for Nogo-A (Grünewald et al, 2009) and TIP60 (Li et 

al, 2011). In order to further establish this role, we sought to identify further putative binding 

partners for GPR50. By the application of a method specifically established for GPCRs in our 

laboratory, the tandem affinity purification (TAP) assay (Daulat et al, 2007), we tempted to 

isolate GPR50-associated complexes spontaneously forming in HEK293 cells. One of the 

identified proteins is the transforming growth factor β (TGFβ) receptor type I (TβRI) 

serine/threonine kinase, which is part of the TGFβ signal transduction pathway.  

The TGFβ superfamily of cytokines contains molecules, which are important for the 

maintenance of organism homeostasis as they regulate processes like cytostasis, apoptosis and 

cellular migration (Massagué, 2000). The TGFβ signal transduction pathway is a simple and 

direct pathway: the ligand binds to one membrane type II receptor, the TβRII, which recruits 

the TβRI into the complex and propagates the signal through an activating phosphorylation of 

the TβRI. The activated TβRI then transduces the signal to the R-Smads 2 and 3, which 

subsequently, after their phosphorylation, form a complex with Smad4, translocate to the 

nucleus and regulate the transcription of target genes that execute TGFβ-mediated biological 

responses (Shi & Massagué, 2003a). 
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The ubiquitous TGFβ signaling pathway is composed of a various number of ligands and 

different receptors that can evoke a multitude of cellular responses. This stands in contrast to 

the simple way of signaling flow that is mediated by a small number of different Smad 

proteins. Therefore, a lot of regulatory proteins acting on different levels of the pathway have 

been discovered in the last years. They are implicated in specifying the TGFβ signaling 

pathway in a context-dependent manner upon a multitude of different modes of action (Kang 

et al, 2009; Xu et al, 2012). In the following work, we wanted to identify the mechanism and 

mode of action of GPR50 on TβRI dependent signaling. Additionally, we wanted to 

investigate whether the two frequent variants of GPR50, the GPR50wt and the GPR50Δ4 

comprising the 
502

Thr Thr Gly His
505

 deletion in the C-terminus display any functional 

differences.  

The first part of the work focused on the description of the interaction and its character. We 

used different techniques, in order to validate the interaction, as co-immunopreciptation and 

the BRET technique. A study in different cell types upon overexpression and endogenous 

levels, helped to gain further information about the circumstances of interaction. In order to 

study the impact of GPR50 in TβRI-dependent signal transduction, the aim was to study the 

activation status of different levels from receptor phosphorylation onto gene transcription of 

the TGFβ signal transduction pathway in absence and presence of GPR50Δ4 and GPR50wt by 

the use of different techniques, as western blotting, Co-IP, nuclear extraction and reporter 

gene assay. Furthermore, we studied the molecular mechanisms responsible for signaling 

activation in the presence of GPR50. 

With the purpose of putting our findings into another context, we used the gastric cancer cell 

line SNU638 which is deficient of an intact TβRII receptor and thus devoid of TGFβ 

signaling. We addressed the question, whether GPR50 has an the capacity to restore TβRI 

signaling activity. 

For the functional assays, we decided for the MDA-MB-231 cells as a model for cancer and 

TGFβ signaling. MDA-MB-231 cells are epithelial mammary gland derived metastatic cells 

from an invasive breast cancer with highly metastatic potential. Being responsive to TGFβ 

findings based on utilization of this model helped to obtain knowledge about the effects of 

TGFβ signaling in cancer and during cancer progression. They have a hyperactivity of the Ras 

pathway leading to a less strong TGFβ-mediated growth inhibition as a result of the loss of 

myc repression (Chen et al, 2001). But still, TGFβ-dependent anti-proliferative effects are 

remarkable (Yang et al, 2012), thus MDA-MB-231 cells are forming an appropriate model for 
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studying the effects of TGFβ-mediated cytostasis. In addition, they served as a model to study 

the effects of metastasis formation due to their intact TGFβ signaling and it could be 

demonstrated, that TGFβ promotes their invasion and angiogenesis (Safina et al, 2007). These 

MDA-MB-231 cells also provided insight into the gene repertoire important for migration of 

those cells (Kang et al, 2003b) and the molecular basis for metastasis of cells had been 

deciphered (Padua et al, 2008). In addition, the mechanisms of bone metastasis have been 

dissected: homing of MDA-MB-231 cells to the bone marrow, its invasion, angiogenesis and 

osteolysis underlie a specific mechanism: TGFβ increases parathyroid hormone-related 

protein (PTHrP) secretion that leads to production of the osteolytic factor RANKL that 

promotes osteolysis and enables nesting of MBA-MB 231 cells in bone (Yin et al, 1999). 

Though our results indicated a constitutive activation of the TβRI in the presence of GPR50, 

we decided to use a model with overexpression of GPR50 to induce and study the effects of a 

constitutive TGFβ signaling. The functional effects of GPR50 were addressed in migration 

studies in a wound-healing assay and proliferation effects were tested in vitro in an 

anchorage-independent-growth-assay and in vivo in a xenograft study. 

All these different aspects should enable us, to confirm GPR50 as a new interacting partner of 

the TβRI, to describe its mode of action on activating TβRI in ligand- and TβRII-independent 

manner and to examine its functional impact on breast cancer development. The details of our 

project conception and results are topic of the following publication, which implicates all the 

principal research tasks for this thesis. 
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ABSTRACT 

The current dogma predicts that transforming growth factor-ß (TGFß) signaling is induced by 

TGFß binding to the type II TGFß receptor (TßRII), recruitment of TßRI into the complex 

and trans-phosphorylation of the GS domain of TßRI by TßRII. Here we report the formation 

of a molecular complex between TßRI and the orphan GPR50 receptor. Binding occurs 

through the respective transmembrane domains and the ATSHP motif in the cytoplasmic 

domain of GPR50 that competes with the ATGHP motif of FKBP12, a negative regulator of 

TGFß signaling, for binding to TßRI. This new complex leads to the spontaneous, ligand-

independent activation of TßRI that does not require TßRII. Overexpression of GPR50 in 

MDA-MB-231 cells promotes in vitro cell migration and inhibits tumor formation in a 

xenograft model. Our results describe a previously unappreciated spontaneous activation 

mode of TßRI and identify GPR50 as a TßRI co-receptor with potential impact on breast 

cancer development.  
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HIGHLIGHTS 

 

1. The interaction of GPR50 and TβRI induces constitutive TβRI-dependent signaling 

2. GPR50 competes with FKBP12 for binding to the TβRI 

3. GPR50 activates the TβRI in a ligand- and TβRII-independent manner 

4. Overexpression of GPR50 induces TGFβ-like responses in breast cancer cells 
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INTRODUCTION 

Transforming growth factor β (TGFß) is a cytokine, which regulates many cellular processes 

and plays an important role during normal embryogenesis due to its multiple effects on 

proliferation, differentiation, apoptosis and migration (Massague, 2012; Shi & Massagué, 

2003b). The deregulation of components of the TGFß pathway is at the basis of many 

diseases including cancer (Ikushima & Miyazono, 2010; Massague, 2008). TGFß elicits its 

effects through two single-transmembrane spanning serine/threonine (Ser/Thr) kinases called 

type I and type II TGFß receptors (TßRI and TßRII, respectively) (Franzen et al, 1993). 

Binding of TGFß to TßRII triggers the recruitment of TßRI (Wrana et al, 1994). The 

constitutively active TßRII kinase activates TßRI by phosphorylating several Ser/Thr residues 

in the highly conserved GS region (
185

TTSGSGSG
192

) located N-terminal to the kinase 

domain of TßRI (Wieser et al, 1995). This induces the so-called “inhibitor-to-substrate” 

activatory switch, which consists in the dissociation of the FKBP12 inhibitor and the 

subsequent binding of SMAD2/3 proteins (Huse et al, 2001). Phosphorylation of SMAD2/3 

by the TßRI kinase (Zhang et al, 1996) induces their dissociation from the receptor, which 

then dimerize, form a complex with the Co-SMAD, SMAD4, translocate to the nucleus, and 

regulate gene transcription upon DNA binding (Heldin & Moustakas, 2012). Alternatively, 

TGFβ can also signal through Smad-independent pathways like the activation of MAP kinases 

p38 and JNK (Zhang, 2009). The framework of this relatively simple pathway, which is based 

on one single signaling mediator that shuttles from the receptor to the nucleus to regulate gene 

expression, was revealed more than a decade ago (Massagué, 2000). Over the last couple of 

years multiple regulators have been identified that allow a context-dependent integration of 

the core signaling pathway (Massague, 2012). Most of them are facilitating the onset of 

signaling after stimulation or are regulating signaling sustainability, which underlines the 

primary importance of precisely controlling the TGFß/SMAD pathway (Kang et al, 2009; Xu 
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et al, 2012) Among these are positive regulators, such as SARA, that assists in SMAD 

recruitment to the TβRI (Tsukazaki et al, 1998), the inhibitory SMAD7 (Nakao et al, 1997a), 

which recruits E3 ligases that induce proteasomal degradation of the receptor complex 

(Kavsak et al, 2000) and TMEPAI, which interferes with SMAD2/3 phosphorylation 

(Watanabe et al, 2010). 

Only little information exists about the regulation of TGFβ signaling in the absence of ligand. 

As eluded above, FKBP12 has been described as a gatekeeper to prevent ligand-independent 

signaling by locking TβRI in its inactive conformation (Chen et al, 1997; Wang et al, 1996) 

(Wang & Donahoe, 2004). Knowing the far-reaching consequences of TGFß signaling, tight 

regulation of its ligand-independent activity appears to be a crucial issue.  

G protein-coupled receptors (GPCRs), also called 7-transmembrane (7TM) spanning proteins, 

represent the most abundant class of cell surface receptors with approximately 800 members. 

GPCRs are major drug targets accounting for up to 30% of currently marketed drugs (Rask-

Andersen et al, 2011). Many reports indicate that GPCRs have the potential to interact with 

themselves (homomers) and with other GPCRs or receptors from other families (heteromers) 

(Maurice et al, 2011a). Within these heteromeric complexes, allosteric regulation of one 

protomer by the other is often observed. Among the different GPCR members, approximately 

100 are considered as orphans for which no endogenous ligand has been identified so far. 

Apart from the ongoing deorphanization of these receptors, there is increasing evidence for 

ligand-independent functions of orphan GPCRs (Levoye et al, 2006c). Indeed, by physically 

interacting with other membrane receptors with know ligand and function, these orphan 

receptors can allosterically regulate the function of the latter. Complexes between GPCRs and 

TßR have not been described yet.  

Among these orphan GPCRs figures GPR50, which shares highest sequence homology with 

melatonin receptors, but which lost its ability to bind melatonin during evolution (Dufourny et 
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al, 2008; Jockers et al, 2008). The carboxyl terminal tail (C-tail) of GPR50 of approximately 

320 amino acids is one of the characteristic features of GPR50. This C-tail has been shown to 

scaffold several interacting partners (Grünewald et al, 2009; Li et al, 2011) and to modulate in 

a ligand-independent manner the activity of other membrane receptors such as the melatonin 

MT1 receptor within heteromeric complexes (Levoye et al, 2006b). In addition, a frequent 

sequence variant (MAF=0.4) lacking 4 amino acids (
502

TTGH
505

) of the C-tail (GPR50Δ4) 

exists in humans and has been associated with mental disorders (Thomson et al, 2005) and 

altered lipid metabolism (Bhattacharyya et al, 2006). 

We report here for the first time the complex formation between TßRI and GPR50, an orphan 

7-transmembrane spanning GPCR. Within this complex composed of TßRI and GPR50, but 

not TßRII, GPR50 enhances the basal, TGFß-independent, capacity of TßRI to activate 

SMAD2/3, most likely by excluding the inhibitory FKBP12 from binding to TßRI and by 

stabilizing activatory conformations in TßRI. 

 

RESULTS 

GPR50 interacts with TßRI 

To identify novel interacting proteins of GPR50, we applied the tandem affinity purification 

TAP) protocol recently optimized for GPCRs (Daulat et al, 2007) by fusing the TAP-tag to 

the carboxyl terminal tail of the full-length human GPR50Δ4 variant and by stably expressing 

the GPR50Δ4-TAP construct in HEK293T cells. Mass spectrometric analysis of purified 

proteins identified 5 unique peptides corresponding to the TßRI in 3 independent purifications 

but not in control purifications with naïve HEK293T cells (Figure 1A). Co-

immunoprecipitation experiments in HEK293T cells confirmed that the human TßRI 

constitutively interacts with the human GPR50Δ4 variant and the GPR50wt isoform (Figure 

1B). Similar results were observed in breast cancer MDA-MB-231 cells stably expressing 
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either GPR50Δ4 or GPR50wt (Figure 1C). To evaluate the role of TGFß activation on this 

interaction, HEK293T cells were stimulated for 2 hours with TGFß or transfected with the 

constitutively active TβRI T204D mutant (TβRI ca) (Figure 1B). The amount of co-

precipitated GPR50 was not altered indicating that the TßRI/GPR50 interaction occurs 

independently of the activation state of TßRI. To further validate these results in intact cells, 

we performed bioluminescence resonance energy transfer (BRET) donor saturation 

experiments. The Renilla luciferase 8 (Rluc8) energy donor and the yellow fluorescent protein 

(YFP) energy acceptor were fused to the carboxyl terminus of TßRI. Co-transfection of a 

fixed amount of TßRI-Rluc8 expression plasmid and increasing amounts of TßRI-YFP, 

GPR50wt-YFP or GPR50Δ4-YFP (Figure 1D) resulted in a hyperbolic saturation curve with 

increasing YFP/Rluc ratios for all receptor combinations, reflecting a specific interaction 

between BRET donor and acceptor pairs (BRET50=1.3420.185, 0.0250.006 and 

0.0310.0.010 (n=3-4)) for TßRI homomers and TßRI/GPR50wt and TßRI/GPR50Δ4 

heteromers, respectively. Incubation with TGFß had no apparent effect on the BRET signal of 

TßRI/GPR50wt and TßRI/GPR50Δ4 heteromers within the first 30 minutes after addition 

(Supplementary Figure 1A,B). Expression of TßRI-Rluc8 donor with the insulin receptor 

(IR)-YFP or leptin receptor (OBRa)-YFP negative controls resulted in a linear, non-saturable 

BRET increase, characteristic of random interactions. Overall, co-immunoprecipitation and 

BRET experiments confirm the formation of a constitutive TßRI/GPR50 complex in 

HEK293T and MDA-MB-231 cells. 

