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Résumé

Résumé

Cette thèse étudie les liens entre a) les jeux en temps discret et continu, et b) les
jeux à très grand nombre de joueurs identiques et les jeux avec un continuum de joueurs.
Une motivation pour ces sujets ainsi que les contributions principales de cette thèse sont
présentées dans le Chapitre 1. Le reste de la thèse est organisé en trois parties. La Partie
I étudie les jeux di�érentiels à somme nulle et à deux joueurs. Nous décrivons dans le
Chapitre 3 trois approches qui ont été proposées dans la littérature pour établir l’existence
de la valeur dans les jeux di�érentiels à deux joueurs et à somme nulle, en soulignant les
liens qui existent entre elles. Nous fournissons dans le Chapitre 4 une démonstration de
l’existence de la valeur à l’aide d’une description explicite des stratégies ‘-optimales. Le
Chapitre 5 établit l’équivalence entre les solutions de minimax et les solutions de viscosité
pour les équations de Hamilton-Jacobi-Isaacs. La Partie II porte sur les jeux à champ
moyen en temps discret. L’espace d’action est supposé compact dans le Chapitre 6, et
fini dans le Chapitre 7. Dans les deux cas, nous obtenons l’existence d’un ‘- équilibre de
Nash pour un jeu stochastique avec un nombre fini de joueurs identiques, où le terme
d’approximation tend vers zéro lorsque le nombre de joueurs augmente. Nous obtenons
dans le Chapitre 7 des bornes d’erreur explicites, ainsi que l’existence d’un ‘-équilibre de
Nash pour un jeu stochastique à durée d’étape évanescente et à un nombre fini de joueurs
identiques. Dans ce cas, le terme d’approximation est fonction à la fois du nombre de
joueurs et de la durée d’étape. Enfin, la Partie III porte sur les jeux stochastiques à durée
d’étape évanescente, qui sont décrits dans le Chapitre 8. Il s’agit de jeux où un paramètre
évolue selon une chaîne de Markov en temps continu, tandis que les joueurs choisissent
leurs actions à des dates discrètes. La dynamique en temps continu dépend des actions des
joueurs. Nous considérons trois évaluations di�érentes pour le paiement et deux structures
d’information : dans un cas, les joueurs observent les actions passées et le paramètre, et
dans l’autre, seules les actions passées sont observées.

Mots-clefs

Jeux dynamiques à somme nulle, jeux di�érentiels à somme nulle, jeux à champ moyen
en temps discret, jeux stochastiques à étape evanescente
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Some links between discrete and continuous in dynamic
games

Abstract
In this thesis we describe some links between a) discrete and continuous time games

and b) games with finitely many players and games with a continuum of players. A
motivation to the subject and the main contributions are outlined in Chapter 2. The rest
of the thesis is organized in three parts: Part I is devoted to di�erential games, describing
the di�erent approaches for establishing the existence of the value of two player, zero sum
di�erential games in Chapter 3 and pointing out connections between them. In Chapter 4
we provide a proof of the existence of the value using an explicit description of ‘-optimal
strategies and a proof of the equivalence of minimax solutions and viscosity solutions
for Hamilton-Jacobi-Isaacs equations in Chapter 5. Part II concerns discrete time mean
field games. We study two models with di�erent assumptions, in particular, in Chapter
6 we consider a compact action space while in Chapter 7 the action space is finite. In
both cases we derive the existence of an ‘-Nash equilibrium for a stochastic game with
finitely many identical players, where the approximation error vanishes as the number of
players increases. We obtain explicit error bounds in Chapter 7 where we also obtain
the existence of an ‘-Nash equilibrium for a stochastic game with short stage duration
and finitely many identical players, with the approximation error depending both on the
number of players and the duration of the stage. Part III is concerned with two player,
zero sum stochastic games with short stage duration, described in Chapter 8. These are
games where a parameter evolves following a continuous time Markov chain, while the
players choose their actions at the nodes of a given partition of the positive real axis. The
continuous time dynamics of the parameter depends on the actions of the players. We
consider three di�erent evaluations for the payo� and two di�erent information structures:
when players observe the past actions and the parameter and when players observe past
actions but not the parameter.

Keywords
Zero sum dynamic games, zero sum di�erential games, discrete time mean field games,

short stage stochastic games.
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Chapitre 1

Introduction

1.1 Thématiques abordées dans cette thèse
Cette thèse porte principalement sur les jeux répétés (Partie I et III) à somme nulle et

à deux joueurs. Dans ces jeux, les intérêts des joueurs sont opposés : le gain d’un joueur
est la perte de l’autre.

Même dans ce cadre particulier, la théorie est assez riche et on voit intervenir des outils
mathématiques très variés.

Une autre thématique qui nous intéresse, dans la Partie II, correspond aux jeux avec
un très grand nombre des joueurs identiques, au sens où ils ont les mêmes fonctions de
paiement et la même dynamique. Intuitivement, plus il y a de joueurs, plus l’analyse du
jeu devient compliquée. Néanmoins, si les joueurs sont identiques, on peut controller cette
complexité dans un terme dit de champ moyen qui sera défini plus tard.

Nous introduisons maintenant de façon plus précise les thématiques étudiés et les
principales contributions.

1.2 Jeux di�érentiels
Soit (t1, x1) œ [0, 1] ◊ Rn. Soient U et V deux sous-ensembles compacts d’un espace

euclidien.
On définit

U(t1) = {u : [t1, 1] æ U, mesurable}, V(t1) = {v : [t1, 1] æ V, mesurable}.

Si t1 = 0, ces ensembles seront notés U et V, respectivement.
Les ensembles U(t1), V(t1) sont les ensembles des fonctions de contrôle. Les éléments

de U, V sont dits contrôles ou actions.
Soit f : Rn ◊U ◊V æ Rn et (u, v) œ U(t1)◊V(t1) une couple de fonctions de contrôle.

On considère l’équation di�érentielle ordinaire (EDO) suivante

x(t1) = x1, ẋ(t) = f(x(t), u(t), v(t)) p.s. sur [t1, 1]. (1.1)

On fait l’hypothèse suivante sur f , pour que la trajectoire de l’EDO soit bien définie :

Assumption 1.2.1. On suppose que la fonction f est continue, bornée, et qu’il existe
c > 0 tel que pour tout (u, v) œ U ◊ V et x, y œ Rn :

Îf(x, u, v) ≠ f(y, u, v)Î Æ cÎx ≠ yÎ.

On pose ÎfÎ := sup(x,u,v) Îf(x, u, v)Î < +Œ.



2 Chapitre 1. Introduction

Avec cette hypothèse, on utilise le théorème de Carathéodory, [31, Chapter 2] pour
déduire que l’EDO (1.1) possède une unique solution. L’évaluation de cette solution au
temps s est noté par x[t1, x1, u, v](s) et est interprétée au sens étendu suivant : pour tout
t œ [t1, 1],

x[t1, x1, u, v](t) := x1 +
⁄

t

t1
f(x[t1, x1, u, v](s), u(s), v(s))ds.

Cela définit la dynamique. On pourrait aussi considérer l’intervalle [0, +Œ) pour
définir la dynamique.

Pour bien spécifier un jeu di�érentiel, il faut en définir les objectifs et l’information
et les stratégies de chaque joueur. Intuitivement, le joueur 1 choisit u et le joueur 2 v pour
atteindre un objectif quantitatif ou un objectif qualitatif, qui nous allons spécifier
tout de suite. Cette distinction entre objectifs quantitatifs et qualitatifs a déjà été faite par
Isaacs [58], qui introduit les termes games of kind pour les jeux où l’objectif est qualitatif,
et games of degree pour ceux où l’objectif est quantitatif.

On suppose que l’information est complète, ce qui veut dire que les joueurs connaissent
touts les paramètres du jeu : état initial, dynamique, paiement et sa description.

Cas qualitatif

Pour le cas qualitatif, on considère le jeu de cible : l’objectif du joueur 1 est de faire
que la variable d’état atteigne l’ensemble fermé M , dit cible, à la date t = 1, et l’objectif
du joueur 2 est de l’en empêcher. On note ce jeu �

M

(t1, x1).
On se pose les questions suivantes :

Question 1. 1. Pour une condition initiale (s, y) œ [t1, 1] ◊ Rn donnée, peut-on
décider quel joueur a une stratégie gagnante ?

2. Construire des stratégies spécifiques.

On reformule la première question de la manière suivante :

Problem 1. Construire une partition de [t1, 1] ◊ Rn en deux ensembles K1, K2, satisfai-
sant :

i) Si (1, x) œ K1, alors x œ M .
ii) Pour tout (s, y) œ K1, il existe une stratégie du joueur 1 telle que la trajectoire
induite reste sur K1.

iii) Pour tout (s, y) œ K2 il existe une stratégie du joueur 2 telle que la trajectoire
induite n’atteigne pas l’ensemble cible M à la date t = 1.

Un théorème qui permet établir une telle caractérisation est un théorème d’alter-
native.

Nous n’étudions pas les jeux qualitatifs en détail, mais nous voudrions faire quelques
remarques. Une complication importante dans les jeux en temps continu est qu’il n’existe
pas une structure canonique d’information. Nos décrivons quelques exemples de structures
d’information étudiées dans la littérature.

Un des premiers théorèmes d’alternative a été démontré par B.N. Pöeni�nyj [79], qui
a étudié le jeu de cible avec la classe de stratégies suivantes :

Definition 1.2.2. (‘-stratégies) On dit que les joueurs utilisent des ‘-stratégies dans le
jeu de cible si le jeu est joué de la façon suivante :

i) Les deux joueurs connaissent (t1, x1).
ii) Le joueur 2 choisit ‘1 > 0 et une fonction de contrôle v1 qui sera joué dans
l’intervalle [t1, t1 + ‘1] et informe le joueur 1 de son choix.
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iii) A partir de cette information, le joueur 1 choisit sa fonction de contrôle.
iv) Au temps t1 + ‘1, le nouvel état est annoncé. La situation est répétée : le joueur
2 choisit ‘2, etc.

Avec cette structure d’information, plusieurs théorèmes d’alternative sont démontrés
dans [79], sur des hypothèses di�érentes pour la dynamique et l’ensemble cible. Cependant,
aucun lien avec le cas quantitatif n’est établi.

Krasovskii et Subbotin ont introduit la méthode d’extremal aiming [61] pour les
jeux de cible. Cette méthode motive les résultats du Chapitre 4. Ils utilisent la notion de
stratégies positionnelles, qui sont des limites de fonctions constantes par morceaux.
En général, les fonctions de contrôle ainsi obtenues ne sont pas su�samment régulières
pour avoir une trajectoire bien définie, même au sens de Carathéodory. Donc, comme
dans l’approache de Pöeni�nyj, l’extremal aiming nous donne de l’information sur un jeu
approximé.

Un théorème d’alternative plus récent a été proposé par Cardaliaguet [21] qui considère
les stratégies non anticipatives, qui seront introduites dans le Chapitre 3. Ce résultat est
important car il nous permet de résoudre le jeu de façon exacte.

Cas quantitatif

Soient ¸ : Rn ◊ U ◊ V æ [0, 1] et g : Rn æ [0, 1] deux fonctions qui représentent
respectivement un paiement courant et un paiement terminal. Pour le cas quantitatif,
on peut considérer les évaluations de paiement suivantes :

1. Le jeu escompté à l’horizon infini : pour une histoire (x, u, v), le paiement que
le joueur 1 reçoit du joueur 2 est :

⁄ Œ

t1
e≠fls¸(x[t1, x1, u, v](s), u(s), v(s))ds

avec fl > 0.
2. Le jeu à horizon fini : à la date t = 1, le joueur 2 paie au joueur 1 :

⁄ 1

t1
¸(x[t1, x1, u, v](s), u(s), v(s)ds + g(x[t1, x1, u, v](1)).

Ces jeux sont respectivement notés �
fl

(t1, x1) et �(t1, x1).
Pour résoudre un jeu quantitatif, il faut répondre aux questions suivantes :

Question 2. 1. Spécifier les conditions sur lesquelles on a existence et unicité de
la fonction valeur et sa caractérisation.

2. Donner des stratégies ‘-optimales.

Comme dans le jeu de cible, on doit d’abord spécifier une structure d’information.
Plusieurs structures d’information ont été proposées dans la littérature, voir Bardi et
Capuzzo-Dolcetta [9, Chapter VIII].

Pour le jeu à l’horizon fini avec paiement courant ¸ © 0, on peut déduire de façon
heuristique [58, Section 4.2] que le maxmin et le minmax sont des solutions des EDP
suivantes

ˆw≠

ˆt
(t, x) + sup

uœU

inf
vœV

+
f(x, u, v), Ò

x

w≠(t, x)
,

= 0 (1.2a)

ˆw+

ˆt
(t, x) + inf

vœV

sup
uœU

e
f(x, u, v), Ò

x

w+(t, x)
f

= 0 (1.2b)
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avec les conditions au bord w≠(1, x) = w+(1, x) = g(x).
Cette déduction heuristique a été menée par Isaacs [58, Section 4.2]. Le lien entre EDP

et jeux di�érentiels a été explicité dans le cadre des solutions de viscosité [33] par Evans et
Souganidis [36]. La notion de solution de viscosité a été introduite par Crandall et Lions
[33], voir aussi le livre de Lions [67].

Si, de plus, la condition d’Isaacs est satisfaite, i.e. si on a l’égalité suivante,

sup
uœU

inf
vœV

Èf(x, u, v), pÍ = inf
vœV

sup
uœU

Èf(x, u, v), pÍ

pour tous x, p œ Rn, on n’a qu’une seule équation, dite l’équation d’Hamilton-Jacobi-
Isaacs.

En utilisant la méthode d’extremal aiming pour un certain jeu de cible, Krasovskii
et Subbotin montrent l’existence et l’unicité de la valeur pour le jeu à horizon fini. Dans
leur preuve on obtient une description explicite des stratégies ‘-optimales. Le Chapitre 4
est inspiré de cette construction. Plus tard, Subbotin [97] propose une notion de solutions
généralisées, les solutions de minimax qui permettent caractériser la valeur comme
l’unique solution minimax de l’équation HJI. On montre l’équivalence des solutions de
minimax avec les solutions de viscosité dans le Chapitre 5.

1.3 Jeux à champ moyen en temps discret
Les jeux à champ moyen en temps continu ont été introduits indépendamment par

Huang, Caines et Malhamé [56, 57] et Lasry and Lions [64, 65, 66]. Le but de cette théorie
est la modélisation de situations stratégiques avec un grand nombre des joueurs identiques
et petits, au sens que l’influence d’un seul joueur sur les autres est négligeable.

Les jeux avec un continuum des joueurs ont déjà été étudies dans plusieurs contextes,
notamment en économie, par Aumann [6], dans les jeux de congestion par Wardrop [106],
et dans les jeux de population par Maynard Smith [73] et Maynard Smith et Price [74].
Ce qui est di�érent dans les jeux à champ moyen est l’aspect dynamique.

Les jeux à champ moyen ont une structure dite de backward-forward, qui est de
façon intuitive l’idée suivante : chaque joueur "anticipe" un certain comportement moyen
des autres dans un intervalle de temps et calcule son propre comportement optimal en
prenant le comportement des autres comme un paramètre fixe. Donc, chaque joueur fait
face à un problème de contrôle optimal. Si le comportement moyen des joueurs qui est
induit par cette optimisation est le même que celui qui a été prédit, alors on dit que les
joueurs sont dans un équilibre de champ moyen. On introduira des définitions précises
dans le Chapitre 6.

Prenons l’exemple suivant, qu’on peut trouver dans les notes de Cardaliaguet [20] sur
le cours de Lions au Collège de France.

Example 1.3.1. On considère N joueurs dans Rd. La position du joueur i a la date t est
donnée par

dXi

t

= –i

t

dt +
Ô

2dBi

t

Chaque joueur i minimise son coût :
⁄

T

t

1
2 |–i

s

|2 + F (m≠i

s,N

)ds + g(xi

T

, m≠i

T,N

)

où m≠i

s,N

:= 1
N≠1

q
j ”=i

”
x

j
s
.
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De façon heuristique, si on prend la limite quand N æ +Œ, on obtient le système
d’EDP suivant :

≠ˆu

ˆt
≠ �u + 1

2 |D
x

u|2 = F (x, m) in Rd ◊ (0, T );
ˆm

ˆt
≠ �m + div(mDu) = 0 in Rd ◊ (0, T );

m(0) = m0;
u(x, T ) = g(x, m(T )) in Rd.

Ici, dans la première équation, u dénote la valeur du problème de contrôle optimal pour
un joueur quelconque si la distribution des joueurs est donnée par m. La deuxième est une
équation de Kolmogorov qui décrit l’évolution de la distribution des joueurs dans Rd.

Une motivation importante pour l’étude des jeux à champ moyen dans les applica-
tions est l’obtention des ‘-équilibres de Nash dans les jeux à N joueurs, avec un terme
d’approximation qui tend vers zero quand N tend vers l’infini.

Les jeux à champ moyen ont trouvé des applications, notamment dans certains pro-
blèmes en économie, voir Guéant, Lasry et Lions [49]. On fait aussi référence au survey de
Gomes et Saude [47] pour une collection de résultats récents et au livre de Bensoussan,
Frehse et Yam [12] pour les liens avec la théorie du contrôle optimal de champ moyen.

La plupart de la littérature étudie les jeux à champ moyen en temps continu. Une
exception importante est l’article de Gomes, Mohr et Souza [48], qui étude le comportement
asymptotique d’un jeu à l’horizon fini quand l’horizon tend vers l’infini d’un jeu avec un
continuum de joueurs en temps discret.

Par contre, nous considérons un horizon fini fixe et nous proposons une construction
d’un équilibre de Nash approximé pour un jeu à N joueurs. Le modèle que l’on étude dans
le Chapitre 6 est l’analogue en temps fini du jeu étudié par Adlakha, Johari et Weintraub
[2].

Nous nous intéressons aussi aux situations où les joueurs interagissent "fréquemment".
Pour donner un sens mathématique à cette expression, il faut introduire un temps exogène,
disons R+. Ici, chaque joueur observe et contrôle une chaîne de Markov en temps continu
dont le générateur infinitésimal dépend du comportement moyen des autres. Les joueurs
choisissent leurs actions aux instants de temps discrets, données par une partition de R+.
Nous décrivons ces modèles dans le cas à deux joueurs et somme nulle dans la Section
suivante. L’analogue pour les jeux à champ moyen est introduit dans le Chapitre 7.

1.4 Jeux stochastiques à étape courte

Dans les jeux stochastiques en temps discret, il n’existe pas de notion de "durée" des
étapes du jeu. Pour en introduire une, on considère un temps exogène, qui sera représenté
par les nombres réels positifs, R+.

Cela nous permet de donner une définition de "durée" de la façon suivante : Soit
� = {t1, t2, . . .} une partition de R+. Le nombre réel fi

k

:= t
k+1 ≠ t

k

est la durée de la
k-ème étape, qui commence à la date t

k

.
Soit Ÿ : R+ æ R+ une densité. Le poids de la k-ième étape est la quantité Ÿ(t

k

)fi
k

.
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1.4.1 Dynamique
Soit � un ensemble fini, dit espace de paramètres et on note par A et B les en-

sembles d’action du joueur 1 et 2, respectivement. Soit “ : � ◊ A ◊ B une fonction de
paiement

Le paramètre évolue en temps continu, en suivant une chaîne de Markov homogène
avec fonction de transition q : � ◊ � ◊ A ◊ B æ R, c’est a dire un fonction q qui
satisfait, pour tout (Ê, a, b) œ � ◊ A ◊ B :

0 Æ q(Ê, ÊÕ, a, b) < +Œ, ÊÕ ”= Ê, et
ÿ

Ê

Õœ�
q(Ê, ÊÕ, a, b) = 0.

Pour (a, b) œ A ◊ B fixé, la fonction de transition correspond à la vitesse avec laquelle
le paramètre saute de Ê a ÊÕ. On note par P (·, Ê, a, b) le semi-groupe de transition
correspondant, c’est a dire une famille de fonctions P

‘

(·, a, b) : � ◊ � æ [0, 1] tels que

P(Ê
t+‘

= ÊÕ|Ê
t

= Ê, a, b) = P
‘

(Ê, ÊÕ, a, b) + o(‘),
pour tous t, ‘ Ø 0 et Ê, ÊÕ œ �. L’application t ‘æ P

t

(·, a, b) est solution de l’équation de
Chapman-Kolmogorov

Ṗ
t

= Qa,bP
t

, P0 = I,

où Qa,b := (q(Ê, ÊÕ, a, b))
Ê,Ê

Õ est le générateur de la chaîne de Markov avec semi groupe
de transition P (·, a, b).

1.4.2 Information et stratégies
Le jeu se déroule de la façon suivante : à la date t

k

, la valeur du paramètre est Ê
k

,
que l’on suppose connu pour l’instant. Les joueurs choisissent leurs actions a

k

, b
k

. Puis, le
paramètre suit la chaîne de Markov avec générateur Qak,bk pour une période de temps fi

k

.
Le nouveau paramètre Ê

k+1 est observé à la date t
k+1. Sa loi est P

fik(Ê
k

, ·, a
k

, b
k

).
Les actions restent constantes sur l’intervalle [t

k

, t
k+1). Un paiement instantané

“
s

:= “(Ê
s

, a
k

, b
k

) est payé pour le jour 2 au joueur 1 à la date s œ [t
k

, t
k+1). A la date

t
k+1, le paiement d’étape “

fik :=
s

tk+1
tk

Ÿ(s)“
s

ds a été reçu pour le joueur 1 et la situation
se répète.

1.4.3 Evaluation du paiement
On considère les évaluations suivantes :

Modèle A : Le jeu à horizon infini

On considère d’abord le cas où la durée et le poids de l’étape sont égaux.
Soit � une probabilité décroissante sur N avec � = (◊1, ◊2, . . .) et ◊1 < 1/ÎqÎ, où

ÎqÎ := max(Ê,a,b)œ�◊A◊B

|q(Ê, Ê, a, b)|.
La k≠ième étape commence à la date s

k

:=
q

¸<k

◊
¸

. La dynamique du jeu est celle
décrite dans la Section 1.4.2, avec fi

k

= ◊
k

.
Le paiement correspondant à l’histoire h := {Ê1, a1, b1, Ê2, a2, b2, . . .} est

Œÿ

k=1
◊

k

“
◊k

,

avec “
◊k

:= ◊
k

“(Ê
k

, a
k

, b
k

). Ici, le poids du paiement à la k-ième étape est ◊
k

.



1.5. Nos contributions principales 7

Modèle B : Le jeu stationnaire à étape courte

De façon intuitive, cet jeu est la discrétisation d’un jeu avec paiement
⁄ +Œ

0
fle≠fls“

s

ds,

avec fl > 0. Soit �
”

= {0, ”, 2”, . . .} une partition uniforme de R+, avec 0 < ” < 1/ÎqÎ.
Soit t”

j

:= (j ≠ 1)” la date de la j≠ième étape. Le jeu se déroule comme dans la Section
1.4.2.Le paramètre ” est ici la durée de l’étape.

Le paiement associé à l’histoire h := {Ê1, a1, b1, Ê2, a2, b2, . . .} est :

J
fl,”

(h) :=
+Œÿ

k=1
“

fl,j,”

,

avec

“
fl,j,”

:=
⁄

t

”
j+1

t

”
j

fle≠fls“
s

ds.

On s’intéresse ici au comportement limite lorsque ” et fl tend vers zero.

Modèle C : Le jeu a étape courte et évaluation générale

On peut aussi considérer le paiement
⁄ +Œ

0
Ÿ(s)“

s

ds,

où Ÿ : R+ æ R+ est une densité sur R+. Dans le cas particulier Ÿ(s) := fle≠fls avec fl > 0,
on retombe sur le jeu précédent.

Soit Ÿ
j,”

:= Ÿ(t”

j

). Le paiement correspondant à l’histoire h := {Ê1, a1, b1, Ê2, a2, b2, . . .}
est

J
Ÿ,”

(h) :=
+Œÿ

j=1
“

Ÿ,j,”

,

avec

“
Ÿ,j,”

:=
⁄

t

”
j+1

t

”
j

Ÿ(s)“
s

ds.

On suppose que les joueurs ont une mémoire parfaite.
Ces jeux ont une valeur par des arguments classiques. On s’intéresse au comporte-

ment asymptotique de la fonction valeur quand la durée de l’étape tend vers zéro et à sa
caractérisation.

1.5 Nos contributions principales
Le Chapitre 3 est un survey qui décrit dans un cadre unifié trois approches di�érentes

pour établir l’existence de la valeur d’un jeu di�érentiel à deux joueurs et à somme nulle :
i) L’ approche par discrétisation : Cet approche a été étudiée par Fleming [38] et

Friedman [41, 42]. On s’intéresse ici aux propriétés de la fonction valeur des jeux
en temps discret qui approximent le jeu di�érentiel en temps continu.
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ii) L’approche EDP-solutions de viscosité. Cet approche revient à Isaacs [58,
p.67], qui déduit une équation aux dérivées partielles pour la valeur, dite équation
d’Hamilton-Jacobi-Isaacs. Evans and Souganidis [36] ont formalisé cette idée dans
le cadre des solutions de viscosité.

iii) L’ approche stratégique de Krasovskii et Subbotin. On obtient ici l’existence de
la valeur en utilisant des stratégies ‘-optimales explicites.

Nous établions des liens entre ces approches.
Dans le Chapitre 4, on propose un preuve courte de l’existence de la valeur pour les

jeux di�érentiels à somme nulle, horizon fini et paiement terminal, basé sur la construc-
tion de stratégies ‘-optimales. Notre preuve est inspiré par Krasovskii et Subbotin [61].
Cet Chapitre est issu d’un travail en commun avec Miquel Oliu-Barton et accepté pour
publication dans Morfismos.

Pour conclure la première partie, dans le Chapitre 5 on montre l’équivalence entre
la définition des solutions de viscosité, introduites par Crandall et Lions [33] et la no-
tion de solutions de minimax, introduites par Subbotin [96]. Notre preuve suit l’approche
épigraphique de Frankowska [40]. A notre connaissance, l’équivalence entre solutions de
viscosité et la définition "stratégique" des solutions de minimax n’a pas été explicité dans
la littérature. Des idées similaires, mais dans un cadre plus général, avec un Hamiltonien
mesurable en temps, ont été utilisés par Cardaliaguet et Plaskacz.

On introduit dans le Chapitre 6 un modèle pour les jeux à champ moyen en temps
discret, inspiré par celui d’Adlakha, Johari et Weintraub [2]. Ce document fait partie d’un
travail en cours avec S.C.P. Yam. On construit un ‘-équilibre de Nash pour le jeu à N
joueurs, où le terme d’erreur ‘ tend vers zéro lorsque N tend vers l’infini. On n’obtient
pas ici de borne explicite en termes de N .

On developpe les résultats précédents dans le Chapitre 7. On propose ici une preuve
alternative qui nous permet d’obtenir une borne explicite. On introduit aussi la notion de
durée d’une étape dans cet Chapitre, ce qui nous permet d’obtenir un objet limite qui sert
à construire un équilibre de Nash approximé pour le jeu à un nombre fini des joueurs, ou
le terme d’erreur dépend du nombre de joueurs et de la durée de l’étape. Ce travail a été
soumis pour publication.

Pour conclure, dans le Chapitre 8, on étudie les jeux stochastiques à durée d’étape
evanescente (deux joueurs, somme nulle) dans plusieurs structures d’information :

i) Les deux joueurs observent les actions mais pas le paramètre : dans ce cas le jeu
se réduit a un jeu di�érentiel. Sous certains hypothèses de régularité, on construit
des stratégies ‘-optimales, où ‘ dépend de la durée de l’étape.

ii) Signalisation standard : les joueurs observent le paramètre. De façon similaire au
cas précédent, on obtient ici des objets limits pour construire stratégies ‘-optimales,
ce qui permet de démontrer la convergence de la suite des fonctions valeur.



Chapter 2

Introduction

2.1 Motivation and examples

The aim of game theory is to model the strategic interactions between self-interested
agents, which are called players but that might be companies, populations, humans,
computers, animals or simply mathematical objects. Such interaction is called a game.
When the game is simple enough, it can be represented in matrix form as in the example
below.

Example 2.1.1. Let us consider the following game:

L R
T 1 0
B 0 1

Player 1 is the row player, whose actions are Top or Bottom. Player 2, the column
player, chooses among the actions Left or Right. A pure strategy for the players is a
function from their past information, i.e. their private history, to their action sets. In
this particular situation, the game is played only once, so the set of histories is empty and
a pure strategy is simply an indication of which action to play. The pure strategy sets for
player 1 and player 2 are respectively S1 and S2. In this example, S1 := {T, B} where T
denotes the strategy "play Top", and B the strategy "play Bottom". Similarly, S2 := {L, R}
where L and R are the strategies "play Left" and "play Right".

The numbers indicated on the matrix are the payo�s that player 1 receives from player
2. The situation pictured here is zero-sum because one player’s profit is at the others’
expense. It is one-shot because players will meet only once to play this game. If strategies
‡ œ S1, · œ S2 are chosen, we denote the payo� by “(‡, ·).

Player 1 can choose his strategy optimally to ensure a payo� of at least

w := max
‡œS1

min
·œS2

“(‡, ·) = 0.

In a similar way, player 2 can ensure that his payo� to player 1 is of at most

w := min
·œS2

max
‡œS1

“(‡, ·) = 1.
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When a game is described as above, with all the strategies available to the players and
the corresponding payo�s, we say the game is in normal form. The quantities w and w
introduced in the example above are the maxmin and minmax in pure strategies.

In the way we have specified the game in this example, there is really nothing to study.
The outcome depends on who "goes first": if player 2 chooses his strategy after player 1, he
can play a best reply and ensure a payo� of 0. The way out of this situation is to allow the
players to choose their actions randomly. This enlargement of the strategy space is crucial
for it allows players to "hide" their actions: if player 2 is not sure about what player 1 will
do, he can not enforce a bad payo� for him. Denote by �, T the sets of mixed strategies
of player 1 and 2. In this example, � := � ({T, B}) and T := � ({L, R}) , where, for a
finite set S, �(S) denotes the set of probability distributions over S.

When mixed strategies are used, the following theorem holds:

Theorem 2.1.2. (Minmax Theorem, von Neumann, 1928 [103]) For every two-player,
zero-sum game with payo� function “ and finite action sets A, B there exist mixed strategies
‡ú œ � := �(A) and ·ú œ T := �(B) for players 1 and 2, respectively, and a quantity v,
called value such that, for all (‡, ·) œ � ◊ T :

“(‡ú, ·) Ø v, and “(‡, ·ú) Æ v.

This theorem is the cornerstone of game theory. A remark attributed to von Neumann
is the following:

"As far as I can see, there could be no theory of games...without that theorem...I thought
there was nothing worth publishing until the Minmax Theorem was proved."[28]

In the previous example, it is easy to see that the optimal strategies for each player
are "play each action with probability 1/2" and the value is 1/2.

Of course, game theory has evolved far beyond the minmax theorem and constitutes
an active area of research, comprising a large body of literature.

One important and particularly active area of research is repeated games. A repeated
game is a game that is played more than once. This interaction may happen in discrete
time or in continuous time. The repetition of a zero-sum game as the one above has
no particular interest: playing i.i.d an optimal strategies each stage is optimal, and any
normalized evaluation gives the value of the one-shot game. The interesting object to
study are games where "something" changes with time. What exactly "something" means
depends specifically on the model. The richness of the theory of repeated games comes
from the fact that seemingly related models require very di�erent tools, coming from
many di�erent branches of mathematics. Reciprocally, seemingly unrelated models can be
studied with similar tools.

2.2 Contents of this thesis
This thesis concerns mostly two player, zero-sum repeated games (Part I and III).

These are games where the players have opposite interests: one player’s gain is at the
other player’s expense. Thus, players are in open competition.

Restricting to two player, zero-sum games is, admittedly, a simplification, but this by
no means implies that the theory is trivial. We hope to convince the reader that the
zero-sum case is already rich enough, covering di�erent mathematical tools and ideas and
leaving interesting questions unanswered.
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Let us provide some motivating examples. This discussion is completely informal,
proper definitions are introduced later.

Example 2.2.1. (A game with two states)

L R
T a+,p

11 a12
B a21 a22

Here, a+,p

11 means that if (T, L) is played, player 1 receives a payo� of a11 and the game
moves to the state + with probability p. The payo� matrix of state + is

L R
T b11 b12
B b≠,q

21 b22

.

Here b≠,q

21 means that if (B, L) is played, then player 1’s payo� is b21 and the game returns
with probability q to the state ≠, whose payo� matrix is the one above. Let us assume that
the game is played infinitely often and denote by “

k

the stage payo�, that is, the payo�
player 1 receives the k≠th time the game is played, for k = 1, 2, . . . . Let ⁄ œ (0, 1]. The
total payo� for player 1 is then:

Œÿ

k=1
⁄(1 ≠ ⁄)k≠1“

k

.

Here, the value of the game depends on whether the initial state is + or ≠.

In the example above, the factor (1≠⁄) serves to represent the fact that the players are
impatient and prefer current payo�s rather than future. An alternative interpretation, as
provided in Shapley’s [87] original paper is that of stopping probability: ⁄ is the probability
that the game stops, so that ⁄(1 ≠ ⁄)k is the probability that the game stops after k + 1
stages.

The game above is played in discrete time. However, for many applications it is inter-
esting to consider also games in continuous time, as motivated by the following example.

Example 2.2.2. (Lion and Man) A lion and a man in a closed arena have equal maximum
speed. What should the lion do to ensure his lunch?

This example has been attributed to Rado by Littlewood [70, p.135] and remained a
mathematical challenge for some time. It turns out that the lion can get as close as it
wants to the man, but the man can avoid capture. We will not describe this here, but
refer to Littlewood [70, p.135] for the original proof, attributed to Besicovitch.

The main di�culty in continuous time is that there is no canonical information pattern.
This in turn implies that there is no canonical definition of strategies. Thus, the outcome
of the game may depend on the information pattern adopted. This complication does not
arise in discrete time, as we can unambiguously define the information available to the
players at the beginning of each stage.

Several information patterns have been adopted in the di�erential games literature
to handle this situation. For instance, in the framework of non anticipating strategies
(defined in chapter 3), the interaction is of the form "strategy vs observed action", e.g.
player 1 observing player 2’s action before choosing his own. Thus, there is no ambiguity
on the definition of the outcome, but the situation is no longer symmetric. One wishes to
have a more symmetric "strategy vs strategy" interaction, that is, a normal form game.
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A notion of strategies that allows to put the game in normal form, called non antic-
ipating strategies with delay, was introduced by Buckdahn, Cardaliaguet and Rainer
[17]. Their definition will be recalled in Chapter 3.

When the game is not in normal form, undesired phenomena may occur. For instance,
it might happen that the outcome of the game is not uniquely defined or, in the example
of the lion and the man, that both of them have a winning strategy, which is of course
not desirable. For an amusing account of such paradoxes in the lion and man example,
we refer to Bollobás, Leader and Walters [16].

Clearly, all of the examples discussed so far correspond to the two player, zero-sum
case.

Another direction in which the theory is somewhat simpler are games with identical
players, which we cover in Part II. It is intuitively clear that the larger the number of
players is, the more sophisticated the analysis of the game becomes. However, when players
are identical and influence each other by their average behavior and not individually, it is
possible to wipe out this increasing complexity in a so-called non-atomic or mean field
term, whose precise definition will be given later.

Let us provide a simple motivating example, borrowed from Guéant, Lasry and Lions
[49, p.10].

Example 2.2.3. Assume a continuum of agents, represented by the interval [0, 1], are
attending a meeting. The meeting will not start unless a fraction f of the agents has
arrived. Assume all the agents have a waiting cost (they do not want to spend time waiting
for the meeting to start), plus a reputation and personal inconvenience costs for arriving
later to the meeting. The agents want to choose their optimal arrival time.

In this example, if one late-arriver and an early-arriver are switched, the remaining
players are indi�erent since the fraction of agents arriving early is the same.

Of course, in real life there is no such thing as a continuum of players, so from the point
of view of applications it is interesting to know how well a non atomic game approximates
an atomic game. We are interested in how to use the intuition of a non atomic game to
construct ‘-optimal strategies for a game with N players, where the approximation term
‘ goes to zero as N increases.

For the remaining of the introduction, let us describe more in detail the three parts of
this thesis and highlight our main contributions.

2.3 Di�erential games
Let (t1, x1) œ [0, 1] ◊ Rn and let U and V denote two compact sets of some euclidean

spaces.
Define

U(t1) = {u : [t1, 1] æ U, measurable}, V(t1) = {v : [t1, 1] æ V, measurable}.

Whenever t1 = 0, we will use the more convenient notation U and V respectively.
The sets U(t1), V(t1) are the sets of control functions. Elements of U, V are called

controls or actions.
Let f : Rn ◊U ◊V æ Rn and (u, v) œ U(t1)◊V(t1) be a given pair of control functions.

Consider a di�erential equation

x(t1) = x1, ẋ(t) = f(x(t), u(t), v(t)) a.e. on [t1, 1]. (2.1)
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We make the following assumption on f , to ensure that the trajectory of the above
ODE is well defined:

Assumption 2.3.1. Assume that the function f is jointly continuous and bounded and
that there exists c > 0 such that for all (u, v) œ U ◊ V and x, y œ Rn:

Îf(x, u, v) ≠ f(y, u, v)Î Æ cÎx ≠ yÎ.

Let ÎfÎ := sup(x,u,v) Îf(x, u, v)Î < +Œ.

Under Assumption 2.3.1, it follows from Carathéodory’s theorem, [31, Chapter 2] that
(2.1) has a unique solution, whose value at time s is denoted by x[t1, x1, u, v](s), in the
following extended sense: for any t œ [t1, +Œ),

x[t1, x1, u, v](t) := x1 +
⁄

t

t1
f(x[t1, x1, u, v](s), u(s), v(s))ds.

This defines the dynamics.
To correctly specify a di�erential game we need to define the objectives of the game

and the information and strategies of the players. Informally, player 1 chooses u and player
2 v in order to achieve either a quantitative objective or a qualitative objective. As a
quantitative objective, we will consider that player 1 wants to maximize a payo� depending
on the trajectory, whereas for a qualitative objective we will focus on the case where player
1 wants the state variable to reach a target closed set M at time t = 1. This distinction
was already made by Isaacs [58], who introduced the terms games of kind for games with
a qualitative objective and games of degree for games with a quantitative objective.

We assume throughout this Section that players have complete information, that
is, they know all the specifications of the game (initial state, dynamics, payo�s) as well as
the past state variable and actions and the description of the game.

Qualitative case

For the qualitative case, let us consider the target game: player 1 aims to move the
state variable to a terminal set M at time t = 1, while player 2 wants to prevent that. Let
us denote the target game by �

M

(t1, x1).
As before, the natural questions one wants to answer in a target game are the following:

Question 3. 1. For a given initial condition (s, y) œ [t1, 1] ◊ Rn, is it possible to
determine which player has a winning strategy?

2. Provide explicit strategies (or at least ‘≠optimal) for the players.

To answer the first question, let us note that it can be rewritten, informally, as the
following:

Problem 2. Construct a partition of [t1, 1] ◊ Rn in two sets K1, K2, with the following
properties:

i) For any initial condition in K1, player 1 can ensure victory (i.e. has a strategy
that ensures the arrival to the target).

ii) For any initial condition in K2, player 2 has a strategy that ensures him that the
target is not reached at time 1.

