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Résumé

Introduction

La simulation trouve ces origines dans le problème des aiguilles posé par Buf-
fon en 1777 et corrigé par Laplace en 1812. En 1899, Gosset utilise les statistiques
pour optimiser la production et la qualité de la brasserie Guinness.

Le domaine de la simulation apparaît véritablement avec l’utilisation des
premiers ordinateurs pour le développement de l’arme nucléaire en 1943. Il
connaît un essor dans les années 50 avec la dé-classification des ordinateurs.
De la machine à calculer au premier ordinateur composé uniquement de tran-
sistor (Stretch,1960) en passant par l’ordinateur électronique (ENIAC, 1946), de
nombreux domaines scientifiques furent explorés à l’aide de simulations. Ces
recherches, incluant des simulation de matériaux dans des conditions de pres-
sion et de température extrêmes, la résolution d’équations de mécanique des
fluides, ou des tentatives de décodage de l’ADN, avaient pour double objectifs
de tester la capacité des machines et de résoudre ces problèmes scientifiques.

En 1949, Metropolis et Ulam présentent la méthode de Monte-Carlo qui est
implémentée en 1953.

En 1956, Alder et Wainwright programment la première simulation de dyna-
mique moléculaire.

Dans le début des années 60, alors que les premiers calculs en parallèle sont
réalisés (SOLOMON), Conway, Johnson et Maxwell étudient la théorie de la
simulation numérique. En particulier, ils présentent plusieurs problématiques
liées à la simulation. D’une part, la création de simulations est à l’origine de
problèmes spécifiques comme l’organisation modulaire d’un programme afin
de faciliter sa correction et son entretien, le contrôle des erreurs dues à la discré-
tisation, ou l’efficacité d’un calcul effectué à chaque pas de temps. D’autre part,
l’utilisation de cet outil présente des problématiques autres comme l’influence
des conditions initiales ou l’estimation de la précision des résultats.

Les simulations assistées par ordinateurs présentent plusieurs intérêts et se
placent entre la théorie où les approximations sont nécessaires pour résoudre
analytiquement les équations, et les expériences. En effet, les expériences nu-

vii



Résumé

mériques permettent de tester des théories en comparant les données fournies
par les simulations aux résultats analytiques. Les propriétés calculées numéri-
quement peuvent aussi être comparées aux données expérimentales pour dé-
terminer la valeur des paramètres décrivant le système, comme des forces d’in-
teractions entre particules par exemple.

Une fois validée, une simulation permet de prédire le comportement d’un
système, en particulier dans des situations de température et de pression diffi-
cilement réalisable expérimentalement ou pour des matériaux pas encore syn-
thétisés.

La simulation numérique permet aussi d’analyser plus rapidement les résul-
tats expérimentaux. L’identification automatique des southern blots facilite le
décryptage de brin d’ADN. Des simulations de dynamique moléculaire combi-
nées à des mesures RMN permettent la détermination efficace de structure de
molécule.

Enfin, les ordinateurs permettent le stockage de données, leur organisation
et partage. Cette utilisation des ressources numériques est particulièrement vi-
sible avec le project Génome et la cartographie de l’ADN.

Il est possible de distinguer deux domaines de la biologie numérique :
– le "data-mining" identifie des comportements caractéristiques à partir de la

grande quantité de donnée expérimentales ;
– les simulations, une fois validées, permettent de prédire le comportement

dynamique des systèmes étudiés.

Dans cette thèse, deux domaines sont étudiés.
En premier lieux, je m’intéresse à l’amélioration d’un outil de simulation.

Les interactions électrostatiques sont un constituant fondamental des systèmes
nano- et micro-métriques naturels ou industriels. Afin de comprendre et décrire
ces systèmes, l’électrostatique est décrite par l’équation de Poisson-Boltzmann.
La théorie de Poisson-Boltzmann provient de la combinaison de l’équation de
Poisson ∇ε∇φ = −ρ(r) et la description de Boltzmann de la densité d’ions
nj = nj,0 e−βezjφ. Dans ces expressions, ε est la constante diélectrique du mi-
lieu, φ est le potentiel électrostatique, ρ est la densité de charge, nj est la densité
locale de l’ion d’espèce j, β = 1/kBT est l’inverse de la température, e est la
charge élémentaire et zj le nombre de charges élémentaires portées par un ion
d’espèce j. Pour relier les deux égalités, il faut détailler la densité de charge : ρ =
e ∑j zjnj + σ avec σ la densité de charges fixes. L’équation de Poisson-Boltzmann
s’écrit donc : ∇ε∇φ = −∑j zj e nj,0 e− β e zj φ − σ. Dans le cas d’un électrolyte
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symétrique, cette expression devient : ∇ε∇φ = 2 n0 e z sinh (β e z φ) − σ.
Dans cette thèse, nous considérons l’énergie libre de Poisson-Boltzmann. Elle

se compose de l’énergie interne, des interactions électrostatiques et de l’entropie
des ions :

F =
∫

dr

{
−ε

2
(∇φ)2 + ρ φ + kBT ∑

j
(nj ln (nj/nj0)− nj)

}

=
∫ {

−ε

2
(∇φ)2 − kBT ∑

j
nj,0 e− β e zj φ + σφ

}

L’énergie libre de Poisson-Boltzmann est concave. Lorsque d’autre degrés de
liberté sont nécessaires à la description du système, l’optimisation de l’énergie
libre devient une recherche de point-de-col, opération numérique complexe.

Dans le chapitre 1, la transformation de Legendre est utilisée pour définir une
expression équivalente de l’énergie libre qui est complètement convexe et donc
plus facilement optimisable numériquement.

Le chapitre 2 traite d’une autre limite de la théorie de Poisson-Boltzmann. En
effet, cette théorie est basée sur une approximation de champ moyen et nous uti-
lisons la théorie de champs variationnels pour calculer une correction à l’énergie
libre. Cette correction est numériquement estimée et la limite du programme est
étudiée.

En second lieu, nous étudions un système micro-fluidique où des plaquettes
sanguines, injectées en volume s’accrochent et roulent sur la surface d’un micro-
canal. Le chapitre 3 porte sur la simulation de ce système et deux modèles sont
définis, implémentés et testés.

La transformée de Legendre appliquée à l’électrostatique

La problématique soulevée par la concavité de l’énergie libre électrostatique
prend véritablement sens quand le système étudié est décrit par plusieurs de-
grés de libertés. En effet, l’énergie libre est convexe vis-à-vis de degrés de liberté
de conformation mais concave par rapport au potentiel électrostatique. Ainsi il
faut, pour optimiser l’énergie libre, trouver non pas son minimum mais son
point-de-col. Différentes approches sont possibles et quatre d’entre elles sont
implémentées et comparées. Un modèle une-dimension de virus est utilisé pour
comparer ces quatre méthodes.
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La transformée de Legendre

La transformée de Legendre d’une fonction f (x) est définie par :L [ f ] (s) = g(s) = sx− f (x)

s =
d f
dx

Une définition équivalente est donnée par L [ f ] (s) = g(s) = maxx (sx− f (x)).
La première définition est particulièrement pratique pour le calcul analytique
d’une transformée de Legendre. La deuxième définition permet de comprendre
l’intérêt que nous portons à cette transformée. En effet, nous nous intéressons
à l’optimisation de l’énergie libre, or la transformée de Legendre fait intervenir
explicitement un maximum (une définition utilisant un minimum existe aussi).
Une forme symétrique de cet outil mathématique existe aussi : f (x)+ g(s) = sx.

La transformée de Legendre possède plusieurs propriétés intéressantes. Elle
est une involution : L [g] (x) = f (x). Elle associe à la fonction x 7→ − f (x)
concave, une fonction s 7→ g(s) convexe équivalente et exprimée en fonction de
la dérivée de f .

La transformée de Legendre est utilisée dans de nombreux domaines scienti-
fiques.

En mécanique classique cette transformation permet de passer d’une descrip-
tion lagrangienne L(q̇) à l’hamiltonien H(p) avec la vitesse q̇ et la quantité de
mouvement p les variables conjuguées.

En thermodynamique, la transformée de Legendre permet de choisir la va-
riable de description qui correspond le mieux à l’expérience décrite. Par exemple,
l’énergie totale E est la variable conjuguée de l’inverse de la température β. Ces
deux variables décrivent respectivement l’entropie S(E) et l’énergie d’Helm-
holtz F(β). Il faut considérer des quantités adimentionnées pour retrouver la
forme symétrique de la transformée de Legendre : (βF(β)) +

(
S(E)

kB

)
= βE. Re-

marquons que, si le système est décrit par l’énergie F(β) alors la température
est un contrôle et l’énergie totale E est la réponse du système. Inversement, si
l’entropie S(E) est considérée, l’énergie totale E est une contrainte imposée au
système et β est la mesure.

En optique, la transformée de Legendre permet de passer d’une description
du trajet lumineux par un point à une description angulaire. Ainsi, quatre eiko-
nals (longueur optique d’un rayon entre deux plans) sont définies et décrivent
de manière équivalente un système optique. L’outil mathématique permet aussi
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de déterminer la caustique d’un rayon lumineux de par la connaissance de la
surface sur laquelle il est réfléchit ou réfracté. L’inverse est aussi possible et
trouve son application dans l’étude du profil d’une surface ou de ses défauts.

La transformée de Legendre peut être appliquée à l’électrostatique d’une ma-
nière similaire afin d’obtenir des descriptions équivalentes d’un système. Ainsi,
l’énergie libre dépendant du potentiel électrostatique φ peut être exprimée en
fonction du champ de déplacement électrostatique D. Considérons la densité
d’énergie libre d’un électrolyte symétrique et monovalent avec des charges fixes
notées σ : f (φ) = −1

2 ε(∇φ)2− 2c0 cosh(βeφ) + σφ. Le terme−∇φ est remplacé
par le champ électrique E en utilisant le paramètre de Lagrange D :

f (φ, E, D) = −1
2

εE2 − 2c0 cosh(βeφ) + D · (E +∇φ) + σφ

= D · E− 1
2

εE2 + φ · (σ− div D)− 2c0 cosh(βeφ)

Deux transformées de Legendre sont identifiées dans cette équation. En violet,
E et D sont les variables conjuguées et la transformée s’écrit L

[
εE2

2

]
(D) = D2

2ε .
En vert il s’agit de la transformée du cosinus hyperbolique de φ avec la variable
conjuguée σ− div D. La transformée de Legendre du cosinus hyperbolique est
donnée par :

L[A cosh(Bx)](s) = A
[

s/(AB)asinh (s/AB)−
√
(s/AB)2 + 1

]
= A g̃ (s/AB)

Il est donc possible d’écrire une densité d’énergie libre équivalente à celle d’ori-
gine et dépendant du champ de déplacement D :

f (D) =
D2

2ε
+ 2c0 g̃

(
σ− div D

2c0βe

)
L’intérêt d’une telle transformation vient de la convexité de l’énergie libre f (D).

Un modèle de virus

La théorie des poly-électrolytes est souvent utilisée en biologie pour décrire
l’ADN ou l’ARN. Un poly-électrolyte est un polymère chargé et est décrit par le
champ électrostatique φ et le champ de configuration du polymère ψ. Il provient
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Résumé

de l’approche développée par Edwards et De Gennes qui considérent la pré-
dominance de l’état fondamental. La densité de monomères s’exprime comme
le carré de ce champ : Cmonomer = |ψ|2. Le poly-électrolyte est défini par son
nombre de monomères N, chacun chargé de p charges élémentaires négatives,
de taille a et de volume effectif v. Le nombre de monomères étant fixé, l’égalité
suivante est imposée :

∫
|ψ|2 = N. Le modèle du virus utilisé pour cette étude

fait appel à cette description de l’ARN.

Le virus est aussi constitué d’une capside représentée par une sphère unifor-
mément chargée σ, de rayon R et perméable aux ions. Le milieu biologique est
décrit par un électrolyte symétrique et monovalent. La densité d’énergie de ce
système est donnée par :

f (ψ, φ) = kBT
{

a2

6
(∇ψ)2 +

v
2

ψ4
}

− ε0εR

2
(∇φ)2 +

(
σ− peψ2

)
φ + 2c0 cosh (βeφ)

Cette fonctionnelle se décompose en un terme d’auto-interaction non-électrosta-
tique du poly-électrolyte (première ligne), et de l’énergie électrostatique avec les
charges fixes de la capside, les charges portées par l’ARN et le terme ionique.
L’énergie libre du système à l’équilibre est donnée par le maximum de f par
rapport à φ et son minimum vis-à-vis de ψ.

Appliquant la transformée de Legendre à la densité d’énergie libre, on obtient
une nouvelle fonctionnelle équivalente :

f (D, ψ) = kBT
{

a2

6
(∇ψ)2 +

v
2

ψ4
}
+

D2

2ε0εR

+ 2c0kBT
{

ξ asinh (ξ)−
√

ξ2 + 1
}

avec ξ(D, ψ) = σ−peψ2−∇D
2ec0

. Cette nouvelle expression est certainement moins
intuitive que la précédente et l’on ne reconnaît pas de manière évidente la théo-
rie de Poisson-Boltzmann. Cependant, la fonctionnelle est convexe vis-à-vis de
chacun des deux champs et il est possible d’utiliser les techniques classiques de
recherche de minimum pour trouver l’énergie du virus.
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Méthodes numériques

Afin de décrire le système à l’équilibre, il est nécessaire d’optimiser l’éner-
gie libre. Dans le cas du modèle du virus, il s’agit de trouver le point-de-col de
f (φ, ψ). Quatre méthodes numériques sont présentées.

L’optimisation par boucles imbriquées utilise directement l’expression de f (φ, ψ)
et maximise f par rapport à φ à chaque estimation de la fonctionnelle lors de
sa minimisation vis-à-vis du champ ψ. Ainsi deux boucles d’optimisation sont
imbriquées et chaque étape peut être résolue par un algorithme de recherche de
minimum classique.

Une méthode classique pour la recherche de point-de-col consiste à utiliser
les dérivées de la fonctionnelle. Au point-de-col ces dérivées sont, par défini-
tion, égales à zéro. Il est donc possible de construire une nouvelle fonctionnelle
constituée de la somme des dérivées au carré :

Fderiv(φ, ψ) =
∫

dr

[(
∂F
∂ψ

)2

+

(
∂F
∂φ

)2
]

La minimisation de cette fonctionnelle a pour résultat Fderiv(φopt, ψopt) = 0 et
donne la position du point-de-col. Avec cette fonctionnelle, une seule boucle
d’optimisation est nécessaire. Cependant, un terme en (∆φ)2 est présent dans
Fderiv et la raideur est donc proportionnelle à q4. Une convergence lente est donc
attendue.

Il est possible de construire des énergies libres équivalentes à f (φ, ψ) et en-
tièrement convexes. Une substitution inverse nous permet d’écrire une énergie
libre convexe :

f I(φ, ψ) = kBT
{

a2

6
(∇ψ)2 +

v
2

ψ4
}
+

ε0εR

2
(∇φ)2

+ 2c0kBT
{
− cosh (βeφ) + βeφ sinh(βeφ)

− asinh(ξ) sinh(βeφ) + ξ asinh (ξ)
}

avec ξ(φ, ψ) = ε0εR∇2φ+ρ−peψ2

2ec0
. Cette fonctionnelle peut être directement mini-

misée mais elle présente une raideur élevée et une convergence lente est prévi-
sible.
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La transformée de Legendre permet également d’écrire une énergie libre équi-
valente et convexe :

fL(D, ψ) = kBT
{

a2

6
(∇ψ)2 +

v
2

ψ4
}
+

D2

2ε0εR

+ 2c0kBT
{

ξ asinh (ξ)−
√

ξ2 + 1
}

avec ξ(D, ψ) = σ−peψ2−∇D
2ec0

. Ces deux fonctionnelles ne nécessitent qu’une seule
boucle d’optimisation pour trouver le point d’équilibre.

Résultats

Les programmes sont réalisés dans Matlab et la fonction fminunc est systéma-
tiquement utilisée pour minimiser les fonctionnelles. La fonction fminunc im-
plémente un algorithme de Quasi-Newton. Basé sur la méthode de plus forte
pente, cet algorithme génère itérativement une matrice inverse permettant de
déterminer la position à l’itération suivante. Une autre technique, l’algorithme
à région de confiance, est aussi implémenté dans fminunc. Cette méthode définit
une région dans laquelle l’itération est effectuée en utilisant une approximation
quadratique. La position est optimisée à chaque itération ainsi que la taille de la
région de confiance ce qui permet de converger même en l’absence de bonnes
conditions initiales. La méthode de Quasi-Newton est utilisée pour toutes les
optimisations à l’exception de l’étude explicite de l’influence du choix de l’al-
gorithme.

Afin de comparer des simulations équivalentes, il faut que les transforma-
tions présentées précédemment soient valables après discrétisation des fonc-
tionnelles. Le modèle utilisé présente une symétrie sphérique ce qui réduit la
dimension d’étude à 1 mais complexifie la discrétisation des opérateurs. Nous
utilisons l’opérateur de gradient comme l’objet fondamental de la discrétisation
et l’identité fondamentale

∫
D ·∇φ = −

∫
φdiv D+

∮
φD · dS pour définir la di-

vergence. Le Laplacien discrétisé est défini à partir de l’égalité ∆φ = div (∇φ).

Les performances de chaque programme sont testées en fonction de la discré-
tisation à l’aide des considérations suivantes :

– l’énergie libre F doit converger quand le nombre de points utilisés aug-
mente,

– les dérivées des fonctionnelles doivent être nulles (une norme L1 est utili-
sée),
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– le temps de calcul utilisé par l’ordinateur pour optimiser la fonctionnelle
doit être minimal.

L’optimisation du modèle du virus est réalisée pour chacune des quatre mé-
thodes et pour différentes discrétisations. La première observation est que pour
une faible densité de points, les quatre méthodes sont en accord : les estima-
tions de l’énergie libre sont identiques et les dérivées sont nulles. Quand le
nombre de points augmente, la méthode des boucles imbriquées ne présente
pas de convergence de l’énergie libre et ses dérivées en fonction de ψ sont non-
nulles. À l’inverse, l’optimisation de la fonctionnelle issue de la transformée de
Legendre présente un bon résultat. Son estimation de l’énergie libre converge
avec l’augmentation du nombre de points et ses dérivées sont nulles. Les deux
autres méthodes ne présentent pas une aussi bonne convergence, ce qui peut se
justifier de part leur raideur élevée.

La durée des optimisations est aussi enregistrée. Les méthodes ne présentant
qu’une seule boucle d’optimisation ont, de manière attendue, un temps de réa-
lisation beaucoup plus faible que la méthode des boucles imbriquées. Une loi
de puissance avec un facteur 2 est observée.

Différentes initialisations sont utilisées afin de tester la stabilités des pro-
grammes. Une initialisation avec des champs nuls provoque une erreur lors
de l’optimisation. En effet, le champ de description du polyélectrolyte reste nul
lorsque plus de 200 points sont utilisés. Ceci correspond vraisemblablement à
un minimum local. Une initialisation aléatoire montre la forte stabilité de la mé-
thode de la transformée de Legendre qui est la seule à converger.

L’algorithme de région de confiance est testé avec la méthode de la substitu-
tion inversée et celle de la transformée de Legendre. Cet algorithme permet de
stabiliser l’optimisation de la fonctionnelle et la méthode de substitution inverse
présente alors une convergence de l’énergie libre. Dans le cas de la transformée
de Legendre l’utilisation de cet algorithme s’accompagne d’un gain de temps
de calcul.

En conclusion, si les quatre méthodes sont fiables pour de faibles discrétisa-
tions, les résultat pour une discrétisation dense montre que la méthode de la
transformée de Legendre est plus fiable, plus stable ou plus rapide.
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La Théorie de Poisson-Boltzmann avec fluctuations

La théorie de Poisson-Boltzmann est issue d’une approximation de champ
moyen et des différences sont observées entre la théorie et certaines expériences.
En effet, la théorie de Poisson-Boltzmann néglige les corrélations entre les ions.
Elle ne décrit donc correctement que les systèmes avec une constante de cou-
plage Ξ faible (ions de faible valence, température élevée). Des théories existent
pour décrire des systèmes à forte constante de couplage (système fortement
chargés) mais aucune expression théorique ne correspond à des valeurs moyennes

de Ξ. La constante de couplage est définie par Ξ = q3 |σ| e4 β2

8 π ε2 et représente la
force d’interaction entre un mur chargé et une solution ionique. Afin de mo-
déliser les systèmes qui s’écartent des faibles couplages, la théorie de Poisson-
Boltzmann est étendue pour considérer les fluctuations électrostatiques. La théo-
rie des champs est utilisée et les résultats issus d’un principe variationnel sont
étudiés.

Principe Variationnel de Gibbs

La théorie de Poisson-Boltzmann exprimée avec une théorie des champs s’écrit
comme suit :

Zλ =
∫ Dφ

Z0
exp {−H [φ]}

H [φ] =
1

8πlBq2

∫
(∇φ)2 + i

∫
φ σ/q − 2λ

∫
Ω cos (φ)

Par l’intermédiaire d’un potentiel électrostatique fluctuant, les fluctuations de
la densité ionique sont aussi prises en considération.

La procédure variationnelle de Gibbs utilise un hamiltonien variationnel H0
pour définir l’énergie libre de Gibbs : FGibbs = F0− < H0 − H >0 /Ξ. Cette
fonctionnelle est alors minimisée vis-à-vis des paramètres de H0. Une forme
Gaussienne est utilisée pour l’hamiltonien variationnel et les paramètres varia-
tionnels sont le potentiel φ0 et le noyau gaussien v0. Cette hypothèse permet de
calculer exactement l’énergie libre de Gibbs. Puisqu’il s’agit d’optimiser cette
énergie libre en fonction de paramètres variationnels, ses dérivées doivent être
nulles : ∂FGibbs

∂φ0
= 0 et ∂FGibbs

∂v0
= 0. Deux équations variationnelles sont ainsi
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obtenues.

∇2φ0 = −2 σ + Λ Ω e−v0(r,r)/2 sinh (φ0)

4 π Ξ δ(r− r′) =
[
−∇2 + Λ Ω e−v0(r,r)/2 cosh (φ0)

]
v0

Solution Numérique

Un procédé itératif est implémenté pour numériquement résoudre ces deux
équations différentielles non-linéaires et couplées.

Ainsi la première égalité est utilisée pour déterminer φn+1
0 à partir de φn

0 et
vn

0(r, r). Pour ce faire une méthode itérative faisant intervenir une fonction de
relaxation R est implémentée. La nouvelle valeur de φ0 est donnée par :[

∇2 − R
]

φk+1
0 = −2 σ + Λ Ω e−vn

0 (r,r)/2 sinh
(

φk
0

)
− R φk

0

La division matricielle de Matlab peut être directement utilisée grâce à l’intro-
duction de la fonction de relaxation.

La seconde équation devient une inversion de matrice dans l’espace discré-
tisé. L’inversion numérique de matrice est un procédé développé pour la résolu-
tion d’un grand nombre de problèmes physiques. Ainsi des méthodes générales
sont implémentées afin de minimiser le temps et l’espace de calcul nécessaire à
l’inversion. De plus, seulement la diagonale de l’inverse est nécessaire dans le
cas étudié ici et un algorithme d’inversion sélective peut donc être utilisé.

Si le système possède une symétrie, il est possible d’appliquer la transformée
de Fourier à la fonction de corrélation v0. Cette fonction dépend alors de la po-
sition pour les dimensions ne présentant pas de symétrie et de fréquences pour
les autres dimensions. Une telle transformation permet de remplacer l’inversion
d’une large matrice 3D par une série d’inversions de matrices plus petites. Un
gain de temps et d’espace de calcul est ainsi obtenu.

Limite de la Constante de Couplage

L’objectif du développement de cette méthode est de décrire des systèmes
dont la constante de couplage Ξ est supérieure à 0.1. Afin de tester ce pro-
gramme, un système simple est implémenté et la simulation est effectuée pour
une constante de couplage croissante. L’algorithme étant formé d’une boucle
d’optimisation, la convergence ou l’absence de convergence est un premier test
de validité. Les résultats fournis sous la forme de carte de densités ioniques et
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de valeurs de l’énergie libre sont aussi considérés.

Le système de test se compose d’un cylindre chargé positivement pour moitié
et négativement pour l’autre moitié. Le cylindre est donc globalement neutre.
La constante diélectrique du cylindre est aussi considérée comme différente du
milieu. Une solution d’ions symétriques occupe le reste de l’espace et le système
est représenté dans un espace en deux-dimensions.

Les premiers tests montrent que la convergence du programme n’est pas ob-
tenue pour des constantes de couplage supérieures à cinq. Les résultats pré-
sentent des valeurs d’énergie libre particulièrement élevées et les densités d’ions
obtenues ne sont pas physiquement possibles. Une étude plus détaillée montre
que pour des constantes de couplage inférieures à 4.6, une convergence est at-
teinte si l’on considère suffisamment de boucles, ou si les conditions initiales
sont proches du résultat attendu. Cette dernière situation est implémentée en
utilisant le résultat pour une constante de couplage moindre comme position
initiale pour une simulation à plus fort Ξ. Pour Ξ > 4.7, une telle initialisa-
tion mène à une divergence. Une limite pour la constant de couplage est donc
présente. Il s’agit maintenant de comprendre son origine, en particulier de dis-
tinguer si la méthode numérique ou la théorie utilisée est en cause.

Une étude de l’évolution de la constant limite Ξlim en fonction des différents
paramètres du système montre que cette limite varie de manière conséquente
avec les paramètres physiques comme le rayon du cylindre, sa charge surfa-
cique, ou la fugacité des ions. Cependant la constante de couplage limite varie
peu avec des paramètres numériques tel que la discrétisation.

Étude analytique : l’électrolyte seul

Suite à une conversation avec Sahin Buyukdagli, un système composé uni-
quement de l’électrolyte est considéré afin de cerner l’origine de la limite en
constante de couplage. Dans cette situation, le champ électrostatique est nul et la
fonction de Green est définie par l’équation : −∇2G + Λ e−Ξc(r)/2 G = 4 π δ.
Définissant le paramètre κ par κ2 = e−Ξc(r)/2 et résolvant l’équation de la fonc-
tion de Green, l’égalité suivante est obtenue :

κ2 = ea κ
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avec a = Ξ
√

Λ/2. Cette équation a une solution réelle si a < alim = 2
e et ainsi

une constante de couplage limite apparaît Ξlim = 2 alim√
Λ

= 4
e
√

Λ
.

Cependant, des solutions existent dans le plan complexe et elles s’expriment
à l’aide de la fonction de Lambert W(z) définie par z = W(z) eW(z) :

κ± = ∓ W(C,±a/2)
±a/2

Le nombre entier C décrit les différentes branches de la fonction de Lambert.
La solution κ−(C = 0,−a/2) est la solution réelle présentée ci-dessus pour
a < alim. Chaque branche présente une partie réelle négative pour de large a.
Cependant, il existe toujours une branche de valeur supérieure dont la solution
possède une partie réelle positive.

Utiliser la fonction Solve de Mathematica permet d’observer l’influence de la
condition initiale sur l’unique résultat fourni. Une valeur initiale réelle de κ =
2 donne uniquement des résultats issus de la branche C = 0 de la fonction
de Lambert. Les résultats sont donc réels puis complexes. Une valeur initiale
complexe de κ = 5− 5i présente des résultats qui changent de branche quand a
augmente.

Nos simulations cependant ne peuvent traiter les nombres complexes. De
plus, l’équation κ2 = ea κ n’est pas linéaire et il est impossible de construite
une solution réelle à partir des solutions complexes. Ainsi, il existe une limite
théorique au delà de laquelle aucune solution n’est physiquement acceptable.

Une étude de la dépendance de Ξ en fonction de Λ pour le cylindre montre
que la constante de couplage limite suit la loi : Ξ = a√

Λ
+ b avec a et b des

constantes qui varient avec les paramètres définissant le cylindre. Cette relation
est proche de celle trouvée analytiquement pour l’électrolyte seul Ξlim = 4

e
√

Λ
.

