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Abstract :

Plant growth models aim to describe plant development and functional processes
in interaction with the environment. They offer promising perspectives for many ap-
plications, such as yield prediction for decision support or virtual experimentation in
the context of breeding. This PhD focuses on the solutions to enhance plant growth
model predictive capacity with an emphasis on advanced statistical methods. Our
contributions can be summarized in four parts.

Firstly, from a model design perspective, the Log-Normal Allocation and Senes-
cence (LNAS) crop model is proposed. It describes only the essential ecophysiological
processes for biomass budget in a probabilistic framework, so as to avoid identification
problems and to accentuate uncertainty assessment in model prediction.

Secondly, a thorough research is conducted regarding model parameterization. In a
Bayesian framework, both Sequential Monte Carlo (SMC) methods and Markov chain
Monte Carlo (MCMC) based methods are investigated to address the parameterization
issues in the context of plant growth models, which are frequently characterized by
nonlinear dynamics, scarce data and a large number of parameters. Particularly, when
the prior distribution is non-informative, with the objective to put more emphasis on
the observation data while preserving the robustness of Bayesian methods, an iterative
version of the SMC and MCMC methods is introduced. It can be regarded as a
stochastic variant of an EM type algorithm.

Thirdly, a three-step data assimilation approach is proposed to address model pre-
diction issues. The most influential parameters are first identified by global sensitiv-
ity analysis and chosen by model selection. Subsequently, the model calibration is
performed with special attention paid to the uncertainty assessment. The posterior
distribution obtained from this estimation step is consequently considered as prior in-
formation for the prediction step, in which a SMC-based on-line estimation method
such as Convolution Particle Filtering (CPF) is employed to perform data assimilation.
Both state and parameter estimates are updated with the purpose of improving the
prediction accuracy and reducing the associated uncertainty.

Finally, from an application point of view, the proposed methodology is imple-
mented and evaluated with two crop models, the LNAS model for sugar beet and the
STICS model for winter wheat. Some indications are also given on the experimental
design to optimize the quality of predictions. The applications to real case scenarios
show encouraging predictive performances and open the way to potential tools for yield
prediction in agriculture.

Keywords: State space models; parameter estimation; data assimilation; uncertainty
analysis; yield prediction; LNAS; STICS; dynamic crop model; Markov chain Monte
Carlo methods; Sequential Monte Carlo methods; Regularized Particle Filter; Con-
volution Particle Filter; Adaptive Metropolis; Parallel and interacting Markov chain
Monte Carlo; Differential Evolution Adaptive Metropolis; Ensemble Kalman Filter.



Résumé :

La croissance des plantes en interaction avec l’environnement peut être décrite
par des modèles mathématiques. Ceux-ci présentent des perspectives prometteuses
pour un nombre considérable d’applications telles que la prévision des rendements
ou l’expérimentation virtuelle dans le contexte de la sélection variétale. Dans cette
thèse, nous nous intéressons aux différentes solutions capables d’améliorer les capacités
prédictives des modèles de croissance de plantes, en particulier grâce à des méthodes
statistiques avancées. Notre contribution se résume en quatre parties.

Tout d’abord, nous proposons un nouveau modèle de culture (Log-Normal Allo-
cation and Senescence ; LNAS). Entièrement construit dans un cadre probabiliste, il
décrit seulement les processus écophysiologiques essentiels au bilan de la biomasse vé-
gétale afin de contourner les problèmes d’identification et d’accentuer l’évaluation des
incertitudes.

Ensuite, nous étudions en détail le paramétrage du modèle. Dans le cadre Bayé-
sien, nous mettons en œuvre des méthodes Monte-Carlo Séquentielles (SMC) et des
méthodes de Monte-Carlo par Châınes de Markov (MCMC) afin de répondre aux diffi-
cultés soulevées lors du paramétrage des modèles de croissance de plantes, caractérisés
par des équations dynamiques non-linéaires, des données rares et un nombre impor-
tant de paramètres. Dans les cas où la distribution a priori est peu informative, voire
non-informative, nous proposons une version itérative des méthodes SMC et MCMC,
approche équivalente à une variante stochastique d’un algorithme de type Espérance-
Maximisation, dans le but de valoriser les données d’observation tout en préservant la
robustesse des méthodes Bayésiennes.

En troisième lieu, nous soumettons une méthode d’assimilation des données en trois
étapes pour résoudre le problème de prévision du modèle. Une première étape d’analyse
de sensibilité permet d’identifier les paramètres les plus influents afin d’élaborer une
version plus robuste de modèle par la méthode de sélection de modèles à l’aide de
critères appropriés. Ces paramètres sélectionnés sont par la suite estimés en portant
une attention particulière à l’évaluation des incertitudes. La distribution a posteriori
ainsi obtenue est considérée comme information a priori pour l’étape de prévision, dans
laquelle une méthode du type SMC telle que le filtrage par noyau de convolution (CPF)
est employée afin d’effectuer l’assimilation de données. Dans cette étape, les estimations
des états cachés et des paramètres sont mis à jour dans l’objectif d’améliorer la précision
de la prévision et de réduire l’incertitude associée.

Finalement, d’un point de vue applicatif, la méthodologie proposée est mise en
œuvre et évaluée avec deux modèles de croissance de plantes, le modèle LNAS pour la
betterave sucrière et le modèle STICS pour le blé d’hiver. Quelques pistes d’utilisation
de la méthode pour l’amélioration du design expérimental sont également étudiées,
dans le but d’améliorer la qualité de la prévision. Les applications aux données expé-
rimentales réelles montrent des performances prédictives encourageantes, ce qui ouvre
la voie à des outils d’aide à la décision en agriculture.



Mots clés : modèle de Markov caché ; estimation paramétrique ; inférence Bayésienne ;
assimilation de données ; analyse d’incertitude ; prévision de rendement ; LNAS ; STICS ;
modèle de culture ; méthode de Monte Carlo par châıne de Markov ; méthode de Monte-
Carlo séquentielle ; filtre particulaire régularisé ; filtrage par noyaux de convolution ;
Metropolis adaptatif ; méthode de Monte Carlo par châınes de Markov en parallèle et
en interaction ; évolution différentielle adaptative Metropolis ; filtre de Kalman d’en-
semble.
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CHAPTER 1

Introduction

Plant growth modelling has become a key research subject in the field of agriculture,
forestry and environmental science. In an interdisciplinary research landscape, the

development of plant growth models has made considerable progress in the past two
decades, thanks to the efforts made by biologists, mathematicians, computer scientists
and the growing computation resources.

The main objective of plant growth modelling is to reproduce the growth of plants
in interaction with the environment. It has a huge potential for many applications,
such as to perform yield prediction in a qualitative and quantitative way for decision
support, or by testing hypotheses and conducting virtual experiments to optimize the
use of limited energy resources, which could otherwise take years in field conditions.
All of these applications require plant growth models with accurate descriptions of
the plant growth process as well as efficient mathematical and statistical methods to
perform the parameterization and the prediction.

However, a major challenge for plant growth modelling is to keep up with the
progress made in the related scientific domains (Fourcaud et al., 2008). This is espe-
cially difficult when it comes to the development of mathematical and statistical tools
which play an essential role in a good practice of modelling, for most of the methods
are developed outside of the plant growth model framework.

Therefore, this thesis encompasses the essential core steps of modelling, including
model design, sensitivity analysis, model calibration (also known as parameterization),
model selection, uncertainty analysis, model prediction and eventually design of exper-
iments. The objective is to enhance the predictive capacity of plant growth models.

In the following, we first present the background of the prediction problem in plant
growth modelling. An overview of the development of plant growth models and the
statistical methods used is given. The problems of interest and the focus of this thesis
are subsequently detailed.

15



16 1.1. BACKGROUND AND OBJECTIVES

1.1 Background and objectives

To improve or even to optimize the predictive capacity of plant growth models in
various environmental contexts has been a long-standing challenge. A common idea is
to enrich the mechanistic description of plant ecophysiology (Yin and Struik, 2010).
With this purpose, particular efforts have been made to take into account abiotic
stresses regarding temperature (e.g. Fowler et al. (2003)), water (e.g. Tardieu (2003)),
or Nitrogen (e.g. (Bertheloot et al., 2011)). Some advanced agro-environmental mod-
els even aim at addressing the full diversity of environmental variations, like STICS
(Brisson et al., 2003) or APSIM (Keating et al., 2003). However, the complexity of
the interaction between processes can make the task rather difficult. Particularly in
the case when several stresses are involved, it is delicate to describe the mixed effects
of these combined stresses (Mittler, 2006). Hence, most models simply consider mul-
tiplicative stresses or a general stress value given by the maximal stress effects. As
described by Yin and Struik (2010), the tendency is still to complicate the mechanistic
description of biophysical processes, even by linking ecophysiology to “omics” sciences
as an attempt for the full comprehension of the regulatory networks from which plant
robustness and plasticity is supposed to emerge (Hirai et al., 2004), whilst a robust
description appears difficult to achieve at the cell or tissue level.

This direction is clearly leading the way to great advances in research, especially
in extending our understanding of how genotype leads to phenotype (Buck-Sorlin and
Bachmann, 2000; Hammer et al., 2006; Yin and Struik, 2010). However, the objective
of improving the prediction quality relies not only on providing an accurate prediction,
but also on an appropriate assessment of the uncertainty, and further on reducing the
uncertainty associated to the prediction.

It is obvious that the more complex the models are, the more troublesome their
parameterization and the assessment of the estimate uncertainty become (Chen and
Cournède, 2012; Ford and Kennedy, 2011), specifically due to the costly experimen-
tation and the great number of unknown parameters to consider. This is thus an
important drawback of this approach of building sophisticated models. Likewise, lo-
cal environmental conditions (in terms of climatic and soil variables, as well as biotic
stresses) and initial conditions in specific fields are also very delicate to characterize.
Consequently, it may raise important issues regarding the identifiability of the param-
eters, the assessment of the confounding noises and the propagation of uncertainty
and errors related to both parameters and inputs of these dynamic models. Failing
to address these issues may finally result in poor predictions of plant-environment
interactions in real situations, that is to say the opposite of the pursued objective.

Therefore, considering the lack of sufficient data assimilation approaches putting
proper emphasis on the uncertainty assessment for prediction, the objective of this
thesis is to propose a full methodology in a probabilistic framework for plant growth
model prediction. This approach should be robust, efficient, adapted to the specific
characteristics of plant growth models (nonlinear dynamics, restricted and irregular
observation data) and provide a proper evaluation of the model uncertainties with the
aim of reducing those associated to the prediction.
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For this purpose, our research mainly focuses on three directions. The first concerns
the design of an adequate model for prediction, then we are interested in the methods
to perform a proper parameterization of the model with an emphasis on the reliable
uncertainty assessment. Finally, the implementation of the data assimilation technique
is investigated with the objective to improve the predictive capacity of plant growth
models in general.

1.2 Problem formulation and contributions

1.2.1 Model design for prediction purpose

Pioneer studies carried out on data assimilation approach were aiming at specific
farming conditions. A combination of a crop model and the data assimilation technique
was used to update the model variables and / or parameters based on the observed data
of early growth stages (Bouman, 1992; Delécolle et al., 1992; Maas, 1988; Moulin et al.,
1998). This approach was particularly developed following the progress in deriving
biophysical and biochemical canopy state variables from optical remote sensing (Dorigo
et al., 2007), which could potentially give way to crop production forecast at large scales
(Moran et al., 1997) and thus be considered as a tool for decision support (Gabrielle
et al., 2002; Houlès et al., 2004).

The conventional strategy for prediction purpose is to employ reference models
like SUCROS (Guérif and Duke, 1998, 2000; Launay and Guérif, 2005) or CERES
(Dente et al., 2008) as the framework to integrate the remotely sensed observations to
enhance the prediction quality. A few methods were developed under this perspective
(see Dorigo et al. (2007) for a review). The forcing method consists in replacing a state
variable of the model by the observed data, for instance the Leaf Area Index (LAI) in
(Delécolle et al. (1992); Dente et al. (2008)). One important drawback is that generally
a considerable part of the model state variables cannot be or are not observed and thus
cannot be updated simultaneously at each time step. Moreover, the method does not
take into account the observation error, which should not be neglected considering the
general lack of accuracy of remote sensing data.

Another possibility is to use the available observation data to recalibrate some
model parameters and / or initial states that may presumably vary with local condi-
tions (Bouman, 1992; Guérif and Duke, 2000; Launay and Guérif, 2005). The main
limitation of this method is that it requires sufficient data to perform the calibration,
which is often costly and difficult to obtain. Besides, the global approach of this cali-
bration step usually fails to capture and to maintain the system dynamics and thus is
unable to improve the prediction accuracy.

On the other hand, it is noteworthy that in other research domains, data assimi-
lation problems have been commonly reformulated and studied with a Bayesian prob-
abilistic perspective, which allows the sequential estimation of model states and pa-
rameters simultaneously (Van Leeuwen and Evensen, 1996; Jazwinski, 1970) in the
framework of generalized state-space models.

In the light of these applications, the first attempt to adapt a relatively simple
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crop model into this perspective was made by Makowski et al. (2004). The method
implementation relies on a probabilistic framework of crop model which is used to
derive prior distributions of the model state variables and parameters at time steps
with available observations while taking into account uncertainty in model prediction.
Conditionally to the experimental observations and the observation error, posterior
distributions are deduced according to Bayes’ rule. An updated prediction of the model
state variables can thus be inferred. The procedure is repeated at all measurement
dates. Classical estimation methods used for this purpose are Ensemble Kalman Filter
(see Evensen (2006) for the general presentation of the method, and Jones and Graham
(2006) for an application in the context of crop models) or Particle Filter (see for
example Kitagawa (1996) for the general concepts, and Naud et al. (2007) for an
application in the context of crop models).

Nonetheless, one of the difficulties to implement this approach comes from the fact
that it requires the plant growth model as well as the measurement model described
in a probabilistic framework, as a hidden Markov model (Cappé et al., 2005). The
classical and complex crop models (like STICS (Brisson et al., 1998), APSIM (Keating
et al., 2003), CERES (Jones and Kiniry, 1986) ...) were not built in this perspective
and their stochastic reformulation is therefore far from straightforward: the large num-
ber of involved processes may potentially lead to a drastic increase in the number of
parameters to model process errors. One simple solution to circumvent this problem
is to only consider observation errors (Guérif et al., 2006), but it may hinder a proper
update of hidden state variables.

The above examples demonstrate the importance of having an appropriate model
design to enhance the predicting performance. An adequate level of complexity may
allow us to describe the principal plant development and functional process in in-
teraction with the environment, while retaining the identifiability of the underlying
parameters. Moreover, the model is better described in a probabilistic framework, so
that the uncertainty evaluation can be carried out in an easier way.

By keeping these key points in mind, a new plant growth model describing biomass
budget in crops is proposed in this thesis, with the particularity of being fully built in
a probabilistic framework. Based on the analysis of Delécolle et al. (1992), we simplify
the model description while retaining the major ecophysiological processes (at least in
terms of Carbon economy): biomass production, biomass allocation, senescence and
leaf surface development. The restriction of the model description to the fundamental
processes allows an easier representation of the model errors without increasing signif-
icantly the number of parameters. The model is named LNAS (Log-normal allocation
and senescence) in reference to the empirical functions of the (cumulative) Log-normal
distribution employed to model allocation and senescence processes. Although the
parameters of these functions are no longer supposed to be from genetic origin only,
the adopted assumption is that the empirical functions describing the ecophysiological
processes are flexible enough to adapt, and robust enough so that the mean prediction
remains pertinent.

Currently the LNAS model is used to study simple crops such as sugar beet, maize,
sunflower and wheat.
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1.2.2 Model calibration and uncertainty assessment

The parametrization and the predictive capacity of plant growth models are con-
sidered to be complex and critical issues which are highly correlated.

Frequentist approaches
Facing limited and unevenly distributed measurements, important number of unknown
parameters and complex interactions among compartments described in plant growth
models, many studies are dedicated to tackle the parameterization problem in liter-
ature. Both frequentist and Bayesian approaches are considered. Yet most of the
work put more emphasis on the model construction and the biological interpretation
of the results, whereas the parameter estimation is usually performed with a simple
frequentist approach with little attention to the uncertainty assessment. For instance,
Zhan et al. (2003) and Guo et al. (2006) performed parameter estimation for the
Greenlab models by minimizing an Ordinary Least-Squares criterion for applications
to unbranched plants, such as cotton and maize, so is the case of de Reffye et al. (1999),
who carried out a preliminary calibration for a hydraulic growth model for cotton. We
could say that the objective in these studies is more about data fitting than parameter
estimation.

However, with the increasing complexity of the considered models, nonlinear esti-
mators are in great needs, as in the case of Hillier et al. (2005), who used a Generalized
Nonlinear Least Square estimator with a maximum likelihood criteria and two Boot-
strap methods to fit plant organ growth models. As a transition, Makowski et al.
(2006) gave a general presentation of parameter estimation in crop models, in which
the description of several more advanced estimation methods are presented including
some basic Bayesian methods.

The first advantage of Bayesian methods is that they allow to take into account
the prior knowledge. Indeed, although the experimental data are often restricted due
to high costs, there is usually additional information available regarding the param-
eters of plants growth and development processes, specifically when they have clear
biophysical interpretations. Hence, the estimation problem can be characterized as
using experimental data to update the prior knowledge of the plant growth with the
Bayesian philosophy. In this way, the weight of the observed data is limited and the
estimation obtained is more interpretable.

Moreover, the Bayesian approaches provide a probability distribution as estimation
for the unknown parameter which is opposite to the point estimation of the frequentist’s
philosophy. Therefore, not only the Bayesian approaches are capable of reconstructing
the system by estimating simultaneously model parameters and unobservable state
variables, but also they allow to evaluate the uncertainty related to the estimated
model parameters and to identify the uncertainties stemming from other sources. In
this way, the uncertainties can be handled properly and taken into account for the
prediction process in order to achieve better prediction accuracy and reliable corre-
sponding confidence intervals. These are very desirable features for estimation and
prediction (data assimilation) problems in the context of plant growth models, which
explain why sequential data assimilation techniques, especially the Bayesian filtering
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methods have received considerable attention to deal with similar applications in other
research areas (Anderson, 2001; Reichle et al., 2002; Mattern et al., 2013).

Yet despite all these desirable features, few efforts have been made to employ
more sophisticated Bayesian approaches to solve plant growth models’ parameteri-
zation problem. For example, Makowski et al. (2002) conducted a comparison be-
tween Generalized Likelihood Uncertainty Estimation method (GLUE) and a MCMC
based method, the Metropolis-Hastings, for parameter estimation and Gaucherel et al.
(2008) compared Particle filtering and a MCMC based method in the application to
a process-based tree-growth model. Loi et al. (2011) introduced the first application
of the filtering methods (Unscented Kalman Filter and Particle Filter) to a GreenLab
model for Bayesian estimations. The comparison of these two methods can be found
in (Loi, 2011).

Markov chain Monte Carlo based approaches
The Markov chain Monte Carlo (MCMC) based methods are very popular numerical
approximations for Bayesian inference, which make the estimation of posterior dis-
tributions feasible in practice. However, some complex implementation issues can be
encountered due to the specificity of plant growth models. First of all, the efficiency
of the chain depends a lot on the proposal distribution. To tune the proposal distribu-
tion continuously, an adaptive scheme is proposed by Haario et al. (2001). Moreover,
as pointed out by Geyer (1992), independent Markov chains may result in pseudo-
convergence due to the multimodality of the target distribution. It seems that there
is no satisfactory analytical tool to distinguish the pseudo-convergence from the real
convergence, the only reliable way is to run the chain long enough, the strategy is
thus known as “one long run”. For this reason, the algorithm is very time consuming.
Furthermore, if we aim at the joint estimation of both hidden states and unknown
parameters, a poor mixing due to strong correlations between the two may result in
very poor performance of the estimation (Liu et al., 1994; Roberts and Sahu, 1997).
A possible solution to improve the mixture properties as well as the efficiency of the
estimation is to make different copies of the same Markov chain and let them inter-
act with each other, the strategy is known as ”many short runs”. Two well known
algorithms developed in this perspective are the Interacting parallel MCMC (Campillo
et al., 2009) and the Differential Evolution Adaptive Metropolis (DREAM) (Vrugt
et al., 2009a). Therefore in this thesis, both strategies are investigated when applied
to a plant growth model. In addition, a new Adapted Metropolis-within-Gibbs algo-
rithm is proposed to cope with the mixing properties of the plant growth model in
order to estimate both the hidden states and unknown parameters.

Note that given the iterative nature of MCMC-based methods, which means that
they process all the observation data repeatedly, they are often regarded as off-line
estimation approaches: when a new observation is available, the MCMC based methods
have to run from the start again without being able to conserve the samples obtained
formerly.

Sequential Monte Carlo approaches
Sequential Monte Carlo (SMC) methods are a set of simulation-based methods which
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provide a convenient approach to compute the posterior distributions. The most repre-
sentative methods of the SMC family are the filtering methods. Unlike MCMC-based
approaches, filtering methods are performed in a sequential way. They are able to take
into account the variation of parameters over time and carry out real-time updating,
which is why they are known as on-line estimation methods.

The most efficient filtering method when dealing with linear systems is the Kalman
filter (Kalman, 1960). To date, many efforts have been made to develop extensions
of the Kalman filter for nonlinear systems. The most well known are the Extended
Kalman Filter (EKF) (Evensen, 1994), the Unscented Kalman Filter (UKF) (Julier and
Uhlmann, 1997; Quach et al., 2007) and the Ensemble Kalman Filter (EnKF) (Evensen,
1994). The EKF simply linearizes locally the model so that the traditional Kalman
filter can be applied. However, when the nonlinearity is significant, it may cause
divergence and the method proves to be no longer reliable. On the other hand, the
UKF adopts deterministic sampling aiming at using a small set of discretely sampled
points, known as sigma-points (Julier et al., 2000; Wan and Van Der Merwe, 2000),
to get hold of the information of higher order for both the mean and the covariance
matrix. But it performs poorly when confronting large scale nonlinear models because
of its dependence on the Gaussian assumption and its limited sample size. The EnKF
relies on normality assumptions in order to improve the accuracy of its estimates with
a more important number of samples compared to the UKF. Both latter methods
generalize to nonlinear systems in an elegant way without relying on the linearization
required by the EKF.

Another important approach is the Particle Filtering (PF). Unlike the Kalman fil-
ter based methods, PF uses a set of randomly drawn samples with each an associated
weight to represent the probability distribution of the hidden states and parameters
conditioned on a series of observations. During decades, the development of PF-based
methods has thrived since the Sequential Importance Sampling (SIS). The main weak-
ness of SIS is the potential weight degeneracy (Arulampalam et al., 2002) and sample
impoverishment (Gordon et al., 1993). Gordon et al. (1993); Kitagawa (1996) pro-
posed a similar method, the Sequential Importance Resampling (SIR), by introducing
the idea of resampling, which allows to overcome the degeneracy problem in most of
the cases. Comparing to the Kalman-based filters, the PF-based methods have the
advantage of being able to better predict nonlinear growth behaviours, for example,
occasional skewness resulting from sudden or unusual climate changes.

Although the literature on the PF methods is considerably rich, the Convolution
Particle Filter (CPF) (Campillo and Rossi, 2009; Musso and Oudjane, 1998; Rossi
and Vila, 2006) which can be regarded as a generalization of the regularized particle
filter proposed by Musso and Oudjane (1998), stands out for its attractive features
regarding the challenges raised by parameter estimation and data assimilation of crop
models. Firstly, the method is not only rather easy to adapt (with very few tuning
parameters), but also robust in terms of convergence since it circumvents the classical
problem of potential weight degeneracy in the SIR when the parameter identification
issues occur. This property is valuable in classical field experimentations for which
irregular or heterogeneous data are available. When these models are formalized as
state-space hidden Markov models, the CPF can achieve a proper evaluation of model
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uncertainty. Another interesting feature is that it works as well with deterministic
models, which also makes the method straightforwardly adaptable to the classical and
widely used crop models.

In this thesis, the above Bayesian approaches are used for model calibration of the
LNAS model derived for sugar beet growth. Their performances are compared with
both simulated data and real experimental data.

Iterative approaches
When the prior is non-informative and few observation data are available, it is prefer-
able to put more weight on the data. Intuitively, an iterative approach is proposed
in this thesis which can be regarded as a variant of Expectation-Maximization (EM)
algorithm. The EM algorithm Dempster et al. (1977) is generally used to find the
maximum-likelihood estimate of the parameters of an underlying distribution based
on a dataset which is incomplete or has missing values, which corresponds to our
case of rare and irregular experimental data. Some recent efforts to obtain appropri-
ate stochastic EM-type algorithms for complex models arising in plant growth model
applications can be found in Trevezas and Cournède (2013).

In contrast to classical stochastic variants (Celeux and Diebolt, 1985; Wei and
Tanner, 1990; Delyon et al., 1999), in this thesis we present a simple way of turning a
non-explicit M-step into an explicit one. Both MCMC based methods and SMC based
methods are chosen to perform the E-step. We mention that until now the use of this
type of Particle Filter was restricted to Bayesian type of estimation.

Consequently, the uncertainty related issues are mainly discussed, especially re-
garding the noise parameter calibration. The robustness of this iterative approach is
examined with the application to LNAS model derived for sugar beet growth, based
on both simulated data and real experimental data.

Implementation with PyGMAlion
All the methods and models tested in this thesis are implemented in the modelling
platform PyGMAlion (Plant Growth Model Analysis, Identification and Optimization)
(Cournède et al., 2013), which can be seen an attempt to promote a modelling frame-
work and model analysis methods with the objectives of enhancing good modelling
practices and increasing model design efficiency.

1.2.3 Model prediction with data assimilation

On-line estimation methods for model prediction
As stated previously, unlike the MCMC based methods, the filtering methods have the
advantage of processing sequentially. This is a very attractive feature, for it enables
the real-time updates for model prediction. New observed data can be assimilated
to re-adjust the calibration of the model sufficiently without the need of eliminating
all the previous estimations as the MCMC based methods do. In addition, both the
model error and observation error can be quantified in the prediction process, which
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is why the filtering methods are particularly suited to perform model prediction with
uncertainty assessment.

Three-step approach for model prediction
In this thesis, we intend to provide a clear view about the numerical methods available
to tackle the parameter estimation and yield prediction problem with both determinis-
tic and stochastic plant growth models built with different perspectives, while putting
a special emphasis on the uncertainty assessment.

Inspired by the various applications mentioned above, a full methodology to per-
form data assimilation with plant growth model is proposed in this thesis. A three-step
data assimilation approach is proposed to address the model prediction problem :

– Parameter selection : the most influential parameters are identified by global
sensitivity analysis and selected by model comparison.

– Model calibration : the unknown parameters are estimated either with a Bayesian
perspective (with Sequential Monte Carlo (SMC) methods or Markov chain
Monte Carlo (MCMC) methods), or with a frequentist perspective (with an iter-
ative version of the previous Bayesian methods) from on a experimental dataset.
The uncertainty analysis is as well conducted to identify various sources of noises
and determine the confidence interval associated to the parameter estimates if the
iterative approaches are employed. Although various estimation methods offer
many options, according to the characteristic of the considered model, estimation
strategies are summarized.

– Prediction with data assimilation : the filtering methods are carried out to ben-
efit from the available data of early growth stages with regular updates of the
state and parameter estimates obtained from the calibration step. The objective
is to improve the prediction accuracy as well as to reduce the associated uncer-
tainty. The prediction confidence interval can thus be derived from the posterior
distribution.

This approach is applied to both the STICS model for winter wheat growth and
the LNAS model for sugar beet growth.

1.3 Dissertation outline

In Chapter 2, we introduce a new model, the LNAS model, which is designed in the
purpose of performing model prediction with an emphasis on uncertainty assessment.
We also provide a brief overview of the main principles of the STICS model, which is
one of the most classical crop models. It represents another modelling philosophy by
enriching the description of growth processes.

As mentioned above, most of the estimation methods employed in the thesis are
considered under a Bayesian framework. Therefore, basic notions and concepts of
Bayesian inference are recalled in Chapter 3, some classical algorithms of both MCMC
based approaches and SMC approaches are presented in chapter 4.
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A methodological contribution of this thesis is detailed in Chapter 5, proposing
a variant of the EM-type algorithm using SMC and MCMC based methods to per-
form the E-step. Chapter 6 describes the approaches adopted to perform uncertainty
assessment for stochastic models Subsequently, the numerical implementation of the
algorithms mentioned as well as the PyGMAlion modelling platform are presented in
Chapter 7.

In Chapter 8, the Bayesian methods and the frequentist-based methods are ap-
plied to LNAS to perform parameter estimation with both simulated datasets and
experimental dataset. The objective is to identify their performance with different
configurations and in various modelling conditions. Note that both functional param-
eters and (observation and modelling) noise parameters are taken into account, and
the corresponding implementation is detailed and estimation results are discussed.

Subsequently, a three-step approach is proposed in Chapter 9 to address prediction
problems in plant growth models of different types. The approach is applied both to
the stochastic LNAS model for sugar beet and to the deterministic STICS model for
winter wheat. In order to test the predictive capacity of the model in various situations
as well as its pertinence to evaluate the associated uncertainty, real experimental data
are used for validation. An introduction to optimal design of experiments is given
to select the best experimental configurations with the objective of improving the
prediction quality while taking into account the experimental cost.

Finally, Chapter 10 summarizes all the results, the methods and the proposed
selection strategies are discussed. Some perspective are presented and possible future
research directions are outlined.
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Plant Growth Models

In this chapter, we present the two plant growth models studied in this thesis.
Both models belong to the category of crop models. They describe the crop growth at
compartment level, per unit of land surface area.

The LNAS model is developed as a simplification of the GreenLab model (de Reffye
et al., 2003), but with a probabilistic perspective in the form of hidden Markov models.
We highlight the fact that the LNAS model can also be derived at individual scale. In
our study, it is specifically derived for the sugar beet growth.

On the contrary of the LNAS model, the second model considered is a classical one,
the STICS model. It is deterministic and is well known for its detailed description of
plant-environment interactions. In this study, it is derived for the winter wheat growth.

2.1 LNAS model of plant growth

For data assimilation purpose, a general scheme for agrosystem models was given
by Delécolle et al. (1992) and adapted by Dorigo et al. (2007). They underlined the
main ecophysiologcal processes and key variables to describe the interaction between
plants and their environment. We adapt this scheme to the sugar beet case in Fig.
2.1. The principal processes they suggested to consider are crop development, light
interception, biomass accumulation, biomass partitioning and senescence.

A specificity of the LNAS model is that the main growth processes underlined in
Fig. 2.1 are considered as stochastic processes when it appears relevant. The version
presented does not detail how nitrogen, temperature and water stress effects are taken
into account in the model, classical functions borrowed from Sunflo (Lecoeur et al.,
2011), STICS (Brisson et al., 2008) and Pilote (Mailhol et al., 1997) can be used, when
necessary.

We believe that a realistic plant growth model should include the variability in-

25



26 2.1. LNAS MODEL OF PLANT GROWTH

Figure 2.1: General scheme of an agroecosystem model for sugar beet (adapted from
Delécolle et al. (1992) and Dorigo et al. (2007)).

volved in the way that the plant evolves (modelling noise, also known as process noise
or state noise), as well as the variability regarding the estimation of the true value of the
state of interest (observation noise) (de Valpine, 2002; Donnet et al., 2010), for there
are multiple stochastic factors, including environmental noises and inter-individual
variability, that are inherent in the plant functional growth processes. These noises
are generally considered independent of the errors resulted from the sampling meth-
ods or from the observations (Dennis et al., 2006). Generally speaking, more and
more models tend to take into account the observation noise (Hilborn and Ledbetter,
1979; Polacheck et al., 1993), but not the modelling noise, mostly for computation
convenience. Nonetheless, if process noises are present in reality, then omitting them
while building a model will lead to important bias in the likelihood function. Without
modelling noise, the fit of the model is measured by only one trajectory (evolution
of the state variables) that might have produced the data. This could result in bias
in parameter estimation (Ludwig and Walters, 1981; de Valpine and Hastings, 2002;
Schnute, 1995). By taking into account the modelling noise, an important range of
trajectories that could have produced the data are incorporated in the fitting process.
For the reasons mentioned above, it seems to be a more reasonable configuration for
plant growth, which is why we opt for including both observation noise and modelling
noise in our model.

Note that adaptations of the model are currently derived for maize, wheat and
sunflower, and the equations can be adapted to other type of plant without difficulty
by adding other types of compartments.

In the following, we present the equations of the Log-Normal Allocation and Senes-
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cence (LNAS) model specifically derived for the sugar beet, per unit surface area, with
two organ compartments: foliage and root system. The time step is one day and the
environmental variables are daily averages.

Interception and assimilation: Q(t) is the biomass production on day t per unit
surface area (g.m−2) which can be obtained by an adaptation of the Beer-Lambert law
(Monteith, 1977):

(
1− e−λ·Qg(t)

)
represents the fraction of intercepted radiation, with

Qg(t) the total mass of green leaves on day t (in g.m−2) and λ a parameter defined in
g−1.m2. The biomass production of the whole plant is then deduced by multiplying
the total amount of absorbed photosynthetically active radiation per unit surface area
(PAR, in MJ.m−2) and an energetic efficiency µa (in g ·MJ−1·):

Q(t) =
(
µa · PAR(t)

(
1− e−λQg(t)

))
· (1 + ηQ(t)) (2.1)

where we introduce the modelling noise ηQ ∼ N (0, σ2
Q). Since the characterization of

the environmental variables and of the light interception is not accurately described by
the Beer-Lambert law, the model noise appears relevant for the production equation.
Despite the fact that Q(t) should always be positive, we still use a normal law. With
the multiplicative form and the levels of noise generally considered (inferior to 10%),
there is no problem of positivity loss.

The parameter λ corresponds to λ = k SLA, where k is the Beer-Lambert extinc-
tion coefficient and SLA is the specific leaf area, so that the term

(
1− e−λQg(t)

)
can

classically be rewritten as
(
1− e−k LAI

)
, with LAI the leaf area index. There is a

slight difference in the formulation however, because we consider λ as an empirical
constant parameter, whereas linking leaf mass to leaf surface via the SLA variable is
not obvious since the SLA is known to vary during crop growth and within plants
(see for example Jullien et al. (2009)), even though it is often regarded as constant in
models. This simplification also allows us to avoid the differentiation between blades
and petioles (which is not always easy from a botanical point of view in sugar beet),
both constitute the leaf compartment.

Allocation to the foliage and root system compartments:

The description of the allocation process is a simplification of the GreenLab model
(Yan et al., 2004; Guo et al., 2006) with the organ sink dynamics being described at
compartment level: the proportion of biomass allocated to each compartment (foliage
and root) is described by an empirical function γ:

Qf (t+ 1) = Qf (t) + γ(t) ·Q(t) (2.2)

Qr(t+ 1) = Qr(t) + (1− γ(t)) ·Q(t) (2.3)

where

γ(t) = Γ(t) · (1 + ηγ(t))

= (γ0 + (γf − γ0) ·Ga(τ(t))) · (1 + ηγ(t)) (2.4)
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with τ(t) the thermal time, which corresponds to the accumulated daily temperature
(above a threshold temperature, which is taken as 0 for the sugar beet (Lemaire et al.,
2008)) since emergence day. Ga denotes the cumulative distribution function of a
log-normal law parameterized by its median µγ and standard deviation σγ (for more
explicit biological meanings of the parameters). γ0 and γf correspond to the initial
and final proportion of biomass allocated to the leaf compartment respectively (Figure
2.2). The modelling noise (process noise) is denoted by ηγ(t) ∼ N (0, σ2

γγ). The
cumulative distribution of the log-normal law is chosen for its flexibility: it allows to
reproduce dynamics similar to the sigmoid-type functions often employed to describe
biological processes, while having the advantage to start with a null value on zero. The
transformation chosen to obtain γ is inspired by the simulation of biomass allocation
to root and leaf compartments of sugar beet described by SUCROS (Spitters et al.,
1989) and GreenLab (Lemaire et al., 2008).

Figure 2.2: The cumulative distribution function Ga and the resulting allocation func-
tion γ, with the initial proportion of biomass allocated to the leaf compartment (γ0)
0.9, and the final proportion of allocation (γf ) 0.2.

The allocation strategy is very sensitive to environmental conditions, therefore we
introduce a multiplicative perturbation, again following a Gaussian law.

Senescence: The senescent foliage mass Qs is a proportion of the accumulated fo-
liage mass given by the cumulative distribution of a log-normal law of median µs and
standard deviation ss:

Qs(t) = Gs(τ(t)− τsen)Qf (t) (2.5)
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with τsen the thermal time at which the senescence process initiates. The green foliage
mass Qg can be hence obtained easily:

Qg(t) = Qf (t)−Qs(t) (2.6)

We choose a deterministic version of the senescence equation despite the strong varia-
tions that can characterize the process. As a matter of fact, the influence of senescence
in the biomass budget is due to the decrease of photosynthetic foliage in Equation (2.1),
adding a perturbation in the senescence mass either would be of second order or could
be summarized in the modelling noise ηQ.

Figure 2.3: The evolution of the senescence function with the initial proportion of
senescent biomass 0.0, and the final proportion 0.85. The gray part refers to the
unobserved thermal time.

Note that both allocation and senescence processes are driven by the thermal time.
The phenological stage in Fig. 2.1 is thus simply represented in our model by the
course of the thermal time, from emergence.

Observations: As described in the next paragraph, the general state space mod-
els considered in this study describe observation equations in addition to the state
equations. In our study, the observation variables potentially available from field mea-
surements for data assimilation are:

Y (t) =

(
Qg(t) · (1 + ξg(t))
Qr(t) · (1 + ξr(t))

)
(2.7)

with measurement noises: ξg(t)) ∼ N (0, σ2
g), and ξr(t) ∼ N (0, σ2

r).

We remark that in the LNAS model, multiplicative Gaussian noise structure is
adopted for both the modelling and observation noises. This choice is justified since the
scale of measurement varies greatly across time (from 0.01g to 250g for one plant), an
additive noise would have clearly led to some difficulties regarding the risk of positivity
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loss or a misrepresentation of the complex measurement process (plants cutting, drying,
weighing, averaging on large samples). With a multiplicative form of the noise and
with the standard deviation of the modelling (respectively observation) noise usually
around 5% (resp. 10% for observation noise) and always below 15% (resp. 20%), the
probability for a random variable following a Gaussian distribution N (0, 0.22) to be
inferior to -1 (in order to cause positive loss) is 2.9 10−7. Therefore, the probability of
obtaining a negative value is extremely small. There are undoubtedly other advantages
of choosing a Gaussian distribution, for instance the symmetry (which is surely shared
by many other distributions), the simplifications in maximum likelihood inference, the
easy simulation process and its robustness.

However, other distributions could have been possible such as the log-normal dis-
tribution, specifically to prevent positivity loss. Both log additive or log multiplicative
noise can be considered.

Another important point is that the proposed framework would still be applicable
when satellite image data are used for LAI evaluation. In that case, LAI should be
specified clearly as a state variable in the system (with an explicit formulation of the
SLA variable), and a corresponding observation function should be defined.

2.2 STICS model of plant growth

The STICS model (Brisson et al., 2003) focuses on the crop-soil system and has
already been applied to various crops. It is divided into several modules with each
representing different plant growth mechanisms (Brisson et al., 2008). Among them,
the development module is in charge of the evolution of the LAI and root compartment,
and in the meantime defines the harvested organ filling phase. Fig. 2.4 illustrates the
main processes involved in the STICS model adapted to the winter wheat crop.

Contrary to LNAS which is based on a biomass budget, the growth in STICS is
driven by an empirical law for the LAI growth. Three phases are involved, the first
phase (from emergence to the maximal LAI point) is approached by a logistic function
with the hypothesis that the ratio of biomass between leaves and stems is constant,
followed by a stabilized phase and a senescent phase of linearly decreasing LAI. Several
stress factors limit the potential daily increase in LAI. The daily biomass production is
then computed as a quadratic function of the intercepted radiation, given by the Beer-
Lambert law. Hence, crop total biomass results from the accumulation of the daily
biomass increase, and the final grain biomass is obtained through a harvest index.

In our study, the field experimentations were conducted without Nitrogen stress,
but in light water stress conditions. Therefore, the soil characteristics are taken into
account to compute the water balance of the plant-soil-atmosphere system and thus
to estimate several water stress indices impacting plant growth at different levels. For
this purpose, the water contents in three soil layers are calculated.

In consequence, the above model can be divided into two sub-models, one concern-
ing the plant system with state variables at time t denoted Xp(t) and the other about
the soil system with state variables denoted Xs(t). Plant growth is described by the
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Figure 2.4: General scheme of the STICS model for winter wheat.

function fp. The root compartment growth is directly affected by the soil temperature
and water content. Likewise, the soil water content determines several water stress
indices impacting LAI development, biomass production and senescence. On the other
hand, water transfers including evaporation and plant transpiration are calculated in
the soil system by the function fs.{

Xp(t+ 1) = fp (Xp(t), Xs(t), Ep(t),Θp)
Xs(t+ 1) = fs (Xs(t), Xp(t), Es(t),Θs)

(2.8)

The details of the equations can be found in Brisson et al. (2008).

Given the complexity of the STICS model, a large number of parameters are in-
volved, some of which may be species dependent or genotype dependent.
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CHAPTER 3

Preliminary
- Estimation Theory

In parallel with theoretical advances, there has been a rise in the development of com-
putationally efficient approximation models to address the increasing complexities

of modern data analysis. With the availability of cheap and flexible computing power,
simulation based Monte Carlo methods have gained great importance in probability
and statistics. Mathematically based on the law of large numbers and conceptually
based on a frequentist notion of probability, a lot of problems can be surmounted
through approximation schemes with important number of simulations.

Before presenting the principles algorithms of the MCMC-based methods and the
SMC methods in a general state-space setting, in this chapter, a number of important
concepts to be used in the other sections are presented. First, we outline the funda-
mental difference between the frequentist and the Bayesian philosophies. A general
probabilistic model for both frequentist and Bayesian inference objectives is described.
Then, problems associated with the posterior computation which motivate the stan-
dard approximation methods are briefly discussed. Subsequently, the Monte Carlo
methods are introduced. Some commonly used estimators are presented. Finally, we
review some basic elements regarding the Markov chain principals and its behaviour
to prepare for the use of Markov chains Monte Carlo methods on general state-spaces
presented in the next chapter.

3.1 Estimation paradigms

Generally speaking, there are several streams of thought in statistical analysis (such
as parametric or nonparametric, inferential or exploratory, robust or nonrobust), one
of the most salient is frequentist or Bayesian (Robert, 2001). Their common objective
is to explore a phenomenon based on observed data, like in the case of plant growth

33
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modelling. The calibration of a given model is carried out based on past observations
with the purpose of improving the understanding of the plant growth mechanisms and
hopefully to be used as predictive tools for future applications. However, the two
categories of the methods are based on different paradigms.

According to the frequentist approach, the studied events are assumed to have
statistical stability, therefore, the parameter is supposed to have a true value which
is fixed. A random confidence interval is usually provided, a 95% confidence inter-
val indicates that if the experiment is repeated a large number of times, 95% of the
confidence intervals calculated would contain the true value of the parameter.

On the other hand, in the Bayesian framework, the understanding of probability
and of inference is conceptually different. A probability distribution can be associated
with the parameter to express one’s uncertainty and belief before taking into account
the data 1. The estimation consists in updating the previous (prior) knowledge of the
studied event based on new observations. In some situations, a credible interval may
be provided as a probabilistic region around the parameter. In the contrast of the fre-
quentist confidence interval, it results from a probability distribution (posterior) which
incorporates contextual problem-specific information given by the prior knowledge.

With that being said, generally for plant growth models, the limited observations
contain frequently important noises, hence the importance of prior information and
the advantage of Bayesian approaches.

Moreover, when it comes to the estimation of unknown parameters of a given model,
frequentist methods rely on estimators whose properties are derived from distributions
of repeated samples whereas Bayesian methods provide distribution of parameters con-
ditional on the actual dataset observed. Given the settings and the objectives of plant
growth modelling, one may come to the conclusion that the Bayesian approaches are
more suitable by nature to address the issues of uncertainty assessment in model cal-
ibration and model prediction. As a result, in this thesis the Bayesian approaches
are mainly investigated. Nevertheless, we also provide some results given by the fre-
quentist approach in comparison, since in some situations, frequentist methods derive
estimators based on the maximum likelihood function which offers similar estimation
results compared to the Bayesian approach.

In the following, Bayesian inference framework is formally formulated and some
frequently used estimators, both Bayesian and frequentist are presented for point es-
timation. First, we introduce the general state-space models.

3.2 General State-Space Models

For parameter estimation and sequential data assimilation in crop models, we rely
on the statistical framework provided by the discrete nonlinear general state-space
model. Here we first introduce the general formulation of a dynamic state-space model
(Kalman, 1960; Harrison and West, 1989; Hamilton, 1994; Doucet et al., 2001) which

1. Parameters of prior distributions are known as hyperparameters, so as to distinguish from those
of the model.
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is usually defined by a state function and an observation function, as follows:
X(t+ 1) = ft (X(t), E(t),Θ, η(t)) ,

Y (t) = gt (X(t),Θ, ξ(t)) .
(3.1)

The evolution equation is embodied in the function ft, which is time dependent.
{X(t)}t∈N represents the state variables at time t, X(t) ∈ X ⊆ R dx . Θ denotes
the parameter vector, Θ ∈ P ⊆ R dΘ , and E(t) represents the system input vector
in a controlled environment, E(t) ∈ E ⊆ R de . The modelling noise is represented
with the random variables η(t) (corresponding to model imperfections or uncertainty
in the model inputs). The observation equation incorporates observations on the state
variables of interest. Y (t) is the output vector which is related to the state vari-
able vector X(t) through the function gt. {Y (t)}t∈N∗ consists of state variables that
can be observed experimentally (outcome) and usually differ from X(t) (for instance,
biomasses of some plant organs can be measured while the daily biomass production
cannot), Y (t) ∈ Y ⊆ R dy . Measurement noises are denoted by ξ(t). Here, we separate
the noise parameters and the model parameters (also known as functional parame-
ters), for they play different roles with respect to likelihood computation. {η(t)}t∈N
and {ξ(t)}t∈N are considered as sequences of independent and identically distributed
random variables.

Note that only in rare occasions (Makowski et al., 2004; Chen and Cournède, 2012;
Trevezas and Cournède, 2013), plant models were built by really taking into account
modelling and measurement noises. Models are generally written as deterministic
dynamic systems. Of course, such deterministic models can still be represented with
(3.1), the stochastic variables being zero with probability 1.

Figure 3.1: Generic state-space model.

Furthermore, since experimental data tend to be limited due to high costs, ob-
servations are only available at irregular times. Let (t1, t2, ...tN) be the N measure-
ment time steps. For all n ∈ N, we set: xn := X(tn), yn := Y (tn) and we denote
y1:n := (y (t1) , y (t2) , . . . , y (tn)).
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If we reformulate the state-space dynamic model in a Bayesian perspective as a
hidden Markov Model, it can be described as:


x0 ∼ pΘ(x0) initial density,
xn ∼ pΘ(xn|xn−1) transition density,
yn ∼ pΘ(yn|xn) measurement density.

(3.2)

with Θ ∈ P and n ≥ 0.

More discussions about the state space model and Hidden Markov model can be
found in Jazwinski (1970); Robert and Casella (1999); Robert (2001); Kaipio and
Somersalo (2005). The Bayesian approach for parameter estimation mainly consists of
updating prior knowledge of parameter Θ, π(Θ), based on the observational evidence to
a posterior distribution π(Θ|y1:n). The probability is thus interpreted as a conditional
measure of uncertainty.

Before proceeding to Bayesian inference and Bayesian prediction, we first recall
some basics of Bayesian statistics.

