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RESUME 

 

 

Les cellules souches neurales adultes (aNSCs) sont définies par des fonctions d’auto-

renouvellement et de multipotence qui leur permettent de générer dans le cerveau adulte 

tant des neurones que des cellules gliales. Contrairement aux mammifères, le cerveau de 

poisson zèbre présente de nombreuses zones de neurogenèse adulte dont la plus 

caractérisée est la zone ventriculaire du pallium. Elle est composée de cellules de glies 

radiaires qui font office de aNSCs dans cette partie du cerveau. Quels progéniteurs neuraux 

embryonnaires sont sélectionnés pour être à l’origine de ces aNSCs reste mal connu. Ce 

travail a pour objectif de déterminer la contribution relative de deux populations de 

progéniteurs neuraux embryonnaires, les “clusters proneuraux” (impliqués dans la 

neurogenèse embryonnaire) et les “pools de progéniteurs” (caractérisés par une 

neurogenèse tardive), dans la formation des aNSCs du pallium de poisson zèbre.  

Dans un premier temps, à l’aide de techniques génétiques de lignage cellulaire, nous avons 

pu identifier la population de progéniteurs neuraux embryonnaires à l’origine d’une sous-

population des aNSCs située dans la partie dorso-médiane du pallium. Des expériences de 

lignage utilisant la lignée de poisson zèbre her4:ERT2CreERT2 combinées à des traitements 

inhibiteurs de la voie de signalisation Notch nous ont permis de déterminer que les 

progéniteurs neuraux  donnant naissance aux aNSCs du pallium dorso-médian expriment le 

gène « Enhancer of split » her4, qui caractérise les “clusters proneuraux”, ce dès des stades 

très précoces du développement.  

Dans un second temps, des analyses clonales ainsi que des recombinaisons spatialement 

contrôlées par laser nous ont permis de mettre en évidence que les aNSCs de la partie 

latérale du pallium de poisson zèbre ne proviennent pas de progéniteurs embryonnaires 

exprimant her4 et maintenus par la voie Notch, mais d’une population restreinte de cellules 

neuroépitheliales situées dans la plaque du toit du télencéphale embryonnaire. Ces cellules 

présentent des caractéristiques spécifiques des “pool de progéniteurs”, à savoir l’expression 

de gènes her non-canoniques (dont l’expression n’est pas dépendante de la voie de 

signalisation Notch) tels que her6 et her9, l’expression de ligands de voies de signalisation 

telles que Wnt, BMP et FGF, et une neurogenèse tardive. Elles génèrent progressivement, à 

partir du stade juvénile, une grande partie des aNSCs du pallium latéral. De plus, une partie 

de ces cellules neuroépitheliales persistent dans le pallium latéral postérieur chez l’adulte et 

continuent de former de novo des aNSCs dans cette région du cerveau.  

Outre la vision globale que cette étude nous a permis d’avoir sur l’origine embryonnaire de la 

totalité des aNSCs du pallium de poisson zèbre, elle a aussi délivré des informations sur les 

étapes de maturation progressive des progéniteurs embryonnaires pour former les aNSCs, 

et les similitudes et divergences qui existent entre la population dorso-médiane et latérale à 

ce sujet. Enfin, en traçant les neurones issus des cellules souches à différents stades, cette 

étude a pour la première fois mis en évidence la formation progressive des compartiments 

neuronaux du pallium de poisson zèbre, et ainsi permis d’apprécier les homologies de ces 

compartiments avec les régions du pallium de souris. 

 

  



 

  



 

SUMMARY 

 

 

Adult neural stem cells (aNSCs) are defined by their self-renewal and multipotency, which 

allow them to generate both neurons and glial cells in the adult brain. Contrary to mammals, 

the zebrafish brain maintains numerous neurogenic zones in the adult, among which the 

most characterized is the pallial ventricular zone. It is composed of radial glial cells serving 

as aNSCs. Which embryonic neural progenitors are at the origin of these aNSCs is still 

unknown. This work aims to determine the relative contributions of two embryonic neural 

progenitor populations, the «proneural clusters» (involved in embryonic neurogenesis) and 

the « progenitor pools » (characterized by a delayed neurogenesis), to the formation of 

aNSCs in the zebrafish pallium.  

First, using genetic lineage tracing techniques, we were able to identify the embryonic neural 

progenitor population at the origin of a subpopulation of aNSCs located in the dorso-medial 

part of the pallium. The her4:ERT2CreERT2 transgenic driver line, combined with 

pharmacological treatments inhibiting the Notch signalling pathway, allowed showing that 

neural progenitors giving rise to dorso-medial pallial aNSCs express the « Enhancer of split » 

her4 gene, specifically expressed in « proneural clusters » from very early stages of 

development.  

As a second step, clonal analyses as well as spatially controlled recombinations by laser 

highlighted that aNSCs of the zebrafish lateral pallium do not derive from her4-positive 

embryonic progenitors maintained by the Notch pathway, but from a restricted population of 

neuroepithelial cells located in the embryonic telencephalic roof plate. These cells display 

« progenitor pool » specific features, as for instance the expression of non-canonical her 

genes (independent of Notch signalling) such as her6 and her9, the expression of 

components of signalling pathways such as Wnt, BMP, FGF, and a late neurogenesis onset. 

These progenitors progressively generate, from juvenile stages, the vast majority of the 

aNSCs of the lateral pallium. Most interestingly, a small population of these neuroepithelial 

cells persists in the postero-lateral pallium at adult stage and keeps generating de novo 

aNSCs of this brain region.  

In addition to identifying the origin of pallial aNSCs in the zebrafish, this study also delivers 

information on the progressive maturation steps that embryonic progenitors undergo to 

generate aNSCs, and highlights similarities and differencies existing between the dorso-

medial and lateral progenitors. Finally, this work also permits tracing the neurons generated 

by stem cells at different stages. This reveals for the first time the progressive formation of 

the different zebrafish pallial compartements, and allows appreciating their homologies with 

the mouse pallial regions.  
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CHAPTER I: INTRODUCTION 

Preamble 

 

The main aim of the present work was to identifiy the embryonic neural progenitor 

populations at the origin of the adult germinal zone (neural stem cell zone) of the dorsal 

telencephalon (pallium), using the zebrafish as a model.  

For this, I combined different lineage tracing strategies to determine the progeny of distincts 

embryonic populations and appreciate their maturation from very early stages of 

development up to adult stage. Thus, in the first part of this introduction, I will review current 

knowledge on the patterning of the forebrain, ie. the brain subdivision hosting the 

telencephalon. Then, as I worked on neural progenitors, I will introduce how neurogenesis 

recruits neuroepithelial (NE) progenitors and/or radial glial cells (RGCs) toward the 

production of neurons during development and in the adult brain. In a third section, I will 

decribe the signals required to induce, maintain and control the fate of neural progenitors, 

again in the embryonic and in the adult brain contexts. Finally, the last part will describe the 

different hypotheses existing, at the onset of my PhD work, on the origin of adult neural stem 

cells (aNSCs), and the first information available on the embryonic populations contributing 

to aNSCs formation. 
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1 From the anterior neural plate to the adult dorsal 

telencephalon: development of the pallium 

 

This first section will review current knowledge on the development of the most anterior part 

of the forebrain, the telencephalon, with a special focus on its dorsal subdivision, the pallium. 

I will start with describing the general organization of the adult telencephalon. Then, I will 

highlight the developmental processes that underlie forebrain development, from the 

induction of neural tissue during gastrulation to the specification of the different forebrain 

subdivisions: the telencephalon, the eyes and the hypothalamus (anterior forebrain), and the 

diencephalon including the pre-thalamus, the thalamus and the pre-tectum (posterior 

forebrain). In a third part, I will focus on the late development and maturation of the 

telencephalon, with a special focus on the pallium. Finally, I will discuss the similarities and 

potential difference that exist between the zebrafish and the mouse pallium in terms of 

homology and development.  

 

1.1 Organization and functional characteristics of the adult 

telencephalon 

Despite the amount of knowledge that emerged since the last century on the function, the 

organization, the development and the evolution of the brain, the telencephalon remains a 

fascinating structure. The complexity of its organization, its heterogeneous collection of 

neuronal cell types and the fact that it is considered as the region that hosts the 

consciousness and intelligence will make it a source of study still for a long time. During 

evolution, the telencephalon, and more generally the forebrain, is probably the brain region 

that has been submitted to the most important diversification concerning its size, neuronal 

composition, or connectivity. Despite this complex diversity, the general organization of the 

forebrain is conserved in all vertebrates, diversity occurring during morphogenesis and 

elaboration of the mature structures from a common ground plan. Early steps in CNS 

patterning are largely conserved, and studies primarily undertaken in chick, fish, frog, and 

mouse are beginning to unravel the mechanisms by which the forebrain is induced and 

patterned. 

The telencephalon is composed of two territories, the pallium and the subpallium. In this first 

part, I will detail briefly the neuroanatomy and the function of these regions.  
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1.1.1 The pallium 

The pallium is defined as the dorsal part of the telencephalon. At present, at least in tetrapods 
tetrapods (amphibians, sauropsids and mammals), the developing pallium is subdivided into four 
four different regions called medial, dorsal, lateral and ventral pallia, homologous as fields across 
across species. Nevertheless, the level of knowledge acquired on pallial subdivisions is extensively 
extensively different depending on the domain itself and on the species. Focusing on the mammalian 
mammalian pallium, several adult structures emerge from the dorsal telencephalon (Medina and Abellán, 
and Abellán, 2009)( 

Figure 1). 

We first can start with the dorsal pallium, generating the “isocortex” (or neocortex). It is the 

center of higher cognitive functions; it receives sensory inputs from environment and 

integrates them to generate the appropriate behaviors (Kandel et al., 2000). This brain 

structure is composed of six horizontal layers of specific neuronal subtypes organized 

following an inside-out sequence, with the latest-born neurons finally located in the most 

superficial layer. These layers compose 4 spatiallly distincts “primary” areas:  the primary 

visual (V1), the somatosensory (S1), the auditory area (A1), which process information 

coming from the eye/retina (vision), the body (somatosensory), and inner ear/cochlea 

(audition), respectively, and the primary motor area (M1), which controls voluntary 

movements. They are connected to four specific nuclei in the thalamus, which receive 

modality-specific sensory information from peripheral sense organs or receptors and thus 

define the functional modality of the targeted primary cortical area of which they are specific 

(O’Leary and Sahara, 2008). The cortical territories have a specific size and are positioned at 

precise spatial coordinates relative to each other.  

The second most important region, deriving from the medial pallium, is the hippocampus. 

The function of the hippocampus is to mediate spatial learning and memory mainly thanks to 

information transiting via the entorhinal cortex (Kandel et al., 2000). In all tetrapods, a 

hippocampal-like area produced in the medial pallium is devoted to this function (Medina and 

Abellán, 2009). This structure is composed of a single pyramidal cell layer. This layer, 

submitted to folding rearrangements during its development (see section1.3.4), is subdivided 

into fields called cornu ammonis (CA): CA1 and CA3 are the two major fields, separated by a 

small transitional field CA2. These fields are capped by the dentate gyrus, the third major 

area of the hippocampus (Khalaf-Nazzal and Francis, 2013) 

According to recent proposals, the lateral and ventral pallia have to be considered as two 

different neuroanatomical domains of the telencephalon (Puelles et al., 2000), even though 

each of them generates parts of the olfactory cortex (piriform cortex), integrating olfactory 

inputs coming from the olfactory bulb, and the claustro amygdaloid pallial complex (Medina 

and Abellán, 2009). More precisely, the lateral pallium generates the dorso-lateral 
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claustrum and the baso-lateral amygdala, whereas the ventro-medial claustrum, the 

ventral endopiriform nucleus and the lateral amygdala derive from the ventral pallium 

(Puelles et al., 2000). The claustroamygdaloid complex has a non-laminar organization and 

integrates emotional inputs, with the claustrum as one of the brain domains suspected to be 

involved in consciousness by binding disparate events experienced at one point in time into a 

single percept (Crick and Koch, 2005), and the pallial part of the amygdaloid complex as a 

structure responsible for perception of pheromonal stimuli (olfactory amydala), or fear 

conditioning (frontotemporal amygdaloid system)(Maximino et al., 2013).  

In terms of neuronal composition, the main characteristic of the pallium is the massive 

presence of projection neurons expressing glutamate as a neurotransmitter (Medina and 

Abellán, 2009). 

 

1.1.2 The subpallium 

The subpallium corresponds to the ventral telencephalon. It contains the basal ganglia, 

responsible for planning and controlling the voluntary movements (Kandel et al., 2000), and 

the preoptic area (PO) responsible for thermoregulation and receiving several inputs from 

thermoreceptors located throughout the body (Kandel et al., 2000). During development, it is 

subdivided into the lateral ganglionic eminence (LGE), the medial ganglionic eminence 

(MGE), the anterior entopeduncular area (AEP) and the preoptic area (PO) (Moreno et al., 

2009). 

The LGE generates the subpallial part of the amygdala involved in the control of the central autonomic 
autonomic nervous system, the “autonomic” amygdala complex, and the striatum, itself composed of two 
composed of two nuclei (the caudate nucleus and the putamen) ( 

Figure 1- CP/AuA). The MGE emerges during development ventrally to the LGE and generates the 
pallidum proper composed of the dorsal pallidum, also called the globus pallidus, and the ventral part of 
the pallidum ( 

Figure 1- Pal) (Moreno et al., 2009). Finally, the PO contains three major subdivisions, a 

novel commissural preoptic division (POC, at the base of the septum), the anterior preoptic 

area (POA) and the preoptic-hypothalamic border region (POH) (Moreno et al., 2009).  

In terms of neuronal production, the subpallium is responsible, in addition to its own 

projection neurons, for generating GABAergic and cholinergic interneurons that integrate 

locally or migrate into several telencephalic regions, such as the cortex or the striatum (Marín 

and Rubenstein, 2001).  
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Figure 1: Schematic drawing illustrating the different pallial and subpallial subdivisions in the mammalian  
telencephalon. 

The mouse pallium consists mainly of four divisions: a medial pallium (MP) corresponding to the mammalian 

hippocampus (Hip), a dorsal pallial division (DP) topologically corresponding to the mammalian isocortex (Ctx), 

and ventral (VP) and lateral (LP) pallial divisions corresponding to the mammalian pallial (basolateral) amygdala 

(BLA) and piriform cortex (pirCtx) respectively. Ventrally, the mouse subpallium is subdivided into the autonomic 

amygdala (AuA) and the caudate putamen (CP), the pallidum (Pal) composed of the pallidum proper and the 

glodus pallidus, and the pre-optic area that includes the septum (Sep). OB: olfactory bulb. Adapted from Mueller, 

2012. 

 

 

1.2 From a simple sheet of ectoderm to a patterned forebrain 

Neural induction specifies embryonic ectodermal cells toward the more restricted fate of 

neuroectodermal cells. Today, in addition to the initially proposed ‘default model’ of neural 

induction, derived from experiments in frog conducted by Speeman (reviewed in De Robertis 

and Kuroda, 2004), a series of positive active processes have been discovered that also 

participate in neural induction. Overall, formation of the prospective forebrain includes two 

steps: ectodermal cells must acquire neural identity with an anterior character, and regional 

patterning must take place within the rostral neural tube. 

In the following section, I will summarize current molecular knowledge on how anterior neural 

induction occurs. Next, I will address how the neural plate is further subdivided, thus 

generating the embryonic forebrain in the most anterior domain of the central nervous 

system. 

 

1.2.1 Patterning of the anterior neural plate 

According to the default model, ectodermal cells differenciate into neural tissue unless 

exposed to Bone Morphogenetic Proteins (BMPs) secreted from the ventral side of the 

gastrula. Thus, the first structure controlling anterior neural induction is the organizer itself, 
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which, at the onset of gastrulation, secretes BMPs signaling antagonists such as Noggin, 

Chordin and Follistatin, triggering neural plate induction from the dorsal ectoderm (Appel, 

2000; Pera et al., 2014). It is now known that BMPs inhibition is not sufficient and that earlier 

signals act as neural inducing signals: the Fibroblast Growth Factors (FGF8) together with 

Insulin like Growth Factors (IGFs) pathways are required for neural induction before 

gastrulation, and act in favor of a caudalization of the tissue (Pera et al., 2014). These 

signals together are integrated at the level of the BMP signalling transducer Smad1, which is 

thus differentially phosphorylated (Eivers et al., 2009) and inhibition of its phosphorylation 

leads to the neural fate induction (Pera et al., 2003).  

The Retinoïc Acid (RA) pathway, activated at the level of the organizer, also plays an 

important role in regulating the Chordin/BMP axis by reinforcing the posterior gradient of 

BMPs in the neural plate (Pera et al., 2014) (Figure 2, blue arrows). Whenever neural tissue 

is induced, it adopts by default an anterior fate, as revealed by Otx2 expression. Thus, it 

seems that neural induction and acquisition of anterior identity are linked, and that later 

events posteriorize the neural plate. Rostral tissue must be protected from caudalizing 

factors to retain anterior characters. This is done by localized expression of antagonists of 

caudalizing factors and by morphogenetic movements to push the anterior neural plate away 

from the caudalizing factors. The organizer is initially the source of antagonists of caudalizing 

signals. But other structures also help protecting anterior tissues, such as the anterior 

visceral endoderm (AVE-mouse)/ Yolk Syncytial Layer (YSL-zebrafish), or the hypoblast 

(chick) (Andoniadou and Martinez-Barbera, 2013; Wilson and Houart, 2004). Later, the 

anterior axial mesendoderm (AME) participates in anterior fate protection. These structures 

underlie the rostral neural epithelium and protect the anterior neural plate from an active 

posteriorization by secreting BMP/TGF and Wnt/-catenin antagonists such as Noggin, 

Chordin, Dickkopf-1 (Dkk1) and Cerberus (Cer1)(Andoniadou and Martinez-Barbera, 2013) 

(Figure 2, red arrows). The Nodal pathway has also a dual role in the neural induction. It acts 

itself as caudalizing factors but is also involved in the development of the mesendodermal 

tissue, participating in the "protection" of the anterior fate of the neural plate (Wilson and 

Houart, 2004). 

To summarize, the neural plate is induced with anterior fate, then patterned via the 

establishement of two opposite gradients: one that inhibits posterior signals and one that 

promotes posterior. This leads to the first antero-posterior positional information delivered to 

the freshly induced neural cells within the tissue and will determine the future different brain 

regions (Figure 2).  
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Figure 2: Signalling involved in the antero-posterior patterning of the neural plate 

Signals exert a posteriorizing action on the neural plate (blue arrows). Antagonists of the respective pathways in 

the anterior forebrain, such as secreted Cerberus, Lefty1, Dkk1, Noggin, and Chordin (red arrows) are released 

by the underlying AVE, ADE, and prechordal plate. Within the prospective anterior forebrain, intrinsic factors such 

as Hesx1, Six3, and Tcf3, aid in regulating the competence of neural tissue to prevent ectopic posterior identity, 

possibly by preventing the expression of target genes of these pathways, hence maintaining anterior forebrain 

identity. AF: anterior forebrain, PF: posterior forebrain, MB: midbrain, HB: hindbrain, SC: spinal cord, AVE: 

anterior visceral endoderm, ADE: anterior definitive endoderm, pp: prechordal plate. Adapted from Andoniadou 

and Martinez-Barbera, 2013 

 

 

1.2.2 Antero-posterior patterning of the forebrain 

One consequence of this initial regionalization of the neural plate is the expression of 

different homeodomain transcription factors in broad but distinct domains along the AP axis. 

At boundaries between these TFs, expression of signaling molecules is turned on and “local 

organizers” are established. They modulate and refine patterning. This subdivides the 

anterior neural tube into segments: the forebrain, the midbrain, and the hindbrain. 

The forebrain corresponds to the most anterior subdivision and derives from the anterior 

neural plate. Following its induction, the forebrain rapidly grows and is submitted to complex 

morphogenetic movements. By the end of somitogenesis, it comprises the dorsally 

positioned telencephalon and eyes, the ventrally positioned hypothalamus and the caudally 

located diencephalon subdivided into prethalamus, thalamus and pretectum (Wilson and 

Houart, 2004). 

Local organizers have been identified that are involved in this arealization, and studies in 

zebrafish have been determinant in our understanding of this process. These studies have 

identified the anterior neural border (ANB) (or ANR -anterior neural ridge- in the mouse) 

located at the anterior-most border of the neural plate (Figure 3), as a local source of Tlc, a 
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member of the secreted Frizzled Related Proteins (sFRP) known to antagonize Wnt activity. 

Overexpression of tlc leads to an expansion of the telencephalic domain at the expense of 

the eye field (Houart et al., 2002) while overactivation of  Wnt signaling, e.g. in masterblind 

(mbl) mutants which carry a mutation in the canonical Wnt pathway gene axin1, show a 

caudalized phenotype with an expansion of the diencephalon at the expense of rostral 

identity. This implies the presence of new sources of Wnt that need to be antagonized. 

Indeed, Wnt8b is expressed caudally to the telencephalon. This illustrates that different 

doses of Wnt activity trigger the specification of the different forebrain regions, with the 

telencephalic domain specified at very low levels of Wnt and the diencephalon induced at 

quite high levels of Wnt activity (Figure 3). The ability of the telencephalon to develop on low 

levels of Wnt seems to be conserved among several vertebrates such as frog, chick and 

mouse (Wilson and Houart, 2004). In terms of transcription factors, Hesx1, Six3 and the 

repressor Tcf3 participate in the inhibition of Wnt/ßcatenin targets in the anterior neural plate 

to prevent ectopic posterior identity (Andoniadou and Martinez-Barbera, 2013). All these 

factors are expressed within the anterior neural plate (Figure 2), and their respective mutants 

display impaired telencephalon, eye and hypothalamic development (Lagutin et al., 2003; 

Oliver et al., 1995). 

In addition to Wnt signals, the Fgf pathway participates in refining forebrain patterning. Fgf8 

is expressed later by the ANB/ANR (Figure 3), but is rather required for cell survival and/or 

maintenance of the patterning and differentiation within the telencephalon, as telencephalic 

tissue is still induced in fish and mouse with compromised Fgf signaling. The cephalic neural 

crest cells, delaminating from the anterior dorsal border of the neural tube, also contribute to 

the maintenance of Fgf8 expression in the ANB (Creuzet et al., 2006). 

Interestingly, even though BMP inhibition is required to induce anterior neural fate, a recent 

study highlights that a certain level of BMP activity, going through the BMP2b receptor, is 

also necessary locally during zebrafish neural plate induction to maintain telencephalic fate 

and to subdivide it from the eye field (Bielen and Houart, 2012). This indicates that the BMP 

pathway also plays an instructive role in telencephalic specification, and that a balance of 

BMP and Wnt activity is important to properly specify the different forebrain structures 

(Figure 3).  

The Zona Limitans Intrathalamica (ZLI) is established after the ANB and is a very 

important organizing center, necessary for diencephalic development by subdividing the pre-

thalamus and the thalamus (Figure 3) (Wilson and Houart, 2004). It is the only region where 

Sonic hedgehog (Shh) expression is produced dorsally within the neural tube. A number of 

genes are expressed in the anterior neural plate with boundaries at the level of the 

prethalamus/thalamus boundary. For example, studies in chick suggested that the Six3/Irx3 

boundary prefigures the position of the ZLI (as mentioned, Six3 is expressed in the most 
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anterior part of the forebrain, while Irx3 is posterior) (Figure 3). Other genes such as Hesx1, 

Fezf, Irx1 and Otx were more recently shown to influence ZLI positioning, and Otx2 also 

initiates Shh expression. The expression of all of these genes is direcly or indirectly under 

the control of Wnt signaling, Six3/Fezf being repressed by Wnt while Irx posteriorly is 

activated by Wnt. The position of the ZLI also coincides with the underlying position of the 

prechordal plate/notochord boundary, suggesting a participation of the surrounding tissue in 

the establishment of the ZLI (Andoniadou and Martinez-Barbera, 2013). 

 

 

Figure 3: Model of early regionalization of the vertebrate anterior neural plate 

Schematic representation of the patterning of the anterior neural plate of a chick embryo. The anterior neural plate 

is patterned and subdivided into different domains: the forebrain (eye, telencephalon, hypothalamus), the 

midbrain and the hindbrain. The forebrain and the midbrain are separated by the diencephalon-mesencephalon 

boundary (di-mes) and the midbrain/hindbrain boundary corresponds to the isthmic organizer (isO). Whithin the 

telencephalon, the pre-thalamus and the thalamus are separated by the Zona Limitans Intrathalamica (ZLI), which 

expresses Shh. The most anterior region corresponds to the anr (anterior neural ridge or Anterior Neural Border –

ANB-), which expresses Wnt antagonists and later Fgf8. While Wnt and BMP ligands are expressed caudally to 

the telencephalon, their signaling is inhibited at the level of the telencephalon by several secreted antagonists and 

by the activity of transcription factors inhibiting Wnt targets (Six3). These signals also activate or inhibit the 

expression a set of transcription factors important for ZLI positioning (Six3/Irx3). 

Longitudinal axes of the neural plate and tube are indicated by red arrows. anr, anterior neural ridge; ce, 

cerebellum; di-mes, dien-mesencephalic boundary; ht, hypothalamus; isO, isthmic organizer; nc, notochord; ot, 

optic tectum; pcp, prechordal plate; te, telencephalon; zli, zona limitans intrathalamica. Adapted from Kobayashi 

et al., 2002 
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1.2.3 Dorso-ventral patterning of the forebrain 

The dorso-ventral patterning of the central nervous system relies on two opposite gradients 

generated from a source of Shh at the ventral floor plate and from a TGF/Wnt gradient at 

the dorsal midline. The role of these gradients and their interactions in Dorso-Ventral (D/V) 

specification has been extensively studied in spinal cord development. Indeed, together with 

RA signaling produced by lateral somites and activated in the spinal chord, these pathways 

generate very precise positional information along the D/V axis of the spinal cord and 

subdivide the progenitors of the neuroepithelium into domains that will generate particular 

types of neurons such as motor neurons ventrally and different interneuronal populations 

medially and dorsally (Bertrand and Dahmane, 2006).  

In the forebrain, a similar role of Shh in the D/V patterning has been reported. Indeed, 

overexpression of Shh in the zebrafish embryo ventralizes the forebrain (Rohr et al., 2001), 

and ablation of Shh in the mouse leads to the loss of ventral telencephalic structures (Chiang 

et al., 1996). Similarly, Fgf8 mutant mice show defects of ventral telencephalic specification 

(Storm et al., 2006), and analyses of Fgfr mutants indicate that Fgfs act downstream of Shh 

(Gutin et al., 2006). At least in the zebrafish, Shh expression is reinforced by Nodal activity in 

the telencephalon (Figure 4) (Rohr et al., 2001). 

On the contrary, the transcriptional repressor Gli3 is important for dorsal telencephalic 

structure specification. Indeed, mutant embryos for the Gli3 factor display a loss of dorsal 

structures such as the choroid plexus and the hippocampus, and a lack of dorsal genes 

expression such as Emx genes (Grove et al., 1998; Theil et al., 1999). Moreover, analysis of 

Gli3 mutant mice indicates that it would act upstream of BMP and Wnt expressed at the 

dorsal midline in the specification of the dorsal telencephalic structures (Kuschel et al., 2003) 

(Figure 4). As Gli3 is antagonized by Shh, two opposite gradients of the repressor Gli3 

dorsally and Shh ventrally are established within the developing forebrain and orchestrate 

the specification of both dorsal and ventral structures (Figure 4).  

Interestingly, all these signals are integrated at the level of the transcription factor FoxG1. 

Shh and Fgf8 initiate FoxG1 expression ventrally, and later FoxG1 reinforces Fgf8 

expression in the ventral telencephalon through a positive feed-back loop. FoxG1 is 

necessary for subpallial specification as FoxG1 mutant mice are incapable of turning on the 

ventral telencephalic program (Danesin et al., 2009). Dorsally, FoxG1 expression is limited 

by Gli3, thus creating a ventro-dorsal gradient of FoxG1 in the developing telencephalon that 

restricts Wnt8b transcription to the dorsal telencephalic roof plate (Danesin and Houart, 

2012). In the cortex, FoxG1 is then involved in promoting the production of cortical deep 

layer neurons (Hanashima et al., 2004). 

As in the spinal cord, RA signalling is also involved in D/V telencephalic patterning. It refines 

the information delivered by the different D/V gradients to generate three different 
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compartments within forebrain structures: the dorsal compartment, the intermediate 

compartment, and the ventral compartment (Figure 4) (Bertrand and Dahmane, 2006). The 

sources of RA could correspond to the head ectoderm and the lateral olfactory placodes that 

both express enzymes for RA production (Blentic et al., 2003; Paschaki et al., 2013). Studies 

in the chick embryo indicate that ventral Shh and Fgf8 expression are partially dependent on 

RA activity, and Fgf8 blocks RA action in the most ventral telencephalic cells (Marklund et 

al., 2004; Schneider et al., 2001). Moreover, embryos treated with an RA antagonist display 

a loss of Meis2 expression, a marker of intermediate striatal progenitors, while dorsal 

Pax6/Emx1 and ventral nkx2.1 expression are still present, indicating that RA is necessary 

for the specification of the intermediate telencephalic character (Figure 4) (Marklund et al., 

2004). 

 

 

 

Figure 4: Selected interactions between signaling pathways at early (left; E8.5 to E9) and later (right) 
forebrain development in the mouse embryo.  

The localization and ranges of signaling molecules change with time and are affected by tissue growth. Arrows 

represent positive influences and T bars negative ones. These influences can occur at many levels, 

including transcriptional, post-transcriptional and effects on cells that then express other signaling molecules 

(Bertrand and Dahmane, 2006). 

 

 

As growth proceeds, the distance between the different “local” organizing centers 

responsible for the first wave of patterning of the neural plate increases, and new organizing 

centers emerge within the developing telencephalon and especially in the pallium: the 

pallial/subpallial boundary (PSB), the postero-medially cortical Hem (Hem) and the antero-

medially commissural plate (Co-P). They participate to the refinement of dorsal telencephalic 

patterning and are thus involved in the development of the different pallial structures, and 

particularly in cortex arealization. 
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1.3 Regionalization of the telencephalon – lessons from mouse 

Following their specification and early regionalization via the different gradients influencing 

neural plate patterning, the pallium and subpallium will next be submitted to proliferation and 

morphological changes to shape the adult telencephalon. This is achieved, at least in part, 

via a “homeodomain code”. This section will deal with the role of this code in shaping 

telencephalic complexity from a simple tube structure. 

 

1.3.1 Telencephalic subdivisions: A molecular code integrating D/V and A/P 

patterning 

Patterning of the embryonic telencephalon leads to the generation of different subdivisions 

with cells acquiring a “dorsal” or a “ventral” identity, and a population of cells in which an 

“intermediate status” is imprinted. This patterning is regulated by a “molecular code” based 

on several transcription factors and particularly on bHLH and homeobox factors (Figure 5), 

which are regulated by the pathways involved in the D/V and A/P patterning of the forebrain. 

In the ventral side, the main genes involved in regionalization are Nkx2.1/2.2, Gsx2 

(previously Gsh2) and Dlx1/2/5 genes (Figure 5). Their expression are partially controlled by 

the Shh and Fgf8 pathways and their combination defines the different zones of the ventral 

telencephalon, the subpallium. For instance, Gsx2 is expressed in both the lateral and medial 

ganglionic eminence (LGE/MGE), and the MGE is characterized by strong Dlx1/2/5 and 

Nkx2.1 expression and weak Nkx2.2 expression (Moreno et al., 2009; Wilson and 

Rubenstein, 2000). Moreover, the bHLH factor Mash1 defines the ventral telencephalon and 

has been shown to be involved in the subpallial production of GABAergic interneurons 

(Casarosa et al., 1999). 

As we have seen previously, the RA and FGF pathways specify the intermediate 

compartement. This level of the telencephalon corresponds to the area where some of these 

genes, specifying the dorsal and ventral subdomains, meet each other and thus define the 

pallial/subpallial boundary (PSB). This intermediate compartment is characterized by Meis2 

expression delimited dorsally by Emx1 expression, dedicated only to the dorsal 

telencephalon, and ventrally by Nkx2.1 specific of ventral structures (Marklund et al., 2004). 

This intermediate domain is also subdivided by the boundary between the pallial marker 

Pax6 and the subpallial marker Gsx2, namely the pallial/subpallial boundary (PSB) (Cocas et 

al., 2011; Marklund et al., 2004). In mammals, lineage tracing experiments of Pax6- and 

Gsx2-positive cells have shown that the PSB is progressively refined during development 

and creates a strict boundary at E15.5 (Cocas et al., 2011). The ventral pallial part of the 

intermediate compartement is characterized by Dbx1 expression (Medina et al., 2004), and 

Pax6 participates in its activation as Pax6 mutant mice display a severe reduction of Dbx1 
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expression (Cocas et al., 2011). This intermediate telencephalic compartment comprising the 

ventral pallium and the LGE will generate the striatum, the olfactory bulbs and part of the 

amygdala (Marklund et al., 2004). 

Dorsally, the patterning of the cortical plate is achieved by successive steps in which different 

pallial organizers are involved (Figure 6A). The cortical Hem and the commissural plate, 

which express respectively Wnts and BMPs, and FGFs (FGF8 and FGF17) ligands, together 

with the PSB (see section 1.3.1), expressing the Wnt antagonists SFRP2 and several EGF 

factors, create patterning gradients of transcription factors involved in the arealization of the 

cortex. At stages of development where no morphological landmarks can predict the 

boundary of the future cortical areas, Pax6 and Emx1/2 homeobox genes pattern the rostro-

caudal axis of the pallium, based on two opposite gradients: Pax6 is strongly expressed in 

the rostro-latero-ventral pallium while Emx1/2 expression is located in the caudo-medial-

dorsal pallium (Figure 6B) (Wilson and Rubenstein, 2000). In addition to these two 

molecules, a postero-lateral gradient of Coup-TF1 and an antero-medial gradient of Sp8 

have been reported, and are highly involved in the arealization of the cortex. Absence of one 

of these four transcription factors generate changes in the repartition of the different cortical 

areas (Figure 6B) (O’Leary and Sahara, 2008). Pax6, Emx2, Coup-TF1and Sp8 are also able 

to regulate each other’s expression and thus participate in the refinement of the gradients 

(Figure 6C). Their opposing activities determine positional information and imprint the 

arealization in the developing cortex (Borello and Pierani, 2010). In parallel to the subdivision 

of the cortical areas, markers of progenitor commitment appears such as T-box brain1 and 2 

(Tbr1 and Tbr2), activated downstream of Pax6. They highlight the production of 

glutamatergic neurons in the cortex (Englund et al., 2005; Puelles et al., 2000). 

 

This information are relevant for the present work as I studied the regionalization of the early 

telencephalon and make links between these embryonic regions and the adult telencephalic 

territories, by combining lineage tracing of particular embryonic telencephalic domains with 

expression of either transcription factors such as Tbr1 or Gsh2 but also components of 

signaling pathways such as Fgf8 or Wnt3a.   
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Figure 5 : Genetic interactions underlying the dorso-ventral regionalization of the mammalian 
telencephalon. 
Schematic coronal section through the telencephalic vesicles at E12.5 showing dorsal and ventral subdomains, 

as defined by their unique genes expression pattern and highlighting the different interactions between the 

transcription factors that participate in telencephalic regionalization. Arrows denote positive interations; T-bars 

denote inhibitory control. (Schuurmans and Guillemot, 2002)  



15 
 

1.3.2 Cortical patterning via the migration of signaling cells. 

As already mentioned, the establishment of these gradients triggers expression of a large list 

of secondary transcription factors, specifying the anterior motor area, the medial 

somatosensory area, the postero-lateral auditive area and the postero-medial visual area 

(Rakic et al., 2009). These gradients initially emerge from organizing pallial centers – ie. the 

cortical Hem (Hem), the commissural septum (Co-P) and the pallial/subpallial boundary 

(PSB) (Figure 6A). Nevertheless, it is worth noting that pallial centers are discrete zones 

compared to the large cortical plate. Moreover, their sizes are stable already at E10.5, a 

stage at which the pallial gradients can still be modulated, indicating that another level of 

regulation is involved in the formation of these gradients (Borello and Pierani, 2010; O’Leary 

and Sahara, 2008; Shimogori et al., 2004a). The Cajal and Retzius (CR) cells, so far only 

found in the mammalian cortex, are among the first neurons produced in the developing 

pallium. Three distinct populations arise from E10.5-E11.5 respectively from the organizing 

centers of the pallium (Hem, PSB, Co-P) (Bielle et al., 2005). They migrate and establish 

“zones” at the surface of the cortical primordium. Their role is to propagate within the cortical 

plate the signals of the organizers they come from, thus to participate in the establishment of 

the different patterning gradients of transcription factors (Figure 6B). Indeed, changing the 

dynamics of the distribution of CR cells, via genetic manipulations, influences the early 

gradient of transcription factors, thus triggering changes in the position and size of the 

different cortical areas (Griveau et al., 2010). 

In addition to their role in arealization, Cajal-retzius cells positioned at the surface of the 

cortical plate in the marginal zone regulate, via their production of the Reelin protein, the 

radial migration of the cortical newborn neurons coming from the germinal zones, and thus 

participate in the generation of the laminar organization of the cortex (Tissir and Goffinet, 

2003).  

Finally, several other extrinsic telencephalic factors have been shown to influence cortical 

development such as the adjacent tissues (meninges), the ingrowing vasculature or the 

thalamocotical axonal projections (Borello and Pierani, 2010). 
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Figure 6: Molecular mechanisms for the antero-posterior patterning of the cerebral cortex: intrinsic and 
extrinsic cues  

(A-B) Signaling molecules expressed at patterning centers (A) regulate the graded expression of specific 

transcription factors (Emx2, Pax6, Coup-TFI, and Sp8). These factors are involved in the early regionalization of 

the cortical primordium and, thus, in the position, size and identity of functionally distinct cortical areas in the 

postnatal animal. Dashed arrows indicate that direct transcriptional regulation has not been demonstrated in most 

cases. (B). The production of Cajal–Retzius subtypes by the different patterning centers modulate early cortical 

patterning by transporting signaling molecules over a long distance. CoP: commissural plate; PSB: pallial–

subpallial boundary or anti-hem; hem: cortical hem; RA: retinoic acid; R: rostral; C: caudal; M: frontal/motor area; 

S: somatosensory area; A: auditory area; and V: visual area. 

(C) In the anterior signaling center, Fgf8 establishes the low anterior-graded expression of the Emx2 and COUP-

TFI transcription factors by repression, and promotes the high anterior gradient of Sp8 expression. Fgf8 

expression is also regulated positively by direct transcriptional activation by Sp8, and indirectly by Emx2, which 

represses the ability of Sp8 to directly induce Fgf8. The asterisk marking the activation of Fgf8 by Sp8 indicates 

the only interaction that has been shown to be due to direct binding and transcriptional activation (Sahara et al., 

2007). Putative posterior signaling molecules Bmps and Wnts, expressed in the cortical hem, positively regulate 

the high caudal gradient of Emx2 expression. Genetic interactions between TFs also participate in the 

establishment of their graded expression. +: positive interaction; - , negative interaction. 

Adapted from (Borello and Pierani, 2010; O’Leary and Sahara, 2008). 
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1.3.3 Cortical progenitors 

The production of cortical neurons is performed via two temporarily distinct progenitor zones: 

the embryonic ventricular zone (VZ), and the subventricular zone (SVZ). The VZ is 

composed of radial glial cells (RGCs) expressing glial markers such BLBP or GFAP, and 

displaying interkinetic nuclear migration, a process defined as an apico-basal movement of 

the nucleus within the cytoplasm of a progenitor and that allows it to progress into the cell 

cycle (see section 2.1.1). RGCs compose the cell layer directly lining the telencephalic 

ventricle during development and are connected with both the ventricular and pial surfaces 

(Götz and Huttner, 2005). They correspond to neural progenitors in almost all the regions of 

the central nervous system (Anthony et al., 2004; Malatesta et al., 2003), and are also 

necessary for positioning the different neuronal layers. During corticogenesis, they generate 

first the Cajal-Retzius cells located in the preplate (PP) and then in the marginal zone (MZ). 

Then, RGCs generate the deep layer neurons of the subplate, and the projection neurons of 

layer V and layer VI (Aboitiz and Zamorano, 2013). The SVZ is composed of intermediate 

progenitors cells (IPCs) that emerge from ventricular RGCs, setting up a new progenitor 

region immediately “above” the RG layer. The latter generates layers II, III and IV of the 

cortex (Figure 7). Contrary to RGCs, the SVZ IPs do not display interkinetic nuclear 

migration, nor connect with the ventricular and pial surfaces, but instead they have multipolar 

processes (Kriegstein and Alvarez-Buylla, 2009). Through their symmetrical divisions, they 

contribute to an amplification of the number of neurons produced during development. The 

existence of a third germinal zone during corticogenesis was recently recognized, the outer-

subventricular zone (OSVZ) progenitors or outer radial glia (ORGCs). Initially described in 

human and ferret but also present in rodent, these progenitors maintain only a basal 

attachement at M-phase, divide in the OSVZ and are supposed to derive from bipolar RGCs 

(Fietz and Huttner, 2011). The number of times the subventricular and outer-subventricular 

progenitors divide varies in different cortical regions and different species, such as in 

primates in which the OSVZ contributes to an enormous cortical expansion (Fish et al., 

2008). 

Finally, in addition to the neurons produced from these cortical germinal zones, the cortex is 

composed of GABAergic interneurons that are generated in the subpallial VZ and migrate 

tangentially to integrate into the cortical network (Marín and Rubenstein, 2001). The 

subpallial-pallial tangential migration plays a critical role in the establishment of the thalamo-

cortical connectivity with a role in the guidance of the thalamic neurons axons (Molnár et al., 

2012). 
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Figure 7: Neocortical development in rodents 

The deep ventricular zone (VZ) and the subventricular zone (SVZ) are the compartments where cell proliferation 

takes place. (A) In early cortical development, primary neural progenitors or radial glia (RG) in the VZ divide and 

give rise to early neurons that migrate to the preplate (PP), and then make up the embryonic subplate (SPl).  

(B,C) Later in development, RG generate intermediate progenitors (IP), that keep dividing and producing neurons 

into the emerging cortical plate (CP, future layers VI–II of the neocortex), in an inside-out gradient where deep 

layers (VI–V) are formed first and mostly derive from progenitors in the VZ, and superficial layers (IV–II) are 

formed later, deriving from progenitors in the SVZ. The most superficial layer (layer I) is the remnant of the 

embryonic marginal zone (MZ), in which Reelin-producing Cajal-Retzius neurons are located. (Aboitiz and 

Zamorano, 2013) 

 

 

1.3.4 Hippocampus development 

The hippocampus develops at a caudal level between the isocortex and the cortical Hem 

organizing center. Cortical Hem signals have been shown to be essential for early 

hippocampal development, however, how the Hem is positioned in still under debate and 

several models have been proposed (Subramanian and Tole, 2009). During early cortical 

development, first Wnt3a and later Wnt5a and Wnt2b are expressed in the Hem (Figure 8). 

Mutation in Wnt3a or its target gene Lef1 alter the development of the hippocampus, 

indicating a crucial role of this pathway in hippocampal formation (Galceran et al., 2000; 

Zhou et al., 2004). Recently, BMP, weakly expressed in the cortical Hem structure but 

strongly expressed in the adjacent choroid plexus, has been shown to regulate hippocampus 
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formation via maintaining Wnt signaling in the Hem (Figure 8) (Caronia et al., 2010). In 

addition to this, the main transcription factor family regulating dentate gyrus development is 

the LIM family. Indeed, Lhx5 is expressed in the cortical Hem (Figure 9) and its disruption 

leads to a shortening of the cortical Hem at the expense of the medial pallium and to defects 

in hippocampus formation (Zhao et al., 1999). On the contrary, Lhx2 is expressed in the 

medial pallium and thus delimits the cortex-Hem boundary (Figure 8 and Figure 9A). 

Similarly, FoxG1 is excluded from the cortical hem, and mutations of FoxG1 or Lhx2 lead to 

an expansion of the cortical Hem, indicating that they are involved in delimiting the proper 

size of the structure (Figure 9 Figure 8 and Figure 9A) (Li and Pleasure, 2007). In addition, 

Fgf8 regulates midline fate in the telencephalon by inducing expression of transcription 

factors such Lhx5 specifically in the hem, and repressing Lhx2 (Okada et al., 2008).  

 

 

 

 

 

Figure 8: A schematic of the medial telencephalon focusing on known molecular interactions that pattern 
the hem and choroid plexus  

Solid lines indicate a direct interaction; dashed lines indicate an indirect or an inferred interaction. Green arrows 

indicate activation, whereas red bars indicate repression. (Subramanian and Tole, 2009) 

 

 

Already at embryonic stage, within the hippocampus presumptive neuroepithelium, two 

zones are distinguishable: the dorsal ammonic neuroepithelium (AN), which will generate the 

pyramidal neurons of the CA1/2/3 fields, and the ventral dentate neuroepithelium (DNe), at 

the origin of the dentate gyrus and abuted by the cortical Hem (Rolando and Taylor, 2014; 

Yu et al., 2014). The first step in the formation of the hippocampus is, at around E15, the 

relocalization of dentate gyrus precursors via their tangential migration toward the limit 
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between the meninges and the fimbria, a ventral prominent band of efferent axons, through a 

“subpial” migratory stream (Figure 9B) (Rolando and Taylor, 2014; Yu et al., 2014). This step 

may be regulated by chemo-attractant signals and the Integrin pathway (Li and Pleasure, 

2007). Interestingly, recent lineage tracing experiments using the Wnt signaling receptor 

Frizzled10 indicate that Cajal-Retzius cells colonize the hippocampal marginal zone and 

migrate along the fimbrial scaffold during hippocampal formation (Gu et al., 2011). Some of 

the CR progeny persist in the post-natal hippocampus (Gu et al., 2011), but their precise 

function remains to be determined. This migration event leads to the formation of the subpial 

zone (SPZ) (Figure 9C), and, at early postnatal stage (P5), progenitors residing in the SPZ 

undergo a redistribution to generate the neurogenic zone of the adult hippocampus, the sub-

granular zone (see section 2.2.2) (Figure 9D) (Li and Pleasure, 2007; Rolando and Taylor, 

2014; Yu et al., 2014).  

 

 

 

 

Figure 9: Schematic diagram showing the anatomical events and some of the genes involved in dentate 
morphogenesis.  

(A) Schematic representation of a cross section of a mouse telencephalon at E11.5 with the cortical hem adjacent 

to the dentate neuroepithelium. The expression domains for Wnts and BMPs are shown with arrows to the left of 

the neuroepithelium. The expression domains of Foxg1, Lhx2, Emx2, and Lef1 are shown to the right of the 

neuroepithelium and their extent is indicated with arrows. (B-D) Zoom on the developing hippocampus showing 

the initial migration of precursors from the dentate notch to the forming dentate gyrus and the emergence of the 

Cajal-retzius cells from the cortical hem at E 13.5 (B), the mix of the precursor cells and granule cells and the 

continued dentate precursor migration along the subpial migratory course at E17.5 (C), and finally, the radial 

reorganization of the dentate by condensation of the granule cell layers and positioning of precursors in the 

subgranular zone (D). DG: dentate gyrus, Hem: cortical hem, Hip: hippocampus.(Li and Pleasure, 2007) 
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In parallel to the migration of the precursors, the pyramidal neurons of the different CA layers 

are generated from the ammonic neuroepithelium. Little information is avalaible on the 

formation of CA fields. The layer specific-pyramidal cells are distinguishable by factors that 

persist from embryonic to adult stages, such as the glutamate receptor KA1 gene expressed 

only in CA3 cells, or the POU-domain gene SCIP expressed in the CA1 layer. These two 

genes start to be expressed respectively at each pole of the developing hippocampus at 

around E15, and their expression progress toward each other to fuse in the CA2 layer, 

determined between CA3 and CA1 (Figure 10). The expression of these two field markers is 

cell-autonomous as they do no need the cortical Hem Wnt3a signal to be expressed, but the 

signals triggering their expression are still unknown (Khalaf-Nazzal and Francis, 2013).  