A theorem that establishes such characterization is called an alternative theorem.
Of course, alternative theorems depend on the class of strategies being considered. We
will describe briefly some examples of alternative theorems in Section 2.3.3.
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Quantitative case

Let ¸ : Rn ◊ U ◊ V æ [0, 1] and g : Rn æ [0, 1]. The payo�s in the quantitative case
can be evaluated as follows:

1. The discounted infinite horizon game: for a given history of plays (x, u, v) the
payo� that player 1 receives from player 2 is

⁄ Œ

t1
e≠fls¸(x[t1, x1, u, v](s), u(s), v(s))ds

where fl > 0.
2. The finite horizon game: At time t = 1, player 2 gives to player 1 a payo� of

⁄ 1

t1
¸(x[t1, x1, u, v](s), u(s), v(s))ds + g(x[t1, x1, u, v](1)).

We denote these two games by �
fl

(t1, x1) and �(t1, x1) respectively. We do not cover the
infinite horizon case, which has been extensively treated by Bardi and Capuzzo Dolcetta
[9]. As we will show in Chapter 3, in the case of complete information, the analysis of
the quantitative game with finite horizon described above can be reduced without loss of
generality to the game with running payo� ¸ © 0, whenever ¸ satisfies the same regularity
assumptions as the dynamics f .

Solving a quantitative game means to answer the following questions:

Question 4. 1. Give conditions for the existence and characterization of the value.
2. Provide optimal (or ‘-optimal) strategies.

Let us introduce the ideas to study zero-sum di�erential games by recalling first some
results when zero and one players are present.

2.3.1 No players
In the absence of players, the dynamics is of the form

ẋ(s) = f(x(s)), x(t1) = x1, (2.2)
where x1 œ Rn and f : Rn æ Rn is Lipschitz continuous. In this case, the di�erential
equation (2.2) admits a unique solution. As a quantitative objective, we can consider a
payo� of the form described above.

In the quantitative case, there are no questions to be answered: the payo� associated
to the trajectory is already determined. It still makes sense to consider the qualitative
case.

Consider the extended dynamics

(ṫ(s), ẋ(s)) = (1, f(x(s))), t(0) = 1, x(0) = x1, (2.3)
Set f̄ = (1, f). Let us recall some notions of viability theory that provide the framework

to answer this question.

Definition 2.3.2. (Viability and invariance)
i) Let K be a closed subset of [0, 1] ◊Rn and f̄ : [0, 1] ◊Rn æ [0, 1] ◊Rn. The pair
(K, f̄) is viable by (2.3) if for any initial state (t1, x1) œ K, there exists a solution
of (2.3) such that (t, x(t)) œ K for all t Ø t1.

ii) We say (K, f̄) is invariant if for every initial state x1 œ K, all such solutions
satisfy (t, x(t)) œ K for all t Ø t1.
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Since f is Lipschitz, (2.3) has a unique solution and thus the definitions of viability
and invariance are equivalent. Let us point out that this will not be the case when one or
two players are present, or in the non-Lipschitz case.

There are several characterization theorems for invariant and viable sets, starting with
Nagumo’s theorem [77]. Before stating this theorem, let us introduce some definitions.

Definition 2.3.3. Let K be a nonempty closed subset of [0, 1] ◊ Rn and z œ K. Let
d

K

(zÕ) := inf
kœK

ÎzÕ ≠ kÎ denote the usual distance function.
— The contingent cone to K at z is the set

T
K

(z) :=
;

v œ Rn : liminf
hæ0+

d
K

(z + hv)
h

= 0
<

.

— The subnormal cone to K at a point z that belongs to K is defined by

N0
K

(z) := {p œ [0, 1] ◊ Rn : ’v œ T
K

(z), Èp, vÍ Æ 0} .

Let us now state a version of Nagumo’s theorem, which is general enough for our
purposes.

Theorem 2.3.4. (Nagumo) Let f̄ be a continuous function. Then the following are equiv-
alent:

i) (K, f̄) is invariant (or viable).
ii)

’z œ K, f̄(z) œ T
K

(z).

Of course, by definition, ii) is equivalent to
iii) For all x œ K, ’p œ N0

K

(x),
e
p, f̄(x)

f
Æ 0.

We omit the proof but refer to Aubin [4, Theorem 1.2.1]. The important fact here is
that we can reduce the question of finding the points that reach the target to a geometrical
property of the contingent cone and the dynamics.

2.3.2 One player

Let u œ U(t1) be a given control function. Consider a di�erential equation

ẋ(s) = f(x(s), u(s)), x(t1) = x1. (2.4)

We assume that f satisfies the Assumptions 2.3.1, but omitting the second player.
In this situation it makes sense of distinguishing qualitative from quantitative objec-

tives. In the quantitative case, the player wants to choose u in order to maximize

⁄ 1

t1
¸(x[t1, x1, u](s), u(s))ds + g(x[t1, x1, u](1)).

Similarly, in the qualitative case, the player wants to choose u to ensure that the state
reaches a target set M at time t = 1.

We will describe first the qualitative case as it turns out to be helpful for the quanti-
tative case as well.
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Qualitative case

Here, the trajectory of (2.4) depends on the choice of the control function u. To obtain
an alternative theorem in this case, one asks instead if for a given initial condition x1 there
exists a measurable control u such that the corresponding trajectory starting at x1 reaches
M at time t = 1.

Let us replace the di�erential equation (2.4) by the di�erential inclusion

ẋ(s) œ F (x(s)) := fi
uœU

f(x(s), u). (2.5)

Clearly, any solution of (2.4) is a solution of (2.5). Conversely, when f is continuous
with respect to the first variable and measurable with respect to the second, Filippov’s
measurable selection theorem [102, Theorem 2.3.13] ensures that for any trajectory x(·)
of (2.5) we can find a measurable control function u(·) such that (2.4) holds.

We introduce now the central notion of this Section.

Definition 2.3.5. A pair (K, F̄ ) where K µ [0, 1] ◊ Rn is closed and F̄ : [0, 1] ◊ Rn  
[0, 1] ◊Rn is a set valued map is viable if for all z1 := (t1, x1) œ K there exists a solution
of the di�erential inclusion

ż(t) œ F̄ (z(t)), z(t1) = z1

that remains in K, i.e. z(t) œ K for all t > t1.

In our case, F̄ := (1, F ). Let B denote the euclidean unit ball in Rn+1.

Definition 2.3.6. A set valued map F̄ : [0, 1] ◊ Rn  [0, 1] ◊ Rn is Marchaud if
a) For all z œ [0, 1] ◊ Rn, F̄ (z) is a non-empty compact convex set.
b) F̄ is upper semi-continuous, that is, ’z œ [0, 1] ◊ Rn and ’‘ > 0 ÷ ” > 0 such
that

ÎzÕ ≠ zÎ < ” =∆ F̄ (zÕ) µ F̄ (z) + ‘B.

c) F has linear growth in z, i.e. ’z œ [0, 1] ◊ Rn there exist constants “ and c such
that

v œ F̄ (z) =∆ ÎvÎ Æ “ÎzÎ + c.

We are now ready to state an analogous of Theorem 2.3.4.

Theorem 2.3.7. (Viability theorem) Let F̄ be a Marchaud set valued map. Then the
following are equivalent:

i) (K, F̄ ) is viable.
ii) F̄ (z) fl T

K

(z) ”= ÿ for all z œ K.
iii) For all z œ K, ’p œ N0

K

(z), ÷v œ F̄ (z) s.t. Èp, vÍ Æ 0.

The viability theorem shows us that we can single out a trajectory that remains in
K if we can do it pointwise, and conversely, thus extending Nagumo’s theorem (Theorem
2.3.4) to di�erential inclusions. For the proof we refer to Aubin [Theorem 3.3.5][4]. In our
case, iii) reads as

’z = (s, y) œ K, ’p œ N0
K

(z), ÷u œ U s.t. Èp, (s, f(y, u))Í Æ 0.

This suggest a way to find a control that allows the player to force the dynamics to stay
in K, or close to it. Assume that the initial condition is in K and that the player will
update his choice of control at discrete times s1, s2, . . . s

N

= 1. If at time s
m

the state
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z
m

:= (s
m

, y
m

) is in K, choose any u. If z
m

is outside of K, let w
m

denote a closest point
of z

m

into K and choose u
m

such that

Èz
m

≠ w
m

, (s
m

, f(y
m

, u
m

))Í Æ 0.

With this procedure one obtains the following.

Proposition 2.3.8. Consider a partition of [0, 1], denoted � := {0 Æ t1, . . . , t
N

= 1} and
Î�Î its mesh, i.e. Î�Î := max

m<N

t
m+1 ≠ t

m

. Let (K, F̄ ) be viable, with F as in (2.5)
and f Lipschitz and bounded. Let (t1, x1) œ K.

There exists a piecewise constant control u�(t) such that

ẋ(t) = f(x(t), u�(t)), x(t1) = x1

satisfies

d2
K

(x[t1, x1, u�](1)) Æ CÎ�Î,

for a positive constant C independent of the �.

We omit the proof as it is a corollary of the more general case with two players described
in Chapter 4.

The construction described above is essentially the extremal aiming of Krasovskii
and Subbotin [61] where player 2 is absent. It is also reminiscent of the construction in
discrete time in the framework of Blackwell’s approachability, see Blackwell [14].

Quantitative case

Let us consider the case of a terminal payo� at time t = 1, i.e., an objective of the
form g(x(1)).

For every initial condition (t1, x1) œ [0, 1] ◊ Rn, and a given u, we have a unique
trajectory, hence the following value function

V(t1, x1) := sup
uœU(t1)

g(x[t1, x1, u](1))

is well defined.
The value function inherits the regularity of the payo� function. In particular, if g is

Lipschitz, so is V(t, ·), for all t. We refer to Bardi and Capuzzo-Dolcetta [9, Chapter III,
Prop. 3.1] for the proof.

The value function also satisfies the following crucial property.

Theorem 2.3.9. (Dynamic programming principle) Assume ¸, g are Lipschitz. Then, for
all (t, x) œ [0, 1] ◊ Rn and for all h > 0 :

V(t, x) = max
uœU

{V(t + h, x[t, x, u](t + h))} .

At least heuristically, by a Taylor series expansion, one can deduce from the dynamic
programming principle stated above that the value function should solve the following
PDE:

ˆV
ˆt

+ max
uœU

ÈÒ
x

V, f(x, u)Í = 0 (2.6)

with boundary condition
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V(1, x) = g(x).

The partial di�erential equation (PDE) (2.6) is called Hamilton-Jacobi-Bellman
equation. This PDE is important in optimal control theory because it provides necessary
and su�cient optimality conditions. We refer to Bardi and Capuzzo-Dolcetta [9, Chapter
III, Section 3] for a detailed description and proofs.

An important problem is that (2.6) fails to have solutions in the classical sense, even
if the data of the problem (dynamics and payo� functions) is smooth. A significant
breakthrough was achieved by Crandall and Lions [33], who introduced the definition of
viscosity solutions, which will be recalled in Chapter 3.

Relation between the quantitative and qualitative case

Let us point out an important connection between qualitative and quantitative prob-
lems.

Define v1 := V(t1, x1). Consider the target game with dynamics

(ṫ(s), ẋ(s)) œ (1, F (x)), (t(0), x(0)) = (t1, x1), s œ [0, 1 ≠ t1] (2.7)

and target set Mú µ [t1, 1] ◊ Rn defined by:

Mú := {(1, y) œ [0, 1] ◊ Rn | g(y) Ø v1}.

The link between the quantitative and qualitative game comes from the following propo-
sition:

Proposition 2.3.10. The set

L(v1) := {(s, y) œ [t1, 1] ◊ Rn | V(s, y) Ø v1}
is viable under the dynamics (2.7).

The intuition here is that the value function is constant along optimal trajectories:
since there is no running payo�, it depends only on the terminal state, that is, the state at
time t = 1. Hence, for any initial conditions in L(v1), there exists at least one trajectory
that remains there (e.g. an optimal trajectory) and leads to a terminal state in Mú.

An important consequence of this fact is that solving the target problem described
above and using the construction of Proposition 2.3.8 we obtain an explicit method to
derive ‘≠optimal strategies. We omit this construction here, but in Chapter 4 we describe
in more detail the extension of this approach to the case of two players, zero sum games.

2.3.3 Two players

Qualitative case

We do not cover target games in detail in this thesis, but let us make some remarks.
As it was pointed out before, the main complication in continuous time games comes from
the fact that there is no canonical information structure. Let us describe briefly some of
the information structures that have been proposed in the literature.

As an early example of alternative theorems for two players, let us mention the work
of B.N. Pöeni�nyj [79], who studies the target game with a di�erent class of strategies
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Definition 2.3.11. (‘-strategies) We say the players are using ‘-strategies in the target
game if the game is played as follows:

i) Both players know (t1, x1).
ii) player 2 chooses ‘1 > 0 and informs player 1 of the control function v1 that he
will use in the interval [t1, t1 + ‘1].

iii) Using this information, player 1 chooses his control function.
iv) At time t1 + ‘1, the new state is announced and the situation is repeated, with
player 2 choosing ‘2.

Under this information structure, several examples of alternative theorems are pro-
posed in [79], under di�erent assumptions on the target set and the dynamics. However,
in this theory no explicit connection with the quantitative case is made.

Krasovskii and Subbotin introduce the extremal aiming method [61] for target games.
The description of this method motivates the work in Chapter 4. They use positional
strategies, which are limits of piecewise constant motions. In general, the control func-
tions originating from this procedure are not regular enough to obtain solutions in the
Carathéodory sense. Thus, as in Pöeni�nyj’s approach, their construction provides infor-
mation of an approximated game only.

In order to solve the target game exactly, Cardaliaguet [21] considers instead non
anticipating strategies which are defined later in Chapter 3 and establishes an alternative
theorem. Note that this is an important advance with respect to the other approaches,
since it allows us to solve the target game exactly, instead of an approximate version.

Quantitative case

As we did for the target game, we need first to specify which information is available
to the players and how are they allowed to interact. Di�erent information patterns and
strategies have been proposed in the literature, we refer to Bardi and Capuzzo-Dolcetta
[9, Chapter VIII].

A common feature of these di�erent notions is that they allow to reduce the problem
to study a certain system of PDE’s. For the finite horizon game with ¸ © 0, these PDE’s
are:

ˆw≠

ˆt
(t, x) + sup

uœU

inf
vœV

+
f(x, u, v), Ò

x

w≠(t, x)
,

= 0 (2.8a)

ˆw+

ˆt
(t, x) + inf

vœV

sup
uœU

e
f(x, u, v), Ò

x

w+(t, x)
f

= 0 (2.8b)

with boundary conditions w≠(1, x) = w+(1, x) = g(x).
Although the above relations were heuristically derived by Isaacs’ [58, Section 4.2], the

connection between PDE’s and di�erential games was first made explicit in the framework
of viscosity solutions [33] by Evans and Souganidis [36]. As pointed out by Lions in the
introduction of the book [67], the study of these equations was a motivation to introduce
the definition of viscosity solutions.

Note that under the following condition, called Isaacs’ condition

sup
uœU

inf
vœV

Èf(x, u, v), pÍ = inf
vœV

sup
uœU

Èf(x, u, v), pÍ

holds for all x, p œ Rn, there is only one equation, called Hamilton-Jacobi-Isaacs equa-
tion.
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Let us remark that this condition is conceptually very strong. It imposes the existence
of the value of a family of games in pure strategies, which denies the important role of
randomization in game theory, as pointed out in von Neumann’s remark above. In Chapter
3 we propose a way to avoid Isaacs’ condition, inspired from Fleming [38]. A di�erent
approach to introduce randomized strategies in di�erential games and hence avoid Isaacs’
condition has been proposed by Buckdahn, Li and Quincampoix [18].

Krasovskii and Subbotin applied their method to a suitable target set to establish the
existence of the value for di�erential games with finite horizon and terminal payo� using
an explicit description of ‘≠optimal strategies. The material of Chapter 4 is inspired from
their construction, which allows to establish the existence and characterization of the value
function. Later, Subbotin [97] proposes a notion of generalized solutions, called minimax
solutions and characterizes the value function as the unique minimax solution of the HJI
equation. We establish the equivalence of minimax solutions for HJI equations with the
standard machinery of viscosity solutions in Chapter 5.

2.4 Discrete time mean field games

Let us briefly comment on some related (and important) previous work on games with
a continuum of players before moving on to the framework of mean field games, to which
our contributions are more closely related.

2.4.1 Games with a continuum of players

As pointed out in Section 2.2, we are interested in modelling situations with a "large"
number of identical agents. This statement is ill-defined, but it could mean either of the
three following situations:

1. Games with a continuum of agents per se.
2. Convergence, in a suitable sense, of a sequence of games with atomic players to a

non atomic limit game.
3. Use the limit non atomic game to compute ‘≠optimal equilibria for the atomic

game.
On the first situation, let us mention the pioneering work of Aumann [6]. One mo-

tivation for introducing games with a continuum of agents is an important concept in
economics, perfect competition. The essential idea of this notion is that there are many
agents whose individual influence on the economy (e.g. for a�ecting prices) is negligible.
Thus, following [6], the natural way to study economies with perfect competition is to
consider non atomic agents. The introduction of this idea allows Aumann [6] to solve a
long standing conjecture in economics.

Later, Mas-Colell [72] introduced the notion of distributional equilibrium for a one shot
game with a continuum of players, building on results of Schmeidler [86]. The definition of
distributional equilibrium is recalled later in Chapter 6. Let us refer also to Milgrom and
Weber [76] were several existence results of Nash equilibrium are established for games
with incomplete information where the set of types is a continuum.

The references cited above concern one shot games only. In dynamic games, let us
mention the extension of the model of Mas-Colell by Jovanovic and Rosenthal [59] for
discrete time stochastic games, which is also introduced in Chapter 6. Later, Lasry and
Lions [64, 65, 66] and Huang, Caines and Malhamé [56, 57] introduced the mean field
games theory, which studies non atomic dynamic games in continuous time.



2.4. Discrete time mean field games 21

The idea of using a continuum of players is also present in the literature on congestion
games, which goes back to Wardrop [106] and Smith [89]. We refer to Wan [104, 105] for
an extensive survey of this literature. Games with a continuum of players have also been
introduced in the framework of population games by Hamilton [51] and Maynard Smith
[73].

As for the convergence of equilibria of games with finitely many players to an equilib-
rium of a non atomic game, an early example is the work of Haurie and Marcotte [52] in
the framework of congestion games and Sandholm [85] for potential games.

In the framework of mean field games the convergence of the sequence of Nash equilibria
of the N player games has been established by Lasry and Lions [64] for games with an
ergodic payo� (see also Feleqi [37] for a detailed proof) and by Bardi [8] for linear quadratic
mean field games.

Results of a similar flavour, based on stochastic approximation techniques, have been
obtained by Benaïm and Weibull [10] for population games and by Gast, Gaujal and
Le Boudec [44] for games with a centralized controller. In the stochastic approximation
framework, the idea is to approximate the path of a Markov chain by a deterministic
trajectory given by a suitable ordinary di�erential equation. The assumption these models
have in common is that the probability that the relevant state variable in the N player
game changes between two consecutive stages of the game goes to zero as N goes to
infinity.

Our interest is more on the third situation: constructing an approximate Nash equilib-
ria via suitably defined limit objects. In this sense, our contribution is closer to the work
of Huang, Caines and Malhamé [57].

2.4.2 Continuous time mean field games

Mean field games have been introduced independently by Huang, Caines and Malhamé
[56, 57] and by Lasry and Lions [64, 65, 66] and have received considerable attention in the
literature. The aim of mean field games theory is to model situations with a large number
of identical agents. Their distinctive feature is the backward-forward structure: each
player anticipates a certain behavior of the other players and computes his own optimal
behavior; if the observed aggregate behavior is consistent with the prediction, the players
are said to be in a mean field game equilibrium. Precise definitions will be given in Chapter
6.

The following example is borrowed from Cardaliaguet’s notes on mean field games [20,
p.2]:

Example 2.4.1. Let us consider first N players in Rd. The random position of player i
at time t is given by

dXi

t

= –i

t

dt +
Ô

2dBi

t

Each player i aims to minimize the cost:

⁄
T

t

1
2 |–i

s

|2 + F (m≠i

s,N

)ds + g(xi

T

, m≠i

T,N

)

where m≠i

s,N

:= 1
N≠1

q
j ”=i

”
x

j
s
.

Heuristically, if one takes the limit as N æ +Œ, one obtains the following backward-
forward system of coupled PDE’s:
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≠ˆu

ˆt
≠ �u + 1

2 |D
x

u|2 = F (x, m) in Rd ◊ (0, T )
ˆm

ˆt
≠ �m + div(mDu) = 0 in Rd ◊ (0, T )

m(0) = m0,

u(x, T ) = g(x, m(T )) in Rd.

One important motivation for the mean field games approach in applications is that it
allows to construct approximate Nash equilibria of games with a large number of players,
which is not computationally feasible when the number of players is large. The limit
system consists of a Hamilton-Jacobi equation running backward in time and a Kolmogorov
equation describing the aggregate evolution, running forward in time.

Mean field games have found applications in many areas, notably in economics, see
Guéant, Lasry and Lions [49]. The lecture notes of Cardaliaguet [20], based on Lions’
lectures at the Collège de France, provide a detailed account from the mathematical point
of view. For a brief and more recent account of the continuous time theory, we refer to
the survey by Gomes and Saude [47] and to the book of Bensoussan, Frehse and Yam [12]
for connections with the theory of mean field type control problems.

However, a conceptual problem arises in continuous time. As we mentioned earlier in
the introduction, randomization of the actions is a crucial concept in game theory. Even
if we give up on choosing actions randomly, it turns out that in continuous time, for the
Kolmogorov equation to be well defined, the solution of the Hamilton-Jacobi equation
needs to be di�erentiable. This implies that at each time t, each player has a unique
optimal choice. However, one can easily imagine situations where this does not hold. This
can be sorted out if we consider a discrete time model, as we show in Chapter 7. Other
conceptual problems, which are present also in discrete time, are addressed in Chapter 7.

With few exceptions, the mean field games literature has largely focused on mean field
games in continuous time.

An important exception is the work of Gomes, Mohr and Souza [48]. They study the
asymptotic behaviour as the time horizon goes to infinity, of a finite horizon, discrete
time, finite state dynamic game with a continuum of players, and provide conditions for
the convergence to a stationary solution.

We consider instead a fixed time horizon and provide a way to construct an approximate
Nash equilibrium for the N player game. The model we introduce in Chapter 6 is the finite
horizon version of the model introduced by Adlakha, Johari and Weintraub [2].

In many applications, it is desirable to consider "frequent" interactions between the
players and a random dynamics that depends on both the individual and the aggregate
state. For instance, one can think of competing agents in an online auction. To give a
sense to "frequent", we need an exogenous time, that runs independently of the stages of
the game.

With this in mind, we introduce as an exogenous time the positive real axis R+ and
allow the players to receive information at discrete points. In this game, the dynamics
of the state corresponds to a continuous time Markov chain. These games are described
in more detail in Section 2.6. For now, let us point out that these games are, informally,
discretizations of an underlying stochastic game in continuous time, which are analogue
to the discretizations introduced by Fleming [38] for di�erential games.

Incorporating these ideas, we obtain a limit object that provides an approximate Nash
equilibrium for games with su�ciently many players and su�ciently frequent interactions.
We develop this model in detail in Chapter 7.
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2.5 Zero-sum stochastic games with short-stage duration

2.5.1 General model of zero-sum repeated games

Let us introduce an abstract mathematical model for zero-sum dynamic games that
extends the simple motivating examples we proposed. The model presented here is bor-
rowed from Cardaliaguet Laraki and Sorin [23], see also Mertens, Sorin and Zamir [75,
Section IV].

Let �, A, B, R, S be arbitrary sets and consider a function “ : � ◊ A ◊ B æ [0, 1]. The
set � is the parameter space. The sets A, B are the sets of actions of player 1 and 2
respectively.

The game is played as follows:
— An initial parameter Ê1 and signals r1, s1 are chosen randomly according to an

initial distribution fi œ �(R ◊ S ◊ �). Player 1 receives signal r1 and player 2
receives the signal s1 and this is all the information they get.

— After player 1 (respectively, player 2) learns his signal r1 (resp. s1), player 1 (resp.
2) chooses an action a1 (resp. b1). The stage payo� “1 := “(Ê1, a1, b1) is allocated
to player 1 and is not necessarily observed by the players. The actions are chosen
simultaneously and independently.

— A new value of the parameter and the signals is chosen according to a transition
function Q : � ◊ A ◊ B æ �(R ◊ S ◊ �).

The situation is then repeated: (r2, s2, Ê2) are chosen according to Q(Ê1, a1, b1); know-
ing r2(resp. s2), an action a2 (resp. b2) is chosen, player 1 receives a payo� “2 from player
2 and so on.

A (pure)behavioural strategy ‡ for player 1 is a map from his private history
H1 := (r1, a1, r2, a2, . . .) to (A)�(A). A pure or behavioural strategy · for player 2 is
defined similarly. Player 2’s private history is denoted by H2. A play is a sequence
(Ê1, r1, s1, a1, b1, Ê2, r2, s2, a2, b2, . . .). Let HŒ := (� ◊ R ◊ S ◊ A ◊ B)Œ denote the set of
plays. A mixed strategy for player 1 is a probability distribution over his set of pure
strategies, with an analogous definition holding for player 2.

By Kolmogorov’s extension theorem, a couple of behavioural strategies defines a unique
probability distribution over HŒ. Let us assume that the players have perfect recall,
that is, that players remember the full history of the game. In this case, Kuhn’s theorem
[62] applies, which ensures that the games played in mixed or behavioural strategies are
equivalent. Thus, we can consider without loss of generality that the game is played in
mixed strategies. Note that the set of mixed strategies for each player is compact and
convex.

A couple of strategies, along with fi and Q, generates a unique probability distribution
on the plays, the corresponding expectation is denoted by E

‡·

.
Two important classes captured by this model are stochastic games as introduced by

Shapley [87], which correspond to public signals including the realization of the parameter,
and incomplete information games as studied by Aumann and Maschler [7] which
correspond to an absorbing transition of the parameter, which remains fixed, and no
further information after the initial one on its value. By complete information we
mean that the current state, payo�s and past actions are observed.

2.5.2 Payo� evaluations

The previous model determines a sequence of stage payo�s {“
k

}
kœN+ . The stream of

stage payo�s can be evaluated in di�erent ways.
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Consider a probability distribution � = {◊
k

}
kœN+ œ �(N+) and a history h :=

{Ê1, a1, b1, Ê2, a2, b2, . . .}. The game �� is the game with evaluation function:

J�(h) :=
ÿ

k

◊
k

“
k

.

For a couple of behavioral strategies (‡, ·) we define the payo� as the expectation
with respect to their induced probability distribution over HŒ. From Kuhn’s theorem,
we can consider this game as being played in mixed strategies, since they induce the same
probability distributions over HŒ. Thus, the value of �� exists by Sion’s minmax theorem
[88] and is denoted v�.

Some classical choices of � are the uniform partition � := ( 1
n

, 1
n

, . . . , 1
n

) so that the
payo� becomes

1
n

nÿ

k=1
“

k

or the ⁄≠ discounted evaluation
Œÿ

k=1
⁄(1 ≠ ⁄)k≠1“

k

where ⁄ œ (0, 1]. Let us denote by v
n

the value of the n≠stage repeated game and v
⁄

the
value of the ⁄-discounted game.

2.5.3 Recursive structure and long games
Shapley [87] established the following recursive formula for stochastic games with com-

plete information. Let X = �(A), Y = �(B). Then:

v
⁄

(Ê) = val
x,y

E
xy

Y
]

[⁄“(Ê, x, y) + (1 ≠ ⁄)
ÿ

Ê

Õœ�
v

⁄

(ÊÕ)Q(Ê, x, y)(ÊÕ)

Z
^

\ . (2.9)

A similar formula holds for the finite n-stage game, namely:

v
n

(Ê) = val
x,y

E
xy

Y
]

[
1
n

“(Ê, x, y) + n ≠ 1
n

ÿ

Ê

Õœ�
v

n≠1(ÊÕ)Q(Ê, x, y)(ÊÕ)

Z
^

\ . (2.10)

These formulae express the value of the game as a weighted average between today’s
payo� and the expected payo� from tomorrow on. An important consequence of these
formulae is that the players have stationary strategies in the discounted case, that is,
strategies that are functions of the current state only, and Markovian strategies in the
finite case, that is, strategies that depend on the stage and the current state. In particular,
the players do not need to know the move of the opponent.

Note also that (2.9) has a fixed point structure, which motivates the following defini-
tion.

Definition 2.5.1. (Shapley operator) Let F the set of functions from � to R. The
Shapley operator T : F æ F is defined as

T[f ](Ê) := val
x,y

E
xy

Y
]

[⁄“(Ê, x, y) + (1 ≠ ⁄)
ÿ

Ê

Õœ�
f(ÊÕ)Q(Ê, x, y)(ÊÕ)

Z
^

\ . (2.11)
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Introducing the following auxiliary operator �

�(‘, f) := ‘T
31 ≠ ‘

‘
f

4

one obtains
v

⁄

= �(⁄, v
⁄

), v
n

= �
3 1

n
, v

n≠1

4
. (2.12)

A similar recursive structure holds for games with incomplete information and for a
general evaluation �.

Mertens, Sorin and Zamir [75, Section IV.3] associate to each repeated game an aux-
iliary stochastic game whose value functions satisfy a recursive equation of the type (2.9),
in a suitably enlarged state space, called the universal belief space.

Let us describe this more precisely in the case where the signals of the players include
each others’ actions but not the parameter. Assume that the initial parameter is chosen
with a commonly known lottery › œ �(�), but remains unobserved. We assume that the
players observe the actions, so that they can compute the posterior law of the parameter.
In this case, the auxiliary state variable is the law of the parameter.

Observe that the fixed point characterization of v
⁄

does not hold for v
n

. To recover
the same function on both sides of the equation, Cardaliaguet, Laraki and Sorin [23] add
a time variable, as described below, which represents the past fraction of the game.

For a given �, consider the induced partition �� = {t1, t2, . . .} of [0, 1] where t1 = 0,
and t

n

=
q

n

m=1 ◊
m

for n > 1. The repeated game is naturally represented as a game
played between times 0 and 1 where the actions are constant on each subinterval [t

n≠1, t
n

)
of length ◊

n

. Let V�(t
n

, ·) denote the value of the game starting at t
n

.
By definition, V�(1, ·) = 0 and

V�(t
n

, ›) = val
xy

EQ

xy

{◊
n+1“

n

+ V (t
n+1, ›Õ)}. (2.13)

By linear interpolation, V� is extended to a function on [0, 1]. Thus, asymptotic properties
of v� translate into asymptotic properties of V�.

The study of the asymptotic properties of v� is the so-called asymptotic analysis
and the questions here are the existence and characterization of the limit.

The variational approach, initiated by Laraki in his PhD thesis and revisited in
Cardaliaguet, Laraki and Sorin [23] consists on the study of asymptotic properties of v�
via suitable variational inequalities satisfied by the accumulation points of V�.

The variational approach allowed to unify the proofs of existence of the asymptotic
value for games with incomplete information, splitting games and absorbing games.

2.6 Short stage stochastic games
Let us introduce now a di�erent family of stochastic games that enjoys nice asymptotic

properties, although of a di�erent nature, so that our results are not directly comparable
with the classical framework. The model we study is in some sense more regular than clas-
sical stochastic games. The dynamic consists of a Markov chain, controlled by the players
and evolving in continuous time, while the players are allowed to update their actions in
discrete time. Here one is interested in the limit when the time between consecutive stages
goes to zero. These are called short stage games.

Games where a payo� relevant parameter follows a continuous time Markov chain have
been introduced by Zachrisson [107] under the name Markov games. However, his model
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does not incorporate a notion of stage duration. They have also been studied by Tanaka
and Wakuta [100, 99] and Tanaka and Lai [98]. These authors assume first the existence
of Markovian strategies, from which they derive an equation for the value function that
they use to construct stationary strategies.

Markov games with one player, also known as continuous time Markov decision pro-
cesses have received more attention in the literature. We refer to the recent book of
Hernández-Lerma and Prieto-Rumeau [54], where also some classes of Markov games are
treated.

Short stage games have been introduced by Neyman [78]. A similar, but conceptually
di�erent model has been studied by Cardaliaguet, Rainer, Rosenberg and Vieille [26] in the
framework of incomplete information. While Neyman considers a sequence of games and
defines conditions for its convergence, in a suitable sense, to a limit game, Cardaliaguet,
Rainer, Rosenberg and Vieille study a sort of Fleming [38] discretization of an underlying
continuous time game. We follow this approach.

In discrete time repeated games, there is no exogenous notion of time. We can distin-
guish between two stages, but we can not speak a priori of the "duration" of each state.

Let us now consider a model with an underlying notion of time, represented by the
positive real axis R+. This allows us to define a notion of "duration" of each stage as
follows: Let � = {t1, t2, . . .} denote a partition of R+, called sequence of stages and let
fi

k

:= t
k+1 ≠ t

k

denote the duration of the k-th stage, that begins at time t
k

.
Let Ÿ : R+ æ R+ denote an integrable function. The weight of the k-th stage is the

quantity Ÿ(t
k

)fi
k

, which is an approximation of
s

tk+1
tk

Ÿ(s)ds.

2.6.1 Basic dynamics
Let � be a finite set, called the parameter space and let A and B denote the finite

action sets of players 1 and 2 respectively. Let “ : � ◊ A ◊ B denote a running payo�.
The parameter evolves in continuous time, following an homogeneous Markov chain

with transition rate function q : � ◊ � ◊ A ◊ B æ R, i.e. a function that satisfies, for
all (Ê, a, b) œ � ◊ A ◊ B :

0 Æ q(Ê, ÊÕ, a, b) < +Œ, ÊÕ ”= Ê, and
ÿ

Ê

Õœ�
q(Ê, ÊÕ, a, b) = 0.

For fixed (a, b) œ A ◊ B, the transition function corresponds to the speed with which
the parameter jumps from Ê to ÊÕ. To these actions corresponds a transition semigroup
P (·, Ê, a, b), which is a collection of maps P

‘

(·, a, b) : � ◊ � æ [0, 1] such that

P(Ê
t+‘

= ÊÕ|Ê
t

= Ê, a, b) = P
‘

(Ê, ÊÕ, a, b) + o(‘)

for all t, ‘ Ø 0 and Ê, ÊÕ œ �. The map t ‘æ P
t

(·, a, b) is the solution of the Chapman-
Kolmogorov equation

Ṗ
t

= Qa,bP
t

, P0 = I

where the matrix Qa,b := (q(Ê, ÊÕ, a, b))
Ê,Ê

Õ is the generator of the Markov chain with
transition semigroup P (·, a, b).

2.6.2 Information and strategies
We describe now how players influence the dynamics introduced in Section 2.6. The

game is essentially the same as the general model introduced in Section 2.5.1, except that
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the dynamics of Ê
t

is now in continuous time.
The game is played as follows: at time t

k

, the value of the parameter is Ê
k

. For
simplicity, assume that the players are informed about the current state Ê

k

and the past
actions. Both players choose their pure actions a

k

, b
k

, possibly by randomization. Once
the actions are chosen, the parameter follows the Markov chain with generator Qak,bk for
a time fi

k

. The new parameter Ê
k+1 is observed at date t

k+1. Its law is P
fik(Ê

k

, ·, a
k

, b
k

).
The actions are held constant in the interval [t

k

, t
k+1). An instantaneous payo�

“
s

:= “(Ê
s

, a
k

, b
k

) is allocated at time s œ [t
k

, t
k+1). At time t

k+1, the stage payo�s
tk+1
tk

Ÿ(s)“
s

ds has been allocated and the situation is repeated.

2.6.3 Payo� evaluation
To evaluate the payo�s, we consider three di�erent scenarios:

Model A: The game in [0, 1]

Let us consider first the case when the duration and the weight of the stage are equal.
Let � denote a decreasing probability measure over N with � = (◊1, ◊2, . . .) and ◊1 <

1/ÎqÎ, where ÎqÎ := max(Ê,a,b)œ�◊A◊B

|q(Ê, Ê, a, b)|.
The k≠th stage takes place at time s

k

:=
q

¸<k

◊
¸

.
The dynamics of the play at the k≠th stage corresponds to the play at time s

k

as
described in Section 2.6.2, with fi

k

= ◊
k

.
The payo� for a history h := {Ê1, a1, b1, Ê2, a2, b2, . . .} is

Œÿ

k=1
◊

k

“
◊k

where “
◊k

:= ◊
k

“(Ê
k

, a
k

, b
k

) is the stage payo�. Here, the weight of the payo� at stage k
is the constant ◊

k

.
Except for the dynamics, this game is exactly the general model of Section 2.5.1. This

di�erence is crucial and we will elaborate on this later.

Model B: The stationary game with short stage

Here we consider a situation where the duration of the stage and the weight are no
longer identical.

Informally, the game we describe is a discretization of an infinite horizon game with
continuous time payo�:

⁄ +Œ

0
fle≠fls“

s

ds.

A common interpretation of fl is as the patience of the players: the smaller fl is, the
players are more patient.

Let �
”

= {0, ”, 2”, . . .} denote a uniform partition of R+, where 0 < ” < 1/ÎqÎ. Denote
with t”

j

:= (j ≠ 1)” the instant where the j≠th play takes place. The game is played as
in Section 2.6.2. Here, the parameter ” is the stage duration, or, alternatively, 1/” is the
action frequency.

The payo� corresponding to a history h := {Ê1, a1, b1, Ê2, a2, b2, . . .} is:

J
fl,”

(h) :=
+Œÿ

k=1
“

fl,j,”
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where

“
fl,j,”

:=
⁄

t

”
j+1

t

”
j

fle≠fls“
s

ds.

We refer to this game as the (normalized) fl≠discounted game with action fre-
quency 1/”. Within this framework, it is natural to study the limit as ” and fl go to zero
and whether these limits commute.

Model C: The short stage game with arbitrary evaluation

We can extend the previous model to a discretization of an infinite horizon game with
continuous time payo�:

⁄ +Œ

0
Ÿ(s)“

s

ds

where Ÿ : R+ æ R+ is an density function on R+. Some choices for Ÿ might be, for
instance, a uniform distribution with support on a compact interval or the exponential
density Ÿ(s) := fle≠fls for a positive constant fl, as in the previous Section.

Set Ÿ
j,”

:= Ÿ(t”

j

). For a history h := {Ê1, a1, b1, Ê2, a2, b2, . . .}, the corresponding payo�
is

J
Ÿ,”

(h) :=
+Œÿ

j=1
“

Ÿ,j,”

.

with

“
Ÿ,j,”

:=
⁄

t

”
j+1

t

”
j

Ÿ(s)“
s

ds.

From the arguments in Section 2.5.1, if we assume perfect recall, then all these games
have a value by Sion’s minmax theorem.