Formation of a TßRI/TßRII complex is an obligatory step of the current TGFß receptor 

activation model. To verify whether TßRII is necessary for the formation of the TßRI/GPR50 
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complex, we used gastric carcinoma SNU 638 cells, which are devoid of TβRII.

 

Figure 1. GPR50 interacts with the TβRI 
(A) Tandem affinity purification was performed with naïve HEK293T cells or HEK293T cells stably 
expressing GPR50Δ4-TAP. After purification, mass spectrometry was employed for protein 
identification. 
(B) HEK293T cells were co-transfected with GPR50Δ4 or GPR50wt and HA-TβRI-wt or HA-TβRI-ca. 
Stimulation with 2 ng/ml TGFβ was done for 1 h. Cell lysates were subjected to co-immunoprecipiation 
with anti-HA antibody and blotted against GPR50. Expression was checked in total lysates using anti-
GPR50 and anti-HA antibodies. 
(C) MDA-MB-231 stably expressing GPR50Δ4 or GPR50wt cell lysates were precipitated with an anti-
GPR50 antibody, the binding of TβRI was checked with an anti-TβRI antibody. Lysates were used to 
reveal the total expression level. 
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(D) For BRET saturation curves, HEK293T were transfected with a constant amount of TβRI-Luc and 
increasing doses of TβRI-YFP, GPR50Δ4-YFP or GPR50wt-YFP. IR-YFP and OBRa-YFP served as 
negative control. BRET signals were measured after coelenterazine addition. 
(E) SNU638 cells were co-transfected with HA-TβRI and GPR50Δ4 plasmids, GPR50 was precipitated 
with an anti-GPR50 antibody and blotting against TβRI was performed with an anti-TβRI antibody. 
Total lysates were used as expression control. 
(F) HEK293T cells were transfected with HA-TβRI and the indicated GPR50 constructs. Lysates were 
precipitated with an anti-HA antibody and blotted against GPR50 and GFP. Total lysates were 
analyzed for expression with anti-HA-, anti-GPR50- or anti-GFP antibody.  

 

TßRI was readily co-immunoprecipitated with GPR50Δ4 in these cells indicating that TßRII 

is not necessary for the formation of the TßRI/GPR50 complex (Figure 1E).  

To characterize the molecular determinants involved in the interaction, we expressed the TM 

domain (GPR50Cter) and the carboxyl terminus of GPR50 (GPR50Cter) separately (Figure 

F). Only the GPR50Cter construct co-immunoprecipitated with TßRI indicating that the TM 

region of GPR50 contains the major molecular determinants necessary for the TßRI/GPR50 

interaction. Taken together, the TßRI/GPR50 complex is insensitive to TGFß stimulation, 

occurs in the absence of TßRII and involves predominantly the TM domain of GPR50.  

 

Expression of GPR50 induces basal TβRI-dependent signaling 

Our next aim was to study the effects of GPR50 expression on TGFβ signaling. We first 

evaluated the basal SMAD2/3 phosphorylation state, which was dramatically increased in the 

presence of GPR50 (Figure 2A,B). The effect was prevented by pre-incubating cells with the 

TßRI kinase specific SB 431542 inhibitor (Figure 2C). Increased basal activation of the 

SMAD pathway in the presence of GPR50 was also observed at further downstream steps like 

complex formation between SMAD2/3 and SMAD4 (Figure 2D,E), nuclear translocation of 

SMAD2/3 (Figure 2F) and ARE- and CAGA-dependent reporter gene assays (Figure 2G,H). 

Collectively, the GPR50Δ4 variant showed more pronounced effects on basal activity of the 

SMAD pathway than the GPR50wt variant. Depending on the specific signaling event 
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monitored, TGFß stimulation had only marginal to significant effects on the increased basal 

activation of the SMAD pathway in the presence of GPR50 than the GPR50wt variant. 

 

Figure 2. Expression of GPR50 induces ligand-independent activation of TβRI-dependent 
signaling 



Results    103 

 

 

 

(A and B) HEK293T cells were transfected with myc-SMAD2 (A) or myc-SMAD3 (B), and GPR50Δ4 or 
GPR50wt. Cells were starved overnight and stimulated with 2 ng/ml TGFβ for one hour. To test 
SMAD2 phosphorylation, myc-SMAD2 was enriched with preceding precipitation with an anti-myc 
antibody. SMAD3 lysats were directly separated by SDS-PAGE. Immunoblots were revealed with p-
SMAD2- or p-SMAD3 antibodies respectively, anti-SMAD2/3 and anti-GPR50 antibodies were used to 
check expression. 
(C) HEK293T cells were transfected and prepared as described in (A and B) but additionally treated 
overnight with 10 µM of SB 431542 TβRI-kinase activity inhibitor before stimulation. 
(D and E) To check SMAD2- or SMAD3 complex formation with SMAD4, cells were transfected with 
corresponding myc- or FLAG-tagged constructs, respectively, in the absence or presence of 
GPR50Δ4 and GPR50wt. Additional transfection of a constitutive active HA-TβRI-ca served as 
positive control. SMAD4 was precipitated with an anti-FLAG antibody and bound SMAD2 or SMAD3 
was revealed upon blotting against SMAD2 or SMAD3 via the myc-tag. Total lysates were used to 
determine total expression. 
(F) Cells were transfected as in (A and B) and nuclear extracts were prepared. The presence of 
SMAD3 in the nucleus was detected by the use of an anti SMAD2/3 antibody. Lamin- and Tubulin-
expression were checked to ensure purity of the nuclear extracts and GPR50 expression was 
controlled in the cytosolic fraction. 
(G and H) To test TGFβ-dependent transcription of genes, HeLa cells were transfected with a Firefly-
Luciferase coupled ARE- or CAGA- promoter construct and a Renilla Luciferase for normalisation. 
Increasing doses of GPR50Δ4 and GPR50wt were added to the cells. Cells were stimulated overnight 
with 2 ng/ml of TGFβ and luciferase activity was measured. Figures show a representative experiment 
performed in triplicates as mean ± SEM ( * = p<0,05). 
(I) Cell were transfected as in (A and B), cell lysates were checked for phosphorylation of p38 with a 
phospho-p38 antibody. Total p38 and GPR50 plasmid expression were blotted as control. 
(J) HEK293T cells were transfected with GPR50Δ4 and GPR50ΔCter and treated as described in (A 
and B). GPR50 expression was revealed with an anti-GPR50 or -GFP antibody. 
(K) For reporter gene assay, HeLa cells were transfected with the CAGA-Firefly Luciferase construct, 
the Renilla Luciferase and constant doses of GPR50Δ4 and GPR50ΔCter. Cells were further treated 
and analyzed in reporter gene assay as in (G and H). 

 

Depending on the specific signaling event monitored, TGFß stimulation had only marginal to 

significant effects on the increased basal activation of the SMAD pathway in the presence of 

GPR50. Significantly increased basal activation was also observed for the non-canonical p38 

signaling pathway (Hanafusa et al, 1999; Yu et al, 2002) in the presence of GPR50Δ4 with no 

further increase upon TGFß treatment and to a much smaller extend for GPR50wt suggesting 

that TGFß-independent activation of TßRI by GPR50 is not restricted to the SMAD2/3 

pathway but can also be extended towards the p38 pathway (Figure 2I). 

We next wanted to define the molecular determinants of GPR50 involved in increased TGFβ 

signal transduction. Surprisingly, the GPR50Cter construct was unable to increase the basal 

SMAD phosphorylation suggesting that despite the fact that the TM domain of GPR50 is 

involved in the interaction with TßRI, it is not sufficient for the functional effect on the 

SMAD pathway (Figure 2J). The absence of effect of the GPR50Cter construct was further 
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confirmed in the CAGA reporter gene assay (Figure 2K). These observations suggest that the 

cytosolic C-tail of GPR50 is somehow involved in the functional effect of GPR50 on the 

SMAD pathway, a hypothesis that is also consistent with the differential effects observed for 

the two GPR50 variants that differ by a 4 amino acid deletion/insertion in the C-tail. 

Collectively, these data show that GPR50 promotes TßRI-dependent signaling in the absence 

of TGFβ ligand through the SMAD2/3 and p38 pathways. This effect tends to be more 

pronounced for the GPR504 variant and relies on the C-tail of GPR50 and the TßRI kinase 

activity.  

 

GPR50 interferes with FKBP12 binding to TßRI 

We then set out to identify the molecular mechanism by which GPR50 potentiates the basal 

activation of the TßR/SMAD pathway. Initial radioligand binding competition experiments 

with 
125

I-TGFß could rule out the potential modification of TGFß receptor cell surface 

expression or improved affinity of TGFß for its receptor (Supplementary Figure 2A). 

Furthermore, induction of TGFß production or secretion of cells by GPR50 expression is 

unlikely to occur as supernatants of cells expressing GPR50 were unable to promote SMAD 

phosphorylation in naïve cells (Supplementary Figure 2B).  

The absence of effect of the GPR50Cter construct on the basal activation of the SMAD 

pathway hints to the potential implication of the C-tail of GPR50 in this effect. Along this 

line, we decided to investigate the potential effect of GPR50 on proteins interacting with the 

TßR. We first verified the possibility of a direct interaction of GPR50 with SMAD2 or 

SMAD4 that might facilitate the recruitment of these proteins to the TßR and thus potentiate 

the response of the TßR/SMAD pathway. Co-immunoprecipitation experiments between 

GPR50 and SMAD2 or SMAD4 did not provide any support for this hypothesis 

(Supplementary Figure 3). We then focused our attention on FKBP12, which binds to TßRI in 
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its inactive conformation thus stabilizing TßRI in its inactive state and preventing SMAD2/3 

binding (Chen et al, 1997; Huse et al, 2001). FKBP12 has been classified as TGFß signaling 

gatekeeper as its depletion is causing hypersensitivity towards TβRII, leading to 

transphosphorylation of TβRI and subsequent induction of downstream signaling. We 

therefore tested the influence of GPR50 on the interaction of TßRI and FKBP12 by 

coimmunoprecipitation. Coexpression of GPR50Δ4 and GPR50wt variants diminished the 

amount of FKBP12 interacting with TßRI by 70% and 40%, respectively (Figure 3A). This 

effect could not be explained by the scavenging of FKBP12 by GPR50, as GPR50 did not 

interact directly with FKBP12 (Figure 3B). Collectively, these results suggest that GPR50 

competes with FKBP12 for binding to TßRI.  

To further characterize the relationship between FKBP12 and GPR50, we used the FK506 

macrolide compound, which is known to bind to FKBP12 at a site that overlaps with binding 

to TßRI (Wang et al, 1994). Pre-incubation of cells with FK506 in the absence of GPR50 

triggered indeed the expected increase in basal SMAD3 phosphorylation, an effect that was 

not further increased in the presence of GPR50 (Figure 3C). The overexpression of FKBP12 

completely abolished basal SMAD3 phosphorylation irrespective of the absence of presence 

of GPR50. The fact that the effects of GPR50 on basal SMAD3 phosphorylation can be 

blocked by FKBP12 overexpression and that the effects of GPR50 and FK506 are not additive 

are compatible with a common action mechanism, the competition of GPR50 and FK506 with 

FKBP12 for TßRI binding. To further verify this hypothesis, we aimed to identify the 

molecular basis of this competition. Sequence analysis of the C-tail of GPR50 and FKBP12 

revealed the existence of a repetitive 5 amino acid motif (AXZHP) (X=A, T, S; Z=G, S) in 

GPR50 that is similar to the 
84

ATGHP
88

 motif of FKBP12 (Figure 3D, left part). Interestingly, 

the 
84

ATGHP
88

 motif of  

FKBP12 corresponds to a loop that is part of the binding pocket in the co-crystal structure of 
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Figure 3. GPR50 is competing with FKBP12 for the binding to TβRI due to a similarity motif  
(A) (Left) HEK293T cells were transfected with HA-TβRI and myc-FKBP12 and either GPR50Δ4 or 
GPR50wt. Lysats were precipitated for FKBP12 using an anti-myc antibody and blotted with an anti-
TβRI to reveal complex formation. Total lysats were addressed for expression of myc-FKBP12, HA-
TβRI and GPR50 with corresponding antibodies. (Right) Three independent experiments were 
densitometrically analyzed and data represent the mean ± SEM ( * = p<0,05). 
(B) Co-immunoprecipation was performed according (A) with cells co-transfected with myc-FKBP12 
and either GPR50Δ4 or HA-TβRI. Precipitates were blotted against GPR50 and TβRI. 
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(C) HEK293T cells were transfected with myc-SMAD3, myc-FKBP12 and GPR50Δ4 as indicated. 
Cells were starved and stimulated for 1h with 2 ng/ml of TGFβ or of 100 ng/ml FK506. Total lysates 
were immunoblotted for SMAD3-phosphorylation and total expression of myc-SMAD3, GPR50 and 
myc-FKBP12 with suitable antibodies. 
(D) Sequence alignment of FKBP12 and GPR50 revealed sequence similarities between a C-terminal 
motif in FKBP12 and a repetitive sequence in GPR50 (upper left panel). Analysis of localization of the 
repetitive motifs in GPR50Δ4 and GPR50wt shows the proximity of one to the Δ4 deletion (lower left 
panel). Existing structural data from Huse et al. (Huse et al, 1999) highlight the implication of the HP 
loop in binding to the TβRI (right).  
(E) HEK293T cells were co-transfected with HA-TβRI or the HA-TβRI-P194K mutant and the indicated 
FKBP12 constructs. Co-immunoprecipitation was performed as in (A). 
(F) HEK293T cells were transfected with indicated plasmids and precipitated as in (A) 
(G) Reportergene assay was performed as in (2 G and H) with cells transfected with constant doses of 
the GPR50 constructs. Figure shows one representative experiment performed in triplicates as mean 
± SEM ( * = p<0,05). 
 

