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INTRODUCTION 

 

THE CONCEPT OF SEASONAL RHYTHMS 

 

Every organism living on the planet Earth is submitted to daily and seasonal variations 

in environmental conditions. The daily variations result from the 24-hour rotation of the 

Earth around its own axis, leading to the alternation between day and night. The 

seasonal changes result from the yearly revolution of the Earth around the Sun and the 

23.5° tilt of the Earth's axis relative to the plane of revolution (Figure 1). The 

combination of these two factors affects the intensity and duration of sunlight that 

reaches the Earth's surface and therefore results in seasonal variations in temperature, 

humidity and food availability. The seasonal variations in environmental conditions are 

more extreme with increasing latitude.  

 

 

FIGURE 1 - GEOPHYSICAL PHENOMENA RESULT IN  

SEASONAL VARIATIONS OF THE ENVIRONMENT 

 

Because the Earth’s axis is tilted at 23.5° relative to the plane of revolution and because the 

Earth rotates around the Sun, the solar radiation varies along the year. In addition, solar 

radiation is maximal when the sun beams are perpendicular to the surface of the Earth, and 

decreases with increasing latitude. The combination of these factors results in the seasonal 

variations of the environment, which are increasingly marked with increasing latitude. Picture 

by Tom Ruen, Full Sky Observatory. 
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In order to survive, most species have developed a mechanism to anticipate the seasonal 

variations of the environment so as to adapt their physiology and behaviour accordingly. 

Examples of seasonal adaptations include hibernation, migration, moult and the 

restriction of reproduction to a certain time of the year. Indeed, the availability of food 

around the time of birth is a critical factor for offspring survival, hence producing 

offspring at the wrong time of year would compromise species survival. Wild organisms 

restrict their fertility to a certain time of the year to ensure that their progeny are born 

during the most favourable season (i.e. spring), and the period of sexual activity 

therefore depends on the duration of gestation. Animals can be classified into two 

categories: 

 Long day breeders: stimulation of reproductive activity occurs when day length 

increases, in early spring and summer. This category includes horses, hamsters 

and most species of birds living in temperate regions. 

 Short day breeders: stimulation of reproductive activity occurs when day length 

decreases, in autumn and winter. This category includes sheep, goats, deer, foxes 

and badgers. 

 

Because maintaining a fully working set of reproductive organs is highly energy-

consuming, seasonally-breeding animals undergo gonadal regression during the non-

breeding season. This is manifested by a reduction of the size of the gonads and of 

circulating levels of sex steroids.  

 

In order to anticipate the seasonal variations in the environment, animals rely on the 

most stable long-term indicator of the seasons: photoperiod (i.e. day length). Unlike 

temperature, rainfall or food availability, photoperiod is highly reproducible from one 

year to another and mammals use a photoneuroendocrine system to translate the light 

information into an endocrine message. 

 

In addition to the adaptative response to photoperiodic variations, a number of species 

possess an endogenous mechanism of seasonal time measurement. Two types of 

seasonal strategies have been described: 

 In some species, and particularly in long-lived ones, a circannual clock is 

responsible for synchronising seasonal rhythms. In this case, the rhythms are 
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fully endogenous, and persist in constant conditions with a period of 

approximately 12 months.  

 In seasonal species which do not have a circannual clock, a mechanism termed 

photorefractoriness is responsible for the reactivation of the reproductive 

function after prolonged exposure to photoinhibitory conditions. This 

phenomenon is particularly important in animals which spend winter 

hibernating, and therefore do not see the increase in day length as spring arrives. 

 

In both cases, the annual variations in photoperiod synchronise these endogenous 

events to one year exactly. It is important to note that the notions of “long” and “short” 

photoperiod are subjective, and depend on the species. Indeed, every species has its own 

critical photoperiod, which corresponds to the amount of daylight per 24-hour period 

above which the signal will be translated to long day information. 

 

The Syrian hamster (Mesocricetus auratus) is a classic model for the study of seasonal 

reproduction. Because gestation lasts approximately 3 weeks, this species will be 

sexually active during springtime and summer, which corresponds to a long-day 

photoperiod (LD) (Figure 2). In the Syrian hamster, the critical photoperiod corresponds 

to 12.5h of light per day. On the other hand, exposure to a short-day photoperiod (SD) 

results in an inhibition of the reproductive function within 8-10 weeks, as manifested by 

low circulating levels of gonadal hormones and a massive decrease in testes size (Figure 

2). Prolonged exposure to SD results in a spontaneous reactivation of the reproductive 

function, a phenomenon known as photorefractoriness (Figure 2) (Turek et al., 1975, 

Stetson et al., 1976, Prendergast et al., 2000). The photoperiodic regulation of 

reproduction is controlled by the nocturnal secretion of melatonin (MEL) from the 

pineal gland, because removal of the pineal gland prior to exposure to SD conditions 

prevents the SD-induced gonadal regression (Czyba et al., 1964, Hoffman and Reiter, 

1965).  
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FIGURE 2 - PHOTOPERIODIC REGULATION OF REPRODUCTION  

IN THE SYRIAN HAMSTER 

 

In long-day breeders, including the Syrian hamster, sexual activity is promoted by 

exposure to a long-day photoperiod (LD), whereas exposure to a short-day photoperiod 

(SD) inhibits reproductive activity within 8-10 weeks. This phenomenon is controlled 

by the nocturnal release of melatonin, because pinealectomy prior to transfer to SD 

abolishes the SD-induced gonadal regression (PinX+SD). Exposure to SD for over 15 

weeks results in photorefractoriness, and a reactivation of the reproduct ive axis. Revel 

et al., 2007. 
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DECODING PHOTOPERIOD 

 

To decode photoperiod, mammals rely on a photoneuroendocrine system in which 

neural pathways originating in retinal ganglion cells (RGCs) relay photoperiodic 

information to the pineal gland, where the neural message is transduced to a humoral 

message through the nocturnal release of MEL (Figure 3).  

 

 

 

 

 

 

FIGURE 3 - MAMMALS USE A PHOTONEUROENDOCRINE SYSTEM  

IN ORDER TO DECODE PHOTOPERIOD 

 

Cells originating in the retina project, via a multisynaptic pathway including the master 

circadian clock, to the pineal gland where melatonin is produced exclusively at night. 

Because the duration of the night varies according to the seasons, the duration of the 

nocturnal peak of melatonin provides a stable indication of the seasons. Thus, in 

summer (long-day conditions, LD) there is a short peak of melatonin and in winter 

(short-day conditions, SD) there is a long peak of melatonin.  

IML: intermediolateral nucleus of the upper thoracic spinal cord; NA: noradrenaline; PG: pineal 

gland; PVN: paraventricular nucleus of the hypothalamus; RHT: retino-hypothalamic tract; 

SCG : superior cervical ganglia; SCN: suprachiasmatic nuclei.  Revel et al., 2007, adapted from 

Hoffman & Reiter, 1965.  
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FROM THE EYE TO THE HYPOTHALAMUS 

 

The light/dark information is perceived by the retina and transmitted to the master 

circadian clock located in the hypothalamus, specifically within the suprachiasmatic 

nuclei (SCN). The photoperiodic information is conveyed to the SCN via the retino-

hypothalamic tract (RHT) which represents a fraction of the optic nerve and is mostly 

constituted by the projections from RGCs. These cells are intrinsically photoreceptive 

and express the photopigment melanopsin which was originally discovered in the 

specialized light sensitive cells of frog skin (Provencio et al., 1998, Freedman et al., 1999, 

Lucas et al., 1999, Mrosovsky et al., 2001, Hattar et al., 2002). The discovery of this new 

class of photosensitive RGCs led to the concept that the visual system is composed of 

two photoreceptive systems: an image-forming system and a non-image-forming 

system. The image-forming system relies on rods and cones for the detection of colours, 

shapes, and movements of objects in the environment. In contrast, the non-image-

forming system relies mostly on intrinsically photoreceptive RGCs to detect the gross 

changes in luminance in the environment to adjust the biological clock, as well as the 

pupillary light reflex and other behavioural and physiological responses (Panda et al., 

2002, Ruby et al., 2002, Berson, 2003, Gooley et al., 2003, Hattar et al., 2003, Panda et al., 

2003). However, melanopsin knock-out (KO) mice remain entrained by light (Panda et 

al., 2002, Ruby et al., 2002) whereas rods/cones/melanopsin KO mice do not (Hattar et 

al., 2003, Panda et al., 2003), suggesting that the image-forming system is also involved 

somehow in conveying the light information to the SCN.  

 

Melanopsin-containing RGCs send direct projections to the SCN via the RHT (Moore and 

Lenn, 1972) which releases glutamate (Ebling, 1996) and pituitary adenylate cyclase-

activating polypeptide (PACAP) (Hannibal et al., 1997) as neurotransmitters (Figure 4). 

Studies using glutamate and glutamate receptor agonists and antagonists have shown 

that glutamate is the main neurotransmitter conveying photic information from the RHT 

to the SCN (Ding et al., 1994, Abe and Rusak, 1994, Mintz et al., 1999). Depolarization of 

melanopsin-containing RGCs by light induces glutamate release from RHT axon 

terminals, which then binds to N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This induces a depolarization in 

SCN neurons, causing a Ca2+ influx that activates intracellular signalling pathways. 
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The RGCs also project to the SCN via the geniculohypothalamic tract (GHT), a distinct 

indirect pathway  originating in the intergeniculate leaflet (IGL) (Card and Moore, 1989), 

which releases neuropeptide Y (NPY) and GABA (Figure 4)(Moore and Speh, 1993). 

 

 

 

 

 

 

 

FIGURE 4 - MAJOR SCN AFFERENT PROJECTIONS 

 

The orange and blue arrows represent photic and non-photic inputs respectively. 

Melanopsin-containing RGCs send direct projections to the SCN via the RHT. They also 

project indirectly to the SCN via the GHT which originates in the IGL. The MRN sends 

direct projections to the SCN and the DRN projects indirectly to the SC N via the IGL.  

5-HT: 5-hydroxytryptamine, or serotonin; Ach: acetylcholine; BF: basal forebrain; DRN: dorsal 

raphe nucleus; GABA: γ-aminobutyric acid; GHT: geniculo-hypothalamic tract; Glu: glutamate; 

IGL: intergeniculate leaflets; mpT: mesopontine tectum ; MRN: medial raphe nucleus; NPY: 

neuropeptide Y; PACAP: pituitary adenylate cyclase-activating polypeptide; PTA: pretectal 

area; PVT: paraventricular nucleus of the thalamus; RHT: retino -hypothalamic tract; SCN: 

suprachiasmatic nucleus; SP: substance P.  
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THE SUPRACHIASMATIC NUCLEI  

 

The SCN are the seat of the master circadian clock in most vertebrates, including 

mammals. The SCN are two small nuclei located in the anterior part of the 

hypothalamus, just above the optic chiasm and bilateral to the third ventricle. They are 

composed of a ventrolateral and a dorsomedial part which are coupled by a GABAergic 

(γ-aminobutyric acid) mechanism (Moore and Speh, 1993). The dorsomedial neurons 

express arginine vasopressin (AVP) in a circadian manner with a peak during the light 

phase (Tominaga et al., 1992, Abrahamson and Moore, 2001, Moore et al., 2002), 

whereas ventrolateral neurons mainly express vasoactive intestinal peptide (VIP) with a 

peak during the dark phase (Abrahamson and Moore, 2001).  The ventrolateral SCN is 

involved in relaying the light information throughout the SCN, whereas the dorsomedial 

SCN have an endogenous 24-hour rhythm that can persist under constant darkness. 

 

Initial studies, showing that electrolytic lesion of the SCN produced arrhythmicity, 

suggested that the SCN were a necessary component of the central circadian oscillator 

(Moore and Eichler, 1972, Stephan and Zucker, 1972). It was later shown, both in vivo 

and in vitro, that the SCN contain an autonomous circadian pacemaker (Schwartz and 

Gainer, 1977, Inouye and Kawamura, 1979, Green and Gillette, 1982, Groos and 

Hendriks, 1982, Shibata et al., 1982, Prosser et al., 1989) and subsequent studies went 

on to demonstrate that transplanted SCN can restore circadian function in SCN-lesioned 

animals (Lehman et al., 1987, Ralph et al., 1990). Moreover, single SCN cells exhibit 

independent rhythms in their firing rate when cultured in vitro, indicating that each 

individual cell contains the molecular machinery required to generate circadian 

oscillations (Welsh et al., 1995).  

 

The circadian rhythm in the SCN is controlled by clock proteins, which dimerise 

cyclically in molecular feedback loops with a period of approximately 24 hours (Figure 

5). In the first loop, two transcriptional activators Bmal1 (brain and muscle ARNT-like 

protein 1) and Clock form heterodimers in the cytoplasm and enter the nucleus where 

they bind to E-box sequences in the promoters of Period (Per1,2) and Cryptochrome 

(Cry1,2) genes, contributing to the activation of their expression. In the cytoplasm 

various combinations of Per and Cry proteins interact with each other, enter the nucleus 
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and inhibit the activity of Bmal1/Clock complex, hence Per and Cry proteins shut off 

their own transcription. A second loop regulates the expression of the Bmal1 gene. 

Bmal1/Clock heterodimers bind to E-boxes present in the promoters of genes that 

encode the retinoic acid-related orphan nuclear receptors Rev-erbα and Rorα, which 

compete for the ROR element (RORE) in the Bmal1 promoter. Rorα activates Bmal1 

expression, while Rev-erbα represses it.  

 

 

 

 

FIGURE 5 - MOLECULAR MACHINERY OF THE MAMMALIAN CIRCADIAN CLOCK 

LOCATED IN THE SCN 

 

Clock and Bmal1 dimerise and stimulate the transcription of Per, Cry, Rev-erbα and 

Rorα genes. In turn, Per and Cry form dimers and inhibit the activity of the 

Bmal1/Clock complex, and therefore repress their own synthesis. Rev -erbα and Rorα 

activate and repress Bmal1 expression, respectively. Albrecht & Ripperger.  
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The expression of most clock genes and clock-controlled genes is dependent on the time 

of day, and the circadian clock is entrained to a 24 hour cycle by the light-induced 

release of glutamate and PACAP (although metabolic factors are also able to synchronise 

the clock). However, the light/dark cycle undergoes seasonal changes and this 

photoperiodic variation induces a differential 24 hour expression of clock and clock-

controlled genes in the SCN of mammals (Figure 6)(Messager et al., 2000, Steinlechner et 

al., 2002, Lincoln et al., 2002, Sumova et al., 2003, Tournier et al., 2003, Tournier et al., 

2007). These studies have described differential patterns of expression of clock and 

clock-controlled genes in animals acclimated to LD or SD conditions, indicating that the 

SCN are able to integrate photoperiodic information. Moreover, it has been shown that 

the photosensitive phase of the SCN, which is the time frame during which a light pulse 

induces c-Fos expression in the SCN, is modulated by photoperiod. Indeed, exposure of 

rodents to a light pulse during the dark phase induces c-Fos expression in the SCN, 

whereas the same protocol carried out during the subjective day has no effect on c-Fos 

in the SCN (Rusak et al., 1990). Interestingly, in animals maintained in a SD photoperiod, 

the photosensitive phase is longer than in animals maintained in a LD photoperiod 

(Sumova et al., 1995, Vuillez et al., 1996), further supporting the concept that the SCN 

integrate day-length.  
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FIGURE 6 - PHOTOPERIOD AFFECTS DIURNAL EXPRESSION OF CLOCK AND CLOCK-

CONTROLLED GENES IN THE SUPRACHIASMATIC NUCLEI OF EUROPEAN HAMSTERS 

 

Horizontal solid and open bars represent dark and light phases of the light/dark cycle, 

respectively. ROD, relative optical density. Left: mRNA levels determined by in-situ hybridization 

in the SCN in either long (LP) (gray line and □) or short (SP) (black line and •) natural 

photoperiod. Each time point represents the mean ± SEM of four to six European hamsters. 

Right: Non-linear regression of mRNA levels in either LP (gray line and □) or SP (black line and 

•). Tournier et al., 2007. 
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FROM THE SCN TO THE PINEAL GLAND 

 

The SCN relay the photoperiodic information via two pathways:  

 Through the release of diffusible factors, such as TGFα or prokineticin-2, 

molecules which are thought to be involved in the regulation of locomotor 

activity (Kramer et al., 2001, Snodgrass-Belt et al., 2005, Cheng et al., 2002, Zhou 

and Cheng, 2005). 

 Via neural connections to multiple hypothalamic brain areas, to control 

endocrine and autonomic functions (Buijs and Kalsbeek, 2001, Kalsbeek and 

Buijs, 2002). The SCN direct the 24-hour secretion rhythm of various hormones, 

including MEL, which will be the focus in this part.  

 

The paraventricular nucleus of the hypothalamus (PVN) is the main relay between the 

SCN and the pineal gland. Indeed, lesions of the PVN abolish the rhythm of MEL 

synthesis in the pineal gland (Klein et al., 1983), an electrical stimulation of SCN cells 

activates PVN neurons (Hermes et al., 1996) and VIP or VP administration in the PVN 

modulates MEL release (Kalsbeek et al., 1993). GABA appears to be involved in 

transmitting signals from the SCN to the PVN since infusion of a GABA antagonist during 

the subjective day in the PVN area stimulates MEL synthesis, whereas infusion of GABA 

during the night inhibits night-time MEL secretion (Kalsbeek et al., 1996, Kalsbeek et al., 

1999, Kalsbeek et al., 2000). More recently, glutamatergic signalling within the PVN was 

shown to play a role in MEL synthesis (Perreau-Lenz et al., 2004). 

 

Retrograde tracing studies have shown that the PVN controls MEL synthesis from the 

pineal gland through a multisynaptic pathway (Larsen et al., 1998, Larsen, 1999).  PVN 

neurons form AVPergic and oxcytocinergic synaptic contacts with cells in the 

intermediolateral nucleus (IML) of the upper thoracic spinal cord (Teclemariam-Mesbah 

et al., 1997). The IML neurons connect via cholinergic fibres to postsynaptic sympathetic 

neurons in the superior cervical ganglia (SCG) (Strack et al., 1988) which constitute the 

final input to the pineal gland via noradrenergic fibres (Larsen, 1999). Noradrenalin is a 

very potent stimulator of MEL synthesis. 
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MELATONIN 

 

MELATONIN SYNTHESIS 

 

In mammals, MEL is mainly synthesised by the pineal gland although other peripheral 

organs, notably the retina and the Harderian gland, also produce low levels of the 

hormone which are not released into the blood. In rodents, the pineal gland is located at 

the intersection of the cerebral hemispheres and the cerebellum and is innervated with 

nervous fibres of various origins which contain a variety of neurotransmitters, but the 

main  neurotransmitter is noradrenalin (Simonneaux and Ribelayga, 2003). Sympathetic 

noradrenergic fibres originating in the SCG stimulate the synthesis of MEL via two types 

of adrenergic receptors (α1 and β1).  MEL is an amphiphilic molecule and is therefore 

immediately released by the pineal gland, and because its plasmatic half-life is very 

short (approximately 20 minutes), the changes in circulating MEL levels are rapid and 

dynamic. MEL is secreted exclusively at night and for a duration proportional to night 

length, and is responsible for spreading the photoperiodic message to various organs. 

 

MEL is synthesised from the amino acid tryptophan. Tryptophan is converted into 

serotonin and serotonin is converted into MEL, via the successive actions of the enzymes 

AA-NAT (aralkylamine N-acetyltransferase) and HIOMT (hydroxyindole O-

methyltransferase) (Figure 7). The activity of AA-NAT displays circadian variations of 

high amplitude (Klein and Weller, 1970, Gastel et al., 1998), whereas HIOMT activity is 

very stable over a 24-hour period and varies according to photoperiod (Ribelayga et al., 

1999a, Ribelayga et al., 1999b). Therefore, AA-NAT drives the daily rhythm in MEL 

secretion, and is considered as the MEL “rhythm-generating enzyme”, whereas HIOMT is 

involved in the photoperiodic modulation of the amplitude of the nocturnal MEL peak 

(Figure 7).  
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FIGURE 7 - AA-NAT AND HIOMT REGULATE THE DAILY AND PHOTOPERIODIC 

PATTERNS OF MELATONIN SYNTHESIS 

 

Model for the respective roles of AA-NAT and HIOMT in the daily and photoperiodic regulation 

of melatonin synthesis. The marked onset of AA-NAT activity at the beginning of the night and its 

offset at the end of the night drive the duration of the nocturnal melatonin peak, whereas 

photoperiodic variations of HIOMT activity, with lower values in LD, drive the amplitude of the 

nocturnal peak of melatonin.  

5-HT: 5-hydroxytryptamine, or serotonin; 5-HTP: 5-hydroxytryptophan; LD: long photoperiod; MEL: 

melatonin; NAS: N-acetylserotonin; SD: short photoperiod; Trp: tryptophan. 
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MELATONIN SITES OF ACTION 

 

MEL is released into the bloodstream and into the cerebrospinal fluid (CSF), and can 

therefore act on peripheral organs as well as central targets. The precise localisation of 

MEL receptors has proven complicated, because no antibody is available and because 

the level of expression of the receptor in the brain is too low for in situ hybridisation 

detection. In the brain, two types of MEL binding sites have been identified using a 

radioiodinated MEL ligand: low-affinity and high-affinity sites. The low-affinity binding 

sites are no longer considered to be MEL-binding receptors and have since been 

described as the quinone reductase 2 enzyme (Nosjean et al., 2000).  

 

Following the binding studies, cloning of the genes coding for MEL receptors made it 

possible to identify three types of G-protein-coupled high-affinity receptors, which are 

coupled negatively to the adenylate cyclase system (Gi/o subunit): 

 MT1 (Reppert et al., 1994): widely expressed throughout the brain, with 

significant species-dependent differences in the distribution.   

 MT2 (Reppert et al., 1995): localised mainly in the retina, but also in the SCN. 

Interestingly, this subtype is not functional in Syrian and Siberian hamsters 

(Weaver et al., 1996), suggesting that this receptor is not critical for the 

regulation of seasonal functions. 

 Mel1c (Ebisawa et al., 1994): only found in non-mammalian vertebrates (Reppert 

et al., 1996). 

 

As mentioned above, the distribution of MEL receptors varies greatly depending on 

species. A large number of species have been investigated, and MEL binding sites have 

been identified in over 100 central and 30 peripheral structures (Masson-Pevet and 

Gauer, 1994, Morgan et al., 1994, Morgan and Mercer, 1994, Vanecek, 1998). Only two 

structures have been found to consistently contain MEL receptors in mammals: the SCN 

and the pars tuberalis of the adenohypophysis (PT) (Morgan and Williams, 1989, 

Bartness et al., 1993, Masson-Pevet and Gauer, 1994, Morgan et al., 1994, Morgan and 

Mercer, 1994, Masson-Pevet et al., 1996). In the Syrian hamster, in addition to the SCN 

and the PT, MEL binding sites have been identified in the dorsomedial nucleus of the 

hypothalamus (DMH), PVN, paraventricular nucleus of the thalamus (PVT) and the 
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medial part of the lateral habenular nucleus (Figure 8) (Weaver et al., 1989, Williams et 

al., 1989).  

 

As previously mentioned, MEL plays a crucial role in the seasonal regulation of 

reproduction. Indeed, removal of the pineal gland prior to exposure to SD conditions 

prevents the SD-induced gonadal regression in the Syrian hamster (Czyba et al., 1964, 

Hoffman and Reiter, 1965), indicating that MEL is responsible for transmitting the 

photoperiodic information to the reproductive axis. However, the site(s) of action of 

MEL for the seasonal regulation of reproduction are still a matter of debate, and this 

issue will be addressed in further detail later in this manuscript. 
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FIGURE 8 - DISTRIBUTION OF I-MEL BINDING SITES IN THE SYRIAN HAMSTER BRAIN 

 

Left panel. Autoradiograms illustrate the areas of specific I-MEL binding. Nonspecific binding 

was homogeneous and equalled section background. APit: anterior pituitary gland; DM: dorsomedial 

nucleus of the hypothalamus; LHbM: medial part of the lateral habenular nucleus; ME: median eminence; 

PV: paraventricular nucleus of the thalamus; SCN: suprachiasmatic nucleus. Weaver at al., 1989. The 

labelling of the pars tuberalis of the adenohypophysis was mistaken for labelling in the median 

eminence in this study. 

Right panel. The pars tuberalis (PT) of the pituitary which adheres to the median eminence at 

the base of the hypothalamus is darkly labelled compared to the medial region of the lateral 

habenular nuclei (LHN) which are present in the same section. Bar: 2 mm. Williams et al., 1989. 
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THE MAMMALIAN HYPOTHALAMIC-PITUITARY-GONADAL AXIS 

 

Reproductive activity is controlled by the hypothalamic-pituitary-gonadal (HPG) axis in 

which gonadotrophin-releasing hormone (GnRH) neurons located in the hypothalamus 

control the production and release of gonadotrophins from the anterior pituitary, which 

subsequently regulate gonadal function (Figure 9).  

 

 

GNRH NEURONS 

 

The GnRH neurons (~1000 in higher mammals) are scattered throughout the preoptic 

area (POA), the diagonal band of Broca and the organum vasculosum of the lamina 

terminalis (Witkin et al., 1982, Merchenthaler et al., 1984, Wray and Hoffman, 1986). 

GnRH is a decapeptide which is released in pulses from the nerve terminals located in 

the external part of the median eminence (Hahn and Coen, 2006) into the hypophyseal 

portal system. Adequate pulsatile secretion of GnRH is mandatory for proper attainment 

and maintenance of reproductive function (Knobil et al., 1980, Kelch et al., 1985, Santoro 

et al., 1986, Bakker et al., 2010).  

 

The synchronized release of GnRH bursts is due to the GnRH pulse generator, a 

hypothalamic network that includes GnRH neurons as well as other afferents, and which 

enables the pulsatile secretion of GnRH (Knobil, 1980). The anatomy of the pulse 

generator has been the subject of active investigation, and evidence suggests that GnRH 

secretory patterns are not solely dictated by the intrinsic activity of GnRH neurons, but 

also require the contribution of additional hypothalamic afferents (Maeda et al., 2010, 

Terasawa et al., 2010). The emerging concept is that the pulsatile secretion of GnRH 

results from the dynamic balance between excitatory and inhibitory signals (Ojeda et al., 

2006, Ojeda et al., 2010, Christian and Moenter, 2010). 
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FIGURE 9 - HYPOTHALAMIC-PITUITARY-GONADAL AXIS OF MALES 

 

GnRH neurons release GnRH into the portal blood, where GnRH acts at the level of the 

anterior pituitary to stimulate the release of LH and FSH into the bloodstream. In turn, 

LH and FSH act on the testes where testosterone will be produced by the Leydig cells in 

response to LH and spermatogenesis will be induced in the Sertoli cells in response to 

FSH. Adapted from http://svt.ac-dijon.fr/schemassvt. 

http://svt.ac-dijon.fr/schemassvt
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GnRH secretion is controlled by a variety of interacting trans-synaptic and glial inputs, 

such as glial-derived growth factors and glutamate (Ojeda et al., 2006, Ojeda et al., 

2010). Moreover, neuronal transmitters also play a central role in synchronizing the 

pulsatile release of GnRH. Glutamate, norepinephrine, GABA, endogenous opioids, NPY, 

nesfatin-1, neurokinin B (NKB), kisspeptins (Kp) and RFamide-related peptides (RFRP) 

have all been shown to regulate GnRH secretion in mammals (Herbison and Moenter, 

2011, Clarke et al., 2009, Navarro et al., 2006, Smith and Clarke, 2010, Garcia-Galiano et 

al., 2010, Pralong, 2010, Lehman et al., 2010).  

 

 

GNRH SITES OF ACTION AND EFFECTS 

 

The portal blood vessels carry GnRH to the anterior pituitary where it binds to its G-

protein-coupled receptor located on the gonadotrophs. GnRH binding sites have also 

been described in the gonads, placenta, breast and brain, but their precise physiological 

relevance remains to be elucidated. In the pituitary, the GnRH receptor is coupled to a 

Gq/11 protein which activates the phospholipase C pathway, which stimulates the release 

of intracellular calcium via the protein kinase C and IP3 system. GnRH induces the 

synthesis and release of gonadotrophins, luteinizing hormone (LH) and follicle-

stimulating hormone (FSH), from the anterior pituitary into the bloodstream. In males, 

LH stimulates the production of testosterone by the Leydig cells in the testes and FSH 

induces spermatogenesis in the Sertoli cells (Figure 9). In females, LH stimulates the 

production of androgens and estrogens from the theca cells of the ovaries and FSH 

initiates follicular growth and participates in stimulating ovulation. 