Comparison of the evaluations

In model A, as well as in the classical framework, one studies the sequence of value
functions for decreasing evaluations. In both cases the weight of each stage on the payo�
is the same. The crucial di�erence is in the dynamics: in the classical framework the
transition probability between two consecutive stages is independent of the weight of the
stage payo�, while in our framework it goes to zero. This helps to avoid the oscillation
phenomena that arise in the classical framework (see Ziliotto [108] and Sorin and Vigeral
[93]).

In model A, we consider a decreasing sequence of evaluations, while in model C we
consider a discretization of a fixed evaluation. This has the following consequence: let
us suppose for a moment that Ÿ has support in [0, 2T ], for T > 0. At half of the game,
that is, at time s = 1

2 if we are in model A or time t = T in model C, the asymptotic
accumulated payo� in model A, when the stage vanishes is:

lim
Î�Îæ0

min{k:sk<1/2}ÿ

¸=1
◊

¸

æ 0

where Î�Î := sup
kœN ◊

k

= ◊1.
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Whereas for model C, as the duration of the stage vanishes, the accumulated payo� at
half of the game is:

lim
”æ0

ÂT/”Êÿ

j=1
Ÿ

j,”

æ
⁄

T

0
Ÿ(s)ds.

Clearly, model B is a particular case of the evaluation of model C. The interest of
studying it separately relies on the stationarity of the value function (model B), which in
particular allows us to study separately asymptotic properties in two time scales: with
respect to the patience of the players and the frequency of play.

2.7 Main contributions
Let us highlight the main contributions of this thesis.
Chapter 3 is essentially a survey where we explain in a unified framework three ap-

proaches for establishing the existence and characterization of the value function of a two
player, zero sum di�erential game, which are conceptually very di�erent:

i) The discrete game approach: this idea goes back to Fleming [38] and Friedman
[41, 42]. This approach consists in studying properties of the value functions of
suitable discrete approximations of a di�erential game. The first results of conver-
gence of the sequence of discrete value functions and characterization of the limit
go back to Fleming [38] under strong regularity assumptions, which we can relax
thanks to the machinery of viscosity solutions.

ii) The viscosity approach. This is initiated by the intuition of Isaacs [58, p.67], who
guessed that the value function should be, whenever smooth, a classical solution of
the HJI equation, under the Isaacs condition. This was formalized later by Evans
and Souganidis [36] in the framework of viscosity solutions.

iii) The strategic approach of Krasovskii and Subbotin. Here one obtains the ex-
istence of the value function via an explicit construction of ‘-optimal strategies.
One recovers also characterization of the value function by introducing a notion of
generalized solutions for the HJI equation, called minimax solutions [96].

We point out several connections between them and motivate the exposition on the next
two chapters, which are devoted to the strategic approach and its connection with the
viscosity solution approach.

In Chapter 4, we propose a short and self-contained proof of the existence of the value
function in di�erential games with a terminal payo�, based on the construction of approx-
imately optimal strategies. Our construction is inspired from the extremal aiming method
of Krasovskii and Subbotin [61] and corresponds to what is called "strategic approach" in
Chapter 3. This document is a joint work with Miquel Oliu-Barton and has been accepted
for publication in Morfismos.

To close the first part, in Chapter 5 we establish the equivalence between the notion of
viscosity solutions as defined by Crandall and Lions [33] and the more geometrical notion of
minimax solutions. Minimax solutions arise in the theory of Krasovskii and Subbotin [61]
as a generalized solution concept for the Hamilton-Jacobi-Isaacs equation of a di�erential
game with terminal payo�. Our proof is inspired of the epigraphical approach introduced
by Frankowska [40] and relies on an intermediate solution concept (proximal solutions)
introduced by Clarke and Ledyaev [29]. To the best of our knowledge, the equivalence
between viscosity solutions and the "strategic" definition of minimax solutions in terms of
viable sets had not been made explicit for di�erential games, which motivated us to fill
this small gap in the literature. In the more general case of Hamilton-Jacobi-Isaacs with
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time-measurable hamiltonians, similar geometrical ideas can be found in Cardaliaguet and
Plaskacz [24].

In Chapter 6 we introduce a model for discrete time mean field games with finite
horizon, based on the model of Adlakha, Johari and Weintraub [2]. This document is part
of some work in progress with S.C.P. Yam. We construct an ‘- Nash equilibrium for the
game with N players, where the error term ‘ goes to zero as N goes to infinity. However,
we do not obtain here an explicit relation between ‘ and N .

An improvement with respect to the results of Chapter 6 is found in Chapter 7. Here
we propose a di�erent proof for a similar model, which allows us to obtain an error term
depending explicitly on the number of players and the time horizon, as well as other
constants of the game. In Chapter 7 we also explore a di�erent asymptotic result, in terms
of the stage duration, similar to the model of Neyman [78]. We provide a construction
of an approximate Nash equilibrium for the game with N players, where the error term
depends on both the number of players and the duration of the stage. This work has been
submitted for publication.

In Chapter 8, we study stochastic games with short stage duration, as described in the
previous Section. We consider di�erent information scenarios:

i) Both players observe the actions but not the state: in this case, the game reduces
to a di�erential game. We deduce limit equations for the value function as the
duration of the stage goes to zero for models A,B,C. Under suitable regularity
assumptions on the value function, we construct ‘≠optimal strategies, where the
approximation term ‘ depends on the duration of the stage.

ii) Standard signalling: In this case, we derive similar results to those for the case
i), namely, deducing a suitable limit object and use it to generate almost optimal
strategies. Since the state space and actions are finite, we can exploit the semi
algebraic aspect of the model 1 and obtain asymptotic results in a double time scale,
for the game with discounted payo�s: patience (or discount rate) and frequency
(or stage duration), as in Neyman [78].

To conclude this Introduction, let us point out that a unifying thread of this thesis
is the search for a limit object that helps play "almost optimally" in a given game. Here
"almost optimally" depends on the particular game: in Chapter 6, the error of the strategy
derived from the limit object vanishes as the number of players increases; in the results of
Chapter 4 and 8 it is related to the duration of the game, while we derive an approximation
term in terms of both in Chapter 7.

1. In the finite case, the value and the optimal strategies satisfy a system of polynomial inequalities,

see Sorin [92].
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Chapter 3

Value of zero-sum di�erential
games

Abstract: In this chapter we review and compare three di�erent approaches for es-
tablishing the existence and characterization of the value function in di�erential games.

3.1 Introduction
Let (t1, x1) œ [0, 1] ◊ Rn and let U and V denote two compact sets of some euclidean

spaces. Let us define

U(t1) = {u : [t1, 1] æ U, measurable}, V(t1) = {v : [t1, 1] æ V, measurable}.

Whenever t1 = 0, we will use the more convenient notation U and V respectively.
The sets U(t1), V(t1) are the sets of control functions. An element u œ U(t1) is

called a control function for player 1, while an element v œ V(t1) is a control function for
player 2. Elements of U, V are called controls or actions.

Let f : R◊ U ◊ V æ Rn and (u, v) œ U(t1) ◊ V(t1) be a fixed pair of control functions.
Consider a di�erential equation

x(t1) = x1, ẋ(t) = f(x(t), u(t), v(t)) a.e. on [t1, 1]. (3.1)

To ensure the existence of solutions of this equation, we make the following Assump-
tion, which holds for the rest of this chapter:

Assumption 3.1.1. Assume that the function f is jointly continuous and bounded and
that there exists c > 0 such that for all (u, v) œ U ◊ V and x, y œ Rn:

Îf(x, u, v) ≠ f(y, u, v)Î Æ cÎx ≠ yÎ.

Let ÎfÎ := sup(x,u,v) Îf(x, u, v)Î < +Œ.

Under Assumption 3.1.1, a consequence of Carathéodory’s theorem, [31, Chapter 2] is
the following:

Lemma 3.1.2. For (u, v) œ U ◊ V fixed, (3.1) has a unique solution, whose evaluation
at time s is denoted by x[t1, x1, u, v](s) =: x(s), in the following extended sense: for any
t œ [t1, 1],

x[t1, x1, u, v](t) := x1 +
⁄

t

t1
f(x[t1, x1, u, v](s), u(s), v(s))ds.
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A play is a triplet (x, u, v) where (u, v) œ U(t1) ◊ V(t1) and x is a solution of (3.1)
corresponding to (u, v).

Let us consider two functions ¸ : Rn ◊ U ◊ V æ R and g : R æ [0, 1]. The payo�s
associated to the play (x, u, v) can be evaluated as follows:

1. The discounted infinite horizon game: for a given history of plays (x, u, v) the
payo� that player 1 receives from player 2 is

⁄ Œ

t1
e≠fls¸(x[t1, x1, u, v](s), u(s), v(s))ds

where fl > 0.
2. The finite horizon game: At time t = 1, player 2 gives to player 1 a payo� of

⁄ 1

t1
¸(x[t1, x1, u, v](s), u(s), v(s)ds + g(x[t1, x1, u, v](1)).

We assume from now on that the payo� functions satisfy:

Assumption 3.1.3. ¸ : Rn ◊ U ◊ V æ R satisfies Assumption 3.1.1 with constant L
¸

and
g : Rn æ R is Lipschitz continuous with Lipschitz constant L

g

and bounded.

Player 1 wants to choose u in order maximize the payo� he receives, while player 2
chooses v in order to minimize the payo� he gives to player 1. This situation is a zero-
sum di�erential games. When the payo� is evaluated as an infinite horizon payo�, the
game is denoted by �

fl

(t1, x1). If the payo� is evaluated as a finite horitzon payo�, the
game is denoted �(t1, x1) respectively. We discuss here the finite horizon case only.

Up to a change of variables, one can assume that ¸ © 0. To see this, we consider,
instead of x, the enlarged state y := (x, z) given by:

x(t1) = x1, ẋ(t) = f(x(t), u(t), v(t)) a.e. on [t1, 1] (3.2)
z(t1) = 0, ż(t) = ¸(x(t), u(t), v(t)) a.e. on [t1, 1]. (3.3)

The payo� on this new game is of the form gÕ(y[t1, y1, u, v](1)) :=
s 1

t1 ¸(x[t1, y1, u, v](s), u(s), v(s)ds+
g(x[t1, x1, u, v](1)).

In this chapter, we will consider the finite horizon problem with ¸ © 0 only. By solving
the game �(t1, x1), we mean to give an answer to the two following questions

1. What is the "best" payo� Player 1 can get?
2. How does Player 1 need to play to get such payo�?

which are formulated in terms of player 1, for simplicity, but completely analogous ques-
tions are posed for player 2. Despite being intuitive questions, there is no canonical way
to answer them. In particular, it depends on how are players allowed to interact. So far,
we have specified the dynamics and payo� for a given couple of control functions, but we
have not detailed how these control functions are generated.

Strategies

Let us introduce the following definitions of strategies:

Definition 3.1.4. (Non anticipating strategies)
i) A non anticipating strategy (NA) for player 1 is a map – : V æ U such that,
for t œ [t1, 1]:

v1 © v2 a.e. on [t1, t] =∆ –(v1) © –(v2) a.e. on [t1, t].
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ii) Analogously, a non anticipating strategy (NA) for player 2 is a map — : U æ
V such that, for t œ [t1, 1]:

u1 © u2 a.e. on [t1, t] =∆ —(u1) © —(u2) a.e. on [t1, t].

These strategies are also sometimes [9] called VREK strategies, as an acronym for
Varaiya [101], Roxin [84], Elliot and Kalton [35].

However, let us remark that these are not strategies in the sense of game theory. In
particular, a pair of NA strategies may fail to give a well defined play, as the following
example shows.

Example 3.1.5. Let U = V = [≠1, 1]. Consider the pair of NA strategies (–, —) defined
by:

–(v) = ≠v, —(u) = sgn(u).
where sgn(a) = 1 if a Ø 0 and ≠1 otherwise. Suppose there exist (u, v) such that

–(v) = u —(u) = v

hence, sgn(≠v) = v, a contradiction.

To overcome this di�culty, Buckdahn, Cardaliaguet and Rainer [17] introduced the
following notion of strategies.

Definition 3.1.6. (Non anticipating strategies with delay, first definition)
i) A non anticipating strategy with delay (NAD) for player 1 is a map – :
V æ U such that, for some finite partition t1 < · · · < t

N

= 1 of [t1, 1], for all
v1, v2 œ U and 1 Æ m < N :

v1 © v2 a.e. on [t1, t
m

] =∆ –(v1) © –(v2) a.e. on [t1, t
m+1].

ii) Similarly, a non anticipating strategy with delay (NAD) for player 2 is a
map — : U æ V such that, for some finite partition t1 < · · · < t

N

= 1 of [t1, 1], for
all u1, u2 œ U and 1 Æ m < N :

u1 © u2 a.e. on [t1, t
m

] =∆ —(u1) © —(u2) a.e. on [t1, t
m+1].

Note that NAD strategies are a subset of NA strategies. Let A(t1) and B(t1) denote
respectively the sets of non anticipating strategies for player 1 and 2. With this notion of
strategies, one has the following Lemma:

Lemma 3.1.7. ([17, Lemma 2.4])Let (–, —) œ A(t1) ◊ B(t1) where at least one of the
strategies is NAD. Then there exist unique controls (u, v) œ U(t1) ◊ V(t1) such that:

–(v) = u, —(u) = v, a.e. in [t1, 1].

Denote by x[t, x, –, —](s) the trajectory corresponding to the couple of controls (u, v)
associated to the strategies (–, —).

An equivalent definition of non anticipating strategies is the following.

Definition 3.1.8. (Non anticipating strategies with delay, second definition)
i) A non anticipating strategy with delay (NAD) for player 1 is a map – :
V æ U for which there is a delay · > 0 such that for all v1, v2 œ V and for all t:

v1 © v2 a.e. on [t1, t] =∆ –(v1) © –(v2) a.e. on [t1, t + · ].
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ii) Analogously, a non anticipating strategy with delay (NAD) for player 2 is
a map — : U æ V for which there is a delay · > 0 such that for all u1, u2 œ U and
for all t:

u1 © u2 a.e. on [t1, t] =∆ —(u1) © —(u2) a.e. on [t1, t + · ].

Lemma 3.1.9. Definition 3.1.6 and Definition 3.1.8 are equivalent.

Proof. Let us note that any strategy satisfying i) in Definition 3.1.6 has the property
i) in Definition 3.1.8. To see this, let t œ [0, 1] and k such that t œ [t

k

, t
k+1) and set

·
t

:= t
k+1 ≠ t. Note that the family of intervals ([t, ·

t

])
tœ[t1,1] forms a cover of the compact

interval [t1, 1], from which we extract a finite subcover [t1, ·
t1 ], [t2, ·

t2 ], . . . , [t
M

, ·
tM ] and

set · := min1ÆmÆM

·
tm ≠ t

m

. For the converse, let – and · as in i), Definition 3.1.8. Let
k such that k· Æ 1 ≠ t1 < (k + 1)· . Then the partition t1, t1 + ·, . . . t1 + k· satisfies i) in
Definition 3.1.6.

We denote by A
d

, B
d

the sets of NAD strategies for player 1 and 2 respectively.
Non anticipating strategies capture the minimal requirements of a strategy: they forbid

players to see the future. This class is however not satisfactory as the discussion above
shows. We conclude this Section with another important di�erence:
Remark. Let us point out an important di�erence between NA and NAD strategies. The
reaction of, say, player 1 at time t using a NA strategies against the control of player 2 may
use the value of the control of player 2 at time t, whereas in the case of NAD strategies
this is not the case. NA strategies correspond to alternate moves at time t, where the
player using the strategies moves after the player using the controls, while NAD strategies
correspond to simultaneous moves.

3.1.1 Hamilton-Jacobi-Isaacs equations
Depending on the class of strategies, we can define the appropriate value functions.

Let us first consider the case where we allow the players to use non anticipating strategies.

Definition 3.1.10. (Definitions of the value functions, NA strategies)
i) The lower value function is defined by

V
L

(t, x) := inf
—œB

sup
uœU(t)

g(x[t, x, u, —(u)](1)).

ii) The upper value function is defined by

V
U

(t, x) := sup
–œA

inf
vœV(t)

g(x[t, x, –(v), v](1)).

When we restrict the players to use NAD strategies, since the game can be defined
in normal form, it makes sense to define the maxmin and minmax as in classical game
theory:

Definition 3.1.11. (Definitions of the value functions, NAD strategies)
i) The maxmin is defined by

V≠(t, x) := sup
–œAd

inf
—œBd

g(x[t, x, –, —](1)).
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ii) The minmax is defined by

V+(t, x) := inf
—œBd

sup
–œAd

g(x[t, x, –, —](1)).

One common feature of these value functions is that they are related to the following
partial di�erential equations (PDE):

ˆw≠

ˆt
(t, x) + sup

uœU

inf
vœV

+
f(x, u, v), Ò

x

w≠(t, x)
,

= 0 (3.4a)

ˆw+

ˆt
(t, x) + inf

vœV

sup
uœU

e
f(x, u, v), Ò

x

w+(t, x)
f

= 0 (3.4b)

with boundary conditions w≠(1, x) = w+(1, x) = g(x).
More precisely, the lower value and the maxmin are viscosity solutions as introduced

by Crandall and Lions [33]) and whose definition will be recalled later, of (3.4a) while the
upper value and the minmax are viscosity solutions of (3.4b).

Although heuristically derived by Isaacs’ [58, Section 4.2], the connection between
PDE’s and di�erential games was first made explicit in the framework of viscosity solutions
[33] by Evans and Souganidis [36]. The PDE’s (3.4a) and (3.4b) are respectively called
lower and upper Hamilton-Jacobi-Isaacs equations (HJI equations).

If the terms in the above equations involving the sup and the inf coincide, the resulting
PDE has a unique viscosity solution which is the value of the game. In particular, the
value is independent of the class of strategies used (NA or NAD).

Let G(x, p) denote the local game with payo� Èf(x, u, v), pÍ, where player 1 chooses
u œ U and player 2 chooses v œ V . Under the following Assumption, the above equations
reduce to one:

Assumption 3.1.12. (Isaacs’ condition) We assume that the local game G(x, p) has a
value, for all x, p œ Rn. Explicitely,

sup
uœU

inf
vœV

Èf(x, u, v), pÍ = inf
vœV

sup
uœU

Èf(x, u, v), pÍ (3.5)

holds for all x, p œ Rn.

So far we have described the general problem and introduced two auxiliary PDE’s
which will play a role in the sequel. Let us now briefly sketch three approaches to solve
the game �(t1, x1). The rest of this chapter is devoted to a more detailed description of
them.

In Section 3.2, we describe the discrete game approach: this idea goes back to
Fleming [38] and Friedman [41, 42]. Here, one studies a game in discrete time where players
are allowed to choose their actions on the nodes of a time partition. Under Assumptions
3.1.1 and 3.1.3, the upper and lower value functions of the finite games are uniformly
Lipschitz with respect to the partition and hence the set of accumulation points as the
mesh of the partition goes to zero is nonempty. The upper and lower value functions of the
finite games satisfy a recursive formula, from which one can guess the limit equations (3.4a)
and (3.4b). One then uses this limit equation to prove uniqueness of the accumulation
points, which can be done in several ways, as we will see. Note however that this approach
is not really concerned with defining an interaction in continuous time. The interaction
is in discrete time and instead one deduces properties of the value functions of the finite
games via the solutions of the HJI equations.
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The next two approaches rely on defining the value functions of the game in continuous
time game. The value functions satisfy recursive formulas analogous to those appearing
in the discrete game approach and turn out to be solutions of a PDE, in a generalized
(but equivalent) sense. The main di�erence between these two approaches is in the way
the value functions are used to construct strategies.

In Section 3.3 we turn our attention to the viscosity approach. This is initiated by
the intuition of Isaacs [58, p.67], who guessed that the value function should be, whenever
smooth, a classical solution of the HJI equation, assuming (3.5). Evans and Souganidis
[36] proved that the value functions defined using non anticipating strategies are indeed
viscosity solution of the PDE’s guessed by Isaacs. The machinery of viscosity solutions
helps to appropriately answer to Question 1). We can use the solution of the HJI equation
to answer Question 2) as well: when the value function is smooth, one player will steer
the state in the direction of the gradient of the value, while his adversary will steer on the
opposite direction. In the non-smooth case, one can still do this by replacing the gradient
of V at a singular point x by the gradient of V at a neighboring regular point [97, Sections
3 and 5]. This however requires a precise knowledge of the value function: one can easily
think of examples of real valued functions which are close in the uniform norm but their
derivatives are very di�erent.

The third approach, described in Section 3.4, is the strategic approach. This was
initiated by Krasovskii and Subbotin [61, 97]. Following their ideas, one obtains the ex-
istence and characterization of the value function by introducing a notion of generalized
solutions for the HJI equation (minimax solutions [96]), which are equivalent to viscosity
solutions. Both solution concepts rely on very di�erent techniques and have di�erent moti-
vations. The strategic approach provides an explicit construction of ‘≠optimal strategies.
An important advantage of these strategies is that they are more robust than those that
can be obtained by the PDE approach with respect to measurement errors or imprecise
knowledge of the value function.

Finally, in Section 3.5 we point out some connections between these approaches.

3.2 The discrete game approach

We will describe three di�erent ways of associating a discrete game to the di�erential
game G(t, x). The common feature is that decisions are taken at discrete times only. What
di�ers is either the sequence in which the actions are chosen (simultaneous or alternate
moves), the dynamics and the way the players are allowed to update their actions. Let
�

n

= {t = t1 < t2 . . . < t
n+1 = 1} denote a finite partition. Let fi

k+1 := t
k+1 ≠ t

k

and
Î�

n

Î = max
k=1,...n

fi
k

denote its mesh or norm.

3.2.1 The simultaneous Fleming value.

The approach we describe here goes back to [38]. We define the game G�(t, x) starting
at t1 = t, x1 := x and repeated n times as follows: at time t

k

, k = 1, . . . n, both players
remember the history H

k

:= {u1, v1, u2, v2, . . . u
k≠1, v

k≠1} of past actions and thus they
know the current state x

k

. They choose simultaneously and independently actions u
k

and
v

k

using the lotteries ‡(t
k

, x
k

) œ �
f

(U) and ·(t
k

, x
k

) œ �
f

(V ), where �
f

(U) denotes the
set of probability measures on U with finite support and ‡, · are behavioural strategies for
player 1 and 2, that is, ‡ = (‡1, ‡2, . . . , ‡

n

), · = (·1, ·2, . . . , ·
n

) where ‡
k

: H
k

æ �
f

(U)
and ·

k

: H
k

æ �
f

(V ). Denote by �
fi

, T
fi

the strategy sets of player 1 and player 2.
The state evolves according to
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x
k+1 = x

k

+ fi
k+1f(x

k

, u
k

, v
k

). (3.6)

At time t
k+1, the players observe the actions chosen at time t

k

, and thus they know the
new state x

k+1. The game is repeated until k = n. After the n-th move, player 1 receives
from player 2 a payo� g(x

n+1). We introduce the minmax and the maxmin:

V+
�(t

k

, x) = inf
·œT�

sup
‡œ��

E
‡·

g(x
n+1),

V≠
�(t

k

, x) = sup
‡œ��

inf
·œT�

E
‡·

g(x
n+1).

The first result is the existence of the value of the game G�(t, x).

Proposition 3.2.1. ([38, Theorem 1])For every interval [t, 1], every initial position x and
every partition � = {t = t1 < t2 . . . < t

n+1 = 1}, the finitely repeated game G�(t, x) has a
value, denoted V�(t, x), which is a Lipschitz function of x. Moreover, for k = 1, . . . , n ≠ 1
the following recursive formula holds:

V�(t
k

, x) = val(‡,·)œ�f (U)◊�f (V )E‡,·

[V�(t
k+1, x + fi

k+1f(x, ũ, ṽ))] (3.7)

Proof. We prove first the existence of the value. We proceed by induction on the number
of nodes of �. If n = 1, the game becomes a one-shot game with payo�

g(x + (1 ≠ t)f(x, u, v))

which is continuous on u and v and hence it has a value on mixed strategies with finite
support [81, Theorem, p. 750]. Note that the value of this game is Lipschitz in x by
the Lipschitz assumption of g. This and the recursive formula (3.7) imply the Lipschitz
continuity of the value function with respect to x, with the same constant L

g

, so it su�ces
to prove the recursive formula. Assume (3.7) holds for all partitions with n Æ m. Let
�

m+1 = {t = t1 < t2 . . . < t
m+2 = 1}. Consider the game starting at t = t2, which has m

stages, and let �
m

, T
m

denote the respective strategy sets. By induction, the value exists
and is continuous in x and thus the one-shot game with payo� V�m+1(t2, x + fi2f(x, u, v))
has a value Ṽ. Let V+

�m+1(t
k

, x) and V≠
�m+1(t

k

, x) the upper and lower values. Explicitely,

V+
�m+1(t

k

, x) = inf
·œTm

sup
‡œ�m

E
‡·

g(x
m+2),

V≠
�m+1(t

k

, x) = sup
‡œ�m

inf
·œTm

E
‡·

g(x
m+2).

It is easy to see that V+
�m+1 Ø V≠

�m+1 . We will briefly sketch the proof for V≠
�m+1 Ø Ṽ.

Let µ be ‘≠optimal in Ṽ. Since f is continuous and bounded, the state x2 belongs to a
compact set C regardless of players’ choices since their action spaces are also compact. Let
{C

i

}
iœI

denote a finite partition of C with diameter ‘ and take points y
i

œ C
i

. Observe that,
for y œ C

i

, any ‘≠ optimal strategy on the game G�m(t2, y
i

) is 2‘-optimal in G�m(t2, y).
Define the strategy ‡ as follows: play first µ and then the optimal strategy of G�m(t2, y

i

),
if x2 œ C

i

. This strategy ensures a payo� of at least Ṽ + 3‘. Reversing the roles of the
players, V+

�m+1 Æ Ṽ. This concludes the proof.

We extend V� to [t, 1] by linear interpolation and we still denote V� this extension.
We have the following property:
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Proposition 3.2.2. Let � = {t = t1 < t2 . . . < t
n+1 = 1} be a partition. There exists a

constant K independent of � such that

|V�(t, x) ≠ V�(s, x)| Æ K|t ≠ s|.
for all (t, s, x).

Proof. First observe that it su�ces to prove the above formula for t, s consecutive nodes
of the partition �. Then from the recursive formula (3.7) and the Lipschitz continuity of
V�(t, x) with respect to x we obtain:

|V(t
k

, x) ≠ V(t
k+1, x)| Æ |V(t

k+1, x + fi
k+1ÎfÎ) ≠ V(t

k+1, x)|
ÎfÎ · L

g

.

The result now follows with K = ÎfÎ · L
g

.

From Arzelà-Ascoli’s theorem, it follows that there exist a subsequence �
m

of partitions
such that V�m converges uniformly in compact sets to a function V. We will characterize
this limit function in Section 3.5.1

3.2.2 The Fleming value
By allowing the players to randomize their moves as in Section 3.2.1, one gets auto-

matically existence of the value. But this is not necessary for some asymptotic properties.
Let us consider first the upper and lower values in NA strategies. This corresponds to
games with alternating moves.

The players here play piecewise constant actions. Abusing the notation, let ų, v̨ denote
the piecewise constant functions corresponding to the vectors ų = (u1, u2, . . . , u

n

) and
v̨ = (v1, v2, . . . , v

n

).

Discrete lower and upper values

Let us consider a game with the same dynamics as in (3.6) played on the nodes of the
partition �. Instead of choosing their actions simultaneously and independently, players
will take turns. We will consider two auxiliary games, one in which player 1 knows the
move of player 2 before choosing his own and another game in which now player 2 knows
the move of player 1 in advance. As we discussed in Section 3.1, this can be done with
non anticipating strategies, whose definition for finite games is as follows:

Definition 3.2.3. (NA strategies, discrete time). Let � = {t1 < t2, . . . t
n+1 = 1} be a

fixed partition.
i) A non anticipating strategy –� for player 1 is a function –� : V n æ Un such
that, for all k = 1, 2, . . . n

v̨1 © v̨2 a.e. on [t1, t
k

] =∆ –�(v̨1) © –�(v̨2) a.e. on [t1, t
k

].

ii) A non anticipating strategy —� for player 2 is a function —� : Un æ V n such
that, for all k = 1, 2, . . . n

ų1 © ų2 a.e. on [t1, t
k

] =∆ —�(ų1) © —�(ų2) a.e. on [t1, t
k

].
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Let A�, B� denote the strategy sets of player 1 and player 2 respectively. This allows
us to define the value functions:

W≠
�(t

k

, x) := inf
—œB�

sup
uœU

n
g(x

n+1)

W+
�(t

k

, x) := sup
–œA�

inf
vœV

n
g(x

n+1).

These are the values of the minorant game G≠
�(t, x) in which player 1 chooses his

action before player 2 and the majorant game G+
�(t, x) in which the opposite happens.

Proposition 3.2.4. The value function of the minorant game and majorant games satisfy
respectively the following recursive formulae:

W≠
�(t

k

, x) := max
uœU

min
vœV

W≠
�(t

k+1, x + fi
k+1f(x, u, v)). (3.8a)

W+
�(t

k

, x) := min
vœV

max
uœU

W+
�(t

k+1, x + fi
k+1f(x, u, v)).. (3.8b)

By similar arguments as in Section 3.2.1 one can prove the following:

Proposition 3.2.5. The value functions of the minorant and majorant game given by
(3.8a) and (3.8b) are uniformly Lipschitz and hence they have an accumulation point.

We will postpone the characterization of the accumulation points to Section 3.5.1.

Discrete maxmin and minmax

Let us consider here the discrete maxmin and minmax.
We introduce first the corresponding definition of NAD strategies in discrete time.

Definition 3.2.6. (NAD strategies, discrete time). Let � = {t1 < t2, . . . t
n+1 = 1} be a

fixed partition.
i) A non anticipating strategy with delay –� for player 1 is a function –� :
V n æ Un such that, for all k = 1, 2, . . . n

v̨1 © v̨2 a.e. on [t1, t
k

] =∆ –�(v̨1) © –�(v̨2) a.e. on [t1, t
k+1].

ii) A non anticipating strategy with delay —� for player 2 is a function —� :
Un æ V n such that, for all k = 1, 2, . . . n

ų1 © ų2 a.e. on [t1, t
k

] =∆ —�(ų1) © —�(ų2) a.e. on [t1, t
k+1].

Let A�,d

, B�,d

denote the strategy sets of player 1 and player 2 respectively. This
allows us to define the discrete maxmin and minmax:

W+
�,d

(t
k

, x) := inf
—œB�,d

sup
ųœU

n
g(x

n+1) (3.9a)

W≠
�,d

(t
k

, x) := sup
–œA�,d

inf
v̨œV

n
g(x

n+1) (3.9b)

We will postpone the characterization of the accumulation points to Section 3.5.2.
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3.2.3 The Friedman value
In Friedman’s discretization [41], the majorant and minorant games are played as

follows: in the minorant game, at time t
k

both players observe the state and player 1
chooses first the measurable control function he will use on the interval [t

k

, t
k+1]. His

choice is announced to player 2, which in turn chooses his measurable control function.
The state evolves according to (3.1) on the interval [t

k

, t
k+1] and the situation is repeated.

Let U
k

and V
k

denote the following sets:

U
k

:= {u ¶ „
k

: u œ U}
V

k

:= {v ¶ „
k

: v œ V}

where „
k

: [t
k

, t
k+1] æ [0, 1] is the coordinate mapping t ‘æ t≠tk

fik
.

The value functions for the minorant and majorant games are

W≠
F,�(t

k

, x) := inf
—œB�

sup
uœU

g(x
n+1)

W+
F,�(t

k

, x) := sup
–œA�

inf
vœV

g(x
n+1).

In a similar way, the value functions satisfy a dynamic programming principle and
analogous regularity properties.

Proposition 3.2.7. The recursive formula for the value of the minorant game and ma-
jorant game are respectively:

W≠
F,�(t

k

, x) := max
uœUk

min
vœVk

W≠
F,�(t

k+1, x +
⁄

tk+1

tk

f(x[t
k

, x, u, v](s), u(s), v(s))ds).(3.10a)

W+
F,�(t

k

, x) := min
vœVk

max
uœUk

W+
F,�(t

k+1, x +
⁄

tk+1

tk

f(x[t
k

, x, u, v](s), u(s), v(s))ds).(3.10b)

Moreover, these value functions are uniformly Lipschitz and hence they have an accumu-
lation point.

3.3 The viscosity approach
Let us recall the definitions of the lower and upper value functions, in the class of NA

strategies:

V≠
L

(t1, x1) := inf
—œB

sup
uœU

g
!
x[t1, x1, u, —[u]](1)

"
,

V+
U

(t1, x1) := sup
–œA

inf
vœV

g
!
x[t1, x1, –[v], v](1)

"
.

As before, when we consider NAD strategies, the maxmin and the minmax are:

V≠(t1, x1) := sup
–œAd

inf
—œBd

g
!
x[t1, x1, –, —](1)

"
, (3.12)

V+(t1, x1) := inf
—œBd

sup
–œAd

g
!
x[t1, x1, –, —](1)

"
. (3.13)
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Naturally, V≠(1, x) = V+(1, x) = g(x). The inequality V≠ Æ V+ holds everywhere. If
V≠(t1, x1) = V+(t1, x1), the game �(t1, x1) has a value, denoted by V(t1, x1).

Under Assumptions 3.1.3 and 3.1.1 and from the familiar arguments [25, Proposition
1 and 2] and [22, Lemma 3.3], we collect the following properties of the value functions in
the next proposition:

Proposition 3.3.1. (Dynamic programming) The maxmin and the minmax are Lipschitz
continuous and they satisfy the following dynamic programming principle: for all (t, x) œ
[0, 1] ◊ Rn and all tÕ œ [t, 1],

V≠(t, x) = sup
–œAd

inf
—œBd

V≠!
tÕ, x[t, x, –, —](tÕ)

"
(3.14a)

V+(t, x) = inf
—œBd

sup
–œAd

V+!
tÕ, x[t, x, –, —](tÕ)

"
. (3.14b)

The above dynamic programming principle is equivalent to

V≠(t, x) = sup
–œAd

inf
vœV

V≠!
tÕ, x[t, x, –[v], v](tÕ)

"
(3.15a)

V+(t, x) = inf
—œBd

sup
uœU

V+!
tÕ, x[t, x, u, —[u]](tÕ)

"
. (3.15b)

Naturally, a similar dynamic programming principle holds for the upper and lower
value functions. For the rest of the chapter, we will focus on NAD strategies only.

From the dynamic programming equations and a Taylor series expansion around (t, x),
one can deduce heuristically the following partial di�erential equations satisfied by the
value functions

ˆV≠

ˆt
(t, x) + H≠(x, Ò

x

V≠(t, x)) = 0 (3.16a)

ˆV+

ˆt
(t, x) + H+(x, Ò

x

V+(t, x)) = 0 (3.16b)

with boundary condition V≠(1, x) = V+(1, x) = g(x), where

H≠(x, p) := sup
uœU

inf
vœV

Èf(x, u, v), pÍ (3.17a)

H+(x, p) := inf
vœV

sup
uœU

Èf(x, u, v), pÍ (3.17b)

are called the lower and upper hamiltonians respectively.
The equations (3.16a) and (3.16b) were heuristically derived by Isaacs [58, p.67]. In

particular, if Isaacs’ condition holds (c.f. (3.5))

H≠(x, p) = H+(x, p) =: H(x, p) ’(x, p) œ Rn ◊ Rn

and if the PDE

ˆV
ˆt

(t, x) + H(x, Ò
x

V(t, x)) = 0 (3.18)

with boundary condition V(1, x) = g(x) has a unique solution, this characterizes the value
function.
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However, there are two problems here: the first one is that the solution is seldom
regular enough, regardless of the smoothness of the boundary condition. So one needs to
come out with an appropriate notion of solution for the PDE (3.18). Evans and Souganidis
[36] proved that the correct interpretation of solution for this PDE is the notion of viscosity
solutions:

Definition 3.3.2. (Viscosity solutions, [33])
— A lower semicontinuous function w : [0, 1] ◊ Rn æ R is a viscosity supersolu-
tion of (3.16a) if for any (t, x) œ [0, 1]◊Rn and a C1 test function „ : [0, 1]◊Rn æ R
such that „(t, x) = w(t, x) and „(s, y) Æ w(s, y) for (s, y) on a neighbourhood of
(t, x), then

ˆ„

ˆs
(t, x) + H≠(x, Ò

y

„(t, x)) Æ 0. (3.19)

— An upper semicontinuous function w : [0, 1]◊Rn æ R is a viscosity subsolution
of (3.16b) if for any (t, x) œ [0, 1] ◊ Rn and a C1 test function „ : [0, 1] ◊ Rn æ R
such that „(t, x) = w(t, x) and „(s, y) Ø w(s, y) for (s, y) on a neighbourhood of
(t, x), then

ˆ„

ˆs
(t, x) + H+(x, Ò

y

„(t, x)) Ø 0. (3.20)

— A continuous function is a viscosity solution if it is both a viscosity super and
subsolution.

Note that this definition of viscosity solutions has the signs reversed in the inequalities
with respect to that in [33] since we are dealing with problems with terminal conditions
instead of initial conditions. Evans and Souganidis [36] proved that the upper and lower
value functions (3.13) and (3.13) are solutions of (3.16a) and (3.16b) in the viscosity sense
and hence if Isaacs’ condition (3.5) holds, the solution is unique.

3.3.1 Strategies in the PDE approach: the smooth case
We will describe now how the players can use the value function to construct the

strategies and to prove that the proposed construction is indeed optimal. This is called
a verification theorem. The purpose of this theorem is to illustrate the interest of com-
puting the value function and how answering Question 1) helps to answer Question 2).
The assumptions of this theorem are however rarely satisfied, its main purpose is being
pedagogical. A first version of Verification Theorem is also due to Isaacs, see [58, Theorem
4.4.1].

Theorem 3.3.3. Assume that (3.18) has a C1 solution. Let us furthermore assume that
there exist measurable maps uú : [0, 1] ◊ Rn æ U, vú : [0, 1] ◊ Rn æ V such that:

uú(t, x) œ argmax
uœU

;
min
vœV

ÈÒ
x

V(t, x), f(x, u, v)Í
<

(3.21a)

vú(t, x) œ argmin
vœV

;
max
uœU

ÈÒ
x

V(t, x), f(x, u, v)Í
<

. (3.21b)

Then, for all (t1, x1) œ [0, 1] ◊ Rn,

V(t1, x1) = inf
vœV

g (x[t1, x1, uú, v](1)) = sup
uœU

g (x[t1, x1, u, vú](1)) = g (x[t1, x1, uú, vú](1)) .

(3.22)
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Proof. Take v œ V and denote by x1(t) := x[t1, x1, uú, v](t) and let uú(t) := uú(t, x1(t))
and v(t) := v(t, x1(t)) for simplicity. Then we have that:

d

dt
V(t, x1(t)) = ˆV

ˆt
(t, x) +

e
Ò

x

V(t, x1(t)), f(x1(t), uú(t), v(t))
f

Ø ˆV
ˆt

(t, x) + inf
vœV

e
Ò

x

V(t, x1(t)), f(x1(t), uú(t), v)
f

= 0.

Integrating from t1 to 1, we get that:

V(1, x1(1)) = g(x1(1)) Ø V(t1, x1).

We conclude from this that V≠(t1, x1) Ø V(t1, x1). In a completely analogous way, one
proves that V+(t1, x1) Æ V(t1, x1) and hence V≠(t1, x1) = V+(t1, x1) = V(t1, x1).

