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Some links between discrete and continuous aspects in dynamic games

Cette thèse étudie les liens entre a) les jeux en temps discret et continu, et b) les jeux à très grand nombre de joueurs identiques et les jeux avec un continuum de joueurs. Une motivation pour ces sujets ainsi que les contributions principales de cette thèse sont présentées dans le Chapitre 1. Le reste de la thèse est organisé en trois parties. La Partie I étudie les jeux di érentiels à somme nulle et à deux joueurs. Nous décrivons dans le Chapitre 3 trois approches qui ont été proposées dans la littérature pour établir l'existence de la valeur dans les jeux di érentiels à deux joueurs et à somme nulle, en soulignant les liens qui existent entre elles. Nous fournissons dans le Chapitre 4 une démonstration de l'existence de la valeur à l'aide d'une description explicite des stratégies '-optimales. Le Chapitre 5 établit l'équivalence entre les solutions de minimax et les solutions de viscosité pour les équations de Hamilton-Jacobi-Isaacs. La Partie II porte sur les jeux à champ moyen en temps discret. L'espace d'action est supposé compact dans le Chapitre 6, et fini dans le Chapitre 7. Dans les deux cas, nous obtenons l'existence d'un '-équilibre de Nash pour un jeu stochastique avec un nombre fini de joueurs identiques, où le terme d'approximation tend vers zéro lorsque le nombre de joueurs augmente. Nous obtenons dans le Chapitre 7 des bornes d'erreur explicites, ainsi que l'existence d'un '-équilibre de Nash pour un jeu stochastique à durée d'étape évanescente et à un nombre fini de joueurs identiques. Dans ce cas, le terme d'approximation est fonction à la fois du nombre de joueurs et de la durée d'étape. Enfin, la Partie III porte sur les jeux stochastiques à durée d'étape évanescente, qui sont décrits dans le Chapitre 8. Il s'agit de jeux où un paramètre évolue selon une chaîne de Markov en temps continu, tandis que les joueurs choisissent leurs actions à des dates discrètes. La dynamique en temps continu dépend des actions des joueurs. Nous considérons trois évaluations di érentes pour le paiement et deux structures d'information : dans un cas, les joueurs observent les actions passées et le paramètre, et dans l'autre, seules les actions passées sont observées.
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Jeux dynamiques à somme nulle, jeux di érentiels à somme nulle, jeux à champ moyen en temps discret, jeux stochastiques à étape evanescente iv

Some links between discrete and continuous in dynamic games

Abstract

In this thesis we describe some links between a) discrete and continuous time games and b) games with finitely many players and games with a continuum of players. A motivation to the subject and the main contributions are outlined in Chapter 2. The rest of the thesis is organized in three parts: Part I is devoted to di erential games, describing the di erent approaches for establishing the existence of the value of two player, zero sum di erential games in Chapter 3 and pointing out connections between them. In Chapter 4 we provide a proof of the existence of the value using an explicit description of '-optimal strategies and a proof of the equivalence of minimax solutions and viscosity solutions for Hamilton-Jacobi-Isaacs equations in Chapter 5. Part II concerns discrete time mean field games. We study two models with di erent assumptions, in particular, in Chapter 6 we consider a compact action space while in Chapter 7 the action space is finite. In both cases we derive the existence of an '-Nash equilibrium for a stochastic game with finitely many identical players, where the approximation error vanishes as the number of players increases. We obtain explicit error bounds in Chapter 7 where we also obtain the existence of an '-Nash equilibrium for a stochastic game with short stage duration and finitely many identical players, with the approximation error depending both on the number of players and the duration of the stage. Part III is concerned with two player, zero sum stochastic games with short stage duration, described in Chapter 8. These are games where a parameter evolves following a continuous time Markov chain, while the players choose their actions at the nodes of a given partition of the positive real axis. The continuous time dynamics of the parameter depends on the actions of the players. We consider three di erent evaluations for the payo and two di erent information structures: when players observe the past actions and the parameter and when players observe past actions but not the parameter.

Même dans ce cadre particulier, la théorie est assez riche et on voit intervenir des outils mathématiques très variés.

Une autre thématique qui nous intéresse, dans la Partie II, correspond aux jeux avec un très grand nombre des joueurs identiques, au sens où ils ont les mêmes fonctions de paiement et la même dynamique. Intuitivement, plus il y a de joueurs, plus l'analyse du jeu devient compliquée. Néanmoins, si les joueurs sont identiques, on peut controller cette complexité dans un terme dit de champ moyen qui sera défini plus tard.

Nous introduisons maintenant de façon plus précise les thématiques étudiés et les principales contributions.

Jeux di érentiels

Soit (t 1 , x 1 ) oe [0, 1] ◊ R n . Soient U et V deux sous-ensembles compacts d'un espace euclidien.

On définit U(t 1 ) = {u : [t 1 , 1] ae U, mesurable}, V(t 1 ) = {v : [t 1 , 1] ae V, mesurable}.

Si t 1 = 0, ces ensembles seront notés U et V, respectivement. Les ensembles U(t 1 ), V(t 1 ) sont les ensembles des fonctions de contrôle. Les éléments de U, V sont dits contrôles ou actions.

Soit f : R n ◊ U ◊ V ae R n et (u, v) oe U(t 1 ) ◊ V(t 1 ) une couple de fonctions de contrôle. On considère l'équation di érentielle ordinaire (EDO) suivante x(t 1 ) = x 1 , ẋ(t) = f (x(t), u(t), v(t)) p.s. sur [t 1 , 1].

(1.1)

On fait l'hypothèse suivante sur f , pour que la trajectoire de l'EDO soit bien définie : Assumption 1.2.1. On suppose que la fonction f est continue, bornée, et qu'il existe c > 0 tel que pour tout (u, v) oe U ◊ V et x, y oe R n :

Îf (x, u, v) ≠ f (y, u, v)Î AE cÎx ≠ yÎ.
On pose Îf Î := sup (x,u,v) Îf (x, u, v)Î < +OE.

Avec cette hypothèse, on utilise le théorème de Carathéodory, [START_REF] Coddington | Theory of Ordinary Di erential Equations[END_REF]Chapter 2] pour déduire que l'EDO (1.1) possède une unique solution. L'évaluation de cette solution au temps s est noté par x[t 1 , x 1 , u, v](s) et est interprétée au sens étendu suivant : pour tout t oe [t 1 , 1],

x[t 1 , x 1 , u, v](t) := x 1 + ⁄ t t 1 f (x[t 1 , x 1 , u, v](s), u(s), v(s))ds.

Cela définit la dynamique. On pourrait aussi considérer l'intervalle [0, +OE) pour définir la dynamique.

Pour bien spécifier un jeu di érentiel, il faut en définir les objectifs et l'information et les stratégies de chaque joueur. Intuitivement, le joueur 1 choisit u et le joueur 2 v pour atteindre un objectif quantitatif ou un objectif qualitatif, qui nous allons spécifier tout de suite. Cette distinction entre objectifs quantitatifs et qualitatifs a déjà été faite par Comme dans le jeu de cible, on doit d'abord spécifier une structure d'information. Plusieurs structures d'information ont été proposées dans la littérature, voir Bardi et Capuzzo-Dolcetta [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF]Chapter VIII].

Pour le jeu à l'horizon fini avec paiement courant ¸© 0, on peut déduire de façon heuristique [58, Cette déduction heuristique a été menée par Isaacs [START_REF] Isaacs | Di erential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization[END_REF]Section 4.2]. Le lien entre EDP et jeux di érentiels a été explicité dans le cadre des solutions de viscosité [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF] par Evans et Souganidis [START_REF] Evans | Di erential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF]. La notion de solution de viscosité a été introduite par Crandall et Lions [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF], voir aussi le livre de Lions [START_REF] Lions | Generalized Solutions of Hamilton-Jacobi Equations[END_REF].

Si, de plus, la condition d'Isaacs est satisfaite, i.e. si on a l'égalité suivante, En utilisant la méthode d'extremal aiming pour un certain jeu de cible, Krasovskii et Subbotin montrent l'existence et l'unicité de la valeur pour le jeu à horizon fini. Dans leur preuve on obtient une description explicite des stratégies '-optimales. Le Chapitre 4 est inspiré de cette construction. Plus tard, Subbotin [START_REF]Constructive theory of positional di erential games and generalized solutions to Hamilton-Jacobi equations[END_REF] propose une notion de solutions généralisées, les solutions de minimax qui permettent caractériser la valeur comme l'unique solution minimax de l'équation HJI. On montre l'équivalence des solutions de minimax avec les solutions de viscosité dans le Chapitre 5.

Jeux à champ moyen en temps discret

Les jeux à champ moyen en temps continu ont été introduits indépendamment par Huang, Caines et Malhamé [START_REF] Huang | Individual and mass behavior in large population stochastic wireless power control problems: centralized and nash equilibrium solutions[END_REF][START_REF]Large population stochastic dynamic games: closed-loop Mc Kean-Vlasov systems and the Nash certainty equivalence principle[END_REF] et Lasry and Lions [START_REF] Lasry | Jeux à champ moyen. i. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. ii. Horizon fini et controle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF]. Le but de cette théorie est la modélisation de situations stratégiques avec un grand nombre des joueurs identiques et petits, au sens que l'influence d'un seul joueur sur les autres est négligeable.

Les jeux avec un continuum des joueurs ont déjà été étudies dans plusieurs contextes, notamment en économie, par Aumann [START_REF] Aumann | Markets with a continuum of traders[END_REF], dans les jeux de congestion par Wardrop [START_REF] Wardrop | Some theoretical aspects of road tra c research[END_REF], et dans les jeux de population par Maynard Smith [START_REF] Smith | Game theory and the evolution of fighting, On Evolution[END_REF] et Maynard Smith et Price [START_REF] Smith | The logic of animal conflict[END_REF]. Ce qui est di érent dans les jeux à champ moyen est l'aspect dynamique.

Les jeux à champ moyen ont une structure dite de backward-forward, qui est de façon intuitive l'idée suivante : chaque joueur "anticipe" un certain comportement moyen des autres dans un intervalle de temps et calcule son propre comportement optimal en prenant le comportement des autres comme un paramètre fixe. Donc, chaque joueur fait face à un problème de contrôle optimal. Si le comportement moyen des joueurs qui est induit par cette optimisation est le même que celui qui a été prédit, alors on dit que les joueurs sont dans un équilibre de champ moyen. On introduira des définitions précises dans le Chapitre 6.

Prenons l'exemple suivant, qu'on peut trouver dans les notes de Cardaliaguet [START_REF] Cardaliaguet | Notes on mean field games (from P.L. Lions' lectures at Collège de France)[END_REF] sur le cours de 

≠ ˆu ˆt ≠ u + 1 2 |D x u| 2 = F (x, m) in R d ◊ (0, T ); ˆm ˆt ≠ m + div(mDu) = 0 in R d ◊ (0, T ); m(0) = m 0 ; u(x, T ) = g(x, m(T )) in R d .
Ici, dans la première équation, u dénote la valeur du problème de contrôle optimal pour un joueur quelconque si la distribution des joueurs est donnée par m. La deuxième est une équation de Kolmogorov qui décrit l'évolution de la distribution des joueurs dans R d .

Une motivation importante pour l'étude des jeux à champ moyen dans les applications est l'obtention des '-équilibres de Nash dans les jeux à N joueurs, avec un terme d'approximation qui tend vers zero quand N tend vers l'infini.

Les jeux à champ moyen ont trouvé des applications, notamment dans certains problèmes en économie, voir Guéant, Lasry et Lions [START_REF] Guéant | Mean Field Games and Applications[END_REF]. On fait aussi référence au survey de Gomes et Saude [START_REF] Gomes | Mean field games models: a brief survey[END_REF] pour une collection de résultats récents et au livre de Bensoussan, Frehse et Yam [START_REF] Bensoussan | Mean Field Games and Mean Field Type Control Theory[END_REF] pour les liens avec la théorie du contrôle optimal de champ moyen.

La plupart de la littérature étudie les jeux à champ moyen en temps continu. Une exception importante est l'article de Gomes, Mohr et Souza [START_REF] Gomes | Discrete time, finite state space mean field games[END_REF], qui étude le comportement asymptotique d'un jeu à l'horizon fini quand l'horizon tend vers l'infini d'un jeu avec un continuum de joueurs en temps discret.

Par contre, nous considérons un horizon fini fixe et nous proposons une construction d'un équilibre de Nash approximé pour un jeu à N joueurs. Le modèle que l'on étude dans le Chapitre 6 est l'analogue en temps fini du jeu étudié par Adlakha, Johari et Weintraub [START_REF] Adlakha | Equilibria of dynamic games with many players: Existence, approximation, and market structure[END_REF].

Nous nous intéressons aussi aux situations où les joueurs interagissent "fréquemment". Pour donner un sens mathématique à cette expression, il faut introduire un temps exogène, disons R + . Ici, chaque joueur observe et contrôle une chaîne de Markov en temps continu dont le générateur infinitésimal dépend du comportement moyen des autres. Les joueurs choisissent leurs actions aux instants de temps discrets, données par une partition de R + . Nous décrivons ces modèles dans le cas à deux joueurs et somme nulle dans la Section suivante. L'analogue pour les jeux à champ moyen est introduit dans le Chapitre 7.

Jeux stochastiques à étape courte

Dans les jeux stochastiques en temps discret, il n'existe pas de notion de "durée" des étapes du jeu. Pour en introduire une, on considère un temps exogène, qui sera représenté par les nombres réels positifs, R + .

Cela nous permet de donner une définition de "durée" de la façon suivante : Soit = {t 1 , t 2 , . . .} une partition de R + . Le nombre réel fi k := t k+1 ≠ t k est la durée de la k-ème étape, qui commence à la date t k . Soit Ÿ : R + ae R + une densité. Le poids de la k-ième étape est la quantité Ÿ(t k )fi k .

Dynamique

Soit un ensemble fini, dit espace de paramètres et on note par A et B les ensembles d'action du joueur 1 et 2, respectivement. Soit " : ◊ A ◊ B une fonction de paiement Le paramètre évolue en temps continu, en suivant une chaîne de Markov homogène avec fonction de transition q : ◊ ◊ A ◊ B ae R, c'est a dire un fonction q qui satisfait, pour tout (Ê, a, b) oe ◊ A ◊ B : Ê,Ê Õ est le générateur de la chaîne de Markov avec semi groupe de transition P (•, a, b). 

0 AE q(Ê, Ê Õ , a, b) < +OE, Ê Õ " = Ê, et ÿ Ê Õ oe q(Ê, Ê Õ ,

Information et stratégies

Evaluation du paiement

On considère les évaluations suivantes : La k≠ième étape commence à la date s k := q ¸<k ◊ ¸. La dynamique du jeu est celle décrite dans la Section 1. [START_REF]Viability Theory[END_REF]

.2, avec fi

k = ◊ k . Le paiement correspondant à l'histoire h := {Ê 1 , a 1 , b 1 , Ê 2 , a 2 , b 2 , . . .} est OE ÿ k=1 ◊ k " ◊ k , avec " ◊ k := ◊ k "(Ê k , a k , b k ).
Ici, le poids du paiement à la k-ième étape est ◊ k .

Nos contributions principales

Modèle B : Le jeu stationnaire à étape courte

De façon intuitive, cet jeu est la discrétisation d'un jeu avec paiement ⁄ +OE 0 fle ≠fls " s ds, avec fl > 0. Soit " = {0, ", 2", . . .} une partition uniforme de R + , avec 0 < " < 1/ÎqÎ. Soit t " j := (j ≠ 1)" la date de la j≠ième étape. Le jeu se déroule comme dans la Section 1.4.2.Le paramètre " est ici la durée de l'étape.

Le paiement associé à l'histoire h := {Ê 1 , a On suppose que les joueurs ont une mémoire parfaite. Ces jeux ont une valeur par des arguments classiques. On s'intéresse au comportement asymptotique de la fonction valeur quand la durée de l'étape tend vers zéro et à sa caractérisation.

Nos contributions principales

Le Chapitre 3 est un survey qui décrit dans un cadre unifié trois approches di érentes pour établir l'existence de la valeur d'un jeu di érentiel à deux joueurs et à somme nulle : i) L' approche par discrétisation : Cet approche a été étudiée par Fleming [START_REF] Fleming | A note on di erential games of prescribed duration, Contributions to the Theory of Games[END_REF] et Friedman [START_REF] Friedman | Di erential Games[END_REF][START_REF]Di erential Games[END_REF]. On s'intéresse ici aux propriétés de la fonction valeur des jeux en temps discret qui approximent le jeu di érentiel en temps continu.

Chapitre 1. Introduction ii) L'approche EDP-solutions de viscosité. Cet approche revient à Isaacs [58, p.67], qui déduit une équation aux dérivées partielles pour la valeur, dite équation d'Hamilton-Jacobi-Isaacs. Evans and Souganidis [START_REF] Evans | Di erential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF] ont formalisé cette idée dans le cadre des solutions de viscosité. iii) L' approche stratégique de Krasovskii et Subbotin. On obtient ici l'existence de la valeur en utilisant des stratégies '-optimales explicites. Nous établions des liens entre ces approches.

Dans le Chapitre 4, on propose un preuve courte de l'existence de la valeur pour les jeux di érentiels à somme nulle, horizon fini et paiement terminal, basé sur la construction de stratégies '-optimales. Notre preuve est inspiré par Krasovskii et Subbotin [START_REF] Krasovskii | Game-Theoretical Control Problems[END_REF]. Cet Chapitre est issu d'un travail en commun avec Miquel Oliu-Barton et accepté pour publication dans Morfismos.

Pour conclure la première partie, dans le Chapitre 5 on montre l'équivalence entre la définition des solutions de viscosité, introduites par Crandall et Lions [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF] et la notion de solutions de minimax, introduites par Subbotin [START_REF] Subbotin | Generalized Solutions of First-Order PDEs[END_REF]. Notre preuve suit l'approche épigraphique de Frankowska [START_REF] Frankowska | Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations[END_REF]. A notre connaissance, l'équivalence entre solutions de viscosité et la définition "stratégique" des solutions de minimax n'a pas été explicité dans la littérature. Des idées similaires, mais dans un cadre plus général, avec un Hamiltonien mesurable en temps, ont été utilisés par Cardaliaguet et Plaskacz.

On introduit dans le Chapitre 6 un modèle pour les jeux à champ moyen en temps discret, inspiré par celui d'Adlakha, Johari et Weintraub [START_REF] Adlakha | Equilibria of dynamic games with many players: Existence, approximation, and market structure[END_REF]. Ce document fait partie d'un travail en cours avec S.C.P. Yam. On construit un '-équilibre de Nash pour le jeu à N joueurs, où le terme d'erreur ' tend vers zéro lorsque N tend vers l'infini. On n'obtient pas ici de borne explicite en termes de N .

On developpe les résultats précédents dans le Chapitre 7. On propose ici une preuve alternative qui nous permet d'obtenir une borne explicite. On introduit aussi la notion de durée d'une étape dans cet Chapitre, ce qui nous permet d'obtenir un objet limite qui sert à construire un équilibre de Nash approximé pour le jeu à un nombre fini des joueurs, ou le terme d'erreur dépend du nombre de joueurs et de la durée de l'étape. Ce travail a été soumis pour publication.

Pour conclure, dans le Chapitre 8, on étudie les jeux stochastiques à durée d'étape evanescente (deux joueurs, somme nulle) dans plusieurs structures d'information : i) Les deux joueurs observent les actions mais pas le paramètre : dans ce cas le jeu se réduit a un jeu di érentiel. Sous certains hypothèses de régularité, on construit des stratégies '-optimales, où ' dépend de la durée de l'étape. ii) Signalisation standard : les joueurs observent le paramètre. De façon similaire au cas précédent, on obtient ici des objets limits pour construire stratégies '-optimales, ce qui permet de démontrer la convergence de la suite des fonctions valeur.

Introduction 2.1 Motivation and examples

The aim of game theory is to model the strategic interactions between self-interested agents, which are called players but that might be companies, populations, humans, computers, animals or simply mathematical objects. Such interaction is called a game. When the game is simple enough, it can be represented in matrix form as in the example below. Player 1 is the row player, whose actions are Top or Bottom. Player 2, the column player, chooses among the actions Left or Right. A pure strategy for the players is a function from their past information, i.e. their private history, to their action sets. In this particular situation, the game is played only once, so the set of histories is empty and a pure strategy is simply an indication of which action to play. The pure strategy sets for player 1 and player 2 are respectively S 1 and S 2 . In this example, S 1 := {T, B} where T denotes the strategy "play Top", and B the strategy "play Bottom". Similarly, S 2 := {L, R} where L and R are the strategies "play Left" and "play Right".

The numbers indicated on the matrix are the payo s that player 1 receives from player 2. The situation pictured here is zero-sum because one player's profit is at the others' expense. It is one-shot because players will meet only once to play this game. If strategies ‡ oe S 1 , • oe S 2 are chosen, we denote the payo by "( ‡, • ).

Player 1 can choose his strategy optimally to ensure a payo of at least

w := max ‡oeS 1 min • oeS 2 "( ‡, • ) = 0.
In a similar way, player 2 can ensure that his payo to player 1 is of at most w := min

• oeS 2 max ‡oeS 1 "( ‡, • ) = 1.

Chapter 2. Introduction

When a game is described as above, with all the strategies available to the players and the corresponding payo s, we say the game is in normal form. The quantities w and w introduced in the example above are the maxmin and minmax in pure strategies.

In the way we have specified the game in this example, there is really nothing to study. The outcome depends on who "goes first": if player 2 chooses his strategy after player 1, he can play a best reply and ensure a payo of 0. The way out of this situation is to allow the players to choose their actions randomly. This enlargement of the strategy space is crucial for it allows players to "hide" their actions: if player 2 is not sure about what player 1 will do, he can not enforce a bad payo for him. Denote by , T the sets of mixed strategies of player 1 and 2. In this example, := ({T, B}) and T := ({L, R}) , where, for a finite set S, (S) denotes the set of probability distributions over S.

When mixed strategies are used, the following theorem holds:

Theorem 2.1.2. (Minmax Theorem, von Neumann, 1928 [103]) For every two-player, zero-sum game with payo function " and finite action sets A, B there exist mixed strategies ‡ ú oe := (A) and • ú oe T := (B) for players 1 and 2, respectively, and a quantity v, called value such that, for all ( ‡, • ) oe ◊ T :

"( ‡ ú , •) Ø v, and "( ‡, • ú ) AE v.
This theorem is the cornerstone of game theory. A remark attributed to von Neumann is the following: "As far as I can see, there could be no theory of games...without that theorem...I thought there was nothing worth publishing until the Minmax Theorem was proved." [START_REF] Casti | Five Golden Rules: Great Theories of 20th-Century Mathematics -And Why They Matter[END_REF] In the previous example, it is easy to see that the optimal strategies for each player are "play each action with probability 1/2" and the value is 1/2.

Of course, game theory has evolved far beyond the minmax theorem and constitutes an active area of research, comprising a large body of literature.

One important and particularly active area of research is repeated games. A repeated game is a game that is played more than once. This interaction may happen in discrete time or in continuous time. The repetition of a zero-sum game as the one above has no particular interest: playing i.i.d an optimal strategies each stage is optimal, and any normalized evaluation gives the value of the one-shot game. The interesting object to study are games where "something" changes with time. What exactly "something" means depends specifically on the model. The richness of the theory of repeated games comes from the fact that seemingly related models require very di erent tools, coming from many di erent branches of mathematics. Reciprocally, seemingly unrelated models can be studied with similar tools.

Contents of this thesis

This thesis concerns mostly two player, zero-sum repeated games (Part I and III). These are games where the players have opposite interests: one player's gain is at the other player's expense. Thus, players are in open competition.

Restricting to two player, zero-sum games is, admittedly, a simplification, but this by no means implies that the theory is trivial. We hope to convince the reader that the zero-sum case is already rich enough, covering di erent mathematical tools and ideas and leaving interesting questions unanswered.

Let us provide some motivating examples. This discussion is completely informal, proper definitions are introduced later. 21 means that if (B, L) is played, then player 1's payo is b 21 and the game returns with probability q to the state ≠, whose payo matrix is the one above. Let us assume that the game is played infinitely often and denote by " k the stage payo , that is, the payo player 1 receives the k≠th time the game is played, for k = 1, 2, . . . . Let ⁄ oe (0, 1]. The total payo for player 1 is then:

OE ÿ k=1 ⁄(1 ≠ ⁄) k≠1 " k .
Here, the value of the game depends on whether the initial state is + or ≠.

In the example above, the factor (1≠⁄) serves to represent the fact that the players are impatient and prefer current payo s rather than future. An alternative interpretation, as provided in Shapley's [START_REF] Shapley | Stochastic games[END_REF] original paper is that of stopping probability: ⁄ is the probability that the game stops, so that ⁄(1 ≠ ⁄) k is the probability that the game stops after k + 1 stages.

The game above is played in discrete time. However, for many applications it is interesting to consider also games in continuous time, as motivated by the following example.

Example 2.2.2. (Lion and Man) A lion and a man in a closed arena have equal maximum speed. What should the lion do to ensure his lunch?

This example has been attributed to Rado by Littlewood [70, p.135] and remained a mathematical challenge for some time. It turns out that the lion can get as close as it wants to the man, but the man can avoid capture. We will not describe this here, but refer to Littlewood [70, p.135] for the original proof, attributed to Besicovitch.

The main di culty in continuous time is that there is no canonical information pattern. This in turn implies that there is no canonical definition of strategies. Thus, the outcome of the game may depend on the information pattern adopted. This complication does not arise in discrete time, as we can unambiguously define the information available to the players at the beginning of each stage.

Several information patterns have been adopted in the di erential games literature to handle this situation. For instance, in the framework of non anticipating strategies (defined in chapter 3), the interaction is of the form "strategy vs observed action", e.g. player 1 observing player 2's action before choosing his own. Thus, there is no ambiguity on the definition of the outcome, but the situation is no longer symmetric. One wishes to have a more symmetric "strategy vs strategy" interaction, that is, a normal form game.

A notion of strategies that allows to put the game in normal form, called non anticipating strategies with delay, was introduced by Buckdahn, Cardaliaguet and Rainer [START_REF] Buckdahn | Nash equilibrium payo s for non-zero sum stochastic di erential games[END_REF]. Their definition will be recalled in Chapter 3.

When the game is not in normal form, undesired phenomena may occur. For instance, it might happen that the outcome of the game is not uniquely defined or, in the example of the lion and the man, that both of them have a winning strategy, which is of course not desirable. For an amusing account of such paradoxes in the lion and man example, we refer to Bollobás, Leader and Walters [START_REF] Bollobas | Lion and man -can both win?[END_REF].

Clearly, all of the examples discussed so far correspond to the two player, zero-sum case.

Another direction in which the theory is somewhat simpler are games with identical players, which we cover in Part II. It is intuitively clear that the larger the number of players is, the more sophisticated the analysis of the game becomes. However, when players are identical and influence each other by their average behavior and not individually, it is possible to wipe out this increasing complexity in a so-called non-atomic or mean field term, whose precise definition will be given later.

Let us provide a simple motivating example, borrowed from Guéant, Lasry and Lions [49, p.10].

Example 2.2.3. Assume a continuum of agents, represented by the interval [0, 1], are attending a meeting. The meeting will not start unless a fraction f of the agents has arrived. Assume all the agents have a waiting cost (they do not want to spend time waiting for the meeting to start), plus a reputation and personal inconvenience costs for arriving later to the meeting. The agents want to choose their optimal arrival time.

In this example, if one late-arriver and an early-arriver are switched, the remaining players are indi erent since the fraction of agents arriving early is the same.

Of course, in real life there is no such thing as a continuum of players, so from the point of view of applications it is interesting to know how well a non atomic game approximates an atomic game. We are interested in how to use the intuition of a non atomic game to construct '-optimal strategies for a game with N players, where the approximation term ' goes to zero as N increases.

For the remaining of the introduction, let us describe more in detail the three parts of this thesis and highlight our main contributions.

Di erential games

Let (t 1 , x 1 ) oe [0, 1] ◊ R n and let U and V denote two compact sets of some euclidean spaces.

Define

U(t 1 ) = {u : [t 1 , 1] ae U, measurable}, V(t 1 ) = {v : [t 1 , 1] ae V, measurable}.
Whenever t 1 = 0, we will use the more convenient notation U and V respectively. The sets U(t 1 ), V(t 1 ) are the sets of control functions. Elements of U, V are called controls or actions.

Let f : R n ◊U ◊V ae R n and (u, v) oe U(t 1 )◊V(t 1 ) be a given pair of control functions. Consider a di erential equation

x(t 1 ) = x 1 , ẋ(t) = f (x(t), u(t), v(t)) a.e. on [t 1 , 1]. (2.1)
We make the following assumption on f , to ensure that the trajectory of the above ODE is well defined: Assumption 2.3.1. Assume that the function f is jointly continuous and bounded and that there exists c > 0 such that for all (u, v) oe U ◊ V and x, y oe R n :

Îf (x, u, v) ≠ f (y, u, v)Î AE cÎx ≠ yÎ. Let Îf Î := sup (x,u,v) Îf (x, u, v)Î < +OE.
Under Assumption 2.3.1, it follows from Carathéodory's theorem, [START_REF] Coddington | Theory of Ordinary Di erential Equations[END_REF]Chapter 2] that (2.1) has a unique solution, whose value at time s is denoted by x[t 1 , x 1 , u, v](s), in the following extended sense: for any t oe [t 1 , +OE),

x[t 1 , x 1 , u, v](t) := x 1 + ⁄ t t 1 f (x[t 1 , x 1 , u, v](s), u(s), v(s))ds.
This defines the dynamics.

To correctly specify a di erential game we need to define the objectives of the game and the information and strategies of the players. Informally, player 1 chooses u and player 2 v in order to achieve either a quantitative objective or a qualitative objective. As a quantitative objective, we will consider that player 1 wants to maximize a payo depending on the trajectory, whereas for a qualitative objective we will focus on the case where player 1 wants the state variable to reach a target closed set M at time t = 1. This distinction was already made by Isaacs [START_REF] Isaacs | Di erential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization[END_REF], who introduced the terms games of kind for games with a qualitative objective and games of degree for games with a quantitative objective.

We assume throughout this Section that players have complete information, that is, they know all the specifications of the game (initial state, dynamics, payo s) as well as the past state variable and actions and the description of the game.

Qualitative case

For the qualitative case, let us consider the target game: player 1 aims to move the state variable to a terminal set M at time t = 1, while player 2 wants to prevent that. Let us denote the target game by M (t 1 , x 1 ). As before, the natural questions one wants to answer in a target game are the following: Question 3.

1. For a given initial condition (s, y) oe [t 1 , 1] ◊ R n , is it possible to determine which player has a winning strategy? 2. Provide explicit strategies (or at least '≠optimal) for the players.

To answer the first question, let us note that it can be rewritten, informally, as the following:

Problem 2. Construct a partition of [t 1 , 1] ◊ R n in two sets K 1 , K 2 ,

with the following properties:

i) For any initial condition in K 1 , player 1 can ensure victory (i.e. has a strategy that ensures the arrival to the target). ii) For any initial condition in K 2 , player 2 has a strategy that ensures him that the target is not reached at time 1.

A theorem that establishes such characterization is called an alternative theorem. Of course, alternative theorems depend on the class of strategies being considered. We will describe briefly some examples of alternative theorems in Section 2.3.3.

Quantitative case

Let ¸: R n ◊ U ◊ V ae [0, 1] and g : R n ae [0, 1]. The payo s in the quantitative case can be evaluated as follows:

1. The discounted infinite horizon game: for a given history of plays (x, u, v) the payo that player 1 receives from player 2 is

⁄ OE t 1 e ≠fls ¸(x[t 1 , x 1 , u, v](s), u(s), v(s))ds
where fl > 0. 2. The finite horizon game: At time t = 1, player 2 gives to player 1 a payo of

⁄ 1 t 1 ¸(x[t 1 , x 1 , u, v](s), u(s), v(s))ds + g(x[t 1 , x 1 , u, v](1)).
We denote these two games by fl (t 1 , x 1 ) and (t 1 , x 1 ) respectively. We do not cover the infinite horizon case, which has been extensively treated by Bardi and Capuzzo Dolcetta [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF]. As we will show in Chapter 3, in the case of complete information, the analysis of the quantitative game with finite horizon described above can be reduced without loss of generality to the game with running payo ¸© 0, whenever ¸satisfies the same regularity assumptions as the dynamics f . Solving a quantitative game means to answer the following questions:

Question 4.

1. Give conditions for the existence and characterization of the value. 2. Provide optimal (or '-optimal) strategies.

Let us introduce the ideas to study zero-sum di erential games by recalling first some results when zero and one players are present.

No players

In the absence of players, the dynamics is of the form

ẋ(s) = f (x(s)), x(t 1 ) = x 1 , ( 2.2) 
where x 1 oe R n and f : R n ae R n is Lipschitz continuous. In this case, the di erential equation (2.2) admits a unique solution. As a quantitative objective, we can consider a payo of the form described above.

In the quantitative case, there are no questions to be answered: the payo associated to the trajectory is already determined. It still makes sense to consider the qualitative case.

Consider the extended dynamics

( ṫ(s), ẋ(s)) = (1, f(x(s))), t(0) = 1, x(0) = x 1 , (2.3) Set f = (1, f).
Let us recall some notions of viability theory that provide the framework to answer this question.

Definition 2.3.2. (Viability and invariance

) i) Let K be a closed subset of [0, 1] ◊ R n and f : [0, 1] ◊ R n ae [0, 1] ◊ R n . The pair (K, f ) is viable by (2.
3) if for any initial state (t 1 , x 1 ) oe K, there exists a solution of (2.3) such that (t, x(t)) oe K for all t Ø t 1 . ii) We say (K, f ) is invariant if for every initial state x 1 oe K, all such solutions satisfy (t, x(t)) oe K for all t Ø t 1 .

Since f is Lipschitz, (2.3) has a unique solution and thus the definitions of viability and invariance are equivalent. Let us point out that this will not be the case when one or two players are present, or in the non-Lipschitz case.

There are several characterization theorems for invariant and viable sets, starting with Nagumo's theorem [START_REF] Nagumo | Über die Lage der Integralkurven Gewöhnlicher Di erentialgleichungen[END_REF]. Before stating this theorem, let us introduce some definitions. 

T K (z) := ; v oe R n : liminfhae0 + d K (z + hv) h = 0 < .
-The subnormal cone to K at a point z that belongs to K is defined by

N 0 K (z) := {p oe [0, 1] ◊ R n : 'v oe T K (z), Èp, vÍ AE 0} .
Let us now state a version of Nagumo's theorem, which is general enough for our purposes.

Theorem 2.3.4. (Nagumo) Let f be a continuous function. Then the following are equiv-

alent: i) (K, f ) is invariant (or viable). ii) 'z oe K, f (z) oe T K (z).
Of course, by definition, ii) is equivalent to iii) For all x oe K, 'p oe

N 0 K (x), e p, f (x) f AE 0.
We omit the proof but refer to Aubin [4, Theorem 1.2.1]. The important fact here is that we can reduce the question of finding the points that reach the target to a geometrical property of the contingent cone and the dynamics.

One player

Let u oe U(t 1 ) be a given control function. Consider a di erential equation

ẋ(s) = f (x(s), u(s)), x(t 1 ) = x 1 .
(2.4)

We assume that f satisfies the Assumptions 2.3.1, but omitting the second player.

In this situation it makes sense of distinguishing qualitative from quantitative objectives. In the quantitative case, the player wants to choose u in order to maximize

⁄ 1 t 1 ¸(x[t 1 , x 1 , u](s), u(s))ds + g(x[t 1 , x 1 , u](1)).
Similarly, in the qualitative case, the player wants to choose u to ensure that the state reaches a target set M at time t = 1.

We will describe first the qualitative case as it turns out to be helpful for the quantitative case as well.
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Qualitative case

Here, the trajectory of (2.4) depends on the choice of the control function u. To obtain an alternative theorem in this case, one asks instead if for a given initial condition x 1 there exists a measurable control u such that the corresponding trajectory starting at x 1 reaches M at time t = 1.

Let us replace the di erential equation (2.4) by the di erential inclusion ẋ(s) oe F (x(s)) := fi uoeU f (x(s), u).

(2.5)

Clearly, any solution of (2.4) is a solution of (2.5). Conversely, when f is continuous with respect to the first variable and measurable with respect to the second, Filippov's measurable selection theorem [START_REF] Vinter | Optimal Control[END_REF]Theorem 2.3.13] ensures that for any trajectory x(•) of (2.5) we can find a measurable control function u(•) such that (2.4) holds.

We introduce now the central notion of this Section.

Definition 2.3.5. A pair (K, F ) where K µ [0, 1] ◊ R n is closed and F : [0, 1] ◊ R n [0, 1] ◊ R n is a set valued map is viable if for all z 1 := (t 1 , x 1 ) oe K there exists a solution of the di erential inclusion ż(t) oe F (z(t)), z(t 1 ) = z 1 that remains in K, i.e. z(t) oe K for all t > t 1 .
In our case, F := (1, F ). Let B denote the euclidean unit ball in R n+1 .

Definition 2.3.6. A set valued map F : [0, 1] ◊ R n [0, 1] ◊ R n is Marchaud if a) For all z oe [0, 1] ◊ R n , F (z) is a non-empty compact convex set. b) F is upper semi-continuous, that is, 'z oe [0, 1] ◊ R n and '' > 0 ÷ " > 0 such that Îz Õ ≠ zÎ < " =∆ F (z Õ ) µ F (z) + 'B.
c) F has linear growth in z, i.e. 'z oe [0, 1] ◊ R n there exist constants " and c such that v oe F (z) =∆ ÎvÎ AE "ÎzÎ + c.