3.2.1 Bayesian statistics

To perform parameter estimation for plant growth models in a Bayesian framework,
we intend to compute the posterior distributions for the parameters. However, com-
plex models usually involve high dimensionality as well as nonlinearity, and the lack of
data often occurs. These difficulties preclude analytical solutions: the posterior distri-
butions are either impossible to obtain explicitly or difficult to sample from directly.
Therefore, an approximation can be considered. Three types of problems inherently
linked to the Bayesian statistics can be encountered: normalization, marginalization
and expectation.

For the sake of simplicity, let Θ denote the unknown parameters, Θ ∈ P ⊆ R dΘ ,
and y the outcome variable y ∈ Y ⊆ R dy .

• Normalization
Given the prior π(Θ) and the likelihood function L (Θ|y) = p(y|Θ) which assesses the
probability of obtaining y if Θ is the true value of the parameter, the posterior π(Θ|y)
can be obtained according to Bayes’ rule (Bayes, 1763) :

π(Θ|y) =
p(y|Θ)π(Θ)

p(y)
=

p(y|Θ)π(Θ)∫
P p(y|Θ)π(Θ)dΘ

(3.3)

as the product of the prior and the likelihood divided by a normalizing factor, for
which complex integrations are needed over the whole parameter space.

• Marginalization
Given the joint posterior (Θ, x), with x ∈ X ⊆ R dx , the marginal posterior can be
expressed as:

π(Θ|y) =

∫
X
p(Θ, x|y)dx. (3.4)
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We show in the following sections (e.g. Sections 4.1.3, 4.3.3 and 5.2.1) that the
marginalization plays an important role in Bayesian inference.

• Expectation
Given the conditional pdf, we are often interested in computing some averaged func-
tions of Θ :

Eπ(Θ|y)[f(Θ)] =

∫
P
f(Θ)π(Θ|y)dΘ. (3.5)

For instance, if f is an identity function, then we obtain E(Θ|y).

Since the explicit computation of these integrals is generally intractable, we are
led to consider approximate solutions based on Monte Carlo methods, which consist
of sampling random variables from probability distributions so as to perform the inte-
gration implicitly.

3.3 Monte Carlo methods

One of the main numerical issues in statistical analysis concerns integration prob-
lems, which generally emerge with the likelihood approach and the Bayesian approach.
Monte Carlo methods offer a way to evaluate integrals.

3.3.1 Classical Monte Carlo integration

Let πu define the un-normalized density of interest on a measurable state space X ⊂
Rd, with respect to d-dimensional Lebesgue measure, which satisfies 0 <

∫
X πu < ∞.

Let B denote the Borel σ-algebra associated to X . We thus have the probability
measure π(·) on X , for A ∈ B(X ):

π(A) =

∫
A
πu(x)dx∫

X πu(x)dx
. (3.6)

We wish to estimate the expectation of the function f : X → R with respect to
π(·):

π(f) = Eπ[f(X)] =

∫
X f(x)πu(x)dx∫
X πu(x)dx

, (3.7)

for which direct evaluation of integration could be infeasible. Thus, by using the
classical Monte Carlo method, if we have {Xi, i = 1, . . . , n} i.i.d. samples generated
from π(·), then the following estimator is available :

π̂(f) : =
1

n

n∑
i=1

f(Xi), (3.8)
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since

lim
n→∞

1

n

n∑
i=1

f(Xi) −→ Eπ[f(Xi)] a.s. (3.9)

Particularly, in the case when π(f 2) < ∞, Var(π̂(f)) can be estimated according
to the Central Limit Theorem, the speed of the convergence vn can accordingly be
assessed :

Var(π̂(f)) =
1

n

∫
X (f(x)− Eπ[f(X)])2πu(x)dx∫

X πu(x)dx
, (3.10)

v̂n =
1

n

n∑
i=1

(f(Xi)− π̂(f))2, (3.11)

and

lim
n→∞

π̂(f)− π(f)√
v̂n

−→ N (0, 1). (3.12)

It means that the unbiased estimator has a standard deviation of order O(1/
√
n),

which can lead to the construction of confidence bounds and convergence test.

Note that it is not necessary to draw samples directly from the distribution f to
approximate the integral, especially when it is not easy to do so, some other tech-
niques like importance sampling could also be employed (Ripley, 1988; Robert and
Casella, 1999). It is also one of the most popular techniques to reduce the variance of
the estimate. The idea is to represent the integration by an expectation of weighted
samples.

3.3.2 Importance Sampling

The main idea is to evaluate the equation (5.8) (i.e. approximate the expected mean)
based on i.i.d. samples {Xi, i = 1, . . . , n}, generated from an arbitrary chosen distri-
bution g(·). The expectation of f can be reformulated as follows:

Eπ[f(X)] =

∫
X f(x)πu(x)

g(x)
g(x)dx∫

X
πu(x)
g(x)

g(x)dx
, (3.13)

which can be approximated and estimated by

Êπ[f(X)] =

1
n

∑n
i=1 f(Xi)

πu(Xi)
g(Xi)

1
n

∑n
i=1

πu(Xi)
g(Xi)

. (3.14)

If we define

w(Xi) =

πu(Xi)
g(Xi)∑n

j=1
πu(Xj)

g(Xj)

, (3.15)
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a possible Monte Carlo estimate of the integration of Eπ[f(X)] can be obtained :

Êπ[f(X)] =
n∑
i=1

w(Xi)f(Xi). (3.16)

The proposal density g(·) is chosen so as to be easy to sample from. g is some-
times referred to as importance function, and w(x) as importance weight. Thus,
{Xi, w(Xi)}ni=1 can be regarded as giving an approximation to πu(·).

The advantage of introducing the proposal density is that it permits us to sample
random variables from densities different from the original one. A noteworthy point
is that the importance function is supposed to mimic the target distribution, in a way
that it should be positive where the target distribution is positive, and particularly
also be able to capture the peak of the target distribution.

Note that importance sampling is a general Monte Carlo integration method which
brings considerable improvements compared to the classic Monte Carlo method. The
estimate provided is consistent. However, the proposal distribution should have heavy
tail in order to be insensitive to the outliers (Robert and Casella, 1999). Moreover,
the method is computationally expensive for recursive estimation in state space mod-
els, since each time when there is a new data available, one needs to recompute the
importance weights over the entire state space (Doucet et al., 2001). In the literature,
many variations of importance sampling exist to overcome this problem. One of the
most popular methods which generally works well for identification problems in dy-
namic systems, is sequential importance sampling. This method is shortly reviewed in
Section 4.3.4.

3.4 Estimators and optimization criteria

The objective of Bayesian inference is to use prior knowledge, quantitatively and
qualitatively, to infer the conditional probability given limited observations. Once
the posterior distribution is constructed, an estimator is required. Here are some
estimators and the associated criteria that can be used to measure the optimality.

1. Minimum mean square error (MMSE)
The point estimation of Θ can be found by minimizing the prediction or fil-
tering error. The MMSE estimator thus aims to obtain the conditional mean
E [Θ|y0:n] =

∫
P θp(θ|y0:n)λ(dθ), with λ the Lebesgue measure. It can be defined

as :

Θ̂MMSE = argmin
Θ∈P

E(‖Θ− Θ̂‖2|y0:n) (3.17)

2. Maximum a posteriori (MAP)
The point estimation of Θ can as well be obtained by choosing the value of Θ
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at which L(Θ|y0:n) attains its maximum (mode) in the posterior density. The
Maximum a posteriori (MAP) estimator is defined as :

Θ̂MAP = argmax
θ∈P

p(θ|y0:n)

= argmax
θ∈P

p(y0:n|θ)p(θ). (3.18)

3. Maximum likelihood (ML)
If the prior is non-informative, the MAP estimator can be further simplified and
as a result, be generalized to the maximum likelihood estimator (MLE):

Θ̂ML = argmax
θ∈P

p(y0:n|θ). (3.19)

Notice that the range of MLE should coincide with the range of the parame-
ter by construction. Under fairly general conditions (see Casella and Lehmann
(1998)), the MLE is converging almost surely to the true value of the parameter.
However, according to Berger and Wolpert (1984), it is situated at the fringe of
the Bayesian paradigm.

N.B.

- We highlight that the above criteria and estimators are valid for state estimations as
well as for parameter estimations.

- Both MMSE and MAP estimators require the computation of the posterior density
distribution. However, MAP has the advantage of not requiring the calculation of the
denominator (integration), which makes it less computational expensive. On the other
hand, one of its drawbacks is that in high-dimensional space, high probability density
could belong to a narrow distribution and thus does not imply high probability mass.
Thus, the width of the mode is also very important to take into account. Moreover, in
the case of a real parameter, it has no justification in terms of minimization of a risk
function (Heinrich, 2014). Therefore, the MMSE estimator is selected for the Bayesian
approaches presented in this thesis.

In the meantime, under very simple assumptions on the error model, the compu-
tation of maximum likelihood can also be implemented through the minimization of
sums of square residuals, which introduces the Least Squares (LS) estimator. For
nonlinear functions, it can be formulated as :

Θ̂LS = argmin
Θ∈P

n∑
i=0

‖yi − g(Θ)‖2. (3.20)

Regarding the estimation of model state variables, the generalized least squares esti-
mator is often employed.
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3.4.1 Generalized Least Squares Estimator

The classical parameter estimation technique Generalized Least Squares (GLS) is
traditionally used when the measurement errors have unequal variance or are corre-
lated. Generally, modelling errors are not considered, and the dynamics of the model
is not taken into account in the error model. If we denote Ỹ (Θ) the full output vec-
tor of a deterministic model with parameter vector Θ as in the equation (3.1), Y the
corresponding experimental data, Ỹ (Θ), Y ∈ Y ⊆ R dy and Θ ∈ P ⊆ R dΘ , we assume:

Y = Ỹ (Θ) + ξ

with ξ an additive measurement error. If Var(Y |Θ) = Σ is known, the GLS estimator
is given by:

Θ̂GLS = argmin
Θ∈P

(
Y − Ỹ (Θ)

)T
Σ−1

(
Y − Ỹ (Θ)

)
. (3.21)

If the model is linear, Ỹ (Θ) = AΘ with A a ny × nΘ matrix, we can deduce (see for

example Rao (1973)) that Θ̂GLS has a Gaussian vector of variance:

Var
(

Θ̂GLS

)
=
(
ATΣ−1A

)−1
.

If the model is moderately nonlinear (see for example Wu et al. (2010) which gives
some ways to characterize the nonlinearity of plant growth models), an approximation
is given by:

Var
(

Θ̂GLS

)
=

(
∂Ỹ

∂θ

(
Θ̂GLS

)T
Σ−1∂Ỹ

∂θ

(
Θ̂GLS

))−1

. (3.22)

When Σ is unknown, yet can be expressed as a function of Θ, Σ(Θ), then the
strategy is to implement an iterative method with the multi-stage Aitken estimator
(Taylor, 1977). Given Σ0, Θ̂(1) can be obtained, which in turn can be used to update
the estimation of Σ to obtain Σ̂(1). The new estimate can be used to compute Θ̂(2)

according to equation (3.21). This alternating estimation scheme can be iterated until
both estimates stabilize. A very useful example is given by Taylor (1977) considering
the case when Y can be gathered into q groups, q ∈ N∗, with Yi the error terms in
group i, (1 ≤ i ≤ q), supposed to have common unknown variance Θi. Σ is assumed
given by a diagonal matrix:

Σ =


α1IY1 0 0 · · · 0

0 α2IY2 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 αq−1IYq−1 0
0 · · · 0 0 αqIYq


with Ik, the identity matrix of rank k. Note that this method may induce rearranging
the data in the Ỹ vector by grouping the data of the same type.

The 2-stage estimator proposed by Taylor is described as follows. From an algo-
rithmic point of view, there are two stages in the estimation process:
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(1) αi is estimated in the first place as the variance of all experimental data in group
i to give the first estimate Σ̂(1) of Σ. We then obtain:

Θ̂
(1)
2SA = argmin

Θ∈P

(
Y − Ỹ (Θ)

)T (
Σ̂(1)

)−1 (
Y − Ỹ (Θ)

)
.

(2) We then estimate αi with:

α̂i =
1

Yi − nΘ

(
Yi − Ỹi

(
Θ̂

(1)
2SA

))T (
Yi − Ỹi

(
Θ̂

(1)
2SA

))
,

to obtain Σ̂(2) and the final estimator which is given by

Θ̂2SA = argmin
Θ∈P

(
Y − Ỹ (Θ)

)T (
Σ̂(2)

)−1 (
Y − Ỹ (Θ)

)
.

Finally the variance of P̂2SA is approximated with Equation (3.22) (using Σ̂(2)).

N.B.

- This strategy is widely used in the application of GreenLab model calibration (Cournède
et al., 2011).

- Note that when the underlying model is incorrect, other methods such as the Huber
Sandwich Estimator (Huber, 1967) can be considered to provide a robust estimation
of the variance of the MLE.

3.5 Markov chain Monte Carlo methods

MCMC has become a standard technique commonly used as a tool to generate
large samples in order to estimate unknown characteristics of a target distribution.
It implies building a Markov chain on a state space X , produced by a discrete-time
stochastic process (Xn)n∈N, to represent the posterior distribution. However, before
implementation and interpretation, particular attention should be paid to the condi-
tions and assumptions that need to be verified to establish the central limit theorem
for Markov chains. In this section, some basic concepts of Markov chains which we
need for the application in this thesis are briefly recalled.

More details regarding stochastic processes and Markov chains’ properties can be
found in (Robert et al., 1999; Robert and Casella, 1999; Jones and Hobert, 2001;
Roberts and Tweedie, 2008).

3.5.1 Markov chains

Suppose (Xn)n∈N is a homogeneous Markov chain with values in a general state
space (X ,B(X )). Although X is a general set, in practice, we are most likely consider-
ing d-dimensional Euclidean space, so that X = Rd, or some countable or uncountable
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subset of Rd. In order to define probabilities, B(X ) is employed to denote a countably
generated σ-algebra on X : when X = Rd, B(X ) will be taken as the Borel σ-algebra;
when X is countable, B(X ) contains all subsets; otherwise it may remain arbitrary.

Let P (x, dy) be the transition kernel associated to the homogeneous Markov chain
(Xn). For x ∈ X , A ∈ B(X ) and i ∈ N :

P (x,A) = Pr(Xi+1 ∈ A|Xi = x).

For all n ∈ N, we define P n(x, dy) as the n-step Markov transition kernel, then for
x ∈ X , A ∈ B(X ) and i ∈ N :

P n(x,A) = Pr(Xn+i ∈ A|Xi = x).

Since in our application context, X ⊂ Rd, we assume that for all x ∈ X , the probability
measure P (x, ·) has a conditional density k(·|x) with respect to the Lebesgue measure,

P (x,A) =

∫
A

k(u|x)du.

The density k is referred to as the Markov transition density. If there exists a density
π that satisfies :

π(x) =

∫
X
k(x|y)π(y)dy, (3.23)

then π(·) is called a stationary distribution, also known as invariant distribution of the
Markov chain (Xn). It is easy to see that if we can simulate X0 ∼ π(·), then (Xn) is a
sequence of dependent samples from π(·).

Definition 3.5.1 A Markov chain transition kernel P is said to be reversible with
respect to a probability distribution π(·) on X , if:

π(dx)P (x, dy) = π(dy)P (y, dx), for all x, y ∈ X . (3.24)

Definition 3.5.2 A Markov chain transition kernel P is said to be π-irreducible if
for any x ∈ X and any set A, A ∈ B(X ) with π(A) > 0, there exists an n that satisfies:

P n(x,A) > 0.

If (Xn) is a Markov chain associated with a π-irreducible transition kernel, then
the chain can be qualified as a π-irreducible Markov chain.

If the chain is π-irreducible, it means for all the points in the considered state
space, there is a positive probability that we may reach any set which has positive
π-probability. This definition assures that those sets that are π-positive are always
reachable by the chain with positive probability, independently of the initial point, as
a result, the chain cannot be reduced into separated pieces.

Another important property of Markov chains is the periodicity.



44 3.5. MARKOV CHAIN MONTE CARLO METHODS

Definition 3.5.3 If for a π-irreducible Markov transition kernel P , there exists an
integer d and a collection of disjoint sets A1, . . . , Ad ∈ B(X ) such that for each x ∈ Aj,
P (x,Aj) = 1 for j = 1, . . . , d − 1, and for each x ∈ Ad, P (x,A1) = 1, then P is said
to be periodic. Otherwise, P is said to be aperiodic.

In other words, if the state space can be partitioned in such ways that the cyclic
behavior is introduced, then P is periodic. Otherwise, if such partition does not exist,
then P is aperiodic. For countable space, being aperiodic indicates that the return to
a visited state may occur at irregular times for the chain. In similar ways, if a Markov
chain (Xn) is associated with a periodic (resp. aperiodic) transition kernel, then the
chain is called periodic (resp. aperiodic).

Definition 3.5.4 If (Xn) is a π-irreducible Markov chain with π the stationary dis-
tribution, then X is defined to be recurrent if for any set Λ with π(Λ) > 0:

Pr(Xn ∈ Ai.o. | X1 = x) > 0 for all x,

Pr(Xn ∈ Ai.o. | X1 = x) = 1 for π-almost all x.

The chain is called Harris recurrent if Pr(Xn ∈ Ai.o. | X1 = x) = 1 for all x.

For countable space, a π-irreducible Markov chain is defined as recurrent if the
probability of returning to a visited state is 1. Additionally, if π(·) is a probability
distribution, then the chain is positive recurrent.

If a Markov chain is π-irreducible, aperiodic and positive Harris recurrent, then it
is Harris ergodic.

However, in practice, it is often impossible to draw samples directly from π(·)
which motivates the use of MCMC. Consequently, it is important to state same condi-
tions under which the chain can be described as “converged” to the desired stationary
distribution :

‖P n(x, ·)− π(·)‖ := sup
A∈B
|P n(x,A)− π(A)|.

Proposition 3.5.1 Suppose that a Markov chain transition kernel P is π-irreducible,
which has an invariant distribution π(·). Then P is positive recurrent and π is the
unique invariant distribution of P . If P is an aperiodic as well, then for π-almost all
x,

‖P n(x, ·)− π(·)‖ → 0 as n→∞.

In the case that P is Harris recurrent, the convergence occurs for all x.

The proof of proposition 3.5.1 is provided by Athreya et al. (1996).

Markov Chain Monte Carlo methods aim to construct a Markov chain with random
samples which has a unique stationary distribution as its posterior distribution to
estimate certain characteristics of the parameter’s real distribution. To be assured
that the estimate of the integration converges to the right value as the number of
samples approaches infinity, the Strong Law of Large Numbers is needed. That is
to say, we are under the assumption that the random variables should be sampled
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independently from the same distribution. If a Markov chain has converged to a
stationary distribution, we may assure that the samples are produced from the same
distribution, but they are still correlated. The property of ergodicity makes the SLLN
hold also for correlated samples.

Theorem 3.5.2 (Strong Law of Large Numbers)
If (Xn) is a Harris ergodic Markov chain on a state space X ⊂ Rd and has an invariant
distribution π(·), then ∀f verifies

∫
X |f(x)|π(x)dx <∞,

lim
n→∞

1

n

n∑
i=1

f(Xi) =

∫
X
f(x)π(x)dx a.s. (3.25)

for any initial distribution.

However, to assure that the Central Limit Theorem (CLT) holds for a Markov chain,
some stronger regularity conditions are needed. More precisely, the chain is required
to be geometrically ergodic or uniformly ergodic, which depends on the moment
condition.

Definition 3.5.5 If (Xn) is a Harris ergodic Markov chain which has an invariant
distribution π(·). The chain is defined as geometrically ergodic if there exists a
constant 0 < t < 1 and a function M : X 7→ R+ such that for any x ∈ X :

‖P n(x, ·)− π(·)‖ ≤M(x)tn

for n ∈ N. If there is a bounded M which satisfies this condition, then (Xn) is uni-
formly ergodic.

Here we state three different sets of conditionals for Markov chain CLT.

Theorem 3.5.3 Suppose (Xn) is a Harris ergodic Markov chain on X which has an
invariant distribution π(·). Let f : X 7→ R be a Borel function. If one of the following
conditions is assumed:

1. (Doukhan et al. 1994) (Xn) is geometrically ergodic, and Eπ[f 2(X)(log+|f(X)|)] <
∞;

2. (Roberts and Rosenthal 1997) (Xn) is geometrically ergodic and reversible, and
Eπ[f 2(X)] <∞;

3. (Ibragimov and Linnik, 1971) (Xn) is uniformly ergodic and Eπ[f 2(X)] <∞.

Then, for any initial distribution, as n→∞, and assuming X1 ∼ π(·) :
√
n(Eπ[f(X)]− f̄n)

d−→ N (0, σ2
f )

where

σ2
f = Varπ(f(X1)) + 2

∞∑
i=2

Covπ(f(X1), f(Xi)). (3.26)

Further discussions concerning the convergence issues related to MCMC based
methods can be found in Ibragimov and Linnik (1971); Rosenthal (1995); Robert et al.
(1999); Robert and Casella (1999); Jones and Hobert (2001) and Roberts and Tweedie
(2008).
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CHAPTER 4

Numerical Approaches for Bayesian
Estimation

Bayesian inference, formal and informal, has found widespread applications. Al-
though Monte Carlo methods are finely suited to generate samples from the pos-

terior distribution, they remain generally inefficient when complex models with mul-
timodality problems are presented. This motivates the development of Markov chain
Monte Carlo (MCMC) methods, which aim at visiting solutions with stable frequency
stemming from a stationary distribution. In parallel, inspired from the fact that the
observations arrive sequentially in time, the idea of performing inference online seems
to be very attractive and convenient in real world applications, such as aircraft track-
ing, noisy signal identification, or stock market prediction. Based on this idea, the
approaches developed are known as Sequential Monte Carlo (SMC) methods. Instead
of having one simulation creating trajectories repeatedly, like MCMC-based methods
do, one may imagine SMC methods as a large number of simulations evolving simul-
taneously and those who fit best the observations are sequentially selected.

In this chapter, simulation based methods, including both the MCMC-based meth-
ods and the SMC methods are investigated using the sampling and integration tech-
niques presented in Section 3.3. Three MCMC-based algorithms are investigated and
some important issues often raised in implementation are subsequently addressed. The
aim is to provide some options to the parameterization problem of dynamic state-space
system in plant growth modelling. We are particularly convinced that with proper
estimation methods, even for misspecified models the impact could be limited and
contextual.

Note that in this chapter, we only investigate the Bayesian numerical methods for
functional parameter estimation while considering the noise parameters of the state-
space model known. The issues related to noise parameters estimation and uncertainty
assessment are further addressed in Chapter 6.

The chapter is organized as follows: in the first part, MCMC-based methods which

47
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are known as offline Bayesian estimation methods are introduced. The two most fa-
mous MCMC-based algorithms, Metropolis-Hastings (MH) and Gibbs sampler (GS)
are presented. They can be employed as basic tools to construct ergodic Markov chains.
Then, some latest MH and GS based algorithms, involving techniques like “one long
run” or “many short runs” are detailed. In order to meet the demand of parameter es-
timation purpose in state-space plant growth models, an adaptive scheme is proposed
in this thesis. In the second part, some SMC methods which represent online Bayesian
estimation methods are reviewed. The general filtering recursion framework is revis-
ited, followed by a brief presentation of Kalman based filtering methods. Sequential
Important Sampling and Resampling algorithms are reviewed and two recent particle
filtering based algorithms Regularized Particle Filter and Convolution Particle Filter
are presented. They will be further studied in comparison with the MCMC based
methods when applied to the LNAS plant growth model in Chapter 8.

4.1 MCMC-based algorithms

In a short period of time, the Markov chain Monte Carlo (MCMC) integration
methods, especially the Metropolis-Hastings algorithm Metropolis et al. (1953); Hast-
ings (1970) and the Gibbs sampling algorithm (Geman and Geman, 1984; Gelfand
et al., 1990) have emerged as popular tools in the field of Bayesian analysis to perform
analysis for complex statistical models. Appropriately defined and implemented, the
MCMC-based methods allow us to evaluate complex and high-dimensional integrals
with the purpose of obtaining posterior distributions for unknown parameter, missing
data and hidden variables, by sampling values from an ergodic Markov chain.

Excellent tutorial concerning the implementation and the methodology is provided
by Robert and Casella (1999) and Robert and Casella (2010).

4.1.1 Metropolis-Hastings algorithm

Based on the accept-reject methodology, the Metropolis-Hastings algorithm was
first introduced by Hastings (1970) as a generalized version of the Metropolis algorithm,
described in Metropolis et al. (1953). It offers a way to obtain a sequence of samples
from a probability distribution for which direct sampling is infeasible. The resulting
sequence can be used to approximate the target distribution or to compute an integral.
For each iteration of the algorithm, a new candidate point is drawn from a proposal
distribution, and the decision is made based on the acceptance probability computed
by taking into account both the actual candidate and the last accepted candidate.

Suppose that πu defines the un-normalized target density on a state space X ⊂ Rd

as in (3.6), with respect to the d-dimensional Lebesgue measure. Suppose also that it is
possible to sample from a Markov chain with transition density q(·|x), namely the pro-
posal distribution or the instrumental distribution, with respect to the d-dimensional
Lebesgue measure. The Metropolis-Hastings algorithm associated with the target dis-
tribution and the proposal distribution produces a Markov chain in the following way:



CHAPTER 4. BAYESIAN ESTIMATION 49

Algorithm : Metropolis-Hastings

• Initialization
- Choose initial values for X0.
• Iteration
- For i = 1, . . . , n :

1. Sample Zi ∼ q(·|Xi−1).

2. Set

Xi =

{
Zi with probability α(Xi−1, Zi),

Xi−1 with probability 1− α(Xi−1, Zi),
(4.1)

where

α(x, z) = min

(
1,
πu(z)

πu(x)

q(x|z)

q(z|x)

)
. (4.2)

In the case that πu(x)q(z|x) = 0, to avoid ambiguity, we set α(x, z) = 0 (Roberts and
Rosenthal, 2004).

Remark that since only the ratio of densities πu(z)/πu(x) is required, the nor-
malizing constant

∫
X πu(x)dx does not need to be computed, which alleviates the

normalization problem described in Section 3.2.1.

An important remark is that although q(·|x) does not need to be related to our
target density πu, the choice of this proposal density may influence crucially the effi-
ciency of the method. There exist many possible ways to choose the proposal density,
for instance:

Independence sampler
When the instrumental density q does not depend on the previous accepted candidate
Xi−1, i.e. q(z|x) = q(z), the acceptance probability can be written as :

α(x, z) = min

(
1,
πu(z)

πu(x)

q(x)

q(z)

)
, (4.3)

where πu(z)/q(z) can be regarded as the importance weight function used in impor-
tance sampling. Indeed, the basic ideas of independent sampler and importance sam-
pler (Section 3.3.2) are quite similar, both of them attribute massive probability to
points with large weights, however in different ways: the importance sampler selects
those points more often than usual, whereas the independence sampler remains at
those points for a long time.

Symmetric Random walk Metropolis Algorithm (RWM)
Another choice for the instrumental law is random walk with q(z|x) = qRW (z − x)
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and we assume that qRW (w) = qRW (−w). Therefore the acceptance probability can
be simplified:

α(x, z) = min

(
1,
πu(z)

πu(x)

)
. (4.4)

All candidates that improve πu are accepted. By applying the random walk-type of
proposal distribution, we are supposed to approach the zone containing the mode of
πu more often than to move away from it (see Figure 4.1).

Figure 4.1: The region of acceptance (A(x)) and the region of rejection (R(x)) for the
random walk proposal (qRW ) in Metropolis Hastings algorithm.

An advantage of RWM is that the computation of πu is only involved in the accept-
reject mechanism, hence the algorithm is relatively easy to implement, which is prob-
ably why it is considered as one of the most popular MCMC-based methods.

There are many possible choices for qRW , including uniform distributions on the
unit circle, Student’s t-distributions, or multivariate normal distributions, and the
choices of qRW is crucial to determine the performance of the method (the convergence
speed, the precision of the estimator, etc.). A classical choice is the multivariate normal
distribution with zero-mean and covariance matrix Σ. It is well known that either too
small or too large variances for the proposal distribution of the random walk will
cause highly correlated Markov chains and therefore result in imprecise estimates. For
instance, if the variance is too small, then almost all the proposed values are accepted.
As a consequence, the difference between the two accepted values are often very small
which leads to the slow exploration of the state space. Conversely, if the variance is
too large, the proposals are often rejected and the chain has to stay for a long time at
the same point. Thus, to tune the covariance matrix Σ of the proposal distribution to
a proper scale is absolutely essential for a successful implementation of RWM.

Note that to illustrate the performance of the method, the acceptance rate could
be monitored, as illustrated by Figure 4.2. When the acceptance rate is too large,
it indicates that the chain may move too slowly on the surface of the model space f ,
except in the case when f is almost flat, for which a high acceptance rate is acceptable,
otherwise, it is highly possible that some parts of the domain can be missed. On the
other hand, if the acceptance rate is too low, it suggests that the chain may move too
fast and have missed an isolated mode of f .
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In the meantime, another variable, the autocovariance can as well be used to mon-
itor the convergence and the mixing of the chain. The autocovariance is defined as
the covariance between equidistant states in a chain which reaches its real-valued sta-
tionary distribution. The term Covπ(f(Xi), f(Xi+k)) presented in Equation (3.26) of
Theorem 3.5.3 is known as the lag-k autocovariance of the function f , and accordingly
Covπ(f(Xi),f(Xi+k))

Varπ(f(Xi))
is called the lag-k autocorrelation of the function f .

In the following toy example given in Robert and Casella (2010), three choices of
δ, δ ∈ R for the random walk proposal distribution are made to estimate the mean of
a standard normal distribution N (0, 1).

Yi = Xi−1 + εi, εi ∼ U [−δ, δ]

All the three chains are monitored by both the acceptance rate and the autocorrelation
function.

Figure 4.2: Three different proposals and resulting chains. The evolution of the esti-
mates, the histogram representing the distribution of the estimates and the autocorre-
lation function are presented for each choice of δ. Left panel: δ = 0.1. Middle panel:
δ = 1. Right panel: δ = 10.

As demonstrated in Figure 4.2, the first choice δ = 0.1 yields in significant autocor-
relations, which indicates that the chain has not converged after 5000 iterations. The
acceptance rate is extremely high, which confirms the drawback of too small steps of
the RWM formerly stated. In the case of δ = 10, the autocorrelations are less remark-
able, but the chain still converges more slowly than the second case (δ = 1). Hence,
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in this particular example, δ = 1 with the median acceptance rate is proved to be the
most efficient among the three. The autocorrelations decay to nearly zero. However,
we also notice that δ = 10 which gives the lowest acceptance rate performs better than
a high acceptance rate provided by δ = 0.1.

It is demonstrated that in the case of Random Walk MH with multivariate normal
proposal, and a large dimensional context (d → ∞), the optimum is achieved when
the overall acceptance rate (without the burn-in part) of the chain is close to 0.234
(Roberts et al.; Roberts and Rosenthal; Bédard, 2008), and the variance of the proposal
distribution is (2.382/d)Σπ (Gelman et al., 1996), with d the dimension of X and Σπ

the covariance matrix of the target distribution. To estimate Σπ, a few adaptive
algorithms have been developed in the last two decades, the most famous one is the
Adaptive Metropolis-Hastings proposed by Haario et al. (1999, 2001).

Adaptive Metropolis

To avoid the time-consuming manual tuning of the proposal distribution, meanwhile
to optimize the choice of Gaussian RWM proposals aiming at a more rapid convergence,
Haario et al. (2001) have proposed the Adaptive Metropolis to update continuously Σπ

(learn on the fly). Inspired by the Robbins-Monro update scheme (Robbins and Monro,
1951), the stochastic approximation framework is proposed as follows :

Algorithm : Adaptive Metropolis

• Initialization
- Choose initial values for X0, µ0 and Σ0.
• Iteration
- For i = 1, . . . , n :

1. Sample Zi ∼ N (Xi−1, λΣi−1), with λ = 2.382/d.

2. Set

Xi =

{
Zi with probability α(Xi−1, Zi),

Xi−1 with probability 1− α(Xi−1, Zi),

where α(x, z) is given by (4.2).

3. Update

µi = µi−1 + γi(Xi − µi−1),

Σi = Σi−1 + γi((Xi − µi−1)(Xi − µi−1)T − Σi−1). (4.5)

In this algorithm, γi is a deterministic, non-increasing sequence of stepsizes which
satisfies

∑∞
i=1 γi = ∞ and

∑∞
i=1 γ

1+ν
i < ∞ for some ν > 0. The objective is to make

sure that the variations introduced by the adaptive scheme vanish as the iteration
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i → ∞, so that π-ergodicity of the chain is guaranteed. One classical choice is 1/i,
with i denoting the current iteration number.

In literature, many adaptive schemes have been proposed which appear to enhance
significantly the acceptance rate of the MCMC based methods. However, prudence
must be taken to make sure that the adaptation does not damage the detailed balance
and the overall ergodicity of the chain, for it is obvious that the adaptive scheme
has modified the nature of the chain, the process is no longer Markovian because of
the dependence on the history of the chain. Only in some cases, it can be proved
that the algorithm still has appropriate ergodicity properties which ensure the correct
generation of samples from the target distribution. For further ergodicity investigation,
please refer to Haario et al. (2006).

Moreover, there may still remain some difficulties during the exploration of the
target distribution. In the particular plant growth models studied in this thesis, we
are facing multi-dimensional vectors with various scales. When the initial values of Σπ

are poorly chosen, in a way that λΣi−1 can be too large in some directions or too small
in all the directions, it results in poor exploration of the target distribution due to the
localised proposals. This motivates the introduction of a non-increasing function for
the scaling parameter λ in a global adaptive scaling framework, which initially takes
the value of 2.382/d (Andrieu and Thoms, 2008).

Algorithm : Adaptive Metropolis with global multivariate adaptive scaling

• Initialization
- Choose initial values for X0, µ0, Σ0 and λ0.
• Iteration
- For i = 1, . . . , n :

1. Sample Zi ∼ N (Xi−1, λi−1Σi−1).

2. Set

Xi =

{
Zi with probability α(Xi−1, Zi)

Xi−1 with probability 1− α(Xi−1, Zi),

where α(x, z) is given by (4.2).

3. Update µi and Σi as in (4.5).

4. Update λi :

log λi = log λi−1 + γi (α(Xi−1, Zi)− α∗) , (4.6)

with α∗ the target acceptance rate.

Note that this algorithm is proved to be quite useful in the early stages of the
computation. It improves the performance of Adaptive Metropolis in practice. Never-
theless, it is unlikely to make significant difference in a long run. The interest lies in
the case of poor chosen Σ0 which can be translated into either too small or too large
acceptance probability.
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It is shown that this algorithm can be further improved in the case when we cus-
tomize λ, λ ∈ R for each component (parameter) of the state space X when updating
the chain in an univariate fashion. To achieve this goal, we first revisit the Gibbs
Sampler.

4.1.2 Gibbs Sampler

Introduced by Geman and Geman (1984) and developed by Gelfand et al. (1990),
the Gibbs Sampler can be seen as a special case of MH transition (Robert et al.,
1999) which decomposes a multi-dimensional simulation into a collection of single
dimensional ones. For each step of the algorithm, only a single component of the state
of the chain is updated, by keeping the others fixed and drawing form the conditional
distribution of the component given the others. Suppose that the i-th component of x
is to be updated, x−i denotes the complementary components, a proposal distribution
is thus chosen:

q(z|x) =

{
π(z(i)|x(−i)) if x(−i) = z(−i),

0 otherwise.
(4.7)

Theorem 4.1.1 The Gibbs sampling method is equivalent to the composition of p
Metropolis-Hastings algorithms, with acceptance probabilities equal to 1.

Proof
The resulting acceptance probability is:

α(x, z) =
π(z)q(x|z)

π(x)q(z|x)
=
π(z)/π(z(i)|x(−i))

π(x)/π(x(i)|z(−i))

=
π(z)/π(z(i)|z(−i))

π(x)/π(x(i)|x(−i))
since x(−i) = z(−i)

=
π(z(−i))

π(x(−i))
= 1.

2

To explain this proof, one can easily imagine that the only possible jump is the pro-
posal z that matches x on all components other than the i-th, and it is accepted
automatically.

Now suppose that πu(·) is a d-dimensional un-normalised density on a state space
X which is an open subset of Rd, with X = (X(1), . . . , X(d)), the sampling proceeds by
systematically updating each component in turn based on univariate full conditional
distributions π1, . . . , πd. For j = 1, 2, . . . , d:

X(j) | x(1), . . . , x(j−1), x(j+1), . . . , x(d) ∼ πj(x
(j) | x(1), . . . , x(j−1), x(j+1), . . . , x(d)).

Therefore, to update from Xi−1 to Xi, the associated Gibbs sampling algorithm can
be described as follows :
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Algorithm : Gibbs Sampling

- Given Xi−1 = (x
(1)
i−1, . . . , x

(d)
i−1).

- Sample

1. X
(1)
i ∼ π1(x(1) | x(1)

i−1, . . . , x
(d)
i−1),

2. X
(2)
i ∼ π2(x(2) | x(1)

i , x
(3)
i−1, . . . , x

(d)
i−1),

. . . ,

d. X
(d)
i ∼ πd(x

(d) | x(1)
i , . . . , x

(d−1)
i ).

Note that although the Gibbs sampler is considered as a special case of MH, it has
some features that can be distinguished from MH and need to be taken care of during
implementation:

– Since all the proposed values are accepted, the acceptance rate is equal to 1, which
indicates that the optimal acceptance rates cannot be applied in this setting. The
convergence criteria are therefore different from those of MH.

– The fact that the choice of instrumental distribution is limited implies that the
prior knowledge and some analytical properties of πu(·) are required when im-
plementing the Gibbs sampler.

– If the transition kernel associated with the resulting chain is absolutely con-
tinuous with respect to the dominating measure, then the chain is irreducible,
aperiodic and therefore ergodic. Detailed proof can be found in (Robert et al.,
1999).

Thanks to Gibbs sampler, we are able to have the choice to sample from high
dimensional distribution using lower (one) dimensional conditional distributions. Mo-
tivated by the fact that some of the conditional distributions might be difficult or even
impossible to sample from, it gives rise to an extremely convenient and widely used
algorithm known as Metropolis-within-Gibbs (Carter and Kohn, 1994), or Hastings-
within-Gibbs. The idea is to hybrid the Metropolis Hastings and the Gibbs sampler,
replacing some sampling steps from the conditional distribution πi(· | x(−i)) in Gibbs
sampler by a Metropolis step.

4.1.3 Metropolis-within-Gibbs algorithm

In this thesis, beside improving the performance of adaptive Metropolis, another
motivation to employ the Metropolis-within-Gibbs algorithm comes from the fact that
in state-space plant growth models, we are often interested in some hidden state vari-
ables other than the unknown parameters (also known as latent variables) (see Equa-
tion (3.1)), such as biomass of the root compartment for yield prediction. Even if
the marginal density of the parameter vector Θ is our sole interest, since π(Θ|y1:tmax)
are often analytically intractable or difficult to evaluate, the hidden state variables
are often introduced to provide an analytical expression, and subsequently make the
numerical implementation easier. Hence, a joint estimation of both unknown parame-
ters and hidden states is required. Intuitively, given the target p(Θ, x1:tmax|y1:tmax), we
define the generic joint updates’ scheme:
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– Update Θ ∼ π(θ|x1:tmax , y1:tmax).
– Update X1:tmax ∼ π(x1:tmax|Θ, y1:tmax).

However, to obtain the full set of conditional distributions in order to update such
time dependent variables simultaneously can be a troublesome task. Being able to
break the hidden state vector into unidimensional (or lower dimensional) components
can largely facilitate the update process of these hidden state variables.

Under these circumstances, the Metropolis-within-Gibbs appears to provide an
appropriate framework, since it allows us not only to reduce the dimensionality of the
parameter vector, separate and alternate the estimation of unknown parameters Θ =
{θ(1), . . . , θ(d)}, d ∈ N∗ and the hidden state variables X = {x(1), . . . , x(tmax)}, tmax ∈
N∗, but also to simplify the update process by replacing the sampling step of Gibbs
Sampling by a Metropolis-Hastings step. In this way, we no longer require to sample
directly from the full set of conditional distributions which can be hard or impossible
to obtain.

In the following, the adaptive Metropolis-within-Gibbs algorithm for state-space
models is presented. It can be used to perform a numerical approximation by simulat-
ing an ergodic Markov chain {θ(1:d)

i , x
(1:tmax)
i } which admits π(Θ, x1:tmax|y1:tmax) as its

stationary distribution.

Algorithm : Adaptive Metropolis-within-Gibbs

• Initialization
- Choose initial values for X0 = (θ

(1)
0 , . . . , θ

(d)
0 , x

(1)
0 , . . . , x

(tmax)
0 ).

• Iteration
- For i = 1, . . . , n :
• Parameters
- For j = 1, . . . , d :

1. Sample Z
(j)
i ∼ qj(θ

(j) | θ(1)
i , . . . , θ

(j−1)
i , θ

(j+1)
i−1 , . . . , θ

(d)
i−1, x

(1:tmax)
i−1 ).

2. Set

θ
(j)
i =

{
Z

(j)
i with probability αj(θ

(j)
i−1, Z

(j)
i ),

θ
(j)
i−1 with probability 1− αj(θ(j)

i−1, Z
(j)
i ),

where

αj(x, z) = min

(
1,
πj(z)

πj(x)

qj(x | z)

qj(z | x)

)
. (4.8)

• Hidden states
- For t = 1, . . . , tmax :

1. Sample Z
(d+t)
i ∼ qt(x

(t) | θ(1:d)
i , x

(1)
i , . . . , x

(t−1)
i , x

(t+1)
i−1 , . . . , x

(tmax)
i−1 ).

2. Set

x
(t)
i =

{
Z

(d+t)
i with probability αd+t(x

(t)
i−1, Z

(d+t)
i ),

x
(t)
i−1 with probability 1− αd+t(x

(t)
i−1, Z

(d+t)
i ),

where αd+t(x, z) can be obtained by (4.8).
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Note that when the posterior distribution (target distribution) can be expressed
in its analytical form, we need to determine if it is better to sample from the target
distribution individually or in groups. The latter is known as block updating, in contrast
to componentwise sampling. It refers to splitting a multivariate vector into groups and
being sampled separately. Parameters which are more correlated should be grouped
into the same block to retain their correlations instead of ignoring them as is the
case in componentwise sampling. Moreover, there exist other advantages of the block
updating, such that different sampling strategies can be used for each block, and that
large dimensional covariance matrices can be reduced, which can be helpful for high
dimensional models.

In this algorithm, the block update is adopted for the parameter Θ in which all of its
components are updated simultaneously by using a multivariate proposal distribution.
However, we may also choose to implement Adaptive Metropolis with componentwise
updating. With such an update scheme, one λi := (λ1

i , . . . , λ
d
i ) for each parameter can

be defined at iteration i, to tune the random walk step so as to speed up convergence.
This approach is known as Adaptive Metropolis with componentwise adaptive scaling
(Andrieu and Thoms, 2008).

As for the hidden states’ estimation, in this algorithm, we opt for a componentwise
update. The advantage of this choice is that it is very easy to implement. A convenient
choice of proposal distribution is the model transition density.

In the next section, further attention is paid to the joint update scheme of the
parameters and the hidden state variables. In the case of plant growth models, some
important issues may arise during the implementation regarding the mixing properties
of the chain which may affect the efficiency of the estimates in a significant way. An
adapted algorithm is thus proposed based on the previous Adaptive Metropolis-within-
Gibbs algorithm.

4.1.4 Adapted Metropolis-within-Gibbs

Mixing property

The conditional joint updates’ scheme enables joint estimation of both the parame-
ter vector and the hidden state variables. As formerly mentioned, the natural approach
is to update the parameter conditionally on the current value of the estimated hidden
state trajectory. Yet the overall efficiency of the algorithm can be sabotaged if there
is a strong correlation between the parameter vector Θ and the hidden state vector X
(Liu et al., 1994; Roberts and Sahu, 1997), which is obviously an undesirable feature.
In the plant growth models that we study, such a problem is frequently encountered.
This model configuration known as centered parameterisation (Fearnhead, 2011), for
which :

p(Θ|x1:tmax , y1:tmax) ≈ p(Θ|x1:tmax).



58 4.1. MCMC-BASED ALGORITHMS

It is shown by (Roberts and Sahu, 1997) that for f ∈ L2, the Bayesian fraction of
missing information is defined by

γf = 1− E(Var(f(Θ)|x1:tmax , y1:tmax)|y1:tmax)

Var(f(Θ)|y1:tmax)
. (4.9)

The convergence rate is thus supfγf . When the value of γ ≈ 1, it implies a poor
mixing between Θ and X. It is due to the fact that the most of the variation of f(Θ)
is explained by x1:tmax conditioned by the data y1:tmax . Further investigation of this
problem, particularly the convergence rate of such algorithms can be found in Liu
(1994) and Roberts and Sahu (1997).

To understand the impact of strong correlation on the mixing property of the
chain, one may imagine that large moves of Θ are more likely to be rejected since it is
inconsistent with the value of x1:tmax . One way to alleviate this is to consider the joint
update of (Θ, x1:tmax) with a proposal distribution under the form (Fearnhead, 2011) :

q(Θ′, x′1:tmax|Θ, x1:tmax) = q(Θ′|Θ)q(x′1:tmax|Θ
′),

where (Θ′, x′1:tmax) denotes the proposal. Note that q(Θ′|Θ) allows to propose moves of
reasonable sizes, and the proposed hidden states being consistent with Θ′. Indeed, the
choice of the proposal for the hidden states is crucial. If the exploration of the state
space X is not guided, the proposed trajectory can result in a very poor likelihood
evaluation (a trajectory unlikely to happen in reality). In order to go through the
state space in a more informative way, ideally, the proposal should take into account
the observations y1:tmax and could be chosen as :

q(x′1:tmax|Θ
′) = p(x′1:tmax|Θ

′, y1:tmax).

Nonetheless, such a proposal for the hidden states would necessitate computing
and simulating from π(x′1:tmax|Θ

′, y1:tmax), which is impossible for most real applica-
tions. When the density cannot be computed explicitly or if it is complicated to
simulate from, p(x′1:tmax|Θ

′) can be used as a reasonable compromise, which simplifies
the computation in a considerable way and is very easy to simulate from. Thus, the
acceptance probability α can be simplified and this value does not need to be evaluated:

α({Θ, x1:tmax}, {Θ′, x′1:tmax})

= min

(
1,
π(Θ′, x′1:tmax|y1:tmax)q(Θ, x1:tmax |Θ′, x′1:tmax)

π(Θ, x1:tmax|y1:tmax)q(Θ
′, x′1:tmax|Θ, x1:tmax)

)
= min

(
1,
p(Θ′, x′1:tmax|y1:tmax)

p(Θ, x1:tmax|y1:tmax)

q(Θ|Θ′)q(x1:tmax|Θ)

q(Θ′|Θ)q(x′1:tmax|Θ′)

)
= min

(
1,
p(y1:tmax|Θ′, x′1:tmax)p(x

′
1:tmax|Θ

′)p(Θ′)

p(y1:tmax |Θ, x1:tmax)p(x1:tmax|Θ)p(Θ)

q(Θ|Θ′)p(x1:tmax|Θ)

q(Θ′|Θ)p(x′1:tmax|Θ′)

)
= min

(
1,
p(y1:tmax|Θ′, x′1:tmax)p(Θ

′)

p(y1:tmax|Θ, x1:tmax)p(Θ)

q(Θ|Θ′)
q(Θ′|Θ)

)
. (4.10)
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Compared to the algorithms presented in the literature, such as the Monte Carlo
within Metropolis and Grouped Independence MH (Beaumont, 2003), in this thesis,
we propose to simplify the step of simulating a large number of X ′ from p(x1:tmax|Θ′)
by simulating only once the hidden state variables. Thus, the efficiency of the resulting
algorithm is based on the efficiency of the proposal distribution of Θ, as well as the
closeness of q(x′1:tmax|Θ

′) to p(x′1:tmax|Θ
′, y1:tmax). When the modelling noises are rela-

tively small, the proposed algorithm helps to reduce considerably the computational
cost.