Remark. This theorem is rarely useful, as typically the value functions are not smooth.
However, it is possible to construct ‘≠optimal strategies in a similar way. Instead of using
the derivatives of the value function, one can consider derivatives of a sequence of smooth
functions that converge to the value function. We will not detail this here, but we refer to
[97, Chapter 1, Section 5] for a detailed description.

3.4 The strategic approach
We describe here the strategic approach, introduced by Krasovskii and Subbotin [61].

We reformulate their ideas in a modern language and clarify their proofs. For the sake of
brevity, we will not do all detailed proofs here, but rather motivate the main ideas and
refer the reader to Chapter 4 in this thesis or to our paper [71] for the complete proofs.

To prove the existence of the value, one needs to prove the inequality V+ Æ V≠. One
achieves this by showing that for every ‘, player 2 has a NAD strategy such that he can
ensure that his payo� is below V≠ + ‘. From the dynamic programming equation (3.14a)
it is easy to prove that V≠ satisfies the following inequality, for t1 Æ tÕ Æ 1:

’(t1, x1) V≠(t, x) Ø sup
uœU

inf
vœV

V≠!
tÕ, x[t1, x1, u, v](tÕ)

"
. (3.23)

If S is a closed subset of Rn and y œ Rn denote with d(y, S) := inf
pœS

Îy ≠pÎ the usual
distance from a point to a set.

Denote by

W≠ := {(t, x) œ [t1, 1] ◊ Rn | V≠(t, x) Æ V≠(t1, x1)}

the V≠(t1, x1)≠level set of V≠ and let

W≠(t) :=
)
x œ Rn | (t, x) œ W≠*

,

which is closed and non empty for all t (see Chapter 4).
One can prove that for every ‘ > 0, player 2 is able to construct a strategy —

‘

such
that for every u œ U

d(x[t1, x1, u, —
‘

(u)](1), W≠(1)) Æ ‘/L
g

.
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This, together with the Lipschitz continuity of g allows us to conclude. To see this, let z
denote a projection of the point y := x[t1, x1, u, —

‘

(u)](1) in W -(1). Then,

g(y) Æ g(z) + LÎy ≠ zÎ = V≠(1, z) + ‘ .
Observe that the inequality (3.23) implies (see [71, Lemma 2.1] for the proof) that, for all
(t, x) œ W≠ and all tÕ œ [t, 1]:

sup
uœU

inf
vœV

d(x[t, x, u, v](tÕ), W≠(tÕ)) = 0. (3.24)

This property helps player 2 to build a strategy in the following way: let (t, x) denote some
initial conditions for (3.1) and let w be a point in the projection of x in the set W≠(t).
Consider the local game G(x, ›), where › := x ≠ w. Let us assume that this game has a
value in pure strategies or, equivalently, that Isaacs’ condition holds (Assumption 3.1.12).
Now let (uú, vú) be optimal actions in G(x, ›) and (u, v) œ U ◊ V arbitrary. Consider the
trajectories:

x(t) = x, ẋ(s) = f(x(s), u(s), vú) (3.25a)
w(t) = w, ẇ(s) = f(w(s), uú, v(s)) (3.25b)

This situation is pictured in Figure 3.4.1. The crucial property that these two trajec-
tories satisfy is enclosed in the following Lemma, which is [71, Lemma 1.1] and is inspired
by [61, Lemma 2.3.1].

Lemma 3.4.1. There exist A, B > 0 such that for all s œ [t, 1], and for all u, v:

Îx[t, x, u, v]](s) ≠ w[t, x, u, v](s)Î2 Æ (1 + (s ≠ t)A)Îx ≠ wÎ2 + B(s ≠ t)2.

Note that this estimate is independent of u and v. In particular, it holds if one
considers v

‘

that realizes the inf in (3.24) for uú. Hence, this estimate provides an useful
upper bound for the distance from x(s) to W≠(s) if player 2 plays the constant control
vú in the interval [t, s]. We will show, with the help of this estimate, how to construct
an ‘≠optimal strategy for player 2. Let �

n

= {t1 < t2 < . . . t
n+1 = 1} denote a partition

of [t1, 1] and let fi1 and fi2 be two selection rules defined by “1 : [0, 1] ◊ Rn æ Rn which
assigns to each (t, x) a closest point to x in W≠(t); and “2 : [0, 1] ◊ Rn ◊ Rn æ V which
assigns to each (t, x, ›) an optimal action for player 2 in the local game G(t, x, ›). Finally,
let:

“ : [0, 1] ◊ Rn æ V, (t, x) ‘æ “2(t, x, x ≠ “1(t, x)).

Definition 3.4.2. An extremal strategy — = —(�, “) : U æ V is defined inductively
as follows: suppose that — is already defined on [t1, t

m

] for some 0 Æ m < n, and let
x

m

:= x[t1, x1, u, —(u)](t
m

). Then set —(u) © “(t
m

, x
m

) on [t
m

, t
m+1].

These strategies are inspired by the extremal aiming method of Krasovskii and Sub-
botin [61, Section 2.4]. They are obtained applying recursively the construction of Lemma
3.4.1. Using the estimates there, one obtains the following

Proposition 3.4.3. For any u œ U , d2(x[t1, x1, u, —(u)](1), W≠(1)) Æ eABÎ�Î where
A, B > 0 are constants independent of �.

Hence, we obtain the desired inequality V+ Æ V≠ and thus the existence of the value
function V := V+ = V≠.

One can also obtain a characterization of the value function as a minimax solution.
We will elaborate on this point in Section 3.5.3.
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w

x vú is optimal for player 2

uú is optimal for player 1

Local Game: G(x, ›)

u, vú x(s)

uú, v
w(s)

›

Figure 3.4.1 – Construction of two trajectories using the local game.

3.5 Some links between these approaches
Let us show in this Section how the three previously described approaches are related.

3.5.1 Convergence of the discretized values
Note that the sequence of Fleming and Friedman values satisfy very similar recursive

equations. Thanks to a result on approximation schemes by Souganidis [94], it is possible
to provide a unified proof of their convergence to the unique viscosity solution of the HJI
PDE. Let us consider a function Hú : Rn ◊ Rn æ R that satisfies

Assumption 3.5.1. (Regularity of Hú)
a) ’x œ Rn, |Hú(x, p) ≠ Hú(x, q)| Æ C|p ≠ q|.
b) ’p œ Rn, |Hú(x, p) ≠ Hú(y, p)| Æ C|x ≠ y|(1 + |p|)

for some positive constant C.

Under Assumption 3.5.1, the following result holds.

Theorem 3.5.2. Under Assumption 3.5.1, the partial di�erential equation

ˆu

ˆt
(t, x) + Hú(x, Ò

x

u(t, x)) = 0 (3.26)

with boundary condition u(1, x) = g(x) has a unique viscosity solution.

For the proof, we refer to Crandall and Lions [33].
Now let BUC(Rn) denote the set of bounded and uniformly continuous functions on

Rn and consider, for every fl > 0 an operator S
fl

: BUC(Rn) æ BUC(Rn) that satisfies:
i) S

fl

(p) Ø S
fl

(q) if p Ø q.
ii) S

fl

(p + k) = S
fl

(q) + k, for k œ R.
iii) lim

flæ0
„≠Sfl„

fl

= Hú(x, Ò„) , for all „ œ CŒ.
Consider the function W� : [0, 1] ◊ Rn æ R defined recursively by

W�(1, x) = g(x), W�(t, x) = S
t≠tk+1W�(t

k+1, ·)(x), t œ [t
k

, t
k+1].

Then the following theorem, due to Souganidis, holds (see [94] or Section 3 in [95] for
a simplified version of the proof):

Theorem 3.5.3. Let Hú : Rn ◊ Rn æ R that satisfies Assumption 3.5.1. Let V denote
the unique viscosity solution of (3.26).

Then ÎV ≠ W�ÎŒ æ 0 as |�| æ 0.
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Proof. Observe that the sequence W� has a subsequence that converges locally uniformly
to a function W . Let „ : [0, 1] ◊ Rn æ R a C1 function such that W (t̄, x̄) = „(t̄, x̄) and
W (s, y) Æ „(s, y) for (s, y) œ [0, 1] ◊Rn. Now let W�n be a convergent subsequence. Here,
�

n

= {t1 = t, tn

2 , . . . tn

n+1 = 1}. Let k such that tn

k

Æ t̄ < tn

k+1 and (t̄
n

, x̄
n

) such that
W�n ≠ „ has a maximum at (t̄

n

, x̄
n

), when restricted to [tn

k

, tn

k+1]. It follows that, for all
x œ Rn,

W�n(tn

k+1, x) Æ „(tn

k+1, x) + W�n(t̄
n

, x̄
n

) ≠ „(t̄
n

, x̄
n

).

Applying the operator S
t̄n≠t

n
k+1

to both sides of this inequality and using the fact that
this operator is monotone and homogeneously additive (properties i) and ii), we obtain:

W�n(t̄
n

, x̄
n

) Æ S
t̄n≠t

n
k+1

„(tn

k

, x) + W�n(t̄
n

, x̄
n

) ≠ „(t̄
n

, x̄
n

).

Rearranging these terms and using property iii) gives

0 Æ
„(tn

k+1, x) ≠ S
t̄n≠t

n
k+1

„(tn

k+1, x) + „(t̄
n

, x̄
n

) ≠ „(tn

k+1, x)
t̄
n

≠ tn

k+1
.

As n æ +Œ we get:

0 Æ ˆ„

ˆt
(t, x) + Hú(x, Ò

x

„(t, x)).

This proves that the function W is a subsolution. The proof for supersolutions is
completely analogous. From Theorem 3.5.2, the viscosity solution is unique, hence V =
W .

Observe that the value functions of the simultaneous Fleming value, the Fleming values
and the Friedman values satisfy a similar recursive structure that the one described above.
One can write the appropriate operator S

fl

which are on each case are given by the right
hand sides of (3.7), (3.8a), (3.8b), (3.10a), and (3.10b). Explicitly, for s œ [0, 1] and
x œ Rn, if h œ BUC(Rn):

S
fl

h(s, x) =

Y
_______]

_______[

val(µ,‹)œ�f (U)◊�f (V )h(s + fl, x + flf(x, u, v)) in (3.7),
max

uœU

min
vœV

h(s + fl, x + flf(x, u, v)) in (3.8a),
min

vœV

max
uœU

h(s + fl, x + flf(x, u, v)) in (3.8b),
max

uœUs,fl min
vœVs,fl h(s + fl, x +

s
s+fl

s

f(x(Ê), u(Ê), v(Ê))dÊ) in (3.10a),
min

vœVs,fl max
uœUs,fl h(s + fl, x +

s
s+fl

s

f(x(Ê), u(Ê), v(Ê))dÊ), in (3.10b).

3.5.2 From the viscosity approach to the discrete game approach
As we already saw in Section 3.3.1, it is possible in the smooth case to use the value

function to construct ‘≠optimal strategies of the continuous time game. In this Section,
we will show that one can use these limit strategies to prove the uniqueness of the accu-
mulation points of the families of the maxmin and minmax of the discrete time games, in
the smooth case. We have the following:

Proposition 3.5.4. Let V≠ : [0, 1] ◊ Rn æ R denote a viscosity supersolution of (3.16b)
and let �0 = {0 = s1 < s2, . . . , s

N

= 1} be a partition such that V≠ is continuously
di�erentiable in every interval (s

k

, s
k+1). The family of discrete maxmin, as defined in

(3.9b), converge to V≠ as |�| æ 0, for all � refinement of �0.
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Proof. Denote with (xú
k

)
k

the sequence of states in the game (as will be defined below),
with xú

1 = x.
Let –ú be the following strategy: at time t

k

, observe xú
k

and choose uú
k

such that

uú
k

œ argmax
uœU

;
min
vœV

Èf(xú
k

, u, v), Ò„
k

(t
k

, xú
k

)Í
<

Let v̨ = (v1, v2, . . . , v
n

) be an arbitrary sequence of actions of player 2 and let xú
1 =

x, xú
2, . . . xú

n+1 denote the trajectory induced by v̨ and –ú. We have that, if we write �V
k

:=
V

≠(tk+1,x

ú
k+1)≠V

≠(tk,x

ú
k)

fik+1
,

�V
k

= ˆV≠

ˆt
(t

k

, xú
k

) +
+
f(xú

k

, uú
k

, v
k

), Ò
x

V≠(t
k

, xú
k

)
,

+ o(fi
k+1)

Ø ˆV≠

ˆt
(t

k

, xú
k

) + min
vœV

+
f(x

k

, uú
k

, v), Ò
x

V≠(t
k

, xú
k

)
,

+ o(fi
k+1)

Note that
ˆV≠

ˆt
(t

k

, xú
k

) + min
vœV

+
f(x

k

, uú
k

, v), Ò
x

V≠(t
k

, xú
k

)
,

is equal to
ˆV≠

ˆt
(t

k

, xú
k

) + max
uœU

min
vœV

+
f(xú

k

, u, v), Ò
x

V≠(t
k

, xú
k

)
,

= 0.

Integrating from t1 to 1 one obtains:

g(xú
n+1) Ø V≠(t1, xú

1) + o(|�|)

which concludes the proof.

When the state space is finite, the idea of Proposition 3.5.4, namely to use the limit
equation to generate an ‘≠optimal strategy and then prove the convergence of the discrete
value functions has been used in the context of stochastic games of short stage duration
by Neyman. We refer to [78, Theorem 1].

The same idea, i.e. to use a limit object to construct approximate strategies, is central
to this thesis and has proven fruitful in game theory. One important example is the
Big Match with incomplete information on one side, due to Sorin [90, 91], where a limit
continuous time game is deduced and discretizations of optimal strategies of the limit
game are used to construct approximate strategies of discrete time games.

3.5.3 Equivalence of minimax and viscosity solutions
Before introducing the definition of minimax solutions, due to Subbotin [96], we recall

some notions of viability theory. Let F : RN  RN be a multiple valued map. A
trajectory of the di�erential inclusion

ẏ(t) œ F (y(t)), y(t1) = y1, (3.27)

is an absolutely continuous function y : [t1, 1] æ RN that satisfies (3.27). A pair (S, F )
of a closed set S µ RN and a multiple valued map F : RN  RN is called viable or
weakly invariant if for every initial condition (t1, y1) œ [0, 1]◊S there exists a trajectory
of (3.27) such that y(t) œ S for all t1 Æ t Æ 1.
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For every u œ U , we will now consider the following di�erential inclusion
Y
__]

__[

ṡ = 1
ẋ œ f(x, u, V )
ż = 0

(3.28)

In a similar way, we also consider, for every v œ V, the di�erential inclusion
Y
__]

__[

ṡ = 1
ẋ œ f(x, U, v)
ż = 0

(3.29)

Definition 3.5.5. (Minimax solutions)
— A lower semicontinuous function w : [0, 1] ◊ Rn æ R is a minimax supersolu-
tion of (3.16a) if for any u œ U, (epiw, E≠

u

) is viable.
— An upper semicontinuous function w : [0, 1] ◊ Rn æ R is a minimax subsolu-
tion of (3.16b) if for any v œ V, (hypw, E+

v

) is viable.
— A continuous function is a minimax solution if it is both a minimax super and
subsolution.

The relationship with games is the following: using the subdynamic programming
principle (3.23), one can prove the viability of the epigraph of V≠, which is a slightly
stronger condition that (3.24). Then, via the strategic approach, which relies on this
viability property, one obtains the existence of the value.

The equivalence between minimax and viscosity solutions was first established by Sub-
botin. We refer to Subbotin [96] for a detailed account of this theory. The ideas behind
these two solution concepts are di�erent: while Subbotin’s approach relies more on the
geometrical ideas of weak invariance (his terminology for viability), while Crandall and Li-
ons’ viscosity solutions rely on analytical techniques (i.e. the vanishing viscosity method,
see Crandall and Lions [33]). In control theory, the relationship between viability theory
and viscosity solutions has been established by Frankowska [40].

A di�erent approach to prove this equivalence has been explored by Lions and Sougani-
dis [68, 69]. As we have seen, the dynamic programming principle, together with the reg-
ularity assumptions on the data of the problem allow to characterize the value functions
as viscosity sub and super solutions. In [68], Lions and Souganidis go in the opposite
direction: they show that sub and super solutions satisfy suitable dynamic programming
inequalities, which are in turn used to prove the equivalence between Subbotin’s definition
of minimax solutions using directional derivatives.

A di�erent approach based on proximal calculus and viability is described in Chapter
5 of this thesis.



Chapter 4

A strategy-based proof of the
existence of the value in zero-sum
di�erential games

Abstract: The value of a zero-sum di�erential games is known to exist, under Isaacs’
condition, and it is the unique viscosity solution of a Hamilton-Jacobi-Isaacs equation.
This approach, in spite of being very e�ective, does not provide information about the
strategies the players should use. In this note we provide a self-contained proof of the
existence of the value based on the construction of ‘-optimal strategies, which is inspired
by the extremal aiming method from [61]. This Chapter is based on joint work with Miquel
Oliu-Barton and has been accepted for publication in Morfismos.

4.1 Comparison of trajectories
Let U and V be compact subsets of some euclidean space, let Î · Î be the euclidean

norm in Rn, and let f : [0, 1] ◊ Rn ◊ U ◊ V æ Rn. For each x œ Rn and Z µ Rn, let

D(x, Z) := inf
zœZ

Îx ≠ zÎ

be the usual distance from x to the set Z.

Assumption 4.1.1. f is uniformly bounded, continuous and there exists c Ø 0 such that
for all (u, v) œ U ◊ V , (s, t) œ [0, 1]2 and x, y œ Rn:

Îf(t, x, u, v) ≠ f(s, y, u, v)Î Æ c
!|t ≠ s| + Îx ≠ yÎ"

.

Let ÎfÎ := sup(t,x,u,v) Îf(t, x, u, v)Î < +Œ.

The local game. For each (t, x), › œ [0, 1] ◊ Rn ◊ Rn, the local game �(t, x, ›) is a
one-shot game with action sets U and V and payo� function:

(u, v) ‘æ È›, f(t, x, u, v)Í.
Let H≠(t, x, ›) and H+(t, x, ›) be its maxmin and minmax respectively:

H≠(t, x, ›) := max
uœU

min
vœV

È›, f(t, x, u, v)Í,
H+(t, x, ›) := min

vœV

max
uœU

È›, f(t, x, u, v)Í.
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w1

x1 vú is optimal for player 2

uú is optimal for player 1

Local Game: �(t1, x1, ›1)

u, vú x(t)

uú, v
w(t)

›1

Figure 4.1.1 – Construction of two trajectories using the local game.

These functions satisfy H≠ Æ H+. If the equality H+(t, x, ›) = H≠(t, x, ›) holds, the
game �(t, x, ›) has a value, denoted by H(t, x, ›).

Assumption 4.1.2. �(t, x, ›) has a value for all (t, x, ›) œ [0, 1] ◊ Rn ◊ Rn.

Assumptions 4.1.1 and 4.1.2 hold in the rest of the paper.

4.1.1 A key Lemma

Introduce the sets of controls:

U = {u : [0, 1] æ U, measurable}, V = {v : [0, 1] æ V, measurable}.

Consider the following dynamical system, where t1 œ [0, 1], z1 œ Rn and (u, v) œ U ◊ V:

z(t1) = z1, ż(t) = f(t, z(t), u(t), v(t)) (4.1)

The Assumption 4.1.1 ensures the existence of a unique solution to (4.1), which is denoted
by z[t1, z1, u, v], in the following extended sense: for any t œ [t0, 1],

z[t1, z1, u, v](t) := z1 +
⁄

t

t1
f(s, z[t1, z1, u, v](s), u(s), v(s))ds.

This result is due to Carathéodory and can be found in [31, Chapter 2]. Elements of U
and V are identified with constant controls.

The purpose of this section is to bound the distance between two trajectories: one
starting from x1 and controlled by (u, v), and another one starting from w1 and controlled
by (u, v). The appropriate pair (u, v) is obtained using the existence of the value and of
optimal actions in the local game: let uú (resp. vú) be optimal for player 1 (resp. 2) in
�(t1, x1, ›1), where ›1 := x1 ≠ w1.

Let x := x[t1, x1, u, vú] and w := w[t1, w1, uú, v] (see Figure 4.1.1). The following
lemma is inspired by [61, Lemma 2.3.1].

Lemma 4.1.3. There exist A, B œ R+ such that for all t œ [t1, 1]:

Îx(t) ≠ w(t)Î2 Æ (1 + (t ≠ t1)A)Îx1 ≠ w1Î2 + B(t ≠ t1)2.

Furthermore, A and B are independent of the controls.
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Proof. Let d1 := Îx1 ≠ w1Î and d(t) := Îx(t) ≠ w(t)Î. Then:

d2(t) =
....›1 +

⁄
t

t1
[f(s, x(s), u(s), vú) ≠ f(s, w(s), uú, v(s))]ds

....
2

. (4.2)

The boundedness of f implies that:
....
⁄

t

t1
[f(s, x(s), u(s), vú) ≠ f(s, w(s), uú, v(s))]ds

....
2

Æ 4ÎfÎ2(t ≠ t1)2. (4.3)

Claim: For all s œ [t1, 1], and for all (u, v) œ U ◊ V :

È›1, f(s, x(s), u, vú) ≠ f(s, w(s), uú, v)Í Æ 2C(s)d1 + cd2
1, (4.4)

where C(s) := c(1 + ÎfÎ)(s ≠ t1).
Proof of the claim. Assumption 4.1.1 implies Îx(s) ≠ x1Î Æ (s ≠ t1)ÎfÎ, and then:

Îf(s, x(s), u, vú) ≠ f(t1, x1, u, vú)Î Æ c
!
(s ≠ t1) + ÎfÎ(s ≠ t1)

"
= C(s).

From the Cauchy-Schwartz inequality and the optimality of vú one gets:

È›1, f(s, x(s), u, vú)Í Æ È›1, f(t1, x1, u, vú)Í + C(s)d1, (4.5)
Æ H+(t1, x1, ›0) + C(s)d1. (4.6)

Similarly, Assumption 4.1.1 implies Îw(s) ≠ x1Î Æ d1 + (s ≠ t1)ÎfÎ, and then:

Îf(s, w(s), uú, v) ≠ f(t1, x1, uú, v)Î Æ C(s) + cd1.

Using the Cauchy-Schwartz inequality, and the optimality of uú:

È›1, f(s, w(s), uú, v)Í Ø È›1, f(t1, x1, uú, v)Í ≠ (C(s) + cd1)d1, (4.7)
Ø H≠(t1, x1, ›1) ≠ C(s)d1 ≠ cd2

1. (4.8)

The claim follows by substracting the inequalities (4.6) and (4.8) and using Assumption
4.1.2 to cancel (H+ ≠ H≠)(t1, x1, ›1).
In particular, (4.4) holds for (u, v) = (u(s), v(s)). Note that

s
t

t1 2C(s)ds Æ (t ≠ t1)C(t).
Thus, integrating (4.4) over [t1, t] yields:

⁄
t

t1
È›1, f(s, x(s), u(s), vú) ≠ f(s, w(s), uú, v(s))Íds Æ (t ≠ t1)(2C(t)d1 + cd2

1). (4.9)

Using the estimates (4.3) and (4.9) in (4.2) we obtain:

d2(t) Æ d2
1 + 4ÎfÎ2(t ≠ t1)2 + 2(t ≠ t1)C(t)d1 + c(t ≠ t1)d2

1.

Finally, using the relations d1 Æ 1 + d2
1 and (t ≠ t1)C(t) = c(1 + ÎfÎ)(t ≠ t1)2, the result

follows with A := 3c + 2ÎfÎ and B := 4ÎfÎ2 + 2c(1 + ÎfÎ).

4.1.2 Consequences
We give here three direct consequences of Lemma 4.1.3. First, we use a set of times

� = {0 = t1 < · · · < t
N

= 1} in [0, 1] to construct two trajectories on [t1, t
N

] inductively.
Applying Lemma 4.1.3 to the intervals [t

m

, t
m+1] for m = 1 . . . , N ≠ 1, we obtain a bound

for the distance between the two at time t
N

. In particular, if the two trajectories start from
the same state then their distance at time t

N

vanishes as Î�Î := max1ÆmÆN

t
m

≠ t
m≠1

tends to 0. Later, we replace the distance between two trajectories by the distance between
a trajectory and a set. Finally, we combine the two aspects; the result obtained therein is
used in Section 4.2 to prove the existence of the value of zero-sum di�erential games with
terminal payo�.
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x1 x(t2) x(t3)u, vú
1 u, vú

2

w1 w(t2) w(t3)uú
1, v uú
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. . .

. . .

(uú
1, vú

1) optimal in
�(t1, x1, ›1)

(uú
2, vú

2) optimal in
�(t2, x(t2), ›2)

›1 ›2 ›3

Figure 4.1.2 – Iterative construction of the two trajectories.

Induction

Let (u, v) œ U ◊ V be a pair of controls. Define the trajectories x and w on [t1, t
N

]
inductively: let x(t1) = x1 and w(t1) = w1 and suppose that x(t) and w(t) are defined
on [t1, t

m

] for some m = 1, . . . , N ≠ 1. Consider the local game �(t
m

, x(t
m

), ›
m

), where
›

m

:= x(t
m

) ≠ w(t
m

), and let uú
m

œ U and vú
m

œ V be optimal actions for player 1 and 2
respectively.

For t œ [t
m

, t
m+1], set x(t) := x[t

m

, x(t
m

), u, vú
m

](t) and w(t) := w[t
m

, w(t
m

), uú
m

, v](t)
(see Figure 4.1.2).

Corollary 4.1.4. Îx(t
N

) ≠ w(t
N

)Î2 Æ eA(Îx1 ≠ w1Î2 + BÎ�Î).

Proof. For any 1 Æ m Æ N , put d
m

:= Îx(t
m

) ≠ w(t
m

)Î. By Lemma 4.1.3, one has:

d2
m

Æ (1 + (t
m

≠ t
m≠1)A)d2

m≠1 + B(t
m

≠ t
m≠1)2.

By induction, one obtains:

d2
N

Æ exp
A

A
Nÿ

m=1
(t

m

≠ t
m≠1)

B A

d2
1 + B

Nÿ

m=1
(t

m

≠ t
m≠1)2

B

.

The result follows, since
q

N

m=1(t
m

≠ t
m≠1) Æ 1 and

q
N

m=1(t
m

≠ t
m≠1)2 Æ Î�Î.

Distance to a set

Let W µ [t1, 1] ◊ Rn be a set satisfying the following properties:
• P1: For any t œ [t1, 1], W(t) := {x œ Rn | (t, x) œ W} is closed and nonempty.
• P2: For any (t, x) œ W and any tÕ œ [t, 1]:

sup
uœU

inf
vœV

D(x[t, x, u, v](tÕ), W(tÕ)) = 0.

Equivalent formulations of P2 were introduced by Aubin [3], although our formulation
is inspired by the notion of stable bridge in [61].

Let x1 œ Rn, let w1 œ argminW(t1)Îx1 ≠ w1Î be some closest point to x1 in W(t1) and
let vú be optimal for player 2 in the local game �(t1, x1, x1 ≠ w1).

Corollary 4.1.5. For every t œ [t1, 1] and u œ U :

D2(x[t1, x1, u, vú](t), W(t)) Æ (1 + (t ≠ t1)A)D2(x1, W(t1)) + B(t ≠ t1)2.
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Proof. Let u œ U be fixed and let uú be optimal in �(t1, x1, x1 ≠ w1). By P2, for all
‘ > 0 there exists v(‘,u

ú) œ V such that the point w
‘

(t) := x[t1, w1, uú, v(‘,u

ú)](t) satisfies
D(w

‘

(t), W(t)) Æ ‘ (see Figure 4.1.3). We use the following abbreviation: x
u

(t) :=
x[t1, x1, u, vú](t). The triangular inequality gives D(x

u

(t), W(t)) Æ Îx
u

(t) ≠ w
‘

(t)Î + ‘.
Taking the limit, as ‘ æ 0, one has that:

D2(x
u

(t), W(t)) Æ lim
‘æ0

Îx
u

(t) ≠ w
‘

(t)Î2.

By Lemma 4.1.3, Îx
u

(t) ≠ w
‘

(t)Î2 Æ (1 + (t ≠ t1)A)Îx1 ≠ w1Î2 + B(t ≠ t1)2 for all ‘ > 0.
The result follows by the choice of w1.

A key Corollary

For any u œ U , define a trajectory x
u

on [t1, t
N

] inductively, as follows: let x
u

(t1) =
x1 and suppose that x

u

is defined on [t1, t
m

] for some m = 1, . . . , N ≠ 1. Let w
m

œ
argmin

wœW(tm)Îx
u

(t
m

)≠wÎ be a closest point to x
u

(t
m

) in W(t
m

), and let vú
m

be optimal
for player 2 in the local game �(t

m

, x
u

(t
m

), x
u

(t
m

) ≠ w
m

).
Implicitly, we are using two selection rules fi1 and fi2 defined as follows: fi1 : [0, 1] ◊

Rn æ Rn assigns to each (t, x) a closest point to x in W(t); fi2 : [0, 1] ◊ Rn ◊ Rn æ V
assigns to each (t, x, ›) an optimal action for player 2 in the local game �(t, x, ›). Thus,

vú
m

= fi2
!
t
m

, x
u

(t
m

), x
u

(t
m

) ≠ fi1(x
u

(t
m

))
"
.

For t œ [t
m

, t
m+1], put x

u

(t) := x[t
m

, x
u

(t
m

), u, vú
m

](t). Define a control —(u) œ V in-
ductively by setting —(u) © vú

m

on [t
m

, t
m+1] for all 1 Æ m < N , so that x

u

(t) =
x[t1, x1, u, —(u)](t), for all t œ [t1, t

N

].
Note that the action vú

m

used in the interval [t
m

, t
m+1] depends only on the current

position x
u

(t
m

) and on the set W(t
m

). Moreover, the current position depends only on
vú

1, . . . , vú
m≠1 and on the restriction of u to the interval [t1, t

m

]. In particular, the control
—(u) is piecewise constant and depends on the set of times �. Finally, note that for
u1, u2 œ U such that u1 © u2 on [t1, t

m

] for some 0 Æ m < N , the construction described
above gives —(u1) © —(u2) on [t1, t

m+1]. In this sense, — : U æ V is non anticipating with
delay with respect to the set of times �.

Putting Corollaries 4.1.4 and 4.1.5 together and choosing x1 œ W(t1) yields a useful
bound.

Corollary 4.1.6. For any u œ U , D2(x[t1, x1, u, —(u)](t
N

), W(t
N

)) Æ eABÎ�Î.

This result can be interpreted as follows: under P1-P2 for any control u œ U there
exists a “reply” —(u) œ V (which is non anticipating with delay, and piecewise constant
along �) which keeps a trajectory starting from W(t1) at time t1 arbitrarily close to W(t

N

)
at time t

N

.

4.2 Di�erential Games

Consider now the zero-sum di�erential game G(t1, x1) played in [t1, 1] and with the
following dynamics in Rn:

x(t1) = x1, ẋ(t) = f(t, x(t), u(t), v(t)) (a.e. on [t1, 1]).
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x1
x

u

(t)u, vú

W(t1) W(t)

w1

w
‘

(t)
uú, v(‘,u

ú)
‘

Figure 4.1.3 – Distance to a set W µ [t0, 1] ◊ Rn satisfying P1 and P2.

Definition 4.2.1. A strategy for player 2 is a map — : U æ V such that, for some finite
partition s1 < · · · < s

N

of [t1, 1], for all u1, u2 œ U and 1 Æ m < N :

u1 © u2 a.e. on [s1, s
m

] =∆ —(u1) © —(u2) a.e. on [s1, s
m+1].

These strategies are called nonanticipative strategies with delay (NAD) [25, Section 2.2] in
contrast to the classical nonanticipative strategies. The strategies for player 1 are defined
in a dual manner. Let A (resp. B) the set of strategies for player 1 (resp. 2). For
any pair of strategies (–, —) œ A ◊ B, there exists a unique pair (ū, v̄) œ U ◊ V such
that –(v̄) = ū and —(ū) = v̄ [25, Lemma 1]. This fact is crucial for it allows to define
x[t1, x1, –, —] := x[t1, x1, ū, v̄] in a unique manner.

The payo� function has two components: a running payo� “ : [0, 1] ◊ Rn ◊ U ◊
V æ R and a terminal payo� g : Rn æ R. We assume that the running payo� “
satisfies the same regularity assumptions as the dynamics f . In this case, we apply the
classical transformation of a Bolza problem into a Mayer problem, to get rid of the running
payo�: enlarge the state space from Rn to Rn+1, where the last coordinate represents
the accumulated payo�; define an auxiliary terminal payo� function Âg : Rn+1 æ R as
Âg(x, y) = g(x) + y; we thus obtain an equivalent di�erential game with no running payo�
and dynamic Âf = (f, “). Consequently, we can assume without loss of generality that
“ © 0.
Assumption 4.2.2. g is Lipschitz continuous.

Assumption 4.2.2 holds in the rest of the paper. Introduce the lower and upper value
functions:

V≠(t1, x1) := sup
–œA

inf
—œB

g
!
x[t1, x1, –, —](1)

"
,

V+(t1, x1) := inf
—œB

sup
–œA

g
!
x[t1, x1, –, —](1)

"
.

The inequality V≠ Æ V+ holds everywhere. If V≠(t1, x1) = V+(t1, x1), the game G(t1, x1)
has a value, denoted by V(t1, x1). Under Assumption 4.1.2, usually known as Isaacs’
condition, the value exists as the unique viscosity solution of some Hamilton-Jacobi-Isaacs
equation with a boundary condition [36]. The functional approach is very e�ective for it
yields the existence and a characterization of the value function. However, it does not
tell us much about the strategies the players should use. In this note we focus on the
strategies, as in [61], and prove the existence of the value using an explicit construction of
‘-optimal strategies. Let us end this section by stating the dynamic programming principle
[25, Proposition 2] satisfied by V≠: for all (t, x) œ [0, 1] ◊ Rn and all tÕ œ [t, 1],

V≠(t, x) = sup
–œA

inf
—œB

V≠!
tÕ, x[t, x, –, —](tÕ)

"
. (4.10)
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The dynamic programming principle consists in two inequalities: the Ø (resp. Æ) inequal-
ity is the superoptimality (resp. suboptimality) programming principle.

4.2.1 Existence of the value
Let „ : [t1, 1] ◊ Rn æ R be a real function satisfying the following properties:
(i) „ is lower semi continuous.

(ii) For all (t, x) œ [t1, 1] ◊ Rn and tÕ œ [t, 1]:

„(t, x) Ø sup
uœU

inf
vœV

„
!
tÕ, x[t, x, u, v](tÕ)

"
;

(iii) „(1, x) Ø g(x), for all x œ Rn.

Definition 4.2.3. For any ¸ œ R, define the ¸-level set of„ by:

W„

¸

= {(t, x) œ [t1, 1] ◊ Rn | „(t, x) Æ ¸}

and

W„

¸

(t) = {x œ Rn | „(t, x) Æ ¸}
.

Lemma 4.2.4. For any ¸ Ø „(t1, x1), the ¸-level set of „ satisfies P1 and P2.

Proof. x1 œ W„

¸

(t1) so that W„

¸

(t1) is non empty. By (i), W„

¸

(t) is a closed set for all
t œ [0, 1]. The property (ii) implies that for any t œ [t1, 1], u œ U and n œ Nú there exists
v

n

œ V such that:
¸ Ø „(t1, x1) Ø „

!
t, x[t1, x1, u, v

n

](t)
" ≠ 1

n
. (4.11)

The boundedness of f implies that x
n

:= x[t1, x1, u, v
n

](t) belongs to some compact set.
Consider a subsequence (x

n

)
n

such that lim „(t, x
n

) = lim inf
næŒ „(t, x

n

), and such that
(x

n

)
n

converges to x̄ œ Rn. Take the limit, as n æ Œ, in (4.11). Then by (i) one has:

¸ Ø „(t1, x1) Ø „
!
t, x̄).

Consequently, x̄ œ W„

¸

(t) ”= ÿ and inf
nœNú d

!
x[t1, x1, u, v

n

](t), W„

¸

!
t)) = 0. The proof of

these two properties still holds by replacing (t1, x1) and t œ [t1, 1] by any (t, x) œ W„

¸

and
tÕ œ [t, 1], so that W„

¸

satisfies P1 and P2.

Extremal strategies in G(t1, x1)

Let W„ µ [t0, 1] ◊ Rn be the „(t1, x1)-level set of „, i.e.:

W„ := {(t, x) œ [t0, 1] ◊ Rn | „(t, x) Æ „(t1, x1)}.

As in Section 4.1.2, let fi1 and fi2 be two selection rules defined as follows: fi1 :
[0, 1]◊Rn æ Rn assigns to each (t, x) a closest point to x in W„(t); fi2 : [0, 1]◊Rn◊Rn æ V
assigns to each (t, x, ›) an optimal action for player 2 in the local game �(t, x, ›). Finally,
let:

fi : [0, 1] ◊ Rn æ V, (t, x) ‘æ fi2(t, x, x ≠ fi1(t, x)).
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Definition 4.2.5. An extremal strategy — = —(„, �, fi) : U æ V is defined inductively
as follows: suppose that — is already defined on [t1, t

m

] for some 1 Æ m < N , and let
x

m

:= x[t1, x1, u, —(u)](t
m

). Then set —(u) © fi(t
m

, x
m

) on [t
m

, t
m+1].

These strategies are inspired by the extremal aiming method of Krasovskii and Sub-
botin [61, Section 2.4].

Proposition 4.2.6. For some C œ R+, and for any extremal strategy — = —(„, �, fi):

g(x[t1, x1, u, —(u)](1)) Æ „(t1, x1) + C
Ò

Î�Î, ’u œ U .

Proof. Without loss of generality, t
N

= 1 so that x
N

= x[t1, x1, u, —(u)](1). By Lemma
4.2.4, W„ satisfies P1 and P2. Thus, by Corollary 4.1.6:

D2(x
N

, W„(1)) Æ eABÎ�Î. (4.12)

Using (iii) one obtains that:

W„(1) = {x œ Rn | „(1, x) Æ „(t0, x0)} µ {x œ Rn| g(x) Æ „(t1, x1)}.

Let w
N

be a closest point to x
N

in W(1) and let Ÿ be the Lipschitz constant of g. Then:

g(x
N

) Æ g(w
N

) + ŸÎx
N

≠ w
N

Î,

Æ „(t1, x1) + ŸD(x
N

, W„(1)).

The result follows from (4.12).

Theorem 4.2.7. The di�erential game G(t1, x1) has a value V. Moreover, the extremal
strategy —(V, �, fi) is asymptotically optimal for player 2, as Î�Î æ 0.

Proof. We claim that V≠ satisfies (i), (ii) and (iii) and refer to the Appendix for a proof:
V≠(1, x) = g(x), for all x œ Rn, so that (iii) holds; (ii) can be easily deduced from
the superdynamic programming principle (4.10) (Claim 1) or proved directly (Claim 3);
Assumption 4.1.1 and 4.2.2 imply, using Gronwall’s lemma, that the map x ‘æ V≠(t, x) is
Lipschitz continuous for all t œ [t1, 1], so that (i) holds (Claim 2). Thus, by Proposition
4.2.6:

V+(t1, x1) Æ sup
uœU

g
!
x[t1, x1, u, —(u)](1)

" Æ V≠(t1, x1) + C
Ò

Î�Î.