 

 

SEX STEROIDS FEED-BACK TO THE HPG AXIS 

 

The female reproductive cycle is characterised by variations in pituitary and ovarian 

hormone levels (Figure 10). The variations in gonadotrophin and sex steroid 

concentrations are due to feed-back effects of estrogen and progesterone. Indeed, during 

the first part of the cycle, FSH stimulates the maturation of the follicle, which in turn 



21 
 

produces estrogen. Throughout most of the cycle, estrogen exerts a negative feed-back 

effect on the brain, therefore maintaining low levels of LH and FSH. However, when 

estrogen levels rise to a given threshold, the feed-back effect switches from negative to 

positive and stimulates LH secretion, therefore triggering the preovulatory LH surge 

leading to subsequent ovulation. If fertilisation does not take place, the corpus luteum 

begins to degenerate and produces estrogen and progesterone, which in turn apply 

negative feed-back effects to LH and FSH secretion.  

 

FIGURE 10 - THE FEMALE REPRODUCTIVE CYCLE, OR ESTROUS CYCLE 

 

In female rodents, the estrous cycle lasts approximately 4 days and is composed of 4 stages. 

During diestrus, FSH stimulates the maturation of the follicle, which in turn produces estrogen. 

When estrogen levels rise to a given threshold, their feed-back effect switches from negative to 

positive, and this leads to the preovulatory LH surge which occurs on the day of proestrus, 

leading to subsequent ovulation. Subsequently, on the day of estrus, females will be sexually 

receptive. If fertilization does not occur, the corpus luteum degenerates and produces estrogen 

and progesterone, which exert inhibitory feed-back effects on LH and FSH secretion. Figure 48-

13 from Silverthorn Human Physiology. 
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In rodents, the estrous cycle lasts four days and is composed of four stages: diestrus, 

proestrus, estrus and metestrus. On the day of proestrus, the LH surge which occurs in 

the late afternoon triggers ovulation. On the following day, females will be sexually 

receptive and this stage is termed estrus. 

 

In males, testosterone inhibits its own production through inhibitory feed-back effects.  

 

Because GnRH neurons do not contain sex steroid receptors, hypothalamic interneurons 

must be responsible for transmitting feed-back information to GnRH neurons. 

 

 

THE SEASONAL REGULATION OF REPRODUCTION 

 

As previously mentioned, wild species have developed a mechanism to restrict their 

fertility to a certain time of the year, to ensure that the offspring are born during the 

most favourable season. The seasonal regulation of reproduction therefore ensures 

species survival.  

 

The Syrian hamster is a long day breeder, and sexual activity is therefore stimulated by 

exposure to a LD photoperiod. The MEL-induced changes in gonadotrophin levels have 

been shown to result from changes in hypothalamic function. Indeed, GnRH injections to 

male Syrian hamsters in LD and SD conditions produce the same effects (Pickard and 

Silverman, 1979) and cultured anterior pituitaries from SD hamsters can still release LH 

and FSH in response to GnRH (Bacon et al., 1981, Steger et al., 1983, Steger and Gay-

Primel, 1990). This suggests that the photoperiodic regulation of the HPG axis activity is 

mediated by GnRH neurons. However, MEL binding sites have not been identified in the 

POA of Syrian hamsters (Weaver et al., 1989, Williams et al., 1989), indicating that GnRH 

neurons are probably not a direct target of MEL. This is supported by results in the 

Syrian hamster indicating that photoperiod does not affect gnrh mRNA levels (Brown et 

al., 2001) or the number and morphology of GnRH neurons (Urbanski et al., 1991). 

Photoperiod, via MEL, would therefore indirectly affect the release of GnRH rather than 

its production. The mediobasal hypothalamus (MBH) seems to be involved in the 

photoperiodic regulation of reproduction in the Syrian hamster, as MEL receptors have 
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been identified in this area and a lesion of this region abolishes the SD-induced gonadal 

regression (Maywood and Hastings, 1995, Maywood et al., 1996). The precise cellular 

targets of MEL in the MBH of the Syrian hamster remain unknown, but possible 

candidates have been identified in recent years and this will be addressed in further 

detail later in this manuscript. It is worth noting that in Siberian hamsters, lesions of the 

MBH do not prevent the SD-induced gonadal atrophy, indicating that species-differences 

might exist in the sites of action of MEL for the control of seasonal reproduction. 

Interestingly, SCN lesions prevent the MEL-induced gonadal regression, whereas they do 

not in the Syrian hamster (Bittman et al., 1979, Bittman et al., 1989, Bartness et al., 1991, 

Bittman et al., 1991, Maharaj et al., 1992, Song and Bartness, 1996).  

 

The sheep is a short day breeder, and decreasing day-lengths in autumn stimulate 

reproductive activity, whereas exposure to a LD photoperiod inhibits the reproductive 

function. Unlike the Syrian hamster, sheep possess a circannual clock which is 

synchronised by photoperiod to adjust the annual rhythms in activity to exactly one 

year. Indeed, when maintained in constant photoperiodic conditions for a prolonged 

period, ewes show a cycle of reproductive activity with a period of approximately one 

year (Karsch et al., 1989, Wayne et al., 1990, Jansen and Jackson, 1993). The mechanisms 

underlying seasonal reproduction have only been studied in ewes, in which the 

reproductive cycle lasts 16-18 days during the breeding season, and is composed of four 

different phases like in hamsters (proestrus, estrus, metestrus and diestrus). During the 

non-breeding season, or anestrus, no ovarian cyclicity is observed (Thiery et al., 2002). 

In sheep, MEL is responsible for synchronising the rhythm in reproductive activity, but 

not for generating it. Indeed, pinealectomy does not prevent the seasonal cycle of 

reproduction (due to the involvement of a circannual clock), but MEL injections re-

synchronise it. The pre-mammillary hypothalamic area could be involved in the MEL-

mediated photoperiodic regulation of reproduction, as this region contains MEL 

receptors (Stankov et al., 1991, Chabot et al., 1998, Migaud et al., 2005) and MEL micro-

implants placed in this area induce SD-like changes in gonadotrophin secretion 

(Malpaux et al., 1998). However, the cells expressing MEL receptors in the pre-

mammillary hypothalamic area of the sheep have not been phenotyped, and so the exact 

site of action of MEL remains unknown.  
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Because it appears that MEL controls GnRH release upstream from these neurons, work 

carried out in recent years has focused on identifying potential upstream regulators of 

GnRH neuronal activity, which could be involved in the photoperiodic regulation of the 

reproductive function. Two hypothalamic neuropeptides, members of the RFamide 

family of peptides, have been proposed to mediate MEL’s effect on GnRH neurons: 

kisspeptins and RFamide-related peptide. 
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KISS1 AND KISSPEPTINS 

 

DISCOVERY 

 

In 2003, the GPR54 gene (now named Kiss1r), which codes for the receptor for peptides 

encoded by the Kiss1 gene, was identified as a central player in the development of 

puberty. Indeed, a loss-of-function mutation of the Kiss1r gene was shown to induce a 

hypogonadic phenotype in mice and humans (Figure 11) (Seminara et al., 2003, de Roux 

et al., 2003, Funes et al., 2003).  

 

 

 

 

FIGURE 11 - GROSS ANALYSIS OF THE 

REPRODUCTIVE ORGANS OF 30-DAY-OLD 

WILD-TYPE AND GPR54 KNOCK-OUT MALE 

AND FEMALE MICE 

 

(A) External view of male wild-type (wt) and 

GPR54 (or Kiss1r) knock-out (-/-) mice, 

showing reduced penis size (arrows). (B) Testes 

from 30-day-old homozygous mice were 

reduced in size compared to the wild-type 

littermates. (C) Uterine horns and ovaries from 

30-day-old homozygous mice were reduced in 

size compared to the wild-type littermates. 

Funes et al., 2003. 

 

 

 

It was later shown that Kiss1r gene inactivation did not induce defects in GnRH neuronal 

migration, GnRH synthesis, or pituitary responsiveness to GnRH (Seminara et al., 2003, 

d'Anglemont de Tassigny et al., 2007). This indicates that the Kiss1 system is an 
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essential, excitatory upstream regulator of GnRH neurons and that absence of 

Kiss1/Kiss1r signalling results in suppressed GnRH secretion. 

 

 

KISS1 EXPRESSION AND KISSPEPTIN STRUCTURE 

 

Kiss1 neurons are mainly localised in the arcuate nucleus (ARC) and anteroventral 

periventricular nucleus (AVPV) of the hypothalamus in rodents (Gottsch et al., 2004, 

Smith et al., 2005a, Smith et al., 2005b, Revel et al., 2006b, Mason et al., 2007), although 

smaller populations have been detected in the periventricular nucleus, anterodorsal 

preoptic nucleus and medial amygdala (Gottsch et al., 2004).  

 

The Kiss1 gene produces a family of peptides called kisspeptins (Kp), which vary in size 

from 54 (52 in rodents) to 10 amino acids (Figure 12) (Kotani et al., 2001, Ohtaki et al., 

2001, Muir et al., 2001). These peptides belong to the large family of RFamide peptides, 

which share a common Arg-Phe-NH2 motif. The Kiss1r (or GPR54) is coupled with a 

Gq/11 protein which activates the phospholipase C cascade and ultimately activates 

protein kinase K (Kotani et al., 2001, Muir et al., 2001, Ohtaki et al., 2001, Castano et al., 

2009). The different forms of Kp bind Kiss1r with the same affinity, and induce potent 

increases in LH and testosterone secretion when administered centrally or peripherally 

(Gottsch et al., 2004, Matsui et al., 2004, Thompson et al., 2004, Navarro et al., 2005b, 

Mikkelsen et al., 2009). 
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FIGURE 12 -  PRODUCTS OF THE KISS1 GENE 

 

Kiss1 mRNA is transcribed from the Kiss1 gene and translated to form a 145-amino-acid 

propeptide called kisspeptin-145. Shown are cleavage sites on the propeptide that lead 

to the production of the RF-amidated kisspeptin-54, also known as metastin. Shorter 

peptides (such as kisspeptin-10, -13, and -14) were identified by mass spectrometry. 

These peptides share a common C terminus and RF-amidated motif with kisspeptin-54. 

Because no putative cleavage sites have been identified on the propeptide that would 

lead to synthesis of the shorter peptides,  such peptides may be degradation products of 

kisspeptin-54. Popa et al., 2008. 
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KP AND THE REPRODUCTIVE AXIS 

 

The discovery of the effects of Kiss1r mutations on puberty onset led to intensive study 

of the involvement of Kp in the regulation of adult reproductive function. A large 

number of studies indicate that Kp administration, both centrally and systemically, 

potently stimulates gonadotrophin secretion in all the mammalian species studied to 

date, including mice, rats, sheep, goats, pigs, cows, monkeys and humans (Gottsch et al., 

2004, Matsui et al., 2004, Navarro et al., 2004, Thompson et al., 2004, Dhillo et al., 2005, 

Messager, 2005, Messager et al., 2005, Shahab et al., 2005, Ezzat Ahmed et al., 2009, 

Hashizume et al., 2010, Lents et al., 2008).  

 

Kp stimulate gonadotrophin and gonadal steroid secretion via a direct effect on GnRH 

neurons. Indeed, Kp-immunoreactive (-ir) fibres are found in close apposition to GnRH 

cell bodies (Kinoshita et al., 2005, Clarkson and Herbison, 2006) and over 90% of GnRH 

neurons are depolarised following Kp application in rodents (Han et al., 2005). 

Moreover, approximately 80% of GnRH neurons express c-Fos after Kp administration 

and also express Kiss1r mRNA (Herbison et al., 2010, Irwig et al., 2004, Han et al., 2005, 

Messager et al., 2005). In addition, the effects of Kp on gonadotrophin secretion are 

completely abolished by pretreatment with GnRH receptor antagonists (Gottsch et al., 

2004, Matsui et al., 2004, Navarro et al., 2005a, Navarro et al., 2005b, Shahab et al., 

2005). The fact that Kp is able to induce GnRH release from MBH explants which contain 

GnRH nerve terminals (but not cell bodies) (d'Anglemont de Tassigny et al., 2008) has 

led to the speculation that Kp could act both at the level of GnRH cell bodies in the 

hypothalamus and nerve terminals in the median eminence. However, because there is 

no selective antibody for the Kiss1r, the presence (or not) of this receptor in the median 

eminence is difficult to assess. 

 

Recent evidence from mouse, rat, goat and monkey studies indicates that a majority of 

Kiss1 neurons co-express NKB and Dynorphin. They are thus named KNDy neurons. 

These KNDy neurons could be a component of the GnRH pulse generator (Ramaswamy 

et al., 2008, Roseweir et al., 2009, Martinez-Chavez et al., 2008, Navarro et al., 2009, 

Wakabayashi et al., 2010, Choe et al., 2013).  
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FIGURE 13 - KISS1 SIGNALLING IN THE MALE RODENT BRAIN 

 

Kiss1 neurons in the ARC drive GnRH pulsatile release and subsequent LH and FSH 

secretion from the anterior pituitary. They are the site of action of testosterone for its 

inhibitory feed-back effects on GnRH secretion. In the male rodent, the AVPV Kiss1 

neuronal population is very sparse, and therefore although their expression is 

increased by testosterone, this positive feed-back effect presumably has little 

functional significance in males. 
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FIGURE 14- KISS1 SIGNALLING IN THE FEMALE RODENT BRAIN 

 

In female rodents, ARC and AVPV Kiss1 neuronal populations play different roles in the 

estrogen-mediated feed-back effects regulating GnRH secretion. The ARC neurons are 

the site of action of the negative feed-back effect of estrogen and progesterone during 

the luteal phase. During the follicular phase, the negative feed-back effect of estrogen 

switches to a positive feed-back effect; the AVPV Kiss1 neurons are therefore 

responsible for generating the preovulatory GnRH and subsequent LH surges.  
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KP NEURONS AND SEX STEROID FEED-BACK EFFECTS 

 

It is well established that the positive and negative feed-back effects of sex steroids are 

mediated via the GnRH neurons, however these neurons do not express sex steroid 

receptors (Shivers et al., 1983, Fox et al., 1990, Leranth et al., 1992, Huang and Harlan, 

1993, Herbison et al., 1996, Skinner et al., 2001), indicating that there must be at least 

one intermediate in transmitting the feed-back effects of gonadal hormones.  

 

Accumulating evidence indicates that the Kiss1 neurons in the hypothalamus are the site 

of action of sex steroids for the central feed-back effects. Interestingly, the ARC and 

AVPV neuronal populations are involved in different aspects of the feed-back effects of 

gonadal hormones. In the ARC, Kiss1 neurons co-express both estrogen receptors (ER) 

and androgen receptors (AR) (Smith et al., 2005b), and this neuronal population has 

been shown to mediate the negative feed-back effects of gonadal hormones (Figures 13 

& 14). Indeed, in both male and female rodents, sex steroids inhibit arcuate Kiss1 

expression whereas gonadectomy increases Kiss1 mRNA levels (Navarro et al., 2004, 

Irwig et al., 2004, Smith et al., 2005a, Smith et al., 2005b, Revel et al., 2006b, Ansel et al., 

2010). The AVPV neuronal population is sexually dimorphic, with a high number of 

neurons in females versus a low number in males (Figure 15) (Clarkson and Herbison, 

2006, Kauffman et al., 2007). Moreover, the number of Kiss1 neurons and their 

activation are increased in the AVPV at the time of the preovulatory LH surge (Smith et 

al., 2006b, Robertson et al., 2009). In addition, administration of a Kp antagonist blocks 

the preovulatory LH surge in rats (Pineda et al., 2010a). It has been suggested that the 

Kiss1 neurons of the AVPV are involved in the positive feed-back effect of estrogen, 

because gonadectomy reduces Kiss1 expression whereas sex steroid treatment up-

regulates it in mice and hamsters (Smith et al., 2005a, Smith et al., 2005b, Ansel et al., 

2010). This is supported by the observation that AVPV Kiss1 neurons express ERα 

(Smith et al., 2005a, Smith et al., 2005b). Taken together, these data indicate that the 

ARC Kiss1 neurons mediate negative feed-back effects of sex steroids in male and female 

rodents, whereas the AVPV Kiss1 neurons are responsible for mediating the positive 

feed-back effects of sex steroids in females, and therefore play a central role in 

generating the preovulatory LH surge (Figure 14).  
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FIGURE 15 - EFFECT OF PHOTPERIOD AND GENDER ON KISS1 EXPRESSION IN THE 

ARC AND AVPV 

 

In both male and female Syrian hamsters, Kiss1 expression is down-regulated in SD 

conditions. The AVPV neuronal population is sexually-dimorphic, with higher cell 

numbers in females than in males in both LD and SD conditions. Ansel et al., 2010. 

 

 

KISS1 AND SEASONAL REPRODUCTION 

 

In the Syrian hamster, Kp have been shown to play a central role in the seasonal 

regulation of reproduction (Revel et al., 2006a). In this species, Kiss1 expression is 

down-regulated in SD through two different mechanisms in the ARC and the AVPV 

(Figure 15). In the ARC, MEL is responsible for the decrease in Kiss1 expression in SD, 

whereas the decrease observed in Kiss1 expression in the AVPV results from secondary 

changes in sex steroid feed-back effects (Revel et al., 2006b, Ansel et al., 2010). Indeed, 

because Kiss1 expression is down-regulated in the ARC in SD, this results in a decrease in 

circulating levels of gonadal hormones. In turn, this decrease in circulating sex steroid 

levels is responsible for the reduction in AVPV Kiss1 expression, because the positive 

feed-back effect is suppressed (Ansel et al., 2010). The reduction of Kiss1 expression in 

SD conditions is involved in the subsequent inhibition of reproductive activity, because 

continuous administration of Kp to sexually inactive male Syrian hamsters maintained in 

SD reactivates the reproductive axis (Revel et al., 2006b). However, the fact that the ARC 
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and AVPV do not contain MEL receptors in the Syrian hamster suggests that there must 

be another intermediate in the seasonal control of reproduction. 

 

In other seasonal mammals, the Kiss1/Kiss1r system has also been shown to be 

regulated by photoperiod. This is notably the case in the Siberian hamster (Simonneaux 

et al., 2009, Greives et al., 2007, Mason et al., 2007) and the sheep (Wagner et al., 2008, 

Smith, 2008, Chalivoix et al., 2010). The involvement of the Kp system in the seasonal 

regulation of reproduction will be further addressed in the general discussion of this 

manuscript. 

 

 

OTHER FUNCTIONS OF KISS1 NEURONS 

 

Kiss1 neurons have been shown to play a role in modulating reproductive activity in 

response to metabolic and/or environmental cues. Notably, Kiss1 neurons might be 

involved in integrating information regarding metabolic disturbances and adapting 

reproductive function accordingly (Pinilla et al., 2012). It has also been suggested that 

Kiss1 neurons might be involved in the functional changes of the HPG axis observed in 

conditions of acute stress and immune/inflammatory challenge (Pinilla et al., 2012).  
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RFAMIDE-RELATED PEPTIDE-3 

 

This chapter has been submitted as a review in Current Trends in Endocrinology: Ancel 

C & Simonneaux V, The role of RFamide-related peptide-3 (RFRP-3) in the regulation of 

the reproductive function: versatile effects and new perspectives. 

 

The gonadotrophin-releasing hormone (GnRH) neurons in the rostral hypothalamus 

(preoptic area and organum vasculosum of lamina terminalis) represent the final 

common pathway in the neural regulation of the hypothalamo-pituitary-gonadal (HPG) 

axis. These neurons release GnRH into the portal blood system, inducing the 

downstream secretion of gonadotrophins luteinising hormone (LH) and follicle-

stimulating hormone (FSH) from the pituitary. Finally, LH and FSH regulate the 

production of sex steroids by the gonads, which will in turn feedback at various levels of 

the gonadotrophic axis. GnRH neurons are the target of various neurotransmitters, 

neuropeptides, and peripheral hormones known to modulate their function in order to 

fine-tune the activity of the HPG axis in accordance with environmental, metabolic and 

endocrine signals.  

 

In recent years, the characterisation of GnRH neuron activity regulators has significantly 

progressed, notably with the discovery of kisspeptins (Kp). In 2003, two studies 

concurrently indicating that the Kp receptor (Kiss1R), and therefore its ligands, were 

essential for normal reproduction (de Roux et al., 2003, Seminara et al., 2003) prompted 

intensive research on the involvement of Kp in the regulation of the HPG axis. The 

presence of Kiss1R in GnRH neurons (Irwig et al., 2004, Han et al., 2005) and the fact 

that Kp fibres come into close apposition to GnRH  cell bodies in the preoptic area and 

fibres in the median eminence (Ramaswamy et al., 2008) suggest that Kp could be acting 

directly at the level of GnRH neuron cell bodies and via GnRH nerve terminals in the 

median eminence (d'Anglemont de Tassigny et al., 2008). It has now been thoroughly 

demonstrated that Kp are potent stimulators of HPG axis activity and that they are 

central gatekeepers of key aspects of reproductive function (Pinilla et al., 2012). 

 

Although it is now apparent that Kp are central players in the regulation of GnRH neuron 

activity, other modulators of HPG axis activity have been identified. Notably, novel 
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peptides of the RFamide family of peptides of which Kp is also a member, which share a 

common C-terminal LPXRFamide (X=L or Q) motif, have been identified in mammals. 

RFamide-related peptide-1 and -3 (RFRP-1 and RFRP-3) were isolated in mammals in 

2000 (Hinuma et al., 2000) and since then a large number of studies have sought to 

identify the role of these peptides in the regulation of endocrine functions.  

 

 

DISCOVERY, LOCALISATION AND SITES OF ACTION OF RFRP-3 

 

DISCOVERY AND EVOLUTIONARY HISTORY 

RFRP-3 is part of the large family of RFamide peptides, which share a common Arg-Phe-

NH2 motif at their C-terminus. The first RFamide peptide was discovered in the clam 

Macrocallista nimbosa and reported to exert cardioexcitatory effects (Price and 

Greenberg, 1977a). Since then, other RFamide peptides have been isolated from 

invertebrates (Walker, 1992) and the first report of an RFamide peptide in a vertebrate 

was made some 30 years ago: LPLRFamide was isolated from chicken brain (Dockray et 

al., 1983) and shown to have vasopressor and stimulatory effects on neurons in 

mammals (Price and Greenberg, 1977b, Barnard and Dockray, 1984). Since then at least 

five different genes encoding RFamide peptides have been identified in mammals: PrRP, 

NPFF, QRFP/26RFa, Kp and RFRP (Yang et al., 1985, Perry et al., 1997, Hinuma et al., 

1998, Panula et al., 1999, Hinuma et al., 2000, Liu et al., 2001, Kotani et al., 2001, Ohtaki 

et al., 2001, Chartrel et al., 2003, Fukusumi et al., 2003, Jiang et al., 2003). One of these 

genes, RFamide-related peptide (rfrp), was identified in mammals in 2000 (Hinuma et al., 

2000) concurrently with the discovery of its avian ortholog, gonadotrophin-inhibitory 

hormone (gnih) (Tsutsui et al., 2000). The rfrp gene encodes a precursor which produces 

two peptides of various sizes in mammals: RFRP-1 and RFRP-3 (Table 1)(Hinuma et al., 

2000). Because GnIH was shown to inhibit gonadotrophin release from cultured quail 

pituitaries (Tsutsui et al., 2000), the involvement of RFRP-1 and RFRP-3 in the 

regulation of neuroendocrine functions in mammals was examined. Since an initial study 

in rats showed that RFRP-1 had no effect on gonadotrophin secretion (Hinuma et al., 

2000), studies have aimed at investigating the involvement of RFRP-3 in the regulation 

of mammalian reproduction. However, recent evidence indicates that the effect of RFRP-

1 on the gonadotrophic axis could be species-dependent (Ancel et al., 2012, Ubuka et al., 
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2012), and therefore the relative role of this peptide in the regulation of the 

reproductive function deserves further investigation. Nevertheless, accumulating 

evidence now indicates that RFRP-3 is involved in the regulation of the hypothalamo-

pituitary-gonadal axis in mammals, and this will be addressed in detail in this review. 

 

MPHSFANLPLRFa      Human RFRP-1         Ubuka et al., 2009  

VPNLPQRFa       Human RFRP-3         Ubuka et al., 2009  

SGRNMEVSLVRQVLNLPQRFa     Monkey RFRP-3        Ubuka et al., 2009  

SLTFEEVKDWAPKIKMNKPVVNKMPPSAANLPLRFa                  Bovine RFRP-1         Fukusumi et al., 2001  

AMAHLPLRLGKNREDSLSRWVPNLPQRFa                   Bovine RFRP-3          Yoshida et al., 2003  

SVTFQELKDWGAKKDIKMSPAPANKVPHSAANLPLRFa                  Rat RFRP-1*          Hinuma et al., 2000  

ANMEAGTMSHFPSLPQRFa     Rat RFRP-3          Ukena et al., 2002  

SPAPANKVPHSAANLPLRFa     Siberian hamster RFRP-1    Ubuka et al., 2012 

TLSRVPSLPQRFa                      Siberian hamster RFRP-3   Ubuka et al., 2012 

SPAPANKVPHSAANLPLRFa     Syrian hamster RFRP-1*     Kriegsfeld et al., 2006  

ILSRVPSLPQRFa                      Syrian hamster RFRP-3*     Kriegsfeld et al., 2006  

SIKPSAYLPLRFa                      Quail GnIH           Tsutsui et al., 2000 

SLNFEEMKDWGSKNFMKVNTPTVNKVPNSVANLPLRFa  Quail GnIH-RP-1*     Satake et al., 2001  

SSIQSLLNLPQRFa      Quail GnIH-RP-2        Satake et al., 2001  

 

Table 1 - Alignment of amino acid sequences of LPXRFa (X = L or Q) peptides in mammals 

and the quail.  

*, Putative LPXRFa peptides hypothesized from their precursor mRNA sequences. 

 

 

LOCALISATION OF RFRP NEURONS IN THE MAMMALIAN BRAIN 

Both in situ hybridization studies and immunohistochemical mapping experiments have 

been carried out to localise RFRP-expressing cells, however it is important to bear in 

mind that the immunohistochemical findings could be affected by a possible variation in 

specificity of the antibodies used. Indeed, a variety of antibodies has been characterized 

for the study of RFRP-immunoreactive (-ir), including a polyclonal antibody raised 

against avian GnIH (Tsutsui et al., 2000), an antiserum against the rat RFRP precursor 

peptide (Rizwan et al., 2009), a white crowned sparrow GnIH antiserum (Smith et al., 

2008, Kriegsfeld et al., 2006) and an antibody raised in guinea pigs against human RFRP-

3 (Qi et al., 2009). Moreover, because of the differences in RFRP-like sequences among 
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mammalian species (Table 1), a given antibody could result in variable labeling from one 

species to another.  

 

In the mouse brain, RFRP-ir cells have been localised in the diencephalon, pons, medulla 

and dorsomedial nucleus of the hypothalamus (DMH) (Ukena and Tsutsui, 2001). In rats, 

RFRP-ir cells are located mainly in the DMH and in regions surrounding the 

ventromedial nucleus and tuberomammillary nucleus (Johnson et al., 2007, Rizwan et 

al., 2009). In rats, rfrp mRNA has been detected in cells located in the DMH and 

dorsomedial parts of the ventromedial nucleus with cells extending rostral to the 

anterior hypothalamus and the ventral perifornical area (Legagneux et al., 2009). In 

another study, RFRP-ir and mRNA were detected in the DMH in Syrian hamsters, mice 

and rats (Kriegsfeld et al., 2006, Revel et al., 2008). In Siberian hamsters, RFRP-ir cell 

bodies are distributed in the medial region of the hypothalamus spanning from the 

anterior hypothalamic area  to the DMH and premammillary nucleus (Ubuka et al., 

2012). In sheep, in situ hybridisation has shown RFRP-expressing cells in the ventral 

region of the paraventricular nucleus and DMH (Clarke et al., 2008, Dardente et al., 2008, 

Smith et al., 2008). A similar distribution was described using immunohistochemistry 

(Smith et al., 2008, Qi et al., 2009). 