We are now ready to state an analogous of Theorem 

i) (K, F ) is viable. ii) F (z) fl T K (z) " = ÿ for all z oe K. iii) For all z oe K, 'p oe N 0 K (z), ÷v oe F (z) s.t.
Èp, vÍ AE 0. The viability theorem shows us that we can single out a trajectory that remains in K if we can do it pointwise, and conversely, thus extending Nagumo's theorem (Theorem 2.3.4) to di erential inclusions. For the proof we refer to Aubin [Theorem 3.3.5][4]. In our case, iii) reads as 'z = (s, y) oe K, 'p oe N 0 K (z), ÷u oe U s.t. Èp, (s, f (y, u))Í AE 0. This suggest a way to find a control that allows the player to force the dynamics to stay in K, or close to it. Assume that the initial condition is in K and that the player will update his choice of control at discrete times s 1 , s There exists a piecewise constant control u (t) such that

ẋ(t) = f (x(t), u (t)), x(t 1 ) = x 1 satisfies d 2 K (x[t 1 , x 1 , u ](1)) AE CÎ Î, for a positive constant C independent of the .
We omit the proof as it is a corollary of the more general case with two players described in Chapter 4.

The construction described above is essentially the extremal aiming of Krasovskii and Subbotin [START_REF] Krasovskii | Game-Theoretical Control Problems[END_REF] where player 2 is absent. It is also reminiscent of the construction in discrete time in the framework of Blackwell's approachability, see Blackwell [START_REF] Blackwell | An analog of the minimax theorem for vector payo s[END_REF].

Quantitative case

Let us consider the case of a terminal payo at time t = 1, i.e., an objective of the form g(x(1)).

For every initial condition (t 1 , x 1 ) oe [0, 1] ◊ R n , and a given u, we have a unique trajectory, hence the following value function

V(t 1 , x 1 ) := sup uoeU(t 1 ) g(x[t 1 , x 1 , u](1))
is well defined.

The value function inherits the regularity of the payo function. In particular, if g is Lipschitz, so is V(t, •), for all t. We refer to Bardi and Capuzzo-Dolcetta [9, Chapter III, Prop. 3.1] for the proof.

The value function also satisfies the following crucial property.

Theorem 2.3.9. (Dynamic programming principle) Assume ¸, g are Lipschitz. Then, for all (t, x) oe [0, 1] ◊ R n and for all h > 0 :

V(t, x) = max uoeU {V(t + h, x[t, x, u](t + h))} .
At least heuristically, by a Taylor series expansion, one can deduce from the dynamic programming principle stated above that the value function should solve the following PDE:

ˆV ˆt + max uoeU ÈÒ x V, f(x, u)Í = 0 (2.6)
with boundary condition
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The partial di erential equation (PDE) (2.6) is called Hamilton-Jacobi-Bellman equation. This PDE is important in optimal control theory because it provides necessary and su cient optimality conditions. We refer to Bardi and Capuzzo-Dolcetta [9, Chapter III, Section 3] for a detailed description and proofs.

An important problem is that (2.6) fails to have solutions in the classical sense, even if the data of the problem (dynamics and payo functions) is smooth. A significant breakthrough was achieved by Crandall and Lions [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF], who introduced the definition of viscosity solutions, which will be recalled in Chapter 3.

Relation between the quantitative and qualitative case

Let us point out an important connection between qualitative and quantitative problems.

Define v 1 := V(t 1 , x 1 ). Consider the target game with dynamics

( ṫ(s), ẋ(s)) oe (1, F (x)), (t(0), x(0)) = (t 1 , x 1 ), s oe [0, 1 ≠ t 1 ] (2.7)
and target set M ú µ [t 1 , 1] ◊ R n defined by:

M ú := {(1, y) oe [0, 1] ◊ R n | g(y) Ø v 1 }.
The link between the quantitative and qualitative game comes from the following proposition:

Proposition 2.3.10. The set

L(v 1 ) := {(s, y) oe [t 1 , 1] ◊ R n | V(s, y) Ø v 1 }
is viable under the dynamics (2.7).

The intuition here is that the value function is constant along optimal trajectories: since there is no running payo , it depends only on the terminal state, that is, the state at time t = 1. Hence, for any initial conditions in L(v 1 ), there exists at least one trajectory that remains there (e.g. an optimal trajectory) and leads to a terminal state in M ú .

An important consequence of this fact is that solving the target problem described above and using the construction of Proposition 2.3.8 we obtain an explicit method to derive '≠optimal strategies. We omit this construction here, but in Chapter 4 we describe in more detail the extension of this approach to the case of two players, zero sum games.

Two players

Qualitative case

We do not cover target games in detail in this thesis, but let us make some remarks. As it was pointed out before, the main complication in continuous time games comes from the fact that there is no canonical information structure. Let us describe briefly some of the information structures that have been proposed in the literature.

As an early example of alternative theorems for two players, let us mention the work of B.N. Pöeni nyj [START_REF] Pöeni Nyj | Leçons sur les jeux di érentiels, Contrôle optimal et jeux di érentiels[END_REF], who studies the target game with a di erent class of strategies Definition 2.3.11. ('-strategies) We say the players are using '-strategies in the target game if the game is played as follows:

i) Both players know (t 1 , x 1 ). ii) player 2 chooses ' 1 > 0 and informs player 1 of the control function v 1 that he will use in the interval [t 1 , t 1 + ' 1 ]. iii) Using this information, player 1 chooses his control function. iv) At time t 1 + ' 1 , the new state is announced and the situation is repeated, with player 2 choosing ' 2 .

Under this information structure, several examples of alternative theorems are proposed in [START_REF] Pöeni Nyj | Leçons sur les jeux di érentiels, Contrôle optimal et jeux di érentiels[END_REF], under di erent assumptions on the target set and the dynamics. However, in this theory no explicit connection with the quantitative case is made.

Krasovskii and Subbotin introduce the extremal aiming method [START_REF] Krasovskii | Game-Theoretical Control Problems[END_REF] for target games. The description of this method motivates the work in Chapter 4. They use positional strategies, which are limits of piecewise constant motions. In general, the control functions originating from this procedure are not regular enough to obtain solutions in the Carathéodory sense. Thus, as in Pöeni nyj's approach, their construction provides information of an approximated game only.

In order to solve the target game exactly, Cardaliaguet [START_REF]A di erential game with two players and one target[END_REF] considers instead non anticipating strategies which are defined later in Chapter 3 and establishes an alternative theorem. Note that this is an important advance with respect to the other approaches, since it allows us to solve the target game exactly, instead of an approximate version.

Quantitative case

As we did for the target game, we need first to specify which information is available to the players and how are they allowed to interact. Di erent information patterns and strategies have been proposed in the literature, we refer to Bardi and Capuzzo-Dolcetta [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF]Chapter VIII].

A common feature of these di erent notions is that they allow to reduce the problem to study a certain system of PDE's. For the finite horizon game with ¸© 0, these PDE's are:

ˆw≠ ˆt (t, x) + sup uoeU inf voeV + f (x, u, v), Ò x w ≠ (t, x) , = 0 (2.8a) ˆw+ ˆt (t, x) + inf voeV sup uoeU e f (x, u, v), Ò x w + (t, x) f = 0 (2.8b) with boundary conditions w ≠ (1, x) = w + (1, x) = g(x).
Although the above relations were heuristically derived by Isaacs' [58, Section 4.2], the connection between PDE's and di erential games was first made explicit in the framework of viscosity solutions [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF] by Evans and Souganidis [START_REF] Evans | Di erential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF]. As pointed out by Lions in the introduction of the book [START_REF] Lions | Generalized Solutions of Hamilton-Jacobi Equations[END_REF], the study of these equations was a motivation to introduce the definition of viscosity solutions.

Note that under the following condition, called Isaacs' condition

sup uoeU inf voeV Èf (x, u, v), pÍ = inf voeV sup uoeU Èf (x, u, v), pÍ
holds for all x, p oe R n , there is only one equation, called Hamilton-Jacobi-Isaacs equation.
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Let us remark that this condition is conceptually very strong. It imposes the existence of the value of a family of games in pure strategies, which denies the important role of randomization in game theory, as pointed out in von Neumann's remark above. In Chapter 3 we propose a way to avoid Isaacs' condition, inspired from Fleming [START_REF] Fleming | A note on di erential games of prescribed duration, Contributions to the Theory of Games[END_REF]. A di erent approach to introduce randomized strategies in di erential games and hence avoid Isaacs' condition has been proposed by Buckdahn, Li and Quincampoix [START_REF] Buckdahn | Value function of di erential games without isaacs conditions. an approach with nonanticipative mixed strategies[END_REF].

Krasovskii and Subbotin applied their method to a suitable target set to establish the existence of the value for di erential games with finite horizon and terminal payo using an explicit description of '≠optimal strategies. The material of Chapter 4 is inspired from their construction, which allows to establish the existence and characterization of the value function. Later, Subbotin [START_REF]Constructive theory of positional di erential games and generalized solutions to Hamilton-Jacobi equations[END_REF] proposes a notion of generalized solutions, called minimax solutions and characterizes the value function as the unique minimax solution of the HJI equation. We establish the equivalence of minimax solutions for HJI equations with the standard machinery of viscosity solutions in Chapter 5.

Discrete time mean field games

Let us briefly comment on some related (and important) previous work on games with a continuum of players before moving on to the framework of mean field games, to which our contributions are more closely related.

Games with a continuum of players

As pointed out in Section 2.2, we are interested in modelling situations with a "large" number of identical agents. This statement is ill-defined, but it could mean either of the three following situations:

1. Games with a continuum of agents per se.

2. Convergence, in a suitable sense, of a sequence of games with atomic players to a non atomic limit game. 3. Use the limit non atomic game to compute '≠optimal equilibria for the atomic game. On the first situation, let us mention the pioneering work of Aumann [START_REF] Aumann | Markets with a continuum of traders[END_REF]. One motivation for introducing games with a continuum of agents is an important concept in economics, perfect competition. The essential idea of this notion is that there are many agents whose individual influence on the economy (e.g. for a ecting prices) is negligible. Thus, following [START_REF] Aumann | Markets with a continuum of traders[END_REF], the natural way to study economies with perfect competition is to consider non atomic agents. The introduction of this idea allows Aumann [START_REF] Aumann | Markets with a continuum of traders[END_REF] to solve a long standing conjecture in economics.

Later, Mas-Colell [START_REF] Mas-Colell | On a theorem of Schmeidler[END_REF] introduced the notion of distributional equilibrium for a one shot game with a continuum of players, building on results of Schmeidler [START_REF] Schmeidler | Equilibrium points of nonatomic games[END_REF]. The definition of distributional equilibrium is recalled later in Chapter 6. Let us refer also to Milgrom and Weber [START_REF] Milgrom | Distributional strategies for games with incomplete information[END_REF] were several existence results of Nash equilibrium are established for games with incomplete information where the set of types is a continuum.

The references cited above concern one shot games only. In dynamic games, let us mention the extension of the model of Mas-Colell by Jovanovic and Rosenthal [START_REF] Jovanovic | Anonymous sequential games[END_REF] for discrete time stochastic games, which is also introduced in Chapter 6. Later, Lasry and Lions [START_REF] Lasry | Jeux à champ moyen. i. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. ii. Horizon fini et controle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF] and Huang, Caines and Malhamé [START_REF] Huang | Individual and mass behavior in large population stochastic wireless power control problems: centralized and nash equilibrium solutions[END_REF][START_REF]Large population stochastic dynamic games: closed-loop Mc Kean-Vlasov systems and the Nash certainty equivalence principle[END_REF] introduced the mean field games theory, which studies non atomic dynamic games in continuous time.

The idea of using a continuum of players is also present in the literature on congestion games, which goes back to Wardrop [START_REF] Wardrop | Some theoretical aspects of road tra c research[END_REF] and Smith [START_REF] Smith | The existence, uniqueness and stability of tra c equilibria[END_REF]. We refer to Wan [START_REF] Wan | Jeux de congestion dans les réseaux: modèles et proprietés, partie I[END_REF]105] for an extensive survey of this literature. Games with a continuum of players have also been introduced in the framework of population games by Hamilton [START_REF] Hamilton | Extraordinary sex ratios[END_REF] and Maynard Smith [START_REF] Smith | Game theory and the evolution of fighting, On Evolution[END_REF].

As for the convergence of equilibria of games with finitely many players to an equilibrium of a non atomic game, an early example is the work of Haurie and Marcotte [START_REF] Haurie | On the relationship between Nash-Cournot and Wardrop equilibria[END_REF] in the framework of congestion games and Sandholm [START_REF] Sandholm | Potential games with continuous player sets[END_REF] for potential games.

In the framework of mean field games the convergence of the sequence of Nash equilibria of the N player games has been established by Lasry and Lions [START_REF] Lasry | Jeux à champ moyen. i. Le cas stationnaire[END_REF] for games with an ergodic payo (see also Feleqi [START_REF] Feleqi | The derivation of ergodic mean field game equations for several populations of players[END_REF] for a detailed proof) and by Bardi [8] for linear quadratic mean field games.

Results of a similar flavour, based on stochastic approximation techniques, have been obtained by Benaïm and Weibull [START_REF] Benaïm | Deterministic approximation of stochastic evolution in games[END_REF] for population games and by Gast, Gaujal and Le Boudec [START_REF] Gast | Mean field for Markov decision processes: from discrete to continuous optimization[END_REF] for games with a centralized controller. In the stochastic approximation framework, the idea is to approximate the path of a Markov chain by a deterministic trajectory given by a suitable ordinary di erential equation. The assumption these models have in common is that the probability that the relevant state variable in the N player game changes between two consecutive stages of the game goes to zero as N goes to infinity.

Our interest is more on the third situation: constructing an approximate Nash equilibria via suitably defined limit objects. In this sense, our contribution is closer to the work of Huang, Caines and Malhamé [START_REF]Large population stochastic dynamic games: closed-loop Mc Kean-Vlasov systems and the Nash certainty equivalence principle[END_REF].

Continuous time mean field games

Mean field games have been introduced independently by Huang, Caines and Malhamé [START_REF] Huang | Individual and mass behavior in large population stochastic wireless power control problems: centralized and nash equilibrium solutions[END_REF][START_REF]Large population stochastic dynamic games: closed-loop Mc Kean-Vlasov systems and the Nash certainty equivalence principle[END_REF] and by Lasry and Lions [START_REF] Lasry | Jeux à champ moyen. i. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. ii. Horizon fini et controle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF] and have received considerable attention in the literature. The aim of mean field games theory is to model situations with a large number of identical agents. Their distinctive feature is the backward-forward structure: each player anticipates a certain behavior of the other players and computes his own optimal behavior; if the observed aggregate behavior is consistent with the prediction, the players are said to be in a mean field game equilibrium. Precise definitions will be given in Chapter 6.

The 

dX i t = -i t dt + Ô 2dB i t
Each player i aims to minimize the cost:

⁄ T t 1 2 |-i s | 2 + F (m ≠i s,N )ds + g(x i T , m ≠i T,N )
where m ≠i s,N := 1 N ≠1 q j" =i "

x j s . Heuristically, if one takes the limit as N ae +OE, one obtains the following backwardforward system of coupled PDE's:

≠ ˆu ˆt ≠ u + 1 2 |D x u| 2 = F (x, m) in R d ◊ (0, T ) ˆm ˆt ≠ m + div(mDu) = 0 in R d ◊ (0, T ) m(0) = m 0 , u(x, T ) = g(x, m(T )) in R d .
One important motivation for the mean field games approach in applications is that it allows to construct approximate Nash equilibria of games with a large number of players, which is not computationally feasible when the number of players is large. The limit system consists of a Hamilton-Jacobi equation running backward in time and a Kolmogorov equation describing the aggregate evolution, running forward in time.

Mean field games have found applications in many areas, notably in economics, see Guéant, Lasry and Lions [START_REF] Guéant | Mean Field Games and Applications[END_REF]. The lecture notes of Cardaliaguet [START_REF] Cardaliaguet | Notes on mean field games (from P.L. Lions' lectures at Collège de France)[END_REF], based on Lions' lectures at the Collège de France, provide a detailed account from the mathematical point of view. For a brief and more recent account of the continuous time theory, we refer to the survey by Gomes and Saude [START_REF] Gomes | Mean field games models: a brief survey[END_REF] and to the book of Bensoussan, Frehse and Yam [START_REF] Bensoussan | Mean Field Games and Mean Field Type Control Theory[END_REF] for connections with the theory of mean field type control problems.

However, a conceptual problem arises in continuous time. As we mentioned earlier in the introduction, randomization of the actions is a crucial concept in game theory. Even if we give up on choosing actions randomly, it turns out that in continuous time, for the Kolmogorov equation to be well defined, the solution of the Hamilton-Jacobi equation needs to be di erentiable. This implies that at each time t, each player has a unique optimal choice. However, one can easily imagine situations where this does not hold. This can be sorted out if we consider a discrete time model, as we show in Chapter 7. Other conceptual problems, which are present also in discrete time, are addressed in Chapter 7.

With few exceptions, the mean field games literature has largely focused on mean field games in continuous time.

An important exception is the work of Gomes, Mohr and Souza [START_REF] Gomes | Discrete time, finite state space mean field games[END_REF]. They study the asymptotic behaviour as the time horizon goes to infinity, of a finite horizon, discrete time, finite state dynamic game with a continuum of players, and provide conditions for the convergence to a stationary solution.

We consider instead a fixed time horizon and provide a way to construct an approximate Nash equilibrium for the N player game. The model we introduce in Chapter 6 is the finite horizon version of the model introduced by Adlakha, Johari and Weintraub [START_REF] Adlakha | Equilibria of dynamic games with many players: Existence, approximation, and market structure[END_REF].

In many applications, it is desirable to consider "frequent" interactions between the players and a random dynamics that depends on both the individual and the aggregate state. For instance, one can think of competing agents in an online auction. To give a sense to "frequent", we need an exogenous time, that runs independently of the stages of the game.

With this in mind, we introduce as an exogenous time the positive real axis R + and allow the players to receive information at discrete points. In this game, the dynamics of the state corresponds to a continuous time Markov chain. These games are described in more detail in Section 2.6. For now, let us point out that these games are, informally, discretizations of an underlying stochastic game in continuous time, which are analogue to the discretizations introduced by Fleming [START_REF] Fleming | A note on di erential games of prescribed duration, Contributions to the Theory of Games[END_REF] for di erential games.

Incorporating these ideas, we obtain a limit object that provides an approximate Nash equilibrium for games with su ciently many players and su ciently frequent interactions. We develop this model in detail in Chapter 7.

Zero-sum stochastic games with short-stage duration 2.5.1 General model of zero-sum repeated games

Let us introduce an abstract mathematical model for zero-sum dynamic games that extends the simple motivating examples we proposed. The model presented here is borrowed from Cardaliaguet Laraki and Sorin [START_REF] Cardaliaguet | A continuous time approach for the asymptotic value in two-person zero-sum repeated games[END_REF], see also Mertens, Sorin and Zamir [75, Section IV].

Let , A, B, R, S be arbitrary sets and consider a function " : ◊ A ◊ B ae [0, 1]. The set is the parameter space. The sets A, B are the sets of actions of player 1 and 2 respectively.

The game is played as follows:

-An initial parameter Ê 1 and signals r 1 , s 1 are chosen randomly according to an initial distribution fi oe (R ◊ S ◊ ). Player 1 receives signal r 1 and player 2 receives the signal s 1 and this is all the information they get. -After player 1 (respectively, player 2) learns his signal r 1 (resp. s 1 ), player 1 (resp.

2) chooses an action a 1 (resp. b 1 ). The stage payo " 1 := "(Ê 1 , a 1 , b 1 ) is allocated to player 1 and is not necessarily observed by the players. The actions are chosen simultaneously and independently. -A new value of the parameter and the signals is chosen according to a transition function

Q : ◊ A ◊ B ae (R ◊ S ◊ ).
The situation is then repeated: (r 2 , s 2 , Ê 2 ) are chosen according to Q(Ê 1 , a 1 , b 1 ); knowing r 2 (resp. s 2 ), an action a 2 (resp. b 2 ) is chosen, player 1 receives a payo " 2 from player 2 and so on.

A (pure)behavioural strategy ‡ for player 1 is a map from his private history H 1 := (r 1 , a 1 , r 2 , a 2 , . . .) to (A) (A). A pure or behavioural strategy • for player 2 is defined similarly. Player 2's private history is denoted by H 2 . A play is a sequence OE denote the set of plays. A mixed strategy for player 1 is a probability distribution over his set of pure strategies, with an analogous definition holding for player 2. By Kolmogorov's extension theorem, a couple of behavioural strategies defines a unique probability distribution over H OE . Let us assume that the players have perfect recall, that is, that players remember the full history of the game. In this case, Kuhn's theorem [START_REF] Kuhn | Extensive games and the problem of information, Contribution to the Theory of Games[END_REF] applies, which ensures that the games played in mixed or behavioural strategies are equivalent. Thus, we can consider without loss of generality that the game is played in mixed strategies. Note that the set of mixed strategies for each player is compact and convex.

(Ê 1 , r 1 , s 1 , a 1 , b 1 , Ê 2 , r 2 , s 2 , a 2 , b 2 , . . .). Let H OE := ( ◊ R ◊ S ◊ A ◊ B)
A couple of strategies, along with fi and Q, generates a unique probability distribution on the plays, the corresponding expectation is denoted by E ‡• . Two important classes captured by this model are stochastic games as introduced by Shapley [START_REF] Shapley | Stochastic games[END_REF], which correspond to public signals including the realization of the parameter, and incomplete information games as studied by Aumann and Maschler [START_REF] Aumann | Repeated Games with Incomplete Information[END_REF] which correspond to an absorbing transition of the parameter, which remains fixed, and no further information after the initial one on its value. By complete information we mean that the current state, payo s and past actions are observed.

Payo evaluations

The previous model determines a sequence of stage payo s {" k } koeN + . The stream of stage payo s can be evaluated in di erent ways. 

J (h) := ÿ k ◊ k " k .
For a couple of behavioral strategies ( ‡, • ) we define the payo as the expectation with respect to their induced probability distribution over H OE . From Kuhn's theorem, we can consider this game as being played in mixed strategies, since they induce the same probability distributions over H OE . Thus, the value of exists by Sion's minmax theorem [START_REF] Sion | On general minimax theorems[END_REF] and is denoted v . Some classical choices of are the uniform partition := ( 

Recursive structure and long games

Shapley [START_REF] Shapley | Stochastic games[END_REF] established the following recursive formula for stochastic games with complete information. Let X = (A), Y = (B). Then:

v ⁄ (Ê) = val x,y E xy Y ] [ ⁄"(Ê, x, y) + (1 ≠ ⁄) ÿ Ê Õ oe v ⁄ (Ê Õ )Q(Ê, x, y)(Ê Õ ) Z \ .
(2.9)

A similar formula holds for the finite n-stage game, namely:

v n (Ê) = val x,y E xy Y ] [ 1 n "(Ê, x, y) + n ≠ 1 n ÿ Ê Õ oe v n≠1 (Ê Õ )Q(Ê, x, y)(Ê Õ ) Z \ .
(2.10)

These formulae express the value of the game as a weighted average between today's payo and the expected payo from tomorrow on. An important consequence of these formulae is that the players have stationary strategies in the discounted case, that is, strategies that are functions of the current state only, and Markovian strategies in the finite case, that is, strategies that depend on the stage and the current state. In particular, the players do not need to know the move of the opponent.

Note also that (2.9) has a fixed point structure, which motivates the following definition. Definition 2.5.1. (Shapley operator) Let F the set of functions from to R. The Shapley operator T : F ae F is defined as

T[f ](Ê) := val x,y E xy Y ] [ ⁄"(Ê, x, y) + (1 ≠ ⁄) ÿ Ê Õ oe f (Ê Õ )Q(Ê, x, y)(Ê Õ ) Z \ .
(2.11)

Introducing the following auxiliary operator

(', f ) := 'T 3 1 ≠ ' ' f 4 one obtains v ⁄ = (⁄, v ⁄ ), v n = 3 1 n , v n≠1 4 .
(2.12)

A similar recursive structure holds for games with incomplete information and for a general evaluation .

Mertens, Sorin and Zamir [75, Section IV.3] associate to each repeated game an auxiliary stochastic game whose value functions satisfy a recursive equation of the type (2.9), in a suitably enlarged state space, called the universal belief space.

Let us describe this more precisely in the case where the signals of the players include each others' actions but not the parameter. Assume that the initial parameter is chosen with a commonly known lottery › oe ( ), but remains unobserved. We assume that the players observe the actions, so that they can compute the posterior law of the parameter. In this case, the auxiliary state variable is the law of the parameter.

Observe that the fixed point characterization of v ⁄ does not hold for v n . To recover the same function on both sides of the equation, Cardaliaguet, Laraki and Sorin [START_REF] Cardaliaguet | A continuous time approach for the asymptotic value in two-person zero-sum repeated games[END_REF] add a time variable, as described below, which represents the past fraction of the game.

For a given , consider the induced partition = {t 1 , t 2 , . . .} of [0, 1] where t 1 = 0, and

t n = q n m=1 ◊ m for n > 1.
The repeated game is naturally represented as a game played between times 0 and 1 where the actions are constant on each subinterval

[t n≠1 , t n ) of length ◊ n . Let V (t n ,
•) denote the value of the game starting at t n . By definition, V (1, •) = 0 and

V (t n , ›) = val xy E Q xy {◊ n+1 " n + V (t n+1 , › Õ )}. (2.13)
By linear interpolation, V is extended to a function on [0, 1]. Thus, asymptotic properties of v translate into asymptotic properties of V .

The study of the asymptotic properties of v is the so-called asymptotic analysis and the questions here are the existence and characterization of the limit.

The variational approach, initiated by Laraki in his PhD thesis and revisited in Cardaliaguet, Laraki and Sorin [START_REF] Cardaliaguet | A continuous time approach for the asymptotic value in two-person zero-sum repeated games[END_REF] consists on the study of asymptotic properties of v via suitable variational inequalities satisfied by the accumulation points of V .

The variational approach allowed to unify the proofs of existence of the asymptotic value for games with incomplete information, splitting games and absorbing games.

Short stage stochastic games

Let us introduce now a di erent family of stochastic games that enjoys nice asymptotic properties, although of a di erent nature, so that our results are not directly comparable with the classical framework. The model we study is in some sense more regular than classical stochastic games. The dynamic consists of a Markov chain, controlled by the players and evolving in continuous time, while the players are allowed to update their actions in discrete time. Here one is interested in the limit when the time between consecutive stages goes to zero. These are called short stage games.

Games where a payo relevant parameter follows a continuous time Markov chain have been introduced by Zachrisson [START_REF] Zachrisson | Markov games[END_REF] under the name Markov games. However, his model does not incorporate a notion of stage duration. They have also been studied by Tanaka and Wakuta [100,[START_REF] Tanaka | On continuous time Markov games with the expected average reward criterion[END_REF] and Tanaka and Lai [START_REF] Tanaka | A two-person zero-sum Markov game with a stopped set[END_REF]. These authors assume first the existence of Markovian strategies, from which they derive an equation for the value function that they use to construct stationary strategies.

Markov games with one player, also known as continuous time Markov decision processes have received more attention in the literature. We refer to the recent book of Hernández-Lerma and Prieto-Rumeau [START_REF] Hernández-Lerma | Selected Topics on Continuous-Time Controlled Markov Chains and Markov Games[END_REF], where also some classes of Markov games are treated.

Short stage games have been introduced by Neyman [START_REF] Neyman | Stochastic games with short-stage duration[END_REF]. A similar, but conceptually di erent model has been studied by Cardaliaguet, Rainer, Rosenberg and Vieille [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF] in the framework of incomplete information. While Neyman considers a sequence of games and defines conditions for its convergence, in a suitable sense, to a limit game, Cardaliaguet, Rainer, Rosenberg and Vieille study a sort of Fleming [START_REF] Fleming | A note on di erential games of prescribed duration, Contributions to the Theory of Games[END_REF] discretization of an underlying continuous time game. We follow this approach.

In discrete time repeated games, there is no exogenous notion of time. We can distinguish between two stages, but we can not speak a priori of the "duration" of each state.

Let us now consider a model with an underlying notion of time, represented by the positive real axis R + . This allows us to define a notion of "duration" of each stage as follows: Let = {t 

Basic dynamics

Let be a finite set, called the parameter space and let A and B denote the finite action sets of players 1 and 2 respectively. Let " : ◊ A ◊ B denote a running payo . The parameter evolves in continuous time, following an homogeneous Markov chain with transition rate function q : ◊ ◊ A ◊ B ae R, i.e. a function that satisfies, for all (Ê, a, b) oe ◊ A ◊ B :

0 AE q(Ê, Ê Õ , a, b) < +OE, Ê Õ " = Ê, and ÿ Ê Õ oe q(Ê, Ê Õ , a, b) = 0.
For fixed (a, b) oe A ◊ B, the transition function corresponds to the speed with which the parameter jumps from Ê to Ê Õ . To these actions corresponds a transition semigroup P (•, Ê, a, b), which is a collection of maps P ' (•, a, b) : ◊ ae [0, 1] such that

P(Ê t+' = Ê Õ |Ê t = Ê, a, b) = P ' (Ê, Ê Õ , a, b) + o(') for all t, ' Ø 0 and Ê, Ê Õ oe . The map t ' ae P t (•, a, b) is the solution of the Chapman- Kolmogorov equation Ṗt = Q a,b P t , P 0 = I where the matrix Q a,b := (q(Ê, Ê Õ , a, b))
Ê,Ê Õ is the generator of the Markov chain with transition semigroup P (•, a, b).

Information and strategies

We describe now how players influence the dynamics introduced in Section 2.6. The game is essentially the same as the general model introduced in Section 2.5. 

Payo evaluation

To evaluate the payo s, we consider three di erent scenarios:

Model A: The game in [0, 1]
Let us consider first the case when the duration and the weight of the stage are equal. Let denote a decreasing probability measure over N with = (◊ 1 , ◊ 2 , . . .) and ◊ 1 < 1/ÎqÎ, where ÎqÎ := max (Ê,a,b)oe ◊A◊B |q(Ê, Ê, a, b)|.

The k≠th stage takes place at time

s k := q ¸<k ◊ ¸.
The dynamics of the play at the k≠th stage corresponds to the play at time s k as described in Section 2.6.2, with fi k = ◊ k . The payo for a history h

:= {Ê 1 , a 1 , b 1 , Ê 2 , a 2 , b 2 , . . .} is OE ÿ k=1 ◊ k " ◊ k
where "

◊ k := ◊ k "(Ê k , a k , b k ) is the stage payo .
Here, the weight of the payo at stage k is the constant ◊ k . Except for the dynamics, this game is exactly the general model of Section 2.5.1. This di erence is crucial and we will elaborate on this later.

Model B: The stationary game with short stage

Here we consider a situation where the duration of the stage and the weight are no longer identical.

Informally, the game we describe is a discretization of an infinite horizon game with continuous time payo :

⁄ +OE 0 fle ≠fls "
s ds. A common interpretation of fl is as the patience of the players: the smaller fl is, the players are more patient.

Let " = {0, ", 2", . . .} denote a uniform partition of R + , where 0 < " < 1/ÎqÎ. Denote with t " j := (j ≠ 1)" the instant where the j≠th play takes place. The game is played as in Section 2.6.2. Here, the parameter " is the stage duration, or, alternatively, 1/" is the action frequency.

The payo corresponding to a history

h := {Ê 1 , a 1 , b 1 , Ê 2 , a 2 , b 2 , . . .} is: J fl," (h) := +OE ÿ k=1 " fl,j,"
where

" fl,j," := ⁄ t " j+1 t " j fle ≠fls " s ds.
We refer to this game as the (normalized) fl≠discounted game with action frequency 1/". Within this framework, it is natural to study the limit as " and fl go to zero and whether these limits commute.

Model C: The short stage game with arbitrary evaluation

We can extend the previous model to a discretization of an infinite horizon game with continuous time payo :

⁄ +OE 0 Ÿ(s)"
s ds where Ÿ : R + ae R + is an density function on R + . Some choices for Ÿ might be, for instance, a uniform distribution with support on a compact interval or the exponential density Ÿ(s) := fle ≠fls for a positive constant fl, as in the previous Section.

Set Ÿ j," := Ÿ(t " j ). For a history h

:= {Ê 1 , a 1 , b 1 , Ê 2 , a 2 , b 2 , . . .}, the corresponding payo is J Ÿ," (h) := +OE ÿ j=1 " Ÿ,j," .
with

" Ÿ,j," := ⁄ t " j+1 t " j Ÿ(s)" s ds.
From the arguments in Section 2.5.1, if we assume perfect recall, then all these games have a value by Sion's minmax theorem.

Comparison of the evaluations

In model A, as well as in the classical framework, one studies the sequence of value functions for decreasing evaluations. In both cases the weight of each stage on the payo is the same. The crucial di erence is in the dynamics: in the classical framework the transition probability between two consecutive stages is independent of the weight of the stage payo , while in our framework it goes to zero. This helps to avoid the oscillation phenomena that arise in the classical framework (see Ziliotto [START_REF] Ziliotto | Zero-sum repeated games: counterexamples to the existence of the asymptotic value and the conjecture maxmin = limv n[END_REF] and Sorin and Vigeral [START_REF] Sorin | Reversibility and oscillations in zero-sum discounted stochastic games[END_REF]).

In model A, we consider a decreasing sequence of evaluations, while in model C we consider a discretization of a fixed evaluation. This has the following consequence: let us suppose for a moment that Ÿ has support in [0, 2T ], for T > 0. At half of the game, that is, at time s = 1 2 if we are in model A or time t = T in model C, the asymptotic accumulated payo in model A, when the stage vanishes is:

lim Î Îae0 min{k:s k <1/2} ÿ ¸=1 ◊ ¸ae 0 where Î Î := sup koeN ◊ k = ◊ 1 .
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Whereas for model C, as the duration of the stage vanishes, the accumulated payo at half of the game is: lim

"ae0 ÂT /"Ê ÿ j=1 Ÿ j," ae ⁄ T 0 Ÿ(s)ds.
Clearly, model B is a particular case of the evaluation of model C. The interest of studying it separately relies on the stationarity of the value function (model B), which in particular allows us to study separately asymptotic properties in two time scales: with respect to the patience of the players and the frequency of play.

Main contributions

Let us highlight the main contributions of this thesis. Chapter 3 is essentially a survey where we explain in a unified framework three approaches for establishing the existence and characterization of the value function of a two player, zero sum di erential game, which are conceptually very di erent:

i) The discrete game approach: this idea goes back to Fleming [START_REF] Fleming | A note on di erential games of prescribed duration, Contributions to the Theory of Games[END_REF] and Friedman [START_REF] Friedman | Di erential Games[END_REF][START_REF]Di erential Games[END_REF]. This approach consists in studying properties of the value functions of suitable discrete approximations of a di erential game. The first results of convergence of the sequence of discrete value functions and characterization of the limit go back to Fleming [START_REF] Fleming | A note on di erential games of prescribed duration, Contributions to the Theory of Games[END_REF] under strong regularity assumptions, which we can relax thanks to the machinery of viscosity solutions. ii) The viscosity approach. This is initiated by the intuition of Isaacs [58, p.67], who guessed that the value function should be, whenever smooth, a classical solution of the HJI equation, under the Isaacs condition. This was formalized later by Evans and Souganidis [START_REF] Evans | Di erential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF] in the framework of viscosity solutions. iii) The strategic approach of Krasovskii and Subbotin. Here one obtains the existence of the value function via an explicit construction of '-optimal strategies. One recovers also characterization of the value function by introducing a notion of generalized solutions for the HJI equation, called minimax solutions [START_REF] Subbotin | Generalized Solutions of First-Order PDEs[END_REF]. We point out several connections between them and motivate the exposition on the next two chapters, which are devoted to the strategic approach and its connection with the viscosity solution approach.

In Chapter 4, we propose a short and self-contained proof of the existence of the value function in di erential games with a terminal payo , based on the construction of approximately optimal strategies. Our construction is inspired from the extremal aiming method of Krasovskii and Subbotin [START_REF] Krasovskii | Game-Theoretical Control Problems[END_REF] and corresponds to what is called "strategic approach" in Chapter 3. This document is a joint work with Miquel Oliu-Barton and has been accepted for publication in Morfismos.

To close the first part, in Chapter 5 we establish the equivalence between the notion of viscosity solutions as defined by Crandall and Lions [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF] and the more geometrical notion of minimax solutions. Minimax solutions arise in the theory of Krasovskii and Subbotin [START_REF] Krasovskii | Game-Theoretical Control Problems[END_REF] as a generalized solution concept for the Hamilton-Jacobi-Isaacs equation of a di erential game with terminal payo . Our proof is inspired of the epigraphical approach introduced by Frankowska [START_REF] Frankowska | Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations[END_REF] and relies on an intermediate solution concept (proximal solutions) introduced by Clarke and Ledyaev [START_REF] Clarke | Mean value inequalities in Hilbert space[END_REF]. To the best of our knowledge, the equivalence between viscosity solutions and the "strategic" definition of minimax solutions in terms of viable sets had not been made explicit for di erential games, which motivated us to fill this small gap in the literature. In the more general case of Hamilton-Jacobi-Isaacs with Chapter 2. Introduction time-measurable hamiltonians, similar geometrical ideas can be found in Cardaliaguet and Plaskacz [START_REF] Cardaliaguet | Invariant solutions of di erential games and hamilton-jacobi-isaacs equations for time measurable hamiltonians[END_REF].

In Chapter 6 we introduce a model for discrete time mean field games with finite horizon, based on the model of Adlakha, Johari and Weintraub [START_REF] Adlakha | Equilibria of dynamic games with many players: Existence, approximation, and market structure[END_REF]. This document is part of some work in progress with S.C.P. Yam. We construct an '-Nash equilibrium for the game with N players, where the error term ' goes to zero as N goes to infinity. However, we do not obtain here an explicit relation between ' and N .