 

 

 

Figure 10: Embryonic and mature hippocampal pyramidal cell layers are identified by the expression of 
field specific markers KA1 and SCIP 

 The hippocampus is schematized at E17 and at P7. SCIP, for example, marks the CA1 field depicted in white, is 

expressed in the embryonic hippocampus as early as E15.5, and persists into adulthood. KA1, a CA3 specific 

marker, is expressed in the embryonic CA3 region depicted in black, and persists in the adult. During 

embryogenesis, expression of these respective markers starts at the subicular and dentate poles to finally join in 

the CA2 region (shown in gray in the P7 schema). From Khalaf-Nazzal and Francis, 2013 

 

 

1.4 The zebrafish pallium: What is what? 

The term “homology” between two structures in different organisms is used when they derive 

from the same territory present in a common ancestor (Cracraft, 2005). As we never have 

access to this common ancestor, two different strategies can be applied to determine 

homologies. The first strategy, to use with great caution, is to study features such as the 

topological environment of the structure of interest and its relationship with the surrounding 

organs or territories. In the case of the brain, neuroanatomists use arguments from the 

cytoarchitecture (the cell composition of the structure), the neurochemistry 

(neurotransmitters/ neuropeptides), and the hodology (the connectivity) of the territory to 
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propose whether two putatively homologous structures share some common features. The 

second strategy consists in studying the developmental history of the structure of interest, 

and compares this origin between species. The common embryonic origin of two territories 

support that a common ancestral structure would exist during evolution (Mueller and 

Wullimann, 2009). In the literature, until now, strategies to elucidate the homologous 

territories of the different pallial areas in the zebrafish compared to mammals were based on 

adult patterns of neuronal organization or on gene expression during development (Braford, 

2009). In the following section, we will try to expose the different theories of homologous 

pallial domains between zebrafish and mouse, keeping in mind that this question is still under 

debate in the neuroanatomy field and that information on the developmental origin of the 

different adult brain structure in zebrafish are still largely missing. 

 

1.4.1 Subdivisions of the zebrafish pallium and the concept of eversion 

As discussed already, the pallium in all tetrapods is divided into 4 different regions (ventral, 

lateral, dorsal and medial pallia). This is based on both analyses of connectivity and 

expression patterns of regionalization genes, such as Emx1/2 or Pax6 (Medina and Abellán, 

2009). Areas in different species were shown to be homologous to the mammalian pallial 

domains, such as the hyperpallium in birds homologous as a field to the isocortex, or the 

dorsal ventricular ridge (DVR) of the sauropsids homologous to the mammalian 

claustroamygdaloid complex (Medina and Abellán, 2009).   

The zebrafish is a teleostean fish, characterized by its everted telencephalon, and belongs to 

the actinopterigian class. This particular morphology of the teleost pallium has made it 

especially difficult to compare with other vertebrates. Compared to mammals, chick, or lizard, 

in which the telencephalic roof invaginates during the first steps of forebrain development 

(inversion process) (Figure 11A), the zebrafish pallium is thought to develop following an 

outward bending of its lateral wall, leading to stretching the roof plate that generates a thin 

epithelium covering the ventricle, called the tela choroida (Figure 11B). It may result in a 

medio-lateral reversal of the four tetrapod pallial areas. Several theories concerning the 

eversion process and the homologies of the different pallial territories have been proposed 

(see section 1.4.2).  

Another important difference between the pallium of mammals and non-mammals is related 

to lamination. Indeed, compared to mammals in which most of the pallial structures are 

laminated such as the isocortex and the hippocampus, the non-mammalian pallium, such as 

in amphibians or birds, displays a non-laminar but rather nuclear organization (Braford, 2009; 

Medina and Abellán, 2009). It is interesting to note that some structures in the mouse pallium 
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possess a non-laminar organization as well, such as the claustral complex or the basal 

complex of the amygdala (Medina and Abellán, 2009). 

 

 

 

 

Figure 11: Schematic drawings showing telencephalic development through inversion in non-
actinopterygian vertebrates (A: mammals) and through eversion in actinopterygians (B: teleost) 

MPa: medial pallium, DPa: dorsal pallium, LPa: lateral palliul, VPa: ventral pallium, St: striatum, Se: septum, D: 

area dorsalis telencephali, Dl: area dorsalis telencephali pars lateralis, Dm: area dorsalis telencephali pars 

medialis, Dp: area dorsalis telencephali pars posterior. Dd: area dorsalis telencephali pars dorsalis (Yamamoto et 

al., 2007) 

 

 

1.4.2 Zebrafish pallial regionalization and homology 

The number of subdivisions present in the zebrafish pallium is still under debate. Most 

neuroanatomists consider that four different periventricular regions are present in the 

zebrafish pallium: medial pallium (Dm), dorsal pallium (Dd), lateral pallium (Dl) and posterior 

pallium (Dp), along with a central pallium (Dc) (Figure 11B) (Braford, 2009).  

- The Dm domain: its lesion in goldfish impairs avoidance learning, suggesting that Dm is 

functionally homologous to the mammalian amygdala, involved in fear conditioning 

(Portavella et al., 2004). However, it is worth mentioning that the lesions performed in these 

experiments are quite large and do not allow a precise positioning of the pallium region 

responsible for a particular behavior. In addition to these functional experiments, connections 

ressembling thalamo-amygdalar inputs terminate into Dm in actinopterigians, and thus would 

make Dm a good candidate for a ventral pallium homolog (comprising part of the amygdala 
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in mammals). Nevertheless, there is no consensus concerning the hodology of this domain, 

and some neuroanatomists have identified these connections as thamalo-cortical rather than 

thalamo-amygdalar, thus considering Dm as part of the dorsal pallium (comprising the 

isocortex in mammals) (Braford, 2009; Yamamoto et al., 2007).  

- The Dd domain: very little information exists concerning the role of the Dd domain. It could 

be in the territory homologous to the mammalian dorsal pallium, but this is mainly based on 

its position. Nevertheless, its proper function is still not clearly determined in teleosts, and 

depending on authors, the dorsal pallium would also comprise other parts of Dm and/or part 

of Dl (Braford, 2009).  

- The Dl domain: lesions in the lateral pallium of goldfish result in the impaired encoding of 

the geometric information of environmental space (whereas medial pallium ablations do not 

give such a phenotype). This type of information is encoded by the mammalian and avian 

hippocampus (Vargas et al., 2006). Moreover, hodology reveals that Dl receives typical 

connections specific of the mouse medial pallium (Northcutt, 2006), leading to the conclusion 

that Dl hosts territories homologous to the medial pallial area of mammals. 

- The Dp domain: it is the most problematic domain when we address the question of 

eversion. Indeed, in the simple eversion concept, it would correspond due to its position to 

the medial pallium (thus containing the hippocampus). Even though this hypothesis is 

supported by some neuroatatomists such as Nieuwenhuys (Nieuwenhuys, 2009), some 

studies in teleosts based on the morphology and hodology of this domain suggest that it 

would rather correspond to the mammalian lateral pallium, containing the piriform (olfactory) 

cortex in mammals (Braford, 2009). 

 

The different theories of homology 

As the simple eversion seems to be an incomplete model, neuroanatomists have elaborated 

theories to try and explain the homologies of the pallial domains of the zebrafish with 

mammalian subdivisions. Depending on the neuroanatomist, the criteria used diverge with 

some of them considering developmental criteria as the most appropriate to elaborate 

homologies, and others prefering the study of the adult structure itself with morphological and 

hodological features. I have tried to summarize the main theories that exist concerning 

teleost and mammalian brain homologies. 

The first theory, postulated by Wullimann and Mueller in 2004, is mainly based on 

developmental gene expression (Figure 12A). In this model, Dp derives from the medial 

domain and its lateral location is explained by a migration from a medial to a lateral position. 

Caudally, Dp is adjacent to Dm, supporting the idea of an initial medial ventricular position of 

Dp between Dm and Dd. Following this idea, Dp would thus not be involved in the eversion 

process and this theory is thus called the “partial eversion”model (Wullimann and Mueller, 
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2004). Then, concerning the rest of the pallial area, the ventral pallium would correspond 

only to the ventral part of Dm, the lateral pallium would be the Dp domain, the dorsal pallium 

is formed from the dorsal part of Dm, the entire Dd and Dc domains and the dorsal part of Dl, 

and finally, the medial pallium would be only the ventral part of Dl. Recently, Mueller and 

collegues have proposed a revised view of this theory, based on gene expression and BrdU 

analysis (Figure 12B), in which they propose that the Dd domain is actually not a separate 

anatomical domain and is anteriorly the ventricular part of Dc and, posteriorly, the most 

medial part of Dl. Dm and Dp were still considered respectively as the ventral pallium and the 

“displaced” lateral pallium (Mueller et al., 2011a). 

The second model, called “caudolateral eversion and displacement”, has been developed by 

Yamamoto et al (Figure 12C). In this version, based on hodology criteria, Dm is not 

considered as the homologous part of the ventral pallium, but would be the nucleus taenia, a 

small region located ventro-laterally in the posterior pallium, along the pallium/subpallium 

boundary; however, together with the Dd/Dc domains and the dorsal part of Dl (Dlp), Dm 

forms the dorsal pallium. The lateral pallium, as for the previous model, is homologous to the 

Dp domain. Finally, the medial pallium is restricted only to the ventral part of Dl 

(Dlv)(Yamamoto et al., 2007). 

Finally, the last hypothesis for eversion, explained by Nieuwenhuys in 2009 (Figure 12D), 

considers Dp as the ventral part of the Dl domain based on the topology and its attachment 

to the tela-choroida, the cover of the ventricle. In this model, the olfactory tracts that 

innervate massively the Dp domain are considered as newly derived (apomorphic) in 

actinopterigians, and thus Dp would be homologous to the medial pallium, and Dd and Dm 

respectively to the dorsal and the lateral pallium (Nieuwenhuys, 2009).  

This question of homology of the pallial territories between mouse and fish is still not solved 

and information concerning the developmental origin of the different domains is missing to 

further understand how the eversion process imprints the structure of the everted pallium and 

to discriminate between these different models. Some of the results I obtained during my 

thesis bring up new information allowing to go further on this question, and especially on the 

embryonic origin of the Dp/Dl domains.  
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Figure 12: Summary of the different theories about homologies between the zebrafish and mammalian 
pallial domains 

Right hemisphere of an adult zebrafish telencephalon at the level indicated in red in the lateral view of the entire 

adult zebrafish telencephalon in which are summarized the different homologies models (A-D) compared with the 

mammalian regionalization (left). Hip: Hippocampus, Ctx: isocortex, BLA: Baso-lateral amygdala, PirCtx: piriform 

cortex, Dp: area dorsalis telencephali pars posterior, Dlv: ventral part of the area dorsalis telencephali pars 

lateralis, Dld: dorsal part of the area dorsalis telencephali pars lateralis, Dd:  area dorsalis telencephali pars 

dorsalis, Dmv: ventral part of the area dorsalis telencephali pars medialis, Dmd: dorsal part of the area dorsalis 

telencephali pars medialis,Dc:  area dorsalis telencephali pars centralis. M:medial; L:lateral. Adapted from  

 

During my thesis, I studied the origin of pallial stem cells but it also gave an information on 

pallium development and regionalization. By comparing it with what we know already about 

the formation of the mammalian pallial domains, it enabled us to determine the potential 

common mecanisms of telencephalon development and the homologies of the different 

pallial territories between the mouse and zebrafish.  

 

1.4.3 How is eversion initiated? 

In terms of development, Folgueira and al, based on clonal analysis and 3D reconstructions 

of embryonic zebrafish brains, recently brought up new information on how the eversion 

process could be initiated in the zebrafish telencephalon during embryonic development. 

They showed that two steps are necessary to generate an everted telencephalon. First, the 

formation of a deep ventricular recess between the telencephalon and the diencephalon, the 

anterior intraencephalic sulcus (AIS), creates a posterior ventricular wall to the dorsal domain 

of the telencephalon, thus displacing laterally the most postero-dorsal telencephalic regions 
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(Figure 13A). Second, a repositioning dorsally of the posterior ventricular wall and an 

expansion up to larval stage of the telencephalon along the A/P axis enable the formation of 

the pallium and the tela choroida (Figure 13B-C). This model is thus more complex than just 

a simple eversion that rolls out the dorsal telencephalon to a lateral position equally at rostral 

and caudal levels (Folgueira et al., 2012). The results I obtained during my thesis add 

information on the contribution of proliferation and neurogenesis to the process of eversion of 

the zebrafish pallium and complete this model of eversion.  

 

Figure 13: Two steps in zebrafish telencephalic morphogenesis.  

Summary diagrams illustrate the major morphogenetic movements leading to the everted telencephalon in the 

zebrafish brain. A. First, at around 18 to 22 hpf, an out-pocketing of the ventricular surface forms the anterior 

intraencephalic sulcus (AIS) with its diamond-shaped roof. This fold forms the posterior wall of the telencephalic 

lobes and relocates the most posterior telencephalic territory to a more lateral position. B and C. Next, between 2 

dpf and 5 dpf, the pallial domain expands along the AP axis, and the posterior wall of the telencephalon bulges 

into the ventricular space of the AIS. During this phase, the roof of the AIS (green) also expands along the AP 

axis to form the tela choroidea. The ventricular surface (red) of the dorsal AIS also bulges into the ventricular 

space and expands forwards over the upper surface of the telencephalon in close apposition to the tela. These 

rearrangements of the OB, tela choroidea, and posterior wall of the telencephalon between 2 dpf and 5 dpf are 

illustrated in diagrammatic parasagittal sections in B and dorsal view in C. The transverse section shows 

telencephalon has acquired its typical everted morphology at 5dpf. A; anterior; AC: anterior commissure; AIS: 

anterior intraencephalic sulcus; Di: diencephalon; Ha: habenula; OB: olfactory bulb; OE: olfactory epithelium; P: 

posterior.(Folgueira et al., 2012) 
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2 The telencephalon, a territory of continuous 

neurogenesis 

The main targets of the patterning signals mentioned above are the “neural progenitors”. The 

latter correspond to the cells involved in the generation of differentiated cell types such as 

the neurons and glial cells. In theory, these likely regroup different populations of cells. First, 

the neural stem cells (NSCs) correspond to a particular population of cells that display self-

renewing potential and multipotentiality. Second, proliferating progenitors, possibly generated 

by the NSCs, do not display any long-term self renewing capacity and are often dedicated to 

the production of one particular cell type.  

In the vertebrate embryonic brain, actively dividing and neurogenic embryonic neural 

progenitors are involved in neuronal and glial generation during early brain construction. The 

long-term capacities of these progenitors have generally not been tested. In the adult brain, 

aNSCs, mainly found quiescent, are present in some areas such as in the mammalian 

hippocampus or the entire ventricular domain of the adult zebrafish telencephalon, and 

participate in the generation of adult-born neurons involved in physiological and behavioral 

modulations. Both embryonic neural progenitors and aNSCs can undergo different types of 

cell divisions, symmetric or asymmetric, depending on whether distinct cell types (ie. 

differentiated cells and/or progenitors) arise or not from the division. Interestingly, embryonic 

progenitors are located in the entire ventricular zone of the presumptive pallium, and aNSCs 

are present in some adult pallial regions in the mouse and in the entire adult pallial 

ventricular zone in the zebrafish, both deriving from the embryonic pallial germinal zone; 

even though the relationship between the embryonic neural progenitors and aNSCs is still 

unclear, this suggests that continuous neurogenesis may occur at least in some regions of 

the telencephalon in both mammals and fish. 

In this second main section, I will address the issue of the neural progenitor, dealing first with 

embryonic neurogenesis in mammals and zebrafish, and then addressing the concept of 

aNSCs and adult neurogenesis. I will largely focus on the telencephalon, but use examples 

elsewhere when necessary. I will also introduce what is known of the different steps that 

enable the emergence of aNSCs through development. 

 

 

2.1 Identity, maturation and fate of embryonic neural progenitors 

During vertebrates CNS development, uncommitted progenitors are initially present in the 

neuroepithelium and undergo successive steps of maturation that progressively restrict their 

fate. Patterning signals, ie. positional values, impact both the degree and the timing of neural 
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progenitors amplification and contribution to neuron and glia generation by triggering 

changes into cell division modes and parameters, as well as the identity of their generated 

differentiated progeny by inducing different neurogenic programs. 

At the population level, the progenitors acquire on the one hand a “neurogenic competence” 

that endows them with the capability to produce neurons, and on the other hand generate 

various differentiated glial or non-glial cell types such as astrocytes, oligodendrocytes, and 

ependymal cells in mammals. In addition, they give rise to a small population of self-

renewing cells (NSCs) that will participate in the establishement of aNSCs pools. aNSCs are 

mainly composed of glial cells, often with radial glial-like features. In this section we will 

summarize what is known of the different processes that trigger the maturation of embryonic 

neural progenitors during development to achieve a proper brain construction. We will mainly 

focus on the telencephalon but information related to other systems will be added when 

required. 

 

2.1.1 Cortical neurogenesis and progenitor maturation 

At the onset of neural plate specification, epithelial ectodermal cells change and adopt a 

neural identity, thus becoming neuroepithelial cells (NE) (Götz and Huttner, 2005). They 

conserve epithelial features such as an apico-basal polarity, with the presence of tight and 

adherens junctions at the most apical end of their lateral plasma membrane (Götz and 

Huttner, 2005). After the formation of the neural tube, these cells are in contact with both the 

pial surface at their basal pole and the ventricle apically.  

The neuroepithelium looks layered (or “pseudo-stratified”) due to interkinetic nuclear 

migration (Figure 14A). This process is linked with cell cycle progression (Götz and Huttner, 

2005). Indeed, during interkinetic nuclear migration, in which both microtubules and actin 

filaments are involved, nuclei in S phase are located at the basal side of NE cells, while cells 

undergoing mitosis divide at the apical pole, close to the ventricle. Nuclei of cells in G1 or G2 

are positioned at mid-region (Kriegstein and Alvarez-Buylla, 2009). Based on studies in the 

zebrafish retina, the interkinetic nuclear migration has been shown to be involved in 

regulating neurogenesis as an apico-basal gradient of Notch signaling, the main signalling 

pathway involved in regulating neurogenesis and embryonic neural progenitor maintenance 

(see section 3.1.2), is present in NE cells (Del Bene et al., 2008); as nuclei move within 

zebrafish retinal progenitors, they are thus differentially exposed to Notch signalling, 

influencing their fate decisions (Del Bene et al., 2008).  

As embryonic neurogenesis progresses, the thickness of the epithelium increases and new 

progenitors appear, the radial glial cells (RGCs). They derive from NE cells and acquire a 

radial morphology, with their cell bodies located along the VZ and the appearance of an 
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elongated pial-directed radial process (Figure 14B and Figure 16) (Götz and Huttner, 2005; 

Kriegstein and Alvarez-Buylla, 2009). In addition to Nestin expression already present in the 

NE cells, RGCs  express glial markers such as GLAST, BLBP, GFAP and vimentin, and 

make specific contact with the developing cerebral vasculature (Misson et al., 1991; 

Takahashi et al., 1990). The RGCs keep several features of NE cells such as the adherens 

junctions, the interkinetic nuclear migration and the apico-basal polarity (Figure 14B) 

(Kriegstein and Alvarez-Buylla, 2009), but contain glycogen granules, a feature of astrocytes. 

In the mammalian cortex, lineage experiments using BLBP:Cre mice indicate the transition 

between NE and RGCs starts approximately between E10.5 and E12.5 and is progressive up 

to E16.5 (Anthony et al., 2004). Embryonic RGCs are the progenitors of a large number of 

neurons in the entire brain, highlighting that RGCs are the main source of neuronal 

production during development (Figure 16) (Anthony et al., 2004).  

 

 

 

 

Figure 14 : Polarized features and interkinetic nuclear migration (INM) of neuroepithelial cells and radial 
glial cells in mammals 

A: In Neuroepithelial (NE) cells, an apico-basal polarity is present with adherent junctions at the apical pole and a 

specialized apical membrane domain (blue). Interkinetic nuclear migration spans the entire apical–basal axis of 

the cell, with the nucleus migrating to the basal side during G1 phase, being at the basal side during S phase, 

migrating back to the apical side during G2 phase, and mitosis occuring at the apical surface. B: Radial glial cells 

(RGCs) have an apico-basal polarity as well with adherent junctions, and the basally directed interkinetic nuclear 

migration does not extend all the way to the basal side (that is, through the neuronal layer to their pial end-feet), 

but is confined to the portion of the cell between the apical surface and the basal boundary of the ventricular zone 

or the subventricular zone (not shown).  

(Götz and Huttner, 2005) 
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Even though the vast majority of embryonic neurons are produced by the RGCs, the NE cells 

correspond to the first neural progenitors involved in neurogenesis. Indeed, they express 

progenitor markers such as Nestin and generate the first neurons of the central nervous 

system (Götz and Huttner, 2005). During the first phase of CNS development, NE cells 

mainly perform symmetric divisions. First, amplifying symmetric divisions occur, which 

participate in the growth of the neural tube. Then, neurogenesis starts in the neurepithelium 

due to the induction of proneural genes involved in the induction of the neurogenic program 

(see section 3.1.2).   

The transition between NE and RGCs is also correlated with a transition from symmetric to 

asymmetric divisions with RGCs mainly producing one neuron and one RGC by a self-

renewing division. It has been shown that Sox1-3 are expressed in NE cells (Bylund et al., 

2003) and in vitro experiments performed in ES cells indicate that it prevents NE cells from 

becoming RGCs (Suter et al., 2009). On the contrary, Pax6 expression is restricted to the 

RGCs and forced expression of Pax6 in NE cells triggers their transition toward RGC 

progenitors. Pax6 mutant mice display a reduction of the RGCs neurogenic potential without 

affecting neurogenesis in NE cells, thus indicating that Pax6 is involved in promoting the 

emergence of RGC progenitors and asymmetric cell divisions in this population (Heins et al., 

2002; Suter et al., 2009). In addition, Sox1 and Pax6 seem to repress each other as 

overexpression of one of them triggers a dowregulation of the other (Suter et al., 2009), but 

whether this effect is direct or indirect remains to be determined. Similarly, we have already 

introduced that Pax6 and Emx2 are two factors involved in the patterning of the dorsal 

telencephalon that are able to repress each other, with Emx2 more specific of the caudo-

medial pallium and Pax6 expressed in the rostro-lateral cells. Emx2 expression promotes 

symmetric divisions: its overexpression in cortical progenitors leads to an increase in 

symmetric divisions and Emx2 mutant mice analysed at E14 display a severe reduction of 

symmetric divisions in the cortex (Heins et al., 2001). 

 

To conlude, NE cells are the first neural progenitors of the CNS, producing neurons following 

symmetric divisions; a switch between NE and RGCs occurs progressively during cortical 

development due to changes in genetic programs, and is linked with changes in cell division 

mode, with symmetric neurogenic or amplifiying divisions in NE cells, and asymmetric self-

renewing divisions in RGCs.  

As corticogenesis progresses, the SVZ emerges with IPCs and RGCs guide all the 

ventricular and subventricular produced neurons to generate the proper cortical layers. It has 

been shown that IPCs express specific transcription factors that will be found afterwards in 

cortical cell layers, such as Cux1 and Cux2 (Nieto et al., 2004; Zimmer et al., 2004). More 

recently, Cux2 has been found in a salt and pepper expression pattern in the RGCs (Franco 
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et al., 2012), suggesting that the ventricular progenitor population could be heterogenous 

regarding its contribution to the different neuronal cortical layers.  

 

2.1.2 Mitotic spindle orientation and asymmetric division 

Asymmetric cell division can result from two different processes: either the asymmetric cell 

fate is determined before the cell divides, thus implying that some cell fate determinants were 

asymmetrically partitioned within the dividing cell, or it can arise from a post-division decision 

such as a differential Notch activation due to a “lateral inhibition-like process” occurring 

between the two daughter cells and generating activation of different genetic programs in the 

sister cells (see section 3.1.2.4). In the first situation, regulation of the mitotic spindle 

orientation influences the emergence of asymmetry in cell division. This asymmetry is formed 

during prophase when the centrosomes nucleate spindle microtubules to position the 

chromosomes and the spindle relative the cell cortex (Glotzer, 2009). The astral microtubules 

anchored to the cell cortex via their interaction with the sub-cortical F-actin network through 

the dynein-dynactin proteins can position the entire spindle in the cell relative to polarity 

cues. 

A lot of the known factors involved in orienting the spindle relative to apico-basal polarity in 

vertebrates have been discovered in Drosophila, such as the LGN/NuMA/Gi complex (in 

Drosophila: the Pins/Mud/Gi) associated with dynein-dynactin at the spindle poles 

(Lancaster and Knoblich, 2012). In the case of a planar division, the complex is excluded 

from the apical side via its phosphorylation by aPKC. On the contrary, the presence of Insc 

allows the interaction of LGN with the apically localized Par3, thus triggering a vertical 

orientation of the mitotic spindle (Lancaster and Knoblich, 2012). Orientation of the mitotic 

spindle is thus important in Drosophila neuroblasts as it asymmetricaly segregates different 

factors, such as the Notch inhibitor Numb, that triggers the differenciation of the daughter cell 

into neuron (Kang and Reichert, 2014).   
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Figure 15: Spindle orientation during cell division in the mammalian epithelium 

Planar division occurs when the spindle is positioned perpendicularly to the apicobasal axis (defined by the apical 

domain, green). This occurs through segregation of the LGN complex (purple) from the apical domain by Par 

complex proteins (green) and adherens junctions (yellow). Aster microtubules are then positioned through 

dynein–dynactin (red) association with the LGN complex. (c) Vertical orientation (along the apicobasal axis) 

occurs in the presence of mInsc, which allows association of the LGN complex with the Par complex. This 

connection pulls the spindle pole toward the apical domain, thereby orienting the spindle vertically. In all panels, 

the orange line marks the basal surface. Adapted from (Lancaster and Knoblich, 2012). 

 

 

During mammalian corticogenesis, NE cells first divide symmetrically with a planar 

orientation of the mitotic spindle and this orientation is crucial to maintain the early progenitor 

population (Yingling et al., 2008). LGN is expressed in both NE and RGCs and has been 

shown to promote planar orientation of the mitotic spindle of the embryonic progenitors in the 

neocortex. Its loss leads to a randomization of the spindle orientation and an increase in IPC 

production at the expense of apical progenitors; but interestingly, it does not affect 

neurogenesis indicating that most spindle orientations lead to the generation of neurons and 

that only few configurations of the spindle orientation allow self-renewing divisions (Konno et 

al., 2008). 

Interestingly, Inscuteable factor (mInsc) is expressed in the developing cortex at the 

emergence of RGCs and asymmetric divisions. Neither its dowregulation nor its 

overexpression affect early neurogenesis (Postiglione et al., 2011; Zigman et al., 2005), but, 

later, its overexpression leads to an increase in oblique and vertical spindle orientations 

whereas its deletion results in decreased oblique divisions and neurogenesis without 

affecting the number of RGCs. (Postiglione et al., 2011). As oblique divisions contribute to 
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neurogenesis via generating intermediate progenitors (IPCs), these results highlight that 

mInsc promotes IPCs production and thus amplify neurogenesis. During corticogenesis, the 

non-planar orientation of the mitotic spindle is thus important for the amplification of neuronal 

production, via the generation of IPCs.  

The question of cell fate decisions is prominent in the case of asymmetric cell divisions. We 

already introduced that the role of Insc is to oriente the spindle by interaction with LGN and 

the apically located Par3 protein. Interestingly, like Drosophila neuroblasts, NE and RGCs 

are highly polarized cells and express Par3 at their apical side in both mouse and zebrafish 

(Alexandre et al., 2010; Bultje et al., 2009; Manabe et al., 2002; Wei et al., 2004). 

Experiments performed in the zebrafish embryo by Alexandre and colleagues reveal 

unexpected results concerning the inheritance of the apical domain and cell fate. Using live 

imaging, these authors showed that during an asymmetric division in the caudal 

hindbrain/anterior spinal cord between 20 and 30hpf, the daughter cell inheriting the Par3-

positive apical domain will become a neuron while the basal progenitor inheriting the basal 

process and only part of the junctional domain stay as a progenitor (Alexandre et al., 2010). 

Moreover, par3 morpholino injections increase the proportion of symmetric self-renewing 

RGC-generating divisions, indicating that Par3 inheritance is necessary for asymmetric 

neurogenic divisions in the early zebrafish neural tube and is involved in determining the 

neuronal fate (Alexandre et al., 2010). These results were confirmed in the embryonic chick 

spinal cord (at HH10-12) in which the apical-inheriting daughter cell becomes a neuron 

whereas the basal daughter cell rapidly reestablishes an apico-basal polarity (Das and 

Storey, 2012). However, in mammals, inhibition of Par3 in cortical progenitors at E14 via 

shRNA electroporation leads to an increase in symmetric neurogenic divisions. This  leads to 

a progressive progenitor depletion (Bultje et al., 2009), indicating that, in the mammalian 

cortex, Par3 is necessary for asymetrical self renewing divisions. Moreover, it regulates the 

asymmetrical inheritance of Numb that inhibits Notch signalling in the inherited-basal 

daughter cell, thus triggering its commitment (Bultje et al., 2009). The results obtained in the 

zebrafish/chick and mammals seem to be contradictory; however, this could be due to 

temporal or regional differences, or to species-specific features. Moreover, in the mouse, 

these analyses were performed at the population level and more precise studies would be 

needed to determine whether such a role of Par3 is present in the cortex as well. This 

highlights that components differentially localized between apical and basal sides of the 

progenitor influence cell fate during asymmetric division.  

Finally, it is interesting to note that centrosome inheritance is also important for the 

maintenance of the radial glial progenitors during corticogenesis. Indeed, Wang and 

colleagues have shown that, during the peak of neurogenesis in the cortex, there is an 

asymmetric inheritance of the centrosome with RGCs always keeping the old centrosome 
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and the neuronal progeny taking the duplicated version. Disrupting this process leads to a 

depletion of the progenitor population and they showed that some protein in the pericentrolar 

material segregate differentially between the initial centrosome and the duplicated one, 

indicating the potential role of some pericentriolar factors in progenitor maintenance (Wang 

et al., 2009). Moreover, it has been shown that the more mature centriole usually grows a 

primary cilium first (Anderson and Stearns, 2009), allowing for example quick Shh signal in 

the cell inheriting the mature centriole. This asymmetric centrosome inheritance would thus 

confer different sensitivities of the two daughter cells to external cues.  

 

2.1.3 Radial glial lineage heterogeneity  

At the end of cortical development, most cortical RGCs lose their ventricular attachment and 

migrate toward the cortical plate by a process of somal translocation. Their morphology 

changes from bipolar to unipolar that no longer contacts the ventricle, to multipolar with a 

regression of the radial process, and then they become an astrocyte (Kriegstein and Alvarez-

Buylla, 2009). Indeed, Noctor and colleagues using retroviral labeling and time lapse 

imaging, have demonstrated that RGCs that had produced neurons can transform into 

astrocytes (Noctor et al., 2008). Evidences for the implication of epigenetic regulation in this 

process have been obtained. Indeed, at early stages, the promoters of the GFAP and 

S100genes are methylated; later, RGCs only become competent to respond to 

differentiation factors via demethylation of the GFAP and S100 promoters. Signaling 

factors, such as Fgf2 acting through the nuclear co-repressor NCOR are involved in keeping 

gliogenesis inhibited in early progenitors (Hermanson et al., 2002; Molné et al., 2000; 

Takizawa et al., 2001).  

Some astrocytes divide locally before terminal differentiation and represent a population of 

astrocytic intermediate progenitors (aIPCs). This allows the amplification of the population of 

astrocytes present in the cortex (Kriegstein and Alvarez-Buylla, 2009). Interestingly, 

astrocytes take a cortical position that mirrors the inside-out laminar birthdate of the neurons 

with the later-born astrocytes taking up superficial cortical positions (Ichikawa et al., 1983).  

In addition to astrocytes, embryonic progenitors produce oligodendrocytes from different 

locations in the telencephalon that emerge during three different formation waves (Figure 

16). A first wave of oligodendrocyte precursors is produced at a very early stage of 

development (E9/10) (Delaunay et al., 2008; Spassky et al., 1998). Later, a second wave of 

OPC production occurs in the ventral telencephalon from the MGE (Nkx2.1-positive 

precursors) and the LGE (Gsh2-positive precursors) domains at E14. The third wave arises 

at E18 from the dorsal cortex (Emx1-positive precursors) (Dimou and Götz, 2014). The first 

populations of OPCs disappear at birth and the late dorsal-originating oligodendrocytes will 
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compose the majority of the adult cortical oligodendrocytes (Kessaris et al., 2006). 

Oligodendrocyte precursors expressing NG2 (OPCs or oIPCs) persist in the brain and can be 

reactivated upon local signals. These OPCs are likely derived from both RGCs and the adult 

SVZ (Gonzalez-Perez and Alvarez-Buylla, 2011; Kriegstein and Alvarez-Buylla, 2009).  

Experiments based on retroviral labelling at mid-corticogenesis have also shown that cortical 

progenitors can generate clones with either astrocytes only, oligodendrocytes only, or both 

suggesting the existence of progenitors restricted to one glial cell type production and a few 

with bi-potentialities during development (Levison and Goldman, 1993; Luskin, 1994; Luskin 

et al., 1993).  These observations highlight the heterogeneity of the ventricular progenitors 

that seems to be similar in terms of architecture and morphology but can be specialized in 

producing a restricted number of differentiated and functional cells.  

Finally, RGCs generate the ependymal cells that line the ventricle (Figure 16). These cells 

are multi-ciliated and involved in driving the cerebro-spinal fluid (CSF) flow. They are post-

mitotic and are generated from late RGCs that undergo their terminal division between E14 

and E18 (Guérout et al., 2014). They acquire their mature features only during the first 

postnatal week. Different subtypes of ependymal cells (tanycytes, cuboïdal, radial ependymal 

cells) are reported depending on molecular markers, morphology and location but their origin 

and functionnal differences are still largely unknown (Guérout et al., 2014). Recently, FoxJ1 

and Six3 have been shown to play a role in their specification and maturation (Jacquet et al., 

2009; Lavado and Oliver, 2011). 

In the zebrafish, neither astrocyte nor ependymal cell have been reported in the 

telencephalon, thus the transition from RGCs to astrocytes or from RGCs to ependymal cells 

never occurs. RGCs persist into adult life at the ventricular zone in the telencephalon (see 

section 2.2.3). However, telencephalic oligodendrocytes are produced during development 

and are present together with OPCs in the adult parenchyma of both pallium and subpallium 

and at the subpallial VZ (März et al., 2010a).  

 

Interestingly, this progenitors sequence, based on the lineage tracing of radial glia and 

intermediate progenitors and BrdU labelling, consists in a linear view of how progenitors 

change during development and implies that progenitors described in the embryo are 

submitted to a series of maturation steps until adult stage. Nevertheless, we cannot exclude 

that some discrete populations of embryonic progenitors escape these maturation events 

and are still present in the adult. Some of the results I obtained during my thesis highlight 

that some embryonic NE progenitors persist the adult zebrafish pallium. 

  



37 
 

 

 

 

 

 

Figure 16: Neurogenesis and gliogenesis from the embryo to adult 

Glial nature of neural stem cells (NSCs) in development and in the adult. This illustration depicts some of what is 

known for the developing and adult rodent brain. Timing and number of divisions likely vary from one species to 

another, but the general principles of NSC identity and lineages are likely to be preserved. Solid arrows are 

supported by experimental evidence; dashedarrows are hypothetical. Colors depict symmetric, asymmetric, or 

direct transformation. IPC, intermediate progenitor cell; MA, mantle; MZ, marginal zone; NE, neuroepithelium; 

nIPC, neurogenic progenitor cell; oIPC, oligodendrocytic progenitor cell; RG, radial glia; SVZ, subventricular zone; 

VZ, ventricular zone. From Kriegstein and Alvarez-Buylla, 2009 

 

 

In the frame of this work, the notion of maturation of the embryonic neural progenitor is 

fundamental as lineage tracing experiments allowed to appreciate the different states of a 

progenitor population along development. Some of the results I obtained during my thesis 

give new information on progenitor maturation with a much less linear view than it has been 

proposed so far.  
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2.2 Adult neural stem cells - neurogenesis 

Stem cells are defined as a group of cells that, via undergoing symmetric and asymmetric 

divisions, are capable at a single cell level of a prolonged self-renewal and of differentiation 

into several specialized cell types, responsible for physiological functions. Under 

physiological conditions in systems with slow renewal (muscle, brain…), they are mainly 

found in cell cycle arrest, defined as a quiescent state, but can become activated and re-

enter the cell cycle upon stimulation. During the last two decades, stem cells have been 

extensively studied in the vertebrate brain, such as in the mouse or zebrafish, and even in 

human, where the presence of adult neurogenesis has been recently clearly demonstrated 

(Ernst et al., 2014; Spalding et al., 2013). In the case of the central nervous system, it is 

interesting to note that aNSCs are unipotent according to the “stricto sensu” stem cell 

definition, since most of them only generate neurons, but can be considered mutipotent 

regarding the different subtypes of neurons they can produce. The other main feature of the 

stem cell definition is self-renewal; however, this capacity at the single cell level is difficult to 

appreciate and has only been tested so far using neurosphere assays, in which a putative 

neural stem cell is isolated and cultured, and where self-renewal is assessed by measuring 

the number of possible passages before the cell exhausts, and multipotency is assessed via 

a differentiation paradigm (Pastrana et al., 2011). However, this technic does not allow to 

access the properties of quiescent stem cells, nor to reliably appreciate cell properties under 

physiological conditions. Moreover, tissue homeostasis can involve a second aspect of self-

renewal, which occurs at the population level with some progenitors compensating by 

symmetric division for the terminal differentiation of others (Simons and Clevers, 2011). 

Finally, all these aspects can change over time and are probably different in physiological or 

pathological conditions -after brain lesions for example- (Dimou and Götz, 2014), highlighting 

that the stem cells adapt also to their environnement. Thus, the analysis of adult stem cells 

should now integrate the state of the environnement on the one hand and the population 

behavior on the other hand. In the following section, we will briefly introduce how adult 

neurogenesis was discovered, then the general features of adult neurogenesis in mammals, 

and finally, we will address the state of art about adult neurogenesis and aNSCs in the 

zebrafish.  

2.2.1 Discovery of adult neurogenesis – cooperation of birds and rodents 

Even though stem cells are found almost everywhere in the body, it was firmly believed until 

less than two decades that the adult brain was too complex to incorporate adult-born 

neurons. The neurobiologists Joseph Altman and Gopal D.Das in 1960s had observed a 

neurogenic activity in the post-natal hippocampus and olfactory bulbs of rats and guinea-pigs 

via tritiated thymidine injections (Altman, 1969; Altman and Das, 1965, 1967), but their work 
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was largely ignored. Ten years later, Kaplan and Hinds, by combining electron microscopy 

and tritiated thymidine staining, showed adult-born neurons in the dentate gyrus and the 

olfactory bulb of rats (Kaplan and Hinds, 1977). Then, adult neurogenesis was observed in 

the avian brain (Goldman and Nottebohm, 1983; Paton and Nottebohm, 1984). At the end of 

the 1980s already, in vitro experiments and clonal analyses via virus infections introduced 

the concept of “neural stem cell-like” cells that can produce both neurons and glial cells in the 

embryonic rodent brain (reviewed in Gage and Temple, 2013). Then, following observation of 

cell cultures collected from adult brain structures, the notion of aNSCs emerged (Gage et al., 

1995; Lois and Alvarez-Buylla, 1993; Reynolds and Weiss, 1992). Together, these 

experiments led to the current model where adult neurogenesis in rodents constitutively 

occurs into two telencephalic regions: the subgranular zone (SGZ) of the dentate gyrus of the 

hippocampus, and the subependymal zone (SEZ) of the lateral ventricle. In addition to the 

telencephalon, adult neurogenesis has been also reported in the hypothalamus (Migaud et 

al., 2010), the striatum (Luzzati et al., 2007) and the rabbit cerebellum (Ponti et al., 2010).  

Eriksson and colleagues, via Bromodeoxyuridine (BrdU) incorporation in a group of cancer 

patients, have been the first to find that adult neurogenesis occurs also in the human 

hippocampus (Eriksson et al., 1998). More recently, clever experiments based on the post-

mortem analysis of brains of people who had eaten plants (or animals fed from these plants) 

exposed to an environnemental elevation of 14C due to the nuclear bombs tests during the 

cold war (1955-1963), has confirmed that adult neurogenesis occurs in the SGZ. Concerning 

SEZ neurogenesis, compared to the situation in rodents, it generates neurons in the striatum 

and does not seem to contribute to the olfactory bulbs in the human brain (Ernst et al., 2014; 

Spalding et al., 2013).  

 

2.2.2 Mouse adult neural stem cells and neurogenesis 

In the mammalian brain, neurogenesis occurs in the SGZ of the hippocampus, in which new-

born neurons integrate into the granule cell layer, and the SEZ of the telencephalic lateral 

wall, from which neuroblasts migrate along the rostral migratory stream and generate 

interneurons that integrate into the olfactory bulbs (Figure 17) (Zhao et al., 2008). In these 

two neurogenic zones, and at the population level, aNSCs can self-renew and differentiate 

into several neural cells such as particular types of neurons, astrocytes, and oligodendocytes 

(Dimou and Götz, 2014). 
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Figure 17: Adult neurogenenic zones in rodents 

Schemes of sagittal and coronal views of the mouse adult brain in areas where neurogenesis occurs. Red areas 

indicate the germinal zones in the adult mammalian brain: the subgranular zone (SGZ) of the dentate gyrus in the 

hippocampus and the subependymal zone (SEZ) of the lateral ventricles. Neurons generated from the SEZ 

migrate through the rostral migratory stream and are incorporated into the olfactory bulbs. Adapted from (Zhao et 

al., 2008) 

 

 

2.2.2.1 The subgranular zone (SGZ) of the hippocampus 

In the SGZ, several types of neural progenitors can be identified, according to morphologies 

and their expression of unique sets of molecular markers. The first class (Type 1 cells) of 

progenitors has a radial process spanning the entire granule cell layer and ramified in the 

inner molecular layer. Type 1 cells express stem cells markers such as the Sry-related HMG 

box transcription factor Sox2, and are rarely dividing cells (Suh et al., 2007). Despite their 

expression of the GFAP (glial fibrillary acidic protein) and Nestin glial markers, they are 

morphologically and functionally different from mature astrocytes and resemble more RGCs 

(hence called radial glia-like, RGLs). Interestingly, they are labelled by expression of the 

Notch target gene Hes5 (Zhao et al., 2008). The second class corresponds to a non-radial 

population (Type 2 cells) and contains rapidly dividing progenitors expressing, like Type 1 

progenitors, the markers Sox2 and Hes5 (Lugert et al., 2010; Suh et al., 2007). Lineage 

tracing experiments suggested that both Type 1 and Type 2 Sox2-positive progenitors 

display aNSCs properties (Suh et al., 2007). Nevertheless, the precise lineage relationship 

between these progenitors has not been clearly determined and several hypotheses 

concerning their hierarchy have been elaborated (Figure 18A) (Bonaguidi et al., 2012). One 
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possibility is that radial Type 1 cells generate the Type 2 cells (Bonaguidi et al., 2011; 

Dranovsky et al., 2011; Encinas et al., 2011). In this model, Type 1 cells are multipotent and 

can generate both glial and Type 2 cells. The latter are unipotent and generate neuroblasts 

that differenciate into neurons. There, two models exist: one considering that Type 1 cells 

can self-renew by asymmetric divisions (Figure 18A – left panel) (Dranovsky et al., 2011), 

and the other in which once Type 1 cells are engaged into neurogenesis, they terminate at 

some point their lineage and thus differentiate into astrocytes (Figure 18A- middle panel) 

(Encinas et al., 2011). The latter hypothesis suggests the existence of a “cell division clock” 

that progressively depletes the pool of progenitors as adult neurogenesis progresses. 

Yet, another possibility is that the Type 2 cells are at the top of the hierarchy. In this case, 

they would generate on the one hand a reservoir of Type 1 NSCs that rarely divide, and on 

the other hand astrocytes and neurons without going through a radial glial state. Type 1 cells 

would thus generate only non-radial Sox2-positive cells that are able to produce both 

neurons and astrocytes (Figure 18A – right pannel) (Suh et al., 2007). Further studies are 

thus needed to address the mechanisms underlying progenitors hierarchy. In any case, all 

these models converge toward the production, from Type 2 cells, of actively dividing 

neuroblasts that are considered as secondary transit amplifying precursors (Figure 18B) (Mu 

and Gage, 2011). They first express Tbr2, and further Doublecortin (DCX) and Prox1 that are 

considered as markers for immature neurons (Bonaguidi et al., 2012). These neuroblasts 

then differentiate into glutamatergic dentate granule cells that go through several steps of 

maturation during which their properties, such as their response to GABA, and morphologies, 

such as the density of mushroom spines, change. Their survival and integration in the SGZ 

are largely determined during a critical time window (1-3 weeks after birth), and this decision 

is influenced by the animal’s experiences (Zhao et al., 2008). It is worth noting that 

oligodendrocytes do not seem to be generated under physiological conditions in the SGZ; 

however, it has been shown that SGZ aNSCs retain oligodendrocyte generation capacities. 

Upon for example overexpression of Mash1 using retroviral infections in the SGZ, 

oligodendrocytic-cells are produced and incorporate durably in the dentate dyrus (Jessberger 

et al., 2008). 

Astrocytes are also found in the niche and it has been suggested that they could play an 

important role in SGZ neurogenesis stimulation through Wnt signaling pathway (Lie et al., 

2005; Song et al., 2002).   

All the experiments based on mutant analyses or environmental changes lead to an increase 

in SGZ neurogenesis, via an action either at the proliferation level or at the level of the 

survival of the new-born neurons, and improve learning and memory capacities. Conversely, 

decreasing SGZ proliferation is correlated with an impairment in spatial memory and its 

consolidation or with defective learning (Zhao et al., 2008). In aged animals, which display a 
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decreased proliferation and neurogenesis correlated with an impairment of learning and 

memory, increasing SGZ neurogenesis either by voluntary activity (running) or by 

environmental enrichment rescues these hippocampal capacities (Zhao et al., 2008). 

Interestingly, recent work revealed that adult neurogenesis modulates forgetting. Indeed, 

Akers KG and colleagues, using both adult and infant mice, showed that increasing 

neurogenesis via running, genetic techniques or pharmacological treatments promotes 

forgetting (Akers et al., 2014). Adult neurogenesis in the SGZ in thus really involved in 

modulating adult hippocampal functions. 