Furthermore, with the purpose of improving the estimation of the hidden states,
we propose to perform additional Metropolis-within-Gibbs steps simulating X ′ from
p(x′1:tmax|Θ) repeatedly once the functional parameters have converged. This also al-
lows to improve the estimation of the modelling noise parameters, the implementation
details of which are described in Chapter 6.

We also remark that if Θ has a low dimension (d ≤ 6 in our test case), a multi-
variate proposal may be preferred since its computational cost is more advantageous.
Therefore, the resulting algorithm can be summarized as follows:

Algorithm : Adapted Metropolis-within-Gibbs

• Initialization
- Choose initial values for Θ0 = {θ(1)

0 , . . . , θ
(d)
0 } and x0 = {x(1)

0 , . . . , x
(tmax)
0 } with

x0 = f(Θ0), where f is the transition density of the model.
- Choose initial values for µ0, Σ0 and λ0.
• Parameters

Iteration
- For i = 1, . . . , n1 :

1. Sample θ
(1:d)
i

′
∼ N (θ

(1:d)
i−1 , λi−1Σi−1).

2. Sample x
(1:tmax)
i

′
∼ p(x1:tmax|θ(1:d)

i

′
).

3. Set

{θ(1:d)
i , x

(1:tmax)
i } =

{
{θ(1:d)

i

′
, x

(1:tmax)
i

′
} with probability αθ(θ

(1:d)
i−1 , θ

(1:d)
i

′
),

{θ(1:d)
i−1 , x

(1:tmax)
i−1 } with probability 1− αθ(θ(1:d)

i−1 , θ
(1:d)
i

′
),

where αθ(θ, θ
′) is given by (4.10).

4. Update µi and Σi as in (4.5).

5. Update λi as in (4.6).

Estimator
– For a burn-in period n0 < n1:

θ̂(1:d)
n1

=
1

n1 − n0

n1∑
k=n0+1

θ
(1:d)
k ,

Σ̂n1 =
1

(n1 − n0)− 1

n1∑
k=n0+1

(θ
(1:d)
k − θ̂(1:d)

n1
)T (θ

(1:d)
k − θ̂(1:d)

n1
).
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• Hidden states
• Iteration
- For j = n1 + 1, . . . , n2;n2 > n1 + 1 :

- For t = 1, . . . , tmax :

1. Sample x
(t)
j

′
∼ qt(x

(t) | θ̂(1:d)
n1 , x

(1)
j , . . . , x

(t−1)
j , x

(t+1)
j−1 , . . . , x

(tmax)
j−1 ).

2. Set

x
(t)
j =

{
x

(t)
j

′
with probability αd+t(x

(t)
j−1, x

(t)
j

′
),

x
(t)
j−1 with probability 1− αd+t(x

(t)
j−1, x

(t)
j

′
),

where

αd+t(x
(t)
j−1, x

(t)
j

′
) = min

(
1,
π(x

(t)
j

′
|x(1:t−1)
j , x

(t+1:tmax)
j−1 , θ̂

(1:d)
n1 , y1:tmax)

π(x
(t)
j−1|x

(1:t−1)
j , x

(t+1:tmax)
j−1 , θ̂

(1:d)
n1 , y1:tmax)

·
qt(x

(t)
j−1|θ̂

(1:d)
n1 , x

(1:t−1)
j , x

(t+1:tmax)
j−1 )

qt(x
(t)
j

′
|θ̂(1:d)
n1 , x

(1:t−1)
j , x

(t+1:tmax)
j−1 )

)
. (4.11)

N.B.

- In the hidden state estimation part, the target distribution for the hidden state x(t)

at time t can be simplified according to the Markov chain property :

π(x(t)|x(1:t−1), x(t+1:tmax), θ(1:d), y1:tmax)

∝ p(x(t)|x(t−1)) p(x(t+1)|x(t)) p(y(t)|x(t)).

- As for the proposal distribution for the hidden state update of x(t), a convenient choice
is to use the transition density of the model f . Since x(t) only depends on θ(1:d) and
on x(t−1) in the case of a state space model, the proposal distribution for the state
variable x(t) can be simplified as :

qt(x
(t) | θ(1:d), x(1:t−1), x(t+1:tmax)) = p(x(t) | θ(1:d), x(t−1)).

- Based on the previous simplifications, the acceptance ratio (4.11) can be described
as:

αd+t(x
(t)
j−1, x

(t)
j

′
)

= min

(
1,

p(x
(t)
j

′
|x(t−1)
j , θ̂

(1:d)
n1 )p(x

(t+1)
j−1 |x

(t)
j

′
, θ̂

(1:d)
n1 )p(yt|x(t)

j

′
, θ̂

(1:d)
n1 )

p(x
(t)
j−1|x

(t−1)
j , θ̂

(1:d)
n1 )p(x

(t+1)
j−1 |x

(t)
j−1, θ̂

(1:d)
n1 )p(yt|x(t)

j−1, θ̂
(1:d)
n1 )

qt(x
(t)
j−1|x

(t−1)
j , θ̂

(1:d)
n1 )

qt(x
(t)
j

′
|x(t−1)
j , θ̂

(1:d)
n1 )

)

= min

(
1,

p(x
(t+1)
j−1 |x

(t)
j

′
, θ̂

(1:d)
n1 )p(y(t)|x(t)

j

′
, θ̃

(1:d)
j,t )

p(x
(t+1)
j−1 |x

(t)
j−1, θ̂

(1:d)
n1 )p(y(t)|x(t)

j−1, θ̃
(1:d)
j−1,t)

)
. (4.12)
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- Instead of fixing θ(1:d) at θ̂
(1:d)
n1 when estimating the hidden state variables, an ad-

ditional step of sampling θ̃
(1:d)
j,t ∼ N (θ̂

(1:d)
n1 , Σ̂n1) can be considered before drawing a

new hidden state candidate. It allows to introduce more variability to the proposal.
According to the Markov chain property :

π(θ(1:d), x(t)|x(1:t−1), x(t+1:tmax), y1:tmax)

∝ p(θ(1:d)) p(x(t)|x(t−1), θ(1:d)) p(x(t+1)|x(t), θ(1:d)) p(y(t)|x(t), θ(1:d)).

In this way, we obtain a dual proposal as in the case for the parameter update, the
acceptance ratio (4.11) however, remains the same :

αd+t({x(t)
j−1, θ̃

(1:d)
j−1,t}, {x

(t)
j

′
, θ̃

(1:d)
j,t })

= min

(
1,
p(x

(t)
j

′
, θ̃

(1:d)
j,t |x

(t−1)
j , x

(t+1)
j−1 , y(t))

p(x
(t)
j−1, θ̃

(1:d)
j−1,t|x

(t−1)
j , x

(t+1)
j−1 , y(t))

q(θ̃
(1:d)
j−1,t)

q(θ̃
(1:d)
j,t )

q(x
(t)
j−1|x

(t−1)
j , θ̃

(1:d)
j−1,t)

q(x
(t)
j

′
|x(t−1)
j , θ̃

(1:d)
j,t )

)

= min

(
1,

p(θ̃
(1:d)
j,t )p(x

(t)
j

′
|x(t−1)
j , θ̃

(1:d)
j,t )p(x

(t+1)
j−1 |x

(t)
j

′
, θ̃

(1:d)
j,t )p(y(t)|x(t)

j

′
, θ̃

(1:d)
j,t )

p(θ̃
(1:d)
j−1,t)p(x

(t)
j−1|x

(t−1)
j , θ̃

(1:d)
j−1,t)p(x

(t+1)
j−1 |x

(t)
j−1, θ̃

(1:d)
j,t )p(y(t)|x(t)

j−1, θ̃
(1:d)
j−1,t)

·
p(θ̃

(1:d)
j−1,t)

p(θ̃
(1:d)
j,t )

p(x
(t)
j−1|x

(t−1)
j , θ̃

(1:d)
j−1,t)

p(x
(t)
j

′
|x(t−1)
j , θ̃

(1:d)
j,t )

)

= min

(
1,

p(x
(t+1)
j−1 |x

(t)
j

′
, θ̃

(1:d)
j,t )p(y(t)|x(t)

j

′
, θ̃

(1:d)
j,t )

p(x
(t+1)
j−1 |x

(t)
j−1, θ̃

(1:d)
j,t )p(y(t)|x(t)

j−1, θ̃
(1:d)
j−1,t)

)
. (4.13)

- Note also that if only the functional parameter estimation is desired, the hidden state
estimation part can be omitted.

More discussion about the mixing property of state-space models can be found in
Andrieu and Roberts (2009) and Andrieu et al. (2010).

Scarce observations

As mentioned previously, one important characteristic of the experimental data for
plant growth models is that they are often limited and unevenly registered. Tanner
and Wong (1987) point out that sometimes the posterior distributions are intractable
because of the lack of some data, however MCMC can still be used in those situations.
Therefore, the observation vector Y can be separated into two parts, Y = (y, y′), where
y are the observed data and y′ are the missing data. The current posterior distribution
π(Θ|y) may appear to be muddled, while the “intended” posterior distribution π(Θ|Y )
could be in a tractable form. According to the requirement of the Gibbs sampler, the
full conditionals are accordingly:

– Update Θ ∼ π(Θ|x1:tmax , y
′, y).
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– Update y′ ∼ π(y′|Θ, x1:tmax , y).
– Update X ∼ π(x1:tmax|Θ, y′, y).

Note that π(y′|Θ, x1:tmax , y) = π(y′|Θ, x1:tmax). Consequently, the missing data y′

can be treated as hidden states, also known as latent variable.

Given the fact that the missing observations y′ are not really the objective of our
estimation, in our implementation, the trajectory is divided into segments according to
the observations y. The missing segment of the trajectory of Y is accepted or rejected
according to the decision regarding the corresponding segment of x. More precisely, if
ti and ti+1 denote the time of two successive observations, then the proposal for the
segments xti+1:ti+1

and y′ti+1:ti+1−1 are accepted or rejected according to the decision

for the proposal x(ti+1).

Further discussions about the general strategies regarding the missing data can be
found in Smith and Roberts (1993) and Robert and Casella (1999). In the following,
a series of key issues regarding the implementation of MCMC based methods are
presented.

4.1.5 Implementation issues

To sum up, the implementation of an MCMC based method should involve con-
structing an ergodic Markov chain with transition kernel K which has an invariant
distribution π(·).

However in practice, many issues have been raised during the implementation of
MCMC, for instance, the burn-in period can be too long and potentially useful samples
are wasted, or the chain could be stopped too early and miss some modes of the target
distribution, or the estimation provided contains no information of the quality of the
estimates. In this section, these problems are addressed and discussed.

Burn-in period

When applying an MCMC based method, it is highly possible that at the begin-
ning of the chain, there is a period during which the algorithm has not converged
to the stationary distribution and therefore should be discarded when computing the
estimates. This period is known as burn-in period. The length of the burn-in period
however, depends not only on the initial value of the chain X0, but also on the shape
of the target distribution.

To determine the length of the burn-in period, the intuitive way is to run the
algorithm a few times with different initial values and to note the number of iterations
needed before the chain converges to some kind of equilibrium. Thus the burn-in
period is calculated in an empirically way based on these observations. As a matter
of fact, the burn-in period is a method to find a good starting point, from which the
chain is considered “converged” and the following iterations can be used for MCMC
calculations.
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There are other ways to find a good starting point, for example, to start the next
run from the point where the last run ended, or to start at a mode of the equilib-
rium distribution obtained by other optimization methods. A Markov chain started
anywhere near the center of the equilibrium distribution does not need burn-in. More
discussion regarding the burn-in period issue can be found in Jones and Hobert (2004).

Up to now, we have reviewed some methods to construct a Markov chain which may
produce an ergodic stationary distribution as its posterior distribution. In this case,
as stated in Section 3.5.1, the average of the estimates converges towards a Gaussian
distribution. However, since the samples are often not independent (i.e. correlation
between consecutive iterations), one possible way to reduce the correlation is to take
into account every k-th estimate of the chain, which is known as the thinning technique.
Although the chain is no longer Markovian if treated this way, the subchains are still
proved to converge to the correct distribution (Roberts and Rosenthal, 2004; Robert
and Casella, 2010).

Furthermore, the precision of the mean estimate can as well be provided. In the
following, the batch mean method is presented.

Precision estimation: Batch means

A batch consists of a subsequence of estimates given by consecutive iterations of
the Markov chain Xk+1, ..., Xk+b, with batch length b. If the Markov chain reaches an
ergodic and stationary distribution, then all batches with the same length should have
the same joint distribution. Under regularity conditions (Theorem 3.5.3), the CLT can
be applied.

Suppose X1, . . . , Xm is a Markov chain of m iterations with the burn-in period
discarded. Let f : X 7→ R be a Borel function. We define f̄m = 1

m

∑m
i=1 f(Xi). The

batch mean method can be describe as follows :

– Non-overlapping batch mean : the chain is divided into batches of equal
size. m = ambm. am denotes the number of the batches and bm denotes the
batch length. The mean estimates of am batches are defined as :

Ȳj =
1

bm

bm∑
k=1

f(X(j−1)bm+k), for j = 1, . . . , am.

The batch means estimates of σ2
f are therefore :

σ̂2
BM =

bm
am − 1

am∑
j=1

(Ȳj − f̄m)2 (4.14)

– Overlapping batch mean : with the m− bm + 1 overlapping batches of length
bm, the mean estimates are given by

Ȳj =
1

bm

bm∑
k=1

f(Xj−1+k), for j = 1, . . . ,m− bm + 1.
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Figure 4.3: Variance estimation performed with batch means.

The batch means estimates of σ2
f are thus :

σ̂2
OBM =

mbm
(n− bm)(n− bm + 1)

n−bm∑
j=0

(Ȳj − f̄m)2 (4.15)

Batch means is an attractive method for its easy implementation. However, in
literature, some authors warn that it should be used with caution since the estimator
σ̂2
BM is not consistent (Roberts, 1996). Flegal and Jones (2010) demonstrate that

the overlapping batch means provide a consist estimator σ̂2
OBM and are more stable

than the non-overlapping batch means. On the other hand, Jones et al. (2006) argue
that if the number of batches and their sizes are allowed to increase as the overall
length of the chain increases, then by setting bm = bmψc and am = bm/bmc, σ̂2

BM →
σ2 with probability 1 as m → ∞. According to the regularity condition, the chain
has to be geometrically ergodic (i.e. Eπ|f |2+δ+ε < 0 for some strictly positive δ and
strictly positive ε with (1 + δ/2)−1 < ψ < 1). Hence, ψ = 1/2 is a convenient choice
(bm = b

√
mc) in practice. Therefore, in this thesis, we consider the batch means with

increasing batch length rather than the fixed length.

It is noteworthy that this approach allows us to obtain an estimation of the Monte
Carlo Error (MCE) of the estimate f̄m : σ̂2

f/m, and from there, to form an asymptot-
ically valid confidence interval:

[f̄m + tam−1
σ̂BM√
m

; f̄m − tam−1
σ̂BM√
m

].

where tam−1 is a quantile of Student’s -t distribution with am − 1 degrees of freedom.

Note that the estimated Monte Carlo error can also be considered as a stopping
criteria for the MCMC-based algorithm by putting a constraint on the precision of
the estimate : limiting the confidence interval width. It can also be estimated by
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performing a large number of the estimation with the same configuration, prior and
initialization. Indeed, the stopping criteria is crucial, the most frequently asked ques-
tion in practice is when the simulation can be ended. The Batch means is a popular
method, yet it does not give any indication regarding the convergence of the chain. In
the following, some convergence diagnostic related problems are discussed.

Convergence diagnostic and stopping rules

Undoubtedly, stopping rules and convergence diagnostic are both crucial and criti-
cal issues in the practice of MCMC-based methods. The objective is to decide whether
the chain has reached its invariant distribution and whether the converged distribution
is the target distribution. Regarding this issue, conflicting advices are often given in
literature which makes the output analysis of MCMC a muddled area. The difficulty
is that the convergence rate varies according to each algorithm and the specific tar-
get distribution. A chain may appear to have converged while it is not, as a result
of poorly connected parts of the considered state space. The convergence is in fact
conditioned on the initial value of the chain, which is known as pseudo-convergence or
pseudo-ergodicity. To move from one part to another could take a surprisingly long
time, especially in case of multimodality (Figure 4.4). As stated in Brooks and Roberts
(1998), it seems that it is not possible to get any analytical tool or even stopping rules
that could uniquely determine the necessary length of the run. Likewise, the MCMC
based algorithm cannot be verified thoroughly whether the samples produced can truly
characterize the target distribution. Hence, the proposed diagnostics are only used for
educated guess regarding the convergence of the algorithm.

Figure 4.4: Multimodality: a contour plot of log-likelihood surface of a two-dimensional
state-space and three independent runs (Robert and Casella, 2010).
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Figure 4.5: Histograms of runs with different numbers of iterations compared to the
theoretical target distribution.

An easy way to verify the convergence is to run a few number of parallel chains
with different initial values for each. With the growing iteration number, as illustrated
by Figure 4.5, one may visually identify the period after which the chains start to
converge, and if they converge to the same distribution.

On the other hand, monitoring the acceptance rate is also a very effective way to
diagnostic the convergence. Although some optimal values are suggested in literature
as mentioned above (0.234 for multidimensional problems and 0.44 for unidimensional
problems). However, it is not always the case that 0.44 is the optimal, as demonstrated
by Figure 4.2. The real optimal depends on the shape of the posterior distribution.
Generally speaking, an acceptance rate between 0.1 and 0.5 can be considered as
satisfactory.

As for the stopping rules, in this thesis, we propose a mixed strategy. Two criteria
are considered, one to diagnostic the convergence of the chain and the other to claim
the end of the run. Similar approaches based on the CLT are discussed in Chauveau
and Diebolt (1999).

- Convergence diagnostic based on mean estimates

As we all know, the scaling nature of the Adaptive Metropolis changes the nature of
the Markov chain, in the sense that current state of the chain depends not only on the
one previous state, but on the history of the chain. Therefore, the first criterion is used
to determine the end of the adaptive scheme (tuning of the random walk proposal) and
define the burn-in period. In other words, once this criterion is satisfied, the covariance
matrix Σ is fixed and no longer dependent on the evolution of the chain.

The criterion is grounded on a standard stopping rule computing the last an suc-
cessive overlapped batch means with each containing bn iterations (Booth and Hobert,
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1999) with cn iterations overlapped. ∀i ∈ {1, . . . , d}, for r = 1, . . . , an, if the relative
changes in the batch means are sufficiently small :

max
i

(
| θ(i)

r+1 − θ
(i)
r |

| θ(i)
r | +δ1

)
< δ2 (4.16)

then the convergence can be claimed. Searle et al. (1992) suggest that δ1 = 0.001 and
δ2 = 0.0005 are generally appropriate choices.

In the light of this basic criterion, a first convergence diagnostic can be provided,
however, some parameters may exhibit a very slow first order convergence behaviour,
especially when few data are available and the parameters are not sensitive to the
model (see sensitivity analysis in Section 6.1). Thus, we propose to add another
condition to this: the an successive relative changes should not be monotonic. In our
implementation, an = 4, bn = 3000 and cn = 1000 seem to assure a good convergence
behaviour.

- Stopping rule based on Monte Carlo Errors

If the previous convergence criterion is satisfied, the Monte Carlo Error can be used
as the second condition to terminate the simulations. Indeed, asymptotic variance can
also be used for MCMC convergence control Chauveau and Diebolt (2003). Theorem
3.5.3 shows that the precision of the estimates can be provided by assessing the Monte
Carlo Error σ2

f . It can be obtained by estimating the variance of the asymptotic
distribution of π̂(f) with Batch means (Section 4.1.5).

σ2
f := Varπ(f(X1)) + 2

∞∑
i=2

Covπ(f(X1), f(Xi))

as n → 0. Therefore, in our implementation, a relative threshold of the estimation
precision is defined for the all the parameters which translates as a constraint on the
width of the confidence interval provided by the chain, so that the simulation continues
if the interval is not narrow enough.

According to the implementation experience, to avoid a premature stop which
would probably result in a poor estimate, a minimum number of the iterations is
assured, which can be determined based on the number of parameters to estimate and
the number of the available observations. Then, the proposing stopping criterion is
checked every mBM iterations (1000 or 5000 in our implementation) until it is satisfied
for all the parameters and hidden states. This criterion can be described as follows :

σ̂(π)√
m

+ p(m) ≤ ε,

where p(m) = εI(m < mmin) is the penalty term with fixed strictly positive mmin

(10000 in our implementation), I is the indicator function on Z and ε is the threshold
predefined according to the application.

More discussion regarding the stopping criteria and convergence diagnostics can
be found in Jones and Hobert (2004), Chauveau and Diebolt (2003) and Roberts and
Rosenthal (2004).



68 4.2. PARALLEL MCMC

It is well known that when using MCMC-based methods, one may adopt either
a sufficiently long run or many short runs as estimation strategies. In the following
section, some algorithms based on multiple parallel MCMC are presented.

4.2 Parallel MCMC

In the literature, the idea of multiple short runs has been well developed, the mo-
tivation of which comes from the reasoning that a single chain is unable to efficiently
cope with potentially complex posterior surface with multiple local optima. such as the
work of Gilks et al. (1994) and Chauveau and Vandekerkhove (2002), who use multiple
chains to explore the space, or some self-regenerative algorithms, such as Mykland et al.
(1995), Gilks et al. (1998) and Sahu and Zhigljavsky (2003), in which mixture com-
ponents are used. However, these approaches involve high computational cost which
makes them rarely feasible to confront multi-dimensional applications. Recognizing
these limits, the DiffeRential Evolution Adaptive Metropolis algorithm is proposed.

4.2.1 Differential Evolution Adaptive Metropolis

The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm is proposed
by Vrugt et al. (2009a) based on the Differential Evolution-Markov chain (DE-MC)
method (Ter Braak, 2006). The major idea is to run multiple sequences in parallel in
an MCMC setting in order to hasten the convergence and to detect the multimodality
problem in an efficient way if it is present in the target distribution.

In fact, in order to explore multimodal density in efficiently, a mode should be
represented by at least a single chain, so that a second chain can be moved to it in
accordance in the DREAM algorithm. This could be due to the quasi-ergodicity, which
refers to isolated modes, or strong correlation between parameters.
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Figure 4.6: Illustrations of quasi-ergodicity (Murray, 2010). (a): The target distribu-
tion and the prior distribution. (b): Estimation results from one quasi-ergodic Markov
chain. (c): The samples result from multiple quasi-ergodic Markov chains.
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Figure 4.6 gives two examples of quasi-ergodicity when multimodality is present in
the target distribution. Figure 4.6(b) demonstrates the case when only one mode of
the target distribution is detected if only one Markov chain is carried out with a limited
length. It is highly possible that under multimodality target distribution, one Markov
chain with limited length is conditional to its departure point. In the case that multiple
chains are implemented as illustrated by Figure 4.6(c), we are more likely to detect
both modes, however, it is still possible that their weight are not properly defined due
to the small number of the chains which leads to the samples disproportionally being
partitioned in the two modes.

The recommended configuration for the number of chains is M = 2d (Ter Braak
and Vrugt, 2008), with d the dimension of the target distribution initialised from over-
dispersed distributions. Instead of running the chains independently as proposed by
Gelman et al. (2004), jumps are made between chains by generating from a discrete
proposal distribution to encourage the chains to learn from each other. The algorithm
scales the orientation and tunes the proposal distribution by using an adaptive scheme
(Adaptive Metropolis) and is designed to maintain the ergodicity by generating an
exact approximation of the target distribution (posterior pdf) (Vrugt et al., 2009b).

More concretely, the chains are updated sequentially conditional to the other chains.
A fixed multiple of the difference of the states belonging to randomly chosen pairs of
other chains is taken into account in the proposal. Therefore, the DREAM can be seen
as a single Markov chain on the state space XM (Ter Braak and Vrugt, 2008). The
update of the ith chain uses a mixture of kernels. Vrugt et al. (2009a) demonstrate that
the Markov chain yielded by the DREAM algorithm is ergodic with unique stationary
distribution of pdf π(·)M , with π(·) the original target distribution.

In the following, the DREAM algorithm is detailed and adaptations are made to
fit the algorithm to the state-space model estimations.

Algorithm : DREAM

• Initialization
- For i = 1, . . . ,M :

- Choose initial values for Xi,0 = (θ
(1)
i,0 , . . . , θ

(d)
i,0 , x

(1)
i,0 , . . . , x

(tmax)
i,0 ) from the prior

distributions p0(·).
• Parameters

Iteration
- For j = 1, . . . , n1 :

1. Proposal step: for i = 1, . . . ,M :

– Sample e and ε:

e ∼ Ud(−b, b) ε ∼ Nd(0, b∗)

with |b| < 1 and b∗ smaller than the width of the target distribution.
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– Sample θ
(1:d)
i,j

′
:

θ
(1:d)
i,j

′
= θ

(1:d)
i,j−1 + (1d + ed)γ(δ)

(
δ∑

k=1

θ
(1:d)
r(k),j−1 −

δ∑
l=1

θ
(1:d)
r(l),j−1

)
+ εd.

where δ denotes the number of pairs used for the candidate,
r(k), r(l) ∈ {1, . . . ,M}, r(k) 6= r(l) 6= i, and γ = 2.38/

√
2δd.

– Sample x
(1:tmax)
i,j

′
∼ p(x1:tmax|θ(1:d)

i,j

′
).

2. Transition step: for i = 1, . . . ,M :

– Set

{θ(1:d)
i,j , x

(1:tmax)
i,j } =

{
{θ(1:d)

i,j

′
, x

(1:tmax)
i,j

′
} with probability αθ(θ

(1:d)
i,j−1, θ

(1:d)
i,j

′
),

{θ(1:d)
i,j−1, x

(1:tmax)
i,j−1 } with probability 1− αθ(θ(1:d)

i,j−1, θ
(1:d)
i,j

′
),

where αθ(θ, θ
′) is given by (4.10).

Estimator
– For a burn-in period n0 < n1:

θ̂(1:d)
n1

=
1

M(n1 − n0)

l=M∑
l=1

n1∑
k=n0

θ
(1:d)
l,k ,

Σ̂n1 =
1

M(n1 − n0)− 1

l=M∑
l=1

n1∑
k=n0

(θ
(1:d)
l,k − θ̂

(1:d)
n1

)T (θ
(1:d)
l,k − θ̂

(1:d)
n1

)

• Hidden states
– For i = 1, . . . ,M :

– Sample θ̃
(1:d)
i ∼ N (θ̂

(1:d)
n1 , Σ̂n1).

– Sample xi,n1
(1:tmax) ∼ p(x1:tmax |θ̃(1:d)

i ).
Iteration
- For j = n1 + 1, . . . , n2;n2 > n1 + 1 :

- For i = 1, . . . ,M :
- For t = 1, . . . , tmax :

1. Sample x
(t)
i,j

′
∼ qt(x

(t) | θ̃(1:d)
i , x

(1)
i,j , . . . , x

(t−1)
i,j , x

(t+1)
i,j−1 , . . . , x

(tmax)
i,j−1 ).

2. Set

x
(t)
i,j =

{
x

(t)
i,j

′
with probability αd+t(x

(t)
i,j−1, x

(t)
i,j

′
),

x
(t)
i,j−1 with probability 1− αd+t(x

(t)
i,j−1, x

(t)
i,j

′
),

where αd+t(x, y) can be obtained according to (4.13).

N.B.
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- Note that here, we opt to keep independent chains for the estimation of the hidden
state variables while the same between-chain communication can be implemented as
for the estimation of the parameters. However, the comparison result suggests that
it does not significantly improve the estimation probably due to the important time
dependency among the hidden states.

- The resampling step for the parameters at the beginning of the hidden state estimation
can be omitted, and therefore reduce the variability of the hidden state proposals.

- Another possible extension for the hidden state variable estimation is to transform
the Gibbs sampling to importance sampling.

- The posterior distribution is built based on the pool of samples from all the chains
except those of the burn-in period.

Unfortunately, in practice, we may run into convergence problems since the chains
may not converge fast enough, therefore the parallel short runs will turn out to be
parallel long runs and the algorithm may end up with computational complexity. In
Geyer (1992) and Robert and Casella (1999) (Section 6.5), the authors argue that
independent parallel chains could be a poor idea, for some of them may not converge.
Therefore, one long chain could be preferred. To avoid this frequently occurred prob-
lem, another technique is developed, taking into account only the last estimates of an
important number of chains. In this way, the parallel computing may reduce efficiently
the computational time. The following algorithm, known as Interacting MCMC is one
of the approaches that adopt this strategy.

4.2.2 Interacting Metropolis-within-Gibbs

As stated previously, the idea of multiple MCMC is to accelerate the state space
in a more efficient way compared to single MCMC, and can be parallelised and dis-
tributed to multiple CPU to save computational time. It is a temping idea, despite
the convergence of all the chains which is hard to achieve. Efforts have been made to
encourage the exchange among chains (Chauveau and Vandekerkhove, 2002; Drugan
and Thierens, 2005; Laskey and Myers, 2003) with the purpose of improving the mix-
ing properties of the samples. A Population Monte Carlo framework was proposed by
Cappé et al. (2004).

In the following Interacting MCMC algorithm introduced by Campillo et al. (2009),
to concentrate the computational effort on the zone of interest, each individual chain
proposes one candidate for all the chains. It is proved that the set of interacting
chains has a unique stationary distribution with pdf π(·)M , with π(·) the original target
distribution and M the number of parallel chains. Each of the M chains provides a
sample to construct the posterior distribution (Campillo et al., 2009).

Algorithm : Interacting Metropolis-within-Gibbs
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• Initialization
- For i = 1, . . . ,M :

- Choose initial values for Xi,0 = (θ
(1)
i,0 , . . . , θ

(d)
i,0 , x

(1)
i,0 , . . . , x

(tmax)
i,0 ) from the prior

distributions p0(·).
• Parameters

Iteration
- For j = 1, . . . , n1 :

- Proposal step: for i = 1, . . . ,M :

1. Sample θ
(1:d)
i,j

′
∼ N (θ

(1:d)
i,j−1,Σ0).

2. Sample x
(1:tmax)
i,j

′
∼ p(x1:tmax|θ(1:d)

i,j

′
).

- Selection step: for i = 1, . . . ,M :

1. Compute αθ(θ
(1:d)
i,j−1, θ

(1:d)
i,j

′
) as in (4.10).

2. Set

{θ(1:d)
i,j , x

(1:tmax)
i,j }


{θ(1:d)

1,j

′
, x

(1:tmax)
1,j

′
} with probability 1

M
αθ(θ

(1:d)
i,j−1, θ

(1:d)
1,j

′
),

. . .

{θ(1:d)
M,j

′
, x

(1:tmax)
M,j

′
} with probability 1

M
αθ(θ

(1:d)
i,j−1, θ

(1:d)
M,j

′
),

{θ(1:d)
i,j−1, x

(1:tmax)
i,j−1 } with probability 1− 1

M

∑M
k=1 αθ(θ

(1:d)
i,j−1, θ

(1:d)
k,j

′
).

• Hidden states
Iteration
- For j = n1 + 1, . . . , n2;n2 > n1 + 1 :

- For t = 1, . . . , tmax :
- Proposal step: for i = 1, . . . ,M :

1. Sample x
(t)
i,j

′
∼ qt(x

(t) | θ(1:d)
i,n1

, x
(1)
i,j , . . . , x

(t−1)
i,j , x

(t+1)
i,j−1 , . . . , x

(tmax)
i,j−1 )

2. Compute αx(x
(t)
i,j−1, x

(t)
i,j

′
) according to (4.13).

- Selection step: for i = 1, . . . ,M :
Set

x
(t)
i,j =


x

(t)
1,j

′
with probability 1

M
αx(x

(t)
i,j−1, x

(t)
1,j

′
),

. . .

x
(t)
M,j

′
with probability 1

M
αx(x

(t)
i,j−1, x

(t)
M,j

′
),

x
(t)
i,j−1 with probability 1− 1

M

∑M
k=1 αx(x

(t)
i,j−1, x

(t)
k,j

′
).

Note that the transition kernel and the prior distribution are regarded as proposal
distributions respectively for the joint estimation of the parameter vector and the
hidden state variables.

The posterior distribution is build only based on the samples of the last iteration
from all the chains.

More discussion about population based simulations for static inference can be
found in Jasra et al. (2007) and Mengersen and Robert (2003).
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4.2.3 Convergence criteria for multiple chains

Gelman-Rubin (Gelman, 1992)

For parallel chains, the Gelman-Rubin criterion is created based on the normal
theory approximation to exact Bayesian posterior inference. The idea involves the
estimation of the target distribution as a conservative Student-t distribution by using
the last n iterations of the considering chains. Both the between-chain variance and
the with-in chain variance are evaluated to compute a scale parameter, with the aim
of monitoring the convergence.

To use this criterion, the assumption that the starting point is sampled from an
appropriately over-dispersed prior distribution is made. More precisely, to carry out
this evaluation of convergence, 7 steps are involved. Firstly, suppose that we simulate
m independent chains of length n after the burn-in period. The Gelman and Rubin
stopping criterion needs to compute the following elements, ∀θ(k), k ∈ {1 . . . d}:

– θ̂(k), which is the estimator of the target mean µθ(k) =
∫
θ(k)P (θ(k))dθ(k).

θ̂(k) = θ̄(k)
..

– B(k)/n, which denotes the variance between the m chain means, each based on
n estimations of θ(k).

B(k)/n =
1

m− 1

m∑
i=1

(θ̄
(k)
i. − θ̄(k)

.. )2

– W , which is the average of the m within-chain variances.

W (k) =
1

m

1

(n− 1)

m∑
i=1

n∑
j=1

(θ
(k)
ij − θ̄

(k)
i. )2 =

1

m

m∑
i=1

(s
(k)
i )

2

– (σ̂(k))
2
, which is the estimator of the target variance

∫
(θ(k) − µθ(k))2P (θ(k))dθ(k).

(σ̂(k))
2

=
n− 1

n
W (k) +

1

n
B(k)

Note that the variance estimator may overestimate the variance, if we assume
that the prior distribution is over-dispersed. However, it remains unbiased if the
prior distribution is the target distribution (under stationarity). The reason to

explain the two components of (σ̂(k))
2

is that W alone can under-estimate the
overall variance, since the individual chains may do not have enough time to
explore the whole target distribution, and therefore have less variability. When

n→∞, the expectation of W approaches (σ(k))
2
.

–
√
V̂ (k), as the scale of the estimated target distribution. The motivation is to

be more tolerance (allowing more variability) by adopting an approximation of
Student’s t distribution for θ(k).√

V̂ (k) =

√
(σ̂(k))

2
+B(k)/mn
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with df = 2(V̂ (k))
2
/V̂ar(V̂ (k)) degrees of freedom, where

V̂ar(V̂ (k)) =

(
n− 1

n

)2
1

m
V̂ar((s

(k)
i )

2
) +

(
m+ 1

mn

)2
2

m− 1
(B(k))2

+ 2
(m+ 1)(n− 1)

mn2

n

m
[ ˆCov((s

(k)
i )

2
, (θ̄

(k)
i. )

2
)− 2θ̄(k)

..
ˆCov((s

(k)
i )

2
, θ̄

(k)
i. )]

–
√
R̂(k), served as the convergence monitor, built by estimating the potential scale

reduction. √
R̂(k) =

√
ˆV (k)

W (k)

df

(df − 2)

n→∞−→ 1

R̂(k) is the ratio of the current estimate of variance ˆV (k) to the within-chain
variance W (k) corrected by a factor account for the extra variance considered

from the Student’s t distribution. If
√
R̂(k) is important, then further simulation

may be needed to improve the inference based on the observations. Therefore,
a threshold can be defined to indicate the convergence and stop the simulation

based on
√
R̂(k), which is usually close to 1. In our implementation, 1.0001 is

chosen.
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Figure 4.7: The evolution of shrink factor from the Gelman-Rubin criterion.

Note that another desirable function of this criterion due to its feature is that it
could help us to detect the problem of multi-modal target distribution by producing a

value of
√
R̂(k) not decreasing to 1.

In our implementation, this criterion is used for the DREAM algorithm.
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4.3 Sequential Monte Carlo methods

Within a Bayesian framework, Sequential Monte Carlo (SMC) methods as well as
Monte Carlo Markov Chain (MCMC) based methods offer the opportunity to estimate
the parameter distribution (posterior) based on the predefined knowledge (prior) (Gel-
man et al., 1995; Andrieu et al., 2001). However, unrealistic results might be obtained
by MCMC based methods with a given inappropriate prior.

Moreover, despite all the advantage of MCMC-based methods, in practice, many
problems require online estimation, they hence rely on recursive methods. Therefore,
the filtering methods might be considered as a better choice. Traditional estimation
methods for linear systems subject to normal noises are based on the Kalman Filter
(Kalman, 1960; Kailath et al., 2000). However, to answer the growing complexity of
the considering models often nonlinear, extensions of Kalman Filters, such as Extended
Kalman Filter (Anderson and Moore, 1979; Sorenson, 1985), Unscented Kalman Filter
(Julier and Uhlmann, 1997; Quach et al., 2007) and Ensemble Kalman filter (Evensen,
1994, 2006) are developed. Only in recent years that the growth in computational
power has made computational intensive statistical methods feasible. More and more
approaches appeared solving directly the estimation problem based on Monte Carlo
techniques (Doucet et al., 2001), instead of using approximation to linearize the system.
The main breakthrough came with the invention of particle filtering method (Gordon
et al., 1993). In the meantime, new issues arise mainly in regards of uncertainty
assessment.

In this thesis, the particle filter based methods are mainly analysed and applied,
whereas the Kalman Filter based methods are served as comparison. In the following,
we first introduce the context of Bayesian inference and describe the general filtering
recursion. The algorithms of two Kalman based filters, the Unscented Kalman Filter
and the Ensemble Kalman Filter are reviewed. Subsequently, two particle filter based
algorithms, the Regularized Particle Filter and the Convolution Particle Filter are
presented.

General Bayesian estimation problems

For n ∈ N, the classical estimation problems can be divided into three categories:

– Filtering : it involves the extraction of information of a variable of interest Xn

at time n from the data observed up to time n: Y0:n.
– Prediction : it aims to derive information of a variable of interest Xn+τ at some

time n+ τ (τ ∈ N∗) in the future based on the observation up to time n.
– Smoothing : it consists using all the observations Y0:n, even those after the time

of interest n′ (n′ ∈ N, n′ < n) for the estimation of Xn′ .

For filtering methods, the objective is to estimate jointly the unknown parameters
and the hidden states. An augmented state vector Xa

n = (Xn,Θn) is consequently

defined for each time step n ∈ {0, . . . , tmax} with the associated state space X a def
=

X ×P . It contains Xn the true hidden state at time tn and Θn the vector of unknown
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parameters which can be considered as a random variable defined on the measurable
space (P , B (P)) (see Quach et al. (2007) and d’Alché Buc and Brunel (2010) for
examples). In the following, if X represents a random variable with values in X , then
for all x ∈ X , p(x) denotes the probability density of X on x.

A nature way to deal with the dynamic parameter vector Θn is to keep it being
constant in time. That is to say: Θn = Θn+1. However, in Section 5.1, a new version of
particle filter may enable us to modify Θn sequentially in time. Therefore, an artificial
dynamic evolution is assigned to Θn :

Θn+1 = hn+1(Θn, ζn+1), n ≥ 0,

with a Borel function hn and {ζn}n≥0 a sequence of i.i.d. random variables which is
mutually independent of {ξn}n≥0 and {ηn}n≥0. For n ∈ N, we assume that Θn admits
a density with respect to the Lebesgue measure, denoted p(Θn).

Therefore, the description of state-space model (3.1) presented in Section 3.2 is
slightly modified : {

Xa
n+1 = fan+1

(
Xa
n, En, η

a
n+1,

)
, n ≥ 0,

Yn = gn (Xa
n,Θ, ξn) , n ≥ 0,

(4.17)

with ηa = (η, ζ) and f : X × P × E × Rdηn+dζn 7→ X × P which characterizes the
evolution of Xa

n. We denote X × P by X a.

General filtering recursions

The filtering methods allow us to estimate the augmented hidden state variable
Xa
n based on Y0:n. An MMSE estimator of X̂a

n conditional to Y0:n is often chosen and
defined as:

X̂a
n = E[Xa

n|Y0:n] =

∫
Xa
xanp(x

a
n|y0:n)λ(dxan) =

∫
(Xa)n+1

f(xa0:n)p(xa0:n|y0:n)λ(dxa0:n).

with λ the Lebesgue measure on X a. p(xan|y0:n) is the marginal density of p(xa0:n|y0:n).
Note that if only a parameterization is desired, it is possible to extract the estimation
of the parameter vector Θn from the estimator X̂a

n.

The filtering process can be summarized by two steps, the prediction, also known
as time update, and the correction, respectively known as measurement update. The
first-order hidden Markov model is characterized by the transition density p(xan|xan−1)
corresponding to the state equation (Quach et al., 2007), and the observation density
p(yn|xan) corresponding to the observation equation and the initial density p(xa0).

– Determinate the density distribution to predict the hidden state at time n + 1
based on the former observations.

p(xan+1|y0:n) =

∫
Xa
p(xan+1|xan)p(xan|y0:n)λ(dxan). (4.18)
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– Correct the density distribution by taking into account the new observation yn+1.

p(xan+1|y0:n+1) =
p(xan+1|y0:n)p(yn+1|xan+1)∫

Xa p(x
a
n+1|y0:n)p(yn+1|xan+1)λ(dxan+1)

. (4.19)

Kalman filter can be regarded as the most efficient filtering method for linear
system. However, it cannot cope with nonlinear systems. To date, many efforts have
been made to develop extension for Kalman filter in nonlinear systems, the most well
known extensions remain to be the extended Kalman filter, the unscented Kalman
filter and the ensemble Kalman filter. The Extended Kalman Filter (EKF) (Evensen,
1994) simply linearizes locally the model so that the tradition Kalman filter can be
applied. However, it exhibits poor performance with highly nonlinear system, while
both latter methods generalize elegantly to nonlinear systems which are free of the
linearization required by the EKF. In the following, the Unscented Kalman Filter and
ensemble Kalman filter are presented. First, we revisit the algorithm of the famous
Kalman Filter.

4.3.1 Unscented Kalman Filter

Kalman Filter

Generally, there does not exist a finite dimensional solution to the Bayesian esti-
mation problem. However, for a linear system subject to Gaussian noise, the solution
can be formulated recursively using the Kalman Filter (Kalman, 1960), which can be
regarded as the most efficient filtering method for linear systems.

Let us consider a linear dynamic system (4.17) with both fan and gn linear functions.
Suppose the density p(xa0) associated to Xa

0 is Gaussian. Since a Gaussian distribution
can be characterized by its first two moments, mean and covariance matrix, the update
of p(xan|y0:n) concerns only the density of the expectation x̂an|n and the covariance matrix

Σ̂xa

n|n :

x̂an|n = E[Xa
n|Y0:n]

Σ̂xa

n|n = E[(Xa
n − x̂an|n)T (Xa

n − x̂an|n)|Y0:n]. (4.20)

In the following, we assume that ηan and ξn are white noises drawn from Gaussian
distributions :

ηan ∼ N (0, Jn) and ζn ∼ N (0, Rn).

For the sake of simplicity, we denote fan+1(Xa
n) = fan+1(Xa

n, En, η
a
n+1) and gn+1(Xa

n+1) =
gn+1(Xa

n+1, ξn+1). The filtering process is thus carried out in two steps.

• Prediction (time update) : the aim is to determinate p(xan+1|y0:n) using the evolution
equation fan+1 of the state-space model.

x̂an+1|n = E[Xa
n+1|Y0:n] = E[fan+1(Xa

n, η
a
n+1)|Y0:n].
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Note that ηan+1 is independent of {ηak}k=1,...,n and {ξk}k=1,...,n+1, and therefore is inde-
pendent of Y0:n+1. Its expected value is determined by N (0, Jn+1) and p(xan|y0:n).

Σ̂xa

n+1|n = E[(Xa
n+1 − x̂an+1|n)T (Xa

n+1 − x̂an+1|n)|Y0:n].

In the same way, we can deduce the associate expectation of p(yn+1|y0:n):

ŷn+1|n = E[Yn+1|Y0:n] = E[gn+1(Xa
n+1)|Y0:n], (4.21)

since ξn+1 and Y0:n are independent, the corresponding covariance matrix is therefore:

Σ̂y
n+1|n = E[(Yn+1 − ŷn+1|n)T (Yn+1 − ŷn+1|n)|Y0:n]

= E[(gn+1(Xa
n+1)− ξn+1 − ŷn+1|n)T (gn+1(Xa

n+1)− ξn+1 − ŷn+1|n)|Y0:n] +Rn+1.
(4.22)

The correlation matrix between Xa
n+1 and Yn+1 conditional by Y0:n can be calculated :

Σ̂xay
n+1|n = E[(Xa

n+1 − x̂an+1|n)T (Yn+1 − ξn+1 − ŷn+1|n)|Y0:n].

• Correction (measurement update) : the expectation and the covariance matrix
associated to p(xan+1|y0:n+1) can be estimated by :

x̂an+1|n+1 = x̂an+1|n +Kn+1(yn+1 − ŷn+1|n)T

Σ̂xa

n+1|n+1 = Σ̂xa

n+1|n −Kn+1Σ̂y
n+1|nK

T
n+1. (4.23)

Kn+1 is known as the Kalman gain, which can be expressed as :

Kn+1 = Σ̂xay
n+1|n

(
Σ̂y
n+1|n

)−1

.

Unscented transform

As one of the nonlinear extensions of classical Kalman Filter, the Unscented Kalman
Filter (UKF) (Julier and Uhlmann (1997) and Quach et al. (2007)) adopts determin-
istic sampling aiming at using a small set of discretely sampled points, known as
sigma-points (Unscented Transform, see Arulampalam et al. (2002)) to get hold of
the information of higher order for both mean and covariance matrix based on nor-
mal assumptions. Before proceeding to the UKF, we first introduce the Unscented
transform.

Consider X, Y two random variables and a nonlinear Borel function f :

Y = f(X).

The objective is to provide an approximation of E[Y ] = E[f(X)] in the case when X
follows a normal distribution N (x̄,Σx). We denote d as the dimension of X. First, we
simulate 2d+ 1 samples to represent the distribution of X, namely sigma-points :

χ0 = x

χi = x+
(√

(d+ κ)Σx

)
i

i ∈ {1, . . . , d}

χd+i = x−
(√

(d+ κ)Σx

)
i

i ∈ {1, . . . , d}
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with κ > −d.
(√

(d+ κ)Σx

)
i

represents the ith line or column of
√

(d+ κ)Σx. Each

sigma point χi is associated with a weight ωi which is defined as :
ω0 = κ/(d+ κ)
ωi = 1/2(d+ κ) i ∈ {1, . . . , d}
ωi+d = 1/2(d+ κ) i ∈ {1, . . . , d}

Thus, the following approximation can be made :

E[Y ] = E[f(X)] ≈
2d∑
i=0

ωif(χ(i)).

N.B.

A good choice of κ is d− 3 (see Julier and Uhlmann (1997))

If f is linear, then the approximation of E[Y ] is exact which allows a third-order
approximation of the expectation.

The Choleski decomposition can be used to compute the square root of (d+ κ)Σx.