 

Although inter-species differences appear in the distribution of RFRP neurons, possibly 

due to antibody specificity issues, the MBH, and particularly the DMH, appears to be a 

key region containing these neurons. This is of interest as the DMH has been implicated 

in a variety of behavioural and physiological responses, including those associated with 

feeding, reproduction, stress, circadian rhythms, and thermogenesis. Moreover, the DMH 

receives inputs from a large number of hypothalamic regions, suggesting that neurons in 

this area could integrate environmental and physiological signals to regulate endocrine 

responses. 

 

SITES OF ACTION OF RFRP-3 IN MAMMALS 

In various mammalian species including humans, RFRP fibre networks are found in 

multiple brain regions including the preoptic area, the arcuate nucleus, the lateral 

septum, the anterior hypothalamus and the bed nucleus of the stria terminalis (Ukena 

and Tsutsui, 2001, Kriegsfeld et al., 2006, Johnson et al., 2007, Mason et al., 2010). 
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Notably, RFRP-ir fibres make apparent contact with a subpopulation of GnRH neurons in 

rodents and sheep (Kriegsfeld et al., 2006, Smith et al., 2008, Ubuka et al., 2012, Poling et 

al., 2012, Rizwan et al., 2012) suggesting that RFRP-3 acts centrally to control the 

reproductive axis (Table 2).  

 

There is still a debate on a possible hypophysiotrophic effect of RFRP-3 in mammals as 

reported in birds. A large body of evidence now reports the absence of fibres in the 

median eminence of mice, rats and Siberian hamsters (Ukena and Tsutsui, 2001, Yano et 

al., 2003, Rizwan et al., 2009, Ubuka et al., 2012). In another study, only sparse RFRP 

fibre innervation was observed in the median eminence of mice, rats and Syrian 

hamsters (Kriegsfeld et al., 2006) (Table 2). On the other hand, in the sheep RFRP fibres 

terminating in the median eminence have been identified and RFRP has been detected in 

the portal blood (Clarke et al., 2008, Sari et al., 2009, Smith et al., 2012) (Table 2). These 

data suggest the likelihood of species-dependent differences in the modes of action of 

RFRP-3, and it is possible that sheep and rodents evolved this system differently. 

 

The RFRP peptides bind with high affinity to GPR147 (also known as NPFF1R) and with 

a lower affinity to GPR74 (also known as NPFF2R), which were first identified as 

neuropeptide FF receptors (Hinuma et al., 2000, Liu et al., 2001, Engstrom et al., 2003). 

The GPR147 receptor couples with Gαi3 or Gαs proteins (Gouarderes et al., 2007) 

suggesting that GPR147 can have both inhibitory and stimulatory downstream effects on 

cellular activity. However, in CHO cells, activation of the receptor inhibits forskolin-

stimulated cAMP accumulation (Mollereau et al., 2002).  

 

NPFF receptors have been detected in rodent, lagomorph, and monkey brains suggesting 

that they are conserved (Gouarderes et al., 2004b). Importantly, however, remarkable 

variations in GPR147 and GPR74 receptor contents and distribution exist from one 

species to another and from one strain to another among the same species (Gouarderes 

et al., 2004b, Gouarderes et al., 2004a). Early studies describing the autoradiographic 

distribution of GPR147 in mice and rats indicated that the receptor was present 

throughout the hypothalamus (Gouarderes et al., 2002, Gouarderes et al., 2004b, 

Gouarderes et al., 2004a). Recent studies have made it possible to localise RFRP sites of 

action in more detail in various rodent species. Indeed, RFRP-3 fibres are in contact with 
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20-40% of GnRH neurons in rats and hamsters (Ubuka et al., 2012, Rizwan et al., 2012) 

and about 25% of GnRH neurons express Gpr147 but not Gpr74 in mice, rats and 

hamsters (Rizwan et al., 2012, Poling et al., 2012, Ubuka et al., 2012). In another study in 

mice expressing GnRH-green fluorescent protein-tagged neurons, RFRP-3 was found to 

exert a direct inhibitory effect on the firing rate of 41% of GnRH neurons, while 12% 

increased their firing rate, and the remainder were unaffected (Ducret et al., 2009). 

Furthermore, we demonstrated that central injection of RFRP-3 to Syrian hamsters 

induces c-Fos expression in 30% of the GnRH neurons (Ancel et al., 2012). Whether this 

effect is due to a direct action of RFRP-3 on GnRH neurons or whether it is linked to an 

effect on upstream regulators of the reproductive axis remains to be determined. 

Indeed, in the same study, although c-Fos expression was not observed in Kp neurons 

following acute RFRP-3 administration, the continuous central administration of RFRP-3 

led to an increase in Kiss1 expression in the arcuate nucleus (Ancel et al., 2012). 

Moreover, in rats RFRP-3 fibres are in contact with Kp neurons, a subpopulation (20%) 

of which expresses the Gpr147 gene (Rizwan et al., 2012). It is of note to say that in our 

analysis of c-Fos expression in the Syrian hamster brain following icv RFRP-3 

administration we found an increase in non-Kp neurons in the arcuate nucleus (Ancel et 

al., 2012).   

 

Only a few studies have addressed the question of the distribution of GPR147 in 

peripheral tissues. The receptor has been localised in the Syrian hamster pituitary 

(Gibson et al., 2008) although only a very low level of pituitary expression has been 

reported in rats (Hinuma et al., 2000, Quennell et al., 2010). More recently, ovine 

pituitary cells have been shown to express Gpr147 (Smith et al., 2012). These data 

further support the hypothesis that RFRP-3 could have a direct hypophysiotrophic effect 

in sheep and not in rodents, although additional studies will be required in order to 

provide an answer to this controversial question. 
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RFRP-3 AND THE REPRODUCTIVE AXIS 

 

LESSONS FROM NON-MAMMALIAN VERTEBRATES 

As previously mentioned, GnIH was discovered in birds in 2000 and termed accordingly 

because of its inhibitory effect on gonadotrophin secretion (Tsutsui et al., 2000). Indeed, 

GnIH administration reduces plasma LH concentrations in vivo in quails and sparrows 

(Tsutsui et al., 2000, Osugi et al., 2004, Ubuka et al., 2006) and inhibits gonadotrophin 

synthesis and release in vitro from cultured quail and chicken pituitaries (Ciccone et al., 

2004, Ubuka et al., 2006). Taken together, these data indicate that GnIH inhibits 

gonadotrophin synthesis and release in birds, probably via a direct inhibitory effect at 

the level of the pituitary (Tsutsui et al., 2009, Tsutsui et al., 2010a, Tsutsui et al., 2012). 

 

In 2002, goldfish GnIH was discovered in teleosts (Sawada et al., 2002) leading to 

investigation of the involvement of this peptide in gonadotrophin secretion in fish. In 

goldfish, intraperitoneal administration of GnIH peptide induced a decrease in serum LH 

levels (Zhang et al., 2010), however goldfish GnIH and its related peptides stimulated the 

release of LH and FSH from cultured pituitary cells of sockeye salmon (Amano et al., 

2006). These results raise interesting questions of possible species-dependent 

differences in the effects of GnIH on gonadotrophin secretion in vertebrates. Additional 

studies should aim at determining whether these conflicting data are due to the different 

methods of investigation used, or whether they reflect a physiological reality in the 

effect of GnIH on the reproductive axis.  

 

ACTIONS OF RFRP-3 ON GONADOTROPHIN SYNTHESIS AND RELEASE IN MAMMALS 

The discovery that GnIH was a potent regulator of gonadotrophin synthesis and release 

in non-mammalian vertebrates led to intensive research on the possible roles of RFRP-1 

and RFRP-3 in the regulation of the mammalian reproductive axis. Because RFRP-3 is 

closest to avian GnIH as regards its sequence, focus was initially directed towards the 

role of RFRP-3 in the regulation of mammalian reproduction, to the detriment of RFRP-

1. Moreover, an initial study in rats, indicating that icv RFRP-1 stimulated prolactin 

secretion but not other pituitary hormones (Hinuma et al., 2000), suggested that this 

peptide might be involved in the regulation of other endocrine functions rather than 

reproduction. In recent years, a large number of studies have demonstrated in a range of 
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mammalian species that RFRP-3 plays a role in the regulation of the hypothalamo-

pituitary-gonadal axis (Table 2) (Tsutsui et al., 2010a, Bentley et al., 2010)(for reviews).  

In mice, RFRP-3 was found to exhibit rapid and repeatable inhibitory effects on the firing 

rate of a subpopulation of GnRH neurons in hypothalamic slices (Ducret et al., 2009). In 

male rats, icv RFRP-3 significantly suppresses all facets of sex behaviour and also 

significantly reduces plasma levels of LH (Johnson et al., 2007, Pineda et al., 2010b). In 

female rats, chronic icv infusion of RFRP-3 causes a dose-dependent inhibition of GnRH 

neuronal activation at the LH surge peak and also suppresses neuronal activation in the 

anteroventral periventricular region, which provides stimulatory input to GnRH neurons 

(Anderson et al., 2009). Taken together, these results point to a central inhibitory effect 

of RFRP-3 on the HPG axis, via the GnRH neurons in the POA/OVLT brain region.  

 

However, there are contradictory data about a possible hypophysiotrophic effect of the 

peptide in mammals. In ovariectomised (OVX) rats, intravenous administration of RFRP-

3 significantly reduces plasma LH concentrations (Murakami et al., 2008), while in 

another study the same protocol had no effect on basal LH secretion and minimal effects 

on GnRH-stimulated secretion (Rizwan et al., 2009). In vitro,  RFRP-3 was shown to 

inhibit LH secretion from cultured pituitary cells when GnRH is present, but did not have 

a significant effect on basal LH levels in the same study (Murakami et al., 2008). In 

another study, RFRP-3 did not have a direct suppressive effect on LH secretion in rat 

cultured anterior pituitary cells (Anderson et al., 2009). In OVX female Syrian hamsters, 

a study has shown that peripheral injections of GnIH significantly inhibit LH secretion 

(Kriegsfeld et al., 2006), but in the male hamster we reported no effect of RFRP-3 on LH 

secretion when injected peripherally, nor on the basal or GnRH-stimulated production of 

LH from isolated pituitary glands (Ancel et al., 2012). In sheep and cattle, intravenous 

RFRP-3 administration inhibits gonadotrophin release (Clarke et al., 2008, Kadokawa et 

al., 2009) although another study failed to replicate these results in sheep (Caraty et al., 

2012). Interestingly, RFRP-3 is released into the portal blood in sheep and appears to 

induce a marked inhibition of gonadotrophin secretion in vitro (Clarke et al., 2008, Sari 

et al., 2009, Smith et al., 2012). To date, no consensus has been reached on the subject of 

RFRP-3 sites of action for the control of mammalian reproduction and it is possible that 

species-dependent differences exist with regard to the hypophysiotrophic effect of 
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RFRP-3 in mammals. Additional studies, using similar experimental protocols in rodents 

and sheep could help to answer some of the pending questions. 

 

Until recently, and based on the plethora of publications supporting this hypothesis, it 

was assumed that RFRP-3 functioned in mammals as GnIH functioned in birds and 

served as an inhibitory component regulating the hypothalamo-pituitary-gonadal axis. 

However, we have recently reported novel findings in the male Syrian hamster (Ancel et 

al., 2012) which have led to question this assumption, concurrently with another group 

working on the male Siberian hamster (Ubuka et al., 2012). In the male Syrian hamster 

kept in long-day photoperiodic (LD) conditions, we reported that acute icv 

administration of RFRP-3 stimulates GnRH cell activity, gonadotrophin release and 

testosterone production (Ancel et al., 2012). Similarly, in short-day photoperiodic (SD) 

conditions, a single central injection of RFRP-3 increases gonadotrophin release 

(unpublished data). In the Siberian hamster, while administration of RFRP-3 in LD 

conditions inhibits gonadotrophin release, the same protocol stimulates gonadotrophin 

secretion in SD conditions (Ubuka et al., 2012). Remarkably, these findings of a 

stimulatory action of RFRP-3 on the male hamster reproductive axis are in sharp 

contrast with a previous study reporting an inhibitory effect of icv GnIH on LH secretion 

in OVX female Syrian hamsters (Kriegsfeld et al., 2006), raising the question of a possible 

sex-dependent difference in the effect of RFRP-3 on the reproductive axis. 

 

Reproductive activity of female rodents displays a well-described oestrous cycle, 

characterised by varying levels of circulating gonadotrophins and sex steroids. It has 

been hypothesised that the RFRP neuronal system might be involved in the estrogen-

mediated positive feedback which regulates the oestrous cycle. Indeed, the number of 

RFRP neurons and their level of activity are decreased at the time of the LH surge in the 

Syrian hamster (Gibson et al., 2008). Furthermore, rfrp mRNA expression is reduced in 

OVX mice treated with estrogen (Molnar et al., 2011). However, a study in rats showed 

no difference in rfrp mRNA levels of females that were OVX versus OVX and treated with 

estrogen or diestrus (Quennell et al., 2010). In addition, in OVX ewes, estrogen treatment 

does not significantly alter rfrp mRNA expression levels (Smith et al., 2008). These 

observations suggest that there could be another level of complexity in the involvement 

of the RFRP neuronal system in the regulation of the reproductive system, according to 
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the gender of the animal analyzed. In this context it would be interesting to determine 

whether the effect of RFRP-3 on the female reproductive axis depends on the stage of 

the oestrous cycle at which it is administered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next page: Table 2 - Summary of the effects of RFRP-3 on LH secretion and of the 

sites of action of the peptide in mammals. 
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RFRP-3 AND SEASONAL REPRODUCTION 

In seasonal breeders, reproduction is restricted to a specific time of the year to ensure 

that the birth of the offspring occurs during the most favourable season. In order to 

synchronise their reproductive activity with the seasons, mammals use the annual 

variations in photoperiod. To decode photoperiod, mammals rely on a 

photoneuroendocrine system in which cells originating in the retina project, via a 

multisynaptic pathway, to the pineal gland where MEL is released exclusively at night. 

As a result, the duration of the nocturnal release of MEL is proportional to night 

duration, therefore giving a stable indication of the seasons (Simonneaux and Ribelayga, 

2003).  

 

Syrian and Siberian hamsters are classic models for the study of seasonal rhythms. In 

these species, sexual activity is promoted by exposure to a LD and exposure to a SD 

induces an inhibition of the reproductive function within 8-10 weeks. Although it is now 

well established that the seasonal regulation of reproduction is mediated via MEL, its 

precise sites of action remain unknown.  

 

In the Syrian hamster, the MBH appears to be an important brain region in the 

photoperiodic control of reproduction. Indeed, MEL receptors are localised in this 

hypothalamic area and an electrolytic lesion of the MBH prevents the SD-induced 

gonadal regression (Maywood and Hastings, 1995, Maywood et al., 1996). Interestingly, 

rfrp neurons are localised in this same brain region and we have shown that both rfrp 

mRNA and RFRP protein levels are down-regulated by MEL in a SD photoperiod in the 

Syrian hamster (Figure 16) (Revel et al., 2008). Recently, a similar MEL-driven down-

regulation of rfrp mRNA levels and RFRP-ir content has been reported in the male 

Siberian hamster (Ubuka et al., 2012). It is worth noting that in both hamster species 

these photoperiodic variations of rfrp expression are independent of the photoperiodic 

variation in circulating levels of testosterone. Taken together, these data suggest that 

rfrp and its product, RFRP-3, might be involved in the MEL-driven seasonal regulation of 

reproduction in hamsters.  
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FIGURE 16 - RFRP EXPRESSION IS DOWN-REGULATED  

IN THE SYRIAN HAMSTER BRAIN IN SD 

 

The expression of rfrp is down-regulated by melatonin in SD conditions compared to 

LD conditions. This down-regulation is mediated by melatonin, as demonstrated with 

pinealectomy and melatonin injection experiments. Gonadal steroids do not affect rfrp 

expression, as demonstrated using orchidectomy and testosterone implant 

experiments. The arrow shows expression in the dorsomedial division of the 

ventromedial hypothalamic nucleus and the arrowhead shows expression in the 

dorsomedial nucleus of the hypothalamus. Revel et al., 2008. 

 

 

We have recently investigated the role of RFRP-3 in the seasonal control of 

reproduction. Male Syrian hamsters were placed in photoinhibitory conditions and 

implanted with osmotic minipumps releasing a constant flow of RFRP-3 in the lateral 

ventricle. Within 5 weeks, RFRP-3 administration had fully reactivated the reproductive 

function compared to the administration of vehicle, manifested by an increase in Kiss1 

expression in the arcuate nucleus, paired testes weight and plasma testosterone 

concentrations (Ancel et al., 2012). These results indicate that rfrp neurons are likely 

candidates in mediating the MELergic information to the reproductive axis. However, 

additional experiments are required in order to determine whether MEL is acting 

directly upon rfrp neurons or whether there are other intermediates involved in the 

MEL-driven regulation of the reproductive function. In particular, it has been proposed 

that the pars tuberalis plays a central role in the photoperiodic control of seasonal 

functions. Indeed, in seasonal species abundant MEL receptors are present in the pars 

tuberalis of the anterior pituitary, and MEL-responsive cells in the pars tuberalis control 

the production of thyrotrophin which acts locally on cells in the adjacent MBH, leading 
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to increased expression of type II thyroid hormone deiodinase (Dio2) in LD conditions in 

Syrian and Siberian hamsters (Revel et al., 2006c, Watanabe et al., 2004). Because Dio2 

catalyzes the conversion of thyroxine (T4) to the bioactive form triiodothyronine (T3), 

this photoperiodic regulation results in elevated levels of T3 during the breeding season, 

compared to the non-breeding season. In photoinhibited Siberian hamsters T3 

administration reactivates the reproductive function (Freeman et al., 2007), indicating 

that this pathway could be involved in the regulation of seasonal reproduction. 

Additional studies investigating the effect of T3 administration on RFRP expression and 

the presence or not of T3 receptors on RFRP neurons could help clarify the hierarchical 

organization of the T3/RFRP systems. 

 

Contrary to hamsters, sheep are short day breeders; that is to say that sexual activity is 

promoted by exposure to a SD photoperiod and inhibited upon exposure to a LD 

photoperiod. In this species, like hamsters, rfrp expression is down-regulated in SD 

conditions, when sheep are sexually active, and elevated in LD conditions, when they are 

sexually inactive (Dardente et al., 2008, Smith et al., 2008). These observations are in 

line with the findings indicating that acute administration of RFRP-3 has an inhibitory 

effect on the reproductive function in sheep (Clarke et al., 2008, Sari et al., 2009, 

Kadokawa et al., 2009). However, a possible seasonal role has to date not been 

addressed using continuous infusions of the peptide. In the future, it will be interesting 

to determine whether RFRP-3 is a regulator of seasonal reproduction in sheep as it 

appears to be the case in hamsters. Moreover, as previously mentioned, rfrp neurons are 

likely candidates in mediating the melatonergic information to the reproductive axis in 

hamsters, and it will be fascinating to find out whether they play a central role in 

transmitting seasonal information to the gonadotrophic axis in sheep. Indeed, although 

it is well established that MEL controls the seasonal regulation of the hypothalamo-

pituitary-gonadal axis in seasonally-breeding species, the precise mechanisms through 

which the same MELergic signal produces opposite behavioural responses remain 

unclear. It is reasonable to hypothesise that RFRP neurons are the switch point in 

converting the same MELergic signal into a stimulatory or an inhibitory output to the 

reproductive axis in seasonally-breeding mammals. 
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RFRPS AND OTHER FUNCTIONS 

 

The DMH is involved in a variety of behavioural and physiological responses, thus the 

involvement of RFRPs in the regulation of other endocrine functions has been 

investigated. Notably, the peptides have been found to be implicated in functions which 

indirectly affect or are affected by the reproductive status of the animal, including 

feeding, stress and nociception. 

 

RFRPS AND FEEDING 

Because the DMH plays an important role in the control of energy metabolism and RFRP 

neurons are located in the DMH in mammalian species, it seems likely that RFRP-1 

and/or RFRP-3 may play a role in the regulation of feeding behaviour. In the sheep 

brain, RFRP fibres are found to have close appositions with neuropeptide Y, 

proopiomelanocortin, orexin, and melanin-concentrating hormone neurons (Qi et al., 

2009), all of which are known to play important roles in the control of food intake. 

Moreover, the administration of RFRPs induces c-Fos expression in the arcuate nucleus 

in rats and hamsters (Yano et al., 2003, Ancel et al., 2012), a brain region well-known for 

its key role in the regulation of feeding behaviour.  

 

Only a few studies have investigated the behavioural effect of RFRP peptide injections in 

mammals. In rats, icv RFRP-3 administration induces an increase in food intake 

(Johnson et al., 2007, Murakami et al., 2008) and in body weight (Johnson and Fraley, 

2008). However, in another study central RFRP-1 injection resulted in food intake 

decrease in rats (Kovacs et al., 2012). Given that RFRP-1 applied icv to chicks 

significantly reduced both food intake and water intake (Newmyer and Cline, 2009), it is 

reasonable to speculate that RFRP-1 and RFRP-3 might have variable effects on food 

intake in mammals. Indeed, in the Syrian hamster we have shown that continuous icv 

administration of RFRP-3 for 5 weeks did not affect food intake or body weight (Ancel et 

al., 2012). 

 

RFRPS AND STRESS 

The DMH is also involved in the control of stress responses (DiMicco et al., 2002) and 

the involvement of RFRP in the control of stress has been reported. Exposure to stressful 
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stimuli induces an increase in rfrp expression and an activation of RFRP neurons in the 

hypothalamus (Kaewwongse et al., 2010, Kirby et al., 2009). Moreover, RFRP fibres 

appear to project directly to cells containing corticotrophin-releasing hormone or 

oxytocin in the hypothalamus, hormones which are known for their role in stress 

responses (Qi et al., 2009). Administration of RFRP-1 and RFRP-3 induces c-Fos 

expression in the hypothalamic paraventricular nucleus and in oxytocin neurons, and 

induces the secretion of adrenocorticotropic hormone  and oxytocin into the peripheral 

circulation (Kaewwongse et al., 2010). Interestingly, similar patterns of c-Fos expression 

and hormone release are observed after stressful stimuli (Onaka, 2000). In addition, 

central administration of RFRP induces anxiety-related behaviours (Kaewwongse et al., 

2010). On the other hand, initial work indicated that central RFRP-1 application 

increased prolactin secretion in rats (Hinuma et al., 2000). Given the anti-stress and 

anxiolytic properties of prolactin, this aspect of RFRP peptide function deserves further 

investigation. Taken together, these data are consistent with the view that RFRPs are 

involved in neuroendocrine and behavioural responses to stressful stimuli.  

 

RFRPS AND NOCICEPTION 

Two peptides of the RFamide family of peptides have been shown to play important 

roles in the control of pain and analgesia, namely NPFF and NPAF (Panula et al., 1996, 

Panula et al., 1999, Roumy and Zajac, 1998). These peptides were initially identified as 

the endogenous ligands for GPR74 and GPR147 (Elshourbagy et al., 2000, Bonini et al., 

2000, Hinuma et al., 2000), but it was later shown that NPFF and NPAF had a lower 

affinity for GPR147 than RFRP peptides (Hinuma et al., 2000, Liu et al., 2001, Engstrom 

et al., 2003). In 2001, a study showing that RFRP-1 is more potent in attenuating 

morphine-induced analgesia than NPFF when injected icv (Liu et al., 2001) suggested 

that RFRP peptides could play a role in nociception. More recently, using neuroblastoma 

cells transfected with GPR147 a similar opioid-attenuating activity was observed for 

RFRP-3 (Kersante et al., 2006), further supporting the possibility that RFRP peptides are 

involved in the control of pain and analgesia. Unfortunately, only a few studies have 

aimed at clarifying this aspect of RFRP peptide function, and it is therefore difficult to 

conclude on the implication of these peptides in nociception. However, a recent report 

indicating that RF9, a dipeptide with subnanomolar affinities towards GPR147, exhibited 

a potent in vivo preventive effect on opioid-induced hyperalgesia at low dose (Gealageas 
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et al., 2012) indicates that GPR147 may be a key partner of an anti-opioid system that 

modulates the antinociceptive properties of the opioid system. Since the endogenous 

ligands for GPR147 are RFRP peptides, this branch of research deserves further 

investigation and might lead to the discovery of an additional function for RFRP 

peptides, besides the regulation of the gonadotrophic axis. 

 

 

CONCLUSION AND PERSPECTIVES 

 

The discovery of rfrp and its product RFRP-3 in mammals led to a new direction in 

investigating the regulation of GnRH neuron activity and therefore of the HPG axis. 

Although it was initially hypothesised that RFRP-3 might act as an inhibitory component 

regulating the reproductive axis in mammals, it now appears that this is not always the 

case. Indeed, recent evidence indicates that there are probable species-dependent 

differences in the effect of the peptide on the gonadotrophic axis. Further investigations 

will be required in order to answer the questions raised by the contradictory results 

observed in mammals, notably: 1) what is the functional significance of these opposing 

effects? 2) through which mechanisms does RFRP-3 induce either a stimulatory or an 

inhibitory effect on the gonadotrophic axis? 3) apart from GnRH neurons, what are the 

central sites of action of the peptide? and 4) to what extent is RFRP-3 involved in the 

regulation of non-reproductive functions? 

 

The future development of highly selective pharmacological and molecular tools should 

help answer the question as to whether the species- and gender-dependent differences 

in the physiological effects of RFRP-3 might be mediated by differences in the modes and 

sites of action of the peptide on the HPG axis. 
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AIM OF THE STUDY 

 

The observation that rfrp expression is down-regulated by MEL in SD in male Syrian hamsters 

(Revel et al., 2008), when animals are sexually inactive, is in contradiction with studies in rats 

and sheep reporting that RFRP-3 has an inhibitory effect on the gonadotrophic axis (Johnson et 

al., 2007, Murakami et al., 2008, Clarke et al., 2008, Sari et al., 2009, Pineda et al., 2010b). 

Therefore, the initial aim of my work was to determine the acute effects of RFRP-3 

administration on the male Syrian hamster gonadotrophic axis. In parallel, we sought to 

characterise possible sites of action of RFRP-3 in the Syrian hamster brain and pituitary.  

 

In line with this reasoning, and because rfrp expression is elevated in LD when hamsters are 

sexually active, my work also focused on the seasonal aspect of reproduction. Indeed, the sites 

of action of MEL for the photoperiodic control of reproduction are not known. However, MEL 

receptors have been detected in the MBH of Syrian hamsters and a lesion of this area abolishes 

the SD-induced gonadal regression (Maywood and Hastings, 1995, Maywood et al., 1996), 

suggesting that this brain region could be involved in mediating MEL’s effect on the 

gonadotrophic axis. Interestingly, rfrp neurons are located in this area, and because MEL 

regulates rfrp expression in the Syrian hamster, we hypothesised that RFRP-3 could play a role 

in the seasonal regulation of reproduction. Therefore, my work also addressed the chronic 

effect of RFRP-3 administration on reproductive function. 

 

In the female Syrian hamster, two recent studies suggested that the involvement of RFRP-3 in 

the regulation of the HPG axis might be more complex than initially expected. Firstly, in OVX 

female Syrian hamsters, central administration of GnIH inhibits LH secretion (Kriegsfeld et al., 

2006). Secondly, RFRP-ir levels vary throughout the estrous cycle, with reduced levels at the 

time of the preovulatory LH surge (Gibson et al., 2008). These observations led us to speculate 

that in female Syrian hamsters the effect of RFRP-3 on the gonadotrophic axis might vary in the 

course of the estrous cycle. In order to address these points, we first analysed rfrp expression 

in LD and SD, in order to compare the effect of photoperiod in males and females. We then 

went on to characterise rfrp expression throughout the estrous cycle. Finally, we examined the 

effect of RFRP-3 administration on LH secretion in intact female Syrian hamsters, at different 

stages of the estrous cycle. Indeed, to date all the studies on the effect of RFRP-3 on the 

gonadotrophic axis carried out in females have been performed in OVX animals, in order to 
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bypass the feed-back effects of sex steroids. However, the results obtained might not be 

functionally significant. 

 

The last part of my work aimed at identifying RFRP-3 modes and sites of action in the Syrian 

hamster hypothalamus. Indeed, little is known about the central targets mediating the effects 

of RFRP-3 on the gonadotrophic axis in hamsters and other rodents. Specifically, there is a 

debate on possible interactions between RFRP-3 and other RFamide receptors. In order to 

determine whether the effects of the peptide on the Syrian hamster reproductive axis are 

mediated via GPR147, which is thought to be the receptor for RFRPs, we carried out 

experiments using an antagonist for this receptor. At the same time, we sought to analyse 

GPR147 distribution in the Syrian hamster hypothalamus. 