FKBP12 and the unphosphorylated GS region and kinase domain of TßRI (Huse et al, 1999) 

(Figure 3D, right part). To directly demonstrate the importance of the ATGHP loop of 

FKBP12 in TßRI binding, we designed two mutants predicted to abolish FKBP12 binding to 

TßR1 (FKBP12-H87L, FKBP12HP). Figure 3E shows that both mutants are unable to bind 

TßRI similar to the previously reported TßRI-P194K mutant that served as a positive control 

of the loss of interaction (Chen et al, 1997).  

To address the importance of the AXZHP motifs in GPR50, we concentrated on the 

495
ATSHP

499
 motif located next to the 

502
TTGH

505
 deletion in the GPR50Δ4 variant. 

Disruption of the 
495

ATSHP
499

 motif (H498L, ΔHP) in the GPR50Δ4 variant fully restored 

FKBP12 binding to levels seen in the absence of GPR50 (Figure 3F). Similar observations 

were made at the reporter gene level using a CAGA promoter construct underlining the 

importance of the 
495

ATSHP
499

 motif of GPR50 (Figure 3G).  

Taken together, whereas GPR50 and TßRI interact mainly through their respective 

transmembrane domains, the functional effect of GPR50 on TßRI signaling relies on the 

495
ATSHP

499
 motif in the C-tail of GPR50 that competes with the ATGHP loop of FKBP12 

for binding to TßRI. Displacement of FKBP12 contributes at least partially to the potentiation 

of the basal activity of the TßR/SMAD pathway in the presence of GPR50. The proximity of 

the 
495

ATSHP
499

 motif in GPR50 to the 
502

TTGH
505

 deletion might be at the origin of the 
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more pronounced effect of the GPR50Δ4 variant as compared to GPR50wt to modulate the 

TßR/SMAD pathway.  

 

GPR50 activates TβRI-dependent signaling in the absence of TβRII 

According to the current dogma, TßRII fulfils two essential functions in the TßR activation 

process, namely binding of TGFß and transphosphorylation of TßRI in the GS region (Wieser 

et al, 1995). As our results presented in figure 1E show that formation of the GPR50/TßRI 

complex does not require TßRII, we asked the question whether TßRI with GPR50 could 

activate SMAD3 in the absence of TßRII. Native SNU638 are indeed devoid of any TGFß 

response as monitored at the level of SMAD3 phosphorylation and expression of TßRII in 

these cells restores the TGFß responsiveness (Figure 4A). Signaling through this pathway was 

similarly restored by exogenous TßRII expression at the level of CAGA-driven reporter gene 

activation (Figure 4B). A potentiating effect of GPR50 on the basal activation of the 

TßR/SMAD pathway in the absence of TßRII was observed on the level of SMAD3 

phosphorylation in SNU638 cells (Figure 4C). This effect was entirely dependent on the TßRI 

kinase activity, as sensitive to the SB 431542 inhibitor (Figure 4D). A similar increase in 

basal activity in the presence of GPR50 was observed at the level of the CAGA reporter gene 

assay (Figure 4B). No further increase was observed upon TGFß addition, as expected, in the 

absence of TßRII. To explore the possibility that the effect of GPR50 is dependent on 

FKBP12 release from TβRI as observed in the presence of TßRII, we overexpressed FKBP12 

in SNU638 cells and monitored SMAD3 phosphorylation. Overexpression of FKBP12 clearly 

reduced the effects evoked by GPR50 further supporting the hypothesis that GPR50 competes 

with FKBP12 for binding to TβRI (Figure 4E). 

Taken together, we established that GPR50 expression in SNU638 cells can induce ligand-

independent activation of TβRI/SMAD signaling, which is sensitive to FKBP12 expression 
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levels and dependent on TßRI kinase activity. Activation of TßRI kinase activity in the 

absence of TßRII establishes a new operation mode of TßRI in the complex with GPR50.  

 

 

Figure 4. SNU638 cells show the capacity of GPR50 to activate TβRI independently of TβRII. 
(A) SNU638 cells were transfected either with Mock or HA-TβRII plasmid and stimulated for one hour 
with 2 ng/ml of TGFβ. Lysats were immunoblotted for phospho-SMAD3 and total SMAD3 and 
expression of TβRII plasmid was revealed with an anti-HA-antibody. 
(B and D) SNU638 cells were transfected with the indicated plasmids, stimulated during one hour with 
2 ng/ml TGFβ and in (D) additionally pretreated over night with SB 431542 at 10 µM. Cells were lysed 
and blotted as described before in (2A and B). 
(C) For the reporter gene assay HA-TβRII-, GPR50Δ4- and GPR50wt transfected SNU638 cells were 
treated as in (2H). Data represent the mean ± SEM (* = p<0,05) of one representative experiment 
performed in triplicates. 
 (E) SNU638 cells were transfected with the indicated plasmid and lysats were blotted with an 
pSMAD3 antibody. Additionally, HA-TβRII, GPR50 and FKBP12 expression were verified with 
corresponding antibodies.  
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GPR50 expression in MDA-MB-231 cells is sufficient to promote TGFβ resembling 

effects 

 

To further establish the functional relevance of GPR50 expression on the TßR/SMAD2/3 

pathway, we choose the well-described and widely used TGFβ responsive MDA-MB-231 

breast cancer cell line We first recapitulated the ligand-independent basal signaling in the 

presence of GPR50 and the presence of the GPR50/TßRI complex in this cell model (Figure 

5A) and then the interaction between GPR50 and TßRI (Figure 5B). We then established 

stable cell lines expressing similar levels of GPR50wt or GPR50Cter (Figure 5C) and 

performed several functional tests. The effect of GPR50 expression on the migratory ability of 

MDA-MB-231 cells was assessed in the wound healing assays (Figure 5D). Analysis of 

wound closure after 30 hours showed, that the presence of GPR50 in MDA-MB-231 cells 

increased the migratory capacities of these cells as seen by the higher number of cells in the 

wound area (Figure 5D). The same effect was observed when cells were treated during the 

wound healing process with TGFβ, suggesting a common mechanism (Figure 5D). In the soft 

agar anchorage-independent growth assay, cells stably overexpressing the GPR50Δ4 variant 

showed an inhibition of 60% in the number of colonies formed during nearly 3 weeks (Figure 

5F). Apart from the number of colonies, their size was also reduced in cells expressing the 

GPR50Δ4 variant as compared to mock and GPR50wt transfected cells. Similar results were 

obtained in xenograft experiments. Monitoring tumor growth over 34 days in nude mice 

injected with MDA-MB-231 cells in the flanks revealed that the presence of GPR50wt or 

GPR50Δ4 slows down tumor growth compared to mock-injected mice starting from day 23 

until the end (day 34) (Figure 5E).  

 



Results    111 

 

 

 

 

Figure 5. Overexpression of GPR50 in MDA-MB-231 cells induces promigratory and 
antiproliferative effects. 
(A) MDA-MB-231 cells were transiently transfected with GPR50Δ4 or GPR50wt and lysats were tested 
for SMAD 2 and SMAD 3 Phosphorylation and SMAD 2/3 and GPR50 total expression.  
(B) For the Co-IP, MDA-MB-231 cells were transiently transfected as indicated and IP was performed 
as indicated in (1E). 
(C) Analysis of GPR50 expression in lysates of stably overexpressing MDA-MB-231 cells 
(D)MDA-MB-231 cells were seeded into IBIDI µ plates, after removal of the insert, cells were 
stimulated with 2 ng/ml of TGFβ and migration of the cells and surface closure was monitored every 6 
hrs. Images show representative migration after 30 hrs of one experiment out of three. 
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(E) Anchorage-independent growth assay of MDA-MB-231 cells stably overexpressing GPR50 
monitored for 18 days. Images show an example of colony size and distribution. Diagram shows the 
mean value ± SEM of the colony number of 3 dishes for each condition in one representative 
experiment. 
(F) Xenograft experiments after injection of MDA-MB-231 cells into the flanks of nude mice. Images 
show 5 representative out of 10 (8 for the GPR50Δ4 condition) tumors. The graph shows the 
development of the tumor growth during 34 days. 

  

 

DISCUSSION 

We describe here a previously unappreciated activation mode of TßRI when engaged into a 

molecular complex with the orphan GPR50 receptor. Whereas in the classical mode of action 

binding of TGFß to TßRII promotes the association and phosphorylation of TßRI by TßRII, 

complex formation of TßRI with GPR50 leads to a spontaneous and ligand-independent 

activation of TßRI and induction of downstream signaling through TßRI regulated pathways. 

Spontaneous activation of TßRI involves reduced binding of FKBP12 to TßRI and was 

sufficient to promote several TGFß-like physiological responses like promotion of migration, 

reduction of anchorage-independent growth in vitro and reduction in tumor growth in a 

xenograft mouse model. Complex formation between GPR50 and TßRI is likely to fine-tune 

the TßRI signaling capacity in a cell context-dependent manner, defines a new ligand-

independent function for the orphan GPR50 receptor and represents the first example of direct 

crosstalk between a member of the GPCR super-family and TßRs.  

 

Activation mechanism of TßRI in the GPR50/TßRI complex 

Our results indicate that TßRI activation in the GPR50/TßRI complex is different from the 

activation mode in the TßRII/TßRI complex. Whereas TßRI activation in the TßRII/TßRI 

complex is dependent on TGFß binding to TßRII, complex formation with TßRII and 

phosphorylation of TßRI by TßRII (Wrana et al, 1994), the GPR50/TßRI complex appears to 

be independent of TßRII interaction and phosphorylation. In contrast, both activation modes  
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Figure 6. Proposed Model of GPR50 action on TβRI and TβRI-dependent signaling 
In the basal state (upper part), the TβRI and the TβRII form homodimers, that are apart from each 
other. The TβRI is stabilized in its inhibitory conformation by FKBP12 where H87 and P88 contact the 
region around the GS domain. The R-SMADs are non-phosphorylated in the cytosol and no 
transcription of target genes occurs. In the classical activation mode (lower left side), the TGFβ ligand 
binds to the TβRII, which enables recruitment of TβRI into the complex. The TβRI gets phosphorylated 
in the GS domain by the TβRII, what is accompanied by a dissociation of FKBP12 and the stabilization 
of the active conformation. Hence, the TβRI exerts its kinase activity on the R-SMADS 2/3, which in 
turn form a complex with Smad4, translocate into the nucleus, bind to DNA and regulate gene 
transcription. If the TβRI forms a complex with GPR50 (lower right side), GPR50 induces the 
dissociation of FKBP12 from the TβRI due to a similarity motif of the amino acids H87 and P88 in its 
C-tail on position 498 and 499. Furthermore, GPR50 stabilizes the active conformation of the TβRI, 
that can signal downstream even in the absence of TβRII-mediated phosphorylation, in a classical 
manner via SMAD2/3 and SMAD 4 to the nucleus where they regulate gene expression.  
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converge further downstream on the level of TßRI kinase activation, which is necessary for 

SMAD2/3 signaling. These results raise the question how the TßRI kinase is activated in the 

TßRI/GPR50 complex in the absence of TßRII? The simplest explanation would be that 

GPR50 behaves as a TßRII-like receptor that contains a kinase that phosphorylates TßRI. 

Since the cytoplasmatic domain of GPR50 shows no homology to any know kinase, this 

scenario appears very unlikely. A further option might be that GPR50 recruits a kinase into 

the TßRI/GPR50 complex, which then phosphorylates TßRI. Although we are unable to rule 

this possibility completely out at the current stage, no Ser/Thr kinase associated with GPR50 

has been identified in our TAP assay and there are no such candidates reported in the 

literature. To better understand the potential influence of GPR50 on TßRI, a closer look on the 

functional consequences of TßRI phosphorylation might be insightful. Phosphorylation of 

TßRI by TßRII on a yet to be identified site is believed to dissociate FKBP12 from TßRI thus 

liberating the two contact points of FKBP12 on TßRI, the L45 loop and the GS region, the 

latter, which can then be phosphorylated by the TßRII kinase at multiple Ser/Thr residues in 

the GS sequence (TTSGSGSG). A further, more indirect, consequence of FKBP12 

dissociation is the destruction of the inhibitory wedge that inhibits the TßRI kinase in the 

presence of FKBP12. In the next step, SMAD2/3 proteins are recruited to TßRI through the 

phosphorylated GS sequence and the L45 loop of TßRI completing the so-called “inhibitor-to 

substrate-binding switch” (Huse et al, 2001). SMAD2/3 signaling is then initiated by 

phosphorylating SMAD2/3 by TßRI and dissociation of P-SMAD2/3. 

What happens in the GPR50/TßRI complex? We have shown that the 
495

ATSHP
499

 motif of 

GPR50 competes with the 
84

ATGHP
88

 motif of FKBP12 for binding to the L45 loop of TßRI. 

Apart from this similarity, the binding mode of FKBP12 and GPR50 to TßRI appears to be 

different. Formation of the inhibitory wedge is unlikely to occur in the GPR50/TßRI complex 

as TßRI is constitutively active in this complex. Binding of GPR50 to the GS region, if it 
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occurs at all, will be different from binding of FKBP12 as the latter is highly dependent on the 

activation state of TßRI and the phosphorylation status of the GS sequence. Indeed, GPR50 

binding is independent of the activation state of TßRI. Altogether, this shows that GPR50 

competes with FKBP12 for binding to TßRI but the binding modes are likely to be 

fundamentally different providing a plausible molecular bases for the striking functional 

differences of FKBP12 binding (inhibition of TßRI) and GPR50 binding (activation of TßRI).  