Unscented Kalman Filter

The Unscented Kalman Filter (UKF) (Julier and Uhlmann (1997) and Quach et al.
(2007)) is known as one of the nonlinear extensions of classical Kalman Filter. When
fan and gn are no longer linear, the density p(xan|y0:n) does not follow the normal
distribution any more. Thanks to the Unscented Transform, the approximation of
both mean and covariance matrix can be made via the sigma-points. Therefore, it
does not require a tangent linear model as EKF does and claims a better precision and
robustness for nonlinear models.

We denote dη = dim(ηn+1), dX = dim(x̂an|n) and dη,X = dη + dX . We recall that Jn
and Rn are the covariance matrices for ηan and ξn respectively. The two steps of the
filtering process can be described as follows :

Algorithm : Unscented Kalman Filter

• Initialization
- Choose initial values for xa0 and Σxa

0 , set accordingly x̂a0|0 = xa0 and Σ̂xa

0|0 = Σxa

0 .
• Iteration
- For n = 1, . . . , tmax :

Prediction:
- Construct the 2dη,X + 1 sigma-points χin|n and their associated weights ωi

according to N
(
x̂bn|n, Σ̂

xb

n|n

)
, with :

x̂bn|n = (x̂an|n,0dη) and Σ̂xb

n|n =

(
Σ̂xa

n|n 0dX ,dη
0dη ,dX Jn+1

)
.
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- Propagate the sigma-points with χin+1|n = fan+1(χin|n) to obtain the expecta-
tions at time n+ 1 :

x̂an+1|n =

2dη,X+1∑
i=1

ωiχ
i
n+1|n and ŷn+1|n =

2dη,X+1∑
i=1

ωign+1(χin+1|n),

as well as the associated covariance matrices :

Σ̂xa

n+1|n =

2dη,X+1∑
i=1

ωi(χ
i
n+1|n − x̂an+1|n)T (χin+1|n − x̂an+1|n), (4.24)

Σ̂y
n+1|n =

2dη,X+1∑
i=1

ωi(gn+1(χin+1|n)− ŷn+1|n)T (gn+1(χin+1|n)− ŷn+1|n), (4.25)

and

Σ̂xay
n+1|n =

2dη,X+1∑
i=1

ωi(χ
i
n+1|n − x̂an+1|n)T (gn+1(χin+1|n)− ŷn+1|n). (4.26)

Correction :
- Compute the Kalman gain:

Kn+1 = Σ̂xay
n+1|n

(
Σ̂y
n+1|n

)−1

.

- The corrected estimator and the corresponding covariance matrix at time n+1
are :

x̂an+1|n+1 = x̂an+1|n +Kn+1(yn+1 − ŷn+1|n)T (4.27)

Σ̂xa

n+1|n+1 = Σ̂xa

n+1|n −Kn+1Σ̂y
n+1|nK

T
n+1. (4.28)

N.B.

Given the fact that fan+1 is not necessarily linear with ηan+1, we prefer to perform the
transformation with the vector (Xa

n,W
a
n+1) instead of Xa

n described originally in the
UKF algorithm.
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4.3.2 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) (Evensen, 1994) is another extension of
Kalman filter designed for nonlinear system. Established on the Monte-Carlo method
coupled with the Kalman formulation, it relies on normality assumptions in order to
improve the accuracy of its estimates with a more important number of samples com-
pared to the UKF. In the EnKF, an ensemble of possible augmented hidden state
vectors are randomly generated using a Monte-Carlo method to characterize the sta-
tistical properties of the vector.

Algorithm : Ensemble Kalman Filter

• Initialization
- Choose initial values for xa0 and Σxa

0 , set accordingly x̂a0|0 = xa0 and Σ̂xa

0|0 = Σxa

0 .

- For i = 1, . . . ,m, sample x
a(i)
0 ∼ N

(
x̂b0|0, Σ̂

xb

0|0

)
, with :

x̂b0|0 = (x̂an|n,0dη) and Σ̂xb

0|0 =

(
Σ̂xa

0|0 0dX ,dη
0dη ,dX Jn+1

)
.

• Iteration
- For n = 1, . . . , tmax :

Prediction:
- Propagate the ensemble to obtain the expectation of Xa

n+1 given Y0:n :

x̂an+1|n =
1

m

m∑
i=1

x
a(i)
n+1|n and ŷn+1|n =

1

m

m∑
i=1

gn+1(x
a(i)
n+1|n),

as well as the associated covariance matrices :

Σ̂xa

n+1|n =
1

m− 1

m∑
i=1

(x
a(i)
n+1|n − x̂

a
n+1|n)T (x

a(i)
n+1|n − x̂

a
n+1|n), (4.29)

Σ̂y
n+1|n =

1

m− 1

m∑
i=1

(gn+1(x
a(i)
n+1|n)− ŷn+1|n)T (gn+1(x

a(i)
n+1|n)− ŷn+1|n), (4.30)

and

Σ̂xay
n+1|n =

1

m− 1

m∑
i=1

(x
a(i)
n+1|n − x̂

a
n+1|n)T (gn+1(x

a(i)
n+1|n)− ŷn+1|n). (4.31)
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Correction :
- Compute the Kalman gain:

Kn+1 = Σ̂xay
n+1|n

(
Σ̂y
n+1|n

)−1

.

- The corrected samples of the ensemble at time n+ 1 are :

x
a(i)
n+1|n+1 = x

a(i)
n+1|n +Kn+1(yn+1 − gn+1(x

a(i)
n+1|n))T for i = 1, . . . ,m,

- The corrected estimator and the corresponding covariance matrix are :

x̂an+1|n+1 =
1

m

m∑
i=1

x
a(i)
n+1|n+1, (4.32)

Σ̂xa

n+1|n+1 =
1

m− 1

m∑
i=1

(x
a(i)
n+1|n+1 − x̂

a
n+1|n+1)T (x

a(i)
n+1|n+1 − x̂

a
n+1|n+1). (4.33)

4.3.3 Particle Filter

Despite the Kalman filter-based approaches, another important category of filtering
methods is Particle Filter based approach. It is a recursive Bayesian filter based
on Monte Carlo simulations (Arulampalam et al., 2002). Unlike Kalman filter-based
approaches, Particle Filter (PF) intends to provide better approximation of the exact
posterior distributions by creating a set of randomly drawn samples with each an
associated time evolving weight. The main idea is that since the marginal density
of p(xa0:n|y0:n), p(xan|y0:n) is either unknown or impossible to simulate in most of the
applications, as mentioned in Section 3.3, the importance sampling can be introduced
to address the issue.

The importance function associated to p(xa0:n|y0:n) is denoted πn(xa0:n|y0:n). The
importance weight wn can be defined as:

∀xa0:n ∈ (X a)n+1 , wn(xa0:n) =
p(xa0:n|y0:n)

πn(xa0:n|y0:n)
.

The MMSE estimator of the augmented hidden state vector conditioned on a series of
observations is thus:

X̂a
n =

M∑
i=1

w̃(x̃a0:n
(i))x̃an

(i), (4.34)

with w̃n the normalized importance weights and {x̃a0:n
(i)}i=1,...,M the M samples (also

known as trajectories) of Xa
0:n conditional to Y0:n, simulated from πn(xa0:n|y0:n).

One may interpret a particles as a moving point in X a, with x̃a0:n
(i) describing the

trajectory of its movement from time 0 to n. The associated weight wn(x̃a0:n
(i)) is an
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indicator of the likelihood of the trajectory produced compared to the real trajectory
of the hidden states of the system.

For this reason, the PF algorithm is also named Sequential Importance Sampling.
The PF based filtering methods have been studied intensively in the literature (Gordon
et al., 1993; Kitagawa, 1996; Doucet et al., 2001). Among them, the most adapted to
our application context can be cast into the framework of the generic Sequential Im-
portance Sampling (SIS) algorithm, or SIR, when a resampling step is introduced (see
Arulampalam et al. (2002) and Doucet et al. (2001)). The first efficient implementation
of Monte-Carlo particle filters of this type dates back to Gordon et al. (1993). The
authors give a generic formulation of the bootstrap PF, using importance sampling
ideas in the correction step and systematic use of resampling in order to avoid the
sample degeneracy problem. The term Interacting Particle Filter (IPF) is also used
by Del Moral (1996) (see also Deleuze (1996); Crisan et al. (1998)) for the same PF
algorithm. For other names of the same algorithm see Arulampalam et al. (2002) (page
178) and the references therein. In the following, the general algorithm of Sequential
Importance Sampling is presented.

Sequential Importance Sampling

Motivated by the fact that the computation of {wn(x̃
(i)
0:n)}i=1,...,M can be tedious,

the idea is to benefit from the Markovian feature of the state space dynamic system
in order to establish a recursive relation between wn(x̃a0:n

(i)) and wn+1(x̃a0:n+1
(i))). To

do this, an importance transition density denoted qn+1(xan+1|xan) is introduced which
allows the particle to propagate from time n to n + 1. This density is chosen in the
way that it should be easy to sample from, which also verifies the following condition :

∀xan+1 ∈ X a, p(xan+1|xan) > 0 ⇒ qn(xan+1|xan) > 0.

Therefore, the importance density can be obtained by recursion:

πn+1(xa0:n+1|y0:n+1)
def
= πn(xa0:n|y0:n)qn+1(xan+1|xan) = q0(xa0)

n∏
k=0

qk+1(xak+1|xak) (4.35)

with q0(xa0) the importance density from which Xa
0 can be simulated.

Thanks to the Bayes’ rule,

p(xa0:n+1|y0:n+1) = p(xa0:n|y0:n)
p(yn+1|xan+1)p(xan+1|xan)

p(yn+1|y0:n)
. (4.36)

By combining the two previous equations (4.35) and (4.36), we may obtain the impor-
tance weight in a recursive way :

wn+1(x̃a0:n+1
(i)) =

p(x̃a0:n+1
(i)|y0:n+1)

πn+1(x̃a0:n+1
(i)|y0:n+1)

= wn(x̃a0:n
(i))

p(yn+1|x̃an+1
(i))p(x̃an+1

(i)|x̃an(i))

p(yn+1|y0:n)qn+1(x̃an+1
(i)|x̃an(i))

. (4.37)
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The computation of p(yn+1|y0:n) is difficult, yet not indispensable, for the weight vec-
tor needs to be normalized before proceeding to the construction of the estimator.
Therefore, the normalized weight w̃n+1(x̃a0:n+1

(i)) can be obtained by :

w̃n+1(x̃a0:n+1
(i)) =

wn+1(x̃a0:n+1
(i))∑M

j=1wn+1(x̃a0:n+1
(j))

pour i = 1, . . . ,M. (4.38)

Resampling

Figure 4.8: Sample degeneracy and impoverishment.

The drawback of the Particle Filter based method is that it could appear to be
unstable due to the discrepancy between the particle weights. This phenomenon is
known as weight degeneracy (Arulampalam et al., 2002)) and sample impoverishment
(Gordon et al., 1993) (Figure 4.8). One possible solution to improve the algorithm
and hopefully to avoid this problem is to introduce a resampling procedure with a
sufficient frequency (Kong et al., 1994; Kitagawa, 1996). A threshold η is often chosen
(η = 0.8M , see Caron (2006)) to launch the resampling procedure, which is related to
the empirical variance of the particle weights.

Algorithm : Resampling

$ Resampling :

- Compute Neff =
[∑M

i=1(w̃n+1(x̃a0:n+1
(i)))2

]−1
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- If Neff ≤ η :
- For i = 1, . . . ,M :

- Draw with replacement a new particle x̃a0:n+1
(i) from {x̃a0:n+1

(j), j ∈ {1, . . . ,M}}
according to a multinomial distribution

M (1, w̃n+1(x̃a0:n+1
(1)), . . . , w̃n+1(x̃a0:n+1

(M))).

- Update w̃n+1(x̃a0:n+1
(i)) = 1/M .

- Else, proceed to the next iteration.

Note that other resampling techniques also exist, for example Pham (2001); West
(1993). More discussions regarding the choice of the resampling scheme for particle
filtering can be found in Douc et al. (2005).

With the purpose of alleviating the undesirable side effect of resampling to improve
the parametrization performance when facing restricted dataset, we opted for the Con-
volution Particle Filter (CPF) proposed by (Campillo and Rossi, 2009) based on the
post-Regularized Particle Filter (post-RPF) (Musso and Oudjane, 1998; Oudjane and
Musso, 1999; Le Gland and Oudjane, 2004).

These two filtering methods share in common a kernel smoothing method to change
the discrete approximation of the filtering density.

Here, we first present briefly the kernel density estimator.

Kernel density estimator

Kernel density estimation, also known as the Parzen-Rosenblatt window method,
is an approach grounded in the methodology of histogram, which aims to estimate the
density function at a point x based on neighbour observations (Parzen, 1962; Silverman,
1986).

Definition 4.3.1 (Kernel) A kernel K is defined as an application of Rd 7→ R which
satisfies the following conditions:

– K(x) ≥ 0, ∀x ∈ Rd ;
– K is bounded and symmetric : ∀x ∈ Rd, K(x) = K(−x) ;
– K is integrable, such that

∫
Rd
K(x)dx = 1.

These properties ensure that the kernel density estimation results in a probability
density function. We define :

Kh(x)
def
=

1

hd
K(

x

h
), x ∈ Rd,

with h > 0 a smoothing factor, which is known as the bandwidth parameter. Therefore,
Kh is still a kernel.

Definition 4.3.2 (Parzen-Rosenblatt Kernel) A kernel K is defined as a Parzen-
Rosenblatt kernel if :

|x|dK(x)→ 0 as |x| → ∞.
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Suppose X1, . . . , Xn are i.i.d random variables drawn from a density distribution
f(·) which is absolutely continuous with respect to a Lesbegue measure on R.

Definition 4.3.3 (Kernel estimator) (Parzen, 1962) The kernel estimator of fN(x)
is defined as:

f̂N(x) =
1

NhdN

N∑
i=1

K

(
x−Xi

hN

)
, x ∈ Rd.

4.3.4 Regularized Particle Filter and Convolution Particle Fil-
ter

Regularized Particle filter

The regularization refers to the use of a kernel smoothing method to change the
discrete approximation of the filtering density (induced by the weighted particles in the
classical IPF) into an absolutely continuous approximation. In a way, the regulariza-
tion with convolution kernels can be regarded as artificial noise. The term post-RPF
is used to indicate that the regularization step takes place after the correction step. A
comprehensive exposition of RPFs and improvements can be found in Musso et al. and
some theoretical results in Le Gland et al. (1998) and Le Gland and Oudjane (2004).
In Musso and Oudjane (1998) and Oudjane and Musso (1999), the authors compare
the performance of the RPFs with the IPFs in some classical tracking problems. Let
us now describe the adaptation of this method in our context.

In the initialization step of our implementation, the parameters are initialized from
either informative distributions p(xa0) or non-informative distributions for all the par-
ticles. Particle weights are assigned uniformly.

We denote by KX the regularization kernel (usually Epanechnikov or Gaussian)
associated to Xa

n and by KK
h the rescaled kernel given by:

KX
h (xa) = h−dKX(h−1xa),

where h > 0 is the bandwidth parameter and d is the dimension of the state vector.
In our application, we used the Gaussian kernel and with M particles the optimal
bandwidth parameter (when the underlying density is Gaussian) is given by (see, eg.,
Musso et al.):

hXM =

(
4

d+ 2

) 1
d+4

M− 1
d+4 . (4.39)

Let us assume that at the end of the n-th step, the estimate of p(xan|y0:n) is given by:

p̂(xan|y0:n) =
M∑
i=1

w̃(i)
n K

X
hXM

(xan − x̃a (i)
n ),

where {(w̃(i)
n , x̃

a (i)
n )} is the normalised weighted sample before the regularization step.

The basic filtering step can be described as follows:
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• Sampling
For i = 1, . . . ,M :

– Generate I(i) ∈ {1, . . . ,M}, with P(I(i) = j) = w̃
(j)
n .

– Generate ε(i) ∼ KX(xa).

– Compute x̃
a (i)
n = x̃

a (I(i))

n− + hXM Σ̂
1/2
n ε(i), where Σ̂

1/2
n is the square root of the em-

pirical covariance matrix (whitening can be used).
• Prediction
For i = 1, . . . ,M :

– Generate x̃
(i)
n+1 ∼ p(xn+1|x̃a (i)

n ).

– Set θ̃
(i)
n+1 = θ̃

(i)
n .

• Correction and regularization
For i = 1, . . . ,M :

– Set w̃
(i)
n+1 = p(yn+1|x̃a (i)

n+1).

– Regularize the weighted sample {(w̃(i)
n+1, x̃

a (i)
n+1)} by taking

p̂(xan+1|y0:n+1) =
M∑
i=1

w̃
(i)
n+1K

X
hXM

(xan+1 − x̃
a (i)
n+1).

As far as the regularization is concerned, it is noteworthy to mention the recent
approach presented in Rossi and Vila (2006) and Campillo and Rossi (2009). The
authors proposed a particle filter where a convolution kernel is used to regularize the
likelihood of the observations as well. The new filter, called convolution particle filter,
seems to be more appropriate to use when the likelihood cannot be computed explicitly
or when signal-to-noise ratio is very low or very high (Rossi and Vila, 2006).

Convolution Particle Filter

Inspired by the post-Regularized Particle Filter (Oudjane and Musso, 1998), the
objective of the Convolution Particle Filter (CPF) (Rossi, 2004; Campillo and Rossi,
2009) is also to estimate jointly the parameters and the hidden states of the dynamic
system by processing the data on-line, but with both deterministic models and stochas-
tic models. Similar to the RPF approach, the construction and the theoretical analysis
of the CPF differ from the standard particle approach, as they are based on the non-
parametric estimate of the conditional densities by convolution kernels.

Concerning the choice of the kernel, in our implementation, Gaussian kernels
(Parzen-Rosenblatt kernel) are used, for they are more tolerant and generous with
regards to the variance compared to the Epanechnikov kernel, as demonstrated by
Figure 4.9.

Each filtering step is performed recurrently in two stages and occurs only at time
steps when the observation is available (Campillo and Rossi, 2009):

Prediction:
The objective is to provide a kernel estimator of p(xan+1, yn+1|y0:n) denoted by
p̂(xan+1, yn+1|y0:n). M particles {x̃an(i), i = 1, . . . ,M} are sampled from the distribution
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Figure 4.9: Comparison of Gaussian kernel (Parzen-Rosenblatt kernel) and Epanech-
nikov kernel.

with conditional density p̂(xan|y0:n). The M particles are propagated through the
evolution model until the next available measurement to obtain the predicted states
{x̃an+1−

(i), i = 1, . . . ,M}. The updating scheme relies directly on Bayes’ law. The
particle weights are calculated based on the experimental measurements and the
predictions, and then normalized. The empirical kernel approximation of the prob-
ability density of (Xa

n+1, Yn+1) conditional to Y0:n can accordingly be deduced using
the Parzen-Rosenblatt kernel KX

hXM
, with bandwidth parameter hXM :

p̂(xan+1, yn+1|y0:n) =
1

M

M∑
i=1

KX
hXM

(
xan+1 − x̃an+1−

(i)
)
· p
(
yn+1|x̃an+1−

(i)
)
. (4.40)

Correction:
The a posteriori form of the estimation is deduced from Bayes’ law and the kernel
approximation for p(xan+1|y0:n+1) is given by:

p̂(xan+1|y0:n+1) =

M∑
i=1

p(yn+1|x̃an+1−
(i)) ·KX

hXM
(xan+1 − x̃an+1−

(i))

M∑
i=1

p(yn+1|x̃an+1−
(i))

. (4.41)

The part p(yn+1|x̃an+1−
(i))/

∑M
i=1p(yn+1|x̃an+1−

(i)) can be considered as the normal-

ized weight w̃
(i)
n+1 associated to the particle x̃an+1−

(i). When the analytic form of the
observation density p(yn+1|x̃an+1−) is unknown, or in the case of a deterministic model,
an observation kernel can similarly be introduced (Campillo and Rossi, 2009) with
another Parzen-Rosenblatt kernel KY

hYM
, associated with bandwidth parameter hYM :
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p̂(xan+1|y0:n+1) =

M∑
i=1

KX
hXM

(xan+1 − x̃an+1−
(i))KY

hYM
(yn+1 − ỹ(i)

n+1−
)

M∑
i=1

KY
hYM

(yn+1 − ỹ(i)

n+1−
)

. (4.42)

Sufficient conditions for the L1-convergence of p̂(xan+1|y0:n+1) can be found in
Storvik (2002). The new set of particles

{
x̃an+1

(i), 1 ≤ i ≤M
}

are then sampled from
p̂(xan+1|y0:n+1).

Algorithm : Convolution Particle Filter

• Initialization
- For i = 1, . . . ,M :

- Choose initial values for xa0 from the prior distributions p0(·).
• Iteration

$ Prediction step :
- For i = 1, . . . ,M :

- Sample x̃an+1−
(i) ∼ p(xan+1|x̃an(i))

- Sample ỹ
(i)

n+1−
∼ p(yn+1|x̃an+1−

(i))
- Compute the associated weight :

w
(i)
n+1 = KY

hM
(yn+1 − ỹ(i)

n+1−
)

$ Normalize the weight vector :
- For i = 1, . . . ,M :

- Set

w̃
(i)
n+1 = w

(i)
n+1/

M∑
j=1

w
(j)
n+1

$ Correction step :
- Set

p̂(xan+1|y0:n+1) =
M∑
i=1

w̃
(i)
n+1K

X
hM

(xan+1 − x̃an+1−
(i))

- For i = 1, . . . ,M :
- Sample x̃an+1

(i) ∼ p̂(xan+1|y0:n+1)

N.B.

- The observation Y0 is usually not taken into account. However, it is possible to
integrate it into the algorithm. To do so, for Kalman filter based methods, the initial
samples (sigma-points for UKF) can be generated from time 0 according toN (xa0,Σ

xa

0 ).
For Particle filter based methods, we can begin with time -1 and set p(xa0|x̃a−1

(i)) = p(xa0)
for i ∈ {1, . . . ,M}.
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Despite the methods presented in this chapter, other methods can also be employed
to address the parameter estimation problem in a state space model, such as the Ap-
proximate Bayesian Computation (Rubin, 1984; Rau et al., 2011) and the Expectation-
Maximization algorithm (Dempster et al., 1977; Andrieu and Doucet, 2003; Rau et al.,
2010).



CHAPTER 5

Iterative Approaches for
State-Space Model Calibration

For stochastic plant growth models and more generally stochastic biological models,
model parameterization is generally a difficult process. Such type of models are

not only characterized by a large number of interacting processes with a large number
of parameters, nonlinear dynamics and scarce data for parameter estimation, resulting
from costly experimental data acquisition, but also uncertainties that arise at different
scales. Bayesian inference methods offer interesting perspectives to cope with such
characteristics, mostly due to their robustness when confronted to scarce data, and
have been used for this purpose in plant growth modeling (Wyckoff and Clark (2000),
Gaucherel et al. (2008)). However, in such situations the influence of a priori distribu-
tions is prevalent (Chen and Cournède (2012)) while it is generally not easy to assess
precisely.

As we all know, in the Bayesian formulation, it is assumed that the considered
model is adequate to describe the phenomenon of interest. A prior distribution is then
formulated over the unknown parameters, which is meant to capture our beliefs re-
garding the studying subject before the reception of the new information. Therefore,
after updating our knowledge based on the new information, the resulting posterior
distribution takes both the prior and the new data into account, from which future
observations can be predicted. Thus, the selection of a prior is very important, es-
pecially when the quantity of the new information is limited. Yet many people are
uncomfortable with this theoretically simple approach, simply because their view of
the prior selection is arbitrary and subjective, which could possibly influence a lot the
resulting distribution. Although the choice is subjective, we argue that it is however
not arbitrary. It should be the one who captures the prior beliefs, which is subjective
in most cases. Hence the prior should be placed modestly, with cautious. Unfortu-
nately, many pseudo-Bayesian applications can be found in the literature, in which
models, especially priors are chosen without justification and serious reflection, and
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therefore, cannot represent appropriately the prior belief. For example, choosing pri-
ors for convenience or for a precise objective, varying prior according to the number
of new observations, or even conducting model comparison with models that cannot
be considered appropriate to describe the reality. On the other hand, undoubtedly
in some situations, it can be difficult to perform properly a Bayesian method, for we
may not be able to translate our prior beliefs into a adequately formulated model with
sufficient prior distributions.

In the case when the prior is non-informative, and few data are available, we intend
to put more weight on the data. Intuitively, one may imagine that the experiment is
carried out over and over again and the same observations are obtained. Pursuing in
this direction, we show in Chen et al. (2013b) that the resulting iterative approach can
be regarded as an Expectation-Maximization (EM) type algorithm, at least when the
prior distribution for the parameters is Gaussian. The proposed algorithm combines
the robustness of Bayesian methods while preserving the prevalence of observation data
and the interest of point estimation for plant growth models, in which the biophysical
meaning and value of parameters are crucial. Furthermore, the term Gaussian random-
ization is introduced to designate that the initial model could be seen as a special case
of an extended model, which includes all the Gaussian distributions with the param-
eters of the model as the means. In the resulting algorithm, at the beginning of each
iteration, the posterior means and variances are used to initialize the updated normal
distributions. By doing so, the effect of prior fades out and the estimated variances
of the parameters tend to zero, we demonstrate that it converges to the Maximum
Likelihood Estimator.

The chapter is organized as follows. First, we introduce the notion of Gaussian
randomization and present a theoretical framework for transforming the parameter es-
timation problem in the initial model into a problem that can be solved with the help
of an appropriate EM-type algorithm in the resulting incomplete data model. Then we
detail a regularized particle filter approximation of the E-step and a MCMC approx-
imation of the E-step of the iterative algorithm, in order to make feasible parameter
estimation. Finally, we describe the averaged estimator employed and the parametric
bootstrap used to provide the associated confidence interval.

5.1 Stochastic variants of an EM-type algorithm

The estimation the proposing approach is performed in the classical framework
of incomplete data models via an appropriate stochastic variant of an EM-type algo-
rithm (Dempster et al., 1977). In contrast to classical stochastic variants (Celeux and
Diebolt (1985), Wei and Tanner (1990), Delyon et al. (1999), Foulley et al. (2000)) the
proposed variant of EM-type algorithm is particularly adapted to the extended model
resulting from the Gaussian randomization, since the last iterations of the algorithm
are performed under very low variance scenarios. Some recent efforts to obtain ap-
propriate stochastic EM-type algorithms for complex models arising in plant growth
model applications can be found in Trevezas and Cournède (2013), Trevezas et al.
(2013) and Baey et al. (2014). These algorithms are designed for a non-explicit M-step
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and a numerical maximization algorithm is involved as well in one of the conditional
maximization steps.

In this thesis, we present a simple way of turning a non-explicit M-step into an
explicit one and opt for both the MCMC based methods and the SMC methods pre-
sented in Chapter 4 to perform the E-step. We mention that the use of Regularized
Particle Filter was restricted until now to Bayesian type estimation.

The resulting data and parameter augmentation method enable us to estimate
more easily the parameters of the initial model with the help of an iterative state
estimation technique for the extended model. The term Gaussian randomization is
introduced for such type of modifications. Note that the proposed method should
not be confused with the Bayesian approach. The variance parameters involved in
the Gaussian randomization are assumed to be unknown in contrast to the Bayesian
approach in which normal priors are selected for the parameters of the model.

In the following the Gaussian Randomization and the theoretical framework of the
iterative scheme is presented.

5.1.1 Gaussian Randomization

Let us consider an arbitrary parametric statistical modelm , {(Ω,A,PΘ); Θ ∈M},
where M is a Euclidean subset, and a random vector Y (representing the data vector)
defined on this probability space and taking values in a measured space {(Y ,B, ν)},
where ν is a reference measure. Suppose that the vector Y admits a density p(y; Θ)
w.r.t. ν for each Θ ∈ M and for a given observation Y = y, the likelihood function is
L(Θ|y) denoted by L(Θ). The following assumption will be used in the sequel:

Assumption 1 i) The likelihood function L(Θ) is continuous on M ,
ii) The model has a unique MLE Θ∗, i.e., for all Θ ∈M,

0 ≤ L(Θ) ≤ L(Θ∗),

and the second inequality is strict for Θ 6= Θ∗.

Let us suppose that maximization of L(Θ) or logL(Θ) w.r.t. some of the parameters of
Θ is very difficult to perform. In particular, let us decompose the unknown parameter
Θ = (Θ1,Θ2), where Θ1 could represent a part of the parameter vector that could
not be updated explicitly in an iterative conditional maximization procedure by fixing
Θ2. The general idea consists in considering an enlarged model, by adding parameters
and hidden variables to the existing model, in such a way that maximization w.r.t.
to the augmented parameter vector in the enlarged model is equivalent to the initial
maximization problem. In this direction, we give a first definition. Let dx denote the
dimension of a vector x. We treat the case where Θ1 ∈ RdΘ1 .

Definition 5.1.1 Let m be a statistical model which satisfies Assumption 1 and Θ =
(Θ1,Θ2), where Θ1 ∈ RdΘ1 . The statistical model m̃(Θ1) will be called Gaussian ran-
domization of m w.r.t. Θ1 if m̃(Θ1) is an incomplete data model, which consists in:



94 5.1. STOCHASTIC VARIANTS OF AN EM-TYPE ALGORITHM

i) a Gaussian hidden vector Ψ, where

Ψ ∼ NdΘ1
(Θ1,Σ),

and Σ = diag{σ2
i }1≤i≤dΘ1

, where σ2
i > 0,

ii) an observed vector Y , where the conditional distribution of Y given Ψ = ψ
depends only on the parameter Θ2 and satisfies:

p(y|ψ; Θ2) = L(ψ,Θ2).

Let us take σ2 = (σ2
i )1≤i≤dΘ1

∈ (R∗+)dΘ1 to be a minimal vector representation of the
corresponding covariance matrix Σ. The parameterization corresponding to m̃(Θ1) is
given by:

φ = (Θ, σ2) = (Θ1,Θ2, σ
2) ∈ Φ = M × (R∗+)dΘ1 ⊂ Rdφ . (5.1)

Let us now assume that we allow some variance parameters of Ψ to be null. This
is equivalent to say that the corresponding parameters are not randomized. Denote
by Θ11 the subvector of Θ1 with associated strictly positive variances. According to
Definition 5.1.1-i) this model is no longer a Gaussian randomization of m w.r.t. Θ1

but rather a Gaussian randomization of m w.r.t. Θ11. In order to treat in a common
framework the class of all Gaussian randomizations of m w.r.t. to subvectors of Θ1 we
allow null variances in the parameterization. Most importantly, if σ2 is assigned to the
null vector 0dΘ1

, then the parameter φ = (Θ1,Θ2, 0dΘ1
) could be identified with the

parameter Θ = (Θ1,Θ2) of the initial model m. In this way m could be understood as
a submodel of m̃(Θ1). In the sequel we justify theoretically this intuition. Let us first
state the following lemma.

Lemma 5.1.1 The likelihood function L̃(φ) of the extended model m̃(Θ1) as given in
Definition 5.1.1 is upper bounded by L(Θ∗).

Proof: First, we compute the likelihood function L̃(φ) of the extended model m̃(Θ1).
We have:

L̃(φ) = p(y;φ) =

∫
ψ∈M1

p(ψ, y;φ)dψ

=

∫
ψ∈M1

p(ψ; Θ1, σ
2) p(y|ψ; Θ2)dψ

= EΘ1,σ2

(
p(y|Ψ; Θ2)

)
, (5.2)

where Ψ ∼ NdΘ1
(Θ1,Σ) according to Definition 5.1.1-i). By using Definition 5.1.1-ii)

and Assumption 1-ii) we get successively that for any φ ∈ Φ,

L̃(φ) = EΘ1,σ2

(
L(Ψ,Θ2)

)
≤ L(Θ∗), (5.3)

and this completes the proof. 2

In order to justify the existence of the MLE in this extended model, we need to
extend the likelihood function of m̃(Θ1) to parameter values which include null vari-
ances as explained at the beginning of this section and give the correct interpretation
in this type of boundary values. We will need the following lemma.
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Lemma 5.1.2 Let x ∈ Rdx, I ⊂ {1, . . . , dx} and J = {1, . . . , dx} \ I. Let also σ2
I and

σ2
J be the subvectors of σ2 ∈ Rdx with components indexed by I and J respectively. If

we consider the family of non-singular random vectors {Xσ2 ;Xσ2 ∼ Ndx(x,Σ)}, where
Σ = diag{σ2

i }1≤i≤dx, then we have

Xσ2
weakly−−−−−→
||σ2
J ||→0

Xσ2
I
∼ Ndx(x,ΣI),

where ΣI is a singular covariance matrix which results from Σ by putting σ2
J = 0J . In

particular, if I = ∅, then

Xσ2
weakly−−−−→
||σ2||→0

x.

Proof: We denote by φσ2 , φσ2
I

and φ0 the characteristic functions of Xσ2 , Xσ2
I

and

the constant vector x respectively. It suffices to show that as σ2
J → 0J , φσ2 converges

pointwise to φσ2
I
. Indeed, let t = (t1, . . . , tdx)

> ∈ Rdx . We have

φσ2(t) = eit
>x− 1

2
t>Σt −−−−−→

||σ2
J ||→0

eit
>x− 1

2
t>ΣI t = φσ2

I
(t). (5.4)

In particular, if I = ∅, then ΣI is the null matrix and by (5.4), φσ2 converges pointwise
to φ0. 2

Proposition 5.1.3 Let I ⊂ {1, . . . , dΘ1} and J = {1, . . . , dΘ1} \ I. Let also ΘI be the
subvector of Θ1 with components indexed by I, and σ2

I , σ2
J and ΣI as given in Lemma

5.1.2. We have
L̃(φ) = L̃(Θ, σ2

I , σ
2
J) −−−−−→
||σ2
J ||→0

L̃(Θ, σ2
I ),

where L̃(Θ, σ2
I ) is the likelihood function associated with the m̃(ΘI) Gaussian random-

ization of m. In particular, if I = ∅, then

L̃(φ) = L̃(Θ, σ2) −−−−→
||σ2||→0

L(Θ),

where L(Θ) is the likelihood function associated with the initial model m.

Proof: By (5.3) the likelihood L̃(φ) is expressed as the expectation of the random
variable L(Ψ,Θ2), where Ψ ∼ NdΘ1

(Θ1,Σ). For clarity, let us denote {Ψσ2} the family
of random vectors Ψ indexed by σ2. Then, we can rewrite (5.3) as

L̃(φ) = EΘ1,σ2

(
L(Ψσ2 ,Θ2)

)
. (5.5)

If we apply Lemma 5.1.2 for the family {Ψσ2}, we have that for any (Θ1, σ
2
I ),

Ψσ2
weakly−−−−−→
||σ2
J ||→0

Ψσ2
I
∼ NdΘ1

(Θ1,ΣI),

or equivalently, for any continuous and bounded function f : RdΘ1 → R,

EΘ1,σ2

(
f(Ψσ2)

)
−−−−−→
||σ2
J ||→0

EΘ1,σ2
I ,0J

(
f(Ψσ2

I
)
)
, (5.6)
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where we have used the characterization of weak convergence of a family of random
vectors (indexed by a continuous parameter) to a random vector in a specific limit
point. By Assumption 1, the likelihood function L(Θ) is continuous on M and bounded
by L(Θ∗). Consequently, for any Θ2, the function g : RdΘ1 → R, where Θ1 7→ L(Θ1,Θ2)
is continuous on M1 and bounded. Using this and (5.6), we have

EΘ1,σ2

(
L(Ψσ2 ,Θ2)

)
= EΘ1,σ2

(
g(Ψσ2)

)
−−−−−→
||σ2
J ||→0

EΘ1,σ2
I ,0J

(
g(Ψσ2

I
)
)

= EΘI ,σ
2
I

(
L(ΨI,σ2

I
,ΘJ ,Θ2)

)
,

(5.7)
where ΨI,σ2

I
is the subvector of Ψσ2 indexed by I. In the last expectation σ2

i > 0 only
for i ∈ I and consequently the last term corresponds to the analogue of (5.5) for an
equivalent representation of the likelihood function associated to the m̃(ΘI) Gaussian
randomization of m. If I = ∅, then obviously the last term coincides with L(Θ) and
the proof is complete. 2

By Proposition 5.1.3 we can consider in a unified framework the class {m̃(ΘI)}I of
2dΘ1 − 1 Gaussian randomizations of m w.r.t. to subvectors of Θ1 together with the
initial model m, which corresponds to the choice I = ∅. For this reason we extend the
domain of L̃(φ), from Φ given by (5.1) to Φ̃ = M × (R+)dΘ1 by allowing null variances
as follows:

L̃(Θ, σ2
I , 0J) = L̃(Θ, σ2

I ), (5.8)

L̃(Θ, 0dΘ1
) = L(Θ). (5.9)

With similar arguments as in the proof of Proposition 5.1.3 we can deduce from the
continuity of L(Θ) on M that L̃(φ) is continuous on Φ (as (Θ, σ2) → (Θ0, σ

2
0) ∈

Φ show that (ΨΘ1,σ2 ,Θ2) converges weakly to (ΨΘ1,0,σ2
0
,Θ2,0)). Consequently, both

equations (5.8) and (5.9) determine the continuous extension of L̃ from Φ to Φ̃ by
using Proposition 5.1.3.

Theorem 5.1.4 Let us consider the class m̃Θ1 of all Gaussian randomizations
{m̃(ΘI)}I of the initial model m, where I ⊂ {1, . . . , dΘ1} (for I = ∅, m̃(Θ∅) = m) and
ΘI is defined in Proposition 5.1.3. If Assumption 1 holds, then the unique MLE Θ∗

associated with the model m determines a unique MLE φ∗ associated with the model
m̃Θ1. In particular, we have

φ∗ = (Θ∗, 0dΘ1
), (5.10)

L̃(φ∗) = L(Θ∗). (5.11)

Conversely, if Assumption 1-i) holds and the MLE φ∗ associated with the model m̃Θ1

exists and is unique, then it determines a unique MLE Θ∗ associated with the model
m and satisfies (5.10) and (5.11).

Proof: ⇒) The restriction of L̃(φ) on Φ = M×(R∗+)dΘ1 is upper bounded by L(Θ∗) by

Lemma 5.1.1. Now, if φ ∈ Φ̃\Φ, take the nonempty set J = {j ∈ {1, . . . , dΘ1} : σ2
j = 0}

and I the complement of J . Then, L̃(φ) can be expressed as the left-hand member
of equations (5.8) or (5.9). By the same equations we obtain that L̃(φ) equals the
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likelihood function of the extended model m̃(ΘI) or of the initial model m respectively.
Therefore, by applying Lemma 5.1.1 for ΘI or by Assumption 1 respectively, we infer
that L̃(φ) is upper bounded by L(Θ∗) also on Φ̃ \ Φ, and consequently on Φ̃. By
(5.9) we have that L̃(Θ∗, 0dΘ1

) = L(Θ∗) and consequently the MLE exists and if it is

unique it satisfies (5.10) and (5.11). We have that (Θ∗, 0dΘ1
) ∈ M × {0}dΘ1 and by

Assumption 1 and (5.9), it is unique on this set. Let us now assume that there exists

φ = (Θ, σ2) ∈ M ×
(
RdΘ1

+ \ {0}dΘ1

)
such that L̃(Θ, σ2) = L(Θ∗). Take the nonempty

set I = {i ∈ {1, . . . , dΘ1} : σ2
i > 0} and J the complement of I. By (5.8), (5.3), the

remark following (5.7) and our assumption, we have

L̃(Θ, σ2) = EΘI ,σ
2
I

(
L(ΨI ,Θ

′

2)
)

= L(Θ∗), (5.12)

where Θ
′
2 concatenates the components of Θ1 indexed by J and Θ2. Since by Assump-

tion 1, the function L(Θ) is upper bounded by L(Θ∗), we obtain that the random
variable L(ΨI ,Θ

′
2) has the same upper bound, that is, L(Θ∗)−L(ΨI ,Θ

′
2) is a positive

random variable. But, by (5.12)

EΘI ,σ
2
I

(
L(Θ∗)− L(ΨI ,Θ

′

2)
)

= 0,

so we get L(ΨI ,Θ
′
2) = L(Θ∗), PΘI ,σ

2
I
−a.s. , or

1 = PΘI ,σ
2
I

(
L(ΨI ,Θ

′

2) = L(Θ∗)
)

= 1{Θ′2=Θ
′∗
2 }
PΘI ,σ

2
I
(ΨI = Θ∗I) = 0,

where the second equality follows by Assumption 1 and the last equality follows from
the fact that ΨI follows a non-singular multivariate normal distribution, so it induces on
(RdΘI ,B(RdΘI )) a measure which is absolutely continuous w.r.t. the Lebesgue measure
which assigns measure 0 to the singleton {Θ∗I}. We conclude that for any φ ∈ M ×(
RdΘ1

+ \ {0}dΘ1

)
, we have L̃(Θ, σ2) < L(Θ∗) and consequently the MLE φ∗ is unique.

⇐) If an MLE exists on Φ̃, then L̃ is upper bounded on Φ̃ by L̃(φ∗), and consequently
is upper bounded on M × {0}dΘ1 by the same value. By (5.9) this implies that L is
upper bounded on M by L̃(φ∗). If φ∗ ∈M×{0}dΘ1 , then (5.10) and (5.11) are satisfied
for some Θ∗ ∈M . Since the upper bound of L is attained on Θ∗ the MLE exists. It is
also unique, since if Θ∗1 and Θ∗2 are two distinct MLE, then (Θ∗1, 0dΘ1

) and (Θ∗2, 0dΘ1
)

are two distinct MLE associated with m̃Θ1 , and this contradicts the initial assumption.
Now we will show that φ∗ ∈M × {0}dΘ1 is a necessary condition. Let us assume that

φ∗ ∈M ×
(
RdΘ1

+ \ {0}dΘ1

)
. Take the nonempty set I = {i ∈ {1, . . . , dΘ1} : (σ2

i )
∗ > 0}

and J the complement of I. By applying (5.12) for φ∗ we have

L̃(φ∗) = EΘ∗I ,(σ
2
I )∗
(
L(ΨI , (Θ

′

2)∗)
)
. (5.13)

If L(ΘI , (Θ
′
2)∗) < L̃(φ∗) for all ΘI ∈ RdΘI then this would contradict (5.13).

So, we conclude that there exists Θ∗∗I such that L(Θ∗∗I , (Θ
′
2)∗) = L̃(φ∗), or

φ∗∗ = (Θ∗∗I , (Θ
′
2)∗, 0dΘ1

) 6= φ∗ is an MLE, which contradicts the assumption of

uniqueness. Therefore, φ∗ ∈M × {0}dΘ1 and the proof is complete. 2
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A consequence of Theorem 5.1.4 is that we can transfer the maximization problem
corresponding to the initial model m to a maximization problem corresponding to the
model m̃Θ1 . But since the latter is formulated as an incomplete data problem, we could
design an appropriate version of the EM-algorithm to solve the maximization problem
or more often a stochastic variant of the EM-algorithm (Expectation-Maximization,
see Dempster et al. (1977)) to handle the usually non-explicit state estimation problem.
It is noteworthy that if all parameters belonging to Θ are randomized then the M-step
becomes explicit. Otherwise, a GEM (G:Generalized) or stochastic GEM could be
used to find the MLE. An example of this kind could be an ECM (C:Conditional),
see Meng and Rubin (1993), where parameters are updated in a cyclic fashion. In the
following Proposition we give the form of the Q-function, and the update formulas for
the randomized parameter Θ1.

Proposition 5.1.5 Let φ′ = (Θ1,Θ2, σ
2)′ ∈ M × (R∗+)dΘ1 be the current parameter

update associated with the model m̃Θ1. The update equations for the parameter (Θ1, σ
2)

are given by:

Θ̂1 = Eφ′
(
Ψ | Y = y

)
(5.14)

σ̂2 = (σ̂2
i )1≤i≤dΘ1

=
(
Varφ′(Ψi | Y = y)

)
1≤i≤dΘ1

(5.15)

and Θ2 can be updated independently by maximizing

Q2(Θ2;φ
′
) = Eφ′

{
log p(y|Ψ; Θ2) | Y = y

}
. (5.16)

Proof: Since φ′ ∈ M × (R∗+)dΘ1 , this parameter corresponds to the Gaussian ran-
domization m̃(Θ1) and by the definition of the Q-function and Definition 5.1.1 we
have

Q(φ;φ′) = Eφ′
{

log p(Ψ, y; Θ1,Θ2, σ
2) | Y = y

}
(5.17)

= Eφ′
{

log p(Ψ; Θ1, σ
2) | Y = y

}
+ Eφ′

{
log p(y|Ψ; Θ2) | Y = y

}
.(5.18)

The last term in the right-hand member of equation (5.18) depends only on Θ2 and
coincides with (5.16), while the first term denoted by Q1(Θ1, σ

2;φ
′
) does not depend

on Θ2. Consequently, the last statement of this theorem is true. By using the inde-
pendence of the components of Ψ and the density of the normal distribution we have
that Q1 can be maximized equivalently as follows:

Q1(Θ1, σ
2;φ

′
)

max∼ −1

2

dΘ1∑
i=1

log σ2
i −

1

2

dΘ1∑
i=1

Eφ′{(Ψi −Θ1,i)
2 | Y = y}

σ2
i

. (5.19)

Consequently, it is elementary to show by relation (5.19) that (5.14) and (5.15) hold. 2

Remark A question which arises naturally concerns the adaptation of this method
in the case that some of the components of the parameter ψ have range different
than R. Then a Gaussian randomization as explained in Definition 5.1.1 cannot be
applied directly and a modification is needed by suitable reparameterizations whenever
possible.
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At each iteration of the EM-algorithm, given the current parameter update φ′, our
objective is to approximate Eφ′

(
Θ | Y0:n = y0:n

)
and

(
Varφ′(Θi | Y0:n = y0:n)

)
1≤i≤dΘ1

where n corresponds to the observation length, since the update equations for the
parameters of the model given in Proposition 5.1.5 generally lead to non-explicit so-
lutions. Several alternative algorithms can be employed to make this approximation,
such as particle filters, Markov chain Monte Carlo based algorithms or Kalman-based
filters.

5.2 Iterative SMC and MCMC

5.2.1 Iterative Regularized/Convolution Particle Filtering

A particular feature of the Gaussian randomization is that the optimal variance
parameters equal zero (see Theorem 5.1.4). When the variances are close to zero, and
this will indeed happen after some iterations of the EM-algorithm, classical particle
filters cannot perform well, neither do the MCMC based methods. This is due to
the fact that the particles make a discrete approximation of the filtering distribution
and consequently degenerate easier under a low variance scenario due to the resam-
pling mechanism (this is known as sample impoverishment). A successful strategy to
overcome this problem was devised in Musso and Oudjane (1998) by using Regular-
ized Particle Filters (RPF). In the light of this work, we presented in Section 4.3.4
the post-Regularized Particle Filter (Post-RPF) and the Convolution Particle Filter
(CPF). First, let us explain how the filtering approach is feasible in the plant growth
model calibration context.

In our application context the initial model m is a state space model and the
randomized Θ can be considered as a part of the hidden state vector. The most
natural way of dealing with Θ dynamically in time is to construct copies of Θ, denoted
Θn which remain constant in time, that is, for all n, we have Θn = Θn+1. Despite these
constant dynamics, the version of the particle filter that we describe in Section 4.3.4
enables us to modify sequentially in time the distribution of Θ given the increasingly
data vector. The corresponding augmented state vector will be denoted by Xa

n =
(Xn,Θn). In this context, all we need to approximate is Eφ′

(
Θn | Y0:n = y0:n

)
and(

Varφ′(Θn,i | Y0:n = y0:n)
)

1≤i≤dΘ1

. If we have a way to approximate the intractable

filtering density p(xan|y0:n) by a suitable p̂(xan|y0:n), then since xan = (xn, θn), we can
obtain an approximation of the first two conditional moments of Θn given the complete
data vector with the help of the marginal p̂(θn|y0:n).