 

 

The results obtained in the course of my PhD will be presented as scientific articles, which have 

been or are in the process of being published: 

 

Chapter 1 

 Effects of acute and chronic RFRP-3 administration on the male Syrian hamster 

gonadotrophic axis 

 Sites of action of RFRP-3 in the male Syrian hamster: central and peripheral targets 

Chapter 2 

 Photoperiodic regulation of rfrp expression in the female Syrian hamster and effect of 

gonadal steroids 

 rfrp expression at the time of the LH surge on the day of proestrus compared to diestrus 

 Effects of acute RFRP-3 administration on the female Syrian hamster 

 Characterisation of a possible hypophysiotrophic effect of RFRP-3 in the female Syrian 

hamster 

Chapter 3 

 Does RFRP-3 exert its effects on the reproductive axis via GPR147 in the Syrian 

hamster? Antagonist studies 

 What are the sites of action for RFRP-3 in the Syrian hamster hypothalamus? GPR147 

distribution 
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ABSTRACT 

 

In seasonal mammals, a distinct photoneuroendocrine circuit that involves the pineal 

hormone MEL tightly synchronises reproduction with seasons. In the Syrian hamster, a 

seasonal model in which sexual activity is inhibited by short days, we have previously 

shown that the potent GnRH stimulator, kisspeptin, is crucial to convey MEL’s message; 

however the precise mechanisms through which MEL affects kisspeptin remain unclear. 

Interestingly, rfrp gene expression in neurons of the dorsomedial hypothalamic nucleus, 

a brain region in which MEL receptors are present in the Syrian hamster, is strongly 

down-regulated by MEL in short days. Because a large body of evidence now indicates 

that RFRP-3, the product of the rfrp gene, is an inhibitor of gonadotrophin secretion in 

various mammalian species, we sought to investigate its effect on the gonadotrophic axis 

in the Syrian hamster. We show that acute central injection of RFRP-3 induces c-Fos 

expression in GnRH neurons and increases LH, FSH and testosterone secretion. 

Moreover, chronic central administration of RFRP-3 restores testicular activity and Kiss1 

levels in the arcuate nucleus of hamsters despite persisting photoinhibitory conditions. 

By contrast RFRP-3 does not have a hypophysiotrophic effect. Overall, these findings 

demonstrate that, in the male Syrian hamster, RFRP-3 exerts a stimulatory effect on the 

reproductive axis, most likely via hypothalamic targets. This places RFRP-3 in a decisive 

position between the melatonergic message and Kiss1 seasonal regulation. Additionally, 

our data suggest for the first time that the function of this peptide depends on the 

species and the physiological status of the animal model.  
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INTRODUCTION 

 

In vertebrates, the reproductive system is controlled by the gonadotrophic axis, in which 

gonadotrophin-releasing hormone (GnRH) secretion from the hypothalamus stimulates 

the production of LH and FSH from the pituitary gland. Recently, two peptides of the 

RFamide family have been identified as important regulators of the gonadotrophic axis. 

The first one, kisspeptin (Kp), is a potent stimulator of GnRH secretion and the principal 

conduit for mediating sex steroid feedback. The second one, gonadotrophin-inhibitory 

hormone (GnIH), was identified as an inhibitor of gonadotrophin release in the quail 

(Tsutsui et al., 2000). The mammalian ortholog of avian gnih, termed RFamide-related 

peptide (rfrp), encodes a precursor that produces two peptides, RFRP-1 and RFRP-3 

(Clarke et al., 2008, Hinuma et al., 2000, Kriegsfeld et al., 2006, Ukena et al., 2002, 

Yoshida et al., 2003, Ukena and Tsutsui, 2005, Fukusumi et al., 2001). Initial work in rats 

indicated that intracerebroventricular (icv) RFRP-1 increased prolactin release (Hinuma 

et al., 2000) and a large body of evidence now indicates that RFRP-3 inhibits LH 

secretion in various mammalian species (Ducret et al., 2009, Wu et al., 2009, Johnson et 

al., 2007, Johnson and Fraley, 2008, Kriegsfeld et al., 2006, Anderson et al., 2009, 

Murakami et al., 2008, Clarke et al., 2008, Kadokawa et al., 2009, Sari et al., 2009, Pineda 

et al., 2010b). The emerging concept is that Kp and GnIH/RFRP would have antagonistic 

roles in regulating the gonadotrophic axis (Clarke, Bentley et al., 2012, Kriegsfeld et al., 

2010, Tsutsui et al., 2010b, Tsutsui et al., 2010a, Smith and Clarke, 2010). 

In seasonal breeders, photoperiod (i.e. day-length) tightly regulates reproduction to 

ensure that birth occurs at the most favourable time of the year (Goldman, 2001). In 

photosensitive rodents like the Syrian hamster (Mesocricetus auratus) reproductive 

activity is promoted by exposure to long summer days (LD) and inhibited by short 

winter days (SD) (Goldman, 2001, Gaston and Menaker, 1967, Pevet, 1988). These 

variations in photoperiod modify the circulating levels of the pineal hormone MEL to 

synchronise reproductive activity with the seasons (Bartness et al., 1993, Goldman, 

2001). We have shown that Kiss1 expression in the arcuate nucleus (ARC) is strongly 

down-regulated by MEL and that this is responsible for the photo-inhibition of 

reproductive activity in SD conditions (Revel et al., 2006b, Ansel et al., 2010). However, 

MEL receptors are distributed through the dorso/ventromedial hypothalamus in this 

species and thus do not overlap with Kiss1-expressing neurons in the ARC (Maywood 
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and Hastings, 1995, Hanon et al., 2008). Interestingly, we have recently demonstrated 

that in hamsters rfrp is expressed in the dorso/ventromedial hypothalamus, where its 

expression is downregulated by MEL in SD (Revel et al., 2008). This observation that 

sexually inactive animals have low rfrp levels challenges the current hypothesis that 

RFRP-3 is a negative regulator of the gonadotrophic axis, at least in this species. To 

document this prospect, we thus investigated how RFRP-3 regulates the reproductive 

axis of the Syrian hamster.  
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MATERIALS AND METHODS 

 

ANIMALS  

 

The animals were adult male and female Syrian hamsters (Mesocricetus auratus) bred 

in-house. From birth, they were maintained in a LD photoperiod consisting of 14h light 

and 10h dark, with lights on at 0500h, at 22±2°C with ad libitum access to water and 

food. The SD photoperiod to which some groups were transferred consisted of 10h light 

and 14h dark. All protocols were submitted to the Comité Régional d’Ethique en Matière 

d’Expérimentation Animale (CREMEAS). All experiments were conducted in accordance 

with the French National Law (license n° 67-32) and with the rules of the European 

Committee Council Directive of November 24, 1986 (86/609/EEC). 

 

 

ICV INJECTIONS 

 

Syrian hamsters were anaesthetised using a mixture of Zoletil 20 (Virbac, Carros, 

France) and Rompun (Bayer Pharma, Puteaux, France) and positioned in the stereotaxic 

apparatus. The head of the animal was shaved and prepared for aseptic surgery. A single 

incision was made on the midline of the scalp. Once the area had been prepped, a 

stainless steel 30-gauge cannula was placed in the lateral ventricle at 2 mm lateral to the 

midline, 0.8 mm posterior to the Bregma and 3 mm inferior of the dura mater. The 

cannula was kept in place on the skull by dental cement and bone screws. The cannula 

was blocked with a metallic wire and protected with a plastic cap. The animals were 

allowed a week to recover from the surgery. The injections (2µL/animal; flow rate 

1µL/min) were given in the morning using a 30-gauge stainless steel cannula attached to 

polyethylene tubing and a 50 μl Hamilton syringe (Hamilton Inc., Reno, NV, USA) under 

light anaesthesia with isoflurane vapour for the duration of the injections. The effect of 

anaesthesia alone on LH secretion was analysed in animals which were submitted or not 

to the same anaesthetic protocol as the one used for the icv injections. The results 

indicate that our anaesthesia using isoflurane vapour has no significant effect on LH 

secretion [LH in ng/ml for non-anaesthetised animals 1.14 ± 0.16 (n = 5) vs. 

anaesthetized animals 0.92 ± 0.11 (n = 4)]. 
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OVARIECTOMIES 

 

Female Syrian hamsters were anaesthetised using a mixture of Zoletil 20 (Virbac, Carros, 

France) and Rompun (Bayer Pharma, Puteaux, France) and bilateral ovariectomy was 

carried out under sterile conditions. The animals were then placed in a stereotaxic 

apparatus and implanted with a cannula in the lateral ventricle as described above. 

Animals were left to recover for 7 days before receiving icv injections as described 

above. 

 

 

ICV INFUSION 

 

Infusions were performed as previously reported (Revel et al., 2006b). Three days prior 

to implantation, osmotic minipumps (model 2006; flow rate: 0.15 µL/hr.; duration: 6 

weeks; Durect, Cupertino, CA) were filled with aCSF with or without RFRP-3 and stored 

at 37°C in Ringer Lactate (B. Braun Medical, Boulogne, France) until the surgery.  

 

 

HORMONE MEASUREMENTS 

 

Free testosterone was measured in plasma using a direct RIA kit (DPC coat-a-count RIA 

method; Siemens Medical Solutions, Mölndal, Sweden) as previously described 

(Mikkelsen et al., 2009). 

Serum LH and FSH levels were determined in a volume of 25–50µL using a double-

antibody method and RIA kits kindly supplied by the National Institutes of Health (Dr. A. 

F. Parlow, National Institute of Diabetes and Digestive and Kidney Diseases, National 

Hormone and Peptide Program, Torrance, CA). Rat LH-I-10 and FSH-I-9 were labelled 

with 125I using Iodo-gen® tubes, following the instructions of the manufacturer (Pierce, 

Rockford, IL, USA). Hormone concentrations were expressed using reference 

preparations LH-RP-3 and FSH-RP-2 as standards. Intra- and inter-assay coefficients of 

variation were, respectively, < 8 and 10% for LH and <6 and 9% for FSH. The sensitivity 

of the assay was 5 pg/tube for LH and 20 pg/tube for FSH. Accuracy of determinations 
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was confirmed by assessment of rat serum samples of known hormone concentrations 

used as external controls. 

LH secretion in pituitary cell cultures was determined using an ENZYME-linked 

immunosorbent assay (ELISA). After culturing for 6 h, media were collected and 

subjected to ELISA for LH. In brief, microtiter plates were filled with 100µL of rat LH 

High Purity in coating buffer, at a concentration of 10ng/100µL, and incubated overnight 

at 4°C. Excess LH was removed, and the plates were washed using 200μL/well of 10 mM 

phosphate buffer saline (PBS) with 0.1% Tween-20. The plates were blocked with 

200μL/well of 10 mM PBS containing 1% BSA and 0.1% Tween-20 for 1 h at room 

temperature. 200µL of sample or various concentrations of standard rLH-RP-3, diluted 

in assay buffer, were preincubated with 200µL of LH antiserum (rLH-S-11 - 1:3000 in 

assay buffer) for 18 h at 4°C. 100µL of preincubated samples, standards and controls 

were added per well in triplicate and incubated overnight at 4°C. After washing, 100µL 

of donkey anti-rabbit IgG conjugated to horseradish peroxidase was added at 1:1000 

dilution and incubated for 1 h at 37°C. The plates were again washed, and 100µL of 

3,3’,5,5’–tetramethylbenzidine substrate was added to all the wells. The colour reaction 

was allowed to develop for 30 min in the dark. The enzyme was stopped by adding 50µL 

of 0.5% sulphuric acid per well and the optical density of each well was immediately 

read at 492nm. Intra- and inter-assay coefficients of variation were, respectively, < 8 and 

11%. 

 

 

IMMUNOHISTOCHEMISTRY 

 

The animals were deeply anesthetised with CO2 vapour and their thorax opened. 

Heparin (250 IU per animal; Liquemine®, Roche, Meylan, France) was injected directly 

into the left ventricle, and a cannula was placed in the aorta. Blood was washed out with 

100ml of PBS 1X (pH 7.4) and the tissues were fixed by perfusing 250ml of 4% 

paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). The brain was removed from the 

skull, post-fixed for 24 h at 4°C in 4 % formaldehyde in 0.1 M phosphate buffer (pH 7.4), 

then transferred to 0.05 M phosphate buffered saline (PBS). Brains and pituitaries were 

cryoprotected in 30% sucrose–PBS solution. Brains were frozen on the stage of a sliding 
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microtome, and 4 sets of 40-µm-thick coronal sections were cut containing the ARC and 

the preoptic area (POA), and kept as free-floating sections in antifreeze solution at -20°C.  

Series of brain sections were processed for by means of the avidin–biotin 

immunohistochemical procedure. Prior to the immunohistochemical steps, the sections 

were rinsed for 3 X 10 min in 0.01 M PBS and incubated in 1% H2O2/PBS for 10 min. 

Before incubation in the primary antiserum, the sections were treated in a blocking 

solution containing PBS with 0.3% Triton X-100, 5% swine serum, and 1% bovine serum 

albumin (BSA) for 20 min. Then the sections were incubated at 4°C for 24 h with a 

primary rabbit polyclonal antisera directed against c-Fos at 1:2000 previously 

characterised (Mikkelsen et al., 1998). After incubation in primary antiserum the 

sections were washed in PBS with 0.1% TX, and incubated for 60 min in biotinylated 

donkey anti-rabbit (Jackson Labs, 711-066-152) diluted 1:1000 in the same buffer with 

0.3% BSA. After a wash, the sections were incubated for 60 min in streptavidin–

horseradish peroxidase complexes, and washed again. Finally, after a careful wash they 

were incubated in nickel-enhanced 0.05% diaminobenzidine (DAB) (Sigma–Aldrich, St. 

Louis) with 0.05% H2O2 in 0.05 M Tris–HCl buffer (pH 7.6) for 10 min and then washed 

twice in PBS. This generates a black precipitate within the nucleus. For the second 

immunolabelling, sections were washed in 1% hydrogen peroxide to quench any 

remaining peroxidase and incubated with a polyclonal rabbit anti-GnRH antibody 

(1/2000; AB1567, Chemicon, Temecula, CA) or an antiserum raised against full-length 

rat kisspeptin-52 (1/200; JLV-1)(Mikkelsen and Simonneaux, 2009, Desroziers et al., 

2010). The sections were then washed in PBS with 0.1% TX, and incubated for 60 min in 

biotinylated donkey anti-rabbit (Jackson Labs, 711-066-152) diluted 1:1000. After a 

wash, the sections were incubated for 60 min in streptavidin–horseradish peroxidase 

complexes, and washed again. Finally, immunoreactivity was revealed using DAB alone 

that resulted in a brown precipitate within the cytoplasm of the labelled cell. The free-

floating brain sections were mounted on gelatinised glass slides, dried, and coverslipped 

in Pertex.  

The relative number of GnRH and kisspeptin neurons containing c-Fos-

immunoreactivity was counted manually in two sections/animal at the level of the POA 

and the ARC, respectively, by an observer blind to the treatment of the individual 

animals. Furthermore, the total number of c-Fos positive cells was counted in a defined 

area containing the Kp-immunoreactive neurons (see Fig. 5A). 
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IN SITU HYBRIDISATION (ISH) 

 

Animals were deeply anesthetised with CO2 vapour and killed by decapitation. Brains 

were removed from the skull, snap-frozen on dry ice, and stored at -80°C until 

sectioning. Brains were sectioned using a cryostat (Leica, Leica microsystems, Rueil-

Malmaison, France) at -20°C. Four sets of ARC serial sections (16µm) were cut and thaw-

mounted on SuperFrost®Plus (Menzel-Gläser, Braunschweig, Germany) slides and 

stored at -80°C until ISH. 

Sense and antisense riboprobes were transcribed from linearised plasmids containing a 

270-bp rat Kiss1 cDNA (90-359 of Genbank NM_181692) in the presence of digoxigenin-

labeled nucleotides (Roche, Meylan, France) according to the manufacturer’s protocol. In 

brief, the sections were fixed in 4% paraformaldehyde, acetylated in triethanolamine 

buffer, and dehydrated in graded ethanols. After the riboprobe was denatured and 

mixed with hybridization medium (200 ng/mL) it was applied to slides and incubated 

for 40 h at 60°C. Six stringency rinses were performed at 72°C. Digoxigenin-labelled 

bound probes were detected with an alkaline phosphatase-labelled antidigoxigenin 

antibody (Roche). Alkaline phosphatase activity was detected with bromochloroindolyl 

phosphate and nitroblue tetrazolium in the presence of 5% polyvinyl alcohol (70.000-

100.000 MW; Sigma). 

The slides were then mounted and the total number of Kiss1 cells in the ARC was 

manually counted on a Leica DMRB microscope (Leica microsystems, Rueil-Malmaison, 

France).  

 

 

PITUITARY CELL CULTURE 

 

The pituitary glands were sampled and immediately dissociated as previously described 

by Simonneaux et al. (Simonneaux et al., 1999). Briefly, cells were dissociated by enzyme 

dispersion and pipette trituration in a saline solution containing collagenase (0.8 

mg/mL), trypsin (0.2 mg/mL) and DNAse (10 mg/mL) at 37°C. After the glands were 

entirely dissociated, cells were resuspended in Dulbecco's modifed Eagle's medium 

(DMEM) containing 8% horse serum, 2% fetal calf serum and 40 mg/mL gentamicin, 

plated at a density of 700 000 viable cells/well and maintained at 37°C under a mixture 
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of 95% air and 5% CO2 at 100% humidity. After preincubation for 48 h, the medium was 

changed, followed by incubation for 6 h in culture medium alone as control or three 

different concentrations of RFRP-3 (10 pM, 1 nM, 100 nM; Abgent, San Diego, USA). In 

another experiment, cells were incubated in culture medium with three concentrations 

of RFRP-3 (10 pM, 1 nM, 100 nM) with 1 nM of GnRH (Sigma). After culturing for 6 h, 

media were collected and subjected to ELISA for LH. The pituitaries were incubated for 6 

h after we performed a time-course of the effect of GnRH incubation on LH release in 

which we found that an incubation time ranging from 3 to 9h was optimal to detect an 

effect on LH secretion.  

  

 

STATISTICAL ANALYSES 

 

Results are shown as mean ± SEM. All statistical analyses were performed using 

Statistica (StatSoft Inc., USA). Data were analyzed by t test or one-way ANOVA, followed 

by post-hoc analysis: Tukey’s Honestly Significant Difference test, as appropriate. 

Statistical significance was set at Pvalue < α = 0.05. 
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TABLE 3 – AMINO ACID SEQUENCES OF THE RFAMIDE PEPTIDES  

UDED IN THE STUDY. 

 

*The sequences of the mature peptides are not known for Syrian hamster RFRP-1 and RFRP-3. 

The amino acid sequence of the precursor is predicted from its mRNA sequence. 
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RESULTS 

 

CENTRAL, BUT NOT PERIPHERAL, RFRP-3 STIMULATES THE GONADOTROPHIC AXIS 

OF MALE SYRIAN HAMSTERS. 

 

Based on studies in mice, rats and sheep, RFRP-3 is considered as an inhibitor of the 

gonadotrophic axis, through blockade of GnRH release (Ducret et al., 2009, Wu et al., 

2009, Johnson et al., 2007, Johnson and Fraley, 2008, Kriegsfeld et al., 2006, Anderson et 

al., 2009, Murakami et al., 2008, Clarke et al., 2008, Kadokawa et al., 2009, Sari et al., 

2009, Pineda et al., 2010b). As similar effects have been reported in the female Syrian 

hamster (Kriegsfeld et al., 2006), we first verified that RFRP-3 also inhibits 

gonadotrophin release in males. To do so, we examined the effects of Syrian hamster 

RFRP-3 (Table 1) injected icv on LH, FSH and testosterone secretion in adult, sexually 

active male hamsters. Surprisingly, RFRP-3 dose-dependently increased plasma LH and 

FSH levels after 30 min, with the 1500 ng dose giving the maximal response (Figures 

17A and 17B).  

 

 

FIGURE 17 - SYRIAN HAMSTER RFRP-3 STIMULATES LH, FSH AND TESTOSTERONE 

SECRETION IN THE MALE SYRIAN HAMSTER 

 

(A,B) Centrally-administered hamster RFRP-3 (150-5000 ng, icv) dose-dependently increased 

LH (A) and FSH (B) secretion after 30 min in male Syrian hamsters. Data represent the mean ± 

SEM (n = 6/group). Bars with differing letters differ significantly (p < 0.05 by one -way ANOVA 

followed by Tukey’s analysis). (C) Similarly, icv RFRP -3 (1500 ng) significantly elevated plasma 

testosterone after 2 h. Data represent the mean ± SEM (n = 6/group). *, p < 0.05 compared with 

the vehicle-injected group by Student’s t-test. 
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Similarly, RFRP-3 (1500 ng) significantly increased plasma testosterone levels after 30 

minutes (vehicle-injected group 2.83pg/ml ± 0.95 vs. RFRP-3-injected group 4.21pg/ml 

± 0.65, n = 6/group, p < 0.05 compared with the vehicle-injected group by Student’s t-

test) and 2 h (Figure 17C). These data suggest that central RFRP-3 does not inhibit, but 

rather activates the gonadotrophic axis of male Syrian hamsters, contrasting with 

females and other species studied so far. 

Because this result is in contradiction with the available literature, in particular in 

female Syrian hamsters, we analysed the effect of acute RFRP-3 (1500 ng) and GnIH 

(2000 ng) administered centrally in ovariectomised female Syrian hamsters. 

Interestingly, neither RFRP-3 nor GnIH affected plasma LH levels after 30 min (Figure 

18). This result indicates that the effects of RFRP-3 administration on the gonadotrophic 

axis may be sex-dependent, at least in the Syrian hamster. 

 

 

Conflicting data exist on whether or not peripherally-administered RFRP-3 affects the 

gonadotrophic axis (Rizwan et al., 2009, Pineda et al., 2010b, Murakami et al., 2008, 

Anderson et al., 2009). Thus, we investigated how intraperitoneal (ip) injections of 

RFRP-3 (5-500 µg) affect LH secretion in sexually active adult male hamsters, in 

comparison to Kp54 (300 µg) that was used as a positive control. Whereas Kp54 

increased plasma LH significantly after 30 min, RFRP-3 did not alter LH levels 

significantly at any of the concentrations tested, although it appeared to slightly inhibit 

basal LH levels (Figure 19A). This suggests that in this species RFRP-3 does not 

influence the pituitary gland directly. To confirm this observation in vitro, we analysed 

the effects of RFRP-3 on LH secretion directly from cultured pituitary cells. Incubation 

with RFRP-3 for 6 h (10 pM -100 nM) had no effect on LH concentrations (Figure 19B), 

in contrast to GnRH (1 nM) that stimulated LH secretion significantly (Figure 19C). 

FIGURE 18 - SYRIAN HAMSTER RFRP-3 
AND GNIH DO NOT AFFECT LH 
SECRETION IN THE FEMALE SYRIAN 
HAMSTER 

Centrally-administered hamster RFRP-3 
(1500 ng, icv) and avian GnIH (2000 ng, 
icv) do not affect LH secretion in 
ovariectomised female Syrian hamsters 
after 30 min. Data represent the mean ± 
SEM (n = 6/group). 
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Similarly, RFRP-3 did not prevent GnRH from stimulating LH secretion (Figure 19C). 

Taken together, these observations show that in male Syrian hamsters, RFRP-3 exerts its 

effect on the gonadotrophic axis through central targets. 

 

 

 

 

 

CENTRAL RFRP-3 ADMINISTRATION ACTIVATES GNRH NEURONS. 

 

To determine whether GnRH and Kp neurons are targets for the central action of RFRP-3 

in the male Syrian hamster, we examined the effects of RFRP-3 on c-FOS expression, a 

widely-used marker of neuronal activation (Kovacs, 2008), in the hypothalamus of 

sexually active adult hamsters. Two hours after giving RFRP-3 (1500 ng) icv, c-Fos was 

FIGURE 19 - RFRP-3 DOES NOT HAVE 
A HYPOPHYSIOTROPHIC EFFECT IN 
THE MALE SYRIAN HAMSTER 

(A) Peripheral Kisspeptin 54 (Kp54; 300 
µg in 100μl, ip) increased LH secretion 
significantly, whereas 3 concentrations 
of RFRP-3 (5-500 µg, ip) had no 
significant effect. Data represent the 
mean ± SEM (n = 5/group). Bars with 
differing letters differ significantly (p < 
0.05 by one-way ANOVA followed by 
Tukey’s analysis). (B) RFRP-3 (10 pM – 
100 nM) did not significantly alter  the 
basal secretion of LH by pituitary cell in 
culture. Hamster pituitary cells were 
incubated for 6 h with RFRP-3 and LH 
secretion was assayed in the 
supernatant. Data represent the mean ± 
SEM (n = 4/group). (C) Similarly, RFRP-
3 did not significantly affect GnRH-
induced LH secretion from cultured 
hamster pituitary cells. The cells were 
incubated for 6 h with GnRH (1 nM) 
alone or with 3 concentrations of RFRP-
3 (10 pM – 100 nM) and LH secretion 
was assayed in the supernatant. Data 
represent the mean ± SEM (n = 
4/group). Bars with differing letters 
differ significantly (p < 0.05 by one-way 
ANOVA followed by Tukey’s analysis).  
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determined in two neurochemical populations of hypothalamic neurons, the GnRH 

neurons in the POA and the Kp neurons in the ARC. In the POA, RFRP-3 increased c-Fos 

immunoreactivity in GnRH neurons, as shown by dual labelling immunohistochemistry 

(Figures 20A, B and C). While virtually no GnRH neurons were co-labelled with c-Fos in 

animals injected with vehicle in LD, about 20-30% of the GnRH neurons detected in the 

POA co-stored c-Fos (Figure 20B).  

 

  

 

 

 

 

In contrast, although c-Fos immunoreactivity was slightly but non-significantly 

increased following RFRP-3 administration in the area of the ARC containing the Kp-

immunoreactive neurons in LD and SD (Figures 21A, B and C), c-Fos immunoreactivity 

did not co-localise with Kp-positive neurons (Figure 21A). Accordingly, these data 

suggest that RFRP-3 delivered icv stimulates gonadotrophin release via GnRH neuron 

activation, while it does not appear to activate Kiss1-expressing neurons in the ARC, at 

least directly. 

 

FIGURE 20 - GNRH CELLS ARE ACTIVATED 
BY RFRP-3 ADMINISTRATION 

(A) a In vehicle-injected hamsters, GnRH-ir 
neurons (arrowhead) do not co-express c-
Fos (dotted arrow).  b In RFRP-3-treated 
hamsters, about 20-30% of the GnRH 
neurons detected in the POA co-stored c-Fos 
(dotted arrow showing a c-Fos-positive cell 
nucleus, black arrow showing a GnRH 
neuron co-expressing c-Fos). c, d 
Enlargements showing a GnRH cell 
(arrowhead) in a vehicle-injected hamster 
(c) and a GnRH cell co-expressing c-Fos in an 
RFRP-3-injected hamster (d). Scale bar , 30 
µm. An acute central injection (2μl) of RFRP-
3 (1500ng) to male Syrian hamsters 
maintained in long day (B) produced a 
significant increase in the number of GnRH 
neurons co-expressing c-Fos 2 h after 
injections compared to vehicle-injected 
hamsters, whereas the same treatment in 
short day (C) produced a slight but non-
significant increase in the number of GnRH 
neurons co-expressing c-Fos. Mean ± SEM of 
ratio (n = 6/group). *, p < 0.05 compared 
with the vehicle-injected group by Student’s 
t-test. 



68 
 

 

 

  

RAT KP-10, RAT RFRP-3 AND AVIAN GNIH STIMULATE LH AND TESTOSTERONE 

SECRETION. 