Finally, in addition to a physiological role of neurogenesis, it is emerging that aNSCs play 

also non-neurogenic functions. Indeed, in the SGZ, apoptotic newborn cells are cleared out 

through phagocytosis by microglia, cells responsible for active immune defense in the brain, 

and adult progenitors are able to modulate microglial activity via VEGF secretion (Mosher et 

al., 2012; Sierra et al., 2010). Moreover, neuroblasts produced in the SGZ regulate stress 

activity at both endocrine and behavioral levels by buffering stress response through the 

regulation of the hypothalamic-pituitary-adrenal axis (Snyder et al., 2011).  
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Figure 18: Adult neurogenesis in the SGZ of the mouse hippocampus 

A: Three proposed NSC models. In the ‘Repeated RGL self-renewal’ model, RGLs can cycle between quiescent 

and mitotic states. Once activated, RGLs can divide symmetrically to generate additional RGLs, or asymmetrically 

to produce neuronal and astroglial lineages. In the ‘Disposable RGL’ model, once activated, RGLs repeatedly 

divide to generate only the neuronal lineage without returning to quiescence and then terminally differentiate 

intoastrocytes. In the ‘Nonradial precursor’ model, proliferative cells lacking a radial process generate neurons, 

astrocytes, and even RGLs. Arrows indicate direct cell generation. Dotted arrows represent unknown choices. 

Double arrows represent multistep cell generation. Adapted from (Bonaguidi et al., 2012) 

B: The quiescent type 1 NSCs coexist with actively proliferating non-radial type 2 NSCs and they generate both 

astrocytes and neuroblasts. Neuroblasts migrate into the granule cell layer (GCL) and differentiate into dentate 

granule cells (DGCs). Newborn DGCs gradually develop and acquire progressively their mature properties. They 

elaborate dendritic trees in the molecular layer (Mol) to receive inputs from the Entorhinal cortex  and project to 

CA3 pyramidal neurons (red) as well as interneurons located in the hilus (blue) (Mu and Gage, 2011)  
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2.2.2.2 The subependymal zone (SEZ) 

The SEZ is located just underneath ependymal cells, a thin layer of multiciliated cells that 

lines the two lateral ventricles of the telencephalon and that contributes to the flow of the 

cerebro-spinal fluid (Figure 19) (Ihrie and Alvarez-Buylla, 2011). Ependymal cells are 

quiescent and whether they display stem cells properties is still unclear, as some ependymal 

cells reactivation and depletion have been observed after stroke (Carlén et al., 2009) but 

they do not seem to participate in adult neurogenesis under physiological conditions 

(Consiglio et al., 2004). 

As for the SGZ, different types of progenitors constitute the NSCs niche in the SEZ. First, the 

slowly proliferating progenitors, also named Type B cells which can be divided into two 

categories depending on their location in the niche and their morphology: the Type B1, 

closely associated with ependymal cells and directly contacting the ventricle via an apical 

process containing a non-motile primary cilium, and the Type B2 cells, located close to the 

striatal parenchyma (Figure 19) (Ihrie and Alvarez-Buylla, 2011). Type B1 cells are 

connected both with other type B1 cells and ependymal cells on their apical part, and extend 

their basal process from the SEZ to reach the basement membrane surrounding blood 

vessels. They display a radial morphology and are glial cells as they express glial markers 

such as the glutamate transporter (GLAST), the brain-lipid-binding protein (BLBP), GFAP, 

Nestin and Vimentin. Prominin is used as a marker for stem cells and is expressed in both 

Type B1 and ependymal cells (Ihrie and Alvarez-Buylla, 2011). Type B1 cells are considered 

as the NSCs of the SEZ as, upon division, they produce the second type of progenitors in the 

SEZ, the Type C cells, also referred to as the transit amplifying precursors (TAPs or 

IPCs) (Figure 19) (Kriegstein and Alvarez-Buylla, 2009). These are located close to the Type 

B1 cells and express specifically Mash1 and Dlx2 (Ihrie and Alvarez-Buylla, 2011). The 

progeny of all these cells are Type A cells, or neuroblasts, which migrate toward the 

olfactory bulbs (Figure 19) (Lois and Alvarez-Buylla, 1994). They express, as the type C 

cells, Dlx2 but also express specifically the immature neuronal marker Doublecortin (Dcx) 

and the Polysialyted Neural Cell Adhesion Molecule (PSA-NCAM), involved in the migration 

process (Chazal et al., 2000; Ihrie and Alvarez-Buylla, 2011). Several other molecules, such 

as Fascin, a factor involved in axonal growth, have been shown to be involved in the 

regulation of this migration process (Sonego et al., 2013).  

It is now emerging that some of the different markers mentioned above would much more 

characterize a “state” of cell rather than a “type” of cell, and they are actually often not 

restricted only to one cell type. This highlights the concept of continuum between all these 

different categories of cells. For instance, contrary to GFAP expressed exclusively in type B 

cells, GLAST is also expressed in a small subset of type C cells (Pastrana et al., 2009). The 

same holds for Mash1, which is expressed, in addition to type C cells, in small number of 
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type B cells, possibly highlighting the Type B cells engaged into the soon generation of Type 

C cells (Kim et al., 2011).  

Once the neuroblasts are produced, they migrate via the rostral migratory stream to arrive 

into the olfactory bulbs (Figure 19). It has been proposed that astrocytes and vasculature 

play an important role in this process via building a scaffold for fascilitating neuroblasts 

migration (Alvarez-Buylla and Garcia-Verdugo, 2002; Whitman et al., 2009). Almost one half 

of the adult-born neurons originating from the SEZ will survive and their elimination occurs, 

as for the SGZ, during a critical period (between 2-4 weeks after birth) (Yamaguchi and Mori, 

2005). Adult SEZ neurogenesis produces inhibitory interneurons that either use GABA and 

dopamine as neurotransmitters (periglomerular neurons), or only GABA (granule cells), the 

latter representing 90% of the adult-born neurons produced by the SEZ (Gheusi and Lledo, 

2014). 

In terms of gliogenesis, under physiological conditions, the production of oligodendrocytes is 

scarce in the SEZ with only a subpopulation of Type B and Type C cells that express the 

Oligodendrocyte lineage transcription factor 2 gene (Olig2) (Menn et al., 2006). This 

population of oligodendrocytes precursors migrate into the copus callosum, the striatum and 

the fimbria fornix to differentiate into NG2-positive cells that continue to divide locally and 

mature into myelinating oligodendrocytes (Menn et al., 2006). The migration and 

differenciation of OPCs is regulated by endothelin-1, an astrocyte-derived signal (Gadea et 

al., 2009). However, whether Olig2-positive precursors and IPCs derive from the same Type 

B cells at the single cell level remains to be determined; clonal analyses would be necessary 

to address this question.  

In terms of functional relevance, SEZ neurogenesis has been proposed to play a role in 

olfactory perception and memory via its role on neuron survival, olfactory discrimination or 

pattern recognition, and olfactory memory (Gheusi and Lledo, 2014). 

As in the SGZ, the stem cells of the SEZ also perform non-neurogenic functions, for example 

via neuroblasts that exert a phagocytic activity in clearing apoptotic neural precursors using 

proteins of the engulfment pathway (Lu et al., 2011).  
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Figure 19: Adult neurogenesis from the SEZ to the olfactory bulb  

Progenitor cells (A–C) in the subependymal zone (SEZ) lie adjacent to the ependymal cell (E) layer lining the 

lateral ventricles and interact with basal lamina extending from the local vasculature. Newborn neurons reach the 

olfactory bulb (OB) through chain migration and go through morphological and physiological development before 

integrating as granule neurons in the granule cell layer (GCL) and as periglomerular neurons (not shown) in the 

glomerular layer (GL). Abbreviations are as follows: Mi, mitral cell layer; EPL, external plexiform layer; RMS, 

rostral migratory stream.adapted from (Zhao et al., 2008) 

 

2.2.2.3 The adult cerebral cortex 

The adult cerebral cortex possesses parenchymal astrocytes; however, in a healthy brain, 

these do not divide. When isolated in vitro, they are not able to self-renew and to generate 

neurospheres, thus do not diplay stem cells properties (Buffo et al., 2008).  

Another type of glial cells present in the parenchyma is the NG2-positive glia. Contrary to 

astrocytes, these cells proliferate slowly outside the stem cell niches in the adult brain. They 

generate oligodendrocytes and self-renew as they produce NG2-glia (Dimou and Götz, 

2014). Even though their multipotency in vivo is controversial, studies in vitro have shown 

that when they are isolated from a postnatal brain hippocampus, they can give rise to 

mutipotent neurospheres with functional neurons, astrocytes and oligodendrocytes 

(Belachew et al., 2003).  

Interestingly, after injury, these two types of progenitors react and change their behavior. 

NG2 glial cells increase their proliferation right after the injury (Kang et al., 2010; Simon et 

al., 2011). Concerning the astrocytic reaction, also called astrogliosis, they become 

hypertrophic, and upregulate the glial markers GFAP and Vimentin, but also immature glial 

markers typical of RGCs such as Nestin and BLBP, and in some cases the NSCs marker 

Musashi (Robel et al., 2011). In severe trauma, they even start to proliferate and participate 

in the generation of the multiple astrocytes that are present at the site of lesion (Buffo et al., 

2010; Sofroniew, 2009). Cultured in vitro after injury, they display stem cells features as they 

self-renew and generate neurospheres (Buffo et al., 2008; Lang et al., 2004). Genetic lineage 
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tracing experiments have shown that astrogliosis occurs in the mature parenchymal 

astrocytes (Buffo et al., 2008) and that one week after injury, half of the astrocytic pool has 

undergone cell division (Buffo et al., 2008; Simon et al., 2011).  

It is worth noting that in injury conditions in the mammalian cerebral cortex, even though the 

lesionned region is not regenerated, neuroblasts are recruited at the injury site and can 

generate a few neurons such as glutamatergic projection neurons, that integrate into the 

neuronal network; however, these neuroblasts probably originate from the constitutive adult 

neurogenic regions (Robel et al., 2011).  

 

2.2.3 Zebrafish neurogenesis and adult neural stem cells  

Due to its evolutionary proximity with human, the rodent brain has been extensively studied 

in terms of adult neurogenesis, even though we start to discover that rodent and human adult 

neuronal production do not occur exactly in the same way (Ernst et al., 2014; Spalding et al., 

2013). In the zebrafish, adult neurogenesis is prominent, and is more and more studied as 

we realize that it shares many common features with rodents.  

2.2.3.1 Zebrafish adult neurogenesis  

As mentioned previously, adult neurogenesis is not restricted to mammalian brains but is 

also present in birds, in which the process has been partially discovered (Goldman and 

Nottebohm, 1983; Paton and Nottebohm, 1984), and in reptiles, amphibians, and fish such 

as in the zebrafish (Adolf et al., 2006; Chapouton et al., 2007; Grandel et al., 2006). In all 

these animals, adult neurogenesis is much more abundant than in mammals (Chapouton et 

al., 2007).  It usually takes place in subdomains of ventricular zones of several brain areas 

and can serve in multiple adaptative functions (Chapouton et al., 2007). 

In the zebrafish, using a combination of markers and BrdU incorporation experiments, 16 

different loci of adult neurogenesis distributed throughout all brain subdivisions have been 

described, and especially in the telencephalon (Figure 20) (Adolf et al., 2006; Grandel et al., 

2006; Pellegrini et al., 2007; Zupanc et al., 2005). In the latter, neurogenesis occurs at the 

level of the most superficial layer of cells lining the ventricle, all along both pallial and 

subpallial areas. Indeed, short lineage tracing of proliferating cells via Brdu pulse/chase 

experiments revealed that proliferating ventricular cells generate neurons that settle at just a 

short distance from the ventricular zone into the parenchyma (Adolf et al., 2006). This 

indicates that constitutive neurogenesis occurs in zebrafish in additional telencephalic 

regions compared to the rodent brain, such as the dorsal pallium (mainly Dd/Dc in fish), 

equivalent to the cortex in mammals where no constitutive neurogenesis has been reported, 

or in the ventral subpallium (Figure 20).  
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Moreover, adult-born neurons have been reported in the olfactory bulbs in fish as well (Adolf 

et al., 2006; Zupanc et al., 2005). These neurons show similarities with the ones produced by 

the mouse SEZ as they are GABAergic and dopaminergic (Adolf et al., 2006; Grandel et al., 

2006). It has been proposed that these neurons derive from non-glial PSA-NCAM-positive 

proliferating progenitors located in the subpallium, the migration of which has been compared 

with the rostral migratory stream of mammals (Adolf et al., 2006; Grandel et al., 2006). A 

recent work showing, via live imaging, that subpallial neurog1-positive progenitors migrate 

and reach the olfactory bulbs along the vasculature also supports this model (Kishimoto et 

al., 2011). It is interesting to note that a similar RMS-like structure has been described in 

other vertebrates such as birds (Doetsch and Scharff, 2001) but does not seem to be present 

in humans (Ernst et al., 2014). 

Finally, we discussed already that the field homologous to the hippocampus, the second 

neurogenic region in mouse, is considered to be located in the most lateral region of the 

zebrafish pallium (either Dl only, or Dl+Dp depending on the theory - see section 1.4). In this 

region as well, active proliferation and neurogenesis have been reported (Grandel et al., 

2006; März et al., 2010b; Zupanc et al., 2005). 

 

 

Figure 20: Parasagittal schematic overviews of the adult proliferation pattern and neurogenic regions in 
the brain of mammals and fish. From Kaslin et al., 2008 
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Compared to mammals, the zebrafish thus displays widespread neurogenesis that is 

involved in producing neurons all along life. What could be the role of maintaining such a 

number of neurogenic regions? The functional role of adult neurogenesis in zebrafish is still 

unknown; however, a few non-exclusive hypotheses could help us understand the potential 

of adult neurogenesis. First, the zebrafish grows continuously along life, and peripheral 

organs expand through the addition of new cells. Thus, new central neurons could be 

involved in reading these newly-formed peripheral organ regions. They could also be 

necessary for new behaviors. Second, at least in the lateral pallium, zebrafish adult 

neurogenesis could have a similar physiological role as in the mammalian hippocampus, with 

adult hippocampal neurogenesis involved in the spatial learning and memory (Zhao et al., 

2008). Indeed, aging of the zebrafish leads to a decrease in proliferation and neurogenic 

activity (Edelmann et al., 2013) and an impairment of cognitive functions has been observed 

with aging (Yu et al., 2006b).  

Interestingly, contrary to mammals, zebrafish display an extensive regenerative capacity 

(Gemberling et al., 2013), and aged zebrafish display a decreased regenerative capacity 

(Edelmann et al., 2013). This indicates that the maintenance of a large pool of aNSCs 

correlates with regenerative capacities.  

2.2.3.2 Zebrafish adult neural progenitors 

März et al performed a molecular description of the different progenitors located in the VZ 

“niche” (März et al., 2010b). Like for mouse progenitors, two main categories of progenitors 

are present along the adult telencephalic VZ: progenitors with a radial process and 

progenitors without a radial process. The first type of progenitors corresponds to Radial Glial 

Cells (RGCs) expressing GFAP, BLBP, Nestin, Sox2 and Glutamine synthase (GS) (Lindsey 

et al., 2012; März et al., 2010b). In the zebrafish telencephalic ventricular zone, RGCs are 

directly in contact with the ventricle; they express the ependymoglial marker S100and are 

linked to each other via tight junctions (Figure 21)(Grupp et al., 2010; März et al., 2010b). It 

has been shown that these RGCs are ciliated cells that possess either a single cilium or 

multiple cilia depending on their location (Kishimoto et al., 2011; Lindsey et al., 2012). At 

least some of these ventricular RGCs self-renew and and are multipotent at a single cell level 

under physiological conditions (Rothenaigner et al., 2011). Finally, at a given time point, they 

can be subdivided into “quiescent” and dividing populations, the latter being defined by the 

expression of cell cycle markers such as PCNA or MCM5 (März et al., 2010b), which are 

present throughout most cell cycle phases (Barton and Levine, 2008). The “quiescent” 

RGCs, also called type I cells, represent 85% of the ventricular progenitors and proliferating 

RGCs at a given time point, while type II cells make only 8%. The current interpretation of 

this is that the vast majority of the RGCs population cycles very slowly or does not proliferate 
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(Figure 21) (Chapouton et al., 2010). BrdU pulse/chase experiments highlighted that, in the 

telencephalic ventricular zone, some RGCs that were proliferating two months before in an 

adult animal can re-enter the cell cycle and are thus long-lasting progenitors (Adolf et al., 

2006). Whether, under physiological conditions, these cells constitute a subpopulation of 

RGCs with self-renewal capacity or whether all RGCs self-renew at some point in the adult 

telencephalic ventricular zone remains to be investigated. Interestingly, recent experiments 

have shown that most of the ventricular RGCs can become activated and engage into 

neurogenesis upon a treatment inhibiting the Notch signaling pathway, and can re-enter 

quiescence after treatment (Alunni et al., 2013; Chapouton et al., 2010), indicating that a 

large proportion of RGCs possess adult NSCs capacities.  

The other progenitor subtype present in the zebrafish ventricular zone is the type III cell 

(Figure 21). This population expresses the proliferation marker PCNA, the neuroblast marker 

PSA-NCAM and the stem cells marker Sox2 (März et al., 2010b). These cells are thus 

considered as fast-proliferating neuroblasts in the zebrafish ventricular zone. They are mainly 

found in the RMS-like domain, as explained above, but they also represent 6% of the rest of 

the ventricular progenitors, indicating that they are also involved in pallial neurogenesis 

(Chapouton et al., 2010). As in the mouse system, it has been shown that some type III 

neuroblasts also express progenitor markers such as Nestin suggesting the presence of 

“transition state” progenitors generated from type II cells within this population (März et al., 

2010b). Clonal lineage tracing experiments based on virus transduction targeting RGCs, 

together with experiments modulating the Notch pathway, have led to the current schematic 

view of neurogenesis in the zebrafish adult telencephalon: type I RGCs rarely enter the cell 

cycle, when they do so they become proliferating type II cells that divide and can either 

generate two RGCs (symmetric division – 86% of cases) and amplify the pool of NSCs, or 

one RGC and one type III/neuroblast (asymmetric division), that will further divide and 

differentiate into neurons (Figure 21) (Alunni et al., 2013; Chapouton et al., 2010; 

Rothenaigner et al., 2011). This situation strongly contrasts with the mouse in which the 

proportion is opposite with a majority of asymmetric divisions from aNSCs in both the SGZ 

and SEZ (Morshead et al., 1998; Suh et al., 2007). However, the rate of amplification at the 

neuroblasts level is still unclear but seems to be low in the zebrafish as clonal analyses 

always reveal a small number of neurons per clones (Rothenaigner et al., 2011). Genetic 

lineage tracing experiments designed to target specifically each of these different cell types 

would be necessary to really confirm the model.  

Interestingly, in the zebrafish adult pallial germinal zone, like in the mouse, differences 

between RGCs have been observed in terms of the expression of glial markers, such as in 

the most lateral edge of the ventricular zone where some cells express BLBP but not 

S100but also morphologies with more or less ramifications of the radial process depending 
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on the spatial localization of the cell. This highlights a heterogeneity within the RGCs 

population that is not linked with the division state, as both quiescent and dividing cells where 

shown with these phenotypes (März et al., 2010b). Whether these differences reflect different 

degrees of maturation of the RGCs or other intrinsic features remains to be determined. 

 

Overall, the different mammalian adult neurogenic niches are organized in different ways 

with specificities (see 2.2.2) whereas the telencephalic zebrafish germinal zone seems to be 

much more uniform. However, the results I obtained concerning the origin of the adult 

zebrafish germinal zone indicate that it is actually heterogenous with a mode of aNSCs 

formation that differs depending on the pallial regions.  
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Figure 21: Schematic representation depicting the different types of progenitors of the adult zebrafish 
telencephalic ventricular zone (VZ) 

Cross section of an adult zebrafish telencephalon at the medial level with a high magnification illustrating the 

organization of the ventricular zone (VZ) located at the most superficial position due to the eversion process, with 

quiescent RGCs (type I cells - green) that can enter the cell cycle and become proliferating RGCs (type II cells – 

blue). Type II cells rarely divide asymmetrically thus generating one RGC and one dividing neuroblast (type III 

cells – red). Type I and type II cells are found all along the ventricular zone in both the pallium (Pa) and 

subpallium (Spa), are linked via tight junctions (yellow dots) and directly in contact with the ventricle (Vcle). Type 

III cells are mainly concentrated in the RMS-like stripe (stp) that will reach the bulb and generates olfactory 

neurons, but they are also found along the VZ and generate the telencephalic neurons of the parenchyma (grey). 

 

  



53 
 

3 Signals controlling the maintenance and/or recruitment 

of neural progenitors/stem cells 

Brain formation relies on multiple steps orchestrated via intrinsic and extrinsic signals that 

allow the generation of highly diverse differentiated cells while preserving pools of stem cells. 

Progenitor maintenance involves the maintenance of “stemness”, corresponding to the 

capacity of a progenitor to self renew and preserve its fate-generating properties over 

successive divisions, and cell survival. How “stemness” is encoded is unclear, but so called 

“stemness genes” include Sox2 (Choi et al., 2014). Finally, if we consider that the progenitors 

possess a “cell division clock” that specify them to perform a certain number of divisions 

throughout life (Encinas et al., 2011), progenitor maintenance also goes through the 

maintenance of the appropriate rate of cell divisions as an overactivation of progenitors 

would causes premature depletion. Thus, the rate of proliferation could be important for 

progenitor maintenance, but the division mode also: as an excess of symmetric cell divisions 

could lead to tumorous overgrowth, whereas precocious asymmetric divisions could result in 

underdeveloped brain areas and, possibly, low regenerative capacites. The control of 

progenitor maintenance and recruitment is exerted both on embryonic and adult neural 

progenitors. The involved signals are produced locally by the stem cells themselves or by the 

stem cells niche, they could also come from long-distance sources and reach stem cells by 

the blood circulation or the cerebro-spinal fluid (CSF) or distant cell-cell contacts. In this third 

section, we will focus first on the signals involved in controlling the proliferation and 

maintenance of the different embryonic neural progenitors that compose the developing 

central nervous system, and then on the activation and maintenance of the adult neural 

progenitors/stem cells.  

 

 

3.1 Proliferation and maintenance of neural progenitors during 

development 

Embryonic neural progenitors are submitted to multiple signals that regulate the patterning of 

the developing neural sheet (see section 1.2). In addition to patterning, these pathways 

directly or indirectly impact neural progenitor properties such as maintenance or/and 

proliferation.  

Notably, they confer to particular subdomains a neurogenic activity while complementary 

regions display delayed neurogenesis. Thus, different modes of embryonic neural 

progenitors maintenance and neurogenic activity co-exist within the neural plate and lead to 

the existence, at a given time point, of at least two types of embryonic neural progenitors. I 
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will first discuss how actively neurogenic embryonic neural progenitors are induced and 

maintained by Notch signals during early development, while in other regions progenitors are 

spared for later neurogenesis events. And finally, I will introduce the other signaling 

pathways that can be involved in influencing the maintenance and the balance between 

proliferation/differentiation of the embryonic neural progenitors.  

 

3.1.1 Identification of competent proneural domains within the anterior neural 

plate 

Neural plate induction in ectodermal cells during gastrulation (see section 1.2) is followed by 

the commitment of embryonic neural progenitors to a neural fate and this does not occur 

homogenously and simultaneously throughout the neural plate.  

In Drosophila, neurogenesis first starts at particular sites and this neurogenic pattern is 

induced by positional cues conferring “differentiation competency” to some embryonic neural 

progenitors. Proneural genes from the acheate-scute complex are initially expressed at low 

level in the future neurogenic field (“proneural cluster” cells) making it competent for 

neurogenesis. These proneural genes then drive expression of DSL (Delta/Serrate/Lag2) 

Notch ligands in the entire proneural sheet (Cau and Blader, 2009).  

Similar mechanisms seem to be at play in vertebrates where “prepattern” genes define 

competent fields of neurogenesis and activate proneural factors. The latter include 

orthologues of the achate-scute bHLH gene family (Ash, Ato/Neurogenin).  

Studies in zebrafish and Xenopus have considerably increased our understanding of how 

primary neural induction and neurogenesis patterning are linked. Concerning the 

downstream targets responsible for neural specification, a cascade of transcription factors 

are induced and act synergistically with the different signaling pathways to specify neural 

fate. As we have seen, neural fate acquisition requires inhibition of BMP function from the 

dorsal neuroectoderm, and this downregulation goes first through Wnt signaling which 

activates repressors belonging to the Iroquois (iro/irx) genes family such as Xiro1 in Xenopus 

(Gómez-Skarmeta and Modolell, 2002) and iro3 in the zebrafish (Kudoh and Dawid, 2001). 

The Iroquois genes are then involved in activating proneural genes, as demonstrated for iro7 

in the zebrafish embryonic hindbrain (Lecaudey et al., 2004).  

Second, The Sry-related HMG genes belonging to the SoxB1 familly, such as SoxD and 

Sox2, and the zinc finger factor gene Zic1, are directly induced by the BMP inhibitor Chordin 

(Mizuseki et al., 1998a, 1998b). Sox2 is responsible for making ectodermal cells competent 

to respond to extracellular signals and acts synergically with FGF signaling to initiate neural 

induction (Mizuseki et al., 1998a). Zic1 is responsible for indirectly inducing neurogenin1 

(neurog1) expression, one of the main proneural genes, either via SoxD expression -the 
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latter being sufficient by itself to ectopically induce neural tissue- (Mizuseki et al., 1998b), or, 

together with Zic3, via the activation of POU2, aPOU-domain family gene (Matsuo-Takasaki 

et al., 1999).  Later, SoxB1 genes are involved in maintaining neural progenitors as shown in 

the chick, where they inhibit neurogenesis (Holmberg et al., 2008). 

As mentioned, the expression of prepattern genes results in the activation of proneural genes 

that define proneural domains, also called “proneural clusters” in the zebrafish developing 

CNS and “compartment” regions in the mammalian embryonic brain. The proneural genes 

have several functions in the neural plate. First, they have the ability to initiate Notch 

signaling via their positive action on the expression of the Notch ligand Delta. Notch 

activation is then involved in maintaining neural progenitors within the neurogenic domains 

(see section 3.1.2). Interestingly, there is also evidence that some proneural genes such as 

Mash1 (Ascl1) can promote proliferation during telencephalon development via activating 

expression of several cell cycle genes (Castro et al., 2011). Proneural genes are also 

involved in specifying different neuronal cell types during development. For example, 

Neurogenin1/2 (Ngn1/2) is expressed in the dorsal telencephalon and necessary and 

sufficient to generate glutamatergic neurons, whereas Mash1 is expressed in the ventral 

telencephalon and leads to GABAergic interneurons production (Wilkinson et al., 2013). 

These factors are thus essential during CNS development and have key roles regulating the 

balance between proliferation and differentiation of the neural progenitors.  

Complementary to the “proneural clusters”, embryonic non-neurogenic domains defined as 

“progenitor pools” in the zebrafish or “boundary” region in the mouse do not express 

proneural genes but express different sets of transcription factors. These domains generally 

correspond to signaling centers, such as the Zona limitans intrathalamica (ZLI) or the mid-

brain hindbrain boundary (MHB) (Stigloher et al., 2008) (details about this particular subtype 

of embryonic neural progenitors will be developed in section 3.1.3). 

 

3.1.2 The Notch signaling pathway as the main actor in embryonic progenitor 

maintenance 

After proneural clusters induction, the selection of commited neural progenitors is triggered 

by the emergence of the Notch-mediated “lateral inhibition” process. After its initiation at 

neural plate stage, this pathway will be one of the major signals controling neural 

progenitor/stem cells maintenance and differentiation. It acts locally through cell-cell 

interaction and has been first discovered in the fruit fly by analyzing a mutant with a serrated 

wing margin phenotype (Dexter JS 1914). The subsequent cloning of Notch identified it as a 

receptor interacting with two ligands in fly, Delta and Serrate (Artavanis-Tsakonas et al., 

1983; Fleming et al., 1990; Vässin and Campos-Ortega, 1987). In the next part, we will 
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expose how the Notch pathway functions and discuss its implication on neurogenesis via the 

lateral inhibition process and asymmetric cell divisions, focusing mainly on vertebrates.  

 

3.1.2.1 The mechanisms and components of Notch signalling 

In mammals, the four Notch receptors (NOTCH 1-4) are type I transmembrane proteins 

composed of (i) an extracellular domain (NECD) containing around 30 epidermal growth 

factor (EGF)-like repeats, three LIN repeats and a heterodimerization region; (ii) a 

transmembrane domain; and (iii) an intracellular portion containing a RAM domain, six 

ankyrin repeats, a transactivation domain, and a carboxy-terminal PEST sequence (Figure 

22) (Kovall and Blacklow, 2010). As in Drosophila, Notch interacts with ligands of the DSL 

(Delta/Serrate/Lag-2) family, which are type I transmembrane proteins as well (Figure 22). 

Five DSL ligands are separated into two subgroups: Delta-like (DLL1,DLL3, DLL4) and 

Serrate-like (JAGGED1 and JAGGED2). All Notch ligands contain an amino-terminal domain 

and several EGF-like repeats, and, in addition, JAGGED ligands contain a cyctein-rich 

domain.  DLL3 is the most divergent and functions as a Notch antagonist (Ladi et al., 2005). 

Glycolsylations of the NECD and protease–mediated cleavages are involved in the 

maturation of the Notch receptor and are thus essential for the activity of the pathway (Noah 

and Shroyer, 2013). 

 

 

 

 

Figure 22: Structure of the Notch receptor  

Each component that composes the receptors and ligands is indicated.(Noah and Shroyer, 2013) 
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The mature Notch receptor is translocated to the plasma membrane of the signal-receiving 

cell and its activation occurs by binding of DSL ligands present on the membrane of adjacent 

cells, the signal-sending cells (Figure 23). Upon activation, proteolysis of the receptor is 

carried out by a metalloprotease of the ADAM family (van Tetering et al., 2009) and the -

secretase enzymatic complex leading to a release of the intracellular part of the Notch 

receptor (NICD) into the cytoplasm. Whether this cleavage occurs at the membrane or after 

endocytosis of the receptor is still unclear. The NICD is then translocated into the nucleus 

and binds, via its RAM and ankryin domains, to the DNA-binding transcription factor CSL 

(CBF-1/RBP-Jκ, Su(H), Lag-1). This process converts the CSL complex from a repressive to 

an active form by displacing corepressors and recruiting coactivators, such as mastermind-

like protein (MAML1/2/3). These events lead to the transcription of target genes such as the 

Hairy and Enhancer of split related genes (Hes/Hey), and particularly Hes1 and Hes5 (Noah 

and Shroyer, 2013). Endocytosis is a key regulator of Notch signaling, at the level of both 

DSL ligands, which are endocytosed into the signal-sending cell together with the cleaved 

NECD, and Notch receptor, as inactivated Notch receptors can be endocytosed and recycled 

back to the membrane (Noah and Shroyer, 2013). Endocytosis, via ubiquitination of the 

ligands and receptors, is thus one way in which cells can control Notch activity. In addition to 

this classical view of the pathway, the existence of “non-canonical” Notch pathways has been 

demonstrated. Two of them do not act through the CSL complex; in the first one, Notch is 

cleaved but the transcription is not activated by the CSL complex (Type I), and in the second 

one, Notch receptor is not submitted to cleavage and does not act via CSL (Type II). 

Moreover, a third “non-canonical” pathway has been shown to act without Notch cleavage 

and through the CSL complex (Type III), indicating that the CSL complex could also integrate 

signals from other pathways (Sanalkumar et al., 2010a). 
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Figure 23: Notch signal transduction  

In Notch signaling, a ‘signal-sending cell’ presents the Notch ligand (the ‘signal‘) to the ‘signal-receiving cell’, 

which expresses the Notch receptor. Notch ligands, such as DSL (shown in green), are presented on the 

membrane and subsequently endocytosed (a). Notch forms a heterodimer (shown in dark and light blue) that is 

presented on the cell membrane (b) and upon the binding of DSL on Notch receptor (c), the Notch heterodimer is 

pulled apart through the force of endocytosis in the signal-sending cell, thereby trans-endocytosing the Notch 

extracellular domain (NECD) (d). The Notch domain that remains on the signal-receiving cell is cleaved by 

metalloprotease domain-containing protein (ADAM) and subsequently by γ‑secretase. The precise location of the 

γ‑secretase cleavage is controversial, with some data indicating that it occurs in the endosome and other data 

indicating that it can happen both on the membrane and in the endosome, leading to different Notch intracellular 

domain (NICD) molecules (e). In either case, after cleavage, NICD translocates to the nucleus in which it binds to 

the CSL, which includes RBPj, and replaces the corepressor complex by coactivators including Mastermind (g). 

More recently, it has been determined that Notch signalling can occur in the absence of transcriptional activation, 

through protein–protein interactions, or that it can activate non-RBPJ-dependent transcription (not shown), 

collectively referred to as ‘non-canonical’ signaling (h). Adapted from Ables et al., 2010. 
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3.1.2.2 The Hes/her genes 

In the central nervous system, both canonical and non-canonical Notch signaling pathways 

lead to the activation of Hes/her genes expression (Noah and Shroyer, 2013; Sanalkumar et 

al., 2010a). In mammals, Hes proteins are orthologs of the Drosophila Hairy and Enhancer of 

split factors, which negatively regulate neurogenesis, notably through antagonizing proneural 

genes such as Achaete-scute complex (Akazawa et al., 1992; Sasai et al., 1992). In 

Drosophila, Enhancer of split (E(Spl)) genes, but not Hairy genes, are Notch targets (Fischer 

and Gessler, 2007). In contrast, in vertebrates, Hes genes expression can depend or not on 

Notch but this is not related to their proximity of sequence with either Hairy or Enhancer of 

split. Hes proteins belong to the bHLH (basic Helix-loop-Helix) - Orange family that 

comprises also the Hey, Helt and Stra13/Dec subgroups (Sun et al., 2007). In mammals, 

there are seven protein members in the Hes family (Hes1-7), except in the mouse where no 

Hes4 gene has been reported (M. Coolen, personal communication). Each Hes gene 

encodes a conserved bHLH domain, serving to form dimers through its HLH region and to 

bind DNA at the “N box” (CACNAG) and “class C” sites (CACG(C/A)G) through its basic 

domain (b) (Figure 24) (Kageyama et al., 2008). The second domain common to all Hes 

proteins is the Orange domain, likely involved in protein-protein interactions (Dawson et al., 

1995). In C-terminal, Hes protein all possess a WRPW (Trp-Arg-Pro-Trp) motif which 

functions as a repressor domain via recruiting co-repressors, such as Groucho homologs 

(Figure 24) (Fisher et al., 1996; Grbavec and Stifani, 1996). The region between the Orange 

and the WRPW domains is a proline-rich domain, the size of which diverges depending on 

the Hes protein (Figure 24) (Sun et al., 2007). The Hes proteins are thus transcriptional 

repressors that inhibit their target genes by binding to their promoters and recruiting co-

repressors. In addition to this active repression, Hes proteins can also inhibit transcription by 

forming heterodimers with activator-type bHLH factors such as E-proteins (E47 for instance) 

or bHLH activators such as Mash1, responsible for activating proneural target genes via its 

binding on E-box present in the promoters. These heterodimers do not bind to the DNA; thus, 

Hes factors inhibit activation of the target genes expression by sequestering transcriptional 

activators (Kageyama et al., 2008).  
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Figure 24: Structure of Hes proteins  

Hes factors have a conserved basic helix-loop-helix (bHLH) domain in the N-terminal region and a WRPW 

domain at the C-terminus. Hes proteins form dimers and bind to the DNA through the bHLH domain and recruit 

co-repressors through the WRPW domain. Adapted from Kageyama et al., 2008 

 

 

Phylogeny of Hes/her genes  

Similarly to the situation in mammals, Hes-related (Her) proteins, orthologous to the HES 

factors, exist in zebrafish. Comparisons of sequences of Hes/HES and her genes between 

mouse/human and zebrafish performed by M.Coolen in the lab indicate that Hes1, Hes3 and 

Hes4 (only present in human) each possess only one orthologous gene in zebrafish, 

respectively her6, her3 and her9 (Figure 25A). However, Hes2, Hes5, Hes6 and Hes7 can 

have up to 9 orthologous genes present in the zebrafish genome (Figure 25A). During my 

PhD, I was particularly interested in the her4, her6 and her9 zebrafish genes. I will thus 

expose more details about their homology with mammalian Hes genes.  

The most important difference between mouse and zebrafish regarding homology between 

Hes/her genes concerns Hes5. Indeed, when we analysed the location of orthologous 

sequences in the zebrafish genome, 9 genes were found to possess a sequence close to 

Hes5: her4.1 to her4.5, her12, her15.1, her15.2 and her2. Comparisons with the Hes5 

orthologous sequences in the Xenopus and chick genomes enabled us to define two 

categories within the mouse Hes5 orthologous genes. First, sequences very close to mouse 

Hes5 (also called Hes5.1) are Hes5.1, Hes5.3 to Hes5.7 in Xenopus, Hes5.1 in chick, and 

her4.1 to her4.5 in zebrafish (Figure 25B). Second, Hes5 orthologous genes more related to 

Xenopus Hes5.2 are lost in eutherians (comprising mouse and human) but present in the 

genome of organisms “up” to marsupials (Figure 25B): in Xenopus, Hes5.2 is present and is 

orthologous to Hes5.2 and Hes5.3 in the chick and to her12, her15.1 and her15.2 in the 

zebrafish. Finally, a last Hes5-orthologous gene is present in zebrafish, her2. However, it has 

extensively diverged and it is difficult to determine whether it is closer to Hes5.1 or to Hes5.2.  

Contrary to the Hes5 orthologous genes, only her6.1 in the zebrafish is orthologous to the 

mammalian Hes1 gene. Interestingly, even though the situation is similar to the Xenopus and 

chick, the zebrafish is a particular case within teleosteans as others possess her6.1 and 

her6.2 orthologous to Hes1.  
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Finally, as already mentioned, the Hes4 gene exists in mammals but has been lost 

specifically in rodents as neither the rat nor the mouse genome contain any Hes4 

orthologous gene, whereas Hes4 is found in humans (Figure 25C). As for Hes1, only her9 is 

orthologous to Hes4 gene in the zebrafish.  

It is worth mentioning that Hes1 and Hes4 sequences are quite close to hairy, while 

Hes2/3/5/6/7 resemble more E(Spl) genes but as previously mentioned, this is not endowing 

them differential Notch sensitivity (Sun et al., 2007). 

 

 

 

Figure 25: Phylogeny of Hes/her genes 

A: General phylogeny of the different mammalian Hes genes (mouse and human) with the zebrafish her genes. B: 

Detailed phylogeny of the Hes5 orthologous genes between zebrafish, xenopus, chick, mouse and human with 

the Hes5.1- and Hes5.2-related genes labelled respectively with blue arrows or white arrows. C: Detailed 

phylogeny of the Hes1 (red) and Hes4 (pink) orthologous genes between zebrafish, xenopus, chick, mouse and 

human. Arrows represent the orientation of the sequence in the genome. (From M.Coolen – personal 

communication) 
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Function of Hes/her genes in embryonic neural progenitors in vertebrates 

her genes are expressed in embryonic neural progenitors of the zebrafish. Two different sets 

of her genes are defined regarding their Notch sensitivity and characterize proneural 

clusters/compartment versus progenitor pools/boundary domains (Stigloher et al., 2008).  

The canonical her genes comprises her4, her15 (her1.1 and her15.2), her2 and her12 and at 

least her4 and her15 are controlled by Notch signaling as both genes expression can be 

induced by NICD overexpression and her15 is downregulated in the absence of Notch 

signaling (Bae et al., 2005; Takke et al., 1999). The neurogenic proneural clusters are 

characterized by canonical her genes expression (Stigloher et al., 2008).  

On the contrary, the non-canonical her genes comprising her6, her9, her5 and her11 are 

expressed in progenitor pool/boundary cells in which neurogenesis is delayed. “Non-

canonical” her genes are defined by their expression independent of Notch signaling 

(Stigloher et al., 2008). They are activated by positional cues, such as for her5 in the 

midbrain-hindbrain boundary (Geling et al., 2003) 

It is important to mention that this difference regarding canonical and non-canonical her 

genes is present in the zebrafish whereas in the mouse, the same Hes gene can be either 

Notch-dependent or Notch-independent depending on the cellular context, particularly for 

Hes1 (Stigloher et al., 2008) (see section below).  

In the mammalian developing central nervous system, only three Hes genes are expressed, 

from very early stages of development (E7.5). Already at the neural plate stage, Hes1 and 

Hes3 are expressed in NE cells but this expression is independent of Notch activity 

(Hatakeyama and Kageyama, 2006). Later, Hes3 is downregulated and Hes5 is expressed 

only in progenitors located in neurogenic regions, and this induction is correlated with the 

expression of Notch components such as Notch1 and Dll1 suggesting that Hes5 is activated 

by Notch signaling (Hatakeyama and Kageyama, 2006). Contrary to Hes3 and Hes5, Hes1 is 

expressed in both neurogenic and non-neurogenic territories, including in the telencephalic 

region where Hes1 is expressed at the level of the non-neurogenic presumptive cortical hem 

and choroid plexus domain until E11.5 (Imayoshi et al., 2008). It has been proposed that 

Hes1 expression can oscillate and these oscillations are necessary for maintaining 

progenitors in a proliferation state (this concept will be developed in the next part – see 

section 3.1.2.3). This particular type of expression is thought to be typical of embryonic 

neurogenic regions and dependent on Notch signaling, whereas non-neurogenic progenitors 

display a non-oscillatory/Notch-independent Hes1 expression (Kageyama et al., 2008; 

Stigloher et al., 2008).  

In Hes1;Hes5 double and triple Hes1;Hes5;Hes3 knock-out mice, a rapid depletion of 

embryonic neural progenitors was observed (Hatakeyama and Kageyama, 2006; 

Hatakeyama et al., 2004; Imayoshi et al., 2008). Interestingly, in the telencephalon, no 
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severe phenotypes occured in this triple mutants, but a member of the Hey bHLH-Orange 

family, Hey1, is upregulated suggesting that it can compensate for the absence of Hes 

proteins (Imayoshi et al., 2008). This phenotype of progenitor depletion is also observed 

when inhibition of the Notch pathway is performed in Nestin-positive progenitors, confirming 

the important function of the Notch pathway on progenitor maintenance (Imayoshi et al., 

2010).  Although they have many targets in different contexts, in the developing brain the 

most important class of genes inhibited by Hes proteins are proneural genes. In the triple 

Hes1;Hes5;Hes3 knock-out mice, in addition to neural progenitor depletion, up regulation of 

proneural genes and a premature neuronal differentiation are observed (Imayoshi et al., 

2008). These results indicate that Notch signaling is necessary for maintaining the embryonic 

neural progenitors through its positive control on Hes genes expression. 

 

3.1.2.3 Principle of lateral inhibition, oscillations and the basis of proliferation 

In the compartment/proneural cluster regions, Notch pathway is active and relies on cell-cell 

interactions. This creates, within the neurogenic progenitor population, complementary 

patterns of expression of Notch receptors and their ligands. This particular type of expression 

is based on the mutual repression of the ligand and the Notch targets, and is called the 

“lateral inhibition” process. Indeed, a small bias of DSL expression in between adjacent 

progenitors triggers an amplifying situation that leads to an increase in Notch signaling in one 

progenitor compared to the other. One cell thus become Notch ON and expresses E(Spl) 

transcription factors, and the other one Notch OFF and expresses proneural genes (Skeath 

and Thor, 2003), the latter becoming competent to differentiate into neurons.  

In mammals and zebrafish, lateral inhibition is the model that is currently proposed to explain 

the salt-and-pepper expression pattern of Hes/her and proneural genes in the neurogenic 

regions (Shimojo et al., 2008; Stigloher et al., 2008). In the mouse, Dll1 and Notch1 are 

induced in the neurogenic progenitors that signal to one another, generating the expression 

of Hes1 in the Notch-positive progenitor. It is worth noting that one target of Hes1 is the Hes1 

gene itself. Thus, an auto-regulation of Hes1 on its own expression would generate an 

oscillatory expression pattern of Hes1 in the neural progenitors (Figure 26A-B). Some 

evidence for this type of regulation has also been reported in mouse ES cells and fibroblasts, 

and with Hes7 in the presomitic mesoderm (Harima et al., 2014). Due to this particular type 

of expression, proneural genes, inhibited by Hes1, are periodically inhibited and thus 

oscillate as well with a reverse period (Kageyama et al., 2008). Finally, Dll expression 

oscillates due to the oscillations of proneural genes responsible for its transcriptional 

activation. Thus, in the neural sheet at time t, some cells highly express Hes/her genes and a 

low level of proneural genes and Dll, and the complementary cells highly express Mash1 or 
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Ngn2 and Dll, and a low level of Hes/her genes (Figure 26 B), triggering a salt-and-pepper 

expression pattern. At the peak of proneural gene oscillation, cell have a higher tendency to 

differentiate into neurons (Figure 26A), but this tendency is not decisive and oscillations 

would just confer to the embryonic neural progenitors the neurogenic competency (Imayoshi 

and Kageyama, 2014). Some additional cues must be involved in stabilizing proneural 

expression and thus trigger neuronal commitment from these « neurogenic competent » 

progenitors.  

The functional significance of these oscillations remains to be determined but both Hes1 

overexpression and knockdown inhibit proliferation of the fibroblasts (Yoshiura et al., 2007), 

and sustained expression of Hes1 in neural stem cells inhibits proliferation (Imayoshi et al., 

2013). This indicates that, in addition to its role in maintaining the “stemness” of the 

embryonic neural progenitors, Hes1 oscillations are involved in allowing the progenitors to 

progress into the cell cycle. 

To conclude, the lateral inhibition process allows selecting, within a population composed of 

cells with an equivalent potential, some progenitors to engage them into commitment and 

produce neurons. 

 

3.1.2.4 Notch signaling and intralineage fate 

The production of neurons can also occur during an asymmetric neurogenic cell division 

producing one neuron (or committed precursor) and one progenitor. In this case, which 

reflects an “intralineage” decision, the question is how the cell generates an asymmetric fate. 

Two scenari can be drawn: either the fate of the two daughter cells is imposed during cell 

division with the asymmetric segregation of fate determinants that trigger the commitment of 

one of the daughters, or the fate choice is decided after cell division through signals taking 

place between the daughter cells themselves. Notch activity appears involved in determining 

intralineage asymmetric fate choice during cell division.  