Several questions remain still open concerning the precise impact of GPR50 on TßRI activity. 

For example, is the absence of FKBP12 in the GPR50/TßRI complex sufficient to explain 

constitutive phenotype? The amplitude of the SMAD2/3 signaling pathway activation of the 

GPR50/TßRI complex and independence of TßRII, together with the likely differences in the 

interaction modes of FKBP12 and GPR50 with TßRI argue for a possible additional effect on 

the stabilization of active TßRI conformation by GPR50. A second open question concerns 

the phosphorylation status of the GS sequence in the GPR50/TßRI complex. Based on the 

absence of the TßRII kinase, the GS sequence is predicted to be unphosphorylated. 

Furthermore, according to our current knowledge, TßRI is unable to phosphorylate itself yet 

its kinase activity is required for signaling (Bassing et al, 1994; Carcamo et al, 1995). 

Whether this is also true in the GPR50/TßRI complex remains to be established. Lastly, if the 

GS sequence turns out to be unphosphorylated, the binding mode of SMAD2/3 to the 

GPR50/TßRI complex is likely to be different. An intrinsic affinity of SMAD2/3 for GPR50, 

suggesting the stabilization of a common complex, can be ruled out according to our data.  

 

Other constitutively active forms of TßRI: 

Constitutive TßRI activity has been previously observed for receptors of the TGFß family. 

The TßRI-T204D mutant, which does not interact with TßRII anymore, constitutively 

activates the SMAD2/3 signaling pathway. Position 204 is part of the RTI sequence adjacent 
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to the kinase domain, which is not phosphorylated itself but has a positive allosteric effect on 

the phosphorylation of the GS sequence. This mutant receptor does not interact anymore with 

FKBP12 and shows increased TßRI kinase activity in vitro (Wieser et al, 1995). This mutant 

shows that, similar to GRP50, activation of TßRI is possible in the absence of TßRII, most 

likely by stabilizing an active conformation of TßRI. However, in contrast to the GPR50/TßRI 

complex, the TßRI-T204D mutant is still sensitive to TßRII as TGFß stimulation generates a 

further increase of SMAD2/3 signaling.  

Another reported case of a constitutively active TßRI is the naturally occurring R206H mutant 

of the activin A receptor type I (ACVRI). This mutant is associated with fibrodysplasia 

ossificans progressiva, a rare genetic and catastrophic disorder characterized by progressive 

heterotopic ossification (Song et al, 2010). Similar to the constitutively active T204D 

mutation of TßRI, the R206H mutation is located in the part of the GS region that is close to 

the kinase domain and that allosterically regulates phosphorylation of the GS sequence. 

Molecular analysis revealed indeed a modest constitutive activity and impaired FKBP12 

binding of the R206H mutant (Groppe et al, 2011). Recent studies indicate that the simple 

presence of TßRII, but not its kinase activity nor TGFß binding capacity, is necessary for the 

constitutive activity of the R206H mutant. This suggests that in the context of an activating 

TßRI mutant, the scaffolding function of a co-receptor like TßRII is sufficient for TßRI 

signaling (Bagarova et al, 2013). 

More evidence for constitutive TßRII-independent activation of TßRI comes from DAF-1, the 

TßRI of C. elegans (Gunther et al, 2000). Interestingly, signaling of DAF-1 can occur in the 

absence of TßRII (DAF-4) kinase activity and promote larval development. Differences in the 

structure of the GS region of DAF-1 in comparison to other TßRI isoforms are possibly at the 

origin of this autonomous signaling capacity of TßRI. In addition, DAF-1 can also signal 

through the more classical DAF-1/DAF-4 complex. This example suggests that the TßRII-
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independent signaling mode might have occurred early in evolution providing different 

options to fine-tune the TßRI signaling capacity.  

Furthermore, the recently reported activation of TßRI by exposing glomerular mesangial cells 

to stretch in the absence of any TGFß provides further supports for the existence of alternative 

activation modes of TßRI (Chen et al, 2013) 

Taken together these examples support the notion that TßRI has an intrinsic capacity to be 

constitutively active and that this activity can be assisted/amplified by the presence of other 

receptors like TßRII or GPR50 that solely function as scaffolding proteins. 

 

Formation and regulation of the complex 

Formation of the GPR50/TßRI complex adds a further dimension of the regulation of TßRI 

signaling, which is likely to happen in a cell context-dependent manner. Whereas expression 

of TßRI is widespread, the expression pattern of GPR50 is more restricted. Expression of 

GPR50 has been mainly studies in the brain and identified in the pituitary, the dorsomedial 

hypothalamus, tanycytes, the median eminence and the CA4 region of the dentate nucleus of 

the hippocampus (Batailler et al, 2011; Gubitz & Reppert, 1999b; Hamouda et al, 2007a; 

Sidibe et al, 2010). Expression of GPR50 in peripheral tissue is less well documented. The 

GPR50 mRNA has been observed in eye, testis, kidney, adrenal, intestine, lung, heart, ovary 

and skin (Drew et al, 2001). In addition, GPR50 expression has been shown to be highly 

regulated during different developmental stages with highest expression at E18 (Grunewald et 

al, 2012).  

With regards to known expression of GPR50 and putative in vivo occurrence of the crosstalk, 

TGFβ signaling and TβRI expression has been observed in the median eminence (Prevot et al, 

2010; Prevot et al, 2000), a region with high GPR50 levels, and might have an impact on the 

regulation of hormones implicated in reproduction. TGFβ signaling has also been reported to 
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specifies axons during brain development (Yi et al, 2010). As GPR50 is highly expressed in 

late embryonal stages (Grunewald et al, 2012) and is implicated in neurite outgrowth 

(Grunewald et al, 2009), this crosstalk might be of relevance during brain development or in 

synaptic plasticity of the adult brain. 

Expression of GPR50 seems to be highly regulated. Significant variation of GPR50 

expression has been observed depending on the photoperiod (Barrett et al, 2006), the energy 

content of the diet and the nutritional status (fed/fasted) of the animal (Ivanova et al, 2008). 

Proteolytic cleavage of the C-tail of GPR50, as reported recently, might be another way to 

regulate constitutive activation of TßRI (Grünewald et al, 2009; Li et al, 2011) as the 

truncated GPR50Cter construct was devoid of any effect on TßRI function.  

 

Differential action of regulators such as GPR50 in time and space is likely to add to our 

understanding of how the cellular context determines the response to TGFβ.  

Little is known about modified expression levels in cancer tissues. With regards to cancers, 

some studies detected an upregulation of GPR50 in early cancer states or tumorigenic tissue 

in pancreatic neoplasia (Buchholz et al, 2005) and nicotine-induced cellular transformation 

(Bavarva et al, 2013). Our results show that GPR50 might have a beneficial effect on tumor 

size and growth as shown in the xenograft experiments. Specific assays should help in the 

future to decipher the precise effect of GPR50 on tumor growth. Furthermore, the study of 

breast cancer microarrays/expression data will help to gain information about expression 

levels of GPR50 in tumor tissue. 

 

Revelation of first functional differences of the two frequent GPR50 variants 

Genetic association studies identified two common GPR50 variants, GPR50wt and GPR50Δ4, 

in the general population (Thomson et al, 2005). The GPR50 gene is located on the X 
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chromosome, in the Xq28 region. The GPR50Δ4 variant is associated with a higher risk for 

bipolar affective disorder (BPAD), major depression disorder (MDD) especially in females 

(Thomson et al, 2005). In another study, the GPR50Δ4 variant was associated with higher 

blood levels of fasting triglycerides and lower HDL levels (Bhattacharyya et al, 2006). Up to 

date no functional differences have been reported between the GPR50wt and GPR50Δ4 

variants. Our study provide a first hint for the existence of such functional differences, which 

seem to be directly related to structural elements such as the 
495

ATSHP
499

 motif located in 

close proximity to the 
502

TTGH
505

 insertion/deletion. The ATSHP motif corresponds actually 

to one out of seven similar repetitive motifs within the C-terminal domain of GPR50 

(Dufourny et al, 2008). Similar motifs are found in the C-terminal repeat domain of the RNA 

polymerase II, that functions as scaffold for auxiliary transcription factors in a 

phosphorylation-dependent manner. A similar function can be postulated for the GPR50 

repeats, which is possibly modulated depending on the presence of the 
502

TTGH
505

 

insertion/deletion motif. 

 

Crosstalk between GPCRs and TßR - modulatory function of orphan GPCRs 

Previous studies showed that stimulation of proteoglycan synthesis in vascular smooth muscle 

cells by the thrombin receptor (PAR-1) requires TßRI kinase activity and Smad2 

phosphorylation suggesting a possible transactivation mechanism between these two 

receptors. The authors did exclude an effect of PAR-1 on TGFß release but apart from that 

were unable to define the precise level of crosstalk at the origin of this effect. The 

GPR50/TßRI complex is the first example of a previously unrecognized crosstalk between the 

TGFß receptors and GPCRs at the receptor level. The capacity of GPCRs to engage into 

molecular complexes with other receptors, either of the same family (GPCR heteromers) or 

with proteins of other receptor families or transporters is increasingly recognized. Indeed, 
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such complexes significantly diversify the repertoire of pharmacological targets with a limited 

number of proteins. Such complexes might be of particular importance for orphan GPCRs. 

There exists indeed more than 100 orphan GPCRs for which no ligand has been identified yet. 

Apart from the ligand-dependent function that still have to be elucidated, an alternative 

hypotheses based on the existence of ligand-independent functions of orphan GPCRs is 

emerging (Levoye et al, 2006c). This also applies to GPR50, which has been shown to 

heteromerize with the melatonin MT1 receptor and to inhibit ligand binding, G protein 

coupling and ß-arrestin recruitment to MT1 in the common GPR50/MT1 complex (Levoye et 

al, 2006a). As in the GPR50/TßRI complex, the C-terminal domain of GPR50 appears to play 

an important role in the modulation of the function of the interacting partner. Complex 

formation with TßRI clearly expands the idea that GPR50 is a co-receptor fine-tuning the 

function of other receptors with known function. These functions might be of particular 

importance for the evolutionary conservation of GPR50, which is likely to be a true orphan 

without ligand, as GPR50 orthologs in non-mammalian species bind melatonin, a property 

that has been lost in the mammalian GPR50 (Dufourny et al, 2008). 

 

6) Potential relevance for other members of the TßRI family 

In our study we used the prototypic type I receptor TβRI, which is one of seven type I 

receptor family members. Though the TβRI was the only member of the TßRI family 

identified in the TAP assay, we cannot exclude that GPR50 interacts with other type I 

receptors as our results might be biased by the expression levels of other TßRI members in 

HEK293T cells. 

The other six members, four activin-like-receptors and two BMP-receptors, display strong 

sequence homology, underlie the same activation modus and were also found to bind FKBP12 

(Wang et al, 1994). Alignment of the expression patterns of GPR50 and the other members of 
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the TßRI family, which are more restricted as TßRI might help to identify tissues of interest in 

the organism where a crosstalk might be of physiological relevance. 

 

In conclusion, we describe here a new molecular complex composed of an orphan GPCR and 

TßRI that renders TßRI constitutively active towards the SMAD2/3 and the p38 pathways by 

dissociating the negative regulator FKBP12 from TßRI and most likely stabilizing an 

activated state of TßRI in the absence of TßRII. Such a constitutively active complex might 

be of interest in the context of the cell migration promoting and tumor inhibiting effect of 

TGFß. 
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EXPERIMENTAL PROCEDURES 

Cell culture 

HEK 293T, HeLa and MDA-MB-231 cells were cultured in Dulbecco's modified Eagle 

medium (GIBCO) containing 8% fetal bovine serum (GIBCO) and 2% 

penicillin/streptomycin (GIBCO). Selective Medium for maintenance of MDA-MB-231 

clones contained 250 µg/ml Geniticin (G418) (Sigma Aldrich). SNU638 cells were cultured 

in RPMI-1640 medium (GIBCO) with 10% FCS and 2% pen/strep. 

 

Reagents and antibodies 

Reagents: FK506 and SB431542 were purchased from Sigma Aldrich and recombinant 

TGFβ-1 was used from Peprotech. 

Antibodies: Phospho-SMAD2, phospho-SMAD3, p38 and phospho-p38 came from Cell 

Signaling, SMAD2/3 was used from BD Biosciences, anti-myc (A14 and 9E10), -TβRI V22, -

Lamin (M20), and -GPR50 came from Santa Cruz Biotechnology. Mono- and polyclonal 

Flag-Antibodies were used from Sigma, HA- and GFP-antibodies were used from Roche. 

Anti-Tubulin was purchased from AbD Serotec. GPR50 antibody7 was produced by Kernov 

Antibody Services (Hamouda et al, 2007a). All antibodies were employed according to 

recommended dilutions for either immunoprecipitation or western blotting. 

 

Cell transfection and generation of stably overexpressing cells 

Transient transfection was performed by using Lipofectamine® LTX reagent (Life 

Technologies) in HEK 293T cells, Xtremegene® 9 (Roche) for reporter gene assay in HeLa 

cells and JetPRIME (Polyplus) reagent for MDA-MB-231 and SNU638 cells, each employed 

according to the manufacturer’s instruction. Cells were incubated for 48 hrs before 

experimental use. Stably GPR50 overexpressing cells were generated by JETprime 
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transfection of G418 resistant GPR50 plasmid, selective pressure was established by using 

conditioned DMEM medium with 1 mg/ml G418 (Sigma Aldrich) 

 

Plasmid mutagenesis 

Primers for point mutations were designed with the help of the Agilent QuikChange Primer 

Design program. Mutagenesis was performed by PCR with the Phusion High Fidelity 

Polymerase (Finnzymes, Thermo Scientific). 