An improvement with respect to the results of Chapter 6 is found in Chapter 7. Here we propose a di erent proof for a similar model, which allows us to obtain an error term depending explicitly on the number of players and the time horizon, as well as other constants of the game. In Chapter 7 we also explore a di erent asymptotic result, in terms of the stage duration, similar to the model of Neyman [START_REF] Neyman | Stochastic games with short-stage duration[END_REF]. We provide a construction of an approximate Nash equilibrium for the game with N players, where the error term depends on both the number of players and the duration of the stage. This work has been submitted for publication.

In Chapter 8, we study stochastic games with short stage duration, as described in the previous Section. We consider di erent information scenarios: i) Both players observe the actions but not the state: in this case, the game reduces to a di erential game. We deduce limit equations for the value function as the duration of the stage goes to zero for models A,B,C. Under suitable regularity assumptions on the value function, we construct '≠optimal strategies, where the approximation term ' depends on the duration of the stage. ii) Standard signalling: In this case, we derive similar results to those for the case i), namely, deducing a suitable limit object and use it to generate almost optimal strategies. Since the state space and actions are finite, we can exploit the semi algebraic aspect of the model 1 and obtain asymptotic results in a double time scale, for the game with discounted payo s: patience (or discount rate) and frequency (or stage duration), as in Neyman [START_REF] Neyman | Stochastic games with short-stage duration[END_REF]. To conclude this Introduction, let us point out that a unifying thread of this thesis is the search for a limit object that helps play "almost optimally" in a given game. Here "almost optimally" depends on the particular game: in Chapter 6, the error of the strategy derived from the limit object vanishes as the number of players increases; in the results of Chapter 4 and 8 it is related to the duration of the game, while we derive an approximation term in terms of both in Chapter 7.

Part I

Di erential games

Chapter 3

Value of zero-sum di erential games

Abstract: In this chapter we review and compare three di erent approaches for establishing the existence and characterization of the value function in di erential games.

Introduction

Let (t 1 , x 1 ) oe [0, 1] ◊ R n
and let U and V denote two compact sets of some euclidean spaces. Let us define

U(t 1 ) = {u : [t 1 , 1] ae U, measurable}, V(t 1 ) = {v : [t 1 , 1] ae V, measurable}.
Whenever t 1 = 0, we will use the more convenient notation U and V respectively.

The sets U(t 1 ), V(t 1 ) are the sets of control functions. An element u oe U(t 1 ) is called a control function for player 1, while an element v oe V(t 1 ) is a control function for player 2. Elements of U, V are called controls or actions.

Let f : R ◊ U ◊ V ae R n and (u, v) oe U(t 1 ) ◊ V(t 1 ) be a fixed pair of control functions. Consider a di erential equation

x(t 1 ) = x 1 , ẋ(t) = f (x(t), u(t), v(t)) a.e. on [t 1 , 1]. (3.1)
To ensure the existence of solutions of this equation, we make the following Assumption, which holds for the rest of this chapter: Assumption 3.1.1. Assume that the function f is jointly continuous and bounded and that there exists c > 0 such that for all (u, v) oe U ◊ V and x, y oe R n :

Îf (x, u, v) ≠ f (y, u, v)Î AE cÎx ≠ yÎ. Let Îf Î := sup (x,u,v) Îf (x, u, v)Î < +OE.
Under Assumption 3.1.1, a consequence of Carathéodory's theorem, [START_REF] Coddington | Theory of Ordinary Di erential Equations[END_REF]Chapter 2] is the following:

Lemma 3.1.2. For (u, v) oe U ◊ V fixed, (3.1) has a unique solution, whose evaluation at time s is denoted by x[t 1 , x 1 , u, v](s) =: x(s), in the following extended sense: for any t oe [t 1 , 1], x[t 1 , x 1 , u, v](t) := x 1 + ⁄ t t 1 f (x[t 1 , x 1 , u, v](s), u(s), v(s))ds.
A play is a triplet (x, u, v) where (u, v) oe U(t 1 ) ◊ V(t 1 ) and x is a solution of (3.1) corresponding to (u, v).

Let us consider two functions ¸: R n ◊ U ◊ V ae R and g : R ae [0, 1]. The payo s associated to the play (x, u, v) can be evaluated as follows:

1. The discounted infinite horizon game: for a given history of plays (x, u, v) the payo that player 1 receives from player 2 is

⁄ OE t 1 e ≠fls ¸(x[t 1 , x 1 , u, v](s), u(s), v(s))ds
where fl > 0. 2. The finite horizon game: At time t = 1, player 2 gives to player 1 a payo of

⁄ 1 t 1 ¸(x[t 1 , x 1 , u, v](s), u(s), v(s)ds + g(x[t 1 , x 1 , u, v](1)).
We assume from now on that the payo functions satisfy:

Assumption 3.1.3. ¸: R n ◊ U ◊ V ae R satisfies Assumption 3.1.1 with constant L ¸and g : R n ae R is Lipschitz continuous with Lipschitz constant L
g and bounded. Player 1 wants to choose u in order maximize the payo he receives, while player 2 chooses v in order to minimize the payo he gives to player 1. This situation is a zerosum di erential games. When the payo is evaluated as an infinite horizon payo , the game is denoted by fl (t 1 , x 1 ). If the payo is evaluated as a finite horitzon payo , the game is denoted (t 1 , x 1 ) respectively. We discuss here the finite horizon case only.

Up to a change of variables, one can assume that ¸© 0. To see this, we consider, instead of x, the enlarged state y := (x, z) given by:

x(t 1 ) = x 1 , ẋ(t) = f (x(t), u(t), v(t)) a.e. on [t 1 , 1] (3.2) z(t 1 ) = 0, ż(t) = ¸(x(t), u(t), v(t)) a.e. on [t 1 , 1]. (3.3)
The payo on this new game is of the form g Õ (y[t 1 , y 1 , u, v](1)) :=

s 1 t 1 ¸(x[t 1 , y 1 , u, v](s), u(s), v(s)ds+ g(x[t 1 , x 1 , u, v](1)).
In this chapter, we will consider the finite horizon problem with ¸© 0 only. By solving the game (t 1 , x 1 ), we mean to give an answer to the two following questions 1. What is the "best" payo Player 1 can get? 2. How does Player 1 need to play to get such payo ? which are formulated in terms of player 1, for simplicity, but completely analogous questions are posed for player 2. Despite being intuitive questions, there is no canonical way to answer them. In particular, it depends on how are players allowed to interact. So far, we have specified the dynamics and payo for a given couple of control functions, but we have not detailed how these control functions are generated.

Strategies

Let us introduce the following definitions of strategies: Definition 3.1.4. (Non anticipating strategies) i) A non anticipating strategy (NA) for player 1 is a map -: V ae U such that, for t oe [t 1 , 1]:

v 1 © v 2 a.e. on [t 1 , t] =∆ -(v 1 ) © -(v 2 ) a.e. on [t 1 , t].
ii) Analogously, a non anticipating strategy (NA) for player 2 is a map -: U ae V such that, for t oe [t 1 , 1]:

u 1 © u 2 a.e. on [t 1 , t] =∆ -(u 1 ) © -(u 2 ) a.e. on [t 1 , t].
These strategies are also sometimes [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF] called VREK strategies, as an acronym for Varaiya [START_REF] Varaiya | The existence of solutions to a di erential game[END_REF], Roxin [START_REF] Roxin | The axiomatic approach in di erential games[END_REF], Elliot and Kalton [START_REF] Elliot | The existence of value in di erential games[END_REF].

However, let us remark that these are not strategies in the sense of game theory. In particular, a pair of NA strategies may fail to give a well defined play, as the following example shows. 

-(v) = ≠v, -(u) = sgn(u).
where sgn(a) = 1 if a Ø 0 and ≠1 otherwise. Suppose there exist (u, v) such that

-(v) = u -(u) = v hence, sgn(≠v) = v, a contradiction.
To overcome this di culty, Buckdahn, Cardaliaguet and Rainer [START_REF] Buckdahn | Nash equilibrium payo s for non-zero sum stochastic di erential games[END_REF] introduced the following notion of strategies. Definition 3.1.6. (Non anticipating strategies with delay, first definition) i) A non anticipating strategy with delay (NAD) for player 1 is a map -: V ae U such that, for some finite partition

t 1 < • • • < t N = 1 of [t 1 , 1], for all v 1 , v 2 oe U and 1 AE m < N: v 1 © v 2 a.e. on [t 1 , t m ] =∆ -(v 1 ) © -(v 2 ) a.e. on [t 1 , t m+1 ].
ii) Similarly, a non anticipating strategy with delay (NAD) for player 2 is a map -: U ae V such that, for some finite partition

t 1 < • • • < t N = 1 of [t 1 , 1]
, for all u 1 , u 2 oe U and 1 AE m < N:

u 1 © u 2 a.e. on [t 1 , t m ] =∆ -(u 1 ) © -(u 2 ) a.e. on [t 1 , t m+1 ]
. Note that N AD strategies are a subset of NA strategies. Let A(t 1 ) and B(t 1 ) denote respectively the sets of non anticipating strategies for player 1 and 2. With this notion of strategies, one has the following Lemma:

Lemma 3.1.7. ([17, Lemma 2.4])Let (-, -) oe A(t 1 ) ◊ B(t 1 )
where at least one of the strategies is N AD. Then there exist unique controls (u, v) oe U(t 1 ) ◊ V(t 1 ) such that:

-(v) = u, -(u) = v, a.e. in [t 1 , 1].

Denote by x[t, x, -, -](s) the trajectory corresponding to the couple of controls (u, v) associated to the strategies (-, -).

An equivalent definition of non anticipating strategies is the following. Definition 3.1.8. (Non anticipating strategies with delay, second definition) i) A non anticipating strategy with delay (NAD) for player 1 is a map -: V ae U for which there is a delay • > 0 such that for all v 1 , v 2 oe V and for all t:

v 1 © v 2 a.e. on [t 1 , t] =∆ -(v 1 ) © -(v 2 ) a.e. on [t 1 , t + • ].
Chapter 3. Value of zero-sum differential games ii) Analogously, a non anticipating strategy with delay (NAD) for player 2 is a map -: U ae V for which there is a delay • > 0 such that for all u 1 , u 2 oe U and for all t: Proof. Let us note that any strategy satisfying i) in Definition 3.1.6 has the property i) in Definition 3.1.8. To see this, let t oe [0, 1] and k such that t oe [t k , t k+1 ) and set 1] forms a cover of the compact interval [t 1 , 1], from which we extract a finite subcover [t 1 ,

u 1 © u 2 a.e. on [t 1 , t] =∆ -(u 1 ) © -(u 2 ) a.e. on [t 1 , t + • ].
• t := t k+1 ≠ t. Note that the family of intervals ([t, • t ]) toe[t 1 ,
• t 1 ], [t 2 , • t 2 ], . . . , [t M , • t M ] and set • := min 1AEmAEM • tm ≠ t m . For the converse, let -and • as in i), Definition 3.1.8. Let k such that k• AE 1 ≠ t 1 < (k + 1)• . Then the partition t 1 , t 1 + •, . . . t 1 + k• satisfies i) in Definition 3.1.6.
We denote by A d , B d the sets of NAD strategies for player 1 and 2 respectively. Non anticipating strategies capture the minimal requirements of a strategy: they forbid players to see the future. This class is however not satisfactory as the discussion above shows. We conclude this Section with another important di erence:

Remark. Let us point out an important di erence between NA and NAD strategies. The reaction of, say, player 1 at time t using a NA strategies against the control of player 2 may use the value of the control of player 2 at time t, whereas in the case of NAD strategies this is not the case. NA strategies correspond to alternate moves at time t, where the player using the strategies moves after the player using the controls, while NAD strategies correspond to simultaneous moves.

Hamilton-Jacobi-Isaacs equations

Depending on the class of strategies, we can define the appropriate value functions. Let us first consider the case where we allow the players to use non anticipating strategies. 

V L (t, x) := inf -oeB sup uoeU(t) g(x[t, x, u, -(u)](1)).
ii) The upper value function is defined by

V U (t, x) := sup -oeA inf voeV(t) g(x[t, x, -(v), v]( 1 

)).

When we restrict the players to use NAD strategies, since the game can be defined in normal form, it makes sense to define the maxmin and minmax as in classical game theory: Definition 3.1.11. (Definitions of the value functions, NAD strategies) i) The maxmin is defined by

V ≠ (t, x) := sup -oeA d inf -oeB d g(x[t, x, -, -](1)).
ii) The minmax is defined by

V + (t, x) := inf -oeB d sup -oeA d g(x[t, x, -, -](1)).
One common feature of these value functions is that they are related to the following partial di erential equations (PDE):

ˆw≠ ˆt (t, x) + sup uoeU inf voeV + f (x, u, v), Ò x w ≠ (t, x) , = 0 (3.4a) ˆw+ ˆt (t, x) + inf voeV sup uoeU e f (x, u, v), Ò x w + (t, x) f = 0 (3.4b) with boundary conditions w ≠ (1, x) = w + (1, x) = g(x).
More precisely, the lower value and the maxmin are viscosity solutions as introduced by Crandall and Lions [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF]) and whose definition will be recalled later, of (3.4a) while the upper value and the minmax are viscosity solutions of (3.4b).

Although heuristically derived by Isaacs' [58, Section 4.2], the connection between PDE's and di erential games was first made explicit in the framework of viscosity solutions [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF] by Evans and Souganidis [START_REF] Evans | Di erential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF]. The PDE's (3.4a) and (3.4b) are respectively called lower and upper Hamilton-Jacobi-Isaacs equations (HJI equations).

If the terms in the above equations involving the sup and the inf coincide, the resulting PDE has a unique viscosity solution which is the value of the game. In particular, the value is independent of the class of strategies used (NA or NAD).

Let G(x, p) denote the local game with payo Èf (x, u, v), pÍ, where player 1 chooses u oe U and player 2 chooses v oe V . Under the following Assumption, the above equations reduce to one: Assumption 3.1.12. (Isaacs' condition) We assume that the local game G(x, p) has a value, for all x, p oe R n . Explicitely,

sup uoeU inf voeV Èf (x, u, v), pÍ = inf voeV sup uoeU Èf (x, u, v), pÍ (3.5)
holds for all x, p oe R n .

So far we have described the general problem and introduced two auxiliary PDE's which will play a role in the sequel. Let us now briefly sketch three approaches to solve the game (t 1 , x 1 ). The rest of this chapter is devoted to a more detailed description of them.

In Section 3.2, we describe the discrete game approach: this idea goes back to Fleming [START_REF] Fleming | A note on di erential games of prescribed duration, Contributions to the Theory of Games[END_REF] and Friedman [START_REF] Friedman | Di erential Games[END_REF][START_REF]Di erential Games[END_REF]. Here, one studies a game in discrete time where players are allowed to choose their actions on the nodes of a time partition. Under Assumptions 3.1.1 and 3.1.3, the upper and lower value functions of the finite games are uniformly Lipschitz with respect to the partition and hence the set of accumulation points as the mesh of the partition goes to zero is nonempty. The upper and lower value functions of the finite games satisfy a recursive formula, from which one can guess the limit equations (3.4a) and (3.4b). One then uses this limit equation to prove uniqueness of the accumulation points, which can be done in several ways, as we will see. Note however that this approach is not really concerned with defining an interaction in continuous time. The interaction is in discrete time and instead one deduces properties of the value functions of the finite games via the solutions of the HJI equations.
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The next two approaches rely on defining the value functions of the game in continuous time game. The value functions satisfy recursive formulas analogous to those appearing in the discrete game approach and turn out to be solutions of a PDE, in a generalized (but equivalent) sense. The main di erence between these two approaches is in the way the value functions are used to construct strategies.

In Section 3.3 we turn our attention to the viscosity approach. This is initiated by the intuition of Isaacs [58, p.67], who guessed that the value function should be, whenever smooth, a classical solution of the HJI equation, assuming (3.5). Evans and Souganidis [START_REF] Evans | Di erential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF] proved that the value functions defined using non anticipating strategies are indeed viscosity solution of the PDE's guessed by Isaacs. The machinery of viscosity solutions helps to appropriately answer to Question 1). We can use the solution of the HJI equation to answer Question 2) as well: when the value function is smooth, one player will steer the state in the direction of the gradient of the value, while his adversary will steer on the opposite direction. In the non-smooth case, one can still do this by replacing the gradient of V at a singular point x by the gradient of V at a neighboring regular point [START_REF]Constructive theory of positional di erential games and generalized solutions to Hamilton-Jacobi equations[END_REF]Sections 3 and 5]. This however requires a precise knowledge of the value function: one can easily think of examples of real valued functions which are close in the uniform norm but their derivatives are very di erent.

The third approach, described in Section 3.4, is the strategic approach. This was initiated by Krasovskii and Subbotin [START_REF] Krasovskii | Game-Theoretical Control Problems[END_REF][START_REF]Constructive theory of positional di erential games and generalized solutions to Hamilton-Jacobi equations[END_REF]. Following their ideas, one obtains the existence and characterization of the value function by introducing a notion of generalized solutions for the HJI equation (minimax solutions [START_REF] Subbotin | Generalized Solutions of First-Order PDEs[END_REF]), which are equivalent to viscosity solutions. Both solution concepts rely on very di erent techniques and have di erent motivations. The strategic approach provides an explicit construction of '≠optimal strategies. An important advantage of these strategies is that they are more robust than those that can be obtained by the PDE approach with respect to measurement errors or imprecise knowledge of the value function.

Finally, in Section 3.5 we point out some connections between these approaches.

The discrete game approach

We will describe three di erent ways of associating a discrete game to the di erential game G(t, x). The common feature is that decisions are taken at discrete times only. What di ers is either the sequence in which the actions are chosen (simultaneous or alternate moves), the dynamics and the way the players are allowed to update their actions. Let

n = {t = t 1 < t 2 . . . < t n+1 = 1} denote a finite partition. Let fi k+1 := t k+1 ≠ t k and Î n Î = max k=1,.
..n fi k denote its mesh or norm.

The simultaneous Fleming value.

The approach we describe here goes back to [START_REF] Fleming | A note on di erential games of prescribed duration, Contributions to the Theory of Games[END_REF]. We define the game G (t, x) starting at t 1 = t, x 1 := x and repeated n times as follows: at time t k , k = 1, . . . n, both players remember the history H 

k := {u 1 , v 1 , u 2 , v 2 , . . . u k≠1 , v k≠1 } of
= ( ‡ 1 , ‡ 2 , . . . , ‡ n ), • = (• 1 , • 2 , . . . , • n ) where ‡ k : H k ae f (U ) and • k : H k ae f (V ).
Denote by fi , T fi the strategy sets of player 1 and player 2. The state evolves according to

x k+1 = x k + fi k+1 f (x k , u k , v k ). (3.6)
At time t k+1 , the players observe the actions chosen at time t k , and thus they know the new state x k+1 . The game is repeated until k = n. After the n-th move, player 1 receives from player 2 a payo g(x n+1 ). We introduce the minmax and the maxmin:

V + (t k , x) = inf • oeT sup ‡oe E ‡• g(x n+1 ), V ≠ (t k , x) = sup ‡oe inf • oeT E ‡• g(x n+1 ).
The first result is the existence of the value of the game G (t, x). 

V (t k , x) = val ( ‡,• )oe f (U )◊ f (V ) E ‡,• [V (t k+1 , x + fi k+1 f (x, ũ, ṽ))] (3.7)
Proof. We prove first the existence of the value. We proceed by induction on the number of nodes of . If n = 1, the game becomes a one-shot game with payo

g(x + (1 ≠ t)f (x, u, v))
which is continuous on u and v and hence it has a value on mixed strategies with finite support [START_REF] Raghavan | Zero-sum two-person games, Handbook of game theory with economic applications[END_REF]Theorem,p. 750]. Note that the value of this game is Lipschitz in x by the Lipschitz assumption of g. This and the recursive formula (3.7) imply the Lipschitz continuity of the value function with respect to x, with the same constant L g , so it su ces to prove the recursive formula. Assume (3.7) holds for all partitions with n AE m. Let m+1 = {t = t 1 < t 2 . . . < t m+2 = 1}. Consider the game starting at t = t 2 , which has m stages, and let m , T m denote the respective strategy sets. By induction, the value exists and is continuous in x and thus the one-shot game with payo

V m+1 (t 2 , x + fi 2 f (x, u, v)) has a value Ṽ. Let V + m+1 (t k , x) and V ≠ m+1 (t k , x
) the upper and lower values. Explicitely,

V + m+1 (t k , x) = inf • oeTm sup ‡oe m E ‡• g(x m+2 ), V ≠ m+1 (t k , x) = sup ‡oe m inf • oeTm E ‡• g(x m+2 ).
It is easy to see that V + m+1 Ø V ≠ m+1 . We will briefly sketch the proof for V ≠ m+1 Ø Ṽ. Let µ be '≠optimal in Ṽ. Since f is continuous and bounded, the state x 2 belongs to a compact set C regardless of players' choices since their action spaces are also compact. Let {C i } ioeI denote a finite partition of C with diameter ' and take points y i oe C i . Observe that, for y oe C i , any '≠ optimal strategy on the game G m (t 2 , y i ) is 2'-optimal in G m (t 2 , y). Define the strategy ‡ as follows: play first µ and then the optimal strategy of G m (t 2 , y i ), if x 2 oe C i . This strategy ensures a payo of at least Ṽ + 3'. Reversing the roles of the players, V + m+1 AE Ṽ. This concludes the proof. We extend V to [t, 1] by linear interpolation and we still denote V this extension. We have the following property: Proposition 3.2.2. Let = {t = t 1 < t 2 . . . < t n+1 = 1} be a partition. There exists a constant K independent of such that

|V (t, x) ≠ V (s, x)| AE K|t ≠ s|.
for all (t, s, x).

Proof. First observe that it su ces to prove the above formula for t, s consecutive nodes of the partition . Then from the recursive formula (3.7) and the Lipschitz continuity of V (t, x) with respect to x we obtain:

|V(t k , x) ≠ V(t k+1 , x)| AE |V(t k+1 , x + fi k+1 Îf Î) ≠ V(t k+1 , x)| Îf Î • L g . The result now follows with K = Îf Î • L g .
From Arzelà-Ascoli's theorem, it follows that there exist a subsequence m of partitions such that V m converges uniformly in compact sets to a function V. We will characterize this limit function in Section 3.5.1

The Fleming value

By allowing the players to randomize their moves as in Section 3.2.1, one gets automatically existence of the value. But this is not necessary for some asymptotic properties. Let us consider first the upper and lower values in NA strategies. This corresponds to games with alternating moves.

The players here play piecewise constant actions. Abusing the notation, let ų, v denote the piecewise constant functions corresponding to the vectors ų = (u 1 , u 2 , . . . , u

n ) and v = (v 1 , v 2 , . . . , v n ).

Discrete lower and upper values

Let us consider a game with the same dynamics as in (3.6) played on the nodes of the partition . Instead of choosing their actions simultaneously and independently, players will take turns. We will consider two auxiliary games, one in which player 1 knows the move of player 2 before choosing his own and another game in which now player 2 knows the move of player 1 in advance. As we discussed in Section 3.1, this can be done with non anticipating strategies, whose definition for finite games is as follows: Let A , B denote the strategy sets of player 1 and player 2 respectively. This allows us to define the value functions:

W ≠ (t k , x) := inf -oeB sup uoeU n g(x n+1 ) W + (t k , x) := sup -oeA inf voeV n g(x n+1 ).
These are the values of the minorant game G ≠ (t, x) in which player 1 chooses his action before player 2 and the majorant game G + (t, x) in which the opposite happens.

Proposition 3.2.4. The value function of the minorant game and majorant games satisfy

respectively the following recursive formulae: We will postpone the characterization of the accumulation points to Section 3.5.1.

W ≠ (t k , x) := max uoeU min voeV W ≠ (t k+1 , x + fi k+1 f (x, u, v)). (3.8a) W + (t k , x) := min voeV max uoeU W + (t k+1 , x + fi k+1 f (x, u, v)).. ( 3 

Discrete maxmin and minmax

Let us consider here the discrete maxmin and minmax.

We introduce first the corresponding definition of NAD strategies in discrete time. 

U n ae V n such that, for all k = 1, 2, . . . n ų1 © ų2 a.e. on [t 1 , t k ] =∆ -(ų 1 ) © -(ų 2 ) a.e. on [t 1 , t k+1 ]. Let A ,d , B
,d denote the strategy sets of player 1 and player 2 respectively. This allows us to define the discrete maxmin and minmax:

W + ,d (t k , x) := inf -oeB ,d sup ųoeU n g(x n+1 ) (3.9a) W ≠ ,d (t k , x) := sup -oeA ,d inf v oeV n g(x n+1 ) (3.9b)
We will postpone the characterization of the accumulation points to Section 3.5.2.

The Friedman value

In Friedman's discretization [START_REF] Friedman | Di erential Games[END_REF], the majorant and minorant games are played as follows: in the minorant game, at time t k both players observe the state and player 1 chooses first the measurable control function he will use on the interval [t k , t k+1 ]. His choice is announced to player 2, which in turn chooses his measurable control function. The state evolves according to (3.1) on the interval [t k , t k+1 ] and the situation is repeated. Let U k and V k denote the following sets:

U k := {u ¶ " k : u oe U} V k := {v ¶ " k : v oe V} where " k : [t k , t k+1 ] ae [0, 1]
is the coordinate mapping t ' ae t≠t k fi k . The value functions for the minorant and majorant games are

W ≠ F, (t k , x) := inf -oeB sup uoeU g(x n+1 ) W + F, (t k , x) := sup -oeA inf voeV g(x n+1 ).
In a similar way, the value functions satisfy a dynamic programming principle and analogous regularity properties. Proposition 3.2.7. The recursive formula for the value of the minorant game and majorant game are respectively:

W ≠ F, (t k , x) := max uoeU k min voeV k W ≠ F, (t k+1 , x + ⁄ t k+1 t k f (x[t k , x, u, v](s), u(s), v(s))ds). (3.10a) W + F, (t k , x) := min voeV k max uoeU k W + F, (t k+1 , x + ⁄ t k+1 t k f (x[t k , x, u, v](s), u(s), v(s))ds). (3.10b)
Moreover, these value functions are uniformly Lipschitz and hence they have an accumulation point.

The viscosity approach

Let us recall the definitions of the lower and upper value functions, in the class of NA strategies:

V ≠ L (t 1 , x 1 ) := inf -oeB sup uoeU g ! x[t 1 , x 1 , u, -[u]](1) " , V + U (t 1 , x 1 ) := sup -oeA inf voeV g ! x[t 1 , x 1 , -[v], v] (1) 
" .

As before, when we consider NAD strategies, the maxmin and the minmax are:

V ≠ (t 1 , x 1 ) := sup -oeA d inf -oeB d g ! x[t 1 , x 1 , -, -](1) " , (3.12 
) 

V + (t 1 , x 1 ) := inf -oeB d sup -oeA d g ! x[t 1 , x 1 , -, -](1) " . (3.13) 3.3. The viscosity approach 43 Naturally, V ≠ (1, x) = V + (1, x) = g(x). The inequality V ≠ AE V + holds everywhere. If V ≠ (t 1 , x 1 ) = V + (t 1 ,
V ≠ (t, x) = sup -oeA d inf -oeB d V ≠ ! t Õ , x[t, x, -, -](t Õ ) " (3.14a) V + (t, x) = inf -oeB d sup -oeA d V + ! t Õ , x[t, x, -, -](t Õ ) " . (3.14b)
The above dynamic programming principle is equivalent to

V ≠ (t, x) = sup -oeA d inf voeV V ≠ ! t Õ , x[t, x, -[v], v](t Õ ) " (3.15a) V + (t, x) = inf -oeB d sup uoeU V + ! t Õ , x[t, x, u, -[u]](t Õ ) " . (3.15b)
Naturally, a similar dynamic programming principle holds for the upper and lower value functions. For the rest of the chapter, we will focus on NAD strategies only.

From the dynamic programming equations and a Taylor series expansion around (t, x), one can deduce heuristically the following partial di erential equations satisfied by the value functions

ˆV≠ ˆt (t, x) + H ≠ (x, Ò x V ≠ (t, x)) = 0 (3.16a) ˆV+ ˆt (t, x) + H + (x, Ò x V + (t, x)) = 0 (3.16b) with boundary condition V ≠ (1, x) = V + (1, x) = g(x)
, where

H ≠ (x, p) := sup uoeU inf voeV Èf (x, u, v), pÍ (3.17a) H + (x, p) := inf voeV sup uoeU Èf (x, u, v), pÍ (3.17b)
are called the lower and upper hamiltonians respectively. The equations (3.16a) and (3.16b) were heuristically derived by Isaacs [58, p.67]. In particular, if Isaacs' condition holds (c.f. (3.5))

H ≠ (x, p) = H + (x, p) =: H(x, p) '(x, p) oe R n ◊ R n and if the PDE ˆV ˆt (t, x) + H(x, Ò x V(t, x)) = 0 (3.18)
with boundary condition V(1, x) = g(x) has a unique solution, this characterizes the value function.

Chapter 3. Value of zero-sum differential games However, there are two problems here: the first one is that the solution is seldom regular enough, regardless of the smoothness of the boundary condition. So one needs to come out with an appropriate notion of solution for the PDE (3.18). Evans and Souganidis [START_REF] Evans | Di erential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF] proved that the correct interpretation of solution for this PDE is the notion of viscosity solutions: Definition 3.3.2. (Viscosity solutions, [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF]) Note that this definition of viscosity solutions has the signs reversed in the inequalities with respect to that in [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF] since we are dealing with problems with terminal conditions instead of initial conditions. Evans and Souganidis [START_REF] Evans | Di erential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF] proved that the upper and lower value functions (3.13) and (3.13) are solutions of (3.16a) and (3.16b) in the viscosity sense and hence if Isaacs' condition (3.5) holds, the solution is unique.

-A lower semicontinuous function w : [0, 1] ◊ R n ae R

Strategies in the PDE approach: the smooth case

We will describe now how the players can use the value function to construct the strategies and to prove that the proposed construction is indeed optimal. This is called a verification theorem. The purpose of this theorem is to illustrate the interest of computing the value function and how answering Question 1) helps to answer Question 2). The assumptions of this theorem are however rarely satisfied, its main purpose is being pedagogical. A first version of Verification Theorem is also due to Isaacs, see [ 

ú : [0, 1] ◊ R n ae U, v ú : [0, 1] ◊ R n ae V such that: u ú (t, x) oe argmax uoeU ; min voeV ÈÒ x V(t, x), f(x, u, v)Í < (3.21a) v ú (t, x) oe argmin voeV ; max uoeU ÈÒ x V(t, x), f(x, u, v)Í < . (3.21b)
Then, for all

(t 1 , x 1 ) oe [0, 1] ◊ R n , V(t 1 , x 1 ) = inf voeV g (x[t 1 , x 1 , u ú , v](1)) = sup uoeU g (x[t 1 , x 1 , u, v ú ](1)) = g (x[t 1 , x 1 , u ú , v ú ](1)
) .

(3.22)

The strategic approach

Proof. Take v oe V and denote by x 1 (t) := x[t 1 , x 1 , u ú , v](t) and let u ú (t) := u ú (t, x 1 (t)) and v(t) := v(t, x 1 (t)) for simplicity. Then we have that:

d dt V(t, x 1 (t)) = ˆV ˆt (t, x) + e Ò x V(t, x 1 (t)), f(x 1 (t), u ú (t), v(t)) f Ø ˆV ˆt (t, x) + inf voeV e Ò x V(t, x 1 (t)), f(x 1 (t), u ú (t), v) f = 0.
Integrating from t 1 to 1, we get that:

V(1, x 1 (1)) = g(x 1 (1)) Ø V(t 1 , x 1 ).
We conclude from this that V ≠ (t 1 , x 1 ) Ø V(t 1 , x 1 ). In a completely analogous way, one proves that

V + (t 1 , x 1 ) AE V(t 1 , x 1 ) and hence V ≠ (t 1 , x 1 ) = V + (t 1 , x 1 ) = V(t 1 , x 1 ).
Remark. This theorem is rarely useful, as typically the value functions are not smooth. However, it is possible to construct '≠optimal strategies in a similar way. Instead of using the derivatives of the value function, one can consider derivatives of a sequence of smooth functions that converge to the value function. We will not detail this here, but we refer to [97, Chapter 1, Section 5] for a detailed description.

The strategic approach

We describe here the strategic approach, introduced by Krasovskii and Subbotin [START_REF] Krasovskii | Game-Theoretical Control Problems[END_REF]. We reformulate their ideas in a modern language and clarify their proofs. For the sake of brevity, we will not do all detailed proofs here, but rather motivate the main ideas and refer the reader to Chapter 4 in this thesis or to our paper [START_REF] Maldonado Lopez | A strategy-based proof of the existence of the value in zero-sum di erential games[END_REF] for the complete proofs.

To prove the existence of the value, one needs to prove the inequality V + AE V ≠ . One achieves this by showing that for every ', player 2 has a NAD strategy such that he can ensure that his payo is below V ≠ + '. From the dynamic programming equation (3.14a) it is easy to prove that V ≠ satisfies the following inequality, for t 1 AE t Õ AE 1:

'(t 1 , x 1 ) V ≠ (t, x) Ø sup uoeU inf voeV V ≠ ! t Õ , x[t 1 , x 1 , u, v](t Õ ) " . (3.23)
If S is a closed subset of R n and y oe R n denote with d(y, S) := inf poeS Îy ≠ pÎ the usual distance from a point to a set.

Denote by

W ≠ := {(t, x) oe [t 1 , 1] ◊ R n | V ≠ (t, x) AE V ≠ (t 1 , x 1 )} the V ≠ (t 1 , x 1 )≠level set of V ≠ and let W ≠ (t) := ) x oe R n | (t, x) oe W ≠ * ,
which is closed and non empty for all t (see Chapter 4). One can prove that for every ' > 0, player 2 is able to construct a strategy -' such that for every u oe U

d(x[t 1 , x 1 , u, - ' (u)](1), W ≠ (1)) AE '/L g .
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This, together with the Lipschitz continuity of g allows us to conclude. To see this, let z denote a projection of the point y :

= x[t 1 , x 1 , u, - ' (u)](1) in W -(1). Then, g(y) AE g(z) + LÎy ≠ zÎ = V ≠ (1, z) + ' .
Observe that the inequality (3.23) implies (see [START_REF] Maldonado Lopez | A strategy-based proof of the existence of the value in zero-sum di erential games[END_REF]Lemma 2.1] for the proof) that, for all (t, x) oe W ≠ and all t Õ oe [t, 1]:

sup uoeU inf voeV d(x[t, x, u, v](t Õ ), W ≠ (t Õ )) = 0. (3.24)
This property helps player 2 to build a strategy in the following way: let (t, x) denote some initial conditions for (3.1) and let w be a point in the projection of x in the set W ≠ (t).

Consider the local game G(x, ›), where › := x ≠ w. Let us assume that this game has a value in pure strategies or, equivalently, that Isaacs' condition holds (Assumption 3.1.12). Now let (u ú , v ú ) be optimal actions in G(x, ›) and (u, v) oe U ◊ V arbitrary. Consider the trajectories:

x(t) = x, ẋ(s) = f (x(s), u(s), v ú ) (3.25a) w(t) = w, ẇ(s) = f (w(s), u ú , v(s)) (3.25b)
This situation is pictured in Figure 3.4.1. The crucial property that these two trajectories satisfy is enclosed in the following Lemma, which is [71, Lemma 1.1] and is inspired by [61, Lemma 2.3.1]. Lemma 3.4.1. There exist A, B > 0 such that for all s oe [t, 1], and for all u, v:

Îx[t, x, u, v]](s) ≠ w[t, x, u, v](s)Î 2 AE (1 + (s ≠ t)A)Îx ≠ wÎ 2 + B(s ≠ t) 2 .
Note that this estimate is independent of u and v. In particular, it holds if one considers v ' that realizes the inf in (3.24) for u ú . Hence, this estimate provides an useful upper bound for the distance from x(s) to W ≠ (s) if player 2 plays the constant control v ú in the interval [t, s]. We will show, with the help of this estimate, how to construct an '≠optimal strategy for player 2. Let n = {t 1 < t 2 < . . . t n+1 = 1} denote a partition of [t 1 , 1] and let fi 1 and fi 2 be two selection rules defined by " 1 : [0, 1] ◊ R n ae R n which assigns to each (t, x) a closest point to x in W ≠ (t); and " 2 : [0, 1] ◊ R n ◊ R n ae V which assigns to each (t, x, ›) an optimal action for player 2 in the local game G(t, x, ›). Finally, let:

" : [0, 1] ◊ R n ae V, (t, x) ' ae " 2 (t, x, x ≠ " 1 (t, x)). Definition 3.4.2.
An extremal strategy -= -( , ") : U ae V is defined inductively as follows: suppose that -is already defined on [t 1 , t m ] for some 0 AE m < n, and let Hence, we obtain the desired inequality V + AE V ≠ and thus the existence of the value function

x m := x[t 1 , x 1 , u, -(u)](t m ). Then set -(u) © "(t m , x m ) on [t m , t m+1 ].
V := V + = V ≠ .
One can also obtain a characterization of the value function as a minimax solution. We will elaborate on this point in Section 3.5.3. 

Some links between these approaches

Let us show in this Section how the three previously described approaches are related.