In zebrafish, Dong and colleagues have shown that, in the forebrain, during asymmetric 

neural progenitor division, the basal daughter displays high her4 and her15.1 expression 

levels suggesting an asymmetric activation of the Notch pathway in the two daughter cells, 

with the cell keeping progenitor features displaying the highest Notch activity level whereas 

the other one differentiates into neuron (Dong et al., 2012a). Interestingly, the mother cell 

displays a high and uniform expression of her4 as well as of the Notch ligand genes dla and 

dld before and during division.   
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Figure 26: Model of the lateral inhibition process in mammals 

(A) Expression of Hes1, Ngn2, and Dll1 oscillates in dividing neural progenitors. In immature postmitotic neurons, 

Hes1 is downregulated, whereas Ngn2 and Dll1 are upregulated in a sustained manner. It is likely that oscillatory 

expression of Ngn2 is not sufficient but sustained upregulation is required for neuronal differentiation. (B) Ngn2 

and Dll1 oscillations are regulated by Hes1 oscillations in neural progenitors. Ngn2 oscillation may be 

advantageous for the maintenance/proliferation of neural progenitors at early stages, because it induces Dll1 

expression and activates Notch signaling without promoting neuronal differentiation. From Shimojo et al., 2008 
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After cell division however, decreased Notch signalling occurs in the apical daugther cell in 

which higher dla and dld expression can be visualized. These results suggest that some 

event happens in the two daughter cells after division that triggers asymmetric expression of 

dl ligands and thus a differential activation of Notch signaling. These authors showed that 

Par3 is asymmetrically distributed and only present in the apical cell, and is involved in 

segregating Mindbomb (mib), a Notch promoting factor, specifically in the apical cell in order 

to recycle Dl at the cell surface and keep activating Notch in the basal daughter cell to 

maintain it as a progenitor (Dong et al., 2012a). This study showed that the main mecanism 

involved in asymmetric cell divisions is the segregation of the asymmetrical cell fate 

determinant (Par3/Mib), which can trigger a bias in the signal received by the two daughter 

cells and thus the differentiation of one and the maintenance of the other as a progenitor.  

Interestingly, compared to the uniform expression of Notch receptors in the zebrafish neural 

tube, a Notch expression gradient is present in the retina within progenitors: notch1a RNA is 

enriched at the apical domain of the neuroepithelium, while dld and dlc are mostly found at 

the basal pole (Del Bene et al., 2008). Live imaging of her4 expression in these embryonic 

retinal progenitors indicates that the Notch pathway is activated only when the nucleus 

moves to the apical compartement during the interkinetic nuclear migration (Del Bene et al., 

2008). We can thus speculate that asymmetric cell divisions with an oblique clivage plane 

would generate a differential Notch activation in the two daughter cells and thus a differential 

cell fate. In this system, it seems that, contrary to the neural tube in which the basal daughter 

cell inherits the highest Notch activity level, it is the most apical cell that would keep the 

highest her4 expression. Similarly, we have already mentioned that in the mammalian brain, 

Par3 promotes symmetric self-renewing divisions (Costa et al., 2008), indicating that 

depending on the regions and the species, the differential Notch activation in the two 

daughter cells triggering distinct cell fates is achieved by different cellular and molecular 

mechanisms. 

3.1.3 Progenitor pools, delayed neurogenesis and non-canonical Hes genes 

In addition to the neurogenic regions (“proneural clusters”/”compartment domains”), regions 

in which neurogenesis is delayed are present within the neural plate. These domains, also 

called “progenitor pools” in the zebrafish or ”boundary domains” in mammals, are composed 

of NE cells and correspond to signaling centers (Stigloher et al., 2008). They are induced in 

regions expressing genes inhibiting neural specification, such as Zic2. Zic2 acts as a Gli-

antagonist, thereby limiting the neural induction-promoting effect of Shh (Brewster et al., 

1998).  

In the zebrafish, the second category of her genes, the so-called “non-canonical” her genes 

including her3 (orthologous to mouse Hes3), her9 (orthologous to human HES4), her5 and 
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her11 (both orthologous to mouse Hes7), define domains in which neurogenesis is delayed 

(Stigloher et al., 2008). Contrary to the canonical her genes, experiments leading to the 

inhibition of the Notch pathway demonstrated that they do not require Notch signaling for 

their activation (Bae et al., 2005; Geling et al., 2004; Hans et al., 2004), and their expression 

in the neural plate is regulated by positional cues such as FGF, Wnt, or BMP signaling 

(Geling et al., 2003; Nguyen et al., 2000; Reifers et al., 1998). The non-canonical her genes 

are necessary to maintain the progenitors pools as their inhibition leads to up regulation of 

neurogenesis markers such as neurog1, coe2 or canonical her genes, thus to their transition 

toward a proneural cluster (Geling et al., 2004). This transition from progenitor pool to 

proneural cluster-like cells likely occurs normally during development, as neurogenesis is 

gradually turned on in these territories over time. When I started my thesis, no progenitor 

pools were described in the zebrafish telencephalon. 

Interestingly, the same organization has been observed in mammals. Indeed, Hes3 is 

expressed exclusively in the non-neurogenic domains (Lobe, 1997), and thus could be 

considered as a non-canonical Hes gene. In addition, it is expressed prior to Notch ligands 

and receptors, indicating that its expression is Notch-independent (Hatakeyama and 

Kageyama, 2006). Hes1, in contrast, is expressed in both neurogenic and non-neurogenic 

domains, and displays a differential regulation depending on the progenitor subtypes, 

highlighting the different possible modes of regulation of Hes1 by Notch signalling. Contrary 

to neurogenic regions where it is expressed with an oscillatory manner and under Notch 

control, in the non-neurogenic domains, it is expressed at a high and sustained level 

inhibiting neurogenesis in the domain (Baek et al., 2006). Several other signals have been 

implicated in the regulation of Hes1. Reciprocal control of Hes1 and BMP has been 

suggested in the dorsal telencephalic midline (Imayoshi et al., 2008). FGF signaling has also 

been involved in controlling Hes1 expression as FGF2 is able to transactivate Hes1 via c-Jun 

N-terminal Kinase (JNK) pathway in neural progenitors (Sanalkumar et al., 2010b). Finally, 

other evidence for direct activation of Hes1 by JNK (Curry et al., 2006), TGF/EGF/ERK 

(Stockhausen et al., 2005), Shh (Ingram et al., 2008) and VEGF (Hashimoto et al., 2006) 

have been reported in various contexts and tissues.  Hes1 is thus more and more visualzed 

as a “platform” on which different signals converge and are integrated to refine the regulation 

of neural progenitors. However, the signals involved in the induction of the progenitor 

pools/boundary cells are still unclear and remain to be determined. 
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Figure 27: Comparison of the different types of embryonic neural progenitors in mouse and zebrafish 

In the both zerbrafish and mouse early embryos, two types of neural progenitors are found in the developing 

central nervous system, the proneural cluters (also called “compartments” in the mouse) and the progenitor pools 

(also called “boundaries” in the mouse), that alternates whithin the neural plate.  

The proneural clusters/compartments are actively involved in embryonic neurogenesis and are maintained by the 

Notch pathway. They display a salt and pepper expression pattern of canonical her genes (her4/her12/her15/her2 

– white dotes) and proneural genes (Zash1/ngn1 – black dotes) in the zebrafish, and of Hes1/Hes5 (grey dotes) 

and Mash1/Ngn2 (black dotes) in the mouse. This salt and pepper expression pattern is though to reflect opposite 

oscillatory expression of these genes controlled by the Notch pathway as well as auto-inhibition of Hes genes on 

themselves; however, this type of regulation of expression was only demonstrated for Hes1 is in vitro (Harima et 

al., 2014).  

On the contrary, progenitor pools display a delayed neurogenesis and express in the zebrafish non canonical her 

genes (her3/her5/her11/her9 – grey dotes), expression of which is not dependent on the Notch pathway. In the 

mouse, boundaries cells display a constant Hes1 expression, and Hes3 (grey dotes), type of expression of which 

may be constant.  Adapted from Stigloher et al., 2008  
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3.1.4 Other signaling pathways involved in controlling the maintenance and 

proliferation/differentiation of embryonic neural progenitors 

In addition to the Notch signaling pathway, several other signaling pathways are present in 

cortical progenitors and can impact progenitor maintenance, either upstream, downstream or 

in parallel to Notch activity. In the first part of this introduction, we have exposed some 

cascades of pathways responsible for specifying the anterior neural plate and the 

telencephalon such as Wnt, BMP, FGF and Shh. Here, we review some of their effect on 

embryonic neural progenitor maintenance and proliferation and differentiation. It is worth 

mentioning that in the embryo, all neural progenitors proliferate, unlike aNSCs that are 

mostly quiescent (see section 3.2).  

 

During telencephalon development, BMP is mainly involved in the formation of the dorsal 

telencephalic midline as it is expressed in the roof plate and specifies the choroid plexus 

domain. Several BMP members are expressed in the developing telencephalon including 

BMP2, BMP4, BMP5, BMP6 and BMP7 (Furuta et al., 1997). However, the analysis of 

mutants for these genes did not provide much information on their role in neurogenesis, 

since some mutants die rapidly or display no obvious neural phenotypes, possibly due to 

redundant gene functions. In both in vivo and in vitro analyses, a first function of BMP has 

emerged. High BMP signalling is associated with an increase in apoptosis, in both NE cells 

and neurons (Furuta et al., 1997; Mabie et al., 1999). This is also emphasized by recent 

experiments in which electroporation of BMP7 in the medial cortical wall at E13.5 produces 

many cell debris in the ventricle (Choe et al., 2013), reflecting cell death of ventricle-bording 

cells. Thus, BMP seems to inhibit neural progenitor survival in the telencephalon. Moreover, 

analysis of the cell proliferation index at E10.5 reveals a low proliferation level in the dorsal 

telencephalic midline, indicating that BMP signaling is associated with a low proliferation rate 

in the progenitors (Furuta et al., 1997). In addition, culture explants of cortical primordia in 

the presence of BMP4 or BMP2 display a reduced proliferation of the cortical neural 

progenitors (Furuta et al., 1997; Mabie et al., 1999), thus indicating that, in addition to its 

patterning activity, BMP would impart a low proliferation rate to embryonic neural progenitors. 

This model holds also for the dorsal midline of the spinal cord: treatment with BMP2 on 

spinal cord embryonic progenitors triggers differentiation rather than proliferation of the 

neural progenitors (Ille et al., 2007). This highlights that BMP acts in favor of progenitor 

differentiation but, in certain contexts, can also regulate progenitors apoptosis, reflecting the 

potential heterogeneity of progenitors regarding BMP effects.  

Interestingly, this study also reveals that a cross talk between BMP and Wnt signaling exists 

with Wnt signaling in charge of promoting proliferation in dorsal spinal cord progenitors (Ille 

et al., 2007). The pro-proliferative effect of Wnt signaling has been reported in many 
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contexts. In the embryonic brain, specific activation of the canonical Wnt pathway via 

stabilization of -catenin in RGCs of at E13 leads to an increase in the cortex surface, with 

an over-proliferation, a disorganization of the germinal zone, and a reduction of cortical 

thickness with a reduced neuronal layer indicating a biais of Wnt action in favor of 

proliferation at the expense of differentiation (Marinaro et al., 2012). Interestingly, the RNA-

binding protein Imp1 is activated by canonical Wnt signaling in fetal pallial neural progenitors 

and has been shown to promote neural progenitor expansion (Nishino et al., 2013). 

Moreover, Imp1 deficiency leads to the depletion of embryonic pallial progenitors via 

impairing self-renewal and triggering premature neuronal differentiation (Nishino et al., 2013). 

In addition, in vitro treatments of hippocampal neural progenitors with Wnt3a indicate that it 

promotes proliferation by decreasing cell cycle length without acting on differentiation, and 

affects neither cell survival nor the symmetric/asymmetric proportion of cell divisions 

(Yoshinaga et al., 2010). In addition to its role on the proliferation of ventricular progenitors, 

Wnt promotes intermediate progenitors (IPCs) differentiation at later stages, mainly occurring 

after E15.5: Wnt inhibition via electroporation of Dkk1 at E13.5 leads to defects in neuronal 

production at P2 (Munji et al., 2011). 

The role of Wnt signalling on zebrafish embryonic neural progenitors proliferation remains to 

be determined; nevertheless, it has been shown that Wnt3a and Wnt1 regulate the 

expansion of the zebrafish dorsal neural progenitors (Ikeya et al., 1997), suggesting a 

conserved function of the Wnt pathway on progenitor proliferation between mouse and 

zebrafish. 

 

The other main pathway involved in the maintenance of embryonic neural progenitors is the 

Shh pathway. Besides its specification role in the subpallium, Shh appears involved in 

maintaining cortical progenitors survival: in vitro assay shoed that Shh increases cell survival, 

and that Shh inhibition by cyclopamine treatment leads to increased cell death (Araújo et al., 

2014). Concerning its role in controlling progenitor proliferation, it has been shown in both 

Xenopus and zebrafish retina that Hh pathway activation increases the number of cells in 

proliferation, while Hh inhibition has the opposite effect. It is now suggested that this 

phenotype is due to modifications of the cell cycle length with an acceleration of G1 and G2 

phases of the cell cycle (Agathocleous et al., 2007), which then pushes the progenitors out of 

the cell cycle prematurely, resulting in premature progenitor depletion. This highlights that, 

contrary to its protector role on cortical progenitor in vitro, Shh is also involved in promoting 

the cell cycle exit of the neural progenitors such as the retina, and thus their differentiation.  

 

Several studies have demonstrated the implication of FGF signaling in maintaining them into 

a proliferative state. Indeed, FGF2 is expressed in the developing central nervous system 
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from neurulation stage onward in mouse (Murphy et al., 1994), and its expression, coupled 

with the expression of its receptors, is spatially and temporally controlled during 

development, concurring with neurogenesis in specific brain regions (Powell et al., 1991). 

Microinjection experiments and analyses of mice lacking FGF2 have shown that it is required 

for cell proliferation in the cortical VZ via increasing the proportion of proliferating cells 

without changing the cell-cycle length (Raballo et al., 2000; Vaccarino et al., 1999). This 

observation has been confirmed by in vitro assay in which FGF2 triggers clonal expansion of 

neural stem cells isolated from cortical, striatal and hippocampal primordia (Rai et al., 2007; 

Tropepe et al., 1999). Similarly, FGF8 promotes neural progenitors self-renewal in vitro 

(Borello et al., 2008) and the reduction or overexpression of FGF8 modulates cortical size 

(Fukuchi-Shimogori and Grove, 2001; Storm et al., 2006). Finally, analysis of the loss of 

function of FGFR1/2/3 in Emx1-expressing cells have confirmed that FGF signalling 

promotes the proliferation of cortical neural progenitors, and acts upstream of the Notch 

pathway (Rash et al., 2011). Interestingly, opposite functions of Fgf15/fgf19 have been 

reported in mouse and zebrafish. Indeed, zebrafish fgf19 has been shown to promote cell 

proliferation in the embryonic forebrain while the mouse Fgf15 inhibits proliferation (Borello et 

al., 2008; Miyake et al., 2005). However, they display the same inhibition effect on Fgf8 

expression in both mouse and zebrafish (Borello et al., 2008; Miyake et al., 2005), indicating 

that both fgf19 and fgf8 promote proliferation in the zebrafish but one inhibits the other. It is 

worth noting that at least fgfr1-2-3 are expressed in the embryonic telencephalon of the 

zebrafish (Rohs et al., 2013), indicating a possible complex role of FGF signalling on 

zebrafish telencephalic embryonic progenitors, as already proposed in the mouse. Similarly, 

Rash and al also provided evidence that Fgf2 can inhibit proliferation in the hippocampal 

primordia by decreasing Wnt activity in the cortical hem (Rash et al., 2013); thus, it is 

important to keep in mind that FGF is a patterning factor and that its action can also be 

region-dependent. 

 

3.2 Activation and maintenance of adult neural stem cells 

Since adult neurogenesis was discovered, people tried to understand the physiological 

function of such a process, but also what are the signals involved in aNSCs maintenance 

and activation. Contrary to the embryonic context in which neural progenitors actively 

proliferate, aNSCs are mainly found quiescent in the adult neurogenic niches. These cells 

have exitted the cell cycle and are in a G0 phase, thus need to be activated to divide, in 

order to amplify the population but also to produce neurons. 

Understanding which signals control the activation and maintenance of aNSCs can help 

understand many different biological phenotypes, eg. (possibly) cancer context or NSC 
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depletions. Moreover, the comparison of different situations, such as mammals in which 

aNSCs are found only in discrete forebrain regions, and the zebrafish in which they cover the 

entire forebrain ventricular zone, will enrich our knowledge on the control of stem cells 

maintenance as many signals are shared but not always used in the same way in the two 

species. In this section, we will introduce some pathways controlling maintenance and 

proliferation of aNSCs in mammals and zebrafish, with a special focus on the ones we 

previously discussed in the embryonic context in order to make a parallel on how the signals 

are used in the embryo and in the adult situations. 

 

3.2.1 Activation of adult neural stem cells 

aNSCs are mainly found quiescent. This implies that signals are involved in maintaining them 

in a non-dividing (or very low dividing) state. Once the stem cells are activated, they can 

either perform symmetric or asymmetric divisions. The balance between these two different 

situations results in the proper division rate and is controlled directly or indirectly by almost all 

the signals that are present in the body (Faigle and Song, 2013). However, it is still largely 

unknown how these different pathways interact with the cell cycle factors directly to make the 

cell reinter or stop cell divisions, how they are coordinated with one another, and whether 

they reflect the integration of signals coming from specific sources. 

 

3.2.1.1 Notch3 signaling controls activation of the adult neural stem cells 

Similarly to the embryonic context, Hes5/her4 expression is present in aNSCs in both 

zebrafish and mouse and is considered as the main read out for Notch activity (Chapouton et 

al., 2010; Imayoshi et al., 2010; Lugert et al., 2010; Stump et al., 2002). This pathway plays a 

role in controlling the proliferation rate of aNSCs. Experiments leading to short term 

inhibitions of the Notch pathway in the adult germinal zone have shown similarities in terms 

of response in both mouse SEZ/SGZ and zebrafish telencephalic VZ, i.e. an increase of stem 

cells divisions (Breunig et al., 2007; Chapouton et al., 2010; Ehm et al., 2010; Imayoshi et al., 

2010). 

Interestingly, in the zebrafish, Notch3 is expressed in the adult telencephalic VZ and the 

analysis of Notch3 mutants indicates that it limits aNSC amplification by gating quiescence 

exit (Alunni et al., 2013). In the mouse, Notch1 is the main Notch ligand studied so far (Ables 

et al., 2010; Basak et al., 2012), but other Notch ligands are expressed in the germinal 

zones, such as  Notch3 and Notch2 (Basak et al., 2012). It has been hypothetised that they 

could be responsible for controlling progenitor activation (Basak et al., 2012), but their role in 

aNSCs division remains to be directly determined. Interestingly, Notch3 also limits the 

proliferation of satellite stem cells in the muscle (Kitamoto and Hanaoka, 2010), indicating 
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that the role of Notch3 in maintaining stem cell quiescence could be a mechanism much 

more general than only in the brain. Nevertheless, this function of Notch3 is not shared with 

high cellular turnover systems such as hematopoietic, skin epidermis or intestinal stem cells 

in which the Notch pathway drives different fate choices rather than controlling cell division 

(Perdigoto and Bardin, 2013). 

In the zebrafish, several her genes, such as her4, her6 and her9, are expressed in the 

telencephalic VZ (Chapouton et al., 2011), and short-term inhibition of the Notch pathway by 

pharmacological treatment of the adult zebrafish, mimicking the primary effect of Notch3 

inhibition, leads to a drastic down-regulation of her4 expression in the entire telencephalic 

germinal zone, while some her6 and her9 expression is still present in some regions (Pers. 

Com. – Alessandro Alunni). This indicates that still in the adult zebrafish, her genes seem to 

be differentially regulated by the Notch pathway but whether it highlights an heterogeneity in 

terms of adult progenitors populations remains to be determined. In the mouse, previous 

investigations on the expression of Hes genes in the adult brain led to conflicting results. 

Indeed, Stump and collegues have shown an absence of Hes1 expression in both SGZ and 

SEZ postnatal niches (Stump et al., 2002). In contrast, Ohtsuka and colleagues showed later 

that in Hes1:GFP mice, GFP is expressed in both SGZ and SEZ with 90% of the Hes1-

positive cells expressing GFAP in the SGZ and only 56% in the SEZ (Ohtsuka et al., 2006).  

Hes5 mRNA as well as Hes5:gfp expression is present in both the SGZ and SEZ (Lugert et 

al., 2010; Stump et al., 2002). In the SGZ, Hes5 is expressed in both quiescent and activated 

“horizontal” (non-radial) stem cells, but only in quiescent radial stem cells (Lugert et al., 

2010). Interestingly, these authors showed that running specifically activates the Hes5-

positive radial stem cells whereas the horizontal (non-radial) population is not affected 

(Lugert et al., 2010). Finally, Hes3 expression was not reported in vivo (Stump et al., 2002), 

while Hes3 is expressed in Sox2-positive progenitors isolated from the rat SEZ 

(Androutsellis-Theotokis et al., 2009). Together, this indicates that, like in zebrafish, there 

exists an heterogeneity within the adult NSC/progenitor populations in mouse in terms of Hes 

genes expression. Whether this heterogeneity reveals a particular “state” within progenitors 

or highlights distinct progenitor populations remain to be comprehensively determined, and 

will be partially addressed in the results of this thesis’ manuscript. Finally, the direct function 

of Hes/her genes, in particular regarding aNSC proliferation control, has not been reported 

so far.  
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3.2.1.2 Other signaling pathways are involved in maintaining the proper proliferating 

rate of the adult neural stem cells 

Many factors participate in refining the proliferation rate and neurogenesis in adult 

mammalian neurogenic niches (Faigle and Song, 2013). I will only highlight here the role of 

signals that are also relevant for patterning, that also control embryonic progenitors, and/or 

that are relevant for the results I obtained during my thesis. 

 

Similarly to the Notch pathway, Shh is involved in aNSCs activation. Smothened (Smo), one 

component of the Shh receptor, is expressed in the SEZ, and injection of Shh in the lateral 

ventricle leads to increased proliferation in the SEZ (Alvarez-Buylla and Ihrie, 2014), whereas 

inhibition of Shh by cyclopamine injection leads to a decrease of incorporation of the 

thymidine analog BrdU in this territory (Palma et al., 2005). Some type B cells and many type 

C cells, but not all, express Gli1, Gli2 and the Shh receptor gene Ptch1 (Palma et al., 2005). 

Moreover, it has been shown that Shh controls the number of neuroblasts migrating in the 

RMS and the migration itself (Angot et al., 2008). In the SGZ, Ptch and Smo are expressed 

at high levels and, similarly to the SEZ, delivery of Shh via viral infection in the dentate gyrus 

leads to an increase of proliferation (Lai et al., 2003; Traiffort et al., 1999). In both the SGZ 

and SEZ, the effect of Shh as a mitogen is confirmed by experiments in which exogenous 

Shh protein is added onto cultured aNSCs: in the SGZ, the cells displaying mutipotent 

properties expand following Shh addition (Lai et al., 2003) and, in the SEZ, Shh promotes 

neurosphere proliferation and differentiation in cooperation with EGF (Lai et al., 2003; Palma 

et al., 2005).   

In both mammalian adult neurogenic niches, the Wnt pathway is active as both display Wnt 

signaling target expression (Adachi et al., 2007; Lie et al., 2005). In the SGZ, Wnt3a is 

expressed in both hippocampal astrocytes and adult hippocampal progenitors, the latter 

expressing also components of the Wnt pathway such as Frz1 or catenin and the target 

genes Axin1 and Lef1 (Lie et al., 2005). A reduction of Wnt3a in mice leads to lower Wnt 

signaling levels and suppression of neurogenesis (Okamoto et al., 2011). Moreover, loss of 

the Wnt antagonist Sfrp3 increases self-renewal of aNSCs and neuronal maturation in the 

SGZ (Jang et al., 2013), whereas loss of the other Wnt antagonist Dkk1 activates neuronal 

precursors proliferation and the production of immature neurons (Seib et al., 2013), indicating 

a complex role of Wnt in adult hippocampal neurogenesis. In the SEZ, in vivo and in vitro 

experiments showed that Wnt activation promotes aNSCs proliferation (Adachi et al., 2007; 

Azim et al., 2014; Yu et al., 2006a). Postnatally, Wnt3a and Wnt7a are expressed in the SEZ 

with Wnt3a specifically present in the dorsal portion of the SEZ, and the choroid plexus 

expresses several Wnt ligand genes such as Wnt3a, Wnt5a, Wnt7a  (Azim et al., 2014). 

Most cells activated by Wnt signaling express GFAP, but Wnt is also activated in non-GFAP 
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proliferating cells (Azim et al., 2014), and analysis of the Wnt pathway target gene Axin2 

using reporter mice indicates that it is activated in both Mash1-positive Type B and Type C 

cells (Adachi et al., 2007). Increasing Wnt signaling in the SEZ triggers an increase of Type 

B and Type C cells whereas no changes are visible in the number of Type A cells (Azim et 

al., 2014), indicating that Wnt signaling promote SEZ neurogenesis via promoting 

proliferation of the aNSCs and intermediate progenitors (Type C).  

In the adult neurogenic regions of the mouse telencephalon, the BMP signaling pathway 

promotes the quiescent state of aNSCs. In the SGZ, Mira and colleagues have recently 

shown that BMPR-IA is expressed in aNSCs and maintains them quiescent (Mira et al., 

2010). Interestingly, translocation of P-Smad1 in the BMP-induced quiescent cells in vitro is 

associated with an activation of Hes1 expression without affecting Hes5, indicating that Hes1 

expression seems to be correlated with the quiescent state whereas Hes5 is not sensitive to 

whether the cell is in proliferation or in quiescence.  The anti-proliferative effect of BMP was 

already observed in cultured hippocampal NSCs treated with the BMP inhibitor Noggin 

(Bonaguidi et al., 2008). In addition to the expression of BMPR-1A in aNSCs, a scattered 

expression of BMPR-II is visible in the SGZ (Charytoniuk et al., 2000). The source of BMP 

signaling in this region may be the choroid plexus, which expresses BMP6 and BMP7 

(Charytoniuk et al., 2000). In the SEZ, several BMP pathway components are expressed 

such as the ligands BMP2, 4, 6 and 7 (BMP4 and BMP2 being specifically expressed in 

endothelial cells) (Mathieu et al., 2008), the receptor BMPR-II, the transcription factor Smad4 

that mediates BMP signaling, and the BMP target genes Id1 and Id3 (Colak et al., 2008). P-

Smad1/5/8 are mainly found in the GFAP-positive cells and in a few fast-proliferating BrdU-

positive cells but not in DCX-positive neuroblasts, indicating that the BMP pathway is mainly 

acting on aNSCs. Increased BMP signaling in the SEZ leads to a decreased number of 

Nestin-positive progenitors, suggesting a negative effect of BMP signaling on progenitor 

proliferation in the SEZ (Gajera et al., 2010). Similarly, NSCs originating from the SEZ 

cultured in the presence of BMP4 acquire cellular and transcriptional characteristics of 

quiescent cells via BMP4 action on NFIX factors (Martynoga et al., 2013). On the contrary, 

inhibition of BMP signaling by disrupting Smad4 function in Glast-positive glial cells does not 

affect NSCs proliferation but impairs neurogenesis (Colak et al., 2008), contrasting with the 

results of BMP inhibition in the SGZ, and thus highlighting differences in the role of the BMP 

pathway on aNSCs of the two mammalian neurogenic niches.  

 

Examples of other factors include growth factors such as FGF, IGF and VEGF. They share 

common principles of signal transduction with tyrosine-kinase receptors and all of them have 

been shown to act in favor of aNSCs proliferation and neurogenesis in both the SEZ and 

SGZ (Faigle and Song, 2013). Interesingly, the PDGF pathway is active in the SEZ but is 
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specific of oligodendrocytes production from Type B cells. Its infusion triggers massive Type 

B cell proliferation, one of the glioma features (Jackson et al., 2006). In terms of factors 

regulating quiescence, severeal recent studies have identified quiescence-promoting factors 

such as TGF1 promoting stem cells quiescence in the adult hippocampus (Kandasamy et 

al., 2014), but also N-cadherin protein attachement to the ependymal cells. When N-cadherin 

is cleaved by the metalloprotease MT5-MMP, it triggers GFAP-positive type B cells 

proliferation (Porlan et al., 2014). Finally, metabolic signals can also impact aNSCs 

proliferation such as diet (Park and Lee, 2011), physical exercise (Vivar et al., 2013) or 

hypoxia (Zhu et al., 2005).  

 

3.2.2 Maintenance of adult neural stem cells 

Theoretically, several processes can be involved in aNSCs maintenance, like for embryonic 

progenitors. However, so far, no pathways have been shown as directly involved in 

controlling cell survival in this context. Thus, the known pathways implicated in maintaining 

aNSCs mainly play a role in regulating self-renewal. Indeed, the absence of self-renewal 

during cell division, aNSCs will eventually generate neurons or differentiated glial cells 

without maintaining one progenitor, which leads to a progressive depletion of the stem cell 

pool. As already mentioned, overactivation of stem cells via deregulation of pathways 

involved in maintaining the appropriate rate of cell divisions could also be indirectly 

responsible for premature stem cells depletion, if stem cells in fact make a finite number of 

divisions. These phenomena are not always easy to discriminate and much information is 

necessary to fully understand the mode of action of signaling pathways on aNSCs 

maintenance. In this section, we report on the pathways known to regulate the “stemness” of 

the aNSCs.  

  

3.2.2.1 Notch1 signaling maintains adult neural stem cells 

Long-term inhibition of the Notch pathway in either Nestin-positive or GLAST-positive aNSCs 

indicated that Notch activity is necessary for maintaining aNSCs in both SEZ and SGZ in the 

mouse (Ables et al., 2010; Ehm et al., 2010; Imayoshi et al., 2010). In the zebrafish so far, no 

aNSCs depletion was observed upon Notch inhibition in the adult telencephalon (Alunni et 

al., 2013); nevertheless, it is worth noting that the inhibition experiments in the zebrafish 

were performed using pharmacological inhibitors disrupting secretase activity and thus 

were not as long as, and probably as efficient as the genetic knock-outs performed in the 

mouse system; the level of inhibition is thus not the same in the two cases. To determine 
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really whether the zebrafish and mouse situations differ in terms of role of Notch in the long-

term maintenance of the aNSCs, further experiments need to be performed.  

However, it is interesting to note that in the adult germinal zones of both organisms, several 

Notch pathway components are expressed. It has been recently shown that several Notch 

ligands are expressed in the adult zebrafish pallial progenitors (Alunni et al., 2013; de 

Oliveira-Carlos et al., 2013). Notch1 is expressed specifically in proliferating progenitors, 

corresponding to activated aNSCs (type II) and neuroblasts (type III) (Alunni et al., 2013; de 

Oliveira-Carlos et al., 2013). Experiments with notch1 vivo-morpholino injections in the 

zebrafish adult telencephalic ventricle lead to a decrease in the number of activated aNSCs, 

indicating that Notch1 could be involved in maintaining the “stemness” of the aNSC either 

directly, or indirectly via permitting the completion of the cell cycle (Alunni et al., 2013). In the 

mouse, in vitro experiments demonstrated that Notch1 is required to maintain adult SEZ 

NSCs (Nyfeler et al., 2005) and long-term inhibition of Notch1 in the Nestin-positive 

progenitors of the SEZ and the SGZ leads to a progressive depletion of quiescent aNSCs, 

probably due to their impossibility to self-renew during divisions (Ables et al., 2010; Basak et 

al., 2012). Interestingly, these results are partially similar to the ones obtained in the RBPJ-

conditional mutant mice (Imayoshi et al., 2010), indicating that Notch1 mainly goes through 

this pathway to maintain the aNSCs.  

 

3.2.2.2 Shh signaling maintains aNSCs 

The use of antimitotic molecules demonstrates that the Shh-responsive population contains 

slow-cycling neural stem cells that can repopulate both adult germinal zones (SEZ and SGZ) 

in rodents after depletion of the dividing cells (Ahn and Joyner, 2005). The Shh pathway 

plays an important role in maintaining NSCs of the SGZ. Indeed, analysis of conditional Smo 

mutants reveals that inhibition of Smo at post-natal stage (P15) leads to a drastic decrease 

of proliferation and a complete absence of BLBP-positive cells in the SGZ (Li et al., 2013; 

Machold et al., 2003), suggesting that Shh is involved in maintaining the stemness of the 

post-natal progenitors. Moreover, lineage tracing experiments indicate that aNSCs in the 

SGZ derive from Shh-responding cells during the late development (Ahn and Joyner, 2005), 

suggesting a cell-autonomous requirement for Shh signals. Finally, quantification and 

analysis of reporter mice for Gli1/2/3 indicate that B1 cells in the SEZ would be the main 

Shh-responsive population in this region (Ahn and Joyner, 2005; Ihrie et al., 2011; Palma et 

al., 2005; Petrova et al., 2013). These results indicate that Shh is necessary to maintain 

NSCs at least from post-natal stages in the SGZ. In relation with the mitogenenic role of Shh 

reported previously (see section 3.2.1.2), it highlights that Shh could act on stem cells by 

promoting self-renewing divisions. 
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In terms of Shh sources, Shh protein has been detected in the dentate gyrus, the 

cerebrospinal fluid and the neuropil surrounding the ventral SEZ (Ihrie et al., 2011; Lai et al., 

2003). In contrast to the protein localization, no clear expression of Shh has been reported in 

the SGZ and SEZ (Alvarez-Buylla and Ihrie, 2014). Shh-responsive cells thus integrate 

extrinsic signals coming from outside of the neurogenic niches, and only neurons appear to 

be the source for Shh, such as Neurod6-positive neurons in the SGZ (Ihrie et al., 2011; Li et 

al., 2013). 

How Notch and Shh cooperate to regulate the maintenance of aNSCs remains unclear. In 

the embryo, it has been shown that both pathways can activate Hes1 expression during 

cortical development (Dave et al., 2011), and Hes genes are responsible for maintaining 

embryonic neural progenitors. We already mentioned that Hes1 is expressed in aNSCs of 

the SVZ and SGZ, indicating that Notch and Shh could act on Hes genes expression to 

maintain stemness of the progenitors.  
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4 The origin of aNSCs 

What is the origin of aNSCs, and what can this origin tell us about what aNSCs can do? In 

vitro techniques based on reprogramming somatic differentiated cells to generate progenitors 

with various differentiation potentials (the so-called iPS technology) are more and more 

developed and represent a powerful system for the understanding of diseases. We already 

mentioned that several categories of stem cells exist depending on their differentiation 

capabilities, and long term stem cells must integrate processes that maintain or trigger their 

stemness, control their proliferation throughout life and restrict/instruct them in terms of 

neuronal/glial production. The cell population(s) at the origin of the stem cells, whether they 

are composed of differentiated cell and/or progenitors, are thus the target of numerous 

signals during pre-natal and post-natal development. Knowing from which embryonic 

populations aNSCs derive but also which signals are involved in generating the different 

aNSCs could help us approach the proper way to use them in vitro, but also in vivo for 

regenerative medicine. 

4.1 Hypotheses on the origin of adult neural stem cells 

Several hypotheses can explain the origin of tissue stem cells. First, these can derive from 

cells already engaged into the building of the organ during development. This possibility 

would imply that they originate from an embryonic population already actively engaged into 

the generation of differentiated cells at embryonic stages and that this population is 

maintained all along development to colonize the adult germinal niche and generate adult 

stem cells. Second, adult stem cells can derive from progenitors set aside in the embryo, not 

involved in organ differentiation at an early stage, and dedicated to the generation of adult 

stem cells. The embryonic population is thus maintained in a particular environment that 

keeps them “away” from differentiation, and colonizes the stem cells niche or becomes 

activated as stem cells at some point during life. Finally, a less probable hypothesis, but that 

cannot be excluded, would be that the adult stem cells derive from a differentiated population 

of cells that would have had a transient function and that would dedifferentiate or acquire 

stem cells properties to perform stem cells functions in the adult organ. These hypotheses 

are not mutually exclusive and adult stem cell populations could be heterogenous in terms of 

embryonic origin and thus arise from multiple sources via multiple ways.  

 

4.2 The origin of a stem cells in vivo: a technological issue 

Few studies have directly investigated the embryonic origin of adult neural stem cells in 

terms of precise cellular populations, and this may in part result from technological issues. 

Indeed, investigating the embryonic origin of a cell population implies the availability of long 
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term lineage tracing technologies that enable to permanently label a specific population of 

embryonic cells and follow it overtime. In the case of aNSCs, the main challenge is to 

manage to lineage trace embryonic cells for several weeks to months. The first lineage 

tracing methods developed were using viruses. These techniques were based on the 

capacity of viruses to infect cells and integrate their genetic material into the genome of 

dividing infected cells. It is thus inherited by the entire cell’s progeny. For lineage tracing, 

viral structural genes are replaced by a bacterial beta-galactosidase (Lac-Z) gene, or another 

reporter gene, that allows the histochemical detection of the infected cell progeny (Sanes, 

1989). This technique has been extensively used to lineage trace embryonic progenitors and 

get the first overview of neuronal lineages in the brain (Luskin, 1994). This technique has 

also been used to address the glial fate of NE cells, and the role of the Notch pathway in this 

lineage. Indeed, experiments using in utero injections of viruses modified to overexpress the 

intracellular domain of the Notch1 or Notch3 receptors in the brain ventricle of embryos at 

E9.5, prior to the onset of neurogenesis, demonstrate that NE cells generate radial glia when 

they overactivate the Notch pathway and that postnatally, these infected cells generate 

astrocytes and cells with aNSCs-like morphology in the lateral ventricle (Dang et al., 2006; 

Gaiano et al., 2000). Moreover, Merkle and colleagues showed via adenovirus injections that 

post-natal radial glia generate some neurogenically active and GFAP-positive cells (Merkle et 

al., 2004). This illustrated the lineage relationship that exists between these different cell 

types and the possibility that some RGCs constitute a progenitor population that will generate 

aNSCs.  

The virus infection technique was the first possibility to perform long-term lineages and gave 

the first cues on aNSCs’ origin; nevertheless, the main problem is that it is impossible to 

control precisely the region or the precise cell population that is targeted. In that respect, the 

genetic Cre-Lox recombination technology is more powerful. It is based on the ability of the 

Cre recombinase enzyme to recognize specific genetic sequences, the LoxP sites, and 

perform a homologous recombination between two LoxP sites leading to the excision of a 

particular DNA sequence and the expression of a downstream reporter. For Cre-lox lineage 

tracing experiments, a “driver” genetic construct carrying the coding sequence for the Cre 

recombinase is placed under the control of a cell type specific promoter (Figure 28A). It 

recombines a reporter construct in which –in most cases- a ubiquitous promoter drives 

expression of a floxed DNA sequence, either a STOP sequence or a reporter 1 gene, 

followed by another reporter 2 gene such as GFP or LacZ (Figure 28B). Upon regionalized 

Cre expression, the STOP/reporter 1 sequence is permanently removed and the reporter 2 

gene starts to be expressed (Figure 28C). This powerful method was first available in the 

mouse model, then has been extended to the zebrafish (Boniface et al., 2009; Hans et al., 

2011; Rodrigues et al., 2012)  
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However, the limitation of this approach is that it allows the visualization of the global lineage 

of stem cells from the onset of the stem cells gene expression, and it is not possible to 

discriminate between stem cells populations that would start to express at different time point 

the stem cells gene we choose.  

This issue of temporal control was solved by fusing the Cre recombinase sequence to one or 

two mutated ligand-binding domains of the estrogen receptor (CreERT2): then, activation of 

the Cre recombinase can be achieved via treatment or injection of tamoxifen, an oestrogen 

analog. Compared to the previous method, it is thus possible to long-term lineage trace a 

precise population of cells expressing at one time point a particular gene, allowing 

investigations on the potential heterogenous contribution of embryonic progenitors to the 

formation of the aNSCs. 

The CreERT2 system has been used so far to study the contribution of a whole cell 

population to the generation of adult stem cells. The only way of appreciating the contribution 

of one particular cell to a process was to perform clonal analysis based on low rate of 

recombination events using a very low concentration of tamoxifen. Recently, the clonal 

analysis systems were improved with a new technique based on the CreERT2 system, the 

brainbow technology (Livet et al., 2007). Brainbow was set up in order to be able to lineage 

trace at the same time several cells and evaluate the contribution of each of them to a 

process, even though these cells are closed to each other. 

Compared to the classical reporter construct (Figure 28B), the Brainbow reporter transgene 

contains up to four different reporters flanked by different mutated loxP-like sites (lox N, lox 

2272) that randomly recombine only with the identical lox sequence. Combined with a 

CreERT2 driver and tamoxifen treatment, the different transgene copies inserted into the 

genome will randomly recombine triggering the expression of only one particular reporter 

combination in each cell. In the case of the investigation of stem cell origin, Brainbow 

constitutes a very powerfull system to investigate the contribution of each embryonic 

progenitor to the whole aNSC population. This technique is currently avalaible in the 

zebrafish model (zebrabow) (Pan et al., 2013a)  
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Figure 28: Model of lineage tracing experiment of an adult tissue stem cells population 

See section 4.2 for detail on (A), (B), (C) 
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4.3 State of art on the embryonic origin of aNSCs in the mouse 

In the case of the mouse brain, several studies using Cre-Lox tracing investigated the 

relationship between RGCs and the aNSCs, or between embryonic and adult territories, and 

brought complementary but still incomplete information on the origin of aNSCs; these results 

are summarized in Table 1.  

A few studies investigated the lineage of telencephalic embryonic RGCs using either the 

human GFAP promoter or the BLBP promoter driving non-conditional Cre expression to 

lineage trace specifically RGCs. These studies showed that aNSCs of the SEZ and SGZ are 

positive for the reporter, indicating that they derive from GFAP-positive and BLBP-positive 

cells (Anthony et al., 2004; Malatesta et al., 2003). However, the limitation of this approach is 

that it allows the visualization of the global lineage of glial cells and it is not possible to 

temporally control the recombination events; in addition to this, it is known that aNSCs 

express also GFAP and BLBP (see section 2.2), thus the promoter could be activated at 

adult stage and target the aNSCs eventhough they would not derive from RGCs. These 

experiments were thus not sufficient to confirm that aNSCs derive from RGCs.  

As mentioned previously, embryonic RGCs are submitted to different signals depending on 

their location during development, and it remains to be determined whether these different 

RGCs are heterogenous regarding their contribution to the adult stem cells niches. Ahn and 

Joyner took advantage of the CreERT2 approach to address the role of Shh in the control 

neural progenitors by lineage tracing the Shh-responding cells using a Gli1:CreERT2 mouse 

line. They showed that aNSCs of the SEZ and the SGZ derive from distinct late embryonic 

cells that respond to Shh respectively at least from E15.5 and E17.5; in this respect, it is 

worth noting that the different timing of Shh activation in the precursors of the two adult 

germinal zones suggests that the SEZ and then the SGZ are established sequentially during 

mouse development (Ahn and Joyner, 2005). Concerning the source of Shh-responding cells 

at the origin of the neurogenic niches, a recent study has investigated this question in the 

SGZ and has found that the ventral part of the developing hippocampus expresses Gli1 at 

E17.5. Analyses at several time points of the lineage of Gli1-positive cells at E17.5 indicate 

that at birth some of these Shh-responding cells of the ventral hippocampus migrate toward 

the dorsal hippocampal side and participate in SGZ generation (Li et al., 2013). However, a 

clear characterization of the embryonic cell population of the ventral hippocampus remains to 

be done. Moreover, these authors report that this population is different from the dentate 

neuroepithelium, composed of proliferating radial glia in the cortical part abutting the hem, 

and is considered so far as the population at the origin of the hippocampus. Finally, in 

addition to the ventrally-derived Shh signaling active cells, de novo Shh-responding cells are 

gradually produced in the developing dentate gyrus (Li et al., 2013). All these results suggest 
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that the aNSCs of the SGZ are heterogenous and might be derived from at least several 

embryonic cell populations that become Shh-sensitive at different time points during DG 

formation. In addition to this, Gli1 is expressed in some ventricular domains of the developing 

cortex and striatum, indicating that the adult neurogenic zone could derive also from these 

regions (Dahmane et al., 2001). Recently, Bowman and colleagues have investigated the 

contribution of Wnt signaling to the formation of both the SEZ and SGZ using an 

Axin2:CreERT2 line. These studies revealed that in both regions, some GFAP-positive cells 

involved in adult neurogenesis originate from Wnt signaling-positive cells at different stages 

in the embryo, from very early to post-natal stages, and demonstrated that some long-term 

positive progenitors persist in the adult neurgogenic regions of the mouse brain (Bowman et 

al., 2013). However, this study does not investigate the process at the population level, given 

that only mosaic recombinations were conducted, and no precise characterization of the 

Wnt-positive embryonic populations were performed, with respect to the different progenitor 

populations that compose the embryonic brain. 

The contribution of regionally different progenitors to SEZ formation has been investigated 

using promoters of regional marker genes driving Cre expression in different ventricular 

subdomains, such as Emx1 in the cortex, Dbx1 in the pallium/subpallium boundary, Gsh2 in 

the lateral ganglionic eminence and Nkx2.1 in the medial ganglionic eminence. These 

lineage tracing experiments are mainly based on a non-conditional Cre/lox system coupled 

with in vitro assays. They showed that all the subdomains delimited by these transcription 

factors during development contribute to the formation of the adult SEZ in a regionalized 

manner. Interestingly, aNSCs generating the RMS migrating neuroblasts are mainly 

composed of cells deriving from Emx1- and Gsh2-positive domains, while Dbx1 progenitors 

generate a portion of the SEZ that does not contribute to the generation of interneurons; they 

might play another function such as gliogenesis (Willaime-Morawek et al., 2006; Young et al., 

2007). The partial cortical origin of the SEZ has been confirmed by lineage tracing 

experiments using Ad5-CMV-Cre-GFP (Adeno-Cre) showing that dorsal RGCs at birth 

generate later olfactory interneurons (Ventura and Goldman, 2007). 
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Table 1: Summary of current knowledge on aNSCs origin in the mouse brain, based on Cre/lox lineage 
tracing experiments 

 

Overall, these results testing the embryonic origin of aNSCs suggest that aNSCs generation 

is a complex process that involves several embryonic progenitor populations. However, the 

precise embryonic population at the origin of the aNSCs, the dynamic of its proliferative and 

neurogenic state, and the pathway that are involved in controlling changes in their 

maintenance and activation all along development, remain to be determined. Our knowledge 

on the history of an aNSCs-generating embryonic progenitor would help us attain a better 

understanding of the different states and steps through which a progenitor must have gone to 

generate aNSCs.  

Lineage traced 

population
Technics Results Reference

Glial cells
BLBP-Cre;R26R/hGFAP-

Cre;R26R
Glial cells generate the SEZ and SGZ progenitors

(Anthony et al., 2004; 

Malatesta et al., 2003)

Shh-responding cells 
Gli1-CreERT2;Rosa-CAG-

LSL-tdTomato-WPRE

Some SEZ adult neural stem cells derive from 

cells starting to respond to Shh at E15.5 and some 

SGZ adult neural stem cells derive from cells 

starting to respond to Shh at E17.5, that migrate 

from the ventral developing hippocampus to 

participate to the dentate gyrus formation. 