 

Tandem affinity purification 

All purification steps were conducted at 4 °C in the presence of a protease inhibitor mixture 

(Roche Applied Science), 1 mm orthovanadate, and 2 mM NaF. Crude membranes were 

prepared from ∼2 × 10
8
 HEK 293 cells and solubilized overnight in solubilization buffer (75 

mM Tris, 2 mM EDTA, 5 mM MgCl2, pH 8.0) with 0.25% Brij96V at a concentration of 2 

mg of protein/ml. The supernatant was recovered after centrifugation at 40,000 × g for 30 min 

and incubated for 4 h with 400 μl of rabbit IgG-Agarose (Sigma). The resin was washed three 

times with 1 ml of solubilization buffer, resuspended in 500 μl of the same buffer, and 

incubated overnight with 100 units of TEV protease (Invitrogen). The supernatant was 

collected, mixed with 500 μl of calmodulin buffer (75 mM Tris, 5 mM MgCl2, 50 mM CaCl2, 

and 0.25% Brij96V, pH 8.0) and incubated for 2 h with 100 μl of calmodulin beads 

(Stratagene, La Jolla, CA). Beads were washed three times with 1 ml of calmodulin buffer 

and two times with 1 mL calmodulin rinsing buffer without detergent (50 mM ammonium 

bicarbonate, 2 mM CaCl2) and resuspended into 100 μL of 50 mM ammonium bicarbonate, 

pH8.0. Perform trypsin digestion directly on beads by adding 1 mg of trypsin overnight at 

37°C. 
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Cellular lysis, co-immunoprecipitation and western blotting 

For preparation of cellular lysates, cells were harvested after transfection and stimulation 

according to protocol, in TNMG - Buffer with 0,5% NP-40 and a cocktail of protease 

inhibitorsd (Prunier et al, 2001) for 15 min, centrifuged at maximum speed for 20 min and 

supernatants were kept. Samples containing 500 µg to 1 mg protein were subjected to 

immunoprecipitation by incubating for 3 hrs with 2 to 5 µg of antibody. Protein G beads 

(Sigma), to enrich precipitates, were added for additional 2 hrs, prior to three washing steps in 

a Tris-EDTA-Magnesium buffer with 0,05% NP-40 buffer. Samples were diltuted in 2x 

Laemmli with 4% SDS and heated for 5 min at 95°C preceding SDS-PAGE. Cell Lysates for 

protein analysis were obtained after lysis with TNMG buffer, protein estimation was 

performed with BCA Assay (Thermo Scientific), 20 to 100 µg of sample were prepared and 

4x SDS-Laemmli was added. Samples were heated at 95°C and separated on a 12% SDS Gel. 

Proteins were blotted on a PVDF membrane (Dutscher), blocked and incubated over night 

with in 3% milk or BSA-solution antibody. Incubation with fluorescence coupled secondary 

antibodies enables readout on an Odyssee reader. 

 

BRET analysis 

HEK 293T cells were transiently transfected in 6 well plates with 100 ng or 100 to 2000 ng 

respectively of the corresponding Luciferase- and YFP-coupled plasmids, grown over night 

and transferred in to 96-well-Optiplates (PerkinElmer Life Sciences), pre-coated with 10 

μg/ml poly-L-lysine (Sigma), where they were grown for additional 24 hrs, washed with PBS, 

coelenterazine (Molecular Probes) for Luciferase stimulation was added and cells were 

subjected to measurement of emission at Luc and YFP wavelength on a Berthold Mithras™ 

as previously described (Maurice et al, 2010). 
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Nuclear Extracts 

HEK 293T cells were seeded in 100 mm culture plates and transfected with mock, SMAD3 

alone or co-transfected with GPR50wt and GPR50∆TTGH variant. The cells were starved for 

16 hrs in DMEM media without FBS and stimulated with 2 ng/mL of TGF-β for 2 hrs. The 

culture plates were rinsed twice with ice-cold phosphate-buffered saline (PBS). 500 µL of 

hypotonic buffer containing 1% NP-40 was added to each culture plate, and allowed to swell 

on ice for 15 min. The cells were scraped and taken into fresh eppendorf tube. The lysate was 

vortexed for 10 seconds, and the nuclei were pelleted (14000 rpm for 1 min). Supernatant was 

collected which is a cytoplasmic fraction. The nuclear pellets were resuspended in 100 to 200 

µL of hypertonic buffer and rotated for 30 min. at 4°C. This extract was then centrifuged 

(13000 rpm for 20 min), and supernatant was collected which is nuclear fraction. The amount 

of protein was estimated with a BCA estimation kit. The buffer compositions were as follows. 

(i) Hypotonic buffer contained 10 mM HEPES (pH 7.9), 10 mM KCl, 1.5 mM MgCl2, 1 mM 

EDTA, 25mM β-glycerophosphate, 1 mM Na3VO4, 1 mM dithiothreitol (DTT) (ii) 

Hypertonic buffer contained 20 mM HEPES (pH 7.9), 420 mM NaCl, 1.5 mM MgCl2, 25% 

glycerol, 1 mM EDTA, 25mM β-glycerophosphate, 1 mM Na3VO4 and 1 mM DTT. To both, 

buffers protease and phosphatase inhibitors were added just before use. 

 

Reporter gene assay 

HeLa cells were seeded in 12-well-plates transfected with the SMAD2-dependent Activin-

response-element (ARE) Firefly Luciferase together with the FAST-myc co-factor, or the 

SMAD3-dependent CAGA Firefly luciferase reporter gene, increasing amounts of GPR50 

ΔTTGH or WT and Renilla Luciferase as internal standard. Cells were left for 24 hrs, starved 

and stimulated with 2 ng/ml TGFβ overnight. Lysis and measurement were performed with 
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the Dual Luciferase Kit (Promega) according to manufacturer’s advices. Experiments were 

performed in triplicates, figures show representative experiment. 

 

Radioligand binding assay 

MDA-MB-231 cells were plated in 6-well plates in incubated with 
125

I-TGFß (100000 

cpm/mL; NEX267) in DMEM, 20 mM Hepes, pH 7.4, 0.4% BSA for 4h at 4°C to determine 

the number of surface exposed receptors. Non-specific binding was determined in the 

presence of a 100 fold excess of unlabled TGFß. Cells were washed twice with ice-cold PBS 

and extracted in 1mL 1N NaOH and 
125

I-TGFß quantified in a scintillation counter. 

 

Soft agar assay/anchorage-independence assay 

35mm dishes were coated with a layer of 0,5% Agar containing a DMEM/7% FBS solution. 

1*10
5
 MDA-MB-231 cells were mixed with 0,3% agar containing DMEM-Media with 7% 

FCS and distributed upon the first layer. Colony formation was measured about 20 days after 

seeding. 

 

Migration and wound healing 

25.000 cells were seeded into 35mm µ-dishes with a silicon insert (IBIDI), starved over night 

and the insert was removed the following day. Closure was assessed every 6 hrs for 36 hrs 

under a light microscope. Analysis of wound closure was performed using ImageJ. 

 

Xenograft experiments 

1x10
6
 MDA-MB-231 cells were diluted 1:1 in a Matrigel™ (BD Biosciences) and 

subcutaneously injected into the right and left flank of nude mice. Tumor growth was 
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monitored every 3 days and measured using a caliper. Tumor volume was calculated with the 

(width)
2
 x length x π/6 formula. 

 

Statistical Analysis 

Statistical analysis of data was performed with a two-tailed unpaired T-Test. A p value <0.05 

was considered for statistical significance. 

 

SUPPLEMENTAL INFORMATION 

Supplemental Information includes three figures that can be found with this article. 
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Supplementary Figures 

 

S1 BRET experiments in absence and presence of ligand 
(A and B) For BRET saturation curves, HEK293T cells were transfected with constant amount of TβRI-
Luc GPR50Δ4-YFP (A) or GPR50wt-YFP (B). Cells were washed and coelenterazine was added. 
BRET signals were measured after addition of 2 ng/ml of TGFβ or PBS as control. 

 

 

 



Results    135 

 

 

 

 

 

(A) The effect of GPR50 on ligand binding  
To address binding of TGFβ, MDA-MB-231 cells were transfected with GPR50Δ4 and GPR50wt. 
Binding of TGFβ was assessed in a competion-radioligand-binding assay with radio-labeled and cold 
TGFβ.  
 
(B) Secretion of TGFβ in presence of GPR50. 
HEK 293T cells were starved and treated for one hour with the supernatant of HEK293T cells either 
transfected with Mock, GPR50Δ4 and GPR50ΔWT. Stimulation with 2ng/ml of TGFβ served as 
positive control. Cells were than analysed for their SMAD3 phosphorylation and total SMAD3. Cells 
providing supernatant were checked for GPR50 expression. 
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S3 Co-IP of Smad2 and 4 with GPR50 
Co-immunoprecipation was performed with HEK293T cells co-transfected with myc-SMAD2 or SMAD4 
and either GPR50Δ4 or GPR50wt. Lysates were incubated with an anti-myc antibody to precipate the 
SMADs. Precipitates were blotted against GPR50 and total lysates were analysed with an anti-myc 
and an anti-GPR50 antibody for plasmid expression. 
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III. DISCUSSION 

The initial aim of this project was to identify further binding partners for GPR50 by applying 

the TAP assay to the full-length receptor. After having identified the TβRI as a candidate 

binding partner, we successfully validated this interaction in vitro with different techniques. 

This prompted us to focus our attention on TβRI-dependent signal transduction and to 

investigate the impact of GPR50 on TGFβ signaling. Unexpectedly, we observed that GPR50 

has the capacity to induce a ligand-independent activation of the TGFβ pathway, which is 

dependent on the TβRI kinase activity. The analysis of the molecular mechanism revealed that 

GPR50 competes with the negative regulator FKBP12 that keeps TβRI in an inactive 

conformation upon TβRI binding. Furthermore, we showed an activation of the TβRI in the 

absence of TβRII. The utilization of the MDA-MB-231 breast cancer cell lines 

overexpressing GPR50 or not, revealed pro-migratory and anti-proliferative effects of GPR50 

that resembled the action of TGFβ in this model.  

We describe here a new regulatory mechanism of TβRI-dependent signaling upon complex 

formation with the orphan 7TM protein GPR50 with a possible role in breast cancer 

development. These findings can be integrated into the current knowledge under different 

aspects and give rise for future research, which are depicted in the following: 

 

1. The complex of TβRI and GPR50 

This work identified a novel regulator of TGFβ signal transduction. The TGFβ signal 

transduction pathway is a direct pathway that goes straight from the membrane through the 

cytosol into the nucleus. The core components of this pathway are the TGFβ ligand, the 

serine/threonine kinase transmembrane receptors type I and type II and the signaling 

mediators, the Smads, that shuttle between cytosol and the nucleus, where they regulate gene 

expression (Massague, 1998). In order to establish signaling specificity and to allow cell 

context-specific signal transduction, proteins that interfere in a positive or a negative manner 

with activation or longevity of TGFβ signaling are necessary (Schmierer & Hill, 2007). 

During recent years, many proteins that modulate TGFβ signaling on the level of ligand 

(Moustakas & Heldin, 2009), receptor (Runyan et al, 2006) or the Smads (Xu et al, 2012) 

have been identified. With the discovery of GPR50 as a novel regulator of TGFβ signaling, 

we not only identified another protein, that can fine-tune TGFβ signaling, but that also adds 

previously unappreciated aspects to TGFβ-dependent signaling. 
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1.1.  A new mode of activation for the TβRI 

The dogma for activation of the TGFβ-dependent signaling consists in a well-defined 

signaling flow. The TGFβ ligand binds to the TβRII, that recruits the TβRI into the ternary 

complex (Wrana et al, 1994) and activates TβRI via phosphorylation in its GS domain 

(Wieser et al, 1995). Subsequently, TβRI phosphorylates the Smads that transduce the signal 

into the nucleus and regulate gene expression (Nakao et al, 1997b) or may alternatively 

activate other non-canonical pathways as p38 (Zhang, 2009). Studies have proven the 

necessity of the presence of the TβRII for the activation of TβRI (Luo & Lodish, 1996; 

Okadome et al, 1994; Vivien et al, 1995) due to the transphosphorylation of the GS domain of 

TβRI by TβRII (Carcamo et al, 1995). Our findings in contrast, demonstrate a previously 

undescribed mode of activation for the TβRI, independent from ligand binding and TβRII-

dependent phosphorylation. The question is, how GPR50 is able to induce the kinase activity 

of the TβRI without the normally preceding steps.  

 

1.1.1. Competition of GPR50 for receptor binding with FKBP12 

Our work could identify, that GPR50 competes with FKBP12 for TβRI binding. FKBP12 has 

been identified as negative regulator of TGFβ signaling with a gate-keeping function. It 

stabilizes an inhibitory confirmation of the TβRI by promoting the formation of an inhibitory 

wedge of the GS region and thus prevents ligand-independent signaling (Wang & Donahoe, 

2004) by locking the TβRI in a kinase-inactive conformation and blocking the access for 

Smad binding to the GS region. Ligand binding and subsequent phosphorylation by the TβRII 

is accompanied by dissociation of FKBP12, although it remains unclear, at which point the 

release of FKBP12 occurs. Removal of FKBP12 leads to a loss of the inhibitory wedge in the 

GS domain and favors TβRII-mediated phosphorylation of Ser/Thr residues in the GS region, 

which allows the binding of the Smads and further signal propagation. Thus, the depletion of 

FKBP12 from the receptor might explain how GPR50 is able to induce a ligand-independent 

signaling. But there are two points that indicate that the release of FKBP12 is not the only 

event that happens in the presence of GPR50: 

First of all, by release of FKBP12, we only observe a weak basal signaling activity that 

increases further upon ligand stimulation (Charng et al, 1996). This stands in contrast with the 

high levels of activation we observed in the presence of GPR50, that did only show a small 

further increase of Smad phosphorylation after ligand stimulation (Figure 2 A,B), giving a 

first hint, that GPR50 might have further effects on the TβRI. Different studies  have shown, 
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that the reason for leaky signaling in the absence of FKBP12 is a hypersensitivity to TβRII 

(Chen et al, 1997; Stockwell & Schreiber, 1998). In cells deficient in TβRII, an activity of 

TβRI mutants incapable for binding the FKBP12 was only observed after ectopic expression 

of a wildtype TβRII but not kinase inactive TβRII mutants. Hence, leaky signaling in the 

absence of FKBP12 is explained by incidental ligand-independent phosphorylation in the GS 

domain by the TβRII. In contrast, our results show ligand-independent signaling in the 

presence of GPR50 in TβRII-lacking SNU638 gastric cancer cells. Thus we can suggest an 

active participation of GPR50 through the stabilization of a constitutively active conformation 

of the TβRI that does not require the TβRII anymore. With regards to literature, there exist 

some hints, that a constitutive activity of the TβRI is possible. 