Il semble donc que la limite théorique de la constante de couplage existe sous
la même forme pour l’électrolyte seul et pour le cylindre.

Conclusion

Ainsi, il est possible de calculer numériquement une correction à l’énergie
libre. Les équations sont issues de la théorie des champs variationnels en uti-
lisant un hamiltonien de Gibbs, et une méthode itérative est utilisée pour les
résoudre. Ce procédé numérique présente cependant une constante de cou-
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plage limite au delà de laquelle l’itération diverge. D’après l’étude analytique
de l’électrolyte seul, cette limite provient de la théorie utilisée.

D’autres tests sont nécessaires pour évaluer la qualité de la correction cal-
culée. Il sera alors possible d’utiliser la méthode décrite ici pour simuler des
systèmes plus complexes, comme par example un électrolyte dont la répulsion
stérique entre les ions est décrite par un champ de Yukawa.

Plaquette roulant sur une surface

Les plaquettes sanguines sont de petites cellules sans noyaux dont la fonction
principale est l’hémostase : l’arrêt d’écoulement sanguin hors des vaisseaux. Un
autre élément indispensable à l’hémostase est une protéine, le facteur de Von
Willebrand, qui permet le roulement et l’agrégation des plaquettes à la parois
du vaisseau sanguin.

De nombreuses études sur le sang utilisent des canaux micro-fluidiques et
testent notamment l’adhésion des plaquettes à une surface recouverte de fac-
teur de Von Willebrand. Ce travail est aussi motivé par l’étude du mécanisme
de roulement des cellules sur une surface. En effet le roulement est un compor-
tement qui se retrouve aussi avec les leucocytes ou les cellules cancéreuses.

Dans ce chapitre nous étudions le comportement de plaquettes injectées dans
un canal micro-fluidique dont les surfaces sont recouvertes de facteur de Von
Willebrand. Des phénomènes d’échange de cellules entre le volume et la sur-
face, et de roulement sur la surface sont observés. Deux modèles sont définis,
implémentés et testés. L’objectif est en premier lieu de déterminer si un des deux
modèles décrit le système de manière adéquate. En second lieu, la comparaison
des modèles avec les données expérimentales permet d’extraire des valeurs dé-
crivant les interactions des plaquettes avec le milieu comme par exemple leur
taux d’attachement Kon qui ne peut être directement mesuré. Enfin, une fois
un modèle validé, il peut être utilisé pour prédire la dynamique du système et
optimiser le dispositif expérimental.

Expériences et Observations

Les expériences furent réalisées par l’équipe de Mathilde Reyssat au labora-
toire Gulliver, dans l’équipe MMN, de l’ESPCI avec Anne Le Goff, Antoine Blin
et Hyacinthe Buisson.

Un canal micro-fluidique droit en PDMS est créé par lithographie. Il est en
premier lieu rempli d’une solution contenant du facteur de Von Willebrand et
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laissé à incuber pour une nuit. Une couche de facteur de Von Willebrand se
crée durant cette période. Cette protéine permet le roulement et l’agrégation
de plaquettes au niveau de la paroi de vaisseau sanguin. Cette molécule est un
polymère qui est replié sur lui-même à faible taux de cisaillement. Dans cette
configuration, les unités du Von Willebrand formant les liens avec les plaquettes
sont masquées. Un taux de cisaillement suffisamment grand est donc nécessaire
pour que les protéines se déplient et que l’agrégation avec les plaquettes puisse
prendre place. Connaissant la taille du canal, un débitmètre permet de maîtriser
le taux de cisaillement appliqué à la paroi. Il est choisi à 1800 s−1.

Les plaquettes proviennent de sang complet de donneurs en bonne santé.
Leur extraction est réalisée par plusieurs étapes de centrifugation et elles sont
immédiatement fixées. Cette étape de fixation au formaldéhyde permet de blo-
quer les réactions bio-chimiques et de préserver les tissus biologiques. Les in-
teractions entre les plaquettes et le facteur de Von Willebrand sont préservées.

Les observations sont réalisées par vidéo-microscopie. L’acquisition des images
se fait grâce à une caméra ultra-rapide focalisée sur la surface du canal. Deux
types de mesures sont réalisées. Des vidéos permettent d’observer quatre phé-
nomènes dynamiques : les plaquettes sont advectées dans le volume, elle peuvent
adhérer à la surface, rouler sur la surface et se décoller de la surface retournant
alors dans le volume. Ces vidéos permettent notamment de mesurer les vitesses
de roulement des plaquettes et de tracer leur distribution. Ces vitesses sont de
l’ordre de la dizaine de micro-mètre par seconde et peuvent atteindre jusqu’à
30µm.s−1. La vitesse d’advection est quant à elle de l’ordre du millimètre par
seconde au centre du micro-canal.

Des clichés de la surface du canal sont enregistrés et les plaquettes en sur-
face sont comptées. Ces mesures réalisées en plusieurs positions et à différents
temps permettent de tracer la cinétique et la dépendance axiale de la concentra-
tion de plaquettes en surface. La quantité de plaquettes augmente avec le temps
et semble atteindre un plateau pour les positions proches du point d’injection.
La dépendance axiale en revanche présente une forte diminution de la concen-
tration de plaquettes lorsque la distance au point d’injection augmente.

Afin de comprendre ces observations, deux modèles sont développés et com-
parés aux expériences.
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Modèle de plaquettes roulantes

Ce modèle se base sur deux observations : la distribution de vitesse de rou-
lement et la forte quantité de plaquettes présentes à l’entrée du canal. Ainsi,
une injection à la surface peut être considérée. Elle peut s’expliquer par le flux
d’entrée descendant qui pousse les plaquettes vers la surface au point d’injec-
tion. Pour ce modèle, l’injection en surface se fait à un débit constant et les pla-
quettes ont une vitesse fixe, issue d’une distribution gaussienne tronquée. Une
plaquette de ce modèle est entièrement décrite par son temps d’injection et sa
vitesse. Aucun échange avec le volume n’est ici considéré. De la distribution de
vitesse, la concentration de plaquettes en fonction de la position et du temps est
calculée. La valeur du débit et la distribution de vitesse du modèle sont ajustées
afin que les courbes obtenues soient au plus proche des mesures expérimen-
tales.

Deux expériences sont utilisées pour tester ce modèle. Les courbes obtenues
ne correspondent pas complètement et il semble donc que ce modèle soit in-
complet. L’une des deux distributions de vitesse obtenues est en accord avec
celle mesurée, l’autre fournie des vitesses faibles mais plausibles.

Modèle d’échange de plaquettes

Ce modèle se base sur l’échange de plaquettes entre le volume et la surface.
Ces deux espaces sont considérés et un bilan de matière est utilisé pour déter-
miner les équations décrivant le système. L’échange du volume vers la surface
est décrit par un paramètre d’échange Kon et l’échange inverse par le paramètre
Ko f f . L’advection en volume est décrit par la vitesse vv et le roulement en sur-
face par la vitesse moyenne vs. Le volume considéré s’étend sur une hauteur h,
distance où les plaquettes interagissent avec le facteur de Von Willebrand. La
concentration en surface Cs et celle en volume Cv sont définies par les équations
de transport : 

∂Cv

∂t
+ vv

∂Cv

∂x
= −J

∂Cs

∂t
+ vs

∂Cs

∂x
= hJ

J = KonCv

(
1− Cs

Cs,max

)
− Ko f f Cs

Les conditions initiales sont choisies tel que Cv(t, x = 0) = C(in)v , Cs(t, x = 0) =
0 et Cv(t = 0, x) = Cs(t = 0, x) = 0. L’injection de plaquettes s’effectue donc
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uniquement dans le volume à l’inverse du modèle précédent.

Adimensionner ces équations couplées nous donne un système défini par
seulement deux paramètres et la condition d’injection.

vt + vx = −J
st + εsx = +J

J = v (1− s) − αs

Les concentrations de volume et de surface sont respectivement v et s avec les
lettres souscrites représentant les dérivées partielles. J est le terme d’échange.
Les deux paramètres définissant la dynamique du système sont le rapport des
vitesses ε = vs

vv
et le facteur d’échange α =

Ko f f
Kon

h.

Ces équations couplées aux dérivées partielles ne peuvent être résolues ana-
lytiquement mais la méthode des caractéristiques nous informe sur la forme
générale de la solution. En effet, l’espace des solution peut être découpé en plu-
sieurs parties.

Quand x > t, aucune plaquette n’est présente car le peuplement du canal
est limité par la vitesse la plus élevée. Cette vitesse maximale correspond à la
vitesse du fluide, et vaut 1 pour le modèle adimensionné.

Quand x < εt, la solution ne dépend pas du temps et est donc la solu-
tion stationnaire. La solution stationnaire peut être calculée exactement et est

donnée par s(x) = A ∆
(A−∆) e−∆x − A + A avec A = 1

2

(
ξ +

√
ξ2 − 4v(in)

ε

)
, ∆ =√

ξ2 − 4v(in)
ε et ξ = v(in)+ε+α

ε .
Les valeurs expérimentales du paramètre ε sont très faibles. Ceci explique

pourquoi certaines particularités des courbes analytiques (croisement de courbes,
augmentation de la concentration à très faibles positions) ne sont pas observées
expérimentalement.

Une intégration temporelle réalisée numériquement nous permet de simuler
les résultats d’un tel modèle. Une comparaison entre les prévisions analytiques
et les calculs numériques met en évidence l’influence de la discrétisation. En
effet, pour des discrétisations trop larges les courbes numériques ne respectent
pas exactement les zones de solutions identifiées avec la méthode des caracté-
ristiques. Cependant, ces erreurs numériques sont petites et n’apparaissent qu’à
de faibles positions et temps.
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Les courbes issues de la simulation sont aussi comparées aux résultats expé-
rimentaux. Trouver un ensemble de paramètres satisfaisant est cependant com-
pliqué. En effet, six paramètres permettent de décrire le système. Trois sont di-
rectement liés au modèle et définissent les équations différentielles couplées ; les
trois autres paramètres permettent d’adimensionner les valeurs de temps, d’es-
pace et de concentration. Les deux expériences utilisées précédemment servent
de test pour cette simulation. La première expérience donne un résultat concluant,
mais la deuxième n’est pas parfaitement décrite par ce modèle.

Le modèle décrit dans cette partie peut permettre de déterminer une valeur
numérique de ∼ 0.1s−1 pour le paramètre d’échange Kon qui ne peut pas être
mesuré directement. Remarquons que ce paramètre Kon est défini comme un
coefficient d’adsorption à l’échelle de la plaquette dans son ensemble, et non au
niveau d’un couple ligand-récepteur.

Conclusion

Ainsi nous avons décrit et simulé un système micro-fluidique définit par une
injection de plaquettes, leur transport et leur échange entre le volume et la
surface. Les protéines de Von Willebrand permettent en effet aux plaquettes
d’adhérer et de rouler sur la surface du canal.

Nous avons étudiés deux modèles. Le premier considère une injection de pla-
quette en surface et une distribution de vitesse. Le deuxième modèle prend en
compte une injection en volume et un échange de plaquettes. Le roulement des
cellules sur la surface est aussi considéré mais de manière moins détaillée que
dans le premier modèle. Les deux simulations fournissent des résultats encou-
rageants. Cependant, il semble qu’aucun des modèles ne décrivent complète-
ment le système étudié.

Un modèle considérant les deux types d’injection, en volume et en surface,
permettrait probablement d’obtenir des résultats plus proches des observations.
Ceci fournirai un outil pour mieux comprendre le système expérimental et la
physique impliquée dans le processus d’hémostase.
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Introduction

The origin of simulation is considered to be the needle problem developed by
Buffon in 1777 and corrected by Laplace in 1812 [1]. It is used to estimate the
value of π from random throws of needles of a given length on a square grid
and the number of those crossing one line. Statistical knowledge was also used
in 1899 by William Sealy Gosset to not only optimize the production of Arthur
Guinness’ brewery, but also to improve the quality of the products. This field
of research expanded during the second World War with the appearance of the
first computers. Moreover it is only during the 50s, with the increasing avail-
ability of computers for non-military use that computer simulation truly started
[2]. Though we will solely focus on the development and use of simulation in re-
search, it has also taken its place in the industrial domain [3]. Indeed, following
in the footsteps of Gosset, Keith Douglas Tocher conceived and implemented
the General Simulation Program (GSP) in 1958. This program was the first to
combine discrete-event and continuous simulations to model the running and
production of plants [1].

The first computers were built during the second World War for two main
tasks: code breaking and the development of nuclear weapons. Both fields
involve heavy calculations. In 1943, the main theoretical task at Los Alamos
(New Mexico, USA) was to determine the dynamical behavior and explosive
power of a nuclear detonation [4]. Such research covered a wide spectrum of
fields including the physical and chemical properties of the elements at high
temperature and pressure, the motion of deformable materials solved by fluid
dynamics, and neutron transport. Furthermore, this research was not one that
could be undertaken though experiments both due to the destructive capacity of
the weapons and the extreme conditions of temperature and pressure the study
had to take into account. The scientists of Los Alamos resorted to an electrome-
chanical business machine to simulate an implosion defined by a coupled set of
non-linear differential equations. They used one punch card for each point of
space and time and the calculation of the next time-step required each card to
be run through a dozen machines [4].
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In the same period, the university of Pennsylvania developed the first large
scale electronic computer employing electron tubes rather than relays or me-
chanical counters. The Electronic Numerical Integrator And Calculator (ENIAC)
computed at electronic speed and was thus much faster than the business ma-
chines. In 1946 the ENIAC computed the simulation of a one-dimension ther-
monuclear burning of deuterium and tritium. This success and the declassifica-
tion of the subject spurred research in computer and modelization.

It is the same year that the concept of stored program appeared. The idea was
to record the program electronically in the same form as data. This would allow
for self-modifications to be available in case of contingencies [4].

In March 1952, the Mathematical And Numerical Integrator And Computer
(MANIAC) was operational [2] and the team of Los Alamos, led by Metropo-
lis, completed the first large scale hydrodynamic calculation. A broad spectrum
of scientific problems were used to test the capacity and versatility of the MA-
NIAC, including the first chess-playing program and attempts to decode DNA
sequences [4].

In 1953, Metropolis et al. [5] implemented the first simulation of liquid. The
system was composed of two-dimensional rigid spheres and two-body forces
were considered. The model was computed with the Monte Carlos method
presented in 1949 by Metropolis and Ulam [6].

1953 is also the year when John Jackson initiated the research on program
languages and Mark Wells et al. started the development of the high-level pro-
gramming language and operating system ModCap [4].

In 1955, Fermi, Pasta and Ulam published their work [7] on non-linear prob-
lems. They studied the dynamical behavior of an an-harmonic one-dimensional
crystal.

In 1956, Alder and Wainwright implemented the first molecular dynamic sim-
ulation [8, 9]. They studied the dynamic of the assembly of hard spheres and
found a two-states system. In 1959, molecular dynamic was applied to a real
material as the damage from radiation on a crystalline copper was modeled.
And in 1964, Rahman presented the first molecular dynamic simulation of Ar-
gon liquid [2].

In 1960, the first all-transistor computer, Stretch, was created by International
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Business Machines (IBM). It was also the first computer to use 64-bit words
which allowed for greater accuracy [4], and many concepts developed with
Stretch (multiprogramming, memory protection, general interrupts, 8-bit bytes)
were incorporated in the next generations of computers.

During the period 1960-1961, Geoffrey Gordon, manager of simulation de-
velopment at IBM, introduced the General Purpose Simulation System (GPSS).
This program was based on block diagram interface in order to facilitate the use
of this simulation language. Such focus and the marketing policy of IBM estab-
lished GPSS as a popular simulation tool [1].

In the beginning of the 1960s, the first parallel calculations were explored
with the creation of the SOLOMON computer (Simultaneous Operation Linked
Ordinal MOdular Network) [10]. A multitude of subjects were explored, includ-
ing the resolution of partial differential equations, the maintenance of real-time
multi-dimensional control and surveillance (satellite tracking) [11] and fluid dy-
namics analysis using particle-in-cell code [4].

At the same period, the theory of digital simulation was explored by Con-
way, Johnson and Maxwell [1]. They distinguished issues from building the
simulation and problems due to the use of the simulation. In the first category,
problems such as the modular design of the program for easy revision, the con-
trol of errors from discretization, or the efficiency of time-step mechanisms are
considered. The second set of issues covers in particular the influence of the
initial conditions, the estimation of the precision, and the comparison of alter-
native system simulations.

Computer simulation gives exact results for a chosen model of a system. Be-
fore the development of this scientific discipline, the only way to predict ma-
terial properties was to use a theory providing an approximate description.
Van der Waals equation for dense gazes, Debye-Hückel theory of electrolytes
or Boltzmann equations for the transport properties of dilute gazes are approx-
imate theories that could be solved analytically. However, two hypotheses are
systematically used in this process: on the one hand the choice of the theory
itself, and on the other hand the estimation of the interactions. Thus, when a
model did not match the experiment, each of those hypotheses could be the
cause. With computer simulation, we can compare the simulated results with
the approximate analytical theory to test the theory. This is called a computer
experiment. Calculated properties can also be compared with the experimental
data to test the value of the interactions [2].
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The most common application of computer simulation is the prediction of
material properties, in particular for extreme conditions or materials not yet
synthesized [4]. As Frenkel and Smit point out in Understanding Molecular Sim-
ulation [2], "the computer does not care: it does not go up in smoke when you
ask it to simulate a system at 10 000 K."

In biology, the computers were used for many purposes. In the genome
project for example, computers are effective tools for data storage, manage-
ment and sharing [12, 4]. They are also fundamental for the assembling of DNA
maps. Indeed, those are defined by probabilistic statements and are processed
through optimization that can only be performed numerically [12].

Computers are also used for faster analysis of experimental results. Scoring
of southern blots are carried out by computers which speeds the identification
of DNA strands consequently [13]. Molecular dynamic simulation is also com-
bined with 2D-NMR of a macromolecule to find a structure that has a favorable
energy and is compatible with the NMR measurements [2].

Kitona [14] defines two distinct branches of computational biology:
– knowledge discovery, or data-mining, extracts the patterns from huge quan-

tities of experimental data.The prediction of protein structures from their
sequences, or the inference of gene-regulatory network from expression
profiles are examples of bio-informatics.

– simulation-based analysis typically predicts the dynamic of a system. It is
then compared with experimental measurements in order to test the va-
lidity of the model. Once validated, the simulation is used to predict or
explore situations that are not amenable to experimental inquiries.

Computation systems biology [15] aims at a system-level understanding in op-
position to the earlier most-pursued element-wise research (one pathway, one
protein, ...). Computational techniques are essential to mine, analyze and con-
nect the enormous and heterogeneous amount of data. The term "data" includes
here experimental results as well as elements of biological systems or mathe-
matical models and their derived simulations.

In this thesis we explore two different fields. The first focuses on the improve-
ment of a simulation tool: the computation of Poisson-Boltzmann free energy
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for electrolytes. With the second part, we study a microfluidic system where
platelets are injected in a channel. Its protein-grafted walls can interact with the
platelets. The behavior of the cells is observed and recorded, and we compare
the simulation results of two models with the experimental data.

Outline

In chapter 1, we study systems described by coupled degrees of freedom.
The free energy of such system is concave regarding the electrostatic field and
convex regarding the configurational degrees of freedom. We use the Legendre
transform to define an equivalent and overall convex free energy. We imple-
ment the numerical calculation of this free energy and compare the efficiency of
our program with other methods. The testing case used is a one-dimensional
simple virus model.

In chapter 2, we present how to compute a correction to the Poisson-Boltzmann
free energy. The Poisson-Boltzmann theory being a mean field approximation,
it is valid only for small coupling parameters. In this chapter, we expose the
field theory description of the Poisson-Boltzmann free energy and show how,
using the variational field approach, we can determine a correction to the free
energy. Through an iterative numerical scheme we compute this correction and
reach a better estimation of the free energy. We then explore how this estimation
fairs for medium values of the coupling parameter.

Chapter 3 focuses on the modelization of rolling blood platelets. The system
is a micro-fluidic experiment with exchange of platelets between the solution
and the grafted surface. We develop two models to describe this system. The
first considers only the rolling behavior of the platelets, while the second fo-
cuses on the exchange between the surface and the volume. We numerically
simulate both models and compare those results with the experimental mea-
surements. The aim is three-fold. First we want to validate the theories used
and determine if one model gives a better description than the other. The sec-
ond goal is to extract from the numerical match the values of the system con-
stants which we are otherwise unable to measure. Last, the simulation, once
validated, could be used to predict the platelets’ behavior and to optimize the
experimental set-up in order to obtain the best output.
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Part I.

Beyond Poisson-Boltzmann Theory
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Introduction

Electrostatic interactions are a fundamental interaction of nano- and micro-
sized systems encountered in nature and industry. Polyelectrolytes [16], col-
loids [17], proteins [18], bio-molecules stability and interactions [19] and viruses
[20] are only a few examples of these inexhaustible topics. Moreover, almost
all organic or inorganic surfaces become effectively charged when they are im-
mersed in water. The correct description and understanding of these systems,
therefore, require a reliable treatment of electrostatics. The standard model is
the mean-field Poisson-Boltzmann equation.

Poisson-Boltzmann Theory

The Poisson-Boltzmann equation comes from the combination of the Poisson
equation describing the relation between the electric potential φ and the charge
distribution ρ, and the Boltzmann description of the ions density.

The Poisson equation is given by:

∇ε∇φ = −ρ(r) (0.1)

in S.I. units. ε is the dielectric constant of the medium and ρ(r) is the charge den-
sity composed of the fixed charges σ(r) and of the ionic charges, as expressed
in equation (0.2). Equation (0.1) can easily be linked to the differential form of
Gauss law: ∇D = ρ since the electrostatic displacement field D is defined by
D = −ε∇φ. Thus, equation (0.1) determines the electric potential for a given
spatial charge distribution ρ(r).

On the other hand, the charge distribution can be written using the local
density distribution nj of the mobile ions j bearing a charge zj e and the fixed
charges distribution σ:

ρ(r) = e ∑
j

zj nj + σ (0.2)

Considering the electro-chemical potential of one ion, we have :

µj = e zj φ + β ln(nj) (0.3)
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The first term is the electrostatic contribution and the second part is the entropy
of the ion in the weak solution limit (low density). The system is considered at
thermal equilibrium, thus the electro-chemical potentials are constant through
the system. We find the Boltzmann distribution describing the local density
distribution of the ions:

nj = nj,0 e− β e zj φ (0.4)

with nj,0 the bulk density of the j ions.

To reach the Poisson-Boltzmann equation we need to combine the two equal-
ities given by equation (0.1) and equation (0.4). We obtain:

∇ε∇φ = −∑
j

zj e nj,0 e− β e zj φ − σ (0.5)

A case often studied is the one of symmetric electrolyte. Two different kinds
of ions are considered with their charges opposite. It leads to the simplified
Poisson-Boltzmann equation :

∇ε∇φ = 2 n0 e z sinh (β e z φ) − σ (0.6)

In this thesis, we work with the free energy of electrostatic systems and in
particular the Poisson-Boltzmann free energy. We thus consider the internal
energy, the electrostatic interactions, and the entropy of the ions in the solution
to reach the following expression of the free energy:

F =
∫

dr

{
−ε

2
(∇φ)2 + ρ φ + kBT ∑

j
(nj ln (nj/nj0)− nj)

}
(0.7)

Replacing ρ by the expression given in equation (0.2), we consider the variation
of the free energy regarding each nj, and we find back the Boltzmann equa-
tion (0.4). Using this expression of the ions density, we obtain a new expression
of the free energy:

F =
∫ {

−ε

2
(∇φ)2 − kBT ∑

j
nj,0 e− β e zj φ + σφ

}
(0.8)

From this form of the free energy, we can find the Poisson-Boltzmann equal-
ity (0.5) by taking the variation of F regarding the electric field φ.
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The symmetric electrolyte case leads to the well-known Poisson-Boltzmann
form of the free energy :

F =
∫ {
−ε

2
(∇φ)2 − 2 kBT n0 cosh(βeφ) + σφ

}
(0.9)

Limits of the Poisson-Boltzmann Theory

Many factors contribute to deviations from the Poisson-Boltzmann solution,
such as short range interactions, solvent effect or Van der Waals forces. One of
those is the ion size. Indeed, in Poisson-Boltzmann, the ions are described as
point-like charges. The physical repulsion from the space they occupy is not
taken into account in the Poisson-Boltzmann theory thus allowing the ions to
stack in the presence of strong opposite charges.

Poisson-Boltzmann free energy comes from a mean-field approximation.
Indeed, this description of electrostatics does not take into account the fluctu-
ations of the ions and is thus valid only for low charge densities. We explore
in chapter 2 how we can calculate and compute a correction to the Poisson-
Boltzmann free energy.

The concavity of the Poisson-Boltzmann free energy leads to numerical lim-
itations. It comes into play when the studied system is described by configu-
rational degrees of freedom combined with the electrostatic degree of freedom.
In such case, the free energy optimization is not a simple minimization but a
saddle-point search. Yet no general numerical scheme exists to find saddle-
points. In chapter 1, we present how to find an equivalent free energy whose
overall convexity leads to a more efficient numerical optimization.
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1. The Legendre Transform applied to
Electrostatics

Poisson-Boltzmann theory gives a good description of the electrostatics of
ionic solutions, it is thus often used in condensed matter physics and in biology
[21]. The Poisson-Boltzmann free energy functional, expressed in term of the
electrostatic potential φ, is concave and its stationary value is the correct value
of the free energy [22].

However, as the level of complexity of the studied systems increases, non-
electrostatic forces and other degrees of freedom enter into the description. The
Poisson-Boltzmann model is supplemented with other degrees of freedom. For
example, in the study of polyelectrolytes, the monomer probability amplitude
needs to be considered [23]. Polyelectrolytes are also used as a model for genetic
materials (DNA or RNA) in biology [24]. In the study of blends [25] and fluid
mixtures [26, 27, 28], the relative fraction of one of the components is used to
describe the systems and is interacting with the electrostatics. The translational
and rotational degrees of freedom of a group of atoms would also be coupled to
the electrostatic field in the expression of the free energy describing a molecule.
In each case, the system is described by differential equations of two or more
interacting fields, and the functional is expressed in term of the electrostatic
potential and in terms of configurational degrees of freedom.

Diverse numerical methods have been devised to simulate and study these
systems, such as molecular dynamics [29], Monte Carlo simulations [29, 30] or
the calculation of the free energy [31]. The review-paper of Lu et al [32] de-
tails the advances in boundary element methods, interface methods, finite ele-
ment methods and other. All of these solutions require an important amount of
computational time and memory which ultimately limits the size of the stud-
ied system or the precision at which such studies can be conducted. Efficiency
coupled with accuracy is the goal of the numerous methods developed to solve
Poisson-Boltzmann equations. Our approach uses the optimization of the free
energy.

In many applications, the free energy is convex with respect to the configura-
tional degrees of freedom and the minimum of energy corresponds to the stable
state of equilibrium. It is however, concave with respect to the electrostatic po-

13



1. The Legendre Transform applied to Electrostatics

tential. Because we consider complex systems, the electrostatic influences the
other parameters and vice versa. This translates into coupled variables and
a functional that can not be separated into a concave part (electrostatics) on
the one hand and a convex part (other degrees of freedom) on the other hand.
This duality concave-convex of the functional renders impossible to simultane-
ously optimize over both electrostatic and configurational degrees of freedom
in a simulation. Indeed, to study such system, we have to solve a saddle-point
problem. Because of the size of the systems studied, a numerical approach is
often chosen. But saddle-point problems are not easily solved numerically [33].