Strategies to increase simulation numbers

An appealing feature of an EM-type algorithm is that it guarantees an improve-
ment of the likelihood function in every iteration of the algorithm. Suppose φ(k) =
(Θ1,Θ2, σ

2)(k) ∈ M × (R∗+)dΘ1 be the parameter update at iteration k and Ψ(k) ∼
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NdΘ1
(Θ

(k)
1 , σ(k)2

). The likelihood ascent property can be described as :

∆Qk = Q(φ(k);φ(k−1))−Q(φ(k−1);φ(k−1)) > 0, (5.20)

where Q(φ(k);φ(k−1)) is defined as in (5.18). If Θ2 remains invariant between the two
iterations, then,

∆Qk =E
{

log p(Ψ(k); Θ
(k−1)
1 , σ(k−1)2

) | Y = y
}

−E
{

log p(Ψ(k−1); Θ
(k−1)
1 , σ(k−1)2

) | Y = y
}
. (5.21)

However, the Q-function cannot be computed explicitly, but only approximated
by a finite sample size n which entails an algorithmic error disproportional to the
sample size, known as Monte Carlo error. For the sake of computational tractability,
the sample size is usually limited in practice. By doing so, we sacrifice accuracy for
acceptable computational complexity. Yet if the fixed sample size is too small, we risk
of never converging to the MLE because of considerable sampling errors (Booth et al.,
2001) and in similar ways, losing the likelihood ascent property. This motivates an
increase in the sample size. Some efforts have been made in the literature to increase
the sample size progressively. McCulloch (1994, 1997) proposed to increase the sample
size in a deterministic fashion with a fixed number of iterations, while Polyak and
Juditsky (1992) used an averaging technique to optimize convergence speed. Fort and
Moulines (2003) tried to accelerate the convergence by coupling both techniques. In
addition, Cappé et al. (2005) fixed the final sample size which can be found useful
under some situations. There are also some attempts made aiming at more flexible
solutions, such as Booth and Hobert (1999); Levine and Casella (2001), who intended
to increase the sample size based on the estimated Monte Carlo error.

In this context, to assure the EM’s likelihood ascent property, we compare the two
strategies to increases the sample size (number of simulations) automatically. One
is based on a geometric increase, the other concerns a quadratic increase. The two
strategies can be described as follows :

– Geometric increase: n← n+ bn/κc, κ = 4, 5 or 6.

– Quadratic increase: n← n+ 100 · i2, i← i+ 1.

Since parameter estimates tend to make large moves in the first iterations, for the
sake of computational efficiency, we propose to start with a relatively small sample
size. We define a evaluation criterion Zigzagk similar to ∆Qk in order to measure the
improvements made in the two last iterations :

Zigzagk = Q̂(φ(k−1);φ(k−1))− Q̂(φ(k−2);φ(k−1)) > 0, k ≥ 2.

For iteration k, if it appears that no further improvement is possible based on the
current sample size by verifying ZigZagk < 0 and ∆Q̂k < 0, which suggests that not
only no sign of improvement is detected for the past two iterations, the sample size is
consequently increased.

Another way to proceed is to define an interval for the ∆Qk function based on a
normal approximation (Booth and Hobert, 1999; Caffo et al., 2005):

√
n
(

∆Q̂k −∆Qk

)
n→∞−→ N (0, σ2

Q), (5.22)
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with ∆Qk defined as in (5.21).

An approximate asymmetric confidence interval can thus be constructed (Caffo
et al., 2005) :

[∆Q̂k − z1−α
σ̂Q√
n

; ∆Q̂k + z1−α′
σ̂Q√
n

]

where z1−α and z1−α′ the α-percentile and respectively α′-percentile of the standard
normal distribution. A Student’s t distribution can also be chosen. The σQ can be
estimated with σ̂Q by the method of Batch means presented in Section 4.1.5.

When ∆Q̂k − z1−α
σ̂Q√
n
< 0, the sample size is to be increased, while if ∆Q̂k +

z1−α′
σ̂Q√
n
< δ, where δ is a pre-defined threshold, then the algorithm can be stopped.

Note that α′ is usually different from α.

5.2.2 Iterative Adapted Metropolis-within-Gibbs

In the same way, the Adapted Metropolis-within-Gibbs proposed in the Section
4.1.3 can as well be employed to perform the E-step, although unlike the particle
filter based methods with resampling process engaged, the MCMC based methods
may potentially suffer from the sample degeneracy and impoverishment problem due
to the diminishing variance. Discussion of the related issues can be found in Bordes
et al. (2007).

Note that the noise parameters could be estimated in the same fashion as the
functional parameter, but the estimation performance depends crucially on the mixing
properties of the chain, and is often not satisfactory. More discussions regarding the
uncertainty assessment can be found in Chapter 6.

As for the convergence criterion, in the case of MCMC based methods, the Monte
Carlo error computed by the Batch means can be used to claim the convergence ac-
cording to the precision required. Since the sample size increases naturally with the
length of the Marov chain during the computation, the sample size does not need to
be pre-defined by the Q-function as in the case of RPF/CPF, which can be considered
as one advantage of the MCMC based methods for such an iterative scale. However,
we can still use the Q-function to provide a minimum sample size which can be used
as a penalty term in the definition of the stopping criterion as presented in Section
4.1.5.

5.2.3 Implementation issues

Averaged estimator

Due to the stochastic nature of this method, the averaging technique (Cappé et al.,
2005) (Chap.4) is carried out to smooth and to decrease the fluctuations of the esti-

mates after a burn-in period of K iterations. If we denote Θ̂(l) and x̂
(l)
n the estimates of
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the parameters and the hidden state variables at the l-th iteration respectively, then
for l > K :

¯̂
Θ(l) =

1

l −K

l∑
j=K+1

wjΘ̂
(j) and ¯̂x(l)

n =
1

l −K

l∑
j=K+1

wjx̂
(j)
n , (5.23)

where wj ∝ the sample size (number of the particles or length of the chain) used for
each E-step.

Parametric Bootstrap

As mentioned in Section 5.1.1, since the posterior distributions of the parame-
ters are no longer representative of the estimates’ uncertainty because of the itera-
tive scheme, parametric bootstrap (Efron and Tibshirani, 1994; Bradley and Tibshi-
rani, 1994) is implemented to provide an approximated distribution of the estimates.
Therefore, we can easily deduce approximated confidence intervals for each parameter
separately. The parametric bootstrap can be carried out as follows :

1. Collect a dataset y0:tmax (simulated or experimental).

2. Estimate xan with some method, including the proposed iterative approaches,
Bayesian approaches or frequentist approaches.

3. If the noise parameters are unknown, then update them. (For the related esti-
mation methods, please refer to Section 6.3).

4. Generate new datasets {y(i)
0:tmax} for i ∈ {1, . . . ,M} with the estimated parame-

ters (x̂an and noise parameters if not fixed).

5. Perform the estimation based on each of them {y(i)
0:tmax}, with i ∈ {1, . . . ,M}.

The obtained estimates denote Θ̂(i).

6. Deduce the approximated 95% confidence interval for each parameter based on
{Θ̂(i)}, with i ∈ {1, . . . ,M}.

N.B.

The number of simulated datasets affects the precision of the estimated confidence
interval. Commonly, at least 500 datasets are required for a 95% confidence interval.
A sample of 200 could also be acceptable, when the precision requirements are not so
strict.

Regarding the type of the confidence interval, in our implementation, both the boot-
strap percentile interval and the bootstrap-t interval are considered. We note that
other bootstrap intervals also exist, their definitions are detailed in Section 6.4.1.

Moreover, we highlight that the algorithmic uncertainty, also known as Monte Carlo
error, which is associated with the stochastic algorithm and the underlying assumption
made for the approximation, can also be assessed by applying the conditional ICPF
approach to the same experimental data set a large number of times, as presented by
Chen and Cournède (2012).



CHAPTER 6

Uncertainty Assessment in
Stochastic State-Space Models

Uncertainty assessment plays a crucial role when addressing parameter estimation
problems and model prediction issues. When a model contains a large number

of parameters, as it is often the case for plant growth models, parameter estimation
based on limited experimental data is a challenging task, for parameter identifiability
problems often occur. To avoid such situations, sensitivity analysis is classically applied
in advance to select the most influential parameters to be estimated.

On the other hand, as mentioned in Section 2.1, any realistic model should in-
corporate both modelling noises and observation noises. They allow us to avoid an
excessive forcing of the model towards the observations. Consequently, a complete
parametrization should involve the evaluation of these noises as well as the estimation
of the functional parameters. However, these two sources of uncertainty complicate
greatly the statistical analysis of the model, hence, the estimation of noise parameters
is a computational and statistical challenge for state-space models. In this thesis, we
elaborate different strategies for the evaluation of noise parameters. Considering that
in our applications, we assume only Gaussian zero-centered noises, the parameters to
estimate are those that assess the variances. Note that other forms of noises could
also be used, such as Poisson, negative Binomial, log-normal or Gamma, without any
difficulty.

In this chapter, we first give a general presentation of sensitivity analysis and detail
the method that is used in our application. Then, some noise parameter estimation
methods which can be combined with the functional parameter estimation methods
presented in Chapter 4 and Chapter 5 are detailed. Finally, the Bayesian credibility
interval and the frequentist’s confidence interval, which can be regarded as common
tools to characterize the uncertainty related to the estimations are compared.

103
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6.1 Sensitivity analysis

Biological models usually contain a large number of interacting components. Fre-
quently, both spatial and temporal processes across multiple scales are involved. A
good comprehension of the model is fundamental to ensure a correct use and an ap-
propriate interpretation of the obtained results. For a proper model assessment, we
need to quantify the model adequacy given the observation, to identify interactions
between factors, to evaluate the model relevance and eventually to simplify the model
structure if possible. In all these tasks, parameter sensitivity analysis can provide
useful insights. Indeed, sensitivity analysis can help characterize the uncertainty un-
derlying a model. A possible definition of sensitivity analysis is proposed by Saltelli
et al. (2004):

“the study of how uncertainty in the output of a model (numerical or oth-
erwise) can be apportioned to different sources of uncertainty in the model
input.”

When a model contains a large number of parameters, parameter estimation based
on limited experimental data may affect strongly the quality of model prediction with
important estimates uncertainty. Therefore, sensitivity analysis is classically applied
in advance to select the most influential parameters to be estimated, whereas those
screened as the least influential ones can be fixed to any values in their domains. In
the context of sensitivity analysis, this method is called “screening” or “factor fixing”
(Campolongo et al., 2007).

With this purpose, we implement the algorithm proposed by Wu et al. (2012)
to compute Sobol’s indices (first order and total order) of all the parameters of the
studied model based on its deterministic version. The generalized least-square criterion
is chosen, as the output for which sensitivity analysis is performed, in the process of
parameter selection.

Here, we briefly present the general principles of sensitivity analysis based on Saltelli
et al. (2000) and Saltelli et al. (2004). For the simplicity of notations, let the model
of interest be presented under the following form :

Y = f(X1, . . . , Xd)

where {X1, . . . , Xd} are the input factors considered as random variables with known
probability distributions, the objective is therefore to study their influence on the
model outcome Y . Note that in our application, the input factors of interest are the
functional model parameters.

The basic idea of Sobol’s method (Sobol, 1993) is to decompose the variance of the
model output Y , denoted V (Y ) into terms of increasing dimensionality as follows:

V (Y ) =
d∑
i=1

Vi +
∑

1≤i,j≤d

Vij + . . .+ V1...d
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where

Vi = Var(E(Y | Xi))

Vij = Var(E(y | Xi, Xj))− Vi − Vj
. . .

V1...d = V −
d∑
i=1

Vi −
∑

1≤i,j≤d

Vij − . . .−
∑

1≤i1<···<id−1≤d

Vi1...id−1

The corresponding sensitivity indices are defined : the first order index Si =
Vi
V

,

the second order index Sij =
Vij
V

, and in the same fashion for higher order indices.

The total order indices associated to factor Xi, denoted STi , can be defined as the
sum of all the indices accounting for the factor i. The first order indices allow us to
quantify the proportion of V (Y ) that can be explained by each factor individually,
whereas the second order indices aim to quantify the interaction between two factors.
In other words, the difference between the total order index and the first order index
for a given factor can be seen as an indication of the importance of the interactions
that concern this factor. Small difference implies that the associated interactions have
no significant influence on the variance V (Y ).

Note that if the outcome variable Y is multidimensional and time-evolving, which
is often the case for plant growth models, the index Sji (t) should be computed which
represents the sensitivity to the factor (parameter) i at time t for each component of
the observation vector Y , denoted Yj, for j = 1, . . . , nY (Wu et al., 2012). The general
sensitivity index Sji (t) can be obtained as follows :

Sji =

∑tmax
t=1 Sji (t)Var(Yj(t))∑tmax

t=1 Var(Yj(t))
,

which can be understood as weighting the indices Sji (t) with the associated variance
Var(Yj(t)). For parameter estimation, we choose as output the GLS criterion. If we
denote Ỹ = f(X1, . . . , Xd), then the GLS criterion can be expressed as :(

Y exp − Ỹ
)T

Σ−1
(
Y exp − Ỹ

)
,

where Σ is the covariance matrix of the observation errors and Y exp is the observation
vector which contains the experimental data used for parameter estimation (see Section
3.4.1 for details). The parameter ranking is deduced from their total order indices.

Note that once the influence of the parameters are determined by parameter sensi-
tivity analysis, the parameter selection problem is transformed into a model selection
problem in which candidate models have different numbers of parameters: we increase
the complexity of the model by introducing parameters according to their ranking. In
the simplest model, only the most influential parameter is estimated while all the oth-
ers are fixed to the mean values of their distributions; in the second simplest mode, the
two most influential parameters are estimated; ...; in the full model, all the parameters
ranked by the sensitivity analysis are estimated. Model selection criteria can be used
to select the model that is best supported by the data from all the candidate models.

In the same way, model selection criteria can also be used for noise parameter
selection. In the following, some methods for the noise parameter estimation problem
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are presented. First, we introduce the noise parameter estimation with model selection.

6.2 Evaluation of noise parameters by model selec-

tion

The first approach consists of using a grid of modelling noise parameters fixed
at different levels for selection. SMC methods as well as MCMC based methods, or
frequentist methods can be performed to estimate the functional parameters of the
model with different levels of noise parameters, with the aim of obtaining the best
combination with respect to a given model selection criterion.

Here, we first introduce some model selection criteria frequently employed in various
applications.

Let L(θ̂) denote the likelihood function evaluated at θ̂. The most famous model
selection criterion is the Akaike Information Criterion (AIC). Founded on information
entropy, AIC evaluates the trade-off between the goodness of fit of the model and the
complexity of the model (Akaike, 1974). It is widely used as model selection criterion
to avoid over-fitting problems. The AIC has two components: negative log-likelihood,
which measures lack of model fit to the observed data, and a bias correction factor,
which increases as a function of the number of model parameters. It is defined as
follows :

AIC = −2 (lnL(θ̂)− d),

where d denotes the number of parameters that are estimated. A corrected version
of the AIC, known as AICc is also frequently used to account for limited sample size
(Hurvich and Tsai, 1989) :

AICc = −2 (lnL(θ̂)− d) +
2 d (p+ 1)

(n− d− 1)
,

in which, n denotes the sample size of the observation vector.

When the number of observations is not many times larger than d2, AIC increases
the probability of choosing models with more parameters, which can result in over-
fitting problems. Therefore, Cavanaugh (1997) and Burnham and Anderson (2002)
recommend strongly the use of AICc instead of AIC.

Another similar criterion based on the likelihood evaluation is the Bayesian infor-
mation criterion (BIC), also known as Schwarz criterion (Schwarz, 1978). It is defined
as follows :

BIC = −2 lnL(θ̂) + d lnn,

These two criteria are commonly used for model selection objectives with point
estimations (e.g. obtained by the MAP estimator). According to this criterion, the
best model is defined as the one that is best supported by the data and obtains the
smallest value compared to the other candidate models. The BIC generally penalizes
more strongly the number of parameters than AIC.

A popular model selection criterion often employed in the Bayesian model com-
parison framework is the Deviance Information Criterion (DIC) (Spiegelhalter et al.,
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1998). It can be regarded as a natural generalisation of AIC (Claeskens and Hjort,
2008). While AIC and BIC require calculating the likelihood at its maximum over θ,
DIC is easily calculated from the samples generated by a Markov chain Monte Carlo
simulation in the case of Bayesian model selection.

First, we introduce the Bayesian deviance. The investigation of the posterior dis-
tribution of the log-likelihood under each model is conducted to derive measures of fit
and hence, choose the most effective number of parameters to estimate. It is defined
as follows :

D(θ) = −2 ln p(y|θ) + 2 ln f(y),

D(θ) is the posterior distribution of the log-likelihood of the data (Dempster, 1974),
where f(y) is a function of the data alone and does not have impact on model com-
parison. Therefore, the fit of the model can be assessed by the conditional expectation
of the deviance given y :

D̄(θ) = Eθ|y(D(θ)), (6.1)

while the complexity of the model can be measured by the effective number of param-
eters:

pD = Eθ|y(D(θ))−D(E(θ|y)) := D̄(θ)−D(θ̄), (6.2)

where θ̄ = E(θ|y) is the mean estimates of θ obtained from independent runs. Finally,
the Deviance Information Criterion can be defined as :

DIC = D̄(θ) + pD = D(θ̄) + 2pD. (6.3)

Like AIC and BIC, smaller values of DIC indicate a better fitting. Although de-
signed for model selection regarding the complexity of the model (number of parame-
ters), these criteria are used in our context to define the level of noise which fits better
the data. Based on a common dataset, the same estimation method is carried out, to
fit the model. Ideally, independent runs could be made to give an idea of the Monte
Carlo error. The estimation is subsequently evaluated by the criteria mentioned above.
Note that for AIC, AICc and BIC, it simply amounts to evaluating the likelihood of
θ̂. In the following comparison, DIC is used to resolve the Bayesian model selection
problem, whereas AIC, AICc and BIC are used to address model selection issues of fre-
quentist based iterative approaches. Note that if multiple noise parameters are present
in the model, the computational intensity is increased drastically, since there will be
more possible combinations of parameter values. Therefore, this approach should be
restricted to the parameters that have an identifiability problem.

In the case when no identification problem is detected, the noise parameters can be
estimated jointly with the functional parameters by SMC and MCMC based methods.

6.3 Conditional SMC and MCMC for noise param-

eter estimation

First, we partition the full parameter vector Θ: Θ = (Θ1,Θ2), in which Θ1 denotes
the parameters corresponding to the deterministic part of the model (state equation
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and measurement equation) and Θ2 denotes those of the noise model, including the
variance parameters of the modelling noises and of the observation noises (η and ξ in
(3.1)).

Ideally, functional and noise parameters should be jointly estimated. However, even
if theoretically this could be feasible, in practice it could be difficult to carry out. Many
factors could be responsible for this inconvenience. First, adding additional variance
parameters in the estimation process could result in identifiability problems, since
the number of unknown parameters could be significantly increased. Second, the true
purpose of introducing noise parameters is to acknowledge that variability exists in the
evolution and in the observation of the system, and thus can be used to explain some
residual variability that cannot be explained by the deterministic equations involved
in an assumed ideal model. However, this cannot be entirely reflected in the target
function if the functional and noise parameters are estimated at the same time. Thus,
to estimate Θ1 and Θ2 in turns seems to be a more reasonable scheme to carry out
the model calibration for stochastic state-space models. Note that this scheme is very
classical which is also used in the GLS estimation (see for example the 2-stage Aitken
estimator proposed by Taylor (1977)). We proceed the estimation as follows :

– Update Θ1 ∼ π(Θ1|Θ2, y1:tmax).
– Update Θ2 ∼ π(Θ2|Θ1, y1:tmax).

In the first place, the estimation of the hidden states and of Θ1 is performed by
considering that Θ2 is known. Note that the estimation of the functional parameters
can be conducted either with Bayesian inference, such as SMC methods or MCMC-
based methods, or with frequentist-based methods, such as the stochastic EM variant
that we proposed in Chapter 5 with the E-step performed with either MCMC-based
methods or particle filtering based methods. From the first estimation of Θ1 and of
the hidden states, we can estimate the parameters of the distributions of the modelling
and measurement noises Θ2 from the results. Conditionally to the new estimated Θ2,
the approach is then carried out again to estimate Θ1 together with the hidden states.
In this way, the algorithm can be iterated in turns between the model parameters Θ1

and the noise parameters Θ2 until the convergence of both.

In practice, however, the convergence of this method is not always assured. In
our implementation, small initial variances for the noises seem to be helpful to the
convergence of the algorithm towards satisfactory estimation for both the hidden states
variables and the functional parameters Θ1.

Regarding the second step for noise parameter estimation, several approaches are
possible and the choice remains debatable. In this thesis, we detail and examine two
of them.

6.3.1 Bayesian update of noise parameters

In the Bayesian framework, instead of updating the parameter vector at once, here
we propose to divide the parameter vector into two parts, Θ1 and Θ2 and update
them in turns. For MCMC based methods, this scheme is known as Gibbs in blocks.
Since the functional parameters Θ1 have the priority, and we wish that they could
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explain as much variability of the model as possible, given the data, we choose to start
the joint updates by Θ1. In order to keep the stability of the estimation, the update
of noise parameters Θ2 is carried out only when the estimations of Θ1 is claimed
converged conditionally to Θ2. Moreover, conjugate prior distributions are chosen for
Θ2, so that they can be updated by simulating directly from the target distribution
instead of being updated by a MH algorithm. For instance, for variance parameters
corresponding to Gaussian density distributions, prior assumption of Inverse Gamma
distributions can be made in order to guarantee the positivity of the sampled noises,
and most importantly, they can lead to explicit updates of the posterior distributions.
The detailed implementation of this method for our test case can be found in Section
8.7.

6.3.2 Empirical noise parameter estimation

If the noise parameters are defined without a conjugate prior, or a filtering method
is applied to estimate the functional parameters, then an empirical noise parameter
estimation is needed at the end of the filtering update. In our implementation, under
the assumption that both the modelling noises {ηn}0≤n≤tmax and the observation noises
{ξn}0≤n≤tmax are mutually independent Gaussian distributions (eventually multivariate
Gaussian distributions), their estimators can be derived based on the estimates of the
hidden states variables and the functional parameters (denoted x̂an as the augmented
hidden state vector), as well as the observation vectors Y0:n.

For modelling noise parameters, their estimators can be defined as the averaged
difference between the estimates of the hidden state variables in x̂an and x̃an obtained by
propagating through the evolution equation in its deterministic form fan(x̂an−1, En−1, 0).
Respectively, for the observation noise parameters, their estimator can be defined as
the averaged difference between the estimation of the outcome variables ŷn = gn(x̂an, 0)
(deterministic observation equation) and the experimental observation Yn.

We note that for particle filtering approaches, the estimation of the noise param-
eters can be carried out for each of the M particles. Therefore, the posterior distri-
butions of the noise parameters ση and σξ can be obtained by the samples with their

associated weights w: {σ̂(i)
η , w(i)}1≤i≤M and {σ̂(i)

ξ , w
(i)}1≤i≤M .

Undoubtedly, other noise estimation methods also exist in literature, which are
often based on the maximum likelihood functions. More discussions regarding the
noise parameter estimation can be found in de Valpine (2002) and Dennis et al. (2006).

6.4 Comparison of uncertainty intervals

The proper interpretation and distinction of the Bayesian credibility intervals, boot-
strap intervals and frequentist confidence intervals appears often difficult or confusing.
In this section, we attempt to present their definitions, to compare their use in prac-
tice, and to sort out the interpretation problem. The problem can be formulated as
follows:
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Suppose that the objective is to estimate θ conditional on the observed data y and
the data generation process is known F (y|θ). The inference problem is to infer the
optimal value θ̂ of θ with respect to a given criterion and under specific assumptions for
the nature of θ. We assume for the rest of this section that the unknown parameters
is unidimensional. Similar interpretations can yet be given in the multi-dimensional
case as well.

6.4.1 Frequentist confidence interval

In the frequentist interpretation, a 100(1-α)% confidence interval defines a charac-
teristic of a process to generate intervals. If we denote a 100(1-α)% confidence interval
I ≡ [lb(Y );ub(Y )], where lb(Y ) and ub(Y ) represent the upper bound and the lower
bound respectively, and generated by the random process, then ideally I should satisfy

Pθ∗(θ
∗ ∈ I) = 1− α,

where α is known as the confidence level and θ∗ stands for the true value of the
parameter. If we generate independently data under the same conditions (and under
θ∗), then with a large sample size, 100(1-α)% of the estimated confidence intervals
contain the true value of the parameter.

As illustrated by Figure 6.2, among 40 simulated 90% confidence intervals, 4 do
not contain the true value θ∗. This is an example of the frequentist interpretation in
the case that the samples are generated from a true underlying distribution.

Figure 6.1: Simulated confidence intervals. The true value is represented by the vertical
line.

A similar notion widely employed is the frequentist coverage.
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Frequentist coverage

The frequentist coverage is calculated before the observations are gathered, there-
fore, it is known as pre-experimental coverage.

Definition 6.4.1
A random interval [lb(Y );ub(Y )] has 100(1-α)% frequentist coverage for θ before the
new observations are made if:

Pθ(lb(Y ) < θ < ub(Y )) = 1− α.

Note that once the observations are gathered Y = y, θ∗ is either contained in the
interval or not, it is no longer a matter of chance.

To explain this notion, it is important to understand that for frequentist methods,
a point estimate is a numerical estimate with no indication of its quality (precision,
bias and variance of the estimator). If there is not a direct method to extract a 100(1-
α)% confidence interval while we intend to assess the estimation quality, then we need
to verify all possible random samples of the same size (n) as the experimental data
{Y exp

i }i=1,...,n that are used to obtain our point estimate in the first place. Indeed,
the reasoning used in frequentist inference depends on thinking about all possible
appropriate samples of the same size. Which samples are “appropriate” depend on the
particular statistical procedure (model assumptions) used.

Suppose Y denotes the new random sample vector of size n, then we can define
a random variable θ̃ resulting from Y as an estimate of θ∗, the distribution of which
is known as sampling distribution. The idea of frequentist coverage and confidence
intervals is that we can find an appropriate k that

– The probability that θ̃ lies between θ∗ − k and θ∗ + k is 100(1-α)%. Therefore,
θ̃ is random while θ∗ and k are fixed.

– The previous confidence interval can be easily reformulated as the probability
that θ∗ lies between θ̃ − k and θ̃ + k is 100(1-α)%.

The resulting problem is that there are two possibilities regarding the data
{Y exp

i }i=1,...,n: it can provide either a confidence interval [θ̃ − k; θ̃ + k] that con-
tains θ∗ (with 100(1-α)% of the chance), or a confidence interval that does not contain
θ∗ (with α% of the chance). Unfortunately, it is impossible to know which possibility
is true. We can only state that the procedure that we used to obtain the confidence
interval works 100(1-α)% of the time.

Therefore, if one aims to achieve a post-experimental coverage, a large number of
independent experiments can be carried out, and we can build one confidence interval
for each of them. By the Strong Law of Large Numbers, ideally if all the intervals
have 100(1-α)% coverage probability, then with a large sample size, approximately
100(1-α)% of these intervals should contain the true value of the parameter. However,
the confidence intervals are many times approximate, moreover, it is not always the
case that all assumptions used in deriving a confidence interval are met, therefore
the actual coverage probability could be less or greater than the nominal coverage
probability which corresponds to the confidence level pre-defined.
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Bootstrap confidence interval

In most applications, it is extremely difficult or not possible to sample directly from
the original distribution F from which {Y exp

i }i=1,...,n were drawn from, another option
is to sample from the best approximation to this distribution, based on the observed
data. Let F̂ denotes the empirical distribution function as an approximation of F . The
bootstrap idea is to generate new samples from the empirical distribution function.

The construction of a bootstrap interval involves two steps with necessary assump-
tions for the approximations: in the Plug-In step, we consider the distribution of the
sampling statistics under F̂ instead of the distribution F to result in the bootstrap dis-
tribution, and in the Monte-Carlo step, an empirical approximation is obtained instead
of the exact bootstrap distribution. There are situations that allow to compute the
exact bootstrap distribution and in this case the Monte Carlo step is not needed. In
the vast majority of situations the bootstrap distribution is not tractable analytically.
Then simulation from the empirical distribution F̂ yields an empirical approximation
to the bootstrap distribution. This approximation can be made arbitrarily close by in-
creasing the bootstrap sample size, given the availability of sufficient computing power.
In contrast, the asymptotic equivalence of the bootstrap distribution and original dis-
tribution of the sampling statistic is far from being trivial and is based on convergence
results for empirical processes.

In order to construct a confidence interval for θ we need to know how an estimator
of θ̂ varies in repeated sampling from the population. Since all the information we
have about the population is contained in the sample, bootstrap methods treat the
sample as if it were the population. In the following, we present three types of
bootstrap confidence intervals that are commonly used, the details of which can be
found in Efron and Tibshirani (1994) and Davison and Hinkley (1997) (Chapter 5.18):

- Bootstrap percentile interval: I = [q∗α/2; q∗1−α/2],

where q∗α/2 is the α/2 percentile of the bootstrap distribution (respectively 1 − α/2
percentile for q∗1−α/2.

- Basic bootstrap interval: I = [2θ̂ − q∗1−α/2; 2θ̂ − q∗α/2],

where θ̂ is the estimate of θ in the original model.

- Bootstrap-t interval: I = [θ̂ − t̂∗1−αŜEbootstrap; θ̂ − t̂∗αŜEbootstrap],

where ŜE denotes the estimate of the standard error in the original model, and t̂α
denotes the α percentile of the bootstrapped Student’s t-test : t̂∗ = (θ̂∗−θ̂)/ŜEbootstrap,

in which ŜEbootstrap denotes the standard error of the bootstrap distribution and θ̂∗

denotes the bootstrap mean.

N.B.

- The difference between the bootstrap mean θ̂∗ and the original estimate θ̂ can be
regarded as an estimate of the bias of θ̂.

Indeed, standard parametric confidence intervals can provide a measure of un-
certainty related to the model parameters. Yet they require acceptance of Gaussian
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assumptions for their validity. However, given the limited observation data to esti-
mate the variability resulted from various of sources, the Gaussian assumptions may
not always hold. Alternatives to the standard parametric confidence intervals are the
semiparametric or nonparametric methods.

Wang et al. (1994) compared several bootstrap confidence intervals to Bayesian
confidence intervals for smoothing splines. Both bootstrap and Bayesian confidence
intervals are not necessarily symmetric as classical frequentist confidence intervals.
They concluded that bootstrap confidence intervals work as well as Bayesian intervals
concerning average coverage probability. Additionally, bootstrap confidence intervals
appear to be better for small sample sizes. Based on their simulations, the “percentile-
interval”bootstrap interval performs better than the other types of bootstrap intervals.

Bootstrap confidence intervals are easy to interpret and can be used with any
distribution. However, because they require a large number of repetitions of the whole
estimation process, their construction is computationally intensive.

6.4.2 Bayesian credibility interval

In contrast to the classical frequentist methods, a Bayesian method considers that
the true θ∗ is a random variable drawn from some probability distribution. The un-
certainty is captured by imposing a prior knowledge and updated based on the new
observations. The obtained conclusion stands only under the assumption that the prior
is pertinent. The point estimate is more often obtained using the mean of the posterior
distribution. Note that other estimators also exist, such as the posterior mode and the
posterior median. The extent of the uncertainty is expressed by a credibility interval:

P (q̂θα/2 ≤ θ ≤ q̂θ1−α/2|Y = y) = 1− α.

Figure 6.2: Bayesian interpretation of a 90% credibility interval.
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Bayesian coverage

The Bayesian interval describes the possible location of the true parameter θ∗ after
the observation of y. The Bayesian coverage probability is therefore known as post-
experimental.

Definition 6.4.2
An interval [lb(y);ub(y)], based on the observed data Y = y has 100(1-α)% Bayesian
coverage for θ if

P (lb(y) < θ < ub(y)|Y = y) = 1− α.

6.4.3 Comparisons

The comparison between the Bayesian credibility interval and frequentist confidence
interval has always been a thought-provoking subject. Almost four decades ago, Jaynes
(1976) examined the Bayesian and frequentist solutions to six common statistical prob-
lems to investigate the reliability of the confidence intervals provided. According to
this paper, in every case without exception, the Bayesian method appeared to yield
the same or better results yet easier to apply compared to the frequentist methods.
Furthermore, they found that the frequentist solutions were satisfactory only when
they agreed closely with those provided by the Bayesian methods.

But is it true that the Bayesian’s choice is absolutely better?

It actually depends on our objective. In fact, a frequentist confidence interval is
not defined with the aim of obtaining the highest probability to contain the real value
of the parameter given what we can infer from the observations. Unfortunately, in
practice this is often the way that the confidence interval is interpreted, which can be
misleading. Therefore, if the comparison is about finding an interval where the real
value of the statistics lies with probability 100(1−α)%, then the frequentist confidence
interval may not answer that question directly (which entails the problems stated in
Jaynes’ paper), while the Bayesian solution can. Hence the conclusion is that the
Bayesian credibility interval is superior to the frequentist one in that aspect. If the
former objective can be regarded as the “wrong” one for the frequentist methods, then
the right objective would be to obtain an interval in which if the experiment is repeated
a large number of times, then the true value of the statistic lies with 100(1−α)% of all
the intervals obtained. In such cases, the Bayesian’s solution may also be able to give
an answer, although it may not be directly the credibility interval (Hartigan, 1966).



CHAPTER 7

Computational implementation
with PyGMAlion

In plant growth modelling, a large variety of models coexist in the literature with
generally an absence of benchmarking between the different approaches and in-

sufficient model evaluation. In this context, the PyGMAlion (Plant Growth Model
Analysis, Identification and Optimization) platform (Cournède et al., 2013) can be
regarded as an attempt to promote a modelling framework and model analysis meth-
ods with the objectives of enhancing good modelling practices and increasing model
design efficiency. In this chapter, this simulation platform on which all the methods
presented in this thesis are implemented is presented. Some implementation issues are
subsequently discussed.

Note that all the simulations and numerical tests presented in this thesis were
carried out on the mesocenter of Ecole Centrale Paris, which has a total capacity
of over 10 TFLOPS and comprises nearly 1000 calculation units 1. All the parallel
computations were realized with up to 10 cores.

7.1 Motivation

Undoubtedly, classical numerical and statistical software such as MATLAB®, R
or WinBugs, generally provide efficient and sophisticated methods for model analysis,
especially for parameter estimation. However, the platform proposed is not always
adequate and convenient for the development and analysis of complex models featured
by specific data structures (different from vectors or matrices), which generally need
to be developed by the user, as well as specific encapsulation methods in order to
make the generic analysis and estimation methods applicable. The proposed packages

1. http://www.mesocentre.ecp.fr/
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provide algorithms that are operated like a black box, which often appear to be hard
to be reconfigured. Moreover, various limitations are imposed by the software cited
previously, especially regarding the computational resources. Indeed, computationally
intensive statistical models and methods need corresponding computation facility to
scale. To improve the computational performances, the use of distributed computation
is an opportunity (parallel and multi-threading computation) which can be difficult to
carry out with the above limitations.

Under these circumstances, the PyGMAlion C++ platform offers a framework in
which the implementation of stochastic or deterministic discrete dynamic models and
statistical methods can be carried out easily. All the algorithms presented in this thesis
including the sensitivity analysis, uncertainty analysis, parameter estimation, model
selection or data assimilation are thus implemented on this platform, so that model
comparisons and method comparisons can be conducted to provide benchmarks for
the different approaches, among other utilities.

7.2 State-space model formulation

To perform Monte Carlo based methods based on state-space models, first, we need
to translate them into exploitable code for simulation, the following reformulations are
made (Bayol et al., 2013).
• The dynamical evolution system of a meta modelM is defined as a 6-tuple (for

which the general formulation is detailed in Section 3.2):
{Xn, En,Θ1,Θ2, INIT,NEXT}

where :
– {Xn, En,Θ1} denote respectively the state variables, the control variables and

the functional parameters involved in both the evolution step and the obser-
vation step.

– The noise parameter vector Θ2 is used to generate the modelling noises (ηn)n
and the observation noises (ξn)n of the dynamical system, for each random
sequence a pseudo-random number generator is associated.

– INIT and NEXT describe respectively the initialization function for the state
variables X0 and the evolution function of the dynamical system model fn of
a meta model M.

• An observation model is defined as a 4-tuple OMi = {Xn,Θ1,Θ2, Y
i
n}, with Y i

n

the ith outcome variable.
• An observer is defined as a 2-tuple Oi = {OMi, TMLi} where TML is a timeline

associated to OMi which control the trigger of global observation of dynamical
system during the evolution.

Thus the global system is denoted by a 8-tuple
S = {Xn, En,Θ1,Θ2, INIT,NEXT, Yn, TML}.

N.B.

Instead of defining a common observer for all the outcome variable Yn, we choose to
personalize one observer for each component of Yn in order to account for their irreg-
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ularity and diversity, such as different types of observation noise, different timelines
and various output forms.

7.3 Computation issues and strategy

A crucial justification of one simple Monte Carlo estimation is the assumption that
we are capable of generating a set of independent random values with distribution π.

7.3.1 Random number generation

The assumption that one can create a set of values with independent π distribu-
tions has become more viable with the advent of computing power and is crucial in
the justification of simple Monte Carlo estimation. The task of generating a set of
independent values with distribution π is usually divided into two parts :

1. Generate a set of values {U(i)}i=1,...,n considered i.i.d. from U [0, 1).

2. Transform U(i) to yield {X(i)}i=1,...,n which follow distribution π.

Much attention has been given to this first step which is the goal of a random
number generator. With the growing needs of working with increasing size of samples,
sophisticated algorithms have been designed and studied to produce a sequence that
approximates the properties of random numbers and is practically indistinguishable
from independent uniform samples. These algorithms are known as Pseudo-Random
Number Generators (PRNG), the advantages of which are their reproducibility and
efficiency in number generation.

Generally, they operate in a recursive way such that the next number generated is
determined by the last several numbers. The sequence is not truly random for it is
determined by a relatively small set of initial values, in which a random seed needs to
be required.

Another key point is that the recursive generator must be periodic, as each number
is identified to finite precision. In the case when the sample size is larger than the
period of the generator, the illusion of independence is impossible to maintain. Hence,
the sample size should not exceed the square root of the period.

In this work, the PRNG used is called Mersenne Twister (Matsumoto and
Nishimura, 1998). It has a period of 219937 − 1 and optimal equidistribution property
in 623-dimensional output blocks to 32-bit accuracy.

For the simulations studied in this thesis, the assumption of i.i.d random variables
taken from this generator appears reliable. However, more other generators can be used
for comparison’s sake, so as to evaluate the performance and to ensure the functionality
of each generator. Further tests can therefore be carried out following this direction.

7.3.2 Implementation of Inverse-Gamma priors

Since the prior distribution types are limited by the basic distributions proposed by
the library, to use an Inverse-Gamma prior, a transformation is required to compute the
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corresponding expectation and standard deviation of the Gamma distribution provided
by the boost C++ library. Similar problem has been encountered in other software
development, more discussion of which can be found in Adjemian (2010).

Definition 7.3.1 Let X be a Gamma distributed random variable with shape param-
eter α > 0 and scale parameter β > 0. Then Z = X−1 can be seen as Inverse-Gamma
distributed, Z ∼ IG(α, β).

Proposition 7.3.1 The density of the continuous random variable Z ∼ IG(α, β) is:

f(z) = C(α, β)−1 × z−α−1 exp−
1
βz

where C(α, β) = Γ(α)βα is the constant of integration.

Proof
Let fx denote the density of the Gamma distribution. If we define g(x) = 1

x
, the

density of the Inverse-Gamma distribution can be written as follows:

fZ(z) = fX(g−1(z))× | d
dz
g−1(z)|

= C(α, β)−1 × z−α+1 exp−
1
βz ×| d

dz

1

z
|

= C(α, β)−1 × z−α−1 exp−
1
βz .

2

Proposition 7.3.2 The expectation and variance of Z ∼ IG(α, β) are:

µ =
1

(α− 1)β

σ2 =
1

(α− 1)2(α− 2)β2
for any α ≥ 2. (7.1)

Proof
According to the pdf of the Inverse-Gamma, the first moment is

µ = C(α, β)−1

∫ ∞
0

z−α exp−
1
βz dz

= C(α, β)−1

∫ ∞
0

uα−2 exp−
u
β du

=
C(α− 1, β)

C(α, β)

=
Γ(α− 1)βα−1

Γ(α)βα

=
Γ(α− 1)βα−1

(α− 1)Γ(α− 1)βα

=
1

(α− 1)β
,
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and the second moment is defined by

E[Z2] = C(α, β)−1

∫ ∞
0

z−α+1 exp−
1
βz dz

= C(α, β)−1

∫ ∞
0

uα−3 exp−
u
β du

=
C(α− 2, β)

C(α, β)

=
Γ(α− 2)βα−2

Γ(α)βα

=
Γ(α− 2)βα−2

(α− 1)(α− 2)Γ(α− 2)βα

=
1

(α− 1)(α− 2)β2
,

so that the variance

σ2 =
1

(α− 1)(α− 2)β
− 1

(α− 1)2β2

=
α− 1

(α− 1)2(α− 2)β2
− α− 2

(α− 1)2(α− 2)β2

=
1

(α− 1)2(α− 2)β2
.

2

Therefore, according to the desired the mean µ and the variance σ2 of the param-
eter, the shape α and scale β parameters can be defined as follows:

α = 2 + (
µ

σ
)2,

β =
1

µ[1 + (µ
σ
)2]
.

Note that for the implementation of Gibbs sampler, this calculation is useful when
an Inverse-Gamma conjugate prior is required for the noise parameter σ2

obs update (for
details, see Section 8.7.1).

7.3.3 Parallel simulations

To achieve the parallel computation of Monte Carlo simulations, a vector of simula-
tions (S) is required. It can be regarded as a basic tool for statistical analysis methods,
such as filtering methods, parallel MCMC, sensitivity analysis and uncertainty analy-
sis. Figure 7.2 illustrates the flow of the Convolution Particle Filter, with each particle
representing an individual simulation S.

For each simulation, a PRNG is associated to each of its noises (modelling noises or
observation noises). For the filtering algorithms which contain a resampling process,
some simulations are duplicated during the exploration of the state-space, therefore, a
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new random seed needs to be initiated to avoid the duplication of the same sequence
of random variables shared by two simulations.

A multi-threaded or distributed implementation is carried out for the filtering meth-
ods, the parallel MCMC based algorithms and sensitivity analysis algorithms.

Figure 7.1: System evolution of the Unscented Kalman Filter 2.

2. http://www.cslu.ogi.edu/nsel/ukf/node6.html
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Figure 7.2: System evolution of the Convolution Particle Filter.

Figure 7.3: System evolution of the Ensemble Kalman Filter.
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7.4 Ongoing work and perspective

From a computational point of view, the objective is to provide a stronger parallel
implementation for distributed computing. So far, the parameter estimation methods
like the Convolution particle filter, the Differential Evolution Adaptive Metropolis, the
Interacting Metropolis-within-Gibbs as well as the algorithms to perform sensitivity
analysis, such as the Sobol algorithm benefit from the distributed computing via MPI
(Message Passing Interface) or OpenMP (Open Multiprocessing) approaches. The
objective is to enable the possibility of distributed computation at more elementary
levels (each time step for example) which should elevate the computational performance
to a new level.

More generally, the platform should evolve towards an EDSL (embedded domain-
specific languages), with the objective to ease for the users the development of models,
the calls of analysis methods and the use of parallel architecture for computation.



CHAPTER 8

Parameter Estimation in Plant
Growth Models

Plant growth models or crop models are generally deterministic and can be de-
scribed in a state-space form. One can easily get their stochastic counterparts by

introducing modelling and measurement noises. Such a statistical framework allows a
joint estimation of parameters and hidden states. However, some difficulties arise in
the implementation, not only from the uneven and irregular measurement data, but
also from sudden or unusual climate changes that occasionally induce skewness, which
is difficult to account for in models.

To compare the performances of different estimation methods in terms of accuracy
for point estimation and appropriateness for uncertainty assessment, the LNAS model
presented in Chapter 2 is used. In this chapter, the tests are organized in two parts.
For the first part, only simulated datasets are tested. The performance of the Bayesian
methods presented in Chapter 4 are investigated based on their estimation of the model
functional parameters. Subsequently, the iterative approaches proposed in Chapter
5 are implemented and compared, followed by the implementation of a conditional
version of the iterative approach which allows noise parameter estimation. In the
second part, all the methods aforementioned are applied to real experimental datasets
for an evaluation of their estimation quality of both the functional and the noise
parameters. The results are finally discussed together with some method selection
strategies. Note that all the parallel computation and simulations presented in this
chapter were carried out with the mesocenter of Ecole Centrale Paris with up to 10
cores.
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8.1 Study case description

With the purpose of testing the performances of the proposed algorithms, we first
consider the virtual experimental datasets obtained by performing simulations based on
the true experimental conditions of one experiment conducted by the French institute
for sugar beet research (ITB, Paris) in 2010 (see Baey et al. (2012) for a detailed
description of the experimental protocol). Here, we present the results of simulations
in two different scenarios :

(i) the full dataset is observed, that is, at each day from day 1 to day 160, both the
green leaf biomass Qg and the root compartment biomass Qr are measured, which
result in a full observation vector of size 2× 160,

(ii) only a restricted dataset is available, for which Qg and Qr are measured at 14 dates
which correspond exactly to the following 14 dates of measurement O2010 in the 2010
experiment (in days after sowing)

O2010 = {54, 68, 76, 83, 90, 98, 104, 110, 118, 125, 132, 139, 145, 160} .

The restricted observation vector is thus of size 2× 14. In this way, we can assess the
consequences of missing information in parameter estimation.

8.1.1 State space model representation

The LNAS model is therefore reformulated in the form of a state-space model, also
known as Hidden Markov Model (Rabiner, 1989):

X(t+ 1) = Φt(X(t), η(t); Θ)

Y (t) = Rt(X(t), ξ(t); Θ),
(8.1)

where X(t) = (X1(t), X2(t), X3(t)) = (Qf (t), γ(t), Qr(t)), {η(t)}t≥1 and {ξ(t)}n≥1 are
appropriately chosen sequences of random vectors. Note that X(0) is determined
by a first allocation of the seed biomass between the root and leaf compartments
(corresponding to germination). The parameter vector of our model is denoted by Θ
and includes six functional parameters {µa, λ, µγ, σ2

γ, γ0, γf} chosen according to the
sensitivity analysis (details of which can be found in Section 6.1), and eventually some
noise parameters (error variances) {σ2

γγ, σ
2
q , σ

2
g , σ

2
r}. However, according to the DIC

for model selection (details of which can be found in Section 6.2), when the noise
parameters are fixed, the best model is obtained by estimating only three functional
parameters {µa, µγ, γ0}. This configuration is therefore adopted for the simulation case
study.

In the following lemma we explicit the state equation and the observation equation
corresponding to our model.

Lemma 8.1.1 The model given by Equations (2.1)-(2.7) can be described as a state
space model (also known as hidden Markov model). The state equation is given by the
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following system of equations :

X1(t+ 1) = X1(t) +X2(t) · F t
Q(X1(t); Θ)(1 + ηQ(t))

X2(t+ 1) = Γt(Θ)(1 + ηγ(t))

X3(t+ 1) = X3(t) +
1−X2(t)

X2(t)
· F t

Q(X1(t); Θ)(1 + ηQ(t)),

(8.2)

where {ηQ(t)}t≥1 and {ηγ(t)}t≥1 are mutually independent sequences of independent
zero-centered Gaussian random vectors with variance σ2

Q and σ2
γγ respectively.