 

RFRP-3 is a member of the RFamide family of peptides which contains 5 members that 

all share a common RFamide N-terminal motif (Greives et al., 2008, Dockray, 2004, 

Fukusumi et al., 2006). To partially exclude non-specific effects of RFRP-3, we examined 

if other members of this family (Table 1) equally stimulate the gonadotrophic axis of 

hamsters. Whereas rat Kp-10 (rKp10; 800 ng) and rat RFRP-3 (500 ng) given icv 

significantly increased plasma LH (Figures 22A and B) after 30 min, hamster RFRP-1 

(500 ng, icv) had no significant effect on LH secretion (Figure 22C). Interestingly, the 

avian ortholog of RFRP, GnIH (2 µg, icv) also increased plasma LH (Figure 22D) and 

testosterone (vehicle-injected group 2.83pg/ml ± 0.95 vs. GnIH-injected group 

5.63pg/ml ± 0.49, n = 6/group, p < 0.05 compared with the vehicle-injected group by 

Student’s t-test) after 30 min. These data show that although it is derived from the same 

propeptide, RFRP-1 does not affect LH secretion, in contrast to the orthologous peptide 

GnIH, supporting the specificity of RFRP-3 effects on the gonadotrophic axis.  

FIGURE 21 - RFRP-3 ADMINISTRATION 
INDUCES C-FOS IN THE ARC WHICH DOES 
NOT CO-LOCALISE WITH KISSPEPTIN 
NEURONS 

(A) c-Fos activity was analysed in the area of 
the ARC containing the Kp-immunoreactive 
neurons. The c-Fos-positive neurons (dotted 
arrows) do not co-localise with kisspeptin-
positive neurons (black arrow). Scale bar , 30 
µm. An acute central injection (2μl) of RFRP-
3 (1500ng) to male Syrian hamsters 
maintained in long day (B) and short day (C) 
produced a slight but non-significant 
increase in the number c-Fos-positive 
neurons in the subregion of the ARC shown 
in A 2 h after injections. Mean ± SEM of cell 
number (n = 6/group).  
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FIGURE 22 - THE STIMULATORY EFFECT ON LH SECRETION IN THE MALE SYRIAN 

HAMSTER IS NOT COMMON TO ALL RFAMIDE PEPTIDES 

(A,B) Centrally-administered rat Kisspeptin10 (Kp10; 800 ng in 2 µL icv) (A) and rat RFRP -3 

(500 ng in 2 µL, icv) (B) increased LH plasma levels significantly. Mean ± SEM (n = 6/group). *, 

p < 0.05 compared with the vehicle-injected group by Student’s t-test. (C) In contrast, 

centrally-administered hamster RFRP-1 (500 ng in 2 µL, icv) did not affect LH sec retion after 

30 minutes. Mean ± SEM (n = 6/group). (D) Similar to RFRP -3, avian GnIH (2000 ng in 2 µL, icv) 

significantly increased LH plasma levels. Data represent the mean ± SEM (n = 6/group). *, p < 

0.05 compared with the vehicle-injected group by Student’s t-test. 

 

 

RFRP-3 REACTIVATES THE REPRODUCTIVE AXIS OF PHOTOINHIBITED SYRIAN 

HAMSTERS. 

 

Given that rfrp expression is strongly downregulated in sexually quiescent hamsters 

(Revel et al., 2008) and that acute RFRP-3 stimulates LH, FSH and testosterone 

secretion, we questioned whether a chronic administration of RFRP-3 to photoinhibited 

SD Syrian hamsters restores reproductive activity. For this, male Syrian hamsters were 

placed in SD conditions for 8 weeks to inhibit the gonadotrophic axis, as verified by 

scrotal palpation of testicular size. The animals were then divided into three groups: SD-

aCSF, SD-RFRP-3 and LD-back. The animals of the SD-aCSF and SD-RFRP-3 groups were 

implanted subcutaneously with an osmotic minipump connected to a cannula implanted 

into the right lateral ventricle and filled with artificial cerebrospinal fluid (aCSF) alone 

or with hamster RFRP-3 (12µg/day), respectively. The SD-aCSF and SD-RFRP-3 groups 

were kept in SD conditions, whereas the LD-back group was transferred back to LD 

conditions. After 5 weeks of treatment, testes weight and plasma testosterone levels 
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were both reduced in SD-aCSF animals (Figures 23A and B). In contrast, hamsters 

receiving a chronic administration of RFRP-3 (SD-RFRP-3) underwent significant 

testicular reactivation, both in terms of testicular size (Figure 23A) and circulating levels 

of testosterone (Figure 23B).  This effect was fully comparable to transferring 

photoinhibited SD animals back to stimulatory LD conditions for the same duration, and 

contrasted with hamsters receiving vehicle only and kept in SD. This experiment was 

repeated twice with lower doses and the results indicated a dose-dependent effect of the 

administration.  

These effects of chronic RFRP-3 are identical to those obtained with rKp10 administered 

under similar conditions (Revel et al., 2006b). This raises the question of whether RFRP-

3 exerts its effects via an increase in Kiss1 expression. Interestingly, Kiss1 expression 

was significantly increased in the ARC of the hamsters with chronic RFRP-3 as compared 

to vehicle-treated animals, and attained levels identical to those of the LD control 

animals (Figures 23C and D). This suggests that in male Syrian hamsters chronic RFRP-3 

is able to reactivate the gonadotrophic axis upstream from the Kiss1 neurons by blocking 

the inhibitory effect of MEL. 
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FIGURE 23 - RFRP-3 RESTORES 
TESTICULAR ACTIVITY AND INCREASES 
KISS1  EXPRESSION IN THE ARCUATE 
NUCLEUS OF PHOTOINHIBITED SYRIAN 
HAMSTERS 

Three groups of animals (n = 6/group) were 
placed in short day (SD) conditions for 8 
weeks after which gonadal atrophy was 
verified by scrotal palpation. Animals were 
implanted with an intracerebroventricular 
cannula linked to an osmotic minipump 
(flow rate: 0.15 µl/hr) filled with either 
aCSF (SD-aCSF) or aCSF + hamster RFRP-3 
(SD-RFRP-3; concentration: 1 mM) and were 
returned to SD conditions. A control group 
was transferred back to long day (LD) 
conditions on the day of surgery (LD-back). 
After 5 weeks of treatment, weighing the 
testes and dosing plasma testosterone 
allowed the level of reproductive activity to 
be monitored. A fifth group of hamsters was 
left in LD (LD; n = 6) for the whole 
experiment (13 weeks) for comparison. 
Administering RFRP-3 for 5 weeks to SD 
hamsters was sufficient to restore testicular 
activity [testes weight (A) and circulating 
testosterone (B)] despite persisting 
photoinhibitory conditions. This treatment 
was equivalent to transferring animals back 
into photostimulatory conditions. Data 
represent the mean ± SEM. Bars with 
differing letters differ significantly (p < 0.05 
by one-way ANOVA followed by Tukey’s 
analysis). (C) The chronic administration of 
RFRP-3 upregulated Kiss1 expression in the 
ARC to levels comparable to those obs erved 
in the LD control and LD-back groups, as 
determined by in situ hybridisation. The 
administration of vehicle (SD-aCSF) did not 
produce any effect on Kiss1 expression. Data 
represent the mean ± SEM. Bars with 
differing letters differ significantly (p <  0.05 
by one-way ANOVA followed by Tukey’s 
analysis). (D) Representative brain sections 
of SD-aCSF and SD-RFRP-3 animals 
processed for in situ hybridization with 
antisense riboprobe for Kiss1 mRNA. Scale 
bar, 30 µm. 
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DISCUSSION 

 

Whereas RFRP-3 has been shown to display inhibitory effects on the reproductive axis 

of all mammalian species investigated (Kriegsfeld et al., 2006, Clarke et al., 2008, Ducret 

et al., 2009, Wu et al., 2009, Johnson et al., 2007, Johnson and Fraley, 2008, Anderson et 

al., 2009, Murakami et al., 2008, Kadokawa et al., 2009, Sari et al., 2009), apart from a 

small percentage of GnRH neurons that were stimulated by RFRP-3 in mice (Ducret et 

al., 2009), we show that RFRP-3 stimulates the gonadotrophic axis in the male Syrian 

hamster. Acute central injection of hamster and rat RFRP-3 and avian GnIH stimulates 

LH/FSH and testosterone secretion in the adult male Syrian hamster. Central injection of 

hamster RFRP-3 produces a dose-dependent increase in LH and FSH plasma 

concentrations, but the highest dose had no effect. This could indicate a changing effect 

with increasing dose, however this seems unlikely as the inhibitory effects of the peptide 

observed in previous studies remain in the same dose-range as the one used in the 

present study (Kriegsfeld et al., 2006, Anderson et al., 2009, Pineda et al., 2010b, 

Johnson et al., 2007). Interestingly, hamster RFRP-1 had no significant effect on LH/FSH 

secretion. Even though this is in accordance with the literature (Samson et al., 2003, 

Hinuma et al., 2000, Kaewwongse et al., 2010) it is unclear why divergent effects 

between peptides binding to the same receptor are obtained. Whereas the stimulatory 

effect of Kp10 on the gonadotrophic axis has been reported in all the mammalian species 

in which it has been studied, including the Syrian hamster (Caraty and Franceschini, 

2008, Smith et al., 2006a), our findings indicate that the effect of RFRP-3 varies across 

species and/or the biological status (i.e. gender) of a species. To further support this 

idea, we carried out icv injections of RFRP-3 and GnIH in ovariectomised female Syrian 

hamsters, because it has previously been shown that GnIH reduced LH plasma 

concentrations in ovariectomised female Syrian hamsters (Kriegsfeld et al., 2006). We 

were unable to demonstrate any stimulatory or inhibitory effect of the two peptides on 

LH secretion, suggesting that the effects observed may indeed depend on the sex and/or 

physiological status of the species. This idea is substantiated by the observation that in 

female mice and hamsters, RFRP-3 neuronal activity is modulated by estrogen levels 

over the course of the oestrous cycle (Kriegsfeld et al., 2006, Gibson et al., 2008, Molnar 

et al., 2011), indicating that the administration of RFRP-3 could have differing effects 

according to the phase of the cycle. It is of interest to remark that in both male and 



73 
 

female rats, RFRP-3 has been shown to modestly inhibit gonadotrophin secretion 

(Pineda et al., 2010b), unlike the sex-specific effect observed in the Syrian hamster. This 

could be explained by the fact that there is no effect of estrogen concentrations on RFRP 

mRNA levels in the female rat (Quennell et al., 2010), contrary to the female Syrian 

hamster. Overall, these observations suggest that the effect of RFRP-3/GnIH on the 

reproductive axis might not only vary across species, but might also include sex-specific 

effects in the same species. Interestingly, it has been shown that GnIH stimulates 

gonadotrophin release in salmons (Amano et al., 2006), indicating that the stimulatory 

effect of the peptide on the reproductive axis is not observed exclusively in the male 

Syrian hamster.  

Moreover, our data provide evidence for a previously uncharacterized role of RFRP-3 in 

the regulation of seasonal reproduction. Indeed, chronic infusion of RFRP-3 reactivated 

the reproductive axis of male Syrian hamsters kept under photoinhibitory SD conditions, 

which is consistent with the observation that rfrp expression is increased in LD when 

these animals are sexually active (Revel et al., 2008). The magnitude of the effect 

obtained with a chronic administration of RFRP-3 is similar to that obtained with rKp10 

administered under similar chronic conditions (Revel et al., 2006b). As continuous 

central administration of RFRP-3 also increases Kiss1 expression in the ARC, it is likely 

that the stimulatory effect on gonadal activity results from increased Kp 

neurotransmission. We can exclude the possibility  that the effect on Kiss1 expression in 

the ARC results from the increase in sex steroid feedback as a result of testicular 

reactivation, since testosterone inhibits Kiss1 expression in the male and female Syrian 

hamster (Ansel et al., 2010). Therefore, our hypothesis is that, at least in this species, 

RFRP-3 relays the photoperiod-driven MEL signal towards arcuate Kiss1 neurons for the 

seasonal control of reproduction.  

In mice, RFRP immunoreactive cells have been localised in the diencephalon, pons, 

medulla and dorsomedial hypothalamic nucleus (DMH) (Ukena and Tsutsui, 2001). In 

rats and hamsters, RFRP cell bodies are located in the DMH (Kriegsfeld et al., 2006, Revel 

et al., 2008, Rizwan et al., 2009). In the sheep brain, RFRP-expressing cells have been 

found in the paraventricular nucleus and DMH (Clarke et al., 2008, Dardente et al., 2008, 

Smith et al., 2008). In rodents, RFRP fibre networks are found in multiple brain regions 

(Johnson et al., 2007, Ukena and Tsutsui, 2001, Mason et al., 2010) and RFRP-ir fibres 

make apparent contact with GnRH neurons (Kriegsfeld et al., 2006). This suggests that 
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RFRP-3 acts centrally to control the hypothalamo-pituitary-gonadal axis. There is still 

uncertainty as to whether RFRP-3 also exerts a hypophysiotrophic effect in mammals, 

although a large body of evidence now reports the absence of fibres in the median 

eminence (Kriegsfeld et al., 2006, Yano et al., 2003, Ukena and Tsutsui, 2001, Smith et al., 

2010). However, a couple of studies have identified RFRP fibres terminating in the 

median eminence in the Syrian hamster and sheep (Gibson et al., 2008, Clarke et al., 

2008), suggesting a release into the portal circulation and involvement in the regulation 

of pituitary function. In the rat, RFRP-ir nerve fibres have not been reported in the 

median eminence (Johnson et al., 2007, Rizwan et al., 2009) and RFRP has not yet been 

demonstrated in the portal blood. Conflicting results on the effect of peripheral 

administration of RFRP-3, and in vitro studies of the effect of RFRP-3 on rat pituitary 

cells, make it difficult to conclude on a possible hypophysiotrophic role of RFRP-3 in 

rats. While intravenous RFRP-3 to ovariectomised rats had no effect on basal LH 

secretion and minimal effects on GnRH-stimulated secretion in one study (Rizwan et al., 

2009), it significantly reduced plasma LH in another (Murakami et al., 2008). Along the 

same line, RFRP-3 modestly decreased serum LH levels in orchidectomised male rats 

after peripheral administration (Pineda et al., 2010b). Moreover, although RFRP-3 was 

shown to  inhibit LH secretion from cultured pituitary cells when GnRH is present 

(Murakami et al., 2008), the peptide did not have a significant effect on basal LH levels in 

the same study. In another study, RFRP-3 did not have a direct suppressive effect on LH 

secretion in rat cultured anterior pituitary cells (Anderson et al., 2009). In our study, ip 

injections of RFRP-3 at three doses did not induce any effect on LH secretion.  We 

started the lowest dose at the highest dose used icv (5 µg), to account for the dilution in 

the body and also tested two higher doses (100 and 500 µg), to make sure not to miss a 

possible effect if the dose tested was too low. We consider that the lack of effect does not 

result from a too high or too low dose, because with a similar amount of Kp54 (300 µg) 

we obtain a strong stimulatory effect in the experiment. Moreover, incubation of 

pituitary cells with RFRP-3 did not affect LH levels in the culture medium. Overall, these 

results indicate that RFRP-3 does not have a direct hypophysiotrophic effect in the 

Syrian hamster, rather suggesting a centrally-mediated effect.  

The c-Fos data indicate that the peptide targets GnRH neurons in the POA, since the icv 

administration of RFRP-3 increased the number of c-Fos-positive GnRH neurons in LD 

Syrian hamsters. This is in line with a recent study showing that the density of RFRP-ir 
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fibre staining in the lateral septum, POA, anterior hypothalamus and paraventricular 

nucleus of the thalamus significantly increases in LD Syrian hamsters (Mason et al., 

2010), however the effect observed on GnRH neurons could be direct or indirect. Our 

results also indicate that RFRP-3 could be acting via Kiss1 or non-Kiss1 neuron targets in 

the ARC. Indeed, the c-Fos data indicate that the peptide activates cells in the ARC that 

are not Kiss1 neurons, which is in line with the literature in which it has been 

demonstrated that icv administration of RFRP-3 for two weeks to male rats had no effect 

on Kiss1 mRNA expression (Johnson and Fraley, 2008). However, because we show that 

continuous central administration of RFRP-3 for 5 weeks in the male Syrian hamster 

increases Kiss1 expression in the ARC, we cannot exclude a possible effect of RFRP-3 on 

Kp neurons which might reflect a more profound mechanism requiring a longer time to 

be detectable. It is also possible that RFRP-3 might affect Kiss1 neurons via a signalling 

pathway that does not involve c-Fos expression, accounting for the lack of co-

localisation in our c-Fos experiment. The receptor for RFRP peptides, NPFF1R, is 

coupled to an inhibitory G-protein (Bonini et al., 2000), and therefore direct activation of 

the receptor may not lead to activation of Ca2+-dependent signalling and increase c-Fos. 

This does not cast doubt on our observations in which RFRP-3 induces an increase in 

GnRH neuron activation; however we are unable to conclude whether this effect of the 

peptide is direct or not. The fact that RFRP-3 does not affect c-Fos expression in Kiss1 

neurons but that the chronic administration of the peptide enhances Kiss1 mRNA levels 

indicates that the effect of the peptide on these neurons is most likely indirect. To date, 

studies have identified various brain regions in which NPFF1R is expressed in different 

species (Gouarderes et al., 2002, Gouarderes et al., 2004b, Gouarderes et al., 2004a); 

however in the Syrian hamster the brain regions expressing NPFF1R have not yet been 

investigated. In order to understand the mechanisms of action of RFRP-3 on the 

reproductive axis in the Syrian hamster, it will be crucial to identify the brain regions 

expressing NPFF1R and to phenotype the cells expressing the receptor. 

Our findings comprehensively demonstrate a stimulatory action of RFRP-3 on the 

reproductive axis, both acutely and under long-term changes in photoperiod. This 

suggests that the effect of this peptide on the reproductive function may depend on the 

physiological status of the animal model and the species tested. Furthermore, there is 

still controversy over a possible direct effect of RFRP-3 at the level of the pituitary, but 

our results clearly indicate that this is not the case in the Syrian hamster. Rather, a 
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central effect at the level of GnRH neurons or other sites in the hypothalamus is most 

likely. Finally, our data suggest that RFRP-3 neurons are part of the missing link 

between MEL and Kiss1 in the seasonal control of reproduction, at least in the Syrian 

hamster. From a more general perspective, our work challenges the current theory 

according to which RFRP-3 and Kp exert opposing effects regarding the control of 

mammalian reproduction. This may not be as universal as previously assumed, and 

RFRP-3 appears not to be the opposite counterpart of Kp in every given physiological 

situation. In line with our conclusions, a paper has just been published reporting the 

effects if GnIH in the Siberian hamster (Ubuka et al., 2012). Overall, these findings raise 

questions on possible species- and sex-dependent differences in the role of RFRP-3 in 

the regulation of the reproductive function, especially at the seasonal level.  
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INTRODUCTION 

 

The activity of the hypothalamo-pituitary-gonadal axis is controlled by gonadotrophin-

releasing hormone (GnRH) neurons in the hypothalamus, which are responsible for the 

regulation of gonadotrophin secretion from the pituitary and subsequent downstream 

effects on the gonads. Reproductive success depends on many environmental and 

metabolic factors, and the GnRH neurons are the final common pathway integrating 

these cues to regulate sexual behaviour accordingly. The identification of GnRH neuron 

activity regulators has therefore been the focus of many studies, and various 

neurotransmitters, neuromodulators and hormones have been shown to modulate the 

activity of GnRH neurons. 

A novel peptide involved in the regulation of the hypothalamo-pituitary-gonadal axis 

was discovered in birds 2000 (Tsutsui et al., 2000). This peptide was termed 

gonadotrophin-inhibitory hormone (GnIH) because of its ability to inhibit 

gonadotrophin secretion from cultured quail pituitaries (Tsutsui et al., 2000). The 

mammalian ortholog of the avian gnih gene, named RFamide-related peptide (rfrp), was 

discovered concurrently and shown to produce two peptides in rodents, RFRP-1 and 

RFRP-3 (Hinuma et al., 2000). A large body of data now indicates that RFRP-3 is involved 

in the regulation of gonadotrophic activity in various mammalian species (Bentley et al., 

2010, Kriegsfeld et al., 2010, Tsutsui et al., 2010b, Simonneaux and Ancel, 2012). In 

intact and gonadectomised (GNX) males and in ovariectomised (OVX) female rats, 

intracerebroventricular (icv) administration of RFRP-3 inhibits LH secretion (Pineda et 

al., 2010b). This effect is probably mediated via central targets, as RFRP-

immunoreactive (-ir) fibres contact GnRH neurons in rats (Kriegsfeld et al., 2006, 

Rizwan et al., 2012) and RFRP-3 inhibits GnRH neuronal activation at the LH surge peak 

(Anderson et al., 2009). In contrast, in male Syrian and Siberian hamsters icv 

administration of RFRP-3 activates GnRH neurons and stimulates LH secretion (Ancel et 

al., 2012, Ubuka et al., 2012), indicating that the peptide has species-dependent 

differences in its effects on the gonadotrophic axis. Interestingly, in OVX female Syrian 

hamsters icv injection of GnIH inhibits LH secretion (Kriegsfeld et al., 2006), suggesting 

that the effect of RFRP-3 on the Syrian hamster gonadotrophic axis could be sex-

dependent.  
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Hamsters are a classic model for the study of seasonal reproduction, an evolutionary 

mechanism which ensures that the birth of offspring occurs at the most favorable time 

of year. Hamsters are long-day breeders, thus reproductive activity is stimulated by 

exposure to a long day (LD) photoperiod whereas exposure to a short day (SD) 

photoperiod induces an inhibition of reproductive activity. In the male Syrian hamster, 

an electrolytic lesion of the area where RFRP neurons are localized renders the animals 

blind to the inhibitory short photoperiod (Maywood and Hastings, 1995, Maywood et al., 

1996) and rfrp levels of expression are markedly down-regulated by MEL in SD-adapted 

male hamsters (Revel et al., 2008, Ubuka et al., 2012). Therefore, the first aim of this 

study is to determine whether the photoperiodic MEL-dependent regulation of rfrp 

expression which is observed in male Syrian hamsters is also seen in female Syrian 

hamsters. 

In rodents, female reproduction is characterized by a well-defined estrous cycle which is 

composed of 4 distinct stages: metestrus, diestrus, proestrus and finally estrus, which 

corresponds to the time during which the female will be sexually receptive. On the day 

of proestrus, the LH surge which occurs in the late afternoon is responsible for the 

subsequent ovulation. In the female Syrian hamster, it has recently been hypothesized 

that the RFRP system might play a role in modulating the LH surge and ovulation (Khan 

and Kauffman, 2012). Because it has been shown that GnIH inhibits LH secretion in 

ovariectomised (OVX) female Syrian hamsters (Kriegsfeld et al., 2006), we hypothesized 

that an injection of RFRP-3 during different stages of the estrous cycle might have 

variable effects on gonadotrophin secretion. To test this hypothesis, we compared the 

effects of icv injections of the peptide carried out on the day of diestrus or during the LH 

surge on the day of proestrus.  

We have demonstrated that chronic central infusion of RFRP-3 to SD-adapted male 

hamsters rescues their reproductive activity (Ancel et al., 2012), suggesting that RFRP 

neurons are critical for seasonal synchronization of reproduction. We therefore decided 

to investigate the effect of acute icv injections of RFRP-3 in both male and female Syrian 

hamsters kept in LD or SD conditions, in order to shed light on possible sex-dependent 

differences in the role of RFRP-3 in the seasonal regulation of reproduction.  

To date, the precise sites of action of RFRP peptides for the control of the reproductive 

function remain unknown. Although it is now widely accepted that the peptide acts via 

GnRH neurons in the hypothalamus in rodents (Kriegsfeld et al., 2006, Smith et al., 2008, 
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Ubuka et al., 2012, Poling et al., 2012, Rizwan et al., 2012, Ancel et al., 2012), the 

question of whether RFRP-3 has a hypophysiotrophic effect is still open. In the male 

Syrian hamster, we have shown that peripheral injections of RFRP-3 have no effect LH 

secretion and that the peptide does not affect LH release from cultured pituitary cells 

(Ancel et al., 2012), therefore ruling out the possibility of a hypophysiotrophic effect of 

RFRP-3. However, a study indicating that peripheral injections of GnIH to OVX female 

Syrian hamsters inhibit LH secretion (Kriegsfeld et al., 2006) raises the question of 

possible sex-dependent differences also in the modes of action of RFRP peptides. We 

therefore decided to analyze the effect of RFRP-3 on LH release from cultured female 

Syrian hamster pituitary cells. 
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MATERIALS AND METHODS 

 

ANIMALS  

 

The animals were adult Syrian hamsters (Mesocricetus auratus) bred in-house. From 

birth, they were maintained in a LD photoperiod consisting of 14h light and 10h dark, 

with lights on at 0500h, at 22±2°C with ad libitum access to water and food. The SD 

photoperiod to which some groups were transferred consisted of 10h light and 14h dark 

for 10 weeks. All protocols were submitted to the Comité Régional d’Ethique en Matière 

d’Expérimentation Animale (CREMEAS). All experiments were conducted in accordance 

with the French National Law (license n° 67-32) and with the rules of the European 

Committee Council Directive of November 24, 1986 (86/609/EEC). 

 

 

SURGICAL PROCEDURES 

 

Female Syrian hamsters were anesthetized with 3% isoflurane (AErrane; Baxter, 

Maurepas, France) and N2O to carry out OVX or sex steroid replacement. For OVX, the 

animals were left a week to recover from surgery prior to the beginning of the 

experiment (i.e. maintained in LD conditions or transferred to SD conditions). For sex 

steroid replacement, estradiol (1,3,5[10]-estratriene-3,17β-estradiol; Sigma)–filled 

silastic capsules (i.d. 1.47 mm; o.d. 1.95 mm; length: 13 mm) were subcutaneously 

implanted to animals prior to transfer to SD conditions.  

In some experiments, the oestrous stage was determined by carrying out daily vaginal 

smears over two weeks prior to sacrifices. 

 

 

ICV INJECTIONS 

 

Syrian hamsters were anaesthetised using a mixture of Zoletil 20 (Virbac, Carros, 

France) and Rompun (Bayer Pharma, Puteaux, France) and positioned in the stereotaxic 

apparatus. The head of the animal was shaved and prepared for aseptic surgery. A single 
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incision was made on the midline of the scalp. Once the area had been prepped, a 

stainless steel 30-gauge cannula was placed in the lateral ventricle at 2 mm lateral to the 

midline, 0.8 mm posterior to the Bregma and 3 mm inferior to the dura mater. The 

cannula was kept in place on the skull by dental cement and bone screws. The cannula 

was blocked with a metallic wire and protected with a plastic cap. The animals were 

allowed a week to recover from the surgery. The injections (2µL/animal; flow rate 

1µL/min) were given in the afternoon between 15:00 and 16:00 (which corresponds to 

the time frame of the LH surge on the day of proestrus) using a 30-gauge stainless steel 

cannula attached to polyethylene tubing and a 50 μl Hamilton syringe (Hamilton Inc., 

Reno, NV, USA) under light anaesthesia with isoflurane vapour for the duration of the 

injections.  

 

 

IMMUNOHISTOCHEMISTRY (IHC) AND IN SITU HYBRIDISATION (ISH) 

 

RFRP-ir and rfrp mRNA levels were analysed in female Syrian hamsters during diestrus 

or at the time of the LH surge on the day of proestrus. On the day of the sacrifice the 

animals were deeply anesthetised with CO2 vapour and their thorax opened. Blood was 

taken by intracardial puncture for subsequent LH assay. Heparin (250 IU per animal; 

Liquemine®, Roche, Meylan, France) was injected directly into the left ventricle, and a 

cannula was placed in the aorta. Blood was washed out with 100ml of 1X phosphate 

buffered saline (PBS; pH 7.4) and the tissues were fixed by perfusing 250ml of 4% 

paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). The brain was removed from the 

skull, post-fixed for 24 h at 4°C in 4 % formaldehyde in 0.1 M phosphate buffer (pH 7.4), 

transferred to 0.05 M PBS and rinsed overnight. The brains were then dehydrated and 

embedded in polyethylene glycol as previously described (Klosen et al., 1993). Serial 16-

μm-thick coronal sections were cut throughout the DMH and 1 in 6 was mounted on 

SuperFrost®Plus (Menzel-Gläser, Braunschweig, Germany) slides. Two series of sections 

were then processed for IHC or ISH. 