Convergence of the discretized values

Note that the sequence of Fleming and Friedman values satisfy very similar recursive equations. Thanks to a result on approximation schemes by Souganidis [START_REF] Souganidis | Approximation schemes for the viscosity solutions of Hamilton-Jacobi equations[END_REF], it is possible to provide a unified proof of their convergence to the unique viscosity solution of the HJI PDE. Let us consider a function

H ú : R n ◊ R n ae R that satisfies Assumption 3.5.1. (Regularity of H ú ) a) 'x oe R n , |H ú (x, p) ≠ H ú (x, q)| AE C|p ≠ q|. b) 'p oe R n , |H ú (x, p) ≠ H ú (y, p)| AE C|x ≠ y|(1 + |p|)
for some positive constant C. Under Assumption 3.5.1, the following result holds. Theorem 3.5.2. Under Assumption 3.5.1, the partial di erential equation

ˆu ˆt (t, x) + H ú (x, Ò x u(t, x)) = 0 (3.26)
with boundary condition u(1, x) = g(x) has a unique viscosity solution.

For the proof, we refer to Crandall and Lions [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF]. Now let BU C(R n ) denote the set of bounded and uniformly continuous functions on R n and consider, for every fl > 0 an operator

S fl : BU C(R n ) ae BU C(R n ) that satisfies: i) S fl (p) Ø S fl (q) if p Ø q. ii) S fl (p + k) = S fl (q) + k, for k oe R. iii) lim flae0 "≠Sfl" fl = H ú (x, Ò") , for all " oe C OE . Consider the function W : [0, 1] ◊ R n ae R defined recursively by W (1, x) = g(x), W (t, x) = S t≠t k+1 W (t k+1 , •)(x), t oe [t k , t k+1 ].
Then the following theorem, due to Souganidis, holds (see [START_REF] Souganidis | Approximation schemes for the viscosity solutions of Hamilton-Jacobi equations[END_REF] or Section 3 in [START_REF]Two-player, zero-sum di erential games and viscosity solutions[END_REF] for a simplified version of the proof): to both sides of this inequality and using the fact that this operator is monotone and homogeneously additive (properties i) and ii), we obtain:

W n ( tn , xn ) AE S tn≠t n k+1 "(t n k , x) + W n ( tn , xn ) ≠ "( tn , xn )
. Rearranging these terms and using property iii) gives 0 AE

"(t n k+1 , x) ≠ S tn≠t n k+1 "(t n k+1 , x) + "( tn , xn ) ≠ "(t n k+1 , x) tn ≠ t n k+1 .
As n ae +OE we get:

0 AE ˆ" ˆt (t, x) + H ú (x, Ò x "(t, x)
). This proves that the function W is a subsolution. The proof for supersolutions is completely analogous. From Theorem 3.5.2, the viscosity solution is unique, hence V = W .

Observe that the value functions of the simultaneous Fleming value, the Fleming values and the Friedman values satisfy a similar recursive structure that the one described above. One can write the appropriate operator S fl which are on each case are given by the right hand sides of (3.7), (3.8a), (3.8b), (3.10a), and (3.10b). Explicitly, for s oe [0, 1] and 

x oe R n , if h oe BU C(R n ): S fl h(s, x) = Y _ _ _ _ _ _ _ ] _ _ _ _ _ _ _ [ val (µ,‹)oe f (U )◊ f (V ) h(s + fl, x + flf (x, u, v)) in (3.

From the viscosity approach to the discrete game approach

As we already saw in Section 3.3.1, it is possible in the smooth case to use the value function to construct '≠optimal strategies of the continuous time game. In this Section, we will show that one can use these limit strategies to prove the uniqueness of the accumulation points of the families of the maxmin and minmax of the discrete time games, in the smooth case. We have the following:

Proposition 3.5.4. Let V ≠ : [0, 1] ◊ R n ae R denote a viscosity supersolution of (3.16b)
and let 0 = {0 = s 1 < s 2 , . . . , s N = 1} be a partition such that V ≠ is continuously di erentiable in every interval (s k , s k+1 ). The family of discrete maxmin, as defined in (3.9b), converge to V ≠ as | | ae 0, for all refinement of 0 .

Proof. Denote with (x ú k ) k the sequence of states in the game (as will be defined below), with x ú 1 = x. Let -ú be the following strategy: at time t k , observe x ú k and choose u ú k such that

u ú k oe argmax uoeU ; min voeV Èf (x ú k , u, v), Ò" k (t k , x ú k )Í < Let v = (v 1 , v 2 , .
. . , v n ) be an arbitrary sequence of actions of player 2 and let x ú 1 = x, x ú 2 , . . . x ú n+1 denote the trajectory induced by v and -ú . We have that, if we write

V k := V ≠ (t k+1 ,x ú k+1 )≠V ≠ (t k ,x ú k ) fi k+1 , V k = ˆV≠ ˆt (t k , x ú k ) + + f (x ú k , u ú k , v k ), Ò x V ≠ (t k , x ú k ) , + o(fi k+1 ) Ø ˆV≠ ˆt (t k , x ú k ) + min voeV + f (x k , u ú k , v), Ò x V ≠ (t k , x ú k ) , + o(fi k+1 ) Note that ˆV≠ ˆt (t k , x ú k ) + min voeV + f (x k , u ú k , v), Ò x V ≠ (t k , x ú k ) , is equal to ˆV≠ ˆt (t k , x ú k ) + max uoeU min voeV + f (x ú k , u, v), Ò x V ≠ (t k , x ú k ) , = 0.
Integrating from t 1 to 1 one obtains:

g(x ú n+1 ) Ø V ≠ (t 1 , x ú 1 ) + o(| |)
which concludes the proof.

When the state space is finite, the idea of Proposition 3.5.4, namely to use the limit equation to generate an '≠optimal strategy and then prove the convergence of the discrete value functions has been used in the context of stochastic games of short stage duration by Neyman. We refer to [78, Theorem 1].

The same idea, i.e. to use a limit object to construct approximate strategies, is central to this thesis and has proven fruitful in game theory. One important example is the Big Match with incomplete information on one side, due to Sorin [START_REF] Sorin | Big Match with lack of information on one side (Part I)[END_REF][START_REF]Big Match with lack of information on one side (Part II)[END_REF], where a limit continuous time game is deduced and discretizations of optimal strategies of the limit game are used to construct approximate strategies of discrete time games.

Equivalence of minimax and viscosity solutions

Before introducing the definition of minimax solutions, due to Subbotin [START_REF] Subbotin | Generalized Solutions of First-Order PDEs[END_REF], we recall some notions of viability theory. Let F : R N R N be a multiple valued map. A trajectory of the di erential inclusion

ẏ(t) oe F (y(t)), y(t 1 ) = y 1 , ( 3.27) 
is an absolutely continuous function y : [t 1 , 1] ae R N that satisfies (3.27). A pair (S, F ) of a closed set S µ R N and a multiple valued map F : R N R N is called viable or weakly invariant if for every initial condition (t 1 , y 1 ) oe [0, 1] ◊ S there exists a trajectory of (3.27) such that y(t) oe S for all t 1 AE t AE 1.
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For every u oe U , we will now consider the following di erential inclusion

Y _ _ ] _ _ [ ṡ = 1 ẋ oe f (x, u, V ) ż = 0 (3.28)
In a similar way, we also consider, for every v oe V, the di erential inclusion 

Y _ _ ] _ _ [ ṡ = 1 ẋ oe f (x, U, v) ż = 0 (3.
[0, 1] ◊ R n ae R is a minimax supersolu- tion of (3.16a) if for any u oe U, (epiw, E ≠ u ) is viable. -An upper semicontinuous function w : [0, 1] ◊ R n ae R is a minimax subsolu- tion of (3.16b) if for any v oe V, (hypw, E + v ) is viable.
-A continuous function is a minimax solution if it is both a minimax super and subsolution.

The relationship with games is the following: using the subdynamic programming principle (3.23), one can prove the viability of the epigraph of V ≠ , which is a slightly stronger condition that (3.24). Then, via the strategic approach, which relies on this viability property, one obtains the existence of the value.

The equivalence between minimax and viscosity solutions was first established by Subbotin. We refer to Subbotin [START_REF] Subbotin | Generalized Solutions of First-Order PDEs[END_REF] for a detailed account of this theory. The ideas behind these two solution concepts are di erent: while Subbotin's approach relies more on the geometrical ideas of weak invariance (his terminology for viability), while Crandall and Lions' viscosity solutions rely on analytical techniques (i.e. the vanishing viscosity method, see Crandall and Lions [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF]). In control theory, the relationship between viability theory and viscosity solutions has been established by Frankowska [START_REF] Frankowska | Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations[END_REF].

A di erent approach to prove this equivalence has been explored by Lions and Souganidis [START_REF] Lions | Di erential games, optimal control and directional derivatives of viscosity solutions of Bellman's and Isaacs' equations[END_REF][START_REF]Di erential games and directional derivatives of viscosity solutions of Isaacs' equations II[END_REF]. As we have seen, the dynamic programming principle, together with the regularity assumptions on the data of the problem allow to characterize the value functions as viscosity sub and super solutions. In [START_REF] Lions | Di erential games, optimal control and directional derivatives of viscosity solutions of Bellman's and Isaacs' equations[END_REF], Lions and Souganidis go in the opposite direction: they show that sub and super solutions satisfy suitable dynamic programming inequalities, which are in turn used to prove the equivalence between Subbotin's definition of minimax solutions using directional derivatives.

A di erent approach based on proximal calculus and viability is described in Chapter 5 of this thesis.

Chapter 4 A strategy-based proof of the existence of the value in zero-sum di erential games

Abstract: The value of a zero-sum di erential games is known to exist, under Isaacs' condition, and it is the unique viscosity solution of a Hamilton-Jacobi-Isaacs equation. This approach, in spite of being very e ective, does not provide information about the strategies the players should use. In this note we provide a self-contained proof of the existence of the value based on the construction of '-optimal strategies, which is inspired by the extremal aiming method from [START_REF] Krasovskii | Game-Theoretical Control Problems[END_REF]. This Chapter is based on joint work with Miquel Oliu-Barton and has been accepted for publication in Morfismos.

Comparison of trajectories

Let U and V be compact subsets of some euclidean space, let Î • Î be the euclidean norm in R n , and let f :

[0, 1] ◊ R n ◊ U ◊ V ae R n . For each x oe R n and Z µ R n , let D(x, Z) := inf zoeZ Îx ≠ zÎ
be the usual distance from x to the set Z. Assumption 4.1.1. f is uniformly bounded, continuous and there exists c Ø 0 such that for all (u, v) oe U ◊ V , (s, t) oe [0, 1] 2 and x, y oe R n :

Îf (t, x, u, v) ≠ f (s, y, u, v)Î AE c ! |t ≠ s| + Îx ≠ yÎ " . Let Îf Î := sup (t,x,u,v) Îf (t, x, u, v)Î < +OE. The local game. For each (t, x), › oe [0, 1] ◊ R n ◊ R n , the local game (t, x, ›) is a
one-shot game with action sets U and V and payo function:

(u, v) ' ae È›, f (t, x, u, v)Í.
Let H ≠ (t, x, ›) and H + (t, x, ›) be its maxmin and minmax respectively:

H ≠ (t, x, ›) := max uoeU min voeV È›, f (t, x, u, v)Í, H + (t, x, ›) := min voeV max uoeU È›, f (t, x, u, v)Í.
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x 1 v ú is optimal for player 2 u ú is optimal for player 1

Local Game: 

(t 1 , x 1 , › 1 ) u, v ú x(t) u ú , v w(t) › 1

A key Lemma

Introduce the sets of controls:

U = {u : [0, 1] ae U, measurable}, V = {v : [0, 1] ae V, measurable}.
Consider the following dynamical system, where t 1 oe [0, 1], z 1 oe R n and (u, v) oe U ◊ V:

z(t 1 ) = z 1 , ż(t) = f (t, z(t), u(t), v(t)) (4.1)
The Assumption 4.1.1 ensures the existence of a unique solution to (4.1), which is denoted by z[t 1 , z 1 , u, v], in the following extended sense: for any t oe [t 0 , 1],

z[t 1 , z 1 , u, v](t) := z 1 + ⁄ t t 1 f (s, z[t 1 , z 1 , u, v](s), u(s), v(s))ds.
This result is due to Carathéodory and can be found in [START_REF] Coddington | Theory of Ordinary Di erential Equations[END_REF]Chapter 2]. Elements of U and V are identified with constant controls. The purpose of this section is to bound the distance between two trajectories: one starting from x 1 and controlled by (u, v), and another one starting from w 1 and controlled by (u, v). The appropriate pair (u, v) is obtained using the existence of the value and of optimal actions in the local game: let u ú (resp. v ú ) be optimal for player 1 (resp. 2) in (t 1 , x 1 , › 1 ), where 

› 1 := x 1 ≠ w 1 . Let x := x[t 1 , x 1 , u, v ú ] and w := w[t 1 , w 1 , u ú , v] (see
Îx(t) ≠ w(t)Î 2 AE (1 + (t ≠ t 1 )A)Îx 1 ≠ w 1 Î 2 + B(t ≠ t 1 ) 2 .
Furthermore, A and B are independent of the controls. 

d 2 (t) = . . . . › 1 + ⁄ t t 1 [f (s, x(s), u(s), v ú ) ≠ f (s, w(s), u ú , v(s))]ds . . . . 2 .
(4.

2)

The boundedness of f implies that:

. . . . ⁄ t t 1 [f (s, x(s), u(s), v ú ) ≠ f (s, w(s), u ú , v(s))]ds . . . . 2 AE 4Îf Î 2 (t ≠ t 1 ) 2 . ( 4.3) 
Claim: For all s oe [t 1 , 1], and for all (u, v) oe U ◊ V :

È› 1 , f(s, x(s), u, v ú ) ≠ f (s, w(s), u ú , v)Í AE 2C(s)d 1 + cd 2 1 , (4.4) 
where C(s)

:= c(1 + Îf Î)(s ≠ t 1 ).
Proof of the claim. Assumption 4.1.1 implies Îx(s) ≠ x 1 Î AE (s ≠ t 1 )Îf Î, and then:

Îf (s, x(s), u, v ú ) ≠ f (t 1 , x 1 , u, v ú )Î AE c ! (s ≠ t 1 ) + Îf Î(s ≠ t 1 ) " = C(s).
From the Cauchy-Schwartz inequality and the optimality of v ú one gets:

È› 1 , f(s, x(s), u, v ú )Í AE È› 1 , f(t 1 , x 1 , u, v ú )Í + C(s)d 1 , (4.5) AE H + (t 1 , x 1 , › 0 ) + C(s)d 1 . (4.6)
Similarly, Assumption 4.1.1 implies Îw(s) ≠ x 1 Î AE d 1 + (s ≠ t 1 )Îf Î, and then:

Îf (s, w(s), u ú , v) ≠ f (t 1 , x 1 , u ú , v)Î AE C(s) + cd 1 .
Using the Cauchy-Schwartz inequality, and the optimality of u ú : 

È› 1 , f(s, w(s), u ú , v)Í Ø È› 1 , f(t 1 , x 1 , u ú , v)Í ≠ (C(s) + cd 1 )d 1 , (4.7) Ø H ≠ (t 1 , x 1 , › 1 ) ≠ C(s)d 1 ≠ cd 2 1 . ( 4 
⁄ t t 1 È› 1 , f(s, x(s), u(s), v ú ) ≠ f (s, w(s), u ú , v(s))Íds AE (t ≠ t 1 )(2C(t)d 1 + cd 2 1 ). ( 4.9) 
Using the estimates (4.3) and (4.9) in (4.2) we obtain:

d 2 (t) AE d 2 1 + 4Îf Î 2 (t ≠ t 1 ) 2 + 2(t ≠ t 1 )C(t)d 1 + c(t ≠ t 1 )d 2 1 .
Finally, using the relations

d 1 AE 1 + d 2 1 and (t ≠ t 1 )C(t) = c(1 + Îf Î)(t ≠ t 1 ) 2 , the result follows with A := 3c + 2Îf Î and B := 4Îf Î 2 + 2c(1 + Îf Î).

Consequences

We give here three direct consequences of Lemma 4.1.3. First, we use a set of times ] for m = 1 . . . , N ≠ 1, we obtain a bound for the distance between the two at time t N . In particular, if the two trajectories start from the same state then their distance at time t N vanishes as Î Î := max 1AEmAEN t m ≠ t m≠1 tends to 0. Later, we replace the distance between two trajectories by the distance between a trajectory and a set. Finally, we combine the two aspects; the result obtained therein is used in Section 4.2 to prove the existence of the value of zero-sum di erential games with terminal payo .

= {0 = t 1 < • • • < t N = 1} in [0,
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x 1 x(t 2 ) x(t 3 ) u, v ú 1 u, v ú 2 w 1 w(t 2 ) w(t 3 ) u ú 1 , v u ú 2 , v . . . . . . (u ú 1 , v ú 1 ) optimal in (t 1 , x 1 , › 1 ) (u ú 2 , v ú 2 ) optimal in (t 2 , x(t 2 ), › 2 ) › 1 › 2 › 3
d 2 N AE exp A A N ÿ m=1 (t m ≠ t m≠1 ) B A d 2 1 + B N ÿ m=1 (t m ≠ t m≠1 ) 2 B .
The result follows, since

q N m=1 (t m ≠ t m≠1 ) AE 1 and q N m=1 (t m ≠ t m≠1 ) 2 AE Î Î. Distance to a set Let W µ [t 1 , 1] ◊ R n
be a set satisfying the following properties:

• P1: For any t oe [t 1 , 1], W(t) := {x oe R n | (t,
x) oe W} is closed and nonempty.

• P2: For any (t, x) oe W and any t Õ oe [t, 1]:

sup uoeU inf voeV D(x[t, x, u, v](t Õ ), W(t Õ )) = 0.
Equivalent formulations of P2 were introduced by Aubin [START_REF] Aubin | Victory and defeat in di erential games, Modelling and Control of Systems[END_REF], although our formulation is inspired by the notion of stable bridge in [START_REF] Krasovskii | Game-Theoretical Control Problems[END_REF].

Let x 1 oe R n , let w 1 oe argmin W(t 1 ) Îx 1 ≠ w 1 Î be some closest point to x 1 in W(t 1 ) and let v ú be optimal for player 2 in the local game (t 1 , x 1 , x 1 ≠ w 1 ). Corollary 4.1.5. For every t oe [t 1 , 1] and u oe U:

D 2 (x[t 1 , x 1 , u, v ú ](t), W(t)) AE (1 + (t ≠ t 1 )A)D 2 (x 1 , W(t 1 )) + B(t ≠ t 1 ) 2 .
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x 1 x u (t) u, v ú W(t 1 ) W(t) w 1 w ' (t) u ú , v (',u ú ) ' Figure 4.1.3 -Distance to a set W µ [t 0 , 1] ◊ R n satisfying P1 and P2.
Definition 4.2.1. A strategy for player 2 is a map -: U ae V such that, for some finite

partition s 1 < • • • < s N of [t 1 , 1]
, for all u 1 , u 2 oe U and 1 AE m < N:

u 1 © u 2 a.e. on [s 1 , s m ] =∆ -(u 1 ) © -(u 2 ) a.e. on [s 1 , s m+1
]. These strategies are called nonanticipative strategies with delay (NAD) [25, Section 2.2] in contrast to the classical nonanticipative strategies. The strategies for player 1 are defined in a dual manner. Let A (resp. B) the set of strategies for player 1 (resp. 2). For any pair of strategies (-, -) oe A ◊ B, there exists a unique pair (ū, v) oe

U ◊ V such that -(v) = ū and -(ū) = v [25, Lemma 1]. This fact is crucial for it allows to define x[t 1 , x 1 , -, -] := x[t 1 , x 1 , ū, v] in a unique manner.
The payo function has two components: a running payo " : [0, 1] ◊ R n ◊ U ◊ V ae R and a terminal payo g : R n ae R. We assume that the running payo " satisfies the same regularity assumptions as the dynamics f . In this case, we apply the classical transformation of a Bolza problem into a Mayer problem, to get rid of the running payo : enlarge the state space from R n to R n+1 , where the last coordinate represents the accumulated payo ; define an auxiliary terminal payo function  g : R n+1 ae R as  g(x, y) = g(x) + y; we thus obtain an equivalent di erential game with no running payo and dynamic  f = (f, "). Consequently, we can assume without loss of generality that " © 0. Assumption 4.2.2. g is Lipschitz continuous. Assumption 4.2.2 holds in the rest of the paper. Introduce the lower and upper value functions:

V ≠ (t 1 , x 1 ) := sup -oeA inf -oeB g ! x[t 1 , x 1 , -, -](1) " , V + (t 1 , x 1 ) := inf -oeB sup -oeA g ! x[t 1 , x 1 , -, -] (1) 
" .

The inequality

V ≠ AE V + holds everywhere. If V ≠ (t 1 , x 1 ) = V + (t 1 , x 1 ), the game G(t 1 , x 1 )
has a value, denoted by V(t 1 , x 1 ). Under Assumption 4.1.2, usually known as Isaacs' condition, the value exists as the unique viscosity solution of some Hamilton-Jacobi-Isaacs equation with a boundary condition [START_REF] Evans | Di erential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF]. The functional approach is very e ective for it yields the existence and a characterization of the value function. However, it does not tell us much about the strategies the players should use. In this note we focus on the strategies, as in [START_REF] Krasovskii | Game-Theoretical Control Problems[END_REF], and prove the existence of the value using an explicit construction of '-optimal strategies. Let us end this section by stating the dynamic programming principle [25, Proposition 2] satisfied by V ≠ : for all (t, x) oe [0, 1] ◊ R n and all t Õ oe [t, 1],

V ≠ (t, x) = sup -oeA inf -oeB V ≠ ! t Õ , x[t, x, -, -](t Õ ) " . (4.10)
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The dynamic programming principle consists in two inequalities: the Ø (resp. AE) inequality is the superoptimality (resp. suboptimality) programming principle.

Existence of the value

Let " : [t 1 , 1] ◊ R n ae R be a real function satisfying the following properties: (i) " is lower semi continuous.

(ii) For all (t, x) oe [t 1 , 1] ◊ R n and t Õ oe [t, 1]:

"(t, x) Ø sup uoeU inf voeV " ! t Õ , x[t, x, u, v](t Õ ) " ; (iii) "(1, x) Ø g(x)
, for all x oe R n .

Definition 4.2.3. For any ¸oe R, define the ¸-level set of " by: Let W " µ [t 0 , 1] ◊ R n be the "(t 1 , x 1 )-level set of ", i.e.:

W " ¸= {(t, x) oe [t 1 , 1] ◊ R n | "(t, x) AE ¸} and W " ¸(t) = {x oe R n | "(t,
W " := {(t, x) oe [t 0 , 1] ◊ R n | "(t, x) AE "(t 1 , x 1 )}.
As in Section 4.1.2, let fi 1 and fi 2 be two selection rules defined as follows: fi 1 : [0, 1]◊R n ae R n assigns to each (t, x) a closest point to x in W " (t); fi 2 : [0, 1]◊R n ◊R n ae V assigns to each (t, x, ›) an optimal action for player 2 in the local game (t, x, ›). Finally, let: as follows: suppose that -is already defined on [t 1 , t m ] for some 1 AE m < N, and let

fi : [0, 1] ◊ R n ae V, (t, x) ' ae fi 2 (t, x, x ≠ fi 1 (t, x)).
x m := x[t 1 , x 1 , u, -(u)](t m ). Then set -(u) © fi(t m , x m ) on [t m , t m+1 ].
These strategies are inspired by the extremal aiming method of Krasovskii and Subbotin [61, Section 2.4]. Proposition 4.2.6. For some C oe R + , and for any extremal strategy -= -(", , fi):

g(x[t 1 , x 1 , u, -(u)](1)) AE "(t 1 , x 1 ) + C Ò Î Î, 'u oe U. Proof. Without loss of generality, t N = 1 so that x N = x[t 1 , x 1 , u, -(u)](1)
. By Lemma 4.2.4, W " satisfies P1 and P2. Thus, by Corollary 4.1.6:

D 2 (x N , W " (1)) AE e A BÎ Î. (4.12)
Using (iii) one obtains that:

W " (1) = {x oe R n | "(1, x) AE "(t 0 , x 0 )} µ {x oe R n | g(x) AE "(t 1 , x 1 )}.
Let w N be a closest point to x N in W(1) and let Ÿ be the Lipschitz constant of g. Then:

g(x N ) AE g(w N ) + ŸÎx N ≠ w N Î, AE "(t 1 , x 1 ) + ŸD(x N , W " (1)).
The result follows from (4.12).

Theorem 4.2.7. The di erential game G(t 1 , x 1 ) has a value V. Moreover, the extremal strategy -(V, , fi) is asymptotically optimal for player 2, as Î Î ae 0.

Proof. We claim that V ≠ satisfies (i), (ii) and (iii) and refer to the Appendix for a proof:

V ≠ (1, x) = g(x)
, for all x oe R n , so that (iii) holds; (ii) can be easily deduced from the superdynamic programming principle (4.10) (Claim 1) or proved directly (Claim 3); Assumption 4.1.1 and 4.2.2 imply, using Gronwall's lemma, that the map x ' ae V ≠ (t, x) is Lipschitz continuous for all t oe [t 1 , 1], so that (i) holds (Claim 2). Thus, by Proposition 4.2.6:

V + (t 1 , x 1 ) AE sup uoeU g ! x[t 1 , x 1 , u, -(u)](1) " AE V ≠ (t 1 , x 1 ) + C Ò Î Î.
The existence of the value follows by letting Î Î tend to 0. Fix now the extremal strategy -= -(V, , fi) of player 2. Then, to every strategy -oe A of player 1 corresponds a unique control u oe U so that, by Proposition 4.2.6:

sup -oeA g ! x[t 1 , x 1 , -, -](1) " = sup uoeU g ! x[t 1 , x 1 , u, -(u)](1) " , (4.13) AE V(t 1 , x 1 ) + C Ò Î Î. (4.14)
Consequently, for any ' > 0, the strategy -(V, , fi) is '-optimal for su ciently small Î Î. 

Appendix

Claim 1. The super dynamic programming principle (4.10) implies that V ≠ satisfies (ii).

Proof. Identify every u oe U with a strategy that plays u on [t 0 , 1] regardless of v. Then:

sup -oeA inf -oeB V ≠ ! t Õ , x[t 1 , x 1 , -, -](t Õ ) " Ø sup uoeU inf -oeB V ≠ ! t Õ , x[t 1 , x 1 , u, -(u)](t Õ ) " Ø sup uoeU inf voeV V ≠ ! t Õ , x[t 1 , x 1 , u, v](t Õ ) " .
The first inequality is clear because U µ A; the second comes from the fact that -(u) oe V for all u oe U .

Claim 2. V ≠ satisfies (i).

Proof. Using Assumption 4.1.1 and Gronwall's lemma one obtains that, for all t oe [t 1 , 1], (u, v) oe U ◊ V, and x, y oe R n :

Îx[t 1 , x, u, v](t) ≠ x[t 1 , y, u, v](t)Î AE e c(t≠t 1 ) Îx ≠ yÎ.
Let Ÿ be a Lipschitz constant for g. Then, for all (u, v) oe U ◊ V, and for all x, y oe R n :

- -g ! x[t 1 , x, u, v](1) " ≠ g ! x[t 1 , y, u, v] (1) 
"-

-AE Ÿe c Îx ≠ yÎ.
Consequently, the map x ' ae V ≠ (t, x) is Ÿe c -Lipschitz continuous for all t oe [t 1 , 1], which is a stronger requirement than (i).

For the sake of completeness, let us end this note by proving that V ≠ satisfies (ii) directly. The super dynamic programming principle (4.10) can be proved in the same way.

Claim 3. V ≠ satisfies (ii).

Proof. Let (t, x) oe [t 1 , 1] ◊ R n , let t Õ oe [t, 1] and let ' > 0 be fixed. An '-optimal strategy for player 1 in G(t, x) is a strategy -oe A such that:

sup voeV g ! x[t, x, -(v), v](1) " Ø V ≠ (t, x) ≠ '.
The Lipschitz continuity of z ' ae V ≠ (t Õ , z) implies the existence of some " > 0 such that any '-optimal strategy in G(t Õ , x Õ ) remains 2'-optimal in G(t Õ , z), for all z oe B(x Õ , ") (the euclidean ball of radius " and center x Õ ). By compactness, B(x, Îf Î) can be covered by some finite family (E i ) ioeI of pairwise disjoint sets such that E i µ B(x i , ") for some x i oe B(x, Îf Î) (i oe I). Leti oe A (i oe I) be an '-optimal strategy for player 1 in G(t Õ , x i ). For any u oe U and v oe V, put x u,v := x[x, t, u, v]. Note that x u,v (t Õ ) depends only on the restriction of v to [t, t Õ ]. The definition ofi and E i (i oe I) ensures that, for all v Õ oe V:

g ! x[t Õ , x u,v (t Õ ), - i , v Õ ](1) " 1 {xu,v(t Õ )oeE i } Ø V ≠ ! t Õ , x u,v (t Õ ) " 1 {xu,v(t Õ )oeE i } ≠ 2'.
For each u oe U , define a strategyu oe A for player 1 in G(t, x) as follows. For all v Õ oe V:

- u (v Õ )(s) = I u if s oe [t, t Õ ), - i (v Õ )(s) if s oe [t Õ , 1] and x u,v (t Õ ) oe E i . First, let us check that - u is a strategy in G(t, x). Indeed, let s 1 < • • • < s N be a common partition of [t Õ , 1] for the strategies (- i )
i -this is possible because the family is finite.
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t < t Õ < s 2 < • • • < s N . For any v 1 , v 2 oe V, let v 1 ¶ t v 2 oe V be the concatenation of the two controls at time t, i.e. (v 1 ¶ t v 2 )(s) = v 1 (s) if s oe [0, t] and (v 1 ¶ t v 2 )(s) = v 2 (s) if s oe [t, 1]. Then, for any v ÕÕ = v ¶ t Õ v Õ oe V: g ! x[t, x, - u , v ÕÕ ](1) " = ÿ ioeI g ! x[t Õ , x u,v (t Õ ), - i , v Õ ](1) " 1 {xu,v(t Õ )oeE i } , Ø ÿ ioeI V ≠ ! t Õ , x u,v (t Õ ) " 1 {xu,v(t Õ )oeE i } ≠ 2', = V ≠ ! t Õ , x u,v (t Õ ) " ≠ 2'.
Taking the infimum in V and the supremum in U yields the desired result:

V ≠ (t, x) Ø sup uoeU inf v ÕÕ oeV g ! x[t, x, - u , v ÕÕ ](1) " , Ø sup uoeU inf voeV V ≠ ! t Õ , x u,v (t Õ ) " ≠ 2'.
Conclude by letting ' tend to 0.

Chapter 5

Generalized solutions of HJI equations

Abstract: The purpose of this Chapter is to give a simple proof of the equivalence of solution concepts for HJI equations.

In this note we are interested in the following partial di erential equation,

ˆw ˆt + H(t, x, Òw) = 0
where H : [0, 1] ◊ R n ◊ R n ae R is a continuous function. These partial di erential equations are usually called Hamilton-Jacobi-Isaacs equations and arise from two player, zero sum di erential games. These equations usually do not admit classical solutions, i.e. continuously di erentiable everywhere. Instead, one has to look for alternative definitions of solutions. We refer to each of these alternative definitions as a solution concept throughout this note. We are interested in proving the equivalence of three solution concepts: minimax solutions, due to Subbotin [START_REF] Subbotin | Generalized Solutions of First-Order PDEs[END_REF], proximal solutions, introduced by Clarke and Ledyaev [START_REF] Clarke | Mean value inequalities in Hilbert space[END_REF] and viscosity solutions, introduced by Crandall and Lions [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF].

The proof of the equivalence of these three solution concepts was already done in [START_REF] Clarke | Mean value inequalities in Hilbert space[END_REF], but with di erent tools and in particular, using another equivalent definition of minimax solutions in terms of directional derivatives. Our approach is more in the spirit of viability and proximal calculus.

The HJI equations

We introduce the model where the HJI equations we are interested in arise. In this Section we describe the context that motivated us to look at the equivalence of these solution concepts, namely the connection between the geometrical approaches of Subbotin and Clarke with the viscosity solution approach for establishing the characterization of the value function of a two player, zero sum di erential game. This Section is not essential for the rest of the Chapter and might be skipped by a reader who is only interested in the equivalence but not the motivation of the study of this particular equation.

The model in this Section is partially borrowed from Cardaliaguet and Quincampoix [START_REF] Cardaliaguet | Deterministic di erential games under probability knowledge of initial condition[END_REF]. Let us assume we are given the following:

(i) U and V are compact subsets of some finite dimensional euclidean spaces.

(ii) f : [0, 1] ◊ R n ◊ U ◊ V ae R n is continuous, uniformly bounded and Lipschitz continuous with respect to the second variable.

Chapter 5. Generalized solutions of HJI equations (iii) f has linear growth in (t, x), i.e. ÷", c > 0 such that

Îf (t, x, u, v)Î AE "Î(t, x)Î + c, '(t, x, u, v) oe [0, 1] ◊ R n ◊ U ◊ V.
(iv) f (t, x, u, V ) := fi voeV f (t, x, u, v) and f (t, x, U, v) := fi uoeU f (t, x, u, v) are convex for all (t, x, u) and (t, x, v), respectively. (v) g : R n ae R is Lipschitz. Denote by U(t 1 ) and V(t 1 ) the sets

U(t 1 ) := {u : [t 1 , 1] ae U : u is Lebesgue measurable } , V(t 1 ) := {v : [t 1 , 1] ae V : v is Lebesgue measurable } .
Consider a two player, zero sum di erential game with dynamics

ẋ(t) = f (t, x(t), u(t), v(t)), (5.1) 
with initial data (t 1 , x 1 ) oe [0, 1] ◊ R n . Under these Assumptions, a unique absolutely continuous solution of (5.1) exists, for a given pair (u, v) oe U(t 1 ) ◊ V(t 1 ). The evaluation of this solution at time t is denoted by x[t 1 , x 1 , u, v](t). We will use the shorter notation x(t) when no confusion arises. At time t = 1, a terminal payo g(x[t 1 , x 1 , u, v](1)), that player 1 receives from player 2.

To define a real strategic interaction we need to specify how are players allowed to react to their adversary. For that let us introduce the following notion of strategies: Definition 5.1.1. A non anticipating strategy with delay (NAD) for player 1 is a function -: V(t 1 ) ae U(t 1 ) with the following property: there exists a partition s

1 < . . . < s N = 1 of [t 1 , 1] such that v 1 © v 2 in [s 1 , s k ] =∆ -[v 1 ] © -[v 2 ] in [s 1 , s k+1 ], k = 1, . . . N ≠ 1.
Non anticipating strategies with delay are defined symmetrically for player 2. The sets of non anticipating strategies with delay are denoted by A d (t 1 ) and B d (t 1 ), for player 1 and player 2, respectively. The main reason for using NAD's is that the game can be put in normal form: Lemma 5.1.2. Let -oe A d (t 1 ), -oe B d (t 1 ). There exist a unique pair of controls (u(t), v(t)) oe U(t 1 ) ◊ V(t 1 ) such that

-[v](t) = u(t), -[u](t) = v(t).
The proof is by induction on the number of nodes of the partition. We refer to [ x[t,x,u,v](s), where (u, v) oe U(t) ◊ V(t) are the controls associated to the pair (-, -) as in Lemma 5.1.2. The upper and lower value functions are given by:

w + (t, x) := inf -oeB d sup -oeA d g(x[t, x, --](1)), w ≠ (t, x) := sup -oeA d inf -oeB d g(x[t, x, -, -](1)).
Moreover, the value functions are Lipschitz [25, Proposition 1] and they satisfy the following dynamic programming property [25, Proposition 2]: for all (t, x) oe [0, 1] ◊ R n , and for all s > t,

w + (t, x) = inf -oeB d sup -oeA d w + (s, x[t, x, -, -](s)),
(5.2a)

w ≠ (t, x) = sup -oeA d inf -oeB d w ≠ (s, x[t, x, -, -](s)).
(5.2b)

If the value functions where smooth, the dynamic programming property and a Taylor series expansion would easily imply that w + , w ≠ are solutions of

ˆw+ ˆt + H + (t, x, Òw + ) = 0, (5.3a 
) However, the value functions are not smooth in general. We now proceed to recall the three solution concepts that where mentioned in the introduction. For the rest of the note, we denote by B the unit ball in the corresponding euclidean space. For a C 1 function " : [0, 1] ◊ R n ae R we denote with ˆ" ˆs (t, x) its time derivative and by Ò y "(t, x) its space derivative, when they are evaluated at the point (t, x).

ˆw≠ ˆt + H ≠ (t, x, Òw ≠ ) = 0. ( 5 

Viscosity solutions

We recall first the now classical notion of viscosity solution of Crandall and Lions [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF], applied to our framework. 

Proximal solutions

Before the definition of proximal solutions, due to Clarke and Ledyaev [START_REF] Clarke | Mean value inequalities in Hilbert space[END_REF], we recall first some concepts of proximal calculus.

Let S be a closed subset of R n and consider a point x outside S. Denote the distance from a point x oe R n to a set S by d S (x) := min soeS Îx ≠ sÎ. Definition 5.3.1. The proximal normal cone at s oe S is defined by

N P S (s) := {› oe R n : ÷⁄ > 0 such that d S (s + ⁄›) = ⁄ΛÎ}.
It is easy to see that this definition is equivalent to

{› oe R n : ÷ ‡ = ‡(›, s) Ø 0 s.t. + ›, s Õ ≠ s , AE ‡Îs Õ ≠ sÎ 2 , 's Õ oe S}. (5.6)
Let us assume now that S is the epigraph of a lower semicontinuous function h :

[0, 1] ◊ R n ae R, that is, S = epih = {(t, x, z) oe [0, 1] ◊ R n ◊ R : z Ø h(t, x)}. Definition 5.3.2. A proximal subgradient of h at a point (t, x) is a vector › = (› t , › x ) oe R ◊ R n such that (›, ≠1) oe N P epih (t, x, h(t, x)).
The (possibly empty) set of proximal subgradients, called proximal subdi erential, is denoted by ˆfih(t, x).