 

1.2. Constitutive activity of the TβRI and ligand-independent signaling 

Currently, there is only little evidence that the human wildtype TβRI can be activated and 

phosphorylated by TβRII in the absence of ligand. Nevertheless, some cases of constitutive 

activity of the TβRI have been reported. 

 

1.2.1. The TβRI T204D mutant 

In a study, that claimed to investigate the different effects of mutations in the GS domain on 

activity and activation of the TβRI (Wieser et al, 1995), a mutation of Thr204 into Asp, 

resulted in a ligand-independent constitutive activitation of the receptor. Thr204 is located 

adjacent to the GS domain. Although it is most likely not directly phosphorylated it promotes 

phosphorylation of Ser/Thr residues in the GS domain. Exchange of Thr into a more spacious 

and negatively charged Asp might results in conformational changes that translate to the GS 

domain. The GS domain probably loses its inhibitory wedge and is able to exert positive 

allosteric effects on the kinase domain. However, this mutant is still sensitive to the TβRII 

and signaling increases further in the presence of ligand and intact TβRII. In the case of 

GPR50 and the TβRI, we did so far not determine, whether our results show a complete 

independence of the TβRII and if additional effects are due to ordinarily activated TβRI or 

whether GPR50 and TβRII can exert mutually additive effects on TβRI activation. Results 

obtained in SNU638 cells argue that the GPR50/TβRI complex is completely ligand-

insensitive and that residual TGFβ effects are generated from classical TβRI/TβRII complexes 

in cells expressing both isoforms. 
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1.2.2. ACVR1 R206H and L196P mutants in fibrodysplasia ossificans progressiva 

In the genetic disease fibrodysplasia ossificans progressiva (FOP) with a phenotype of 

exceeding and inappropriate bone growth, two different mutants are associated with 

constitutive ligand-independent type I receptor activation. These mutants are found in the 

activin A receptor 1 (ACVR1), another one of the seven family members of type I receptors, 

that binds the BMP ligand and signals via Smad 1, 5 and 8. In the case of the R206H mutant, 

the concerned amino acid is located, similar to the TβRI T204D mutant in proximity to the 

GS domain (Groppe et al, 2007), a conserved region among all the type I receptors. This 

mutant is displaying ligand-independent activation (Song et al, 2010) and shows reduced 

binding to FKBP12 (Groppe et al, 2011), which is similar to our results. This constitutive 

signaling in the absence of ligand results in permanent activation of BMP target genes even in 

the absence of external signals, explaining the excessive and undesired bone growth in these 

patients. Another mutant, which has been identified involves a Leu to Pro substitution at 

position 196, an amino acid directly located in the GS domain and important for the binding 

of FKBP12 (Ohte et al, 2011). This mutant also shows constitutive activity, probably due to 

the loss of FKBP12 binding.  

It is noteworthy that, at least for the R206H mutant, constitutive signaling still depends on the 

presence of the TβRII (Le & Wharton, 2012) even though its kinase activity is not required 

for ligand-independent activity of the TβRI (Bagarova et al, 2013). Thus, a TβRII-mediated 

phosphorylation in the GS domain of the TβRI is not essential for type I receptor activation in 

the case of the ACVR1 R206H mutant. Nevertheless, the presence of TβRII might have a 

distinct role, like binding of other proteins necessary for activation. In the case of the 

TβRI/GPR50 complex, TβRII-dependent functions can probably be complemented by the 

presence of GPR50. 

 

1.2.3. TβRII-independent signaling in C.elegans 

Further evidence for the capacity of the TβRI to signal in the absence of an intact TβRII 

comes from evolutionary lower organisms like C.elegans. In this organism, the type I receptor 

corresponds to the DAF-1 protein (Georgi et al, 1990) that can signal together with DAF-4, 

the type II receptor homolog to transduce the signals of the DAF-7 growth factor. It has been 

reported, that this receptor is able to signal in the absence of DAF-4 kinase activity (Gunther 

et al, 2000), yet the presence of fully active DAF-4 further increases its signaling activity. 

Sequence alignment and comparison reveals, that DAF-1, compared to other type I receptors, 
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presents striking differences in the important region around the GS domain. Most of the 

phosphorylation targets are absent, the GS domain is reduced and also a Leu- and Pro-residue 

for a hypothetical FKBP12 binding are missing. These findings suggest that this altered 

sequence leads to a divergent structure of the GS domain that might result in a loss of the 

inhibitory wedge and its negative effects on the kinase domain of DAF-1, which eventually 

promotes constitutive activity. In contrast, the ligand-binding or at least the ligand-binding 

domain is required for this constitutive activity, suggesting either steric effects of the ligand 

binding domain or genuine ligand binding involved in the constitutive activity. This suggests, 

that at some point during evolution a constitutive active and ligand-independent type I 

receptor must have been useful. Probably, FKBP12 and the TβRII developed to provide 

control mechanisms for the TβRI activity that became necessary during evolution. 

Unfortunately it has not been studied whether, analogous to the ACVR1 R206H mutant, the 

presence of DAF-4 is required or whether DAF-1 can even signal in the absence of the type 2 

receptor.  

 

1.2.4. Stretch-induced activation of the TβRI  

Recently, work has been published, that describes ligand-independent activation and signaling 

of the TβRI in case of cellular stretching (Chen et al, 2013). The mechanisms that act 

upstream and are responsible for activation have so far not been dissected, thus not excluding 

the involvement of other ligands than TGFβ. Furthermore, no information is given about the 

involvement of the TβRII in activation. 

 

The existence of constitutive active forms shows that under certain circumstances, a 

constitutive activity and a ligand-independent mechanism must have been advantageous that 

probably got lost during evolution. Taken together, the existence of this constitutive active 

forms, either early in evolution, artificial in laboratory mutations or in disease genotypes, 

support in coherence with our findings, that a type I receptor can signal in the absence of 

ligand and the absence of type II receptor kinase activity. Additionally, the examination of the 

behavior of this mutants showed, that a TβRII-mediated phosphorylation after ligand 

stimulation can have further increasing effects, but that it is not compulsory for an activation 

of the type I receptor. For the moment we have not figured out, whether, in the presence of 

GPR50, a GS domain phosphorylation is necessary for signaling or whether the TβRI can 

signal just by the allosteric alterations provided by GPR50. Further studies in a receptor-
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deficient environment will hopefully help to gain information about the circumstances of a 

GPR50-mediated constitutive activity of the receptor. 

 

1.3. The active role of GPR50 in inducing constitutive TβRI activity 

Our work consists of the novelty, that GPR50 is able to activate the TβRI in absence of the 

TβRII. An interesting task for the future will be the investigation of additional effects of 

GPR50 making TβRII unnecessary. This research can be based on several hypotheses: 

 

1.3.1. GPR50 acting as a kinase 

GPR50 could be a kinase itself that phosphorylates the GS domain in order to induce kinase 

activity of the TβRI. Even though GPR50 has a characteristic long cytosolic C-terminus, 

modern in silico techniques of sequence alignment and motif identification did not identify 

any homology to any known kinase. Additionally, the C-terminus is an ancestor of the RNA 

Polymerase II, a nuclear protein without any intrinsic kinase activity. 

 

1.3.2. GPR50 acting as a scaffold protein 

GPR50 might be a scaffold for another kinases that can phosphorylate TβRI. Our results did 

so far not include the demonstration of direct association of the TβRI and GPR50. Thus, the 

activation might also pass through an intermediate. It can be imagined, that GPR50 recruits 

another cytosolic serine/threonine kinase that is capable of phosphorylating the TβRI to 

explain its activation in the absence of the TβRII. But yet, neither our TAP-assay, nor a Y2H 

assay from our group or others identified any kinase as a potential binding partner for GPR50. 

And with regards to TβRI, there is no indication that the TβRI gets phosphorylated by any 

other kinase then a type II receptor in the GS domain. Further experiments will address, 

whether GPR50 is in direct contact with the TβRI or whether additional proteins are involved.  

 

1.3.3. Stabilisation of an active conformation of the TβRI  

Our results indicate that GPR50 removes FKBP12 and stabilizes an active conformation of 

the TβRI. This observation is supported by the fact, that there is only a partial but sufficient 

competition between FKBP12 and GPR50. FKBP12 contacts the TβRI on two positions, with 

the 40s loop to the GS domain and with the 80s, which contains the ATGHP motif, also the 

L45 loop responsible for Smad binding (see Introduction, Chapter 3.2.3.4). We identified only 

the 
84

ATGHP
88

 of FKBP12 80’s loop for being similar in GPR50, what proposes a partial 
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competition with FKBP12, that is yet sufficient to provoke its release and is consistent with 

our data that a loss of the the HP residues in FKBP12 is enough to disturb the binding to the 

TβRI. GPR50 probably takes place at the interface of Smad binding (L45 loop) but additional 

structural features of GPR50 might provoke a loss of the inhibitory wedge in the TβRI GS 

domain that usually gets stabilized by the 40’s loop of FKBP12. Probably, an available crystal 

structure or structural prediction of GPR50 might allow a comparison of FKBP12 and GPR50 

and their binding sites to TβRI. 

 

1.3.4. Phosphorylation status in the presence of GPR50 

We did so far not examine the phosphorylation status of the TβRI in presence of GPR50. A 

mutation of all the known putative phosphorylation residues in the GS region at once 

prohibits TGFβ signaling, suggesting a role for downstream signaling (Wieser et al, 1995). An 

autophosphorylation in absence of the TβRII seems quite unlikely, even though it has been 

reported, that homodimers of the TβRI can complement each other if in one GS- and in the 

other the kinase domain are defective (Weis-Garcia & Massague, 1996). If we imagine 

GPR50 as an orchestrating molecule, that regroups TβRI and releases the inhibitory wedge in 

the TβRI, we cannot exclude an auto-transphosphorylation of TβRI within such clusters in the 

presence of GPR50. It will be an important question for the future, to identify the 

phosphorylation status of the TβRI in presence of GPR50 and to identify whether GPR50 still 

exerts its promoting effect on TβRI in the absence of known phosphorylation sites in the 

TβRI. 

 

1.3.5. Importance of further FKBP12 similarity motifs 

GPR50 contains four repetitive motifs, that are similar to the 
84

ATGHP
88

 sites in FKBP12 (as 

shown in Figure 3e). For the moment, we do not know, whether they all have the same 

influence or whether the effects we observed are restricted to the 
495

ATSHP
499

 sequence in 

proximity to the insertion/deletion of GPR50. The deletion might cause steric alterations that 

favor the interaction between TβRI and GPR50. Currently, it can not be excluded that all 

motifs regroup several receptors at once. Further mutational studies will surely provide insight 

into the role of this repetitive sequence in GPR50 with regards to TβRI activation. 
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1.3.6. Complex formation in the presence of GPR50 

Another possibility is, to imagine GPR50 as a novel co-receptor for TGFβ that might create, 

in complex with TβRI, a high affinity binding site for TGFβ. It has been reported before that 

some receptors gain novel ligand binding capacities upon the formation of uncommon 

receptor combinations (ten Dijke & Hill, 2004). But according to our results, this hypothesis 

seems quite implausible. Our results show that the C-tail of GPR50 is involved in signal 

transduction and that the presence of the transmembrane part is not sufficient for downstream 

signaling. Thus, a role where GPR50 serves as a ligand-binding protein in the complex is 

difficult to imagine. Even though we cannot rule out the possibility that the different parts of 

GPR50 have separate functions: one that is responsible for the binding of a ligand and another 

that modulates the intracellular part to induce the activity of the TβRI, which is supported by 

the idea that full length GPR50 is required for being effective. 

 

1.4. Regulation of complex formation GPR50/TβRI 

In our case, the GPR50/TβRI complex seems to be formed constitutively. However, several 

ways to regulate this complex can be envisioned in a physiological context. According to 

existing principles in biology the following possibilities exist to regulate complex formation: 

  

1.4.1. Regulation of cellular protein levels 

Protein expression 

The first possibility lies in the regulation of protein levels, either through gene expression, or 

half-life limitation by protein degradation. We know that TβRI is ubiquitously expressed, thus 

we can suppose its protein levels being more or less stable. With regards to GPR50, studies 

could show GPR50 expression levels are regulated during season (Barrett et al, 2006) and 

depending on the energy status (Ivanova et al, 2008). Furthermore, the existence of a miRNA 

target sequence in the promoter region (John et al, 2004) and the findings for a Dnmt-

dependent regulation (Kotini et al, 2011) suggest a tight control of GPR50 expression and 

levels in the cell.  

 

Protein stability 

With regards to protein stability, other means of regulation of complex formation might 

consist in proteasomal or lysosomal degradation. Several mechanism that imply the ubiquitin-

mediated degradation of the TβRI receptor complex have been described (Soond & Chantry, 
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2011) suggesting an involvement of such pathways to regulate the TβRI/GPR50 complex. 