(Ahn and Joyner, 2005; Li et 

al., 2013)

Wnt-responding cells
Axin2-CreERT2;Rosa26-

mT/mG

Adult neural stem cells located in the dorso-medial 

portion or the SEZ and the vast majority of SGZ 

adult neural stem cells derive from cells 

responding to Wnt pathway at E12.5

(Bowman et al., 2013)

Cortical cells

Emx1-Cre;R26-GFP/Emx1-

CreERT2;R26-

GFP/Emx1IRES-Cre;Z/EG

Dorsal SEZ neural stem cells derive from cells 

Emx1-positive at E10.5

Cells at the 

pallium/subpallium 

boundary (PSB)

Dbx1-Cre;R26-GFP
Lateral SEZ neural stem cells derive from Gsh2-

positive cells

Subpallial cells Gsh2-Cre;R26-GFP
Dorso-lateral SEZ neural stem cells derive from 

Dbx1-positive cells 

MGE subpallial cells Nkx2.1-Cre;R26-GFP
Ventro-lateral SEZ neural stem cells derive from 

Nkx2.1-positive cells 

Cortical cells Adeno-Cre;R26R-YFP 
Dorsal RGCs at P1/2 generate cells participating 

to the RMS interneurons
(Ventura and Goldman, 2007)

(Young et al., 2007; Willaime-

Morawek et al., 2006)
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5 Aims of the study 

The first aim of this study was to determine the embryonic cell populations at the origin of the 

aNSCs located in the zebrafish pallium by addressing the contribution of both actively 

neurogenic and non-neurogenic embryonic progenitor subtypes. In order to get an overview 

of the process, I took advantage of several lineage tracing methods using a tamoxifen 

inducible form of the Cre recombinase driven either in a particular embryonic progenitor 

population, or in a mosaic way allowing a clonal analysis based on the use of a caged 

version of the tamoxifen and the brainbow system. This allowed me to collect information on 

the embryonic populations generating the entire pallial ventricular zone: the number of 

progenitors composing these populations, the cell types, and finally the dynamics of 

proliferation and differentiation of the different embryonic progenitors subtypes. Then, I 

investigated the role of some signaling pathways, especially Notch, in controlling the 

maintenance and the activation of the embryonic and juveniles progenitors in order to 

understand the signals responsible for the emergence of aNSCs. Finally, in addition to the 

interest of the study regarding the maturation of the progenitors during development, it 

brought up new information on the construction of the zebrafish pallium, highlighting its 

different compartments and their homologies with the mouse telencephalon. 

 

 

Specific aims: 

 

1. Analyze the progeny of the her4-positive, actively neurogenic embryonic progenitors, 

in terms of aNSC generation in the pallium 

2. Analyze the contribution of non-neurogenic progenitor pools to aNSC generation in 

the pallium 

3. Get an overview of the dynamics of growth of the different pallial domains along 

development 

4. Determine the role of Notch signalling in maintaining the different types of embryonic 

and juveniles neural progenitors along life 

5. Determine the homologies between the compartments of the zebrafish and the 

mouse pallium by analyzing expression of specific markers 

6. Appreciate the organization and the timing of formation of the different neuronal 

pallial compartments   
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CHAPTER II: RESULTS 

 

1 Embryonic origin of adult pallial neural stem cells  
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1.1 Specific aims and main results 

 

aNSCs are found in the telencephalon of many vertebrates such as the mouse, the chick, 

and the zebrafish (Chapouton et al., 2007). They are characterized by self-renewing capacity 

and multipotency, and are involved in producing adult-born neurons (Kriegstein and Alvarez-

Buylla, 2009). In the mouse field, they are considered as emerging from radial glial cells 

(RGCs), embryonic neural progenitors in charge of brain development (Anthony et al., 2004; 

Malatesta et al., 2003), themselves deriving from NE cells composing the early central 

nervous system (Kriegstein and Alvarez-Buylla, 2009). However, these embryonic 

progenitors are heterogenous, and only few studies in the mouse have brough up information 

on their specific contribution to aNSC formation using either regional embryonic brain 

markers (Willaime-Morawek et al., 2006; Young et al., 2007), or signaling pathways-activated 

cells (Ahn and Joyner, 2005; Bowman et al., 2013; Li et al., 2013). The emerging idea is that 

adult neurogenic regions seem to be heterogenous regarding stem cells origin.  

In both mouse and zebrafish, two subtypes of neural progenitors compose the embryonic 

brain at a given time point. The first progenitor population corresponds to actively neurogenic 

neural precursors or “proneural clusters/compartement cells”, while the second consists of 

NE progenitors in which neurogenesis is delayed -also called “progenitor pools/boundary 

cells” -(Stigloher et al., 2008). These progenitor subtypes differ in location, markers 

expression, sensitivity to Notch and time of recruitment, and they generate distinct neuronal 

populations in the developing brain. However, their relative contribution to the generation of 

adult neural stem cells remains unknown. The aim of this paper is to determine the 

respective contribution of these embryonic neural progenitor subtypes to the formation of the 

adult germinal zone in the zebrafish pallium.  

 

Actively neurogenic progenitors express the Hairy/E(spl) gene Hes5/her4 (Dong et al., 

2012b; Takke et al., 1999). Thus, to investigate their contribution to stem cells formation, we 

took advantage of the her4:ERT2CreERT2 (Boniface et al., 2009) and the 

ubi:loxGFPloxmCherry (Mosimann et al., 2011) zebrafish lines. Tamoxifen treatment on 

double transgenic embryos allows lineage tracing actively neurogenic progenitors expressing 

her4 at any time point of life. By total recombination experiments of the her4-positive 

population at different time points during development, we observed that these only 

generated a subset of the adult pallial germinal zone, highlighting the heterogenous 

embryonic origin of aNSCs. Then, to locate the embryonic progenitor populations generating 

the remaining aNSCs of the pallium, we combined clonal analyses using a ubi:CreERT2 line 

(Mosimann et al., 2011) and mosaic brainbow recombinations (Livet et al., 2007; Pan et al., 
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2013b), with restricted spatial recombinations using caged-cyclofen coupled with laser 

activation (Sinha et al., 2010). These approaches revealed a restricted progenitor pool at the 

telencephalic dorsal midline as the complementary source of pallial aNSCs. Finally, to gain 

insight into the mechanisms that may be involved in the maintenance of long-lasting 

progenitors from embryonic stages onwards, we investigated the role of the Notch pathway 

by performing pharmacological treatments with a -secretase inhibitor applied at different 

time points during development. Strikingly, Notch proved necessary for the maintenance of 

actively neurogenic progenitors and their descendent aNSCs, but not for the maintenance of 

the dorsal midline progenitor pool. 

Together, these experiments allowed us to conclude on several fronts: aNSCs origin (results 

– section 1), the progenitor maturation steps involved in their generation (results - section 2), 

and the organization and the development of the zebrafish pallium itself (results - section 3).  

 

The main results of the Dev Cell publication regarding aNSCs origin are: 

 It exists a continuum between the different neural progenitors populations and the 

pallial aNSC in the zebrafish pallium (Figure 29) 

 The aNSCs of the dorso-medial pallium derive from early actively neurogenic 

progenitors that contribute to pallial formation all along development. These actively 

neurogenic progenitors express her4 and are maintained by Notch signaling from 

embryonic stages onwards (Figure 29 -orange cells) 

 On the contrary, the aNCSs of the lateral pallium derive from a NE “progenitor pool” 

located in the telencephalic roof plate, characterized by an apico-basal polarity, 

expression of her6/her9 as well as signaling pathway ligands (Wnt, FGF, BMP), and 

displaying a Notch-independent maintenance. 

 The NE cells of the roof plate are activated late during development (Figure 29 -

purple cells). 

 The neurogenic switch occurring in the lateral progenitors is concomitant with the 

emergence of her4 expression and Notch-sensistive maintenance in this population.  

 Some of the “progenitor pool” NE cells persist throughout life and generate de novo 

NSCs in the adult lateral pallium. 

 The lateral and dorso-medial progenitor populations are functionally independent as 

they cannot repopulate each other following depletion of Notch-sensitive progenitors 

at juvenile stage. 

 The progenitor maturation steps leading to aNSCs formation from NE progenitors 

display some similarities between the dorso-medial and the lateral pallial ventricular 

zone, even though the acquisition of the Notch-dependent maintenance may occur 
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respectively after and before the onset of her4 expression in the progenitors. (see 

results - section 2 for more details) 

 

 

 

Figure 29: Graphical abstract on the embryonic origin of adult pallial neural stem cells in zebrafish 

 

 

 

The main results of the Dev Cell publication regarding pallium development and 

regionalization are: 

 Pallial neurons pile up during development with the most central pallial domain 

corresponding to the “oldest” region (see results - section 3 for more details) 

 The formation of the dorso-medial and lateral pallium are heterochronous. (see 

section 3 for more details) 

 The medial and dorsal pallial ventricular zones (VZ) generate the central pallium (Dc) 

with first the recruitement of the medial progenitors, and later, the contribution of both 

medial and dorsal progenitors to Dc formation. (see results - section 3 for more 

details) 
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 The posterior pallium (Dp) domain does not derive from the medial VZ as already 

proposed, but possesses the same embryonic origin than the Dl domain, together 

forming the lateral pallium (see results - section 3 for more details) 

 The lateral pallium display some developmental features of the mammalian 

hippocampus as it develops from the progenitor population abuted to a “cortical hem-

like” structure, and forms late during development.  

 

 

 

In conclusion: 

- Together, these data identify the embryonic progenitors and the processes at the origin of 

the aNSCs in the zebrafish pallium. They demonstrate that the two subtypes of embryonic 

neural progenitors (actively neurogenic proneural clusters, and progenitor pools) contribute 

to the generation of two spatially segregated adult pallial NSCs populations. 

- Moreover, the persistence of a small NE progenitor population at the postero-lateral edge of 

the ventricular zone throughout life highlights differential modes of stem cells generation in 

the dorso-medial versus the lateral zebrafish pallium: the dorso-medial stem cell population 

expands by stem cell amplifying divisions, while the lateral stem cell population, in addition, 

is permanently fuled in by new cells. It also highlights the maturation steps present in NSCs 

formation.   

- her4 expression and Notch-sensitive maintenance seem to correspond to two steps 

important for generating adult NSCs.  

- Finally, as the progenitor lineage includes the neuronal progeny, it allows us to understand 

how the zebrafish pallium is built during development, and the homology with pallium 

territories in other species.  

 

 

 

 



93 
 

Publication: Spatial regionalization and heterochrony in the 

formation of adult pallial neural stem cells 

 

*Lara Dirian1, Sonya Galant1, Marion Coolen1, Wenbiao Chen2, Sébastien Bedu1, 

Corinne Houart3, Laure Bally-Cuif1,* and Isabelle Foucher1,* 

1- Institute of Neurobiology A. Fessard, Laboratory of Neurobiology and Development, CNRS 

UPR3294, Team Zebrafish Neurogenetics, Avenue de la Terrasse, bldg 5, F-91198 Gif-sur-

Yvette, France.  

2- Department of Molecular Physiology and Biophysics, Vanderbilt University School of 

Medicine, 2213 Garland Ave, Nashville, TN, 37232, USA.  

3- Medical Research Council Centre for Developmental Neurobiology, King's College London, 

London SE1 1UL, UK. 

*correspondance to bally-cuif@inaf.cnrs-gif.fr, foucher@inaf.cnrs-gif.fr 

 

Developmental Cell 30:123-136, 2014 

 

 

1.2 Abstract 

 

Little is known on the embryonic origin and related heterogeneity of adult neural stem cells 

(aNSCs). We use conditional genetic tracing, activated in a global or mosaic fashion by cell 

type-specific promoters or focal laser uncaging, coupled with gene expression analyses and 

Notch invalidations, to address this issue in the zebrafish adult telencephalon. We report that 

the germinal zone of the adult pallium originates from two distinct subtypes of embryonic 

progenitors and integrates two modes of aNSC formation. Dorso-medial aNSCs derive from 

the amplification of actively neurogenic radial glia of the embryonic telencephalon. On the 

contrary, the lateral aNSC population is formed by step-wise addition at the pallial edge from 

a discrete NE progenitor pool of the posterior telencephalic roof, activated at post-embryonic 

stages and persisting life-long. This dual origin of the pallial germinal zone allows the 

temporally organised building of pallial territories as a patchwork of juxtaposed 

compartments. 
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1.3 Introduction 

 

Adult stem cells are multipotent at the single cell level and self-renew, sustaining the 

persistent generation of differentiated progeny in adult organs. The recent characterization of 

stem cells in the vertebrate adult brain (adult neural stem cells, aNSCs) brought new insights 

on neuron formation and plasticity, and adult neurogenesis is intensively studied for its role in 

brain homeostasis, animal behavior or brain repair (reviewed in (Imayoshi et al., 2009)). 

Although general features of aNSCs emerge, accumulating evidence also highlights 

profound heterogeneities within and between aNSC populations(DeCarolis et al., 2013; 

Giachino et al., 2013; Lugert et al., 2010). These may pertain to the existence of fluctuating 

NSC states, distinct local environments, or cell-intrinsic programs, all of which remain 

incompletely deciphered (Alvarez-Buylla et al., 2012).  

Two main aNSC pools are constitutively active in the mouse telencephalon: the sub-

ependymal zone of the lateral ventricle (SEZ) and the sub-granular zone of the hippocampus 

(SGZ). In both domains, recent evidence suggests that NSC “history”, i.e. the cell lineage 

involved in its generation and positioning, correlates to some extent with aNSC fate (De 

Marchis et al., 2007; Merkle et al., 2007; 2014). In this context, defining the lineages leading 

to aNSC formation would greatly help understand the impact of NSC formation on aNSC 

properties. In the mouse, a lineage relationship was proposed between embryonic 

neuroepithelial cells (NE cells), radial glial cells (RGCs) and aNSCs: first, overexpression of 

intracellular active forms of Notch in NE cells increases the generation of RGCs and 

postnatal periventricular and parenchymal astrocytes, some of which may be aNSCs (Dang 

et al., 2006; Gaiano et al., 2000); second, lineage tracing analyses of postnatal RGCs shows 

that their progeny contains some SEZ aNSCs (Merkle et al., 2007; 2004). Discrete lineage 

information was also obtained from genetic tracing based on patterning markers expression 

(Nkx2.1, Gsh2, Emx1, Dbx1, Gli1) in the developing mouse brain(Ahn and Joyner, 2005; Li 

et al., 2013; Young et al., 2007). However, little attention was paid to the early localization of 

the stem cell-generating progenitors within the domains traced. If the link between embryonic 

and adult progenitors is commonly accepted, it remains largely unknown from which specific 

embryonic (sub)population, how and when aNSC populations are established. 

 In both mouse and zebrafish, two types of neural progenitors were described in the 

early developing CNS (Baek, 2006; Stigloher et al., 2008). The first progenitor population 

corresponds to proliferative precursors actively engaged in neurogenesis. These progenitors 

express Notch target genes of the E(spl) family (her in zebrafish, Hes in mammals), such as 

her4 in zebrafish or its ortholog Hes5 in mouse, involved in neural progenitor maintenance. 

They are intermingled with commited neuroblasts within competent domains likely equivalent 
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to the “proneural clusters” of flies, where they are singled-out by Notch-dependent lateral 

inhibition. In mouse, these progenitors also display oscillating expression of another E(Spl) 

gene, Hes1 (her6, in zebrafish)(Shimojo et al., 2008). The second progenitor subtype 

(“boundary cells” or “progenitors pools”) consists in NE cells found at neural tube boundaries. 

These domains, such as the midbrain-hindbrain boundary or the Zona Limitans 

Intrathalamica (Geling et al., 2003; Scholpp et al., 2009) often act as signaling centers 

(Kiecker and Lumsden, 2005). Progenitors in these locations undergo delayed neurogenesis, 

and rely on a partially different set of zebrafish Her/mouse Hes transcription factors (e.g. 

Her5/Hes7, Her6/Hes1, Her9/Hes4) expressed at high and stable levels in a non-canonical 

manner independent of Notch signaling (Baek, 2006; Geling et al., 2003). The long-lasting 

maintenance of “proneural cluster” and “progenitor pool” neural progenitors, and their 

respective contribution to the generation of aNSCs, has never been directly assessed.  

To address this question, we took advantage of the zebrafish adult pallium, where an 

extended layer of aNSCs covering the entire pallial ventricular zone (VZ) sustains 

widespread adult neurogenesis. aNSCs of the zebrafish pallium resemble mouse aNSCs in 

their identity and properties: they are RGCs, are mainly quiescent (Adolf et al., 2006; 

Chapouton et al., 2010a; Ganz et al., 2010; Grandel et al., 2006; Rothenaigner et al., 2011), 

and react to injury (Kishimoto et al., 2012; Kroehne et al., 2011; März et al., 2010; Zupanc 

and Sîrbulescu, 2011). Fish and mouse aNSCs also share molecular markers and express 

the canonical Notch target gene her4/Hes5 (Basak and Taylor, 2007; Chapouton et al., 

2010b; Ganz et al., 2010; Lugert et al., 2010). Using Cre-mediated conditional genetic tracing 

of telencephalic progenitors at successive time points during embryonic and post-embryonic 

development, we reveal that the two embryonic neural progenitor subtypes cooperate to 

build the pallial aNSC population. However, their contributions remain spatially segregated 

and strongly heterochronous. This unexpected bimodal process imprints a dynamic 

organization to the adult pallial GZ and influences building of pallial territories. 

 

1.4 Results 

 

1.4.1 her4-positive embryonic progenitors generate adult NSCs of the dorso-

medial pallium 

From late embryonic stages -2 days post-fertilization (dpf)- onwards, the germinal 

zone (GZ) of the pallium is composed of neurogenic RGCs aligned along the pallial ventricle 

(Figure S1A) and expressing her4/Hes5 (Chapouton et al., 2010a; Dong et al., 2012). To 

appreciate the contribution of embryonic neurogenic progenitors to the pallial aNSC 
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population, we therefore set up a genetic strategy to follow in time and space the progeny of 

2dpf her4+ progenitors, using a driver line expressing a tamoxifen-inducible Cre recombinase 

(ERT2CreERT2) under control of a 3.4kb her4 promoter fragment (Figure 1A). As revealed 

by the colocalized her4 and cre expression, this line faithfully recapitulates her4 expression 

in presumptive pallial progenitors at embryonic, larval and juvenile stages (Figure S1B-D and 

not shown). Using her4:ERT2CreERT2 (Boniface et al., 2009) and the ubiquitous reporter 

line ubi:switch (Tg(-3,5ubi:loxP-GFP-loxP-mCherry)(Mosimann et al., 2010), we could 

permanently label with mCherry the progeny of her4+ cells by the addition of 4-OHT 

(hydroxy-tamoxifen, activating ERT2CreERT2) at any developmental stage (Figure 1A). We 

did not observe any recombination without 4-OHT, arguing for reliability of this genetic 

system (Figure S1E). 

We treated 2dpf embryos with a pulse of 4-OHT (her4:ERT2CreERT2;ubi:switch, 

T(2dpf), thereafter called her4switch,T(2dpf)) and analyzed mCherry distribution within the pallial 

GZ and telencephalic parenchyma at 3 months post-fertilization (mpf) (Figure 1A). 

Unexpectedly given the large distribution of her4+ RGCs in the embryonic pallium, 

recombined cells appeared confined to a dorso-medial subdomain of the adult pallium 

(Figure 1B,C). In this territory, the mCherry+ population included most if not all VZ cells, 

expressing RGC markers such as Glutamine Synthase (GS) (Figure 1D) and previously 

shown to possess NSC properties (Chapouton et al., 2010a; Rothenaigner et al., 2011). In 

the parenchyma, mCherry+ cells expressed the neuronal marker HuC/D (Figure 1F). These 

results show that dorso-medial aNSCs derive from her4+ embryonic RGCs present at 2dpf, 

suggesting that at least some of these actively neurogenic progenitors self-renew during 

pallium development until adult stage to generate aNSCs. At the population level, these 

RGCs are bipotent as they give rise to both RGCs and neurons. Second, neither aNSCs nor 

neurons in the lateral pallial regions are derived from cells expressing her4 at 2dpf (Figure 

1E,F). Finally, pallial regionalization appears set and maintained from very early stages of 

development, as there is very little cell mixing between the mCherry+ and mCherry- domains 

(Figure 1F).  

 

 

1.4.2 aNSCs of the lateral pallium originate from a discrete progenitor 

population at 2dpf 

These results prompted us to search for the embryonic progenitors generating aNSCs 

and neurons of the lateral pallium. To estimate the size of this early progenitor population, we 

first conducted sparse clonal analysis with the ubi:creErt2 line (Mosimann et al., 2010). 

ubi:creErt2;ubi:switch embryos (ubiswitch) were 4-OHT-treated at 2dpf to generate a few 
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recombination events randomly distributed within the pallium (Figure 2A). At adulthood, 

compared to the dorso-medial domain where small clones were visible (Figures 2B,C, 

S2A,B, asterisks), a systematic pattern of large and complementary clones built most of the 

lateral VZ (and derived neurons). From 12 lateral clones observed, three subtypes could be 

defined. The first category (e.g. Clone 1) (n=3) corresponds to elongated clones running 

dorsally and abutting dorso-medial aNSCs and neurons. They reach the telencephalon-

olfactory bulb junction anteriorly and terminate posteriorly at approximately two-thirds of the 

pallium length. The second category (e.g. Clone 2) (n=4) contains very long clones reaching 

from the lateral edge of the pallium anteriorly to a dorso-posterior location. The third category 

(e.g. Clone 3) (n=4) is made of clones restricted to the posterior lateral edge of the pallium. 

The restricted number of clone categories obtained, and their complementary patterns, 

suggest that they highlight the fate of distinct progenitors and that few progenitors at 2dpf are 

at the origin of the lateral pallium following a massive amplification. Quantification of the 

number of RGCs per clone in the dorso-medial versus lateral pallium further confirmed 

hugely different amplification rates:  lateral clones were composed of 40 times more RGCs 

than clones located in the dorso-medial domain (Figure S2C), while no cell death was 

observed in both areas along this process (not shown). 

 Next, we backed up these results using the brainbow technology (Pan et al., 2013; 

2011) to visualize the contribution of each embryonic pallial progenitor to the adult GZ and 

the relative organisation and size of clones. We used the zebrafish hsp promoter ubiquitously 

driving Cre expression upon heat-shock -and leading to efficient recombination in all pallial 

cells with very little leakiness (Figure S2D)- and recombined hsp70:Cre;ubi:zebrabow 

embryos at 2dpf (hsp70zebrabow, HS(2dpf)) (Figure 2D). Supporting our interpretation, the resulting 

adult lateral pallium appeared reproducibly composed of only few large adjacent clones 

running all along the anterior/posterior axis of the telencephalon (Figure 2E) with no obvious 

cell mixing nor clonal contraction (Figure 2E,F). In contrast, clones in the dorso-medial 

pallium did not extend along the antero-posterior axis of the VZ, were very numerous, and 

strongly intermingled (Figure S2E). Similar results were observed with recombination at 1dpf 

(data not shown).  

Altogether, these experiments reveal that the dorso-medial and lateral VZ exhibit 

distinct clonal behaviors: dorso-medial aNSCs derive from a large number of embryonic 

progenitors, each of them undergoing a small amplification; in contrast, the lateral aNSC 

population is formed from a small number of progenitors that later massively amplify, in an 

organised manner along the antero-posterior and medio-lateral axes (Figure 2G). 
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1.4.3 Embryonic progenitors fated to generate aNSCs of the lateral pallium are 

located at the telencephalic roof plate at 30hpf 

We next aimed to locate the discrete embryonic progenitor population generating 

aNSCs of the lateral pallium. We observed in ubiswitch,T(2dpf) and hsp70zebrabowHS(2dpf) animals 

that lateral aNSC clones always reached the lateral VZ edge (Figure S2B), suggesting that 

they could be growing from this location. In fitting with the everted structure of the zebrafish 

adult pallium (Folgueira et al., 2012), the lateral VZ edge corresponds to the attachment point 

to the tela choroïdea (Figure S1A). To search for her4- progenitors in an equivalent location 

in early embryos, we analyzed 3D reconstructions of the prosencephalon at the onset of the 

eversion process (1-1.5dpf, 30hpf) in her4:GFP transgenic fish (Yeo et al., 2007). GFP and 

PCNA expression revealed a her4-/PCNA+ population dorsally just anterior to the epiphysis 

(Figure 3A). Within the telencephalon, this posterior roof plate was described as a region 

where eversion progresses and the tela choroïdea expands (Figure S3A). At 2 and 5dpf, 

accordingly, the her4-/PCNA+ progenitor population was located at the lateral edge of the 

embryonic pallial VZ (Figure S3B). 

 To directly fate map the posterior telencephalic roof plate in the absence of a specific 

promoter, we took advantage of caged-cyclofen, a tamoxifen analog that can be activated 

using a 405nm laser beam (Sinha et al., 2009; 2010). We treated ubi:creErt2;ubi:switch 

embryos with caged-cyclofen and locally uncaged this compound in the posterior 

telencephalic roof plate in embryos at 1-1.5dpf (24-30hpf, Figure 3B). Caged-FITC-injected 

embryos uncaged in the same conditions and analyzed immediately after uncaging 

confirmed that activation was restricted to the roof plate (Figure 3C). In two cases (n=8 

uncaged animals surviving to adulthood), we could obtain at 1.5mpf large mCherry+ lateral 

clones running along the antero-posterior axis, similar to the clones recovered in previous 

analyses (Figure 2B,C) and including the lateral VZ (Figure 3D,E). Conversely, lateral clones 

were never observed after uncaging in regions more anterior or more lateral (n=40 in total). 

Thus the posterior aspect of the embryonic telencephalic roof plate contains progenitors at 

the origin of lateral pallial aNSCs (and of the lateral pallium). The observed low frequency of 

lateral clones obtained by uncaging could be explained by the mosaïcism of the ubi:creErt2 

line, in which Cre expression diverges from embryo to embryo (L.D. unpub.), and/or by the 

small number of progenitors at the origin of the lateral aNSCs.  

 

1.4.4 The embryonic source of lateral pallial aNSCs is a new “progenitor pool” 

subtype of signaling neuroepithelial progenitors 

We next assessed the identity of the embryonic progenitors fated to lateral pallial 

aNSCs. Using induction time points distributed from the neural plate stage until 2dpf in 



99 
 

her4switch fish, we first showed that these progenitors did not transiently express her4 during 

embryogenesis: lateral pallial aNSCs were never mCherry+ following early recombinations 

(Figures 4A, S4A-C).  

To assess whether this population harbored characteristics of the “progenitor pool” 

subtype, we analysed its expression of non-canonical E(spl) genes and signaling factors. 

Strong expression of her6 and her9, as well as wnt8b, wnt3a, fgf8, and bmp6, was found in 

the appropriate location (Figure 4B-D). Further, cells in this territory did not express radial 

glia markers such as blbp and gfap, displayed an apico-basal polarity examplified by the 

ventricular distribution of ZO1 immunostaining (Figure S4D), and were positive for NSC 

markers such as sox2 and musashi1 (Figure S4E), altogether identifying them as 

neuroepithelial progenitors (NE).  

In the early zebrafish neural plate, Notch signalling is required for progenitor 

maintenance within “proneural clusters” but not “progenitor pools” (Geling et al., 2004; 

Stigloher et al., 2008). To confirm that the embryonic progenitors fated to dorso-medial 

versus lateral pallial aNSCs respectively belong to these two progenitor subtypes, we took 

advantage of the gamma-secretase inhibitor LY411575 to conditionally inhibit Notch signal 

transduction (Rothenaigner et al., 2011). her4switch,T(1dpf) recombined embryos were treated 

with LY411575 at 2dpf, and analysed at 5dpf to directly access cell fate (Figure 4E). In 

control brains, PCNA+/mCherry+ progenitors lined the ventricule and HuC/D+/mCherry+ 

neurons were present in the parenchyma (Figure 4F,F’). In the dorso-medial region of the 

pallium of LY-treated embryos, the PCNA+/mCherry+ ventricular progenitors were totally 

missing and almost all mCherry+ cells were neurons (Figure 4F,F’’’,G). Thus, the early her4+ 

progenitors presumably prematurely differentiated into neurons, responding to Notch 

inhibition as proneural clusters do. In striking contrast, laterally, the mCherry- progenitor 

population was still present (even increased in size) following Notch blockade (Figure 

4F”,F’’’’,G). Thus, as for “progenitor pools”, Notch is not involved in the maintenance of 

embryonic progenitors fated to lateral pallial aNSCs. Altogether, the molecular and cellular 

characterization of embryonic progenitors generating the dorso-medial versus lateral pallial 

aNSCs, and their different Notch reponsiveness, identify them respectively as “proneural 

cluster” versus “progenitor pool” subtypes.  

 

1.4.5 Late growth and activation of the progenitor pool generating the lateral 

pallial GZ impart heterochrony to pallium development 

 Because classical “progenitor pools” are not immediately engaged in embryonic 

neurogenesis, while “proneural clusters” are (Stigloher et al., 2008), the dual origin of aNSCs 

may impact the developmental timing of pallial domains. To address this issue, we compared 
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the growth of each progenitor population and pallial territory in her4switch,T(2dpf) fish analyzed at 

5dpf, 15dpf and 1.5mpf (Figure 5A). In striking contrast with the adult pallium, the mCherry- 

domain was largely under-represented at larval and juvenile stages: at 5dpf, the ventricular 

zone (VZ) was quasi-exclusively composed of proliferating progenitors expressing mCherry 

(Figures 5B,B’,S5A). Only a small number of lateral mCherry- progenitors could be identified, 

all of them actively proliferating (Figure 5B”, white arrow, Figure S5A,S5B). Just underneath 

in the parenchyma, very few mCherry- cells expressed the neuronal marker HuC/D (Figure 

5B”, white asterisks). At consecutive stages, the lateral progenitors amplified and were 

detected at 15dpf as a compact pool of PCNA+/mCherry- cells at the lateral VZ edge (Figures 

5C,C”, S2A,B). This sharply constrasted with the significant decreased proliferation rate and 

limited expansion of the dorso-medial population, highlighting the differential growth of the 

two pools at that stage (Figure 5C,C’, S5A,B). Concomitantly to progenitor amplification in 

the lateral pool, a large number of underlying pallial mCherry- neurons appeared in the lateral 

pallium (Figure 5C”). At 1.5mpf, we observed a 35% decrease in the proportion of 

proliferating progenitors in both the dorso-medial and lateral populations, but in the latter a 

strong proliferating pool was still maintained at the lateral VZ margin (Figures 5D-D”, S5A,B).  

These observations reveal a strong heterochrony in the amplification of the two pallial 

aNSC populations, and suggest a direct impact on the delayed generation of lateral pallial 

neurons. To verify the lineage relationship between NSCs and neurons in the lateral pallium, 

we analyzed at larval (4dpf) and juvenile (15dpf) stages some lateral clones generated in 

ubi:creErt2;ubi:switch fish at 2dpf (see Figure 2A-C). While lateral clones at 4dpf were largely 

composed of progenitors (Figure S5C,C’), they contained many neurons at 15dpf (Figure 

S5C,C’’). Thus, lateral progenitors mainly undergo symmetric (amplifying) divisions and a 

very low neurogenic potential until at least 4dpf, after which stage the population both 

expands and generates neurons, progressively building the lateral pallium. BrdU pulse 

experiments conducted at 5dpf further indicated that, compared with her4+ progenitors, the 

specific amplification behavior of her4- lateral progenitors at larval stages was not linked with 

accelerated cell cycle kinetics (Figure S5D,E), rather reflected distinct progenitor properties.  

 

1.4.6 The progenitors fated to the lateral pallial aNSC population progressively 

switch on her4 expression and become Notch-sensitive from juvenile 

stages onwards.  

her4 is expressed in all RGCs of the adult zebrafish pallium, including the lateral 

population (Chapouton et al., 2010a). Given that lateral aNSCs derive from her4- embryonic 

NE cells, this raises the question of the onset of her4 expression in this population, and of 

the potential persistence over time of a lateral aNSCs-generating progenitor pool. To address 
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these points, we recombined her4switch fish with 4-OHT at different time points of larval and 

juvenile development and compared the number of lateral mCherry+ RGCs in each condition, 

from a fixed morphological landmark (the medial pallial sulcus -sulcus ypsiloniformis-) 

located within the dorso-medial domain (Figure 6A,B, yellow arrowheads). Further to our 

initial observations (Figure 4A), the mCherry expression boundary appeared remarkably 

stable in adult brains resulting from 4-OHT treatment up to 3.5dpf, demonstrating that 

progenitors fated to lateral aNSCs remain her4- at least until 3.5dpf (Figure 6A, left panel). 

However, this boundary shifted laterally with 4-OHT recombinations conducted at 5 and then 

15dpf (Figure 6A, middle and righ panels). Quantifications of the number of mCherry+ RGCs 

(assessed using GS expression) confirmed these observations (Figure 6B). Thus, lateral 

pallial progenitors progressively express her4 de novo from 5dpf onward. To test whether 

this was correlated with Notch-dependency, we performed a LY411575 treatment on 15dpf 

wildtype fish (Figure 6C). In contrast with the effect of Notch blockade at 2dpf (Figure 4F,G), 

late LY411575 applications resulted in the depletion of most dorso-medial and lateral pallial 

progenitors (Figure 6C).  

Altogether, these results highlight the progressive and coincident emergence of 

neurogenic potential, her4 expression and Notch-dependent maintenance in lateral 

progenitors from late larval stages onwards. 

 

1.4.7 A minute population of NE progenitors persists throughout life at the 

postero-lateral edge of the pallial VZ and ensures the continuous 

generation of neurogenic aNSCs   

Close inspection of juveniles treated with LY411575 from 15dpf onwards revealed 

that a small pool of proliferating progenitors was refractory to treatment and consistently 

maintained posteriorly at the lateral telencephalic VZ edge (Figure S6). This pool appeared 

negative for glial markers and for mCherry (in experiments conducted with her4switch,T(2dpf) 

recombined fish) (Figure S6), indicating that it originates from her4- progenitors and 

maintains NE characteristics. As a first approach to test whether this pool could serve as an 

aNSC source, we assessed its long-term fate following the depletion of Notch-sensitive 

progenitors. We treated her4switch,T(2dpf) juveniles at 15dpf for 4 days with LY411575 and 

analysed their telencephalon at adult stage after a 3-month chase (Figure 6D). Compared to 

control fish, most of the GS+ RGCs were absent in the dorso-medial pallium (mCherry+), 

where neurons directly abutted the ventricle (Figure 6D’,D’’’). In contrast, the lateral VZ was 

partially repopulated by RGCs and displayed an organization similar to control fish (Figure 

6D’’,6D’’’’). Interestingly, the mCherry- RGC population was restricted to the lateral pallial 

domain and did not extend over the mCherry+ dorso-medial area. An 8-month chase gave 
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the same result (not shown). Thus, the Notch-independent NE pool at juvenile stage can 

behave as aNSCs source to build lateral pallial domains, but cannot reconstitute the dorso-

medial pallial aNSC population.  

 To determine whether a small lateral NE progenitor pool was maintained at the lateral 

edge of the pallial VZ until adult stage, we analysed cellular organisation and the expression 

of progenitor pool markers in this location. At posterior levels, some GS-/PCNA+ cells were 

visible laterally, at the junction between the lateral pallial VZ and the tela-choroïda. These 

cells are negative for her4 but some express her9 and wnt3a (Figures 7A,7B and S7A). The 

neurogenic marker ascl1b, orthologous to mammalian Mash1, is also expressed in this 

region, indicative of ongoing neurogenesis (Figure S7B). These patterns were consistent at 

all stages examined (Figure S7C-E). To determine whether the pool of NE cells persisting at 

late stages participated in the formation of the adult pallium, we recombined her4switch fish at 

1.5mpf and analysed mCherry expression after a long chase of 3.5 months. No obvious 

mCherry- domain was generated at anterior and medial telencephalic levels during this time 

(not shown). However, at posterior levels, an obvious mCherry- domain was apparent that 

included both proliferating progenitors and neurons (Figure S7F). Together, these results 

highlight that some progenitor NE cells are maintained throughout life at the lateral pallial 

edge, where they act as long-lasting generators of lateral pallial aNSCs and neurons.  
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1.5 Discussion 

 

The genetic fate-mapping studies conducted here bring unprecedented information 

on aNSCs formation. To our knowledge, the existence of a continuum between embryonic 

neural progenitors and aNSCs is here established for the first time over the entire extent of 

the pallial GZ, complementing and extending the tracing experiments performed in mouse 

with regional identity markers (Ahn and Joyner, 2005; Li et al., 2013; Young et al., 2007). 

Further, and most importantly, our results reveal that pallial aNSCs are heterogenous in 

terms of their embryonic origin and result from the recruitment of two contrasting progenitor 

populations, which differ in their location, gene expression, properties and growth mode. 

Because these progenitors do not mix, this dual mode of GZ formation imposes pronounced 

heterochrony and compartmentalization to pallium construction, which, as discussed below, 

is in correlation with the generation of functionally distinct neuroanatomical domains.  

 

A major finding of our work regarding GZ formation is the dual origin of aNSCs in the 

zebrafish pallium. The adult pallial GZ appears composed of two distinct populations of 

aNSCs, which originate from different sources of embryonic progenitors that are set-up, 

positioned and amplified according to strikingly different developmental processes (Figure 

7C). Dorso-medial aNSCs are generated by amplification from a large, finite population of 

her4+, neurogenic pallial progenitors located along the posterior ventricular wall of the 

embryonic telencephalon at 2dpf, and which, at least for some of them, maintain her4 

expression until adulthood. On the contrary, lateral aNSCs arise from juvenile stages 

onwards by the stepwise addition at the lateral edge of the pallial VZ of RGCs turning on 

her4 expression de novo. The latter process is initiated from a very restricted set of 

embryonic her4- NE progenitor and follows an antero-posterior and medio-lateral 

progression. This population is long-lasting, persisting in the adult at the posterior edge of the 

telencephalic VZ. This mechanism appears remarkably reminiscent of body axis elongation 

in vertebrates or long germ-band insects (Rosenberg et al., 2009), or of polarised growing 

organs bearing at one pole a zone of actively dividing progenitors, followed by a zone of 

differenciated cells. Such a “permanent conveyor belt” system is used for exemple in the fish 

retina and optic tectum but also in mammalian intestinal crypts (Devès and Bourrat, 2012). 

The clear temporal shift in the initiation of these two distinct aNSC generation processes, and 

their constant spatial segregation, suggest that strong converging forces ensure their 

cooperation to generate a seemingly uniform pallial GZ. How these two pools of embryonic 

progenitors are specified in the early embryo, and which mechanism triggers the late 

activation of the her4- NE pool, remain important issues to adress. 
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In parallel, our analyses of gene expression and Notch sensitivity in pallial progenitors 

further highlight that this dual mechanism correlates with the recruitment of different 

embryonic progenitor subtypes: the progenitors generating dorso-medial aNSCs display 

early neurogenesis, her4 expression, and are maintained by Notch signaling; in contrast, the 

progenitors fated to the lateral aNSC population delay their activation and neurogenesis until 

post-embryonic stages, express the two non-canonical E(spl) genes her6 and her9 (Bae, 

2006; Scholpp et al., 2009) but not her4, express signaling factors, and do not depend on 

Notch for their maintenance. Thus, unlike previous asumptions (Chapouton et al., 2006; 

Stigloher et al., 2008), aNSC generation even in a single brain subdivision such as the pallial 

GZ is not the prerogative of a defined embryonic progenitor subtype (Stigloher et al., 2008). 

Embryonic proneural clusters also derive from her4- progenitors before the neural plate stage 

(Kageyama et al., 2008). Likewise, at late stages, these two progenitor subtypes appear 

lineage-related, since some lateral progenitors progressively turn on her4, coinciding with 

their generation of the first lateral neurons, and become Notch-sensitive. In the embryonic 

neural tube however, the two progenitor subtypes studied here are circumscribed to distinct 

territories, and appear not able to repopulate each other. Whether the association of each 

progenitor subtype with a specific growth mode, as demonstrated here, is a general 

phenomenon that holds in other neural tube areas remains to be assessed. 

   

 Our study also indirectly provides novel information on pallium construction. First, our 

data reveal striking molecular and maturation similarities between the formation of the 

zebrafish lateral pallium and the mammalian hippocampus –and their respective aNSC 

progenitors-. A latero-medial gradient of neurogenesis drives the late formation of the 

hippocampus in the mouse telencephalon (Machon et al., 2007). We show that the same 

neurogenic gradient exists in the teleost fish but, due to telencephalic eversion, is inverted 

(medio-lateral) compared to mouse. The zebrafish lateral domain and the mouse 

hippocampus also share comparable embryonic origins: we show that the lateral pallium 

derives from progenitors located immediately adjacent to the dorsal telencephalic midline, a 

situation very similar to the mouse hippocampus, specified at the boundary of the cortical 

hem and futur cortex (Mangale et al., 2008; Subramanian et al., 2009). In addition, 

expression of wnt3a and wnt8b, marking the developing mouse cortical hem (Mangale et al., 

2008; Ragsdale et al., 1998; Rash and Grove, 2011), highlights the location of lateral pallial 

progenitors at the roof plate of the zebrafish telencephalon. Finally, BMP signalling drives 

Hes1/her6 expression and controls cell fate choices at the mouse dorsal telencephalic 

midline (Imayoshi et al., 2008), and both bmp and her6 are co-expressed in the posterior 

telencephalic roof plate of the zebrafish embryo. These observations add strong ontogenetic 

support to the view that the lateral domain of the zebrafish pallium hosts the homologous 



105 
 

region of the hippocampus (Northcutt, 2005; Wullimann, 2009). In addition, the lateral pallial 

domain is involved in spatial and temporal aspects of learning processes in different fish 

(Braford, 2009; Broglio et al., 2010; Vargas et al., 2006). It is interesting to note that its 

delayed formation, demonstrated here, matches behavioral observations that learning in 

zebrafish (as in mammals) starts reliably around 3 weeks and reaches adult performance 

levels at 6 weeks post-fertilization (Valente et al., 2012). Finally, this study highlights the life-

long persistence at the pallial VZ edge of embryonic NE progenitors able to generate new 

lateral RGCs. Whether such a population is  also maintained in the mouse hippocampus will 

be interesting to assess. Thus, the specific origin and growth mode of the lateral pallium 

likely bears critical physiological consequences. More generally, the genetic strategy 

described here will provide a unique tool to overlap developmental grounds to functional 

pallial domains and the pallial subdivisions initially proposed based on histology.  
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1.6 Material and Methods 

1.6.1 Zebrafish lines and staging of juvenile animals 

Wild-type (AB and EKK strains) and Tg(her4:eGFP) (Yeo et al., 2007), Tg(ubi:switch) and 

Tg(ubi:CreErt2) (Mosimann et al., 2010), Tg(her4:ERT2CreERT2) (Boniface and al., 2009), 

hsp:Cre and ubi:zebrabow (Pan et al., 2011) transgenic zebrafish were used. 

Embryos/larvae up to 5dpf were maintained and staged as described (Kimmel et al., 1995). 

Based on size and morphological criteria (Parichy et al., 2009) and 

http://zfin.org/zf_info/zfbook/stages/index.html), we determined that larvea and juveniles at 

5dpf and 15dpf correspond respectively to 3.8mm- and 6.3mm-long fish. Adult zebrafish 

were maintained using standard fish-keeping protocols and in accordance with our Institute’s 

Guidelines for Animal Welfare.  

 

1.6.2 4-OHT treatments and BrdU incorporation 

4-Hydroxytamoxifen (4-OHT, T176, Sigma) treatment was performed as previously described 

(Mosimann et al., 2010) see “supplementary experimental procedures” for optimal 

recombination conditions. Fish were then washed 4 times, transferred into fresh embryo 

medium and grown as usual. ubiswitch embryos at 2dpf were placed into 5µM 4-OHT for 24h. 

BrdU labeling at 5 dpf was performed as previously described (Coolen et al., 2012) 

 

1.6.3 Caged-cyclofen and caged FITC uncaging experiments 

Caged-cyclofen (provided by L. Jullien, (Sinha et al., 2010)) was applied at 3.3µM for 3 hours 

on dechorionated 1dpf embryos. Caged-FITC (synthesized following Chen Lab protocol 

using CMNB-caged fluorescein SE -Life technology-) was injected at the one-cell stage. 

Embryos were then washed 4 times, transferred into 0.02% tricaine in embryo medium, and 

uncaged one by one from the dorsal side using the 405nm laser beam for 1min (upright 

confocal microscope, Zeiss LSM710). Washed embryos were grown in individual tanks. 

 

1.6.4 LY411575 treatments 

For LY411575 treatments, embryos and juveniles were placed in embryo medium containing 

50 µM LY as indicated (MACS milteny), except for Figure 6d, where treatment was for 2 days 

at 50µM and 2 days at 10µM. Control embryos were incubated in embryo medium containing 

0.04% DMSO. At least 4 brains were analyzed, obtained from at least two independent 

experiments. 

 

http://zfin.org/zf_info/zfbook/stages/index.html
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1.6.5 Immunohistochemistry and In Situ Hybridization 

Immunohistochemistry and in situ hybridization were performed as described previously 

(Bosco et al., 2013; Chapouton et al., 2010a; Ninkovic et al., 2005) –see Supplementary 

information for detailed antibodies and probes used in this study. 

 

1.6.6 Image acquisition and 3D reconstructions 

Images taken using a confocal microscope (Zeiss LSM700) were processed with the ZEN 

2009 software (Carl Zeiss MicroImaging) and Photoshop CS6. Scale bars for adult brain 

images: 50µm,  for stages up to 15dpf: 20µm. Dorsal whole-mount views of the 

telencephalon were taken using a Nikon macrozoom. Zebrabow brains were prepared as 

described in (Weissman et al., 2011) and imaged on an upright confocal (Zeiss LSM710). 

Schematic 3D reconstructions of a 2dpf telencephalon, comparing the expression pattern of 

4 genes, were obtained using the FreeD software (Andrey and Maurin, 2005) extrapolating 

results from several double ISH. 

 

1.6.7 Cell counting 

For countings the number of RGCs per clone in Figure S2C, RGCs of the clones (GS-

positive/mCherry-positive cells) in the dorso-medial VZ were counted manually from 2 

different telencephali countaining both medial and lateral clones. Countings were done on 

the entire Z-confocal stack (50µm thickness) and on the appropriate number of sections to 

encompass the entire clone (approximately 2-3 sections). For the lateral clones, the number 

of RGCs was counted manually on 3 different sections crossing the clone (one anterior, one 

medial, one posterior) on the entire Z-confocal stack, averaged and extrapolated depending 

on the number of sections where the clone was present (approximately 10-12 sections).  

For cell countings in Figure 4G, 4 cryostat sections were prepared from 4 telencephali from 

her4switchT(1dpf) fish at 5dpf in LY411575 treated and control conditions. Proliferating cells, 

representing 98% of the progenitor population at 5dpf, were counted manually from the entire 

pallial VZ of at least 4 different sections per telencephalon. 

For cell countings in Figure S5A, and B, cryostat sections were prepared from a minimum of 

3 telencephali from her4switchT(2dpf) fish at each stage. PCNA-positive cellss, i.e. 

amplifying progenitors, were counted manually from the entire pallial VZ of at least 3 sections 

per telencephalon.  

For the countings of BrdU cells in Figure S5E, cryostat sections were prepared from 4 

telencephali from her4:GFP fish at 5dpf incubated with BrdU solution for a short pulse. The 

labelling index (BrdU-positive cells whithin progenitorsPCNA-positive cells) was estimated in 
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the her4-positive (BrdU-positive/PCNA-positive/her4-positive cells) and her4-negative (BrdU-

positive/PCNA-positive/her4-negative cells) populations. Cells were counted manually from 

the entire pallial VZ of at least 4 different sections per telencephalon. 

For cell countings in Figures 6A-B, 3 vibratome sections were analysed from a minimum of 3 

telencephali from recombined her4switch fish in each condition. Ventricular glial cells from 

the ypsiloniformis sulcus (medial pallial sulcus) to the lateral VZ edge of the ventricular zone 

were counted manually from medial sections (sections showing the medial pallial dorsal and 

lateral sulcus).  