IHC The sections were processed using the peroxidase-antiperoxidase (PAP) 

method. Before incubation in the primary antiserum, non-specific binding sites were 

saturated for 1h with 3% dry skimmed milk in TBS containing 0.05% Tween 20 (TBS-

Tween, Sigma, St. Quentin Fallavier, France). The slides were then incubated overnight 
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with a primary rabbit polyclonal antibody raised against the rat RFRP precursor peptide 

at 1:15000 (Rizwan et al., 2009) diluted in TBS-Tween with 1% fetal calf serum. After 

incubation with the primary antiserum the sections were washed in TBS-Tween and 

incubated for 60min in a donkey-anti-rabbit IgG secondary antibody diluted at 1:200 in 

the same buffer, and washed again in TBS-Tween. Finally, the PAP complex diluted 

1:800 in TBS-Tween with 0.2% cold water fish skin gelatin was used to detect the 

secondary antibody for 1 h. After a final rinse in TBS-Tween, peroxidase activity was 

detected using 3,3’-diaminobenzidine (Sigma, St. Quentin Fallavier, France) as a 

chromogen and 0.01% urea hydrogen peroxide (Acros Organics, Geel, Belgium) as a 

substrate. The slides were then mounted and RFRP-ir was quantified.  

ISH Sense and antisense riboprobes were transcribed from linearised plasmids 

containing a Phodopus sungorus rfrp cDNA (87-529 of GenBank JF727837) in the 

presence of digoxigenin-labelled nucleotides (Roche, Meylan, France) according to the 

manufacturer’s protocol. In brief, the sections were fixed in 4% paraformaldehyde, 

digested for 30 min at 37 °C with 1 μg/ml proteinase K (Roche, Meylan, France) in PBS, 

postfixed in cold 2% paraformaldehyde and acetylated in triethanolamine buffer. After 

the riboprobe had been denatured and mixed with hybridization medium (200 ng/mL) 

it was applied to slides and incubated for 40 h at 60°C. Six stringency rinses were 

performed at 72°C. Digoxigenin-labelled bound probes were detected with an alkaline 

phosphatase-labelled antidigoxigenin antibody (Roche). Alkaline phosphatase activity 

was detected with bromochloroindolyl phosphate and nitroblue tetrazolium in the 

presence of 5% polyvinyl alcohol (70.000-100.000 MW; Sigma). The slides were then 

mounted and rfrp mRNA levels were quantified. 

QUANTIFICATION The total number of RFRP-ir and rfrp labelled cells was counted 

manually throughout the DMH by an observer blind to the estrous status of the 

individual animals. For the quantification of the integrated density of individual cells, 

photomicrographs were taken on a Leica DMRB microscope (Leica Microsystems, Rueil-

Malmaison, France) with an Olympus DP50 digital camera (Olympus France, Rungis, 

France). All lighting parameters on the microscope and the camera software (Viewfinder 

Lite, Olympus) were standardized to ensure consistent stable lighting throughout the 

image capture procedure. A background image of the slide without a section was taken 

for each slide and the background image was subtracted from the corresponding sample 

image to compensate for heterogeneous illumination of the image field. The images were 
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then analyzed using ImageJ software (Rasband, W. S., National Institutes of Health, 

Bethesda, MD). In brief, a fixed-size circle was laid over labelled cells, and the mean 

labelling intensity was determined by measuring all of the labelled cells which had been 

hand-counted. Once the number of rfrp/RFRP cells had been counted and the intensity 

of the labelling measured, the total amount of RFRP-ir of rfrp mRNA was obtained by 

multiplying the number of cells by the mean integrated density for each animal. 

 

 

PITUITARY CELL CULTURE 

 

The pituitary glands of female Syrian hamsters were sampled and immediately 

dissociated as previously described by Ancel et al. (Ancel et al., 2012). In short, cells 

were dissociated by enzyme dispersion and pipette trituration in a saline solution 

containing collagenase (0.8 mg/mL), trypsin (0.2 mg/mL) and DNAse (10 mg/mL) at 

37°C. After the glands were entirely dissociated, cells were resuspended in Dulbecco's 

modifed Eagle's medium (DMEM) containing 8% horse serum, 2% fetal calf serum and 

40 mg/mL gentamicin, plated at a density of 700 000 viable cells/well and maintained at 

37°C under a mixture of 95% air and 5% CO2 at 100% humidity. After preincubation for 

48 h, the medium was changed, followed by incubation for 6 h in culture medium alone 

as a control, RFRP-3 (1 nM; Abgent, San Diego, USA), GnRH (1nM; Sigma) or RFRP-3 and 

GnRH (1nM of each).. After culturing for 6 h, media were collected and subjected to 

ELISA for LH.  

  

 

HORMONE MEASUREMENTS 

 

Serum LH levels were determined in a volume of 25–50µL using a double-antibody 

method and RIA kits kindly supplied by the National Institutes of Health (Dr. A. F. 

Parlow, National Institute of Diabetes and Digestive and Kidney Diseases, National 

Hormone and Peptide Program, Torrance, CA). Rat LH-I-10 was labelled with 125I using 

Iodo-gen® tubes, following the instructions of the manufacturer (Pierce, Rockford, IL, 

USA). Hormone concentrations were expressed using the reference preparation LH-RP-3 

as standard. Intra- and inter-assay coefficients of variation were, respectively, < 8 and 
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10% and the sensitivity of the assay was 5 pg/tube. Accuracy of determinations was 

confirmed by assessment of rat serum samples of known hormone concentrations used 

as external controls. 

LH secretion in pituitary cell cultures was determined using an enzyme-linked 

immunosorbent assay (ELISA). After culturing for 6 h, media were collected and 

subjected to ELISA for LH. In brief, microtiter plates were filled with 100µL of rat LH 

High Purity in coating buffer, at a concentration of 10ng/100µL, and incubated overnight 

at 4°C. Excess LH was removed, and the plates were washed using 200μL/well of 10 mM 

phosphate buffer saline (PBS) with 0.1% Tween-20. The plates were blocked with 

200μL/well of 10 mM PBS containing 1% BSA and 0.1% Tween-20 for 1 h at room 

temperature. 200µL of sample or various concentrations of standard rLH-RP-3, diluted 

in assay buffer, were preincubated with 200µL of LH antiserum (rLH-S-11 - 1:3000 in 

assay buffer) for 18 h at 4°C. 100µL of preincubated samples, standards and controls 

were added per well in triplicate and incubated overnight at 4°C. After washing, 100µL 

of donkey anti-rabbit IgG conjugated to horseradish peroxidase was added at 1:1000 

dilution and incubated for 1 h at 37°C. The plates were again washed, and 100µL of 

3,3’,5,5’–tetramethylbenzidine substrate was added to all the wells. The colour reaction 

was allowed to develop for 30 min in the dark. The enzyme was stopped by adding 50µL 

of 0.5% sulphuric acid per well and the optical density of each well was immediately 

read at 492nm. Intra- and inter-assay coefficients of variation were, respectively, < 8 and 

11%. 

  

 

STATISTICAL ANALYSES 

 

Results are shown as mean ± SEM. All statistical analyses were performed using 

Statistica (StatSoft Inc., USA). Data were analyzed by t test or one-way ANOVA, followed 

by post-hoc analysis: Tukey’s Honestly Significant Difference test, as appropriate. 

Statistical significance was set at Pvalue < α = 0.05. 
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RESULTS 

 

RFRP EXPRESSION IS REGULATED BY PHOTOPERIOD INDEPENDENTLY OF 

CIRCULATING SEX STEROID LEVELS 

 

In this study, we sought to determine whether the photoperiodic regulation of rfrp 

expression follows the same profile in female Syrian hamsters as in male hamsters. To 

do so, female Syrian hamsters were placed in LD or SD conditions for 10 weeks prior to 

sacrifice, in order to analyse rfrp mRNA levels. In parallel, the involvement of gonadal 

steroids in the photoperiodic modulation of rfrp expression was analysed in female 

hamsters which were OVX in LD or SD conditions or implanted with E2 capsules in SD 

conditions. Our results indicate that rfrp expression is down-regulated in SD conditions 

compared to LD conditions in the female Syrian hamster (Figure 24). As in males, this 

down-regulation is not due to secondary changes in sex steroid concentrations, as OVX 

in LD and SD and E2 implants in SD do not alter rfrp levels of expression compared to 

control animals (Figure 24).  

 

FIGURE 24 - RFRP EXPRESSION IS DOWN-REGULATED IN SD COMPARED TO LD IN THE 

FEMALE SYRIAN HAMSTER 

Quantification of rfrp mRNA levels showing that rfrp expression is reduced in SD compared 

with LD animals. Moreover, OVX carried out in LD and SD conditions and estradiol implants in 

SD conditions indicate that the reduction in rfrp expression in SD conditions is not due to 

secondary changes in gonadal steroid concentrations. Data represent mean ± SEM (n = 

6/group). Bars with differing letters differ significantly (P < 0.05 by one-way ANOVA followed 

by Tukey’s analysis).  
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RFRP MRNA AND RFRP-IR LEVELS ARE NOT AFFECTED BY THE ESTROUS STAGE 

 

Because in our previous experiment the estrous cycle of females in LD conditions was 

not followed, we decided to investigate whether rfrp mRNA and peptide content varied 

according to the estrous stage, as suggested in a previous study (Gibson et al., 2008). On 

the day of diestrus or proestrus, animals were sacrificed between 15:00 and 16:00, 

which corresponds to the time frame at which the preovulatory LH surge occurs in this 

species. Plasma LH levels were subsequently assayed and indicate that the animals were 

indeed sacrificed at the time of the LH surge on the day of proestrus (Figure 25A). In situ 

hybridization for rfrp mRNA analysis indicates that the total amount of rfrp mRNA is 

identical between proestrus and diestrus females (Figure 25B), suggesting that there is 

no difference in RFRP synthesis. Immunohistochemical analysis of RFRP-ir revealed that 

there were no differences between proestrus and diestrus animals (Figure 25C), 

indicating that there is no difference in RFRP storage.  

 

FIGURE 25 - RFRP MRNA AND RFRP-IR LEVELS IN THE DORSOMEDIAL NUCLEUS OF THE 

HYPOTHALAMUS OF THE FEMALE SYRIAN HAMSTER ARE SIMILAR IN PROESTRUS AND DIESTRUS 

At the time of the LH surge on the day of proestrus (A), the total amount of rfrp mRNA (B) and RFRP-ir (C) 

do not significantly differ from levels at the same time point on the day of diestrus in the female Syrian 

hamster. Data represent mean ± sem (n = 7/group). *, P < 0.05 compared with the proestrus group by 

Student’s t test. 
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THE EFFECT OF CENTRAL RFRP-3 ADMINISTRATION ON LH SECRETION DEPENDS ON 

THE ESTROUS STAGE 

 

We carried out a study in a physiological model in which the effect of RFRP-3 on the 

gonadotrophic axis would be evaluated in intact female hamsters according to the stage 

of the estrous cycle. The estrous cycle of adult female Syrian hamsters was followed and 

an icv injection of RFRP-3 (1500 ng) was carried out between 15:00 and 16:00 on the 

day of diestrus or proestrus. When carried out on the day of diestrus, central 

administration of RFRP-3 does not have any effect on LH secretion (Figure 26A). 

However, when the injection is performed during the preovulatory LH surge on the day 

of proestrus, it induces a highly significant decrease in plasma LH concentrations within 

30 minutes of administration (Figure 26A). This observation indicates that the effect of 

RFRP-3 on the female Syrian hamster hypothalamo-pituitary-gonadal axis depends on 

the estrous stage.  

 

 

THE EFFECT OF RFRP-3 ADMINISTRATION ON LH SECRETION DOES NOT DEPEND ON 

THE PHOTOPERIOD 

 

Since RFRP-3 administration induces variable effects in LD conditions on LH secretion in 

the female Syrian hamster, we decided to investigate the effect of the peptide under SD 

conditions. Icv administration of RFRP-3 under SD conditions to female Syrian hamsters 

had no effect on plasma LH concentrations (Figure 26A), similar to the effect observed in 

diestrus. In contrast, an icv injection of RFRP-3 in both LD and SD conditions results in a 

significant increase in plasma LH concentrations in the male Syrian hamster (Figure 

26B). These results suggest that the photoperiodic effect of RFRP-3 on the reproductive 

axis is sex-dependent.  
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FIGURE 26 - (A) RFRP-3 ADMINISTRATION TO FEMALE SYRIAN HAMSTERS HAS VARIABLE 

EFFECTS ON GONADOTROPHIN SECRETION ACCORDING TO THE REPRODUCTIVE STATE 

AND (B) THE EFFECT OF RFRP-3 ON GONADOTROPHIN SECRETION IS STIMULATORY IN 

BOTH LD AND SD CONDITIONS IN THE MALE SYRIAN HAMSTER  

 

(A) A central injection of RFRP-3 (1500 ng, icv) to female Syrian hamsters in LD has no effect in 

diestrus or in SD conditions but inhibits LH secretion at the time of the L H surge on the day of 

proestrus. Data represent mean ± sem (n = 7/group). *, P < 0.05 compared with the vehicle-

injected group by Student’s t test. 

(B) A central injection of RFRP-3 (1500 ng, icv) to male Syrian hamsters stimulates LH 

secretion after 30 min in LD and SD conditions. Mean ± sem (n = 6/group). *, P < 0.05 

compared with the vehicle-injected group by Student’s t test. 
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RFRP-3 DOES NOT AFFECT LH RELEASE FROM CULTURED PITUITARY CELLS 

 

We have previously demonstrated that RFRP-3 did not have a hypophysiotrophic effect 

in the male Syrian hamster (Ancel et al., 2012), and this is in contrast with a study 

indicating that peripheral administration of GnIH inhibits LH secretion in OVX hamsters 

(Kriegsfeld et al., 2006). We therefore decided to analyze the effects of RFRP-3 on LH 

secretion directly from cultured pituitary cells from intact female Syrian hamsters 

(Figure 27). Incubation with RFRP-3 for 6 h (1nM) had no effect on LH concentrations, in 

contrast to GnRH (1 nM) which stimulated LH secretion significantly. Similarly, RFRP-3 

did not prevent GnRH from stimulating LH secretion. Taken together, these observations 

show that in female Syrian hamsters, RFRP-3 exerts its effect on the gonadotrophic axis 

through central targets. 

 

 

 

 

FIGURE 27 - RFRP-3 DOES NOT HAVE A HYPOPHYSIOTROPHIC EFFECT IN THE FEMALE 

SYRIAN HAMSTER  

 

Hamster pituitary cells were incubated for 6 h with RFRP -3 alone (1 nM), GnRH alone (1 nM) or 

RFRP-3 in the presence of GnRH. LH secretion was assay ed in the supernatant. RFRP-3 did not 

significantly alter the basal secretion of LH by female Syrian hamster pituitary cells in culture. 

Similarly, RFRP-3 did not significantly affect GnRH-induced LH secretion from cultured 

hamster pituitary cells. Data represent mean ± sem (n = 3/group). Bars with differing letters 

differ significantly (P < 0.05 by one-way ANOVA followed by Tukey’s analysis).  
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DISCUSSION 

 

The recent discovery of a novel player in the regulation of the gonadotrophic axis in 

mammals, namely RFRP-3, has led to intensive research on the precise function of this 

peptide in the regulation of the reproductive function. In females, reproductive activity 

is submitted to regular phases of activation and inactivation, therefore inducing a cycle 

in ovulation which is the basis of the estrous cycle in rodents. In addition, in wild 

animals reproductive activity is submitted to a seasonal regulation to ensure species 

survival. Consequently, in seasonal female rodents like the Syrian hamster there is a 

dual regulation of the reproductive function: estrous and seasonal.  

It has been proposed that the RFRP neuronal network could play a role in the regulation 

of seasonal reproduction. In male Syrian and Siberian hamsters, rfrp expression is 

reduced by MEL in SD (Revel et al., 2008, Ubuka et al., 2012), and in Syrian hamsters the 

SD reduction in rfrp expression is independent of circulating levels of gonadal steroids 

(Revel et al., 2008). In the present work, we show that the photoperiodic regulation of 

rfrp expression is the same in the female Syrian hamster as it is in the male. Indeed, rfrp 

expression is reduced in SD conditions compared to LD conditions, independently of the 

circulating levels of estrogen. Therefore, the photoperiodic regulation of rfrp expression 

in the female Syrian hamster is likely to be controlled by MEL.  

Because in our LD group we did not follow the estrous cycle, we went on to analyse rfrp 

expression and RFRP-ir at the time of the LH surge on the day of proestrus and in 

diestrus. In female Syrian hamsters, a previous study indicated that RFRP-ir cell 

numbers and their activational state are decreased at the time of the LH surge on the 

day of proestrus, compared to other time points on the day of proestrus and diestrus 

(Gibson et al., 2008). We were unable to replicate these results and in our hands both 

rfrp mRNA and RFRP protein levels were identical at the time of the LH surge on the day 

of proestrus and in diestrus. These diverging observations could be explained by the use 

of different antibodies, given that in our study we use a rabbit polyclonal antibody raised 

against the rat RFRP precursor peptide whereas Gibson et al. used a rabbit anti-white-

crowned sparrow GnIH antibody (Gibson et al., 2008). However, the fact that we 

confirmed our immunohistochemical results with mRNA level analysis supports our 

observation in female hamsters. Moreover, our study of the photoperiodic regulation of 

rfrp expression confirms that gonadal steroids do not affect rfrp mRNA levels in both 
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male (Revel et al., 2008) and female Syrian hamsters. Similarly, a study in rats showed 

no difference in rfrp mRNA levels of females that were OVX versus OVX and treated with 

estrogen or progesterone (Quennell et al., 2010).  

The present study is the first to investigate the effect of RFRP-3 in a female rodent in 

physiological conditions. Indeed, previous studies analysing the effect of the peptide in 

OVX females raise a number of questions regarding the physiological significance of the 

results. To date, the effect of RFRP-3 administration on the female reproductive axis has 

only been investigated in OVX animals, in order to bypass the potential interference due 

to varying levels of sex steroids (Pineda et al., 2010b, Murakami et al., 2008, Kriegsfeld 

et al., 2006). Nonetheless in both female OVX rats (Murakami et al., 2008, Pineda et al., 

2010b) and Syrian hamsters (Kriegsfeld et al., 2006), central administration of RFRP-3 

inhibits artificially-elevated LH plasma concentrations. However, female reproduction 

presents regular cycles of activation and inactivation. The female rodent estrous cycle is 

characterised by the preovulatory LH surge which occurs at a specific time window on 

the day of proestrus, under the influence of combined circadian signals arising in the 

SCN and estrogen-mediated feedback loops acting on multiple brain circuitries. During 

the other stages of the estrous cycle, circulating LH levels are constantly low. We 

hypothesised that the effect of RFRP-3 on the female reproductive axis might not be the 

same during different stages of the estrous cycle. The present results indicate that icv 

RFRP-3 inhibits LH secretion at the time of the LH surge on the day of proestrus, when 

LH levels are naturally elevated, but that the peptide has no effect on gonadotrophin 

secretion when LH levels are naturally low. It therefore appears that the RFRP neuronal 

network serves as an inhibitory component regulating the female Syrian hamster 

reproductive axis. There are two possible interpretations of these results: 1)the 

inhibitory effect of RFRP-3 is at its maximum during diestrus, and we are therefore 

unable to artificially induce a stronger inhibition; or 2)LH levels are already at their 

lowest level during diestrus and can therefore not be artificially inhibited. In proestrus 

however, comparable to OVX conditions, LH levels are endogenously elevated and 

exogenous RFRP-3 administration inhibits gonadotrophin secretion. Our results suggest 

that the RFRP neuronal system could be involved in the control of the LH surge in the 

female Syrian hamster. It is already established that the kisspeptin neurons in the 

arcuate (ARC) and anteroventral periventricular (AVPV) hypothalamic nuclei are key 

components regulating the estrous cycle and are involved in the positive-feedback 
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effects of estrogen leading to the preovulatory LH surge (Khan and Kauffman, 2012). It 

therefore appears that these two distinct neuronal populations, which produce two 

peptides of the RFamide family of peptides, could be central players in the mechanisms 

involved in generating the preovulatory LH surge. The combined effects of RFRPs and 

Kps might shape the LH secretion profile throughout the estrous cycle. This hypothesis 

is supported by the observation that in rats RFRP-3 fibres are in contact with kisspeptin 

neurons, a subpopulation (20%) of which expresses the Gpr147 gene (Rizwan et al., 

2012). 

The present results raise interesting questions regarding possible sex-dependent 

differences in the effect of RFRP-3 on the reproductive axis. Indeed, in a previous study 

we have demonstrated that icv administration of the peptide induces a potent 

stimulatory effect on the male Syrian hamster reproductive axis (Ancel et al., 2012), and 

this stimulatory effect is confirmed in the present study in both LD and SD conditions. 

Here we show that icv RFRP-3 inhibits LH secretion in the female Syrian hamster at the 

time of the preovulatory LH surge and has no effect on gonadotrophin secretion during 

diestrus, a result which is similar to previous data obtained in OVX Syrian hamsters 

(Kriegsfeld et al., 2006). Possible explanations for these sex-related discrepancies in the 

effect of RFRP-3 on the gonadotrophic axis of Syrian hamsters could result from 

different GPR147 signalling, although to date there is no available data to support or 

contradict this hypothesis. The target cells of RFRP-3 could also be different in male and 

female hamsters, therefore resulting in different downstream effects. Finally, the sexual 

dimorphim in the Kp AVPV neuronal population could explain the discrepancies in the 

results obtained in male and female Syrian hamsters. Indeed, in rodents Kp AVPV cell 

numbers are higher in females than in males (Adachi et al., 2007, Kauffman et al., 2007, 

Clarkson and Herbison, 2006, Ansel et al., 2010). AVPV Kp neurons play a central role in 

the regulation of female reproduction. It is therefore possible that the Kp neurons in the 

ARC and AVPV are the targets mediating the effects of RFRP-3 on the reproductive axis 

in the Syrian hamster, inducing different effects in males and females.  

Although it has now been demonstrated in a number of mammalian species that the 

effect of RFRP-3 on the gonadotrophic axis is mediated via central targets, in particular 

GnRH neurons in the rostral periventricular area (Ducret et al., 2009, Kriegsfeld et al., 

2006, Rizwan et al., 2012, Poling et al., 2012, Anderson et al., 2009, Ubuka et al., 2012, 

Ancel et al., 2012), the question of a possible hypophysiotrophic effect of the peptide is 
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as yet unanswered. We have previously shown that RFRP-3 does not have a 

hypophysiotrophic effect in the male Syrian hamster (Ancel et al., 2012), but peripheral 

injections of GnIH inhibit LH secretion in OVX Syrian hamsters (Kriegsfeld et al., 2006) 

and GPR147 (also known as NPFF1; the receptor for RFRP peptides) has been detected 

in the pituitary of this species (Gibson et al., 2008). In this study, we show that RFRP-3 

application to intact female Syrian hamster pituitary cells does not affect the basal or 

GnRH-stimulated LH release, indicating that the peptide does not have a 

hypophysiotrophic effect in the female Syrian hamster. This result is in accordance with 

our previous study in the male Syrian hamster (Ancel et al., 2012), and suggests that 

although the effects of RFRP-3 on the reproductive axis are sex-dependent, the modes of 

action of the peptide could be conserved. The effect of peripheral injections of GnIH to 

OVX female hamsters on LH secretion could be due to an action of the peptide at the 

level of GnRH nerve terminals in the median eminence, as is the case for kisspeptins in 

this species (Ansel et al., 2011). This hypothesis deserves further investigation, but it is 

supported by the observation that RFRP-ir fibres, although sparse, are present in the 

median eminence of female Syrian hamsters (Kriegsfeld et al., 2006).  

The RFRP neuronal network has recently been shown to play a role in the regulation of 

seasonal reproduction. Indeed, continuous central infusion of RFRP-3 to male Syrian 

hamsters maintained in SD conditions reactivates the reproductive axis in spite of 

photoinhibitory conditions (Ancel et al., 2012). In this study, we show that  RFRP-3 

administration in SD conditions stimulates LH secretion in the same way as under LD 

conditions in the male Syrian hamster. On the other hand, icv administration of RFRP-3 

to female Syrian hamsters kept under SD conditions has no effect on gonadotrophin 

secretion, in the same manner as in diestrus. Taken together, these observations raise a 

number of interesting questions regarding the sex-dependent differences in the role of 

the RFRP system in the regulation of reproduction. 

The present results indicate that the RFRP system is involved in the regulation of 

ovulation in the female Syrian hamster. More specifically, it appears that RFRP neurons 

could act in concert with Kp neurons to generate the preovulatory LH surge. At the same 

time, the present studies are the first to identify a sex-dependent difference in the effect 

of RFRP-3 on the gonadotrophic axis and therefore suggest that the involvement of the 

RFRP neuronal network in the regulation of male and female reproduction is different. 

Moreover, from the viewpoint of seasonal reproduction, the RFRP system appears to 
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display striking species-dependent differences in its role. Indeed, even in rodents 

(Syrian and Siberian hamsters) belonging to the same subfamily (Cricetinae), although 

the photoperiodic regulation of rfrp expression is identical, the effect of central 

injections of RFRP-3 in LD and SD conditions is different (Ubuka et al., 2012). Overall, 

the present data show that the involvement of the RFRP network in the regulation of 

reproductive functions is far more complicated than initially expected and that many 

more investigations will be required to answer the numerous pending questions. In 

future experiments, it will be essential to bear in mind that there might be sex-

dependent differences in the effect of RFRP-3 in other species than the Syrian hamsters. 
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INTRODUCTION 

 

Gonadotrophin-releasing hormone (GnRH) released into the portal blood system is 

responsible for the production and release of gonadotrophins, luteinizing hormone (LH) 

and follicle-stimulating hormone (FSH). GnRH neurons are therefore the final 

hypothalamic target for hypothalamic-pituitary-gonadal (HPG) axis activity regulators, 

such as neurotransmitters, neuropeptides, and peripheral hormones. It is well 

established that various regulators of GnRH release act on upstream targets in the brain. 

In recent years, it has emerged that kisspeptins (Kp) are key elements of the networks 

controlling GnRH secretion and mediating sex steroid feed-back effects in the brain. 

However, our understanding of the interactions of Kp with other regulatory signals of 

GnRH neurons remains incomplete. 

In 2000, the RFamide-related peptide (rfrp) gene was identified in humans and shown to 

encode a precursor that produces two peptides, RFRP-1 and RFRP-3 (Hinuma et al., 

2000). Rfrp is the mammalian ortholog of avian gonadotrophin-inhibitory hormone 

(gnih), which was identified in quails concurrently, the product of which was shown to 

inhibit gonadotrophin release from quail pituitaries (Tsutsui et al., 2000). The 

demonstration that GnIH is a potent inhibitor of gonadotrophin release in quails spurred 

great interest in the roles of RFRP-1 and RFRP-3 in the regulation of endocrine functions 

in mammals. A large number of studies now indicate that RFRP-3 inhibits the release of 

LH in mammals (Ducret et al., 2009, Johnson et al., 2007, Pineda et al., 2010b, Anderson 

et al., 2009, Clarke et al., 2008, Kadokawa et al., 2009). However, recent studies carried 

out in hamsters imply that there are species-dependent differences in the effect of the 

peptide on the gonadotrophic axis. Indeed, in Syrian and Siberian hamsters RFRP-3 

appears to stimulate or inhibit gonadotrophin secretion depending on photoperiod-

dependent factors (Ancel et al., 2012, Ubuka et al., 2012). These differences could be due 

to the seasonal component of reproduction; indeed, in hamsters reproduction is 

stimulated by exposure to a long day (LD) photoperiod whereas exposure to a short day 

(SD) photoperiod induces an inhibition of the reproductive function. Interestingly, in 

hamsters rfrp expression is down-regulated by MEL in a short day photoperiod (Ubuka 

et al., 2012, Revel et al., 2008), suggesting that this peptide could be involved in the 

seasonal regulation of reproduction. In any case, the involvement of RFRP peptides in 

the regulation of the hypothalamo-pituitary-gonadal axis of mammals is now thoroughly 
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documented but different effects are observed across sex, species and reproductive 

status; this raises a number of questions regarding the sites of action of the peptides.  

In rodents, RFRP fibre networks are found in multiple brain regions (Ukena and Tsutsui, 

2001, Kriegsfeld et al., 2006, Johnson et al., 2007, Mason et al., 2010) and RFRP-

immunoreactive fibres make apparent contact with GnRH neurons (Ubuka et al., 2012, 

Kriegsfeld et al., 2006, Poling et al., 2012, Rizwan et al., 2012). In the Syrian hamster, we 

have shown that RFRP-3 administration induces c-Fos expression in GnRH neurons, 

suggesting that RFRP-3 acts centrally to control the hypothalamo-pituitary-gonadal axis 

(Ancel et al., 2012). In addition, RFRP-3 fibres are in contact with kisspeptin neurons in 

rats (Rizwan et al., 2012), and we have shown that continuous infusions of RFRP-3 to 

male Syrian hamsters increase arcuate Kiss1 expression, concurrently with an increase 

of testicular activity (Ancel et al., 2012). This suggests that the RFRP neuronal system 

could be acting at different levels of the gonadotrophic axis to exert its effects on the 

reproductive function.  