GPR50, though being an orphan 7TM protein, might also be the subject to classical GPCR-

desensitization pathways or regulations. The findings, that GPR50 is subject to proteolytic 

cleavage and subsequent nuclear translocation (Li et al, 2011) might add a possibility to 

regulate the activity of the complex, since the cytosolic part of GPR50 is indispensable for 

activation of the TβRI. Further investigation that addresses the proteolytic cleavage of GPR50 

will surely provide more insight into possible regulation mechanisms of GPR50 activity.  

 

Protein localisation  

Regulation of the complex might also be established through a regulation of the subcellular 

localization of both proteins. It has been well described, that the TβRI is subject to 

internalization either in order to become recycled or in order to get lysosomally degradated 

(Di Guglielmo et al, 2003). 

The interaction itself in contrast does not seem to interfere with localization of the TβRI; 

binding experiments in absence and presence of GPR50 did not show any changes in binding 

capacity, providing evidence that neither increased surface levels of receptor nor increased 

internalization or a change in receptor stability might occur for the complex in presence of 

GPR50. 

 

1.4.2. Regulation by feedback loops 

A quite frequent observation is, that most of the genes, that interfere with the activity of the 

TGFβ signaling pathway and its receptor are part of feedback-loop mechanisms. Negative 

regulators as Smad7 (Nakao et al, 1997a) and DRAK2 (Yang et al, 2012) are often induced by 

TGFβ signaling in order to attenuate signaling. This is a sophisticated mean of a cell to 

regulate signaling spatially and temporarily. For the moment, we did not investigate, if active 

TGFβ signaling has any influence on the expression of GPR50. But future experiments will 

address the question whether there is a connection between GPR50 expression and active 

TGFβ signaling.  

Another question is, how the interaction itself deals with negative feedback loops. Usually, 

we would suggest, that the activation of the receptor in GPR50 goes along with an increased 

expression of negative feedback loop regulators as Smad7 that would terminate or weaken 

signaling by receptor complex degradation and a decrease in Smad phosphorylation. We did 

not address so far, whether GPR50 provides any protection against signaling arrest. Our 
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results do not indicate a decrease in signaling, as Smad phosphorylation remains constant. But 

we can assume, that there must be a way to cope with the habitual negative feedback loop that 

occurs after TGFβ signaling. It might be interesting to see whether there is a competition 

between Smad7 and GPR50 on receptor binding or whether GPR50 also possesses the 

capacity to prevent binding of the negative Smad7 regulator and subsequent arrest of 

signaling if necessary. In turn, a signal induced by GPR50 that can endure long time would 

provide the cell with a constant amount of active TGFβ signaling. 

 

1.4.3. Regulation by other proteins 

Another possibility lies in the fact, that accessory proteins might induce the interaction by 

functioning as scaffold proteins. Thus, distinct signals might induce a protein-mediated 

juxtaposition of GPR50 and the TβRI with the purpose of allowing a GPR50-induced 

constitutive activation in the absence of ligand. Such regulation would be a rapid way to 

induce TGFβ-dependent signaling and is in favor of mechanism that involves gene expression 

of receptor and ligand and secretion.  

 

1.5.  Translation of our concept of activation to the TGFβ superfamily 

In the present study, the main focus was lying on the prototypic TβRI/TβRII complex and its 

canonical downstream signaling through the Smads. After having concluded about the general 

aspects of complex formation and signaling mechanisms, an interesting task is now, to see 

whether this concept is applicable to the entire signaling spectrum of the TGFβ superfamily of 

cytokines. 

 

1.5.1. Extension to non-canonical signaling of receptors 

The TβRI can not only signal via the Smads, but can also be directed to activate other 

downstream signaling pathways through non-canonical signaling (Zhang, 2009). Receptor 

associated proteins are often responsible for activating these pathways, as shown for TAK1 

that activates p38 (Hanafusa et al, 1999) and TRAF6 that directs TGFβ signals towards p38 

and JNK (Yamashita et al, 2008) (see also Introduction Chapter 3.3 and 3.4). Whether 

GPR50-mediated activation of the TβRI results in activation of multiple possible downstream 

signaling pathways or whether GPR50 selectively activates distinct signaling pathways 

downstream of the TβRI has not been thoroughly studied. Our results indicate that GPR50 
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promotes also activation of p38, suggesting a more general effect of GPR50 on TβRI 

signaling. But additional experiments will provide understanding for the influence of GPR50 

on downstream signaling. 

 

1.5.2.  Extension to other TGFβ receptor family members 

The TβRI is one of seven members of type I receptors of the TGFβ ligand superfamily. The 

other six members are four activin-like-receptors and two BMP-receptors. They display a 

strong sequence homology, especially in the cytoplasmic part that is relevant for signal 

transduction: they all comprise the GS domain and are capable for binding FKBP12 (Wang et 

al, 1994), suggesting that they underlie all the same activation mechanism, even though most 

information was gained upon investigating the TβRI and TβRII. Since our results suggest so 

far no mechanism, which seems to be unique for TβRI, the extension of this concept of 

activation towards other type I receptors seems likely. So far, with regards to the TAP assay, 

no further type I receptors interacting with GPR50, but this might depend on the relative 

expression levels of the different TβRI family members. One-by-one verification of these 

interactions by co-IP or BRET should resolve this issue and show whether activation of Smad 

1,5 and 8 could be also regulated by GPR50. This in turn can also contribute to the 

understanding of the physiological relevance of such complexes (see below). 

 

1.6. Crosstalk between GPCRs and TβRI 

The proteins that regulate TGFβ signaling are quite divers, ranging from proteins with 

enzymatic functions (phosphatases, kinases, ubiquitin ligases) to multidomain proteins with 

adaptor functions (see Chapter I – 3.3.). So far, there have been no reports describing 7TM 

proteins interfering with TβRI activation through direct receptor interaction. Nevertheless, 

some intersections have been described concerning a crosstalk between GPCR- and TGFβ 

signaling at downstream levels during the last years. 

It has been shown, that TGFβ signaling can be regulated by proteins that usually are 

associated with regulation of GPCR signaling. The β-arrestin molecule is, amongst others, 

responsible for GPCR internalization and signal termination. A similar mechanism was 

described for the accessory TβRIII betaglycan (Chen et al, 2003), where interaction induces 

TβRII/TβRIII receptor complex internalization and signaling arrest. This data got support by 

the detection of a direct interaction between the TβRII and β-arrestin (McLean et al, 2013). 

Another link has been found for GPCR-specific kinases, the GRKs, that phosphorylate a 
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GPCR prior to β-arrestin binding, thus being part of a negative regulating mechanism. 

Analogous events have been described, where GRK2 had been identified as TGFβ-response 

gene, which then associates with Smads and prevents their C-terminal phosphorylation, 

providing a mean for negative feedback loop regulation. Though these molecules have been 

identified originally to be responsible for the regulation of GPCRs it is now established, that 

their modes of action can also be extended to other signal transduction pathways (Gurevich et 

al, 2012) (Shenoy & Lefkowitz, 2011). Thus, in this case, we should not directly speak of a 

crosstalk, but of proteins with a regulatory function that initially have been identified in 

association with GPCRs, but are now employable for several other signal transduction 

pathways. Being an orphan receptor, no ligand-promoted pathway activation involving GRKs 

and β-arrestins have so far been described for GPR50.  

Recent work from the group of Peter Little reported a crosstalk between the thrombin receptor 

(GPCR) and the TβRI, which represents the first example for such a crosstalk. The authors 

could show that ligand-dependent activation of the thrombin receptor PAR-1 can result in a 

TβRI-dependent activation of the Smads (Burch et al, 2010). This work provides first 

evidence of a crosstalk between GPCRs and the TβRI via transactivation on the receptor level 

(Burch et al, 2012). But so far a detailed mechanism, whether the crosstalk occurs directly 

through physical interaction on the receptor level or via other downstream intermediates that 

activate the TβRI, is missing. An indirect activation of a type I receptor has been shown once 

for serotonin-mediated activation of BMP-dependent Smads, that involve 5-HT2B/D and Rho 

kinases (Liu et al, 2009b). The present work of the GPR50/TβRI complex is supported by 

literature evidence, that TβRI-dependent signaling might be affected by GPCRs. In 

comparison to the thrombin receptor, it seems, according to the current state of knowledge, 

implausible that we also have a ligand-dependent transactivation. GPR50 seems to have direct 

effects on the receptor and act as direct regulator of the TβRI. Thus, we report here for the 

first time a physical association of the TβRI and a 7TM protein on the membrane level. 

GPCRs have a tendency to form higher order complexes, either with other GPCRs or GPCR-

regulating proteins (Maurice et al, 2011a; Maurice et al, 2011b), but also with other 

membrane receptors of the RTK family (Wetzker & Bohmer, 2003) or ion channels (Altier & 

Zamponi, 2011). A complex between the TβRI and GPR50 adds another element to the 

diversity of GPCR interactions and the crosstalk they can exert. Though we have to point out 

that a case of a constitutive, ligand-independent activation upon complex formation still 

stands out compared to the cases of ligand- or phosphorylation-dependent transactivation. 
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2. A new role for GPR50 

 

With our findings of GPR50 forming a complex with the TβRI that induces its constitutive 

activation, we also established another role for the orphan 7TM protein GPR50. Initially, it 

was supposed, that transmembrane proteins can only have a function after activation by a 

ligand. The principal intention was their deorphanization, the discovery of their natural ligand. 

During the last decade, a slight shift from this doctrine arose with emerging findings 

proposing a ligand-independent function for orphan 7TM proteins (Levoye et al, 2006c). A 

prototypic example is GPR50, that has been associated with different ligand-independent 

functions that converge in the principle that GPR50 complex formation modulates activity of 

its binding partners, either in membrane, upon hetermerization with MT1 (Levoye et al, 

2006a), in the cytosol with Nogo-A (Grunewald et al, 2009) or upon partial proteolytic 

cleavage of the C-Tail in the nucleus with TIP60 (Li et al, 2011). Our findings provided 

another example for this ligand-independent function, that reinforce the concept of GPR50 

being an interacting and activity-modulating protein. In contrast to existing publications, that 

identified Nogo-A and TIP60 as interacting partners, that were based on a Y2H assay with the 

C-terminal cytosolic portion of GPR50, we used a technique to identify proteins, that interact 

with the full-length receptor. The results of our TAP assay will probably help to identify 

further membrane proteins that might be regulated upon complex formation with GPR50.  

 

2.1. Mechanism of function of GPR50 

Further information about the of GPR50 and its regulation will surely also help to identify the 

conditions of these complexes. As GPR50 is most likely a product of genetic fusion of the 

Mel1c gene and an ancestor of the RNA polymerase II (Dufourny et al, 2008), it might also be 

divided in different functional units. The work from Li et al. concerning TIP60 provided 

evidence for a proteolytic cleavage with a subsequent nuclear translocation of the C-terminal 

part, which is consistent with the nuclear localization of the RNA Pol II. It will be an 

interesting task, to unravel the mechanism that induce the proteolytic cleavage of GPR50, thus 

proposing an important mode of regulation of its activity via its subcellular localization. On 

the one hand, we might suppose, that the transmembrane part and the cytosolic part function 

independently as a result of their different origins. But the results from our laboratory for MT1 

and the TβRI indicate a requirement for transmembrane and cytosolic part for being effective. 
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It is quite intriguing to see, how evolution was able to construct something functional by the 

fusion of two proteins, that probably originally had independent functions but obtain unique 

properties upon their combination. Further work will hopefully provide more clear 

information about the function of the different parts of GPR50, their association and 

proteolytic cleavage of GPR50, which might in turn also affect the complex formation and 

stability with the TβRI.  

 

2.2. GPR50 activity 

 

2.2.1. A ligand for GPR50? 

An important remark must be made that over all we should be aware of the fact that (1) 

though it seems unlikely, we have to take in account that GPR50 might have an endogenous 

ligand that remains to be identified. Although currently, beside the proven inability for 

melatonin binding, no other possible ligand could have been identified. By employing in 

silico based methods and analysis of structural data of GPR50 a possible ligand might be 

identified. Under such conditions, we could also hypothesize a transactivation of the TGFβ 

signaling pathway by GPR50’s ligand, as for example shown for serotonin receptors 5-HT2B/D 

and the BMP signaling pathway (Liu et al, 2009b). Especially in circumstances of 

overexpression, receptors often become hypersensitive to their ligands. But with regards to its 

restricted expression pattern, it seems not really likely, that a GPR50 ligand will be secreted 

or produced by HEK293T-, HeLa-, MDA-MB-231- and SNU638 cells that were used in our 

studies  

 

2.2.2. Constitutive activity of GPR50? 

Another possibility is the one of constitutive activity of GPR50. Being a 7TM protein, it 

might be possible, that GPR50 is constitutively coupled to G proteins, as it has been 

demonstrated for certain orphan GPCRs as GPR26 and GPR78 (Jones et al, 2007). Thus, an 

activation mechanism of GPR50 referring to “classical” G protein signaling cannot be 

completely excluded even so convincing evidence is currently lacking.  

 

2.2.3. GPR50 as scaffold protein 

As already pointed out above, the discovery of numerous putative interacting partners for 

GPR50 supports its function as a scaffold protein that recruits proteins which are responsible 
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for the effects we observe in the presence of GPR50. A function as a scaffolding protein, at 

least of the heptarepeats in the cytosolic part of GPR50, would be in accordance with the 

known function of the hepta-repeat motifs identified in the RNA pol II that can recruit a 

divers panel of other proteins.  

 

2.3. Homology of GPR50 and FKBP12 

During the dissection of the molecular mechanism of the interaction of GPR50 and the TβRI, 

we identified GPR50 amino acid motifs that are similar to a C-terminal motif in FKBP12. The 

question that arises is whether this motif in GPR50 might also conduct other functions that 

FKBP12 is associated with. The amino acids H87 and P88 of the 80s loop in FKBP12 are 

exposed, thus forming an interaction surface with other proteins as for the calcineurin 

phosphatase (Aldape et al, 1992; DeCenzo et al, 1996; Futer et al, 1995). In addition FKBP12 

also regulates the activity of ryanodine- and IP3- calcium channels that trigger calcium release 

fom intracellular stores (Ivery, 2000). In turn, GPR50 has been identified to be regulated in 

dependency of the amount of plasma membrane calcium channels that depend on the activity 

of internal calcium stores (Zagranichnaya et al, 2005).  