All these countings were done on single optical plane images taken with the 40x oil objective. 

 

1.6.8 Statistics 

All experimental data were analyzed using Excel and in vivo stat (Clark et al., 2012) software 

and are expressed as mean ± 95% confidence interval (95%CI). They were all compared 

using one-way analysis of the variance (ANOVA, in vivo stat), followed by a post-hoc test 

(Bonferroni correction) only for Figures 4G and 6B. For Figure S5B, an ArcSinus 

transformation was performed before comparing data with a one-way ANOVA, and a post-

hoc test (Bonferroni correction). Significance was set at P <0.05. 
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1.7 Figures 

 

Figure 1 : her4-expressing progenitors at 2dpf generate adult NSCs of the dorso-

medial pallium.  

(A) Genetic strategy used for the time-controled fate mapping of her4-expressing 

progenitors: 4-hydroxy-tamoxifen (4-OHT) triggers ERT2CreERT2 activation in her4+ 

progenitors allowing GFP excision and permanent mcherry expression (upper panel). 

Experimental design to map the adult fate of early her4+ progenitors: 4-OHT is applied at 

2dpf (her4switch,T(2dpf)) and recombined animals are analyzed at 3mpf (lower panel). 

(B) Dorsal view (whole-mount, anterior left) of a her4switchT(2dpf) adult telencephalon showing 

regionalized mCherry expression. Doted lines delineate the telencephalon (Tel) and the 

olfactory bulb (OB).  

(C) Cross-section of the telencephalon in a her4switch,T(2dpf) adult, focusing on the pallium and 

stained as indicated. Dotted lines delineate pallial boundaries with the medial and lateral 

pallial sulci; one hemisphere is shown.  

(D, E) High magnification of the dorso-medial (D) or lateral (E) NSCs. mCherry is expressed 

only  in dorso-mediel RGCs expressing GS (D, arrowheads) and not in lateral RGCs (E, 

arrows). 

 (F) Magnification of the boundary (dotted line) between the dorso-medial and lateral pallial 

domains, showing the segregation of mCherry+ and mCHerry- NSCs and neurons. asterisks 

to some mCherry+ neurons. 

See also FigureS1. 
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Figure 1 
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Figure 2: A restricted number of progenitors at 2dpf generates the lateral aNSCs 

following massive post-embryonic amplification. 

 (A) Experimental design to analyze the morphology of aNSCs polyclones generated from 

embryonic progenitors in the lateral pallium. 

(B) Dorsal (upper panels) and lateral views (lower panels) of ubiswitch,T(2dpf) telencephali (whole 

mount of one hemisphere, anterior left). Representative lateral clone types 1, 2 and 3 are 

shown (dotted lines). Asterisks highlight medial pallial clones. 

(C) Cross-sections of the telencephali shown in B (section plane : yellow)  and stained as 

indicated.  

(D) Experimental design to map the adult fate of individual early pallial progenitors in single 

brains.  

(E) Lateral projections of the adult pallium (whole-mount) in hsp70zebrabow,HS(2dpf) fish showing 

expression of CFP/YFP (upper panel) or CFP/YFP/dTomato (lower panel). 

(F) Cross-section of the telencephalon of hsp70zebrabow,HS(2dpf) adults showing expression of 

CFP/YFP (left panel) or CFP/YFP/dTomato (right panel). 

(G) Scheme depicting the typical morphology of lateral pallial clones after a recombination as 

in (A,D), and cross-sections at anterior, medial and posterior levels. Triangles to the RGCs, 

colored domains to the neurons generated from these progenitors, and arrows to the 

progression of neurogenesis. 

See also FigureS2. 
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Figure 3: Lateral aNSCs-fated embryonic progenitors are located in the posterior 

telencephalic roof plate.  

(A) 3D view of the prosencephalon at 1.5dpf in a her4:GFP embryo immunostained as 

indicated. Dashed line: position of the epiphysis (e), and **: posterior part of the telencephalic 

roof plate. Te: telencephalon. 

(B) Experimental design to fate map embryonic progenitors located at the posterior 

telencephalic roof plate: caged-cyclofen ([cyclofen]) was locally photoactivated in 

ubi:creErt2;ubi:switch embryos at 1-1.5dpf using a 405nm laser beam (blue box to the laser-

activated area). Recombined animals (ubiswitch,uncag(1-1.5dpf)) were analysed at 1.5mpf. 

(C) Cross-section focusing on the posterior telencephalic roof plate of an embryo injected 

with caged-FITC and analysed immediately after uncaging. The uncaged area (asterisks) is 

limited to the roof plate. 

 (D) Dorsal (upper panel) and lateral (lower panel) whole-mount views of ubiswitch,uncag(1-1.5dpf) 

telencephali. Dotted lines surround the pallium. 

(E) Cross-sections at medial level (upper panels – yellow section plane in D) and at posterior 

level (lower panel – blue section plane in D) of ubiswitch,uncag(1-1.5dpf) lateral telencephali stained 

as indicated.  

See also FigureS3. 
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Figure 3 
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Figure 4: The her4-negative cells at the origin of lateral pallial aNSCs belong to the 

“progenitor pool” subclass of embryonic neural progenitors  

(A) Number of mCherry+ RGCs per adult telencephalic section, from the sulcus ypsiloniformis 

up to the edge of the VZ, after recombination at 1-10 somites, 1dpf or 2dpf of her4switch 

embryos. 

(B-D) Compaired expression of her4, her9, her6, wnt8b, wnt3a, fgf8 and bmp6 along the 

posterior telencephalic roof plate at 1.5dpf, revealed by fluorescent ISH without/with DAPI. 

Frontal (B,C) or horizontal (D) single confocal planes are shown. Dashed line : roof plate of 

the neural tube (or epiphysis) and plain lines : ventricle. **: roof plate. e: epiphysis, Te: 

telencephalon. 

(E) Experimental design to assess Notch sensitivity of pallial progenitors at 2 dpf. 

(F) Medial cross-sections of the telencephalon in her4switchT(1dpf) larvae treated with DMSO or 

LY411575. Magnification of the dorso-medial VZ (F’, F’’’) and lateral VZ (F’’, F’’’’), 

immunostained as indicated. Arrows and arrowheads highlight respectively the dorso-medial 

progenitors (mCherry+/PCNA+ cells) and the lateral progenitors (mCherry -/PCNA+ cells). 

(G) Compaired number of pallial dorso-medial progenitors (dark gray) and of lateral 

progenitors (light gray) in control (DMSO) and treated (LY411575) conditions. Values are 

presented as mean ± 95%CI (ANOVA). 

See also FigureS4. 
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Figure 4 
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Figure 5: Pallium development occurs in two heterochronic waves. 

(A) Experimental design. (B-D) Cross-sections of the telencephalon in her4switch,T(2dpf) animals 

at 5dpf (B), 15dpf (C), and 1.5mpf (D) stained as indicated. Arrows and asterisks highlight 

respectively the PCNA+/mCherry - progenitors and the first neurons of the lateral pallium. 

Arrowheads indicate the lateral pallial sulcus. 

See also FigureS5. 
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Figure 6: lateral progenitors progressively express her4 and become Notch-sensitive 

at juvenile stages but maintain a cryptic boundary with the dorso-medial VZ. 

 (A) Adult fate of progenitors expressing her4 at 3.5dpf (her4switchT(3.5dpf)), 5dpf (her4switchT(5dpf)) 

or 15dpf (her4switch,T(15dpf)): experimental design and respective cross-sections of adult 

telencephali immunostained as indicated. Yellow stars and dotted lines indicate the mCherry+ 

boundary observed after recombination at different stages (single star: recombination at 

2dpf, double stars: recombination at 5dpf, triple stars: recombination at 15dpf). Yellow 

arrowhead to the sulcus ypsiloniformis. 

(B) Numbers of mCherry+ RGCs after recombination at 2dpf, 3.5dpf, 5dpf and 15dpf in 

her4switch fish - counted from the sulcus ypsiloniformis up to the lateral edge of the VZ-. 

mCherry+/GS+ RGCs make 33% of the VZ at 3.5dpf, and 85% after a recombination at 15dpf. 

Values are presented as mean ± 95%CI (ANOVA, *P<0.05). 

(C) Notch sensitivity of pallial progenitors at juvenile stages. Experimental design and cross-

sections of the telencephalon in control (upper panels) or LY411575-treated fish (lower 

panels) immunostained as indicated. Magnification of the dorso-medial VZ (C’, C’’’) and 

lateral VZ (C’’, C’’’’), immunostained as indicated. Arrows point to medial progenitors, 

arrowheads to lateral progenitors, empty arrows/arrowheads when these progenitors are 

depleted. 

(D) Adult analysis of the telencephalon of fish treated with a Notch inhibitor at juvenile stage. 

Experimental design and cross-sections of the telencephalon in control (upper panels) or 

LY411575-treated fish (lower panels) immunostained as indicated. Arrows point to medial 

(mCherry+) progenitors, arrowheads to lateral (mCherry-) progenitors, empty 

arrows/arrowheads when these progenitors are depleted. 

See also FigureS6. 
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Figure 7: Dual embryonic origin of pallial aNSCs and persistence of adult NE cells.  

(A) Posterior cross sections showing the lateral edge of the adult VZ in her4:GFP fish (left 

panel) or WT fish (right panels) stained as indicated. Arrows to the her4-/PCNA+ NE pool of 

progenitors. 

(B) Scheme of the lateral edge of the adult posterior pallial VZ (as shown in (A)) depicting 

RGCs (blue triangles), NE cells (blue), her4 expression (yellow), and wnt3a/her9 expression 

(pink). The her4- NE pool contains wnt3a+ and/or her9+ proliferating progenitors at the 

junction between the tela-choroïdea and the posterior pallial VZ edge. 

(C) Summary of pallium formation: The dorso-medial pallial NSCs and neurons (green) 

derive from embryonic neurogenic progenitors. The lateral pallial NSCs and neurons (blue) 

derive from few NE “progenitor pool” (dark blue) which are first amplified and become 

neurogenic only from 5dpf onward and persist life-long. Both aNSC populations remain 

segregated in space. 

See also FigureS7. 
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1.9  Supplementary materials 

 

Supplemental data 

Figure S1 : Faithful Cre expression in her4+ pallial neurogenic progenitors at 

embryonic and larvae stages in the her4:ERT2CreERT2 line, related to Figure 1. 

(A) Schematized three-dimensional representations and cross-sections of the telencephalon 

at embryonic (2dpf) and adult (3mpf) stages highlighting the position and the anatomical 

structure of the pallial GZ (orange), located along the VZ and composed at both stages of 

RGCs (orange triangles to cell bodies, thin orange lines to radial processes). Red doted lines 

delimite the pallium-subpallium boundary and purple arrows indicate the progression of 

neurogenesis. Due to eversion, the telencephalic ventricle is delimited by an extended roof 

plate at embryonic stages, which evolves to generate the tela-choroïda covering the adult 

telencephalic ventricle (blue). The tela choroïda is attached to the lateral edge of the pallial 

VZ (green arrowhead). OB: Olfactory Bulb, OP: Olfactory placode; Tel: Telencephalon; Ha: 

habenula. 

(B) Compared her4 expression (green) with cre, gsh2 and tbr1 (red) (left, middle and right 

columns, respectively), revealed by double in situ hybridization (ISH) on frontal sections of 

the telencephalon (single plane) of 2dpf her4:ERT2CreERT2 embryos counterstained with 

DAPI (grey). OP: Olfactory placode; Tel: Telencephalon. 

(C) Lateral 3D representations of the embryonic telencephalon in the her4:ERT2CreERT2 

line at 2dpf, with her4 expression (green) compared to cre and gsh2 expressing progenitors 

(left panel, magenta and orange respectively) or with cre expression compared to tbr1 

expressing progenitors (middle panel, yellow dots). Righ panels: Lateral and dorsal 3D 

representations of her4-positive pallial progenitors (red) at 2dpf in the embryonic 

telencephalon of an her4:ERT2CreERT2 embryo. The ventricle is highlighted in grey. The 

white asterisks surrounded by dotted lines indicate the location of the anterior commissure 

on the lateral view, otherwise the dotted lines indicate the telencephalic VZ. 

cre expression is restricted to the embryonic her4-positive pallial progenitors and is excluded 

from the subpallium defined by gsh2 and her4 expression. tbr1 is expressed in differentiated 

cells of the pallium. Its expression delimits ventrally the boundary between the pallium and 

the pre-optic area. 

(D) Compared her4 expression (green) with cre expression (red), revealed by double in situ 

hybridization (ISH) on mid-sagittal (i) and para-sagittal (ii) focal planes from a stack of the 

telencephalon in her4:ERT2CreERT2 embryos at 5dpf, counterstained with DAPI (grey). 

Double white arrows highlight the differential expression of her4 and cre in the subpallium.  
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her4 and cre expression are however strictly colocalized in the pallium at 5dpf, as they were 

at 2dpf (see (C)). 

(E) Cross-section of the adult telencephalon in a control her4switch fish treated with EtOH at 

1dpf, focusing on the pallium and immunostained for the recombined reporter mCherry (red) 

and counterstained with DAPI (grey) (n=3). 
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Figure S2: A large number of progenitors at 2dpf generates the dorso-medial aNSC 

population, related to Figure 2.  

(A) Dorsal (upper panel) and lateral (lower panel) views of adult ubiswitch,T(2dpf) telencephalon 

(whole-mounts showing one hemisphere, same clones as in panel 2B). The position of 

anterior and posterior section planes (panel S2B) are shown in magenta and blue.  

(B) Cross-sections of the telencephali shown in A at the levels indicated (upper panel: 

magenta section plane; lower panel: blue section plane). The sections were stained for the 

recombined reporter mCherry (red) and the glial marker GS (green). Asterisks highlight 

clones in the medio-lateral pallium and lateral clones are numbered.  

(C) Total number of RGCs (GS-positive/mCherry-positive cells) per dorso-medial or lateral 

clone (n=8 for dorso-medial clones and n=2 for lateral type1 and type2 clones). Values are 

presented as mean ± 95%CI (ANOVA). 

(D) Medial cross-section of the telencephalon of an hsp70zebrabow,WoHS adult whithout heat-

shock treatment, focusing on the pallium. Note that the only reporter expressed is dTomato 

(no recombination). 

(E) Dorsal whole-mount views of the dorso-medial domain of a hsp70zebrabow,HS(2dpf) adult (left 

column) showing expression of CFP/YFP (blue, green respectively, upper panel) or 

CFP/YFP/dTomato (blue, green and red respectively, lower panel). Cross-section of an adult 

hsp70zebrabow,HS(2dpf) telencephalon (right column), focusing on the dorsal pallium and showing 

expression of CFP/YFP (blue, green respectively, upper panel) or CFP/YFP/dTomato (blue, 

green and red respectively, lower panel). Note that small clones are very numerous and 

strongly intermingled. Because the brainbow reporter fish carry several copies of the 

transgene inserted on different chromosomes, the number of copies inherited by each 

animal, and the panel of colors produced, vary from fish to fish. 
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Figure S2 
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Figure S3: The her4-negative embryonic territory fated to lateral aNSCs and present in 

the posterior telencephalic roof plate is laterally positioned after the eversion process, 

related to Figure 3. 

(A) Frontal 3D views of the anterior prosencephalon, at 1dpf (upper panels), 1.5dpf (middle 

panels) and 2dpf (lower panels) stained with DAPI (grey). Right panels are magnifications of 

the red boxes showing the telencephalic dorsal midline after a 45°C rotation. The epiphysis is 

highlighted in pink, and the posterior telencephalic roof plate by asterisks. The eversion 

process results in the opening of the ventricle at 2dpf. 

(B) her4-negative progenitors are present at the edge of the telencephalic VZ at 2dpf (upper 

panels) and 5dpf (lower panels). Cross-sections of her4:GFP telencephali, with 

magnifications of the boxed areas, immunostained for the reporter GFP (green) and the 

proliferating marker PCNA (red), and counterstained with DAPI (grey). 
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Figure S4: The progenitors at the origin of lateral pallial aNSCs are her4-negative 

throughout embryogenesis and express neuroepithelial progenitor markers, related to 

Figure 4.  

(A) Experimental design to map the adult fate of cells expressing her4 at the 1- to 10-somite 

stage (1ss-10ss) and at 1dpf, (B: her4switchT(1ss-10ss), C: her4switchT(1dpf)) respectively. 

(B,C) Cross-sections of the adult telencephalon in a control her4switch fish treated with 4-OHT 

at 1ss-10ss (B) or at 1dpf (C), focusing on the pallium and immunostained for the 

recombined reporter mCherry (red) (DAPI counterstaining is shown in grey on the right 

panels) (n=3 brains each). The dorsal sulcus is indicated by the yellow arrowhead. Note that 

the limit of recombination obtained in B and C is identical to that observed when 

recombination is induced at 2dpf (Figures 1C, 5A).  

(D) Cross-sections of the telencephalon in 1.5dpf embryos immunostained for GFP (green) in 

gfap:GFP fish (left panels), for the apical marker ZO1 (green) (middle panel), or for 

expression of the glial marker blbp (right panel, in situ hybridization, black) in wt fish, and 

counterstained with DAPI (grey or blue). Progenitors located at the posterior telencephalic 

roof plate (asterisks) are non-glial cells displaying an apico-basal polarity.  

(E) Cross-sections of the telencephalon in 1.5dpf embryos immunostained for the neuronal 

marker HuC/D (blue) and either for GFP (green) in her4:GFP fish (left panels) or for the NSC 

markers Sox2 (red) (middle panel) and Musashi1 (red) (righ panel) in wt embryos, and 

counterstained with DAPI (grey). Progenitors located at the posterior telencephalic roof plate 

(asterisks) are GFP-negative and express Sox2 and Msi1. 
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Figure S4 
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Figure S5: The number of lateral pallial progenitors increases after 5dpf concomitantly 

with neuron generation, related to Figure 5. 

(A) Compared progression in the number of dorso-medial (PCNA-positive/mCherry-positive) 

and lateral (PCNA-positive/mCherry-negative) proliferating progenitors per telencephalic 

section at 5dpf, 15dpf and 1.5mpf (n=4 brains each, 3 sections per brain). Proliferating 

progenitors are mainly mCherry-positive at 5dpf (in average 35 mCherry-positive progenitors 

per section, representing 87% of VZ length in cell number, versus only 8 mCherry-negative 

progenitors, 13% of VZ length). The number of mCherry-negative progenitors massively 

increases thereafter (at 15dpf, 47 mCherry-negative progenitors are counted per section, 

representing 44% of VZ length). Values are presented as mean ± 95%CI. 

(B) Compared percentage of proliferating progenitors in the dorso-medial (% of PCNA-

positive/mCherry-positive progenitors among the total progenitors) and lateral (PCNA-

positive/mCherry-negative progenitors among the total progenitors) VZ per telencephalic 

section at 5dpf, 15dpf and 1.5mpf (n=4 brains each, 3 sections analyzed per brain at 

equivalent levels). This percentage steadily decreases over time in the dorso-medial VZ 

starting at 5dpf while a maximum proliferation rate is maintained in the lateral VZ at least until 

late juvenile stages. Values are presented as mean ± 95%CI (ANOVA, **p<0.05). 

(C) Experimental design for the analysis of lateral polyclones generated from embryonic 

progenitors in the lateral pallium at 2dpf (as in Figure 2A) and analyzed at larval (4dpf) (C’) 

and juvenile stages (15dpf) (C”). (C’) Cross section of a ubiswitch T(2dpf) animal focusing on 

lateral polyclones at 4dpf (C’) immunostained with the reporter marker mCherry (red), the 

proliferation marker PCNA (green) and the neuronal marker HuC/D (blue), and 

counterstained with DAPI (grey). Lower panels are magnifications of the boxed area. A 

lateral polyclone (mCherry-positive) is shown, comprised of a large progenitor population 

(PCNA-positive, surrounded by the dotted line) and a single neuron (Hu-positive, asterisk). 

(C”) Cross section of a ubiswitch T(2dpf) animal focusing on lateral polyclones at 15dpf (same 

immunostaining and symbols as in (C’), two polyclones are shown (numbered).  

(D) Upper panel: Cross section of a her4:GFP telencephalon at 5dpf after a pulse of BrdU 

incorporation, immunostained for GFP (green), PCNA (red) and BrdU (blue), and 

counterstained with DAPI (grey). (D’-D”) are high magnifications of the boxed area.  

(E) Lower panel: Quantification of the labelling index (percentage of BrdU-positive cells 

within the PCNA-positive cells) in her4-positive or her4-negative progenitor populations in 

larvae as illustrated in (D). Values are presented as mean ± 95%CI (ANOVA). 
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Figure S5 
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Figure S6: Notch-insensitive NE cells remain at the pallial edge in the juvenile, related 

to Figure 6. 

Cross-sections at posterior telencephalic levels in LY411575-treated fish, focusing on the 

lateral pallium and immunostained for PCNA (green), together with (red) the radial glia 

marker BLBP or the reporter mCherry in wildtype (upper panel) and her4switchT(2dpf) fish (lower 

panel), respectively. Both were counterstained with DAPI (grey). Arrowhead points to the 

small remaining pool of lateral Notch-insensitive progenitors. 
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Figure S7: Some “progenitor pool”-like cells are consistently maintained at edge of 

the lateral pallial VZ until adult stage, related to Figure 7.  

(A) Ventral view of adult telencephali labelled as whole-mount by ISH for wnt3a (left) or her9 

(right) expression. Dotted lines highlight the olfactory bulbs (OB) and orange arrows point to 

the postero-lateral “progenitor pool”-like population at 3mpf.  

(B) Cross section of an adult telencephalon stained as whole-mount (upper right corner, 

lateral view) for ascl1b expression, focusing on the lateral pallium at posterior levels. Same 

indications as in (A).  

(C) Lateral (upper panel) and ventral (lower panels) views of telencephali at 1.5mpf labelled 

as whole-mount by ISH for wnt3a (left) or her9 (right) expression. Arrows point to the 

postero-lateral “progenitor pool”-like population at 1.5mpf.  

(D) Parasagittal section of a her4:GFP telencephalon at 1.5mpf, focusing on the lateral VZ at 

posterior levels, immunostained for GFP (green) and PCNA (red), and counterstained with 

DAPI (grey). Arrows point to the posterior her4-negative PCNA-positive population. 

(E) Dorsal view (single plane from a confocal stack) of the telencephalon at 5dpf, focusing on 

the posterior part and showing her9 expression (red) revealed by fluorescent ISH. Arrows 

point to the postero-lateral “progenitor pool”-like population at 5dpf. 

(F) Experimental design for the analysis of the adult fate of progenitors expressing (or not) 

her4 at 1.5mpf using her4switch fish (upper panel): fish were treated at 1.5mpf with 4-OHT and 

analysed after a long chase of 3.5 months. Cross-section of adult telencephalon of 

her4switchT(1.5mpf) fish at 5mpf, focusing on the posterior pallium and stained with mCherry (red), 

PCNA (green), HuC/D (blue) and DAPI (grey). Dotted lines on high magnification panels 

delimit the lateral edge of the postero-lateral VZ, and white lines the mCherry-negative 

territory. Arrows point to the postero-lateral “progenitor pool”-like population at 5mpf. 

 

 

  



141 
 

Figure S7 
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Supplemental Experimental Procedures 

 

4-OHT treatments 

RECOMBINATION STAGE 4-OHT CONCENTRATION TIME 

5ss-10ss 10µM 2h 

24hpf - 48hpf 10µM 5h 

3dpf 10µM 24h 

5dpf-6dpf 10µM 30h 

15dpf -20dpf 

Day1: 7.5µM 24h 

Day2: 5µM 24h 

Day3: 7.5µM 24h 

Day4: 5µM 24h 

1.5mpf 5µM 72h 

 

Table for the conditions of 4-OHT treatments 

 

For treatments at 15dpf, her4switch fish were placed in fresh 4-OHT solution every 24 hours. At 

1.5mpf, 4-OHT solution was added for only 9h/day, thus alternating treatment and recovery 

periods. 

 

Immunohistochemistry and In Situ Hybridization 

antibodies Species Dilution ref 

anti-HuC/D human 1/2000 Dr B.Zalc 

anti-glutamine-

synthase mouse 1/500 Millipore, MAB302 

anti-PCNA mouse 1/250 Santa Cruz, PC-10 

anti-mCherry rabbit 1/300 Clontech 

anti-GFP chicken 1/1000 Avec.Lab. 

anti-sox2 rabbit 1/500 abcam, Ab97959 

anti-ZO1 mouse 1/200 life techno. 

anti-musashi1a rabbit 1/200 

Sakakibara et al., 

1996 

 

Table of antibodies 
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Goat antibodies coupled to AlexaFluor dyes (488, 555, or 647; Invitrogen) and DAPI were 

used as secondary antibodies and nuclear staining. In toto immunostaining on embryos were 

performed following 3 hours of sweet PFA fixation (4% PFA-4% w/v sucrose in PBS). 

 

 

GENE 

PROBE 

CONCENTRATION PROBE REFERENCE 

her4.1 0,5ng/µl FL coupled Takke et al., 1999 

ert2Cre 0,78ng/µl Dig coupled PCR amplification 

gsh2 0,2ng/µl Dig coupled   

tbr1 1,25ng/µl Dig coupled Mione et al. 2001 

wnt3a 0.4ng/µl, Dig-coupled Mattes et al., 2012 

wnt8b 0.3ng/µl, Dig-coupled kelly et al., 1995 

fgf8 0.5ng/µl, Dig-coupled Topp et al., 2008 

bmp6 0.5ng/µl, Dig coupled 

SourceBioscience, 

BC090689 

her6 0,2ng/µl Dig coupled 

SourceBioscience, 

BC059551 

her9 

80ng/µl, Dig coupled SourceBioscience, 

BC079516 

blbp 78ng/µl, Dig coupled Liu et al., 2003 

zash1b 60ng/µl, Dig coupled Allende et al., 1994 

 

Table of ISH probes  

 

The Ert2Cre sequence was amplified by PCR from pCDNA:Ert2CreErt2 (Jullien, N. et al., 

2008) (primer sequences Ert2-fw ATGGCCGGTGACATGAGAGCTG, Cre-rv 

CATCAGGTTCTTCCTGACTTCAT) and subcloned into pCSA (Clontech). 
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2 The successive maturation steps from the embryonic 

neural progenitor to the adult NSC  

 

In this chapter, I will consider my previous results (results – section1) in a different context, 

and detail some additional experiments, to further ask what the different maturation steps are 

that progressively bring from embryonic neural progenitors to adult NSCs. 

It is difficult to directly answer this question. Indeed, we are not able to follow and precisely 

characterize small groups of progenitors over a very long time period. Thus, at this point, 

data in the literature mainly focused on the temporal evolution of progenitors during 

neurogenesis in the embryo. In the mouse, it is currently accepted that early NE cells are 

replaced with time by RGCs. There, embryonic progenitors are classified according to four 

criteria: (i) their morphology (NE or RGC), (ii) their Notch sensitivity, (iii) their expression of 

Hes/her genes and finally (iv) their neurogenic capacity. 

To know whether progenitors always mature following the same sequence of events, in 

particular to generate aNSCs, I have thus started to use the four criteria worked out in the 

embryo, to challenge dorsal and lateral progenitor subtypes at different stages between 

embryonic stage and adult stage (ie. 5 dpf, 1 mpf, adult). 

In a first short part below, I will report on a potential Notch-independent maintenance of 

dorsal pallial progenitors. Then, I will focus on lateral progenitors. In the Dev Cell publication, 

we have shown that NE cells can persist at adult stage and I was able to distinguish in the 

adult lateral pallium a series of progenitor subtypes progressively giving rise to mature 

aNSCs (the her9-positive NE cells, the Notch sensitive-NE cells, the her4-positive NE cells 

and her4-positive GS-positive RGCs, which would represent progressive maturing steps from 

the lateral edge of the VZ toward the medial pallium). This recapitulates in space what might 

be the maturation steps of progenitors over time. Together, this shows first that NE 

progenitors are not all transformed into RGCs, and second provides information on the 

different steps of progenitor maturation, which I will compare with the embryonic sequence. 

2.1 Introduction 

During development, progenitors composing the brain are submitted to different changes 

regarding morphology, neurogenic capacity, or gene expression. The neural plate is 

composed of NE cells induced from the ectoderm by neural promoting signals (Andoniadou 

and Martinez-Barbera, 2013). These NE cells, after several rounds of symmetric divisions to 

amplify the population (Götz and Huttner, 2005), start to generate neurons. Under the 

influence of certain factors, such as Pax6 in the mammalian brain (Suter et al., 2009), they 

further progressively generate a second type of progenitors, the RGCs, performing mainly 
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asymmetrical neurogenic divisions to generate neurons (Kriegstein and Alvarez-Buylla, 

2009). This process has been extensively studied in the developing mammalian cortex in 

which the transition between NE cells and RGCs occurs between E10.5 and E16.5 with a 

antero-lateral to postero-medial gradient (Anthony et al., 2004). During mouse brain 

development, the RGCs generate neurons and other glial cells such as astrocytes, 

ependymal cells and oligodendrocytes (Kriegstein and Alvarez-Buylla, 2009), but also 

aNSCs (Anthony et al., 2004; Malatesta et al., 2003). However, these studies were done 

either at an early stage or using non-conditional lineage tracing experiments with an analysis 

in the adult. This leads to a model in which one type of progenitor replaces the other, but this 

view might be incomplete. Indeed, these different progenitors might coexist at a particular 

time point but also persist at later stages. Moreover, whether the series of maturation steps, 

in particularly concerning its molecular sequence, is conserved between the progenitors at 

the origin of aNSCs remains to be determined. 

One of the main signals involved in controlling, on the one hand embryonic neural 

progenitors, and on the other hand aNSCs, is the Notch pathway (Bae et al., 2005; 

Chapouton et al., 2010; Imayoshi et al., 2010; Takke et al., 1999). In neural progenitors, the 

main Notch target are the hairy and enhancer of split related genes (Hes in mammals and 

her in the zebrafish). In mouse, Hes mutants display a premature progenitor differentiation 

(Hatakeyama and Kageyama, 2006; Hatakeyama et al., 2004). Similarly, in the zebrafish 

embryo, the so-called canonical her genes, such as her4 (homologous to Hes5 gene) (Takke 

et al., 1999), are activated by the Notch pathway and maintain the embryonic neurogenic 

progenitors (Stigloher et al., 2008).  

On the contrary, the progenitor pools, such as the embryonic NE cells located at neural tube 

boundaries, express non-canonical her genes such as her6, her9 or her5. These genes 

expression is independent of Notch signalling but is activated by positional cues responsible 

for patterning the neural plate (Bae et al., 2005; Geling et al., 2003, 2004; Hans et al., 2004). 

In the early embryo, the non-canonical her genes are also necessary to maintain progenitors. 

Specifically, they are involved in delaying the neurogenic activity of these embryonic 

progenitors and their transition toward actively neurogenic proneural clusters (Stigloher et al., 

2008). Indeed, downregulating non-canonical her genes transforms progenitor pools into 

neurogenic proneural clusters (Geling et al., 2004; Scholpp et al., 2009). In both mouse and 

zebrafish, Hes/her genes are expressed in both embryonic progenitor subtypes (Hatakeyama 

et al., 2004; Stigloher et al., 2008) and aNSCs (Chapouton et al., 2011; Lugert et al., 2010; 

Stump et al., 2002). However, the relationship between Hes/her expression, the transition 

between NE and RGCs, and the neurogenic activity, as well as the role of these genes later 

during progenitor maturation remain to be determined in both species. 
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In the zebrafish, I demonstrated that the adult pallial germinal zone derives from the two 

different progenitor populations: the embryonic “proneural clusters” composed of neurogenic 

active progenitors that amplify throughout life to generate aNSCs of the dorso-medial 

pallium, and the NE “progenitor pools” located in the telencephalic roof plate at early stage. 

These NE cells contribute from juvenile stage onward including at adult stage to the 

generation of aNSCs of the lateral pallium (see Dev Cell publication – section 1). These two 

different modes of stem cells formation, physically segregated in the zebrafish pallium, raise 

several questions: (i) what are the steps involved in the emergence of pallial NSCs from 

embryonic progenitors, (ii) what are the signals involved in maintaining long-lasting neural 

progenitors, (iii) are these parameters comparable in the medial and lateral pallium, and (iv) 

how do they compare with the “classical” sequence known for progenitors during embryonic 

neurogenesis, described above.  

To start addressing these issues using the zebrafish pallium as a model, I will consider, in 

the dorsal pallium, the Notch-sensitivity of the embryonic and juvenile neural progenitors in 

link with progenitor maintenance and her4 expression (see Dev Cell publication – section 1). 

Next, by analyzing the late juvenile and adult lateral VZ, a site of continuous aNSCs 

formation in the zebrafish telencephalon (see Dev Cell publication – section 1), I will provide 

an overview of the different steps involved in progenitor maturation, and determine whether 

adult and embryonic processes are similars to generate RGCs.   

 

 

2.2 Results 

2.2.1 Heterogeneity of the dorso-medial progenitors regarding Notch 

maintenance at 1dpf 

Lineage tracing experiments of her4-positive embryonic progenitors of the zebrafish pallium 

indicate that, a some point during development, all the progenitors at the origin of the aNSCs 

of the zebrafish pallium express her4 (see Dev Cell publication – section1.4.6). Moreover, 

Notch inhibition at 2dpf as well as 15dpf indicates that her4-positive cells are maintained by 

the Notch pathway, at least from 2dpf onward (see Dev Cell publication – section 1.4.4 and 

1.4.6). However, it remains unclear whether her4 expression and Notch-dependent 

maintenance are always correlated in neural progenitors during development. 

We thus investigated whether Notch is required for the maintenance of her4-positive RGCs 

before 2dpf. To do so, I treated her4:ERT2CreERT2;ubi:switch double transgenic embryos 

with 4-OHT for 2 hours at 1dpf. Then, I treated the embryos with LY411575 for 6 hours at the 

high concentration of 50µM, and analysed the results at 5dpf (Figure 30A). 
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Interestingly, contrary to the massive depletion of her4-positive progenitors after a LY411575 

treatment at 2dpf (see Dev Cell publication, Figure 4E-G), only a subset of the progeny of the 

her4-positive cells at 1dpf is depleted at 5dpf after a LY411575 treatment at 1dpf (Figure 

30A). Indeed, compared to the control situation in which the ventricular zone is composed of 

proliferating cells, the absence of PCNA-positive cells in LY411575-treated fish was confined 

to the most medial part of the pallium, suggesting that only progenitors in this region 

differentiated (Figure 30A). This is in accordance with the results obtained with a similar 

treatment at 2dpf, indicating that at both 1dpf and 2dpf, Notch signaling maintains the most 

medial part of the embryonic ventricular zone. However, we noticed that a population of 

mCherry-positive/PCNA-positive cells is still present dorsally (Figure 30A – white star), 

adjacent to the mCherry-negative progenitors (that will later give rise to the lateral aNSCs 

population (see Dev Cell publication - section 1). The same LY411575 treatment on 

her4:GFP embryos indicates that some of the PCNA-positive cells maintained at the 

ventricular zone express her4 at 5dpf (Figure 30B – yellow arrow), and treating  gfap:GFP 

embryos further shows that some of them are glial cells as they express GFP (Figure 30C – 

magenta arrows). These results could indicate that whithin the her4-positive telencephalic 

progenitors at 1dpf, the most medial her4-positive progenitors are maintained by the Notch 

pathway, whereas the most dorsal her4-positive progenitors are maintained independently of 

Notch signaling.  

 

These results highlight that, early during development, it might exist an heterogeneity within 

the dorso-medial RGCs cells regarding the implication of the Notch pathway on progenitor 

maintenance. 

 



149 
 

 

 

Figure 30: Only the most medial pallial progenitor population may be maintained by the Notch pathway at 
1dpf 

(A) Medial cross-sections of the telencephalon in her4
switchT(1dpf)

 larvae at 5dpf treated with DMSO or LY411575 

with magnification of the dorso-lateral VZ, immunostained as indicated. The white dotted line highlights the dorso-

medial/lateral pallial boundary, and the white star the dorsal mCherry-positive/PCNA-positive cells after LY411575 

treatment at 1dpf. 

(B) Medial cross-sections of the telencephalon of her4:GFP larvae at 5dpf treated with DMSO or LY411575 at 

1dpf with magnification of the dorso-lateral VZ, immunostained as indicated. The yellow arrows indicate the dorsal 

GFP-positive/PCNA-positive cells after LY411575 treatment at 1dpf. 

(C) Medial cross-sections of the telencephalon of gfap:GFP larvae at 5dpf treated with DMSO or LY411575 at 

1dpf with magnification of the dorso-lateral VZ, immunostained as indicated. The magenta arrows indicate the 

dorsal GFP-positive/PCNA-positive cells after LY411575 treatment at 1dpf. 
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2.2.2 Different progenitors at the ventricular zone reflect distinct maturation 

states 

We have shown in the Dev Cell publication that during development NE “progenitor pool” 

cells (Notch-independent and her4-negative) progressively generate lateral pallial aNSCs. 

Indeed, once induced, lateral RGCs display common features with the dorso-medial 

population – ie. her4-positivity and Notch-sensitivity- (Chapouton et al., 2010; März et al., 

2010b). These findings indicate that there is a maturation gradient of the embryonic NE 

progenitors toward the “aNSC state” and this seems to go through an activation of her4 

expression and the acquirement of the RG phenotype. In addition, we observed that a small 

population with “progenitor pool” features remains present all along life and participates in 

the generation of de novo aNSCs in the most postero-lateral part of the adult pallium (see 

Dev Cell publication – section 1.4.7). Thus, the lateral pallial VZ seems to be a good model 

to study the different steps necessary for the generation of mature aNSCs. We thus 

investigated the different progenitors present within the lateral population at 5dpf, 1mpf and 

3mpf, with the aim of getting a first overview of the different types of progenitors present at 

the VZ at different stages of late development.  

 

- Progenitor composition of the lateral pallial VZ at 5dpf 

In order to precisely determine the location of RG cells at the larval stage and confirm that 

they are absent from the lateral progenitor domain, I first analysed the expression of the GS 

marker at 5dpf in her4:ERT2CreERT2;ubi:switch double transgenic embryos recombined at 

1dpf. GS is not expressed in the mCherry-negative population (Figure 31A – white stars), 

indicating that only the dorso-medial progenitors display RG features. At 5dpf, all lateral 

neural progenitors would thus correspond to NE cells. Interestingly, we demonstrated that at 

this stage, her4-expression is already induced in the most dorsal part of the lateral VZ (see 

Dev Cell publication – section 1.4.6), thus indicating that already at 5dpf, the lateral 

progenitor population is heterogenous with GS-negative/her4-positive progenitors close to 

the dorso-medial population and GS-negative/her4-negative progenitors at the edge of the 

VZ. 

 

- Progenitor composition of the lateral pallial VZ at 1mpf and 6mpf 

As her4-positive RG cells are generated later than 5dpf in the lateral VZ, we analysed 

precisely her4 expression at the postero-lateral edge of the late juvenile and adult VZ using 

her4:GFP fish. We already demonstrated that in the region of the adult pallium, NE cells are 

present at the boundary between the tela-choroïda and the lateral VZ and this population 

would be responsible for generating her4-positive RGCs (see Dev Cell publication – section 
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1.4.7). Interestingly, comparison of GS and GFP expression in the her4:GFP juvenile at 1mpf 

and 3 months indicate that a her4-positive/GS-negative population is always present abuted 

to the RGCs (Figure 31B – yellow star and line), and located between the NE “progenitor 

pool” cells (PCNA-positive/her4-negative/GS-negative) (Figure 31B – magenta star) and the 

activated RGCs (PCNA-positive/her4-positive/GS-positive populations) (Figure 31B – white 

star and line).  

 

Altogether, these results highlight that, at all juvenile and adult developmental stages, the 

same potential gradient of maturation necessary for the generation of aNSCs is present at 

the postero-lateral edge of the pallial VZ: first, NE “progenitor pool” cells expressing her6 

and/or her9 (see Dev Cell publication – section 1.4.4), then, her4-positive NE cells, and 

finally her4-positive RGCs that will become mainly quiescent (Chapouton et al., 2010; März 

et al., 2010b).  
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Figure 31: Several types of progenitors reflecting different maturation states are present at the postero-
lateral edge of the pallial VZ 

(A) Medial cross-sections of the telencephalon in her4:switch
T(1dpf)

 larvae at 5dpf, immunostained as indicated. 

White dotted line highlights the dorso-medial/lateral pallial boundary, and white stars the GS-negative/mCherry-

negative/HuC/D-negative cells. 

(B) Posterior cross sections focusing on the lateral edge of the juvenile (left panel) and adult (right panels) VZ in 

her4:GFP fish immunostained as indicated. The white arrow and line highlight the GS-positive/her4-positive 

population. The yellow arrow and line highlight the GS-negative/her4-positive population. The magenta arrow 

indicates the GS-negative/her4-negative cells. The white dotted line highlights the ventricular zone. 
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2.3 Conclusion and preliminary discussion 

In this section, I addressed the question of the maturation of the neural progenitors at the 

origin of aNSCs. For this, I both reanalyzed existing data (Dev Cell article) and added new 

experiments, which together suggest that (i) differences may exist between the dorso-medial 

and the lateral VZ regarding the acquisition of a Notch-dependent maintenance, and (ii) in 

the lateral VZ, a gradient of progenitor maturation takes place with different steps running 

from the NE “progenitor pools” to the her4-positive RGCs through a NE her4-positive state 

(Figure 32).  

 

- The maintenance of the dorsal RGCs might be Notch-independent  

The Notch inhibition experiments reported here suggest that, among the her4-positive 

embryonic population at the origin of the dorso-medial VZ, the most dorsal progenitors 

display a Notch-independent phase at early larval stages, whereas the most medial VZ is 

depleted upon Notch inhibition. Similar treatments at 2dpf lead to different results with a 

massive depletion of the entire her4-positive population (see Dev Cell publication – Figure 

4F). Thus, changes in Notch dependency may take place in dorsal progenitors between 

these two stages. In addition, we already demonstrated that Notch inhibition at 15dpf, leads 

to the depletion of both medial and dorsal progenitors (see Dev Cell publication – Figure 6C). 

Altogether, these results suggest that dorsal progenitors become Notch-dependent from 2dpf 

onward, whereas the medial population is maintained by the Notch pathway from at least 

1dpf.   

It has already been shown that her4 expression is regulated by Notch in the early embryo as 

overexpression of NICD leads to ectopic her4 expression (Takke et al., 1999). In our 

experiment, the differential Notch dependence of the her4-positive progenitors raises the 

question of the potential regulation of her4 expression by other signaling pathways than 

Notch at very early embryonic stages. In the mouse, Hes5 expression has always been 

associated with the Notch pathway and is considered as the most faithfull read-out of Notch 

activity. It was shown that, very early during embryonic development, some Hes genes start 

to be expressed independently of Notch signaling , but this particular regulation was reported 

only for Hes3 and Hes1, while Hes5 expression was associated with the expression of Notch 

signaling components (Hatakeyama and Kageyama, 2006). However, whether the initiation 

of Hes5 expression in the neural plate was truly dependent on Notch signaling was not 

directy tested. In zebrafish, similar Notch independent regulation of non-canonical her genes 

has been reported, eg. for her3 (homologous to the mammalian Hes3), her5 (Geling et al., 

2003) and her9 (homologous to the mammalian Hes4) (Bae et al., 2005; Hans et al., 2004). 

Concerning her4 expression, no particular Notch-independent regulation was reported so far. 
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her4 expression is initiated at 70% epiboly and further extends to different “proneural cluster” 

domains within the neural plate (Takke et al., 1999). The functional evidence for her4 being a 

Notch target relies on electroporation experiments of NICD that activate ectopic her4 

expression at the neural plate stage (Takke et al., 1999). However, while this demonstrates 

that Notch signaling is sufficient to activate her4, it does not show that it is necessary for its 

initiation in the neural plate. My observations constitute only preliminary results and much 

work remains to be done. First, we would need to analyse her4 expression at around 30hpf, 

the end of the LY treatment performed at 1dpf; if her4 is expressed in the dorsal progenitors 

at the end of the treatment, it would confirm that its expression could be independent of 

Notch signalling and the signals involved in maintaining the dorsal progenitors could go 

through the Her4 factor. In this case, the specific inhibition of her4 expression would confirm 

whether or not Her4 is itself responsible for maintaining this population. Moreover, it could be 

interesting to investigate the dynamics of Notch pathway components expression in the 

dorso-medial region and determine whether a subpopulation of the dorsal-medial region 

does not express any Notch3 or Notch1 receptors at 1dpf even though her4 is present in the 

population; the latter would emphasize the presence of Notch-independent her4 expression.  

Second, it would be interesting to investigate whether, as for the “boundary” populations, 

some dorso-medial progenitors are maintained by positional cues. We can notice that the 

dorsal progenitors is the population abuted to the roof plate in the very early embryo (at 

1dpf), we could thus hypothesize that some signals coming from this region are responsible 

from maintaining the dorsal progenitors. By the growth of the pallium and the eversion 

process, the distance between this population and the roof plate deriving cells increase and 

this could trigger the appearance of Notch sensitivity in the dorsal population. Whether BMP, 

FGF or Wnt signaling, present in the roof plate, play a role in maintaining the dorsal pallial 

progenitors and/or in initiating her4 expression in this population would be interesting to test.  

If her4 is not involved in maintaining the dorsal population, we could also address whether 

other Notch-independent her genes are expressed specifically in the dorsal progenitors. We 

already know that her6 and her9 are not expressed in this population as they are present 

only in the roof plate (see Dev Cell publication – Figure 4B), and her5 is only expressed at 

the midbrain-hindbrain boundary at 1dpf (Geling et al., 2003, 2004). her15 has been shown 

to be expressed in the neurogenic progenitors but its expression is dependent on Notch 

signaling (Bae et al., 2005); but we could investigate whether her12 or her2, normally 

expressed in proneural clusters, could be differentially expressed between dorsal and medial 

populations, as their Notch-dependency has not been clearly demonstrated yet.   

Then, whether the presence of Notch-independent her4 expression can be generalized to the 

medial progenitors remains to be addressed. We did not observe any her4-positive 

progenitors maintained independently of the Notch pathway when we performed the 



155 
 

treatement at 1dpf; however, this progenitor state could be present earlier during 

development. Thus, the experimental inhibition of Notch signaling should be perfomed earlier 

than 1dpf to address this point. If we consider this possibility, it would mean that the Notch-

dependent maintenance is generally acquired after her4 expression in dorso-medial 

progenitors (Figure 32).  

Finally, NE progenitors compose the very early neural plate and the stage at which the 

transition toward RG cells occurs in the dorso-medial presumptive domain remains unclear. 