The existence of the value follows by letting Î�Î tend to 0. Fix now the extremal strategy
— = —(V, �, fi) of player 2. Then, to every strategy – œ A of player 1 corresponds a
unique control u œ U so that, by Proposition 4.2.6:

sup
–œA

g
!
x[t1, x1, –, —](1)

"
= sup

uœU
g

!
x[t1, x1, u, —(u)](1)

"
, (4.13)

Æ V(t1, x1) + C
Ò

Î�Î. (4.14)

Consequently, for any ‘ > 0, the strategy —(V, �, fi) is ‘-optimal for su�ciently small
Î�Î.
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4.3 Appendix
Claim 1. The super dynamic programming principle (4.10) implies that V≠ satisfies (ii).

Proof. Identify every u œ U with a strategy that plays u on [t0, 1] regardless of v. Then:

sup
–œA

inf
—œB

V≠!
tÕ, x[t1, x1, –, —](tÕ)

" Ø sup
uœU

inf
—œB

V≠!
tÕ, x[t1, x1, u, —(u)](tÕ)

"

Ø sup
uœU

inf
vœV

V≠!
tÕ, x[t1, x1, u, v](tÕ)

"
.

The first inequality is clear because U µ A; the second comes from the fact that —(u) œ V
for all u œ U .

Claim 2. V≠ satisfies (i).

Proof. Using Assumption 4.1.1 and Gronwall’s lemma one obtains that, for all t œ [t1, 1],
(u, v) œ U ◊ V, and x, y œ Rn:

Îx[t1, x, u, v](t) ≠ x[t1, y, u, v](t)Î Æ ec(t≠t1)Îx ≠ yÎ.

Let Ÿ be a Lipschitz constant for g. Then, for all (u, v) œ U ◊ V, and for all x, y œ Rn:
--g

!
x[t1, x, u, v](1)

" ≠ g
!
x[t1, y, u, v](1)

"-- Æ ŸecÎx ≠ yÎ.

Consequently, the map x ‘æ V≠(t, x) is Ÿec-Lipschitz continuous for all t œ [t1, 1], which
is a stronger requirement than (i).

For the sake of completeness, let us end this note by proving that V≠ satisfies (ii)
directly. The super dynamic programming principle (4.10) can be proved in the same way.

Claim 3. V≠ satisfies (ii).

Proof. Let (t, x) œ [t1, 1] ◊ Rn, let tÕ œ [t, 1] and let ‘ > 0 be fixed. An ‘-optimal strategy
for player 1 in G(t, x) is a strategy – œ A such that:

sup
vœV

g
!
x[t, x, –(v), v](1)

" Ø V≠(t, x) ≠ ‘.

The Lipschitz continuity of z ‘æ V≠(tÕ, z) implies the existence of some ” > 0 such that
any ‘-optimal strategy in G(tÕ, xÕ) remains 2‘-optimal in G(tÕ, z), for all z œ B(xÕ, ”) (the
euclidean ball of radius ” and center xÕ). By compactness, B(x, ÎfÎ) can be covered
by some finite family (E

i

)
iœI

of pairwise disjoint sets such that E
i

µ B(x
i

, ”) for some
x

i

œ B(x, ÎfÎ) (i œ I). Let –
i

œ A (i œ I) be an ‘-optimal strategy for player 1 in G(tÕ, x
i

).
For any u œ U and v œ V, put x

u,v

:= x[x, t, u, v]. Note that x
u,v

(tÕ) depends only on the
restriction of v to [t, tÕ]. The definition of –

i

and E
i

(i œ I) ensures that, for all vÕ œ V:

g
!
x[tÕ, x

u,v

(tÕ), –
i

, vÕ](1)
"
1{xu,v(tÕ)œEi} Ø V≠!

tÕ, x
u,v

(tÕ)
"
1{xu,v(tÕ)œEi} ≠ 2‘.

For each u œ U , define a strategy –
u

œ A for player 1 in G(t, x) as follows. For all vÕ œ V:

–
u

(vÕ)(s) =
I

u if s œ [t, tÕ),
–

i

(vÕ)(s) if s œ [tÕ, 1] and x
u,v

(tÕ) œ E
i

.

First, let us check that –
u

is a strategy in G(t, x). Indeed, let s1 < · · · < s
N

be a common
partition of [tÕ, 1] for the strategies (–

i

)
i

– this is possible because the family is finite.
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Thus, –
u

is a strategy with respect to the set of times t < tÕ < s2 < · · · < s
N

. For
any v1, v2 œ V, let v1 ¶

t

v2 œ V be the concatenation of the two controls at time t, i.e.
(v1 ¶

t

v2)(s) = v1(s) if s œ [0, t] and (v1 ¶
t

v2)(s) = v2(s) if s œ [t, 1]. Then, for any
vÕÕ = v ¶

t

Õ vÕ œ V:

g
!
x[t, x, –

u

, vÕÕ](1)
"

=
ÿ

iœI

g
!
x[tÕ, x

u,v

(tÕ), –
i

, vÕ](1)
"
1{xu,v(tÕ)œEi},

Ø
ÿ

iœI

V≠!
tÕ, x

u,v

(tÕ)
"
1{xu,v(tÕ)œEi} ≠ 2‘,

= V≠!
tÕ, x

u,v

(tÕ)
" ≠ 2‘.

Taking the infimum in V and the supremum in U yields the desired result:

V≠(t, x) Ø sup
uœU

inf
v

ÕÕœV
g

!
x[t, x, –

u

, vÕÕ](1)
"
,

Ø sup
uœU

inf
vœV

V≠!
tÕ, x

u,v

(tÕ)
" ≠ 2‘.

Conclude by letting ‘ tend to 0.



Chapter 5

Generalized solutions of HJI
equations

Abstract: The purpose of this Chapter is to give a simple proof of the equivalence of
solution concepts for HJI equations.

In this note we are interested in the following partial di�erential equation,

ˆw

ˆt
+ H(t, x, Òw) = 0

where H : [0, 1] ◊ Rn ◊ Rn æ R is a continuous function. These partial di�erential
equations are usually called Hamilton-Jacobi-Isaacs equations and arise from two player,
zero sum di�erential games. These equations usually do not admit classical solutions, i.e.
continuously di�erentiable everywhere. Instead, one has to look for alternative definitions
of solutions. We refer to each of these alternative definitions as a solution concept
throughout this note. We are interested in proving the equivalence of three solution
concepts: minimax solutions, due to Subbotin [96], proximal solutions, introduced by
Clarke and Ledyaev [29] and viscosity solutions, introduced by Crandall and Lions [33].
The proof of the equivalence of these three solution concepts was already done in [29],
but with di�erent tools and in particular, using another equivalent definition of minimax
solutions in terms of directional derivatives. Our approach is more in the spirit of viability
and proximal calculus.

5.1 The HJI equations

We introduce the model where the HJI equations we are interested in arise. In this
Section we describe the context that motivated us to look at the equivalence of these
solution concepts, namely the connection between the geometrical approaches of Subbotin
and Clarke with the viscosity solution approach for establishing the characterization of
the value function of a two player, zero sum di�erential game. This Section is not essential
for the rest of the Chapter and might be skipped by a reader who is only interested in the
equivalence but not the motivation of the study of this particular equation.

The model in this Section is partially borrowed from Cardaliaguet and Quincampoix
[25]. Let us assume we are given the following:

(i) U and V are compact subsets of some finite dimensional euclidean spaces.
(ii) f : [0, 1] ◊ Rn ◊ U ◊ V æ Rn is continuous, uniformly bounded and Lipschitz

continuous with respect to the second variable.
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(iii) f has linear growth in (t, x), i.e. ÷“, c > 0 such that

Îf(t, x, u, v)Î Æ “Î(t, x)Î + c, ’(t, x, u, v) œ [0, 1] ◊ Rn ◊ U ◊ V.

(iv) f(t, x, u, V ) := fi
vœV

f(t, x, u, v) and f(t, x, U, v) := fi
uœU

f(t, x, u, v) are convex for
all (t, x, u) and (t, x, v), respectively.

(v) g : Rn æ R is Lipschitz.
Denote by U(t1) and V(t1) the sets

U(t1) := {u : [t1, 1] æ U : u is Lebesgue measurable } ,

V(t1) := {v : [t1, 1] æ V : v is Lebesgue measurable } .

Consider a two player, zero sum di�erential game with dynamics

ẋ(t) = f(t, x(t), u(t), v(t)), (5.1)

with initial data (t1, x1) œ [0, 1] ◊ Rn.
Under these Assumptions, a unique absolutely continuous solution of (5.1) exists, for

a given pair (u, v) œ U(t1) ◊ V(t1). The evaluation of this solution at time t is denoted by
x[t1, x1, u, v](t). We will use the shorter notation x(t) when no confusion arises. At time
t = 1, a terminal payo� g(x[t1, x1, u, v](1)), that player 1 receives from player 2.

To define a real strategic interaction we need to specify how are players allowed to
react to their adversary. For that let us introduce the following notion of strategies:

Definition 5.1.1. A non anticipating strategy with delay (NAD) for player 1 is a
function – : V(t1) æ U(t1) with the following property: there exists a partition s1 < . . . <
s

N

= 1 of [t1, 1] such that

v1 © v2 in [s1, s
k

] =∆ –[v1] © –[v2] in [s1, s
k+1], k = 1, . . . N ≠ 1.

Non anticipating strategies with delay are defined symmetrically for player 2. The sets
of non anticipating strategies with delay are denoted by A

d

(t1) and B
d

(t1), for player 1
and player 2, respectively. The main reason for using NAD’s is that the game can be put
in normal form:

Lemma 5.1.2. Let – œ A
d

(t1), — œ B
d

(t1). There exist a unique pair of controls
(u(t), v(t)) œ U(t1) ◊ V(t1) such that

–[v](t) = u(t), —[u](t) = v(t).

The proof is by induction on the number of nodes of the partition. We refer to [17,
Lemma 2.4] for the details.

For a pair of strategies (–, —) œ A
d

(t)◊B
d

(t), we denote by x[t, x, –, —](s) the function
x[t, x, u, v](s), where (u, v) œ U(t) ◊ V(t) are the controls associated to the pair (–, —) as
in Lemma 5.1.2. The upper and lower value functions are given by:

w+(t, x) := inf
—œBd

sup
–œAd

g(x[t, x, –—](1)),

w≠(t, x) := sup
–œAd

inf
—œBd

g(x[t, x, –, —](1)).

Moreover, the value functions are Lipschitz [25, Proposition 1] and they satisfy the
following dynamic programming property [25, Proposition 2]: for all (t, x) œ [0, 1] ◊ Rn,
and for all s > t,
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w+(t, x) = inf
—œBd

sup
–œAd

w+(s, x[t, x, –, —](s)), (5.2a)

w≠(t, x) = sup
–œAd

inf
—œBd

w≠(s, x[t, x, –, —](s)). (5.2b)

If the value functions where smooth, the dynamic programming property and a Taylor
series expansion would easily imply that w+, w≠ are solutions of

ˆw+

ˆt
+ H+(t, x, Òw+) = 0, (5.3a)

ˆw≠

ˆt
+ H≠(t, x, Òw≠) = 0. (5.3b)

where

H+(t, x, p) := min
vœV

max
uœU

Èf(t, x, u, v), pÍ ,

H≠(t, x, p) := max
uœU

min
vœV

Èf(t, x, u, v), pÍ

However, the value functions are not smooth in general. We now proceed to recall the
three solution concepts that where mentioned in the introduction. For the rest of the note,
we denote by B the unit ball in the corresponding euclidean space. For a C1 function
„ : [0, 1] ◊ Rn æ R we denote with ˆ„

ˆs

(t, x) its time derivative and by Ò
y

„(t, x) its space
derivative, when they are evaluated at the point (t, x).

5.2 Viscosity solutions

We recall first the now classical notion of viscosity solution of Crandall and Lions [33],
applied to our framework.

Definition 5.2.1. (Viscosity solutions)
— A lower semicontinuous function w : [0, 1] ◊ Rn æ R is a viscosity supersolu-
tion of (5.3b) if for any (t, x) œ [0, 1]◊Rn and a C1 test function „ : [0, 1]◊Rn æ R
such that „(t, x) = w(t, x) and „(s, y) Æ w(s, y) for (s, y) on a neighborhood of
(t, x), then

ˆ„

ˆs
(t, x) + H≠(t, x, Ò

y

„(t, x)) Æ 0. (5.4)

— An upper semicontinuous function w : [0, 1]◊Rn æ R is a viscosity subsolution
of (5.3a) if for any (t, x) œ [0, 1] ◊ Rn and a C1 test function „ : [0, 1] ◊ Rn æ R
such that „(t, x) = w(t, x) and „(s, y) Ø w(s, y) for (s, y) on a neighborhood of
(t, x), then

ˆ„

ˆs
(t, x) + H+(t, x, Ò

y

„(t, x)) Ø 0. (5.5)

— A continuous function is a viscosity solution if it is both a viscosity super and
subsolution.
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5.3 Proximal solutions

Before the definition of proximal solutions, due to Clarke and Ledyaev [29], we recall
first some concepts of proximal calculus.

Let S be a closed subset of Rn and consider a point x outside S. Denote the distance
from a point x œ Rn to a set S by d

S

(x) := min
sœS

Îx ≠ sÎ.

Definition 5.3.1. The proximal normal cone at s œ S is defined by

NP

S

(s) := {› œ Rn : ÷⁄ > 0 such that d
S

(s + ⁄›) = ⁄Î›Î}.

It is easy to see that this definition is equivalent to

{› œ Rn : ÷‡ = ‡(›, s) Ø 0 s.t.
+
›, sÕ ≠ s

, Æ ‡ÎsÕ ≠ sÎ2, ’sÕ œ S}. (5.6)

Let us assume now that S is the epigraph of a lower semicontinuous function h :
[0, 1] ◊ Rn æ R, that is,

S = epih = {(t, x, z) œ [0, 1] ◊ Rn ◊ R : z Ø h(t, x)}.

Definition 5.3.2. A proximal subgradient of h at a point (t, x) is a vector › = (›
t

, ›
x

) œ
R ◊ Rn such that

(›, ≠1) œ NP

epih(t, x, h(t, x)).

The (possibly empty) set of proximal subgradients, called proximal subdi�erential,
is denoted by ˆfih(t, x).

Observe that, since a cone is involved in the definition of proximal subdi�erential, if
– > 0,

(›, ≠–) œ NP

epih(t, x, h(t, x)) =∆ ›/– œ ˆfih(t, x).

The superdi�erential, denoted ˆ
fi

h(t, x) is defined in a completely analogous way, by
considering now the hypograph of an upper semicontinuous function.

Definition 5.3.3. (Proximal solutions)
— A lower semicontinuous function w : [0, 1] ◊ Rn æ R is a proximal supersolu-
tion of (5.3b) if for all (t, x) and any › = (›

t

, ›
x

) œ ˆfiw(t, x),

›
t

+ H≠(t, x, ›
x

) Æ 0. (5.7)

— An upper semicontinuous function w : [0, 1] ◊ Rn æ R is a proximal subsolu-
tion of (5.3a) if for all (t, x) and any › = (›

t

, ›
x

) œ ˆ
fi

w(t, x)

›
t

+ H+(t, x, ›
x

) Ø 0. (5.8)

— A continuous function is a proximal solution if it is both a proximal super and
subsolution.
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5.3.1 Some results of proximal calculus
We close this section with three results concerning proximal normals and subgradients,

that will be needed later.

Lemma 5.3.4. Let h : RN æ R be lower semicontinuous and (›, ≠–) œ NP

epih(y, h(y)),
where › œ RN , – œ R. Then – Ø 0.

Proof. By contradiction. Assume – < 0. Then (y, h(y) ≠ –) œ epih which gives

÷t > 0 s.t. Ît›Î2 + t2–2 = d2
epih(y + t›, h(y) ≠ t–) Æ Ît›Î2

which is a contradiction.

The following result [80, Theorem 2.4], derived originally in the proof of [83, Theo-
rem 1] tells us that we can approximate horizontal normals to the epigraph of a lower
semicontinuous function by a sequence of non degenerate normals.

Theorem 5.3.5. Let h : RN æ R be lower semi continuous and (Â, 0) œ NP

epih(y, h(y)),
with Â ”= 0. For every ‘ > 0, there exist yÕ œ y + ‘B, ⁄ œ (0, ‘) and › œ Â + ‘B such that

(›, ≠⁄) œ NP

epih(yÕ, h(yÕ)).

The last theorem gives a local characterization of proximal subgradients.

Theorem 5.3.6. Let h : [0, 1] ◊ Rn æ R be a lower semicontinuous function. Then
› œ ˆfi(h(t, x)) if and only if there exist positive numbers ‡, ÷ such that

h(s, y) Ø h(t, x) + È›, (s, y) ≠ (t, x)Í ≠ ‡Î(s, y) ≠ (t, x)Î2 (5.9)

for all (s, y) œ (t, x) + ÷B.

The proof is a bit technical and thus we refer to [30, Theorem 2.5] for the details.

5.4 Minimax solutions
Before introducing the definition of minimax solutions, due to Subbotin [96], we recall

some notions of viability theory. Let F : RN  RN be a multiple valued map. A
trajectory of the di�erential inclusion

ẏ(t) œ F (y(t)), y(t1) = y1, (5.10)

is an absolutely continuous function y : [t1, 1] æ RN that satisfies (5.10). A pair (S, F )
of a closed set S µ RN and a multiple valued map F : RN  RN is called viable or
weakly invariant if for every initial condition (t1, y1) œ [0, 1]◊S there exists a trajectory
of (5.10) such that y(t) œ S for all t > t1.

For every u œ U , we will now consider the following set valued map E≠
u

: [0, 1] ◊ Rn ◊
R {1} ◊ Rn ◊ {0} given by

E≠
u

(s, x, z) := {1} ◊ f(t, x, u, V ) ◊ {0}
and the di�erential inclusion

(ṡ, ẋ, ż) œ E≠
u

(s, x, z). (5.11)
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In a similar way, we also consider, for every v œ V, the set valued map, E+
v

: [0, 1] ◊
Rn ◊ R {1} ◊ Rn ◊ {0} given by

E+
v

(s, x, z) := {1} ◊ f(t, x, U, v) ◊ {0} (5.12)

and the di�erential inclusion

(ṡ, ẋ, ż) œ E+
v

(s, x, z).

Definition 5.4.1. (Minimax solutions)
— A lower semicontinuous function w : [0, 1] ◊ Rn æ R is a minimax supersolu-
tion of (5.3b) if for any u œ U, (epiw, E≠

u

) is viable.
— An upper semicontinuous function w : [0, 1] ◊ Rn æ R is a minimax subsolu-
tion of (5.3a) if for any v œ V, (hypw, E+

v

) is viable.
— A continuous function is a minimax solution if it is both a minimax super and
subsolution.

An important tool for the sequel is the viability theorem, which we introduce now.

Definition 5.4.2. A set valued map F : RN  RN is Marchaud if
a) For all y, F (y) is a nonempty compact convex set.
b) F is upper semicontinuous, that is, ’y and ’‘ > 0÷” > 0 such that

ÎyÕ ≠ yÎ < ” =∆ F (yÕ) µ F (y) + ‘B.

c) F has linear growth in y, i.e. there exist positive constants “ and c such that, for
all y œ RN ,

z œ F (y) =∆ ÎzÎ Æ “ÎyÎ + c.

Theorem 5.4.3. (Viability Theorem) Let F be a Marchaud set valued map. Then the
following are equivalent:

i) (S, F ) is viable.
ii) For all y œ S, ’p œ NP

S

(y), ÷z œ F (y) s.t. Èp, zÍ Æ 0.

For the proof we refer to [4, Theorem 3.3.6].
A last useful result from viability theory is the following theorem, due to Filippov.

Theorem 5.4.4 (Filippov). Consider Z be a compact subset of a complete separable
metric space. Let h : RN ◊ Z æ RN be a continuous function. If q : RN æ RN is a
measurable function that satisfies

q(y) œ h(y, Z), for almost all y,

there is a measurable selection z̃, i.e. a function z̃ : RN æ Z such that

q(y) = h(y, z̃(y)).

For the proof, see [5, Theorem 8.2.10].
Filippov’s theorem allows us to parametrize trajectories of di�erential inclusions by a

measurable control, as we show now.
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Corollary 5.4.5. Consider Z be a compact subset of a complete separable metric space.
Let h : RN ◊ Z æ RN be a continuous function. If y : [t1, 1] æ RN is a trajectory of

ẏ œ h(y, Z), y(t1) = y1,

there exists a measurable control z̃ : [0, 1] æ Z such that

ẏ(t) = h(y(t), z̃(t)), y(t1) = y1,

has a unique absolutely continuous solution.

Proof. From Filippov’s theorem, one obtains easily that there exists a measurable control
z1 : RN æ Z such that

ẏ(t) = h(y(t), z1(y(t))), y(t1) = y1.

Since by assumption y is absolutely continuous, taking z̃ = z1 ¶y gives the desired measur-
able control. The uniqueness follows from Carathéodory’s existence theorem [31, Theorem
1.1, chapter 2].

Before we proceed, let us clarify the interest in this di�erential inclusion informally.
We focus on w≠. From the dynamic programming principle (5.2b), we see that, if the game
starts at (t1, x1) and both players play optimally, they generate a trajectory on which w≠

remains constant. When player 1 plays a constant control u, the viability of epiw≠ with
respect to (5.11) implies, by Corollary 5.4.5 that player 2 can find a control ṽ œ V(t1) such
that

w≠ (s, x[t1, x1, u, ṽ](s)) Æ w≠(t1, x1), ’s œ [t1, 1].

5.5 The equivalence

We will prove in this section the equivalence between the three solution concepts.
Actually, we prove a stronger result, since we will prove the equivalence of supersolution
concepts (the proofs for subsolutions being analogous).

Proposition 5.5.1. The following are equivalent:
(a) w≠ is a viscosity supersolution of (5.3b).
(b) w≠ is a proximal supersolution of (5.3b).
(c) w≠ is a minimax supersolution of (5.3b).

Proof. We prove (a) =∆ (b) =∆ (c) =∆ (a).
— (a) ∆ (b):
Let w≠ be a viscosity supersolution and › œ ˆfiw≠(t, x). Let ‡, ÷ as in Theorem
5.3.6. Define the following test function:

„(s, y) := w≠(t, x) + È›, (s, y) ≠ (t, x)Í ≠ ‡Î(s, y) ≠ (t, x)Î2

for (s, y) œ (t, x) + ÷B.
Observe that „(t, x) = w≠(t, x) and „(s, y) Æ w≠(s, y) by (5.9). Since ˆ„

ˆs

(t, x) = ›
t

and Ò
y

„(t, x) = ›
x

, substituting these last two terms in in (5.4) gives (5.7).
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— (b) ∆ (c):
Let u œ U fixed. Let (Â

t

, Â
x

, ≠–) œ NP

epiw≠(t, x, w≠(t, x)). By Lemma 5.3.4, we
only need to consider – Ø 0. If – > 0, then › := Â/– œ ˆfiw≠(t, x) and since w is
a proximal supersolution,

›
t

+ min
vœV

Èf(t, x, u, v), ›
x

Í Æ 0.

Since the above minimum is attained, there exists v̄ œ V such that

È(›
t

, ›
x

, ≠1), (1, f(t, x, u, v̄), 0)Í Æ 0

which implies (c) by Theorem 5.4.3. It remains to look at the case – = 0.
Fix ‘ > 0 and {‘

n

}
nœN a sequence of positive numbers that converges to zero. Ap-

plying Theorem 5.3.5 for each ‘
n

we obtain that there exists (t
n

, x
n

, Â
tn , Â

xn , ≠⁄
n

)
such that

(Â
tn , Â

xn , ≠⁄
n

) œ ˆfiw≠(t
n

, x
n

).

and ⁄
n

> 0. Note that the sequence {(t
n

, x
n

, Â
tn , Â

xn , ≠⁄
n

)}
nœN converges to

(t, x, Â
t

, Â
x

, 0) as n goes to infinity.
Now let v

n

œ V such that

Â
tn + Èf(t

n

, x
n

, u, v
n

), Â
xnÍ Æ 0.

It follows that, for n Ø N
‘

,

Â
t

+ min
vœV

Èf(t, x, u, v), Â
x

Í Æ Â
t

+ Èf(t, x, u, v
n

), Â
x

Í
Æ Â

tn + Èf(t
n

, x
n

, u, v
n

), Â
xnÍ + ‘

Æ ‘.

The second inequality follows from the convergence of {(t
n

, x
n

, Â
tn , Â

xn , ≠⁄
n

)}
nœN

and the third from the choice of v
n

.
— (c) ∆ (a):
Take „ : [0, 1] ◊ Rn æ R a C1 test function such that

„(t, x) = w≠(t, x), „(s, y) Æ w≠(s, y)

for (s, y) in a neighborhood N(t,x) of (t, x).
Now fix u œ U . We have that, by Corollary 5.4.5, there exists ṽ such that

w≠ (s, x[t, x, u, ṽ](s)) Æ w≠(t, x).

For s small enough, (s, x[t, x, u, ṽ](s)) belongs to N(t,x). From the definition of „,

„ (s, x[t, x, u, ṽ](s)) Æ „(t, x).

Let y := x[t, x, u, ṽ](s). Performing a Taylor series expansion around (t, x) on the
left hand side,

„(t, x) + ˆ„

ˆs
(t, x)(s ≠ t) + Èy ≠ x, Ò

y

„(t, x)Í + O(Î(s, y) ≠ (t, x)Î2) Æ „(t, x).

This leads to
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ˆ„

ˆs
(t, x)(s≠t)+

=⁄
s

t

f(·, x[t, x, u, ṽ](·), x(·), u, ṽ(·))d·, Ò
y

„(t, x)
>

+O(Î(s, y)≠(t, x)Î2) Æ 0.

Lebesgue’s di�erentiation theorem tells us that

1
|s ≠ t|

⁄
s

t

f(·, x[t, x, u, ṽ](·), u, ṽ(·))d· æ f(t, x(t), u, ṽ(t)), as s æ t,

for almost every t. Thus, dividing by (s ≠ t) and taking the limit as s goes to t,

ˆ„

ˆs
(t, x) + Èf(t, x, u, ṽ(t)), Ò

y

„(t, x)Í Æ 0,

which clearly implies

ˆ„

ˆs
(t, x) + min

vœV

Èf(t, x, u, v), Ò
y

„(t, x)Í Æ 0.

Since u is arbitrary, from our compacity and continuity assumptions we can take
the maximum with respect to u and conclude the proof.
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Chapter 6

Discrete time mean field games

Abstract: We study a discrete time, finite horizon game with a continuum of identical
players. Our work is motivated by the theory of mean field games, recently introduced by
Lasry and Lions and by Huang, Caines and Malhamé. We prove that the discrete analogue
of a mean field equilibrium is a distributional equilibrium in the sense of Jovanovic and
Rosenthal of the game with a continuum of players and an approximate Nash equilibrium
of the game with finitely many players, where the approximation error goes to zero as the
number of players tends to infinity. This chapter is based on some work in progress with
S.C.P. Yam, Chinese University of Hong Kong.

6.1 Introduction
In this paper we study a mean field model for a discrete time, discrete state space

finitely repeated stochastic game. Mean field games have been introduced independently
by Huang, Caines and Malhamé [56] and by Lasry and Lions [64, 65, 66] and have received
considerable attention in the literature. For a comprehensive introduction see for instance
Guéant, Lasry and Lions [49] or the lecture notes of Cardaliaguet [20], based on Lions’
lectures at the Collège de France, as well as the book by Bensoussan, Frehse and Yam
[12].

One important motivation for the mean field approach in applications is that it allows
to construct approximate Nash equilibria of games with a large number of players. These
equilibria are "simple" in the sense that one replaces a complicated stochastic process
(the behaviour of our adversaries) by a classical Markov decision process via an averaging
argument.

A common feature of the above mentioned literature is that they study the continuous
time framework. We believe that the discrete time setting has independent interest and
might provide a powerful tool for many applications. An important exception is the work
of Gomes, Mohr and Souza [48], in which a model for a finite horizon, discrete time, finite
state dynamic game with infinitely many players is studied and its asymptotic behaviour
as the time horizon tends to infinity is investigated. The authors obtain exponential
convergence to a stationary solution. Our asymptotic result is concerned instead with the
number of players and in our framework the time horizon remains fixed.

Our work is closer to Adlakha, Johari and Weintraub [2]. The authors consider an
infinite horizon, discrete time discounted game with a discrete but unbounded state space
and discounted payo�. We consider instead a finite horizon game.

The approach of the model we present here is morally in the spirit of Huang, Caines
and Malhamé [57]: construct a limit object and use it to approximate Nash equilibria of
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the finite player game. The complementary approach of studying the limit behaviour of
N player games as N æ +Œ has been developed by Lasry and Lions [64] for an ergodic
payo� (see Feleqi [37] for a detailed derivation) and by Bardi [8] for the linear-quadratic
case.

Our paper is organized as follows: we introduce the notion of mean field equilibrium in
Section 6.2 and prove its existence. In Section 6.3 we prove that the mean field equilibrium
is a distributional equilibrium as defined by Jovanovic and Rosenthal [59] of the game with
a continuum of players. Finally, in Section 6.4 we study the game with finitely many players
and provide the proof of the main result, namely the approximation of a Nash equilibrium
of the finite player game as the number of players goes to infinity.

6.2 The mean field game equilibrium
Let A denote a compact subset of a metric space, which will be referred to as the

action set. Denote by P(A) the set of Borel probability measures on A. Recall that P(A)
is compact with the weak-* topology and is metrizable by the Kantorovich-Rubinstein
distance.

Denote by X the state space, which, unless otherwise stated, we assume to be a finite
set. The set of probability distributions on X is denoted by P(X ), which is naturally
embedded in R|X | when X is finite and thus equipped with the euclidean metric. The
current and terminal payo� functions

¸ : X ◊ A ◊ P(X ) æ [0, 1], g : X ◊ P(X ) æ [0, 1]
are uniformly bounded, jointly continuous and Lipschitz continuous in the last variable
uniformly with respect to the remaining variables, with Lipschitz constants L

¸

, L
g

respec-
tively.

The transition function

Q : X ◊ A ◊ P(X ) æ P(X )
is jointly continuous and bounded and satisfies, for all (x, a, b, m, mÕ) œ X ◊ A ◊ A ◊
P(X ) ◊ P(X ) the following Lipschitz conditions:

ÎQ(x, a, m) ≠ Q(x, b, m)ÎŒ Æ L
q

Îa ≠ bÎ
ÎQ(x, a, m) ≠ Q(x, a, mÕ)ÎŒ Æ Îm ≠ mÕÎŒ.

These assumptions will hold during the rest of the Chapter.
Denote with T the set {0, 1, 2 . . . , T ≠ 1} which represents the set of stages of the

game and let m = (m
t

)T

t=0 œ P(X )T +1 be an external and fixed parameter.
Consider the following one player game �

m

: at stage t œ T , the player observes
his own state x

t

and chooses an action a
t

. Once the action is chosen, he receives the
payo� ¸(x

t

, a
t

, m
t

). The new state x
t+1 is chosen randomly using the transition function

Q(x
t,

a
t,

m
t

) and the situation is repeated. At stage t = T a final payo� g(x
T

, m
T

) is
allocated. The initial state of the player is chosen using the distribution m0. We assume
also that m is known.

Let H
t

= (X ◊ A)t denote the history up to stage t and let H = fi
tœT H

t

the set of
possible histories. A pure strategy is a function ‡ : H æ A where ‡ = (‡

t

)
tœT . Denote

by � the set of strategies.
The total payo� functional for the player, when he uses the strategy ‡, is denoted

by J1 : X ◊ � ◊ P(X )T +1 æ [0, 2] and is given by
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J1(x, ‡, m) := EQ

C
ÿ

tœT
¸(xi

t

, ‡
t

(x
t

), m
t

) + g(x
T

, m
T

) | x0 = x

D

.

We introduce the following value function for a one player game whose state is x œ X
at time s = 0, . . . T :

V (s, x, m) := sup
‡œ�

EQ

S

U
T ≠1ÿ

tØs

¸(x
t

, ‡
t

(x
t

), m
t

) + g(x
T

, m
T

) | x
s

= x

T

V .

Here, EQ denotes the expectation with respect to the (random) transition function Q.
From the familiar arguments, see for instance Hernández-Lerma and Lasserre [53, Section
3.2] we obtain the following dynamic programming equation:

V (s, x, m) = max
aœA

Y
]

[¸(x, a, m
s

) +
ÿ

yœX
Q(x, a, m

s

)(y) · V (s + 1, y, m)

Z
^

\ (6.1)

with terminal condition V (T, x, m) = g(x, m
T

).
Now let ‡ œ � and let m‡

0 := m0. We define, for t Ø 0 :

m‡

t+1(x) :=
ÿ

yœX
Q(y, ‡

t

(y), m‡

t

)(x) · m‡

t

(y). (6.2)

An important consequence of the dynamic programming equation (6.1) is the existence
of optimal Markovian pure strategies, i.e. functions of the form ‡ = (‡

t

)
tœT where

‡
t

: X æ A. Denote by �
M

the set of Markovian strategies.
We are ready to introduce the main concept of this section.

Definition 6.2.1. A mean field equilibrium is a pair (‡, m) œ �◊P(X )T +1 such that:
1. ‡ is an optimal strategy in the one player game �

m

, computed using the dynamic
programming equation (6.1) .

2. m is the trajectory followed by m0 according to (6.2) for the strategy ‡.

We will provide an interpretation of the mean field equilibrium in Section 6.3. Let us
first establish its existence in the remaining of this Section. The crucial assumption we
need for that is the following.

Assumption 6.2.2. Let F denote the set of functions f : T ◊ X ◊ P(X )T +1 æ [0, 1].
Assume that for all (s, x, m, f) œ T ◊ X ◊ P(X )T +1 ◊ F , the quantity

Y
]

[¸(x, a, m
s

) +
ÿ

yœX
Q(x, a, m

s

)(y) · f(s + 1, y, m)

Z
^

\

viewed as a function of a, reaches it maximum at a unique point.

Assumption 6.2.2 holds in particular in the following case.

Assumption 6.2.3. Assume A is convex and that for all (x, m) œ X ◊ P(X ), ¸(x, ·, m)
and Q(x, ·, m) are a�ne functions.

Proposition 6.2.4. Let m0 denote the initial distribution of the players in the state space
X . Under Assumption 6.2.2, there exists a mean field equilibrium.



76 Chapter 6. Discrete time mean field games

Proof. Let � : P(X )T +1 æ �
M

the map that sends m to the optimal Markovian strategy
‡m = (‡m

t

)
tœT in the game �

m

. Note that ‡m is unique from Assumption 6.2.2. From
the continuity assumptions and the dynamic programming equation it easily follows by
induction that � is continuous. The map � : �

M

æ P(X )T +1 that sends a Markovian
strategy (‡

t

)
tœT to the vector m‡ computed by (6.2) is also easily verified to be continuous.

Since � ¶ � is the composition of continuous maps and P(X )T +1 is compact and convex,
then it has a fixed point by Schauder’s fixed point theorem.

Note that the above existence result also holds in the case where X is a compact metric
space.

6.3 The game with a continuum of players
Let us provide an interpretation of the mean field equilibrium as an equilibrium for a

game with a continuum of players in a suitable sense, called distributional equilibrium.
The notion of distributional equilibrium for games with a continuum of identical agents

was introduced by Mas-Colell [72] (under the name Cournot-Nash equilibrium) and later
extended to stochastic games by Jovanovic and Rosenthal [59]. Distributional equilibria
have also been studied in the framework of one shot games with finitely many players and
incomplete information, see Milgrom and Weber [76]. For this Section, we allow X to be
a compact metric space.

Let I be a continuum of players, for instance take I = [0, 1]. Let m0 œ P(X ) denote the
initial distribution of the players. The game is played as follows: at stage t = 0, 1 . . . T ≠1,
player i observes his own state xi

t

and the state distribution of the players m
t

and chooses
an action ai

t

. Actions are chosen simultaneously and independently. Once the actions are
chosen, player i receives the payo� ¸(xi

t

, ai

t

, m
t

) and (ignoring any potential measurability
problems for the moment) the corresponding distribution on the state-action space, �

t

œ
P(X ◊ A), is announced. The marginal distribution �

t,X on X satisfies �
t,X = m

t

. The
new state distribution is given by

F#�
t

(·) :=
⁄

X ◊A

Q(y, a, m
t

)(·)�
t

(dy ◊ da).

and the situation is repeated.
Assume a vector of state-action distributions � := (�

t

)
tœT , where �

t

œ P(X ◊ A) is
fixed. Define the following sequence

V
s

(x, �) := max
aœA

;
¸(x, a, �

s,X ) +
⁄

X
V

s+1(xÕ, �)dF#�
t

(xÕ)
<

(6.3)

with V
T

(x, �) = g(x, F#�
T ≠1). This represents the optimal expected payo� a player at

state x in time s would get if the sequence of state-action distributions � is fixed.

Definition 6.3.1. Let m0 fixed. The sequence of state-action distributions � is a dis-
tributional equilibrium if:

1. �0,X = m0, and �
t+1,X = F#�

t

2. ’t œ T , �
t

({(x, a) œ X ◊ A : JŒ(x, a, �
t

) Ø JŒ(x, aÕ, �
t

), ’aÕ œ A}) = 1.
where (V

s

)
sœT is defined by (6.3) and

JŒ(x, a, �
s

) := ¸(x, a, �
s,X ) +

⁄

X
V

s+1(xÕ, �)dF#�
t

(xÕ).
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Note that the way in which distributional equilibrium is defined helps us to avoid mea-
surability problems: intuitively, we are looking at the sequence of state-action distributions
after it happened.

The existence of distributional equilibrium for stochastic games with a continuum of
anonymous players has been established by Jovanovic and Rosenthal [59, Theorem 1].

Proposition 6.3.2. The mean field equilibrium (‡, m) is a distributional equilibrium.

Proof. Let (‡, m) denote a mean field equilibrium and for t = 0, . . . T ≠1 let µ
t

:= m
t

¢‡
t

.
Observe that µ

t

(x, a) > 0 ≈∆ a = ‡
t

(x). The marginal distributions satisfy µ
t,X = m

t

and from (6.2) we obtain that m
t+1 = F#m

t

. Thus, the first condition for a distributional
equilibrium is satisfied. The second condition is also satisfied from the optimality of ‡.

6.4 The game with finitely many players
Let I denote the set of players and assume |I| = N. Let Xj

t,N

be a random variable
that describes the position of player j at time t. The states of the players at time t = 0
are chosen i.i.d. We reserve capital letters for random variables and lower case letters for
their realizations.