The actions of immunophilins as FKBP12 seem also to play an important role in the nervous 

system (Snyder et al, 1998), a fact of interest in relation to the GPR50 expression pattern in 

the brain. 

 

2.4. A network of GPR50 interacting partners? 

Beside the numerous binding partners of GPR50, which have been identified via Y2H- or 

TAP assay, we count four studies that describe the mode of action for GPR50 as an 

interacting protein. An interesting question is, whether they might all converge at some point, 

like going hand-in-hand or whether they all function independently in a different context and 

under different circumstances. Additionally these interacting partners are sometimes proteins 

that have a precise expression pattern, thus suggesting that GPR50 exerts this function like a 

chameleon in a cell- and tissue-dependent context. 

 

2.5. Comparison of GPR50 variants 

Two frequent human variants exist for GPR50, the GPR50wt and GPR50Δ4 variant, with the 

deletion of 
502

Thr Thr Gly His
505

 and a coupled amino acid exchange at position 532, with a 

frequency of 40% in the human population (Thomson et al, 2005). Though these variant have 
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been associated with different phenotypes in genetic association studies (see Introduction, 

Chapter 2.3.3.) as the tendency to develop mental disorders (Thomson et al., 2005) or lead to 

altered lipid parameters (Bhattacharyya et al., 2006), no study could so far provide any 

functional differences of both variants. Our study reports for the first time functional 

differences of both variants on the molecular level. First hints came up with the findings that 

both have a different strength to activate TβRI-dependent signal transduction. A deeper look 

revealed that one of the FKBP12 similarity motifs lies in direct proximity to the 4 amino acid 

502
TTGH

505
 insertion/deletion and might be the reason for a higher power of the GPR50Δ4 to 

induce the ligand-independent activation of the TβRI. Molecular evidence was also provided 

by the result, that the 
495

ATSHP
499

 motif is responsible for the competition with FKBP12 

upon TβRI binding. The amino acids of the insertion/deletion at position 502 to 505, which 

contains two Thr residues might be subject to regulatory covalent modifications through 

phosphorylation. Addition of phosphate groups can cause structural changes effecting the 

conformation of the
495

ATSHP
499 

motif. How far our findings can provide explanation for the 

associated phenotypes, has to be examined in a more physiologic context in the future. 

 

2.6. A new mode of action for orphan GPCRs 

Though in the recent years, some ligand-independent functions for orphan GPCRs have been 

identified, for the moment they have been nearly exclusively restricted to heteromer formation 

with related GPCRs. Literature data that shows the regulation of other proteins is still rare: 

only the long-time orphan GPR37 has been described to interact with ion channels and the 

dopamine active transporter DAT (Marazziti et al, 2007) upon physical interaction. The 

complex of GPR50 and TβRI describes a new field of action for an orphan GPCR in the 

regulation of core signaling pathways upon the interplay with the TGFβ receptor 

serine/threonine kinase. Thus, GPR50 is part of the signaling network of a cell, which might 

be the case also for other orphan 7TM proteins. It will be interesting to see, whether we find 

similar mechanisms also for other signal transduction pathways as RTKs. For the moment, we 

still count about 100 orphan proteins that are homologous with GPCRs that wait for an 

elucidation of their cellular task. 
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3. Physiological importance of the TβRI-GPR50 complex 

Our study mainly focused on the dissection of the molecular mechanisms that determine the 

interaction and its outcome in cellular models with exogenous expression. The future task is 

now, to identify the physiological importance of this crosstalk. 

 

3.1. GPR50 and cancer 

In order to have a first indication about the impact of GPR50 on TGFβ signaling in a 

functional context, we decided to overexpress GPR50 in MDA-MB-231 breast cancer cells. 

As the TGFβ signaling pathway is an important player in cancer development and progression 

(Massague, 2008), the MDA-MB-231 model appeared to be particularly attractive, as it is 

widely used to study the pro-migratory and anti-proliferative effects of TGFβ signaling. 

Accordingly, GPR50 induced cellular migration and decreased cellular proliferation in vitro 

and in vivo. It will be interesting to further investigate whether the diminished tumor growth 

in GPR50 expressing cells might be also related to a higher occurrence of metastatic events. 

TGFβ is known to promote metastasis into lung (Padua et al, 2008) and bone (Yin et al, 1999) 

in MDA-MB-231 cells. Thus, we might also imagine that cells with high GPR50 expression 

have higher metastasis rates. For these studies, appropriate experiments in vivo that monitor 

metastasis will provide more insight in the future. Models of spontaneous cancer development 

can give insight into GPR50’s role in tumor formation: our intention is, to study the effect of 

GPR50 in MMTV/Neu transgenic mice (Taneja et al, 2009), that spontaneously develop 

breast cancer. A crossing of these mice with GPR50 KO mice can provide further in vivo 

evidence for the impact of GPR50 on cancer development. A protective effect of TGFβ 

signaling has already been described (Siegel et al, 2003). 

Additionally, it will be interesting to genotype cancer patients according to their GPR50 

variant. This could give us an idea whether one genotype has a higher risk for cancer 

development to put our differential data for GPR50Δ4 and GPR50wt in a physiological 

context. Unfortunately, there are only few databases which align cancer risk and genetic 

variants. But the recent findings about the importance of genetic variants and their different 

functionality will hopefully drive interest about the correlation of germline gene variants and 

disease predisposition as recently demonstrated for the melatonin MT2 receptor and diabetes 

risk (Bonnefond et al, 2012).  
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Some of the positive regulators of TGFβ signaling are important tumorsuppressors. Thus, 

their upregulation could provide additional protective mechanisms against cancer 

development. There are two studies, which revealed a GPR50 upregulation in pancreatic 

neoplasms (Buchholz et al, 2005) and nicotine-induced transformation of lung cells (Bavarva 

et al, 2013). Possibly, an upregulation of GPR50 that goes along with a constitutive TGFβ 

signaling activity might provide a protective mechanism for a cell against cancer in early 

stages. In contrast, in late cancer stages, TGFβ signaling is either deficient or can have 

tumorpromoting effects. In a progressed cancer, an upregulation might be of negative 

influence, thus constant TGFβ might increase the metastatic potential of a cell. A screening of 

human cancers concerning altered GPR50 expression can provide more insight for the role of 

GPR50 in cancer development.  

SNU638 cells are cancer cells that have a mutation in the TβRII gene leading to the 

expression of a truncated extracellular variant (Ku & Park, 2005; Myeroff et al, 1995). Our 

results in SNU638 cells have shown that ectopic expression of GPR50 can restore TβRI-

dependent signaling in these cells. These findings are promising and bear therapeutic potential 

for gene therapies of cancer with mutant TβRII or TGFβ ligands.  

In contrast, for late tumor stages, constitutive activation of TβRI might be undesired and 

should rather be blocked by appropriate pharmaceutical means.  

 

3.2. Relation to known functions and the expression pattern of GPR50 

Compared to the TβRI, GPR50 seems to have a more restricted expression pattern. Currently, 

most available data concern GPR50 expression patterns in the brain, where it has been found 

in several regions, comprising the area around the 3
rd

 ventricle of median eminence and the 

tanycytes, hypothalamic regions as the DMH and other regions with different functions. Only 

few studies investigated the expression of GPR50 in peripheral tissue, demonstrating that 

GPR50 mRNA is present in various tissues as heart, kidney, testis, liver (Drew et al, 2001). 

KO mouse models will hopefully provide more information about tissues that contain GPR50 

proteins. In addition, compared to the TβRI, the expression of GPR50 seems to be subject of 

regulation as it has been demonstrated for a season- and energy-status amount of GPR50 in 

the brain (Barrett et al, 2006; Ivanova et al, 2008). In order to find regions where the crosstalk 

might take place in vivo, tissues that express both receptors will help to gain information.  
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3.2.1. GPR50 expression in the brain 

A region with a markedly high expression of GPR50 are tanycytes, that surround the 3
rd

 

ventricle (Sidibe et al, 2010). The TβRI is also expressed in this brain area (Bouret et al, 2004; 

Bouret et al, 2002; Prevot et al, 2010; Prevot et al, 2000) and its expression can be induced by 

the gonadotropin-releasing hormone GnRH and subsequently downregulates GnRH activity. 

Probably, the GPR50/TβRI interaction might occur under certain conditions in order to 

orchestrate reproductive actions in organisms.  

Furthermore, the expression of GPR50 displays different levels during embryogenesis, with 

the highest amount in late embryonal phase at E18 (Grunewald et al, 2012), when complex 

structures are formed and the development of brain compartments and neuronal connections 

takes place. This is coherent with the observation, that GPR50 promotes neurite outgrowth in 

number and size (Grunewald et al, 2009). Also TGFβ signaling is implicated in axon 

specification during development (Yi et al, 2010) and plays a role in synaptogenesis in adults 

(Krieglstein et al, 2011; Poon et al, 2013). Probably, the crosstalk of both might have 

important function during brain development or in the adult brain in synaptic plasticity, which 

is often altered in mental disorders as depression (Marsden, 2013).  

 

3.2.2. GPR50 and energy homeostasis 

Another function of GPR50 is associated with energy homeostasis maintenance. Animals that 

lack GPR50 have a higher metabolic rate and less weight gain when fed a high fat diet 

(Ivanova et al, 2008). This is also consistent with the high levels of GPR50 expression in the 

DMH (Lee et al, 2012), a region important for regulation of the energy status of an organism. 

A recent study demonstrated an implication of TGFβ signaling, notably Smad3, in the 

development of obesity and diabetes (Yadav et al, 2011). 

 

3.2.3. GPR50 and wound healing 

With its effect to promote cellular migration, epithelial-to-mesenchymal transition and the 

production of ECM components, TGFβ has a positive influence on wound healing processes 

in the organism (O'Kane & Ferguson, 1997). Interestingly, also GPR50 has been found 

upregulated in hypertrophic scar (Zhang et al, 2010) during wound healing. Probably, we 

could expect synergistic effects of GPR50 and the TβRI in tissue repair in the organism. A 

more detailed analysis of wound healing and migration in the absence and presence of GPR50 
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in addition to our performed experiments and the establishment of relation to active TGFβ 

signaling can tell, if this is an important pathway to influence tissue restoration after injury. 

Further potential for physiological relevance of the crosstalk of GPR50 with TβRI dependent 

signaling will hopefully be gained by figuring out whether we can apply our concept to other 

members of the type I receptor family, whose expression levels are more precise and 

implicated in the regulation of specific functions in distinct organs. 

An identification of in vivo relevance of this GPR50-mediated activation mechanism will 

provide insight where this alternative mode of TβRI activation takes place. In a (far) future, 

this might be the subject to therapeutic strategies that can directly target this crosstalk via 

genetic or chemical therapy. 

 

4. Perspectives 

The identification of a new regulatory mode for the TβRI by GPR50 bears therapeutic 

potential for the future. Even though GPR50 is an orphan receptor, synthetic ligands that act 

on GPR50 might be designed. These could probably regulate its activity and affect in turn the 

activity of their binding partners.  

Our findings implicate also the possibility, that ectopic expression of GPR50 can restore TβRI 

activity in case of ligand or TβRII dysfunction. Strategies, related to gene therapies, either 

through vector based exogenous expression in target tissue or artificial modulation of gene 

expression are possible options to induce GPR50 expression when its actions might be 

advantageous for a cell.  

In contrast, we can also think of cases, where a constitutive activity might be undesired, as in 

late stages of cancer or the fibrotic development of a tissue repair processes. In this case, 

strategies that target the activity of the complex, like inverse agonists or impede with complex 

formation like interfering peptides might be useful. 
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EPILOGUE 

The exploration of regulatory mechanisms of signal transduction pathways has been one of 

the major interests in research during the last years. Regulatory proteins are often responsible 

for the establishment of flexibility and specificity and context-dependent signaling of a 

pathway. The work prepared for this thesis led to the discovery of a new regulator of TGFβ 

signaling and showed for the first time of a 7TM protein and TβRI on the level of the plasma 

membrane. The orphan 7TM protein GPR50 can form a complex with the TβRI, which 

induces its constitutive activation. Surprisingly, this mechanism seems to be different from 

the commonly established activation mechanism for TGFβ signaling, that implies signal 

propagation from extracellular ligand binding to TβRII then engaging the TβRI. In this work, 

we describe the previously unappreciated idea, that the TβRI can be activated in absence of 

ligand and TβRII. Thus, we not only identified another regulator for the TGFβ signaling 

pathway that can assists in fine tuning of the TGFβ signaling pathway, but we also describe a 

new mode of activation for the TβRI. Hence, we add a new facet to the various aspects of 

TGFβ signaling which will hopefully help to better understand functioning of this signaling 

pathway in physiological and pathologicacal circumstances. 

Moreover, we determine a new role for GPR50 that is comforting its ligand-independent 

function and strengthens its position as a modulatory protein in the signaling network of a 

cell. For the first time, we also provided evidence that the two frequent human variants of 

GPR50 have differential functional effects on a molecular level. 

Future research that aims for further detailing of the interaction mechanism and where and 

when we might require a GPR50-induced ligand-independent TGFβ signaling will surely 

provide more information on the formation, regulation and physiological relevance of the 

GPR50/TßRI complex.  

Taken together, our work reveals new features of TGFβ signaling, identifies another function 

for the orphan 7TM protein GPR50 and establishes a functional relevance for both human 

variants thus adding some new aspects to the understanding of cellular signal transduction 

concepts that open new ways for therapeutic strategies. 
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