Let us consider a function f (x, y) and search for its stationary point (xs, ys).
If the function f is concave (or convex) with respect to both variables, there
exist numerical solutions to find the stationary point. The Newton-search algo-
rithm or the trust-region search algorithm are both well-known methods and
often used to find a minimum (or maximum). However, if we are looking for a
saddle-point, such algorithms do not exist. Two different approaches are avail-
able. One is to search the optimum value in each direction alternatively and
to iterate over both search. This is the iterative algorithm. It is also possible
to iteratively search in one direction at each steps of the optimization in the
second direction. Another method is to define a new functional g(x̃, ỹ) with
an identical stationary point. Such functional should be convex over all fields
considered and locally defined, so it can be easily optimised numerically. One
simple functional g often considered is

g(x, y) =
(

∂ f
∂x

)2

+

(
∂ f
∂y

)2

(1.1)

which gives the stationary point (xs, ys) when g = 0 = min(x,y)(g). One can
also transform the functional f (x, y) into g(x̃, y) with an inverse function [34]
or with the Legendre transform [35]. These methods will be detailed in section
(1.3).

The aim of this chapter is to demonstrate the utility of the Legendre trans-
form in reformulating free energies in electrostatics. The Legendre transform is
a powerful tool with multiple applications in physics [36]. This transformation,
named after the French mathematician Adrien-Marie Legendre (1752, 1833),
allows in classical mechanics the interchange of Lagrangian and Hamiltonian
viewpoints. In thermodynamics one regularly transforms ensembles to sim-
plify calculations, choosing the ensemble which most closely idealizes a given
experimental set-up.
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In this chapter, we first present the Legendre transform, its mathematical
properties and its uses in different fields of physics. We also show how the
Legendre transform is applied to electrostatics.

In the second section, we present systems with coupled degrees of freedom
which are found in diverse fields. We detail two cases where we explicitly use
the Lengendre transform to define new functionals. One system in particular,
the virus model, is used in the next parts as a sample to test our optimization
method.

In the third section, we present different methods devised to compute the
free energy of systems with interacting degrees of freedom. One method solves
the system directly with intertwined iterations, the second uses the derivatives
of the free energy, and the last two reformulate the free energy into fully con-
vex computer-friendly forms. Our aim is to compare these methods using the
simple model of a virus .

Our numerical results are presented and commented in the last section of this
chapter.
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1.1. The Legendre Transform

We present the Legendre transform, its definition and properties. Then we
review the use of Legendre transforms in different fields of physics : classical
mechanics, thermodynamics and optics. Last, we apply this mathematical tool
to electrostatics: we show how to render standard functionals convex, at the
cost of expressing them in terms of the vector field D instead of the potential φ.

1.1.1. A mathematical tool

Making sense of the Legendre transform
Zia, Redish and McKay

Am. J. Phys., Vol. 77, No. 7, July 2009

The Legendre transform of a convex function f (x) is defined by :L [ f ] (s) = g(s) = sx− f (x)

s =
d f
dx

(1.2)

In the first line of equation (1.2), x is a function of s and is defined by the second
line of the definition. x and s are called the conjugate variables.

The Legendre transform can also be written in a more symmetric form :

g(s) + f (x) = sx (1.3)

We must however be careful with such notation : only one variable is present,
and x (resp. s) must be considered as a function of s (resp. x) given by s = d f

dx
(resp. x = dg

ds ). This symmetric form clearly shows that this transformation is an
involution : L [g] (x) = f (x). This is also easily verified with the definition (1.2):

L [g] (x) = sx− g(s) = sx− (sx− f (x)) = f (x) (1.4)

The Legendre transform can also be defined with the extremum:

L [ f ] (s) = g(s) = max
x

(sx− f (x)) (1.5)

Equation (1.5) defines the same transformation as equation (1.2). Indeed, if we
consider the derivative d

dx (sx− f (x)), we obtain the equation that x must verify
so that the extremum is reached: s = d f

dx , and we find the first definition of
the Legendre transform. This second definition shows clearly that applying a
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Legendre transform is equivalent to considering the extremum of the function :
x 7→ xs− f (x). The notation with a minimum instead of a maximum is equally
used.

While the first definition of the Legendre transform (1.2) is used to explic-
itly calculate the equivalent function, the second definition (1.5) gives a clear
understanding of our future reasoning as we aim to optimise free energies.

A graphic representation of the Legendre transform is given in figure (1.1).

Figure 1.1.: Graphic representation of the Legendre transform. Let us consider the
function f (x), represented by the blue curve, at a given point x. Its deriva-
tive is represented by a straight line of slope s = d f

dx in red. This line inter-
sects the ordinate axis, and we call this intersection g. We can see on this
figure that the sum of f and g is equal to xs since s is the slope. Thus we
find back the symmetric definition of the Legendre transform : f + g = sx.
Picture taken from [36].

Thus the Legendre transform defines a new function g(s) holding the same
information as the original function f (x) does, but expressed in term of the
derivative d f

dx .
One property of the Legendre transform is that, for a function − f (x) con-

cave, the transform L [ f ] (s) is convex. Since the saddle point problem studied
in this chapter comes from the concavity of the electrostatic free energy, such
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property is central to our use of the Legendre transform. Indeed, we apply this
transformation to the electrostatic free energy to create an equivalent convex
functional.

A simple example of the use of the Legendre transform is the study of a
Hookian spring: f (x) = kx2/2. The transformation of equation (1.2) gives
g(s) = sx(s)− f (x(s)) and x(s) is defined by : s = d f

dx = kx(s). Replacing x(s)
in the expression of g(s) leads to : g(s) = s2/(2k). We recognise here the expres-
sion of the spring potential energy with respect to the position: f (x) = kx2

2 and
the energy using the force applied to the spring : g(s = F) = F2

2k . Both expres-
sions fully described the system and we can use either to study the Hookian
spring.

The Legendre transform definition can be expended for non-convex and non-
differentiable functions. It is then called the Legendre-Fenchel transform or the
convex conjugate. Though this transform is more general, it is not an involu-
tion: the transform of the transform gives the convex envelope of the original
function rather than the function itself [37].

1.1.2. Uses in different fields

Making sense of the Legendre transform
Zia, Redish and McKay

Am. J. Phys., Vol. 77, No. 7, July 2009

In classical mechanics, the Legendre transform connects the Lagrangian de-
scription L(q̇) with the Hamiltonian H(p). Both of these formulations bypass
the concept of forces applied to a particle and instead focus respectively on the
speed q̇ and the momentum p. They are conjugate variables and the symmetric
form of the Legendre transform gives : L(q̇) +H(p) = q̇p. If we consider an
external potential V(q) in which the system evolves, this potential is unchanged
by the transformation and only a sign differs between the well-known expres-
sions of L andH:

L = T −V
H = T + V

(1.6)

The interest of the Legendre transform is shown with the following example:
a particle is in a one dimensional convex potential well U(x). This well has a
unique minimum xmin which corresponds to the particle’s stationary position.
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If we apply an external force f to this particle, its stationary position is shifted
to a new position x0( f ) solution of dU

dx

∣∣∣
x0

= f . So, to move the particle to a

position x, one has to apply the force f = dU
dx .

The remaining question follows: is there a counterpart to U(x) that gives x( f )
directly? In other words, is there a function V of f which gives x( f ) as its
derivative? The answer is the Legendre transform of U(x) : V(x) = f x( f ) −
U(x( f )), which gives : dV

d f = x( f ) + f dx
d f −

dU
dx

dx
d f = x( f ).

It is important to remark that the system is fully described by any of the two
forms : U(x) or V( f ).

In statistical dynamic, the Legendre transform allows us to switch between
variables and their conjugates. One of the variables is often easy to think about,
while its conjugate is more easily controlled.

For example the total energy E of a system is a concept easily grasped, while
the associated control parameter is the temperature through β. To see that those
two variables are conjugate, we need to consider the Helmholtz energy F and
the entropy S. We know that F = E− TS. Noting F = βF and S = S/kB the
dimensionless quantities, we obtain : βF = βE− 1

kBT TS , which leads to :

F (β) + S(E) = βE (1.7)

These two quantities, linked by a Legendre transform, describe equally the
system. The temperature being easier to manipulate in an experimental set-up,
one will rather consider the Helmholtz free energy. Furthermore, the variation
of this energy regarding the temperature is a mark of the system’s ability to re-
spond : dF

dβ = response = E. If we look at the transformed version, E appears
then as a constraint applied to the system (for example, the total energy is con-
stant for an isolated system) and β = dS

dE becomes a measure of the system’s
state. We can summarize these observations as follow :

considering F (β) β = control E = response
S(E) E = constraint β = measure

(1.8)

Thus, the Legendre transform allows us to consider the description that best
fits the experiment. This kind of transformation may be applied to other con-
trol/response pairs of variables : particle number and chemical potential, mag-
netization and magnetic field, polarizability and electric field.
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In optics, the Legendre transform allows us to switch between the different
eikonals describing an optical system [38]. An eikonal is the optical length of
the ray between the input plane and the output plane. There exist four eikonals
which differ by how the light in each plane is described : either by a point
position (x, y) or by an angle (p, q). The four eikonals and how they relate
through the Legendre transform are as follow :

point eikonal = S((x, y), (x′, y′))
point-angle eikonal = V((x, y), (p′, q′)) = −L(x′ ,y′)→(p′ ,q′)[S]
angle-point eikonal = V′((p, q), (x′, y′)) = L(x,y)→(p,q)[−S]
angle eikonal = T((p, q), (p′, q′)) = L(x,y)→(p,q)[−V]

= −L(x′ ,y′)→(p′ ,q′)[V′]

(1.9)

The prime notation corresponds to what relates to the output plane. We note
that eikonal theory uses a slightly different definition of the Legendre transform
than the one given in section (1.1.1) : Leikonal [ f (x)] = f (x)− xs. For clarity, I
kept in this paragraph the same definition as before, hence the frequent appear-
ance of the minus sign in the above equations.
Those different eikonals are useful to describe different situations. For exam-
ple, afocal systems require point-eikonal descriptions, while angle-eikonals are
useful when the output plan is the image plan [38].

The Legendre transform is also used to determine the caustic of light rays
from the profile of the surface which reflects or refracts those rays [39]. The
caustic is defined as the curve or surface to which the light rays are tangent. It
is, as Starvroudis explains (ref [1] of [40]) : "[...] real and becomes visible by
blowing a cloud of smoke in the focus of a lens". As the Legendre transform is
an involution, it is also possible to use the caustic form to deduce the surface
profile [39]. Such transformation is particularly useful for the study of cracks
in materials through the caustics [41]. We find here the same control/response
duality as presented in the previous paragraph for the thermodynamics.

1.1.3. Application to electrostatics

Legendre transforms for electrostatic energies
J. S. Pujos and A. C. Maggs

Proceedings of the CECAM Workshop, 2012

As shown in the previous paragraphs, the Legendre transform is particularly
useful to switch between equivalent descriptions of a system. This also applies
in electrostatics [35, 42], and we show how the energy functional expressed in
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term of the electrostatic potential φ, transforms into an equivalent functional de-
pending of the electrostatic displacement D. We illustrate this transformation
with three systems. First, we study the simple case of fixed charges interact-
ing. Second, we present the case of mobile ions, a system on which we will
expend in further studies. Last, we provide a translation between two visions
of the theory of dielectrics. Indeed, recent formulations of implicit dielectrics
use elaborate field-theory mappings and find a generalized Poisson-Boltzmann
equation with a Langevin correction. We show how to map this description
onto a free energy expressed in terms of a polarization field with long-ranged
dipolar interactions. We believe that these equivalent descriptions can lead to a
deeper understanding of the underlying physics.

Interaction between fixed charges is the simplest approach with which we
first illustrate the Legendre transform. We consider fixed charges ρ f in a het-
erogeneous dielectric medium. The energy functional expressed in terms of the
electric potential φ is :

U(φ) =
∫ {
−ε(r)(∇φ)2

2
+ ρ f φ

}
d3r (1.10)

with ε(r) the dielectric constant of the medium. To find the state of the system
at equilibrium is to find the potential φ which optimizes U(φ). The variational
equation with respect to the electrostatic potential leads to the Poisson equation:

div ε(r)grad φ = −ρ f (r) (1.11)

We start our transformation of the variational problem by introducing the
new variable E = −∇φ, the electric field. To do so we use a vector Lagrange
multiplier D. The stationary point of equation (1.10) is identical to the one of
the following expression [43]:

U(φ, E, D) =
∫ {
−ε(r)E2

2
+ ρ f φ + D · (E +∇φ)

}
d3r (1.12)

Re-organizing this equation leads to :

U(φ, E, D) =
∫ {

D · E− ε(r)E2

2
+ ρ f φ + D · ∇φ

}
d3r (1.13)

At this point, we recognize the variational equation for E which corresponds to
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1. The Legendre Transform applied to Electrostatics

a Legendre transform with dual variable D (in purple in equation (1.13)):

D · E− ε(r)E2

2
= L

[
ε(r)

2
E2
]
(D) =

D2

2ε(r)
(1.14)

We also integrate by parts the product D · ∇φ to find −φ div D, and we assume
vanishing boundary terms. Thus the stationary point of equation (1.10) is iden-
tical to the stationary point of:

U(D, φ) =
∫ { D2

2ε(r)
+ φ(ρ f − div D)

}
d3r (1.15)

This new functional is convex [44, 45], and variation in φ now imposes Gauss
law: div D− ρ f = 0. Thus, the field D is the electrostatic displacement defined
by: D = εE = −ε∇φ. We notice that replacing D in Gauss’ law leads back to
the Poisson equation (eq. (1.11)), also deduced from the variation of the energy
regarding φ.

In the following work, we use free energy densities, rather than the integrated
energies. Keeping in mind that we are working on equivalent functionals with
identical stationary points, equivalent free energies will all be noted f even
though they are not strictly equal.

Free mobile ions are now considered. In numerous situations, symmetric
monovalent electrolytes are used to describe a ionic medium. We will detail
here the application of the Legendre transform to such electrolytes.

The free energy is given by:

f (φ, c+, c−) = −
1
2

ε(∇φ)2 + (c+ − c−)eφ

+ kBT ∑
j
(cj ln (cj/cj0)− cj)

(1.16)

with φ the electrostatic potential, c± the ions concentration and c±0 the bulk con-
centration. ε is the dielectric constant of the medium, e the elementary charge
and T the temperature with kB the Boltzmann constant. The first line corre-
sponds to the electrostatic interactions and the second line is the entropy of the
ions.

22



1.1. The Legendre Transform

Variation of f with respect to c± gives:

±eφ + kBT(ln (c±/c±0) + 1− 1) = 0

thus we find the Boltzmann distribution of the ions:

c± = c±0 exp (∓βeφ) (1.17)

This leads to the well-known expression of the free energy for monovalent sym-
metric ions:

f (φ) = −1
2

ε(∇φ)2 − 2c0 cosh(βeφ) (1.18)

Now we replace −∇φ by E and introduce the Lagrange parameter D:

f (φ, E, D) = −1
2

εE2 − 2c0 cosh(βeφ) + D · (E +∇φ)

= D · E− 1
2

εE2 + φ · (−div D)− 2c0 cosh(βeφ)
(1.19)

We recognize here two different Legendre transforms: one for E with the dual
variable D (in purple), and one for φ with the dual variable −div D (in green).
The first Legendre transform is similar to the Hookian spring example given in
section (1.1.1) .

L
[

εE2

2

]
(D) =

D2

2ε
(1.20)

We calculate the general Legendre transform of the function x 7→ A cosh(Bx).
From the definition (1.2), we have:{

L [A cosh(Bx)] (s) = sx− A cosh(Bx)
s = AB sinh(Bx)

(1.21)

We replace x = asinh(s/AB)/B in the first line and use the equality cosh(asinh(y)) =√
y2 + 1. We obtain the Legendre transform of the hyperbolic cosine:

L[A cosh(Bx)](s) = A
[

s/(AB)asinh (s/AB)−
√
(s/AB)2 + 1

]
= A g̃ (s/AB)

(1.22)
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1. The Legendre Transform applied to Electrostatics

Thus we can write an equivalent convex free energy density :

f (D) =
D2

2ε
+ 2c0 g̃

(
−div D

2c0βe

)
(1.23)

Extending this description to a system with fixed charges and mobile ions,
we find the free energy density:

f (D) =
D2

2ε
+ 2c0 g̃

(
ρ f − div D

2c0βe

)
(1.24)

In the absence of free ions the function g̃ reduces to the constraint of Gauss’ law,
and we are back to the first example.
This method can also be applied to a non-symmetric electrolyte. One has to
consider the Legendre transform of eβq1φ + e−βq2φ instead of the function g̃.

From Poisson-Langevin to Polarization We now consider theories of ex-
plicit Langevin dipoles and how these dipoles can be incorporated into a con-
vex free energy. Recent work on improving the description of solvation of pro-
teins [46] has considered an explicit model for the solvent in terms of Langevin
dipoles. If we neglect the volume of ions and dipoles, the free energy density
for a mixture of symmetric ions and neutral dipoles is :

f (φ) = ρ f φ− ε0(∇φ)2

2
− 2λion cosh (βqφ)− λdip

sinh(βp0|∇φ|)
βp0|∇φ| (1.25)

The parameters λ are related to the chemical activities of the ions and dipoles
respectively. All dipoles have the same dipolar moment intensity p0 and the
dipole term comes from the integration over all orientations. We consider here
only the vacuum permittivity ε0 since the medium is directly modelled with the
dipoles.

As in the previous example and in [35], we use first a Lagrangian multiplier
D to replace (∇φ) by its electrostatic equivalent −E.

f (φ, E, D) = ρ f φ− ε0E2

2
− g(φ)− h(E) + D · (∇φ + E) (1.26)

where g(φ) = 2λion cosh (βqφ) is the free energy density due to the free ions
and h(E) = λdip

sinh(βp0|E|)
βp0|E|

the free energy due to the dipoles.
Working in the limit where the linear response is valid, the dipole part of the

24



1.1. The Legendre Transform

free energy can be expanded to the quadratic order and h(E) becomes:

h(E) = λdip +
λdip

6
β2p2

0E2

The constant being of no interest since we focus on the optimum, we consider
only the quadratic part of h(E). We also integrate by part the product D · ∇φ

into −φ · div D, and we obtain:

f (φ, E, D) = ρ f φ− ε0E2

2
− g(φ)−

λdipβ2p2
0

3
E2

2
+ D · E− div D · φ

= D · E−
(

ε0 +
λdipβ2p2

0

3

)
E2

2
+ φ(ρ f − div D)− g(φ)

(1.27)

At this point, we recognize two Legendre transforms and we reach a new equiv-
alent functional:

f (D) =
1

ε0
(
1 + λdipβ2p2

0/3ε0
)D2

2
+ 2λion g̃

(
ρ f − div D

2βqλion

)
(1.28)

We are here interested by the first term on the right hand side of the equation.

It takes the well-known form of D2

2ε0εR
with εR = 1 +

λdipβ2 p2
0

3ε0
being a character-

istic of the material. We recognize here a classical form of the energy where
the dielectrolyte properties are included in the relative dielectric constant of the
medium.

We now diverge from our previous treatment and introduce a new variable
P. We will show later that P is the physical polarization. We consider the func-
tional:

f (E, D, P) = φ(ρ f − div D)− ε0E2

2
− g(φ) + L[h](P) + E · (D− P) (1.29)

Let us show that this functional is equivalent to the functional given by equa-
tion (1.26). We recognize the Legendre transform in P with the dual variable
E:

EP−L[h](P) = L[L[h]](E) = h(E)

The last equality comes from the involution property of the Legendre transform.
Thus the two functionals are equivalent.

From equation (1.29), we can apply the Legendre transform on φ for the dual
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1. The Legendre Transform applied to Electrostatics

variable (ρ f − div D) and on E for the dual variable (D− P). We find:

f (D, P) =
(D− P)2

2ε0
+ L[h](P) + L[g](ρ f − div D) (1.30)

This is exactly the form postulated in [47]. It is particularly useful to understand
the physical limits on response functions [48, 49] and the origin of the negative
dielectric constant observed in structured fluids.

Working from equation (1.30), we can demonstrate its equivalence to other
formulations of electrostatic interactions expressed in terms of the polarization
P. To do so, we need to eliminate the variable D. This brings us back to other
more familiar forms for the electrostatic energy at the cost of re-introducing
long-ranged dipole-dipole interactions between the polarization variables.

Using once more the quadratic order of h(E), we have:

L[h](P) = P2

2ε0χ
(1.31)

where χ is a material parameter. Taking the variations of the functional (1.29)
with respect to P and E, we find that:

P = ε0χE, ε0E = D− P (1.32)

The parameter χ is thus the electric susceptibility of the medium. The polarisa-
tion variable is indeed playing the role we expect from standard treatments of
Maxwell’s equations. The free energy of the fluctuating dipoles in the absence
of free ions can then be found from the functional

f (D, P, φ) =
(D− P)2

2ε0
+

P2

2ε0χ(r)
− φ(div D− ρ f ) (1.33)

where the last term is a Lagrange multiplier for the constraint of Gauss’ law,
which replacesL[g]. The free energy takes here another well-known form where
the dielectric properties are directly considered through the polarisation P and
the electric susceptibility of the material χ = εR − 1.

Further re-writing (refer to [42]) leads to a formulation of the free energy
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1.1. The Legendre Transform

widely used in theoretical study of electron transfer reactions [50] :

U =
1
2

∫ div P(r)div P(r′)
4πε0|r− r′| d3r d3r

′
+

∫ {
ε0E2

0
2
− E0 · P +

P2

2ε0χ(r)

}
d3r (1.34)

We have demonstrated that energy functionals for dielectrics can be trans-
lated into equivalent forms by introducing the physical polarization. We con-
clude that the Legendre transform allows us to switch between equivalent de-
scriptions of the dipoles.

1.1.4. Conclusion

We have shown that the Legendre transform can be used to translate be-
tween multiple forms of the energy in mean-field theories. All formulations
are equivalent but different forms put the emphasis on different degrees of free-
dom. For numerical implementation, it is advantageous to work with a formu-
lation which is both convex and local. This is achieved in Poisson-Boltzmann
theory by choosing the electrostatic displacement D as the fundamental thermo-
dynamic field. This is particularly interesting for systems with more degrees of
freedom than the electrostatics. Indeed the stationary point of the free energy
shifts from a saddle point to a minimum with the use of the Legendre transform.
All physical degrees of freedom can thus be treated in an equivalent manner in
numerical solvers. Very similar conclusions have also been found in quantum
chemistry [51].
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1. The Legendre Transform applied to Electrostatics

1.2. Electrostatic Interacting Systems

In this section we present three systems described by interacting degrees of
freedom. In particular we detail the use the Legendre transform for a phase sep-
aration problem (in section 1.2.1), and in the case of the virus model (in section
1.2.3).

1.2.1. Phase separation coupled to electrostatics

We consider the theory of phase separation of immiscible fluids in the pres-
ence of electrostatic interactions due to ions. A mixture of two solvents (A and
B) near their miscibility limit and in the presence of salt displays interesting
properties which have been explored in recent experiments [28]. Density fluctu-
ations couple to the dielectric properties of the medium, which in turn influence
the partition of ions in the fluctuating solvent field. The experimental system
has turned out to be very rich, and allows one to adjust the effective interaction
between colloidal particles using temperature as a control parameter.

A simplified theoretical description of such systems is given in [26, 52] and the
free energy density expressed in terms of the densities and potentials is given
by:

f (φ,Ψ, c+, c−) = fm(Ψ)− 1
2

ε(Ψ)(∇φ)2 + (c+ − c−)eφ

−
(
∆u+c+ + ∆u−c−

)
Ψ + kBT ∑

j
(cj ln (cj/cj0)− cj) (1.35)

Ψ describes the composition of the fluid mixture. c+ and c− are the concentra-
tion of positive and negative monovalent ions, with ∆u+ and ∆u− their relative
preferences between a A-liquid environment and a B-liquid environment. As
before, φ is the electrostatic potential. We see that variations in the fluid com-
position are coupled with the electrostatic via ε(Ψ).

fm(Ψ) includes all the terms that are only dependent on Ψand is convex:

fm(Ψ) = f0(Ψ) +
c
2
(∇Ψ)2 − µΨ

with f0(Ψ) the free energy due to the mixing of the two solvents. It can, for ex-
ample, be written as a binary mixture free energy density: f0(Ψ) ∝ Ψ log(Ψ) +
(1 − Ψ) log(1 − Ψ) + χΨ(1 − Ψ), with χ the Flory parameter [27, 53], or as a
Landau expansion f0(Ψ) ∝ α (Ψ−Ψc)

2 + γ (Ψ−Ψc)
4, with α being tempera-

ture dependent, γ positive, and Ψc the critical composition [26].

28



1.2. Electrostatic Interacting Systems

We optimize the functional (1.35) over c+ and c−. The free energy density
becomes:

f (Ψ, φ) = fm(Ψ) − 1
2

ε(Ψ)(∇φ)2 − kBTc0+ exp(β∆u+Ψ− βeφ)

− kBTc0− exp(β∆u−Ψ + βeφ) (1.36)

Let us note that using the Legendre transform of the function c± 7→ ∆u±c± −
kBTc±

[
ln
(

c±
c±,0

)
− 1
]

leads to the same functional (1.36).

With a symmetric electrolyte (c0+ = c0−) and assuming that the ions have
similar interactions with the solvents (∆u+ = ∆u−), the functional simplifies
into :

f (Ψ, φ) = fm(Ψ)− 1
2

ε(Ψ)(∇φ)2 − 2kBTc0 exp(β∆uΨ) cosh(βeφ) (1.37)

We recognize here a generalization of the well known Poisson-Boltzmann func-
tional for a symmetric electrolyte. The description is adapted to analytical solu-
tions yet f (Ψ, φ) is convex with respect to Ψ but concave for φ. To find the equi-
librium state numerically, one has to solve a saddle point problem as a simple
minimization will not give the correct answer. We now implement the transfor-
mation introduced in section (1.1.3) and replace the potential φ with the electric
displacement D :

f (Ψ, D) = fm(Ψ) +
D2

2ε(Ψ)
+ 2kBTc0eβ∆uΨ g̃

(
div (D)e−β∆uΨ

2c0e

)
(1.38)

with g̃ the Legendre transform of cosh (equation (1.22)).

We have thus reached our objective: we have built an equivalent description
of the system with the stationary conditions conserved and a local and con-
vex functional. One disadvantage is that the number of degrees of freedom
is increased due to the use of the vector field D instead of the scalar field φ.
The advantage, however, is that a global minimising principle can be used and
the functional can be directly programmed to give the solution of the coupled
electrostatic-phase separation problem.
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1. The Legendre Transform applied to Electrostatics

1.2.2. Polyelectrolytes

Polyelectrolytes are charged polymers, thus electrostatics are an important
part of their properties. However, the polymer nature can not be neglected
and must be considered to study these objects. If the charges interactions are
usually described with the electrostatic field φ, the polymer configuration is
often described with the field ψ [54, 55]. This field comes from the ground
state dominance approach and relates to the concentration of monomers though
Cmonomer = |ψ|2. It contributes to the free energy through the integral:

I =
∫ { a2

6
(∇ψ)2 +

v
2
|ψ|4

}
dr =

F
T

(1.39)

The first term in the integral is the entropy contribution. It thus represents the
resistance to inhomogeneous distribution. It is the polymer’s response to lo-
cal variation of the concentration and is linked to the connectivity of the chain.
It is regulated by the monomer size a. The second term comes from the self-
consistent potential. It corresponds to the short range interaction between mono-
mers and is determined by the excluded volume of the polyelectrolyte chain v.

A confined polyelectrolyte was studied by Podgornik [23]. In the fourth
part of this article, he describes how this study is an extension of the Poisson-
Boltzmann equation. The charge density of the polymeric chain is obtained
through the Green’s function of the polymer and the free energy is found in one
dimension. A similar study was undertaken by Borukhov, Andelman and Or-
land [56] to explore the attraction between charged colloids in the presence of
polyelectrolytes.