Indeed, we do not report the presence of NE cells in the dorso-medial population from 1dpf 

onward. Analysis of the glial markers by taking advantage of the gfap:gfp fish line or by 

performing in situ hybridization for blbp at 1.5dpf, indicate that both markers are expressed in 

the embryonic pallium and excluded from the roof plate. But it is interesting to note that 

contrary to gfp expression in the gfap:gfp line which is broadly expressed in the dorsal 

telencephalon, blbp seems to be restricted to the most medial population and its expression 

is not as large as gfap (see Dev Cell publication – Figure S4D). This suggests that within the 

dorso-medial domain, the heterogeneity whithin the glial population could reflect different 

maturation states also in this population, and highlight that even though all the progenitors 

have already undergone their transition toward a glial state at that stage, the medial and the 

dorsal population remain different. This could be reminiscent of the progressive acquisition of 

glial features reported in the mouse pallium (Anthony et al., 2004). A more acute analysis of 

the morphology and the different glial markers expression, as well as her4 expression, could 

help us to determine when both dorsal and medial populations acquire glial features and 

whether this is correlated with the appearance of her4 expression in the dorso-medial 

population.  

 

In the lateral domain, which is formed late during development, we observed that lateral 

progenitors also become Notch-dependent. However, when we performed the LY411575 

treatment at 15dpf, her4-positive and her4-negative ventricular cells were depleted except a 

minute population of NE cells at the postero-lateral edge of the pallial VZ. This means that 

contrary to the dorso-medial VZ of the early embryo, both her4-positive and some her4-

negative lateral progenitors are maintained by the Notch pathway; indicating that the Notch-

dependent maintenance may be acquired before her4 expression in these lateral 

progenitors. This highlights that the lateral and dorso-medial progenitors seem to mature 

differently, emphasizing the different features of the two domains.  
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- The different lateral progenitors could reflect the steps necessary for adult neural 

stem cells formation 

The other major piece of information that these preliminary results highlight is the different 

progenitor subtypes that are present at the adult lateral VZ and that could represent the 

different steps necessary to generate mature aNSCs. Indeed, we report here that, both 

during development and in the adult, the same series of progenitor subtypes – ie. first, non-

glial her4-negative progenitors, then, non-glial her4-positive progenitors, and finally, glial 

her4-positive progenitors – is present at the postero-lateral edge of the pallial VZ (Figure 32).  

The transition from NE to RGCs corresponds to what is commonly admitted as how the 

progenitors change over time during development. However, no clear link has been made so 

far between her4/Hes5 expression, and the NE/RG transition. Correlations in terms of timing 

suggests that Hes5 activation in the mammalian central nervous system is related to the 

appearance of RG phenotype (Hatakeyama and Kageyama, 2006); but no double labelling of 

RGCs and Hes5 expression has been performed in the mouse embryo so far. In the 

zebrafish, her4 expression is induced at early stage in progenitors composing the neural 

plate (Takke et al., 1999), but, as discussed above, when this occurs compared to the NE to 

RG transition remains unclear in the dorso-medial pallium. In the lateral progenitor 

population, it seems that only non-glial her4-positive and her4-negative cells are present at 

larval stage but the precise timing of the apperearence of glial features in the lateral 

progenitors would be interesting to address to really understand the delay between the 

emergence of RGCs and her4 expression in lateral progenitor maturation. 

Interestingly, the NE to RG transition is considered so far as an exclusively embryonic step 

(Anthony et al., 2004). We report here that, the same series of progenitors in the late juvenile 

and adult postero-lateral VZ (Figure 32). The lineage tracing experiments we conducted 

previously already suggested that this pallial region is an adult site of aNSCs formation (see 

Dev Cell publication – section 1.4.7). Altogether, this indicates that in a mature brain, these 

different progenitor states co-exist and could highlight adult sites of NSCs formation in the 

zebrafish pallium. Clonal lineage tracing experiment of each progenitor type in the embryo 

and in the adult would be necessary to clearly demonstrate the hierarchy and the neurogenic 

activity of all these different cells; in particular to determine what are the potential difference 

between the NE cells found in the adult and in the embryo. As an example, we do not report 

any her6 expression in the NE cells located in the postero-lateral edge of the adult VZ 

whereas this gene is expressed in the embryonic roof plate (see Dev Cell publication – 

Figure 4B). Moreover, whether such a series exists in other zebrafish adult brain regions and 

in the mammalian adult brain remain to be determined.    
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Finally, the acquisition of her4 expression seems to be correlated with neurogenic activity in 

the larval and juvenile lateral progenitors. Indeed, her4 expression appears at 5dpf in the 

lateral progenitors, a stage before which no lateral neurons are present (see Dev Cell 

publication – Figure 5B-S5C), and no lateral RGCs are reported, indicating that NE cells 

seems to have a neurogenic activity in the lateral developing domain (Figure 32).  

 

To conclude, the dorso-medial and lateral aNSCs derive from two distincts embryonic neural 

progenitor populations with different modes of stem cell formation. Even though some steps 

are similar regarding progenitor maturation such as the acquisition of her4 expression and 

the Notch-dependant maintenance, it seems that they do not arise with the same order in the 

two progenitor populations, with Notch dependency appearing before her4 expression in the 

lateral progenitors whereas in the dorso-medial population, her4 seems to be expressed prior 

to the emergence of Notch-dependent maintenance. Moreover, the hierarchy of the NE/RG 

transition, the neurogenic activity, and her4 expression acquisition seems to be different 

regarding the pallial VZ region, with neurogenic activity correlated with her4 expression in the 

lateral NE cells, whereas it remains to be clarified whether her4 expression is related to the 

NE/RG transition and appears before of after the neurogenic activity in the dorso-medial 

domain.  
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Figure 32: Working model of the neural progenitor maturation of the dorso-medial and lateral VZ  

In the dorso-medial VZ, maturation steps occur at early embryonic stages: some NE cells (NE - green) acquire 

her4 expression (red) but whether these cells remains NE cells ((a) NE –green/red) or become RGCs ((b) RGCs 

–green/red) remains unclear. Later, they start to be maintained by the Notch pathway, at least for the dorsal 

progenitors. It is still difficult to determine whether the neurogenic competence arises with the Notch dependency 

or with her4 expression acquisition in this domain.  

In the lateral VZ, the same progenitor series as (a) is visible at juvenile and adult stages but the presence of her4-

positive NE cells (NE – dark blue/red) is clear; however, the Notch-dependent maintenance seems to arise before 

her4 expression (NE – dark blue/red), the latter correlating with the emergence of neurogenic activity.  

Finally both lateral and dorso-medial progenitors generate her4-positive, Notch-sensitive radial glial cells (RGC – 

dark blue/red).  
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3 Pallium construction 

3.1 Introduction 

The pallium corresponds to the dorsal part of the telencephalon and hosts the brain regions 

responsible for higher cognitive functions. In mammals, it contains the isocortex responsible 

for the integration of environnemental inputs and generation of appropriate behaviors, the 

hippocampus at the origin of the spatial learning and memory, and the piriform cortex 

involved in the olfactory system (Kandel et al., 2000).  

The isocortex is composed of six layers with an inside-out organization, ie. the youngest 

neurons are located in the most superficial layers of the cortex. This organization is made 

possible first, by the scaffold formed by the RGCs. They possess a long radial process and 

guide neurons during their radial migration toward the pial surface (Kriegstein and Alvarez-

Buylla, 2009). Second, the Cajal-retzius cells, the first neuronal population present in the 

marginal zone of the cortex, send signals to also guide this radial migration (Pierani and 

Wassef, 2009)(Bielle et al., 2005).,The hippocampus is a small structure that develops 

medially and caudally to the isocortex from a small cortical region abutting the cortical hem, 

an organizing center that orchestrates hippocampal formation (Yu et al., 2014). Contrary to 

the isocortex, it is composed of a single pyramidal cell layer that is submitted to changes 

during development in order to create different fields, the cornus ammonis (CA) and the 

dentate gyrus, which hosts adult hippocampal neurogenesis (Zhao et al., 2008).  

Unlike in mammals, little information is available on the organization of the pallium in 

zebrafish. The zebrafish pallium develops following an eversion process leading to the 

positioning of the VZ, which contains the progenitor cell bodies, at the surface of the pallium 

(Adolf et al., 2006; Braford, 2009). The ventricle is closed by a stretching sheet of cells, the 

tela choroida, attached to the lateral pallium (Nieuwenhuys, 2009). The pallium in organized 

in nuclei (and not morphological layers), a structuration mode often found in non-mammalian 

brains (Braford, 2009; Medina and Abellán, 2009). Based on morphological features, a 

regionalization of the zebrafish pallium has been proposed, with the medial pallium (Dm), the 

dorsal pallium (Dd), the central pallium (Dc), the lateral pallium (Dl) and the posterior pallium 

(Dp); however, due to the complex morphology of the zebrafish pallium, homologies of these 

different regions with mouse pallial domains is still unclear (Braford, 2009). Based on 

functional experiments using brain lesions in the goldfish, it is nevertheless commonly 

accepted that the lateral pallium hosts the zebrafish hippocampus-like structure (Vargas et 

al., 2006), and that the medial pallial domain (Dm) is homologous to the amygdala 

(Portavella et al., 2004). The latter is emphasized by recent experiments performed in the lab 
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demonstrating the activation of the Dm domain in drug-seeking conditions (von Trotha et al., 

2014).  

I was interested in investigating how the adult zebrafish pallium is organized and 

progressively built during development. I already demonstrated that the late formation of the 

lateral pallial NSCs leads to an heterochrony in the formation of the dorso-medial and lateral 

pallial areas (Dev Cell publication - section1). In addition to informing us on the embryonic 

origin of aNSCs, the tracing approaches used in this article allowed us to get information on 

how the zebrafish pallial neuronal compartments are built during development and organized 

at adult stage. Moreover, to get an overview of the contribution of the different parts of the VZ 

to the building of the zebrafish pallium, I coupled the re-examination of the her4-positive cells 

lineage tracing experiments with the lineage tracing of a subpopulation of the her4-

progenitors, highlighted by CreERT2 expression in the TP1Glob:CreERT2 fish line. The 

TP1Glob synthetic promoter is composed of several Notch responsive elements (RPBJ-

binding sites) that should activate CreERT2 expression in the Notch-activated cells (Ninov et 

al., 2012). Preliminary results in the laboratory indicate that this promoter is not a faithful 

Notch reporter in the brain (unpublished data); however, it did identify a subset of her4-

positive progenitors, allowing us to subdivide the population. These approaches together 

allowed me to get a first overview of the generation time of the different pallial neurons, and 

how they are spatially distributed within the zebrafish pallium.  

 

3.2 Results 

3.2.1 Lineage tracing of her4-positive cells at several time points during 

development reveal how pallial neurons are organized, and the timing of 

their generation 

We previously compared mCherry expression in her4switch fish treated with tamoxifen at 

different stages up to 4.5dpf, and observed that the ventricular mCherry expression 

boundaries were the same in all these treatments, indicating that there is no de novo her4 

induction in progenitors at the origin of the pallial aNSCs up to 4.5dpf (see Dev Cell 

publication – section 1.4.4). Contrary to the ventricular region, the neuronal mCherry-positive 

compartment changes depending on the 4-OHT treatment stage. Indeed, in adult her4switch 

fish recombined as embryos between 1ss and 10ss, the large majority of medial pallial 

neurons express mCherry, but, in contrast, in adult fish recombined as embryos at 1dpf or 

2dpf, some pallial neurons (expressing the neuronal marker HuC/D, not shown) located in 

the most ventral part of the pallium, at the pallial-subpallial boundary, do not express 

mCherry (Figure 33A). Thus, these neurons would be generated from her4-positive 
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progenitors between 1ss and 10ss. By analyzing the different ventral mCherry pallial 

boundaries of her4switch fish treated at 5dpf and 15dpf, we can observe a dorsal shift of 

mCherry expression: the later the 4-OHT treatment is performed in her4switch fish, the more 

dorsal the adult mCherry boundary is located in the dorso-medial domain. Analysis of the 

progeny of her4-positive cells at 15dpf indicates that only the most dorsal part of the dorso-

medial pallium expresses mCherry in the adult (Figure 33B). This region is thus formed 

between 15dpf and 3mpf. This highlights that, in the dorso-medial domain, the neurons pile 

up during development and are thus organized in the adult in sort of “layers” reflecting their 

timing of generation. Concerning these recombinations at 15 dpf, it is worth noting that 

although we did not observe any mCherry-positive cell body in the most central part of the 

pallium, we can clearly see mCherry expression in the parenchyma which corresponds to the 

neuronal tracts of the mCherry-positive neurons possibly coming from the dorsal pallial 

neurons (Figure 33B). 

Concerning the lateral pallium, it originates from progenitors that start to express her4 

progressively from 5dpf onward, as the mCherry expression is detected in the lateral 

neuronal compartment of her4switch fish only when the treatment is performed after 5dpf (see 

Dev Cell publication – section 1.4.6). We already mentioned that a treatment of her4switch fish 

at 5dpf labels the first third of the lateral pallial ventricular zone (see Dev Cell publication – 

section 1.4.6). Analysis of the lateral neuronal compartement in such fish indicates that a 

large lateral domain expresses mCherry (Figure 33B – green stars and lines), with a shape 

similar to the clones described in the experiment using the brainbow system (see Dev Cell 

publication – section 1.4.2); thus, this neuronal population derives from a very restricted 

number of lateral embryonic progenitors. Interesingly, when we compare the dorso-lateral 

pallial region in the her4switch, T(5dpf) and in the her4switch, T(15dpf), we observe that mCherry 

expression is similar (Figure 33B – green stars and lines), whereas the most intermediate 

part of the lateral domain expresses mCherry only after a treatement at 15dpf (Figure 33B – 

magenta stars and lines). Interestingly, analysis of her4switch treated at 1dpf, in order to 

visualize the dorso-medial/lateral pallial boundary, and treated later at 1.5mpf shows that a 

thin layer of neurons borders the lateral ventricular zone (Figure 33C), and that some ventro-

lateral neurons are for the first time recombined in the pallium (Figure 33C – white circles). 

Altogether, this indicates that the vast majority of the lateral pallial neurons are formed 

between 15dpf and 1.5mpf with only the most superficial and ventro-lateral part of the pallium 

formed after 1.5mpf, and that they seem to be organized in the same way than in the dorso-

medial domain, ie. they pile up with the youngest neurons located dorsally.  

We can thus conclude, even though the generation of the dorso-medial and lateral pallial 

neuronal domains is heterochronic (see Dev Cell publication – section 1.4.5), that these 
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domains seem to be organized in the same way with “layers” reflecting the neuronal 

generation timing. 
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Figure 33: Pallial neurons pile up during development in both the dorso-medial and lateral domains.  

(A) Adult fate of progenitors expressing her4 between 1ss and 10ss (her4
switch, T(1ss-10ss)

), 1dpf (her4
switchT(1dpf)

) or 

2dpf (her4
switch,T(2dpf)

): respective cross-sections of adult telencephali immunostained as indicated. White lines 

indicate the mCherry-positive boundary of the neuronal dorso-medial pallial compartment observed after 

recombination at different stages.  

(B) Adult fate of progenitors expressing her4 at 5dpf (her4
switch, T(5dpf)

) or 15dpf (her4
switchT(15dpf)

): respective cross-

sections of adult telencephali immunostained as indicated. White lines indicate the mCherry-positive boundary of 

the neuronal dorso-medial pallial compartment observed after recombination at different stages. The green and 

magenta stars and lines highlight respectively the population of neurons generated from lateral progenitors 

starting to express her4 at 5dpf and 15dpf.  

(C) Adult fate of progenitors expressing her4 at 1dpf and 1.5mpf (her4
switch, T(1dpf)+ T(1.5mpf

): respective cross-section 

of adult telencephalon immunostained as indicated. The white line indicates the mCherry-positive boundary of the 

lateral neuronal pallial domain observed after recombination at 1.5mpf, and the dotted white line the hypothetical 

mCherry-positive boundary of the dorso-medial neuronal pallial domain. The green line highlights the dorso-

medial/lateral pallial boundary.  

The white arrowhead indicates the end of the glial VZ and the straight white bar the position of the lateral sulcus. 

Y: sulcus ypsiloniformis. The yellow line indicates the pallial-subpallial boundary. White circles highlight the 

isolated mCherry-positive neurons. 

 

 

3.2.2 Lineage tracing experiments of CreERT2-positive cells in the 

TP1Glob:CreERT2 fish line at 1dpf reveals a dorso-medial subdivision  

Lineage tracing of the her4-positive progenitors at different time points allowed us to 

determine the general contribution of the different neurogenic progenitors to the formation of 

neuronal pallial compartments during development. However, as her4-progenitors contribute 

from very early stages to the formation of the dorso-medial domain, it does not help us 

understand the specific contribution of the different parts of the dorso-medial ventricular zone 

to pallium development. I thus investigated the contribution of a subpopulation of dorso-

medial progenitors by taking advantage of the TP1Glob:CreERT2 line, the promoter of which 

is composed of several Notch responsive elements (RPBJ-binding sites) (Ninov et al., 2012). 

Indeed, analysis of the CreERT2 expression at 1dpf indicates that only a subset of her4-

positive cells express the CreERT2 transgene in this line. Specifically, the cell population 

expressing both her4 and CreERT2 is located in the dorso-medial part of the embryonic 

telencephalon and is not in contact with roof plate cells (Figure 34). We thus investigated the 

contribution of this CreERT2-positive dorso-medial subpopulation to the adult germinal zone. 
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Figure 34: Only a subset of her4-positive cells express CreERT2 in the TP1Glob:CreERT2 line at 1dpf 

Compared expressions of her4 and creERT2 along the posterior telencephalic ventricle at 1dpf, in a 

TP1Glob:CreERT2 fish embryo, revealed by fluorescent ISH. Frontal single confocal planes are shown. Yellow 

dotted lines highlight the CreERT2-positive telencephalic domain and the magenta dotted line indicates the 

boundary with the roof plate. Plain lines : ventricle; Te: telencephalon. 

 

 

In order to determine the adult progeny of the early embryonic CreERT2-positive cells of the 

TP1Glob:CreERT2 fish at 1dpf, I performed a 24-hour 4-OHT treatment on 

TP1Glob:CreERT2; ubi:switch double transgenic fish (hereafter called TP1Globswitch) at 1dpf 

and analysed the pallial mCherry expression at the adult stage (see Dev Cell publication for 

the procedure – section 1.6.2). Contrary to the results obtained with the her4:ERT2CreERT2 

line, the ventricular mCherry expression is restricted to the most medial part of the dorso-

medial domain in TP1Globswitch, T(1dpf) fish (Figure 35 A), indicating that CreERT2 is expressed 

in the progenitors at the origin of the medial population of adult neural stem cells of the 

dorso-medial pallium. Thus, this experiment allows us to investigate the contribution of the 

medial ventricular zone to the generation of pallial neuronal compartments. By analyzing 

mCherry expression in the parenchyma, we observed that it is confined to the most medial 

and ventral parts of the dorso-medial pallium and thus separates the dorso-medial pallium 

into two territories (Figure 35 A, green line). It is worth noting that the medial VZ (Dm VZ) 

does not seem to generate the entire central part of the pallium (Figure 35 A-B, Dc domain). 

Indeed, we can clearly observe that a small region of the central pallium is mCherry-negative 

in the TP1Globswitch, T(1dpf) adult fish (Figure 35 A-B, yellow or black double stars), whereas 

this region expresses mCherry in the her4switch, T(1dpf), indicating that this domain likely derives 

from the dorsal VZ of the dorso-medial domain.  
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Figure 35: TP1-positive cells at 1 dpf generate the medial ventricular zone and most of the central 
parenchyma 

A: Adult fate of progenitors expressing her4 (her4
switchT(1dpf)

) or TP1 (TP1
switchT(1dpf)

) at 1dpf, dorsal view at the top 

and respective cross-sections of adult telencephali at the bottom, immunostained as indicated. White dotted lines 

indicate the pallial/subpallial boundary and the green dotted line the dorso-medial/lateral boundary.  

The white arrowhead indicates the end of the glial VZ and the straight white bar the position of the lateral sulcus. 

The yellow double stars indicate the central pallial domain (Dc) that does not derive from the medial ventricular 

zone (ventricular part of Dm).  

B: Right hemisphere of adult zebrafish telencephali at the level indicated in red in the lateral view of the entire 

adult zebrafish telencephalon, with only the commonly admitted pallial regionalization (left), or with the pallial 

regionalization combined with the progeny of the TP1-positive cells at 1dpf (TP1
switchT(1dpf)

) highlighted in green. 

The boundary separating the dorso-medial and lateral domains is highlighted in pink. The black double stars 

indicate the central pallial domain (Dc) that does not derive from the medial ventricular zone (ventricular part of 

Dm).  

Dp: area dorsalis telencephali pars posterior, Dl: area dorsalis telencephali pars lateralis, Dd: area dorsalis 

telencephali pars dorsalis, Dm: area dorsalis telencephali pars medialis, Dc: area dorsalis telencephali pars 

centralis. Y: sulcus ypsiloniformis. SbP: subpallium 

 

Altogether, these results demonstrate that both dorsal and medial parts of the ventricular 

zone participate in the formation of the central pallium of the zebrafish telencephalon and 

generate two different juxtaposed territories within the dorso-medial pallial domain.  

 

 

3.3 Conclusion and preliminary discussion 

Analysis of the progeny of progenitors expressing her4 at different time points allowed us to 

determine that the pallial aNSCs are generated in different waves from distincts progenitor 

populations. So far, we focused on the formation of the progenitors but the genetic strategy 

we adopted allowed us also to get new information on how the pallium is compartmentalized. 

I used two complementary approaches to investigate the relationship between pallial neurons 

and the pallial ventricular zone. On the one hand, I reexamined the results from the different 

lineage tracing experiments of her4-positive cells in order to get an overview of when the 

different pallial neurons were generated during development, and on the other hand, I 

performed the lineage tracing experiment of a subset of her4-positive cells, labeled by 

TP1Glob:CreERT2, in order to determine the relative contribution of the different part of the 

dorso-medial VZ to the pallial parenchyma.  
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- Contribution of the dorsal and medial VZ to parenchymal formation 

By focusing on parenchymal mCherry expression in the different experiments tracing her4-

positive progenitors, I concluded that, over time, the newborn neurons pile up in the dorso-

medial parenchyma. This allows identifying regions within the parenchyma and 

approximating the stage at which their neurons have been generated, thus highlighting the 

gradient of maturation of pallial neurons.  

First, I determined that the most central part of the pallium corresponds to the oldest pallial 

neuronal population, mainly formed before 5dpf (Figure 36 – pink, purple). It is interesting to 

note that even though this region is quite large, it seems to display a low density of neuronal 

cell bodies and a high quantity of fibers. This is in agreement with the timing of their 

generation as larvae up to 5dpf have a very small size and thus contain a small number of 

neurons that are very packed in the parenchyma at that stage. As the brain grows, new 

neurons generated by the VZ pile up, do not go deep in the parenchyma and develop new 

brain connections. Thus, a lot of neuronal fibers seem to invade the area and participate in 

the enlargement of the size of the central pallium.  

Second, during juvenile stages up to 15dpf, her4-positive progenitors seem to contribute only 

to the generation of the dorso-medial domain (Figure 36 – pink, purple, blue). This 

observation could be contradictory with the fact that her4 is induced in the lateral progenitors 

from 5dpf onward and that we observed already some lateral neurons at 5dpf and 15dpf (see 

Dev Cell publication – section 1.4.5). However, this corresponds to a very low number of 

neurons, and the analysis at 3mpf of lineage tracing experiments may not have the resolution 

required to visualize this population. A second explanation would be that we only performed 

this analysis at one anterior/posterior level of the telencephalon, and we cannot exclude that 

these progenitors contribute to the generation of a telencephalic neuronal population located 

at another antero-posterior level of the pallium or the subpallium. Third, we cannot exclude 

that these neurons are compacted along the mCherry boundary by a passive or an active 

mechanism. 

The other main finding emerging from these results concerns the contribution of the different 

parts of the VZ to the formation of the pallial parenchymal domain. Analysis of the adult 

progeny of CreERT2-positive cells in TP1Glob:CreERT2 fish at 1dpf indicates that the medial 

VZ mainly contributes to the formation of the central pallium (Figure 36 – white dotted line). 

Moreover, by making parallels between the mCherry expression profiles of TP1GlobswitchT(1dpf) 

and the her4switch recombined at different time points, we can conclude that the medial 

progenitors are the main contributors of embryonic pallial neuronal generation, as the dorsal 

VZ seems to contribute massively to the pallial neuronal domain only from 5dpf onward 

(Figure 36 – domain between the white dotted and red lines).  This highlights that, in addition 

to the heterochrony of development present between the lateral and the dorso-medial 
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domains (see Dev Cell publication - section1), there are differences within the dorso-medial 

domain itself: the medial and the dorsal progenitors do not contribute equally and at the 

same time to the generation of the dorso-medial neuronal compartment; thus, a heterochrony 

of development seems to be present also between the dorsal and medial compartments. 

 

- Contribution of the lateral VZ to parenchymal formation 

In agreement with our conclusions on the formation of lateral aNSCs of the pallium, the 

lateral neuronal domain is mainly formed between 15dpf and 1.5mpf whereas the majority of 

the dorso-medial domain is formed up to 15dpf (Figure 36 - green). Even though 

quantification of the number of neurons formed before and after 15dpf would be necessary to 

confirm this observation, this re-analysis of neuronal compartment formation emphasizes the 

heterochrony that exists in the formation of the two pallial neuronal domains.  

After 1.5mpf, the generated neurons compose the most superficial pallial neuronal layer of 

the lateral domain, as well as most of the ventro-lateral portion, corresponding to the latest 

pallial domain to be formed. Moreover, like for the dorso-medial domain, very little neuronal 

migration takes place in the lateral pallial parenchyma. This idea was already suggested from 

BrdU pulse/chase experiments at adult stage which showed that newly born BrdU-positive 

neurons acquire functional markers such as gad67 close to the ventricular zone (Adolf et al., 

2006), and this situation is similar in reptiles, with a short migration of adult-born neurons 

through the parenchyma (Pérez-Cañellas and García-Verdugo, 1996).  

The present study allows us to build a working model on the contribution of the different parts 

of the VZ to the development of neuronal compartments up to the adult stage. We report 

here that, similarly to the late juvenile- and adult-born neurons, the embryonic and larval 

neurons seem to stay close to their site of generation. Interestingly, comparison between the 

organization of the zebrafish pallial neuronal compartment and the mouse cortex highlights 

that, despite the different mode of neuronal generation with the everted VZ and the restricted 

neuronal migration, the general organization of both zebrafish and mouse neuronal domains 

is similar with the oldest neurons located in the inner layer and the youngest neurons being 

in the most supercifial position. Whether this has a functional significance remains to be 

determined.  

Moreover, it is important to keep in mind that the pallium, in addition to its planar 

organization, is also compartimentalized along the anterior/posterior axis and we already 

demonstrated that the lateral pallium derives from a very restricted number of progenitors 

that massively amplify and sequentially generate neurons with an antero-posterior 

orientation. This organization highlights that a gradient of antero-posterior growth also exists 

in the pallium. This working model can, at least, be reasonnably applied to the anterior 

pallium as the mCherry expression pattern of the different her4-positive lineage tracing 
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experiments is quite similar between the anterior and the medial pallium (not shown). We 

have shown that the postero-lateral pallium continues to generate aNSCs de novo in the 

adult (see Dev Cell publication - section 1.4.7) and thus would contain a higher proportion of 

“young” newborn neurons than the rest of the pallium. Nevertheless, lineage tracing 

experiments of progenitors differentially positioned along the A/P axis would be necessary to 

really get an overview of the timing of neuronal generation in the anterior versus posterior 

pallium. 

 

 

 

 

 

Figure 36 : Working model of the timing and spatial organization of pallial neuronal generation during 
development up to 1.5mpf 

Right hemisphere of an adult zebrafish telencephalon at the level indicated in red in the lateral view of the entire 

adult zebrafish brain, with the different neuronal generation timings emerging from the comparison of mCherry 

expression in the different lineage tracing experiments of her4-positive cells (correspondence between stages and 

colors as indicated). The mCherry parenchymal boundary of the TP1
switchT(1dpf) 

fish is highlighted by the white 

dotted line. The red line and the small black dotted line correspond to the dorso-medial/lateral pallial boundary 

respectively in the parenchyma and the ventricular zone. The black arrowhead indicates the lateral edge of the 

VZ. The black line highlights the position of the lateral sulcus. Pa:Pallium; SPa: Subpallium;Y: sulcus 

ypsiloniformis 
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CHAPTER III: DISCUSSION 

 

 

The work presented in this thesis aimed to identify the embryonic neural progenitor 

populations at the origin of the aNSCs of the zebrafish pallium. The first part of my PhD 

project was dedicated to performing the lineage tracing analysis of the actively neurogenic 

progenitors, characterized by her4-expression, using genetic strategies and analyzing their 

entire pallial progeny during development and at adult stage. The results obtained highlight: 

(i) the embryonic origin of the dorso-medial aNSCs, which derive from progenitors that 

continuously express her4 during development up to adult stage, (ii) the progressive her4 

activation from post-embryonic stages onward in progenitors at the origin of the lateral 

aNSCs. In a second step, I further characterized the embryonic progenitor population at the 

origin of the lateral aNSCs by combining clonal analyses with spatially restricted 

recombinations. The results obtained revealed that the lateral VZ of the adult pallium derives 

from NE progenitors expressing other her genes, such as her6 and her9, namely from 

« progenitor pools » progenitors located in the embryonic telencephalic roof plate. By 

performing pharmacological treatments with a -secretase inhibitor, I could test the role of the 

Notch pathway in regulating the maintenance of the lateral and dorso-medial neural 

progenitors along development. These results highlight that, while dorso-medial progenitors 

are maintained by Notch signaling from embryonic stages onward, lateral progenitors are first 

maintained independently of the Notch pathway and then generate progenitors that display a 

Notch-dependent maintenance.  

By combining these results with the timing of her4 expression in the dorso-medial and lateral 

progenitors and the analysis of the progenitor features such as their NE/RG nature and their 

neurogenic activity, we were able to compare the maturation steps of the two embryonic 

progenitor populations, which end up forming similar aNSCs.  

Finally, in addition to stem cells origin, these data provided general information on how the 

zebrafish pallium is built, with the position of adult-born neurons reflecting their birth date, a 

heterochony in the development of the medial, dorsal and lateral pallium. These data further 

provide information on homologies between zebrafish and mouse pallial areas, and 

particularly emphasize the homology of the lateral zebrafish pallium with the mammalian 

hippocampus.  
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1 Origin of adult pallial neural stem cells 

The lineage tracing approach we used for this work allowed us to determine that the 

embryonic origin and mode of formation of aNSCs diverge depending on the pallial region. 

First, pallial aNSCs derive from different embryonic neural progenitor populations: dorso-

medial aNSCs originate from early neurogenic progenitors located along the pallial posterior 

wall, while lateral aNSCs emerge from non-neurogenic embryonic progenitors located along 

the telencephalic roof plate. Second, this differential embryonic origin imprints differences 

regarding timing of progenitor activation and mode of stem cells generation. We will discuss 

below first the link between embryonic regionalization and adult pallial progenitor generation, 

in relation with the different lineage tracing experiments already done in the mouse system, 

and highlight the common features regarding aNSCs in the zebrafish and mouse adult 

neurogenic zones. Then, I will integrate the different results concerning the role of the Notch 

pathway and her4 expression in progenitor maintenance and neurogenic activity in the both 

dorso-medial and lateral VZ, and compare it with the key role of this pathway in mouse 

progenitors. And finally, I will discuss the different modes of pallial NSCs generation in the 

zebrafish, and analyze whether “adult sites of NSCs formation”, such as I revealed in the 

lateral pallium, could exist in other zebrafish brain regions, and in other vertebrates.  

 

1.1 Spatial contribution of embryonic neural progenitors to adult 

pallial neural stem cells heterogeneity 

1.1.1 The aNSCs of the dorso-medial pallium derive from her4-positive 

embryonic progenitors.  

Our genetic approach to lineage trace pallial her4-positive progenitors allowed us to precisely 

determine the subpopulation of embryonic progenitors at the origin of the pallial NSCs 

located in the adult dorso-medial domain. After a precise comparison of the endogenous 

her4 expression with ERT2CreERT2 expression in the her4:ERT2CreERT2 fish line and with 

some regional markers such as the subpallial marker gsh2 or the pallial neuronal marker 

tbr1, we were able to localize embryonic her4-positive pallial progenitors at the origin of the 

aNSCs of the dorso-medial pallium to the dorsal part of the posterior wall of the telencephalic 

ventricular zone (Figure 37A). In the mouse, lineage tracing of the pallial embryonic 

progenitors located at E10 within the Emx1-positive domain indicates that they contribute to 

the formation of the pallial aNSCs, as they participate to the adult dorsal SEZ formation 

(Willaime-Morawek et al., 2006; Young et al., 2007). In the mouse embryo, Emx1 is 

expressed from E12.5 until birth in pallial progenitors except in the ventral pallium  (Medina 

et al., 2004), and in the zebrafish, emx1 is also expressed in the embryonic telencephalon 
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and its activation starts at very early stage, 15-20ss (Kawahara and Dawid, 2002); it could be 

interesting to compare ventricular emx1 and her4 expression in the embryonic zebrafish 

telencephalon to determine whether emx1 expression characterizes a subpopulation among 

her4-positive progenitors that could correspond to the progenitors at the origin of the region 

homologous to the dorsal SEZ.  

The lineage tracing experiment that we performed using the TP1Glob:CreERT2 fish line 

allowed us to subdivide the her4-positive embryonic VZ into two progenitor populations: the 

progenitors that generate the medial aNSCs, and the progenitors, located between the 

medial population and the roof plate, which generate the dorsal aNSCs. However, it is still 

unclear to which mouse pallial embryonic regions these embryonic progenitors are 

homologous to, and comparison of emx1 with CreERT2 expression in the TP1Glob:CreERT2 

line could also help us refine the embryonic ventricular regionalization and progenitor 

population at the origin of aNSCs.  

 

1.1.2 Further parallels between the embryonic origin of the mouse SEZ and 

the zebrafish adult VZ  

In addition to Emx1 lineage tracing, the contribution of Dbx1-positive, Gsh2-positive and 

Nkx2.1-positive progenitors to the adult mouse SEZ has been reported (Young et al., 2007). 

Dbx1 is expressed in the mouse embryonic telencephalon at the pallial-subpallial boundary 

and in the septum, and the Dbx1-positive cell population contributes to the regionalization of 

the embryonic cortical area via the production of Cajal-retzius cells (Griveau et al., 2010). In 

the zebrafish, both dbx1a and dbx1b are not expressed in the embryonic telencephalon but it 

is expressed in the intermediate compartment of the spinal cord (Gribble et al., 2007), 

suggesting that in the zebrafish spinal cord as well, it is important for the development of the 

intermediate compartment. It is worth noting that the lineage tracing experiment performed in 

the mouse telencephalon is not based on an inducible genetic strategy, and thus does not 

allow determining precisely whether an early or late Dbx1-positive population is at the origin 

of the dorso-lateral SEZ. We cannot exclude that dbx1 would be expressed later in 

progenitors at the origin of some part of the adult telencephalic VZ in the zebrafish. 

Establishing precise expression data and then lineage tracing experiments would be 

necessary to investigate this question.  

The Gsh2 and Nkx2.1 subpallial markers are expressed in progenitors generating the lateral 

and ventral SEZ (Young et al., 2007). Our analysis of her4 expression indicates that it is 

expressed in the embryonic subpallial progenitors of the zebrafish telencephalon; however, 

the her4 promoter fragment used to generate the her4:ERT2CreERT2 line does not drive a 

Cre expression similar to the endogenous her4 expression pattern in the subpallial 
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compartment, preventing us from analyzing the contribution of the subpallial embryonic 

progenitors to the adult telencephalic ventricular zone.  

The mouse SEZ generate neuroblasts that migrate towards the olfactory bulb to generate 

olfactory interneurons (Kriegstein and Alvarez-Buylla, 2009).  Lineage tracing of Gsh2- and 

Emx1-positive cells indicated that both contribute to the generation of progenitor populations 

that produce the rostral-migratory stream (RMS) neuroblatsts (Young et al., 2007), 

highlighting that both pallial and subpallial progenitors contribute to the RMS. Interestingly, in 

the zebrafish, a RMS-like stripe that reach the olfactory bulb has been described with non-

glial/PSA-NCAM-positive dividing cells (März et al., 2010b). However, our lineage tracing 

experiments of her4-positive cells during development have never indicated a contribution of 

the her4-positive population to the RMS-like stripe cells. Moreover, in the adult 

telencephalon, these cells express her9 (Chapouton et al., 2011), indicating that possibly, 

neuroblasts of the RMS-like stripe in the zebrafish could derive from embryonic her9-positive 

progenitors without going through a her4-positive cell state.  

In addition to regional markers in the mouse, lineage tracing experiments indicate that Shh-

responding cells (Gli1-positive cells) at E15 (Ahn and Joyner, 2005), as well as cells 

responding to Wnt signaling (Axin2-positive cells) at E12.5 (Bowman et al., 2013), contribute 

to the emergence of the adult SEZ in mouse. The role of Wnt signaling in the development of 

the mouse pallium has been reported as it participates in the patterning of the embryonic 

pallium but also promotes the proliferation of cortical progenitors during development (Bielen 

and Houart, 2014). Similarly, in the zebrafish, wnt8b has been shown to promote formation of 

the pallial compartment at the expense of subpallium in the telencephalon by participating in 

the dorsal inhibition of foxg1 expression at early stages of development (Danesin et al., 

2009). Thus, potentially, some Wnt-responding cells could participate in the formation of the 

dorso-medial VZ in the zebrafish pallium as well. Moreover, in agreement with mouse lineage 

tracing results, analysis of the expression profiles of axin2, as well as gli1, indicate that they 

are expressed in the embryonic telencephalon (Thisse et al., 2001), but precise analyses 

would be necessary to confirm that they are at least partially co-expressed with her4 

transcripts in the zebrafish telencephalon. In addition, concerning the origin of the zebrafish 

RMS-like stripe, expression pattern of gli1 combined with lineage tracing of gli1-positive cells 

could also indicate the population homologous to the one in the mouse that contributes to the 

generation of RMS neuroblasts. 
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1.1.3 The lateral pallial adult neural stem cells derive from telencephalic roof 

plate cells 

Contrary to the dorso-medial VZ, the aNSCs of the lateral pallium do not derive from her4-

positive embryonic neural progenitors. Long-term clonal analyses combined with spatially 

restricted lineage tracing of roof plate cells indicate that the adult lateral pallial VZ derives 

from a restricted number of progenitors located in the roof plate at 1dpf (Figure 37A). This 

her4-negative region expresses several Wnt ligands such as Wnt8b or Wnt3a indicating that 

these factors could play a role in the emergence of lateral aNSC. Interestingly, in the mouse, 

Wnt ligands are key components of the cortical hem, a signaling center essential for 

hippocampal development as it allows proliferation of the caudo-medial cortex from which the 

hippocampus emerges (Lee et al., 2000). Lineage tracing of Wnt-responding cells at E12.5 in 

the mouse highlights that these cells contribute to generate most of the adult SGZ (Bowman 

et al., 2013), and Wnt3a expression has also been shown in adult progenitors of the mouse 

SGZ, and is a key regulator of adult  hippocampal neurogenesis (Lie et al., 2005). Similarly, 

we report that, in the zebrafish, wnt3a is expressed at the postero-lateral edge of the pallial 

VZ at late juvenile (1.5mpf) and adult (3mpf) stages.  

Wnt3a expression in the hem results from BMP signalling present in the adjacent choroid 

plexus (Shimogori et al., 2004b). Interestingly, we report that, in addition to wnt3a, bmp6 is 

expressed in the zebrafish telencephalic roof plate at 1dpf indicating that this region could 

correspond to the zebrafish “cortical-hem” like structure. In addition to Wnt and BMP 

signaling, the FGF pathway has been reported to regulate the hem structure, as anterior Fgf8 

is responsible for restricting Wnt3a expression to the hem (Shimogori et al., 2004b). In the 

zebrafish, we report that fgf8 is expressed in the roof plate as well but it could be interesting 

to determine the exact expression pattern of wnt3a/wnt8b compared to bmp6 and fgf8 to 

determine whether they are co-localized or expressed in particular subregions of the 

zebrafish telencephalic roof plate. This could suggest similar roles than in the mouse hem. 

Preliminary results obtained in the lab would tend to indicate that, as in the mouse, late bmp6 

expression is restricted to the choroid plexus (S.Galant – unpublished results), suggesting a 

conserved role of BMP signaling in choroid plexus specification. Whether fgf8 is still 

expressed later in lateral pallial progenitors remains to be determined. 

Finally, it has been proposed that Shh is involved late in SGZ formation. Indeed, Gli1-positive 

cells at late developmental stages (E17.5) contribute to the generation of the SGZ (Ahn and 

Joyner, 2005), and derive from a population located first in the ventral hippocampus that later 

migrate dorsally to generate the dentate gyrus (Li et al., 2013). Moreover, the Shh pathway 

has been shown to maintain stemness of the post-natal aNSCs (Li et al., 2013; Machold et 

al., 2003). In the zebrafish, late gli1 expression has not been thoroughly investigated; 

however, preliminary results in the lab would suggest that it is expressed in the postero-
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lateral edge of the adult pallium (M.Coolen, unpublished results). It would be interesting to 

characterize the gli1 expression pattern in the zebrafish lateral pallial VZ up to late juvenile 

stages, as well as to inhibit the Shh pathway by performing cyclopamine treatments on late 

juvenile fish, to determine whether Shh implication in SGZ formation is conserved in the 

development of the lateral pallial VZ.  

 

1.2 Progenitor maturation at the origin of adult neural stem cells 

1.2.1 Hes/her genes, Notch and pallial progenitor sequence  

Our experiments on the lineage of her4-positive cells throughout development, combined 

with investigations on the role of the Notch pathway on neural progenitor maintenance, 

allowed us to discriminate several steps in progenitor maturation during development, and 

highlight differences in the timing of the acquisition of NSCs features in the dorso-medial 

versus lateral pallial VZ.  

 

1.2.1.1 Maturation of dorso-medial pallial progenitors 

The dorso-medial aNSCs derive from neural progenitors expressing her4 from very early 

stage of development. Indeed, at 10ss already, the her4-positive embryonic progenitors 

comprise cells at the origin of dorso-medial aNSCs, highlighting that already at that stage, 

the entire population that will generate aNSCs in this region is already expressing her4.  

However, whether these progenitors derive from cells expressing non-canonical her genes 

earlier than 10ss remains to be determined. As an indication, her6 seems to be broadly 

expressed in the forebrain region at 5ss and the earliest lineage tracing experiment of her4-

positive cells that we performed was at 10ss, suggesting that her6 progenitors could 

generate her4-positive telencephalic proneural cluster cells in the dorso-medial territory. In 

the mouse, Hes1, homologous to zebrafish her6, and Hes3, homologous to her3, are 

expressed in the neural plate before Hes5, homologous to her4, and before the onset of 

neurogenesis (Hatakeyama and Kageyama, 2006). This indicates similarities in the steps of 

embryonic neural progenitor maturation between mouse and zebrafish embryos.  However, 

lineage tracing of Hes1/her6-positive cells would be necessary to confirm that the first 

maturation step of dorso-medial pallial progenitor corresponds to a transition from a 

Hes1/her6-positive to Hes5/her4-positive progenitor.  

We mention above that even though Hes5 is activated in the mouse cortical progenitors, 

Hes1 is still expressed in this population and is dependent on Notch signaling. It is interesting 

to mention that her6 is induced at 5dpf in the dorso-medial progenitors (S.Galant – 

unpublished results). Interestingly, from this stage onward, the proportion of ventricular 
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proliferating cells gradually decreases in this area, and it could be interesting to determine 

whether her6 could play a role in this increased cell cycle length and in the emergence of 

quiescent cells in the dorso-medial domain, and whether this potentially her6-related process 

is dependent on Notch signaling.  

1.2.1.2 Maturation of lateral pallial progenitors 

Lateral neural progenitors derive from cells that do not express her4 at very early stage of 

development but that express the non-canonical her genes her6 and her9. These progenitors 

correspond to progenitor pools composed of NE cells that later during development generate 

her4-positive NE and RGCs, the latter corresponding to lateral aNSCs of the zebrafish 

pallium (Chapouton et al., 2010; März et al., 2010b). Interestingly, it emphasizes the capacity 

of the progenitor pools to generate, over time, cells with “proneural clusters”-like features, 

expressing her4 and producing neurons as already proposed (Geling et al., 2003, 2004). 

In the lateral pallial VZ, Notch-dependent maintenance seems to be acquired independently 

of her4 expression, at least in some neural progenitors. First, during early development, the 

entire lateral progenitor population is neither her4-positive nor Notch-sensitive but expresses 

her6 and her9 genes, probably involved in maintaining the population. However, the 

upstream signals controlling their expression remain to be determined (Figure 37B). We 

already mentioned that Wnt, BMP and FGF pathways are present in the roof plate and 

whether one of them is involved in maintaining the lateral progenitors would be interesting to 

address. Preliminary results tend to indicate that FGF would not play a role in this process 

(H. Oubert – unpublished results).  

Second, upon juvenile Notch inhibition, we observe a depletion of both her4-positive and 

her4-negative lateral progenitors. This highlights that some lateral progenitors become 

Notch-sensitive even though they do not express her4. It would be interesting to determine 

what could be the factors involved in maintaining these her4-negative/Notch-sensitive 

progenitors. For this, we could analyze the expression pattern of other canonical her genes 

such as her2, her12 or her15 among the her4-negative/Notch-sensitive late lateral progenitor 

population.  

Finally, in the embryonic roof plate both her6 and her9 are expressed and later, only her9 

stays in the NE lateral progenitors. Inhibition of her6 in the thalamus via morpholino 

injections (Scholpp et al., 2009), as well as inhibition of her9 in the otic vesicle (Radosevic et 

al., 2011) lead to the activation of proneural genes. Interestingly, experiments at the 

midbrain-hindbrain boundary have shown that Notch overactivation leads to inhibition of 

her5, another non-canonical her gene, and to the upregulation of neurogenic genes (Geling 

et al., 2004). The possible crosstalk between canonical and non-canonical her genes remain 

to be clarified and in particular whether they inhibit each other. One working model would be 
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that, in the lateral progenitors, emergence of Notch dependence by intrinsic or extrinsic 

signals could inhibit non canonical her genes and activate canonical her genes expression in 

this population. The latter would reinforce non-canonical her genes inhibition, triggering the 

transition between “progenitor pool” cells to “proneural cluster”-like progenitors, more prompt 

to generate neurons (Figure 37B). 

 

1.2.2 Neurogenic activity in pallial neural progenitors 

1.2.2.1 Intrinsic factors involved in the neurogenic activity and RGCs emergence in 

the lateral pallial progenitors 

 

- A potential factor at the origin of the neurogenic switch in the lateral pallial progenitors 

of the zebrafish: Dmrt2? 

In the mouse, the emergence of Notch signaling in embryonic neural progenitors has been 

proposed to be related to neurogenic capacity, as Hes5 expression is found only in 

neurogenic regions. This also correlates with the appearance of oscillations of Hes genes 

and proneural genes in telencephalic progenitors, under Notch control. However, no direct 

functional data are available regarding the respective role of Hes5/her4 and Notch in the 

acquisition of neurogenic potential (Hatakeyama et al., 2004).  