The observation equation is given by :

Y (t) = Rt(X(t), ξ(t)) =

(
F t
g(X1(t); Θ)
X3(t)

)
·
(

(1 + ξg(t))
(1 + ξr(t))

)
, (8.3)

where {ξg(t)}t≥1 and {ξr(t)}t≥1 are i.i.d. sequences of centered Gaussian random vari-
ables with variances σ2

g for ξg(t) and σ2
r for ξr(t), and assumed to be independent from

{ηQ(t)}t≥1 and {ηγ(t)}t≥1.

Proof
X(t) is a Markov process. First, we prove that the observation vector can be de-
termined by (X1(t), X2(t), X3(t)) = (Qf (t), γ(t), Qr(t)), Θ and the noise vector ξ(t).
According to the LNAS model,

Qr(t+ 1) = F t
r(Qr(t), Qf (t+ 1), γ(t); Θ)

= Qr(t) + (1− γ(t)) ·Q(t)

= Qr(t) +
1− γ(t)

γ(t)
(Qf (t+ 1)−Qf (t)), (8.4)

and
Qg(t) = F t

g(Qf (t); Θ) = Qf (t)−Qs(t),

where
Qs(t) = Gs(τ(t)− τsen)Qf (t),

in which Gs(τ(t)−τsen) is determined by the functional parameters µs and σs, which are
related to the senescence process and can be estimated only based on the senescent leaf
mass. These two parameters are thus fixed in our study. Consequently, the observation
vector Y (t) = (Qg(t), Qr(t)) depends only on X(t), Θ and the noise vector ξ(t).

Then, we prove that in the evolution equation, X(t+ 1) depends only on X(t), Θ and
the noise vector η(t). Since

Qf (t+ 1) = Qf (t) + γ(t) ·Q(t),

Q(t) = F t
Q(Qf (t); Θ) · (1 + ηQ(t))

=
(
µa · PAR(t)

(
1− e−λQg(t)

))
· (1 + ηQ(t)),
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and
γ(t) = Γ(t) · (1 + ηγ(t))

= (γ0 + (γf − γ0) ·Ga(τ(t))) · (1 + ηγ(t)),

if we denote X(t) = (γ(t), Qf (t), Qr(t)), we can obtain the transition function :

p (X(t+ 1)|X(t)) = p ((γ(t+ 1), Qf (t+ 1), Qr(t+ 1))|(γ(t), Qf (t), Qr(t)))

= p(γ(t+ 1))p(Qf (t+ 1)|γ(t), Qf (t))δQr(t+1),φ(Qf (t+1),γ(t),Qf (t),Qr(t)),

(8.5)

where the first two components have a density (w.r.t. the 2-dimensional Lebesque
measure) and the third component, a Dirac delta function, results from a deterministic
move from the current state X(t) and Qf (t+1) according to Equation (8.4). p(γ(t+1))
and p(Qf (t+1)|γ(t), Qf (t)) are densities of normal distributions which can be described
as follows:

Qf (t+ 1) ∼ N
(
Qf (t) + γ(t)F t

Q(Qf (t); Θ), γ2(t)F t
Q

2
(Qf (t); Θ)σ2

Q

)
, (8.6)

γ(t) ∼ N
(

Γt(Θ), Γt(Θ)
2
σ2
γγ

)
. (8.7)

Hence, X(t+ 1) depends only on X(t), Θ and the noise vector η(t). 2

N.B.

- It is important to note that since Qr(t+1) is obtained from a deterministic function of
Qf (t+ 1), γ(t), Qf (t) and Qr(t), the support of the transition density is in R2 instead
of R3.

- We point out that for the state variables representing biomasses, we are under the
positivity assumptions which could theoretically be violated by the normal distribu-
tions. Although in practice, the probability of obtaining γ(t) > 1 or a negative value
for the biomasses is very small, Equation (8.5) remains an approximation. Note that
the adaptation of the formulation of the state space model with truncated normal dis-
tributions or log-normal distributions would be straightforward, and so would be the
adaptation in the implementation section.

8.1.2 Selection of priors

In this thesis, from an application point of view, priors of the considered plant
growth models are often chosen according to recommended values from literature. Even
in the tests with simulated datasets, we opt for truncated Gaussian priors centered
on the recommended values with relatively large variances. However, in the case
that no recommended values are available, either a more dispersed prior or a uniform
one is used. In the case when an important number of data are available, the prior
effect is supposed to fade out. To accelerate the convergence, the starting point(s)
of the chain(s) for MCMC-based methods can be determined with the help of a first
calibration of the model performed with a frequentist method, such as the Generalized
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Least Squares Estimator (Cournède et al., 2011), for this method is computationally
low cost and provides an estimate close to the MLE.

8.2 Implementation of MCMC-based methods

In this section, we apply three MCMC-based methods: Adapted Metropolis-within-
Gibbs, Differential Evolution Adaptive Metropolis and Interacting parallel MCMC to
the LNAS model. They represent respectively the three strategies of MCMC-based
methods: “one long run”, “some median runs” and “many short runs”.

In the first place, we detail the implementation process of these methods, including
the formulation of the full conditionals, the initialization and the convergence criterion.
Then, their estimation results based on simulated datasets are given and discussed
according to their configuration features. Accordingly, some implementation issues are
discussed.

8.2.1 Implementation descriptions

Formulation

Let π(Θ) = π(µa, µγ, γ0) be the joint prior distribution of the LNAS model param-
eters. First, we consider the case that the noise parameters of the model are known.

Given the fact that π(Θ|y1:tmax) is analytically intractable, the hidden state vari-
ables are introduced to provide an analytical expression, and consequently make the
numerical implementation easier. A joint estimation of both unknown parameters and
hidden states is thus required. Given the target p(Θ, x1:tmax|y1:tmax), the joint updates’
scheme derived from the Gibbs sampling can be described as follows (Cappé et al.,
2005):

– Update Θ ∼ π(θ|x1:tmax , y1:tmax).

– Update X1:tmax ∼ π(x1:tmax|Θ, y1:tmax).

However, because of the poor mixing between Θ and X1:tmax (as described in Section
4.1.4), we opt for a joint update for Θ and x1:tmax :

– Update {Θ, X1:tmax} ∼ π(θ, x1:tmax |y1:tmax).

In our application, since the observation vector Y (t) = (Qg(t), Qr(t)) can be expressed
as a function of X(t) = (Qf (t), γ(t), Qr(t)), the latter are chosen as the hidden state
variables in the implementation of the three MCMC-based methods. We recall that
among the three hidden state variables, the value of Qr(t) is obtained in a deterministic
fashion based on Qr(t− 1), Qf (t− 1), Qf (t) and γ(t− 1) (see Lemma 8.1.1 for details).

Therefore, based on Equations (8.7) and (8.6), the full likelihood of the parameter
vector Θ and the hidden state variable x1:n given the observation y1:n can be described
as :
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L(Θ, x1:n|y1:n) ∝ p(x1:n|Θ)p(y1:n|Θ, x1:n)

∝
n−1∏
t=0

p(X(t+ 1)|X(t),Θ) ·
n−1∏
t=0

p(Y (t+ 1)|X(t+ 1),Θ)

∝
n−1∏
t=0

1

σQγ(t)F t
Q(Qf (t); Θ)

· exp{−
(
Qf (t+ 1)−Qf (t)− γ(t)F t

Q(Qf (t); Θ)
)2

2
(
σQγ(t)F t

Q(Qf (t); Θ)
)2 }

n∏
t=1

1

σγγΓt(Θ)
· exp{−(γ(t)− Γt(Θ))2

2(σγγΓt(Θ))2
} ·

n−1∏
t=0

δQr(t+1),φ(Qf (t+1),γ(t),Qf (t),Qr(t))

n−1∏
t=0

1

σgF t+1
g (Qf (t+ 1); Θ)

· exp{−
(F t+1

g (Qf (t+ 1); Θ)− Y exp
g (t+ 1))2

2(σgF
t+1
Q (Qf (t+ 1); Θ))2

}

n−1∏
t=0

1

σrF t
r(Qr(t), Qf (t+ 1), γ(t); Θ)

· exp{−(F t
r(Qr(t), Qf (t+ 1), γ(t); Θ)− Y exp

r (t+ 1))2

2(σgF t
r(Qr(t), Qf (t+ 1), γ(t); Θ))2

}.

Note that the term
∏n−1

t=0 δQr(t+1),φ(Qf (t+1),γ(t),Qf (t),Qr(t)) represents the fact that Qr(t)
is deduced in a deterministic fashion.

The posterior density of the parameter vector Θ can thus be expressed as :

π(Θ, x1:n|y1:n) ∝L(Θ, x1:n|y1:n) · πΘ(Θ)

∝L(Θ, x1:n|y1:n) · πµa(µa)πµγ (µγ)πγ0(γ0),

where πΘ(Θ) denotes the density of the prior distribution for Θ.

Truncated normal prior distributions are assumed for the parameters (µa, µγ, γ0) :

µa ∼ N (mµa , σ
2
µa)IR+ ,

µγ ∼ N (mµγ , σ
2
µγ )IR+ ,

γ0 ∼ N (mγ0 , σ
2
γ0

)I(0,1).

If we denote Φ(·) the cumulative distribution function of the standard normal distri-
bution :

Φ(x) =

∫ x

−∞

1√
2π

exp{−t
2

2
}dt,

then 1− Φ(a) represents the normalizing factor in the probability density function of
a truncated normal distribution, with support in [a,+∞).

As a result, the posterior distribution in the general implementation of a MCMC-based
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method should have the following form :

π(Θ, x1:n|y1:n) ∝
n−1∏
t=0

1

σQγ(t)F t
Q(Qf (t); Θ)

· exp{−
(
Qf (t+ 1)−Qf (t)− γ(t)F t

Q(Qf (t); Θ)
)2

2
(
σQγ(t)F t

Q(Qf (t); Θ)
)2 }

n∏
t=1

1

σγγΓt(Θ)
· exp{−(γ(t)− Γt(Θ))2

2(σγγΓt(Θ))2
} ·

n−1∏
t=0

δQr(t+1),φ(Qf (t+1),γ(t),Qf (t),Qr(t))

n−1∏
t=0

1

σgF t+1
g (Qf (t+ 1); Θ)

· exp{−
(F t+1

g (Qf (t+ 1); Θ)− Y exp
g (t+ 1))2

2(σgF
t+1
Q (Qf (t+ 1); Θ))2

}

n−1∏
t=0

1

σrF t
r(Qr(t), Qf (t+ 1), γ(t); Θ)

· exp{−(F t
r(Qr(t), Qf (t+ 1), γ(t); Θ)− Y exp

r (t+ 1))2

2(σgF t
r(Qr(t), Qf (t+ 1), γ(t); Θ))2

}

· 1

σµaσµγσγ0

· exp{−(µa −mµa)
2

2σ2
µa

−
(µγ −mµγ )

2

2σ2
µγ

− (γ0 −mγ0)2

2σ2
γ0

}

·
(

1− Φ(
−mµa

σµa
)

)−1(
1− Φ(

−mµγ

σµγ
)

)−1

·
(

Φ(
1−mγ0

σγ0

)− Φ(
−mγ0

σγ0

)

)−1

·I(µa > 0) · I(µγ > 0) · I(γ0 ∈ (0, 1)). (8.8)

One important issue is that due to the complicated structure, it is almost impossible
to sample directly from the posterior distribution. Thus, the Metropolis-Hastings
algorithm is implemented. In the computation of the acceptance ratio, the three
normalizing factors 1−Φ(·) remain constant and as a result can be cancelled. According
to the algorithm given in Section 4.1.4, we regard {Θ′, x′1:n} as a joint proposal, thus
the acceptance ratio can be expressed as (details can be found in Equation (4.10)):

α({Θ, x1:n}, {Θ′, x′1:n})

= min

(
1,
p(y1:n|Θ′, x′1:n)p(x′1:n|Θ′)π(Θ′)

p(y1:n|Θ, x1:n)p(x1:n|Θ)π(Θ)

q(Θ|Θ′)q(x1:n|Θ)

q(Θ′|Θ)q(x′1:n|Θ′)

)
. (8.9)

Considering the strong correlation between Θ and x1:n, if we choose q(x′1:n|Θ′) =
p(x′1:n|Θ′), then Equation (8.9) can be simplified :

α({Θ, x1:n}, {Θ′, x′1:n})

= min

(
1,
p(y1:n|Θ′, x′1:n)π(Θ′)

p(y1:n|Θ, x1:n)π(Θ)

q(Θ|Θ′)
q(Θ′|Θ)

)
. (8.10)
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Ideally, the random walk proposal distribution for Θ should be truncated, therefore to
obtain the acceptance ratio it requires to calculate:

q(Θ|Θ′)
q(Θ′|Θ)

=

1
σRW

√
2π

exp
(
−(Θ−Θ′)2

2σ2
RW

)
1− Φ

(
−Θ′

σRW

) ·

 1
σRW

√
2π

exp
(
−(Θ′−Θ)2

2σ2
RW

)
1− Φ

(
−Θ
σRW

)
−1

=
1− Φ

(
−Θ
σRW

)
1− Φ

(
−Θ′

σRW

) , (8.11)

where σ2
RW denotes the variance for the proposal distribution of the random walk. How-

ever, for the sake of computational efficiency, we may also consider the non-truncated
symmetric normal random walk distribution, thus q(Θ|Θ′)

q(Θ′|Θ) =1. In this case, the posi-
tivity of Θ is still ensured thanks to the prior distribution, for negative candidate will
obtain 0 as acceptance probability.

Let Q̃g(t) denote the estimate of Qg(t) which can be obtained by a deterministic
function of the estimates of Qf (t), and let Q̃r(t) denote the estimate of Qr(t), to
compute the acceptance ratio, we need to calculate :

p(y1:n|Θ, x1:n) · π(Θ)

∝
n−1∏
t=0

p(Y (t+ 1)|X(t+ 1),Θ) · πµa(µa)πµγ (µγ)πγ0(γ0)

∝
n∏
t=1

1

σgQ̃g(t)
· exp

{
−

(Q̃g(t)− Y exp
g (t))2

2(σgQ̃g(t))2

}
n∏
t=1

1

σrQ̃r(t)
· exp

{
−(Q̃r(t)− Y exp

r (t))2

2(σrQ̃g(t))2

}

· 1

σµaσµγσγ0

· exp{−(µa −mµa)
2

2σ2
µa

−
(µγ −mµγ )

2

2σ2
µγ

− (γ0 −mγ0)2

2σ2
γ0

}

· I(µa > 0) · I(µγ > 0) · I(γ0 ∈ (0, 1)), (8.12)

with Y exp
r (t) and Y exp

g (t) the observation data for Qg and Qr respectively at time t.

In the following, we detail in the first place the implementation of the one chain
Adapted Metropolis-within-Gibbs algorithm.

Initialization of the algorithms

The initialization of the MCMC based algorithms can be carried out as follows :
– Define prior distributions for each parameter of Θ: p0(·) with the expectation
µp0 (normal distributions).

– Set Θ
(1:d)
0 . Simulate one value for each parameter from the prior distribution
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while verifying that they are all positive: Θ ∼ p0(·). The noise parameters are

fixed, and the hidden state variables x
(0)
0 are initialized to 0.

– Choose initial values for µ0, Σ0 and λ0 for the adaptive scheme. In our applica-
tion, we set µ0 = Θ

(1:d)
0 , Σ0 = (2.382/d)(µ0 − µp0)(µ0 − µp0)T and λ0 = 1 if the

global scaling is used.

Convergence criteria

The convergence criteria for the one chain Adapted Metropolis-within-Gibbs
algorithm are detailed in Section 4.1.5, putting thresholds on both the relative differ-
ence between the overlapping batch means and the precision (i.e. the width of the
confidence intervals) of the mean estimates determined by the estimated Monte Carlo
errors. In our implementation, 4 batches of length 3000 with overlapped length 1000
are used for the convergence diagnostic and unfixed (increasing) batch length is used
to compute the precision of the estimates.

As for the parallel chains algorithm DREAM, the Gelman-Rubin criterion is used.

A threshold is defined for the scale parameter
√
R̂, in which R̂ is the estimated ratio

of the current estimate of variance to the within-chain variance corrected by a factor
accounting for the extra variance considered from the Student’s t distribution. In our
implementation, 1.0001 is chosen. More details about the Gelman-Rubin criterion can
be found in Section 4.2.3.

Finally, for the Interacting parallel MCMC, a similar stopping criterion as the
convergence diagnostic based on mean estimates for one chain Metropolis-within-Gibbs
algorithm is employed, except the mean estimates are computed from the posterior
distribution which consists of the samples from the last iteration of all the chains.

8.2.2 Adapted Metropolis-within-Gibbs

The one chain Adapted Metropolis-within-Gibbs (AMwG) algorithm represents
the “one long run” strategy in our implementation. In this section, some tests are
conducted to explore various configurations and to investigate the robustness of this
method.

List of the tests for the AMwG algorithm :

I Decomposition of variance

II Latent variable estimation

III Multivariate Vs. componentwise proposals

IV Number of iterations and estimation precision

V Proposal scaling effect on the convergence

VI Impact of priors and initial values

VII Normal proposal Vs. Student proposals
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General settings :

Here we provide the standard configuration for all the tests if no contradictory
details are given in the setting descriptions. The modelling noise parameters and
the observation noise parameters are fixed to 0.02 and 0.1 respectively. Multivariate
proposals are used with global scaling. Chains with the length of 350 000 are considered
(if the length is fixed), for this length usually ensures the convergence in our context.

I Decomposition of variance
The aim of this test is to evaluate the stability of the proposed AMwG algorithm, both
in terms of the mean estimates and the variance estimates. If the algorithm is well
implemented, then it should respect the law of total variance :

V(Θ) = V(E(Θ|Y )) + E(V(Θ|Y )).

Settings :

To achieve this purpose, 600 parameter sets are generated from a given distribu-
tion p0(·), the corresponding observation datasets are as well simulated. The prior
distribution used for these tests is the same as the one used to generate the datasets :

∀i ∈ 1, . . . , 600,Θ∗i ∼ p0(·)⇒ {Yi}i=1,...,600
p0(·)−→ {Θ̃i}i=1,...,600

where Θ̃i = Ê(Θ|Yi) and the approximation Ê of the expectation E(Θ|Yi) is performed
with the ergodic mean of the samples generated by the AMwG algorithm for each
dataset Yi.

Observations and remarks :

Noise 0.02 Prior Estimation Variance decomposition
µ∗0 σ2

0
∗

µ0 σ2
0 E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y ))+E(V(Θ|Y ))

µa 3.595 0.0104 3.600 0.0100 3.597 0.0069 0.0035 0.0104
γ0 0.7519 0.0060 0.7500 0.0064 0.7513 0.0058 0.0003 0.0061
µγ 599.92 401.78 600.00 400.00 599.92 99.42 303.87 403.29

Noise 0.05 Prior Estimation Variance decomposition
µ∗0 σ2

0
∗

µ0 σ2
0 E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y ))+E(V(Θ|Y ))

µa 3.596 0.0102 3.600 0.0100 3.599 0.0067 0.0038 0.0105
γ0 0.7520 0.0062 0.7500 0.0064 0.7518 0.0058 0.0004 0.0062
µγ 599.81 400.32 600.00 400.00 599.96 69.31 333.92 403.23

Table 8.1: Estimation and uncertainty assessment provided by one chain MCMC based
on 600 simulated datasets (14 dates) generated with the parameter vectors simulated
from the same prior distribution. Each test contains 350 000 simulations. Two mod-
elling noise levels are tested. µ∗0 and σ2

0
∗

denote the sample mean and variance.

– The conditional expectation formula and the variance decomposition are verified
which is a good indicator of the proper assessment of the uncertainty related to
the estimations (bias and variance of the target distribution).
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– With different modelling noise levels, we may infer from the results given by
Table 8.1 that the noise influences differently the within chain (intra-chain) vari-
ation E(V(Θ|Y )) and between chain variation V(E(Θ|Y )) as estimated by the
algorithm. The more the modelling noise is important, the more the intra-chain
variance increases, and the more the between chain variance decreases.

– Based on the sensitivity analysis (see Section 9.2.2), the estimates of the most
sensitive parameter γ0 appear to be less influenced by the increase of the mod-
elling noises than µa and µγ.

II Latent variable estimation
The objective is to study the impact of the lack of available data on the estimation of
the hidden state variables (also known as latent variables).

Settings :

The same simulated dataset is used for the estimation of the hidden state variables
Qr and Qg (which can be inferred from the estimation of Qf with a deterministic
function) with the setting of 14 dates (restricted dataset) and 160 dates (full dataset).

Observations and remarks :

– According to Figure 8.1, the mean estimates remain quite accurate in both
cases, which proves the robustness of the proposed algorithm.

– The lack of data brings not only larger estimation errors, but most importantly
more uncertainty associated with the estimation of the hidden states. The esti-
mated 95% confidence intervals are significantly larger in the case of the scarce
dataset compared to the full dataset.
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Figure 8.1: Hidden states estimation given by one chain MCMC Adapted Metropolis-
within-Gibbs algorithm based on a full dataset (160 dates) and on its restricted form
(14 dates) with 350 000 iterations. Both averaged estimations and the associated 95%
confidence intervals are provided. Left panel: green leaf biomass Qg evolution. Right
panel: root biomass Qr evolution.

III Multivariate Vs. componentwise proposals
The goal of this test is to compare the Monte Carlo error associated with each one of the
proposed updating strategies: to update all the parameters together as a block (Multi-
variate, denotedM) or to update them separately (Univariate, denoted N ) introduces
bias in the estimation under both restricted dataset and full dataset scenarios.

Settings :

The tests are carried out with the same dataset, in both its complete form (160
dates) and its restricted form (14 dates). 200 repetitions of the same test are performed
in each case to evaluate the Monte Carlo error. Two priors are considered.

p1(·)+N−→ {Θ̃N 1

i }i=1,...,200

p1(·)+M−→ {Θ̃M1

j }j=1,...,200

Θ∗ ⇒ Y

p2(·)+N−→ {Θ̃N 2

k }k=1,...,200

p2(·)+M−→ {Θ̃M2

l }l=1,...,200
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Observations and remarks :

Full dataset Prior 1 Componentwise proposals Multivariate proposals
Real value µ0 σ2

0 E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y ))

µa 3.560 3.40 0.20 3.606 6.45e-5 0.0114 1.40e-6 3.602 2.69e-5 0.0199 7.64e-7

γ0 0.625 0.90 0.10 0.630 8.07e-6 0.00076 1.18e-8 0.626 1.02e-6 0.00094 1.70e-9

µγ 550.00 650.00 40.00 531.51 22.234 2551.90 7.92e4 542.37 3.313 2708.11 5.67e4

Prior 2
µ0 σ2

0 E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y ))

µa 3.560 3.80 0.40 3.619 6.42e-5 0.0118 1.60e-6 3.611 1.78e-5 0.0207 1.35e-6

γ0 0.625 0.40 0.20 0.633 9.18e-6 0.00084 1.14e-8 0.628 5.80e-7 0.00096 1.84e-9

µγ 550.00 350.00 60.00 521.72 10.58 2674.84 6.51e4 534.04 2.58 2870.53 1.19e4

Restricted dataset Prior 1 Componentwise proposals Multivariate proposals
Real value µ0 σ2

0 E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y ))

µa 3.560 3.40 0.20 3.449 1.39e-4 0.0150 4.45e-6 3.456 8.23e-6 0.0199 2.47e-7

γ0 0.625 0.90 0.10 0.659 1.30e-5 0.00117 2.60e-8 0.657 3.89e-7 0.00153 1.42e-9

µγ 550.00 650.0 40.00 555.43 12.68 1909.57 2.22e4 558.83 0.99 2486.97 3.74e3

Prior 2
µ0 σ2

0 E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y ))

µa 3.560 3.80 0.40 3.474 7.10e-5 0.0190 2.42e-6 3.480 8.23e-6 0.0257 5.29e-7

γ0 0.625 0.40 0.20 0.698 1.44e-5 0.00208 6.35e-8 0.691 7.78e-7 0.00257 8.85e-9

µγ 550.00 350.0 60.00 468.73 11.50 2454.50 4.19e4 473.58 1.13 3016.41 6.60e3

Table 8.2: Estimation and uncertainty assessment provided by one chain MCMC based
on one simulated dataset with two settings (14 dates and 160 dates). 200 repetitions
are performed, with fixed noise parameters. The given estimations are based on a
total of 200 tests, with a maximum number of 240 000 iterations for each, taking into
account a burn-in period of 40 000 iterations for the restricted dataset and 10 000 for
the full dataset. Two prior distributions are used.

– In Table 8.2, notice that the componentwise proposal works almost as well as the
multivariate proposal in the case of three parameters for both the full dataset
and the scarce dataset. However, the use of the multivariate proposal results
in generally flatter distributions (estimations of variance E(V(Θ|Y )) tend to be
larger compared to the componentwise approach) which suggests the existence of
an effect when the covariance among the three parameters are taken into account.

– Both proposals provided similar averaged mean estimates E(E(Θ|Y )), except
perhaps for the parameter µγ which has slightly different estimates from time to
time given by the two approaches. Note that µγ is the least influential parameter
among the three that we estimate.

– Larger prior variances generally lead to larger variance estimations for the target
distribution, since the number of data is limited.

– Regarding the Monte Carlo error, componentwise proposals result in larger
variability between the individual tests, for both the mean estimates and the
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variance estimates (V(E(Θ|Y )) and V(V(Θ|Y ))). This is observed for the
different priors that we tested.

– Since the multivariate proposal is much less time consuming (the computational
time was reduced by ≈ 62%), and it allows us to take into account the covariance
among parameters, it is preferred for the following tests.

IV Number of iterations and estimation precision
The objective of this test is to identify the influence of the number of iterations on the
performance of the algorithm, especially on the precision of the estimates.

Settings :

Batch means and the variance of expected values of 100 independent runs are used
to estimate the Monte Carlo Error (MCE) based on the same restricted dataset. Six
configurations for the number of iterations are investigated. The evolution of the
estimated MCE is studied with a long chain of 5 000 000 iterations.

Θ∗ ⇒ Y ⇒ {Θ̃i}i=1,...,100

Observations and remarks :

– Figure 8.2 illustrates the decrease of the estimated Monte Carlo errors when the
number of iterations increases for a long run, which is in agreement with the CLT.

– Figure 8.3 manifests the evolution of the random walk standard deviation tuned
by the adaptive scheme. The covariance matrix of the normal instrumental
distribution tends to stabilize with the iterations.

– The posterior distributions of the three parameters are given by Figure 8.4.

0e+00 2e+05 4e+05 6e+05

0.
00

0.
01

0.
02

0.
03

0.
04

Iteration

M
on

te
 C

ar
lo

 E
rr

or

(a) µa

0e+00 2e+05 4e+05 6e+05

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Iteration

M
on

te
 C

ar
lo

 E
rr

or

(b) γ0

0e+00 2e+05 4e+05 6e+05

0
2

4
6

8
10

12
14

Iteration

M
on

te
 C

ar
lo

 E
rr

or

(c) µγ

Figure 8.2: Evolutions of the Monte Carlo errors computed by batch means based on
a simulated dataset (14 dates) with a long run of 5 000 000 iterations.
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(a) µa (b) γ0 (c) µγ

Figure 8.3: Evolutions of the standard deviations of random walk steps for one test
based on a restricted dataset (14 dates).

(a) µa (b) γ0 (c) µγ

Figure 8.4: Posterior distribution estimated by a long run of 10 000 000 iterations
based on the same simulated dataset (14 dates) and the same prior distribution.

350 000 (iter.) 200 000 100 000
Real value

E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y ))

µa 3.746 3.7485 3.54e-3 2.48e-7 3.7487 3.47e-3 5.65e-7 3.7486 3.45e-3 9.90e-7

γ0 0.7525 0.7527 3.1e-4 2.44e-8 0.7527 3.1e-4 4.72e-8 0.7527 3.0e-4 8.19e-8

µγ 579.00 573.241 307.71 2.65e-2 573.25 305.58 4.24e-2 573.21 305.31 7.90e-2

Prior 50 000 (iter.) 30 000 10 000
µ0 σ2

0 E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y ))

µa 3.6 0.01 3.7485 3.45e-3 1.91e-6 3.7485 3.44e-3 3.41e-6 3.7483 3.39e-3 9.79e-6

γ0 0.75 0.0064 0.7527 3.0e-4 1.68e-7 0.7538 3.0e-4 3.18e-7 0.7527 3.0e-4 9.13e-7

µγ 600.0 400.00 573.23 307.89 1.67e-1 573.27 305.03 2.98e-1 573.33 302.49 9.46e-1

Table 8.3: Evolution of estimations and uncertainty assessments provided by one chain
AMwG, with the increase of the number of iterations, based on the same simulated
dataset (14 dates). For each configuration, the mean estimates are based on 100
independent runs.

– According to Table 8.3, the averaged estimates (E(E(Θ|Y ))) are always
accurate when comparing the six configurations. However, the estimated
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V(E(Θ|Y )) for the three parameters, which indicate the precision of the mean
estimates and can also be regarded as a way to evaluate the MCE, increase
quickly when the number of iterations decreases. Therefore, a lower bound
of the number of iterations should be defined if a certain precision level is desired.

– The variance estimates E(V(Θ|Y )) also begin to be less precise with the configu-
ration of 10 000 iterations. This test can be regarded as a preliminary test when
implementing a MCMC-based method, as it gives a vague idea of the behaviour
of the chains, especially to decide the threshold for the stopping criteria.

V Proposal scaling effect on the convergence
As mentioned in Section 4.1.1, it is possible to apply the global multivariate adaptive
scaling to improve the convergence of the algorithm. Here, we attempt to verify the
scaling effect compared to the simple Adaptive Metropolis.

Settings:

This test is conducted with the same simulated restricted dataset by the two algo-
rithms, with global scaling and without global scaling.

Observations and remarks :
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Figure 8.5: Estimation with and without global scaling of the adaptive scale based on
the same simulated restricted dataset.

Figure 8.5 demonstrates that the scaled proposal has an impact at the beginning
of the chain, but for a long run, there is no significant difference between the chains
run with and without scaling.
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VI Impact of priors and initial values
As we know, the prior distribution plays an important role in Bayesian inference.
However, the prior effect fades out with an increasing number of observations. In this
test, we try to identify the importance of the prior in the scenario with restricted
dataset.

Settings :

Three priors are used for the estimation based on a restricted dataset. No global
scaling is used. The estimates are based on 100 repetitive long runs with a fixed
number of iterations (350 000).

p1(·)−→ {Θ̃1
i }i=1,...,100

Θ∗ ⇒ Y
p2(·)−→ {Θ̃2

j}j=1,...,100

p3(·)−→ {Θ̃3
k}k=1,...,100

Observations and remarks :

– Table 8.4 illustrates that the estimates resulting from different priors are quite
different, which indicates the lack of data to erase the prior information. This
result suggests that in the scenario with restrict dataset, the prior should be
chosen cautiously, for it has important influence on the posterior distribution.

Prior 1 Estimation Monte Carlo error
Real value

µ0 σ2
0 E(E(Θ|Y )) E(V(Θ|Y ))

√
V(E(Θ|Y )) σBM

µa 3.746 3.60 0.01 3.748 0.0035 0.000498 0.000888
γ0 0.7525 0.750 0.0064 0.7527 0.00031 0.000156 0.000265
µγ 579.00 600 400 573.24 307.71 0.1627 0.2648

Prior 2
µ0 σ2

0 E(E(Θ|Y )) E(V(Θ|Y ))
√
V(E(Θ|Y )) σBM

µa 3.746 3.70 0.01 3.818 0.0036 0.000572 0.000954
γ0 0.7525 0.720 0.0064 0.7231 0.00026 0.000155 0.000260
µγ 579.00 650 400 614.91 315.91 0.1817 0.2890

Prior 3
µ0 σ2

0 E(E(Θ|Y )) E(V(Θ|Y ))
√
V(E(Θ|Y )) σBM

µa 3.746 3.752 0.0225 3.804 0.0050 0.000646 0.001013
γ0 0.7525 0.744 0.0100 0.7453 0.00042 0.000191 0.000296
µγ 579.00 590.695 625 562.94 430.93 0.1925 0.3023

Table 8.4: Estimation and uncertainty assessment provided by one chain MCMC based
on one simulated dataset (14 dates) with 100 repetitions. For each test, the length of
the chain is 350 000. Three prior distributions are used.

– It is likely that the batch means method over-estimates the Monte Carlo er-
rors, since they are more important than the estimations obtained with the 100
repetitions of the same test.
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Figure 8.6: Evolutions of the averaged estimations computed by batch means based
on the same simulated dataset (14 dates) and the same prior distribution, performed
for 5 independent chains departing from different initial points.

– The estimated Monte Carlo errors are relatively small, which imply small algo-
rithmic errors when long chains are employed. Since the initial point of each
chain is drawn from the prior distribution, this result also indicates that the pos-
terior distribution obtained is independent of the departure point (Figure 8.6).
A long run could ensure a good performance of convergence to the invariant dis-
tribution independently of the departure point as long as they are drawn from
the same prior distribution.

VII Normal proposal Vs. Student proposal
This test aims to investigate the impact of normal and Student proposals, since they
are both symmetric proposals but with different types of distribution tails.

Settings :

Based on the same simulated full dataset, the AMwG algorithm is carried out with
both normal proposals for random walk and Student proposals for random walk, each
with 200 repetitions.

N (·)−→ {Θ̃Ni }i=1,...,200

Θ∗ ⇒ Y

T (·)−→ {Θ̃Tj }j=1,...,200

Observations and remarks :

– As suggested by Table 8.5, both methods result in similar estimations. Nonethe-
less, Student distribution has heavier tails than the normal one, which implies
more tolerance. The posterior distribution given by the Student proposal results
in slightly larger variances, however the estimation of the target distribution
should not be influenced by the proposal distribution. Thus, it is possible that
some of the tests performed with the Student proposal have not converged, some
outlier samples may be consequently included.
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Prior Student proposals
Real value

µ0 σ2
0 E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y ))

µa 3.560 3.80 0.40 3.613 1.01e-5 0.0216 1.64e-6

γ0 0.625 0.40 0.20 0.629 4.61e-7 0.00098 7.24e-9

µγ 550.00 350.00 60.00 534.39 2.41 3004.42 2.47e4

Prior Normal proposals
Real value

µ0 σ2
0 E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y ))

µa 3.560 3.80 0.40 3.611 1.78e-5 0.0207 1.35e-6

γ0 0.625 0.40 0.20 0.628 5.80e-7 0.00096 1.84e-9

µγ 550.00 350.00 60.00 534.04 2.58 2870.53 1.19e4

Table 8.5: Estimation and uncertainty assessment provided by normal and Student
proposals based on one simulated dataset (160 dates) with 200 repetitions, with fixed
noise parameters. The given estimations are based on a total of 200 tests, with a
maximum of 120 000 iterations for each, taking into account a burn-in period of 10
000 iterations.

– Note that the Student distribution is widely used to correct the estimation of
the variance for MCMC based methods. Although the risk of over-estimation of
the variance is not desirable with the objective of reducing uncertainties related
to the parameter estimates for future prediction use, the effect of correcting the
variance estimator could be attractive for multiple chains algorithms, such as the
Interacting parallel MCMC, when the shrinkage (sample degeneracy) is present.
It is also used in the Gelman-Rubin criterion (Gelman, 1992).

8.2.3 Differential Evolution Adaptive Metropolis

The Differential Evolution Adaptive Metropolis (DREAM) approach uses the strat-
egy of“some median runs”. Therefore, the assumption has been made for this approach
that the target distribution of the M parallel chains is the product of the original target
distributions πM(·) (Vrugt et al., 2009a). Thanks to the MCMC’s scheme, a population
of estimates resulting from M chains move from one iteration to another conditionally
on the estimates of the previous iteration. As a result, the empirical moments can
be derived. In the case that parallel chains are engaged without communication, the
overall speed of convergence is limited by the convergence of each chain and the num-
ber of iterations to be discarded for each of them. The DREAM algorithm proposes
to hasten the convergence of individual chains by creating communications between
the chains. In the following, the performance and the features of this algorithm are
studied.

List of the tests for the DREAM algorithm :

I Comparison of convergence property with one chain MCMC

II Impact of the number of parallel chains

III Comparison of the computational costs of different configurations

IV Discussion: Comparison of computational strategies
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General settings :

As for the previous tests with one chain AMwG, the modelling noise parameters and
the observation noise parameters are fixed at 0.02 and 0.1 respectively. Multivariate
proposals are used without global scaling.

I Comparison of convergence property with one chain MCMC
The objective is to investigate the convergence behaviour of this parallel chain
algorithm compared to the one chain AMwG algorithm.

Settings :

Given a restricted dataset, we monitor the evolution of the Gelman-Rubin scale
parameters as well as the corresponding evolution of the estimates. Then, 100 runs
are conducted based on the same dataset with the same total number of iterations to
compare the estimation quality of DREAM and one chain AMwG.

Θ∗ ⇒ Y ⇒ {Θ̃i}i=1,...,100

Observations and remarks :
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Figure 8.7: Evolutions of the Gelman-Rubin criterion of the DREAM algorithm based
on a restricted dataset (14 dates).

Prior AMwG DREAM Theoretical value∗

Real value
µ0 σ2

0 E(E(Θ|Y )) E(V(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) µ̃∗ σ̃2

µa 3.746 3.6 0.01 3.748 0.0035 3.749 0.0024 3.7487 0.0035

γ0 0.7525 0.75 0.0064 0.7527 0.00031 0.7531 0.00021 0.7526 0.00031

µγ 579.00 600.0 400.00 573.24 307.71 572.79 211.07 573.21 307.89

Table 8.6: Estimation and uncertainty assessment provided by one chain MCMC and
DREAM based on the same simulated dataset (14 dates) with 100 repetitions. Each
test contains 360 000 simulations for both DREAM and one chain MCMC. ∗: The
theoretical values are provided by taking the average of three long runs of AMwG with
10 000 000 iterations.
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Figure 8.8: Evolutions of the estimates provided by the DREAM algorithm based on
a restricted dataset (14 dates).

Based on the evolution of the Gelman-Rubin diagnostic illustrated by Figure 8.7,
we notice that the scaling parameters converge very quickly, while it is not the case
for the evolution of the estimates as demonstrated by Figure 8.8. This result suggests
that the Gelman and Rubin criterion is probably too tolerant for small numbers of
chains.

Table 8.6 implies that the mean posterior variances are very likely to be underes-
timated when the recommended configuration is used (Ter Braak and Vrugt, 2008),
in which the number of chains is 2d, with d the dimension of the target distribution.
Ter Braak (2006) showed that M = 2d or 3d worked well for unimodal posteriors,
but M = 10d to 20d were needed when multimodality or high correlation was present
in the target distribution. Therefore, more chains might improve the inference of the
posterior distribution.

II Impact of the number of parallel chains
Following this idea, tests with more parallel chains are conducted to see their impacts
on the variance estimation. The performance of the Gelman-Rubin criterion is also
evaluated.

Settings :

With the same restricted dataset, 12 configurations with different numbers of par-
allel chains are tested with each 50 independent runs.

1d−→ {Θ̃1d}i=1,...,50

Θ∗ ⇒ Y . . .

12d−→ {Θ̃12d}i=1,...,50

Observations and remarks :

In this test, configurations with more pooled parallel chains are adopted to estimate
the target distribution. According to Figure 8.9, the mean estimates appear to be quite
accurate when M ≥ 2d. However, the variance estimations are not stable for different
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configurations. The variance estimations increase when more chains are involved, as
demonstrated by Table 8.8. This is probably due to the fact that the burn-in period is
difficult to handle for all the chains in an independent way (Geyer, 1991). Therefore,
when the number of chains increases, more and more outliers could be included in the
final pooled estimates which are used to construct the posterior distribution. In other
words, some individual chains may not have converged.

µa γ0 µγ
µ̃∗ σ̃2

∗
µ̃∗ σ̃2

∗
µ̃∗ σ̃2

∗

Theoretical∗
3.7487 3.47e-3 0.7526 3.06e-4 573.21 307.89

Nbr of chains E(E(Θ|Y )) E(V(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y ))

3 (1d) 3.757 8.02e-4 0.7401 7.77e-5 605.98 130.14

6 (2d) 3.748 2.47e-3 0.7543 2.24e-4 572.02 230.75

9 (3d) 3.750 3.50e-3 0.7533 3.07e-4 572.62 314.95

12 (4d) 3.750 3.84e-3 0.7536 3.38e-4 572.59 347.49

15 (5d) 3.750 4.10e-3 0.7534 3.57e-4 572.78 364.60

18 (6d) 3.749 4.23e-3 0.7536 3.64e-4 572.87 377.89

21 (7d) 3.750 4.42e-3 0.7535 3.83e-4 572.64 392.98

24 (8d) 3.750 4.47e-3 0.7534 3.88e-4 572.74 396.70

27 (9d) 3.750 4.54e-3 0.7536 3.95e-4 572.71 396.59

30 (10d) 3.750 4.54e-3 0.7536 3.97e-4 572.43 398.97

33 (11d) 3.749 4.53e-3 0.7536 3.96e-4 572.80 397.60

36 (12d) 3.750 4.55e-3 0.7535 3.98e-4 572.75 399.41

Table 8.7: Comparison of the estimations and uncertainty assessments resulting from
different configurations of the DREAM algorithm based on the same simulated dataset
(14 dates) with 50 independent runs. ∗: The theoretical values are provided by taking
the average of three long runs of MCMC with 5 000 000 iterations.

(a) µa (b) γ0
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(c) µγ

Figure 8.9: Evolution of the estimations with different configurations of the DREAM
algorithm based on the same simulated dataset (14 dates) with 50 repetitions.

It is confirmed by checking the intra-chain variances of each chain (Figure 8.10)
which are quite variable. It is possible that the jumps introduced between chains to
improve the convergence speed, could be too frequent and result in bias. The compo-
nents of the chains exhibit important dependencies which may damage the adaptive
scheme and dissimulate the fact of non-convergence. If a few chains have converged,
the overall behaviour of the within chain variance and between chain variance could
easily appear to be stable and thus claim the convergence too fast, especially when a
large number of chains are involved. Many parallel chains could artificially exhibit a
robust behaviour, for instance the mean estimates may appear to be stable while the
target distribution is not properly characterized.
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Figure 8.10: Histograms of the intra-chain variance provided by the DREAM algorithm
configured with 24 parallel chains (8d) based on a restricted dataset (14 dates).
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Indeed, facing multimodality or high dimensional problems, one strategy that is
widely used concerns building a pool of samples resulting from multiple chains per-
formed in parallel. However, the quasi-ergodicity problem may frustrate this simple
idea. Our result suggests that when the lengths of the chains are limited, multiple
chains may not necessarily provide a better estimation of the target distribution than
the single chain, especially for nonlinear models and limited data. Most importantly,
it seems more difficult to define a proper way to diagnose the convergence for multiple
parallel chains. As stated previously, our results imply that there is a strong possibil-
ity that the Gelman and Rubin criterion is too tolerant for small numbers of chains,
for example, in the case when M = 1d, both the mean estimates and the variance
estimates are inaccurate (Figure 8.9).

The Gelman and Rubin criterion puts emphasis on reducing bias in estimation by
using a shrink factor, which can be interpreted as follows : when the between-chain
variance is dominated by the pooled within-chain variance, it approaches to one, and
thus all the chains should have escaped the influence of their departure points (initial
values of the chains) and have visited the entire target distribution. However, an
important feature of its implementation is that it strongly relies on the user ability to
find an appropriate starting distribution which is over-dispersed. If a small number
of chains are involved, not only the dispersion of the departure points might not be
important enough, but it is also possible that the communications between chains
which are meant to accelerate the convergence speed, may result in an underestimation
of the variance between chains. As a result, the convergence is claimed much earlier
than it should be. In Ter Braak (2006), similar results were obtained, they showed
that the Gelman and Rubin criterion is too optimistic about the convergence. This
result suggests a reassessment of this diagnostic criterion.
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Figure 8.11: Evolution of the mean estimates given by the configurations of 6 chains
and 30 chains of the DREAM algorithm based on the same simulated dataset (14
dates) after the burn-in period of 4000 iterations already discarded.

The mean estimates are more variable with smaller numbers of chains than larger
numbers of chains, as illustrated by Figure 8.11 with a burn-in period of 4000 iterations
already discarded. Although the final mean estimates given by the two configurations
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are quite close, it seems that the configuration of 30 chains provide much more sta-
ble estimates. Thus, the computational cost is crucial to determine the appropriate
number of chains.

III Comparison of the computational costs of different configurations
The objective is to identify the computational cost when different number of chains
are used in the DREAM algorithm.

Settings :

Twelve configurations regarding the number of chains are considered. A minimum
number of 4000 iterations are required and regarded as a penalty term to avoid an over-

early convergence claim. Once the convergence criterion is satisfied (
√
R̂ < 1.001),

another 10 000 iterations are conducted to build the posterior distributions.

Computational cost
Number of iterations Memory (Gb) CPU time Real computational time

3 (1d) 12000 1.06 26m 4m

6 (2d) 69500 8.00 1h44m 17m

9 (3d) 45800 10.02 2h17m 24m

12 (4d) 62300 14.47 5h35m 59m

15 (5d) 78500 20.60 5h59m 1h6m

18 (6d) 51200 20.01 5h35m 1h5m

21 (7d) 48900 19.23 6h34m 1h15m

24 (8d) 53000 22.01 7h42m 1h23m

27 (9d) 51900 25.15 7h38m 1h25m

30 (10d) 46000 25.93 9h16m 1h32m

33 (11d) 41100 25.59 8h30m 1h28m

36 (12d) 40300 25.41 8h35m 1h29m

Table 8.8: Comparison of the computational cost for the different configurations of the
DREAM algorithm based on the same simulated dataset (14 dates).

Observations and remarks :

Table 8.8 compares the computational time and memory requirement of the 12
configurations. Despite the adaptive scheme, when the target distribution increases
in dimension, it may result in an undesirable slow convergence compared to a single
chain. For all the M chains to converge, there is an extra computational cost which is
very important as illustrated by Table 8.8. Note that it could be worse if slow mixing
occurs.

IV Discussion: Comparison of computational strategies

Indeed, it could be considered as inefficient to run multiple chains while a substan-
tial number of the first estimates are discarded, in the sense that if one runs a single
chain of 20 000 iterations in comparison of 20 independent chains with each 1 000 itera-
tions, then the last 19 000 iterations of the long chain are more likely to be drawn from
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the real target distribution than those reached by any of the other chains. Figures of
8.12 give an efficient example to compare the performance of the two strategies: “one
long run” and “many short runs” in the case of a bimodal target distribution when two
parameters are involved. When the number of the chains is limited, as well as their
lengths, effectively, there is no guarantee that the weight of each mode is assigned pro-
portionally to its relative likelihood evaluation, therefore, the variance estimations are
less accurate. In Geyer (1991), a debate is carried out regarding these two strategies,
their advantages and disadvantages are accordingly discussed.

In order to determine the number of samples of the chains that should be discarded
pertinently, an efficient way is to take only the last sample of each chain, as showed
by 8.12(b)(IV). This leads to the idea of using a large number of even “shorter” runs
to estimate the target distribution. This is exactly the technique employed by the
Interacting parallel MCMC algorithm.

(a) True density. (b) Estimation trajectories.

Figure 8.12: One long run compared to many short runs for a bimodal target distri-
bution. The evolution of the estimation given by one long run (II), three short runs
(III) and 100 short runs (IV) compared to the target distribution (I). The red points
in (IV) correspond to the estimations resulting from the last iteration of each chain.