Observe that, since a cone is involved in the definition of proximal subdi erential, if -> 0, (›, ≠-) oe N P epih (t, x, h(t, x)) =∆ ›/-oe ˆfih(t, x).

The superdi erential, denoted ˆfih(t, x) is defined in a completely analogous way, by considering now the hypograph of an upper semicontinuous function.

Definition 5.3.3. (Proximal solutions)

-A lower semicontinuous function w : [0, 1] ◊ R n ae R is a proximal supersolution of (5.3b) if for all (t, x) and any › = (› t , › x ) oe ˆfiw(t, x),

› t + H ≠ (t, x, › x ) AE 0. ( 5.7) 
-An upper semicontinuous function w : [0, 1] ◊ R n ae R is a proximal subsolution of (5.3a) if for all (t, x) and any › = (› t , › x ) oe ˆfiw(t, x)

› t + H + (t, x, › x ) Ø 0. ( 5.8) 
-A continuous function is a proximal solution if it is both a proximal super and subsolution.

Some results of proximal calculus

We close this section with three results concerning proximal normals and subgradients, that will be needed later. Lemma 5.3.4. Let h : R N ae R be lower semicontinuous and (›, ≠-) oe N P epih (y, h(y)), where › oe R N , -oe R. Then -Ø 0.

Proof. By contradiction. Assume -< 0. Then (y, h(y) ≠ -) oe epih which gives

÷t > 0 s.t. Ît›Î 2 + t 2 -2 = d 2 epih (y + t›, h(y) ≠ t-) AE Ît›Î 2
which is a contradiction.

The following result [80, Theorem 2.4], derived originally in the proof of [83, Theorem 1] tells us that we can approximate horizontal normals to the epigraph of a lower semicontinuous function by a sequence of non degenerate normals. Theorem 5.3.5. Let h : R N ae R be lower semi continuous and (Â, 0) oe N P epih (y, h(y)), with  " = 0. For every ' > 0, there exist y Õ oe y + 'B, ⁄ oe (0, ') and › oe  + 'B such that

(›, ≠⁄) oe N P epih (y Õ , h(y Õ )).
The last theorem gives a local characterization of proximal subgradients. The proof is a bit technical and thus we refer to [30, Theorem 2.5] for the details.

Minimax solutions

Before introducing the definition of minimax solutions, due to Subbotin [START_REF] Subbotin | Generalized Solutions of First-Order PDEs[END_REF], we recall some notions of viability theory. Let F : R N R N be a multiple valued map. A trajectory of the di erential inclusion ẏ(t) oe F (y(t)), y(t 1 ) = y 1 , (5.10) is an absolutely continuous function y : [t 1 , 1] ae R N that satisfies (5.10). A pair (S, F ) of a closed set S µ R N and a multiple valued map F : R N R N is called viable or weakly invariant if for every initial condition (t 1 , y 1 ) oe [0, 1] ◊ S there exists a trajectory of (5.10) such that y(t) oe S for all t > t 1 .

For every u oe U , we will now consider the following set valued map

E ≠ u : [0, 1] ◊ R n ◊ R {1} ◊ R n ◊ {0} given by E ≠ u (s, x, z) := {1} ◊ f (t, x, u, V ) ◊ {0} and the di erential inclusion ( ṡ, ẋ, ż) oe E ≠ u (s, x, z).
(5.11)
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In a similar way, we also consider, for every v oe V, the set valued map, An important tool for the sequel is the viability theorem, which we introduce now.

E + v : [0, 1] ◊ R n ◊ R {1} ◊ R n ◊ {0} given by E + v (s, x, z) := {1} ◊ f (t, x, U, v) ◊ {0} ( 

Definition 5.4.2. A set valued map

F : R N R N is Marchaud if a) For all y, F (y) is a nonempty compact convex set. b) F is upper semicontinuous, that is, 'y and '' > 0÷" > 0 such that Îy Õ ≠ yÎ < " =∆ F (y Õ ) µ F (y) + 'B.
c) F has linear growth in y, i.e. there exist positive constants " and c such that, for all y oe R N , z oe F (y) =∆ ÎzÎ AE "ÎyÎ + c. ii) For all y oe S, 'p oe N P S (y), ÷z oe F (y) s.t. Èp, zÍ AE 0. For the proof we refer to [START_REF]Viability Theory[END_REF]Theorem 3.3.6]. A last useful result from viability theory is the following theorem, due to Filippov. Theorem 5.4.4 (Filippov). Consider Z be a compact subset of a complete separable metric space. Let h : R N ◊ Z ae R N be a continuous function. If q : R N ae R N is a measurable function that satisfies q(y) oe h(y, Z), for almost all y, there is a measurable selection z, i.e. a function z : R N ae Z such that q(y) = h(y, z(y)).

For the proof, see [START_REF] Aubin | Set-Valued Analysis[END_REF]Theorem 8.2.10]. Filippov's theorem allows us to parametrize trajectories of di erential inclusions by a measurable control, as we show now.

Corollary 5.4.5. Consider Z be a compact subset of a complete separable metric space.

Let h : R N ◊ Z ae R N be a continuous function. If y : [t 1 , 1] ae R N is a trajectory of ẏ oe h(y, Z), y(t 1 ) = y 1 , there exists a measurable control z : [0, 1] ae Z such that ẏ(t) = h(y(t), z(t)), y(t 1 ) = y 1 , has a unique absolutely continuous solution.

Proof. From Filippov's theorem, one obtains easily that there exists a measurable control z 1 : R N ae Z such that ẏ(t) = h(y(t), z 1 (y(t))), y(t 1 ) = y 1 .

Since by assumption y is absolutely continuous, taking z = z 1 ¶y gives the desired measurable control. The uniqueness follows from Carathéodory's existence theorem [31, Theorem 1.1, chapter 2].

Before we proceed, let us clarify the interest in this di erential inclusion informally. We focus on w ≠ . From the dynamic programming principle (5.2b), we see that, if the game starts at (t 1 , x 1 ) and both players play optimally, they generate a trajectory on which w ≠ remains constant. When player 1 plays a constant control u, the viability of epiw ≠ with respect to (5.11) implies, by Corollary 5.4.5 that player 2 can find a control ṽ oe V(t 1 ) such that w ≠ (s, x[t 1 , x 1 , u, ṽ](s)) AE w ≠ (t 1 , x 1 ), 's oe [t 1 , 1].

The equivalence

We will prove in this section the equivalence between the three solution concepts. Actually, we prove a stronger result, since we will prove the equivalence of supersolution concepts (the proofs for subsolutions being analogous). Proposition 5.5.1. The following are equivalent: (a) w ≠ is a viscosity supersolution of (5.3b). (b) w ≠ is a proximal supersolution of (5.3b). (c) w ≠ is a minimax supersolution of (5.3b).

Proof. We prove (a) =∆ (b) =∆ (c) =∆ (a).

- 

" : [0, 1] ◊ R n ae R a C 1 test function such that "(t, x) = w ≠ (t, x), "(s, y) AE w ≠ (s, y)
for (s, y) in a neighborhood N (t,x) of (t, x). Now fix u oe U . We have that, by Corollary 5.4.5, there exists ṽ such that

w ≠ (s, x[t, x, u, ṽ](s)) AE w ≠ (t, x).
For s small enough, (s,x[t,x,u, ṽ](s)) belongs to N (t,x) . From the definition of ", " (s, x[t, x, u, ṽ](s)) AE "(t, x).

Let y := x[t, x, u, ṽ](s). Performing a Taylor series expansion around (t, x) on the left hand side,

"(t, x) + ˆ" ˆs (t, x)(s ≠ t) + Èy ≠ x, Ò y "(t, x)Í + O(Î(s, y) ≠ (t, x)Î 2 ) AE "(t, x).
This leads to 5.5. The equivalence

69 ˆ" ˆs (t, x)(s≠t)+ =⁄ s t f (•, x[t, x, u, ṽ](• ), x(• ), u, ṽ(• ))d•, Ò y "(t, x) > +O(Î(s, y)≠(t, x)Î 2 ) AE 0.
Lebesgue's di erentiation theorem tells us that

1 |s ≠ t| ⁄ s t f (•, x[t, x, u, ṽ](• ), u, ṽ(• ))d• ae f (t, x(t), u, ṽ(t)), as s ae t,
for almost every t. Thus, dividing by (s ≠ t) and taking the limit as s goes to t, ˆ" ˆs (t, x) + Èf (t, x, u, ṽ(t)), Ò y "(t, x)Í AE 0, which clearly implies

ˆ" ˆs (t, x) + min voeV Èf (t, x, u, v), Ò
y "(t, x)Í AE 0. Since u is arbitrary, from our compacity and continuity assumptions we can take the maximum with respect to u and conclude the proof.

Introduction

In this paper we study a mean field model for a discrete time, discrete state space finitely repeated stochastic game. Mean field games have been introduced independently by Huang, Caines and Malhamé [START_REF] Huang | Individual and mass behavior in large population stochastic wireless power control problems: centralized and nash equilibrium solutions[END_REF] and by Lasry and Lions [START_REF] Lasry | Jeux à champ moyen. i. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. ii. Horizon fini et controle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF] and have received considerable attention in the literature. For a comprehensive introduction see for instance Guéant, Lasry and Lions [START_REF] Guéant | Mean Field Games and Applications[END_REF] or the lecture notes of Cardaliaguet [START_REF] Cardaliaguet | Notes on mean field games (from P.L. Lions' lectures at Collège de France)[END_REF], based on Lions' lectures at the Collège de France, as well as the book by Bensoussan, Frehse and Yam [START_REF] Bensoussan | Mean Field Games and Mean Field Type Control Theory[END_REF].

One important motivation for the mean field approach in applications is that it allows to construct approximate Nash equilibria of games with a large number of players. These equilibria are "simple" in the sense that one replaces a complicated stochastic process (the behaviour of our adversaries) by a classical Markov decision process via an averaging argument.

A common feature of the above mentioned literature is that they study the continuous time framework. We believe that the discrete time setting has independent interest and might provide a powerful tool for many applications. An important exception is the work of Gomes, Mohr and Souza [START_REF] Gomes | Discrete time, finite state space mean field games[END_REF], in which a model for a finite horizon, discrete time, finite state dynamic game with infinitely many players is studied and its asymptotic behaviour as the time horizon tends to infinity is investigated. The authors obtain exponential convergence to a stationary solution. Our asymptotic result is concerned instead with the number of players and in our framework the time horizon remains fixed.

Our work is closer to Adlakha, Johari and Weintraub [START_REF] Adlakha | Equilibria of dynamic games with many players: Existence, approximation, and market structure[END_REF]. The authors consider an infinite horizon, discrete time discounted game with a discrete but unbounded state space and discounted payo . We consider instead a finite horizon game.

The approach of the model we present here is morally in the spirit of Huang, Caines and Malhamé [START_REF]Large population stochastic dynamic games: closed-loop Mc Kean-Vlasov systems and the Nash certainty equivalence principle[END_REF]: construct a limit object and use it to approximate Nash equilibria of Chapter 6. Discrete time mean field games the finite player game. The complementary approach of studying the limit behaviour of N player games as N ae +OE has been developed by Lasry and Lions [START_REF] Lasry | Jeux à champ moyen. i. Le cas stationnaire[END_REF] for an ergodic payo (see Feleqi [START_REF] Feleqi | The derivation of ergodic mean field game equations for several populations of players[END_REF] for a detailed derivation) and by Bardi [8] for the linear-quadratic case.

Our paper is organized as follows: we introduce the notion of mean field equilibrium in Section 6.2 and prove its existence. In Section 6.3 we prove that the mean field equilibrium is a distributional equilibrium as defined by Jovanovic and Rosenthal [START_REF] Jovanovic | Anonymous sequential games[END_REF] of the game with a continuum of players. Finally, in Section 6.4 we study the game with finitely many players and provide the proof of the main result, namely the approximation of a Nash equilibrium of the finite player game as the number of players goes to infinity.

The mean field game equilibrium

Let A denote a compact subset of a metric space, which will be referred to as the action set. Denote by P(A) the set of Borel probability measures on A. Recall that P(A) is compact with the weak-* topology and is metrizable by the Kantorovich-Rubinstein distance.

Denote by X the state space, which, unless otherwise stated, we assume to be a finite set. The set of probability distributions on X is denoted by P(X ), which is naturally embedded in R |X | when X is finite and thus equipped with the euclidean metric. The current and terminal payo functions

¸: X ◊ A ◊ P(X ) ae [0, 1], g : X ◊ P(X ) ae [0, 1]
are uniformly bounded, jointly continuous and Lipschitz continuous in the last variable uniformly with respect to the remaining variables, with Lipschitz constants L ¸, L g respectively.

The transition function

Q : X ◊ A ◊ P(X ) ae P(X )
is jointly continuous and bounded and satisfies, for all (x, a, b, m, m Õ ) oe X ◊ A ◊ A ◊ P(X ) ◊ P(X ) the following Lipschitz conditions:

ÎQ(x, a, m) ≠ Q(x, b, m)Î OE AE L q Îa ≠ bÎ ÎQ(x, a, m) ≠ Q(x, a, m Õ )Î OE AE Îm ≠ m Õ Î OE .
These assumptions will hold during the rest of the Chapter.

Denote with T the set {0, 1, 2 . . . , T ≠ 1} which represents the set of stages of the game and let m = (m t ) T t=0 oe P(X ) The total payo functional for the player, when he uses the strategy ‡, is denoted by J 1 : X ◊ ◊ P(X ) T +1 ae [0, 2] and is given by

J 1 (x, ‡, m) := E Q C ÿ toeT ¸(x i t , ‡ t (x t ), m t ) + g(x T , m T ) | x 0 = x D .
We introduce the following value function for a one player game whose state is x oe X at time s = 0, . . . T :

V (s, x, m) := sup ‡oe E Q S U T ≠1 ÿ tØs ¸(x t , ‡ t (x t ), m t ) + g(x T , m T ) | x s = x T V .
Here, E Q denotes the expectation with respect to the (random) transition function Q.

From the familiar arguments, see for instance Hernández-Lerma and Lasserre [53, Section 3.2] we obtain the following dynamic programming equation:

V (s, x, m) = max aoeA Y ] [ ¸(x, a, m s ) + ÿ yoeX Q(x, a, m s )(y) • V (s + 1, y, m) Z \ (6.1)
with terminal condition V (T, x, m) = g(x, m T ). Now let ‡ oe and let m ‡ 0 := m 0 . We define, for t Ø 0 :

m ‡ t+1 (x) := ÿ yoeX Q(y, ‡ t (y), m ‡ t )(x) • m ‡ t (y). (6.2)
An important consequence of the dynamic programming equation (6.1) is the existence of optimal Markovian pure strategies, i.e. functions of the form ‡ = ( ‡ t ) toeT where ‡ t : X ae A. Denote by M the set of Markovian strategies. We are ready to introduce the main concept of this section. Definition 6.2.1. A mean field equilibrium is a pair ( ‡, m) oe ◊P(X ) T +1 such that:

1. ‡ is an optimal strategy in the one player game m , computed using the dynamic programming equation (6.1) .

2. m is the trajectory followed by m 0 according to (6.2) for the strategy ‡.

We will provide an interpretation of the mean field equilibrium in Section 6.3. Let us first establish its existence in the remaining of this Section. The crucial assumption we need for that is the following.

Assumption 6.2.2. Let F denote the set of functions

f : T ◊ X ◊ P(X ) T +1 ae [0, 1]. Assume that for all (s, x, m, f) oe T ◊ X ◊ P(X ) T +1 ◊ F, the quantity Y ] [ ¸(x, a, m s ) + ÿ yoeX Q(x, a, m s )(y) • f (s + 1, y, m) Z \
viewed as a function of a, reaches it maximum at a unique point. toeT to the vector m ‡ computed by (6.2) is also easily verified to be continuous. Since ¶ is the composition of continuous maps and P(X ) T +1 is compact and convex, then it has a fixed point by Schauder's fixed point theorem.

Note that the above existence result also holds in the case where X is a compact metric space.

The game with a continuum of players

Let us provide an interpretation of the mean field equilibrium as an equilibrium for a game with a continuum of players in a suitable sense, called distributional equilibrium.

The notion of distributional equilibrium for games with a continuum of identical agents was introduced by Mas-Colell [START_REF] Mas-Colell | On a theorem of Schmeidler[END_REF] (under the name Cournot-Nash equilibrium) and later extended to stochastic games by Jovanovic and Rosenthal [START_REF] Jovanovic | Anonymous sequential games[END_REF]. Distributional equilibria have also been studied in the framework of one shot games with finitely many players and incomplete information, see Milgrom and Weber [START_REF] Milgrom | Distributional strategies for games with incomplete information[END_REF]. For this Section, we allow X to be a compact metric space.

Let I be a continuum of players, for instance take I = [0, 1]. Let m 0 oe P(X ) denote the initial distribution of the players. The game is played as follows: at stage t = 0, 1 . . . T ≠ 1, player i observes his own state x i t and the state distribution of the players m t and chooses an action a i t . Actions are chosen simultaneously and independently. Once the actions are chosen, player i receives the payo ¸(x i t , a i t , m t ) and (ignoring any potential measurability problems for the moment) the corresponding distribution on the state-action space, t oe P(X ◊ A), is announced. The marginal distribution t,X on X satisfies t,X = m t . The new state distribution is given by

F # t (•) := ⁄ X ◊A Q(y, a, m t )(•) t (dy ◊ da)
. and the situation is repeated.

Assume a vector of state-action distributions := ( t ) toeT , where t oe P(X ◊ A) is fixed. Define the following sequence

V s (x, ) := max aoeA ; ¸(x, a, s,X ) + ⁄ X V s+1 (x Õ , )dF # t (x Õ ) < (6.3) with V T (x, ) = g(x, F # T ≠1
). This represents the optimal expected payo a player at state x in time s would get if the sequence of state-action distributions is fixed. Definition 6.3.1. Let m 0 fixed. The sequence of state-action distributions is a distributional equilibrium if:

1. 0,X = m 0 , and t+1,X = F # t 2. 't oe T , t ({(x, a) oe X ◊ A : J OE (x, a, t ) Ø J OE (x, a Õ , t ), 'a Õ oe A}) = 1. where (V s )
soeT is defined by (6.3) and

J OE (x, a, s ) := ¸(x, a, s,X ) + ⁄ X V s+1 (x Õ , )dF # t (x Õ ).
6.4. The game with finitely many players 77 Note that the way in which distributional equilibrium is defined helps us to avoid measurability problems: intuitively, we are looking at the sequence of state-action distributions after it happened.

The existence of distributional equilibrium for stochastic games with a continuum of anonymous players has been established by Jovanovic 

= F #m t .
Thus, the first condition for a distributional equilibrium is satisfied. The second condition is also satisfied from the optimality of ‡.

The game with finitely many players

Let I denote the set of players and assume |I| = N. Let X j t,N be a random variable that describes the position of player j at time t. The states of the players at time t = 0 are chosen i.i.d. We reserve capital letters for random variables and lower case letters for their realizations.

The N -player game is played as follows: at stage 0, the state of each player is chosen using the lottery m 0 , which gives an average state distribution denoted by m 0,N . At stage t = 1 . . . T ≠ 1, player i observes his own state x i t,N and the average state distribution m t,N and chooses an action a i t,N . Actions are chosen simultaneously and independently. Once player i has chosen his action, he receives the payo ¸(x i t,N , a i t,N , m t,N ). The new state X i t+1,N is chosen randomly using the transition function Q(x i t,N , a i t,N , m t,N ). The random average state distribution is denoted by M t+1,N :=

1 N q joeI " X j t+1,N
.

At the beginning of stage t + 1, the realization of X i t+1,N and M t+1,N , denoted x i t+1,N and m t+1,N respectively, are observed, and the situation is repeated. At stage t = T a final payo g(x i T,N , m T,N ) is allocated. A behavioral strategy for player i is a vector fi i = (fi i t ) T t=1 where fi i t : Ht ae P(A) and Ht = (X ◊A ◊ P(X )) t is the set of all possible histories up to date t. Denote by the set of behavioral strategies for each player and note that M µ , where M denotes the set of Markovian strategies, that is, the set of functions of the form ‡ : [1, T ] ◊ X ae P(A).

A strategy profile is a vector fi = (fi i ) ioeI , where fi i is a behavioral strategy of player i. The payo of player i, when using the strategy fi i and when his adversaries use the strategy profile fi ≠i oe N ≠1 is

J i N (x, m 0 , fi i , fi ≠i ) := E Q fi I ÿ toeT ¸(x i t,N , a i t,N , m t,N ) + g(x i T,N , m T,N ) J Definition 6.4.
1. An '≠Nash equilibrium where ' > 0, is a strategy profile (fi i ) ioeI such that, for all player i and all behavioural strategy

• i , J i N (x, m 0 , • i , fi ≠i ) ≠ ' AE J i N (
x, m 0 , fi i , fi ≠i ). Our main result is the following: Theorem 6.4.2. Let ( ‡, m) be a mean field equilibrium. For all ' > 0 there exists N ' such that, if N Ø N ' the Markovian strategy ‡ is an '-Nash equilibrium in the N player game.

Îm

t,N ≠ m t Î OE ae 0 almost surely as N ae +OE.

Proof. Denote by

M ≠i t+1, ‡,N := 1 N ≠1 q j" =i " X j t+1,N
the average state distribution of the players using ‡.

We proceed by induction. First observe that the case t = 0 is clear by the strong law of large numbers.

Now let

1 Y y,k t, ‡,N 2 (N ≠1)•m t, ‡,N (y) k=1 be a sequence of Bernoulli i.i.d. random variables such that Y y,k t, ‡,N = I 1, with probability Q(y, ‡ t (y), m t,N )(x) 0, with probability 1 ≠ Q(y, ‡ t (y), m t,N )(x). Hence, (N ≠ 1) • M ≠i t+1, ‡,N (x) = ÿ yoeX Q a (N ≠1)•m t,N (y) ÿ k=1 Y y,k t, ‡,N R b = ÿ yoeX (N ≠ 1) • m t,N (y) Q a 1 (N ≠ 1) • m t,N (y) (N ≠1)•m t,N (y) ÿ k=1 Y y,k t, ‡,N R b .
In the above equations, we interpret the term on the parenthesis as zero if m t,N (y) = 0. Since we are interested in large values of N , we only have to consider those states y such that m t (y) > 0 by induction hypothesis. For such states y, the term on parenthesis converges to Q(y, ‡ t (y), m t )(x) almost surely from Lemma 6.4.3. Since

M t+1,N = 1 N 1 X i t+1,N + (N ≠ 1)M ≠i t+1, ‡,N 2
the result now follows.

Lemma 6.4.5. Let x be a fixed initial state, ( ‡, m) a mean field equilibrium and (a i t,N )

toeT an arbitrary sequence of actions of player i.

Consider the following two trajectories:

1. The trajectory (x i t,N ) T t=0 of player i in the N -player game where all his adversaries follow a mean field equilibrium strategy ‡, defined by

x i t+1,N ≥ Q(x i t,N , a i t,N , m t,N ).

The trajectory generated by

x i t+1 ≥ Q(x i t , a i t,N , m t ).
Then, for all y oe X and for all t oe T , |P(x i t,N = y) ≠ P(x i t = y)| ae 0 almost surely as N ae +OE.

Proof. We proceed by induction. Observe first that

P(x i t+1,N = y) = ÿ zoeX P(x i t,N = z)P(y | z, a i t,N , m t,N ) P(x i t+1 = y) = ÿ zoeX P(x i t = z)P(y | z, a i t,N , m t )
The case t = 0 is easy since all the terms in the above sums are zero except the one involving the initial state x, hence Adding (6.5) to the left hand side of (6.4) and (6.6) to the right hand side, the remaining quantity in the right hand side converges to zero almost surely by the induction hypothesis, and Lemma 6.4.4.

|P(x i 1,N = y) ≠ P(x i 1 = y)| = |Q(x, a i 0,N , m 0,N )(y) ≠ Q(x, a i 0,N , m 0 )(y)| AE L Q Îm 0,N ≠ m 0 Î
Lemma 6.4.6. Consider the trajectories in Lemma 6.4.5. We have that, for all t = 0, . . . T ≠ 1, lim sup

N ae+OE E Ë ¸(x i t,N, a i t,N , m t,N ) ≠ ¸(x i t , a i t,N , m t ) È AE 0. Proof. Let E i t,N = E Ë ¸(x i t,N , a i t,N , m t,N ) ≠ ¸(x i t , a i t,N , m t ) È .
We have that

E i t,N = E Ë ¸(x i t,N , a i t,N , m t,N ) ≠ ¸(x i t,N , a i t,N , m t ) È + E Ë ¸(x i t,N, a i t,N , m t ) ≠ ¸(x i t , a i t,N , m t ) È =: A 1 + A 2 .
Observe that the term A 1 is easily bounded since

A 1 AE ÿ yoeX P(x i t,N = y) max aoeA |¸(y, a, m t,N ) ≠ ¸(y, a, m t )| AE L ¸Îm t,N ≠ m t Î
, which, by Lemma 6.4.4, tends to zero almost surely. For the term A 2 , observe that

A 2 AE ÿ yoeX |P(x i t,N = y) ≠ P(x i t = y)| • θÎ
which also tends to zero as N ae +OE.

We are ready to prove Theorem 6.4.2.

Proof. Let • i be any strategy of player i in the game with N players and let ( ‡, m) be a mean field equilibrium. If player i uses the strategy • i and everyone else uses the strategy ‡, the corresponding payo is

J i N (x, m 0 , • i , ‡ ≠i ) = E Q • i , ‡ ≠i C ÿ toeT ¸(x, • i (x i t,N , m ≠i t,N ), m t,N ) + g(x i T,N , m T,N ) D . (6.7)
Recall that the payo for strategy • i in the one player game m is: 

J 1 (x, • i , m) := E Q • i , ‡ ≠i C ÿ toeT ¸(x i t,N , • i (x i t,N , m ≠i t,N ), m t ) + g(x i T,N , m T ) D . ( 6 
• i oe J 1 (x, • i , m) = J 1 (x, ‡, m).
We have that, for all

• i oe , D = J i N (x, m 0 , • i , ‡ ≠i ) ≠ J 1 (x, ‡, m) + J 1 (x, ‡, m) ≠ J i N (x, m 0 , ‡ i , ‡ ≠i ) AE Ë J i N (x, m 0 , • i , ‡ ≠i ) ≠ J 1 (x, • i , m) È + Ë J 1 (x, ‡, m) ≠ J i N (x, m 0 , ‡ i , ‡ ≠i ) È AE D 1 + D 2 .
Here,

D 1 = |J i N (x, m 0 , • i , ‡ ≠i ) ≠ J 1 (x, • i , m)| and D 2 = |J 1 (x, ‡, m) ≠ J i N (x, m 0 , ‡, ‡ ≠i )|
The result now follows if we apply Lemma 6.4.6 separately to each term on the sums appearing in D 1 and D 2 .

Introduction

In this paper we study a model for a discrete time, discrete state space, finitely repeated stochastic games where the transition and the payo of the players depend on the position in space and the actions of the adversaries, but not on their identities. We assume all the players have the same dynamics and the same payo , thus, for each player, we can consider the influence of the adversaries only through the empirical distribution of the state-action pair.

Mean field games have been introduced independently by Huang, Caines and Malhamé [START_REF] Huang | Individual and mass behavior in large population stochastic wireless power control problems: centralized and nash equilibrium solutions[END_REF] and by Lasry and Lions [START_REF] Lasry | Jeux à champ moyen. i. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. ii. Horizon fini et controle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF] and have received considerable attention in the literature. The aim of the mean field games paradigm is to describe situations with many interacting agents whose preferences and dynamics depend on the aggregate e ect of the other agents. Mean field game models are composed by two parts: a backward component, where each agent considers the aggregate behavior as an external parameter and computes myopically his own optimal behavior and a forward component, which is the evolution of the initial distribution in the state space under a common strategy. Mean field games have found applications in many di erent areas, we refer to [START_REF] Guéant | Mean Field Games and Applications[END_REF] and the references therein for examples.

Most of the models studied in the literature so far are in continuous time, while the discrete time case has received less attention. The discrete time case has not only independent interest, but also allows to model more general transitions, contrary to the assumption usually made in continuous time mean field games that the noise in the dynamics of the players is independent of their actions. In discrete time, we can also allow the players to choose their actions randomly, as in classical game theory. However, for some applications it might be relevant to consider frequent interactions between the players. This motivates the study of a limit model as the duration of each stage tends to zero, which we pursue in Section 7.3.

The main novelty of our work with respect to the previous work on discrete time mean field games is the short-stage version. Short-stage games have been recently introduced in [START_REF] Neyman | Stochastic games with short-stage duration[END_REF]. The aim of this theory is to study games where players are allowed to interact more frequently. Incorporating this machinery, we obtain a limit object that provides an approximate Nash equilibrium for games with su ciently many players and su ciently frequent interactions.

In [START_REF] Gomes | Discrete time, finite state space mean field games[END_REF], a discrete time, finite state mean field game with a continuum of players is studied. The authors study a finite horizon game and prove the exponential convergence of the finite-horizon mean field equilibrium to a stationary solution. There are two significant di erences with our work. First, we consider a fixed time horizon. Second, we are interested in constructing approximate equilibria for games with large numbers of players, while in [START_REF] Gomes | Discrete time, finite state space mean field games[END_REF] a continuum of players is considered. An anonymous referee pointed us to the recent paper [START_REF] Elliot | Discrete time mean-field stochastic linearquadratic optimal control problems[END_REF] where a model for linear quadratic mean field games in discrete time is studied.

Our work is closer to [START_REF] Adlakha | Equilibria of dynamic games with many players: Existence, approximation, and market structure[END_REF], where a similar notion is studied for an infinite horizon, discounted stochastic game. While we restrict our framework to a finite state space (in [START_REF] Adlakha | Equilibria of dynamic games with many players: Existence, approximation, and market structure[END_REF] an unbounded state space is considered), we provide explicit approximation estimates in terms of the basic parameters of the game. Our estimate is of the same order as the one in [START_REF]Large population stochastic dynamic games: closed-loop Mc Kean-Vlasov systems and the Nash certainty equivalence principle[END_REF] in continuous time.

Let us remark also that we study a discrete-time game by itself, and not the discretization of a continuous-time mean field game for numerical solution purposes. Numerical methods have been initially developed in [START_REF] Achdou | Mean field games: Numerical methods[END_REF]. A semi-Lagrangian scheme has been proposed in [START_REF] Camilli | A semi-discrete approximation for a first order mean field game problem[END_REF] for the deterministic, finite-horizon case. The full discretization has been studied in [START_REF] Carlini | A fully-discrete semi-Lagrangian approximation for a first order mean field game problem[END_REF].

The paper is organized as follows, In Section 7.2, we describe the model and some results on the existence of mean field equilibrium, as well as the approximation results with explicit convergence rates. In Section 7.3 we introduce a short-stage version of the discounted stochastic mean field game. In the Appendix, we prove an approximation lemma which allows to prove the results we present in Section 7.2.3.

The discrete time model 7.2.1 Mean field equilibrium

Let and A denote respectively the state and action sets. We assume both to be finite. Let Z := ( ◊ A), where, for a finite set S, (S) denotes the set of probability distributions over S. Consider a bounded payo function g : ◊ A ◊ Z ae [0, 1] and a transition function Q : ◊A◊Z ae ( ). Let n be a fixed positive integer. Let us define a family of auxiliary one-player games, parameterized by a vector z = (z 1 , z 2 , . . . , z n ) oe Z n . The one-player dynamic programming problem n z is defined as follows: at stage k, the player observes the state Ê k oe and chooses the action a k oe A from which he receives a payo g(Ê k , a k , z k ) and the new state is chosen according to the law

Q(Ê k , a k , z k ). A pure behavior strategy (resp. mixed behavior strategy) is a sequence of functions ‡ = ( ‡ 1, . . . , ‡ n ) where ‡ k : H 1 k ae A (resp. ‡ k : H 1 k ae (A)).
Here, H 1 k = ( ◊ A) k≠1 fi ◊ ( ) denotes the set of histories up to time k, for k = 1, . . . , n. Let n denote the set of pure strategies. The player knows z and observes the payo . We introduce the value function V n : ◊ Z ae R + for the game n z :

V n (Ê, z) := max ‡oe n E Q A n ÿ k=1 g(Ê k , a k , z k ) | Ê 1 = Ê B
One can also consider an infinitely repeated game ⁄ z with parameters z oe Z and ⁄ oe (0, 1], played as before but where the payo is evaluated by
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From the familiar arguments1 , one can prove that the value functions satisfy the following recursive formulae (dynamic programming principle):

V n (Ê, z) = max aoeA Y ] [ g(Ê, a, z 1 ) + ÿ Ê Õ oe V n≠1 (Ê Õ , z + )Q(Ê, a, z 1 )(Ê Õ ) Z \ (7.1) 
and

V ⁄ (Ê, z) = max aoeA Y ] [ g(Ê, a, z) + (1 ≠ ⁄) ÿ Ê Õ oe V ⁄ (Ê Õ , z)Q(Ê, a, z)(Ê Õ ) Z \ . ( 7.2) 
In (7.1), if z = (z 1 , z 2 , . . . z n ), then z + denotes the vector (z 2 , z 3 , . . . z n ). The dynamic programming principle (7.1) also tells us that the player can restrict his attention to the set of Markovian strategies M n µ n , which consists of all the functions ‡ = ( ‡ 1, . . . , ‡ n ) such that ‡ k : ae (A). Let m 1 oe ( ) given and let

Z n 1 := {z oe Z n : z 1 | = m 1 } .
For the rest of the paper, z k | denotes the marginal distribution of z k oe Z on the set . Define n : Z n 1 ◆ M n as the set valued map that associates to every z oe Z n 1 the set of optimal Markovian strategies in n z .

Let n : M n ae Z n 1 defined by ‡ ' ae z ‡ where the sequence z ‡ is recursively defined by setting z

‡ 1 (Ê, a) := m 1 (Ê) • ‡ 1 [Ê](a) and z ‡ k+1 (Ê, a) := ÿ (Ê Õ ,a Õ )oe ◊A Q(Ê Õ , a Õ , z ‡ k )(Ê) • z ‡ k (Ê Õ , a Õ ) • ‡ k+1 [Ê](a). (7.3) 
We are interested in the fixed points of n ¶ n . In order to apply fixed point theorems, one needs to ensure certain continuity and convexity properties, which will hold under the following assumptions.

Assumption 7.2.1. (Lipschitz continuity) There exists positive real numbers L

Q , L g such that for all (Ê, a, y, z) oe ◊ A ◊ Z ◊ Z, ÎQ(Ê, a, y) ≠ Q(Ê, a, z)Î OE AE L Q Îy ≠ zÎ 1 and Îg(Ê, a, y) ≠ g(Ê, a, z)Î OE AE L g Îy ≠ zÎ OE .
For the existence results in these sections, this continuity assumption can be relaxed, however, for our main approximation results we need Lipschitz continuity. One way to ensure convexity properties is the following:

Assumption 7.2.2. (Independent transitions) For all (Ê, a, y, z) oe ◊ A ◊ Z ◊ Z, Q(Ê, a, y) = Q(Ê, a, z) =: Q(Ê, a).
In order to avoid this assumption, one needs to impose a di erent assumption so that a convexity property can still be preserved.

Assumption 7.2.3. (Uniqueness of the maximizer)

The right hand side of equations (7.1), (7.2) admits a unique maximizer, i.e. there exists a unique pure Markovian optimal strategy.

It is possible to provide conditions on the basic model data that ensure that Assumption 7.2.3 holds, see for example Assumption 2 and 3 in [START_REF] Adlakha | Equilibria of dynamic games with many players: Existence, approximation, and market structure[END_REF] or Assumptions 1-3 in [START_REF] Gomes | Discrete time, finite state space mean field games[END_REF]. As uniqueness of the maximizer might hold under other circumstances, we prefer not to write down explicit conditions.

A straightforward application of Brouwer's fixed point theorem yields the following result. 

game is a pair ( ‡, z) oe M n ◊ Z n 1 such that z is a fixed point of n ¶ n and ‡ = n (z).
For the discounted case, from (7.2) one obtains that there exist optimal stationary strategies, i.e. functions of the form ‡ : ae (A). Let denote the set of stationary strategies. Define ⁄ : Z ae Z ◊ as the set valued map that associates to every z oe Z the pair (z, S ⁄ z ), where S ⁄ z is the set of optimal stationary strategies in ⁄ z . We will make the following ergodicity assumption throughout the paper. Assumption 7.2.6. (Ergodicity) For all y oe Z, ‡ oe , and (Ê Õ , a Õ ), (Ê, a) oe ◊ A, the Markov chain (Z k ) koeN over ◊ A with transition probability 

P ! Z k+1 = (Ê, a) - -Z k = (Ê Õ , a Õ ) " = Q(Ê Õ , a Õ , y)(Ê) • ‡[Ê](a) =: Q[y, ‡] (Ê Õ ,a Õ ),(Ê,a) (7.4 
z[y, ‡](Ê, a) := ÿ (Ê Õ ,a Õ )oe ◊A Q(Ê Õ , a Õ , y)(Ê) • ‡[Ê](a) • z[y, ‡](Ê Õ , a Õ ).
Under Assumption 7.2.6, ⁄ is well defined. One obtains analogous results to Proposition 7.2.4.