In both cases the functional free energies relate to two interacting fields :

f (ψ, φ, c+, c−) = − ε0εR

2
(∇φ)2 +

(
ec+ − ec− + ρ f − peψ2

)
φ

+ ∑
i=±

kBT

{
ci ln(

ci

ci
0
)− ci

}

+ kBT
{

a2

6
(∇ψ)2 +

v
2

ψ4
} (1.40)

The first line gives the electrostatic contribution of the free energy with free ions
c±, fixed charges ρ f and the polyelectrolyte monomers charged −pe. The sec-
ond line is the salt entropy. The third line corresponds to the non-electrostatic
interactions of a polyelectrolyte, with a the monomer size and v the excluded
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volume. The remaining parameters are: ε0 the vacuum permittivity, εR the rela-
tive permittivity of water, e the elementary charge, β = 1

kBT the inverse temper-
ature, and c0 the concentration of monovalent symmetric ions.
This functional can be minimized over c+ and c− to become:

f (φ, ψ) = − ε0εR

2
(∇φ)2 +

(
ρ f − peψ2

)
φ

− 2c0 cosh(βeφ) + kBT
{

a2

6
(∇ψ)2 +

v
2

ψ4
} (1.41)

The stationary point of this functional gives the free energy of the system. At
this point, φ(r) is the Poisson-Boltzmann electrostatic potential and ψ2 gives the
density of a single polyelectrolyte.
The pseudo-free energy in equation (1.41) is concave with respect to φ and con-
vex with respect to ψ. This is problematic for numerical methods as saddle-
point searchs are slow to converge.

Extensions of these ideas to different situations were made. For example
polyelectrolyte brushes, which are charged polymers densely grafted onto a
surface, were studied by Seiki , Suzuki and Orland who investigated the scal-
ing relation of the thickness of the brush [16]. In this case, the Hamiltonian
is also expressed in terms of two interacting fields. The mean field approxi-
mation leads to a general Poisson-Boltzmann equations and modified diffusion
equations that the probability amplitude of the monomer should verify. These
equations were numerically solved through iterations.
In [57], the description of polymer brushes is extended with the addition of
short range interactions.

1.2.3. The spontaneous virus formation

Polyelectrolyte theory can be used in biology to model structures like DNA or
RNA. In [24], Šiber and Podgornik developed a simple model of a ssANR virus.
The virus capsid is considered to be a charged sphere of radius R with a surface
charge σ. The genomic structure is modeled with a charged polymer described
by the density of monomers ψ2. It is composed of N monomers of charge pe, of
size a and of efficient non-electric volume v. The virus is immersed in a symmet-
ric monovalent electrolyte of bulk concentration c0 which models the biological
medium.
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The pseudo free energy of the virus system is:

F =
∫

f (ψ, φ, c+, c−) + µ

(∫
ψ2 − N

)
(1.42)

where the second term on the right-hand side is the constraint over the number
of monomers and µ its Lagrange parameter. The first term is the free energy
density:

f (ψ, φ, c+, c−) = kBT
{

a2

6
(∇ψ)2 +

v
2

ψ4
}
− ε0εR

2
(∇φ)2

+
(

ec+ − ec− + σ− peψ2
)

φ

+ ∑
i=±

kBT

{
ci ln

(
ci

ci
0

)
− ci

} (1.43)

This functional is composed of the polyelectrolyte non-electrostatic self-inter-
action term; the electrostatic energies of polyelectrolyte segments, fixed charges
residing on the capsid, and salt ions; as well as the entropies of the salt ions. The
free energy corresponds to the minimum with respect to the fields {ψ, c+, c−}
and the maximum over the electrostatic field φ.
Minimizing over the ions concentration leads back to the polyelectrolyte equa-
tion (1.41).
In the case of the formed virus, the polyelectrolyte is contained within the cap-
sid and we set ψ = 0 outside of the virus itself.

This model is used to study how the energy formation of the virus varies with
the salt concentration or with the size of the RNA. For example, the number of
monomers N represents the size of the virus’ ss-RNA and determines the quan-
tity of genetic information carried by the virus [24].

To use the Legendre transform, the electrostatic displacement field D is in-
troduced [35]. It describes the electrostatics of the system instead of the scalar
potential φ, and the final functional is:

f (D, ψ) = kBT
{

a2

6
(∇ψ)2 +

v
2

ψ4
}
+

D2

2ε0εR

+ 2c0kBT
{

ξ asinh (ξ)−
√

ξ2 + 1
} (1.44)
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with ξ(D, ψ) = σ−peψ2−∇D
2ec0

.

The new formulation is perhaps less intuitive than the more familiar Poisson-
Boltzmann equation. Yet its convexity with respect to all the fields renders it
suitable for simple numerical minimization.

1.2.4. Conclusion

In this part we introduced new variational variables in free energies with the
help of Lagrange multipliers, and then performed a Legendre transform to find
functionals that are convex with respect to all degrees of freedom. We illustrated
this with a mean field formulation of phase separation coupled to electrostatic
interactions, and with a simple virus model. In the next parts we will focus on
the numerical resolution of systems with interacting degrees of freedom.
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1.3. Numerical Methods

The present section focuses on numerical treatments of models with interact-
ing degrees of freedom. As discussed previously, the free energy is concave
with respect to the electrostatic field [22] and convex with respect to configura-
tional degrees of freedom. Thus simultaneous optimization of the free energy
for both fields is excluded.

Various methods exist which reformulate the free energy so that it is convex
with respect to every fields and retains its stationary point. One such method
squares the derivatives of the free energy functional (equation (1.1)). The new
functional is always positive and vanishes at the stationary point [20, 56]. In
other methods the free energy functional is rewritten using inverse functions
[34, 35]. If one wants to avoid reformulating the free energy, iterative methods
are also available.

In this section, we present four numerical methods that are applied to the
virus model presented in the previous section (1.2.3). In the next section (1.4),
we implement and compare these four methods.

1.3.1. Nested Loops Optimization

The stationary point of the functional f in equation (1.43) corresponds to the
maximum over φ and the minimum over ψ. The most straightforward way to
find such a point is to search independently for the two extrema: one optimizes
iteratively the configuration while solving the electrostatic problem at each cal-
culation of the iterative method. The outside loop of optimization calls upon
the inside one until the saddle point is reached (see the algorithm (1) below).
We call this method the nested loops optimization as the lack of reformulation
of the free energy forces us to use two concatenated loops.

It is interesting to note that this method differs from an iterative scheme
where both search loops are on the same level but included in a general loop.
Our algorithm, with one search loop inside the other, has a smaller number of
loops than the usual iterative method but differentiates heavily between the two
fields. The schematic view of these two programs given in figure (1.2) shows
these differences.
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Algorithm 1 Nested Loops Optimization Program

input
φ← φ0
ψ← ψ0

loop over ψ

loop over φ for ψ f ixed ← ψ
minimize − f (φ, ψ f ixed) over φ
return φopt , f (φopt, ψ f ixed)
φ← φopt

end loop

φ f ixed ← φ
minimize f (φ f ixed, ψ) over ψ
return ψopt , f (φopt, ψopt)
ψ← ψopt

end loop

output ψOPT , φOPT , f (φOPT , ψOPT)

Figure 1.2.: Schematic view of two iterative algorithms. On the left-hand side, the
nested loops method studied in this thesis optimizes the pseudo free-
energy over one field for each optimization step taken for the other field.
On the right hand side, the other iterative method puts both optimization
loops on the same level in a third encompassing loop.

The classical iterative method was implemented and tested but no conver-
gence could be reached. One could rectify this problem by taking into account
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the specifics of the electrostatics and rewriting the optimization loops. Yet, in
the present work, we wish to use numerical method that were already opti-
mized for general purposes, rather than writing a specific algorithm for one
particular model. We thus focus on the nested loops method.

1.3.2. Using the Derivatives

One common method, presented in the introduction, is based on the deriva-
tives of the free energy with respect to each field. At the saddle point we are
searching for, these derivatives are zero.(

∂F
∂φ

)
φSP ,ψSP

= 0

(
∂F
∂ψ

)
φSP ,ψSP

= 0

We build the new functional:

fderiv(φ, ψ) =
∫

dr

[(
∂F
∂ψ

)2

+

(
∂F
∂φ

)2
]

(1.45)

which is always positive and vanishes at the stationary point. Thus, the mini-
mum yields the fields at equilibrium.

Algorithm 2 Derivative Method
input
φ← φ0
ψ← ψ0

loop
minimise fderiv(φ, ψ) over ψ and φ

return ψopt , φopt
end loop

output ψOPT , φOPT , f (φOPT , ψOPT)

The algorithm based on this functional is composed of a single loop. How-
ever, the functional fderiv involves derivatives to the square which gives a prob-
lem with greater stiffness. Indeed, using the free energy of the virus given by

36



1.3. Numerical Methods

equation (1.43) leads to the derivative expression:

∂F
∂φ

= σ− peψ2 + ε0εR∆φ− 2c0e sinh (βeφ) (1.46)

Thus the term (∆φ)2 appears in fderiv, and this gives a stiffness proportional to
q4. A slow optimization is expected.

1.3.3. Convexifying the Free Energy

For the next two methods, we build a convexified free energy from equa-
tion (1.43). In the first method, an inverse function is used, while in the other,
the Legendre transform leads to a convex functional.

An inverse substitution is used in a recent article [34] to reach a new equiv-
alent functional, convex with respect to the electrostatic field φ.

The following functional is the starting point of this transformation:

f (ψ,φ, c+, c−, E) = kBT
{

a2

6
(∇ψ)2 +

v
2

ψ4
}

+
ε0εR

2
(E)2 + ∑

i=±
kBT

{
ci ln

(
ci

ci
0

)
− ci

}
− φ

{
∇ (ε0εRE)− σ + peψ2 − ec+ + ec−

}
(1.47)

with E the electrostatic field. The variation of f (ψ, φ, c+, c−, E) with respect to E
gives the equality: E = −∇φ. Replacing the electrostatic field in the expression
of the free energy leads back to the original functional (1.43).

To apply the inverse substitution, we need to remember that the derivation
of f with regards to c± gives the ions concentrations in term of the electrostatic
potential φ. We consider the variation of the free energy regarding φ and re-
place E and c± in the equality. We obtain a new expression of the electrostatic
potential:

φ =
1
βe

asinh
(

ε0εR∇2φ + σ− peψ2

2ec0

)
(1.48)

We note ξ(φ, ψ) = ε0εR∇2φ+σ−peψ2

2ec0
. The electrostatic field, the potential and the

concentrations are replaced in the functional (1.47) to reach an equivalent and
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convex functional:

f I(φ, ψ) = kBT
{

a2

6
(∇ψ)2 +

v
2

ψ4
}
+

ε0εR

2
(∇φ)2

+ 2c0kBT
{
− cosh (βeφ) + βeφ sinh(βeφ)

− asinh(ξ) sinh(βeφ) + ξ asinh (ξ)
} (1.49)

The global minimum is searched for by means of a single optimization loop.
The schematic algorithm is similar to algorithm (2), and we expect the same
level of efficiency as for the derivative method of section (1.3.2). Indeed, f I has
the same high stiffness as fderiv from the hyperbolic arcsine:
asinh

(
(∇φ)2) ∼ (∇φ)4 → q4

Legendre transform. Like with the inverse substitution, the Legendre trans-
form reformulates the free energy into a convex expression suitable for numeri-
cal calculations. The free energy functional was calculated in section (1.2.3) and
is given by:

fL(D, ψ) = kBT
{

a2

6
(∇ψ)2 +

v
2

ψ4
}
+

D2

2ε0εR

+ 2c0kBT
{

ξ asinh (ξ)−
√

ξ2 + 1
} (1.50)

with ξ(D, ψ) = σ−peψ2−∇D
2ec0

.
The minimum over both ψ and D is found with a single optimization loop. This
functional has a lower stiffness than the previous method but uses the vector
field D which brings a larger number of degrees of freedom.

The aim of the next section is to test these various methods on a single system
to achieve clear comparison. The system under consideration is the virus model
[24] presented in section (1.2.3).
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1.4. Numerical Results

In this section we compare the results of the four methods presented previ-
ously. We implement those numerical methods in Matlab and we systematically
call the function fminunc to find the extrema of a functional.

During this study, we keep in mind the main objective of our work: to build
a fast and efficient solver for systems with interacting degrees of freedom. We
will thus focus first on the validity of the results and then consider the time
required to compute the solution.

First we expose the numerical techniques used and some preliminary studies.
We then study the validity of the four simulations and their efficiency. We also
consider different initializations to further test the stability of the solvers. We
end this study with the use of a different minimum-search algorithm which is
more efficient but requires the analytical expression of the functional’s gradient
as an input.

1.4.1. Numerical tools

The Matlab function fminunc [58] is used to find to minimum of the different
functionals studied.

This function returns the optimized functional, the corresponding fields, as
well as feedback on the optimization process. This information allows us to
identify the cause of the termination of the search, and to determine if a conver-
gence was reached.

This numerical function fminunc implements the minimum search with either
the Quasi-Newton method or the Trust-region algorithm. In this study, the first
method is systematically called; except in section (1.4.5) where the question of
the search algorithm is specifically treated.

The Quasi-Newton algorithm [59] is an iterative method that can deal with
two practical problems: solving a system of n-equations with n-unknowns, and
the unconstrained minimization of functionals.

Let us call f (x) the functional we wish to minimize. The descent method
consists of iteratively searching for the minimmum x? through the update of xk
with xk+1 = xk + λk pk such that f (xk + 1) < f (xk). pk is the direction along
which we iterate at step k. The method of steepest descent uses the direction
pk such that an iteration along any other direction would give a higher value of
the functional:

∀p , f (xk + λpk) < f (xk + λp)
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1. The Legendre Transform applied to Electrostatics

This leads to the iteration xk+1 = xk − λk∇ f (xk). However, this method has
a slow convergence and Newton’s method improve on that point using the in-
verse of the Hessian:

xk+1 = xk −
(
∇2 f (xk)

)−1
∇ f (1.51)

Descent methods take the general form of xk+1 = xk − B−1
k ∇ f (xk). Quasi-

Newton’s methods aim to iteratively generate a series of {Bk} such that conver-
gence is reached in a fast manner.

The variation implemented in the fminunc function of Matlab is the Broyden-
Fletche-Goldfarb-Shanno update. It generates iteratively the inverse matrix
B−1

k = Hk using the following formula:

H̄ =

(
I − syT

< y, s >

)
H
(

I − ysT

< y, s >

)
+

ssT

< y, s >
(1.52)

with H̄ = Hk+1, H = Hk, s = xk+1 − xk, y = f (xk+1)− f (xk) and I the identity
matrix. The particularity of such implementation is the hereditary symmetry
and positive definiteness that the series of matrix Hk possesses.

The trust region algorithm [60], also called restricted step method, is also
implemented in Matlab’s function fminunc. To use this method, we must give an
analytical expression of the functional derivatives as an input. We will compare
the Quasi-Newton and the trust-region algorithm in the subsection (1.4.5).

The trust region algorithm first defines a region where the quadratic approxi-
mation to the functional is good enough. If the region is too large, it is redefined
with a lower diameter until the approximation is acceptable. Then, the next it-
eration is achieved using the quadratic model and a new point is defined. The
trust region is also enlarged if the model is very close to the exact function.

This method allows us to converge despite the lack of good initial guess. In-
deed, it avoids over-large steps thanks to the limit imposed by the definition of
a trust-region, yet it maintains strong convergence properties.

1.4.2. Preliminary studies

Discretization and Spherical Symmetry. The spherical symmetry reduces
the dimensionality of all problems to one, but it must be taken into account
when the operators are discretized. As we consider a spherical capsid, we con-
fine our calculations to spherical symmetry. However, the building of equiva-
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lent functionals presented earlier uses integrations by parts and the fundamen-
tal identity ∫

D · ∇φ = −
∫

φdiv D +
∮

φD · dS (1.53)

In order to compare one identical system solved by different methods, we
must ensure that the functionals are equivalent in their discretized forms. Thus
the continuum identity (1.53) must be verified in the discretized form.

The potentials φ and ψ are defined on the points of the lattice, while∇φ,∇ψ,
and D are defined on the intermediate links. We use the gradient operator as the
fundamental object of discretization and we build the discretized divergence
and the Laplacian operators. The left hand side of equation (1.53) gives, in the
discretized spherical system:

4π ∑
n

r2
n,n+1

(
φn+1 − φn

δ

)
Dn,n+1 (1.54)

where δ is the lattice size. Identifying both sides of equation (1.53), a definition
of the discretized divergence is obtained:

div n D =
Dn,n+1 r2

n,n+1 −Dn−1,n r2
n−1,n

δ r2
n

(1.55)

We can then write the discretized Laplacien operator in spherical symmetry
from the identity ∆φ = div (∇φ):

(∆φ)n =
1

δr2
n

[(
φn+1 − φn

δ

)
r2

n,n+1 −
(

φn − φn−1

δ

)
r2

n−1,n

]
(1.56)

The discretization can thus be applied on any of the functionals previously
considered, and the transformations shown in section (1.3) are valid in the dis-
cretized form.

As diagnostic tools of the performance of each method, two quantities are
considered:

– The free energy F, expressed in kBT units, is expected to converge when the
number of points increases.

– The derivative of the functional with respect to each field should always be
zero. Let us note that the derivatives of the functionals are defined at each
point of the system. We use the L1-norm to test the validity of the simu-
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lation. We also differentiate between the derivative regarding the electro-
static field Dφ = 1

N ∑n=N
n=0

∣∣∣ ∂ f
∂φn

∣∣∣ or the displacement field DD = 1
N ∑n=N

n=0

∣∣∣ ∂ fL
∂Dn

∣∣∣,
and the one with respect to the polyelectrolyte field Dψ = 1

M ∑m=M
m=0

∣∣∣ ∂ f
∂ψm

∣∣∣.
N is the total number of points used in the model and M is the number of
points inside the virus capsid. Indeed, the polyelectrolyte representing the
virus genetic material is only present inside the capsid and the field ψ is not
defined on the points outside.

These two quantities are plotted as functions of the discretization.

The simple case of an empty virus capsid with no polyelectrolyte is first
considered. The model reduces to the standard Poisson-Boltzmann model where
only the description of the electrostatic through φ or D remains and all the op-
timization methods require only one loop. The results for this system are pre-
sented in figure (1.3).
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Figure 1.3.: (a) Computed free energy of the ionic solution with a fixed charged
sphere for different discretizations. (b) Derivatives of the free energy re-
garding the electrostatic displacement field D for the same system.
The four methods studied are: the nested loops method in black squares,
the derivative method in green triangles, the inverse substitution method
with red X-s, and the Legendre transform method in blue points.

All methods agree for small numbers of lattice points. For dense lattices,
the nested loops method and the Legendre method are identical. Furthermore,
their derivatives stay zero while the methods based on the inverse substitution
and the squared derivatives show difficulties in converging for dense lattices.
It is quite surprising to see such differences as we model here a very simple
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system. We attribute the lack of convergence to the stronger stiffness parameter
present in both the derivatives and the inverse substitution methods (coming
form the (∆φ)2 and from the sinh((∇φ)2) respectively) and absent in the other
two methods.

Let us also remark that the free energy converges to its value for 100 points
while the two diverging methods can not be relied on when more than 200
points are used (though the difference stay small for the number of points tested).
This leaves a small gap of reliable use for these two methods.

The nested loops method is composed, for this simple model, of only one
optimization loop since only the electrostatic field is present. The limits of this
method and the usefulness of the three other algorithms can only be explored
for a system described by two interacting fields.

A pre-study of the nested loops method. By placing the optimum search of
one field inside the optimization cycle of another field, the nested loops method
differentiates between the two fields (figure (1.2)). To investigate the importance
of the positions of the respective fields in the optimization loops (inside loop or
outside loop), the two possibilities are computed and compared. Figure (1.4)
shows the derivatives of these two cases.
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Figure 1.4.: Derivatives of the functional of the virus model for different discretiza-
tion in both cases of the nested loops method. The black squares represent
the case where the optimization over φ is performed inside the optimiza-
tion over ψ; the magenta diamonds correspond to the opposite situation
(φ is outside with ψ inside). The left curve shows the derivatives in respect
to the electrostatic variable φ; and the figure on the right shows the deriva-
tives over the polymer field ψ. In both cases the inside field is plotted with
a continuous line, while the outside field is depicted with dashed lines.
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We expect that the field solved by the outside loop (dashed lines) is not op-
timized as well as the field of the inside loops (continuous lines). Indeed the
inside loop field is optimized each time the other field is evaluated, thus it is
always optimized. Furthermore, the outside optimization loop uses a classical
stopping mechanism and does not consider the second field despite its value
changing at each iteration. It is possible that the minimization is exited early
due to this. Thus the outside loop field is less accurately optimized. This is
observed in figure (1.4) as the continuous lines (inside optimization) are at zero
while the dashed line (outside optimization) are above.

However, it seems that the optimization of the electrostatics by the inside
iteration (black squares) gives better results. In particular, the other method
presents convergence difficulties for low numbers of points. There are two pos-
sible explanations. First the electrostatic field may be more difficult to estimate
and thus its optimization require more care than the polyelectrolyte field. Sec-
ond, the electrostatic field is defined on a larger number of points than ψ and
has thus more values that need to be optimized.

The results presented in the remaining of the article correspond to the case
where the electrostatic is fully optimized (inside loop over φ) as it produces
better results.

1.4.3. Results for the full virus

Using the virus model presented in section (1.2.3), we optimize with the four
methods of section (1.3).
The starting point of all optimizations is the value one for the polyelectrolyte
field and minus one for the electrostatic field. The system size is 24 nm, where
the charge of the capsid is σ = 0.4e at R = 12 nm. The bulk concentra-
tion of monovalent ions is c0 = 10 mmol.L−1 and the water relative permit-
tivity is εR = 80. The parameters of the polyelectrolyte are set to a = 0.5 nm,
v = 0.05 nm3, and p = 1.
The free energies are depicted in figure (1.5) and figure (1.6) shows the deriva-
tives. Each method is plotted for different lattice density, with their following
attributed symbol and color (unless stated otherwise):

– black squares (�) for the nested loops method
– green triangles (M) for the derivative method
– red X-s (x) for the results obtained with the inverse substituted functional
– blue dots (•) for the results obtained with the Legendre transformed func-

tional.
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Figure 1.5.: Computed free energy of the virus model for different discretizations.
The free energy F is expressed in kBT and the four methods are represented
alongside for easier comparison.

The most robust method appears to be the Legendre transform method (blue
dots). Indeed, it is the only method that converges when the number of points
increases (figure (1.5)) and both derivatives are zero for all tested discretiza-
tions (figure (1.6)). On the other hand, the derivative method (green triangles)
shows slightly different results even for small number of points and its deriva-
tives are never quite zero. The nested loops method (black squares) present a
good estimation of the electrostatics (figure (1.6), left hand side) but as expected,
its estimation of the polymer density diverges with an increasingly dense dis-
cretization (figure (1.6), right hand side). Due to their large stiffness, the deriva-
tive method (green triangles) and the convexified functional methods (red X-s)
were expected to loose accuracy or efficiency with denser discretization.

The computing time of each method is shown in figure (1.7) as a function of
discretizations. Since both fields are calculated at each point or link, the number
of points used in the simulation gives the number of variables over which we
optimized. To be exact, the number of variables is given by: Nvariable =

3
2 Npoint.

We observe the expected power law relation between the time and the number
of variables optimized.

The nested loops method require more computational time than any other
method. This can be easily explained by the use of two intertwined loops. Let
us also note that, despite the similar solving time presented by the Legendre
transform method, the convexified functional and the derivative methods, the
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Figure 1.6.: Derivatives of the free energy for the virus model for different discretiza-
tions and methods, (a) regarding the electrostatic displacement field, (b)
regarding the polymer density field.

last two methods are not as accurate as the first one (as discussed above).

Movement through Phase-Space. To visualize the search process and un-
derstand the important time used by the nested loops method, the search path
is plotted in the phase-space (figure (1.8) ). Each step of the optimization is de-
picted by a point. The 2D space is defined using principal component analysis
(PCA). This mathematical tool gives the direction in a multi-dimension space
(in this case the dimension of D, φ or ψ) which shows the most variations be-
tween the considered elements.

To optimize the free energy, the nested loops method explores each direction
alternatively. This is clearly shown in the step-like form of the black curves in
figure (1.8). The other functionals however are optimized over both fields at
once and the paths taken by these methods in the phase-space are smoother.
Thus the exploration of the phase-space clearly explains the larger computa-
tional time needed by the nested loops method.

Let us also note that the derivative (green) and inverse substitution (red)
methods seem to take a more direct path toward the results. However, they
seem to overestimate ψ and show difficulties to converge afterward. Yet such
observation is biased by the projection. Indeed, the PCA favors the orienta-
tion that shows the most variation but the number of steps undertaken by the
search algorithm varies with the method used. Thus the nested loops method
presents more points than the other methods and the projection used will show
its variations better.
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Figure 1.7.: Time used by the search algorithm for different discretization and for the
four methods. The grey dotted line represent a fit curve with a power law
of 2.

In conclusion, the Legendre transform method appears to be the most reli-
able of the four tested programs, closely followed by the inverse substitution
method.

1.4.4. Initialization

In all the previous tests, the initial situation was 1 for the density field and
−1 for the electrostatic field. Other initial conditions are perfectly conceivable
and some are tested here. The initial displacement field D is systematically
calculated from the initial electrostatic field φ using : D = −ε∇φ. We use the
same tools as before to study the influence of different initialisations.

Initialization at zero leads to the results presented in figure (1.9). We observe
an unexpected step of the free energy between 100 and 200 points, which also
corresponds to a sudden lowering of the computing time.

To better understand the meaning of this step, we look at the polyelectrolyte
fields resulting from those optimization for L = 100 and for L = 200 points
(figure (1.10)).

For 100 points, it appears that the derivative method has not changed from
the initial zero situation. However, the initial condition is not physically accept-
able as it corresponds to the complete absence of polymer. The two convexify-
ing methods (inverse substitution and Legendre transform) present a polymer
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Figure 1.8.: Steps undertaken during the optimization process for (a) 10 points, and
(b) 100 points. The x-axis represents the electrostatic variables through the
PCA projection on D, and the y-axis corresponds to the polymer variables
with the PCA projection on ψ. The cyan circles correspond to the starting
position, the other circles represents the ending points of each method: in
black the nested loops method, in green the derivatives one, in red the
inverse substitution method, and in blue the Legendre one.

density which is physically acceptable. In particular, the polymer and the capsid
being oppositely charged, we expect an increase of ψ2 near the capsid (R = 12).
This feature is present for both convexifying method.

For 200 points, none of the methods, except the nested loops method, leave
the initial position and that explains the step observed.

Let us also remark that the free energy found by the derivatives method with
a zero-initialization (figure (1.9), left hand side, green curve) is similar to the
free energy of the system without polyelectrolyte (figure (1.3)). This is con-
cordant with the observation of a lack of polymer found by the optimizations
(figure (1.10)).
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Figure 1.9.: Free energy relative to the number of points and for different methods,
on the left. On the right is the corresponding computation time.
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Figure 1.10.: Polymer density ψ2 found with the four optimization processes for L =
100 points on the left, and for L = 200 points on the right. The initial zero
field is depicted by a black dotted line.

We can conclude that this specific initialization induces an error in the op-
timization. It is probably due to a local minimum at zero and it shows the
complexity of the phase-landscape the algorithms have to explore.

Random uniform distributions are tested as initial conditions. For values
taken between 0 and 1 for ψ and 0 and -1 for φ, the results are similar to those
presented in section (1.4.3). It is not unexpected as the initial position is close
to the constants +1 and -1 used previously. We use a larger range of values and
initialize ψ between 0 and 10 and φ between 0 and -10. The results are presented
in figure (1.11).
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Figure 1.11.: For a random initialization, the free energy (top left), the computational
time (top right), and the polymer density field for L = 100 points (bot-
tom left), and for L = 200 points (bottom right) are plotted for the four
methods studied.

The first observation is that the initial position (black dashed line in figure (1.11),
bottom) is far from the results of the optimized field. The initial position is
even barely visible in figure (1.11) as it is much larger than the results and thus
outside of the figure. The second observation is that the Legendre transform
method is still valid for this initialization, while the other methods diverge. The
last interesting point is that the density field ψ2 seems to oscillate between the
solution and zero for all methods but the Legendre transform one (figure (1.11),
bottom right). It suggests that the optimization process is incomplete, even if
the search algorithm could not further decrease the function along the search
direction. This kind of problem could be solved by rewriting the search algo-
rithm itself, or by adding information for the program to better determine the
search direction. This last option is explored in the next paragraph.