The N -player game is played as follows: at stage 0, the state of each player is chosen
using the lottery m0, which gives an average state distribution denoted by m0,N

. At stage
t = 1 . . . T ≠1, player i observes his own state xi

t,N

and the average state distribution m
t,N

and chooses an action ai

t,N

. Actions are chosen simultaneously and independently. Once
player i has chosen his action, he receives the payo� ¸(xi

t,N

, ai

t,N

, m
t,N

). The new state
Xi

t+1,N

is chosen randomly using the transition function Q(xi

t,N

, ai

t,N

, m
t,N

). The random
average state distribution is denoted by M

t+1,N

:= 1
N

q
jœI

”
X

j
t+1,N

.
At the beginning of stage t + 1, the realization of Xi

t+1,N

and M
t+1,N

, denoted xi

t+1,N

and m
t+1,N

respectively, are observed, and the situation is repeated. At stage t = T a
final payo� g(xi

T,N

, m
T,N

) is allocated.
A behavioral strategy for player i is a vector fii = (fii

t

)T

t=1 where fii

t

: H̃
t

æ P(A)
and H̃

t

= (X ◊A◊P(X ))t is the set of all possible histories up to date t. Denote by � the
set of behavioral strategies for each player and note that �

M

µ �, where �
M

denotes the
set of Markovian strategies, that is, the set of functions of the form ‡ : [1, T ]◊X æ P(A).

A strategy profile is a vector fi = (fii)
iœI

, where fii is a behavioral strategy of player
i. The payo� of player i, when using the strategy fii and when his adversaries use the
strategy profile fi≠i œ �N≠1 is

J i

N

(x, m0, fii, fi≠i) := EQ

fi

I
ÿ

tœT
¸(xi

t,N

, ai

t,N

, m
t,N

) + g(xi

T,N

, m
T,N

)
J

Definition 6.4.1. An ‘≠Nash equilibrium where ‘ > 0, is a strategy profile (fii)
iœI

such that, for all player i and all behavioural strategy · i,

J i

N

(x, m0, · i, fi≠i) ≠ ‘ Æ J i

N

(x, m0, fii, fi≠i).

Our main result is the following:

Theorem 6.4.2. Let (‡, m) be a mean field equilibrium. For all ‘ > 0 there exists N
‘

such that, if N Ø N
‘

the Markovian strategy ‡ is an ‘-Nash equilibrium in the N player
game.
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Moreover, if J i

N

(x, ‡, m) denotes the payo� of player i in the N -player game when all
players follow ‡ and player iÕs initial state is x, then:

|J i

N

(x, ‡, m) ≠ J1(x, ‡, m| æ 0

almost surely as N æ +Œ.

Before proceeding to the proof, we collect some technical results, starting with a re-
finement of the law of large numbers for Bernoulli variables due to Adlakha, Johari and
Weintraub [2, Lemma 11].

Lemma 6.4.3. Suppose 0 Æ p
N

Æ 1 for all N, and that p
N

æ p as N æ +Œ. For each
N, let Z1,N

, . . . Z
N,N

be i.i.d Bernoulli random variables with parameter p
N

. Then almost
surely:

lim
Næ+Œ

1
N

Nÿ

k=1
Z

k,N

= p.

Proof. Let ‘ > 0. Using Hoe�ding’s inequality,[55]

P
A-----

1
N

Nÿ

k=1
Z

k,N

≠ p
N

----- > ‘

B

Æ 2e≠2N‘

2
.

Then, by the Borel-Cantelli lemma, the event on the left hand side occurs almost surely
for only finitely many N. The result now follows.

The following Lemma is the crucial ingredient for our main result.

Lemma 6.4.4. Let x be a fixed initial state, (‡, m) a mean field equilibrium. Assume all
the players j ”= i in the N -player game follow the mean field equilibrium strategy ‡ and
that player i follows the strategy · . Then, for all t œ T ,

Îm
t,N

≠ m
t

ÎŒ æ 0

almost surely as N æ +Œ.

Proof. Denote by M≠i

t+1,‡,N

:= 1
N≠1

q
j ”=i

”
X

j
t+1,N

the average state distribution of the play-
ers using ‡.

We proceed by induction. First observe that the case t = 0 is clear by the strong law
of large numbers.

Now let
1
Y y,k

t,‡,N

2(N≠1)·mt,‡,N (y)

k=1
be a sequence of Bernoulli i.i.d. random variables such

that

Y y,k

t,‡,N

=
I

1, with probability Q(y, ‡
t

(y), m
t,N

)(x)
0, with probability 1 ≠ Q(y, ‡

t

(y), m
t,N

)(x).
Hence,

(N ≠ 1) · M≠i

t+1,‡,N

(x) =
ÿ

yœX

Q

a
(N≠1)·mt,N (y)ÿ

k=1
Y y,k

t,‡,N

R

b

=
ÿ

yœX
(N ≠ 1) · m

t,N

(y)

Q

a 1
(N ≠ 1) · m

t,N

(y)

(N≠1)·mt,N (y)ÿ

k=1
Y y,k

t,‡,N

R

b .
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In the above equations, we interpret the term on the parenthesis as zero if m
t,N

(y) = 0.
Since we are interested in large values of N , we only have to consider those states y such
that m

t

(y) > 0 by induction hypothesis.
For such states y, the term on parenthesis converges to Q(y, ‡

t

(y), m
t

)(x) almost surely
from Lemma 6.4.3. Since

M
t+1,N

= 1
N

1
Xi

t+1,N

+ (N ≠ 1)M≠i

t+1,‡,N

2

the result now follows.

Lemma 6.4.5. Let x be a fixed initial state, (‡, m) a mean field equilibrium and (ai

t,N

)
tœT

an arbitrary sequence of actions of player i.
Consider the following two trajectories:
1. The trajectory (xi

t,N

)T

t=0 of player i in the N - player game where all his adversaries
follow a mean field equilibrium strategy ‡, defined by

xi

t+1,N

≥ Q(xi

t,N

, ai

t,N

, m
t,N

).

2. The trajectory generated by

xi

t+1 ≥ Q(xi

t

, ai

t,N

, m
t

).

Then, for all y œ X and for all t œ T ,

|P(xi

t,N

= y) ≠ P(xi

t

= y)| æ 0

almost surely as N æ +Œ.

Proof. We proceed by induction. Observe first that

P(xi

t+1,N

= y) =
ÿ

zœX
P(xi

t,N

= z)P(y | z, ai

t,N

, m
t,N

)

P(xi

t+1 = y) =
ÿ

zœX
P(xi

t

= z)P(y | z, ai

t,N

, m
t

)

The case t = 0 is easy since all the terms in the above sums are zero except the one
involving the initial state x, hence

|P(xi

1,N

= y) ≠ P(xi

1 = y)| = |Q(x, ai

0,N

, m0,N

)(y) ≠ Q(x, ai

0,N

, m0)(y)|
Æ L

Q

Îm0,N

≠ m0ÎŒ

which converges to zero almost surely by the strong law of large numbers. Now observe
that

P(xi

t+1,N

= y) ≠
ÿ

zœX
P(xi

t,N

= z)P(y | z, ai

t,N

, m
t

) Æ L
Q

Îm
t,N

≠ m
t

Î (6.4)

and ÿ

zœX
P(xi

t,N

= z)P(y|z, ai

t,N

, m
t

) ≠ P(xi

t+1 = y) (6.5)

is equal to
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ÿ

zœX

1
P(xi

t,N

= z) ≠ P(xi

t

= z)
2

· P(y|z, ai

t,N

, m
t

). (6.6)

Adding (6.5) to the left hand side of (6.4) and (6.6) to the right hand side, the remaining
quantity in the right hand side converges to zero almost surely by the induction hypothesis,
and Lemma 6.4.4.

Lemma 6.4.6. Consider the trajectories in Lemma 6.4.5. We have that, for all t =
0, . . . T ≠ 1,

lim sup
Næ+Œ

E
Ë
¸(xi

t,N,

ai

t,N

, m
t,N

) ≠ ¸(xi

t

, ai

t,N

, m
t

)
È

Æ 0.

Proof. Let
Ei

t,N

= E
Ë
¸(xi

t,N

, ai

t,N

, m
t,N

) ≠ ¸(xi

t

, ai

t,N

, m
t

)
È

.

We have that

Ei

t,N

= E
Ë
¸(xi

t,N

, ai

t,N

, m
t,N

) ≠ ¸(xi

t,N

, ai

t,N

, m
t

)
È

+ E
Ë
¸(xi

t,N,

ai

t,N

, m
t

) ≠ ¸(xi

t

, ai

t,N

, m
t

)
È

=: A1 + A2.

Observe that the term A1 is easily bounded since

A1 Æ
ÿ

yœX
P(xi

t,N

= y) max
aœA

|¸(y, a, m
t,N

) ≠ ¸(y, a, m
t

)|

Æ L
¸

Îm
t,N

≠ m
t

Î ,

which, by Lemma 6.4.4, tends to zero almost surely. For the term A2, observe that

A2 Æ
ÿ

yœX
|P(xi

t,N

= y) ≠ P(xi

t

= y)| · Î¸Î

which also tends to zero as N æ +Œ.

We are ready to prove Theorem 6.4.2.

Proof. Let · i be any strategy of player i in the game with N players and let (‡, m) be a
mean field equilibrium. If player i uses the strategy · i and everyone else uses the strategy
‡, the corresponding payo� is

J i

N

(x, m0, · i, ‡≠i) = EQ

·

i
,‡

≠i

C
ÿ

tœT
¸(x, · i(xi

t,N

, m≠i

t,N

), m
t,N

) + g(xi

T,N

, m
T,N

)
D

. (6.7)

Recall that the payo� for strategy · i in the one player game �
m

is:

J1(x, · i, m) := EQ

·

i
,‡

≠i

C
ÿ

tœT
¸(xi

t,N

, · i(xi

t,N

, m≠i

t,N

), m
t

) + g(xi

T,N

, m
T

)
D

. (6.8)

Since
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sup
·

iœ�
J1(x, · i, m) = J1(x, ‡, m).

We have that, for all · i œ �,

D = J i

N

(x, m0, · i, ‡≠i) ≠ J1(x, ‡, m) + J1(x, ‡, m) ≠ J i

N

(x, m0, ‡i, ‡≠i)
Æ

Ë
J i

N

(x, m0, · i, ‡≠i) ≠ J1(x, · i, m)
È

+
Ë
J1(x, ‡, m) ≠ J i

N

(x, m0, ‡i, ‡≠i)
È

Æ D1 + D2.

Here,
D1 = |J i

N

(x, m0, · i, ‡≠i) ≠ J1(x, · i, m)|
and

D2 = |J1(x, ‡, m) ≠ J i

N

(x, m0, ‡, ‡≠i)|
The result now follows if we apply Lemma 6.4.6 separately to each term on the sums
appearing in D1 and D2.





Chapter 7

Discrete time mean field games:
The short-stage limit

Abstract: In this note we provide a model for discrete time mean field games. Our
main contributions are an explicit approximation in the discounted case and an approxi-
mation result for a mean field game with short-stage duration.

7.1 Introduction
In this paper we study a model for a discrete time, discrete state space, finitely repeated

stochastic games where the transition and the payo� of the players depend on the position
in space and the actions of the adversaries, but not on their identities. We assume all
the players have the same dynamics and the same payo�, thus, for each player, we can
consider the influence of the adversaries only through the empirical distribution of the
state-action pair.

Mean field games have been introduced independently by Huang, Caines and Malhamé
[56] and by Lasry and Lions [64, 65, 66] and have received considerable attention in the
literature. The aim of the mean field games paradigm is to describe situations with many
interacting agents whose preferences and dynamics depend on the aggregate e�ect of the
other agents. Mean field game models are composed by two parts: a backward component,
where each agent considers the aggregate behavior as an external parameter and computes
myopically his own optimal behavior and a forward component, which is the evolution of
the initial distribution in the state space under a common strategy. Mean field games have
found applications in many di�erent areas, we refer to [49] and the references therein for
examples.

Most of the models studied in the literature so far are in continuous time, while the dis-
crete time case has received less attention. The discrete time case has not only independent
interest, but also allows to model more general transitions, contrary to the assumption
usually made in continuous time mean field games that the noise in the dynamics of the
players is independent of their actions. In discrete time, we can also allow the players to
choose their actions randomly, as in classical game theory. However, for some applications
it might be relevant to consider frequent interactions between the players. This motivates
the study of a limit model as the duration of each stage tends to zero, which we pursue in
Section 7.3.

The main novelty of our work with respect to the previous work on discrete time mean
field games is the short-stage version. Short-stage games have been recently introduced
in [78]. The aim of this theory is to study games where players are allowed to interact
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more frequently. Incorporating this machinery, we obtain a limit object that provides an
approximate Nash equilibrium for games with su�ciently many players and su�ciently
frequent interactions.

In [48], a discrete time, finite state mean field game with a continuum of players is
studied. The authors study a finite horizon game and prove the exponential convergence of
the finite-horizon mean field equilibrium to a stationary solution. There are two significant
di�erences with our work. First, we consider a fixed time horizon. Second, we are interested
in constructing approximate equilibria for games with large numbers of players, while in
[48] a continuum of players is considered. An anonymous referee pointed us to the recent
paper [34] where a model for linear quadratic mean field games in discrete time is studied.

Our work is closer to [2], where a similar notion is studied for an infinite horizon,
discounted stochastic game. While we restrict our framework to a finite state space (in [2]
an unbounded state space is considered), we provide explicit approximation estimates in
terms of the basic parameters of the game. Our estimate is of the same order as the one
in [57] in continuous time.

Let us remark also that we study a discrete-time game by itself, and not the discretiza-
tion of a continuous-time mean field game for numerical solution purposes. Numerical
methods have been initially developed in [1]. A semi-Lagrangian scheme has been pro-
posed in [19] for the deterministic, finite-horizon case. The full discretization has been
studied in [27].

The paper is organized as follows, In Section 7.2, we describe the model and some
results on the existence of mean field equilibrium, as well as the approximation results
with explicit convergence rates. In Section 7.3 we introduce a short-stage version of the
discounted stochastic mean field game. In the Appendix, we prove an approximation
lemma which allows to prove the results we present in Section 7.2.3.

7.2 The discrete time model

7.2.1 Mean field equilibrium

Let � and A denote respectively the state and action sets. We assume both to be
finite. Let Z := �(� ◊ A), where, for a finite set S, �(S) denotes the set of probability
distributions over S. Consider a bounded payo� function g : � ◊ A ◊ Z æ [0, 1] and a
transition function Q : �◊A◊Z æ �(�). Let n be a fixed positive integer. Let us define a
family of auxiliary one-player games, parameterized by a vector z = (z1, z2, . . . , z

n

) œ Zn.
The one-player dynamic programming problem �n

z

is defined as follows: at stage k, the
player observes the state Ê

k

œ � and chooses the action a
k

œ A from which he receives
a payo� g(Ê

k

, a
k

, z
k

) and the new state is chosen according to the law Q(Ê
k

, a
k

, z
k

). A
pure behavior strategy (resp. mixed behavior strategy) is a sequence of functions
‡ = (‡1,

. . . , ‡
n

) where ‡
k

: H1
k

æ A (resp. ‡
k

: H1
k

æ �(A)). Here, H1
k

= (� ◊ A)k≠1 fi
� ◊ �(�) denotes the set of histories up to time k, for k = 1, . . . , n. Let �

n

denote the
set of pure strategies. The player knows z and observes the payo�. We introduce the value
function V

n

: � ◊ Z æ R+ for the game �n

z

:

V
n

(Ê, z) := max
‡œ�n

EQ

A
nÿ

k=1
g(Ê

k

, a
k

, z
k

) | Ê1 = Ê

B

One can also consider an infinitely repeated game �⁄

z

with parameters z œ Z and
⁄ œ (0, 1], played as before but where the payo� is evaluated by
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V
⁄

(Ê, z) := max
‡œ�

EQ

A Œÿ

k=1
(1 ≠ ⁄)k≠1g(Ê

k

, a
k

, z) | Ê1 = Ê

B

.

From the familiar arguments 1, one can prove that the value functions satisfy the
following recursive formulae (dynamic programming principle):

V
n

(Ê, z) = max
aœA

Y
]

[g(Ê, a, z1) +
ÿ

Ê

Õœ�
V

n≠1(ÊÕ, z+)Q(Ê, a, z1)(ÊÕ)

Z
^

\ (7.1)

and

V
⁄

(Ê, z) = max
aœA

Y
]

[g(Ê, a, z) + (1 ≠ ⁄)
ÿ

Ê

Õœ�
V

⁄

(ÊÕ, z)Q(Ê, a, z)(ÊÕ)

Z
^

\ . (7.2)

In (7.1), if z = (z1, z2, . . . z
n

), then z+ denotes the vector (z2, z3, . . . z
n

).
The dynamic programming principle (7.1) also tells us that the player can restrict

his attention to the set of Markovian strategies �M

n

µ �
n

, which consists of all the
functions ‡ = (‡1,

. . . , ‡
n

) such that ‡
k

: � æ �(A).
Let m1 œ �(�) given and let Zn

1 := {z œ Zn : z1|� = m1} . For the rest of the paper,
z

k

|� denotes the marginal distribution of z
k

œ Z on the set �. Define �
n

: Zn

1 ◆ �M

n

as
the set valued map that associates to every z œ Zn

1 the set of optimal Markovian strategies
in �n

z

.
Let �

n

: �M

n

æ Zn

1 defined by ‡ ‘æ z‡ where the sequence z‡ is recursively defined by
setting z‡

1 (Ê, a) := m1(Ê) · ‡1[Ê](a) and

z‡

k+1(Ê, a) :=
ÿ

(ÊÕ
,a

Õ)œ�◊A

Q(ÊÕ, aÕ, z‡

k

)(Ê) · z‡

k

(ÊÕ, aÕ) · ‡
k+1[Ê](a). (7.3)

We are interested in the fixed points of �
n

¶�
n

. In order to apply fixed point theorems,
one needs to ensure certain continuity and convexity properties, which will hold under the
following assumptions.

Assumption 7.2.1. (Lipschitz continuity) There exists positive real numbers L
Q

, L
g

such
that for all (Ê, a, y, z) œ � ◊ A ◊ Z ◊ Z,

ÎQ(Ê, a, y) ≠ Q(Ê, a, z)ÎŒ Æ L
Q

Îy ≠ zÎ1

and
Îg(Ê, a, y) ≠ g(Ê, a, z)ÎŒ Æ L

g

Îy ≠ zÎŒ .

For the existence results in these sections, this continuity assumption can be relaxed,
however, for our main approximation results we need Lipschitz continuity. One way to
ensure convexity properties is the following:

Assumption 7.2.2. (Independent transitions) For all (Ê, a, y, z) œ � ◊ A ◊ Z ◊ Z,

Q(Ê, a, y) = Q(Ê, a, z) =: Q(Ê, a).

In order to avoid this assumption, one needs to impose a di�erent assumption so that
a convexity property can still be preserved.

1. This is a one-player Markov decision process, which are well understood. See for instance [53].
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Assumption 7.2.3. (Uniqueness of the maximizer) The right hand side of equations
(7.1), (7.2) admits a unique maximizer, i.e. there exists a unique pure Markovian optimal
strategy.

It is possible to provide conditions on the basic model data that ensure that Assumption
7.2.3 holds, see for example Assumption 2 and 3 in [2] or Assumptions 1-3 in [48]. As
uniqueness of the maximizer might hold under other circumstances, we prefer not to write
down explicit conditions.

A straightforward application of Brouwer’s fixed point theorem yields the following
result.

Proposition 7.2.4. If Q satisfies Assumptions 7.2.1 and 7.2.3, then �
n

¶ �
n

has a fixed
point.

Definition 7.2.5. A mean field equilibrium with initial mass m1 for the n≠stage
game is a pair (‡, z) œ �M

n

◊ Zn

1 such that z is a fixed point of �
n

¶ �
n

and ‡ = �
n

(z).

For the discounted case, from (7.2) one obtains that there exist optimal stationary
strategies, i.e. functions of the form ‡ : � æ �(A). Let � denote the set of stationary
strategies. Define �

⁄

: Z æ Z ◊ � as the set valued map that associates to every z œ Z
the pair (z, S⁄

z

), where S⁄

z

is the set of optimal stationary strategies in �⁄

z

.
We will make the following ergodicity assumption throughout the paper.

Assumption 7.2.6. (Ergodicity) For all y œ Z, ‡ œ �, and (ÊÕ, aÕ), (Ê, a) œ � ◊ A, the
Markov chain (Z

k

)
kœN over � ◊ A with transition probability

P
!
Z

k+1 = (Ê, a)
-- Z

k

= (ÊÕ, aÕ)
"

= Q(ÊÕ, aÕ, y)(Ê) · ‡[Ê](a) =: Q[y, ‡](ÊÕ
,a

Õ),(Ê,a) (7.4)

has a stationary distribution z = z[y, ‡]. In other words, for y, ‡ given, there exists z such
that the following holds

Q[y, ‡]z = z. (7.5)

Let �
⁄

: Z ◊ � æ Z be defined by (y, ‡) ‘æ z[y, ‡] where z[y, ‡] œ Z is defined by

z[y, ‡](Ê, a) :=
ÿ

(ÊÕ
,a

Õ)œ�◊A

Q(ÊÕ, aÕ, y)(Ê) · ‡[Ê](a) · z[y, ‡](ÊÕ, aÕ).

Under Assumption 7.2.6, �
⁄

is well defined. One obtains analogous results to Propo-
sition 7.2.4.

Proposition 7.2.7. Under Assumptions 7.2.1 and 7.2.6, �
⁄

¶ �
⁄

has a fixed point.

Proof. The upper semicontinuity follows easily from the assumptions. For the convexity,
let z œ Z and z1, z2 œ �

⁄

¶ �
⁄

(z). Let z
◊

:= ◊z1 + (1 ≠ ◊)z2 . Consider two stationary
strategies ‡1, ‡2 œ �

⁄

(z) such that �
⁄

(‡1) = z1, �
⁄

(‡2) = z2. Let ‡
◊

be the following
strategy:

‡
◊

[Ê](a) := ◊ · z1(Ê, a) · ‡1[Ê](a) + (1 ≠ ◊) · z2(Ê, a) · ‡2[Ê](a)
z

◊

(Ê, a) .

Observe that ‡
◊

is optimal for �⁄

z

from the optimality of ‡1, ‡2. We make the convention
that when z

◊

(Ê, a) = 0, ‡
◊

[Ê](a) = 0. Note also that

z
◊

(Ê, a) = 0 ≈∆ z1(Ê, a), z2(Ê, a) = 0.
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We have, up to excluding the above trivial cases,

z
◊

(Ê, a) = ◊z1(Ê, a) + (1 ≠ ◊)z2(Ê, a)
= ◊

ÿ

Ê

Õ
,a

Õ
Q(ÊÕ, aÕ, z)(Ê) · ‡1[Ê](a) · z1(Ê, a) +

+ (1 ≠ ◊)
ÿ

Ê

Õ
,a

Õ
Q(ÊÕ, aÕ, z)(Ê) · ‡2[Ê](a) · z2(Ê, a)

=
ÿ

Ê

Õ
,a

Õ
Q(ÊÕ, aÕ, z)(Ê) · ‡

◊

[Ê](a) · z
◊

(Ê, a)

Hence, z
◊

œ �
⁄

¶ �
⁄

(z).

In the case of pure strategies, one has the following:

Proposition 7.2.8. Under Assumptions 7.2.1, 7.2.3 and 7.2.6, �
⁄

¶ �
⁄

has a fixed point.

The proof of this proposition is a straightforward application of Brouwer’s fixed point
theorem.

Definition 7.2.9. A stationary mean field equilibrium is a pair (‡, z) œ � ◊ Z such
that z is a fixed point of �

⁄

¶ �
⁄

and ‡ is the strategy associated to �
⁄

(z).

7.2.2 The N-player game
We consider a n≠stage stochastic game �

n,N

[m1] with N +1 identical players, i.e. with
common state space �, action set A, stage payo� g : � ◊ A ◊ Z æ [0, 1] and transition
function Q : � ◊ A ◊ Z æ �(�) played as follows: at stage k, for k = 1, . . . , n, each player
i observes his own state Êi

k

and the state of each of the adversaries and chooses his action
ai

k

. The initial state of each player is sampled i.i.d using the lottery m1. The actions of the
players are chosen simultaneously and independently. After the actions were chosen, each
player has a state-action pair zi

k,N

:= (Êi

k,N

, ai

k

). The payo� for player i is g(Êi

k,N

, ai

k

, z
k,N

)
where

z
k,N

(Ê, a) := 1
N

Nÿ

j=1
1{z

j
k,N =(Ê,a)}

denotes the empirical distribution of the state-action pairs of the players after the play at
stage k. The new state for player i, Êi

k+1,N

, is chosen according to the law Q(Êi

k,N

, ai

k

, z
k,N

)
and the situation is repeated.

A behavioral strategy for player i is a vector fii = (fii

k

)n

k=1 where fii

k

: H
k

æ �(A)
and H

k

= (� ◊ A ◊ Z)k≠1 fi (� ◊ �N≠1) is the set of all possible histories up to stage k.
Denote by �

n,N

the set of behavioral strategies for each player and note that �M

n

µ �
n,N

.
A strategy profile is a vector fi = (fii)

i=1,...,N

, where fii is a behavioral strategy of player
i. The average payo� of player i, when using the strategy fii and when his adversaries use
the strategy profile fi≠i œ (�

n,N

)N≠1 is

J i

N

(Ê, m1, fii, fi≠i) := EQ

C
nÿ

k=1
g(Êi

k,N

, ai

k,N

, z
k,N

) | Êi

1,N

= Ê

D

.

One can also consider a game �
⁄,N

[m1] with infinite horizon and payo�
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J i

⁄

(Ê, m1, fii, fi≠i) := EQ

C Œÿ

k=1
(1 ≠ ⁄)kg(Êi

k,N

, ai

k,N

, z
k,N

) | Êi

1,N

= Ê

D

. (7.6)

where ⁄ œ (0, 1].

Definition 7.2.10. An ‘≠Nash equilibrium for the average payo�, where ‘ > 0, is a
strategy profile (fii)

i=1,...,N

such that, for all player i and all behavioral strategy · i,

J i

N

(Ê, m1, ·, fi≠i) ≠ ‘ Æ J i

N

(Ê, m1, fii, fi≠i).

Analogously, an ‘≠Nash equilibrium for the ⁄- discounted payo� is a strategy profile
(fii)

i=1,...,N

such that, for all player i and all behavioral strategy · i,

J i

⁄

(Ê, m1, ·, fi≠i) ≠ ‘ Æ J i

⁄

(Ê, m1, fii, fi≠i).

7.2.3 Approximation results

We are ready to state our first main result in the finite horizon case, which is an easy
consequence of the approximation lemma in Section 7.4. This result is an estimate of the
maximal deviation between the trajectories followed by a player if the observed aggregate
state-action of his adversaries a�ects his own transition functions and an independent
game in which he plays the same action, but the transition function takes as argument
the corresponding aggregate state-action of the mean field equilibrium.

Throughout this Section Assumption 7.2.1 holds.

Proposition 7.2.11. Let (‡, z) be a mean field equilibrium. Assume player i’s adversaries
play the mean field equilibrium strategy, whereas player i’s action at time s, ai

s

, is arbitrary.
— Let Zi

s+1 denote the state-action pair of player i at time s+1 when his transitions
are influenced by the mean field term z

s

, i.e. Zi

s+1 ≥ Q(Êi

s

, ai

s

, z
s

).
— Zi

s+1,N

denote the state-action pair of player i at time s + 1 when the empir-
ical state-action pair of the adversaries influences his transitions, i.e. Zi

s+1,N

≥
Q(Êi

s

, ai

s

, z
s,N

).
Then we have:

E
3

max
sÆn

ÎZi

s

≠ Zi

s,N

ÎŒ

4
Æ L

Q

n|� ◊ A| exp(n(ÎQÎŒ + L
Q

))Ô
N

Proof. Let S := � ◊ A in Lemma 7.4.3. In this lemma, we take P (·) := Q(ai

s

, ·).

Once the di�erence of the trajectories of player i in the N player game and in the
one-player game where the state-action term enters as a parameter is bounded, we obtain
the following result:

Theorem 7.2.12. Let ‘ > 0 be given. In a finite horizon, N player game, there ex-
ists N0 such that for N > N0 the mean field equilibrium is an ‘-equilibrium, where the
approximation error ‘ is given by:

L
Q

(L
g

+ ÎgÎŒ)n|� ◊ A| exp(n(ÎQÎŒ + L
Q

))Ô
N

.
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Proof. Consider a game with N players and let us focus on the payo� function of player
i. Let (‡, z) denote a mean field equilibrium for a given initial distribution m1 and let
Ê1 = Ê. We have that, for all behavior strategy · :

D := J i

N

(Ê, m1, ·, ‡≠i) ≠ J i

N

(Ê, m1, ‡, ‡≠i)

= J i

N

(Ê, m1, ·, ‡≠i) ≠ EQ

nÿ

k=1
g(Ê

k

, ‡(Ê
k

), z
k

) +

+ EQ

nÿ

k=1
g(Ê

k

, ‡(Ê
k

), z
k

) ≠ J i

N

(Ê, m1, ‡, ‡≠i)

Æ
C

J i

N

(Ê, m1, ·, ‡≠i) ≠ EQ

nÿ

k=1
g(Ê

k

, ·(Ê
k

), z
k

)
D

+

+
C

EQ

nÿ

k=1
g(Ê

k

, ‡(Ê
k

), z
k

) ≠ J i

N

(Ê, m1, ‡, ‡≠i)
D

The above inequality comes from the optimality of ‡. The result now follows applying
Lemma 7.4.4 to each of the terms in brackets.

Remark. Note that the discounted case can be reduced to the finite horizon case: indeed,
it su�ces to find K œ N large enough so that

⁄(1 ≠ ⁄)KÎgÎŒ < ‘/2

and consider the N0 for ‘/2 in Theorem 7.2.12. However, this may not be appropriate
when ⁄ is small because the number of stages will be too large. For small ⁄, it makes
more sense to consider the construction we proposed, as it does not require to consider a
large number of stages. This will be the case for instance in Section 7.3.
Remark. Our bound suggests that the number of players should be much larger than
the length of the game. This seems intuitive, since one would expect that if there are
not enough players and they play for many stages, it could happen that the empirical
distribution at early stages of the game is too far from the predicted distribution and this
error would be propagated.
Remark. Our result is on the spirit of [57]: construct a limit object that induces ‘-Nash
equilibria in games with large players. Our limit object corresponds heuristically to a
game with a continuum of players. The complementary approach of studying the limits
of a sequence of Nash equilibria of games with finitely many players has been explored in
some cases, see for instance [8, 64] but the general case remains open. We will illustrate
this remark in Example 7.2.14.

We conclude this Section with two illustrative examples:

Example 7.2.13. As an application let us consider the following example, adapted from
learning by doing [43]. Consider the industry of online hotel booking, where many firms
o�er accommodation. In this case, the state space � is the reputation of the firm, the
action set A is the capital to be invested. Assume each firm aims to improve their payo�,
which is a function of their reputation and their investments ¸, by making investments
and/or adjusting their o�ers. The reputation changes according to the transition Q. Note
that in this context makes sense to consider independent transitions, since one would expect
that each firms’ present reputation depends exclusively on their past reputation and their
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investment, as in Assumption 7.2.2. The firms interact with each other through the payo�
function g, which represents their market share. For instance, if all the firms have similar
reputation, customers might be indi�erent and the utilities will be shared evenly, whereas
if there are few firms with outstanding reputation, they may have higher revenues.

Example 7.2.14. Consider a game with N players, where each player chooses whether
to drive on the left or right side of the street. Assume that the payo� for driving on the
same side as everyone else is 1 and zero otherwise. Observe that ’everyone drives left’ and
’everyone drives right’ are Nash equilibria. However, this game has more equilibria which
are sensible to the number of players present in the game, for instance ’everyone drives
right if N is even’. In this case it does not make sense to consider limits of Nash equilibria,
it is rather desirable to have equilibria that are independent of the number of players.

7.3 A mean field game with frequent actions
The aim of this section is to study a model for mean field games where players are

allowed to play more frequently.

7.3.1 The one-player game
Let ” > 0 and z œ Z. In the spirit of [78], we consider a family of discrete time

repeated games parameterized by ” as follows: let µ : � ◊ � ◊ A ◊ Z æ R+ bounded and
such that, for all (Ê, a) œ � ◊ A,

µ(Ê, Ê, a, z) = ≠
ÿ

Ê

Õ ”=Ê

µ(Ê, ÊÕ, a, z)

That is, µ(Ê, ÊÕ, a, z) defines the escape velocity from Ê to ÊÕ.
For ” small enough, the function

Q
”

(Ê, a, z)(ÊÕ) := ”µ(ÊÕ, Ê, a, z), for ÊÕ ”= Ê, Q
”

(Ê, a, z)(Ê) = 1 + ”µ(Ê, Ê, a, z) (7.7)

defines transition probabilities. Introduce the notation g
”

:= ”g and let �⁄,”

z

denote the one
player game with stage payo� g

”

and transition function Q
”

. For a fixed ”, this is exactly a
discounted one-player game as introduced in Section 7.2 to define a stationary mean field
equilibrium. The stationary mean field equilibrium defined through these games enjoys,
for a fixed ”, identical approximation properties as in Section 7.2.3 in terms of the number
of players. Our goal in this section is to provide a limit object that provides simultaneously
good approximations for a large enough population of players and for a short enough time
between plays.

Let 0 < fl < 1. Informally, our aim is to approximate a mean field equilibrium for
the stochastic game in continuous time with payo�

s Œ
0 e≠fltg(Ê

t

, a
t

, z)dt via mean field
equilibria of the discrete time games �⁄,”

z

. The discount factor needs to be adjusted so
that the accumulated payo� at the fraction t of the continuous time game is indeed the
limit of the accumulated payo�s during the first Â t

”

Ê stages of the discrete time game. This
is achieved by taking the discount factor ⁄ = fl”. Denote by V ”

⁄

the value function of the
game �⁄,”

z

. Taking ⁄ = fl” in (7.2) and dividing by ” yields

flV ”

fl”

(Ê, z) = max
aœA

Y
]

[g(Ê, a, z) + (1 ≠ fl”)
ÿ

Ê

Õœ�
µ(Ê, ÊÕ, a, z)V ”

fl”

(ÊÕ, z)

Z
^

\ (7.8)
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which suggests that if f is an accumulation point of
1
V ”

fl”

2

”>0
, then it should satisfy

flf(Ê, z) = max
aœA

Y
]

[g(Ê, a, z) +
ÿ

Ê

Õœ�
µ(Ê, ÊÕ, a, z)f(ÊÕ, z)

Z
^

\ . (7.9)

Let us provide a proof of this result. The proof is inspired from the proof of Theorem
1 in [78].

Proposition 7.3.1. The equation (7.9) has a unique solution, denoted V
fl

. Moreover,
V ”

fl”

æ V
fl

uniformly as ” æ 0.

Proof. Let C(� ◊ Z) denote the set of continuous real-valued functions over � ◊ Z. Let
T : C(� ◊ Z) æ C(� ◊ Z) be the following operator:

Tf(Ê, z) = 1
ÎµÎŒ + fl

max
aœA

1
g(Ê, a, z) +

ÿ
Ê

Õœ� µ(Ê, ÊÕ, a, z)f(ÊÕ, z) + ÎµÎŒf(Ê, z)
2

.

Note that T (f + c1) = Tf + c ÎµÎŒ
ÎµÎŒ+fl

, and that T is monotone, i.e. Tf Ø Tg whenever
f Ø g. Here, 1 denotes the constant function 1. Consequently, T is a ÎµÎ

ÎµÎŒ+fl

-contraction
and has a unique fixed point V

fl

. Besides, note that Tv = v if and only if v is a solution
to the following implicit equation:

flv(Ê, z) = max
aœA

1
g(Ê, a, z) +

ÿ
Ê

Õœ� µ(Ê, ÊÕ, a, z)v(ÊÕ, z)
2

(7.10)

Denote with V
fl

the unique solution of (7.10) and let ‡fl

z

be an optimal stationary
strategy in (7.10). Consider the stochastic one-player game �fl”,”

z

with initial state Ê and
let Y

m

:= E
#
”g(Ê

m

, ‡fl

z

(Ê
m

), z) + (1 ≠ fl”)V
fl

(Ê
m+1, z) | H1

m

$
. Then

Y
m

= ”g(Ê
m

, ‡fl

z

(Ê
m

), z) + (1 ≠ fl”)
ÿ

Ê

Õœ�
Q

”

(Ê
m

, a, z)(ÊÕ)V
fl

(ÊÕ, z)

= ”g(Ê
m

, ‡fl

z

(Ê
m

), z) + (1 ≠ fl”)
ÿ

Ê

Õœ�
”µ(Ê

m

, ÊÕ, a, z)V
fl

(ÊÕ, m1) + (1 ≠ fl”)V
fl

(Ê
m

, z)

Ø V
fl

(Ê
m

, z) ≠ fl”2 ÿ

Ê

Õœ�
µ(Ê, ÊÕ, a, z)V

fl

(ÊÕ, m1)

Ø V
fl

(Ê
m

, z) ≠ 2”2ÎµÎŒÎgÎŒ.

The last inequality follows directly from (7.10) and using the fact that V
fl

< ÎÎgÎŒ and
fl < 1.

Hence,

EQ” (1 ≠ fl”)m”g(Ê
m

, ‡fl(Ê
m

), z) Ø EQ” (1 ≠ fl”)mV
fl

(Ê
m

, z) ≠
≠ EQ” (1 ≠ fl”)m+1V

fl

(Ê
m+1, z) ≠ (1 ≠ fl”)m2”2ÎµÎÎgÎ.

Summing over m (since we consider the payo� as in (7.6)) we obtain that V ”

fl”

(Ê, m1) Ø
V

fl

(Ê, z) ≠ 2ÎµÎŒÎgÎŒ
fl

”, and ‡fl

z

is asymptotically optimal in �fl”,”

z

, as ” æ 0.
The proof of the opposite inequality follows from (7.10) and considering any arbitrary

strategy instead of an optimal one in the above proof.
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7.3.2 The evolution of the state-action pair
Let y œ Z and ‡

”

an optimal stationary strategy in the game �fl”,”

y

. Let Q
”

be a
transition as defined before and Q

”

its associated transition matrix, as defined in (7.4).
Denote by z

”

the invariant state-action pair under the transition Q
”

, as introduced in
(7.7), and the strategy ‡

”

. Hence, by (7.5) in Assumption 7.2.6 it should satisfy:

Q
”

z
”

= z
”

.

Since Q
”

= I + ”L[‡
”

, y], where L[‡
”

, y](Ê,a),(ÊÕ
,a

Õ) := µ(Ê, ÊÕ, ‡
”

(Ê), y) · ‡
”

[ÊÕ](aÕ),

L[‡
”

, y]z
”

= 0.

Heuristically, the limit state-action pair as the stage duration goes to zero, corresponding
to the limit strategy ‡fl

y

should solve:

L[‡fl

y

, y]z = 0.

Assumption 7.3.2. For every y œ Z and ‡ œ �, optimal stationary strategy given by
(7.9) with z = y, the equation

L[‡, y]z = 0. (7.11)
has a solution, denoted z[‡, y].

Let �fl : Z æ Z ◊ � be defined by y ‘æ (y, ‡fl

y

) and �fl : Z ◊ � æ Z be defined by
(y, ‡) ‘æ z[‡, y]. Under this assumption, let us introduce the following definition:
Definition 7.3.3. A limit stationary mean field equlibrium is a pair (‡, z) œ � ◊ Z
such that z is a fixed point of �fl ¶ �fl and ‡ is the strategy associated to �fl(z).