Proposition 7.2.7. Under Assumptions 7.2.1 and 7.2.6,

⁄ ¶ ⁄ has a fixed point. Proof. The upper semicontinuity follows easily from the assumptions. For the convexity, let z oe Z and

z 1 , z 2 oe ⁄ ¶ ⁄ (z). Let z ◊ := ◊z 1 + (1 ≠ ◊)z 2 . Consider two stationary strategies ‡ 1 , ‡ 2 oe ⁄ (z) such that ⁄ ( ‡ 1 ) = z 1 , ⁄ ( ‡ 2 ) = z 2 . Let ‡ ◊ be the following strategy: ‡ ◊ [Ê](a) := ◊ • z 1 (Ê, a) • ‡ 1 [Ê](a) + (1 ≠ ◊) • z 2 (Ê, a) • ‡ 2 [Ê](a) z ◊ (Ê, a) .
Observe that ‡ ◊ is optimal for ⁄ z from the optimality of ‡ 1 , ‡ 2 . We make the convention that when z

◊ (Ê, a) = 0, ‡ ◊ [Ê](a) = 0. Note also that z ◊ (Ê, a) = 0 ≈∆ z 1 (Ê, a), z 2 (Ê, a) = 0.
We have, up to excluding the above trivial cases,

z ◊ (Ê, a) = ◊z 1 (Ê, a) + (1 ≠ ◊)z 2 (Ê, a) = ◊ ÿ Ê Õ ,a Õ Q(Ê Õ , a Õ , z)(Ê) • ‡ 1 [Ê](a) • z 1 (Ê, a) + + (1 ≠ ◊) ÿ Ê Õ ,a Õ Q(Ê Õ , a Õ , z)(Ê) • ‡ 2 [Ê](a) • z 2 (Ê, a) = ÿ Ê Õ ,a Õ Q(Ê Õ , a Õ , z)(Ê) • ‡ ◊ [Ê](a) • z ◊ (Ê, a) Hence, z ◊ oe ⁄ ¶ ⁄ (z).
In the case of pure strategies, one has the following: 

The N-player game

We consider a n≠stage stochastic game n,N [m 1 ] with N +1 identical players, i.e. with common state space , action set A, stage payo g : ◊ A ◊ Z ae [0, 1] and transition function Q : ◊ A ◊ Z ae ( ) played as follows: at stage k, for k = 1, . . . , n, each player i observes his own state Ê i k and the state of each of the adversaries and chooses his action a i k . The initial state of each player is sampled i.i.d using the lottery m 1 . The actions of the players are chosen simultaneously and independently. After the actions were chosen, each player has a state-action pair

z i k,N := (Ê i k,N , a i k ). The payo for player i is g(Ê i k,N , a i k , z k,N ) where z k,N (Ê, a) := 1 N N ÿ j=1 1 {z j k,N =(Ê,a)}
denotes the empirical distribution of the state-action pairs of the players after the play at stage k. The new state for player i, Ê i k+1,N , is chosen according to the law

Q(Ê i k,N , a i k , z k,N
) and the situation is repeated.

A behavioral strategy for player i is a vector

fi i = (fi i k ) n k=1 where fi i k : H k ae (A) and H k = ( ◊ A ◊ Z) k≠1 fi ( ◊ N ≠1
) is the set of all possible histories up to stage k. Denote by n,N the set of behavioral strategies for each player and note that M n µ n,N . A strategy profile is a vector fi = (fi i ) i=1,...,N , where fi i is a behavioral strategy of player i. The average payo of player i, when using the strategy fi i and when his adversaries use the strategy profile fi ≠i oe ( n,N ) N ≠1 is

J i N (Ê, m 1 , fi i , fi ≠i ) := E Q C n ÿ k=1 g(Ê i k,N , a i k,N , z k,N ) | Ê i 1,N = Ê D .
One can also consider a game ⁄,N [m 1 ] with infinite horizon and payo Chapter 7. Discrete time mean field games: The short-stage limit

J i ⁄ (Ê, m 1 , fi i , fi ≠i ) := E Q C OE ÿ k=1 (1 ≠ ⁄) k g(Ê i k,N , a i k,N , z k,N ) | Ê i 1,N = Ê D . ( 7.6) 
where ⁄ oe (0, 1].

Definition 7.2.10. An '≠Nash equilibrium for the average payo , where ' > 0, is a strategy profile (fi i ) i=1,...,N such that, for all player i and all behavioral strategy

• i , J i N (Ê, m 1 , •, fi ≠i ) ≠ ' AE J i N (Ê, m 1 , fi i , fi ≠i ).
Analogously, an '≠Nash equilibrium for the ⁄-discounted payo is a strategy profile (fi i ) i=1,...,N such that, for all player i and all behavioral strategy

• i , J i ⁄ (Ê, m 1 , •, fi ≠i ) ≠ ' AE J i ⁄ (Ê, m 1 , fi i , fi ≠i ).

Approximation results

We are ready to state our first main result in the finite horizon case, which is an easy consequence of the approximation lemma in Section 7.4. This result is an estimate of the maximal deviation between the trajectories followed by a player if the observed aggregate state-action of his adversaries a ects his own transition functions and an independent game in which he plays the same action, but the transition function takes as argument the corresponding aggregate state-action of the mean field equilibrium.

Throughout this Section Assumption 7.2.1 holds.

Proposition 7.2.11. Let ( ‡, z) be a mean field equilibrium. Assume player i's adversaries play the mean field equilibrium strategy, whereas player i's action at time s, a i s , is arbitrary. -Let Z i s+1 denote the state-action pair of player i at time s+1 when his transitions are influenced by the mean field term z s , i.e.

Z i s+1 ≥ Q(Ê i s , a i s , z s ). -Z i
s+1,N denote the state-action pair of player i at time s + 1 when the empirical state-action pair of the adversaries influences his transitions, i.e. Z i s+1,N ≥ Q(Ê i s , a i s , z s,N ). Then we have:

E 3 max sAEn ÎZ i s ≠ Z i s,N Î OE 4 AE L Q n| ◊ A| exp(n(ÎQÎ OE + L Q )) Ô N Proof. Let S := ◊ A in Lemma 7.4.3.
In this lemma, we take

P (•) := Q(a i s , •).
Once the di erence of the trajectories of player i in the N player game and in the one-player game where the state-action term enters as a parameter is bounded, we obtain the following result: Theorem 7.2.12. Let ' > 0 be given. In a finite horizon, N player game, there exists N 0 such that for N > N 0 the mean field equilibrium is an '-equilibrium, where the approximation error ' is given by:

L Q (L g + ÎgÎ OE )n| ◊ A| exp(n(ÎQÎ OE + L Q )) Ô N .
Proof. Consider a game with N players and let us focus on the payo function of player i. Let ( ‡, z) denote a mean field equilibrium for a given initial distribution m 1 and let Ê 1 = Ê. We have that, for all behavior strategy • :

D := J i N (Ê, m 1 , •, ‡ ≠i ) ≠ J i N (Ê, m 1 , ‡, ‡ ≠i ) = J i N (Ê, m 1 , •, ‡ ≠i ) ≠ E Q n ÿ k=1 g(Ê k , ‡(Ê k ), z k ) + + E Q n ÿ k=1 g(Ê k , ‡(Ê k ), z k ) ≠ J i N (Ê, m 1 , ‡, ‡ ≠i ) AE C J i N (Ê, m 1 , •, ‡ ≠i ) ≠ E Q n ÿ k=1 g(Ê k , •(Ê k ), z k ) D + + C E Q n ÿ k=1 g(Ê k , ‡(Ê k ), z k ) ≠ J i N (Ê, m 1 , ‡, ‡ ≠i ) D
The above inequality comes from the optimality of ‡. The result now follows applying Lemma 7.4.4 to each of the terms in brackets.

Remark. Note that the discounted case can be reduced to the finite horizon case: indeed, it su ces to find K oe N large enough so that

⁄(1 ≠ ⁄) K ÎgÎ OE < '/2
and consider the N 0 for '/2 in Theorem 7.2.12. However, this may not be appropriate when ⁄ is small because the number of stages will be too large. For small ⁄, it makes more sense to consider the construction we proposed, as it does not require to consider a large number of stages. This will be the case for instance in Section 7.3.

Remark.

Our bound suggests that the number of players should be much larger than the length of the game. This seems intuitive, since one would expect that if there are not enough players and they play for many stages, it could happen that the empirical distribution at early stages of the game is too far from the predicted distribution and this error would be propagated.

Remark. Our result is on the spirit of [START_REF]Large population stochastic dynamic games: closed-loop Mc Kean-Vlasov systems and the Nash certainty equivalence principle[END_REF]: construct a limit object that induces '-Nash equilibria in games with large players. Our limit object corresponds heuristically to a game with a continuum of players. The complementary approach of studying the limits of a sequence of Nash equilibria of games with finitely many players has been explored in some cases, see for instance [START_REF] Bardi | Explicit solutions of some linear-quadratic mean field games[END_REF][START_REF] Lasry | Jeux à champ moyen. i. Le cas stationnaire[END_REF] but the general case remains open. We will illustrate this remark in Example 7.2.14.

We conclude this Section with two illustrative examples:

Example 7.2.13. As an application let us consider the following example, adapted from learning by doing [START_REF] Fudenberg | Learning-by-doing and market performance[END_REF]. Consider the industry of online hotel booking, where many firms o er accommodation. In this case, the state space is the reputation of the firm, the action set A is the capital to be invested. Assume each firm aims to improve their payo , which is a function of their reputation and their investments ¸, by making investments and/or adjusting their o ers. The reputation changes according to the transition Q. Note that in this context makes sense to consider independent transitions, since one would expect that each firms' present reputation depends exclusively on their past reputation and their investment, as in Assumption 7.2.2. The firms interact with each other through the payo function g, which represents their market share. For instance, if all the firms have similar reputation, customers might be indi erent and the utilities will be shared evenly, whereas if there are few firms with outstanding reputation, they may have higher revenues. Example 7.2.14. Consider a game with N players, where each player chooses whether to drive on the left or right side of the street. Assume that the payo for driving on the same side as everyone else is 1 and zero otherwise. Observe that 'everyone drives left' and 'everyone drives right' are Nash equilibria. However, this game has more equilibria which are sensible to the number of players present in the game, for instance 'everyone drives right if N is even'. In this case it does not make sense to consider limits of Nash equilibria, it is rather desirable to have equilibria that are independent of the number of players.

A mean field game with frequent actions

The aim of this section is to study a model for mean field games where players are allowed to play more frequently.

The one-player game

Let " > 0 and z oe Z. In the spirit of [START_REF] Neyman | Stochastic games with short-stage duration[END_REF], we consider a family of discrete time repeated games parameterized by " as follows: let µ : ◊ ◊ A ◊ Z ae R + bounded and such that, for all (Ê, a) oe ◊ A,

µ(Ê, Ê, a, z) = ≠ ÿ Ê Õ " =Ê µ(Ê, Ê Õ , a, z)
That is, µ(Ê, Ê Õ , a, z) defines the escape velocity from Ê to Ê Õ .

For " small enough, the function

Q " (Ê, a, z)(Ê Õ ) := "µ(Ê Õ , Ê, a, z), for Ê Õ " = Ê, Q " (Ê, a, z)(Ê) = 1 + "µ(Ê, Ê, a, z) (7.7
) defines transition probabilities. Introduce the notation g " := "g and let ⁄," z denote the one player game with stage payo g " and transition function Q " . For a fixed ", this is exactly a discounted one-player game as introduced in Section 7.2 to define a stationary mean field equilibrium. The stationary mean field equilibrium defined through these games enjoys, for a fixed ", identical approximation properties as in Section 7.2.3 in terms of the number of players. Our goal in this section is to provide a limit object that provides simultaneously good approximations for a large enough population of players and for a short enough time between plays.

Let 0 < fl < 1. Informally, our aim is to approximate a mean field equilibrium for the stochastic game in continuous time with payo s OE 0 e ≠flt g(Ê t , a t , z)dt via mean field equilibria of the discrete time games ⁄," z . The discount factor needs to be adjusted so that the accumulated payo at the fraction t of the continuous time game is indeed the limit of the accumulated payo s during the first  t " Ê stages of the discrete time game. This is achieved by taking the discount factor ⁄ = fl". Denote by V " ⁄ the value function of the game ⁄," z . Taking ⁄ = fl" in (7.2) and dividing by " yields

flV " fl" (Ê, z) = max aoeA Y ] [ g(Ê, a, z) + (1 ≠ fl") ÿ Ê Õ oe µ(Ê, Ê Õ , a, z)V " fl" (Ê Õ , z) Z \ (7.8) 7.3. 
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1 V " fl" 2 ">0
, then it should satisfy

flf (Ê, z) = max aoeA Y ] [ g(Ê, a, z) + ÿ Ê Õ oe µ(Ê, Ê Õ , a, z)f (Ê Õ , z) Z \ . ( 7.9) 
Let us provide a proof of this result. The proof is inspired from the proof of Theorem 1 in [START_REF] Neyman | Stochastic games with short-stage duration[END_REF]. Proposition 7.3.1. The equation (7.9) has a unique solution, denoted V fl . Moreover, V " fl" ae V fl uniformly as " ae 0. Proof. Let C( ◊ Z) denote the set of continuous real-valued functions over ◊ Z. Let T : C( ◊ Z) ae C( ◊ Z) be the following operator:

T f(Ê, z) = 1 εΠOE + fl max aoeA 1 g(Ê, a, z) + ÿ Ê Õ oe µ(Ê, Ê Õ , a, z)f (Ê Õ , z) + εΠOE f (Ê, z) 2 .
Note that T (f + c1) = T f + c εÎOE εÎOE+fl , and that T is monotone, i.e. T f Ø T g whenever f Ø g. Here, 1 denotes the constant function 1. Consequently, T is a εΠεÎOE+fl -contraction and has a unique fixed point V fl . Besides, note that T v = v if and only if v is a solution to the following implicit equation:

flv(Ê, z) = max aoeA 1 g(Ê, a, z) + ÿ Ê Õ oe µ(Ê, Ê Õ , a, z)v(Ê Õ , z) 2 (7.10)

Denote with V

fl the unique solution of (7.10) and let ‡ fl z be an optimal stationary strategy in (7.10). Consider the stochastic one-player game fl"," z with initial state Ê and let Y

m := E # "g(Ê m , ‡ fl z (Ê m ), z) + (1 ≠ fl")V fl (Ê m+1 , z) | H 1 m $ . Then Y m = "g(Ê m , ‡ fl z (Ê m ), z) + (1 ≠ fl") ÿ Ê Õ oe Q " (Ê m , a, z)(Ê Õ )V fl (Ê Õ , z) = "g(Ê m , ‡ fl z (Ê m ), z) + (1 ≠ fl") ÿ Ê Õ oe "µ(Ê m , Ê Õ , a, z)V fl (Ê Õ , m 1 ) + (1 ≠ fl")V fl (Ê m , z) Ø V fl (Ê m , z) ≠ fl" 2 ÿ Ê Õ oe µ(Ê, Ê Õ , a, z)V fl (Ê Õ , m 1 ) Ø V fl (Ê m , z) ≠ 2" 2 εΠOE ÎgÎ OE .
The last inequality follows directly from (7.10) and using the fact that V fl < ÎÎgÎ OE and fl < 1.

Hence,

E Q " (1 ≠ fl") m "g(Ê m , ‡ fl (Ê m ), z) Ø E Q " (1 ≠ fl") m V fl (Ê m , z) ≠ ≠ E Q " (1 ≠ fl") m+1 V fl (Ê m+1 , z) ≠ (1 ≠ fl") m 2" 2 εÎÎgÎ.
Summing over m (since we consider the payo as in (7.6)) we obtain that

V " fl" (Ê, m 1 ) Ø V fl (Ê, z) ≠ 2εÎOEÎgÎOE
fl ", and ‡ fl z is asymptotically optimal in fl"," z , as " ae 0. The proof of the opposite inequality follows from (7.10) and considering any arbitrary strategy instead of an optimal one in the above proof.

The evolution of the state-action pair

Let y oe Z and ‡ " an optimal stationary strategy in the game fl"," y . Let Q " be a transition as defined before and Q " its associated transition matrix, as defined in (7.4).

Denote by z

" the invariant state-action pair under the transition Q " , as introduced in (7.7), and the strategy ‡ " . Hence, by (7.5) in Assumption 7.2.6 it should satisfy:

Q " z " = z " . Since Q " = I + "L[ ‡ " , y], where L[ ‡ " , y] (Ê,a),(Ê Õ ,a Õ ) := µ(Ê, Ê Õ , ‡ " (Ê), y) • ‡ " [Ê Õ ](a Õ ), L[ ‡ "
, y]z " = 0. Heuristically, the limit state-action pair as the stage duration goes to zero, corresponding to the limit strategy ‡ fl y should solve:

L[ ‡ fl y , y]z = 0. Assumption 7.3.2. For every y oe Z and ‡ oe , optimal stationary strategy given by Let fl : Z ae Z ◊ be defined by y ' ae (y, ‡ fl y ) and fl : Z ◊ ae Z be defined by (y, ‡) ' ae z [ ‡, y]. Under this assumption, let us introduce the following definition: Definition 7.3.3. A limit stationary mean field equlibrium is a pair ( ‡, z) oe ◊ Z such that z is a fixed point of fl ¶ fl and ‡ is the strategy associated to fl (z).

One can prove existence of the limit stationary mean field equilibrium under the appropriate uniqueness assumption of the optimal action, analogous to Assumption 7.2.3. Assumption 7.3.4. The right hand side of (7.9) has a unique maximizer. 

The approximation of the N player game with frequent actions

Let us state now our second approximation result, namely the approximation of the game with su ciently short stage and su ciently many players. Theorem 7.3.6. For every ' > 0 there exist " 0 > 0 and N 0 oe N such that for all " < " 0 and N > N 0 the strategy provided by the limit stationary mean field equilibrium is an 2'-Nash equilibrium of the discounted mean field game with discount factor ⁄ = fl" and N players.

Proof. Let ' > 0 fixed and consider a limit stationary mean field equilibrium ( ‡, z). Observe from the proof of Proposition 7.3.1 that one can choose " 0 small enough so that ‡ is '≠optimal for the one-player discounted game with discount fl", for all " < " 0 . Let K 0 such that

fl" 0 (1 ≠ fl" 0 ) K 0 ÎgÎ OE < '/2.
Finally, let us take the N 0 given by Theorem 7.2.12 for the game of n = K 0 stages and error '/2.

To conclude this Section, let us provide an example of a possible application of our model.

Example 7.3.7. As an example of application, let us revisit the example of the online booking industry (Example 7.2.13). We consider again the state space as the reputation of the firm but restrict the action set to the o ers the firm can post online. By monitoring each other actions, firms can frequently update their o ers and promotions (with the help perhaps of automated software) to change their reputation levels.

Concluding remarks

An interesting feature of the mean field game models from the point of view of applications is the simplification it entails: on the equilibrium, each player has at his disposal an extremely simple strategy that depends only on his current state and he does not need to keep track of the other players, provided the number of players is large enough. This is because the aggregate state-action of the other players is regarded as a parameter, which deviates from the actual realization of the aggregated state-action with very small probability.

However, this nice feature is also its curse. One problem is that the mean field equilibrium need not be unique. If there is a coordinator of the game that informs the players which mean field equilibrium should be played, there are no problems. In applications, this will typically not be the case. One way around would be to provide the players with an adaptation mechanism. To explain this point, let us revisit the example of the driving game:

Example 7.4.1. Consider the driving game of Example 7.2.14 with N players. The only equilibria that do not depend on N are everyone on the left and everyone on the right. Consider the following adaptation mechanism: each player chooses left or right with probability 1 2 on the first stage. On the second stage, observing the realizations of the first stage, each player looks at everyone's choice (and recalls its own) and imitates the choice of the majority. Thus, from stage three, the players will be on an equilibrium path if N is odd. If N is even, there is positive probability that none of the equilibria is reached.

A proper study of adaptation mechanisms for mean field games in the general case is clearly an interesting direction of future research. in (S), defined as ε ≠ ‹Î OE := max AµS |µ(A) ≠ ‹(A)| is related to the L 1 distance by ε ≠ ‹Î OE = 1 2 ε ≠ ‹Î 1 , so that a L P -Lipschitz function in the L 1 norm is 2L P in the total variation norm.

Let T > 1 be an integer, representing the number of stages. For i = 1, . . . , N and k = 0, 1 . . . , T ≠ 1 define the following

X i k+1 = P (m k )X i k X i k+1,N = P (m k,N )X i k,N
where X i 0 = X i 0,N is a random variable with law m 0 and X i 0,N are sampled i.i.d with probability m 0 . Here, m k denotes the law of

X i k and m k,N := 1 N q N i=1 X i k,N . Observe that X i k+1 = X i 0 + k ÿ ¸=0 X i ¸+1 ≠ X i X i k+1,N = X i 0,N + k ÿ ¸=0 X i ¸+1 ≠ X i ¸,N so that X i k+1 ≠ X i k+1,N = k ÿ ¸=0 (P (m ¸) ≠ I)X i ¸+ k ÿ ¸=0 (P (m ¸,N ) ≠ I)X i ¸,N .
Before we proceed to the approximation lemma, let us introduce › k,N :=

1 N q N i=1 X i k . Observe that m k = E› k,N .
We have the following Proposition 7.4.2. The following estimate holds:

EΛ k,N ≠ m k Î 1 AE |S|/2 Ô N.
Proof. For every s oe S, the random variable › k,N (s) is the average of N independent Bernoulli variables. Hence, by definition of the variance and Jensen's inequality,

E|› k,N (s) ≠ m k (s)| AE Ò var(› k,N (s)) AE 1 2 Ô N
Summing over s gives the result.

Let F k denote the filtration generated by the observed history up to stage k. We are ready to prove the following approximation lemma. Lemma 7.4.3. The following estimate holds: for all i = 1, . . . , N,

E 3 max sAET ≠1 ÎX i s+1 ≠ X i s+1,N Î OE 4 AE L P T |S| exp(T (ÎP Î OE + L P )) Ô N Proof. Let D i k := E 1 max sAEk ÎX i s+1 ≠ X i s+1,N Î OE | F k 2
and D k := max 1AEiAEN D i k . Now observe that, for any i:

D i k+1 AE k ÿ ¸=0 EÎP (m ¸)X i ¸≠ P (› ¸,N )X i ¸ÎOE ≠ (7.12) + EÎP (› ¸,N )X i ¸≠ P (m ¸,N )X i ¸,N Î OE + EÎX i ¸≠ X i ¸,N Î OE (7.13) AE k ÿ ¸=0 L P EÎm ¸≠ › ¸,N Î 1 + (ÎP Î OE + L P )D
¸. (7.14) From here it follows that

D k+1 AE L P T |S| Ô N + (ÎP Î OE + L P ) k ÿ ¸=0 D ¸.
The first inequality ((7.12) and (7.13)) follows from the triangle inequality. For (7.14), we use the fact that

E 1 ÎP (m ¸)X i ¸≠ P (› ¸,N )X i ¸ÎOE 2 AE E 1 ÎP (m ¸) ≠ P (› ¸,N )Î OE ÎX i ¸Î1 2 AE L P EÎm ¸≠ › ¸,N Î 1 . and that EÎP (› ¸,N )X i ¸≠ P (m ¸,N )X i ¸,N Î OE AE EÎP (› ¸,N )(X i ¸≠ X i ¸,N )Î OE + EÎP (› ¸,N )X i ¸,N ≠ P (m ¸,N )X i ¸,N Î OE AE ÎP Î OE EÎX i ¸≠ X i ¸,N Î OE + L P D Ţhe conclusion follows from induction.
Let us prove a useful lemma.

Lemma 7.4.4. Let f : S ◊ (S) ae R be a bounded and L f -Lipschitz continuous function with the second variable respect to the L 1 norm. Then we have

E 1 |f (X i k+1,N , m k+1,N ) ≠ f (X i k+1 , m k+1 )| | F k 2 AE (L f + Îf Î OE )D k+1 Proof. First observe that E 1 |f (X i k+1,N , m k+1,N ) ≠ f (X i k+1,N , m k+1 )| | F k 2 AE L f E (Îm k+1,N ≠ m k+1 Î 1 | F k ) AE L f D k+1
We also have that

E 1 |f (X i k+1,N , m k+1 ) ≠ f (X i k+1 , m k+1 )| | F k 2 AE Îf Î OE D k+1
Combining these two inequalities yields the result.

Part III

Stochastic games with frequent actions

Chapter 8

Stochastic zero-sum games with a continuous time dynamics

Abstract: We present in a unified framework some results concerning a family of stochastic games where a payo -relevant parameter evolves following a continuous time Markov chain. The chain is jointly controlled by two players that choose their actions in discrete time. We characterize the asymptotic value as the time between consecutive actions goes to zero under di erent assumptions on the information the players receive and on the payo evaluations. 

Information and strategies

We describe now how players influence the dynamics introduced in Section 8. ) and the situation is repeated. This description is known by both players, including all the relevant parameters of the game: Q 0 , Q, q, , ", , A, B, R, S.

Let H 1 j denote the information available to player 1 at stage j, that is, the set of sequences (r 1 , a 1 , r 2 , a 2 , . . . , r j ). A similar definition holds for H 2 j . A behavioural strategy ‡ for player 1 is a map from his private history H 1 := fi jØ1 H 1 j to (A). A behavioural strategy • for player 2 is defined similarly. The set of behavioural strategies are denoted by and T for player 1 and 2, respectively. Let H OE := H 1 fi H 2 . By Kolmogorov's extension theorem, a couple of behavioural strategies ( ‡, • ), together with Q 0 , q, Q, defines a unique probability distribution P ‡• over the set of all plays, ( ◊ A ◊ B) N , endowed with the cylinder ‡-algebra. The corresponding expectation is denoted by E ‡• . Let us assume that the players have perfect recall, that is, that players remember the full history of the game. In this case, Kuhn's theorem [START_REF] Kuhn | Extensive games and the problem of information, Contribution to the Theory of Games[END_REF] applies, which ensures that the games played in mixed or behavioural strategies are equivalent. Thus, we can consider without loss of generality that the game is played in mixed strategies. Note that the set of mixed strategies for each player is compact and convex.

This model is inspired from the general model of Mertens, Sorin and Zamir [75, Section IV]. The crucial di erence is that here the parameter evolves continuously and the transition probability depends on the duration of the stage. Thus, our results are not directly comparable to those of the classical framework of discrete time repeated games.

Games where a payo relevant parameter follows a continuous time Markov chain have been introduced by Zachrisson [107] under the name Markov games. They have also been studied by Tanaka and Wakuta [100,[START_REF] Tanaka | On continuous time Markov games with the expected average reward criterion[END_REF] and Tanaka and Lai [START_REF] Tanaka | A two-person zero-sum Markov game with a stopped set[END_REF]. These authors assume first the existence of Markovian strategies, from which they derive an equation for the value function that they use to construct stationary strategies. A generalization for unbounded payo and transition rates has been analysed by Guo and Hernández-Lerma [START_REF] Guo | Zero-sum continuous-time Markov games with unbounded transition and discounted payo rates[END_REF]. We refer to Hernández-Lerma and Prieto-Rumeau [START_REF] Hernández-Lerma | Selected Topics on Continuous-Time Controlled Markov Chains and Markov Games[END_REF] for a recent account of zerosum Markov games. Note however than in the references mentioned above the players choose their actions in continuous time and do not introduce a notion of stage duration.

The notion of stage duration has been introduced by Nyeman [START_REF] Neyman | Stochastic games with short-stage duration[END_REF]. The model presented here is closer to Cardaliaguet, Rainer, Rosenberg and Vieille [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF], although the information structure in our examples is symmetric (both players know the same), while they consider a model with asymmetric information. We will elaborate on this point later in Section 8.5.2. The payo for a history h

Evaluation of the payo

:= {Ê 1 , r 1 , s 1 , a 1 , b 1 , Ê 2 , r 2 , s 2 , a 2 , b 2 , . . .} is OE ÿ k=1 ◊ k " k .
Some choices of are the uniform partition := ( 1 n , 1 n , . . . , 1 n ). In this case, we speak of a n≠stage game with average payo

J n (h) := 1 n n ÿ k=1 " k .
One can also consider the ⁄≠ discounted evaluation

J ⁄ (h) := ⁄ OE ÿ k=1 (1 ≠ ⁄) k≠1 " k
where ⁄ oe (0, 1].

Model B: The stationary game with short stage duration

Informally, the game we study is a discretization of an infinite horizon game with continuous time payo :

⁄ +OE 0 fle ≠fls " s ds. (8.2)
Here, fl > 0 is a positive constant, known to both players, and "

s := "(Ê s , a k , b k ), for s oe [t k , t k+1
) denotes the instantaneous payo . A common interpretation of fl is as the patience of the players: the smaller fl is, the players are more patient. In economic applications, it often represents the interest rate.

Let " = {0, ", 2", . . .} denote a uniform partition of R + , with 0 < " < 1/ÎqÎ. Denote by t " j := (j ≠ 1)" the instant where the j≠th play takes place. The game is played as in Section 8.1.2. Here, the parameter " is the stage duration. Alternatively, 1/" is the action frequency. We consider an approximation by a Riemann sum of the integral in (8.2), so that we account for the payo only at the nodes of " and ignore the payo between stages, where the parameter may evolve. The payo corresponding to a history h :

= {Ê 1 , r 1 , s 1 , a 1 , b 1 , Ê 2 , r 2 , s 2 , a 2 , b 2 , . . .} is: J fl," (h) := +OE ÿ k=1 " fl,j,"
where " fl,j," := fl"e ≠flj" " j . We refer to this game as the fl≠discounted game with action frequency 1/". Within this framework, it is natural to study the existence of the limit as " and fl go to zero and to investigate whether these limits commute.

Model C: The short stage game with arbitrary evaluation

We can extend the previous model to a discretization of an infinite horizon game with continuous time payo :

⁄ +OE 0 Ÿ(s)"
s ds. where Ÿ : R + ae R + is a strictly decreasing density function. When Ÿ is an exponential density, we recover model B.

As before, we consider a Riemann sum to approximate the integral payo and ignore the payo between stages.

Set Ÿ j," := Ÿ(t " j ). For a history h := {Ê 1 , a 1 , b 1 , Ê 2 , a 2 , b 2 , . . .}, the corresponding payo is

J Ÿ," (h) := +OE ÿ j=1 " Ÿ,j," .
with " Ÿ,j," := "Ÿ j," " j .

Comparison of the evaluations

Let us compare the models we propose with each other and with the classical framework of discrete time repeated games.

While in both model A and the compact game associated to a discrete time repeated game, as described in Sorin [START_REF]A First Course on Zero-Sum Repeated Games[END_REF]Chapter 1] one studies the sequence of value functions for decreasing evaluations, the crucial di erence is in the dynamics: in the classical framework the transition probability between two consecutive stages is independent of the weight of the stage payo , while in our framework it goes to zero. This helps to avoid the oscillation phenomena that arise in the classical framework (see Ziliotto [START_REF] Ziliotto | Zero-sum repeated games: counterexamples to the existence of the asymptotic value and the conjecture maxmin = limv n[END_REF] and Sorin and Vigeral [START_REF] Sorin | Reversibility and oscillations in zero-sum discounted stochastic games[END_REF]).

We show now the di erence between models A and C. Let us assume that " © 1. Take any s oe [0, 1] and recall that s Intuitively, what happens in model A is that at each stage in model A, the weight and the duration vanish at the same rate. Thus, the more often the play, the longer it takes to accumulate a prescribed fraction of the payo . Now take any t oe R + . Observe that: lim

"ae0 Ât/"Ê ÿ j=1 Ÿ j," ae ⁄ t 0 Ÿ(s)ds.
Informally, in model C the vanishing rates of the weight and the stage duration are different: as the stage becomes su ciently small, the payo starts to accumulate. This is by construction, since the payo of model C is a discretization of an underlying continuous time payo .

While model B is a particular case of model C, it has independent interest for several reasons, which are explained later. Essentially, the advantage is that since the sequence of value functions of the discrete games are stationary, then so is the limit object. As we will see, this allows in the case of perfect information, to obtain asymptotic results in two scales: frequency of the game and patience of the players.

Strategic and compact approach

The approach we follow to establish asymptotic results for the sequences of value functions in the above models is what we call a strategic approach. Roughly speaking, it consists of the following: i) Deduce heuristically a limit object. ii) Use a limit object to construct '-optimal strategies of the approximating game. This approach is morally similar to the idea of Isaacs, as described in Chapter 3, or the Krasovskii-Subbotin approach for di erential games, discussed in Chapter 4. One deduces a limit PDE for the value function. Once the solution of this PDE is obtained, the players construct '-optimal strategies using its level sets.

Another example of limit object is due to Sorin [START_REF] Sorin | Big Match with lack of information on one side (Part I)[END_REF][START_REF]Big Match with lack of information on one side (Part II)[END_REF] for a famous stochastic game, called the Big Match and introduced by Blackwell and Ferguson [START_REF] Blackwell | The "Big Match[END_REF]. Sorin deduces a limit game in continuous time. The discretization of optimal strategies in this limit game in continuous time gives '-optimal strategies, where the approximation error decreases as the horizon of the repeated game increases. An interesting feature here is that the limit of optimal strategies in the Big Match in discrete time is not an optimal strategy of the limit game in continuous time. We refer to the book of Sorin [START_REF]A First Course on Zero-Sum Repeated Games[END_REF]Section 5.3] for a more detailed discussion.

Other examples include the results on discrete time mean field games we have established in Chapters 6 and 7, the formulas derived by Laraki for absorbing games [START_REF] Laraki | Explicit formulas for repeated games with absorbing states[END_REF] and a recent result of Neyman [78, Theorem 1], which we revisit in Section 8.4.2.

An alternative approach is the compact approach, which consists, roughly speaking, of the following: i) Prove that the sequence of value functions has an accumulation point. ii) Establish variational properties for the set of accumulation points. iii) Prove uniqueness of the accumulation points. 104Chapter 8. Stochastic zero-sum games with a continuous time dynamics This approach is morally closer to the variational approach of Cardaliaguet, Laraki and Sorin [START_REF] Cardaliaguet | A continuous time approach for the asymptotic value in two-person zero-sum repeated games[END_REF].

An advantage of the strategic approach is that it provides an explicit description of '-optimal strategies, which may not be easy to obtain in the compact approach. A disadvantage of the strategic approach is that the limit object may require strong regularity properties, which are not easy to guarantee in general.

No information on the state

Let us study first the case when both players observe each others' actions but not the parameter. The information available to each player is symmetric, i.e.

H 1 k = H 2 k =: H k for all k.
In this case, the state variable is the law of the parameter, which is updated at each stage conditional on the observed actions. This defines a dynamics on the state space ( ) which we describe now.

Dynamics in ( )

Let us consider a partition as in Section 8.1.2. Assume that the initial value of the parameter Ê 1 is chosen at time t 1 with an initial probability distribution › =: › 1 oe ( ). The signals received by the players are 

r 1 = s 1 = {›} and r k = s k = {a k≠1 , b k≠1 } for k Ø 1.
Q a k ,b k (Ê, Ê Õ ) = q(Ê, Ê Õ , a k , b k ), Ê, Ê Õ oe . ( 8.3) 
The matrix Q a k ,b k induces a continuous time Markov chain on and the map t ' ae

P t≠t k (•, a k , b k ) solves the ODE Ṗt = Q a k ,b k • P t , P t k = I, t k AE t < t k+1 . (8.4)
Hence, we have that P fi k = exp(fi k Q a k ,b k ) and thus the law at stage k + 1 is given by

› k+1 = exp(fi k Q a k ,b k ) • › k .
When the players observe each others' actions, they know the generator (8.3), thus they can compute, using (8.4), the transition probabilities for the time interval where this generator will act on the Markov chain (the time interval is also known). In fact they can resume these computations in one, as we now show. Proof. Let › t+' denote the law at time t + ', for ' > 0 and the fixed pair of actions a, b. Although this di erential game and our model problem have di erent state space, since their dynamics is defined in all R | | : for our model problem, the dynamics (8.5) is defined in the whole state space R | | ; it only makes sense in the context on the problem where the initial condition belongs to the simplex ( ), as this dynamics leaves the simplex invariant.

Since › t+' = exp('Q a,b ) • › t , we have that › t+' ≠ › t ' = (exp('Q a,b ) ≠ I)› t ' = Q a,b › t + o(').
The di erential games we associate to our model problems have the same dynamics but di erent evaluations. The strategies are defined as in the simultaneous Fleming value, introduced in Chapter 3: the players choose their actions simultaneously and independently at the nodes of a given partition of R + , they hold their actions constant on each interval [t k , t k+1 ) while the state evolves according to (8.6). It follows from the results of Chapter 3 that, for all the evaluations we consider (models A,B,C) the simultaneous Fleming value exists. Moreover, as the mesh of goes to zero, the sequence of value functions converges to suitable Hamilton-Jacobi-Isaacs PDE's, depending on the evaluation considered. These PDE's are the limit objects we consider to construct '-optimal strategies. However, strictly speaking, the games we study are not di erential games. While the dynamics is deterministic, as in classical di erential games, in our case the dynamics is randomly chosen. In this sense the games we study are closer to discretizations of di erential games as in the simultaneous Fleming value [START_REF] Fleming | A note on di erential games of prescribed duration, Contributions to the Theory of Games[END_REF], already studied in Chapter 3.

Another di erence is that the relevant information for the players is the realized actions, not the trajectory of the parameter, while in di erential games with complete information the relevant information is the state.

Finally, let us introduce the notation U := (A), V := (B).

Model A

Let us begin with the payo evaluation of model A, as introduced in Section 8.2.1. We recall some results on discretization of di erential games. Later, we use the value function of the corresponding di erential game to characterize the limit of the sequence of value functions V S, as Î Î ae 0.