50



1.4. Numerical Results

1.4.5. The trust-region algorithm

The fminunc function of Matlab allows the user to give the analytical formula
of the functional derivatives. It is used by the minimization tool to perform
a better and faster optimization with a trust-region algorithm instead of the
quasi-Newton method.

This option is implemented and tested for the Legendre transform method
and the inverse substitution method. The nested loops method is not suited for
such addition as it is impossible to account for the variation brought by the in-
ner loop in a calculation of the derivative for the outer loop; and the gain from
this option for the inside loop would not solve the correctness issue of the result
for dense discretizations. The derivative method requires the calculation of a
Hessian matrix to give an analytical expression of the derivatives. Indeed, the
minimized functional being a gradient, its derivative corresponds to a second
derivative of the initial pseudo-free energy. Such calculations would be costing
in computer resources and are thus not implemented.
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Figure 1.12.: Computed free energy for different discretizations. For the Legendre
transform method, the cyan circles depicts results obtained when giving
the analytical expression of the gradient (trust-region algorithm), while
the blue dots correspond to the results without it (quasi-Newton search).
The results from the inverse substitution method are depicted in magenta
stars when the trust-region algorithm is used and with red X-s otherwise.

Figure (1.12) presents the free energy for both methods with and without the
addition of the derivatives. It clearly shows that such addition is beneficial for
the inverse substitution method as the results cease to diverge for dense dis-
cretizations (red and magenta curves).
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The use of the trust-region algorithm also lowers the computational time re-
quired by the Legendre-transform method, as shown in figure (1.13). It is not
the case for the inverse substitution. Indeed, for a number of points superior
to 100 the computational time increases significantly. This is due to the high
stiffness of the functional, yet the results obtained present a convergence that is
lacking otherwise.

Thus, using the trust-region algorithm renders the optimization more reliable
and in most cases more efficient.
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Figure 1.13.: Comptational time for different discretisations, with :
blue dots : Legendre transform method, quasi-Newton search ;
cyan circles : Legendre transform method, trust-region search ;
red X-s : inverse substitution method, quasi-Newton search ;
magenta stars : inverse substitution method, trust-region search.
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1.5. Concluding Remarks

In this chapter, we addressed the numerical optimization of the free energy
for systems described by Poisson-Boltzmann theory. The electrostatic contribu-
tion to the free energy is concave. Adding configurational degrees of freedom
renders the free energy functional simultaneously concave–with respect to the
electrostatic potential– and convex–with respect to the other description fields–.
To find the equilibrium free energy of the system thus require the implementa-
tion of a saddle-point search. This is however a more complex numerical issue
than an optimum search. We used the Legendre transform to build an equiva-
lent, overall convex and locally defined functional.

The Legendre transform, applied to a function f (x), builds a new function
g(s) which is equivalent to f (x) but expressed in terms of the derivative s = d f

dx .
This mathematical tool is used in many fields of physics to interchange view-
points. We applied it to electrostatic studies in order to transform the concave
Poisson-Boltzmann free energy functional expressed in term of the electrostatic
potential φ, into its convex equivalent functional with respect to the electrostatic
displacement field D. This transformation is particularly useful when we want
to numerically model a system described by interacting degrees of freedom.

We used a simple model of a virus to implement and compare the minimiza-
tion of our new functional with three methods often used to model electro-
static systems. The optimization of the Legendre-transformed functional show
a faster convergence and a greater accuracy. The reason is two-fold. First the
search path explores all directions at once in the phase-space, rather than an al-
ternating optimization of each description fields. Second, the stiffness of the
Legendre-transformed functional is lower than that of the other functionals
considered. In conclusion, the numerical application shows that, for a one-
dimensional system, the Legendre-transformed functional gives the most accu-
rate optimization and the best time performance out of the four tested methods.

Perspectives The Legendre transform can be applied to the free energy of
more complex electrostatic systems. Multivalent ions or varying permittiv-
ity can be added to our model, and we can consider systems which require
a third description field. We could also expand on the study of viruses. For
example, the deformation of the virus capsid under external forces is studied
[61, 62]. AFM tips are used to deform the shell and bio-molecular simulations,
like molecular dynamics applied to a coarse-grained model, are performed to
explore the mechanical properties of the capsid. These works aim to shed some
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light on the interactions between the proteins constituting the capsid and on the
structural changes during the infection process. However, these studies only
consider–to our knowledge–the empty capsid and the modelization of the full
virus under stress could deepen the understanding brought by these works.

The method presented in this chapter can also be included within other tools.
Molecular dynamic simulations [63], for example, are often used in biology to
study proteins or DNA. All atoms present in the studied system are considered
and the forces applied to each of them are calculated. The movement of the
atoms are then deduced from the forces and their positions at the next time-
step is computed. Such simulations are costly in memory and computational
time. Furthermore, they explore only a small area in the phase-space of the
system [29]. In most biological studies, the electrostatic interactions are impor-
tant and the Poisson-Boltzmann equations need to be solved at each step of the
simulation. Using the technique presented in this chapter could lower the time
necessary for each calculation and thus allow for a faster simulation.
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2.1. Introduction

2.1.1. The limit of the Poisson-Boltzmann theory

Poisson-Boltzmann theory is a mean-field approximation and its limits ap-
pear in many experiments. In particular, systems with multivalent ions are not
well-described by the Poisson-Boltzmann theory and significant differences are
observed between the theory and experimental results [64, 65]. In particular,
this limit of validity for the Poisson-Boltzmann theory interferes with the study
of biological systems where multivalent ions like Mg2+ influence the conforma-
tions of molecules [66].

The results presented in the article [64] show a quantitative failure of the
Poisson-Boltzmann theory. Indeed, it does not account for the ion-ion corre-
lations which likely lead to the association of Mg2+ with DNA. For this reason,
researchers in biology are interested in the development of models going be-
yond the mean-field approximation. This is one of the motivation behind this
work.

2.1.2. Weak coupling, strong coupling and in between.

In order to study systems beyond the Poisson-Boltzmann description, a cou-
pling parameter was introduced. It describes the strength of the interactions
between a charged wall and the ionic solution.

The weak coupling limit corresponds to weakly charged systems with low va-
lence ions or high temperature. In such systems, the correlations between ions
are small and Poisson-Boltzmann theory describes the electrostatic of these sys-
tems rather well. The opposite limit is the strong coupling regime for strongly
charged systems with high valency ions or low temperature.

Those domains of validity are described by the coupling parameter: Ξ =
q3 |σ| e4 β2

8 π ε2 , where q is the ion charge, e the elementary charge, σ the wall charge
and ε the medium dielectric constant. In [67], Monte Carlos simulations are

55



2. Fluctuation Enhanced Poisson-Boltzmann Theory

compared with the results from the Poisson-Boltzmann theory describing the
weak-coupling limit, and the strong coupling theory extracted from a field-
theory formulation. It shows that, for coupling parameters lower than 0.1, the
Poisson-Boltzmann theory is valid, while the strong-coupling theory gives a
good description of the system for Ξ ≥ 104. These two different approaches
thus complement each other but there is a domain in between where none of
the theory fits.

The presence of high valency ions or highly charged surfaces are frequent and
many experimental situations fall into this domain of invalidity. Ionic liquids
[68] and colloidal particles in binary solvent [28] are examples of such experi-
ments. To reach into this domain, the strong coupling limit can be expanded
toward smaller coupling parameters using either the inverse of the coupling
constant to build the virial expansion [69, 70], or the square root of this inverse
based on a Wigner crystal description [71]. The Poisson-Boltzmann expression
can also be systematically expanded in a field-theory framework with the cou-
pling parameter as the small parameter. This is the loop expansion method
which is described further in the next section (2.2.1). Another method uses the
standard Gibbs variational procedure to build variational equations describing
the system (see section (2.3)).

In this chapter, we first detail the one-loop expansion and presents its limit.
Then we describe the variational field theory. In part (2.4), we present the nu-
merical solution and, in particular, how the recent advances in applied mathe-
matics allow us to create a solver. We then study the limits of this solver with
respect to the coupling parameter and we aim to understand the origin of such
a limit.

In both expansions, field theory is used. Thus we first take a closer look at the
Poisson-Boltzmann theory expressed within a field theory framework.

2.1.3. How field theory leads to Poisson-Boltzmann equations.

The Poisson-Boltzmann equations can be derived from the combination of the
Poisson description of electrostatics and the Boltzmann description of the ions
distribution. The Poisson-Boltzmann theory can also be found from a field the-
ory approach as detailed in the paper of Netz and Orland [72]. In this section we
describe the main steps of the field theory calculations but we use a slightly dif-
ferent approach from Netz and Orland: we consider only one field to describe
the electrostatics rather than differentiate between anions and cations.
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The starting point is the partition function of a symmetric electrolyte com-
posed of N+ ions charged +q and N− ions charged −q. We also consider fixed
charges σ(r) = qσ̃(r). The interactions of those charges are described by the
Coulomb pair potential v(r) = 1

r . The partition function is written:

Z =
1

N+!

N+

∏
j=1

[∫ dr+j
λ3

t
Ω(r+j )

]
1

N−!

N−

∏
j=1

[∫ dr−j
λ3

t
Ω(r−j )

]

exp
{
− lBq2

2

∫
drdr′ ρ̂(r)v(r− r′)ρ̂(r′) + q2lBv(0)

N+ + N−
2

} (2.1)

In this expression, lB is the Bjerrum length:

lB =
e2

4πεkBT

The Bjerrum length is the distance at which two particles of unit charge inter-
act with thermal energy. e is the elementary charge, kB the Boltzmann constant
and T the temperature. The functions Ω(r±j ) restrict the ions position to a cer-
tain space and can thus account for the existence of hard walls. The term ρ̂ is
the density operator of charges and is the sum of all the charges present in the
system (scaled by the ion charge q):

ρ̂(r) =
N+

∑
j=1

δ
(

r− r+j
)
−

N−

∑
j=1

δ
(

r− r−j
)
+ σ̃(r) (2.2)

The last term in the exponential of equation (2.1) is the self energy of the ions.

The field theory allows us to replace the density operator ρ̂(r) by the den-
sity field ρ(r) though the introduction of the unit operator. Indeed, using the
integral representation of the delta function, we have :

1 =
∫
Dρ δ (ρ− ρ̂) =

1
(2π)V

∫
DρDφ exp

{
i
∫

dr φ [ρ− ρ̂]

}
(2.3)

with V the dimension of the space explored by φ.
We introduce this expression in the equation (2.1) and use the definition of

ρ̂(r) given by equation (2.2) to reformulate the partition function as an integral
over the electrostatic field φ and the density field ρ. We isolate the products of
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integrals ∏N±
j=1

[∫
dr±j . . .

]
and simplify them into

[∫
dr±j . . .

]N±
. This leads to

the partition function:

Z =
1

(2π)V

∫
DρDφ exp

{
− lBq2

2

∫
ρvρ + i

∫
φρ − i

∫
φ σ̃

}
1

N+!

[
exp

{
q2lBv(0)

2

} ∫ dr
λ3

t
Ω(r) exp {−iφ(r)}

]N+

1
N−!

[
exp

{
q2lBv(0)

2

} ∫ dr
λ3

t
Ω(r) exp {+iφ(r)}

]N−

(2.4)

Moving to the grand-canonical ensemble leads to a simpler partition func-
tion as we can use the definition of the exponential function :

exp {x} =
∞

∑
N=0

xN

N!

We write the grand-canonical partition function:

Zλ =
1

(2π)V

∫
DρDφ exp {−H [ρ, φ]}

H [ρ, φ] =
lBq2

2

∫
ρvρ − i

∫
φρ + i

∫
φ σ̃ − 2λ

∫
Ω cos (φ)

(2.5)

where all integrals of H are over dr and the parameter λ is the ions fugacity

defined by : λ = λ0
λ3

t
exp

{
q2lBv(0)

2

}
. The cosine term comes from the sum of the

two exponentials e−iφ + e+iφ.

The potential description is reached by integrating over the density field
ρ(r). This integral is performed exactly as it takes the form of a Gaussian in-
tegral :

∫
Dρ exp

{
−1

2
ρAρ + Jρ

}
=

(2π)n/2

det(A)
exp

{
1
2

∫
JA−1 J

}
with n the size of the matrix A.

Knowing that v−1 = −1
4π ∆, the Hamiltonian H can be expressed in term of the

58



2.1. Introduction

electrostatic field φ alone:

Zλ = (2π)n/2−V
∫ Dφ

Z0
exp {−H [φ]}

H [φ] =
1

8πlBq2

∫
(∇φ)2 + i

∫
φ σ̃ − 2λ

∫
Ω cos (φ)

(2.6)

We noted here Z0 the determinant of the Gaussian integral (noted det(A) in the
definition above). This value is a measure of the free energy of vacuum fluctu-
ations.

In the mean-field approximation, we consider that the smallest value of H
is dominant in the expression of the partition function : Zλ = 1

Z0
exp(−Hmin).

This Hamiltonian is reached for the electrostatic field : φ = −i φ̃PB with φ̃PB the
scaled Poisson-Boltzmann solution. We need to consider φ = −iβqφPB to find
the well-known free energy :

F =
−ε0εR

2
(∇φPB)

2 + σ φPB − 2 kBT λΩ cosh(βqφPB) (2.7)
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2.2. Beyond Poisson-Boltzmann Theory : One Loop
Expansion

In a field-theory framework, it is possible to systematically expand around
the Poisson-Boltzmann solution to take into account ion correlations. This is the
loop expansion method. The leading term is the Gaussian term and corresponds
to the one loop expansion. Higher orders are also reachable but subsequently
lead to longer calculation and computation.

2.2.1. Theory of the one-loop expansion

Beyond Poisson-Boltzmann: Fluctuations and Correlations
Roland R. Netz and Henri Orland

Eur. Phys. J. E 1, 203-214, 2000

The theory is detailed by Netz and Orland in [73]. This method’s purpose is
to take into consideration the charges fluctuations and correlations. In the fol-
lowing paragraph we keep close to the notation used in the article.

We start with the partition function for N mobile counter-ions charged q:

ZN =
1

N!

[
∏

i

∫
dri

]
exp

{
−q2 ∑

j>k
v(rj − rk) + q

∫
dr σ(r) ∑

j
v(r− rj)

}
(2.8)

The first term in the exponential is the Coulomb interaction between the ions
and the second term between the ions and the fixed charge distribution σ(r).
The position ri, rj and rk are the ions positions.

Knowing v(r) is the Coulomb pair potential, introducing the particle density
operator and using the Hubbard-Stratanovich transformation, we can express
the partition function in the grand-canonical ensemble:

Z[ρ, h] =
∫ Dφ

Z0
exp

{
−l H[φ, h] + i l

∫
dr φ(r) ρ(r)

}
(2.9)

with ρ a new source term introduced to calculate directly the electrostatic po-
tential: φ = 〈iφ〉 = ∂ ln Z[ρ,h]

∂ρ . l is an arbitrary constant used as the expansion
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parameter. The Hamiltonian is given by:

H[φ, h] =
∫

dr
[

1
2 ˜lB

(∇φ)2 +
i σφ

q
− λ e− i φ + h

]

The saddle point is defined by: ∂H
∂φ − i ρ

∣∣∣
φ=−iφPB

= 0 and the solution gives

the Poisson-Boltzmann field φPB. To expand this solution, we consider the field
φ = −i φPB + ξ. The Hamiltonian can then be written using the Taylor series:

H[φ] − i
∫

dr φ ρ = H[−iφPB] −
∫

dr ρ (φPB + i ξ)

+ ∑
j

1
j!

∫
H(j)(rj; φPB) ξ(r1) · · · ξ(rj)

(2.10)

whereH(j) are the vertex function defined by:

H(j)(rj, φPB) =
∂j H[φ]

∂φ(r1) · · · ∂φ(rj)

∣∣∣∣∣
φ=−iφPB

Keeping only the first two vertex functions, we obtain the partition function
with the one-loop expansion:

ln(Z[ρ, h]) = l
∫

dr
{

1
2 ˜lB
|∇φPB|2 −

σ φPB

q
+ λ e−φPB−h + ρ(r) ψPB(r)

}
− 1

2
ln det

(
H(2) [φPB]

)
(2.11)

The first line of this equation is the mean-field contribution, while the last term
is the correction term from the one-loop method.

An example of the one loop calculation is presented for the system described
in [74, 75]. It is composed of a symmetric electrolyte and the water is modeled
by dipoles. The partition function is written with the small parameter l:

Z = e−βlF =
∫
Dφ e−lS(φ) (2.12)
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The action S(φ) is given by:

S(φ) =
βε0

2

∫
dr(∇φ)2 − 2λion

∫
dr cos(βeφ)− λdip

∫
dr
∫

eiβ~p.∇φ dµ(~p)
(2.13)

where φ is the electrostatic potential and ~p is the vector dipole modeling the
water molecules. These dipoles have constant and identical intensities ‖~p‖ = p0
but their orientations depend on their environment and we must thus integrate
over µ(~p) . Using ~u = βp0~∇φ, we can write the dipole part in a more usual
form: ∫

dr
∫

eiβ~p.∇φ dµ(~p) =
∫

sin θ dθ dϕeiu cos θ = 4π
sin u

u

We note g(u) the function u 7→ sin u
u .

We consider the saddle-point expansion: φ = φPB + 1√
l
ξ. We use the Taylor

series and rewrite the action around the Poisson-Boltzmann solution:

S(φ) = S(φPB +
1√

l
ξ)

= S(φPB) +
1√

l
∗ ∂S

∂φ

∣∣∣∣
φ=φPB

+
1
l

[
βε0

2
∗
∫

d~r (∇ξ)2 + λion

∫
d~r(βe)2ξ2 cos(βeφPB)

+
λdipβ2

2

∫
d~r
∫

dµ(~p)eiβ~p.~∇φPB(~p.~∇ξ)2

]

= S(φPB) +
1√

l
∗ ∂S

∂φ

∣∣∣∣
φ=φPB

+
1
l

P(φPB, ξ)

(2.14)

The derivative of the action is zero at the saddle point and the partition function
becomes:

Z =
∫
Dφ e−lS(φ) =

∫
Dξ e−lS(φPB) e−P(φPB ,ξ) = e−lS(φPB) Q(φPB) (2.15)

Q(φPB) is defined by:

Q(φPB) =
∫
Dξ exp

[
−βε0

2

∫
(∇ξ)2 − λion

∫
(βe)2ξ2 cos(βeφPB)

−
λdipβ2

2

∫ ∫
dµ(~p)eiβ~p.~∇φPB(~p.~∇ξ)2

] (2.16)
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Though the saddle point is on the imaginary axis of the complex space, the
expansion is considered parallel to the real axis and ξ is thus real.

-

6

Re

Im
φPB
-�

ξ

Figure 2.1.: Path of the integral over the electrostatic field φ in the complex plan.

We can express P(φPB, ξ) in the form of a matrix multiplication: P(φPB, ξ) =
ξΓξ, where Γ is given by:

Γ = −βε0∆ + 2λion(βe)2 cosh(βeφPB) + 4πp2
0λdipβ2 ∑

αγ

(∂α (Kαγ) ∂γ + Kαγ∂α∂γ)

α and γ represent the axis of the three-dimensions space (x, y, z) and
Kα,γ =

[
δα,γ

g′(u)
u +

uγuα

u2

(
g′′(u)− g′(u)

u

)]
.

Thus the one loop correction term becomes:

Q(φPB) =
∫
Dξ exp[−1

2
~ξΓ~ξ]

=

√
(2π)n

det (Γ)

= (2π)n/2 exp
[
−1

2
ln det (Γ)

] (2.17)

However, computing this correction gives large values of Q(φPB).

2.2.2. Limits of the one loop expansion

For Ξ = 12, the one loop expansion gives a negative density of counter-ions.
This un-physical solution thus present a clear limit of the one-loop expansion
method [73].

In [67], Monte Carlo results are compared with Poisson-Boltzmann results.
In particular, the one loop expansion is tested. It appears that the correction to
the Poisson-Boltzmann result is correct for small coupling parameters such as
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Ξ = 0.1. But in this domain the Poisson-Boltzmann approximation is sufficient
and the correction mainly unnecessary. For higher parameters, the correction at
the first order is correct but too small. For Ξ = 1, the one loop correction is not
sufficient and it would be necessary to go to higher degrees of correction. Thus
the loop expansion presents a slow convergence.

In [76], Dean and Horgan study a film soap with the loop expansion method.
They show how the one-loop expansion leads to a divergence. Indeed, the
dielectric discontinuity in the system generates image charges. Those are not
taken into account in the mean-field approximation but they cause the diver-
gence of the one-loop correction term. A UV cut-off is thus necessary to cal-
culate the one loop expansion. The two-loops expansion, however, does not
present any divergence and UV cut-off is unnecessary. Beyond the two-loop
expansion, the collapse of ions onto each other leads to a new divergence and
the cut-off should be re-introduced.

In conclusion, the one-loop expansion is not sufficient to describe an electro-
static system beyond the Poisson-Boltzmann approximation and a higher order
expansion is necessary. However, other methods are available to go beyond
the mean field approximation and the next sections explore the variational field
theory approach on this issue.
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2.3. Variational Field Theory Approach

Variational charge renormalization in charged systems
R.R. Netz and H. Orland

Eur. Phys. J. E 11, 301-311, 2003

The variational field theory approach is detailed in the paper from Netz and
Orland [72]. In this section, we use the partition function from equation (2.6):

Zλ =
∫ Dφ

Z0
exp {−H [φ]}

H [φ] =
1

8πlBq2

∫
(∇φ)2 + i

∫
φ σ/q − 2λ

∫
Ω cos (φ)

and we apply the standard variational Gibbs procedure. The field theoretic
formulation includes the ion density fluctuations through the fluctuating elec-
trostatic potential.

First we rescale the Hamiltonian using the coupling parameter Ξ:

Zλ =
∫ Dφ

Z0
exp

{
−H̃ [φ] /Ξ

}
H̃ [φ] = Ξ H [φ]

=
∫ dr̃

2π

{
1
4
(∇φ(r̃))2 + i φ(r̃) σ̃(r̃) − Λ

Ω(r̃) cos (φ(r̃))
2

} (2.18)

The distances are rescaled with the Gouy-Chapman length µ = (2πqlBσs)
−1

and the rescaled surface charged is given by σ̃(r̃) = µσ(r)
σs

. The rescaled fugacity
and the coupling parameter are then the only two remaining parameters:

Λ = 8πλΞµ3

Ξ = 2πq3l2
Bσs

The standard Gibbs variational procedure uses a variational Hamiltonian
H0 to define the Gibbs free energy:

FGibbs = F0− < H0 − H >0 /Ξ

This functional is then minimized with respect to the variational parameters of
H0. This is equivalent to the first-order perturbational variation on the observ-
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able [72].

We choose a Gaussian form for the variational Hamiltonian. This is the one
hypothesis we make within the variational field theory approach.

H0 [φ] =
1
2

∫
r,r′

[φ(r) + iφ0(r)] v−1
0 (r, r′)

[
φ(r′) + iφ0(r′)

]
The mean potential φ0 and Gaussian kernel v0 are the variational parameters
over which we wish to minimize the Gibbs free energy.

Using the expression of the Hamiltonians and the definition of the mean
value: < [H0 − H] >0=

∫
Dφ [H0 − H] e−H0 , we calculate the Gibbs free

energy :

FGibbs = − 1
2

Tr log v0 −
1

2Ξ

− 1
8πΞ

∫
r
(∇φ0)

2

+
1

8πΞ

∫
r,r′
∇r∇r′v0(r, r′)δ(r− r′)

+
1

2πΞ

∫
r

φ0 σ

− Λ
4πΞ

∫
r

Ω e−v0(r,r)/2 cosh (φ0)

(2.19)

The variational equations are obtained when we consider that the deriva-
tives of FGibbs over each variational parameters φ0 and v0 are zero:

∂FGibbs

∂φ0
=

1
8πΞ

2π∇2φ0 +
1

2πΞ
σ − Λ

4πΞ
Ωe−v0(r,r)/2 sinh(φ0) = 0

∂FGibbs

∂v0
= −1

2
v−1

0 δ(r− r′) +
1

8πΞ
∇2 +

Λ
8πΞ

Ωe−v0(r,r)/2 cosh(φ0) = 0

We re-organize the equalities to reach the two variational equations:

∇2φ0 = −2 σ + Λ Ω e−v0(r,r)/2 sinh (φ0) (2.20)

4 π Ξ δ(r− r′) =
[
−∇2 + Λ Ω e−v0(r,r)/2 cosh (φ0)

]
v0 (2.21)
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Equation (2.20) is similar to the Poisson Boltzmann equation but with a cor-
rection for the fluctuations added through the Gaussian kernel v0. Solving these
self-consistent equations leads to the description of the system with fluctuations
accounted for.
In the following part, we present the numerical resolution of the variational
equations.
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2.4. Numerical Solution

Solving Fluctuation-Enhanced Poisson-Boltzmann Equations
Zhenli Xu and A.-C. Maggs

J. Comput. Phys. 275, 310-322, 2014

The self-consistent equations (2.20, 2.21) are challenging to solve since they
are non-linear partial differential equations. This section presents an iterative
scheme to numerically find the variational parameters φ0 and v0. We also show
how systems with high symmetry can be simplified in two- or one-dimension
systems.

To reach the same equation than those used in the article [77], we only need
to define the Green function

G(r, r′) = Ξv0(r, r′)

and the correlation function c(r) = limr→r′ [G(r, r′)− G0(r, r′)] with G0(r, r′) =
1/|r− r′|. For the sake of clarity, we keep the previous notations in the following
studies.

2.4.1. The numerical scheme

Discretizing the variational equations is a necessary step before implement-
ing the numerical solver. The electrostatic field φ0(r) becomes a vector [φ0(ri)]i
and the Gaussian kernel representing the self-energy of a mobile ion becomes a
matrix

[
v0(ri, rj)

]
i,j .

The operations over both of these variational parameters also take the form of
matrices, and the distribution of fixed charge σ becomes a vector. The charges in
the continuous space are distributed over the nearest lattice sites using a linear
weighting function [78]:

σi = ∑
r

(
1− |xi − x|

h

) (
1− |yi − y|

h

) (
1− |zi − z|

h

)
σ(r) (2.22)

with (xi, yi, zi) the coordinate of the lattice point i and h the lattice size taken
identical in every direction. r(x, y, z) is a general position taken around the
point i. The second order derivative of the field ∇2φ0 becomes, with the dis-
cretization, a simple multiplication of the derivation matrix with the vector φ0.
The matrix is defined thanks to a seven-point finite difference discretization [78]
and is symmetric. In one dimension, the matrix is given by the three-point finite
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2.4. Numerical Solution

difference:

[
∇2
]
=

1
h2


−2 1

1 . . . . . .
. . . . . . 1

1 −2

 (2.23)

A self-consistent iterative scheme is used for the resolution of the equa-
tions. Each equation is solved in turn: equation (2.20) allows us to determine
a new field φn+1

0 in terms of φn
0 and vn

0(r, r), with n representing the step of the
iteration. In a similar fashion, equation (2.21) leads to vn+1

0 from knowing φn+1
0

and vn
0(r, r). The first step of the iteration thus solves the modified Poisson-

Boltzmann equation while the second steps consist of a matrix inversion to de-
termined the Green function. The method converges when the results of two
successive iterations are nearly identical. This is tested through a comparison
with a small parameter ε which sets the precision of the solver.

The modified Poisson-Boltzmann equation is solved with an iterative method
[79] using the relaxation function:

R(r) = Λ Ω e−v0(r,r)/2 sinh (φ0) / (|φ0(r)|+ ε) (2.24)

with ε the small parameter used in the global numerical scheme to define the
convergence. This relaxation function is introduced in equation (2.20) as fol-
lows: [

∇2 − R
]

φk+1
0 = −2 σ + Λ Ω e−vn

0 (r,r)/2 sinh
(

φk
0

)
− R φk

0 (2.25)

This new equation leads back to equation (2.20) when the numerical method
converges (φk+1 = φk) and this addition allows us to use existing direct solver
to find the new electrostatic field φn

0 . The matrix division in Matlab is used
for this particular implementation, since the addition of the relaxation function
guarantees the absence of division by zero.