8.2.4 Interacting parallel MCMC

The Interacting parallel MCMC algorithm adopts the strategy of“many short runs”.
Introduced by Campillo et al. (2009), the idea of Interacting MCMC is to concentrate
the computational effort on the zone of interest. To achieve this purpose, each indi-
vidual chain proposes one candidate for all the chains. Only the last estimate of each
chain is taken into account to build the posterior distribution.
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List of the tests for the Interacting MCMC algorithm :

I Convergence monitoring

II Impact of the prior distribution

III Impact of the number of chains

IV Improvement tests

General settings :

As for the previous tests, the modelling noise parameters and the observation noise
parameters are fixed at 0.02 and 0.1 respectively. Multivariate proposals are used
without global scaling. No adaptive scale is used to tune the proposals. The first
convergence criterion for one chain AMwG described in Section 4.1.5 is used for the
Interacting parallel MCMC algorithm.

I Convergence monitoring
The objective is to monitor the evolution of the estimates given by the Interacting
MCMC in order to observe their convergence behaviour.

Settings :

For a given restricted dataset, 1000 parallel chains are used, the overall estimates
are built from only the last samples of all the chains.

Observations and remarks :

The monitoring of both the mean and the variance estimates of the posterior dis-
tributions (Figure 8.13) shows that they converge after about 120 iterations. Further
investigations are presented in the following tests.
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Figure 8.13: Evolutions of the mean estimates and the variance estimates based on
the same simulated dataset (14 dates) and the same prior distribution, performed by
Interacting MCMC with 1000 chains. The horizontal lines represent the converged
values.

II Impact of the prior distribution
The objective is to observe the behaviour of the Interacting MCMC when performed
with different priors compared to the one chain AMwG.

Settings :

100 independent runs are conducted with the same restricted dataset and two
different priors.

p1(·)−→ {Θ̃1
i }i=1,...,100

Θ∗ ⇒ Y (8.13)

p2(·)−→ {Θ̃2
j}j=1,...,100

Theoretical value∗ Prior 1 Estimation Monte Carlo error
µ̃ σ̃2 µ0 σ2

0 E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(MSE)

µa 3.749 0.0035 3.60 0.01 3.748 0.0019 1.23e-5 1.24e-5
γ0 0.7526 0.00031 0.750 0.0064 0.7524 0.00016 1.26e-6 1.33e-6
µγ 573.21 307.89 600 400 573.26 165.27 1.26 1.25

Theoretical value∗ Prior 2
µ̃ σ̃2 µ0 σ2

0 E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(MSE)

µa 3.818 0.0036 3.70 0.01 3.817 0.0020 1.26e-5 1.27e-5
γ0 0.7230 0.00026 0.720 0.0064 0.7229 0.00014 9.06e-7 9.17e-7
µγ 614.97 315.71 650 400 615.02 170.32 1.05 1.06

Table 8.9: Estimation and uncertainty assessment provided by Interacting MCMC
based on one simulated dataset (14 dates) with 100 independent runs. Each test
contains a maximum of 350 000 simulations (1000 chains), and two prior distributions
are used. The theoretical values are obtained by three long runs of AMwG with
5000000 iterations.
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Observations and remarks :

Based on the results given in Table 8.9, despite the mean estimates which appear to
be in agreement with the results of one long run, it seems that the Interacting MCMC
underestimates the variance of the posterior compared to the result of one long run.
It is possibly due to the limitation regarding the number of samples. In the following
test, configurations with different numbers of chains are compared.

III Impact of the number of chains
We seek to optimize the performance of this algorithm by adjusting the number of
chains. Given the fact that the posterior distribution is solely built based on the last
samples, the number of chains is crucial to assure a proper interpretation of the results.

Settings :

Based on the same restricted dataset, we maintain the same total numbers of
performed simulations (350 000) and compare the estimation results given by 5000
chains of 70 iterations, 3500 chains of 100 iterations and 1000 chains of 350 iterations.
100 independent runs are processed to compare the estimation of Monte Carlo errors.

Θ∗ ⇒ Y ⇒ {Θ̃i}i=1,...,100

Observations and remarks :

Table 8.10 illustrates a comparison test between three different configurations of
the Interacting MCMC algorithm with the same number of simulations in total. The
same configurations with independent chains are carried out as well. Obviously, the
Interacting MCMC’s scheme allows to accelerate significantly the estimations, since
none of the multiple independent chains appear to have converged.

An interesting remark is about the Mean Squared Error (MSE) estimations. Since

MSE(Θ) = bias2(Θ) + V ar(Θ),

the estimated MSEs are obtained based on the assumption that the theoretical values
are given by one very long run of AMwG. In all the three cases, they are more important
than V(E(Θ|Y )). Among the three configurations tested with the same total number
of simulations, V(E(Θ|Y )), which can be regarded as an estimation of Monte Carlo
error, increases when the number of chains decreases, and so is MSE.

However, since one iteration of Interacting MCMC generally takes more time than
one iteration of parallel independent MCMC, for the independent chains are updated
only with their own proposed candidate, the computational cost for one iteration in-
creases exponentially with the number of chains. Hence, the CPU time is taken into
account and the DIC is used to judge the goodness of fit, as presented by Figure 8.14.

The interacting scheme clearly improves the convergence behaviour. The consid-
ered selection technique can be regarded as a variant of importance sampling, with
each candidate assigned an importance weight in order to compute their acceptance
probability. In this way, the computational efforts are mostly concentrated in the zone
of interest.
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Real value Prior Theoretical value∗

µ0 σ2
0 µ̃ σ̃2

µa 3.746 3.60 0.01 3.7487 3.47e-3
γ0 0.7525 0.750 0.0064 0.7526 3.10e-4
µγ 579.00 600 400 573.21 307.89

5000(chains) * 70(iter.) Indep.
E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) MSE∗∗ E(Θ|Y ) V(Θ|Y )

µa 3.7479 1.17e-6 2.15e-3 5.88e-9 1.70e-6 3.7108 7.16e-3
γ0 0.7527 9.49e-9 1.80e-4 5.45e-11 1.04e-8 0.7591 5.94e-4
µγ 573.54 1.21e-1 189.63 34.75 2.20e-1 581.45 514.09

3500(chains) * 100(iter.) Indep.
E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) MSE∗∗ E(Θ|Y ) V(Θ|Y )

µa 3.7479 2.52e-6 1.99e-3 6.99e-9 3.49e-6 3.7222 6.36e-3
γ0 0.7526 2.33e-8 1.70e-4 4.30e-11 4.49e-8 0.7563 5.14e-4
µγ 573.35 1.91e-1 172.54 23.67 2.05e-1 580.51 461.05

1000(chains) * 350(iter.) Indep.
E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) MSE∗∗ E(Θ|Y ) V(Θ|Y )

µa 3.7479 4.82e-6 1.87e-3 1.87e-8 5.04e-6 3.7384 5.21e-3
γ0 0.7524 4.65e-7 1.62e-4 1.41e-10 5.34e-7 0.7534 4.06e-4
µγ 573.46 5.11e-1 166.05 144.79 5.67e-1 578.03 335.43

Table 8.10: Evolution of estimations and uncertainty assessments provided by one
chain AMwG, with 350 000 simulations of different configurations, based on the same
simulated dataset (14 dates). For each configuration, the mean estimates are based on
100 independent runs. ∗: The theoretical values are obtained by taking the average
of three long runs of MCMC with 5000 000 iterations. ∗∗: Mean Square Error com-
puted based on the theoretical mean values. Indep.: the same configuration but with
independent chains.
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Figure 8.14: Comparison of the evolution of the DIC for the parallel independent
MCMC and the interacting MCMC with both 500 chains and the same simulated
dataset (14 dates).
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Nevertheless, this algorithm does suffer from variability, for the estimated variances
are much smaller than the results given by one chain AMwG. Indeed, as a variant of
importance sampling, the considered selection process could result in sample impover-
ishment problem, for the regions with small acceptance probability are rarely visited.
This can be seen as a counterpart of concentrating the computational efforts on the
zone of interest. Moreover, compared to DREAM, here we pursue a much more impor-
tant number of parallel chains, considering that each chain provides a candidate for all
the chains, the computational cost is much more important, while a sampling bias is
introduced. Thus, if only the mean estimation is desired, this method is very efficient,
however it cannot provide an appropriate estimation of the entire target distribution.

One possible improvement of this method is to loosen the convergence criterion and
to run the Interacting parallel MCMC algorithm until its convergence is claimed, and
then continue to run the parallel chains in an independent way in order to characterize
correctly the target distribution.

IV Improvement tests
Motivated by the attractive efficiency of the original algorithm and its drawback of
underestimation of the variance to characterize the target distribution, we aim to
improve this algorithm by adding a step of independent parallel runs. The objective
of this test is to study the performance of this new algorithm.

Settings :

Based on the same configuration as test II conducted to examine the impact of
the prior distribution, we perform the improved Interacting parallel MCMC with 1000
chains. The total number of 350 000 iterations is maintained. For the first 100 it-
erations, the interactions are introduced while for the last 250 iterations, the chains
remain independent without interactions. The Adaptive Metropolis with scaling is
used to tune the proposals of the 1000 chains for the last 250 iterations. 100 indepen-
dent runs are conducted.

Θ∗ ⇒ Y ⇒ {Θ̃i}i=1,...,100

Observations and remarks :

Theoretical value∗ Prior 1 Interacting Improv. Int.
µ̃ σ̃2 µ0 σ2

0 E(E(Θ|Y )) E(V(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y ))

µa 3.749 0.0035 3.60 0.01 3.748 0.0019 3.740 0.0032
γ0 0.7526 0.00031 0.750 0.0064 0.7524 0.00016 0.7521 0.00029
µγ 573.21 307.89 600 400 573.26 165.27 575.62 330.74

Table 8.11: Estimation and uncertainty assessment provided by Interacting MCMC
and Improved Interacting algorithms based on one simulated dataset (14 dates) with
100 independent runs. The theoretical values are obtained by three long runs of AMwG
with 5000 000 iterations. Improv. Int.: Improved Interacting parallel MCMC.

Table 8.11 suggests that the new algorithm improves the variance estimation in a
considerable way compared to the original Interacting MCMC. The counterpart is that
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the mean estimates become less accurate, especially for µγ. The fact of introducing
the adaptive scheme with global scaling helps to accelerate the process of finding the
appropriate random walk step, which is very useful to this implementation context with
important number of parallel chains. However, further studies are required to optimize
the performance of this new algorithm, such as to reduce the number of parallel chains
in the first phase of the estimation when interactions are introduced, and to increase
the number of parallel chains in the second phase of the estimation.

8.3 Implementation of SMC methods

In this section, we present the implementation of three SMC filtering methods: Reg-
ularized/Convolution Particle Filter, Ensemble Kalman Filter and Unscented Kalman
Filter to the LNAS model based on the simulated datasets.

In the first place, we detail the implementation process of these methods with
an emphasis on the initialization. Then, some tests based on the simulated datasets
are conducted according to the features of the RPF/CPF and the EnKF algorithms.
The test results and some implementation issues are discussed. Note that the UKF
algorithm is only considered as a reference method, thus its estimation performance is
only evaluated in the comparison tests presented in Section 8.5.

8.3.1 Implementation descriptions

As stated previously, a possible choice of hidden state vector for the LNAS model
is X(t) = (Qf (t), γ(t), Qr(t)). The functional parameter vector of our model is Θ =
{µa, µγ, γ0} and the error variances {σ2

γγ, σ
2
q , σ

2
g , σ

2
r} are considered known.

Initialization

The initialization of the SMC based algorithms consists of the following steps :
– Define truncated normal prior distributions for each parameter of Θ: p0(·) with

the expectation µp0 and variance σ2
p0

. Note that uniform or other form of priors
can also be considered.

– For EnKF and RPF/CPF, the number of samples (particles) M is required to
be defined in advance, while for UKF, the number of the sigma points is defined
by 2(dxa + dη) + 1, with dxa the dimension of the augmented hidden state vector
dim(xan|n) and dη the dimension of the modelling noise parameter vector dim(ηn).

– Initialize xa0 = {Θ0, x0}. For EnKF and RPF/CPF, set {Θ0
(i)}1≤i≤M by sim-

ulating one value for each parameter from the prior distribution Θ ∼ p0(·) for

each i. The hidden state variables x
(0)
0 are determined by a first allocation of the

seed biomass between the root and leaf compartments (corresponding to germi-
nation). The weight associated to each sample (particle) is assigned uniformly
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( 1
M

for each). For UKF, initialize the sigma points and their associated weights
according to the unscented transform (details can be found in Section 4.3.1).

8.3.2 Regularized Particle Filter/Convolution Particle Filter

List of the tests for the RPF/CPF algorithm :

I Choice of the kernel

II Decomposition of variance

III Influence of the number of particles

IV Impact of priors

General settings :

The modelling noise parameters and the observation noise parameters are fixed at
0.02 and 0.1 respectively. Without specific test settings, the configuration of 250 000
particles is used for the restricted dataset and 100 000 for the full dataset.

I Choice of the kernel
For the RPF/CPF approach, one or two kernel functions KX (or KX and KY for
CPF) associated respectively to Xa and Y are defined. Campillo and Rossi (2009)
mentioned that in practice, the choice of the kernel did not affect appreciably the
results. In our implementation, a Gaussian kernel is chosen for KXa

. If dXa denotes
the dimension of the augmented hidden state vector Xa, KX(x) can thus be regarded
as a Parzen-Rozenblatt kernel for |x|dXa KX(x)→∞ as |x| → ∞. Hence :

KX
hXM

(x) =
1

hXM
dXa

KX(
x

hXM
) =

(
1√

2πhXM

)dXa
e−|x|

2/hXM
2

.

where the positive bandwidth parameter hXM is defined as:

hXM = CXM
−1/(4+dXa ),

which is optimal for the Mean Squared Error criteria. Likewise, when the density of the
modelling noise is unknown, a similar kernel KY

hYM
(y) can be defined for Y , replacing

hXM by hYM = CYM
−1/(4+dY ). It is proved that this choice of hXM and hYM allows the

L1-convergence of p̂(xan|y0:n) towards p(xan|y0:n) when M →∞ (see Campillo and Rossi
(2009) and Rossi (2004)).

Another noteworthy point is that the choice of CX is crucial for density estimation,
since it is related to the dispersion of the particle population. Some sophisticated
methods have been proposed, like in Devroye and Lugosi (2001), yet cannot be applied
in the on-line estimation context. Generally, CX is defined as:
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CX = cx[Cov(x̃an+1
(1), . . . , x̃an+1

(M))]1/2.

In Campillo and Rossi (2009), authors mention that a cx ≈ 1 gives good results.
Compared to the Gaussian kernel of the RPF (4.39), the value of cx corresponds to
((4/(d+ 2))(1/(d+4)), with d the dimension of xan. In our application to LNAS model, if
d = 5 (3 parameters and 2 hidden states), then cx ≈ 0.940, if d = 8 (6 parameters and
2 hidden states), then cx ≈ 0.926.

Indeed, small values of cx (for example < 0.001) imply that the particle x̃an+1
(i) will

remain close to x̃an
(i), which may constrain the movement of the particles in a limited

zone, while a large value of cx (≈ 0.8) allows the particles to explore more thoroughly
the state space. Therefore, the value of cx should be chosen with care to optimize the
perturbation rate of the particles after the selection step.

In this study, we notice that Cov(x̃an+1
(1), . . . , x̃an+1

(M)) is very important at the
beginning of the iteration, especially when a dispersed prior is given. Therefore, when
the number of data is limited as in our study case, an important cx may result in a large
population of the particles with small importance weights, which in turn causes sample
degeneracy and instability of the algorithm. The obtained estimates may appear to
be very unstable (large V(E(Θ|Y )) when the same estimation process is repeated). In
the worst scenario, either all the importance weights are close to 0 (≈ 0 numerically)
and cause numerical problems, or the least worst particles are chosen, which leads to
unsatisfactory estimations.

By keeping these constraints in mind, the adopted technique is to assign a large
value to CX from the start and decrease the value when moving forward with the
filtering process in order to avoid the over-estimation of the variance as well as to
improve the estimation accuracy.

Settings :

For the same simulated dataset, in restricted or complete form, five configurations
of cx are tested, including a time-evolving c̃∗x chosen as follows :

- For the full dataset,

c̃∗x = 0.8 ∗ 0.95i,

where i denotes the number of the dates at which the filtering has already been per-
formed;

- For the restricted dataset,

c̃∗x = 0.5 ∗ 0.7i.

In this test, 100 independent runs are processed to evaluate the MCE of the algo-
rithm. The estimation provided by the one chain AMwG is also listed for comparison
purpose.
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cx=0.9−→ {Θ̃1
i }i=1,...,100

cx=0.5−→ {Θ̃2
i }i=1,...,100

Θ∗ ⇒ Y
cx=0.3−→ {Θ̃3

i }i=1,...,100

cx=10−4

−→ {Θ̃4
i }i=1,...,100

cx=c̃∗x−→{Θ̃5
i }i=1,...,100

(8.14)

Observations and remarks :

Multiple configurations of cx are tested for both a full dataset and a restricted
dataset, the results of which are given in Table 8.12. With an important value of cx, the
variability among the estimates is very important. Although it allows the particles to
explore the state space with more liberty, the mean estimates remain quite inaccurate
compared to the results given by smaller value of cx, so is the estimated Monte Carlo
errors V(E(Θ|Y )) (which can also be interpreted as the algorithmic errors).

Restricted data µa γ0 µγ
Real value 3.592 0.7411 612.27

Prior N (3.60, 0.102) N (0.75, 0.082) N (600.00, 20.002)
cx E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y ))

0.9 3.536 9.00e-06 7.35e-03 0.7609 1.00e-06 7.98e-04 596.25 1.000 586.221
0.5 3.538 4.00e-06 4.81e-03 0.7614 4.90e-07 4.57e-04 595.96 0.706 390.734
0.3 3.538 1.00e-06 3.86e-03 0.7618 2.50e-07 3.59e-04 595.74 0.410 335.769

0.0001 3.533 1.02e-06 3.27e-03 0.7632 1.96e-07 3.05e-04 595.07 0.403 304.769
c̃∗x 3.533 1.00e-06 3.29e-03 0.7624 1.60e-07 3.07e-04 594.48 0.303 306.610

AMwG♦ 3.533 1.00e-06 3.37e-03 0.7622 2.50e-07 3.05e-04 594.77 0.372 306.190

Complete data µa γ0 µγ
Real value 3.746 0.7525 579.00

Prior N (3.60, 0.102) N (0.75, 0.082) N (600.00, 20.002)
cx E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y ))

0.9 3.890 1.07e-03 9.80e-03 0.5381 0.2314 8.29e-03 702.34 257.250 182.352
0.0001 3.702 1.10e-03 4.67e-04 0.7623 1.20e-04 3.56e-05 579.77 140.353 40.870
c̃∗∗x 3.730 3.09e-04 3.26e-04 0.7552 1.39e-05 4.38e-05 582.82 35.353 47.068

AMwG♦ 3.730 1.61e-05 3.60e-04 0.7561 4.68e-06 4.26e-05 582.29 4.542 45.019

Table 8.12: Parameter estimation and uncertainty assessment provided by RPF based
on the same target dataset (14 dates or 160 dates), with different values of cx. The
given estimations are based on 100 independent runs. c̃∗x: cx variable, start with 0.5
and decreases gradually (0.5 ∗ 0.7i) with i the number of dates at which the filtering
has already been performed. c̃∗∗x : cx variable, start with 0.8 and decreases gradually
(0.8 ∗ 0.95i). AMwG♦: Estimates obtained based on 100 independent runs of AMwG,
configured with the same number of iterations as of particles for the RPF/CPF ap-
proach.

One thought-provoking point is that in the case of a restricted dataset, a very
small cx provides satisfactory estimations while it is not the case with a full dataset.
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To understand this behaviour, it is important to understand the role of the correction
step (by cx) of CPF/RPF. The objective is to provide more dynamics to the parti-
cle population and to avoid degeneracy problems. However, when few observations
are available with an important number of missing observations, the values of the co-
variance matrix usually keep inflating, therefore, there is no need to introduce more
variability among the particles with the CX , especially when a large number of parti-
cles are simulated. On the other hand, if abundance observations are available, since
the resampling is performed at each time step when an observation is available, it is
highly possible that the degeneracy problem could occur. Thus, the correction with
CX appears to be necessary to maintain the variability within the particle population.

Based on these arguments, a configuration strategy is proposed in this thesis to
handle the two situations differently. In a general way, the cx can be defined as :

cnx = c0
x ∗ αn−1, with α ∈ [0; 1].

with n the number of time steps at which the filtering has been performed.

When there is a sufficient number of dates at which the observations data can be
used for filtering, then the initial value assigned to cx, denoted c0

x, should be smaller
than 1, but remain as close to 1 as possible, to assure a controlled exploration of
the state-space without numerical issues occurred (too large covariances can result in
a population of particles with associated weights close to 0). For the last filtering
steps, the perturbations provided by CX should be insignificant in order to assure that
the algorithm converges to the real target distribution and no artificial variance is
introduced. Thus, the value of cx should be decreasing gently with the filtering steps
and getting close to 0 at the end. An α being slightly smaller than 1 seems to be a
good choice to maintain the dynamics of the population so as to avoid the degeneracy
problems at the same time.

On the contrary, if there is an important lack of data, and an important number of
particles are involved, then the objective is to prevent introducing too much variability
to the particles, and to assure the convergence of them. Therefore, a smaller α is
preferred.

In our implementation, we opt for c0
x = 0.5, α = 0.7 for the restricted data,

and c0
x = 0.8, α = 0.95 for the full dataset. According to Table 8.12, the proposed

strategy regarding the configuration of cx appears to give satisfactory results for both
the complete dataset and the restricted dataset.

II Decomposition of variance
In the previous test, the proposed strategy appears to work. In order to identify the sta-
bility of the method in terms of both mean and variance estimations, the following tests
are carried out to verify the law of total variance V(Θ) = V(E(Θ|Y )) + E(V(Θ|Y )).

Settings :

300 parameter sets are generated from a given distribution p0(·), and the corre-
sponding observation datasets are simulated. The prior distribution used for this test
is the same as the one used to generate the datasets :
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cx=0.9−→ {Θ̃1
i }i=1,...,300

cx=0.5−→ {Θ̃2
i }i=1,...,300

∀i ∈ 1, . . . , 300,Θ∗i ∼ p0(·)⇒ {Yi}i=1,...,300
cx=0.3−→ {Θ̃3

i }i=1,...,300

cx=10−4

−→ {Θ̃4
i }i=1,...,300

cx=c̃∗x−→ {Θ̃5
i }i=1,...,300

(8.15)

Prior
µ∗0 σ2

0
∗

µ0 σ2
0

µa 3.598 0.010 3.60 0.01
γ0 0.7544 0.0070 0.750 0.0064
µγ 600.28 398.98 600 400.00

Estimation Variance decomposition
cx=0.9

E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y ))+E(V(Θ|Y ))

µa 3.597 0.007 0.007 0.014
γ0 0.7537 0.0070 0.0008 0.0078
µγ 598.41 54.64 573.36 628.00

cx=0.5
µa 3.599 0.007 0.005 0.012
γ0 0.7545 0.0068 0.0005 0.0073
µγ 598.68 66.11 406.11 472.22

cx=0.3
µa 3.600 0.007 0.004 0.011
γ0 0.7547 0.0068 0.0004 0.0071
µγ 598.47 76.17 340.58 416.75

cx=0.0001
µa 3.591 0.009 0.003 0.012
γ0 0.7573 0.0098 0.0003 0.0102
µγ 599.10 102.71 306.18 408.89

cx=c̃
∗
x

µa 3.594 0.007 0.003 0.010
γ0 0.7568 0.0074 0.0003 0.0077
µγ 599.08 92.71 307.91 400.62

AMwG♦

µa 3.599 0.007 0.003 0.010
γ0 0.7543 0.0069 0.0003 0.0072
µγ 598.36 88.93 308.92 397.85

Table 8.13: Estimation and uncertainty assessment provided by RPF based on 300
simulated datasets (14 dates) generated with the parameter vectors simulated from the
same prior distribution. Each test contains 250 000 simulations. AMwG♦: Estimates
obtained based on 100 independent runs of AMwG, configured with the same number
of iterations as of particles for the RPF/CPF approach. µ∗0 and σ2

0
∗

denote the sample
mean and variance.
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Observations and remarks :

Table 8.13 illustrates the decomposition of the variance based on a population
of datasets. The adaptive strategy proposed for the choice of cx showed the best
performance compared to the other configurations. Both the mean estimates and the
variance estimates are quite accurate, which suggests a satisfactory performance of this
particle filtering method. The resulting variances are the closest to the target ones,
and remain comparable with the MCMC estimates.

N.B.

- In the same way, if KY is required, the associated constant CY can be defined as:

CY = cy[Cov(ỹn+1
(1), . . . , ỹn+1

(M))]1/2,

where the constant cy can be assigned in a way that the particle weights remain in a
reasonable range so as to avoid the numerical instability.

- In our implementation, the likelihood of the observations is considered known. Hence,
the RPF algorithm is chosen to perform the parameter estimation rather than the CPF
algorithm.

- The CPF algorithm allows to introduce more dynamics to the model than the RPF
algorithm for it approximates the likelihood function by defining another kernel for
Y . Therefore, it can also perform with deterministic models, which is a very desirable
feature of this method, as will be illustrated in Section 9.3.

III Influence of the number of particles
One important configuration required in the initialization is the number of particles.
In this test, we seek to find a good compromise between the computational cost and
the precision of the estimations.

Settings :

Six configurations of M (which denotes the number of particles) are tested based
on the same restricted dataset. Algorithmic error is evaluated by 100 repetitions of
independent runs.

Θ∗ ⇒ Y ⇒ {Θ̃i}i=1,...,100

Observations and remarks :

The estimation results illustrated by Table 8.14 suggest that the increase of the
number of particles to a certain level can improve the precision, but then it is less
helpful in terms of the averaged estimation accuracy. However, it does help to reduce
the estimated Monte Carlo errors V(E(Θ|Y )), which is understandable since MCE
decreases when the number of samples increases.
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Theoretical value∗ M =350 000 200 000 100 000

µ̃∗ σ̃2
∗

E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y ))

µa 3.749 3.47e-3 3.7439 3.42e-3 1.95e-6 3.7440 3.42e-3 4.11e-6 3.7448 3.44e-3 5.27e-6

γ0 0.7526 3.1e-4 0.7538 3.0e-4 2.20e-7 0.7538 3.0e-4 4.10e-7 0.7536 3.0e-4 5.69e-7

µγ 573.21 307.89 571.06 298.79 0.416 571.07 298.05 0.553 571.32 298.29 0.987

Prior M =50 000 30 000 10 000
µ0 σ2

0 E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y ))

µa 3.6 0.01 3.7452 3.46e-3 1.35e-5 3.7451 3.40e-3 2.15e-5 3.7462 3.47e-3 6.98e-5

γ0 0.75 0.0064 0.7535 3.0e-4 1.21e-6 0.7535 3.0e-4 2.28e-6 0.7536 3.0e-4 7.13e-6

µγ 600.0 400.00 571.60 294.50 2.062 571.73 292.66 4.294 571.79 293.29 10.320

Table 8.14: Evolution of estimations and uncertainty assessments provided by RPF,
with the increase of the number of particles (M), based on the same simulated dataset
(14 dates). For each configuration, the mean and variance estimates are computed
based on 100 repetitions. ∗: The theoretical values are provided by taking the average
of three long runs of AMwG with 5000 000 iterations.

IV Impact of priors
The prior distribution has established its importance, especially when a restricted
dataset is presented. In this test, we look to identify the impact of priors on the RPF
estimates.

Settings :

Like in the study case of the one chain AMwG algorithm, 350 000 particles are
simulated based on the same restricted dataset to estimate the augmented hidden
state vector. Three priors are used, the averaged variance and expectation are obtained
based on 100 independent runs.

p1(·)−→ {Θ̃1
i }i=1,...,100

Θ∗ ⇒ Y
p2(·)−→ {Θ̃2

j}j=1,...,100

p3(·)−→ {Θ̃3
k}k=1,...,100

Observations and remarks :

– The estimation results obtained based on different priors are very different
according to Table 8.15, which confirms the important impact of the prior for
the restricted dataset. The variance estimations are obviously correlated to the
prior distribution, which confirms that an appropriate uncertainty assessment
relies on an appropriate prior.

– Little difference between the MCMC estimates and the RPF estimates is noticed.
Further comparison is needed in this regard to compare the estimation quality
of these two types of methods.

– The estimated MCE is more important with the Prior 2 probably because of the
important distance between the expectation of the prior distribution and the real
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value used to generate the data.

Real Theoretical AMwG Prior 1 Estimation MCE

value value∗ µ∗ σ∗2 µ0 σ2
0 E(E(Θ|Y )) E(V(Θ|Y ))

√
V(E(Θ|Y ))

MSE

µa 3.746 3.749 3.748 0.0035 3.60 0.01 3.744 0.0034 0.0014 2.53e-5
γ0 0.7525 0.7526 0.7527 0.00031 0.750 0.0064 0.7538 0.00047 4.69e-4 1.52e-6
µγ 579.00 573.21 573.24 307.71 600 400 571.06 298.79 0.6448 5.0650

Real Theoretical AMwG Prior 2 Estimation MCE
value value∗ µ∗ σ∗2 µ0 σ2

0 E(E(Θ|Y )) E(V(Θ|Y ))
√
V(E(Θ|Y )) MSE

µa 3.746 3.818 3.818 0.0036 3.70 0.01 3.813 0.0035 0.0026 3.10e-5
γ0 0.7525 0.7230 0.7231 0.00026 0.720 0.0064 0.7244 0.00025 7.13e-4 2.26e-6
µγ 579.00 614.97 614.91 315.91 650 400 612.10 299.93 1.08 9.35

Real Theoretical AMwG Prior 3 Estimation MCE
value value∗ µ∗ σ∗2 µ0 σ2

0 E(E(Θ|Y )) E(V(Θ|Y ))
√
V(E(Θ|Y )) MSE

µa 3.746 3.803 3.804 0.0050 3.752 0.0225 3.794 0.0048 0.0011 8.58e-5
γ0 0.7525 0.7453 0.7453 0.00042 0.744 0.0100 0.7477 0.00041 3.82e-4 6.01e-6
µγ 579.00 563.06 562.94 430.93 590.695 625 559.92 418.70 0.42 10.05

Table 8.15: Estimation and uncertainty assessment provided by RPF based on one
simulated dataset (14 dates) with 100 repetitions. Each test contains 350 000 sim-
ulations, and three prior distributions are used. MCE: the estimated Monte Carlo
error. The AMwG estimates are obtained based on 100 independent runs with each
350 000 iterations. ∗: The theoretical values are provided by taking the average of
three long runs of AMwG with 5000 000 iterations. The Mean Squared Errors (MSE)
are evaluated based on the theoretical values.

8.3.3 EnKF

The difference between the EnKF and the UKF is that EnKF is less dependent of the
normal assumption and has larger sample size, so that in applications with important
scales, EnKF usually performs better. Since EnKF is regarded as a reference method
in our application, here, only the optimal configuration of the sample size is studied.

Settings :

Six configurations of ensemble sample size are considered. Based on the same
restricted dataset, 100 independent runs are processed to evaluate the algorithmic
errors of this method.

Θ∗ ⇒ Y ⇒ {Θ̃i}i=1,...,100

Observations and remarks :

According to Table 8.16, we notice very slight changes among the estimates
when the ensemble size increases. As expected, the estimated MCE (provided by
V(E(Θ|Y ))) decreases with the increase of the ensemble size. Yet, the estimations
remain quite different from those given by RPF and AMwG.

Further investigations are needed for a proper comparison of this Kalman filter
based method with the MCMC based methods and particle filtering based methods.
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Real Theoretical 350 000 200 000 100 000
value value E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y ))

µa 3.746 3.749 3.7333 3.73e-3 4.76e-8 3.7332 3.73e-3 9.26e-8 3.7329 3.73e-3 1.60e-7

γ0 0.7525 0.7526 0.7131 1.08e-3 1.46e-8 0.7131 1.08e-3 2.23e-8 0.7132 1.08e-3 6.83e-8

µγ 579.00 573.21 590.25 366.70 6.86e-3 590.28 366.48 1.11e-2 590.30 366.39 2.37e-2

Prior 50 000 30 000 10 000
µ0 σ2

0 E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) V(E(Θ|Y ))

µa 3.6 0.01 3.7321 3.73e-3 3.84e-7 3.7313 3.70e-3 6.81e-7 3.7272 3.80e-3 2.89e-6

γ0 0.75 0.0064 0.7134 1.08e-3 9.99e-8 0.7136 1.08e-3 1.97e-7 0.7146 1.08e-3 4.97e-7

µγ 600.0 400.00 590.28 366.45 4.06e-2 590.30 366.84 1.10e-1 590.50 366.94 2.19e-1

Table 8.16: Evolution of estimations and uncertainty assessments provided by EnKF,
with the increasing ensemble sizes, based on the same simulated dataset (14 dates).
For each configuration, the mean estimates are based on 100 independent runs. ∗: The
theoretical values are provided by taking the average of three long runs of AMwG with
5000 000 iterations.

8.4 Implementation of the Generalized Least

Squares method

As a classical frequentist approach widely used in plant growth modelling
(Cournède et al., 2011; Guo et al., 2006), the Generalized Least Squares Estimator
is applied to the LNAS model with the objective of providing a comparison between
the estimation results of this frequentist approach and the Bayesian approach in the
following sections.

The version of the GLS estimator applied is described in Section 3.4.1, with a
diagonal error covariance matrix initially chosen, consisting of equal error variances for
all Qg and all Qr respectively. The multiplicative error assumption is made. Note that
the estimator does not support modelling noises, thus the modelling noise parameters
σq and σγγ are set to 0 during the estimation. Moreover, to apply the GLS estimator,
an initialization of the departure point of each parameter is required. The algorithm is
stopped when the difference between the estimates given by two successive iterations
is small enough. A threshold is accordingly defined.

As a reference method like EnKF and UKF, here we only investigate the influence
of initialization on the GLS estimates.

Influence of initialization

In the following tests, the mean values of the prior distribution defined for the
Bayesian methods are used as the initial points. The objective is to compare the
results provided by two different sets of departure points.

Settings :

Based on the restrict dataset generated with small modelling noises (σγγ and σQ
set to 0.02) and observation noises (σg and σr set to 0.1), two different initializations
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regarding the departure parameter sets are considered. The estimates of the last
iteration and the estimated variance are provided.

Observations and remarks :

We test the influence of the initial departure points in the following test with a
simulated restricted dataset (14 dates).

Table 8.17 suggests that the estimation of GLS does not depend on the initial
points. Both the mean estimates and the variances estimates remain the same when
the algorithm is initialized with two sets of very different points. The log-likelihood
evaluation of the estimates is better than the evaluation of the real parameter set used
to generate the data, probably due to the fact that in the case of restricted dataset,
there are more possible trajectories than in the scenario of full dataset, therefore the
MLE is not necessarily obtained with the real parameters set (and often not the case in
practice). In the meantime, it is noteworthy that since GLS cannot cope with modelling
noises, for those stochastic models built with modelling noise(s), GLS estimates are
not necessarily the MLE.

Initialization 1 Estimates
Real value

µ0 Est. Var

µa 3.746 3.40 3.732 0.0044

γ0 0.7525 0.90 0.7940 0.00083

µγ 579.00 650.00 494.47 935.55

Initialization 2 Estimates
Real value

µ0 Est. Var

µa 3.746 3.80 3.732 0.0044

γ0 0.7525 0.40 0.7940 0.00083

µγ 579.00 350.00 494.47 935.55

−2L 311.06 - 300.53 -

Table 8.17: Estimation and uncertainty assessment provided by one chain GLS based
on one simulated dataset (14 dates), without noises. Two initial sets are used.

8.5 Method comparison

With the purpose of identifying the estimation performance of the previous algo-
rithms, some tests of comparisons are conducted in this thesis to evaluate the param-
eter estimation performance of the methods investigated, including AMwG, DREAM,
Interacting parallel MCMC, RPF/CPF, EnKF, UKF and GLS.

List of the comparison tests :

8.5.1 Precision on one dataset
8.5.2 General behaviour and coverage comparison
8.5.3 Influence of the modelling noise level on scarce dataset
8.5.4 Efficiency comparison
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General settings :

As for the previous tests, if without specific notice, the modelling noise parameters
and the observation noise parameters are fixed at 0.02 and 0.1 respectively. Multi-
variate proposals are used without global scaling for MCMC-based methods. For the
Interacting MCMC algorithm, the original version is used, which means that no adap-
tive scale is used to tune the proposals. A variable tuning parameter c∗x is defined
for the RPF algorithm using the strategy proposed in Section 8.3.2. The DREAM
algorithm is performed with 9 chains, while the Interacting parallel MCMC uses 1000
chains. In order to provide a reference value for the sake of comparison, three indepen-
dent long chains of AMwG (5000 000) are carried out to define the theoretical values
of the estimation, on which the Mean Squared errors are evaluated for all the Bayesian
methods.

8.5.1 Precision on one dataset

In this test, we aim to investigate the precision of the estimation given by the
seven methods that we implemented in this thesis, both in terms of the averaged mean
estimation and the variance estimation based on a single restricted dataset. Since from
a Bayesian point of view, the objective is to update the knowledge based on the new
observations, the prior distribution plays an important role.

Settings :

With a fixed total number of simulations, the MCMC-based methods (one chain
AMwG, DREAM, Interacting MCMC) and the filtering based methods (UKF, EnKF,
RPF) are subsequently performed with each 100 independent runs based on the same
simulated restricted dataset. The DIC is used to evaluate their estimates. The GLS es-
timates are also given as a reference result which is obtained based on the deterministic
form of the LNAS model.

Θ∗ ⇒ Y ⇒ {Θ̃i}i=1,...,100

Observations and remarks :

According to Table 8.18, all the seven methods appear to be able to perform the
estimation with satisfactory estimation quality. Judging from the averaged estimates,
all the MCMC-based methods provide similar estimations and small MSE, while the
filtering methods disagree with each other.

Furthermore, if we are under the assumption that the estimates of one very long
chain MCMC are the theoretical values, then we consider the difference between the
MSE and V(E(Θ|Y )) as the bias. MCMC-based methods appear to have smaller bias
than the filtering methods.
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Prior AMwG DREAM Interacting
Real value

µ0 σ2
0 E(E(Θ|Y )) E(V(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y ))

µa 3.746 3.6 0.01 3.748 0.0035 3.749 0.0035 3.748 0.0020

γ0 0.7525 0.75 0.0064 0.7527 0.00031 0.7531 0.00031 0.7526 0.00017

µγ 579.00 600.0 400.00 573.24 307.71 572.79 314.95 573.35 172.54

−2L(Θ̄) 311.06 346.40 308.11 308.22 308.19
DIC - 340.06 296.21 297.67 298.74

Theoretical value∗ GLS RPF EnKF UKF

µ̃∗ σ̃2
∗

E(E(Θ|Y )) E(V(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y )) E(E(Θ|Y )) E(V(Θ|Y ))

µa 3.7487 0.0035 3.732 0.0044 3.744 0.0034 3.733 0.0037 3.634 0.0065

γ0 0.7526 0.00031 0.7940 0.00083 0.7538 0.00030 0.7131 0.00108 0.7373 0.00148

µγ 573.21 307.89 494.47 935.56 571.06 298.80 590.25 366.70 598.62 348.60

−2L(Θ̄) 308.10 300.53 307.73 325.30 326.96
DIC 296.19 - 296.32 296.52 312.94

Table 8.18: Estimation and uncertainty assessment provided by one chain AMwG,
DREAM, Interacting AMWG, RPF, UKF, EnKF and GLS based on the same sim-
ulated dataset (14 dates) with 100 independent runs. All the test contains 350 000
simulations, except for GLS and UKF (number of sigma points predefined). The same
prior is shared for all the methods. ∗:

Prior AMwG DREAM Interacting
Real value

µ0 σ2
0 V(E(Θ|Y )) MSE V(E(Θ|Y )) MSE V(E(Θ|Y )) MSE

µa 3.746 3.6 0.01 2.48e-7 2.77e-7 4.95e-6 5.39e-6 1.23e-5 1.24e-5

γ0 0.7525 0.75 0.0064 2.44e-8 2.58e-8 4.29e-7 6.77e-7 1.26e-6 1.26e-6

µγ 579.00 600.0 400.00 2.65e-2 2.70e-2 4.72e-1 6.50e-1 1.91e-1 2.05e-1

Theoretical value♠ GLS RPF EnKF UKF

µ̃∗ σ̃2
∗

V(E(Θ|Y )) MSE∗ V(E(Θ|Y )) MSE V(E(Θ|Y )) MSE V(E(Θ|Y )) MSE

µa 3.7487 0.0035 - - 1.95e-6 2.53e-5 4.76e-8 2.39e-4 8.98e-5 1.32e-2

γ0 0.7526 0.00031 - - 2.20e-7 1.52e-6 1.46e-8 1.56e-3 3.45e-5 2.69e-4

µγ 573.21 307.89 - - 4.16e-1 5.06 6.86e-3 290.23 3.91 649.04

Table 8.19: Comparison of the estimated Monte Carlo errors of one chain AMwG,
DREAM, Interacting AMWG, RPF, UKF and EnKF. The Mean Squared Error (MSE)
of the proposing estimates is evaluated based on the same simulated dataset (14 dates)
with 100 independent runs. The same prior is shared for all the Bayesian methods.
Each test contains 350 000 simulations except for DREAM and UKF, for which the
recommended number of simulations are used. MSE∗: the MSE of the frequentist
GLS method cannot be evaluated with the theoretical values provided by the Bayesian
based AMwG.

Based on the evaluation of the posterior distribution given by the DIC, the one
chain AMwG, RPF and EnKF show similar performances. The one long run AMwG
scores the best DIC among all the methods, which confirms that its result could be
considered as the theoretical target distribution.

DREAM is performed with 3d = 9 chains based on the tests of Section 8.2.3.
Therefore, the variance estimation of one chain AMwG, RPF and DREAM are rela-
tively close. RPF has smaller E(V(Θ|Y )) than one chain AMwG, but more important
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variation of its estimates V(E(Θ|Y )) which implies larger MCE (algorithmic error),
hence it is less stable than one chain AMwG in this test case.

Table 8.19 illustrates the MSE for each of the methods regarding the mean esti-
mates. The variability of the estimates V(E(Θ|Y )) provided by RPF and Interacting
MCMC is similar, which could be understood by the fact that the Interacting MCMC
is based on the importance sampling technique as the RPF. We also notice that both
multiple chain MCMC methods, DREAM and Interacting MCMC fail to estimate the
variance of the posterior distribution in an accurate way. For DREAM, it is highly
possible that outlier samples are included in the pooled samples used to build the
posterior distributions, while for Interacting MCMC, either a sample size of 1000 is
not sufficient to capture and to characterize the variability of the target distribution,
or the posterior distribution is biased, for the states with small likelihood evaluations
are seldomly reached.

Finally, the log-likelihood evaluation of the mean estimates suggests that the GLS
estimator provides the best point estimation. However, when we have reliable prior
information and we desire an estimate with interpretable biological explanations, the
Bayesian approaches are preferred.

8.5.2 General behaviour and coverage comparison

After studying the performance of the methods performed on one single dataset,
we are also interested in their more global performance, including the assessment of
their post-experimental coverage probability.

Settings :

For this test, we study the estimation precision of those methods when dealing with
the 1000 simulated datasets generated with the same parameter set. The confidence
intervals are bootstrap percentile intervals, constructed based on the 2.5% percentile
(lower bound, denoted lb) and the 97.5% percentile (upper bound, denoted ub) of the
1000 bootstrap mean estimates (E(Θ|Y )). The post-experimental coverage is com-
puted based on the Bayesian credibility intervals provided by each test.

Θ∗ ⇒ {Yi}i=1,...,1000 ⇒ {Θ̃i}i=1,...,1000

Observations and remarks :

Regarding the averaged estimated values based on a large number of simulated
datasets (1000) generated with one parameter set (Table 8.20), the three MCMC-based
methods and RPF provide similar results. The fact of performing 1000 repetitions of
the tests with the same parameter set allows us to average the observation noises effect
and the modelling noise effect.
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Prior GLS
Real value

µ0 σ2
0 E(E(Θ|Y )) E(V(Θ|Y )) lbB ubB Coverage∗

µa 3.7458 3.6 0.01 3.7394 0.0072 3.5373 3.9216 100%

γ0 0.7525 0.75 0.0064 0.7587 0.00104 0.6923 0.8393 98.2%

µγ 579.00 600.0 400.00 576.71 1426.34 469.63 657.79 94.7%

AMwG Interacting MCMC
E(E(Θ|Y )) E(V(Θ|Y )) lbB ubB Coverage E(E(Θ|Y )) E(V(Θ|Y )) lbB ubB Coverage

µa 3.7070 0.0034 3.6193 3.7916 95.9% 3.7060 0.0019 3.6222 3.7888 83.2%

γ0 0.7564 0.00030 0.7317 0.7804 98.8% 0.7563 0.00021 0.7314 0.7789 94.4%

µγ 591.16 306.06 575.018 607.14 99.8% 591.29 189.77 574.25 606.36 94.6%

DREAM RPF
E(E(Θ|Y )) E(V(Θ|Y )) lbB ubB Coverage E(E(Θ|Y )) E(V(Θ|Y )) lbB ubB Coverage

µa 3.7071 0.0035 3.6218 3.8020 92.3% 3.7086 0.0033 3.6235 3.8039 94.9%

γ0 0.7563 0.00031 0.7295 0.7821 94.0% 0.7560 0.00030 0.7333 0.7843 98.6%

µγ 591.65 315.73 573.91 608.76 95.1% 591.05 303.70 575.65 608.50 99.7%

EnKF UKF
E(E(Θ|Y )) E(V(Θ|Y )) lbB upB Coverage E(E(Θ|Y )) E(V(Θ|Y )) lbB upB Coverage

µa 3.7003 0.0122 3.6148 3.7748 99.9% 3.7224 0.0068 3.6125 3.8534 98.4%

γ0 0.7680 0.0038 0.7042 0.8418 100% 0.7531 0.0016 0.7019 0.7923 99.3%

µγ 594.77 366.21 587.33 601.66 99.8% 596.94 349.47 582.13 610.43 91.2%

Table 8.20: Estimation and uncertainty assessment provided by one chain MCMC,
DREAM, Interacting AMWG, RPF, UKF, EnKF and GLS based on 1000 simulated
datasets (14 dates) generated with the same parameter set. Each test contains 350000
simulations except for DREAM and UKF, with which the recommended number of
simulations are used, and the same prior is shared for all the methods.

Among the Bayesian based methods, and the rest of the results also show great
coherence, since they all consider the same prior knowledge. The EnKF’s estimation
of variance is much more important than those given by the other methods and UKF
appears to suffer from the insufficient sigma point sample size.

The one chain AMwG and RPF propose globally very similar results for both
the averaged estimates and the variance estimates. Their coverage probabilities also
indicate that in terms of risk management, they are more reliable and better optimize
the posterior credibility interval than the other methods do. It is important to note
that although some methods have better coverage probability than these two methods,
they also provide much larger variance estimates, which does not correspond to the
objective of optimizing the coverage probability while keeping the CI as narrow as
possible.

Remarks have also been made that the variance estimates are still greatly biased
in the case of Interacting MCMC, illustrating again that the algorithm suffers from
the underestimation of variability.

Comparison of the computational cost
The computational cost plays an important role in numerical applications. Based on
the test 8.5.1 conducted based on one dataset (which result is given in Table 8.18), the
mean computational time and memory consummation are listed as follows :
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GLS UKF EnKF AMwG Interacting MCMC DREAM RPF/CPF
Number of simulations 20 15 350 000 350 000 350 000a 349 998b 350 000

CPU time 2s 2s 22m36s 22m20s 8h31m 1h34m 30m34s
Real computational time 2s 2s 12m17s 22m20s 1h49m 17m24s 14m30s

Memory (Gb) 5e-3 4e-3 5.02 4.80 5.74 8.75 22.76

Table 8.21: The averaged computational cost of one test with simulated dataset (14
dates) performed by one chain AMwG, DREAM, Interacting AMWG, RPF, UKF,
EnKF and GLS based on the 1000 tests conducted with different datasets. For GLS,
the estimation is performed based on the deterministic form of the LNAS model. a:
Interacting MCMC is performed with 1000 chains and 350 iterations. b: DREAM is
performed with 9 chains and 38889 iterations.