The limit object

Let us consider the di erential game with dynamics (8.6) and payo Let us consider the discrete game for the simultaneous Fleming value associated to as follows: we allow the players to choose their actions (possibly randomly) at the nodes 106Chapter 8. Stochastic zero-sum games with a continuous time dynamics of . 1Let W F, (s k , ›) denote the simultaneous Fleming value as defined in Chapter 3 with respect to the partition . For all › oe ( ) consider the extension of W F, (•, ›) to [0, 1] by linear interpolation. From the results of Souganidis [START_REF] Souganidis | Approximation schemes for the viscosity solutions of Hamilton-Jacobi equations[END_REF], which have already been described in Chapter 3, we have: 

E uv Óe Q a,b • ›, p f + "(›, a, b) Ô = min voe (B) max uoe (A) E uv Óe Q a,b • ›, p f + "(›, a, b) Ô .

Convergence to the limit object

Let V S, (s k , ›) denote the value of the game starting at s k oe and where the initial law of the parameter is ›, that is:

V S, (s k , ›) = sup ‡oe inf • oeT E ‡• I +OE ÿ m=k ◊ m " m J = inf • oeT sup ‡oe E ‡• I +OE ÿ m=k ◊ m " m J .
Let us prove the following dynamic programming principle.

Proposition 8.3.3. We have that, for all (s k , ›) oe ◊ ( ) :

V S, (s k , ›) = max uoeU min voeV E u,v Ó ◊ k "(›, a, b) + V S, 1 s k+1 , exp 1 ◊ k Q a,b 2 • › 2Ô (8.9)
Proof. Let w(›) denote the right hand side of (8.9). We will prove first that V S, (s k , ›) Ø w(›). Consider an optimal strategy for player 1 in w(›), that is, a strategy u ú such that: 

w(›) = min voeV E u ú ,v Ó ◊ k "(›, a, b) + V S, 1 s k+1 , exp 1 ◊ k Q a,b 2 • › 2Ô . ( 8 
E ‡ ú • I +OE ÿ m=k ◊ m " m J = E u ú ,v Y ] [ ◊ k " k + E ‡ + ,• + Y ] [ +OE ÿ m=k+1 ◊ m " m | a, b Z \Z \ Ø w(›).
To prove that V S, (s k , ›) AE w(›) let ‡ ú denote an optimal strategy in V S, (s k , ›) and let ‡ 1 oe U denote its first component, that is, the strategy at date s k . Let v ú denote a best reply to ‡ 1 in (8.9). By playing v ú , player 2 ensures that the payo for player 1 is less than w(›), hence the result follows.

From the arguments of Chapter 3, W F, satisfies the same recurrence formula as V S, . Hence we have the following. 

= {0 = r 1 < r 2 , . . . , r N = 1} such that, for all › oe ( ), V S (•, ›) is continuously di erentiable in every interval (r k , r k+1 ).
Then, the family {V S, } , converge to V S as Î Î ae 0, for all refinement of 0 . Proof. Let = {0 = s 1 < s 2 , . . . , s N = 1} be a refinement of 0 . Denote with (› ú k ) k the sequence of states in the game (as will be defined below), with › ú 1 = ›. Let -ú be the following strategy: at time s k , observe › ú k and choose u ú k such that 

u ú k oe argmax uoeU ; min voeV Èf (› ú k , u, v), ÒV S (s k , › ú k )Í < Let v = (v 1 , v 2 , . . . , v n ) be
:= V S (s k+1 ,› ú k+1 )≠V S (s k ,› ú k ) ◊ k
. From the dynamic programming equation (8.9), and doing a first order expansion in Taylor series, we get that:

V k = ˆVS ˆs (s k , › ú k ) + E u ú k v k Óe Q a,b • › ú k , Ò › V S (s k , › ú k ) f + "(› ú k , a, b) Ô + o(◊ k ) Ø ˆVS ˆs (s k , › ú k ) + min voeV E u ú k v Óe Q a,b • › ú k , Ò › V S (s k , › ú k ) f + "(› ú k , a, b) Ô + o(◊ k ) Note that ˆVS ˆs (s k , › ú k ) + min voeV E u ú k v Óe Q a,b • › ú k , Ò › V S (s k , › ú k ) f + "(› ú k , a, b) Ô is equal to ˆVS ˆs (s k , › ú k ) + max uoeU min voeV E uv Óe Q a,b • › ú k , Ò › V S (s k , › ú k ) f + "(› ú k , a, b) Ô = 0.
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Integrating the above equation from t 1 to 1 we obtain:

N ÿ k=1 E u ú k ,v k ◊ k "(› ú k , a, b) Ø V S (s 1 , › ú 1 ) + o(Î Î).
Since v is arbitrary, this implies that the payo of strategy -ú is ' optimal, where ' = '(Î Î).

Model B

Let us consider a slightly modified version of model B. Instead of the payo " fl,j," defined in Section 8.2.2, we divide by the normalization constant fl. Denote its value by V S,fl," .

The di erential game

To prove the convergence of V S,fl," as " ae 0, we proceed as before and study an associated di erential game. The dynamics of the auxiliary di erential game is given again by (8.6), but the payo is now

⁄ OE 0 e ≠fls "(›[0, ›, a, b](s), a(s), b(s))ds. (8.11) 
Di erential games with discounted payo s are treated extensively by Bardi and Capuzzo-Dolcetta [9, Chapter VIII]. Again, we point out that our framework slightly di ers from Bardi and Capuzzo-Dolcetta [9, Theorem 3.19, Chapter VIII] in that the dynamics is randomly chosen, albeit deterministic. This di erence is, however, conceptual, and becomes irrelevant as the limit equation (8.12) is the same in both cases.

Let W F,fl," denote the value of the di erential game where the players play piecewise constant actions (randomly chosen) in the nodes of " , as in the simultaneous Fleming value in Chapter 3, with the dynamics and the payo described by (8.6) and (8.11) respectively. Again, the following theorem follows from Souganidis' results as described in Chapter 3. where

H(›, p) := max uoe (A) min voe (B) E uv Óe Q a,b • ›, p f + "(›, a, b) Ô = min voe (B) max uoe (A) E uv Óe Q a,b • ›, p f + "(›, a, b) Ô .
To prove the convergence of V S,fl," it su ces as before to show that both V S,fl," and W F,fl," satisfy the same dynamic programming equation. This gives us a candidate for a limit object, namely, a su ciently regular solution of (8.12). We omit the proof for the moment, since in the next Section we show, in a more general case, how to use the limit object to derive '-optimal strategies.

We will derive later in Section 8.4.2 a similar equation to (8.12).

Model C

Let us describe the general case, with Ÿ as in Section 8.2.3. We obtain the game with payo

OE ÿ j=1 " Ÿ,j,"
where " Ÿ,j," = "Ÿ(t " j )"(Ê j , a j , b j ). Again it follows from Sion's minmax theorem that this game has a value, denoted by V S,Ÿ," . Moreover, from similar arguments as in Chapter 3, the value function satisfies the following dynamic programming principle. Proposition 8.3.7. The value function V S,Ÿ," satisfies:

V S,Ÿ," (t " j , ›) = val uv E uv Ó "Ÿ(t " j )"(›, a, b) + V S,Ÿ," 1 t " j+1 , exp("Q a,b • ›) 2Ô . (8.13)
Following the ideas of the preceding Sections, one would expect to associate to V S,Ÿ," the corresponding simultaneous Fleming value, which in this case would be the simultaneous Fleming value of a game with dynamics (8.6) and payo :

⁄ +OE 0 Ÿ(s)"(›[0, ›, a, b](s), a(s), b(s))ds.
The reason we do not proceed in the same way relies on the limit equation. Assuming that V S,Ÿ," is regular enough and performing a first order Taylor expansion in (8.13), we deduce heuristically the following limit equation, for w : R + ◊ › ae R + :

ˆw ˆt + val uv E uv Ó Ÿ(t)"(›, a, b) + e Ò › w, Q a,b • › fÔ = 0 (8.14)
The problem is that Souganidis' approach relies on the uniqueness of viscosity solutions of the limit PDE. For the moment we do not know under which conditions would this hold.

We provide an alternative proof of convergence of the family V S,Ÿ," , assuming (8. 

[0, 1] ◊ ( ) : ÎD 2 V S,Ÿ (t, ›)Î AE Ÿ(t). ( 8 

.15)

Then lim "ae0 V S,Ÿ," = V S,Ÿ . Proof. For a couple (t, ›) oe R + ◊ ( ) denote by x t an optimal stationary strategy for player 1 in the local game with payo :

Ÿ(t)"(›, a, b) + e Ò › V S,Ÿ (t, ›), Q a,b • › f .
Denote for simplicity x j := x t " j and Ÿ j := Ÿ(t " j ). We will show that the strategy x := (x j ) joeN is '-optimal. For this, let • := (• 1 , • 2 , . . .) be an arbitrary strategy of player 2. Let us introduce: 110Chapter 8. Stochastic zero-sum games with a continuous time dynamics

Y j := E x j ,• j Ó "Ÿ j " j + V S,Ÿ 1 t " j+1 , exp("Q a,b ) • › 2 | H j Ô . First, observe that V S,Ÿ 1 t " j+1 , exp("Q a,b ) • › 2
is, by Taylor expansion and (8.15), greater or equal than:

V S,Ÿ (t " j , ›) + " ˆVS,Ÿ ˆt (t " j , ›) + " e Ò › V S,Ÿ (t " j , ›), Q a,b • › f + Ÿ j " 2 /2
Using the optimality of x j gives:

Y j Ø V S,Ÿ (t " j , ›) ≠ Ÿ j " 2 /2 Finally, let P j := E x j ,• j {"Ÿ j " j | H j }
denote the conditional expectation of the stage payo . We have that

P j Ø V S,Ÿ (t " j , ›) ≠ E x j ,• j Ó V S,Ÿ 1 t " j+1 , exp("Q a,b ) • › 2 |H j Ô ≠ Ÿ j " 2 /2
Summing over j, we obtain on the left hand side the payo of strategy x, while on the right hand side, after cancellations, and since q j Ÿ j " = 1, we obtain "/2 as error term.

If we do the change of variable w(t, ›) ' ae e ≠flt V (›) in (8.14) we recover an equation of the form (8.12).

Let us point out here an interesting feature of the above models: in the absence of information about the state, we can represent a dynamic, random, discrete game with an unknown payo -relevant parameter into a dynamic game in continuous time where the dynamics is deterministic but randomly chosen.

Standard signalling

Let us assume in this Section that players have standard signalling, that is, they observe the state and each others' actions. We use here the notation from Section 8.2.

Recall that in Section 8.3, the players had no information of the parameter, but they constructed an auxiliary state function using the observed actions. For the results stated here, the parameter is also available, so that the parameter itself becomes the natural state variable.

Stochastic games with standard signalling have been introduced by Shapley [START_REF] Shapley | Stochastic games[END_REF]. The di erence with our model is that in our model the dynamics of the state is in continuous time, and that the transition probability depends on the duration of the stage.

The model we describe in this Section is inspired from the model of Neyman [START_REF] Neyman | Stochastic games with short-stage duration[END_REF]. The di erence is conceptual: while Neyman defines a notion of convergence for a family of games, we study instead a Fleming discretization of an underlying continuous time process. The di erence is irrelevant in practice and we recover similar results as those obtained by Neyman, with similar techniques.

Model A

Let us introduce the value function:

V C, (s k , Ê) := sup ‡oe inf • oeT E q ‡• I OE ÿ m=k ◊ m " m J = inf • oeT sup ‡oe E q ‡• I OE ÿ m=k ◊ m " m J .
We consider its extension by linear interpolation to [0, 1] ◊ , for which we keep the same notation.

The following dynamic programming principle holds (see Sorin [START_REF]A First Course on Zero-Sum Repeated Games[END_REF]Chapter 5]):

V C, (s k , Ê) = val u,v E q u,v Y ] [ ◊ k "(Ê, a, b) + ÿ Ê Õ oe V C, (s k+1 , Ê Õ ) exp(◊ k Q a,b )(Ê, Ê Õ ) Z \ .
Heuristically, if we do a first order expansion of the exponential term above and divide by ◊ k we obtain an equation of the form: .16) We are ready to establish our first asymptotic result in this Section. Note here that the derivative of the limit object depends only on the first variable. Theorem 8.4.1.

dz ds + val u,v E q u,v Y ] [ "(Ê, a, b) + ÿ Ê Õ oe z(s, Ê Õ )q(Ê, Ê Õ , a, b) Z \ = 0. ( 8 
If (8.16) has a unique C 1 solution, denoted V C , then lim | |ae0 V C, = V C . Proof. Let x k (Ê)
denote an optimal strategy in the game with stage payo "(Ê, a, b)

+ ÿ Ê Õ oe V (s k , Ê Õ )q(Ê, Ê Õ , a, b).

Denote by x

k = (x k (Ê))
Êoe . We will prove that the strategy x := (x k ) koeN is '-optimal. Let • = (• 1 , • 2 , . . .) denote an arbitrary strategy of player 2.

Introduce

Y k := E q x k ,• k Y ] [ ◊ k "(Ê, a, b) + ÿ Ê Õ oe V C (s k+1 , Ê Õ ) exp(◊ k Q a,b )(Ê, Ê Õ ) | H k Z \ .
First observe that

A := ÿ Ê Õ oe V C (s k+1 , Ê Õ ) exp(◊ k Q a,b )(Ê, Ê Õ ) = ÿ Ê Õ oe V C (s k+1 , Ê Õ )◊ k q(Ê, Ê Õ , a, b) + V C (s k+1 , Ê)
Doing a first order approximation gives

V C (s k+1 , Ê Õ ) = V C (s k , Ê Õ ) + ◊ k dV C ds (s k , Ê Õ ) + O(◊ 2 k ) Altogether we get that A equals: ÿ Ê Õ oe ◊ k V C (s k , Ê Õ )q(Ê, Ê Õ , a, b)+V C (s k , Ê)+◊ k dV C ds (s k , Ê)+ ÿ Ê Õ oe ◊ 2 k dV C ds (s k , Ê Õ )q(Ê, Ê Õ , a, b)+O(◊ 2 k )
Since the evaluation is strictly decreasing, dV C ds is negative. Taking the conditional expectation and using the optimality of x k gives: The equation (8.16) may not have a global solution, but we can apply this result along the refinements of a partition where the solution exists locally, as in Proposition 8.3.5.

Y k Ø V C (s k , Ê) ≠ 2◊ 2 k Î"Î • ÎqÎ We conclude

Model B

When a discounted payo is considered (model B), the value function of the finite games is stationary, hence in the limit equation no longer appears a derivative, as in Theorem 8.4.1. This allows us to use the limit object to construct strategies without any regularity assumptions.

Moreover, in the finite case (states and actions) we are able to establish asymptotic properties in two time scales: patience of the players and duration of the stage.

For this, we follow Neyman [START_REF] Neyman | Stochastic games with short-stage duration[END_REF] to recover a characterization similar to 8.3.2, in terms of the limit equation: This payo is slightly di erent from (8.2). For simplicity, we drop o the normalization constant fl and consider a Riemann sum instead of the integral. Denote this game by " fl" . The proof of the following result is directly adapted from Neyman [START_REF] Neyman | Stochastic games with short-stage duration[END_REF]Theorem 1]. The di erence between our approach and his is conceptual: Neyman studies conditions for a family of discrete time stochastic games to converge, while we study the discretization of an underlying stochastic game. However, the methods are very similar. Theorem 8.4.3. (Theorem 1 in [START_REF] Neyman | Stochastic games with short-stage duration[END_REF]). The sequence (V C,fl," ) ">0 converges to V C,fl . Proof. Let x(fl) oe (A) be an optimal stationary strategy in (8.17). Consider the stochastic game " fl" with initial state Ê. Let us prove that, for any strategy 

flf (Ê) = val u,v E uv Ó "(Ê, a, b) + ÿ Ê Õ oe q(Ê, Ê Õ , a, b)f (Ê Õ ) Ô . ( 8 
f (Ê) := 1 ÎqÎ + fl val u,v E uv Ó "(Ê, a, b) + ÿ Ê Õ oe q(Ê, Ê Õ , a, b)f (Ê Õ ) + ÎqÎf (Ê) Ô . Note that (f + c1) = f + c ÎqÎ ÎqÎ+fl ,
• = (• 1 , • 2 , . . .) of player 2, player 1 guarantees V fl up to a vanishing error. Let Y m := E Ó " " (Ê m , x(fl) m , • m ) + e ≠fl" V C,fl (Ê m+1 ) | h m Ô . Then Y m = " " (Ê m , x(fl) m , • m ) + e ≠fl" ÿ Ê Õ oe Q " (Ê Õ , Ê m , x(fl) m , • m )V C,fl (Ê Õ ) = " " (Ê m , x(fl) m , • m ) + e ≠fl" ÿ Ê Õ oe "q(Ê Õ , Ê m , x(fl) m , • m )V fl (Ê Õ ) + e ≠fl" V C,fl (Ê m ) Ø V C,fl (Ê m ) ≠ fl" 2 ÿ Ê Õ oe q(Ê Õ , Ê m , x(fl) m , • m )V C,fl (Ê Õ ) Ø V C,fl (Ê m ) ≠ 2" 2 ÎqÎÎ"Î.
Ee ≠fl"m " " (Ê m , x(fl) m , • m ) Ø Ee ≠fl"m V C,fl (Ê m ) ≠ ≠ Ee ≠fl"(m+1) V C,fl (Ê m+1 ) ≠ 2e ≠fl"m " 2 ÎqÎÎ"Î.
The result now follows summing over m. Thus, V C,fl," (Ê) Ø V C,fl (Ê) ≠ 2ÎqÎÎ"Î fl ", and x(fl) is asymptotically optimal in the stochastic game with discount ⁄ " , payo " " and transition Q " , as " ae 0. A dual result holds for player 2, so that

ÎV C,fl," ≠ V C,fl Î AE 2ÎqÎÎ"Î fl ". (8.18)
Note here that, thanks to the stationarity, we do not require any regularity on the limit object, unlike Theorem 8.4.1, but the crucial idea is the same: derive approximately optimal strategies from the limit object to obtain convergence of the sequence of value functions.

Asymptotic results in two scales

As noted before, the fact that we have two scales in our model gives us two kind of asymptotic results: with respect to the duration of the stage and with respect to the discount factor.

The asymptotic results in the stationary case with perfect information can be summarized by the following diagram: C,fl," converges, as " ae 0, uniformly in fl. Note that we used here the fact that , A, B are finite to obtain convergence. It remains an open question whether similar "diagrams", i.e. study of asymptotics in duration and patience, can be established in the other models discussed here, although this seems unlikely since in the other models the state space is no longer finite . 114Chapter 8. Stochastic zero-sum games with a continuous time dynamics

Model C

In this case, the value function satisfies the following dynamic programming principle. Proposition 8.4.6. The value function V C,Ÿ," satisfies:

V C,Ÿ," (t " j , Ê) = val uv E uv Y ] [ "Ÿ j " j + ÿ Ê Õ oe V C,Ÿ," (t " j+1 , Ê Õ ) • exp("Q a,b )(Ê, Ê Õ ) Z \ .
We can deduce heuristically, by Taylor expansion with respect to time, that the limit equation should be a solution of 

dw dt (t, Ê) = val uv E uv Y ] [ Ÿ(t)"(Ê, a, b) + ÿ Ê Õ oe w(t, Ê Õ )q(Ê, Ê Õ , a, b) Z \ . ( 8 
+ ÿ Ê Õ oe V C,Ÿ (t, Ê Õ )q(Ê, Ê Õ , a, b)
Denote by x j := x fl(t " j ) and Ÿ j := Ÿ(t " j ) for simplicity. We will prove that the strategy x := (x j ) joeN is '-optimal. To see this, let From the definition of x j and using the upper bounds we obtain that there exists a constant C, independent of ", such that:

E x j ,• j {Ÿ j ""(Ê j , a, b) | H j } Ø V C,Ÿ (t " j , Ê j ) ≠ C • " 2 Ÿ j .
The result now follows after summing over j, as in Theorem 8.3.8.

Some concluding remarks

Let us conclude this Chapter by making some remarks on two related models and possible extensions. We describe first the game studied by Cardaliaguet and Quincampoix [START_REF] Cardaliaguet | Deterministic di erential games under probability knowledge of initial condition[END_REF], whose information structure is similar as the model in Section 8.3. Later, we make some remarks on the asymmetric information case and the possibility of extending the variational approach of Cardaliaguet, Laraki and Sorin [START_REF] Cardaliaguet | A continuous time approach for the asymptotic value in two-person zero-sum repeated games[END_REF] to that framework.

A di erential game with blind players

Let us begin with the game studied by Cardaliaguet and Quincampoix in [START_REF] Cardaliaguet | Deterministic di erential games under probability knowledge of initial condition[END_REF]. Let (t 1 , x 1 ) oe [0, 1] ◊ R n . For (u, v) oe U(t 1 ) ◊ V(t 1 ) fixed, consider the di erential equation x(t 1 ) = x 1 , ẋ(t) = f (x(t), u(t), v(t)) a.e. on [t 1 , 1]. (8.20) Assume that the function f is jointly continuous and bounded and that there exists c > 0 such that for all (u, v) oe U ◊ V and x, y oe R n :

Îf (x, u, v) ≠ f (y, u, v)Î AE cÎx ≠ yÎ.
In this case, it follows from Carathéodory's theorem, [START_REF] Coddington | Theory of Ordinary Di erential Equations[END_REF]Chapter 2] Finally, consider a Lipschitz continuous terminal payo g : R n ae [0, 1]. The goal of the game is for player 1 to maximize the quantity g(x[t 1 , x 1 , u, v](1)), which player 2 wants to minimize.

Whenever x 1 is known by both players, this game is well understood, see for instance Evans and Souganidis [START_REF] Evans | Di erential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations[END_REF]. The problem studied by Cardaliaguet and Quincampoix [START_REF] Cardaliaguet | Deterministic di erential games under probability knowledge of initial condition[END_REF] is the existence of the value when x 1 is not known, but chosen randomly according to a commonly known probability distribution µ 1 oe M(R n ), where M(R n ) denotes the set of Borel probability measures with finite second moment. The players observe each others' actions, but receive no further information on the parameter.

Note that in this model the parameter follows a deterministic trajectory and evolves on a continuous state space, while in Section 8.3 the parameter evolves randomly and takes only finitely many values. Another important di erence is that in Section 8.3 the interaction happens at discrete times, so that their actions are piecewise constant, while in the present model the players interact continuously. Note also that here the state space is no longer compact, which leads to important technical di culties. x oe R n with t < s, we denote by x[t, x, -, -](•) the trajectory x[t, x, u, v](•) associated to the corresponding couple of controls (u, v) given by Lemma 2.4 in [START_REF] Buckdahn | Nash equilibrium payo s for non-zero sum stochastic di erential games[END_REF] and was recalled in the Introduction of Chapter 3 As in Section 8.3, the natural state space to consider is the state of probability measures over the set of values of the parameter.

Let us introduce the value functions of this game: Definition 8.5.1. For (t, µ) oe [0, 1] ◊ M(R n ):

i) The maxmin is defined by

V ≠ (t, µ) := sup -oeA d inf -oeB d ⁄ R n g(x[t,

x, -, -](1))dµ(x).

ii) The minmax is defined by

V + (t, µ) := inf -oeB d sup -oeA d ⁄ R n

g(x[t, x, -, -](1))dµ(x).

While the auxiliary state space in Section 8.3 is a finite dimensional polyhedron, the state space in the model described here is not even finite dimensional nor normed. It has a suitable metric, which we define below. where the infimum is taken over the set of all probability measures in R 2n that satisfy: fi 1 #÷ = µ and fi 2 #÷ = ‹ where fi 1 , fi 2 are the projections over the first and second coordinate, respectively, and fi 1 #÷ denotes the push-forward of ÷ by fi 1 , i.e., the measure in R n that satisfies fi 1 #÷(A) = ÷(fi ≠1 1 (A)), 'A µ R n measurable An optimal measure that reaches the infimum is called an optimal plan from µ to ‹. The Wasserstein distance enjoys two properties: first, it is the metric in which the value functions defined above are Lipschitz, see Cardaliaguet and Quincampoix [25, Lemma 3 and Proposition 1]. Second, the optimal plans allow to define the appropriate sub and super di erentials, which in turn are needed to introduce a suitable definition of viscosity solutions in the infinite dimensional space M, see Cardaliaguet [START_REF] Cardaliaguet | Deterministic di erential games under probability knowledge of initial condition[END_REF]Lemma 4 and Definition 1]. Note that these complications do not arise in the model described in Section 8.3.

Let us suppose that the support of µ 1 is the compact set K 1 µ R n and that for all (u, v), the corresponding dynamics defined by (8.20) leaves K 1 invariant, i.e. is such that, for all t Ø t 1 :

x 1 oe K 1 =∆ x[t 1 , x 1 , u, v](t) oe K 1 .

Now, if we consider a finite discretization of K 1 with diameter h > 0, denoted K 1,h , then we have that the game with finite state space K 1,h as in Section 8.3 is an "approximation" of the game of Cardaliaguet and Quincampoix. Thus, we could, at least informally, approximate a game in the Wasserstein space by a sequence of di erential games. We leave this question unanswered, but let us refer to Kloeckner [START_REF] Kloeckner | Approximation by finitely supported measures[END_REF] and the references therein which could help to establish such approximation.

Private information, privately controlled parameter

We describe in this Section a generalization of the model of Aumann-Maschler [START_REF] Aumann | Repeated Games with Incomplete Information[END_REF] of repeated games with incomplete information on both sides. We consider a situation were each player observes and controls the evolution of its own continuous time Markov chain and the payo depends on both. The model described here is a generalization of the Aumann-Maschler model since here the private information of each player changes, while in their model it remains fixed.

Several dynamic extensions of the classical model of Aumann-Maschler of incomplete information games have been proposed in the literature. A first extension is due to Renault [START_REF] Renault | The value of Markov chain games with lack of information on one side[END_REF], who studies a game where one player observes a Markov chain in discrete time while his adversary observes the actions only. This has been later extended by Gensbittel and Renault [START_REF] Gensbittel | The value of Markov chain games with incomplete information on both sides[END_REF] to the case when each player observes his own Markov chain and the actions of the other player only. However, both papers consider discrete time games only, with no underlying continuous time dynamics.

A di erent information structure is considered in Gensbittel [START_REF] Gensbittel | Continuous-time limit of dynamic games with incomplete information and a more informed player[END_REF]. In that paper, the players receive di erent information about an exogenous continuous time process with two coordinates: player 1 observes both coordinates while player 2 observes only the second coordinate. As in [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF], the limit value when the stage duration goes to zero is studied and di erent characterization results obtained.

The model described in this Section is borrowed from Cardaliaguet, Rainer, Rosenberg and Vieille [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF].

Let L, M denote two finite sets such that = L ◊ M . Let q L : L ◊ L ◊ A ae R and q M : M ◊ M ◊ B ae R denote two transition rate functions with associated generators Q a L , Q b M given by: Recall from Section 8.1.2 that the history for player 1, denoted H 1 is the set of sequences of the form (r 1 , a 1 , r 2 , a 2 , . . .), with a similar definition for player 2. A behavioural strategy for player 1 is a function ‡ : H 1 ae (A) L . Behavioural strategies for player 2 are defined in a completely analogous way. Note that the strategies here depend on the private information of the players.

Q a L := ! q L (¸,
A strategy µ of player 1 is non-revealing if it is of the form µ : H 1 ae (A). Similarly, a non-revealing strategy of player 2 is a function ‹ : H 2 ae (B). That is, non-revealing strategies are strategies in which players ignore their information about the parameter.

The natural state space in this setting is the law of the unobserved parameter. The players can compute this law as follows:

Player 2 can update his beliefs on player 1's parameter conditional on player 1's actions if he knows how player 1 generated his actions. More precisely, assume player 2's belief is › oe (L) and that he knows that player 1 used the strategy x oe (A) L . If player 2 observes the action a, his conditional belief is given by: At time k + 1, the transition law of the variable ¸k+1 is :

› a k k+1 := exp (fi k Q a k L ) • ›k (x, a k ). (8.21)
Similarly, the transition law of the variable m k+1 is:

÷ b k k+1 := exp 1 fi k Q b k M 2 • ÷k (y, b k ). (8.22) 
To obtain an auxiliary game with a recursive structure as in the general model of Mertens, Sorin and Zamir [75, Section IV] recalled in the Introduction of this thesis, we consider as state variable the belief of each player on its unobserved parameter. In this case, the computation of the state variable is very di erent from the game with no information on the parameter. In particular, in this auxiliary game, each player needs to know the strategy of his adversary to calculate the law of his adversary's parameter.

Once the auxiliary state variables and the dynamics of the game have been specified, one can define the corresponding payo s as in model A, B, C and their value functions.

Let us describe a possible extension of the variational approach when the payo is evaluated as in model A. The crucial di culty relies on the comparison principle.

The case of model B has been treated by Cardaliaguet, Rainer, Rosenberg and Vieille [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF]. Their main results include the existence and characterization of the asymptotic value as " ae 0 as the unique viscosity solution of a limit PDE, with a modified notion of viscosity solutions. In the case of only one uninformed player, a di erent characterization of the asymptotic value is obtained as a martingale maximization problem.

Model A

As in Section 8.1.1, let denote a decreasing evaluation. The -evaluation of the payo associated to a history h = {¸1, m 1 , a In the first game, i oe {1, 2} is chosen with probability (-, 1 ≠ -), player 2 is informed of i and then the game A, (s k , › i , ÷) is played. In the second game, player 2 is not informed. Note that the knowledge of i is irrelevant for player 1, since he knows the parameter ¸1. The first situation is better for player 2. Since the first game is equivalent to playing The Lipschitz continuity follows from the recursive formula in Property c) and the Lipschitz continuity of V A, (s k , •, •). From Property d) and Arzelà-Ascoli's theorem, the set of accumulation points of {V A, } is non-empty. Finally, let us introduce the non-revealing game. This is the game where players use the non-revealing strategies introduced above. Since this is a particular case of the game studied in Section 8.3.3, we know its value exists and is denoted by U . The value of the non-revealing game satisfies: 

U (t k , ›, ‹) = max

The variational approach

An important tool for establishing asymptotic properties of the value function is the variational approach introduced in Cardaliaguet, Laraki and Sorin [START_REF] Cardaliaguet | A continuous time approach for the asymptotic value in two-person zero-sum repeated games[END_REF]. Their main results are recalled in this Section and the proofs adapted whenever needed.

Denote by F S the set of functions f : (L) ◊ (M ) ae [0, 1] such that, for all (›, ÷) oe Fix W oe F and denote by X(t, ›, ÷, W ) the set of optimal strategies of player 1 in T[W (t, •, •)](›, ÷). The set Y(t, ›, ÷, W ) is defined for player 2 in a completely analogous way. A set of strategies is non revealing if all its elements are non revealing strategies.

We introduce now two variational properties, adapted from those proposed by Cardaliaguet, Laraki and Sorin [23, The following Lemma follows from Property c) in Proposition 8.5.3. The proof is adapted from Lemma 8 in Cardaliaguet, Laraki and Sorin [START_REF] Cardaliaguet | A continuous time approach for the asymptotic value in two-person zero-sum repeated games[END_REF]. Proof. Let W satisfying P1 at (t, ›, ÷), and without loss of generality assume the maximum is strict. Let ( i ) ioeN be a subsequence of partitions of [0, 1] such that V A, i converges uniformly to W as i ae OE. Take a fixed ' > 0 and choose i 0 such that

ÎV

A, i ≠ W Î < ', i > i 0 and set := i 0 . Denote by = {t k } koeN the partition induced by . Finally, let k such that the restriction of V A, ≠ " to has a strict maximum at t k . Since t is a strict maximum, t k ae t as i ae OE. Recall that

V A, (t k , ›, ÷) = max xoe (A) L min yoe (B) M E xy Ó ◊ k "(› ¢ ÷, a, b) + V A, (t k+1 , › a k , ÷ b k ) Ô .
Let x k denote an optimal strategy for player 1 in the right hand side of the above equation and b any action of player 2. We have that:

V A, (t k , ›, ÷) AE ÿ aoeA Ó ◊ k "(› ¢ ÷, x k , b) + x k (a)V A, (t k+1 , exp(◊ k Q a L ) • ›(x k , a), exp(◊ k Q b M ) • ÷) Ô AE ◊ k "(› ¢ ÷, x k , b) + V A, (t k+1 , exp(◊ k Q a L ) • ›, exp(◊ k Q b M ) • ÷)
122Chapter 8. Stochastic zero-sum games with a continuous time dynamics where the second inequality comes from concavity. Since (t k , ›, ÷) is a strict maximum of W ≠ " on ◊ (L) ◊ (M ), we have that

V A, (t k+1 , exp(◊ k Q a L ) • ›, exp(◊ k Q b M ) • ÷) ≠ V A, (t k , ›, ÷) is less or equal than "(t k+1 , exp(◊ k Q a L ) • ›, exp(◊ k Q b M ) • ÷) ≠ "(t, ›, ÷) from which we obtain 0 AE "(› ¢ ÷, x k , b) + "(t k+1 , exp(◊ k Q a L ) • ›, exp(◊ k Q b M ) • ÷) ≠ "(t, ›, ÷) ◊ k .
Since (A) L is compact, we have that x k converges to a point x, which, by upper semi continuity of the argmax correspondence and uniform convergence of V A, i gives x oe X(t, ›, ÷, W ). By assumption, x is non revealing. Thus, we get 0 AE ˆ" ˆt + min boe (B)

E xy Ó ÈQ a L • ›, Ò › "Í + e Q b M • ÷, Ò ÷ " f + "(› ¢ ÷, a, b)
Ô for all x non revealing, which concludes the proof.

Following the variational approach of Cardaliaguet, Laraki and Sorin [START_REF] Cardaliaguet | A continuous time approach for the asymptotic value in two-person zero-sum repeated games[END_REF], the next step would be to establish a sort of comparison principle, which is crucial to obtain a unique accumulation point for the family V A, . Conjecture 1. Let W 1 and W 2 in F satisfying respectively P1, P2 and Then, for all t oe [0, 1],

W 1 (t, ›, ÷) AE W 2 (t, ›, ÷).

To prove this, the idea is to assume that max t,›,÷ W 1 (t, ›, ÷) ≠ W 2 (t, ›, ÷) = " > 0. (8.29) and deduce, by suitable penalization arguments, the existence of a point (t Õ , › Õ , ÷ Õ ) such that: -t Õ < 1 -At the point (t Õ , › Õ , ÷ Õ ), W 1 satisfies P1.

-At the point (t Õ , › Õ , ÷ Õ ), W 2 satisfies P2. Thus, finding such point contradicts (8.29).

However, deducing the existence of such point requires very subtle and technically involved arguments and is the main di culty to extend the variational approach to this framework.

A similar di culty arises in Cardaliaguet, Rainer, Rosenberg and Vieille [START_REF] Cardaliaguet | Markov games with frequent actions and incomplete information[END_REF]. The authors establish a comparison principle for the limiting partial di erential equation corresponding to model B using the techniques originally introduced by Crandall, Ishi and Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial di erential equations[END_REF]. We conjecture that similar tools could be used in this framework.

Chapitre 1 Introduction 1 . 1

 111 Thématiques abordées dans cette thèseCette thèse porte principalement sur les jeux répétés (Partie I et III) à somme nulle et à deux joueurs. Dans ces jeux, les intérêts des joueurs sont opposés : le gain d'un joueur est la perte de l'autre.

  Section 4.2] que le maxmin et le minmax sont des solutions des EDP suivantes ˆw≠ ˆt (t, x) + sup uoeU inf voeV + f (x, u, v), Ò x w ≠ (t, x) ˆw+ ˆt (t, x) + inf voeV sup uoeU e f (x, u, v), Ò x w + (t, x) avec les conditions au bord w ≠ (1, x) = w + (1, x) = g(x).

  u, v), pÍ = inf voeV sup uoeU Èf (x, u, v), pÍ pour tous x, p oe R n , on n'a qu'une seule équation, dite l'équation d'Hamilton-Jacobi-Isaacs.

  a, b) = 0. Pour (a, b) oe A ◊ B fixé, la fonction de transition correspond à la vitesse avec laquelle le paramètre saute de Ê a Ê Õ . On note par P (•, Ê, a, b) le semi-groupe de transition correspondant, c'est a dire une famille de fonctions P ' (•, a, b) : ◊ ae [0, 1] tels queP(Ê t+' = Ê Õ |Ê t = Ê, a, b) = P ' (Ê, Ê Õ , a, b) + o('), pour tous t, ' Ø 0 et Ê, Ê Õ oe . L'application t ' ae P t (•,a, b) est solution de l'équation de Chapman-Kolmogorov Ṗt = Q a,b P t , P 0 = I, où Q a,b := (q(Ê, Ê Õ , a, b))

Modèle A :

 : Le jeu à horizon infini On considère d'abord le cas où la durée et le poids de l'étape sont égaux. Soit une probabilité décroissante sur N avec = (◊ 1 , ◊ 2 , . . .) et ◊ 1 < 1/ÎqÎ, où ÎqÎ := max (Ê,a,b)oe ◊A◊B |q(Ê, Ê, a, b)|.

Example 2 . 1 . 1 .

 211 Let us consider the following game:

Example 2 . 2 . 1 . 12 B a 21 a 22 22 .

 221122222 (A game with two states) Here, a +,p 11 means that if (T, L) is played, player 1 receives a payo of a 11 and the game moves to the state + with probability p. The payo matrix of state + is L R T b 11 b 12 B b ≠,q 21 b Here b ≠,q
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 233 Let K be a nonempty closed subset of [0, 1] ◊ R n and z oe K. Let d K (z Õ ) := inf koeK Îz Õ ≠ kÎ denote the usual distance function. -The contingent cone to K at z is the set

Example 3 . 1 . 5 .

 315 Let U = V = [≠1, 1]. Consider the pair of NA strategies (-, -) defined by:

Lemma 3 . 1 . 9 .

 319 Definition 3.1.6 and Definition 3.1.8 are equivalent.

Definition 3 . 1 . 10 .