The inversion of a matrix is the second step in the iteration. Indeed the equa-
tion (2.21) can be rewritten in matrix form as :

A V = I (2.26)
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2. Fluctuation Enhanced Poisson-Boltzmann Theory

with I the identity matrix, V the matrix
[
v0(ri, rj)

]
i,j, and A defined by :

A =
[
−∇2 + Λ Ω e−v0(r,r)/2 cosh (φ0)

]
/ 4 π Ξ (2.27)

Finding V is thus a matter of inverting the matrix A. However the inversion of
full matrices is costly in computer resources.

Inverting matrices is a well-researched numerical problem as it appears in a
number of calculations and simulations. The usual method uses the Cholesky
factorization of a matrix A into triangular matrices : A = LLT. However, if A is
a sparse matrix, the classical process fills the matrix and the sparsity is lost. This
leads to steps in the factorization that requires more arithmetic operations and
storage. To avoid such loss of sparsity, one can reorder the matrix into PAPT

such that the sparsity is fully exploited. This is equivalent to numbering nodes
in a certain order to minimize the complexity of the inversion.

Different methods exist and their complexity and numerical storage for a 2D
system are given in table (2.1). The standard band scheme factorization of a N-
by-N matrix with the nested dissection [80, 81, 82] is based on a rearrangement
of the nodes. The one-way dissection ordering [81, 83] is a compromise between
the standard factorization and the nested dissection.

std factorization nested dissection one-way method

complexity O(N2) O(N3/2) O(N
3
d (d−1)) O(N7/4)

storage O(N3/2) O(N log N) O(N
2
d (d−1)) O(N5/4)

Table 2.1.: Complexity and numerical storage used for the factorization of a N-by-
N matrix representing a 2D system, by three methods. The first one is the
standard band-scheme factorization. The other two methods use the spar-
sity of the matrix to lower the algorithm complexity. In gray the expression
for any dimension d.

Moreover, we need only the diagonal of the inverse green function to solve
the variational equations. This is a particular case of a selected inversion where
only parts of the inverse matrix are computed. It is exploited to lower the com-
plexity of the algorithm [84, 85] and we use here the algorithm developed by
Lin Lin et. al. and described in [85].

Increasing the efficiency of the inversion step allows us to model larger sys-
tems.
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2.4. Numerical Solution

2.4.2. The Fourier transform

We can apply the Fourier transform to the correlation function. If the system
presents a symmetry, the Fourier transform along the axis of symmetry can be
calculated exactly and the correlation function is thus expressed in term of two
dimensions and one frequency. There is two consequences to that transforma-
tion. First, we need to integrate over the frequencies. Second, the functions we
consider are two-dimensional correlation functions. In the discretized form, the
inversion of a large matrix becomes a sum of smaller inverted matrices.

This results into a large gain of computer resources. Indeed, if we study a
three-dimensional system of size n, then the matrix describing the system is
of dimension N = n3. Let us consider a numerical operation of complexity
O(Nx). Then, for the 3-D system, we have a computing complexity of O(n3x).
If the system has a symmetry, we can use the Fourier transform to work with
matrices of dimension N = n2. We can choose to use n frequencies for example.
Then the overall complexity of the numerical scheme becomes O(n n2x) as we
need to apply the operation to each of the n matrices. This is a gain in computer
resources if x is larger than one (2x + 1 < 3x), which is the case for matrix
inversion.

If we consider a system with two axis of symmetry, the sum must be per-
formed over two sets of frequencies but the matrices inverted are of dimension
N = n. The complexity thus become O(n2 nx).
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2. Fluctuation Enhanced Poisson-Boltzmann Theory

2.5. Limit Coupling Parameter

This numerical method was developed to account for the charge fluctuations
in the description of electrostatic systems. We aim to model systems beyond
the weak-coupling limit using this approach. The coupling parameter Ξ repre-
sents the overall strength of the ionic interactions and we test the program for
increasing coupling constants to explore the solver’s capacity.

The program is composed of one large loop to iteratively determine the vari-
ational parameters φ0 and v0. The convergence (or the lack of convergence) of
this search-loop is the first test of validity we use. The results of the program, in
the form of negative ions density maps and the values of the free energy, are also
considered. A limit of the coupling parameter appears from those observations.
We conclude with the analytical study of this limit for a bulk situation.

2.5.1. Observations

The system used for this test is composed of a permeable cylinder charged
positively on one side and negatively on the other side. Its total charge is zero.
The electrolyte considered is symmetric, and the system is represented in two
dimensions.
The surface charge is σ = 1, the ratio of dielectric constant between the cylinder
and the medium is taken at εratio = 0.1, the radius of the cylinder is of 3 and the
length of the box onto which the simulation is run is 32. All these dimensions
are scaled as shown in section (2.3). The rescaled fugacity Λ = 8πλµ3Ξ is set at
0.2.

The first test is to check that a convergence is reached for increasing Ξ. Us-
ing a maximum of 50 loops, it appears that the method converges for Ξ ≤ 4.
Increasing the maximum number of loops to 200 does not lead to convergence
for Ξ ≥ 5. This lack of convergence is also observed for much larger coupling
parameters such as Ξ = 50 or Ξ = 100 and we extrapolate that this result holds
for every Ξ ≥ 5. It is important to point out that this lack of convergence is not
a divergence as the program simply reaches the maximum number of loops. At
this point, it is impossible to tell if this is only a very slow convergence or a
divergence.

We look at the results from the program in order to better understand this
observation. In figure (2.2) we draw the negative ions density for different cou-
pling parameters. We observe an important difference between the ions density
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2.5. Limit Coupling Parameter

for Ξ ≤ 4 and those for Ξ ≥ 5. This difference appears plainly in figure (2.3)
where the resulting free energy is plotted in regards to Ξ. Indeed, for Ξ ≥ 5 the
free energies are much larger than those for Ξ ≤ 4.
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Figure 2.2.: Negative ions density around a cylinder charged negatively on the one
half and positively on the other half, for different coupling parameters:
Ξ = 0.1, Ξ = 4, Ξ = 5 and Ξ = 10. Let us note that the color scale is
largely different between the top curves (Ξ ≤ 4) and the bottom curves
(Ξ ≥ 5).
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Figure 2.3.: Free energy for different coupling parameters Ξ, using a maximum of 50
loops in blue stars and 200 loops in green circles. The figure on the left
hand side presents the result in a semi-log scale. The negative results are
not shown (small Ξ) but the step between Ξ = 4 and Ξ = 5 appears clearly.
The right hand side figure shows the free energy values for coupling pa-
rameters smaller than 4 (linear scale).

This step in the free energy can be due to :
– either the physics of the system. It could be, for example, a Manning con-

densation [86]. However, this system is composed of a cylinder with half
it surface positively charged and the other half bearing negative charges.
Furthermore, the coupling parameter limit also exists for one-dimension
systems. We can thus conclude that the above observations do not come
from a Manning condensation.

– or to the program not reaching a good result, which is in agreement with
the lack of convergence for those coupling parameters.

We introduce a new initialization to clarify this last point. So far, every
searching loop started with zero values. We expect that starting with a dif-
ferent situation will change the search path taken by the algorithm, and may
enlighten us on the problem exposed above. In an approach similar to an adia-
batic method, we use the solution found for low Ξ as the initialization for higher
Ξ. We expect a faster convergence with this initialization.

We study the program’s convergence for coupling parameters taken between
4 and 5. The results are shown in table (2.2). We observe first that, for a range of
coupling parameters between 4.3 and 4.6, 50 loops does not lead to convergence
but it is achieved for 200 loops. It also appears that, even if the convergence is
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2.5. Limit Coupling Parameter

not reached, the free energy is of the same order of magnitude than that of lower
Ξ (figure (2.4)).

max loops = 50 max loops = 200
Ξ Init = 0 Init =R(Ξ = 4) Init = 0 Init =R(Ξ = 4)

4.0 converge converge
4.1 converge converge converge converge
4.2 converge converge converge converge
4.3 No convergence converge converge converge
4.4 No convergence No convergence converge converge
4.5 No convergence No convergence converge converge
4.6 No convergence No convergence converge converge
4.7 No convergence No convergence No convergence No convergence
4.8 No convergence diverge No convergence diverge
4.9 No convergence diverge No convergence diverge
5.0 No convergence diverge No convergence diverge

Table 2.2.: Study of the convergence for coupling parameters between 4 and 5 using
50 loops (right hand side) and 200 loops (left hand side) and two types of
initializations: one uses a zero starting point ("Init=0", left hand columns)
while the other uses the result from Ξ = 4 ("Init= R(Ξ = 4)", right hand
columns).
The color code is: in green the program converges and the free energy has
a "low" value; in magenta when there is no convergence but the free energy
has a "low" value; in red the solver does not converge and the free energy
is very large; and in blue the cases where there is a divergence since Not-a-
Number values are found during the numerical resolution of the equations.

Second, using the results obtained for a lower coupling parameter (Ξ = 4)
lead either to a fast convergence for small coupling parameters (Ξ ≤ 4.6), or
to the apparition of extreme values: part of the kernel increases up to infinite
values which then give Not-a-Number values in the next iteration of the program
(table (2.2), blue results). We conclude that, for a coupling parameter larger than
4.7, the program diverges.
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Figure 2.4.: Free energy for different coupling parameters Ξ between 4 and 5, using a
maximum of 50 loops in blue and 200 loops in green.

We study if this Ξ limit is linked to the system considered. We reiterate the
previous study to find the limit coupling parameters for different situations.

Increasing the number of points used for the discretization leads to a slight
increase of the limit coupling parameter (table (2.3)). However, the fixed charges
are distributed on the closest points. Thus the repartition of the charges changes
slightly with the discretization and it can be the origin of this small variation.

number of points limit coupling parameter

32 4.7
36 4.7

128 4.8
256 4.9

Table 2.3.: Limit coupling parameter for different discretization

Changing the parameters defining the system leads to significant variations
of the limit coupling parameter. Indeed, increasing the radius R of the cylinder,
its surface charge σ, or the rescaled ions fugacity Λ leads to a decrease of the
limit coupling parameter Ξlim as shown in figure (2.5) and table (2.4).
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Figure 2.5.: Limit coupling parameter for different surface charge σ on the left hand
side. On the right hand side, the limit coupling parameter for different ion
fugacity Λ.

radius of the cylinder limit coupling parameter

1 13.2
3 4.7
5 3.9
7 3.8
10 3.6

Table 2.4.: Limit coupling parameter for different radius R

Thus it appears that the physical parameters of the studied system influence
greatly the limit at which we can model the system.

There are two possible origins for the Ξ limit :
On the one hand, it could be a numerical limit linked to the iterative scheme

used to solve the equations. On the other hand, the limit can steam from the
theoretical model used. The next paragraph explores this possibility with the
very simple model of a bulk situation.

2.5.2. Analytical study: the bulk system

We consider a bulk situation to study the Ξ limit. This theoretical analysis
was performed following an interesting conversation with Sahin Buyukdagli.
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2. Fluctuation Enhanced Poisson-Boltzmann Theory

In the bulk situation, the electrostatic field φ is zero and the green function fol-
lows:

−∇2G + Λ e−Ξc(r)/2 G = 4 π δ (2.28)

The correlation function c(r) is given by :

c = lim
r→r′

(
G(r, r′) − 1

|r− r′|

)
(2.29)

Defining κ2 = Λ e−Ξc(r)/2 and replacing it in equation (2.28), we can solve the
green function:

G(r, r′) =
e− κ |r−r′|

|r− r′| (2.30)

From that expression, we write the correlation function :

c = lim
r→r′

[
e− κ |r−r′| − 1
|r− r′|

]

= lim
R→0

[
e− κ R − e− κ 0

R − 0

]
=

d e−κ R

dR

∣∣∣∣
R=0

= −κ

(2.31)

And replacing c in the equation defining κ, we obtain :

κ2 = Λ eΞ κ /2 (2.32)

We consider the rescaled form of the above equation :

κ̃2 = ea κ̃ (2.33)

with κ̃ = κ√
Λ

and a = Ξ
2

√
Λ . In this form, the limit is only dependent of one

parameter a. For simplicity of notation, we note κ the value κ̃ in the following
study.

We can solve this equation visually by plotting the two curves : κ → κ2 and
κ → ea κ and finding their intersection for different coupling parameters (fig-
ure (2.6) ).

Figure (2.6) clearly shows that for large a equation (2.33) has no real solution
(the dashed aquamarine curve does not intersect the blue line). We can find
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Figure 2.6.: Visual resolution of the equation κ2 = eaκ. The curve κ → κ2 is plotted in
blue. The dotted lines represent κ → ea κ for different values of a :
–––– the green curve corresponds to a = 0.1 and it intersects the blue curve

at κ ∼ 1
– the aquamarine curve corresponds to a = 1 and does not intersect the

blue curve. Thus the equation (2.33) has no solution for a = 1.
– the red curve corresponds to a = alim = 2

e which is the limit at which a
solution exists.

the limit parameter with considering that, for alim, the two curves intersect and
share the same tangent (red and blue curve of figure (2.6)). Thus we want to
solve the equations: {

exp(aκ) = κ2

a exp(aκ) = 2 κ
(2.34)

This leads to the solution : alim = 2
e and κ = 2

a . Thus there is no solution for
a > 2

e . This is an effective limit for the coupling parameter when we consider
the bulk.

However, only real solutions can be found with this visual analysis and we
explore the problem in the complex plan in the next paragraph.

Solving this equation in the complex plan leads to two sets of solutions
expressed with the Lambert W-function. The Lambert W-function is defined
by:

z = W(z) eW(z) (2.35)
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We can rewrite equation (2.33) so the above definition clearly appears:

κ2 = ea κ ⇔ 1 = κ2 e−a κ

⇔ 1 = ±κ e−a κ/2

⇔ ∓ a
2

=
(
− a

2
κ
)

e(−
a
2 κ)

⇔
(
− a

2
κ
)

= W(∓ a
2
)

(2.36)

Thus there are two sets of solutions :

κ+ = − W(C, a/2)
a/2

κ− = +
W(C,−a/2)
−a/2

(2.37)

with C an integer corresponding to the branch of the W-function. Indeed, the
Lambert W-function is defined in the complex plan and the periodicity of the
complex exponential explains the presence of branches [87].

We define z± = ± a
2 which is a real number, and the solutions become :

κ± = ∓W(C,z±)
z± = ∓e−W(C,z±). We plot the different branches of the solution

in figure (2.7).

We first observe that the zero-branch of the minus solution κ−(C = 0, z−) is
the real solution previously studied. Since the W(z) function exists in the real
plan only for z ≥ −1

e [87], we find the same limit a ≤ 2
e . The other solutions

have an imaginary part.

Second, we observe that each branch has a real part positive for small a
and negative for larger a. This limit increases as C increases. Indeed, if we
separate the Lambert W-function in its real and imaginary parts : W(C, z) =
Wr(C, z) + iWi(C, z), then we can calculate the point where the real part of the
solution changes sign : Re(κ) = Wr

z = 0, since z is real. We separate the real and
imaginary part of the equality W(C,z)

z = e−W(C,z).

Wr

z
= e−Wr cos(Wi)

Wi

z
= − e−Wr sin(Wi)

(2.38)
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Figure 2.7.: Complex solution κ(a) of the equation κ = eaκ. The set of plus-solution is
depicted in the top curves and the minus-solutions are plotted in the bot-
tom curves. The real parts of κ are on the left hand side, with the imaginary
parts on the right hand side. The 0-branches are in blue, the 1-branches in
purple and so on.

Thus Re(κ±) = 0 gives Wr = 0 = e−Wr cos(Wi). We deduce an expression
of the imaginary part of the Lambert W-function Wi(C, z) = π

2 + Cπ. We then
replace Wr and Wi in the second line of equation (2.38):

Wi

z
=

1
z

(π

2
+ Cπ

)
= −e−0 sin

(π

2
+ Cπ

)
= ±1

We extract from this equation an expression of the position z at which the real
part of κ is zero:

z = ±π

2
+ Cπ (2.39)

Considering the plus solution κ+ for example, z must be positive and zlim =
+ alim

2 = π
2 + Cπ. The positive integer C corresponds to the branch of the W-

function and we conclude that each branch of higher C has a larger zlim. Thus it
should be possible to find a complex solution for any value of the parameter a.
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Can we find the complex solutions ?
We use the Solve function of Mathematica to find a solution κ for different

parameter a. The solutions are presented on figure (2.8) for two different initial-
izations: in red stars the solutions for the initial value κ = 2 and in black circles
the solutions for a complex initial value κ = 5− i5.

The real initialization leads to real results on the 0-branch of the minus solu-
tion and complex κ-s are soon found. Using the complex initialization forces the
solver to explore other branches of the Lambert W-function, and the solutions
obtained are complex.
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Figure 2.8.: Complex solution κ(a) of the equation κ = eaκ. The plus-solutions are
plotted with continuous lines, the minus-solutions with dashed lines. The
real part of κ are on the left hand side, with the imaginary part on the right
hand side. The solutions found by Mathematica for an real initial condition
κ = 2 are plotted with red starts, the solutions found with a complex initial
situation κ = 5− i5 are in black circles. The 0-branches are in blue, the 1-
branches in purple and so on.

However, the program we use can not solve complex equations. Indeed, the
numerical scheme used to inverse the matrix does not manage complex num-
bers.

Furthermore, equation (2.33) is not linear. We can not combine two complex
solutions to build a real and physical one. Indeed, if we consider κ1 and κ2
solutions of κ2 = eaκ, then we have

(κ1 + κ2)
2 = eaκ1 + eaκ2 + 2ea

√
κ1κ2

and
(κ1 κ2)

2 = eaκ1 eaκ2 = ea(κ1+κ2)

We can conclude that no real solution exists for a > 2
e and we thus found a
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theoretical limit for the coupling parameter in the bulk situation: Ξlim = 4
e
√

Λ
.

The dependence of Ξ ∝ 1√
Λ

. To ascertain if the limit found for the bulk
system is valid for the cylinder system, we plot the values of the limit coupling
parameter Ξlim for different ion fugacities Λ.

We consider two situations plotted on figure (2.9).
– For a cylinder of radius R = 3, of surface charge σ = 1 and with the di-

electric constant ratio εratio = 0.1, we find: Ξlim = 1.2√
Λ
+ 2. If we neglect

the offset +2, this fit leads to alim = 0.6. This value is quite close to the one
given by the theory for the bulk: abulk

lim = 2
e = 0.74.

– For a cylinder or radius R = 1, of surface charge σ = 1 and of dielectric
constant ratio εratio = 1, we find: Ξlim = 3.6√

Λ
+ 1. The offset is lower than

for the precedent situation, but the value of the parameter alim = 1.8 is fur-
ther from the bulk limit.
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Figure 2.9.: Limit coupling parameters for different fugacities (blue stars) and their
fits (dotted red line). On the left hand side, the measures for a cylinder
defined by: R = 3, σ = 1 and εratio = 0.1. The fit is given by: Ξlim = 1.2√

Λ
+

2. On the right hand side, the results for a cylinder defined by: R = 1,
σ = 1 and εratio = 1. The fit is given by: Ξlim = 3.6√

Λ
+ 1. In both cases the

limit coupling parameter is measure with a precision of ±0.1.

Thus we find the correct form for the limit coupling parameter with respect
to the fugacity, but we can not relate the constants to the bulk model.
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2.5.3. Concluding remarks

The solver allows us to model electrostatic systems for higher coupling pa-
rameters than Poisson-Boltzmann theory. However, a limit still exists. From
the analytical study of the bulk situation and observations of the dependence of
this limit, we conclude that the limit coupling parameter varies with the system
modeled and comes from the theory used.
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2.6. Perspective: Two fields

In this section, we show how our solver can be adapted to more complex sit-
uations. We first model ion core repulsion with the addition of a Yukawa field.
Then we present a system of colloidal particles suspended in binary solvent.
One needs two fields to model these systems and to take into account their fluc-
tuations in order to understand the experimental results.

2.6.1. Yukawa potential

The steric repulsion between ions is not taken into account by the Poisson-
Boltzmann description. This leads for example to an un-physical density of
counter-ions close to a highly charged surface.

Different approaches exist. One can add a Stern layer [88] which is a narrow
space where ions are excluded; it is also possible to consider a lattice formula-
tion where the space, divided into ion-sized cells, is filled with either ions or
solvent molecules [89, 90]. In this method, the entropic contribution of the free
space is considered.

The method we explore here uses a second field to describe the ion-ion steric
repulsion: the Yukawa field [91].

The calculation with the Yukawa field follows the same steps than presented
in the section (2.3) with the added term in ρ̂Swρ̂S where w(r− r′) is the Yukawa
interaction potential and ρ̂S is the ion density operator [91]. ρ̂ and v are the
charge density operator and Coulomb pair potential. The partition function is
given by the following equation where we write in green the part due to the
added Yukawa interactions:

Z =
1

N+!

N+

∏
j=1

[∫ dr+j
λ3

t
Ω(r+j )

]
1

N−!

N−

∏
j=1

[∫ dr−j
λ3

t
Ω(r−j )

]

exp
{
− lBq2

2

∫
drdr′ ρ̂(r)v(r− r′)ρ̂(r′) + q2lBv(0)

N+ + N−
2

− ClB

2

∫
drdr′ ρ̂S(r)w(r− r′)ρ̂S(r′)

} (2.40)

The constant C represents the strength of the Yukawa interaction and is dimen-
sionless.
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The density operators are defined by:

ρ̂(r) =
N+

∑
j=1

δ
(

r− r+j
)
−

N−

∑
j=1

δ
(

r− r−j
)
+ σ(r)/q

ρ̂S(r) =
N+

∑
j=1

δ
(

r− r+j
)
+

N−

∑
j=1

δ
(

r− r−j
) (2.41)

The pair potentials and their respective inverse are given by:

v(r) =
1
r

v−1 =
−1
4π

∆

w(r) =
e−κr

r
w−1 =

−1
4π

(
∆− κ2

) (2.42)

The parameter κ is the inverse screening length of the Yukawa potential. A
strong (C large), short range (κ large) interaction must be chosen to model the
core repulsions between ions.

The calculation steps are identical to those previously presented in section (2.3)
and are also detailed in [92]. In this article, charged Yukawa liquids are mod-
eled near neutral planar interfaces with dielectric discontinuity. In this work,
instead of searching for the variational electrostatic potential v0 and the vari-
ational Yukawa potential w0, their form are chosen with two unknown vari-
ational parameters. These two parameters and the two variational potentials
φ0 and ψ0 are found through an iterative scheme. This article [92] shows that
the variational theory gives a better agreement with simulation results than the
mean field approximation.

2.6.2. Colloidal particles suspended in binary solvent

In [28], Bonn et al. present the study of a complex electrostatic system. It is
composed of two solvents, ions and colloids. The different states of the system
are reached though varying temperatures. Furthermore, the addition of ions
leads to a variation of the critical temperature at which the aggregation of the
colloids occurs. The system is described by two fields: the electrostatic field for
the ions and charged colloids on the one hand, and the relative fraction of one of
the solvent to describe the mixture on the other hand (refer to subsection (1.2.1)
for a more detailed description).

For this system, the coupling parameter is of the order of Ξ ∼ 4, and the
Poisson-Boltzmann description is not sufficient. Indeed, it seems that the fluc-
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tuations of the ionic interactions and of the solvent mixture are at the core of the
observed phenomenon. To study this system, we need to write the variational
equations and take into account the fluctuations of the electrostatics and of the
fluid mixture.

2.7. Concluding Remarks

In this chapter we worked on the addition of electrostatic fluctuations to the
Poisson-Boltzmann model. Our aim is to better describe systems with coupling
constants small but larger than 1. Indeed the Poisson-Boltzmann model is valid
only for small Ξ < 1, while the strong-coupling theory covers only the large
coupling parameter (Ξ > 10+4).

We first studied the one loop expansion which is not a sufficient correction
[67].

We then used the variational field theory approach to define self consistent
equations. To solve those, an iterative numerical scheme was devised and im-
plemented. We tested this tool on a simple 2-dimensions system composed of
a permeable charged cylinder. A limit appears for high coupling parameters
(Ξ > 4.7) and varies when the system is changed (charge of the cylinder, rela-
tive dielectric constant,...).

From our analytical study of the bulk situation, it seems that this limit origi-
nates from the theory we use.

The next step in this study would be to compare the results from our solver
with other modelization tools like molecular dynamic. This would allow us
to judge of the pertinence of the correction we calculate with the variational
approach.
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Rolling Platelets on a Surface
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3. Rolling Platelets on a Surface

Platelets are small anucleate cells. A component of blood, their main func-
tion is hemostasis: to stop the loss of blood at wounded sites. The process of
hemostasis following an injury can be decomposed into three main steps: vaso-
constriction where the damaged blood vessel constricts to reduce the blood flow
in the vessel and thus limits the blood loss; primary hemostasis [93] during
which platelets and vessel walls interact via von Willebrand factors (vWF) and
form a protein binding matrix (figure (3.1)); and the coagulation cascade where
the platelets agglomerate and form a thrombotic plug.

Figure 3.1.: vWF-dependent platelet adhesion at high shear [94]. The shear induced
changes in the binding interaction between vWF and GPIbα show how
platelet adhesion is enhanced under the influence of shear force and how
thrombus formation can be initiated at the vessel wall in flowing blood.

Platelets are fragments of megakaryocytes and are produced in vivo through
the migration of the megakaryocytes from the bone marrows to the blood ves-
sels [95, 96]. This process produce 1011 platelets per day in a healthy human
adult.

A challenge largely studied is to produce platelets in vitro. Indeed, platelets
are used in a large variety of medical interventions such as leukemia treatment,
during chemotherapy or for heavy surgery. So far platelets come from dona-
tion with more than 130 thousands of platelets donations in 2012 in France [97].
However, the extraction procedure involves separation of the platelets from the
blood which is then re-injected to the donor. This process is tiring and time-
consuming. Furthermore, platelets collected by this method have a low life
span of five days [97]. Platelets are in constant demand from medical facilities
and in vitro production would be a solution to this issue.
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3. Rolling Platelets on a Surface

Transport of cells in blood is mainly realized through advection in the bulk
pumped by the heart. White blood cells and platelets, however, target sites
near the vessels walls. Between bulk advection and eventual adhesion, complex
rolling behavior is one of the main pathway for these cells to reach their targeted
sites. Such behavior is exhibited by several types of blood cells in vivo, such as
leukocytes [98] or platelets. It has also been observed in cancer cells, and shown
to be a preliminary step to tumor cell transport in and out of the blood flow
[99]. This passage of circulating cancer cells across the endothelium is called
diapedesis and is a precursor to metastasis.
In order to faithfully mimic their transport in micro-vessels, we need to take
into account the specific interactions of rolling cells with walls.

Von Willebrand Factor. Platelets interact with vessel walls through the cre-
ation and break of bounds with von Willebrand factor (vWF). This large mul-
timeric protein is expressed by endothelial cells close to sites of vessel injury
[100]. vWF is a polymer with large repeating units. At low shear rate, it is coiled,
while at high shear rates the vWF molecule unfolds as presented in figure (3.2)
[101]. This unfolded state exposes the A1 domain of the von Willebrand fac-
tor where the binding sites for the platelet protein GPIb are located [102]. This
binding is specific, reversible, and shear dependent.

Von Willebrand factor has actually two ways to interact with platelets. It is
capable of establishing transient bonds with GPIb, but it is also mediating firm
adhesion through interaction with activated integrin αI Ibβ3 [98, 103].

Many microchips are designed to handle blood samples for analysis or fun-
damental purpose [104]. One of the main objective in devising lab-on-chip is
the gain of precise control and the reduction of the sampled volume needed for
analysis. A gain of time and cost is also expected from such development.
Microchips were devised for platelet injections in order to test the efficiency of
anti-thombotic treatments [105]. The microfluidic device described in this ar-
ticle recreates an open system where the responsiveness of platelets to a set of
inhibitors is tested. The parallel channels allow one to test different concentra-
tions of inhibitors and generate a dose-response curve.