The RFRP peptides bind preferentially to GPR147 (also known as NPFF1) and with a 

lower affinity to GPR74 (also known as NPFF2). These receptors were initially identified 

as neuropeptide FF (NPFF) receptors but it was later shown that GPR147 has a higher 

affinity for RFRPs than for NPFF whereas GPR74 has a higher affinity for NPFF than for 

RFRPs. The GPR147 receptor couples with Gαi3 and Gαs proteins (Gouarderes et al., 

2007) suggesting that GPR147 can have both inhibitory and stimulatory downstream 

effects on cellular activity, although in CHO cells activation of the receptor inhibits 

forskolin-stimulated cAMP accumulation (Mollereau et al., 2002). Early studies 

describing the autoradiographic distribution of GPR147 in mice and rats indicated that 

the receptor was present throughout the hypothalamus (Gouarderes et al., 2002, 

Gouarderes et al., 2004b, Gouarderes et al., 2004a), but remarkable variations in 

GPR147 and GPR74 receptor contents and distribution exist from one species to another 

and from one strain to another among the same species (Gouarderes et al., 2004b, 

Gouarderes et al., 2004a). Recently, a few studies have provided a more detailed 

distribution of the receptor. In mice, rats, and Siberian hamsters, 25% of GnRH neurons 

express Gpr147, but not Gpr74 (Rizwan et al., 2012, Poling et al., 2012, Ubuka et al., 

2012) and in rats a subpopulation of Kp neurons expresses the Gpr147 gene (Rizwan et 

al., 2012). However, a detailed distribution of GPR147 in the Syrian hamster 
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hypothalamus has not yet been carried out, and therefore a number of questions remain 

unanswered concerning potential RFRP-3 sites of action. 

In recent years, novel tools have made it possible to investigate RFRP-3 modes of action 

in more detail, notably with the development of GPR147/74 antagonists. In 2006, a new 

compound with a potent antagonistic activity and similar binding affinity for GPR147 

and GPR74 was discovered and termed RF9 (Simonin et al., 2006). This dipeptide was 

initially used to block the effects of NPFF on heart rate and blood pressure and to 

prevent opioid-induced hyperalgesia and tolerance in rats, phenomena that are 

mediated via GPR74 (Simonin et al., 2006). However, given that RF9 has similar binding 

affinity for GPR147 and GPR74, this compound could serve for the study of RFRP modes 

of action in the control of the reproductive function. In rats and mice, 

intracerebroventricular (icv) administration of RF9 increases circulating levels of 

gonadotrophins (Pineda et al., 2010c); however because the antagonist was not 

administered concurrently with RFRP-3 no conclusion can be drawn as to whether this 

effect is due to antagonisation of endogenous inhibitory RFRP-3 effects or whether it is a 

stimulatory effect of the dipeptide itself. Recently, a novel antagonist termed RF313 with 

a strong selectivity towards GPR147 has been discovered (Simonin et al., unpublished 

data). RF313 therefore appears as a valuable tool in the study of RFRP-3 modes of action 

for the control of the gonadotrophic axis.  

In order to provide a better understanding of RFRP-3 sites and modes of action in the 

Syrian hamster, we carried out a detailed mapping of GPR147 in the Syrian hamster 

hypothalamus. Because rfrp expression is down-regulated by MEL in a short day 

photoperiod in the Syrian hamster (Revel et al., 2008), the mapping was quantified 

separately under LD and SD conditions, in order to detect a potential photoperiodic 

regulation in receptor content. Moreover, to determine whether the effects of RFRP-3 on 

the Syrian hamster gonadotrophic axis are mediated via GPR147, we analysed the effect 

of icv injections of RFRP-3 on LH secretion, in the presence or not of RF9 or RF313.  
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MATERIALS AND METHODS 

 

ANIMALS  

 

The animals were adult male Syrian hamsters (Mesocricetus auratus) bred in-house. 

From birth, they were maintained in a LD photoperiod consisting of 14h light and 10h 

dark, with lights on at 0500h, at 22±2°C with ad libitum access to water and food. The SD 

photoperiod to which some groups were transferred consisted of 10h light and 14h 

dark. All protocols were submitted to the Comité Régional d’Ethique en Matière 

d’Expérimentation Animale (CREMEAS). All experiments were conducted in accordance 

with the French National Law (license n° 67-32) and with the rules of the European 

Committee Council Directive of November 24, 1986 (86/609/EEC). 

 

 

ICV INJECTIONS 

 

Syrian hamsters were anaesthetised using a mixture of Zoletil 20 (Virbac, Carros, 

France) and Rompun (Bayer Pharma, Puteaux, France) and positioned in the stereotaxic 

apparatus. The head of the animal was shaved and prepared for aseptic surgery. A single 

incision was made on the midline of the scalp. Once the area had been prepped, a 

stainless steel 30-gauge cannula was placed in the lateral ventricle at 2 mm lateral to the 

midline, 0.8 mm posterior to the Bregma and 3 mm inferior of the dura mater. The 

cannula was kept in place on the skull by dental cement and bone screws. The cannula 

was blocked with a metallic wire and protected with a plastic cap. The animals were 

allowed a week to recover from the surgery. The injections (2µL/animal; flow rate 

1µL/min) were given in the morning using a 30-gauge stainless steel cannula attached to 

polyethylene tubing and a 50 μl Hamilton syringe (Hamilton Inc., Reno, NV, USA) under 

light anaesthesia with isoflurane vapour for the duration of the injections. Animals 

received two boluses which were administered 15 min apart. For each group, the 

treatment was as follows: vehicle group: vehicle-vehicle; RFRP-3 group: vehicle-RFRP-3; 

antagonist group: antagonist-antagonist; antagonist in the presence of RFRP-3 group: 

antagonist-antagonist with RFRP-3. The animals were sacrificed 30 min after the 
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injection of the second bolus and blood was taken by intracardiac puncture for 

subsequent LH assay. 

 

 

HORMONE MEASUREMENTS 

 

Serum LH levels were determined in a volume of 25–50µL using a double-antibody 

method and RIA kits kindly supplied by the National Institutes of Health (Dr. A. F. 

Parlow, National Institute of Diabetes and Digestive and Kidney Diseases, National 

Hormone and Peptide Program, Torrance, CA). Rat LH-I-10 was labelled with 125I using 

Iodo-gen® tubes, following the instructions of the manufacturer (Pierce, Rockford, IL, 

USA). Hormone concentrations were expressed using reference preparations LH-RP-3 as 

standard. Intra- and inter-assay coefficients of variation were, respectively, < 8 and 10%. 

The sensitivity of the assay was 5 pg/tube. Accuracy of determinations was confirmed 

by assessment of rat serum samples of known hormone concentrations used as external 

controls. 

 

 

PREPARATION OF THE RIBOPROBES AND IN SITU HYBRIDIZATION 

 

In order to quantify Gpr147 mRNA expression by in situ hybridization, a GPR147 

antisense riboprobe was transcribed with T7 RNA polymerase, according to the protocol 

provided with the MAXIscript® kit (Ambion, USA). 

Animals were deeply anesthetised with CO2 vapour and killed by decapitation. Brains 

were removed from the skull, snap-frozen on dry ice, and stored at -80°C until 

sectioning. Brains were sectioned using a cryostat (Leica, Leica microsystems, Rueil-

Malmaison, France) at -20°C. Four sets of serial sections (16µm) were cut and thaw-

mounted on SuperFrost®Plus (Menzel-Gläser, Braunschweig, Germany) slides and 

stored at -80°C until ISH.   

Brain sections were treated with 4% paraformaldehyde in PBS for 15 min at room 

temperature, and then rinsed in PBS for 2 min. The slides were acetylated in 0.75% 

acetic anhydride in 0.1 M triethanolamine (pH 8.0) for 10 min and rinsed 2 min in PBS. 

Afterwards, slides were dehydrated in increasing concentrations of ethanol (70, 90, 95 
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and 100%) for 1 min in each. The slides were then dried at room temperature before 

hybridization. Sections were hybridized at 54°C for 16 h in a humid chamber with 

400pM of the antisense Gpr147 cRNA riboprobe labelled with [35S]UTP (1250 Ci/mmol, 

NEN, France) in a solution containing 50% deionized formamide, 10% dextran sulfate, 

50 mM dithiothreitol, Denhardt's solution 1X, SSC 2X, 0.5 mg/ml salmon sperm DNA, 

and 0.25 mg/ml yeast RNA. After incubation, the sections were rinsed for 5 min at room 

temperature in SSC 2X before being treated with ribonuclease A (0.15 Kunitz unit/ml, 

Sigma, France) in 10 mM Tris pH 7.4, 0.5 M NaCl, 10 mM EDTA buffer (30 min at 37°C). 

Slides were then rinsed in SSC 1X for 5 min followed by SSC 0.05X at 52°C for 30 min, to 

eliminate most of the non-specific labelling. Finally, sections were dehydrated in graded 

ethanol baths (70, 90, 95 and 100%, 1 min each), dried at room temperature and 

subsequently exposed to X-ray films (HyperfilmMP, Amersham) for 15 days 

concomitantly with microscale standards. Quantitative analysis of the autoradiogram 

was performed with a picture analysis system using ImageJ, as previously described 

(Gauer et al., 1998, Schuster et al., 2000, Poirel et al., 2002).  

 

 

STATISTICAL ANALYSES 

 

Results are shown as mean ± SEM. All statistical analyses were performed using Statistica 

(StatSoft Inc., USA). Data were analyzed by t test or one-way ANOVA, followed by post-

hoc analysis: Tukey’s Honestly Significant Difference test, as appropriate. Statistical 

significance was set at Pvalue < α = 0.05. 
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RESULTS 

 

RF313 ADMINISTRATION ABOLISHES THE STIMULATORY EFFECT OF RFRP-3 ON 

GONADOTROPHIN SECRETION IN THE MALE SYRIAN HAMSTER, WHEREAS RF9 DOES 

NOT. 

 

We have previously demonstrated that RFRP-3 potently stimulates gonadotrophin 

secretion in male Syrian hamsters when administered icv. In order to determine 

whether this effect is mediated by GPR147, we carried out icv injections of RFRP-3 in the 

presence or not of RF9, a GPR147/GPR74 antagonist (Figure 28). As expected, icv 

administration of RFRP-3 (0.75 nM) induced a significant increase in LH secretion 

compared to the administration of vehicle. Surprisingly, when RF9 (8 nM) was injected 

alone it potently stimulated LH secretion to levels significantly higher than those 

observed following RFRP-3 administration. When injected simultaneously, RFRP-3 (0.75 

nM) and RF9 (2 nM) induced an increase in LH secretion comparable to the levels 

observed with RF9 administration alone, and significantly higher than the levels 

observed with RFRP-3 alone. The same effect was obtained when injecting a lower dose 

of RF9 (2 nM) alone or concurrently with RFRP-3 (data not shown).  

 

 

FIGURE 28 - EFFECT OF CENTRAL ADMINISTRATION OF RF9, IN THE PRESENCE OR NOT OF 

RFRP-3, ON LH SECRETION IN THE MALE SYRIAN HAMSTER 

A central injection of RFRP-3 (0.75 nM, icv) to male Syrian hamsters in LD increases LH secretion 

significantly. A central injection of RF9 (8 nM, icv) induces a potent stimulatory effect on LH secretion, 

significantly higher than the effect obtained with RFRP-3. When administered concurrently, RFRP-3 and 
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RF9 powerfully stimulate LH secretion, to levels comparable to those obtained with RF9 alone. Data 

represent mean ± SEM (n = 6/group). Bars with differing letters differ significantly (p < 0.05 by one-way 

ANOVA followed by Tukey’s analysis). 

 

Because it appears that RF9 is not a suitable tool for the study of the modes of action of 

RFRP-3 in the Syrian hamster, we decided to test the effect of a recently discovered 

novel GPR147 antagonist, RF313. As previously described, icv administration of RFRP-3 

(0.75 nM) induced a significant increase in LH secretion compared to the administration 

of vehicle (Figure 29). When injected alone, icv RF313 (10 nM) had no effect on LH 

secretion in male Syrian hamsters. However, when injected concurrently with RFRP-3 

(0,75 nM), icv RF313 (10 nM) potently blocks the stimulatory effect of RFRP-3 on LH 

secretion.  

 

 

FIGURE 29 - EFFECT OF CENTRAL ADMINISTRATION OF RF313, IN THE PRESENCE OR NOT 

OF RFRP-3, ON LH SECRETION IN THE SYRIAN HAMSTER 

A central injection of RFRP-3 (0.75 nM, icv) to male Syrian hamsters in LD increases LH secretion 

significantly. Administration of RF313 (10 nM, icv) alone has no effect on basal LH secretion, and 

simultaneous injection of RFRP-3 and RF313 abolishes the stimulatory effect on LH secretion obtained 

with RFRP-3 alone. Data represent mean ± SEM (n = 6/group). Bars with differing letters differ 

significantly (p < 0.05 by one-way ANOVA followed by Tukey’s analysis). 

 

Taken together, the results obtained using NPFF receptor antagonists indicate that: 1) 

RF9 is not a selective GPR147 antagonist and, 2) the effects of RFRP-3 on gonadotrophin 

secretion in the Syrian hamster are indeed mediated via GPR147.  

The antagonistic properties of RF9 for GPR147 have already been questioned in a study 

carried out in GPR54 KO mice (Garcia-Galiano et al., 2012). Indeed, the stimulation of LH 



105 
 

release following RF9 administration is reduced in GPR54 KO mice compared to control 

wild-type mice, indicating that part of the effect observed is due to agonistic properties 

of RF9 on GPR54. This aspect will be discussed in further detail in the general discussion 

of this manuscript. 

 

 

GPR147 MRNA EXPRESSION LEVELS SHOW PHOTOPERIODIC VARIATIONS IN THE 

MALE SYRIAN HAMSTER 

 

In an attempt to investigate RFRP-3 sites of action, a [35S]UTP-labelled riboprobe was 

used to map the localization of the receptor by in situ hybridization in the male Syrian 

hamster brain. Clear labelling was observed in various hypothalamic areas, particularly 

in the POA, SCN, PVN, anterior hypothalamus, VMH, DMH and ARC, but also in the lateral 

habenular nucleus and the PVT (Figure 30).  

As previously mentioned, rfrp expression in the Syrian hamster is strongly down-

regulated by MEL in SD and quantification of Gpr147 mRNA expression in LD and SD was 

therefore carried out separately. Surprisingly, Gpr147 mRNA levels appear to be higher 

in several hypothalamic structures in SD compared to LD, including the SCN, the PVN, 

the anterior hypothalamus, the VMH and the ARC (Figure 31).  

 

 

FIGURE 30 - REPRESENTATIVE PICTURES OF GPR147 MRNA EXPRESSION IN THE SYRIAN 

HAMSTER HYPOTHALAMUS 

Labelling for Gpr147 mRNA was observed in the preoptic area (POA), suprachiasmatic nuclei (SCN), 

paraventricular nucleus of the hypothalamus (PVN), lateral habenula (LHb), paraventricular nucleus of 

the thalamus (PVT), ventromedial hypothalamic nuclei (VMH) and dorsomedial hypothalamic nuclei 

(DMH). 



106 
 

 

FIGURE 31 - EFFECT OF PHOTOPERIOD ON GPR147 MRNA LEVELS IN THE SYRIAN 

HAMSTER HYPOTHALAMUS 

The expression of Gpr147 tends to be increased in SD conditions in the hypothalamus of the male Syrian 

hamster, compared to LD. Because there are only a small number of animals in each group, statistical 

analysis did not reveal a significant effect of photoperiod. Data represent mean ± SEM (n = 2/group in LD 

and 3/group in SD). 

 

The preliminary mapping of GPR147 distribution in the Syrian hamster brain is 

concordant with the binding studies carried out in other rodents (Gouarderes et al., 

2002, Gouarderes et al., 2004b, Gouarderes et al., 2004a). It appears that the receptor is 

widely expressed throughout the hypothalamus, including in the POA and ARC. This is of 

interest because GnRH neurons express Gpr147 in mice, rats and Siberian hamsters 

(Rizwan et al., 2012, Poling et al., 2012, Ubuka et al., 2012) and a subpopulation of Kp 

neurons expresses the Gpr147 gene in rats (Rizwan et al., 2012). Additional studies will 

be required in order to phenotype the cells expressing GPR147 in Syrian hamsters. 

These results also indicate that GPR147 receptor content is regulated by photoperiod. In 

this preliminary experiment, no statistical significance was reached because the groups 

of animals were too small and a larger-scale experiment will be carried out in order to 

obtain a sufficient number of animals in each group. Nevertheless, the observation that 

GPR147 content in the Syrian hamster hypothalamus is photoperiodically-regulated 
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supports the hypothesis that the RFRP-3 system could be involved in the seasonal 

regulation of reproduction.  
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GENERAL DISCUSSION 

 

SPECIES-DEPENDENT DIFFERENCES IN THE INVOLVEMENT OF RFRP-3 

IN THE REGULATION OF THE HPG AXIS ACTIVITY 

 

This work comprehensively demonstrates that RFRP-3 stimulates the male Syrian 

hamster gonadotrophic axis. Indeed, when administered acutely, central RFRP-3 

injections stimulate LH, FSH and testosterone secretion both in LD and SD conditions. 

This effect on the HPG axis is likely to be mediated via the GnRH neurons in the POA, as 

the same type of administration induces c-Fos expression in GnRH neurons. These 

results, published concurrently with work carried out in the male Siberian hamster 

(Ubuka et al., 2012), are the first to indicate that the effect of RFRP-3 on the 

gonadotrophic axis could be species-dependent. Indeed, until recently only an inhibitory 

effect of the peptide had been reported on the reproductive axis of mammals, including 

rats (Johnson et al., 2007, Pineda et al., 2010b, Murakami et al., 2008), sheep (Clarke et 

al., 2008, Sari et al., 2009), and cattle (Kadokawa et al., 2009). The reasons for these 

species-related differences in the effect of RFRP-3 on the reproductive axis are not yet 

understood. Anyhow, it appears that different species have evolved the RFRP system 

differently. One hypothesis is that the RFRP neuronal network has taken on different 

functions in seasonal and non-seasonal breeders. The involvement of the RFRP system 

in the regulation of seasonal reproduction will be discussed later in the manuscript. 
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ROLE OF RFRP-3 IN THE SEASONAL REGULATION OF REPRODUCTION 

 

IN THE SYRIAN HAMSTER 

 

The Syrian hamster is a seasonal breeder, in which sexual activity is stimulated by 

exposure to LD conditions. In this species, rfrp expression is down-regulated in SD by 

MEL, independently of secondary changes in circulating levels of gonadal steroids in 

both males (Revel et al., 2008) and females (present data). In male Syrian hamsters, 

continuous infusions of RFRP-3 in SD conditions induce a reactivation of the 

reproductive axis, manifested by increases in ARC Kiss1 expression, paired testes weight, 

and circulating testosterone levels (Ancel et al., 2012). In the same line, acute injections 

of RFRP-3 stimulate LH secretion in both LD and SD conditions. Interestingly, the MBH 

(where RFRP neurons are located) is a key area in mediating the inhibitory effect of MEL 

on reproduction, because a lesion of this area abolishes the SD-induced gonadal 

regression (Maywood and Hastings, 1995, Maywood et al., 1996). Taken together, these 

elements point to rfrp neurons as central players in the seasonal regulation of 

reproduction in the Syrian hamster. The increase in Kiss1 expression following 

continuous RFRP-3 infusion suggests that the effect on the reproductive axis is mediated 

via this hypothalamic target; however, further studies are required in order to 

determine 1)how RFRP-3 regulates Kiss1 expression in the ARC; 2)whether MEL acts 

directly on RFRP neurons in the DMH or on other targets in the MBH. RFRP-3 is most 

likely not acting directly on Kp neurons in the ARC because GPR147 is coupled to an 

inhibitory G-protein. However, RFRP-ir fibres have been localised in the ARC (Kriegsfeld 

et al., 2006), GPR147 appears to be expressed in this area (present data), and RFRP-3 

administration induces c-Fos expression in non-Kp neurons in the ARC (Ancel et al., 

2012). Taken together, these data suggest that RFRP-3 is indeed acting on non-Kp 

neurons in the ARC, which could in turn modulate Kiss1 expression. 
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IN OTHER SEASONAL SPECIES 

 

In the Siberian hamster, a recent study has shown that rfrp expression is also down-

regulated by MEL in SD conditions, compared to LD conditions (Figure 32) (Ubuka et al., 

2012). However, in this species RFRP-3 administration inhibits LH secretion in LD 

whereas it stimulates LH secretion in SD (Ubuka et al., 2012). Although we are unable to 

provide an explanation for the diverging effects of RFRP-3 administration in Syrian and 

Siberian hamsters, they might reflect a different organization of the photoperiodic 

system. Indeed, whereas in Syrian hamsters Kiss1 expression in increased in the ARC 

and AVPV in LD conditions (Revel et al., 2006b), in the Siberian hamster Kiss1 

expression and Kp-ir are reduced in the ARC in LD compared to SD and increased in the 

AVPV (Simonneaux et al., 2009, Greives et al., 2007, Mason et al., 2007). This suggests 

that in the Siberian hamster, Kiss1 neurons are differently involved in the effect of MEL 

on the HPG axis. The discrepancies in Kiss1 expression, as well as in the effect of RFRP-3 

on LH secretion (Ancel et al., 2012, Ubuka et al., 2012), might reflect differences in the 

system relaying photoperiodic information onto the gonadotrophic axis. This hypothesis 

is supported by the observation that SCN lesions prevent the inhibitory effect of 

exogenous MEL infusions in the Siberian hamster (Bartness et al., 1991), but not in the 

Syrian hamster (Bittman et al., 1989). Conversely, a lesion of the MBH prevents the SD-

induced gonadal regression in Syrian hamsters (Maywood and Hastings, 1995), but not 

in the Siberian hamster (Song and Bartness, 1996). Additional experiments will be 

necessary in order to shed light on the different pathways involved in transmitting 

photoperiodic information, via MEL, to the reproductive axis of both hamster species. It 

is of note to remark that the SD down-regulation of rfrp expression is also observed in 

other seasonal rodents, notably the European hamster (Figure 32) (Simonneaux and 

Ancel, 2012) and the jerboa (Janati et al., 2013). 
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FIGURE 32 - PHOTOPERIODIC VARIATIONS IN RFRP IMMUNOREACTIVITY IN THE DORSOMEDIAL 
HYPOTHALAMUS OF MALE SYRIAN, SIBERIAN AND EUROPEAN HAMSTERS RAISED IN LONG DAY OR 

SHORT DAY CONDITIONS 
 

Scale bar = 100 μM, 3V: third ventricle. Simonneaux & Ancel, 2012. 
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In sheep, gestation lasts approximately 5 months, and they will therefore be sexually 

active in SD conditions to ensure that the offspring is born during the most favourable 

season. Like in the Syrian hamster, Kiss1 expression and Kp-ir are increased in the ARC 

and POA during the breeding season (Wagner et al., 2008, Smith, 2008, Chalivoix et al., 

2010), indicating that Kp presumably play a similar role in sheep as in rodents. 

Interestingly, rfrp expression is decreased during the breeding season in the sheep 

compared with the non-breeding season (Dardente et al., 2008), supporting the 

hypothesis for an inhibitory effect of RFRP-3 on the reproductive function in this 

species.  

 

It is well established that in both LD and SD breeders, MEL is responsible for 

transmitting the photoperiodic information to the gonadotrophic axis. However, so far 

the mechanisms which lead from an identical signal to a different behavioural response 

remain unclear. Indeed, why does a long peak of MEL inhibit reproductive activity in LD 

breeders and stimulate it in SD breeders? One hypothesis is that RFRP neurons in the 

hypothalamus might be the switchpoint, via one or more interneurons, in transmitting 

the MEL/seasonal information to the HPG axis (Figure 33). Indeed, in SD breeders such 

as the sheep, increased rfrp expression in LD conditions would result in a direct 

inhibitory effect on Kp neurons and/or GnRH neurons, therefore shutting down the 

reproductive function. On the other hand, in LD breeders such as the Syrian hamster, 

increased rfrp expression in LD conditions would result in the inhibition of an inhibitory 

interneuron, therefore stimulating the reproductive function. However, a number of 

questions remain unanswered: what, if any, interneurons are involved? is there a direct 

link between RFRP neurons and GnRH neurons? Finally, although MEL appears to be 

acting via RFRP neurons, it is not yet known whether the effect is direct or if it is 

mediated through other targets. It appears unlikely that MEL would act directly upon 

RFRP neurons, as MEL receptors have only been reported in the Syrian hamster in this 

brain region (Weaver et al., 1989, Williams et al., 1989).  
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FIGURE 33 - SCHEMATIC MODEL OF THE ROLE OF RFRP-3 IN GENERATING A LONG OR 

SHORT DAY GONADAL RESPONSE TO MELATONIN 

 

The central sites of action of melatonin for the seasonal control of reproduction are not known. However, 

because rfrp expression is down-regulated in a long day (LD) photoperiod in both long day and short day 

(SD) breeders, these neurons could be the site responsible for inducing the appropriate gonadal response 

to photoperiod. This is supported by the fact that RFRP-3 administration stimulates the gonadotrophic 

axis in hamsters whereas it inhibits the reproductive axis in sheep. Therefore, in sheep (left panel) RFRP-3 

would inhibit the reproductive function in LD conditions via a direct or indirect action on Kisspeptin (Kp) 

and/or GnRH neurons. In hamsters (right panel), RFRP-3 stimulates the reproductive axis in LD 

conditions via unknown interneurons, which inhibit Kp and/or GnRH neurons directly or indirectly. 
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INVOLVEMENT OF TSH AND THYROID HORMONES IN THE SEASONAL REGULATION OF 

REPRODUCTION 

 

Regarding the exact site of action of MEL for the control of seasonal reproduction, the PT 

appears as a serious candidate, because MEL receptors have been identified in this area 

in all mammalian species investigated (Figure 34) (Morgan and Williams, 1989, Bartness 

et al., 1993, Masson-Pevet and Gauer, 1994, Morgan et al., 1994, Morgan and Mercer, 

1994, Masson-Pevet et al., 1996).  

 

 

FIGURE 34 - AUTORADIOGRAPH OF SPECIFIC BILATERAL [125I]IODOMELATONIN-BINDING WITHIN 

THE MEDIOBASAL HYPOTHALAMUS IN THE SYRIAN HAMSTER 

In the Syrian hamster, melatonin binding sites have been localised in the mediobasal 

hypothalamus and pars tuberalis of the adenohypophysis (PT). Maywood & Hastings, 1995. The 

PT appears as a serious candidate in mediating the photoperiodic information to  the 

reproductive axis, as melatonin receptors have been consistently identified in this region in all 

the mammalian species investigated.  