Interestingly, we observed in the zebrafish embryonic lateral pallium a correlation between 

the acquisition of her4-expression and neurogenic capacity. A recent study has shown the 

implication of one transcription factor in the zebrafish embryo in promoting neurogenesis in 

the postero-dorsal telencephalon at an early stage of development, the Doublesex- and Mab-

3-related transcription factor 2, Dmrt2. These factors comprise a Zinc finger-like DNA-binding 

motif also called DM domain (Zhu et al., 2000), are important for sexual development in both 

vertebrates and invertebrates, but are also expressed in the central nervous system (Hong et 

al., 2007). In the zebrafish, dmrt2-/- mutants embryos display an increased her6 expression 

and reduced neurogenesis in the dorsal telencephalon (Yoshizawa et al., 2011). It has been 

proposed that this factor is involved in inhibiting her6 and promoting neurogenesis by 

activating emx3 in the dorsal telencephalon, a gene already demonstrated as necessary for 

dorsal telencephalic neurogenesis (Viktorin et al., 2009; Yoshizawa et al., 2011). In the 

mouse, Dmrt proteins have been implicated in the differentiation of the dopamine neurons in 

the midbrain (Gennet et al., 2011) but no particular role in promoting telencephalic 

neurogenesis has been reported. It would be interesting to investigate the expression pattern 

of dmrt2a in the pallium before and after 5dpf to see whether it could correspond to a good 

candidate for the lateral neurogenic switch, as it could repress her6/her9 and activate her4 
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expression in the lateral pallial progenitor pool, possibly via an action on Notch signaling 

(Figure 37B).  

Moreover, the relation between her4 expression and neurogenic activity remains to be 

clarified. Whether her4 confers only a neurogenic competency or whether all the her4-

positive progenitors are actively engaged into neuronal generation remains to be addressed. 

Likewise, it would be interesting to look whether her4 expression oscillates, as has been 

shown for Hes5 and Hes1 in correlation with neurogenesis competence in neurogenic 

progenitors. 

Live imaging experiments of single progenitor combined with in vitro assay would be 

necessary to address this issue. 

 

- Link between RGCs emergence and type of divisions in the lateral progenitors 

Once neurogenic activity is present within a progenitor population, different types of cell 

divisions could co-exist within the progenitors population : symmetric neurogenic, symmetric 

non-neurogenic, and asymmetric self-renewing. In the mouse, it is though that NE cells 

perform mainly amplifying symmetric divisions and that RGCs perform asymmetric self-

renewing divisions, as it occurs in the cortical progenitors, the emergence of which would be 

linked with the neurogenic activity in the progenitors (Dimou and Götz, 2014). In the 

zebrafish embryonic hindbrain at 30hpf, it has been shown that NE cells mainly perform 

symmetric neurogenic divisions (Lyons et al., 2003). The pallial lateral progenitor population 

in the zebrafish is composed of neuropithelial cells that, from 5dpf onward, start to produce 

the first lateral neurons, and later, generate at least some neurogenic RGCs. Whether 

differences exist regarding the types of neurogenic cell divisions between the NE and RGCs 

in the lateral progenitor populations during development remain to be determined. Single cell 

tracing experiments would be necessary to determine the types of cell divisions occurring in 

the lateraI pallial population; we could thus investigate it by performing clones in the 

population and short-term lineage tracing of their progeny.  

In the mouse, several factors are involved in regulating the transition between NE and RGCs 

and thus are linked with the symmetric/asymmetric cell division transition as well. The 

transcription factors Sox1, Emx2 and Pax6 are involved in orchestrating this change. Indeed, 

Sox1 promotes a symmetric and neuroepithelial phenotype, whereas Pax6 is involved in 

inhibiting Sox1 and triggers the emergence of RGCs and asymmetric cells divisions in 

cortical progenitors (Suter et al., 2009). Interestingly, in vitro experiments indicate that the 

overexpression of Sox1 inhibits Hes1 (orthologous to her6 in the zebrafish) promoter activity, 

even in the presence of Notch signaling, and co-immunoprecipitation experiments from 

mouse E10.5 embryo confirm that Sox1 binds the Hes1 promoter in vivo (Kan et al., 2004). 

This relationship between Sox1 and Hes1/her6 could be interesting to address in link with the 
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transition between lateral NE and RGCs, and the potential switch from symmetric to 

asymmetric divisions (Figure 37B). Indeed, sox1 could be involved in inhibiting non-canonical 

her genes in the lateral progenitors such as her6 or her9 on one hand, but would participate 

in promoting symmetric divisions in this population on the other hand. Moreover, these 

authors showed that Sox1 inhibits the β-catenin-mediated TCF/LEF signaling, components of 

the Wnt signaling pathway, and promotes the expression of proneural genes such as Ngn1 

(Kan et al., 2004), indicating that it could also promote neurogenesis in the lateral 

progenitors. Our observations that Wnt ligands are expressed in the her4-negative roof plate 

cells and later in the her4-negative NE cells maintained in the lateral pallium, whereas both 

her4-positive lateral NE and RGCs do not express Wnt ligands, is compatible with a similar 

interaction between Sox1 and Wnt to promote neurogenesis in the zebrafish lateral pallial 

progenitors. The expression pattern of Wnt signaling components would need to be 

investigated, to identify the Wnt-responding cells in the zebrafish lateral progenitors (Thisse 

et al., 2001). Similarly, Pax6 and Emx2 repress each other and Emx2 acts in favor of 

symmetric divisions in the cortical progenitors (Heins et al., 2001) (Figure 37B).  Interestingly, 

Pax6 is expressed in a gradient close to the pallial-subpallial boundary (PSB) and Emx2 is 

expressed close to the cortical hem in the mouse, indicating a regional influence of these 

factors on progenitors. In the zebrafish, pax6a (Wullimann and Rink, 2001) and emx2 

(Kawahara and Dawid, 2002) are expressed in the embryonic telencephalon, with emx2 

expressed in the dorsal telencephalon and pax6a a at the PSB, but pax6a a seems to be 

restricted to neuronal populations. However, their functions in the zebrafish brain remain to 

be determined and it would be worth investigating whether later, during juvenile 

development, they are expressed in the discrete area of the postero-lateral pallium where 

NSCs are formed and influence the NE to RG transition in the lateral neural progenitors. For 

instance, we could overexpress emx2 under the control of a lateral progenitor specific 

promoter and appreciate whether it increases the number of neuroepithelial progenitors at 

the expense of the emergence of the RGCs in the lateral population. 

 

- Asymmetric divisions in the lateral pallium?  

Finally, at least some lateral progenitors could perform asymmetric cell divisions during 

development as they do in the mouse. To address this question, short-term single cell 

lineage tracing would first need to be performed. In mouse, asymmetric divisions go through 

either unequal asymmetric cell fate determinants inheritance in the two daughter cells, or an 

intra-lineage decision taking place after cell division. Par3 has already been shown to 

influence cell fate decision in the zebrafish forebrain at early stage of development by 

sequestering the Notch-promoting factor Mindbomb in the apical inherited daughter cell that 

will differentiate into a neuron, allowing the maintenance of a high Notch level into the 
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remaining progenitor (Dong et al., 2012a). Moreover, Par proteins have been shown to 

participate in mitotic spindle orientation via their interaction with Insc factor in Drosophila but 

also in the mouse (Lancaster and Knoblich, 2012). Indeed, mInsc asymmetrically orients the 

mitotic spindle and its expression has been related to the emergence of RGCs and 

asymmetric cell divisions in the mouse cortex (Postiglione et al., 2011; Zigman et al., 2005). 

Together, if we reveal asymmetric divisions taking place in lateral pallial progenitors, then it 

would be interesting to investigate whether the same Par3/Insc machinery participates in this 

process.  

 

1.2.2.2 Neurogenic switch in the lateral pallial VZ: a potential role for fish 

metamorphosis?  

Many changes appear at larval stages in lateral pallial progenitors: they start to express her4, 

become neurogenic and start to generate RG cells. All these events could be linked to each 

other as we discussed above but the remaining question is whether an external signal, such 

as a systemic cue (and which one), could trigger all these events.  

In Drosophila, during the transition from larva to pupa, Ecdysone, a steroid hormone 

responsible for metamorphosis, is thought to be responsible for switching between a phase 

of neuroepithelial expansion, mainly controlled by diet, to a neurogenic phase by the 

emergence of neuroblasts. This occurs via a downregulation of Delta expression in the 

neuroepithelial population (Lanet et al., 2013), indicating that systemic signals are involved in 

regulating neurogenic activity in the developing nervous system. 

In at least some vertebrates such as the frog, metamorphosis has also been reported and is 

responsible for the transition between the larval to the juvenile stage (Laudet, 2011). It is 

triggered by the action of thyroid hormones (Morvan-Dubois et al., 2008). Thyroid hormones 

(THs) primarily act through thyroid hormone receptors (TRs); TRs bind to the DNA regulatory 

regions of target genes to activate or repress transcription through interactions with 

accessory proteins known as co-regulators. Two major THs exist: T3 (3,5,3′-triiodo-l-

thyronine) and T4 (3,5,3′,5′-tetraiodo-l-thyronine, also known as thyroxine), and T3 has been 

assumed to be the active form of TH as it binds the TR with a greater affinity than T4 

(Schroeder and Privalsky, 2014). T4 is thus a pro-hormone that circulates in the body to be 

converted into T3 in the specific tissue via enzymatic reactions (Schroeder and Privalsky, 

2014). T3 function has been mainly studied in amphibians, where it controls the de novo 

growth and differentiation of tissues crucial for adult life, such as limbs, but also the 

remodeling and maturation of existing tissues, such as the intestine (Furlow and Neff, 2006). 

Teleost fish also undergo metamorphosis during their development (McMenamin and 

Parichy, 2013). In the zebrafish, even though it is phenotypically more subtle than in 
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Xenopus, morphological changes occur between 5dpf and approximately 1mpf, a stage at 

which small juveniles look like adult fish (Parichy et al., 2009). Significant changes in the 

body shape, development of adult fins, and formation of adult pigments patterns, as well as 

maturation and remodeling of several organs such as the lateral line, the gut, or the kidney 

appear during this period (McMenamin and Parichy, 2013). However, it remains unknown 

whether some events also affect brain development. Interestingly, we report that most of 

lateral pallium formation occurs between 5dpf and 1.5mpf, corresponding approximately to 

the metamorphosis period, with a majority of neurons that seems to be formed after 15dpf. 

Analysis of the T3/T4 ratio revealing the activity of T3 generation during zebrafish 

development indicates that a peak of T3/T4 is visible at around 15dpf and declines gradually 

up to 20dpf but reaches a low plateau only at around 1.5mpf (Chang et al., 2012). Thus, it 

might be that thyroid hormone and metamorphosis play some role in the development of the 

lateral pallium (Figure 37B). In the mouse, the expression pattern of TR receptors revealed 

that, whereas TR1/2 are broadly expressed in the developing brain, TR1, weakly 

expressed up to E17.5, is localized in the hippocampus at least up to E19.5 (Bradley et al., 

1992). 

Interestingly, in the adult SEZ, it has been reported that T3, via TR1, promotes 

neurogenesis via the emergence of Type C cells (transit-amplifying) and Type A (committed 

neuroblasts) by inhibiting Sox2 expression (López-Juárez et al., 2012). Moreover, mice 

mutant for TR1 display reduced hippocampal neurogenesis and memory impairment 

(Kapoor et al., 2010; Venero et al., 2005), indicating a role for thyroid hormone in activating 

adult neurogenesis. 

It would be thus interesting to investigate the expression pattern of TR receptors in the 

zebrafish and determine whether some of them start to be expressed in lateral progenitors at 

the neurogenic switch. Moreover, if this hypothesis is true, functional inhibition of thyroid 

hormones activity or synthesis (with 6-n-propyl-2-thiouracil , methimazole or amiodarone) 

should disrupt neurogenesis in the lateral pallial VZ.  

 

1.2.3 Progenitors adopting de novo neural stem cells features in the adult 

lateral VZ 

The lateral pallial VZ originates from her4-negative/her6-positive/her9-positive progenitors 

located in the roof plate. However, we report that the lateral neural stem cells, ie. her4-

positive RGCs, are generated continuously during life, even after the late juvenile stage. 

Indeed, long-term lineage tracing of cells expressing her4 at 1.5mpf indicates that the vast 

majority of the her4-positive lateral NSCs are generated before 1.5mpf, but we observed a 

clear territory in the postero-lateral edge of the pallium that is not generated by the her4-
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positive population at 1.5mpf and that continues to grow. This territory contains both RGCs, 

neurons and NE cells expressing her9 and wnt3a, two features present in the embryonic 

progenitor pool at the origin of the lateral pallium. We interpreted this result as a possible 

growing zone present in the posterior pallium that, at least up to 8mpf, keeps on generating 

RGCs de novo. In agreement with this hypothesis, we observed in this region the same steps 

of progenitor maturation than during development: her9-positive/her4-negative NE 

progenitors abutting her4-positive NE progenitors, then her4-positive RGCs, suggesting that 

this corresponds to a maturing progenitor region with progenitors arranged in a maturation 

series (Figure 37A). However, lineage tracing of her9-positive cells in the adult would be 

necessary to confirm this hypothesis, and to precisely determine the hierarchy existing 

among the progenitor population in this region.  

Interestingly, other neurogenic regions contain NE cells postulated to act as NSCs in the 

zebrafish as well as in the medaka adult brains (Alunni et al., 2010). First, NE cells are 

present at posterior levels in the periventricular gray zone (PGZ) of the optic tectum 

(Chapouton et al., 2006; Ito et al., 2010). Some of these cells are slow-proliferating 

progenitors (Alunni et al., 2010; Chapouton et al., 2006; Ito et al., 2010), participate in 

neurogenesis in the optic tectum, and it has been proposed that they produce both glia and 

neurons (Alunni et al., 2010; Ito et al., 2010); but whether neuronal production goes through 

a glial state remains to be clarified. Second, at least part of them express the non-canonical 

her gene her5 (Chapouton et al., 2006). This gene is already present in the embryo and 

characterizes the “progenitor pool” at the midbrain-hindbrain boundary, suggesting that, like 

for the lateral pallium, some cells already present in embryonic “progenitor pools” are 

maintained during development and participate in adult neurogenesis. It will be important to 

perform the lineage tracing of embryonic her5-positive cells, to determine the molecular 

changes involved in the transition between NE and RGCs, as well as whether her4 is 

involved in adult neurogenesis in the adult optic tectum, to determine whether the process 

involved in the maturation of lateral pallial progenitors is conserved in this other brain region.  

The zebrafish adult retina also displays neurogenic as well as regenerative capacities 

(Lenkowski and Raymond, 2014) that rely on two types of progenitors: NE cells located in the 

ciliary marginal zone (CMZ) of the adult retina, and Mueller glial cells (Lenkowski and 

Raymond, 2014). NE cells are involved in generating all retinal cells including the Mueller 

glial population, the latter is dedicated to rod lineage production during development and 

after lesion. The sequence of progenitor maturation is spatially segregated with retinal stem 

cells at the CMZ: mutipotent progenitors are found at the most peripheral location, abutting 

committed retinal progenitors, and finally, differentiating retinal cells (Lenkowski and 

Raymond, 2014). Interestingly, her6 is expressed in both the CMZ and Mueller glia of both 

embryonic and adult retina (Bernardos et al., 2005; Raymond et al., 2006). Similarly, during 
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retinogenesis in Xenopus, Hes4, homologous to zebrafish her9, has been shown to control 

retinal neural stem cell proliferation and its expression is modulated by both the Wnt and Shh 

pathway (El Yakoubi et al., 2012), two pathways that we found also in the postero-lateral 

regions of the zebrafish pallium. This emphasizes the relevance of functionally testing 

whether these pathways activate her6/her9 in the zebrafish lateral pallial NE cells.   

Altogether, this information highlights that several actively neurogenic structures in the adult 

nervous system display features similar to the lateral pallium, with the maintenance of NE 

cells that express non-canonical her genes, this in the zebrafish but also in Xenopus. It would 

be interesting to determine whether, in these different structures, NE cells are involved in 

producing neurons directly and/or produce glial cells that generate neurons. To do so, short-

term single cell lineage tracing would be necessary to appreciate the immediate progeny of 

NE cells.  

In mammals, a population of non-glial neural stem cells, also called Type 2 cells, has been 

described in the dentate gyrus of the hippocampus (Mu and Gage, 2011), and the hierarchy 

between this population and the Type 1 RGCs remains unclear. Indeed, one hypothesis 

would be that they constitute the NSCs and produce neurons without going through a glial 

state (Suh et al., 2007). Interestingly, both Type 1 and Type 2 cells express Hes5 

(homologous to the zebrafish her4) and they are mainly found in proliferation (Lugert et al., 

2010). This suggests that in the mouse as well, several distinct cell types could serve as 

aNSCs in the SGZ.  
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Figure 37: Working model of pallial progenitor maturation and pallium formation  

(A) Summary of zebrafish pallium formation. 

The dorso-medial neural stem cells (NSCs – green) originate from embryonic her4-positive (red bars) radial glial cells (green/red 

triangle). This population is maintained by the Notch pathway from embryonic stages onward (light blue bars). At adult stage, 

Notch signaling regulates NSCs maintenance by controlling proliferating rate (Alunni et al., 2013; Chapouton et al., 2010) 

(dashed light blue bars). Whether the her4-positive RG state is preceded by her4-positive neuroepithelial (green/red rectangle) 

and/or her6-positive neuroepithelial (green/orange rectangle) progenitors remains to be determined. The dorso-medial 

population generates neurons that pile up in the parenchyma lifelong from embryonic stages onward (embryonic neurons – 

yellow; larval neurons – grey; juvenile neurons – pink – adult neurons – purple), and progressively formed first the central 

pallium and then the medial and dorsal pallium.  

The lateral neural stem cells (NSCs – blue) originate from her6/her9-positive (orange bars) neuroepithelial cells (blue/orange 

rectangle) that stay lifelong at the postero-lateral edge of the pallial VZ. Contrary to the dorso-medial population, these cells are 

not maintained by the Notch pathway during development and it still might be the case in the adult, but produce from larval 

stages onward Notch-sensitive (light blue bars) neuroepithelial cells (blue/white and blue/red rectangles) that start to express 

her4 (red bars), and further become radial glial cells (blue/red triangles). The production of her4-positive progenitors by the 

her6/her9 progenitors is continuous during development up to at least 1.5mpf and is likely still present in the adult. The lateral 

neuronal production is correlated with the start of her4 expression and thus the first lateral neurons are generated at larval 

stages (grey) but most of the lateral pallium is built at juvenile stages (pink), and neurons are still produced in the adult (purple). 

 

(B) Comparison of the progenitor sequence visible during zebrafish lateral pallial development and at the postero-lateral adult 

VZ (upper panel) and mouse corticogenesis (lower panel). 

her6/her9 are expressed in embryonic neuroepithelial cells (blue/orange rectangle) and this expression might be under the 

control of Wnt signaling as Wnt3a/Wnt8b are expressed in the same region. During mouse cortical development, expression of 

Hes3/Hes1 is Notch-independent at early stage and Wnt could be as well responsible for initiating Hes genes in this population. 

Moreover, Wnt activate Emx2 expression, a factor promoting neuroepithelial cells and symmetric divisions, but whether emx2 

plays also this role in the zebrafish could be interesting to investigate. The expression of non-canonical (not activated by Notch) 

Hes/her genes is involved in maintaining the stemness of both mouse and zebrafish early progenitors.  

In the zebrafish, the activation of the Notch pathway in the lateral neuroepithelial progenitors might be regulated by Dmrt2, 

already shown to promote telencephalic neurogenesis (Yoshizawa et al., 2011), and the latter could be activated by systemic 

cues such as the peak of thyroid hormon (TH) occurring at metamorphosis (around 5dpf). Once Notch maintains the early 

progenitors, it might participate in her6/9 downregulation and activate her4 (blue/red rectangle) or other canonical (Notch-

sensitive) her genes such as her12/her2/her15 (blue/white rectangle), triggering a change in the set of genes involved in 

stemness maintenance. This change is also present in the mouse cortex as Hes3 is downregulated upon Notch activation, 

however, Hes1 expression is still present but becomes Notch sensitive (Kageyama et al., 2008). Moreover, in addition to Emx2, 

Sox1 is expressed in neurogenic neuroepithelial progenitors and promotes symmetric neurogenic divisions in this population by 

inhibiting Pax6 (Suter et al., 2009). Whether a network similar to Sox1/Pax6/Emx2 is involved in the zebrafish lateral progenitors 

in triggering changes in Wnt activation, division mode, and/or the transition between NE cells and RGCs is not known.  

Hes5/her4 promotes neurogenesis in progenitors but whether it activates neuronal production or confers neurogenic capacity to 

the cells remains to be determined.  

Finally, RGCs emerge from NE progenitors and this change is occurring in the mouse cortex via Pax6 expression that promotes 

also asymmetric cell divisions. Once again, what control the emergence of glial phenotype in the progenitors remains unknown 

in the zebrafish. But Hes5/her4 might be involved directly or indirectly in maintaining this glial phenotype in the progenitors. 
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2 Zebrafish pallium construction and homologies 

 

Embryonic progenitors contribute to the generation of adult organs by producing 

differentiated cells that will possess one or several functions. In the mammalian brain, 

embryonic neural progenitors mainly generate neurons during development, but also 

produce glial cells such as oligodendrocytes or astrocytes, in a very regulated manner 

(Kriegstein and Alvarez-Buylla, 2009). Analyzing the progeny of the neurogenic neural 

progenitors during zebrafish pallium development allowed us to have an overview of how the 

pallium is built during development and the distribution of the embryonic and juvenile-born 

neurons. In a first part, we will discuss the general organization of the zebrafish neuronal 

pallial compartments and compare it with what we know on how the mouse pallium is 

organized. Second, the information on how the pallium is built will give us cues on 

homologies between the different pallial regions in zebrafish and mouse, as well as on the 

contribution of developmental processes to the generation of the everted zebrafish pallium.  

 

2.1 Zebrafish pallium construction  

2.1.1 Medio-lateral neurogenic gradient 

As a first approach to study pallial construction, we reanalyzed at adult stage the lineage 

tracing of progenitors expressing her4 at different time points during development; since we 

used a ubiquitously expressed reporter, it allowed us to analyze the neuronal progeny of the 

neurogenic progenitors from very early embryonic to late juveniles stages. We were able to 

approximate the developmental stage at which pallial neurons were generated during 

development and we concluded first that the most central pallium contains the oldest pallial 

neurons. By comparing these results with the lineage tracing of the TP1Glob-positive cells in 

the TP1Glob:CreERT2 fish line, we determined that this region is mainly built by the 

progenitors generating the aNSCs of the medial pallium. The central neurons are mainly 

generated up to 5dpf; and later, the same pool of progenitors generates the dorsal and 

medial neurons. Most of the lateral pallium is generated between 15dpf and 1.5mpf 

illustrating a third wave in the generation of pallial neurons. Interestingly, it highlights that a 

centro-medial to lateral wave in the onset of neurogenic activity exists in the zebrafish 

pallium, suggesting that pallial neuronal production is tightly regulated. In mammals, a similar 

wave of neurogenesis has been reported, however, it corresponds to the exact opposite 

orientation with a lateral to medial neurogenic gradient (Anthony et al., 2004). But due to the 

everted structure of the zebrafish telencephalon, the pallial neurogenic gradient appears 

similar in mouse and zebrafish.  
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2.1.2 “Layers” and nuclei in the zebrafish pallium 

The second piece of information resulting from this lineage is the temporal organization of 

the generated neurons. Contrary to the mouse cortex in which the neurons are organized 

following an “inside-out” sequence, in the zebrafish, they pile up in the pallium under the 

growing germinal zone, reflecting the temporal neurogenic activity of the progenitors. Even 

though no particular “layers” as in the mouse cortex are distinguishable in the zebrafish 

pallium, very little cell mixing seems to occur within the neurons generated at different time 

points during development, and this reflects that, despite a differently positioned ventricular 

zone, the neurons are organized in the same way in mouse and zebrafish with the oldest 

neurons “ventrally” positioned whereas the youngest neurons are “dorsally” located. Almost 

all the mouse pallial areas are more or less layered (Medina and Abellán, 2009). The 

isocortex contains six layers and this organization is due to two phenomena, the radial 

migration of the neurons along the RG processes, and the action of the Cajal-Retzius 

neurons (Borello and Pierani, 2010). The latter heterogeneous neuronal population is 

transiently present in the developing pallium as these neurons mostly disappear in the first 

two post-natal weeks (Kirischuk et al., 2014). They provide a “stop” signal via the production 

of Reelin protein in the marginal plate to the newly generated neurons by promoting their 

detachment from the RG cells (Honda et al., 2011), thus determine their final position within 

the developing cortex. In addition to Reelin production, recent studies have shown that they 

also guide neurons via cell-cell contacts mediated by Cadherin and Nectin proteins (Gil-Sanz 

et al., 2013). The organization of the neuronal compartment of the zebrafish pallium suggests 

that after birth the neurons stay close to their site of generation while the germinal zone is 

shifted dorsally due to the addition of new neurons. Reelin expression has been documented 

in the dorsal pallium all along zebrafish development (Costagli et al., 2002; Imai et al., 2012); 

however, whether it has a role in positioning pallial neurons remains unknown and the 

presence of Cajal-retzius cells during zebrafish pallial development has not been reported so 

far -but no lineage tracing experiments were performed-. In the mouse, Cajal-retzius cells are 

produced at the level of pallial organizers, including the cortical hem (Bielle et al., 2005). It is 

important to mention that, in the pallial region where Reelin expression is found during 

zebrafish development, neurons derive from her4-positive cells. Thus the dorsal wnt3a-

expressing cells (considered as the cortical hem-like structure) would not be at the origin of 

dorsal Reelin-positive neurons. However, the anti-hem (pallial-subpallial boundary) and 

commissural septum of the mouse brain are sources for Cajal-retzius neurons as well, and 

both structures express Dbx1 in the mouse (Bielle et al., 2005). As previously mentioned 

dbx1 is not expressed in the very early stage of development in the zebrafish telencephalon 

but its late expression pattern could be interesting to investigate; if expression is found in the 

pallium, lineage tracing experiments of dbx1-positive cells could help determine whether 
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some neurons similar to Cajal-retzius cells (at least from a developmental point of view) 

could be present in the zebrafish pallium. It is interesting to note that in the absence of Reelin 

in the mouse, the pallium organizes in the reverse way, in an “outside-in” manner, like the 

zebrafish pallium does (Magdaleno et al., 2002), indicating that Reelin expression in the 

zebrafish dorsal pallium could play another role than guiding neurons during development. 

 

The layers of the mouse cortex are characterized by specific types of neurons displaying 

particular output and input connections, thus a specific function. For instance, neurons 

residing in the deep layers project mainly toward the thalamus, the midbrain and the spinal 

cord, whereas neurons in the upper layers (II and III) mainly display intrapallial connections. 

The emergence during development of these neuronal layers is temporally regulated with the 

deep layers generated first from the VZ, the layer VI at E12.5 and the layer V at E13.5, and 

later the upper layer from the SVZ, the layer IV at E14.5 and the layer III and II at E15.5 

(Molyneaux et al., 2007). Large scale studies have identified plenty of factors expressed in 

one or more cortical layers, suggesting that cortical layer specification is very complex and 

relies on combinations of factors (Molyneaux et al., 2007). As an example, Otx1 is expressed 

in both the VZ and deep layer neurons prior to and during layers V-VI generation (Frantz et 

al., 1994; Sancini et al., 2001), and Cux1 and Cux2 are expressed in the VZ, the mitotically 

active cells of the SVZ and in upper layer neurons (Nieto et al., 2004; Zimmer et al., 2004). 

Pax6 expression has been shown to be necessary for the emergence of the upper cortical 

layers (Nieto et al., 2004; Zimmer et al., 2004), whereas its absence does not impair the 

production of Otx1-positive neurons of the layer V (Stoykova et al., 2000; Tarabykin et al., 

2001). On the contrary, Er81, a layer V-specific projection neurons marker, seems to be a 

target of Pax6 (Tuoc and Stoykova, 2008), suggesting that the differential sensitivity of the 

cortical layers markers to patterning signal could influence temporal expression of such 

markers.  

In the zebrafish adult pallium, neither the expression pattern of genes orthologous to the 

mouse cortical layers markers, nor morphology and connectivity have been thoroughly 

investigated yet. Adult expression analysis of the deep cortical layer marker, Tbr1, reveals 

that it is largely present, but without a particular “layered expression” as it is expressed in 

most of the dorsal pallium (Ganz et al., 2012). Thus, despite the organization of the zebrafish 

pallium in a “temporal” gradient, it seems to be “functionally” organized in a non-laminar 

manner. This expression pattern is much more related to the situation in the chick pallium, in 

which expression of some cortical layers markers define “regions” within the pallium rather 

than layers (Suzuki et al., 2012). However, whether these regions represent the functional 

equivalent of the cortical layers remains to be determined.  
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Finally, based on clonal and brainbow analyses, we report that, compared to the lateral 

zebrafish pallium, the dorso-medial compartment derives from a large number of embryonic 

neural progenitors at 1dpf. However, it remains to be determined whether, as it has been 

suggested to occur in the cortical progenitors, one single progenitor is able to generate 

different types of neurons along life. Long term clonal analysis coupled with a neuronal 

characterization would be necessary to investigate this.  

Despite the apparent “non-organized” structure of the zebrafish pallium, the distinct spatio-

temporal neurogenic activity of different progenitor populations correlate with the formation of 

different pallial nuclei and/or areas, and this could be related to the emergence of distinct 

complex behaviors depending on the developmental stage.  For instance, a recent study of 

the lab has shown that neurons born at juvenile stage, rather than embryonic or adult born 

neurons, respond to D-amphetamine injections or drug-seeking in the 6mpf-old adult (von 

Trotha et al., 2014), suggesting that this behavioral output might not be obtained with larvae. 

Moreover, we report that the lateral pallium growth starts late during development. This 

region has been proposed as homologous to the mouse hippocampus (this point will be 

detailed later – see section 2.2.2) and interestingly timing of lateral formation is correlated 

with the appearance of learning capacities in the juveniles (Valente et al., 2012). Thus, the 

temporal pallial neuronal generation may have an impact and needs to be taken into account 

for further behavioral assays.  

 

2.2 Zebrafish pallium regionalization and homologies 

2.2.1 Zebrafish pallial subdivisions regarding embryonic origin and eversion 

Previously, fish pallium subdivisions were defined as the medial pallium (Dm), the dorsal 

pallium (Dd), the central pallium (Dc), the lateral pallium (Dl) and the posterior pallium (Dp), 

with only the central pallium that would not comprise an adult ventricular zone (Braford, 

2009). Our study based on direct genetic lineage tracing reveals a clear 

compartmentalization of the zebrafish pallium regarding its embryonic origin, but this 

compartmentalization diverges from the existing view of pallial regionalization. Indeed, we 

could delimit different pallial compartments, corresponding to a progenitor subopulation and 

its progeny. First, we defined the medial pallium that comprises Dm and most of the Dc 

domains. This compartment derives from the most medial early neurogenic progenitors 

(TP1Glob-positive/her4-positive progenitors) at 1dpf. Second, we defined the dorsal pallium, 

which comprises the most lateral part of Dc and the entire Dd domain. It derives from the 

most dorsal population of the early pallial neurogenic progenitors (TP1Glob-negative/her4-
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positive progenitors) at 1dpf. And finally, the lateral pallium corresponding to Dl and Dp 

domain and that derives from the embryonic roof plate at 1dpf. 

The ventricular portion of the Dm and Dd domains are thus the ventricular zone that built the 

Dc domain. As previously mentioned, no adult-born neurons seem to reach the Dc domain 

as neurons pile up in the parenchyma. But interestingly, in regenerative conditions, adult 

her4-positive RGCs has been shown to contribute to the regeneration of the central pallium 

after a stab lesion, indicating that the capacity to form neurons composing Dc is present in 

the adult pallial progenitors (Kroehne et al., 2011); it would be interesting to determine 

whether only dorso-medial RGCs participate in Dc regeneration.  

Moreover, by performing long-term clonal analyses, we never observed any obvious central 

clones not connected to the ventricular zone, indicating that Dc with Dm and Dd domains 

share the same pool of progenitors and that Dc has a “ventricular” portion. But contrary to the 

theory already proposed by Mueller (Mueller et al., 2011a), it seems that this ventricular 

region is larger than only the most anterior dorsal pallium, and that it is devoted to generating 

Dc neurons only at early stages.  

The other region of the zebrafish pallium is the lateral pallium comprising the Dl and Dp 

domains. The theory proposed by Wullimann and Mueller concerning the origin of the Dp 

domain postulated that Dp was migrating from the Dm region during development (Mueller et 

al., 2011b; Wullimann and Mueller, 2004). In contrast, we found that Dp and Dl are 

sequentially produced during development by the lateral embryonic progenitor pool, Dp being 

the latest pallial region to be formed in the zebrafish, and that continues to be formed during 

adulthood. It is interesting to note that the physical boundary between Dp and Dl is not 

clearly visible by simply lineage tracing of neurogenic progenitors. This emphasizes the 

strong relationship between the two domains, thus questioning whether it makes sense, 

regarding their embryonic origin, to separate them. However, it is interesting to note that only 

the most postero-lateral pallial region, included into the Dp domain, continues to grow at 

adult stage highlighting that it corresponds to a particular region of the lateral pallium. 

 

2.2.2 Homology between the mouse hippocampus and the zebrafish lateral 

pallium 

Determining the embryonic origin of the different pallial territories give us also information on 

homologies of the region between different species, as homologous structures derive from 

the same embryonic area. Most of the different theories of homology between mouse and 

zebrafish pallial regions consider that the zebrafish lateral pallium is homologous to the 

mouse hippocampus (medial pallium). However, these theories exclude Dp, mainly 

considered as homologous to the mouse piriform cortex, due to the olfactory inputs present 
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in this region (Braford, 2009). As already mentioned, we found that Dp corresponds to the 

ventro-posterior part of the lateral pallium and seems to derive from the same embryonic 

population as Dl even though it continues to grow in the adult. This was already suggested 

by Nieuwenhuys who noticed that the Dp domain is attached to the tela-choroida, the thin 

layer of cells that covers the ventricle (Nieuwenhuys, 2009). Nieuwenhuys considered this 

region as the ventral part of the lateral pallium, and postulated the entire lateral pallium to be 

homologous to the mouse hippocampus (Nieuwenhuys, 2009). Several arguments 

concerning neurogenic activity and timing of development, already discussed here, support 

that the lateral pallium of the zebrafish does host the region homologous to the 

hippocampus. Indeed, we mentioned that it develops late during development, mostly at a 

caudal level, close to a “cortical-hem” like structure, and contains non-glial her4-positive cells 

in its adult VZ, one feature already reported in the SGZ of the dentate gyrus. Moreover, 

lesion experiments performed in the goldfish in the lateral pallium impair the encoding of the 

geometric information of environmental space, a typical function of the hippocampus (Vargas 

et al., 2006), and hodology (neuronal connections) seems to support this theory (Northcutt, 

2006). Finally, it is interesting to note that behavioral analyses indicated that learning in the 

zebrafish starts late during development, at around 20dpf, and reaches adult performances 

at around 1.5mpf (Valente et al., 2012), the time window corresponding to the formation of 

the lateral pallium. All these arguments strongly converge toward the homology of at least 

some parts of the lateral pallium (Dl and/or Dp) with the mammalian hippocampus.  

 

However, analysis of markers specifically expressed in the adult mouse hippocampus 

revealed that only few genes present in the mouse hippocampus are expressed in the 

zebrafish lateral pallium. Analyses of expression of pcdh1a/b, dusp5, er81 (Lein et al., 2004) 

and prox1a (Pleasure et al., 2000), expressed in the mouse hippocampus, indicate that only 

pcdh1a/b and dusp5 are present in the lateral pallium (Figure 38) whereas er81 and prox1a 

are not expressed (not shown). Interestingly, a recent study has compared the transcriptome 

of the mouse and chick hippocampus and revealed that Dusp5 and Pcdh1 are also present 

in the chick hippocampus (Belgard et al., 2013), but also revealed that very few genes 

display conserved expression between the mouse and chick hippocampus (Belgard et al., 

2013); as an example, neuroD is not present in the chick hippocampus whereas it is 

expressed in the mouse. Thus, it is important to keep in mind that comparison of gene 

expressions at the adult stage between different species is not the best criteria and cannot 

alone define homology between two structures. In the zebrafish, it is interesting to note that 

lhx2b (Li and Pleasure, 2007), neuroD (Pleasure et al., 2000) and tbr2 (Kimura et al., 1999) 

expressed during mouse hippocampus development are present in the lateral pallium as well 

(Figure 38), and could highlight maturing hippocampal-like cells. But expression of these 
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markers were analyzed at 1mpf and 3mpf and it would be interesting to determine whether 

they would be expressed earlier during the first phase of the lateral pallium development, 

such as 15dpf.  

 

 

 

 

Figure 38: Expression pattern of genes orthologous to mouse hippocampal markers in the lateral domain 

of the zebrafish pallium (from S.Galant and I.Foucher) 

 

 

2.2.3 Homology of other pallial territories between mouse and zebrafish  

Concerning the different theories regarding the homology between Dm, Dd and Dc to the 

different mouse pallial regions, the medio-lateral gradient of development of the pallium and 

the absence of massive migration within the territory indicate suggest that the homologous 

pallial regions in mouse and zebrafish are organized in the opposite way along the medio-

lateral axis.  

The region homologous to the mouse lateral pallium would thus be located in the most 

medial pallium in the zebrafish, and we recenty showed in the lab that the Dm region seems 

to display some of the functions attributed in mammals to the amygdala (von Trotha et al., 

2014).  
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Whether it exists a ventral pallium in the zebrafish is still under debate. The ventral pallium is 

defined by the emx1-negative/tbr1-positive pallial territory and generates part of the claustro-

amygdaloid complex in the mouse (Puelles et al., 2000). It would be interesting to compare 

the lineage tracing of emx1-positive cells in the zebrafish with the lineage of her4-positive 

progenitors to determine whether a dorso-medial region of the zebrafish pallium does not 

derive from emx1-positive cells and would thus correspond to the zebrafish ventral pallium. 

In any case, it should be located in the most medial part of the zebrafish pallium.  

The equivalent to the mouse dorsal pallium (generating the isocortex) remains unclear, but 

our experiments suggest that it should be located between the lateral and medial pallium. A 

recent study has indicated that this region performs some cortical functions such as the 

association of information (Aoki et al., 2013). Moreover, as previously mentioned, Reelin is 

present in this region during development (Costagli et al., 2002; Imai et al., 2012). The 

analysis of cortical markers should further help define this region even though, as for the 

hippocampus, genes expression is not the best criterion: for example, it has been shown that 

genes expressed in layer IV of the mouse cortex are highly different from the ones present in 

the chick nidopallium, considered as homologous to the cortex (Belgard et al., 2013). This 

emphasizes that structural markers analysis must be completed with functional assays, for 

instance based on neuronal ablation combined with specific behavioral assays, to be able to 

complete hypotheses of homology. 

 

2.2.4 Late developmental processes participate in pallial eversion 

The zebrafish pallium, contrary to the mouse pallium possesses an everted structure that 

positions the ventricular zone at the surface of the pallium and an extended tela-choroida 

attached to the pallium that closes the ventricle. How this eversion process occurs during 

development is not completely understood. Here, we report that the formation of the lateral 

pallium participates in accentuating the everted structure.  

The first sign of eversion arises before 1dpf with the opening of the anterior intraencephalic 

sulcus that laterally positions the dorso-posterior part of the telencephalon (Folgueira et al., 

2012). Analysis of her4 expression indicates that this region is indeed her4-negative. Our 

lineage tracing experiment reveals that the cells at the origin of the lateral pallium are located 

in the roof plate and correspond to a small population of cells that we interpret as being 

positioned at the boundary between the extended roof plate and the pallial her4-positive 

region.  

The second step reported is a dorsal repositioning of the posterior ventricle and an 

expansion of the pallium up to larval stage. This is in accordance with our lineage tracing 
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results as we observed her4 expression along the posterior wall of the embryonic 

telencephalon, and her4-positive cells are at the origin of the dorso-medial domain.  

Finally, we report that the lateral pallium remains very small up to late developmental stage. 

We observed a massive amplification of the lateral pallium at late juvenile stages and we can 

consider this event as the third step of the pallial eversion. 

3 General conclusion 

The results of this PhD thesis provide the first map of the embryonic origin of the entire pallial 

germinal zone in the zebrafish adult telencephalon. We reported first that the aNSCs of the 

zebrafish pallium derive from two different embryonic populations that diverge regarding 

neurogenic activity, number of progenitors, her genes expression and Notch dependency. 

Despite these distinct features, however, both populations generate aNSCs that display the 

same properties, - i.e. her4-positive radial glial cells, even though they remain spatially 

segregated. By comparing with the mouse, we were able to show that the developmental 

processes governing pallial development are conserved among species, thus emphasizing 

the potential of zebrafish aNSCs as a model for stem cell biology.  

Second, we demonstrated the existence of two modes of aNSCs formation with the first one 

based on amplification of embryonic and juvenile progenitors already displaying NSCs 

features, and the second one with de novo NSCs formation all along development and at 

adult stage.  

Third, these experiments allowed us also to investigate the general organization of the 

pallium in terms of the generation of its different spatial domains, in some cases in relation 

with function. Given the limited cell migrations observed in the pallium, the location of an 

adult neuron reflects both the location of its generating aNSC and its generation timing. 

Further studies will be necessary to investigate the functional significance of such 

architecture, in particular by analyzing the neuronal subtypes produced over time by a given 

aNSC clone.  

Finally, by identifying the embryonic origin of the different pallial regions, this work enabled 

us to complete the different theories regarding homologies between the different zebrafish 

and mouse pallial domains, and especially emphasize that the lateral zebrafish pallium is the 

structure homologous to the hippocampus.  
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SUMMARY 

 

 

Adult neural stem cells (aNSCs) are defined by their self-renewal and multipotency, which 

allow them to generate both neurons and glial cells in the adult brain. Contrary to mammals, 

the zebrafish brain maintains numerous neurogenic zones in the adult, among which the 

most characterized is the pallial ventricular zone. It is composed of radial glial cells serving 

as aNSCs. Which embryonic neural progenitors are at the origin of these aNSCs is still 

unknown. This work aims to determine the relative contributions of two embryonic neural 

progenitor populations, the «proneural clusters» (involved in embryonic neurogenesis) and 

the « progenitor pools » (characterized by a delayed neurogenesis), to the formation of 

aNSCs in the zebrafish pallium.  

First, using genetic lineage tracing techniques, we were able to identify the embryonic neural 

progenitor population at the origin of a subpopulation of aNSCs located in the dorso-medial 

part of the pallium. The her4:ERT2CreERT2 transgenic driver line, combined with 

pharmacological treatments inhibiting the Notch signalling pathway, allowed showing that 

neural progenitors giving rise to dorso-medial pallial aNSCs express the « Enhancer of split » 

her4 gene, specifically expressed in « proneural clusters » from very early stages of 

development.  

As a second step, clonal analyses as well as spatially controlled recombinations by laser 

highlighted that aNSCs of the zebrafish lateral pallium do not derive from her4-positive 

embryonic progenitors maintained by the Notch pathway, but from a restricted population of 

neuroepithelial cells located in the embryonic telencephalic roof plate. These cells display 

« progenitor pool » specific features, as for instance the expression of non-canonical her 

genes (independent of Notch signalling) such as her6 and her9, the expression of 

components of signalling pathways such as Wnt, BMP, FGF, and a late neurogenesis onset. 

These progenitors progressively generate, from juvenile stages, the vast majority of the 

aNSCs of the lateral pallium. Most interestingly, a small population of these neuroepithelial 

cells persists in the postero-lateral pallium at adult stage and keeps generating de novo 

aNSCs of this brain region.  

In addition to identifying the origin of pallial aNSCs in the zebrafish, this study also delivers 

information on the progressive maturation steps that embryonic progenitors undergo to 

generate aNSCs, and highlights similarities and differencies existing between the dorso-

medial and lateral progenitors. Finally, this work also permits tracing the neurons generated 

by stem cells at different stages. This reveals for the first time the progressive formation of 

the different zebrafish pallial compartements, and allows appreciating their homologies with 

the mouse pallial regions.  

  



 

 

  



 

RESUME 

 

 

Les cellules souches neurales adultes (aNSCs) sont définies par des fonctions d’auto-

renouvellement et de multipotence qui leur permettent de générer dans le cerveau adulte 

tant des neurones que des cellules gliales. Contrairement aux mammifères, le cerveau de 

poisson zèbre présente de nombreuses zones de neurogenèse adulte dont la plus 

caractérisée est la zone ventriculaire du pallium. Elle est composée de cellules de glies 

radiaires qui font office de aNSCs dans cette partie du cerveau. Quels progéniteurs neuraux 

embryonnaires sont sélectionnés pour être à l’origine de ces aNSCs reste mal connu. Ce 

travail a pour objectif de déterminer la contribution relative de deux populations de 

progéniteurs neuraux embryonnaires, les “clusters proneuraux” (impliqués dans la 

neurogenèse embryonnaire) et les “pools de progéniteurs” (caractérisés par une 

neurogenèse tardive), dans la formation des aNSCs du pallium de poisson zèbre.  

Dans un premier temps, à l’aide de techniques génétiques de lignage cellulaire, nous avons 

pu identifier la population de progéniteurs neuraux embryonnaires à l’origine d’une sous-

population des aNSCs située dans la partie dorso-médiane du pallium. Des expériences de 

lignage utilisant la lignée de poisson zèbre her4:ERT2CreERT2 combinées à des traitements 

inhibiteurs de la voie de signalisation Notch nous ont permis de déterminer que les 

progéniteurs neuraux  donnant naissance aux aNSCs du pallium dorso-médian expriment le 

gène « Enhancer of split » her4, qui caractérise les “clusters proneuraux”, ce dès des stades 

très précoces du développement.  

Dans un second temps, des analyses clonales ainsi que des recombinaisons spatialement 

contrôlées par laser nous ont permis de mettre en évidence que les aNSCs de la partie 

latérale du pallium de poisson zèbre ne proviennent pas de progéniteurs embryonnaires 

exprimant her4 et maintenus par la voie Notch, mais d’une population restreinte de cellules 

neuroépitheliales situées dans la plaque du toit du télencéphale embryonnaire. Ces cellules 

présentent des caractéristiques spécifiques des “pool de progéniteurs”, à savoir l’expression 

de gènes her non-canoniques (dont l’expression n’est pas dépendante de la voie de 

signalisation Notch) tels que her6 et her9, l’expression de ligands de voies de signalisation 

telles que Wnt, BMP et FGF, et une neurogenèse tardive. Elles génèrent progressivement, à 

partir du stade juvénile, une grande partie des aNSCs du pallium latéral. De plus, une partie 

de ces cellules neuroépitheliales persistent dans le pallium latéral postérieur chez l’adulte et 

continuent de former de novo des aNSCs dans cette région du cerveau.  

Outre la vision globale que cette étude nous a permis d’avoir sur l’origine embryonnaire de la 

totalité des aNSCs du pallium de poisson zèbre, elle a aussi délivré des informations sur les 

étapes de maturation progressive des progéniteurs embryonnaires pour former les aNSCs, 

et les similitudes et divergences qui existent entre la population dorso-médiane et latérale à 

ce sujet. Enfin, en traçant les neurones issus des cellules souches à différents stades, cette 

étude a pour la première fois mis en évidence la formation progressive des compartiments 

neuronaux du pallium de poisson zèbre, et ainsi permis d’apprécier les homologies de ces 

compartiments avec les régions du pallium de souris. 
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