We study here the flow of fixed platelets in a microfluidic chamber coated
with vWF. The local surface concentration Cs of platelets adhering to the wall
is measured and found to be a decreasing function of the distance x between
the channel entrance and the observation position. This phenomenon, called
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Figure 3.2.: The conformation of von Willebrand factor under different shear
stresses [101].
Schematic model using actual AFM images of vWF illustrating shear-
induced conformational changes in vWF under aqueous conditions. The
three images of vWF are on the same scale so they are directly compara-
ble. Under negligible shear (left side), vWF has a globular conformation
on the hydrophobic surface, comparable in maximal dimension with the
native solution conformation. Shear forces (center) (7.4 to 19 nN) applied
by the AFM probe tip, cause protein unfolding, and the vWF has a short
extended chain conformation in which individual globular domains are
visualized. After exposure to a shear stress field of 35 ± 3.5 dyn.cm−2 ,
vWF is observed in extended conformation (right side), with molecular
length ranging from 146 to 774 nm.

axial dependency, has been observed in experiments involving whole blood in
a flow chamber [106]. Several theoretical [107] and numerical [108] studies focus
on platelet diffusivity in the transverse direction. Indeed, the presence of large
flexible red blood cells induces a near-wall excess of platelets. However, no
predictions–to the best of our knowledge–have been made regarding the axial
dependency of platelet concentration, whether in volume or at the surface.

In this chapter, we present the experiment devised and realized by the team
led by Mathilde Reyssat at MMN, ESPCI. They gathered experimental data on
the rolling behavior of fixed platelets in a microfluidic channel. We develop
here two models that describe the transport of rolling cells in a channel. The
rolling mechanism, as well as the binding and escape of biological materials
on grafted surface were studied at the ligand-receptor level quite extensively
[109, 98, 103]. Our models focus on a population of cells rather than the indi-
vidual interactions. The first model considers only the rolling mechanism and
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3. Rolling Platelets on a Surface

attributes a speed to each particle injected at the surface of the channel. The
second model considers two populations of platelets: those bound to the sur-
face through their interaction with the vWF, and those in the fluid. Exchanges
between both populations, and platelet axial displacement through rolling and
advection are considered. Among the fitting parameters of this model is the
attachment rate Kon of a platelet on a vWF-coated wall. There is no known ex-
perimental method to measure such an attachment rate at the cell level.
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3.1. Experiment

The experiments were carried out in the MMN laboratory (Microfluidics,
MEMs, Nanostructures) at the ESPCI by the team of Mathilde Reyssat: Anne
Le Goff, Antoine Blin and Hyacinthe Buisson who also contributed to the de-
velopment of the models. The platelets were obtained by the INSERM team led
by Dominique Baruch, and in particular with the help of Aurélie Magniez who
prepared the platelets.

3.1.1. The microfluidic set-up

PDMS microchannels were fabricated using standard soft lithography tech-
niques [110]. Straight channels were used with rectangular cross-section, of
fixed width W = 400 µm and length L = 4 cm and variable height H ∈
[14, 62] µm. After plasma treatment, channels are sealed on a glass slide and
filled with a solution containing von Willebrand factor (20 µg.mL−1 in PBS)
and incubated overnight at 4°C. This creates a coating of vWF which acts as a
binding mesh and rolling medium for the platelets.

Platelets are injected into the channel with a concentration C(in)
v of 140 103

mm−3. Connection between the flask containing the cells and the channel is
achieved with PEEK tubing (polyether ether ketone, internal diameter 228 µm),
avoiding cell adhesion in the tubing. The homogeneity of the suspension in the
entrance reservoir is maintained by gentle agitation. A commercial computer-
driven pressure control system (Fluigent MFCS-4C) is used and a compatible
flowmeter (Flowell) is employed to establish a calibration curve Q = f (∆P).
The flow rate is chosen for each of the parallel channels so the desired shear
rate is achieved. In the following experiments, the wall shear rate is fixed to
γ̇ = 1800 s−1 . Let us recall that the shear rate γ̇ is directly related to the shear
stress by σ = ηγ̇ where η is the fluid viscosity. In this experiment, the shear
stress is thus σ = 1.8 Pa = 18 dyn/cm2.

3.1.2. The platelets

Platelets are isolated from fresh blood samples from healthy donors by sev-
eral steps of centrifugation, and immediately fixed. Fixation is an operation by
which chemicals such as formaldehyde block biochemical reactions and pre-
serve tissues. Fixed platelets exhibit the same surface proteins as fresh platelets,
thus they interact with von Willebrand factor though they can not be activated.
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3. Rolling Platelets on a Surface

Figure 3.3.: Schematic representation of the experimental set up. The solution of
platelets (in green) is injected into a simple straight microchannel coated
with von Willebrand factor proteins (in red). The shear rate is imposed
through the pressure control. Videos and instant pictures are taken
through an inverted microscope.

3.1.3. Videomicroscopy

Observations are made with a Leica inverted microscope, using 40x magni-
fication dry lens in phase contrast mode. Images are obtained with a high-
speed camera (Photron Fastcam SA3). Recording parameters are the following:
to measure the rolling velocity of adherent cells, acquisition frequency is 0.5
fps with a 20 ms shutter; for freely flowing cells, acquisition frequency is 2000
fps with a 0.1 ms shutter. During the kinetics measurements, only snapshots
are acquired. The motorized stage allows us to navigate between several pre-
recorded positions in the channel and to sample its whole length in less than 2
minutes.

The focus of the microscope being on the surface, only the platelets bounded
to von Willebrand factors appear clearly in the picture (figure (3.4)). Platelets
in the flow move faster than the acquisition frequency can capture and can not
be seen on the pictures. Images were analyzed with ImageJ software, using
a routine to automatically count the number of adherent cells in a microscope
field. Both the axial dependence and the kinetics of the surface concentration of
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3.1. Experiment

platelets are extracted from these analysis.

Figure 3.4.: Instant picture of the surface of the channel at different positions.
Platelets on the surface, bound with vWF are observed while platelets ad-
vected in the volume do not appear.
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3. Rolling Platelets on a Surface

3.2. Observations

From video recordings, we observe dynamical events such as adhesion of
platelets to the grafted surface, desorption or axial movement. The advection
of volume platelets appears only as white streak on films, while the rolling on
the surface can be studied in more details.

From the pictures taken at different times and positions, we count the platelets
and draw curves of surface concentration.

3.2.1. Rolling velocity

We measure the rolling speeds of absorbed platelets and the distributions are
plotted in figure (3.5).

Figure 3.5.: Distribution of rolling velocity VR of fixed platelets on a vWF-coated wall
surface at different wall shear rates.

Rolling velocity depends on the shear rate, as observed experimentally [111].
An analytical study of the peeling mechanism involved in the rolling has been
proposed in [109]. We check in figure (3.6) that our measurements of the rolling
velocity of fixed platelets, plotted against wall shear stress σ, are compatible
with those of reference [112]. In this article, it was also shown that fixed and
washed platelets exhibit the same rolling velocity in the range of shear rate that
we explore.

3.2.2. Adsorption kinetics and axial dependency

The number of platelets adsorbed at the channel wall is plotted as a function
of time. Typical adsorption kinetics curves are displayed in the left hand side
curve of figure (3.7).
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3.2. Observations

Figure 3.6.: Rolling velocity VR of fixed platelets on a vWF-coated wall surface, as a
function of wall shear stress σ. We superimpose our results (•) and those
extracted from [112] (�).

At the channel entrance, surface concentration increases very fast and satu-
rates after about 2 hours. When the position increases, the number of platelets
bound decreases strongly. This can be observed on the right-hand curves of fig-
ure (3.7) where the axial dependence of the surface concentration is plotted at
different times.
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Figure 3.7.: Surface concentration of platelets (in mm−2). On the left hand side, the
kinetic adsorption of platelets on the vWF-coated surface, for different po-
sitions in the micro-channel. On the right hand side, the axial dependency
of the surface concentration at different times.
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We observe a large concentration at the injection point. There are two pos-
sible phenomena which could explain this large values. On the one hand, an
exchange of platelets between the volume and the surface can be present every-
where in the channel, and the adsorption at the initial position could deplete the
volume. On the other hand, the injection point is a position with a downward,
turbulent flow which may push the platelets toward the wall thus favoring a
strong binding. Of course both hypothesis can be considered at once. We base
the first model on the latter hypothesis, while the second model relies on the
former one.

To understand the experimental measurements, we model ensemble of cells
and do not detail the attachment, detachment and rolling mechanisms at the
individual cell level.

We use two sets of experimental data to confront the models with the ex-
periments: Exp. 1 was realized in October 2012 and Exp. 2 in February 2014.
The platelets used come from different batches but the set-ups are otherwise
identical. Yet they yielded different results with, for example, a larger surface
concentration with the second experiments (see table (3.1)).
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3.3. Model of Rolling Platelets

We base this model on the observation that platelets at the channel’s entrance
are numerous. We make the following hypothesis:

– platelets are injected on the surface at the entrance point x = 0 only,
– the injection is achieved at a constant rate D expressed in s−1 (1D model),
– there is no detachment phenomenon,
– platelets roll on the surface with a constant speed,
– the rolling velocity follows a Gaussian distribution.
In this model, a platelet is characterized by its speed and time of injection.

The whole system is described by the speed distribution with the mean value
v̄ and the standard deviation σ and by the injection rate D. We can write the
probability density for a particle to have a speed v:

P(v) =
1√
2πσ

e−(v−v̄)2/2σ2
(3.1)

We consider a minimum and maximum speed and we choose zero as the
lower bound and the new parameter vM as the higher limit.

P(v) =


1
P0

e−(v−v̄)2/2σ2
for 0 ≤ v ≤ vM

0 otherwise
(3.2)

with P0 the integral of the exponential between 0 and vM. Figure (3.8) shows
the velocity distribution.
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Figure 3.8.: The rolling velocity distribution is a cut Gaussian (continuous blue line).
The dashed line is the full Gaussian distribution. The parameters used are:
v̄ = 2, σ = 5 and vM = 13.
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We introduce the following quantities: C(x, t) is the density of platelets at
position x and time t; dn(x, t) is the number of cells between the positions x
and x + dx at time t; dm = m(x, t, v) dv is the number of cells with velocity
v between the positions x and x + dx at time t; dN = N(t, v) dv is the total
number of particles in the channel with a speed taken between v and v + dv at
time t. From these definitions, we can write the equalities:

C(x, t) =
dn(x, t)

dx

dn(x, t) =
∫ v=vM

v=0
m(x, t, v) dv

dN(t, v) = D t P(v) dv

(3.3)

As particles do not change speed, we can link m(x, t, v) and N(t, v). Indeed, the
distribution of cells rolling at a given speed is homogenous along the channel
for x ≤ vt and null otherwise. Thus we have:

m(x, t, v) =


dx
v t

N(t, v) for x ≤ vt

0 for x > vt
(3.4)

We can write the expression of the platelets density:

C(x, t) =
dn(x, t)

dx
=

1
dx

∫ v=vM

v=0
m(x, t, v) dv

=

D
∫ vM

x/t

P(v)
v

dv if x/t ≤ vM

0 if x/t > vM

(3.5)

We now fit this model to the experimental measurements with the least-square,
non-linear, curve fitting routine lsqcurvefit from Matlab and find the parameters
v̄, σ, vM and D. Using the distributions of velocity presented in figure (3.5), we
use v̄ = 10 µm.s−1, σ = 5 µm.s−1 and vM = 40 µm.s−1 as starting point of the
curve-fitting search. Table (3.1) presents two fitted results. For Exp. 1 (left hand
curves), the measurements at the first position are not well fitted but the curves
match well for larger x. However, for Exp. 2 (right hand curves) the shape of
the experimental curves is not completely captured by the model. Yet its distri-
bution of velocity seems closer to the one presented in figure (3.5) than the one
from Exp. 1 where only very small speed are considered. Let us note that the
maximum velocity is very large. We can conclude from this observation that
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the higher limit is not a relevant parameter in this case.
We conclude that this model lacks some important features of the system, yet

it is no completely irrelevant. In the next section, we develop a model focused
on the exchange of platelets between the volume and the surface.
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Table 3.1.: Fitting experimental data with the rolling model. On the left hand side
the figures for Exp. 1 and on the right hand side for Exp. 2. In each curves
the points are the experimental data and the lines the fit curves. The top
curves are the concentration with respect to time for different positions, the
second lines correspond to the surface concentration with respect to posi-
tion for different times, the bottom figures are the rolling velocity distribu-
tions used in the model. The parameters found are the following:
Exp. 1: v̄ = 0.5µm.s−1, σ = 0.5µm.s−1, vM = 50mm.s−1 and D = 3.4s−1;
Exp. 2: v̄ = 2 10−3µm.s−1, σ = 4µm.s−1, vM = 0.1mm.s−1 and D = 31s−1.
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3.4. Model with Exchange of Platelets

This model, developed with the help of Olivier Dauchot, is based on the ob-
served exchange of cells between the volume and the surface. The injection of
platelets is solely in the volume.

3.4.1. The model

We observe in the videos four phenomena that we take into account in our
model: the movement of the platelets in the volume, the binding of the platelets
on the surface, their rolling and their detachment.

The system is divided into two parts: the volume where the platelets are
advected with the speed of the fluid noted vv, and the surface on which the
platelets are bound by the vWF molecules and roll at the speed vs. This rolling
velocity is the mean rolling speed since we consider only one velocity identical
for all platelets. A more complex model would consider a distribution of rolling
velocities. However, this allows us to compare the previous model with this one
and to determine if one phenomena is predominant in the axial and temporal
dependence: exchange phenomena or rolling speed distribution.

The two environments exchange platelets: the binding of platelets to the sur-
face is described by a coefficient Kon and is proportional to the presence of ob-
jects in the volume. It is also limited by the quantity of platelets already bound
to the surface. Indeed, either by the number of binding sites, or by the sur-
face occupied by the platelets, the surface concentration is limited. As the vWF
covers the surface densely, the second limit is considered. We choose a linear
expression to model this close packing limit.

The platelets can also detach from the surface and there is a flow of particles
from the surface to the volume that is directly proportional to the number of
bound particles and described by the parameter Ko f f . We note nv (resp. ns) and
Cv (resp. Cs) the volume (resp. surface) number of platelets and its associated
concentration.

A schematic description of these phenomenons is given in figure (3.9).
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Figure 3.9.: Flow and exchanges of platelets in the system.

From this description we calculate the number of platelets in the volume and
on the surface at the next time step :

nv(x, t + dt) = nv(x, t) + nv,in − nv,out

= nv(x, t) +
{
Cv(x, t) vv dt dy h + ko f f dt ns

}
− {Cv(x + dx, t) vv dt dy h + Kon dt nv (1− ns/ns,max)}

ns(x, t + dt) = ns(x, t) + ns,in − ns,out

= ns(x, t) + {Cs(x, t) vs dt dy + Kon dt nv (1− ns/ns,max)}
−
{
Cs(x + dx, t) vs dt dy h + ko f f dt ns

}
(3.6)

We note Ko f f = ko f f /h, the exchange parameter similar to the one used in
publications studying vWF [111, 113]. We use this notation but we must be
careful to not rush any later comparisons with values found by other teams.
Indeed, some studies consider one-link tether bonds between the vWF and the
cell, rather than the uncontrolled number of links we expect in this system.
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We replace in equation (3.6) the number of platelets by the concentrations.

(Cv(x, t + dt)− Cv(x, t)) dx dy h
= − (Cv(x + dx, t)− Cv(x, t)) vv dt dy h

+ Ko f f h dt Cs dx dy− Kon dt Cv dx dy h (1− Cs/Cs,max)

(Cs(x, t + dt)− CS(x, t)) dx dy
= − (Cs(x + dx, t)− Cs(x, t)) vs dt dy

+ Kon dt Cv dx dy h (1− Cs/Cs,max)− Ko f f h dt Cs dx dy
(3.7)

We introduce the partial derivatives of the concentration with respect to time
and space, and we reach the set of equations:

∂Cv

∂t
+ vv

∂Cv

∂x
= −J

∂Cs

∂t
+ vs

∂Cs

∂x
= hJ

J = KonCv

(
1− Cs

Cs,max

)
− Ko f f Cs

(3.8)

Cv and Cs are respectively the volume and surface concentration, vv and vs
the speed of the particles in each phase, Kon and Ko f f the exchange parameters
between the volume and the surface, Cs,max the maximal concentration on the
surface at the packing limit and h the height in which the exchange takes place.

We render these coupled equations dimensionless. First we consider a
modified surface concentration:

Cs −→ C̃s =
Cs

h
(3.9)

This corresponds to the study of a volume-volume exchange instead of the
volume-surface model. We now consider two equivalent environments, one
with a slow velocity (former surface), the other with a fast speed (previously
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the volume).



∂Cv

∂t
+ vv

∂Cv

∂x
= −J

∂C̃s

∂t
+ vs

∂C̃s

∂x
= J

J = KonCv

(
1− C̃s

C̃s,max

)
− Ko f f h C̃s

(3.10)

Second, we choose C̃s,max as a reference concentration and consider the trans-
formations:

C̃s −→ C̄s =
C̃s
˜Cs,max

Cv −→ C̄v =
Cv
˜Cs,max

J −→ J̄ =
J
˜Cs,max

(3.11)

This leads to : 
∂C̄v

∂t
+ vv

∂C̄v

∂x
= −J̄

∂C̄s

∂t
+ vs

∂C̄s

∂x
= J̄

J̄ = Kon C̄v
(
1− C̄s

)
− Ko f f h C̄s

(3.12)

We remark that while C̄s is comprised between 0 and 1, C̄v has not such higher
limit. Indeed it is possible to inject a concentration of particles higher than
Cs,max, that would correspond to putting more platelets in the system than what
the surface can absorb. The optimal system would present a complete trans-
fer of the platelets from the volume to the surface with the input at x = 0(
C̄v = 1, C̄s = 0

)
and the output

(
C̄v = 0, C̄s = 1

)
.

We now define a characteristic time τ = 1
Kon

and a characteristic length λ =
vv

Kon
. Thus we consider the following transformations :

x −→ x̃ =
x
λ
=

Kon

vv
x

t −→ t̃ =
t
τ
= Kont

(3.13)
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3. Rolling Platelets on a Surface

which leads to the following set of equations :

Kon
∂C̄v

∂t̃
+

vvKon

vv

∂C̄v

∂x̃
= −J̄

Kon
∂C̄s

∂t̃
+

vsKon

vv

∂C̄s

∂x̃
= J̄

J̄ =Kon

{
C̄v
(
1− C̄s

)
− h

Ko f f

Kon
C̄s

} (3.14)

Additionally, we call J̃ = 1
Kon
J̄ and thus obtain:

∂C̄v

∂t̃
+

∂C̄v

∂x̃
= −J̃

∂C̄s

∂t̃
+ ε

∂C̄s

∂x̃
= J̃

J̃ = C̄v
(
1− C̄s

)
− αC̄s

(3.15)

The newly defined J̃ is dimensionless and the system is described by two di-
mensionless parameters:

ε =
vs

vv

α = h
Ko f f

Kon

(3.16)

The parameter ε represents the velocity of the platelets on the surface, while
they move at a speed of 1 in the volume. It is, for the system we study, always
lower than 1 as the platelets roll at a much slower speed than they are advected.
The parameter α represents the exchange between volume and surface. It is also
expected to be smaller than one since the filling of the surface should be more
important than its emptying.

In the next parts we use the following notation:

v = C̄v =
Cv h
Cs,max

s = C̄s =
Cs

Cs,max

J = J̃ =
J h

Cs,maxKon

ε =
vs

vv

α =
Ko f f

Kon
h

(3.17)

We use the subscript t and x to represent the partial derivative over time and
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3.4. Model with Exchange of Platelets

space; for example: vt =
∂v
∂t . The resulting equations are given by:


vt + vx = −J

st + εsx = +J
J = v (1− s) − αs

(3.18)

Let us point out that the physics of the system is described by only two pa-
rameters. The parameter α describes the exchange of platelets between the two
environments, and the parameter ε corresponds to the relative speed of the
platelets on the surface, compared to the advection velocity in the volume.

A simple sum of the first two lines gives :

(v + s)t + (v + εs)x = 0 (3.19)

This corresponds to the local conservation of the total number of platelets.

We consider the following initial and boundary conditions:
– s(t = 0, x) = 0 as the surface is initially empty of platelets.
– s(t, x = 0) = 0 as no platelets are injected in the system directly at the

surface.
– v(t = 0, x > 0) = 0 since the channel is empty at the beginning of the

experiment.
– v(t, x = 0) = v(in) corresponds to the injection of platelets in the volume

at every time.
Let us remark that the concentrations are defined only for positive times and
positions. Indeed, the position x = 0 corresponds to the entrance of the channel
and injection point, and the time t = 0 is the beginning of the experiment with
the beginning of platelets’ injection.

We now aim to find an analytical solution for this model. We first explore
simple solutions (the constant solution and the stationary case), then we use
the characteristic method to understand the general shape of the full solution.
Last we numerically solve these equations and compare the results first to our
analytical expectations and second to experimental data.

109



3. Rolling Platelets on a Surface

3.4.2. Constant solution

One simple solution exists where both concentrations are constant. This would
correspond to large time situation and a far position along the channel.

For this very simple case, we only need to solve :

J = v (1− s) − αs = 0 (3.20)

We express the surface concentration in term of the volume concentration.

s(v) =
v

α + v
=

1
1 + α

v
(3.21)

We have s(v) < 1 since α is positive. We look at the condition for the surface
concentration to be equal to one which corresponds to the complete filling of
the surface.

s(v)→ 1 ⇔


α = 0

or
v→ ∞

⇔


Ko f f = 0 or

Kon → ∞ or
v→ ∞

(3.22)

In conclusion, we have the constant solution :

s(∞) =
v(in)

α + v(in)

v(∞) = v(in)
(3.23)

v(in) is the quantity of platelets injected in the system since we have no platelet
injection on the surface.

3.4.3. Stationary solution

The equations, if we consider no temporal dependency, become:
vx = −J

εsx = +J
J = v (1− s) − αs

(3.24)

Summing the first two lines allows us to express v in term of s and a constant.

(v + εs)x = 0 ⇒ v = C− εs (3.25)
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3.4. Model with Exchange of Platelets

The constant can be expressed using the values of the concentration at the initial
position: C = v(x = 0) + εs(x = 0) = v(in). We replace v by its new expression
in the second and third lines of equation (3.24). We obtain the equivalent system
of equations: {

v = v(in) − εs

εsx = (v(in) − εs) (1− s) − αs
(3.26)

We find the surface concentration when we solve the following equation:

sx = s2 − v(in) + ε + α

ε
s +

v(in)

ε
(3.27)

We transform this equation into an homogeneous non-linear equation with a
translation of the solution: s(x) = s̃(x) + A. A is a constant that will be chosen
so no constant term remains in the equation defining s̃(x). We note

ξ =
v(in) + ε + α

ε
(3.28)

and we replace the new expression of s(x) in the equation (3.27) to obtain:

s̃x = s̃′ = s̃2 − (ξ − 2A)s̃ +

(
A2 − ξA +

v(in)

ε

)
(3.29)

The constant A is defined by A2− ξA+ v(in)
ε = 0 and can thus take two values:

A± =
1
2

ξ ±

√
ξ2 − 4

v(in)

ε

 (3.30)

The part in the square root is positive as we can write it as a sum of positive
terms using the definition of ξ (equation (3.28)):

ξ2 − 4v(in)/ε =
1
ε2

[(
v(in) − ε

)2
+ α2 + 2α(v(in) + ε)

]
This means we have two solutions:

s+ = s̃+ + A+ s̃′+ = s̃2
+ + (2A+ − ξ)s̃+

s− = s̃− + A− s̃′− = s̃2
− + (2A− − ξ)s̃−

(3.31)
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3. Rolling Platelets on a Surface

We note ∆± = 2A± − ξ = ±
√

ξ2 − 4v(in)
ε = ±∆.

To solve those equations, we define a pair of new functions u± = 1
s± which

are the solutions of:
u′± ± ∆u± + 1 = 0

Thus we obtain the two intermediate solutions:

u± = ∓ 1
∆
+ B±e∓∆x (3.32)

with B a constant which will be different for each solution plus or minus.
We plot the intermediate solutions s̃± in figure (3.10). Let us note that s̃± being

given by 1
u± is not defined when u± is null (red dashed lines in figure (3.10)).

u± = 0 ⇒ x± =
±1
∆

ln(±∆B+) (3.33)

If the constant B+ (respectively B−) is negative (resp. positive), then the position
x+ (resp. x−) is undefined and the function s̃+ (resp. s̃−) does not diverge.

We now write the final solution:

s± = s̃± + A±

=
1

B±e∓∆x ∓ 1/∆
+ A±

(3.34)

The constants B± are determined with the vanishing boundary condition
s(x = 0) = 0.

B± = ± 1
∆
− 1

A±
= ± 1

∆
− 2

ξ ± ∆
(3.35)

The solutions become:

s± =
A± ∆

∓A± + (±A± − ∆) e∓∆x + A±

=
∆ (ξ ± ∆)

∓(ξ ± ∆) ± (ξ ∓ ∆) e∓∆x +
1
2
(ξ ± ∆)

(3.36)

The two solutions s+(x) and s−(x) are the same function. To prove this
equality, we use the first line of equation (3.36), and the fact that A− = A+ − ∆.
We consider the minus solution:

s− =
A− ∆

A− + (−A− − ∆) e+∆x + A− (3.37)
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Figure 3.10.: The intermediary result s̃(x). On the left hand side, the "plus" solution
s̃+(x) = 1

Be−∆x−1/∆ ; on the right hand side the minus solution s̃−(x) =
1

Be∆x+1/∆ . The curves are plotted for ∆ = 1 and for B = 5 for the top
curves and B = −5 for the bottom curves. The red dashed vertical lines
represent the positions x± where the functions s̃± diverge. Such positions
exist only in two of the four possible cases.

We replace the constant A− and multiply the fraction by e−∆x to obtain:

s− =
(A+ − ∆)e−∆x ∆

(A+ − ∆)e−∆x + (−A+ + ∆− ∆)
+ A+ − ∆

=
(A+ − ∆)e−∆x ∆ + (A+ − ∆)

(
(A+ − ∆)e−∆x − −A+−

)
(A+ − ∆)e−∆x − A+

(3.38)
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We recognize here the same denominator as in s+. We re-organize the numera-
tor of s− into:

(A+ − ∆)e−∆x ∆ + (A+ − ∆)
(
(A+ − ∆)e−∆x − A+

)
= (A+ − ∆)e−∆x (∆ + (A+ − ∆)) + (A+ − ∆)(−A+)

= A+

(
(A+ − ∆) e−∆x − A+

)
+ A+∆

(3.39)
Thus, we obtain:

s− =
A+∆

(A+ − ∆)e−∆x − A+
+ A+

= s+
(3.40)

We consider only the "plus" solution in further study as the two are strictly
identical. We have thus found the stationary surface concentration s(x):

s(x) =
A ∆

(A− ∆) e−∆x − A
+ A (3.41)

Let us remark that the constant B = 1
∆ −

2
ξ+∆ is positive since ∆ =

√
ξ2 − 4v(in)

ε

is smaller than ξ. That leads to the existence of a position x = 1
∆ ln(∆B) where

the solution diverges. However, this position is negative as ∆B = 1− 2∆
ξ+∆ < 1.

Since we are interested in the surface concentration for positive positions, with
the origin of the axis taken at the beginning of the channel, we do not see the
divergence.

In the expression of the surface concentration given in equation (3.41), the
two parameters describing the physics of the system are A and ∆. Considering
the third parameter v(in) from the boundary condition v(x = 0) = v(in), we can
easily switch between sets of parameters.