One can prove existence of the limit stationary mean field equilibrium under the ap-
propriate uniqueness assumption of the optimal action, analogous to Assumption 7.2.3.
Assumption 7.3.4. The right hand side of (7.9) has a unique maximizer.

By a straightforward application of Brouwer’s fixed point theorem, one has:
Proposition 7.3.5. Under Assumptions 7.3.2 and 7.3.4, the operator T fl := �fl ¶ �fl has
a fixed point.

7.3.3 The approximation of the N player game with frequent actions
Let us state now our second approximation result, namely the approximation of the

game with su�ciently short stage and su�ciently many players.
Theorem 7.3.6. For every ‘ > 0 there exist ”0 > 0 and N0 œ N such that for all ” < ”0
and N > N0 the strategy provided by the limit stationary mean field equilibrium is an
2‘-Nash equilibrium of the discounted mean field game with discount factor ⁄ = fl” and N
players.
Proof. Let ‘ > 0 fixed and consider a limit stationary mean field equilibrium (‡, z). Ob-
serve from the proof of Proposition 7.3.1 that one can choose ”0 small enough so that ‡
is ‘≠optimal for the one-player discounted game with discount fl”, for all ” < ”0. Let K0
such that

fl”0(1 ≠ fl”0)K0ÎgÎŒ < ‘/2.

Finally, let us take the N0 given by Theorem 7.2.12 for the game of n = K0 stages and
error ‘/2.
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To conclude this Section, let us provide an example of a possible application of our
model.

Example 7.3.7. As an example of application, let us revisit the example of the online
booking industry (Example 7.2.13). We consider again the state space as the reputation of
the firm but restrict the action set to the o�ers the firm can post online. By monitoring
each other actions, firms can frequently update their o�ers and promotions (with the help
perhaps of automated software) to change their reputation levels.

7.4 Concluding remarks
An interesting feature of the mean field game models from the point of view of appli-

cations is the simplification it entails: on the equilibrium, each player has at his disposal
an extremely simple strategy that depends only on his current state and he does not
need to keep track of the other players, provided the number of players is large enough.
This is because the aggregate state-action of the other players is regarded as a parameter,
which deviates from the actual realization of the aggregated state-action with very small
probability.

However, this nice feature is also its curse. One problem is that the mean field equi-
librium need not be unique. If there is a coordinator of the game that informs the players
which mean field equilibrium should be played, there are no problems. In applications,
this will typically not be the case. One way around would be to provide the players with
an adaptation mechanism. To explain this point, let us revisit the example of the driving
game:

Example 7.4.1. Consider the driving game of Example 7.2.14 with N players. The
only equilibria that do not depend on N are everyone on the left and everyone on the
right. Consider the following adaptation mechanism: each player chooses left or right
with probability 1

2 on the first stage. On the second stage, observing the realizations of the
first stage, each player looks at everyone’s choice (and recalls its own) and imitates the
choice of the majority. Thus, from stage three, the players will be on an equilibrium path
if N is odd. If N is even, there is positive probability that none of the equilibria is reached.

A proper study of adaptation mechanisms for mean field games in the general case is
clearly an interesting direction of future research.
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Appendix: An approximation Lemma
Let S denote a finite set. We identify the set S with the canonical basis of R|S| .

Denote by M the subset of R|S|◊|S| consisting of transition matrices for Markov chains
over S.

Let P : �(S) æ M denote a Lipschitz continuous function with respect to the L1 norm
with Lipschitz constant L

P

. Since S is finite, we have that the total variation distance
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in �(S), defined as Îµ ≠ ‹ÎŒ := max
AµS |µ(A) ≠ ‹(A)| is related to the L1 distance by

Îµ ≠ ‹ÎŒ = 1
2Îµ ≠ ‹Î1, so that a L

P

-Lipschitz function in the L1 norm is 2L
P

in the total
variation norm.

Let T > 1 be an integer, representing the number of stages. For i = 1, . . . , N and
k = 0, 1 . . . , T ≠ 1 define the following

Xi

k+1 = P (m
k

)Xi

k

Xi

k+1,N

= P (m
k,N

)Xi

k,N

where Xi

0 = X i

0,N

is a random variable with law m0 and Xi

0,N

are sampled i.i.d with
probability m0. Here, m

k

denotes the law of Xi

k

and m
k,N

:= 1
N

q
N

i=1 Xi

k,N

.
Observe that

Xi

k+1 = Xi

0 +
kÿ

¸=0
Xi

¸+1 ≠ Xi

¸

Xi

k+1,N

= Xi

0,N

+
kÿ

¸=0
Xi

¸+1 ≠ Xi

¸,N

so that

Xi

k+1 ≠ Xi

k+1,N

=
kÿ

¸=0
(P (m

¸

) ≠ I)Xi

¸

+
kÿ

¸=0
(P (m

¸,N

) ≠ I)Xi

¸,N

.

Before we proceed to the approximation lemma, let us introduce ›
k,N

:= 1
N

q
N

i=1 Xi

k

.
Observe that m

k

= E›
k,N

. We have the following

Proposition 7.4.2. The following estimate holds:

EÎ›
k,N

≠ m
k

Î1 Æ |S|/2
Ô

N.

Proof. For every s œ S, the random variable ›
k,N

(s) is the average of N independent
Bernoulli variables. Hence, by definition of the variance and Jensen’s inequality,

E|›
k,N

(s) ≠ m
k

(s)| Æ
Ò

var(›
k,N

(s)) Æ 1
2
Ô

N

Summing over s gives the result.

Let F
k

denote the filtration generated by the observed history up to stage k. We are
ready to prove the following approximation lemma.

Lemma 7.4.3. The following estimate holds: for all i = 1, . . . , N ,

E
3

max
sÆT ≠1

ÎXi

s+1 ≠ Xi

s+1,N

ÎŒ

4
Æ L

P

T |S| exp(T (ÎPÎŒ + L
P

))Ô
N

Proof. Let Di

k

:= E
1
max

sÆk

ÎXi

s+1 ≠ Xi

s+1,N

ÎŒ | F
k

2
and D

k

:= max1ÆiÆN

Di

k

. Now
observe that, for any i:
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Di

k+1 Æ
kÿ

¸=0
EÎP (m

¸

)Xi

¸

≠ P (›
¸,N

)Xi

¸

ÎŒ ≠ (7.12)

+ EÎP (›
¸,N

)Xi

¸

≠ P (m
¸,N

)Xi

¸,N

ÎŒ + EÎXi

¸

≠ Xi

¸,N

ÎŒ (7.13)

Æ
kÿ

¸=0
L

P

EÎm
¸

≠ ›
¸,N

Î1 + (ÎPÎŒ + L
P

)D
¸

. (7.14)

From here it follows that

D
k+1 Æ L

P

T |S|Ô
N

+ (ÎPÎŒ + L
P

)
kÿ

¸=0
D

¸

.

The first inequality ((7.12) and (7.13)) follows from the triangle inequality. For (7.14),
we use the fact that

E
1
ÎP (m

¸

)Xi

¸

≠ P (›
¸,N

)Xi

¸

ÎŒ
2

Æ E
1
ÎP (m

¸

) ≠ P (›
¸,N

)ÎŒÎXi

¸

Î1
2

Æ L
P

EÎm
¸

≠ ›
¸,N

Î1.

and that

EÎP (›
¸,N

)Xi

¸

≠ P (m
¸,N

)Xi

¸,N

ÎŒ Æ EÎP (›
¸,N

)(Xi

¸

≠ Xi

¸,N

)ÎŒ + EÎP (›
¸,N

)Xi

¸,N

≠ P (m
¸,N

)Xi

¸,N

ÎŒ

Æ ÎPÎŒEÎXi

¸

≠ Xi

¸,N

ÎŒ + L
P

D
¸

The conclusion follows from induction.

Let us prove a useful lemma.

Lemma 7.4.4. Let f : S ◊ �(S) æ R be a bounded and L
f

-Lipschitz continuous function
with the second variable respect to the L1 norm. Then we have

E
1
|f(Xi

k+1,N

, m
k+1,N

) ≠ f(Xi

k+1, m
k+1)| | F

k

2
Æ (L

f

+ ÎfÎŒ)D
k+1

Proof. First observe that

E
1
|f(Xi

k+1,N

, m
k+1,N

) ≠ f(Xi

k+1,N

, m
k+1)| | F

k

2
Æ L

f

E (Îm
k+1,N

≠ m
k+1Î1 | F

k

)
Æ L

f

D
k+1

We also have that

E
1
|f(Xi

k+1,N

, m
k+1) ≠ f(Xi

k+1, m
k+1)| | F

k

2
Æ ÎfÎŒD

k+1

Combining these two inequalities yields the result.
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Chapter 8

Stochastic zero-sum games with a
continuous time dynamics

Abstract: We present in a unified framework some results concerning a family of
stochastic games where a payo�-relevant parameter evolves following a continuous time
Markov chain. The chain is jointly controlled by two players that choose their actions
in discrete time. We characterize the asymptotic value as the time between consecutive
actions goes to zero under di�erent assumptions on the information the players receive
and on the payo� evaluations.

8.1 Description of the general model
8.1.1 Basic dynamics

Let � be a finite set, called the parameter space and let A and B denote the finite
action sets of players 1 and 2 respectively.

The parameter evolves in continuous time, following an homogeneous Markov chain
with transition rate function q : � ◊ � ◊ A ◊ B æ R, i.e. a function that satisfies, for
all (Ê, a, b) œ � ◊ A ◊ B :

0 Æ q(Ê, ÊÕ, a, b) < +Œ, ÊÕ ”= Ê, and
ÿ

Ê

Õœ�
q(Ê, ÊÕ, a, b) = 0.

For fixed (a, b) œ A ◊ B, the transition function corresponds to the speed with which
the parameter jumps from Ê to ÊÕ. To these actions corresponds a transition semigroup
P (·, a, b), which is a collection of maps P

‘

(·, a, b) : � ◊ � æ [0, 1] such that

P(Ê
t+‘

= ÊÕ|Ê
t

= Ê, a, b) = P
‘

(Ê, ÊÕ, a, b) + o(‘)

for all t, ‘ Ø 0 and Ê, ÊÕ œ �. The map t ‘æ P
t

(·, a, b) is the solution of the Chapman-
Kolmogorov equation

Ṗ
t

= Qa,bP
t

, P0 = I (8.1)

where the matrix Qa,b := (q(Ê, ÊÕ, a, b))
Ê,Ê

Õ is the generator of the Markov chain with
transition semigroup P (·, a, b).

Let us introduce some notation: let ÎqÎ := max
Ê,a,b

|q(Ê, Ê, a, b)| denote the largest
transition rate. Denote by Î“Î := max

Ê,a,b

“(Ê, a, b) the uniform norm of the payo�
function and for a positive constant ”, let “

”

:= “”.
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8.1.2 Information and strategies
We describe now how players influence the dynamics introduced in Section 8.1.1.
Consider a partition � = {t1 = 0, t2, . . .} of R+ and set fi

k

:= t
k+1 ≠t

k

. On the discrete
time game we describe below, we assume that the k-th stage of the game takes place at
time t

k

and its duration is fi
k

.
Let R, S be two sets, called the signal sets and �, A, B as in Section 8.1.1. Let

“ : � ◊ A ◊ B æ [0, 1] denote the running payo�. We consider also a transition
function Q : � ◊ A ◊ B æ �(R ◊ S).

Let us begin with a general model adapted from Mertens, Sorin and Zamir [75, Section
IV].

— An initial parameter Ê1 and signals r1, s1 are chosen randomly according to an
initial distribution Q0 œ �(� ◊ R ◊ S).

— After learning his signal r1(resp. s1), player 1 (resp. 2) chooses an action a1 (resp.
b1). The stage payo� “1 := fi1“(Ê1, a1, b1) is allocated to player 1. The actions
are chosen independently.

— The parameter follows the Markov chain with generator Qa1,b1 in the time interval
[t1, t2]. Hence, at time t = t2, the parameter Ê2 has law P

fi1(Ê1, ·, a1, b1).
— Similarly, at time t

k

, for k Ø 2, which corresponds to the k ≠ th stage of the game,
the value of the parameter is Ê

k

. The signals r
k

, s
k

for players 1 and 2 respectively
are chosen according to Q(Ê

k

, a
k≠1, b

k≠1). Each player learns his signal and choose
their actions a

k

,b
k

, and a payo� “
k

:= “(Ê
k

, a
k

, b
k

) is assigned. The parameter Ê
k

follows the Markov chain with generator Qak,bk on the time interval [t
k

, t
k+1]. At

time t = t
k+1, the parameter Ê

k+1 has law P
fik(Ê

k

, ·, a
k

, b
k

) and the situation is
repeated.

This description is known by both players, including all the relevant parameters of the
game: Q0, Q, q, �, “, �, A, B, R, S.

Let H1
j

denote the information available to player 1 at stage j, that is, the set of se-
quences (r1, a1, r2, a2, . . . , r

j

). A similar definition holds for H2
j

. A behavioural strategy
‡ for player 1 is a map from his private history H1 := fi

jØ1H1
j

to �(A). A behavioural
strategy · for player 2 is defined similarly. The set of behavioural strategies are denoted
by � and T for player 1 and 2, respectively. Let HŒ := H1 fi H2.

By Kolmogorov’s extension theorem, a couple of behavioural strategies (‡, ·), together
with Q0, q, Q, defines a unique probability distribution P

‡·

over the set of all plays, (� ◊
A ◊ B)N, endowed with the cylinder ‡-algebra. The corresponding expectation is denoted
by E

‡·

. Let us assume that the players have perfect recall, that is, that players remember
the full history of the game. In this case, Kuhn’s theorem [62] applies, which ensures that
the games played in mixed or behavioural strategies are equivalent. Thus, we can consider
without loss of generality that the game is played in mixed strategies. Note that the set
of mixed strategies for each player is compact and convex.

This model is inspired from the general model of Mertens, Sorin and Zamir [75, Sec-
tion IV]. The crucial di�erence is that here the parameter evolves continuously and the
transition probability depends on the duration of the stage. Thus, our results are not
directly comparable to those of the classical framework of discrete time repeated games.

Games where a payo� relevant parameter follows a continuous time Markov chain
have been introduced by Zachrisson [107] under the name Markov games. They have also
been studied by Tanaka and Wakuta [100, 99] and Tanaka and Lai [98]. These authors
assume first the existence of Markovian strategies, from which they derive an equation for
the value function that they use to construct stationary strategies. A generalization for
unbounded payo� and transition rates has been analysed by Guo and Hernández-Lerma
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[50]. We refer to Hernández-Lerma and Prieto-Rumeau [54] for a recent account of zero-
sum Markov games. Note however than in the references mentioned above the players
choose their actions in continuous time and do not introduce a notion of stage duration.

The notion of stage duration has been introduced by Nyeman [78]. The model pre-
sented here is closer to Cardaliaguet, Rainer, Rosenberg and Vieille [26], although the
information structure in our examples is symmetric (both players know the same), while
they consider a model with asymmetric information. We will elaborate on this point later
in Section 8.5.2.

8.2 Evaluation of the payo�
8.2.1 Model A: Game in [0,1]

Let � denote a decreasing probability measure over N with � = (◊1, ◊2, . . .) and ◊1 <
1/ÎqÎ, where ÎqÎ := max(Ê,a,b)œ�◊A◊B

|q(Ê, Ê, a, b)|.
Let s

k

:=
q

¸<k

◊
¸

and consider the partition �� := {0 = s1, s2, s3, . . .} of [0, 1]. The
dynamics of the play at the k≠th stage corresponds to the play at time s

k

as described in
Section 8.1.2.

The payo� for a history h := {Ê1, r1, s1, a1, b1, Ê2, r2, s2, a2, b2, . . .} is

Œÿ

k=1
◊

k

“
k

.

Some choices of � are the uniform partition � := ( 1
n

, 1
n

, . . . , 1
n

). In this case, we speak
of a n≠stage game with average payo�

J
n

(h) := 1
n

nÿ

k=1
“

k

.

One can also consider the ⁄≠ discounted evaluation

J
⁄

(h) := ⁄
Œÿ

k=1
(1 ≠ ⁄)k≠1“

k

where ⁄ œ (0, 1].

8.2.2 Model B: The stationary game with short stage duration
Informally, the game we study is a discretization of an infinite horizon game with

continuous time payo�:
⁄ +Œ

0
fle≠fls“

s

ds. (8.2)

Here, fl > 0 is a positive constant, known to both players, and “
s

:= “(Ê
s

, a
k

, b
k

), for
s œ [t

k

, t
k+1) denotes the instantaneous payo�.

A common interpretation of fl is as the patience of the players: the smaller fl is, the
players are more patient. In economic applications, it often represents the interest rate.

Let �
”

= {0, ”, 2”, . . .} denote a uniform partition of R+, with 0 < ” < 1/ÎqÎ. Denote
by t”

j

:= (j ≠ 1)” the instant where the j≠th play takes place. The game is played as
in Section 8.1.2. Here, the parameter ” is the stage duration. Alternatively, 1/” is the
action frequency.
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We consider an approximation by a Riemann sum of the integral in (8.2), so that we ac-
count for the payo� only at the nodes of �

”

and ignore the payo� between stages, where the
parameter may evolve. The payo� corresponding to a history h := {Ê1, r1, s1, a1, b1, Ê2, r2, s2, a2, b2, . . .}
is:

J
fl,”

(h) :=
+Œÿ

k=1
“

fl,j,”

where

“
fl,j,”

:= fl”e≠flj”“
j

.

We refer to this game as the fl≠discounted game with action frequency 1/”.
Within this framework, it is natural to study the existence of the limit as ” and fl go to
zero and to investigate whether these limits commute.

8.2.3 Model C: The short stage game with arbitrary evaluation
We can extend the previous model to a discretization of an infinite horizon game with

continuous time payo�:
⁄ +Œ

0
Ÿ(s)“

s

ds.

where Ÿ : R+ æ R+ is a strictly decreasing density function. When Ÿ is an exponential
density, we recover model B.

As before, we consider a Riemann sum to approximate the integral payo� and ignore
the payo� between stages.

Set Ÿ
j,”

:= Ÿ(t”

j

). For a history h := {Ê1, a1, b1, Ê2, a2, b2, . . .}, the corresponding payo�
is

J
Ÿ,”

(h) :=
+Œÿ

j=1
“

Ÿ,j,”

.

with
“

Ÿ,j,”

:= ”Ÿ
j,”

“
j

.

8.2.4 Comparison of the evaluations
Let us compare the models we propose with each other and with the classical framework

of discrete time repeated games.
While in both model A and the compact game associated to a discrete time repeated

game, as described in Sorin [92, Chapter 1] one studies the sequence of value functions for
decreasing evaluations, the crucial di�erence is in the dynamics: in the classical framework
the transition probability between two consecutive stages is independent of the weight of
the stage payo�, while in our framework it goes to zero. This helps to avoid the oscillation
phenomena that arise in the classical framework (see Ziliotto [108] and Sorin and Vigeral
[93]).

We show now the di�erence between models A and C. Let us assume that “ © 1. Take
any s œ [0, 1] and recall that s

k

=
q

¸<k

◊
¸

. Observe that

lim
Î�Îæ0

min{k:skÆs}ÿ

k=1
◊

k

æ 0
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where Î�Î := sup
kœN ◊

k

. Intuitively, what happens in model A is that at each stage in
model A, the weight and the duration vanish at the same rate. Thus, the more often the
play, the longer it takes to accumulate a prescribed fraction of the payo�.

Now take any t œ R+. Observe that:

lim
”æ0

Ât/”Êÿ

j=1
Ÿ

j,”

æ
⁄

t

0
Ÿ(s)ds.

Informally, in model C the vanishing rates of the weight and the stage duration are dif-
ferent: as the stage becomes su�ciently small, the payo� starts to accumulate. This is by
construction, since the payo� of model C is a discretization of an underlying continuous
time payo�.

While model B is a particular case of model C, it has independent interest for several
reasons, which are explained later. Essentially, the advantage is that since the sequence
of value functions of the discrete games are stationary, then so is the limit object. As we
will see, this allows in the case of perfect information, to obtain asymptotic results in two
scales: frequency of the game and patience of the players.

8.2.5 Strategic and compact approach

The approach we follow to establish asymptotic results for the sequences of value func-
tions in the above models is what we call a strategic approach. Roughly speaking, it
consists of the following:

i) Deduce heuristically a limit object.
ii) Use a limit object to construct ‘-optimal strategies of the approximating game.

This approach is morally similar to the idea of Isaacs, as described in Chapter 3, or the
Krasovskii-Subbotin approach for di�erential games, discussed in Chapter 4. One deduces
a limit PDE for the value function. Once the solution of this PDE is obtained, the players
construct ‘-optimal strategies using its level sets.

Another example of limit object is due to Sorin [90, 91] for a famous stochastic game,
called the Big Match and introduced by Blackwell and Ferguson [15]. Sorin deduces a
limit game in continuous time. The discretization of optimal strategies in this limit game
in continuous time gives ‘-optimal strategies, where the approximation error decreases as
the horizon of the repeated game increases. An interesting feature here is that the limit
of optimal strategies in the Big Match in discrete time is not an optimal strategy of the
limit game in continuous time. We refer to the book of Sorin [92, Section 5.3] for a more
detailed discussion.

Other examples include the results on discrete time mean field games we have estab-
lished in Chapters 6 and 7, the formulas derived by Laraki for absorbing games [63] and
a recent result of Neyman [78, Theorem 1], which we revisit in Section 8.4.2.

An alternative approach is the compact approach, which consists, roughly speaking,
of the following:

i) Prove that the sequence of value functions has an accumulation point.
ii) Establish variational properties for the set of accumulation points.
iii) Prove uniqueness of the accumulation points.
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This approach is morally closer to the variational approach of Cardaliaguet, Laraki
and Sorin [23].

An advantage of the strategic approach is that it provides an explicit description
of ‘-optimal strategies, which may not be easy to obtain in the compact approach. A
disadvantage of the strategic approach is that the limit object may require strong regularity
properties, which are not easy to guarantee in general.

8.3 No information on the state
Let us study first the case when both players observe each others’ actions but not the

parameter. The information available to each player is symmetric, i.e. H1
k

= H2
k

=: H
k

for all k. In this case, the state variable is the law of the parameter, which is updated
at each stage conditional on the observed actions. This defines a dynamics on the state
space �(�) which we describe now.

8.3.1 Dynamics in �(�)
Let us consider a partition � as in Section 8.1.2.
Assume that the initial value of the parameter Ê1 is chosen at time t1 with an initial

probability distribution › =: ›1 œ �(�). The signals received by the players are r1 =
s1 = {›} and r

k

= s
k

= {a
k≠1, b

k≠1} for k Ø 1. Thus, at stage k + 1, players know
{›, a1, b1, . . . a

k≠1, b
k≠1, a

k

, b
k

}. Hence, they are able to calculate the law ›
k+1 œ �(�) of

Ê
k+1 before choosing their actions a

k+1, b
k+1. Let us explain briefly how this is done.

Once the actions are chosen at time t
k

, consider the generator induced by the actions

Qak,bk(Ê, ÊÕ) = q(Ê, ÊÕ, a
k

, b
k

), Ê, ÊÕ œ �. (8.3)

The matrix Qak,bk induces a continuous time Markov chain on � and the map t ‘æ
P

t≠tk(·, a
k

, b
k

) solves the ODE

Ṗ
t

= Qak,bk · P
t

, P
tk = I, t

k

Æ t < t
k+1. (8.4)

Hence, we have that P
fik = exp(fi

k

Qak,bk) and thus the law at stage k + 1 is given by

›
k+1 = exp(fi

k

Qak,bk) · ›
k

.

When the players observe each others’ actions, they know the generator (8.3), thus
they can compute, using (8.4), the transition probabilities for the time interval where this
generator will act on the Markov chain (the time interval is also known). In fact they can
resume these computations in one, as we now show.

Lemma 8.3.1. Let ›
s

œ �(�) denote the law of the state at time s and (a, b) œ A ◊ B a
fixed pair of actions. Then the map s ‘æ ›

s

is di�erentiable and satisfies:

›̇
s

= f(›
s

, a, b), ›
t

= ›. (8.5)

where f(›, a, b) := Qa,b · ›.

Proof. Let ›
t+‘

denote the law at time t + ‘, for ‘ > 0 and the fixed pair of actions a, b.
Since ›

t+‘

= exp(‘Qa,b) · ›
t

, we have that

›
t+‘

≠ ›
t

‘
= (exp(‘Qa,b) ≠ I)›

t

‘
= Qa,b›

t

+ o(‘).
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8.3.2 The associated di�erential game and the HJI equation

Let us consider the di�erential game

›̇(s) = f(›(s), a(s), b(s)), ›(0) = › (8.6)

where a : [0, 1] æ A, b : [0, 1] æ B are measurable functions.
We are interested in the special case f(›, a, b) := Qa,b ·›. In particular, Carathéodory’s

theorem [31, Chapter 2] applies, which ensures that (8.6) has a unique absolutely contin-
uous solution for any initial condition (t, ›) œ [0, 1] ◊ R|�|. We denote the evaluation of
this solution at time s by ›[0, ›, a, b](s).

Although this di�erential game and our model problem have di�erent state space, since
their dynamics is defined in all R|�|: for our model problem, the dynamics (8.5) is defined
in the whole state space R|�|; it only makes sense in the context on the problem where
the initial condition belongs to the simplex �(�), as this dynamics leaves the simplex
invariant.

The di�erential games we associate to our model problems have the same dynamics but
di�erent evaluations. The strategies are defined as in the simultaneous Fleming value, in-
troduced in Chapter 3: the players choose their actions simultaneously and independently
at the nodes of a given partition � of R+, they hold their actions constant on each interval
[t

k

, t
k+1) while the state evolves according to (8.6). It follows from the results of Chapter

3 that, for all the evaluations we consider (models A,B,C) the simultaneous Fleming value
exists. Moreover, as the mesh of � goes to zero, the sequence of value functions converges
to suitable Hamilton-Jacobi-Isaacs PDE’s, depending on the evaluation considered. These
PDE’s are the limit objects we consider to construct ‘-optimal strategies.

However, strictly speaking, the games we study are not di�erential games. While
the dynamics is deterministic, as in classical di�erential games, in our case the dynamics
is randomly chosen. In this sense the games we study are closer to discretizations of
di�erential games as in the simultaneous Fleming value [38], already studied in Chapter
3.

Another di�erence is that the relevant information for the players is the realized actions,
not the trajectory of the parameter, while in di�erential games with complete information
the relevant information is the state.

Finally, let us introduce the notation U := �(A), V := �(B).

8.3.3 Model A

Let us begin with the payo� evaluation of model A, as introduced in Section 8.2.1.
We recall some results on discretization of di�erential games. Later, we use the value

function of the corresponding di�erential game to characterize the limit of the sequence
of value functions V

S,� as Î�Î æ 0.

The limit object

Let us consider the di�erential game with dynamics (8.6) and payo�
⁄ 1

0
“(›[0, ›, a, b](s), a(s), b(s))ds. (8.7)

Let us consider the discrete game for the simultaneous Fleming value associated to �
as follows: we allow the players to choose their actions (possibly randomly) at the nodes
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of �. 1

Let W
F,�(s

k

, ›) denote the simultaneous Fleming value as defined in Chapter 3 with
respect to the partition ��. For all › œ �(�) consider the extension of W

F,�(·, ›) to
[0, 1] by linear interpolation. From the results of Souganidis [94], which have already been
described in Chapter 3, we have:

Proposition 8.3.2. Let W
F

be an accumulation point of the family {W
F,�}�. Then W

F

is the unique viscosity solution of

ˆw

ˆt
(t, ›) + H(›, Òw(t, ›)) = 0 (8.8)

with terminal condition

w(1, ›) = 0

where

H(›, p) := max
uœ�(A)

min
vœ�(B)

E
uv

Óe
Qa,b · ›, p

f
+ “(›, a, b)

Ô

= min
vœ�(B)

max
uœ�(A)

E
uv

Óe
Qa,b · ›, p

f
+ “(›, a, b)

Ô
.

Convergence to the limit object

Let V
S,�(s

k

, ›) denote the value of the game starting at s
k

œ �� and where the initial
law of the parameter is ›, that is:

V
S,�(s

k

, ›) = sup
‡œ�

inf
·œT

E
‡·

I +Œÿ

m=k

◊
m

“
m

J

= inf
·œT

sup
‡œ�

E
‡·

I +Œÿ

m=k

◊
m

“
m

J

.

Let us prove the following dynamic programming principle.

Proposition 8.3.3. We have that, for all (s
k

, ›) œ �� ◊ �(�) :

V
S,�(s

k

, ›) = max
uœU

min
vœV

E
u,v

Ó
◊

k

“(›, a, b) + V
S,�

1
s

k+1, exp
1
◊

k

Qa,b

2
· ›

2Ô
(8.9)

Proof. Let w(›) denote the right hand side of (8.9). We will prove first that V
S,�(s

k

, ›) Ø
w(›). Consider an optimal strategy for player 1 in w(›), that is, a strategy uú such that:

w(›) = min
vœV

E
u

ú
,v

Ó
◊

k

“(›, a, b) + V
S,�

1
s

k+1, exp
1
◊

k

Qa,b

2
· ›

2Ô
. (8.10)

Now let ‡+(a, b) denote an optimal strategy in the game starting at time s
k+1 after actions

(a, b) where played at time s
k

. Finally, let ‡ú = (uú, ‡+). Let · œ T denote a strategy of
player 2 and write · = (v, ·+) where ·+ œ T and v œ V . Thus,

1. Note that this discretization is not the same as in [39], where alternating moves of the players are

considered.
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E
‡

ú
·

I +Œÿ

m=k

◊
m

“
m

J

= E
u

ú
,v

Y
]

[◊
k

“
k

+ E
‡

+
,·

+

Y
]

[

+Œÿ

m=k+1
◊

m

“
m

| a, b

Z
^

\

Z
^

\

Ø w(›).

To prove that V
S,�(s

k

, ›) Æ w(›) let ‡ú denote an optimal strategy in V
S,�(s

k

, ›) and let
‡1 œ U denote its first component, that is, the strategy at date s

k

. Let vú denote a best
reply to ‡1 in (8.9). By playing vú, player 2 ensures that the payo� for player 1 is less
than w(›), hence the result follows.

From the arguments of Chapter 3, W
F,� satisfies the same recurrence formula as V

S,�.
Hence we have the following.

Proposition 8.3.4. The unique accumulation point of V
S,� is the unique viscosity solution

of (8.8).

Let us prove the convergence of V
S,� in a di�erent way, assuming that (8.8) has a

su�ciently regular solution. This helps us to produce ‘≠optimal strategies for the sequence
of discrete games.

Proposition 8.3.5. Assume that (8.8) has a solution V
S

such that:
i) For all t œ [0, 1], the function V

S

(t, ·) is continuously di�erentiable.
ii) There exists a partition �0 = {0 = r1 < r2, . . . , r

N

= 1} such that, for all
› œ �(�), V

S

(·, ›) is continuously di�erentiable in every interval (r
k

, r
k+1).

Then, the family {V
S,�}�, converge to V

S

as Î�Î æ 0, for all � refinement of �0.

Proof. Let � = {0 = s1 < s2, . . . , s
N

= 1} be a refinement of �0. Denote with (›ú
k

)
k

the
sequence of states in the game (as will be defined below), with ›ú

1 = ›.
Let –ú be the following strategy: at time s

k

, observe ›ú
k

and choose uú
k

such that

uú
k

œ argmax
uœU

;
min
vœV

Èf(›ú
k

, u, v), ÒV
S

(s
k

, ›ú
k

)Í
<

Let v̨ = (v1, v2, . . . , v
n

) be an arbitrary sequence of actions of player 2 and let ›ú
1 =

›, ›ú
2 , . . . ›ú

n+1 denote the trajectory induced by v̨ and –ú.

Let �V
k

:= VS(sk+1,›

ú
k+1)≠VS(sk,›

ú
k)

◊k
. From the dynamic programming equation (8.9),

and doing a first order expansion in Taylor series, we get that:

�V
k

= ˆV
S

ˆs
(s

k

, ›ú
k

) + E
u

ú
kvk

Óe
Qa,b · ›ú

k

, Ò
›

V
S

(s
k

, ›ú
k

)
f

+ “(›ú
k

, a, b)
Ô

+ o(◊
k

)

Ø ˆV
S

ˆs
(s

k

, ›ú
k

) + min
vœV

E
u

ú
kv

Óe
Qa,b · ›ú

k

, Ò
›

V
S

(s
k

, ›ú
k

)
f

+ “(›ú
k

, a, b)
Ô

+ o(◊
k

)

Note that
ˆV

S

ˆs
(s

k

, ›ú
k

) + min
vœV

E
u

ú
kv

Óe
Qa,b · ›ú

k

, Ò
›

V
S

(s
k

, ›ú
k

)
f

+ “(›ú
k

, a, b)
Ô

is equal to

ˆV
S

ˆs
(s

k

, ›ú
k

) + max
uœU

min
vœV

E
uv

Óe
Qa,b · ›ú

k

, Ò
›

V
S

(s
k

, ›ú
k

)
f

+ “(›ú
k

, a, b)
Ô

= 0.
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Integrating the above equation from t1 to 1 we obtain:

Nÿ

k=1
E

u

ú
k,vk◊

k

“(›ú
k

, a, b) Ø V
S

(s1, ›ú
1) + o(Î�Î).

Since v̨ is arbitrary, this implies that the payo� of strategy –ú is ‘ optimal, where ‘ =
‘(Î�Î).

8.3.4 Model B
Let us consider a slightly modified version of model B. Instead of the payo� “

fl,j,”

defined in Section 8.2.2, we divide by the normalization constant fl. Denote its value by
V

S,fl,”

.

The di�erential game

To prove the convergence of V
S,fl,”

as ” æ 0, we proceed as before and study an
associated di�erential game. The dynamics of the auxiliary di�erential game is given
again by (8.6), but the payo� is now

⁄ Œ

0
e≠fls“(›[0, ›, a, b](s), a(s), b(s))ds. (8.11)

Di�erential games with discounted payo�s are treated extensively by Bardi and Capuzzo-
Dolcetta [9, Chapter VIII]. Again, we point out that our framework slightly di�ers from
Bardi and Capuzzo-Dolcetta [9, Theorem 3.19, Chapter VIII] in that the dynamics is ran-
domly chosen, albeit deterministic. This di�erence is, however, conceptual, and becomes
irrelevant as the limit equation (8.12) is the same in both cases.

Let W
F,fl,”

denote the value of the di�erential game where the players play piecewise
constant actions (randomly chosen) in the nodes of �

”

, as in the simultaneous Fleming
value in Chapter 3, with the dynamics and the payo� described by (8.6) and (8.11) re-
spectively. Again, the following theorem follows from Souganidis’ results as described in
Chapter 3.

Theorem 8.3.6. The accumulation point of {W
F,fl,”

}
”>0 is the unique viscosity solution

of

flw(›) ≠ H(›, Òw(›)) = 0 (8.12)

where

H(›, p) := max
uœ�(A)

min
vœ�(B)

E
uv

Óe
Qa,b · ›, p

f
+ “(›, a, b)

Ô

= min
vœ�(B)

max
uœ�(A)

E
uv

Óe
Qa,b · ›, p

f
+ “(›, a, b)

Ô
.

To prove the convergence of V
S,fl,”

it su�ces as before to show that both V
S,fl,”

and
W

F,fl,”

satisfy the same dynamic programming equation.
This gives us a candidate for a limit object, namely, a su�ciently regular solution of

(8.12). We omit the proof for the moment, since in the next Section we show, in a more
general case, how to use the limit object to derive ‘-optimal strategies.

We will derive later in Section 8.4.2 a similar equation to (8.12).
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8.3.5 Model C

Let us describe the general case, with Ÿ as in Section 8.2.3. We obtain the game with
payo�

Œÿ

j=1
“

Ÿ,j,”

where

“
Ÿ,j,”

= ”Ÿ(t”

j

)“(Ê
j

, a
j

, b
j

).

Again it follows from Sion’s minmax theorem that this game has a value, denoted by
V

S,Ÿ,”

.
Moreover, from similar arguments as in Chapter 3, the value function satisfies the

following dynamic programming principle.

Proposition 8.3.7. The value function V
S,Ÿ,”

satisfies:

V
S,Ÿ,”

(t”

j

, ›) = val
uv

E
uv

Ó
”Ÿ(t”

j

)“(›, a, b) + V
S,Ÿ,”

1
t”

j+1, exp(”Qa,b · ›)
2Ô

. (8.13)

Following the ideas of the preceding Sections, one would expect to associate to V
S,Ÿ,”

the
corresponding simultaneous Fleming value, which in this case would be the simultaneous
Fleming value of a game with dynamics (8.6) and payo�:

⁄ +Œ

0
Ÿ(s)“(›[0, ›, a, b](s), a(s), b(s))ds.

The reason we do not proceed in the same way relies on the limit equation. Assuming
that V

S,Ÿ,”

is regular enough and performing a first order Taylor expansion in (8.13), we
deduce heuristically the following limit equation, for w : R+ ◊ › æ R+:

ˆw

ˆt
+ val

uv

E
uv

Ó
Ÿ(t)“(›, a, b) +

e
Ò

›

w, Qa,b · ›
fÔ

= 0 (8.14)

The problem is that Souganidis’ approach relies on the uniqueness of viscosity solutions of
the limit PDE. For the moment we do not know under which conditions would this hold.

We provide an alternative proof of convergence of the family V
S,Ÿ,”

, assuming (8.14)
satisfies suitable regularity assumptions.

Theorem 8.3.8. Assume that (8.14) has a C2 solution V
S,Ÿ

such that, for all (t, ›) œ
[0, 1] ◊ �(�) :

ÎD2V
S,Ÿ

(t, ›)Î Æ Ÿ(t). (8.15)

Then lim
”æ0 V

S,Ÿ,”

= V
S,Ÿ

.

Proof. For a couple (t, ›) œ R+ ◊ �(�) denote by x
t

an optimal stationary strategy for
player 1 in the local game with payo�:

Ÿ(t)“(›, a, b) +
e
Ò

›

V
S,Ÿ

(t, ›), Qa,b · ›
f

.

Denote for simplicity x
j

:= x
t

”
j

and Ÿ
j

:= Ÿ(t”

j

). We will show that the strategy x :=
(x

j

)
jœN is ‘-optimal. For this, let · := (·1, ·2, . . .) be an arbitrary strategy of player 2. Let

us introduce:
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Y
j

:= E
xj ,·j

Ó
”Ÿ

j

“
j

+ V
S,Ÿ

1
t”

j+1, exp(”Qa,b) · ›
2

| H
j

Ô
.

First, observe that V
S,Ÿ

1
t”

j+1, exp(”Qa,b) · ›
2

is, by Taylor expansion and (8.15), greater
or equal than:

V
S,Ÿ

(t”

j

, ›) + ”
ˆV

S,Ÿ

ˆt
(t”

j

, ›) + ”
e
Ò

›

V
S,Ÿ

(t”

j

, ›), Qa,b · ›
f

+ Ÿ
j

”2/2

Using the optimality of x
j

gives:

Y
j

Ø V
S,Ÿ

(t”

j

, ›) ≠ Ÿ
j

”2/2

Finally, let P
j

:= E
xj ,·j {”Ÿ

j

“
j

| H
j

} denote the conditional expectation of the stage payo�.
We have that

P
j

Ø V
S,Ÿ

(t”

j

, ›) ≠ E
xj ,·j

Ó
V

S,Ÿ

1
t”

j+1, exp(”Qa,b) · ›
2

|H
j

Ô
≠ Ÿ

j

”2/2

Summing over j, we obtain on the left hand side the payo� of strategy x, while on the
right hand side, after cancellations, and since

q
j

Ÿ
j

” = 1, we obtain ”/2 as error term.