 

Accumulating evidence now suggests that the PT could be involved in transmitting 

seasonal information via a pathway involving the thyroid stimulating hormone (TSH), 

the enzyme deiodinase 2 (Dio2) and the thyroid hormone triiodothyronine (T3) (Figure 

35). MEL receptors have been shown to co-localise with TSH-ir cells (Klosen et al., 2002) 

and TSH expression is modulated by photoperiod through MEL (Dardente et al., 2003, 

Dardente et al., 2010). An increase in TSH expression (or an exogenous administration 

of the hormone) induces an increase in Dio2 concentrations in the tanycytes (Hanon et 

al., 2008, Nakao et al., 2008, Klosen et al., 2013), a specialised type of glial cells which 

bridge the cerebrospinal fluid of the third ventricle. The enzyme Dio2 is responsible for 

the conversion of the inactive thyroid hormone thyroxine (T4) to the bioactive form T3, 

the increase in Dio2 concentrations therefore leading to a local increase in T3 

concentrations. A study carried out in Siberian hamsters indicates that the local increase 
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in T3 concentrations is responsible for the photoperiodic reactivation of the 

reproductive axis, as implantation of a capsule releasing T3 in the dorsomedial 

hypothalamus of short day-adapted male Djungarian hamsters induces a reactivation of 

the reproductive function (Barrett et al., 2007). In a recent study, TSH infusions were 

shown to reactivate the reproductive axis of male Syrian and Siberian hamsters kept in 

SD conditions, along with a restoration of LD-like levels in rfrp and Kiss1 expression 

(Klosen et al., 2013). Thus, in Syrian hamsters rfrp expression in the DMH and Kiss1 

expression in the ARC are both increased. In the Siberian hamster, rfrp expression in the 

DMH is increased, whereas Kiss1 expression in the ARC is decreased. These results 

indicate that RFRP neurons in the DMH are the primary target of MEL for the seasonal 

regulation of reproduction, and that Kp neurons are downstream modulators of 

reproductive activity. Taken together, these data indicate that the MEL receptors located 

in the TSH-expressing cells of the PT could be the conserved site of action of MEL for the 

seasonal control of reproduction.  
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FIGURE 35 - MELATONIN-TSH-THYROID HORMONE SIGNALLING IN THE SEASONAL 
CONTROL OF REPRODUCTION OF MALE HAMSTERS 

The photoperiodic signal is detected at the pars tuberalis of the adenohypophysis and converted into a 

TSH message transmitted to the tanycytes. This TSH message controls the expression of Dio2, which 

ultimately controls the local availability of the active form the thyroid hormones, T3. This local availability 

of T3 controls the gonadotrophic axis, hypothetically through the modulation of RFRP neurons, which 

appear to be the key switch for transitions from a non reproductive to a reproductive phenotype or 

reversely. Furthermore, RFRP neurons may act either directly on GnRH neurons and/or indirectly via 

kisspeptin neurons. Klosen et al., 2013. 

  



117 
 

INVOLVEMENT OF RFRP-3 IN THE REGULATION OF FEMALE 

REPRODUCTION 

 

Alongside the species-dependent effects of RFRP-3 on the HPG axis, this work is the first 

to demonstrate a sex-dependent difference in the involvement of RFRP-3 in the 

regulation of reproduction. Indeed, whereas the peptide has a potent stimulatory effect 

on the male Syrian hamster gonadotrophic axis, the effect of RFRP-3 in the female Syrian 

hamster is variable. To date, the effect of RFRP-3 on the female gonadotrophic axis has 

only been investigated in OVX animals, including rats (Pineda et al., 2010b, Murakami et 

al., 2008), Syrian hamsters (Kriegsfeld et al., 2006) and sheep (Clarke et al., 2008, Sari et 

al., 2009). The reason underlying this protocol is that the levels of pituitary and gonadal 

hormones vary considerably throughout the reproductive cycle, and the feed-back 

effects of gonadal hormones are therefore also variable depending on the estrous stage. 

In order to rule out any side-effects of these mechanisms on the outcome of RFRP-3 

administration, OVX is carried out prior to the injections. However, this experimental 

approach might not be adapted for the study of the effects of RFRP-3 on the mammalian 

reproductive axis because recent data suggest that rfrp neurons could be involved the 

estrogen-mediated positive feed-back loop.  

 

 

THE ROLE OF RFRP NEURONS IN MEDIATING SEX STEROID FEED-BACK EFFECTS 

 

The involvement of the RFRP neuronal system in the sex steroid feed-back effects on the 

brain has recently been investigated. A certain amount of data indicates that rfrp 

expression is not strongly regulated by circulating estrogen levels. Indeed, in estrogen- 

or progesterone-treated OVX versus untreated OVX rats, rfrp expression does not differ 

(Quennell et al., 2010), and in OVX ewes estrogen treatment does not affect rfrp 

expression either (Smith et al., 2008). In our work we did not find a difference in rfrp 

mRNA and RFRP-ir levels in the Syrian hamster after OVX or E2 treatment or between 

diestrus or the time of the LH surge on the day of proestrus. However, a previous report 

indicates that RFRP-ir cell numbers are reduced in the female Syrian hamster at the time 

of the LH surge on the day of proestrus, compared to the day of diestrus (Gibson et al., 

2008).  In addition, in mice rfrp expression is down-regulated in estrogen-treated OVX 
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mice compared to OVX mice (Molnar et al., 2011). Whether the discrepancies in the 

effects of circulating levels of estrogen on rfrp expression are a result of species-

dependent differences or other unaccounted factors remains to be determined. Indeed, a 

variety of antibodies has been characterized for the study of RFRP-ir in rodents, 

including a polyclonal antibody raised against avian GnIH (Tsutsui et al., 2000), an 

antiserum against the rat RFRP precursor peptide (Rizwan et al., 2009), a white 

crowned sparrow GnIH antiserum (Smith et al., 2008, Kriegsfeld et al., 2006) and an 

antibody raised in guinea pigs against human RFRP-3 (Qi et al., 2009); one can 

reasonably wonder whether the results obtained by immunohistochemistry can actually 

be compared. Nevertheless, the fact that 40% of RFRP neurons express ERα in Syrian 

hamsters (Kriegsfeld et al., 2006) suggests that these neurons only play a minor role in 

mediating sex steroid feed-back effects to the HPG axis.  

 

In Syrian hamsters the level of activation of RFRP cells is reduced on the day of 

proestrus compared to diestrus (Gibson et al., 2008). Interestingly, in our study, 

although rfrp mRNA and RFRP-ir levels were similar at the time of the LH surge on the 

day of proestrus and in diestrus, preliminary data indicates that c-Fos expression is 

decreased in RFRP neurons at the time of the LH surge on the day of proestrus 

compared to diestrus. Therefore, although RFRP synthesis is unchanged, RFRP release 

might be decreased on the day of proestrus, leading to a reduced inhibition of the 

reproductive axis and therefore generating the preovulatory LH surge. Conversely,  

RFRP release might be increased during diestrus to inhibit GnRH neuron activity. These 

results led us to the hypothesis that RFRP-3 injections carried out at various stages of 

the estrous cycle might have variable effects on the gonadotrophic axis. The present 

work is the first to provide information regarding the administration of RFRP-3 to 

female rodents under physiological conditions. We show that RFRP-3 has no effect on 

LH secretion when administered during diestrus, but that it has a potent inhibitory 

effect on LH secretion at the time of the LH surge on the day of proestrus, when LH 

levels are endogenously high. As previously mentioned, the Kp neurons in the AVPV are 

central players in the positive feed-back effects of estrogen. Therefore, RFRP neurons 

and AVPV Kp neurons would act in concert to mediate the effects of estrogen onto GnRH 

neurons, leading to the preovulatory LH surge (Figure 36). In this model, the Kp neurons 

of the AVPV receive positive feed-back signals from rising levels of estrogen, and the 
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increase in Kiss1 expression would lead to a subsequent stimulation of GnRH neurons in 

the POA. In parallel, the reduced inhibitory activity of RFRP neurons at the time of the 

preovulatory LH surge would potentiate the effects of Kp. Because 1)RFRP appears to 

have an inhibitory effect on the gonadotrophic axis in female rodents; 2)RFRP fibres 

contact GnRH neurons, a subpopulation of which expresses Gpr147 (Kriegsfeld et al., 

2006, Rizwan et al., 2012, Poling et al., 2012, Ubuka et al., 2012); and 3) RFRP fibres are 

in contact with Kp neurons, a subpopulation of which expresses the Gpr147 gene 

(Rizwan et al., 2012); RFRP-3 would play a role in mediating the positive feed-back 

effects of estrogen because the increase in the inhibitory effect of estrogen on rfrp 

expression would alleviate its inhibitory effects on Kiss1 expression in the AVPV and 

gnrh expression in the POA.  

 

 

FIGURE 36 - RFRP AND KP NEURONS IN THE HYPOTHALAMUS ACT IN CONCERT TO 

MEDIATE THE POSITIVE FEED-BACK EFFECTS OF ESTROGEN TO DRIVE THE LH SURGE IN 

FEMALE RODENTS 

AVPV: anteroventral periventricular nucleus of the hypothalamus; DMH: dorsomedial nucleus of the 

hypothalamus; LH: luteinizing hormone; POA: preoptic area; SCN: suprachiasmatic nuclei. 

 

Although accumulating data substantiate this working hypothesis for the estrogen-

mediated regulation of the LH surge, a number of questions remain unanswered. 
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Notably, because only 20% of Kp neurons express Gpr147, the effect of RFRP-3 on Kp 

secretion is most likely modulatory. The same comment can be made regarding GPR147 

content of GnRH neurons. Finally, some Kp fibres have been found in the DMH, 

indicating a possible regulation of rfrp expression by Kp, and this aspect still needs to be 

examined in further detail. 

 

 

THE ROLE OF RFRP NEURONS IN THE CIRCADIAN GATING OF THE PREOVULATORY LH 

SURGE 

 

Approximately 60% of RFRP neurons in the DMH receive projections from the SCN in 

female Syrian hamsters (Gibson et al., 2008), suggesting that they might be involved in 

the circadian regulation of the preovulatory LH surge. In nocturnal rodents, the LH surge 

reliably occurs in the late afternoon or early evening of proestrus, just prior to female 

sexual behaviour which occurs when E2 levels are elevated (i.e. late proestrus or early 

estrus). The SCN governs the timing of the preovulatory LH surge in rodents, as SCN 

lesions in Syrian hamsters and rats, and clock gene knock-out in mice, abolish the LH 

surge and subsequent ovulation (Brown-Grant and Raisman, 1977, Stetson and Watson-

Whitmyre, 1976, Wiegand et al., 1980, Miller et al., 2004). The AVPV Kiss1 neurons are 

involved in conveying circadian information to GnRH neurons, through an increase in 

their expression in the late afternoon/early evening linked with AVP signalling from the 

SCN (Robertson et al., 2009, Williams et al., 2011, Vida et al., 2010). Interestingly, the 

circadian activation of Kiss1 neurons is dependent on the presence of elevated E2 

(Robertson et al., 2009, Williams et al., 2011), indicating that Kp neurons are integrators 

of both circadian and E2 signals, two essential components of the LH surge.  

 

Although the neurotransmitters used by the SCN to communicate with RFRP neurons 

are not known, the presence of SCN-derived fibres contacting RFRP cells indicates that 

they might be involved in the circadian component of the positive feed-back. A previous 

study carried out in female Syrian hamsters indicated that RFRP cell numbers and their 

level of activation are reduced at the time of the preovulatory LH surge (Gibson et al., 

2008). As for Kiss1 expression, E2 is required for this temporal regulation (Gibson et al., 

2008). Although we unable to detect a difference in rfrp mRNA and RFRP preprotein 
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levels between diestrus and the time of the LH surge on the day of proestrus, we have 

preliminary data indicating that the activity of RFRP cells is increased during diestrus 

compared to proestrus. This issue needs to be addressed in further detail, and we are 

currently in the process of carrying out a more detailed analysis of c-Fos co-expression 

in RFRP neurons in the female hamsters used in our experiment. Furthermore, the link 

between the SCN and RFRP neurons should be characterised, and notably the type of 

neurotransmitter and the presence (or not) of the appropriate receptor on RFRP cells. 
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RFRP-3 MODES AND SITES OF ACTION 

 

MODES OF ACTION OF RFRP-3 

 

As previously mentioned, RFRP-3 is part of the large family of RFamide peptides, which 

share a common C-terminal Arg-Phe-NH2 motif. In this family, there are five subgroups 

of peptides: PrRP, NPFF, QRFP/26RFa, Kp and RFRP (Yang et al., 1985, Perry et al., 1997, 

Hinuma et al., 1998, Panula et al., 1999, Hinuma et al., 2000, Liu et al., 2001, Kotani et al., 

2001, Ohtaki et al., 2001, Chartrel et al., 2003, Fukusumi et al., 2003, Jiang et al., 2003). 

The receptors for these peptides are GPR10, GPR74, GPR103, GPR54 and GPR147, 

respectively. Because of the common C-terminal motif which characterises RFamide 

peptides, it has been hypothesised that the receptors might not be specific to a single 

subgroup of RFamide peptides. Up to now, only a very limited number of tools have been 

available to study the specificity of RFamide receptors for their peptides. In 2006, a 

selective NPFF receptor (GPR74 and GPR147) antagonist was described and shown to 

block the effects of NPFF on heart rate and blood pressure and to prevent opioid-

induced hyperalgesia and tolerance in rats, phenomena that are mediated via GPR74 

(Simonin et al., 2006). The discovery of this selective NPFF receptor antagonist received 

great attention from people working on the involvement of RFRP-3 in the regulation of 

the reproductive function. To date, only two studies have used this dipeptide in vivo and 

in both rats and sheep, icv administration of RF9 increases LH secretion significantly 

(Pineda et al., 2010c, Caraty et al., 2012). However, because RF9 was not administered 

simultaneously with RFRP-3, one cannot conclude that this effect on LH secretion is the 

consequence of an antagonistic effect of inhibitory actions of RFRP-3. In the Syrian 

hamster, RF9 potently stimulates LH secretion when administered alone, and does not 

antagonise the stimulatory effect of RFRP-3 on the gonadotrophic axis. This suggests 

that RF9 is not a selective antagonist for GPR147, on the contrary it could have agonistic 

effects on GPR147 or other RFamide receptors. This hypothesis is supported by two 

independent studies showing that 1)RF9 behaves as a full agonist of GPR74 receptors, 

and a partial agonist of GPR147 toward inositol triphosphate accumulation in African 

Green Monkey fibroblasts (Findeisen et al., 2012); and 2)RF9 did not antagonize the 

action of NPFF on the phosphorylation of MAPK/ERK1/2 and also did not itself affect 

this signalling pathway (Maletinska et al., 2013). Moreover, in vivo, RF9 produces a dose-
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dependent anorectic effect in mice (Maletinska et al., 2013), further indicating an 

agonist-like property of this molecule on GPR147.  

 

A novel selective antagonist for GPR147 has recently been engineered in Dr Férédric 

Simonin’s laboratory and termed RF313. Although this molecule has not been published 

yet, it was readily made available to us, and we therefore tested its antagonistic 

properties concerning the effects of RFRP-3 on the Syrian hamster reproductive axis. 

The present results indicate that RF313 has no effect in itself on LH secretion and that it 

potently antagonizes the stimulatory effect of RFRP-3 on LH secretion. Although this 

antagonist requires further characterization, these encouraging results indicate that 

RF313 could be a valuable tool for the study of the effects of RFamide peptides in vivo. 

Moreover, our findings indicate that the effects of RFRP-3 on the Syrian hamster HPG 

axis are mediated by GPR147, and not via another RFamide receptor. 

 

 

CENTRAL SITES OF ACTION OF RFRP-3 

 

The effects of RFRP-3 on the reproductive axis appear to be mediated by central targets 

located in the hypothalamus. A number of studies indicate that RFRP cells project 

monosynaptically to GnRH neurons in mammals, including mice, rats, Syrian hamsters, 

and sheep (Kriegsfeld et al., 2006, Johnson et al., 2007, Smith et al., 2008). Our 

preliminary results show that Gpr147 is present in the Syrian hamster POA, however 

ongoing studies will have to aim at determining whether the receptor co-localises with 

GnRH neurons. Indeed, GnRH neurons have recently been found to co-express Gpr147 in 

mice, rats, and Siberian hamsters (Poling et al., 2012, Rizwan et al., 2012, Ubuka et al., 

2012), indicating that RFRP-3 could have a direct effect on GnRH neurons. This 

hypothesis is supported by evidence in mice where direct application of RFRP-3 inhibits 

neuronal firing in a subset of GnRH cells even when amino acid transmission is blocked 

(Ducret et al., 2009, Wu et al., 2009). It is of interest to remark that in the same study, a 

subset of GnRH cells increased its firing rate in response to RFRP-3 (Ducret et al., 2009), 

indicating that the peptide is able to activate and/or inhibit GnRH neurons in mice. This 

observation might have a functional significance in explaining the species-dependent 

differences in the effect of RFRP-3 on the reproductive axis.  
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Hypothalamic Kiss1 neurons are also emerging as possible RFRP-3 targets in the 

mammalian brain. In mice, rats, and Syrian hamsters RFRP fibres project to the ARC 

(Kriegsfeld et al., 2006). In the Syrian hamster, our preliminary data indicate that 

Gpr147 is present in the ARC, however acute injections of RFRP-3 do not induce c-Fos in 

Kp neurons, whereas continuous administration of the peptide increases Kiss1 

expression in the ARC (Ancel et al., 2012). Evidence is still lacking in order to conclude 

on direct or indirect effects of RFRP-3 on Kiss1 neurons, and the present data does not 

support one possibility over another. Indeed, the c-Fos data could indicate that RFRP-3 

does not act on the HPG axis via Kp neurons, however it is also possible that a direct 

effect of RFRP-3 might not induce c-Fos expression. On the other hand, the increase in 

Kiss1 expression following RFRP-3 infusions indicates that the reactivation of the 

reproductive axis is mediated (at least in part) by Kp neurons. However, additional 

studies will be required in order to precisely determine whether RFRP-3 acts on the 

reproductive axis via GnRH and/or Kp neurons. The development of new tools, notably 

selective antagonists and antibodies, will enable a more detailed study of the neuronal 

pathways involved in transmitting RFRP-3 effects onto the HPG axis. 

 

It is worth remarking that RFRP-ir fibres have been identified in a number of 

hypothalamic areas (Kriegsfeld et al., 2006), and our preliminary data indicates that 

GPR147 is also widely distributed throughout the hypothalamus in the Syrian hamster. 

This suggests putative RFRP sites of action, but because of the involvement of RFRP-3 in 

the regulation of reproduction, work has focused up until now on Kp and GnRH neurons. 

Therefore, RFRPs could have other central sites of action, involved or not in the 

regulation of reproductive activity. 

 

 

PERIPHERAL SITES OF ACTION OF RFRP-3 

 

Sparse RFRP fibres have been localised in the median eminence of mice, rats and Syrian 

hamsters (Kriegsfeld et al., 2006), although a number of studies report the absence of 

fibres in the median eminence of rodents (Ukena and Tsutsui, 2001, Yano et al., 2003, 

Rizwan et al., 2009, Ubuka et al., 2012). These inconsistencies might result from the use 
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of different antibodies or different immunohistochemical procedures, but they raise the 

question of a possible hypophysiotrophic effect of RFRP-3 in rodents. GPR147 has been 

localised in the Syrian hamster pituitary (Gibson et al., 2008), however the relative level 

of expression is not known as it was not compared with hypothalamic expression. In 

rats, only a very low level of GPR147 pituitary expression has been reported compared 

to hypothalamic expression (Hinuma et al., 2000, Quennell et al., 2010), suggesting a 

minor role of the receptor in the pituitary. As previously mentioned, inconsistent data 

from in vitro pituitary culture experiments and in vivo peripheral administration 

procedures (Table 2) make it difficult to conclude on the question of the 

hypophysiotrophic effect of RFRP-3 in rats, although a larger amount of data does not 

support this hypothesis. In male Syrian hamsters, peripheral injections of RFRP-3 have 

no effect on LH secretion, and RFRP-3 does not affect LH secretion from cultured 

pituitary cells (Ancel et al., 2012), indicating that the peptide does not act directly at the 

level of the pituitary. In OVX female Syrian hamsters, peripheral administration of GnIH 

inhibits LH secretion (Kriegsfeld et al., 2006) but RFRP-3 does not affect LH secretion 

from pituitary cells in vitro (Ancel et al., submitted). A possible explanation for these 

surprising results could be that RFRP-3 stimulates GnRH secretion from the nerve 

terminals present in the median eminence, in a similar manner as Kp. This hypothesis 

would deserve further attention, and could be tested on MBH explants which contain 

GnRH nerve terminals (but not cell bodies) (d'Anglemont de Tassigny et al., 2008).  

 

Here again, species-differences exist in regard to the hypophysiotrophic effect of RFRP-

3. Indeed, in the sheep RFRP fibres have been identified in the median eminence and 

RFRP has been detected in the portal blood (Clarke et al., 2008, Sari et al., 2009, Smith et 

al., 2012). In addition, Gpr147 is present in the pituitary (Smith et al., 2012) and 

peripheral administration of RFRP-3 potently inhibits LH secretion (Clarke et al., 2008, 

Sari et al., 2009). The fact that the modes of action of RFRP-3 differ among species could 

provide a physical basis explaining the species-dependent differences in the effects of 

the peptide on the HPG axis. 

 

Although the peripheral expression of rfrp and Gpr147 has not been extensively studied, 

a study in Syrian hamsters has shown that they are present in the seminiferous tubules 

of the testes (Zhao et al., 2010), suggesting a role in spermatogenesis. RFRP is also found 
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in the granulosa cells of mouse ovarian follicles during proestrus and estrus and in the 

luteal cells during diestrus (Singh et al., 2011), suggesting a role in follicular 

development.  
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CONCLUSIONS AND PERSPECTIVES 

 

Overall, the present work indicates that species-dependent differences exist in both the 

effects and the modes of action of RFRP-3 on the HPG axis. Whereas RFRP-3 appears to 

inhibit the reproductive axis in rats and sheep, it has opposite effects in Syrian hamsters 

and variable effects in Siberian hamsters. In the future, studies should aim at 

determining the reason for these differences: do they result from the use of different 

peptides (i.e. GnIH vs. RFRP-3)? or do they reflect a functional reality, in which the role 

of RFRP-3 is not conserved among species? 

Moreover, the studies carried out in female Syrian hamsters indicate that the effect of 

RFRP-3 on the gonadotrophic axis depends on the physiological status of the animal. 

Future work carried out in other rodents and non-rodents under different physiological 

conditions will be required in order to find out whether the sex-dependent differences 

are specific to the Syrian hamster, or whether they are a widespread characteristic of 

RFRP-3 effects on the HPG axis. In addition, the functional reason underlying the gender-

related difference in the effect of the peptide on the reproductive axis deserves further 

attention. Specifically, the exact role of RFRP-3 in the regulation of the estrous cycle 

should be studied. 

Finally, with the development of new tools we should be able to gain insight in the 

mechanisms and pathways involved in the regulation of the HPG axis by RFRP-3. 

Shedding light on the central actors targeting and targeted by RFRP neurons will 

certainly help understand the species-dependent differences in the role of RFRP-3 in the 

regulation of the reproductive function. 

 

 

RFRP-3 AND OTHER FUNCTIONS 

 

RFRP fibres are found in a large number of hypothalamic and extra-hypothalamic brain 

regions (Ukena and Tsutsui, 2001, Kriegsfeld et al., 2006, Johnson et al., 2007, Mason et 

al., 2010). Similarly, GPR147 is widely distributed throughout the hypothalamus in 

rodents (Gouarderes et al., 2002, Gouarderes et al., 2004b, Gouarderes et al., 2004a). It 

has recently been suggested that RFRP neurons could play a role in monitoring internal 

and external status and integrating this information to control reproductive functioning 
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precisely. In sheep, RFRP neurons project to neuropeptide- Y, pro-opiomelanocortin, 

orexin, and melanin concentrating cells (Clarke et al., 2009, Qi et al., 2009), which are 

important players in the regulation of metabolism. In addition, administration of RFRP-3 

increases feeding in rats (Johnson et al., 2007). A recent study has shown that GABAergic 

neurons originating in the DMH are a key component of the food anticipatory behaviour, 

and some evidence suggests that these could be RFRP cells (Acosta-Galvan et al., 2011), 

although it remains to be determined whether these are RFRP neurons. On the other 

hand, the DMH has been shown to play a key role in coordinating responses to 

emotional stress (DiMicco et al., 2002). Interestingly, acute and chronic immobilization 

stress leads to an increase in rfrp mRNA and ir cell numbers in the DMH of rats, 

coincident with an increase in plasma corticosterone levels (Kirby et al., 2009). These 

stressors also cause activation of RFRP-3 neurons in rats (Kaewwongse et al., 2010). 

Finally, central administration of RFRP-3 increases ACTH (Kaewwongse et al., 2010) and 

corticosterone (Samson et al., 2003) secretion in rodents. Taken together, these data 

indicate that RFRP neurons in the DMH could play a role in transmitting metabolic and 

endocrine information to the reproductive axis, in order to adjust reproduction 

accordingly. The role of the RFRP system in regulating the reproductive axis in response 

to stress may not be common across species; indeed stress does not affect RFRP peptide 

or mRNA expression in sheep (Papargiris et al., 2010). Therefore, RFRP functions and 

effects on the reproductive axis appear to not be conserved among species. 

 

 

WHAT ABOUT RFRP-1? 

 

The rfrp gene encodes a precursor which produces two peptides, RFRP-1 and RFRP-3. 

The rfrp gene is the mammalian ortholog of avian gnih, and because GnIH is involved in 

the regulation of the reproductive axis in birds, work in mammals primarily aimed at 

determining the involvement of mammalian RFRPs in the regulation of reproduction. 

Because an initial study carried out in rats showed that central administration of RFRP-1 

raised circulating levels of prolactin but did not affect the secretion of other pituitary 

peptides (Hinuma et al., 2000), subsequent studies focused mainly on the effect of RFRP-

3 administration on endocrine functions. In the Syrian hamster, RFRP-1 administration 

has no effect on LH secretion (Ancel et al., 2012), but in Siberian hamsters RFRP-1 has 



129 
 

the same effect (although less potent) on LH secretion as RFRP-3 (Ubuka et al., 2012). 

This species-difference is interesting because contrary to Syrian hamsters, Siberian 

hamsters undergo marked photoperiodic changes in body weight and fur colour. 

Because RFRP-1 has been shown to regulate food intake in chicks (Newmyer and Cline, 

2009) and rats (Kovacs et al., 2012), it is reasonable to suppose that RFRP-1 could be 

involved in the seasonal regulation of body weight in Siberian hamsters, in combination 

with the seasonal regulation of reproduction. Other lines of evidence suggest that RFRP-

1 could be involved in neuroendocrine and behavioural responses to stressful stimuli. 

Ongoing work should aim at clarifying whether RFRP neurons are involved in 

transmitting metabolic and/or stressful information to the gonadotrophic axis.  
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Le RFRP-3 et l’axe gonadotrope du hamster Syrien :  

effets genre-dépendants et modes d’action 

The effect of RFRP-3 on the gonadotrophic axis of the Syrian hamster:  

sex-dependent differences and modes of action 

 

Résumé 

Le peptide RFRP-3 joue un rôle dans la régulation de l’axe hypothalamo-hypophyso-gonadotrope des 

mammifères. Le but de cette étude était de déterminer l’implication du RFRP-3 dans la régulation de l’axe 

reproducteur du hamster Syrien. Nos résultats montrent que le RFRP-3 stimule l’axe gonadotrope chez le 

hamster Syrien mâle, tandis qu’il a des effets variables chez la femelle. En effet, chez la femelle le peptide 

inhibe l’axe reproducteur lorsqu’il est administré au moment du pic pré-ovulatoire de LH le jour du 

proestrus, et n’a pas d’effet pendant le diestrus. Nous avons poursuivi notre étude par la caractérisation 

des sites d’action du RFRP-3 chez le hamster Syrien, en démontrant que l’effet du peptide sur l’axe 

gonadotrope est médié directement ou indirectement par les neurones à GnRH. De plus, nous avons 

écarté l’hypothèse d’un effet hypophysiotrope du peptide chez cette espèce. Pour conclure, les résultats 

présentés soulèvent de nombreuses questions quant aux effets espèce- et genre-dépendants du RFRP-3 

sur l’axe gonadotrope du mammifère. 

Mots-clés : RFamide-related peptide, reproduction, hamster Syrien, axe gonadotrope, saisonnalité. 

 

Summary 

RFRP-3 has been shown to play a role in the regulation of the mammalian hypothalamic-pituitary-

gonadal axis. The aim of this work was to determine the involvement of RFRP-3 in the regulation of the 

Syrian hamster reproductive axis. We report unprecedented results indicating that RFRP-3 stimulates 

the male Syrian hamster gonadotrophic axis, whereas it has variable effects in female Syrian hamsters. 

Indeed, in females the peptide inhibits the reproductive axis at the time of the LH surge on the day of 

proestrus, and has no effect during diestrus. We went on to characterize RFRP-3 sites of action in the 

Syrian hamster brain, and show that the effect of the peptide on the gonadotrophic axis is mediated 

directly or indirectly via GnRH neurons. Moreover, we clearly rule out the possibility of a 

hypophysiotrophic effect of RFRP-3 in this species. Taken together, the present data raise interesting 

questions regarding species- and sex-dependent effects of RFRP-3 on the mammalian gonadotrophic axis. 

Key words: RFamide-related peptide, reproduction, Syrian hamster, gonadotrophic axis, seasonality. 