α

ε

v(in)
⇔


ξ =

α + ε + v(in)

ε
ε

v(in)

⇔



A =
1
2

ξ +

√
ξ2 − 4

v(in)

ε


∆ =

√
ξ2 − 4

v(in)

ε

v(in)

(3.42)
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A
∆

v(in)
⇔


ξ = 2A− ∆

ε =
v(in)

A(A− ∆)

v(in)

⇔


α = εξ − ε− v(in)

ε

v(in)
(3.43)

We study the form of the solution s(x) for different parameters.
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Figure 3.11.: Stationary surface concentration (a) for different parameters v(in) with
ε = 0.01 and α = 0.1; (b) for different parameters ε with α = 0.1 and
v(in) = 0.7; (c) for different parameters α with ε = 0.01 and v(in) = 0.7.

First we observe that the surface concentration tends toward a constant for
large positions. This constant can be calculated:

s(x) −−−→
x→∞

A− ∆ =
1
2

ξ −

√
ξ2 − 4

v(in)

ε

 (3.44)

We observe on figure (3.11) that this value s(x → ∞) increases with the volume
concentration injected in the system v(in). It also decreases when we increase
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3. Rolling Platelets on a Surface

the parameter α. This can be easily understood as α represents the capacity of
the platelets to leave the surface.

A characteristic length scale appears from the exponential in the expression
of the surface concentration (3.41): 1/∆. We can also find this length scale if we
calculate the derivative of the concentration at the initial position:

ds
dx

∣∣∣∣
x=0

=
v(in)

ε
∆ (3.45)

In this equation, v(in)
ε corresponds to the characteristic surface concentration and

∆ to the inverse of the characteristic length. From the curves of figure (3.11), we
see that this initial slope is greatly influenced by the injection concentration v(in)

and by the movement parameter ε.

3.4.4. Analytical study of the full model: the characteristic method

We use the characteristic method to try and solve the coupled equations de-
scribing the system of platelets. We first give a small reminder of the use of the
characteristic method, then we apply it to the coupled equations.

The characteristic method is used to solve the general equation :

a(x, t, u)
∂u
∂x

+ b(x, t, u)
∂u
∂t

= c(x, t, u) (3.46)

where a(x, t, u), b(x, t, u) 6= 0 and c(x, t, u) are known, and we are looking for
u(x, t) such that the boundary condition u = u0(x, t) on the curve f (x, t) = 0 is
observed.

We can visualize the solution u(x, t) as a surface in a three-dimensional space
as shown in figure (3.12).

If the point M(x, t, u(x, t)) belongs to the surface solution, the tangent plan
to the surface u is given by two vectors:

(
1; 0; ∂u

∂x

)
and

(
0; 1; ∂u

∂t

)
. Thus, if the

vector (a, b, c) belongs to the tangent plan, then the equations are solved. In
other words, we are looking for the surface which is tangent everywhere to the
known vector ( a(x, t, u) , b(x, t, u) , c(x, t, u) ) and which is set on u0.

We define a curve x(t) and we consider the solution u(x(t), t) = U(t). From
equation (3.46) that we wish to solve and the derivative of U(t), we have to
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u

t

x

f(x,t) = 0

M

u(x,t)

xc(t)

u(xc,t) = Uc(t)
u = u0(x,t)

Figure 3.12.: Visualisation of the characteristic method with u(x, t) the surface so-
lution of the general equation a ∂u

∂x + b ∂u
∂t = c. On the curve defined by

f (x, t) = 0, the boundary condition gives u(x, t) = u0(x, t) (in green).
We are looking for the characteristic curves xc(t) on which the solution is
given by with Uc(t) = u(xc(t), t) (in purple).

solve the set of equations: 
a

∂u
∂x

+ b
∂u
∂t

= c

dU
dt

=
∂u
∂t

+ x′
∂u
∂x

(3.47)

with x′ = dx
dt . Multiplying the second line by b and adding it to the first line, we

obtain:
(a− b x′)

∂u
∂x

= c− b
dU
dt

Let us consider the case where a− bx′ = 0. Then, either c 6= b dU
dt and there is

no solution; or c = b dU
dt and the equation is unsolvable. In this last situation we

actually define the characteristic curves with dx
dt = a

b unto which the differential
equation dU

dt = c
b gives the solution on the curve.

In short, the characteristic method splits the problem into two parts:
– finding the characteristic curves
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– solving the non-partial differential equation on the characteristic curves.

The rolling platelets system is described by the coupled partial equations:
∂v
∂x

+
∂v
∂t

= −v(1− s) + αs

ε
∂s
∂x

+
∂s
∂t

= +v(1− s)− αs
(3.48)

Introducing the vector : u =

(
v
s

)
, the coupled equations can be written as

one equation:

A
∂u
∂x

+ 1
∂u
∂t

= C (3.49)

with A =

[
1 0
0 ε

]
, C =

[
−J
+J

]
and J = v(1− s)− αs. Using the characteristic

method leads to the equality:

(A− 1x′)
∂u
∂x

= C− 1
dU
dt

The characteristic curves and their associated differential equations are given
by: ∣∣∣∣∣∣∣

1− x′ − J − dv
dt

0 + J − ds
dt

∣∣∣∣∣∣∣ = 0 = (1− x′)(J − ds
dt
)

∣∣∣∣∣∣∣
−J − dv

dt
0

+J − ds
dt

ε− x′

∣∣∣∣∣∣∣ = 0 = (ε− x′)(J +
dv
dt

)

(3.50)

Both values must be null which leads to two sets of characteristic curves:
– on the domain K1, defined by dx

dt = 1 (straight lines of slope 1), the differ-
ential equation is: dv

dt = −J = −v(1− s) + αs
– on the domain Kε, defined by dx

dt = ε (straight lines of slope ε), the differ-
ential equation is: ds

dt = J = v(1− s)− αs
Here we have to tread carefully since each differential equation has to be solved
on its attributed characteristic curve as presented in figure (3.13).

Let us remark that, to solve the system at one point (x, t), we need to know
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s =0
v =0

v0 = 0
s0 = 0

x

t

K1 : dx/dt  = 1
dv1/dt = - J(v1,s1)

Ke : dx/dt  = e
dse/dt = + J(ve,se)

v0 = vin
s0 = 0

Figure 3.13.: Visualization of the characteristic method. Two sets of characteristic
curves are defined: the domain K1 in blue, and the domain Kε in red.
The initial and boundary conditions are added in green.

the system on two points, one for each domain. In particular, we can consider
two points either horizontally aligned or vertically aligned. Those will then be
defined at the same time t− δt , or at the same position x− δx. The last case is
used in a later analysis and is depicted in figure (3.15).

We consider the situation where x > t. This corresponds, in the (t, x) plan,
to the upper left part (in yellow in figure (3.14)). For initial time and at every
position strictly positive, both the surface and volume concentrations are null:{

v0(t = 0, x > 0) = 0
s0(t = 0, x > 0) = 0

For each point in the half-space x > t, the origin is 0 and thus the concentra-
tions remain null:

on K1 :
∂v
∂t

= 0 ⇒ v(x > t) = v(t = 0, x > 0) = 0

on Kε :
∂s
∂t

= 0 ⇒ s(x > t) = s(t = 0, x > 0) = 0

This is easily explained by reminding ourselves that "1" is the rescaled speed
of the fastest platelets (those in the volume). Thus, the platelets reach a certain
position at a certain time defined by x = 1 ∗ t and none are present before.
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On the line x = t (orange line in figure (3.14)), we consider first the charac-
teristic curses Kε where ∂s

∂t = +J = 0 since it is defined in the x > t half-space.
Thus we can solve the surface concentration: s(x = t) = 0.
We consider then the characteristic curve K1 onto which we solve ∂v

∂t = −J
On this curve we showed previously that s = 0 and thus, we have J = v.
We solve the equation and find the expression of the volume concentration
v(x = t) = v(in) e−t, with v(in) the initial volume concentration injected at
the channel entrance x = 0 at all time.

Figure 3.14.: Visualization of the characteristic methods and the two sub-spaces
x > t and x < εt. In yellow the half-space x > t where the concen-
trations are null. In blue the sub-space x < εt where the solution is the
stationary solution. The green lines correspond to the initial and bound-
ary conditions, the blue lines represents the K1 domain and the red lines
the Kε domain.

We now consider the situation where x < εt, the lower most section in the
(t, x) space (blue domain in figure (3.14)). We will show that in this section, the
concentrations are not time-dependent. We note Mi the points in the (t, x < εt)
space, with i = 0 for points on the t-axis, i = 1 for points on the line parallel to
the t-axis and at x = δx and Mi the points of the line x = i δx. We note v(Mi),
s(Mi) and J(Mi) the volume concentration, surface concentration and exchange
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quantity at the point Mi(t > x/ε, x = i δx).
From the initial conditions, we have:

∀M0(t, x = 0) ,


v(M0) = v(in)

s(M0) = 0

J(M0) = v(in)(1− 0)− α0 = v(in)
(3.51)

We consider the point M1 (t > x/ε, x = δx). To determine the concentrations
at M1, we need to consider the situation at M0(t− δx/ε, x = 0) for the surface
concentration and at M′0(t − δx, x = 0) for the volume concentration (refer to
figure (3.15)). We note δt = δx. On the domain K1, defined by the line (M′0 M1),

we have dv
dt = −J and, in this particular situation, we can write : v(M1)−v(M′0)

δt =
−J(M′0) thus: v(M1) = v(M′0)− J(M′0) δt.
In a similar way, on the line (M0 M1), we solve ds

dt = J and obtain: s(M1) =
s(M0) + J(M0) δt/ε.

x

t

M2

Figure 3.15.: Solution on the subspace x < εt. The boundary conditions give on
the green line v(x = 0, t) = v(in) and s(x = 0, t) = 0. The solution
at the point M1(δx, t) is determined from the point M0(0, t− δx/ε) and
M′0(0, t − δx). The concentrations at M̃1 also come from the boundary
conditions and are identical to those on M1.

Considering a point M̃1 on the same line x = δx than M1, we can write:

v(M̃1) = v(M̃0
′
)− J(M̃0

′
) δt

s(M̃1) = s(M̃0) + J(M̃0) δt/ε
(3.52)
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Since all solutions on the t-axis are identical, we have also identical solution for
M1 and M̃1 and thus for all points on the line x = δx for t > x/ε.

Considering a point M2(t > x/ε, x = 2δx), we can write the concentrations
from M1 and M̃1 and in the same manner as above, all points M2 give identical
results.

Thus, we have shown that for t > x/ε, the results on lines parallel to the
t-axis are equal. This means that the concentrations in this subspace are not
time-dependent and the solution is the stationary solution.

We can deduce the form of the solution from our knowledge of the two do-
mains presented in figure (3.14). Indeed, we know the stationary solution from
the subsection (3.4.3) and, despite our lack of analytical expression for s(x, t) in
the middle zone, we can plot the general form of the surface concentration as
shown in figure (3.16). In these curves, ε was taken as 1

3 .

We observe a cross over between the curves at different position (figure (3.16),
bottom, left hand curve) and an increase of cell concentration with the posi-
tion before the expected decrease (figure (3.16), bottom, right hand curve). The
observation of these two features are directly linked to the value of ε. If ε is
decreased, the increase of cell concentration for small x will be very short and
could only be seen at very large time. Likewise, the crossover in the time de-
pendency curve is due to the concentration reaching its stationary value. But
with a small ε, such occurrence happens at very large time and we only ob-
serve the beginning of the concentration increase (figure (3.16), bottom left, po-
sition x3 in grey). As ε = vs

vv
, we expect a very small value for this param-

eter: ε ∼ 10−2 − 10−3 which would explain the lack of observation of these
features in experimental curves. For example, we consider the time depen-
dency of the concentration at the position xexp = 5mm. The stationary solu-
tion is reached at texp =

xexp
vs

(we use the time and position renormalization and
the equality xrenorm = εtrenorm). Using the mean value of the rolling velocity
distribution found with the first model in section (3.3), we obtain, for Exp. 1:
texp =2h46min40s which, though long, is still a reasonable experimental time.
However, for Exp.2, we find an experimental time a bit short of a month. In this
case, the crossover of concentration and increase of concentration in position-
dependent curves are impossible to observe experimentally.
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Figure 3.16.: General form of the surface concentration profile (bottom) depend-
ing on time (left) or on position (right), deduced from the character-
istic method (top figures). In this representation, ε is taken as 1/3,
x1 < x2 < x3 and t1 < t2. The stationary solution is depicted in red
in the Cs(x) curve (bottom right) and was calculated in the subsection
(3.4.3).

As analytical analysis can not give an exact solution of these coupled equa-
tions, we solve them numerically. In the next subsections, we describe the
method used and we compare its results with our expectation from this ana-
lytical part. Then we fit experimental data to test the validity of the model.
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3. Rolling Platelets on a Surface

3.4.5. Numerical method

We use the matrix form of the equations as described for the characteristic
method in equation (3.49). As we consider the time evolution of the surface
concentration at every point of the channel, we can write the derivation with
respect to space in a matrix form. The equation takes the following form:

∂u
∂t

= C − A u (3.53)

In this equation, u is the vector comprised of the volume then surface concen-
trations at every points, C and A are matrices and J = v(1− s)− αs.

u =



v(x = 0)
...

v(x = xmax)

s(x = 0)
...

s(x = xmax)


A =

1
δx



1

−1 . . .

−1 1

0

0

ε

−ε
. . .

−ε ε


C =

[
−J
+J

]

(3.54)

We use the Matlab function ode15s which calculates the values of a func-
tion f (x, t) at different times. The function is defined by the equation ∂ f

∂t =
F(t, x, f ) and the initial condition f (x, t = 0) = f0(x). This allows us to quickly
generate the numerical solution of our model. The goal is now to compare the
numerically generated curves with the experimental points in order to extract
physical parameters.

We consider the influence of the parameters on the form taken by the
curves as shown in figure (3.17). The first observation is that for α (top curves)
and ε (middle curves) taken between 0 and 10−2, the Cs curves are similar. On
the other hand, changing v(in) (bottom curves) strongly influences the shapes of
Cs(x, t). We expect α and ε to be of the order of 10−1 or smaller. When we fit
the experimental data, we use the fact that these two parameters influence the
general form of the curves less than v(in) and we consider them as secondary fit
parameters. Thus, in subsection (3.4.7), we first search for the value of v(in) with
α = 0 (no unbinding) and ε = 0 (no rolling) then we vary those two parameters.
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Figure 3.17.: Influence of the parameters α (top), ε (middle) and v(in) (bottom). The
curves use normalized values of Cs depending on t at position x = 2
(left), and Cs depending on x at time t = 5 (right). The top curves use
ε = 10−2 and v(in) = 0.5, the middle curves α = 10−2 and v(in) = 0.5, and
the bottom curves are plotted for ε = 10−2 and α = 10−2.
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3. Rolling Platelets on a Surface

3.4.6. Analytical and numerical solutions

We compare the solution given by our program with the results expected
from the analytical analysis performed previously in section (3.4.4).

Figure 3.18.: Comparison between numerical simulations and analytical results.
The top curves represent the (t,x) space used for the characteristic
method, on the bottom curves are reported the times (resp. positions)
when the solution changes regime for the given positions (resp. times). ε
is taken at 0.1.

The results are shown in figure (3.18). We observe a good fit between the
expected results and those generate numerically. However, if we look at the
details of the fit, in particular at the time when the solution changes regime
(from null solution to transition, and from transition to stationary solution), we
observe a difference between the two results as can be seen with the continuous
lines in the bottom curve of figure (3.19). In this figure, we show the influence
of the spacial discretization. Indeed, if we use a denser mesh for the numerical
simulation, the results is closer to the analytical prediction (continuous line,
dashed line, dotted line). Thus this difference is a numerical artifact.
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3.4. Model with Exchange of Platelets

Figure 3.19.: Comparison between numerical simulations and analytical results.
The top curves represents the (t,x) space used for the characteristic
method, on the bottom curves are reported the times when the solution
changes regime for each positions: in green x = 3.2 µm, in magenta
x = 83.2 µm and in blue x = 163.2 µm. On the bottom curve three dis-
cretization are plotted: with continuous lines dx = 1.6 µm, in dashed
lines dx = 0.6 µm and in dotted lines dx = 0.4 µm. The horizontal black
dashed line corresponds to the stationary solution at x = 3.2 µm; we use
ε = 0.1

3.4.7. Experiments and numerical comparison

Fitting experiments with this model pursues two aims. First we want to vali-
date this model and extract physical parameters from the surface concentration
measurements. Second, we can compare the quality of the two models to fur-
ther our understanding of the system. Indeed, if the first model considers only
the rolling velocity distribution to explain the axial and time dependence, this
model is based on the exchange between the volume and the surface. We will
here focus on the task of finding parameters and fitting the experimental data.
The quality of the fit is estimated though the evaluation of the Euclidean norm
of the distance between the fit and the experimental measurements.
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3. Rolling Platelets on a Surface

Six fitting parameters are needed to perform the comparison between the
model and the experiments. Three parameters are necessary to rescale the ex-
perimental data, with one for the time, one for the position and one for the
surface concentration. We chose to use Kon, vv and Cs,max to rescale the time,
space and concentration values : t→ tKon, x → xKon/vv, Cs → Cs/Cs,max.
The three other parameters are those used by the model α, ε and v(in).

From these parameters and knowing the injection concentration C(in)
v , we can

find all the physical parameters initially used to describe the system:
Cs,max , Kon , vv , C(in)

v

ε

α

v(in)

=⇒


Cs,max , Kon , vv , C(in)

v

vs = εvv

Ko f f = αKonC(in)
v /v(in)Cs,max

h = v(in)Cs,max/C(in)
v

(3.55)
Let us consider each of the six parameters in more detail:

– Cs,max is the maximal surface concentration the system can reach. It cor-
responds either to a close packing of the surface, or to the use of all links
with the vWF. As we use densely grafted surface, we expect the first case
to be the limit. We can thus estimate the range of Cs,max. Platelets vary in
size from 2 to 4 µm. Considering a circular shape, we estimate that Cs,max
is comprised between 50 000 and 250 000 mm−2.

– Kon represents the capacity of the platelets to be absorbed on the surface.
– vv is the speed of the advected platelets. Through a careful choice of the

pressure applied to the microfluidic channel, we control the shear rate γ̇ =
1800 s−1 and thus the speed of the fluid varies with the height from the
channel surface. In our model, the volume part of the system is at a small
height h from the wall and we approximate the Poisseuille flux by a straight
line. Thus vv = γ̇h. The height h could be either the size of the link between
the vWF and the platelets, or the platelet size. Indeed it corresponds to
the distance at which the platelets and the grafted von Willebrand factors
interact and bind. If we consider the size of the platelet, we have vv ∼
4 mm.s−1, while if we consider the length of the link the volume velocity
becomes much smaller with vv ∼ 20 µm.s−1.

– α is the relative exchange rate and is smaller than 1 since the surface tends
to be covered in platelets.

– ε is the relative speed and was estimated in the previous paragraph as:
ε ∼ 10−2 − 10−3 (indeed, we can estimate vs ∼ 1µm.s−1).
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3.4. Model with Exchange of Platelets

– v(in) is the volume concentration injected at the entrance of the channel.
This parameter is positive but has no theoretical limit.

Fitting the experiments can not be done automatically with a Matlab func-
tion. Indeed, the six parameters over which we optimize influence the results
in a very non-linear way. They are not parameters of a system of equations but
of a model and thus the Matlab fitting schemes can not find the best set. We
build a semi-automatic search engine to fit the experiments using the Euclidian
norm R to estimate the quality of a fit and compare the different sets of param-
eters tested.
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Figure 3.20.: Fit with the exchange model. The top curves correspond to the Exp. 1,
the bottom ones to Exp. 2. The points are the experimental data while
the continuous line of identical colors corresponds to the results from
the model. On the left hand side are the time-dependence curves, on
the right hand side, the axial-dependence ones. The parameters used to
fit Exp. 1 (top) are: Cs,max = 18000 mm−2, Kon = 0.064 s−1, vv = 0.1
mm.s−1, ε = 2.6 10−5, α = 0.74 10−3, and v(in) = 0.002. The Euclidean
norm between the model and the experiment is given by R = 4.5 103.
The parameters used to fit Exp. 2 (bottom) are: Cs,max = 53000 mm−2,
Kon = 0.12 s−1, vv = 0.11 mm.s−1, ε = 0.72 10−3, α = 6.6 10−3, and
v(in) = 0.0036. The Euclidean norm is given by R = 17.9 103
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3. Rolling Platelets on a Surface

The fit for Exp. 1 is presented in figure (3.20, top) and the one for Exp. 2 in
figure (3.20, bottom). While Exp. 1 seems to be well fitted by the model, the
exchange model does not fit the second experiment so well. This can be due
to either to the lack of an essential feature in the model, or to the difficulty
of finding the appropriate set of parameters. Indeed, the phase space through
which we search for the six parameters is a complex one. To illustrate that, we
plot R as a function of Cs,max and vv for three combinations of Kon and v(in)

with α = ε = 0. Figure (3.21) shows that each surface has a minimum of R at a
different position (Cs,max, vv) than the other two.

Figure 3.21.: Phase space explored when fitting Exp. 2 with the exchange model. The
parameters α and ε are set to 0. The surface of the Euclidean norm R are
plotted for different Cs,max and vv in logarithmic scales and for three sets
of (Kon, v(in)): in blue Kon = 0.1 and v(in) = 0.01, in red Kon = 0.1 and
v(in) = 0.002, and in green Kon = 0.01 and v(in) = 0.02.
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3.5. Concluding Remarks

3.5. Concluding Remarks

In this chapter, we presented a microfluidic experiment where platelets are
injected in a channel with von Willebrand factor grafted on the surface. Ad-
vection in the volume, attachment to the surface, rolling and detachment were
observed, and the surface concentration of platelets were measured as a func-
tion of time and distance.

We studied two models to try and understand the experimental observations.
The first model focuses on the rolling velocity distribution of the platelets and
considers a surface-source at the entrance of the channel. The second one fo-
cuses on the exchange between the volume and the surface. In this model, the
injection of platelets takes place in the volume at the entrance of the channel.
Both models were used to fit two experiments.

In the case of the first experiment, the Euclidean norms are respectively R =
4.8 103 for the rolling model and R = 4.5 103 for the exchange model. In the case
of Exp. 2, they are given by R = 16.9 103 and R = 17.8 103. According to those
norms alone, the first experiment is better described by the exchange model
while the second experiment is better fitted by the rolling model. However, we
think that the models need to be merged to reach a more complete description of
the experiments, in particular for Exp. 2. Indeed, it is likely that the downward
flux at the injection position pushes the platelets to the surface, and a larger
number of cells would bind to the vWF than the simple exchange can account
for. Thus our future studies should consider both the volume and the surface
sources at the entrance of the channel
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Concluding remarks

In this thesis we explored two approaches to simulation. On the one hand,
we worked on the Poisson-Boltzmann theory and our goal was to build solvers
to speed up the simulations or to include electrostatic fluctuations in the model.
On the other hand, we used simulations to better understand experimental re-
sults. We aimed to distinguish the physical phenomena involved and to esti-
mate their relative importance.

We first studied a numerical limit of the Poisson-Boltzmann theory. The elec-
trostatic free energy is concave with respect to the electrostatic field. To find the
free energy value at equilibrium, it must be maximized. This becomes a saddle
point search when configurational degrees of freedom are involved since they
add a convex part to the free energy. We showed how the Legendre transform
is used to define an equivalent, overall convex free energy. We then used a
simple one-dimension model of a virus to compare different numerical meth-
ods to compute the free energy. The first method is composed of two nested
optimization loops, the second one defines a functional with the derivatives of
the free energy, the third uses an inverse substitution to define an equivalent
and convex free energy, and the fourth minimizes the Legendre-transformed
free energy. We studied the validity of the results given by these four methods
and their efficiency. We found that the Legendre transform method gives the
most accurate optimization and the best time performance. The tool developed
in this part could be used to model more complex systems or to be included
within a molecular dynamic calculator.

In a second study, we showed how to add the electrostatic fluctuations to
the Poisson-Boltzmann mean-field theory. We used a variational field theory
method and we presented the numerical scheme allowing us to estimate the
correction to the free energy. We then explored the limit of this correction to the
mean field theory. We found that a limit coupling constant exists beyond which
the program diverges. We studied the bulk case to better understand the origin
of this limit. We found that the solution, in this simple case, is expressed with
the Lambert W-function and exists only for small coupling constants. We stud-
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3. Rolling Platelets on a Surface

ied the dependance of the limit coupling constant with respect to the rescaled
fugacity, and observed that it is similar for the cylinder case than for the bulk
theoretical study. We concluded that the limit observed originates from the the-
ory used. Further research would explore in more details the correction cal-
culated and compare our results with those produced by other modelization
tools , such as molecular dynamics. This step would validate, or invalidate our
method which could then be used to model more complex systems, or be dis-
carded or reworked at the theory level.

Our third study focused on understanding experimental results. Platelets
were injected into a micro-channel with protein-coated walls. The proteins can
create and break bounds with the platelets, and thus form a binding mesh and
rolling medium. From our observations, we identified four phenomena: the
binding and unbinding of platelets from the surface, the advection in the vol-
ume and the rolling on the surface. We defined two models, the first one consid-
ers only the rolling of the platelets on the surface while the second one focuses
on the exchange of platelets between the volume and the surface. We compared
the results of the simulations with the experimental measurements. We found
that both models can match the experiments partially but not thoroughly. We
concluded that both the rolling behavior and the exchange mechanism should
be considered at once to describe the system fully. To validate such a model
would then allow us to better characterize the experiments and to gain a deeper
understanding of the physical phenomena involved.
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Résumé

La théorie de Poisson-Boltzmann décrit l’électrostatique de solutions ioniques. Le calcul de
l’énergie libre électrostatique présente cependant plusieurs limites.

L’énergie libre de Poisson-Boltzmann est concave. Quand le modèle est complété par d’autres
degrés de libertés, l’estimation de l’énergie libre devient une recherche de point-de-col, opéra-
tion numérique complexe. À l’aide de la transformée de Legendre, nous écrivons une fonction-
nelle équivalente, convexe et définie localement. Un algorithme classique de minimisation est
utilisé, et, comparé à d’autres procédés numériques, il présente une meilleure convergence.

La théorie de Poisson-Boltzmann est une approximation de champ moyen. À l’aide de la
théorie de champ variationnel, nous ajoutons les fluctuations et les corrélations du champ élec-
trostatique. Les équations sont résolues numériquement. Nous montrons que la constante de
couplage possède une limite théorique, au delà de laquelle les équations n’ont pas de solution.

Les plaquettes sanguines ont un rôle essentiel dans l’hémostase. Nous étudions le flux de
plaquettes dans un micro-canal greffé de protéines liantes. Nous développons deux modèles.
L’un considère le roulement des plaquettes, l’autre est centré sur l’échange de cellules entre le
volume et la surface. Ces modèles sont en accord avec les résultats expérimentaux mais pas en
complète adéquation. Nous en concluons que le comportement de roulement et le mécanisme
d’échange devraient être considérés simultanément pour décrire ce système.

Mots-clés : au-delà de Poisson-Boltzmann, énergie libre, transformée de Legendre, champ
moyen, théorie de champ variationnel, paramètre de couplage, plaquettes, roulement, échange.

Abstract

Poisson-Boltzmann theory gives a good description of the electrostatics of ionic solutions.
The estimation of the electrostatic free energy presents limits of different kinds.

The Poisson-Boltzmann free energy is concave. When it is supplemented with other degrees
of freedom, finding the free energy translates into a saddle-point search. Using the Legendre
transform, we write an equivalent, convex and locally defined functional. A classical minimum
search is used and, compared to other numerical schemes, it gives a better convergence.

The Poisson-Boltzmann theory is a mean-field approximation. Using the variational field
theory, we include the fluctuations and correlations of the electrostatics. The equations are
solved numerically. We show that a theoretical limit exists for the coupling constant, beyond
which the equations have no solution.

Platelets are essential to the stop of blood loss. The flow of platelets in a microfluidic chamber
coated with binding proteins is studied. We develop two models. One focuses on the rolling
speed, the other on the exchange between the volume and the grafted surface. Both models can
match the experiments partially but not thoroughly. We conclude that both behaviors should
probably be considered at once to describe the system fully.

Key words: beyond Poisson-Boltzmann, free energy, Legendre transform, mean field, varia-
tional field theory, coupling parameter, platelets, rolling behavior, exchange of cells.