 3110 (Definitions of the value functions, NA strategies) i) The lower value function is defined by

Proposition 3 . 2 . 5 .

 325 .8b) By similar arguments as in Section 3.2.1 one can prove the following: The value functions of the minorant and majorant game given by (3.8a) and (3.8b) are uniformly Lipschitz and hence they have an accumulation point.

  These strategies are inspired by the extremal aiming method of Krasovskii and Subbotin [61, Section 2.4]. They are obtained applying recursively the construction of Lemma 3.4.1. Using the estimates there, one obtains the following Proposition 3.4.3. For any u oe U, d 2 (x[t 1 , x 1 , u, -(u)](1), W ≠ (1)) AE e A BÎ Î where A, B > 0 are constants independent of .

w x v ú is optimal for player 2 uFigure 3 . 4 . 1 -

 2341 Figure 3.4.1 -Construction of two trajectories using the local game.

Theorem 3 . 5 . 3 .

 353 Let H ú : R n ◊ R n ae R that satisfies Assumption 3.5.1. Let V denote the unique viscosity solution of(3.26).Then ÎV ≠ W Î OE ae 0 as | | ae 0.

f

  (x(Ê), u(Ê), v(Ê))dÊ) in (3.10a), min voeVs,fl max uoeUs,fl h(s + fl, x + s s+fl s f (x(Ê), u(Ê), v(Ê))dÊ), in (3.10b).

29 ) 3 . 5 . 5 .

 29355 Definition (Minimax solutions)-A lower semicontinuous function w :

Figure 4 . 1 . 1 -

 411 Figure 4.1.1 -Construction of two trajectories using the local game.

Figure 4 . 1 . 1 )Lemma 4 . 1 . 3 .

 411413 . The following lemma is inspired by [61, Lemma 2.3.1]. There exist A, B oe R + such that for all t oe [t 1 , 1]:

4. 1 .

 1 Comparison of trajectories 53 Proof. Let d 1 := Îx 1 ≠ w 1 Î and d(t) := Îx(t) ≠ w(t)Î. Then:

Figure 4 . 1 . 2 -

 412 Figure 4.1.2 -Iterative construction of the two trajectories.

Chapter 4 .Definition 4 . 2 . 5 .

 4425 A strategy-based proof of the existence of the value in zero-sum differential games An extremal strategy -= -(", , fi) : U ae V is defined inductively

4. 3 .

 3 Appendix 59

Theorem 5 . 4 . 3 .

 543 (Viability Theorem) Let F be a Marchaud set valued map. Then the following are equivalent: i) (S, F ) is viable.

)

  has a stationary distribution z = z[y, ‡]. In other words, for y, ‡ given, there exists z such that the following holds Q[y, ‡]z = z. (7.5) Let ⁄ : Z ◊ ae Z be defined by (y, ‡) ' ae z[y, ‡] where z[y, ‡] oe Z is defined by

( 7 . 9 )

 79 with z = y, the equation L[ ‡, y]z = 0. (7.11) has a solution, denoted z[ ‡, y].

7 . 3 . 5 .

 735 By a straightforward application of Brouwer's fixed point theorem, one has: Proposition Under Assumptions 7.3.2 and 7.3.4, the operator T fl := fl ¶ fl has a fixed point.

8. 1 Description of the general model 8 . 1 . 1

 1811 Basic dynamicsLet be a finite set, called the parameter space and let A and B denote the finite action sets of players 1 and 2 respectively. The parameter evolves in continuous time, following an homogeneous Markov chain with transition rate function q : ◊ ◊ A ◊ B ae R, i.e. a function that satisfies, for all (Ê, a, b) oe ◊ A ◊ B :0 AE q(Ê, Ê Õ , a, b) < +OE, Ê Õ " = Ê, and ÿ Ê Õ oe q(Ê, Ê Õ , a, b) = 0.For fixed (a, b) oe A ◊ B, the transition function corresponds to the speed with which the parameter jumps from Ê to Ê Õ . To these actions corresponds a transition semigroupP (•, a, b), which is a collection of maps P ' (•, a, b) : ◊ ae [0, 1] such that P(Ê t+' = Ê Õ |Ê t = Ê, a, b) = P ' (Ê, Ê Õ ,a, b) + o(') for all t, ' Ø 0 and Ê, Ê Õ oe . The map t ' ae P t (•, a, b) is the solution of the Chapman-Kolmogorov equation Ṗt = Q a,b P t , P 0 = I (8.1) where the matrix Q a,b := (q(Ê, Ê Õ , a, b)) Ê,Ê Õ is the generator of the Markov chain with transition semigroup P (•, a, b). Let us introduce some notation: let ÎqÎ := max Ê,a,b |q(Ê, Ê, a, b)| denote the largest transition rate. Denote by Î"Î := max Ê,a,b "(Ê, a, b) the uniform norm of the payo function and for a positive constant ", let " " := "". 100Chapter 8. Stochastic zero-sum games with a continuous time dynamics

8. 2 . 1 1 ]

 211 Model A: Game in [0,Let denote a decreasing probability measure over N with = (◊ 1 , ◊ 2 , . . .) and ◊ 1 < 1/ÎqÎ, where ÎqÎ := max (Ê,a,b)oe ◊A◊B |q(Ê, Ê, a, b)|. Let s k := q ¸<k ◊ ¸and consider the partition := {0 = s 1 , s 2 , s 3 , . . .} of [0, 1]. The dynamics of the play at the k≠th stage corresponds to the play at time s k as described in Section 8.1.2.

102Chapter 8 .

 8 Stochastic zero-sum games with a continuous time dynamics

◊ k ae 0 8 . 2 .

 82 Evaluation of the payoff 103 where Î Î := sup koeN ◊ k .

Lemma 8 . 3 . 1 .

 831 Let › s oe ( ) denote the law of the state at time s and (a, b) oe A ◊ B a fixed pair of actions. Then the map s ' ae › s is di erentiable and satisfies: ›s = f (› s , a, b), › t = ›. (8.5) where f (›, a, b) := Q a,b • ›.

8. 3 . 2

 32 The associated di erential game and the HJI equation Let us consider the di erential game ›(s) = f (›(s), a(s), b(s)), ›(0) = › (8.6) where a : [0, 1] ae A, b : [0, 1] ae B are measurable functions. We are interested in the special case f (›, a, b) := Q a,b • ›. In particular, Carathéodory's theorem [31, Chapter 2] applies, which ensures that (8.6) has a unique absolutely continuous solution for any initial condition (t, ›) oe [0, 1] ◊ R | | . We denote the evaluation of this solution at time s by ›[0, ›, a, b](s).

. 10 )

 10 Now let ‡ + (a, b) denote an optimal strategy in the game starting at time s k+1 after actions (a, b) where played at time s k . Finally, let ‡ ú = (u ú , ‡ + ). Let • oe T denote a strategy of player 2 and write • = (v, • + ) where • + oe T and v oe V . Thus,

Theorem 8 . 3 . 6 .

 836 The accumulation point of {W F,fl," } ">0 is the unique viscosity solution of flw(›) ≠ H(›, Òw(›)) = 0 (8.12)

  as in the proof of Theorem 8.3.8. 112Chapter 8. Stochastic zero-sum games with a continuous time dynamics

C 8 . 4 . 5 .

 845 We have already defined V C,fl," and V C,fl . The quantity v " C corresponds to the asymptotic value of a classical, finite stochastic game in the sense of Shapley[START_REF] Shapley | Stochastic games[END_REF]. The existence of the asymptotic value is ensured by Bewley and Kohlberg[START_REF] Bewley | The asymptotic theory of stochastic games[END_REF]. Proposition 8.4.4.(Neyman [78, Theorem 2] The sequence flV C,fl converges uniformly, as fl ae 0.Proof. Let x(fl) oe (A) and y(fl) oe (B) be optimal in (8.17), which defines V C,fl . Then, (fl, x(fl), y(fl), V C,fl ) is a semialgebraic set, because it is defined by finitely many polynomial equations. By Tarski-Seidenberg elimination theorem, (Benedetti and Risler,[11, Theorem 2.21, p.54]) fl ' ae V fl is a semialgebraic function. Clearly, flV C,fl," AE Î"Î, for all " and fl. Consequently, fl ' ae flV C,fl is a bounded, semialgebraic function. The existence of v := lim flae0 flV C,fl follows. Finally, it follows from (8.18) that: Corollary The sequence flV

1 f

 1 that the above equation has a unique solution, which we denote by x[t 1 , x 1 , u, v], in the following extended sense: for any t oe [t 1 , 1],x[t 1 , x 1 , u, v](t) := x 1 + ⁄ t t (x[t 1 , x 1 ,u, v](s), u(s), v(s))ds.In this model, x[t 1 , x 1 , u, v](t) plays the role of the randomly evolving parameter in the basic model in Section 8.1.1.

116Chapter 8 .

 8 Stochastic zero-sum games with a continuous time dynamics For a pair of NAD strategies (-, -) oe A d ◊ B d and t, s oe [0, 1],

Definition 8 . 5 . 2 .

 852 Let µ, ‹ oe M. The Wasserstein distance d(µ, ‹) is defined by:

  ¸Õ, a) " ¸,¸Õ and Q b M := ! q M (m, m Õ , b) " m,m Õ . A couple (¸1, m 1 ) oe L ◊ M is chosen with the commonly known law › ¢ ÷ oe (L) ◊ (M ). Player 1 observes the value of ¸1 and player 2 of m 1 and choose their actions a 1 , b 1 . The game is played as follows: at stage k Ø 2, player 1 receives a signal r k = {¸k, b k≠1 } and player 2 receives a signal s k = {m k , a k≠1 }. The players choose their actions, a k , b k respectively, which depend on the information they receive. Once the actions are chosen, the parameters ¸k and m k follow the Markov chain with generators Q a k L and Q b k M respectively, on the interval [t k , t k+1 ] and the situation is repeated. Hence this model is a particular case of the general model introduced in Section 8.1.1.

118Chapter 8 .

 8 Stochastic zero-sum games with a continuous time dynamics ›(x, a) player 2 is completely analogous: let y oe (B) M and ÷ oe (M ). The conditional distribution of player 2's parameter from player 1's point of view, when strategy y is used and the initial distribution is ÷ is: ÷(y, b)

= exp 1 ◊ k Q b M 2 •

 12 › ¢ ÷, a, b) + V A, (s k+1 , › a k , ÷ b k ) › ¢ ÷, a, b) + V A, (s k+1 , › a k , ÷ b k ) Ô with › a k := exp (◊ k Q a L ) • ›(x, a) and ÷ b k :÷(y, b). d) Let V A,denote the linear extension to R + of the above value functions. The family {V A, } is uniformly Lipschitz. Proof. Let us do the proof of Property a), since the proof of Property b) is completely analogous. For this, we follow Sorin [92, Lemma 2.2]. Let › := -› 1 + (1 ≠ › 2 ), where › 1 , › 2 oe (L) and -oe [0, 1]. Now let us consider two auxiliary games, with an extra stage.

Ô 8 . 5 . 4 .p 2 f+

 8542 › ¢ ÷, a, b) + U (t k+1 , › a k , ÷ b k ) › ¢ ÷, a, b) + U (t k+1 , › a k , ÷ b k )As a straightforward consequence of Proposition 8.3.2, we have: Corollary The family {U } has an accumulation point which is the unique viscosity solution of ˆw ˆt (t, ›, ÷) + H ú (›, ÷, Òw(t, ›, ÷)) = 0 (8.26) with terminal condition w(1, ›, ÷) = 0 where H ú (›, ÷, p 1 , p 2 ) := max xoe (A) min yoe (B) E xy Ó ÈQ a L • ›, p 1 Í + e Q b M • ÷, p 2 f + "(› ¢ ÷, a, b) "(› ¢ ÷, a, b) Ô .

Lemma 8 . 5 . 5 .

 855 (L) ◊ (M ), f (•, ÷) is concave and f (›, •) is convex. Let us introduce the operator T : F S ae F S which is defined by: T[f ](›, ÷) := val x,y E xy Ó f ( ›(x, a), ÷(y, b)) Ô This is the projective operator, see Sorin [92, Appendix C]. Note that the projective operator is continuous. One important property of the projective operator is the following: 8.5. Some concluding remarks 121 (Lemma 4.26 in [92, Appendix C]). For all f oe F S and (›, ÷) oe (L) ◊ (M ), we have T[f ](›, ÷) = f (›, ÷). Let F denote the set of functions W : [0, 1] ◊ (L) ◊ (M ) ae [0, 1] such that, for all t oe [0, 1], W (t, •, •) oe F S . Let F 0 denote the set of accumulation points of {V A, } , which is non-empty by Property d) in Proposition 8.5.3. From the dynamic programming formula, i.e. Property c) in Proposition 8.5.3, we get that F 0 µ F.

Lemma 8 . 5 . 7 .

 857 Any W oe F 0 satisfies P1 and P2.

•

  P3: W (1, ›, ÷) AE W 2 (1, ›, ÷), '(›, ÷) oe (L) ◊ (M ).

  Lions au Collège de France. On considère N joueurs dans R d . La position du joueur i a la date t est De façon heuristique, si on prend la limite quand N ae +OE, on obtient le système d'EDP suivant :

	1.4. Jeux stochastiques à étape courte	5
	Example 1.3.1. donnée par				dX i t = -i t dt +	Ô	2dB i t
	Chaque joueur i minimise son coût :
		⁄ t	T	1 2	|-i
	x j s	.		

s | 2 + F (m ≠i s,N )ds + g(x i T , m ≠i T,N ) où m ≠i s,N := 1 N ≠1 q j" =i "

  Le jeu se déroule de la façon suivante : à la date t

	s	t k+1 t k	Ÿ(s)"

k , la valeur du paramètre est Ê k , que l'on suppose connu pour l'instant. Les joueurs choisissent leurs actions a k , b k . Puis, le paramètre suit la chaîne de Markov avec générateur Q a k ,b k pour une période de temps fi k . Le nouveau paramètre Ê k+1 est observé à la date t k+1 . Sa loi est P fi k (Ê k , •, a k , b k ). Les actions restent constantes sur l'intervalle [t k , t k+1 ). Un paiement instantané " s := "(Ê s , a k , b k ) est payé pour le jour 2 au joueur 1 à la date s oe [t k , t k+1 ). A la date t k+1 , le paiement d'étape " fi k := s ds a été reçu pour le joueur 1 et la situation se répète.

  1 , b 1 , Ê 2 , a 2 , b 2 , . . .} est :

	J	fl," (h) :=	+OE ÿ	" fl,j," ,
					k=1
	avec			
	" fl,j," :=	⁄ t " t " j+1
			⁄	t " j+1
			t "

j fle ≠fls " s ds. On s'intéresse ici au comportement limite lorsque " et fl tend vers zero. Modèle C : Le jeu a étape courte et évaluation générale On peut aussi considérer le paiement ⁄ +OE 0 Ÿ(s)" s ds, où Ÿ : R + ae R + est une densité sur R + . Dans le cas particulier Ÿ(s) := fle ≠fls avec fl > 0, on retombe sur le jeu précédent. Soit Ÿ j," := Ÿ(t " j ). Le paiement correspondant à l'histoire h := {Ê 1 , a 1 , b 1 , Ê 2 , a 2 , b 2 , . . .} est J Ÿ," (h) := +OE ÿ j=1 " Ÿ,j," , avec " Ÿ,j," := j Ÿ(s)" s ds.

  AE 0. With this procedure one obtains the following. Lipschitz and bounded. Let (t 1 , x 1 ) oe K.

	Proposition 2.3.8. Consider a partition of [0, 1], denoted := {0 AE t 1 , . . . , t Î Î its mesh, i.e. Î Î := max m<N t m+1 ≠ t	N = 1} and

2 , . . . s N = 1. If at time s m the state z m := (s m , y m ) is in K, choose any u. If z m is outside of K, let w m denote a closest point of z m into K and choose u m such that Èz m ≠ w m , (s m , f(y m , u m ))Í m . Let (K, F ) be viable, with F as in (2.5) and f

Example 2.4.1. Let

  us consider first N players in R d . The random position of player i

	following example is borrowed from Cardaliaguet's notes on mean field games [20,
	p.2]:
	at time t is given by

evaluation function:

  {Ê 1 , a 1 , b 1 , Ê 2 ,a 2 , b 2 , . . .}. The game is the game with

				Chapter 2. Introduction
	Consider a probability distribution	= {◊	k }	koeN + oe (N + ) and a history h :=

sequence of stages and let fi

  1 , t 2 , . . .} denote a partition of R + , called denote the duration of the k-th stage, that begins at time t k . Let Ÿ : R + ae R + denote an integrable function. The weight of the k-th stage is the quantity Ÿ(t

	k )fi k , which is an approximation of	s	t k+1 t k	Ÿ(s)ds.

k := t k+1 ≠ t k

  x 1 ), the game (t 1 , x 1 ) has a value, denoted by V(t 1 , x 1 ). Under Assumptions 3.1.3 and 3.1.1 and from the familiar arguments [25, Proposition 1 and 2] and[START_REF]Introduction to Di erential Games[END_REF] Lemma 3.3], we collect the following properties of the value functions in the next proposition: ◊ R n and all t Õ oe [t, 1],

	Proposition 3.3.1. (Dynamic programming) The maxmin and the minmax are Lipschitz
	continuous and they satisfy the following dynamic programming principle: for all (t, x) oe [0, 1]

  Assume that (3.18) has a C 1 solution. Let us furthermore assume that there exist measurable maps u

	58, Theorem
	4.4.1].
	Theorem 3.3.3.

  Chapter 3. Value of zero-sum differential games Proof. Observe that the sequence W has a subsequence that converges locally uniformly to a function W . Let " : [0, 1] ◊ R n ae R a C 1 function such that W ( t, x) = "( t, x) and W (s, y) AE "(s, y) for (s, y) oe [0, 1] ◊ R n . Now let W n be a convergent subsequence. Here,n = {t 1 = t,t n 2 , . . . t n n+1 = 1}. Let k such that t n k AE t < t n k+1 and ( tn , xn ) such that W n ≠ " has a maximum at ( tn , xn ), when restricted to [t n

	x oe R n ,	k , t n k+1 ]. It follows that, for all
	W n (t n k+1 , x) AE "(t n k+1 , x) + W n ( tn , xn ) ≠ "( tn , xn ).
	Applying the operator S tn≠t n k+1	

  These functions satisfyH ≠ AE H + . If the equality H + (t, x, ›) = H ≠ (t, x, ›) holds, the game (t, x, ›) has a value, denoted by H(t, x, ›). (t, x, ›) has a value for all (t, x, ›) oe [0, 1] ◊ R n ◊ R n .Assumptions 4.1.1 and 4.1.2 hold in the rest of the paper.

	Assumption 4.1.2.

  The proof of these two properties still holds by replacing (t 1 , x 1 ) and t oe [t 1 , 1] by any (t, x) oe W "

	t Õ oe [t, 1], so that W " ¸satisfies P1 and P2.	¸and
	Extremal strategies in G(t 1 , x 1 )	

x) AE ¸} . Lemma 4.2.4. For any ¸Ø "(t 1 , x 1 ), the ¸-level set of " satisfies P1 and P2. Proof. x 1 oe W " ¸(t 1 ) so that W " ¸(t 1 ) is non empty. By (i), W " ¸(t) is a closed set for all t oe [0, 1]. The property (ii) implies that for any t oe [t 1 , 1], u oe U and n oe N ú there exists v n oe V such that: ¸Ø "(t 1 , x 1 ) Ø " ! t, x[t 1 , x 1 , u, v n ](t) " ≠ 1 n . (4.11) The boundedness of f implies that x n := x[t 1 , x 1 , u, v n ](t) belongs to some compact set. Consider a subsequence (x n ) n such that lim "(t, x n ) = lim inf naeOE "(t, x n ), and such that (x n ) n converges to x oe R n . Take the limit, as n ae OE, in (4.11). Then by (i) one has: ¸Ø "(t 1 , x 1 ) Ø " ! t, x). Consequently, x oe W " ¸(t) " = ÿ and inf noeN ú d ! x[t 1 , x 1 , u, v n ](t), W " ¸!t)) = 0.

Definition 5.2.1. (

  

		0.	(5.4)
	-An upper semicontinuous function w : [0, 1]◊R n ae R is a viscosity subsolution of (5.3a) if for any (t, x) oe [0, 1] ◊ R n and a C 1 test function " : [0, 1] ◊ R n ae R such that "(t, x) = w(t, x) and "(s, y) Ø w(s, y) for (s, y) on a neighborhood of (t, x), then
	ˆ" ˆs (t, x) + H + (t, x, Ò	y "(t, x)) Ø 0.	(5.5)

Viscosity solutions) -A lower semicontinuous function w : [0, 1] ◊ R n ae R is a viscosity supersolution of (5.3b) if for any (t, x) oe [0, 1]◊R n and a C 1 test function " : [0, 1]◊R n ae R such that "(t, x) = w(t, x) and "(s, y) AE w(s, y) for (s, y) on a neighborhood of (t, x), then ˆ" ˆs (t, x) + H ≠ (t, x, Ò y "(t, x)) AE -A continuous function is a viscosity solution if it is both a viscosity super and subsolution.

  By Lemma 5.3.4, we only need to consider -Ø 0. If -> 0, then › := Â/-oe ˆfiw ≠ (t, x) and since w is a proximal supersolution,

	Chapter 5. Generalized solutions of HJI equations
	-(b) ∆ (c): Let u oe U fixed. Let (Â	
	› t + min voeV	Èf (t, x, u, v), › x Í AE 0.
	Since the above minimum is attained, there exists v oe V such that
	È(›	t , › x , ≠1), (1, f(t, x, u, v), 0)Í AE 0
	which implies (c) by Theorem 5.4.3. It remains to look at the case -= 0.
	Fix ' > 0 and {' plying Theorem 5.3.5 for each ' noeN a sequence of positive numbers that converges to zero. Ap-n } n we obtain that there exists (t n , x n , Â tn , Â n ) xn , ≠⁄ such that
	(Â
	The second inequality follows from the convergence of {(t

(a) ∆ (b): Let w ≠ be a viscosity supersolution and › oe ˆfiw ≠ (t, x). Let ‡, ÷ as in Theorem 5.3.6. Define the following test function:

"(s, y) := w ≠ (t, x) + È›, (s, y) ≠ (t, x)Í ≠ ‡Î(s, y) ≠ (t, x)Î 2

for (s, y) oe (t, x) + ÷B. Observe that "(t, x) = w ≠ (t, x) and "(s, y) AE w ≠ (s, y) by (5.9). Since ˆ" ˆs (t, x) = › t and Ò y "(t, x) = › x , substituting these last two terms in in (5.4) gives (5.7). t , Â x , ≠-) oe N P epiw ≠ (t, x, w ≠ (t, x)). tn , Â xn , ≠⁄ n ) oe ˆfiw ≠ (t n , x n ). and ⁄ n > 0. Note that the sequence {(t n , x n , Â tn , Â xn , ≠⁄ n )} noeN converges to (t, x, Â t , Â x , 0) as n goes to infinity. Now let v n oe V such that

 tn + Èf (t n , x n , u, v n ),  xn Í AE 0. It follows that, for n Ø N ' ,  t + min voeV Èf (t, x, u, v),  x Í AE  t + Èf (t, x, u, v n ),  x Í AE  tn + Èf (t n , x n , u, v n ),  xn Í + ' AE '. n , x n ,  tn ,  xn , ≠⁄ n )}

noeN and the third from the choice of v n . -(c) ∆ (a): Take

  T +1 be an external and fixed parameter. Consider the following one player game

		t+1 is chosen randomly using the transition function
	Q(x t, a t, m	t ) and the situation is repeated. At stage t = T a final payo g(x T , m T ) is
	allocated. The initial state of the player is chosen using the distribution m 0 . We assume also that m is known.
	Let H

m : at stage t oe T , the player observes his own state x t and chooses an action a t . Once the action is chosen, he receives the payo ¸(x t , a t , m t ). The new state x t = (X ◊ A) t denote the history up to stage t and let H = fi toeT H t the set of possible histories. A pure strategy is a function ‡ : H ae A where ‡ = ( ‡ t ) toeT . Denote by the set of strategies.

  Assumption 6.2.2 holds in particular in the following case. Chapter 6. Discrete time mean field games Proof. Let : P(X ) T +1 ae M the map that sends m to the optimal Markovian strategy ‡ m = ( ‡ m t ) toeT in the game m . Note that ‡ m is unique from Assumption 6.2.2. From the continuity assumptions and the dynamic programming equation it easily follows by

	induction that strategy ( ‡	is continuous. The map	:	M ae P(X ) T +1 that sends a Markovian

Assumption 6.2.3. Assume A is convex and that for all (x, m) oe X ◊ P(X ), ¸(x, •, m) and Q(x, •, m) are a ne functions. Proposition 6.2.4. Let m 0 denote the initial distribution of the players in the state space X . Under Assumption 6.2.2, there exists a mean field equilibrium. t )

  and Rosenthal[START_REF] Jovanovic | Anonymous sequential games[END_REF] Theorem 1]. The mean field equilibrium ( ‡, m) is a distributional equilibrium.Proof. Let ( ‡, m) denote a mean field equilibrium and for t = 0, . . . T ≠ 1 let µ

	Proposition 6.3.2. Observe that µ t (x, a) > 0 ≈∆ a = ‡ t (x). The marginal distributions satisfy µ t,X = m t and from (6.2) we obtain that m t+1

t := m t ¢ ‡ t .

  The proof of this proposition is a straightforward application of Brouwer's fixed point theorem.

	Proposition 7.2.8. Under Assumptions 7.2.1, 7.2.3 and 7.2.6,

⁄ ¶ ⁄ has a fixed point. Definition 7.2.9. A stationary mean field equilibrium is a pair ( ‡, z) oe ◊ Z such that z is a fixed point of ⁄ ¶ ⁄ and ‡ is the strategy associated to ⁄ (z).

  1.1. Consider a partition = {t 1 = 0, t 2 , . . .} of R + and set fi k := t k+1 ≠t k . On the discrete time game we describe below, we assume that the k-th stage of the game takes place at time t k and its duration is fi k . Let R, S be two sets, called the signal sets and , A, B as in Section 8.1.1. Let " : ◊ A ◊ B ae [0, 1] denote the running payo . We consider also a transition function Q : ◊ A ◊ B ae (R ◊ S). us begin with a general model adapted from Mertens, Sorin and Zamir [75, Section IV]. -An initial parameter Ê 1 and signals r 1 , s 1 are chosen randomly according to an initial distribution Q 0 oe ( ◊ R ◊ S). -After learning his signal r 1 (resp. s 1 ), player 1 (resp. 2) chooses an action a 1 (resp. b 1 ). The stage payo " 1 := fi 1 "(Ê 1 , a 1 , b 1 ) is allocated to player 1. The actions are chosen independently. -The parameter follows the Markov chain with generator Q a 1 ,b 1 in the time interval [t 1 , t 2 ]. Hence, at time t = t 2 , the parameter Ê 2 has law P fi 1 (Ê 1 , •, a 1 , b 1 ). -Similarly, at time t k , for k Ø 2, which corresponds to the k ≠ th stage of the game, the value of the parameter is Ê k . The signals r Markov chain with generator Q a k ,b k on the time interval [t

	Let k , s k for players 1 and 2 respectively
	are chosen according to Q(Ê k , a k≠1 , b k≠1 ). Each player learns his signal and choose
	their actions a	
		k , t k+1 ]. At
	time t = t k+1 , the parameter Ê	k+1 has law P fi k (Ê

k ,b k , and a payo "

k := "(Ê k , a k , b k ) is assigned. The parameter Ê k follows the k , •, a k , b k

  Thus, at stage k + 1, players know {›, a 1 , b 1 , . . . a Hence, they are able to calculate the law › k+1 oe ( ) of Ê k+1 before choosing their actions a k+1 , b k+1 . Let us explain briefly how this is done. Once the actions are chosen at time t k , consider the generator induced by the actions

k≠1 , b k≠1 , a k , b k }.

Proposition 8.3.4.

  The unique accumulation point of V S, is the unique viscosity solution of(8.8).Let us prove the convergence of V S, in a di erent way, assuming that (8.8) has a su ciently regular solution. This helps us to produce '≠optimal strategies for the sequence of discrete games.

	Proposition 8.3.5. Assume that (8.8) has a solution V

S such that: i) For all t oe [0, 1], the function V S (t, •) is continuously di erentiable. ii) There exists a partition 0

  an arbitrary sequence of actions of player 2 and let › ú 1 = ›, › ú 2 , . . . › ú n+1 denote the trajectory induced by v and -ú .

	Let V k

  14) satisfies suitable regularity assumptions. Assume that (8.14) has a C 2 solution V

	Theorem 8.3.8.

S,Ÿ such that, for all (t, ›) oe

  .17) 

	Proposition 8.4.2. (Remark 8 in [78]). The equation (8.17) has a unique solution,
	denoted V	C,fl .
	Proof. Observe that any solution of (8.17) is a fixed point of

  .[START_REF] Camilli | A semi-discrete approximation for a first order mean field game problem[END_REF] The proof of the following result follows in a similar way as the proof of Theorem 8.4.1.

	Theorem 8.4.7. Assume (8.19) has a C 1 solution. Then lim	"ae0 V	C,Ÿ," = V C,Ÿ .
	Proof. Let x		

t denote an optimal strategy for player 1 in the local game Ÿ(t)"(Ê, a, b)

  • := (• 1 , • 2 , . . .)denote an arbitrary strategy of player 2. Let us introduce:

			Y ]		
	Y j := E	x j ,• j	[ "Ÿ		
	Now observe that			
			V	C,Ÿ (t " j+1 , Ê Õ ) = V	C,Ÿ (t " j , Ê Õ ) + "	dV dt C,Ÿ	(t Õ , Ê Õ )
	for some t Õ oe [t " j , t " j+1 ]. From (8.19) we deduce
	dV C,Ÿ dt (t We also have
					exp("Q a,b ) = I + "Q a,b + e 1 (")
	where e 1 (") AE ÎqÎ" 2 /2. We get that q Ê Õ oe V	C,Ÿ (t " j+1 , Ê

j "(Ê j , a, b) + ÿ Ê Õ oe V C,Ÿ (t " j+1 , Ê Õ ) • exp("Q a,b )(Ê j , Ê Õ ) | H j Z \ . Õ , Ê Õ ) AE Î"Î • Ÿ(t Õ ) • (1 + ÎqÎ) Õ ) • exp("Q a,b )(Ê j , Ê Õ ) equals q Ê Õ oe ; "V C,Ÿ (t " j , Ê Õ )q(Ê j , Ê Õ , a, b) + " 2 dV C,Ÿ dt (t Õ , Ê Õ )q(Ê j , Ê Õ , a, b) + V C,Ÿ (t " j , Ê Õ )e 1 (") < + + V C,Ÿ (t " j , Ê j ) + " dV C,Ÿ dt (t " j , Ê j ) + o(" 2 )
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  1 , b 1 , ¸2, m 2 , a 2 , b 2 , . . .} is ) with respect to the probability induced by the corresponding generators. Let A, (s k , ›, ÷) denote the game starting at s k and V A, (s k , ›, ÷) denote its value, i.e., The value of this game exists by Sion's minmax theorem. We study this game directly as a game played on the nodes of a partition of [0, 1]. First let us collect some properties of the value function in the next proposition.

	V A, (s k , ›, ÷) := max ‡oe • oeT max min • oeT ‡oe	E E	‡• ‡•	I OE ÿ I OE ÿ
	Proposition 8.5.3. Let (s satisfies the following properties: k , ›, ÷) oe	A, (s k , ›, ‹) ◊ (L) ◊ (M ). The value function V
	a) V A, (s k , •, ‹) is concave. b) V A, (s k , ›, •) is convex. c) The following recursive formula holds:
	V A, (s			
	J	A, (h) := E	I OE ÿ	

k=1 ◊ k " ((¸k, m k ), a k , b k ) J

where the expectation is taken on each interval [s k , s

k+1 r=k ◊ r " ((¸r, m r ), a r , b r ) J := min r=k ◊ r " ((¸r, m r ), a r , b r ) J . k , ›, ÷) = max xoe (A) L

  Property c) follows from similar arguments as in Sorin [92, Proposition 4.21]. For Property d), let us prove first the Lipschitz continuity of V A, (s k , •, •). For a couple of behavioural strategies ( ‡, • ) let If (› 1 , ÷ 1 ) oe (L) ◊ (M ) and (› 2 , ÷ 2 ) oe (L) ◊ (M ) denote two couples of beliefs of each player at time s ¸and for i = 1, 2 (› a i , ÷ b i ) oe (L) ◊ (M ) denote the beliefs at time s 8. Stochastic zero-sum games with a continuous time dynamicsIt follows that, if J exp (◊ ¸ÎqÎ) Î"Î • Î(› 1 , ÷ 1 ) ≠ (› 2 , ÷ 2 )Î (8.23) • Î(› 1 , ÷ 1 ) ≠ (› 2 , ÷ 2 )Î (8.24) AE (1 + ÎqÎ) • Î"Î • Î(› 1 , ÷ 1 ) ≠ (› 2 , ÷ 2 )Î. (8.25) 

	AE	OE ÿ	◊	r • (1 + ◊	¸ÎqÎ)Î"Î
		r=k			
	J A, ( ‡, •, s	k , ›, ÷) := E	‡•	I OE ÿ

A, (s k , › 1 , ÷) with probability -and A, (t k , › 2 , ÷) with probability 1 ≠ -, then:

-V A, (s k , › 1 , ÷) + (1 ≠ -)V A, (s k , › 2 , ÷) AE V A, (s k , ›, ÷).

r=k ◊ r " ((¸r, m r ), a r , b r ) J . ¸+1 after observing actions (a, b) oe A ◊ B, then, it follows from (8.21) and (8.22) that:

Î(› a 1 , ÷ b 1 ) ≠ (› a 2 , ÷ b 2 )Î AE exp (◊ ¸ÎqÎ) • Î(› 1 , ÷ 1 ) ≠ (› 2 , ÷ 2 )Î. 120Chapter i := J A, ( ‡, •, s k , › i , ÷ i )

for simplicity, we obtain:

|J 1 ≠ J 2 | AE OE ÿ r=k ◊ r

  Properties P1 and P2]. Properties 8.5.6. (Variational properties) Let " : [0, 1] ◊ (L) ◊ (M ) ae R denote a C 1 test function and W oe F.

• P1: If (t, ›, ÷) oe [0, 1] ◊ (L) ◊ (M ) are such that X(t, ›, ÷, W ) is non-revealing, and W ≠ " has a local maximum at (t, ›, ÷) then ˆ" ˆt (t, ›, ÷) + H ú (›, ÷, Ò"(t, ›, ÷)) Ø 0.

(8.27)

• P2: If (t, ›, ÷) oe [0, 1] ◊ (L) ◊ (M ) are such that Y(t, ›, ÷, W ) is non-

revealing, and W ≠ " has a local minimum at (t, ›, ÷) then ˆ" ˆt (t, ›, ÷) + H ú (›, ÷, Ò"(t, ›, ÷)) AE 0. (8.28)

This is a one-player Markov decision process, which are well understood. See for instance[START_REF] Hernández-Lerma | Discrete-Time Markov Control Problems[END_REF].

Note that this discretization is not the same as in[START_REF]The convergence problem for di erential games II, Advances in Game Theory[END_REF], where alternating moves of the players are considered.
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Proof. Let u oe U be fixed and let u ú be optimal in (t 1 , x 1 , x 1 ≠ w 1 ). By P2, for all ' > 0 there exists v (',u ú ) oe V such that the point w ' (t) := x[t 1 , w 1 , u ú , v (',u ú ) ](t) satisfies D(w ' (t), W(t)) AE ' (see Figure 4.1.3). We use the following abbreviation: x u (t) := x[t 1 , x 1 , u, v ú ](t). The triangular inequality gives D(x u (t), W(t)) AE Îx u (t) ≠ w ' (t)Î + '. Taking the limit, as ' ae 0, one has that:

2 for all ' > 0. The result follows by the choice of w 1 .

A key Corollary

For any u oe U, define a trajectory x u on [t ). Implicitly, we are using two selection rules fi 1 and fi 2 defined as follows:

x, ›) an optimal action for player 2 in the local game (t, x, ›). Thus, 

) AE e A BÎ Î. This result can be interpreted as follows: under P1-P2 for any control u oe U there exists a "reply" -(u) oe V (which is non anticipating with delay, and piecewise constant along ) which keeps a trajectory starting from W(t 1 ) at time t 1 arbitrarily close to W(t N ) at time t N .

Di erential Games

Consider now the zero-sum di erential game G(t 1 , x 1 ) played in [t 1 , 1] and with the following dynamics in R n :

Chapter 6. Discrete time mean field games Moreover, if J i N (x, ‡, m) denotes the payo of player i in the N -player game when all players follow ‡ and player i Õ s initial state is x, then:

Before proceeding to the proof, we collect some technical results, starting with a refinement of the law of large numbers for Bernoulli variables due to Adlakha, Johari and Weintraub [2, Lemma 11 

Then, by the Borel-Cantelli lemma, the event on the left hand side occurs almost surely for only finitely many N. The result now follows.

The following Lemma is the crucial ingredient for our main result. Lemma 6.4.4. Let x be a fixed initial state, ( ‡, m) a mean field equilibrium. Assume all the players j " = i in the N -player game follow the mean field equilibrium strategy ‡ and that player i follows the strategy • . Then, for all t oe T ,

Appendix: An approximation Lemma

Let S denote a finite set. We identify the set S with the canonical basis of R |S| . Denote by M the subset of R |S|◊|S| consisting of transition matrices for Markov chains over S.

Let P : (S) ae M denote a Lipschitz continuous function with respect to the L 1 norm with Lipschitz constant L P . Since S is finite, we have that the total variation distance