If we do the change of variable w(t, ›) ‘æ e≠fltV (›) in (8.14) we recover an equation of
the form (8.12).

Let us point out here an interesting feature of the above models: in the absence of
information about the state, we can represent a dynamic, random, discrete game with an
unknown payo�-relevant parameter into a dynamic game in continuous time where the
dynamics is deterministic but randomly chosen.

8.4 Standard signalling

Let us assume in this Section that players have standard signalling, that is, they
observe the state and each others’ actions. We use here the notation from Section 8.2.

Recall that in Section 8.3, the players had no information of the parameter, but they
constructed an auxiliary state function using the observed actions. For the results stated
here, the parameter is also available, so that the parameter itself becomes the natural
state variable.

Stochastic games with standard signalling have been introduced by Shapley [87]. The
di�erence with our model is that in our model the dynamics of the state is in continuous
time, and that the transition probability depends on the duration of the stage.

The model we describe in this Section is inspired from the model of Neyman [78].
The di�erence is conceptual: while Neyman defines a notion of convergence for a family
of games, we study instead a Fleming discretization of an underlying continuous time
process. The di�erence is irrelevant in practice and we recover similar results as those
obtained by Neyman, with similar techniques.

8.4.1 Model A

Let us introduce the value function:
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V
C,�(s

k

, Ê) := sup
‡œ�

inf
·œT

Eq

‡·

I Œÿ

m=k

◊
m

“
m

J

= inf
·œT

sup
‡œ�

Eq

‡·

I Œÿ

m=k

◊
m

“
m

J

.

We consider its extension by linear interpolation to [0, 1] ◊ �, for which we keep the
same notation.

The following dynamic programming principle holds (see Sorin [92, Chapter 5]):

V
C,�(s

k

, Ê) = val
u,v

Eq

u,v

Y
]

[◊
k

“(Ê, a, b) +
ÿ

Ê

Õœ�
V

C,�(s
k+1, ÊÕ) exp(◊

k

Qa,b)(Ê, ÊÕ)

Z
^

\ .

Heuristically, if we do a first order expansion of the exponential term above and divide
by ◊

k

we obtain an equation of the form:

dz

ds
+ val

u,v

Eq

u,v

Y
]

[“(Ê, a, b) +
ÿ

Ê

Õœ�
z(s, ÊÕ)q(Ê, ÊÕ, a, b)

Z
^

\ = 0. (8.16)

We are ready to establish our first asymptotic result in this Section.
Note here that the derivative of the limit object depends only on the first variable.

Theorem 8.4.1. If (8.16) has a unique C1 solution, denoted V
C

, then lim|�|æ0 V
C,� = V

C

.

Proof. Let x
k

(Ê) denote an optimal strategy in the game with stage payo�

“(Ê, a, b) +
ÿ

Ê

Õœ�
V (s

k

, ÊÕ)q(Ê, ÊÕ, a, b).

Denote by x
k

= (x
k

(Ê))
Êœ�. We will prove that the strategy x := (x

k

)
kœN is ‘-optimal.

Let · = (·1, ·2, . . .) denote an arbitrary strategy of player 2.
Introduce

Y
k

:= Eq

xk,·k

Y
]

[◊
k

“(Ê, a, b) +
ÿ

Ê

Õœ�
V

C

(s
k+1, ÊÕ) exp(◊

k

Qa,b)(Ê, ÊÕ) | H
k

Z
^

\ .

First observe that

A :=
ÿ

Ê

Õœ�
V

C

(s
k+1, ÊÕ) exp(◊

k

Qa,b)(Ê, ÊÕ) =
ÿ

Ê

Õœ�
V

C

(s
k+1, ÊÕ)◊

k

q(Ê, ÊÕ, a, b) + V
C

(s
k+1, Ê)

Doing a first order approximation gives

V
C

(s
k+1, ÊÕ) = V

C

(s
k

, ÊÕ) + ◊
k

dV
C

ds
(s

k

, ÊÕ) + O(◊2
k

)

Altogether we get that A equals:

ÿ

Ê

Õœ�
◊

k

V
C

(s
k

, ÊÕ)q(Ê, ÊÕ, a, b)+V
C

(s
k

, Ê)+◊
k

dV
C

ds
(s

k

, Ê)+
ÿ

Ê

Õœ�
◊2

k

dV
C

ds
(s

k

, ÊÕ)q(Ê, ÊÕ, a, b)+O(◊2
k

)

Since the evaluation is strictly decreasing, dVC
ds

is negative.
Taking the conditional expectation and using the optimality of x

k

gives:

Y
k

Ø V
C

(s
k

, Ê) ≠ 2◊2
k

Î“Î · ÎqÎ
We conclude as in the proof of Theorem 8.3.8.
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The equation (8.16) may not have a global solution, but we can apply this result along
the refinements of a partition where the solution exists locally, as in Proposition 8.3.5.

8.4.2 Model B
When a discounted payo� is considered (model B), the value function of the finite

games is stationary, hence in the limit equation no longer appears a derivative, as in
Theorem 8.4.1. This allows us to use the limit object to construct strategies without any
regularity assumptions.

Moreover, in the finite case (states and actions) we are able to establish asymptotic
properties in two time scales: patience of the players and duration of the stage.

For this, we follow Neyman [78] to recover a characterization similar to 8.3.2, in terms
of the limit equation:

flf(Ê) = val
u,v

E
uv

Ó
“(Ê, a, b) +

ÿ
Ê

Õœ� q(Ê, ÊÕ, a, b)f(ÊÕ)
Ô

. (8.17)

Proposition 8.4.2. (Remark 8 in [78]). The equation (8.17) has a unique solution,
denoted V

C,fl

.

Proof. Observe that any solution of (8.17) is a fixed point of

�f(Ê) := 1
ÎqÎ + fl

val
u,v

E
uv

Ó
“(Ê, a, b) +

ÿ
Ê

Õœ� q(Ê, ÊÕ, a, b)f(ÊÕ) + ÎqÎf(Ê)
Ô

.

Note that �(f + c1) = �f + c ÎqÎ
ÎqÎ+fl

, and that � is monotonic. Consequently, � is a
ÎqÎ

ÎqÎ+fl

-contraction and has a unique fixed point V
C,fl

.

Let V
C,fl,”

denote the value function of the game with unnormalized payo�
ÿ

mØ0
e≠fl””“

m

.

This payo� is slightly di�erent from (8.2). For simplicity, we drop o� the normalization
constant fl and consider a Riemann sum instead of the integral. Denote this game by �”

fl”

.
The proof of the following result is directly adapted from Neyman[78, Theorem 1]. The

di�erence between our approach and his is conceptual: Neyman studies conditions for a
family of discrete time stochastic games to converge, while we study the discretization of
an underlying stochastic game. However, the methods are very similar.

Theorem 8.4.3. (Theorem 1 in [78]). The sequence (V
C,fl,”

)
”>0 converges to V

C,fl

.

Proof. Let x(fl) œ �(A)� be an optimal stationary strategy in (8.17). Consider the
stochastic game �”

fl”

with initial state Ê. Let us prove that, for any strategy · = (·1, ·2, . . .)
of player 2, player 1 guarantees V

fl

up to a vanishing error.
Let Y

m

:= E
Ó

“
”

(Ê
m

, x(fl)
m

, ·
m

) + e≠fl”V
C,fl

(Ê
m+1) | h

m

Ô
. Then

Y
m

= “
”

(Ê
m

, x(fl)
m

, ·
m

) + e≠fl”

ÿ

Ê

Õœ�
Q

”

(ÊÕ, Ê
m

, x(fl)
m

, ·
m

)V
C,fl

(ÊÕ)

= “
”

(Ê
m

, x(fl)
m

, ·
m

) + e≠fl”

ÿ

Ê

Õœ�
”q(ÊÕ, Ê

m

, x(fl)
m

, ·
m

)V
fl

(ÊÕ) + e≠fl”V
C,fl

(Ê
m

)

Ø V
C,fl

(Ê
m

) ≠ fl”2 ÿ

Ê

Õœ�
q(ÊÕ, Ê

m

, x(fl)
m

, ·
m

)V
C,fl

(ÊÕ)

Ø V
C,fl

(Ê
m

) ≠ 2”2ÎqÎÎ“Î.
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Hence,

Ee≠fl”m“
”

(Ê
m

, x(fl)
m

, ·
m

) Ø Ee≠fl”mV
C,fl

(Ê
m

) ≠
≠ Ee≠fl”(m+1)V

C,fl

(Ê
m+1)

≠ 2e≠fl”m”2ÎqÎÎ“Î.

The result now follows summing over m. Thus, V
C,fl,”

(Ê) Ø V
C,fl

(Ê)≠ 2ÎqÎÎ“Î
fl

”, and x(fl) is
asymptotically optimal in the stochastic game with discount ⁄

”

, payo� “
”

and transition
Q

”

, as ” æ 0. A dual result holds for player 2, so that

ÎV
C,fl,”

≠ V
C,fl

Î Æ 2ÎqÎÎ“Î
fl

”. (8.18)

Note here that, thanks to the stationarity, we do not require any regularity on the
limit object, unlike Theorem 8.4.1, but the crucial idea is the same: derive approximately
optimal strategies from the limit object to obtain convergence of the sequence of value
functions.

Asymptotic results in two scales

As noted before, the fact that we have two scales in our model gives us two kind of
asymptotic results: with respect to the duration of the stage and with respect to the
discount factor.

The asymptotic results in the stationary case with perfect information can be summa-
rized by the following diagram:

V
C,fl,”

⁄=fl”, ”æ0≠≠≠≠≠≠≠æ V
C,fl

⁄=fl”æ0
`̀
˘

`̀
˘flæ0

v”

C

”æ0≠≠≠≠æ v
C

We have already defined V
C,fl,”

and V
C,fl

. The quantity v”

C

corresponds to the asymp-
totic value of a classical, finite stochastic game in the sense of Shapley [87]. The existence
of the asymptotic value is ensured by Bewley and Kohlberg [13].
Proposition 8.4.4. (Neyman [78, Theorem 2] The sequence flV

C,fl

converges uniformly,
as fl æ 0.
Proof. Let x(fl) œ �(A)� and y(fl) œ �(B)� be optimal in (8.17), which defines V

C,fl

.
Then, (fl, x(fl), y(fl), V

C,fl

) is a semialgebraic set, because it is defined by finitely many poly-
nomial equations. By Tarski-Seidenberg elimination theorem, (Benedetti and Risler,[11,
Theorem 2.21, p.54]) fl ‘æ V

fl

is a semialgebraic function. Clearly, flV
C,fl,”

Æ Î“Î, for all ”
and fl. Consequently, fl ‘æ flV

C,fl

is a bounded, semialgebraic function. The existence of
v := lim

flæ0 flV
C,fl

follows.

Finally, it follows from (8.18) that:
Corollary 8.4.5. The sequence flV

C,fl,”

converges, as ” æ 0, uniformly in fl.
Note that we used here the fact that �, A, B are finite to obtain convergence. It

remains an open question whether similar "diagrams", i.e. study of asymptotics in duration
and patience, can be established in the other models discussed here, although this seems
unlikely since in the other models the state space is no longer finite .
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8.4.3 Model C
In this case, the value function satisfies the following dynamic programming principle.

Proposition 8.4.6. The value function V
C,Ÿ,”

satisfies:

V
C,Ÿ,”

(t”

j

, Ê) = val
uv

E
uv

Y
]

[”Ÿ
j

“
j

+
ÿ

Ê

Õœ�
V

C,Ÿ,”

(t”

j+1, ÊÕ) · exp(”Qa,b)(Ê, ÊÕ)

Z
^

\ .

We can deduce heuristically, by Taylor expansion with respect to time, that the limit
equation should be a solution of

dw

dt
(t, Ê) = val

uv

E
uv

Y
]

[Ÿ(t)“(Ê, a, b) +
ÿ

Ê

Õœ�
w(t, ÊÕ)q(Ê, ÊÕ, a, b)

Z
^

\ . (8.19)

The proof of the following result follows in a similar way as the proof of Theorem 8.4.1.

Theorem 8.4.7. Assume (8.19) has a C1 solution. Then lim
”æ0 V

C,Ÿ,”

= V
C,Ÿ

.

Proof. Let x
t

denote an optimal strategy for player 1 in the local game

Ÿ(t)“(Ê, a, b) +
ÿ

Ê

Õœ�
V

C,Ÿ

(t, ÊÕ)q(Ê, ÊÕ, a, b)

Denote by x
j

:= x
fl(t”

j ) and Ÿ
j

:= Ÿ(t”

j

) for simplicity. We will prove that the strategy
x := (x

j

)
jœN is ‘-optimal.

To see this, let · := (·1, ·2, . . .) denote an arbitrary strategy of player 2. Let us
introduce:

Y
j

:= E
xj ,·j

Y
]

[”Ÿ
j

“(Ê
j

, a, b) +
ÿ

Ê

Õœ�
V

C,Ÿ

(t”

j+1, ÊÕ) · exp(”Qa,b)(Ê
j

, ÊÕ) | H
j

Z
^

\ .

Now observe that

V
C,Ÿ

(t”

j+1, ÊÕ) = V
C,Ÿ

(t”

j

, ÊÕ) + ”
dV

C,Ÿ

dt
(tÕ, ÊÕ)

for some tÕ œ [t”

j

, t”

j+1]. From (8.19) we deduce

dV
C,Ÿ

dt
(tÕ, ÊÕ) Æ Î“Î · Ÿ(tÕ) · (1 + ÎqÎ)

We also have

exp(”Qa,b) = I + ”Qa,b + e1(”)

where e1(”) Æ ÎqÎ”2/2.
We get that

q
Ê

Õœ� V
C,Ÿ

(t”

j+1, ÊÕ) · exp(”Qa,b)(Ê
j

, ÊÕ) equals

q
Ê

Õœ�

;
”V

C,Ÿ

(t”

j

, ÊÕ)q(Ê
j

, ÊÕ, a, b) + ”2 dV
C,Ÿ

dt
(tÕ, ÊÕ)q(Ê

j

, ÊÕ, a, b) + V
C,Ÿ

(t”

j

, ÊÕ)e1(”)
<

+

+ V
C,Ÿ

(t”

j

, Ê
j

) + ”
dV

C,Ÿ

dt
(t”

j

, Ê
j

) + o(”2)
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From the definition of x
j

and using the upper bounds we obtain that there exists a constant
C, independent of ”, such that:

E
xj ,·j {Ÿ

j

”“(Ê
j

, a, b) | H
j

} Ø V
C,Ÿ

(t”

j

, Ê
j

) ≠ C · ”2Ÿ
j

.

The result now follows after summing over j, as in Theorem 8.3.8.

8.5 Some concluding remarks
Let us conclude this Chapter by making some remarks on two related models and

possible extensions. We describe first the game studied by Cardaliaguet and Quincampoix
[25], whose information structure is similar as the model in Section 8.3. Later, we make
some remarks on the asymmetric information case and the possibility of extending the
variational approach of Cardaliaguet, Laraki and Sorin [23] to that framework.

8.5.1 A di�erential game with blind players

Let us begin with the game studied by Cardaliaguet and Quincampoix in [25].
Let (t1, x1) œ [0, 1] ◊ Rn. For (u, v) œ U(t1) ◊ V(t1) fixed, consider the di�erential

equation
x(t1) = x1, ẋ(t) = f(x(t), u(t), v(t)) a.e. on [t1, 1]. (8.20)

Assume that the function f is jointly continuous and bounded and that there exists
c > 0 such that for all (u, v) œ U ◊ V and x, y œ Rn:

Îf(x, u, v) ≠ f(y, u, v)Î Æ cÎx ≠ yÎ.

In this case, it follows from Carathéodory’s theorem, [31, Chapter 2] that the above
equation has a unique solution, which we denote by x[t1, x1, u, v], in the following extended
sense: for any t œ [t1, 1],

x[t1, x1, u, v](t) := x1 +
⁄

t

t1
f(x[t1, x1, u, v](s), u(s), v(s))ds.

In this model, x[t1, x1, u, v](t) plays the role of the randomly evolving parameter in
the basic model in Section 8.1.1.

Finally, consider a Lipschitz continuous terminal payo� g : Rn æ [0, 1]. The goal of the
game is for player 1 to maximize the quantity g(x[t1, x1, u, v](1)), which player 2 wants
to minimize.

Whenever x1 is known by both players, this game is well understood, see for instance
Evans and Souganidis [36]. The problem studied by Cardaliaguet and Quincampoix [25]
is the existence of the value when x1 is not known, but chosen randomly according to a
commonly known probability distribution µ1 œ M(Rn), where M(Rn) denotes the set of
Borel probability measures with finite second moment. The players observe each others’
actions, but receive no further information on the parameter.

Note that in this model the parameter follows a deterministic trajectory and evolves
on a continuous state space, while in Section 8.3 the parameter evolves randomly and
takes only finitely many values. Another important di�erence is that in Section 8.3 the
interaction happens at discrete times, so that their actions are piecewise constant, while
in the present model the players interact continuously. Note also that here the state space
is no longer compact, which leads to important technical di�culties.
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For a pair of NAD strategies (–, —) œ A
d

◊ B
d

and t, s œ [0, 1], x œ Rn with t < s,
we denote by x[t, x, –, —](·) the trajectory x[t, x, u, v](·) associated to the corresponding
couple of controls (u, v) given by Lemma 2.4 in [17] and was recalled in the Introduction
of Chapter 3

As in Section 8.3, the natural state space to consider is the state of probability measures
over the set of values of the parameter.

Let us introduce the value functions of this game:
Definition 8.5.1. For (t, µ) œ [0, 1] ◊ M(Rn):

i) The maxmin is defined by

V≠(t, µ) := sup
–œAd

inf
—œBd

⁄

Rn
g(x[t, x, –, —](1))dµ(x).

ii) The minmax is defined by

V+(t, µ) := inf
—œBd

sup
–œAd

⁄

Rn
g(x[t, x, –, —](1))dµ(x).

While the auxiliary state space in Section 8.3 is a finite dimensional polyhedron, the
state space in the model described here is not even finite dimensional nor normed. It has
a suitable metric, which we define below.
Definition 8.5.2. Let µ, ‹ œ M. The Wasserstein distance d(µ, ‹) is defined by:

d(µ, ‹) := inf
÷

I3⁄

R2n
|x ≠ y|2d÷(x, y)

4 1
2
J

where the infimum is taken over the set of all probability measures in R2n that satisfy:

fi1#÷ = µ and fi2#÷ = ‹

where fi1, fi2 are the projections over the first and second coordinate, respectively, and
fi1#÷ denotes the push-forward of ÷ by fi1, i.e., the measure in Rn that satisfies

fi1#÷(A) = ÷(fi≠1
1 (A)), ’A µ Rn measurable

An optimal measure that reaches the infimum is called an optimal plan from µ to ‹.
The Wasserstein distance enjoys two properties: first, it is the metric in which the value

functions defined above are Lipschitz, see Cardaliaguet and Quincampoix [25, Lemma
3 and Proposition 1]. Second, the optimal plans allow to define the appropriate sub
and super di�erentials, which in turn are needed to introduce a suitable definition of
viscosity solutions in the infinite dimensional space M, see Cardaliaguet [25, Lemma 4
and Definition 1]. Note that these complications do not arise in the model described in
Section 8.3.

Let us suppose that the support of µ1 is the compact set K1 µ Rn and that for all
(u, v), the corresponding dynamics defined by (8.20) leaves K1 invariant, i.e. is such that,
for all t Ø t1:

x1 œ K1 =∆ x[t1, x1, u, v](t) œ K1.

Now, if we consider a finite discretization of K1 with diameter h > 0, denoted K1,h

, then
we have that the game with finite state space K1,h

as in Section 8.3 is an "approxima-
tion" of the game of Cardaliaguet and Quincampoix. Thus, we could, at least informally,
approximate a game in the Wasserstein space by a sequence of di�erential games.

We leave this question unanswered, but let us refer to Kloeckner [60] and the references
therein which could help to establish such approximation.
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8.5.2 Private information, privately controlled parameter

We describe in this Section a generalization of the model of Aumann-Maschler [7] of
repeated games with incomplete information on both sides. We consider a situation were
each player observes and controls the evolution of its own continuous time Markov chain
and the payo� depends on both. The model described here is a generalization of the
Aumann-Maschler model since here the private information of each player changes, while
in their model it remains fixed.

Several dynamic extensions of the classical model of Aumann-Maschler of incomplete
information games have been proposed in the literature. A first extension is due to Renault
[82], who studies a game where one player observes a Markov chain in discrete time while
his adversary observes the actions only. This has been later extended by Gensbittel and
Renault [46] to the case when each player observes his own Markov chain and the actions
of the other player only. However, both papers consider discrete time games only, with no
underlying continuous time dynamics.

A di�erent information structure is considered in Gensbittel [45]. In that paper, the
players receive di�erent information about an exogenous continuous time process with two
coordinates: player 1 observes both coordinates while player 2 observes only the second
coordinate. As in [26], the limit value when the stage duration goes to zero is studied and
di�erent characterization results obtained.

The model described in this Section is borrowed from Cardaliaguet, Rainer, Rosenberg
and Vieille [26].

Let L, M denote two finite sets such that � = L ◊ M . Let q
L

: L ◊ L ◊ A æ R and
q

M

: M ◊ M ◊ B æ R denote two transition rate functions with associated generators
Qa

L

, Qb

M

given by:

Qa

L

:=
!
q

L

(¸, ¸Õ, a)
"

¸,¸

Õ and Qb

M

:=
!
q

M

(m, mÕ, b)
"

m,m

Õ .

A couple (¸1, m1) œ L ◊ M is chosen with the commonly known law › ¢ ÷ œ �(L) ◊
�(M). Player 1 observes the value of ¸1 and player 2 of m1 and choose their actions a1, b1.

The game is played as follows: at stage k Ø 2, player 1 receives a signal r
k

= {¸
k

, b
k≠1}

and player 2 receives a signal s
k

= {m
k

, a
k≠1}. The players choose their actions, a

k

, b
k

re-
spectively, which depend on the information they receive. Once the actions are chosen, the
parameters ¸

k

and m
k

follow the Markov chain with generators Qak
L

and Qbk
M

respectively,
on the interval [t

k

, t
k+1] and the situation is repeated. Hence this model is a particular

case of the general model introduced in Section 8.1.1.
Recall from Section 8.1.2 that the history for player 1, denoted H1 is the set of sequences

of the form (r1, a1, r2, a2, . . .), with a similar definition for player 2. A behavioural
strategy for player 1 is a function ‡ : H1 æ �(A)L. Behavioural strategies for player 2
are defined in a completely analogous way. Note that the strategies here depend on the
private information of the players.

A strategy µ of player 1 is non-revealing if it is of the form µ : H1 æ �(A). Similarly,
a non-revealing strategy of player 2 is a function ‹ : H2 æ �(B). That is, non-revealing
strategies are strategies in which players ignore their information about the parameter.

The natural state space in this setting is the law of the unobserved parameter. The
players can compute this law as follows:

Player 2 can update his beliefs on player 1’s parameter conditional on player 1’s actions
if he knows how player 1 generated his actions. More precisely, assume player 2’s belief
is › œ �(L) and that he knows that player 1 used the strategy x œ �(A)L. If player 2
observes the action a, his conditional belief is given by:
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›̂(x, a) :=
3

›
r

x
r

(a)
x(›)(a)

4

rœL

where
x(›)(a) :=

ÿ

rœL

›
r

x
r

(a).

The computation for player 2 is completely analogous: let y œ �(B)M and ÷ œ �(M).
The conditional distribution of player 2’s parameter from player 1’s point of view, when
strategy y is used and the initial distribution is ÷ is:

÷̂(y, b) :=
3

÷
r

y
r

(b)
y(÷)(b)

4

rœM

where
y(÷)(b) :=

ÿ

rœM

÷
r

y
r

(b).

At time k + 1, the transition law of the variable ¸
k+1 is :

›ak
k+1 := exp (fi

k

Qak
L

) · ›̂
k

(x, a
k

). (8.21)

Similarly, the transition law of the variable m
k+1 is:

÷bk
k+1 := exp

1
fi

k

Qbk
M

2
· ÷̂

k

(y, b
k

). (8.22)

To obtain an auxiliary game with a recursive structure as in the general model of Mertens,
Sorin and Zamir [75, Section IV] recalled in the Introduction of this thesis, we consider
as state variable the belief of each player on its unobserved parameter. In this case, the
computation of the state variable is very di�erent from the game with no information
on the parameter. In particular, in this auxiliary game, each player needs to know the
strategy of his adversary to calculate the law of his adversary’s parameter.

Once the auxiliary state variables and the dynamics of the game have been specified,
one can define the corresponding payo�s as in model A, B, C and their value functions.

Let us describe a possible extension of the variational approach when the payo� is
evaluated as in model A. The crucial di�culty relies on the comparison principle.

The case of model B has been treated by Cardaliaguet, Rainer, Rosenberg and Vieille
[26]. Their main results include the existence and characterization of the asymptotic value
as ” æ 0 as the unique viscosity solution of a limit PDE, with a modified notion of viscosity
solutions. In the case of only one uninformed player, a di�erent characterization of the
asymptotic value is obtained as a martingale maximization problem.

8.5.3 Model A

As in Section 8.1.1, let � denote a decreasing evaluation. The �-evaluation of the
payo� associated to a history h = {¸1, m1, a1, b1, ¸2, m2, a2, b2, . . .} is

J
A,�(h) := E

I Œÿ

k=1
◊

k

“ ((¸
k

, m
k

), a
k

, b
k

)
J

where the expectation is taken on each interval [s
k

, s
k+1) with respect to the probability

induced by the corresponding generators.
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Let �
A,�(s

k

, ›, ÷) denote the game starting at s
k

and V
A,�(s

k

, ›, ÷) denote its value,
i.e.,

V
A,�(s

k

, ›, ÷) := max
‡œ�

min
·œT

E
‡·

I Œÿ

r=k

◊
r

“ ((¸
r

, m
r

), a
r

, b
r

)
J

:= min
·œT

max
‡œ�

E
‡·

I Œÿ

r=k

◊
r

“ ((¸
r

, m
r

), a
r

, b
r

)
J

.

The value of this game exists by Sion’s minmax theorem.
We study this game directly as a game played on the nodes of a partition of [0, 1].

First let us collect some properties of the value function in the next proposition.

Proposition 8.5.3. Let (s
k

, ›, ÷) œ �� ◊�(L)◊�(M). The value function V
A,�(s

k

, ›, ‹)
satisfies the following properties:

a) V
A,�(s

k

, ·, ‹) is concave.
b) V

A,�(s
k

, ›, ·) is convex.
c) The following recursive formula holds:

V
A,�(s

k

, ›, ÷) = max
xœ�(A)L

min
yœ�(B)M

E
xy

Ó
◊

k

“(› ¢ ÷, a, b) + V
A,�(s

k+1, ›a

k

, ÷b

k

)
Ô

= min
yœ�(B)M

max
xœ�(A)L

E
xy

Ó
◊

k

“(› ¢ ÷, a, b) + V
A,�(s

k+1, ›a

k

, ÷b

k

)
Ô

with ›a

k

:= exp (◊
k

Qa

L

) · ›̂(x, a) and ÷b

k

:= exp
1
◊

k

Qb

M

2
· ÷̂(y, b).

d) Let V
A,� denote the linear extension to R+ of the above value functions. The

family {V
A,�}� is uniformly Lipschitz.

Proof. Let us do the proof of Property a), since the proof of Property b) is completely
analogous. For this, we follow Sorin [92, Lemma 2.2]. Let › := –›1 + (1 ≠ ›2), where
›1, ›2 œ �(L) and – œ [0, 1]. Now let us consider two auxiliary games, with an extra stage.
In the first game, i œ {1, 2} is chosen with probability (–, 1 ≠ –), player 2 is informed of i
and then the game �

A,�(s
k

, ›
i

, ÷) is played. In the second game, player 2 is not informed.
Note that the knowledge of i is irrelevant for player 1, since he knows the parameter ¸1.
The first situation is better for player 2. Since the first game is equivalent to playing
�

A,�(s
k

, ›1, ÷) with probability – and �
A,�(t

k

, ›2, ÷) with probability 1 ≠ –, then:

–V
A,�(s

k

, ›1, ÷) + (1 ≠ –)V
A,�(s

k

, ›2, ÷) Æ V
A,�(s

k

, ›, ÷).

Property c) follows from similar arguments as in Sorin [92, Proposition 4.21].
For Property d), let us prove first the Lipschitz continuity of V

A,�(s
k

, ·, ·). For a couple
of behavioural strategies (‡, ·) let

J
A,�(‡, ·, s

k

, ›, ÷) := E
‡·

I Œÿ

r=k

◊
r

“ ((¸
r

, m
r

), a
r

, b
r

)
J

.

If (›1, ÷1) œ �(L) ◊ �(M) and (›2, ÷2) œ �(L) ◊ �(M) denote two couples of beliefs of
each player at time s

¸

and for i = 1, 2 (›a

i

, ÷b

i

) œ �(L) ◊ �(M) denote the beliefs at time
s

¸+1 after observing actions (a, b) œ A ◊ B, then, it follows from (8.21) and (8.22) that:

Î(›a

1 , ÷b

1) ≠ (›a

2 , ÷b

2)Î Æ exp (◊
¸

ÎqÎ) · Î(›1, ÷1) ≠ (›2, ÷2)Î.
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It follows that, if J
i

:= J
A,�(‡, ·, s

k

, ›
i

, ÷
i

) for simplicity, we obtain:

|J1 ≠ J2| Æ
Œÿ

r=k

◊
r

exp (◊
¸

ÎqÎ) Î“Î · Î(›1, ÷1) ≠ (›2, ÷2)Î (8.23)

Æ
Œÿ

r=k

◊
r

· (1 + ◊
¸

ÎqÎ)Î“Î · Î(›1, ÷1) ≠ (›2, ÷2)Î (8.24)

Æ (1 + ÎqÎ) · Î“Î · Î(›1, ÷1) ≠ (›2, ÷2)Î. (8.25)

The Lipschitz continuity follows from the recursive formula in Property c) and the Lipschitz
continuity of V

A,�(s
k

, ·, ·).
From Property d) and Arzelà-Ascoli’s theorem, the set of accumulation points of

{V
A,�}� is non-empty. Finally, let us introduce the non-revealing game. This is the

game where players use the non-revealing strategies introduced above. Since this is a par-
ticular case of the game studied in Section 8.3.3, we know its value exists and is denoted
by U�. The value of the non-revealing game satisfies:

U�(t
k

, ›, ‹) = max
xœ�(A)

min
yœ�(B)

E
xy

Ó
◊

k

“(› ¢ ÷, a, b) + U�(t
k+1, ›a

k

, ÷b

k

)
Ô

= min
yœ�(B)

max
xœ�(A)

E
xy

Ó
◊

k

“(› ¢ ÷, a, b) + U�(t
k+1, ›a

k

, ÷b

k

)
Ô

As a straightforward consequence of Proposition 8.3.2, we have:

Corollary 8.5.4. The family {U�}� has an accumulation point which is the unique vis-
cosity solution of

ˆw

ˆt
(t, ›, ÷) + Hú(›, ÷, Òw(t, ›, ÷)) = 0 (8.26)

with terminal condition

w(1, ›, ÷) = 0
where

Hú(›, ÷, p1, p2) := max
xœ�(A)

min
yœ�(B)

E
xy

Ó
ÈQa

L

· ›, p1Í +
e
Qb

M

· ÷, p2
f

+ “(› ¢ ÷, a, b)
Ô

= min
yœ�(B)

max
xœ�(A)

E
xy

Ó
ÈQa

L

· ›, p1Í +
e
Qb

M

· ÷, p2
f

+ “(› ¢ ÷, a, b)
Ô

.

8.5.4 The variational approach
An important tool for establishing asymptotic properties of the value function is the

variational approach introduced in Cardaliaguet, Laraki and Sorin [23]. Their main
results are recalled in this Section and the proofs adapted whenever needed.

Denote by F
S

the set of functions f : �(L) ◊ �(M) æ [0, 1] such that, for all (›, ÷) œ
�(L) ◊ �(M), f(·, ÷) is concave and f(›, ·) is convex. Let us introduce the operator
T : F

S

æ F
S

which is defined by:

T[f ](›, ÷) := val
x,y

E
xy

Ó
f(›̂(x, a), ÷̂(y, b))

Ô

This is the projective operator, see Sorin [92, Appendix C]. Note that the projective
operator is continuous. One important property of the projective operator is the following:
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Lemma 8.5.5. (Lemma 4.26 in [92, Appendix C]). For all f œ F
S

and (›, ÷) œ �(L) ◊
�(M), we have

T[f ](›, ÷) = f(›, ÷).

Let F denote the set of functions W : [0, 1] ◊ �(L) ◊ �(M) æ [0, 1] such that, for
all t œ [0, 1], W (t, ·, ·) œ F

S

. Let F0 denote the set of accumulation points of {V
A,�}�,

which is non-empty by Property d) in Proposition 8.5.3. From the dynamic programming
formula, i.e. Property c) in Proposition 8.5.3, we get that F0 µ F .

Fix W œ F and denote by X(t, ›, ÷, W ) the set of optimal strategies of player 1 in
T[W (t, ·, ·)](›, ÷). The set Y(t, ›, ÷, W ) is defined for player 2 in a completely analogous
way. A set of strategies is non revealing if all its elements are non revealing strategies.

We introduce now two variational properties, adapted from those proposed by Cardaliaguet,
Laraki and Sorin [23, Properties P1 and P2].

Properties 8.5.6. (Variational properties) Let „ : [0, 1] ◊ �(L) ◊ �(M) æ R denote a
C1 test function and W œ F .

• P1: If (t, ›, ÷) œ [0, 1]◊�(L)◊�(M) are such that X(t, ›, ÷, W ) is non-revealing,
and W ≠ „ has a local maximum at (t, ›, ÷) then

ˆ„

ˆt
(t, ›, ÷) + Hú(›, ÷, Ò„(t, ›, ÷)) Ø 0. (8.27)

• P2: If (t, ›, ÷) œ [0, 1]◊�(L)◊�(M) are such that Y(t, ›, ÷, W ) is non-revealing,
and W ≠ „ has a local minimum at (t, ›, ÷) then

ˆ„

ˆt
(t, ›, ÷) + Hú(›, ÷, Ò„(t, ›, ÷)) Æ 0. (8.28)

The following Lemma follows from Property c) in Proposition 8.5.3. The proof is
adapted from Lemma 8 in Cardaliaguet, Laraki and Sorin [23].

Lemma 8.5.7. Any W œ F0 satisfies P1 and P2.

Proof. Let W satisfying P1 at (t, ›, ÷), and without loss of generality assume the maximum
is strict. Let (�

i

)
iœN be a subsequence of partitions of [0, 1] such that V

A,�i converges
uniformly to W as i æ Œ. Take a fixed ‘ > 0 and choose i0 such that

ÎV
A,�i ≠ WÎ < ‘, i > i0

and set � := �
i0 . Denote by �� = {t

k

}
kœN the partition induced by �. Finally, let k

such that the restriction of V
A,� ≠ „ to �� has a strict maximum at t

k

. Since t is a strict
maximum, t

k

æ t as i æ Œ.
Recall that

V
A,�(t

k

, ›, ÷) = max
xœ�(A)L

min
yœ�(B)M

E
xy

Ó
◊

k

“(› ¢ ÷, a, b) + V
A,�(t

k+1, ›a

k

, ÷b

k

)
Ô

.

Let x
k

denote an optimal strategy for player 1 in the right hand side of the above equation
and b any action of player 2. We have that:

V
A,�(t

k

, ›, ÷) Æ
ÿ

aœA

Ó
◊

k

“(› ¢ ÷, x
k

, b) + x
k

(a)V
A,�(t

k+1, exp(◊
k

Qa

L

) · ›̂(x
k

, a), exp(◊
k

Qb

M

) · ÷)
Ô

Æ ◊
k

“(› ¢ ÷, x
k

, b) + V
A,�(t

k+1, exp(◊
k

Qa

L

) · ›, exp(◊
k

Qb

M

) · ÷)
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where the second inequality comes from concavity.
Since (t

k

, ›, ÷) is a strict maximum of W ≠ „ on �� ◊ �(L) ◊ �(M), we have that

V
A,�(t

k+1, exp(◊
k

Qa

L

) · ›, exp(◊
k

Qb

M

) · ÷) ≠ V
A,�(t

k

, ›, ÷)

is less or equal than

„(t
k+1, exp(◊

k

Qa

L

) · ›, exp(◊
k

Qb

M

) · ÷) ≠ „(t, ›, ÷)

from which we obtain

0 Æ “(› ¢ ÷, x
k

, b) + „(t
k+1, exp(◊

k

Qa

L

) · ›, exp(◊
k

Qb

M

) · ÷) ≠ „(t, ›, ÷)
◊

k

.

Since �(A)L is compact, we have that x
k

converges to a point x, which, by upper
semi continuity of the argmax correspondence and uniform convergence of V

A,�i gives
x œ X(t, ›, ÷, W ). By assumption, x is non revealing. Thus, we get

0 Æ ˆ„

ˆt
+ min

bœ�(B)
E

xy

Ó
ÈQa

L

· ›, Ò
›

„Í +
e
Qb

M

· ÷, Ò
÷

„
f

+ “(› ¢ ÷, a, b)
Ô

for all x non revealing, which concludes the proof.

Following the variational approach of Cardaliaguet, Laraki and Sorin [23], the next
step would be to establish a sort of comparison principle, which is crucial to obtain a
unique accumulation point for the family V

A,�.

Conjecture 1. Let W1 and W2 in F satisfying respectively P1, P2 and
• P3: W (1, ›, ÷) Æ W2(1, ›, ÷), ’(›, ÷) œ �(L) ◊ �(M).

Then, for all t œ [0, 1],
W1(t, ›, ÷) Æ W2(t, ›, ÷).

To prove this, the idea is to assume that

max
t,›,÷

W1(t, ›, ÷) ≠ W2(t, ›, ÷) = ” > 0. (8.29)

and deduce, by suitable penalization arguments, the existence of a point (tÕ, ›Õ, ÷Õ) such
that:

— tÕ < 1
— At the point (tÕ, ›Õ, ÷Õ), W1 satisfies P1.
— At the point (tÕ, ›Õ, ÷Õ), W2 satisfies P2.

Thus, finding such point contradicts (8.29).
However, deducing the existence of such point requires very subtle and technically

involved arguments and is the main di�culty to extend the variational approach to this
framework.

A similar di�culty arises in Cardaliaguet, Rainer, Rosenberg and Vieille [26]. The
authors establish a comparison principle for the limiting partial di�erential equation cor-
responding to model B using the techniques originally introduced by Crandall, Ishi and
Lions [32]. We conjecture that similar tools could be used in this framework.
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