Observations and remarks :

Among the seven methods, only the one chain AMwG algorithm cannot be paral-
lelized. However, the parallel computing does not appear to optimize the efficiency of
all the algorithms, especially for the multiple-chain algorithms.

Considering both the real computational time and the estimation precision, EnKF,
one chain AMwG and RPF provide the best compromise and thus are considered to
have outperformed the other methods in this study case.

8.5.3 Influence of the modelling noise level on scarce dataset

In this test, we intend to identify the impact of the modelling noise level on the
seven studied methods, both in terms of stability and accuracy.

Settings :

Three levels are defined for modelling noise parameters η : 0, 0.02 and 0.05. 600
parameter sets generated from the same distribution are used to generate observa-
tion datasets with different levels of modelling noises. The observation noise level is
fixed to 0.1. According to the previous tests, the one chain AMwG, the Interacting
MCMC, EnKF and RPF, representing each an estimation technique, are applied to the
1800 datasets. Considering that in practice, no exact priors are known, flatter prior
distribution is defined compared to the real distribution used to generate {Θi}i=1,...,600.

η1−→ Y 1
i ⇒ {Θ̃η1

i }i=1,...,600

∀i ∈ 1, . . . , 600,Θ∗i ∼ p∗0(·) ,∀Θi
η2−→ Y 2

i ⇒ {Θ̃η2

i }i=1,...,600

η3−→ Y 3
i ⇒ {Θ̃η3

i }i=1,...,600

Distribution of Θ∗ Prior
E(Θ∗i ) V(Θ∗i ) µ0 σ2

0

µa 3.5954 0.0104 3.60 0.04
γ0 0.7519 0.0058 0.750 0.01
µγ 599.92 400.784 650 900.00
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Observations and remarks :

Generally speaking, according to Table 8.22, the four selected methods provide
comparable results. Yet the mean estimates are still far from the distribution of Θ∗,
which implies a general lack of information. Considering the scarce dataset that we
have provided for this test, it is completely understandable.

Regarding the averaged mean estimation and the averaged variance estimation,
the results given by the one chain AMwG and RPF share much similarity. The esti-
mations of RPF have more important variability than those of the one chain AMwG
(V(E(Θ|Y ))), however, the variance estimations E(V(Θ|Y )) of RPF are slightly less
important. It refers to the between-particle variation for RPF and to the intra-chain
variation for AMwG. This result indicates that there is a small bias regarding the
variance estimation of RPF.

Modelling noise 0 Modelling noise 0.02 Modelling noise 0.05

Adapted Metropolis-within-Gibbs

E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y ))

µa 3.6218 0.0117 0.0048 4.61e-07 3.6265 0.0117 0.0049 4.57e-07 3.6260 0.0119 0.0053 4.30e-07

γ0 0.7402 0.00541 4.19e-4 6.41e-09 0.7339 0.00538 4.23e-4 6.49e-09 0.7269 0.00541 4.76e-4 6.66e-09

µγ 629.80 223.53 558.82 645.37 630.48 226.99 560.32 649.21 632.36 234.86 599.79 897.25

Interacting MCMC

E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y ))

µa 3.6215 0.0138 0.0030 3.36e-7 3.6254 0.0136 0.0029 2.68e-7 3.6255 0.0132 0.0034 3.34e-7

γ0 0.7399 0.00580 2.19e-4 2.33e-9 0.7380 0.00579 2.33e-4 2.33e-9 0.7215 0.00526 2.73e-4 2.07e-9

µγ 630.32 286.34 306.99 1119.75 631.84 288.62 309.97 1031.06 631.30 257.98 335.27 1272.48

RPF

E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y ))

µa 3.6214 0.0119 0.0047 7.61e-07 3.6263 0.0130 0.0048 7.18e-07 3.6252 0.0122 0.0053 7.28e-07

γ0 0.7410 0.00546 4.10e-4 6.07e-09 0.7357 0.00545 4.17e-4 6.04e-09 0.7273 0.00583 4.68e-4 6.17e-09

µγ 629.69 229.53 553.77 786.46 630.98 229.40 561.76 766.90 632.23 230.94 598.36 777.42

EnKF

E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(V(Θ|Y )) V(V(Θ|Y ))

µa 3.6029 0.0137 0.0014 4.42e-8 3.5978 0.0117 0.0014 5.50e-8 3.6071 0.0117 0.0014 4.85e-8

γ0 0.7107 0.00670 0.00632 2.63e-6 0.7173 0.00606 0.00622 2.46e-6 0.7131 0.00642 0.00663 2.60e-6

µγ 646.55 34.87 825.89 841.76 647.14 33.36 823.23 970.77 646.43 36.87 826.82 992.02

Table 8.22: Estimation and uncertainty assessment provided by one chain AMwG,
Interacting MCMC, RPF and EnKF based on 600 simulated datasets (14 dates) gen-
erated with the same parameter set, but with different level of modelling noises. The
given estimations are tests with a maximum of 350 000 iterations for each, taking into
account a burn-in period of 10 000 iterations.

Furthermore, by considering at the amplitude of the fluctuation of the variance
estimation V(V(Θ|Y )), we highlight the fact that RPF appears to be the most sta-
ble method, for the variance estimation of the parameter µγ. In fact, the drastic
increase of the variance among the variance estimations given by the one chain AMwG
(V(V(Θ|Y ))) in the case of µγ suggests that the method does not cope well with the
increase of the noise level. Yet, in a general way, the estimations of noise level 0 and
0.02 are closer compared to those of the noise level 0.05, which implies a common lack
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of precision when the model is too noisy.

The modelling noise level does not appear to influence the estimation in a remark-
able way, still, we notice that the mean estimates get closer to Θ∗ when the noise level
decreases for the parameter γ0, from the results of the three first methods (except
EnKF). The variability between the estimates (cf E(V(Θ|Y )) ) tends to be slightly
more important in the case of heavier modelling noises for all the parameters, par-
ticularly the less sensitive ones, µa and µγ. The EnKF estimations again make an
exception. In fact, EnKF seems to be the method least influenced by the noise level.
Nevertheless, its estimations are very close to the prior distributions and the associated
variance between the estimates are very small as well, which suggest that it has not
fully assimilated the information in the observations.

Based on the result, the Interacting MCMC still suffers from the variability esti-
mation. Not only its mean estimations are smaller than those of other methods, but
the huge variability of the variance estimations confirms this assumption. Therefore,
the two most robust methods regarding this test are the one chain MCMC and CPF.
In the following, we will concentrate on investigating these two methods. The prior
influence is studied in the first place.

8.5.4 Efficiency comparison

Based on the former results, the RPF with time-evolving tuning parameter cx and
the one chain AMwG illustrate the most convincing estimation performance. In this
test, the impact of the number of simulations are reviewed for both methods. The aim
is to identify the more efficient method.

Settings :

The estimation is performed based on the same restricted dataset with 100 inde-
pendent runs. The boxplot of estimations provided by the one chain AMwG and the
RPF under various configurations are displayed in Table 8.15.

Observations and remarks :
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Figure 8.15: Boxplot of 100 mean estimates based on 100 independent runs of the same
test performed with different numbers of iterations for the three parameters µa, µγ,
γ0 respectively. Left panel: estimations given by Adapted Metropolis-within-Gibbs.
Right panel: estimations given by RPF.

There is obviously less variation among the mean estimates of the one chain AMwG
compared to those of the RPF, which indicates that the one chain AMwG is much more
stable while the RPF estimates could be biased.

8.6 Implementation of Iterative SMC and MCMC

algorithms

To put more emphasis on the observation data, in the following, the frequentist
based iterative algorithms are applied to the LNAS model with the simulated data.
As for Bayesian based methods and for GLS, three functional parameters are estimated.

In this section, we first detail the implementation description of the iterative ap-
proach to the LNAS model. Then, two tests are conducted to study the performance
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of this EM based approaches in the case when only the three functional parameters are
estimated. Subsequently, the results are presented with the objective of giving some
directions when confronting real experimental data.

List of the tests for the iterative approaches :

8.6.2 Iterative AMwG Vs. Iterative RPF
8.6.3 Strategies to increase the number of particles in the Iterative-RPF algorithm

8.6.1 Implementation descriptions

Gaussian randomization
In this part we apply the ideas developed in Section 5.1.1 for the state space model
described in Lemma 8.1.1. In the first place, we assume for simplicity of presentation
that all error variances {σ2

γγ, σ
2
q , σ

2
g , σ

2
r} are known or a priori fixed to some values.

The interest will be focused on the estimation of the structural parameters and let
Θ = (µa, λ, µγ, σγ, γ0, γf ). Note also that this state space model can equivalently be
described as a non-homogeneous hidden Markov model Cappé et al. (2005), and usual
estimation techniques are based on some variant of the EM algorithm, by combining an
approximation of the E-step and a usually explicit M-step. Nevertheless, we can easily
see that there is no explicit solution for Θ even in the complete log-likelihood of this
model, therefore leading to a non-explicit M-step. Otherwise, conditional maximization
approaches should be invoked and this often leads to complicated generalized EM-type
algorithms (see, eg., Trevezas and Cournède (2013)), where a numerical maximization
procedure should be implemented as well.

It is also well known (see, eg., McLachlan and Krishnan (2008)) that the EM-type
sequences do not necessarily converge to the true MLE (if it exists). In typical plant
growth models with a large number of parameters, it is very difficult to ensure the
existence of the MLE and the subsequent convergence of the EM iterates to the true
MLE. The best that we can hope is to have a robust algorithm and the solutions to
the initial maximization problem to be biologically relevant. For this reason, we take
Assumption 1 presented in Section 5.1.1 for granted.

When the noise parameters are fixed, let Θ = (µa, λ, µγ, σγ, γ0, γf ) when six func-
tional parameters are estimated, or Θ = (µa, µγ, γ0) when only three of them are
estimated.

The results of Section 5.1.1 are directly applicable to Θ. In particular, let m̃(Θ)
the Gaussian randomization of m w.r.t. Θ. By Definition 5.1.1 we have that m̃(Θ) is
an incomplete data model which consists in:

i) a Gaussian hidden vector Ψ, where

Ψ ∼ NdΘ
(η,Σ),

and Σ = diag{σ2
i }1≤i≤dΘ

, where σ2
i > 0,

ii) an observed vector Y , where conditioned on Ψ = ψ is a state space model
detailed in lemma 8.1.1 with the parameter Θ replaced by ψ.
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The parameter of the extended model is given by φ = (Θ, σ2) ∈ RdΘ × (R∗+)dΘ .
By Proposition 5.1.5, the problem of parameter estimation of φ is transformed in an
iterative state estimation problem. Starting with a fixed value φ(0), the EM-update
equations given by (5.14) and (5.15) produce a sequence φ(n) which converges to a
stationary point of the initial likelihood. Unfortunately, the conditional moments
involved in these equations cannot be computed explicitly for nonlinear models of this
type and for this reason we need to implement a stochastic variant of the EM-algorithm
to approximate them. In order to tackle this problem, we describe next a MCMC-based
method, such as a one chain Adapted Metropolis-within-Gibbs algorithm or a SMC-
based method, such as CPF to perform the E-step. Parametric bootstrap is used to
provide the uncertainty assessment (confidence interval for the parameter vector Θ).

Convergence criterion
As a stopping rule we use either the one proposed in Booth and Hobert (1999), which

claims convergence when the relative change in the estimates from three successive
iterations is reasonably small, as for the Interacting MCMC, or the one using Monte
Carlo error evaluation (Q-function) to build a tolerant interval detailed in Section
5.2.1.

8.6.2 Iterative AMwG Vs. Iterative RPF

At each iteration of the EM-algorithm, given the current parameter update φ′, our
objective is to approximate

Eφ′
(
Θ | Y0:n = y0:n

)
and (

Varφ′(Θi | Y0:n = y0:n)
)

1≤i≤dΘ1

,

where n corresponds to the observation length, since the update equations for the pa-
rameters of the model given in Proposition 5.1.5 generally lead to non-explicit solutions.
Several alternative algorithms can be employed to make this approximation for this
E-step, according to our former tests, the one chain AMwG and the CPF algorithms
have demonstrated the best performance and as a result have been selected.

Settings :

In the following, 20 updates of the prior distribution are carried out (20 iterations
of the proposed variant of EM-type algorithm) with the E-step performed by the one
chain AMwG and RPF based on the same simulated restrict dataset.

Observations and remarks :

Figure 8.16 displays the evolutions of the mean estimates and the associated cred-
ibility intervals given by the two iterative algorithms. The variance estimates shrink
drastically with the EM iterations in all cases. We recall that they are no longer vari-
ances of the Bayesian posterior distribution p(θ|y) inferred from the limited data y,
but are supposed to converge to zero with the iteration of the EM algorithm. For a
proper uncertainty assessment, it is thus necessary to perform parametric bootstrap.
In a general way, the estimations resulting from the iterative RPF and the iterative
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one chain AMwG are quite close. Further evaluation is conducted for a more precise
comparison.

Figure 8.16: Comparison of estimations (of 3 functional parameters) based on the pro-
posed variant of EM-type algorithm with the E-step performed by CPF and Adapted
Metropolis-within-Gibbs.

8.6.3 Strategies to increase the number of particles in the
Iterative-RPF algorithm

To improve the precision of our estimation, considering the fact that for the particle
filtering based methods, the number of simulations (particles) should be defined before
one complete iteration, different strategies are compared for the augmentation of the
Monte Carlo sample size (geometric and quadratic), after each iteration of the EM
algorithm.

Settings :

Based on the same restricted dataset, two strategies, the geometric and the
quadratic increases of the number of particles are used with the iterative RPF. 100
independent runs are conducted. A large constant sample size is also used to have a
more ideal (but more expensive) EM algorithm (100 000 particles for the restricted
dataset).



176 8.6. IMPLEMENTATION OF ITERATIVE APPROACHES

Observations and remarks :

Real value Quadratic Increase Geometric Increase Constant (Max)
E(E(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y )) E(E(Θ|Y )) V(E(Θ|Y ))

µa 3.56 3.562 2.40e-5 3.560 9.18e-6 3.560 1.63e-6
γ0 0.625 0.626 3.3e-5 0.625 7.21e-6 0.625 2.69e-6
µγ 553.9 550.85 5.33 551.64 2.18 552.04 0.34
Stop iteration∗ (Time) 51 (61min) 41 (38min) 24 (102min)

Table 8.23: Comparison of strategies to increase the number of particles. Both
quadratic and geometric increases have a maximum of 100 000 particles, while the
constant configuration has 100 000 particles for each iteration. The results are based
on 100 independent runs, based on a full dataset (160 dates). The same stopping rule
is used for all the tests. ∗: EM iterations.

Figure 8.17 illustrates the two strategies based on the same observation dataset. In
Table 8.23, we compare the results of the two strategies with those that we obtained
with the constant number of particles. The geometric increase provided better results
compared to the quadratic increase. The increase of the number of particles takes
place every time that the Monte Carlo error in the evaluation of the Q-function is
considered to be significant, either by detecting a zig-zagging in parameter estimates,
or by a tolerant interval (See Section 5.2.1). Our preliminary tests have showed that
both criteria work with similar performance.
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Figure 8.17: Comparison of geometric and quadratic increases of the number of parti-
cles for the IRPF algorithm.

Without a strong effort to optimize the increasing strategy, the computational time
is reduced significantly. The results show that both increase techniques induce slightly
higher variability in the estimates among different runs of the algorithm than in the
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case with a constant number of particles. Consequently, the gain in computational
time from the decrease of the total number of simulations is counterbalanced by this
effect.

8.7 Conditional iterative approach for full param-

eter estimation

Until now, we are always under the assumption that the noise parameters of the
model are known, although in practice, this is generally not the case. To meet the
requirement of providing reasonable estimates for the noise parameters, some possible
conditional approaches are presented in Section 6.3 with SMC approaches or with
MCMC based methods. In the study case with simulated dataset, we illustrate the
two approaches when the noise estimation is combined with the Iterative RPF and
the Iterative AMwG algorithms. We highlight the fact that the noise estimation can
naturally carried out with all the Bayesian methods presented in this thesis as well.

This section is organized as follows, we first detail the implementation of the noise
parameter estimation combined with a MCMC base-method for functional parameter
estimation, then another noise parameter estimation method is presented when it is
combined with a SMC method which is used to estimate the functional parameters
and the hidden state variables. Finally, the corresponding results are compared with
a simulated dataset in both its complete and restricted form in order to evaluate the
impact of the lost of information.

8.7.1 Iterative AMwG with noise updates

Implementation description
We recall that the noise parameters {σ2

γγ, σ
2
q , σ

2
g , σ

2
r} are unknown and to be estimated,

as the six functional parameters of the LNAS model: {µa, λ, µγ, σγ, γ0, γf}. Regarding
the priors, Inverse Gamma prior distributions are assumed for the noise parameters,
and normal priors are assumed for the functional parameters:

σ2
γγ ∼ IG(ασγγ , βσγγ ),

σ2
q ∼ IG(ασq , βσq),

σ2
g ∼ IG(ασg , βσg),

σ2
r ∼ IG(ασr , βσr),

µa ∼ N (mµa , σ
2
µa)IR+ ,

λ ∼ N (mλ, σ
2
λ)IR+ ,

µγ ∼ N (mµγ , σ
2
µγ )IR+ ,

σγ ∼ N (mσγ , σ
2
σγ )IR+ ,

γ0 ∼ N (mγ0 , σ
2
γ0

)I(0,1),

γf ∼ N (mγf , σ
2
γf

)I(0,1).
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The target distribution (8.8) is accordingly updated:

π(Θ|x1:n, y1:n) ∝
n−1∏
t=0

1

σQγ(t)F t
Q(Qf (t); Θ)

· exp{−
(
Qf (t+ 1)−Qf (t)− γ(t)F t

Q(Qf (t); Θ)
)2

2
(
σQγ(t)F t

Q(Qf (t); Θ)
)2 }

n∏
t=1

1

σγγΓt(Θ)
· exp{−(γ(t)− Γt(Θ))2

2(σγγΓt(Θ))2
}

n−1∏
t=0

δQr(t+1),φ(Qf (t+1),γ(t),Qf (t),Qr(t))

n−1∏
t=0

1

σgF t+1
g (Qf (t+ 1); Θ)

· exp{−
(F t+1

g (Qf (t+ 1); Θ)− Y exp
g (t+ 1))2

2(σgF
t+1
Q (Qf (t+ 1); Θ))2

}

n−1∏
t=0

1

σrF t
r(Qr(t), Qf (t+ 1), γ(t); Θ)

· exp{−(F t
r(Qr(t), Qf (t+ 1), γ(t); Θ)− Y exp

r (t+ 1))2

2(σgF t
r(Qr(t), Qf (t+ 1), γ(t); Θ))2

}

· 1

σµaσλσσγσγfσµγσγ0

·
(

1− Φ(
−mµa

σµa
)

)−1(
1− Φ(

−mλ

σλ
)

)−1

·
(

1− Φ(
−mσγ

σσγ
)

)−1(
1− Φ(

−mµγ

σµγ
)

)−1

·
(

Φ(
1−mγf

σγf
)− Φ(

−mγf

σγf
)

)−1(
Φ(

1−mγ0

σγ0

)− Φ(
0−mγ0

σγ0

)

)−1

· exp{−(µa −mµa)
2

2σ2
µa

− (λ−mλ)
2

2σ2
λ

−
(σγ −mσγ )

2

2σ2
σγ

−
(γf −mγf )

2

2σ2
γf

−
(µγ −mµγ )

2

2σ2
µγ

− (γ0 −mγ0)2

2σ2
γ0

}

· 1

(σ2
γγ)

ασγγ+1(σ2
q )
ασq+1(σ2

g)
ασg+1(σ2

r)
ασr+1

· exp{−
βσγγ
σ2
γγ

−
βσq
σ2
q

−
βσg
σ2
g

− βσr
σ2
r

}

· I(µa > 0) · I(λ > 0) · I(σγ > 0)

· I(γf ∈ (0, 1)) · I(µγ > 0) · I(γ0 ∈ (0, 1)). (8.16)

Since in practice, direct simulation is difficult to achieve, here we propose an iterative
approach to update the functional parameters Θ1, the hidden state variables x1:n and
the noise parameters Θ2 in turns with three steps :
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• Initialization

– Choose initial values for Θ1, Θ2 and x1:n.

• Iteration

For i = 1, . . . ,m :
-Step 1 Estimate Θ1 by MH with a joint proposal {Θ1, x1:n} conditional to Θ2

until convergence is claimed.

-Step 2 Fix Θ1 to the estimated expectation and estimate x1:n conditional to
Θ1 and Θ2 by MH until convergence is claimed,

or, estimate x1:n by MH with a joint proposal {Θ1, x1:n} (the proposal distri-
bution for Θ1 is fixed to the posterior distribution obtained in Step 1) until
convergence is claimed.

-Step 3 Update Θ2 directly from the target distribution.

In the following, we detail each of the three steps.

• Step 1: sample {Θ1, X1:n} ∼ π(θ1, x1:n|y1:n,Θ2) (carried out by MH).

The objective of this step is to estimate the functional parameter vector Θ1 given
y1:n. The hidden state variables x1:n are introduced only in order to make the compu-
tation of the acceptance probability possible.

According to (8.12), the target distribution for the parameters can be simplified
in the case of six functional parameters, conditional to the four noise parameters. To
compute the acceptance ratio, we need to calculate :

p(y1:n|Θ, x1:n) · π(Θ) ∝
n∏
t=1

1

σgQ̃g(t)
· exp

{
−

(Q̃g(t)− Y exp
g (t))2

2(σgQ̃g(t))2

}
n∏
t=1

1

σrQ̃r(t)
· exp

{
−(Q̃r(t)− Y exp

r (t))2

2(σrQ̃g(t))2

}

· 1

σµaσλσσγσγfσµγσγ0

· exp{−(µa −mµa)
2

2σ2
µa

− (λ−mµλ)2

2σλ2

−
(σγ −mσγ )

2

2σ2
σγ

−
(γf −mγf )

2

2σ2
γf

−
(µγ −mµγ )

2

2σµγ2
− (γ0 −mγ0)2

2σ2
γ0

}

· I(µa > 0) · I(λ > 0) · I(σγ > 0)

· I(γf ∈ (0, 1)) · I(µγ > 0) · I(γ0 ∈ (0, 1)).

• Step 2: sample X1:n ∼ π(x1:n|y1:n,Θ1,Θ2) (carried out by MH).
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In the previous step, the candidate of the hidden state variables x1:n is simulated
based on the candidate of Θ1 only in the objective to compute the acceptance ratio.
For the sake of computational efficiency, it is simulated only once which clearly does
not optimize the trajectory given y1:n. Given the fact that the hidden state estimates
are required to update the noise parameters, in this step, we aim to improve the hidden
states estimates given the posterior distribution of Θ1 provided by step 1 when it has
converged. Thus a nested new Markov chain is built for this purpose.

- If Θ1 is fixed to the mean estimate, then according to Equation (4.12), the compu-
tation of acceptance ratio requires :
For t = 1, . . . , n :

p(X(t+ 1)|X(t),Θ)p(Y (t)|X(t),Θ)

∝ 1

σQγ(t)F t
Q(Qf (t); Θ)

· exp{−
(
Qf (t+ 1)−Qf (t)− γ(t)F t

Q(Qf (t); Θ)
)2

2
(
σQγ(t)F t

Q(Qf (t); Θ)
)2 }

· 1

σγγΓt+1(Θ)
· exp{−(γ(t+ 1)− Γt+1(Θ))2

2(σγγΓt+1(Θ))2
}

· δQr(t+1),φ(Qf (t+1),γ(t),Qf (t),Qr(t))

· 1

σgF t
g(Qf (t); Θ)

· exp{−
(F t

g(Qf (t); Θ)− Y exp
g (t))2

2(σgF t
Q(Qf (t); Θ))2

}

· 1

σrF t−1
r (Qr(t− 1), Qf (t), γ(t− 1); Θ)

· exp{−(F t−1
r (Qr(t− 1), Qf (t), γ(t− 1); Θ)− Y exp

r (t))2

2(σgF t−1
r (Qr(t− 1), Qf (t), γ(t− 1); Θ))2

}. (8.17)

- If Θ1 is drawn from the posterior distribution obtained in step 1, then according
to (4.13), the same result as (8.17) can be obtained to compute the acceptance ratio.
Note that in this case, an independence sampler is used for Θ1 instead of a random
walk proposal as the case in Step 1.

N.B.

This step can be regarded as building another Markov chain dedicated only to the
estimation of x1:n, in which the noise parameters are considered fixed, as a result, the
samples are not used to construct the posterior distribution of Θ1.

• Step 3: update Θ2 ∼ π(θ2|x1:n, y1:n,Θ1).

Once the estimations of the hidden states have converged, the noise parameters
are updated. Conjugate priors are chosen for the noise parameters Θ2 with the aim
of realizing an explicit update by simulating from the corresponding full conditional
distributions (8.16):
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σ2
q ∼ IG

(
ασq + n

2
, βσq +

1

2

n−1∑
t=0

(
Qf (t+ 1)−Qf (t)− γ(t)F t

Q(Qf (t); Θ)
)2(

γ(t)F t
Q(Qf (t); Θ)

)2

)
,

σ2
γγ ∼ IG

(
ασγγ + n

2
, βσγγ +

1

2

n−1∑
t=0

(
γ(t)− Γt(Θ)

)2

Γt(Θ)2

)
,

σ2
g ∼ IG

(
ασg + n

2
, βσg +

1

2

n−1∑
t=0

(
F t+1
g (Qf (t+ 1); Θ)− Y exp

g (t+ 1)
)2

(
F t+1
g (Qf (t+ 1); Θ)

)2

)
,

σ2
r ∼ IG

(
ασr + n

2
, βσr +

1

2

n−1∑
t=0

(
F t
r(Qr(t), Qf (t+ 1), γ(t); Θ)− Y exp

r (t+ 1)
)2

(
F t
r(Qr(t), Qf (t+ 1), γ(t); Θ)

)2

)
.

Note that this three steps should be iterated, until the convergence of both Θ1 and Θ2.
Similar stopping rules used in the implementation of MCMC without noise parameter
update can be used, the details of which can be found in Section 4.1.5.

Synthetic study case
The estimation framework presented is applied to a simulated dataset in both its
complete and restricted forms. The objective is to evaluate the robustness of this
approach when applied to the LNAS model.

Settings :

In this tests, two different initializations are carried out in each case and the averag-
ing technique (Cappé et al. (2005)) is used to smooth parameter estimates after a small
burn-in period. One simulated dataset is used in both its complete form and restricted
form. A maximum of 350000 iterations are defined for each iteration (E-step) with the
restrict dataset and 150 000 iterations respectively for complete dataset. The standard
errors of the variability of parameter estimates from independent runs of the algorithm
(20 repetitions based on the same dataset) are also given, which corresponds to the al-
gorithmic uncertainty. The log-likelihood values of the estimates are estimated by the
means of 10 independent evaluations (the standard errors were small, approximately
0.005).

Observations and remarks :

The parameters’ real values and the estimation results are presented in Table 8.24.
As expected, the one chain AMwG based EM variant does not cope well with the
complete dataset due to the variance degeneracy, as illustrated by Table 8.24 for both
initializations. The log-likelihood evaluations indicate that the estimates are quite
poor. The important variance between the estimates implies that the method may
suffer from the updated prior distribution during the initialization of each EM iter-
ation, which becomes narrower and narrower and can exhibit important influence in
the computation for the acceptance ratio and constrain the evolution of the chain.
However, when confronting the restricted dataset, the method does provide generally
better results. Regarding the difference between the estimates resulted from the two
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different priors, in the case of restricted dataset it is more remarkable.

This result suggests that the one chain AMwG may not be suitable to perform
the E-step of the EM variant algorithm with complete datasets. In the following, the
iterative RPF/CPF algorithm is performed with the same configuration of the test.

Initialization 1
Initial distribution Restricted dataset ♠ Full dataset ♣

Parameter Real value
µ0 σ0 E(E(Θ|Y ))

√
V(E(Θ|Y )) E(E(Θ|Y ))

√
V(E(Θ|Y ))

µa 3.56 3.40 0.15 3.650 0.052 3.567 0.072

λ 56.6 60.0 5.0 59.71 0.86 55.83 2.34

γ0 0.625 0.58 0.10 0.676 0.042 0.623 0.011

γf 0.1035 0.12 0.025 0.081 0.028 0.050 0.027

µγ 550.0 500.0 50.00 495.41 8.36 628.24 23.73

σγ 950.0 880.0 50.00 1373.29 35.71 1682.52 47.53

σg 0.1 σ2
g ∼ IG(25, 2) 0.109 0.007 0.090 0.002

σr 0.1 σ2
r ∼ IG(25, 2) 0.112 0.008 0.104 0.003

σq 0.05 σ2
q ∼ IG(55, 2) 0.039 0.003 0.048 0.002

σγγ 0.05 σ2
γγ ∼ IG(55, 2) 0.048 0.003 0.052 0.002

273.75 ♠ 853.74 ♠
272.76 0.70 1907.50 7.20

−2L(Θ̄)
1870.70 ♣ 34624.20 ♣

Initialization 2
Initial distribution Restricted dataset ♠ Full dataset ♣

Parameter Real value
µ0 σ0 E(E(Θ|Y ))

√
V(E(Θ|Y )) E(E(Θ|Y ))

√
V(E(Θ|Y ))

µa 3.56 3.60 0.15 3.670 0.067 3.568 0.065

λ 56.6 52.0 5.0 59.87 0.98 55.70 1.78

γ0 0.625 0.7 0.10 0.684 0.045 0.624 0.009

γf 0.1035 0.09 0.025 0.072 0.031 0.053 0.028

µγ 550.0 580.0 50.00 511.12 12.53 627.47 19.66

σγ 950.0 1000.0 50.00 1589.75 46.91 1790.25 46.91

σg 0.1 σ2
g ∼ IG(25, 2) 0.097 0.007 0.092 0.002

σr 0.1 σ2
r ∼ IG(25, 2) 0.103 0.008 0.102 0.003

σq 0.05 σ2
q ∼ IG(55, 2) 0.047 0.003 0.048 0.002

σγγ 0.05 σ2
γγ ∼ IG(55, 2) 0.050 0.002 0.051 0.003

273.75 ♠ 776.93 ♠
272.826 0.79 1916.42 8.59

−2L(Θ̄)
1870.70 ♣ 8212.03 ♣

Table 8.24: Comparison of the estimations resulting from two different initializations
with one chain AMwG based EM variant, both for the restricted (maximum of 350 000
iterations for each E-step) and the complete dataset (maximum of 150 000 iterations
for each E-step). ♠: estimated log-likelihood based on the restricted dataset (14 dates);
♣: estimated log-likelihood based on the complete dataset (160 dates).

8.7.2 Iterative RPF with noise updates

For the filtering approaches, the noise estimation can be carried out only at the end
of the algorithm. Hence, we have to update the noise parameters Θ2 and the functional
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parameters Θ1 in turns with the proposed estimators. Nevertheless, we highlight that
this noise estimation approach can also be combined with other Bayesian methods,
such as the MCMC-based methods.

In the following, we propose four estimators for both modelling noise parameters
and observation noise parameters which are built based on the estimation of the aug-
mented hidden states vector.

Implementation descriptions
In the application of LNAS model, we recall that the modelling noises ηQ appear in
the biomass production process (2.1):

Q(t) = F t
Q(Qf (t); Θ) · (1 + ηQ(t)),

and ηγ in the biomass allocation process (2.4):

γ(t) = Γt(Θ) · (1 + ηγ(t))

= (γ0 + (γf − γ0) ·Ga(τ(t))) · (1 + ηγ(t)).
Since

Qr(t+ 1) = F t
r(Qr(t), Qf (t+ 1), γ(t); Θ),

= Qr(t) + (1− γ(t)) ·Q(t)

= Qr(t) +
1− γ(t)

γ(t)
(Qf (t+ 1)−Qf (t)),

Qf (t+ 1) = Qf (t) + γ(t) ·Q(t).

and

Qg(t) = F t
g(Qf (t); Θ) = Qf (t)−Qs(t),

the observation vector depends only on Qf (t) and Qr(t), which is why they are chosen
as hidden state variables to estimate. We emphasize again that the hidden state
variables and the functional parameters Θ1 can be estimated by either the Bayesian
approaches presented in Chapter 4 or the iterative approaches presented in Chapter
5, based on the observations y0:n. In our first application, this approach is combined
with the iterative filtering approach IRPF.

The obtained estimates Q̂0:n
r and Q̂0:n

f can be used to deduce γ̂0:n and Q̂0:n:

γ̂(t) =
Q̂f (t+ 1)− Q̂f (t)

Q̂r(t+ 1)− Q̂r(t) + Q̂f (t+ 1)− Q̂f (t)
,

Q̂(t) =Q̂r(t+ 1)− Q̂r(t) + Q̂f (t+ 1)− Q̂f (t).
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Thus, by using the estimated functional parameter vector Θ̂1, the estimators of the
standard error of the modelling noise ηQ denoted σq, and the standard error of the
modelling noise ηγ denoted σγγ, can be defined as follows :

Definition 8.7.1 (Estimator of modelling noise parameter)

σ̂q =

√√√√ 1

n− 1

n∑
t=1

(
Q̂(t)− F t

Q(Q̂f (t); Θ̂1)

F t
Q(Q̂f (t); Θ̂1)

)2

,

σ̂γγ =

√√√√ 1

n− 1

n∑
t=1

(
γ̂(t)− Γt(Θ̂1)

Γt(Θ̂1)

)2

.

In the same way, the estimator of the standard errors for the observation noises εg
and εr can be derived:

Definition 8.7.2 (Estimator of observation noise parameter)

σ̂g =

√√√√ 1

Nobs − 1

Nobs∑
n=1

(
Y g
tn − F tn

g (Q̂f (tn); Θ1)

F tn
g (Q̂f (tn); Θ1)

)2

,

σ̂r =

√√√√ 1

Nobs − 1

Nobs∑
n=1

(
Y r
tn − Q̂r(tn)

Q̂r(tn)

)2

.

with Nobs the number of available observation data.

The conditional estimation process begins with the estimation of Θ1 given Θ2,
then Θ2 is estimated empirically based on the estimates of the hidden states. The
estimation then proceeds with the new value of Θ2 and iterates. The convergence of
both Θ1 and Θ2 are claimed by a standard stopping rule based on the relative changes
in the estimations during three successive estimations (See Section 8.6.1).

Synthetic study case
For the conditional IRPF approach, the following tests are carried out to evaluate and
to improve its efficiency when applied to the LNAS model with simulated dataset.

List of the tests for the conditional IRPF approaches :

I Influence of priors and of missing data

II Uncertainty assessment with parametric bootstrap

III Strategy to increase the number of particles
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I Influence of priors and of missing data
Settings :

In the following tests, two different initializations are tested with both the full
dataset and the restricted dataset derived from the full dataset. The averaging tech-
nique (Cappé et al. (2005)) is used to smooth parameter estimates after a small burn-in
period. One simulated dataset is used in both its complete form and restricted form. A
maximum of 350000 iterations are defined for each iteration (E-step) with the restrict
dataset and 150 000 iterations respectively for complete dataset. The standard errors
of the variability of parameter estimates from independent runs of the algorithm (20
repetitions based on the same dataset) are also given, which corresponds to the algo-
rithmic uncertainty. The log-likelihood values of the estimates are estimated by the
means of 10 independent evaluations (the standard errors were small, approximately
0.005).

Note that usually, five estimations in turns of the functional and noise parameters
are performed.

Observations and remarks :

The iterative RPF/CPF provides better estimates in terms of Log-likelihood eval-
uation compared to the former results given by the MCMC based approach, as demon-
strated by Table 8.25, for both the restricted dataset and the complete dataset. It is
thus more suitable to perform the E-step for this EM variant algorithm.

As in the previous test case, estimations are carried out based on two initial dis-
tributions. We remark again that for the complete dataset the estimates based on
these two different initializations are very close, which suggests a negligible effect of
the initial distributions. However, for the restricted dataset, there is a difference in the
estimates of the last three parameters (γf , µγ, σγ) and the effect of the initialization
seems to be non negligible, especially in the case of σγ. This can be explained by the
sensitivity of model outputs Qg and Qr to parameters. A sensitivity analysis of the
LNAS model based on Sobol’s method is presented in chapter 9 and the results show
that the last three parameters are the least influential ones among the six which are
estimated. The increased variability of these parameters (see the corresponding stan-
dard deviations) from independent runs of the algorithm (20 repetitions) based on the
same dataset is also an argument in this direction, since the great loss of information
for the restricted dataset seems to affect their estimation quality.

The results of log-likelihood evaluations also seem to suggest that despite that
the estimated MLE could slightly differ from two different initializations, the most
sensitive functional parameters can be estimated without difficulty even in the case of
the restricted dataset, together with the observation and model noise parameters. It
may as well be confirmed by the results given by the AMwG based algorithm 8.24.

By comparing the estimation results (with the same initialization) between the
restricted and the complete dataset, we also conclude that the estimates of the most
influential parameters are closer to the real values with the complete dataset than the
restricted one, as expected, due to the great amount of missing information.
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Initialization 1
Initial distribution Restricted dataset ♠ Full dataset ♣

Parameter Real value
µ0 σ2

0 E(E(Θ|Y ))
√
V(E(Θ|Y )) E(E(Θ|Y ))

√
V(E(Θ|Y ))

µa 3.56 3.40 0.15 3.664 0.049 3.564 0.005

λ 56.6 60.0 5.0 59.73 0.22 55.68 0.12

γ0 0.625 0.58 0.10 0.679 0.026 0.628 0.002

γf 0.1035 0.12 0.025 0.088 0.013 0.047 0.006

µγ 550.0 500.0 50.00 492.91 2.44 624.55 9.07

σγ 950.0 880.0 50.00 1338.75 20.25 1633.29 98.66

σg 0.1 0.08 - 0.083 0.001 0.091 0.001

σr 0.1 0.08 - 0.106 0.001 0.108 0.001

σq 0.05 0.035 - 0.047 0.006 0.037 0.005

σγγ 0.05 0.035 - 0.059 0.010 0.061 0.005

273.75 ♠ 853.74 ♠
- 271.12 0.36 1858.81 3.25

−2L(Θ̄)
1870.70 ♣ 34624.20 ♣

Initialization 2
Initial distribution Restricted dataset ♠ Full dataset ♣

Parameter Real value
µ0 σ2

0 E(E(Θ|Y ))
√
V(E(Θ|Y )) E(E(Θ|Y ))

√
V(E(Θ|Y ))

µa 3.56 3.60 0.15 3.668 0.058 3.566 0.003

λ 56.6 52.0 5.0 59.94 0.50 55.73 0.07

γ0 0.625 0.7 0.10 0.686 0.036 0.628 0.002

γf 0.1035 0.09 0.025 0.070 0.024 0.048 0.005

µγ 550.0 580.0 50.00 510.24 4.60 623.14 6.69

σγ 950.0 1000.0 50.00 1610.93 46.88 1609.01 82.70

σg 0.1 0.08 - 0.106 0.002 0.091 0.001

σr 0.1 0.08 - 0.083 0.001 0.108 0.001

σq 0.05 0.035 - 0.048 0.008 0.040 0.004

σγγ 0.05 0.035 - 0.055 0.012 0.060 0.004

273.75 ♠ 776.93 ♠
- 271.07 0.654 1858.52 2.54

−2L(Θ̄)
1870.70 ♣ 82812.03 ♣

Table 8.25: Comparison of the estimations from two different initializations with iter-
ative RPF/CPF (EM variant), both for the restricted (maximum of 350 000 iterations
for each E-step) and the complete dataset (maximum of 150 000 iterations for each
E-step). ♠: estimated log-likelihood based on the restricted dataset (14 dates); ♣:
estimated log-likelihood based on the complete dataset (160 dates).

II Uncertainty assessment with parametric bootstrap

The uncertainty related to parameter estimation is evaluated by parametric boot-
strap. As a better approximation of the MLE, we considered the means from the
estimates of both initializations. In Table 8.26 we present the results that we obtained
with a bootstrap sample of size 100. Except for the least influential parameters, the
bootstrap means are very close to the MLE in the case of the complete dataset, but
when a great amount of data is missing a small bias is introduced. By comparing the
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standard deviations of the estimates for the complete and the restricted dataset, it
is clear that the additional amount of information reduces considerably the standard
deviations of all the estimated parameters, except for the 3 least influential functional
parameters. Moreover, the standard deviations of γf and σγ are prohibitively high to
allow for reliable estimations. However, for all the other parameters, despite the in-
creased standard deviations in the case of the restricted dataset, we finally get reliable
estimates of the true values within the range of one standard deviation.

Restricted dataset ♠ Full dataset ♣

Parameter Real value
MLE Mean Std. MLE Mean Std.

µa 3.560 3.666 3.615 0.137 3.565 3.567 0.058

λ 56.6 59.8 57.7 4.6 55.7 55.7 1.2

γ0 0.625 0.680 0.660 0.057 0.628 0.626 0.017

γf 0.1035 0.079 0.097 0.033 0.048 0.040 0.030

µγ 550.00 501.58 503.60 77.95 623.85 633.29 53.62

σγ 950.00 1474.84 1292.37 314.81 1621.15 1852.70 308.58

σg 0.1 0.106 0.101 0.016 0.108 0.106 0.005

σr 0.1 0.083 0.079 0.021 0.091 0.092 0.006

σq 0.05 0.047 0.049 0.012 0.038 0.038 0.004

σγγ 0.05 0.057 0.054 0.016 0.061 0.052 0.006

Table 8.26: Uncertainty assessment in the case of both restricted and complete simu-
lated datasets by parametric bootstrap. The means and the standard deviations are
given on the basis of a 100-bootstrap sample for the restricted (14 dates) and the
complete (160 dates) datasets.

III Strategy to increase the number of particles

Settings :

Like in the previous test case without the noise parameter (Θ2) estimation, we
compare the results of the geometric increase (from 60 000 to 150 000 particles) with
those that we obtained with the constant number of particles (150 000 particles) under
the same settings as in the previous test case.

Observations and remarks :

In Table 8.27, the results confirm that the geometric increase induces higher vari-
ability in the estimates among different runs than in the case with a constant particle
number, we also remark that the computational time was reduced by 23%, thus the
gain in computational time from the decrease of the total number of simulations is
counterbalanced by this effect. Further investigations can be conducted in this direc-
tion to seek for the most efficient use of Monte Carlo resources.

In Figure 8.18 and Figure 8.19, we illustrate the convergence of the estimations of
the six functional parameters and four noise parameters respectively for the restricted
dataset based on a single run of the algorithm. The modelling noise parameters appear
to converge to a flatter distribution than the observation noise parameters, especially
for σγγ.
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Initial distribution Constant → Geometric increase ↑
Parameter Real value

Mean Std. Mean estimate Std. Mean estimate Std.

µa 3.56 3.40 0.15 3.664 0.049 3.662 0.082

λ 56.6 60.0 5.0 59.73 0.22 59.67 0.54

γ0 0.625 0.58 0.10 0.679 0.026 0.677 0.063

γf 0.1035 0.12 0.025 0.088 0.001 0.089 0.001

µγ 550.0 500.0 50.00 492.91 2.44 495.27 7.71

σγ 950.0 880.0 50.00 1338.75 20.25 1372.40 32.92

σg 0.1 0.08 - 0.106 0.001 0.107 0.002

σr 0.1 0.08 - 0.083 0.001 0.085 0.001

σq 0.05 0.035 - 0.047 0.006 0.051 0.008

σγγ 0.05 0.035 - 0.059 0.010 0.061 0.013

−2L(Θ̄) 273.75 853.74 - 271.02 0.36 271.29 0.34

Table 8.27: Comparison of parameter estimates with two different configurations of
particle numbers based on 200 independent runs. →: a constant number of 150 000
particles. ↑: starting from 60 000, the number of particles increases geometrically until
a maximum number of 150 000.

Figure 8.18: Evolution of the averaged estimates of the six functional parameters:
µa, λ, γ0, γf , µγ and σγ with the iterative RPF algorithm (35 0000 particles) for the
restricted dataset.
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Figure 8.19: Evolution of the estimated values of the four noise parameters: µa, λ,
γ0, γf , µγ and σγ with the RPF-EM algorithm (35 0000 particles) for the restricted
dataset.

8.8 Estimation with real experimental data

In this section, we present the identification results from a real dataset with the
LNAS model, where parameter estimation is performed either in the Bayesian frame-
work with MCMC and SMC based methods, or in the frequentist framework with
the iterative version of the filtering methods and parametric bootstrap for uncertainty
assessment.

8.8.1 Data description

This dataset concerns limited experimental observations realized by the French
institute for Sugar Beet research in 2010 (details of the experimental protocols are
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presented in Baey and Cournède (2011)). Dry matter of root (denoted by Qr) and
leaves (denoted by Qg) were collected on 50 plants at 14 different dates. The observa-
tion vector, which records at each available date the average mass per square meter,
is given by Table 8.28.

n 54 68 76 83 90 98 104 110 118 125 132 139 145 160
Yn,1 85.2 372.9 447.6 440.8 620.4 523.8 541.4 620.2 627.5 757.6 760.5 598.3 670.7 628.4
Yn,2 23.1 199.8 302.4 409.2 709.2 768.1 863.9 1232.5 1498.8 1770.2 1878.2 1913.7 2118.4 2274.7

Table 8.28: Experimental dataset provided by the French institute for Sugar beet
research (ITB) based on an experiment in 2010. 14 dates of measurement are available
(denoted by n). The observation vector contains the averaged mass (from 50 plants)
per square meter of green leaf compartment (denoted by Yn,1) and root compartment
(denoted by Yn,2) in g.

8.8.2 Bayesian approaches

Based on the 2010 experimental dataset, we first aim to carry out the Bayesian
based methods for functional parameter estimation. All the Bayesian methods studied
previously are applied. The objective is to evaluate and to compare their performance
with real experimental data.

List of the tests for the conditional IRPF approaches :

I Preliminary test (with six parameters)

II Model selection

III Method comparison

I Preliminary test

Settings :

According to sensitivity analysis (results of which can be found in Section 9.2.2),
those functional parameters {µa, λ, γ0, γf , µγ, σγ} which has a total order index over
0.02 are chosen to be estimated. Since the noise parameters are not included in the sen-
sitivity analysis, all the four of them are estimated. Three Bayesian based approaches,
AMwG, RPF and EnKF are first applied.

Observations and remarks :

According to the results given by Table 8.29, for the functional parameters, RPF
and AMwG provided similar estimates while for noise parameters, especially σγγ, the
three methods gave different opinions. Moreover, we observe the slow mixing behaviour
for AMwG, since the acceptance rate is very low (≈ 0.08). This is probably due to
a strong correlation among the parameters, thus, they evolve very slowly and showed
an important dependence on the prior distribution. Similar problem occurred for
the filtering methods as well, the noise parameter update of σγγ also appears to be
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unstable with important estimated variance, which implies identifiability problem. The
estimations given by the three methods are quite different, especially regarding the
variance estimates.

Prior AMwG RPF EnKF
µ0 σ2

0 E(Θ|Y ) V(Θ|Y ) E(Θ|Y ) V(Θ|Y ) E(Θ|Y ) V(Θ|Y )

µa 3.40 0.04 3.556 0.006 3.551 0.005 3.507 0.013

λ 58.0 9.0 59.29 4.51 58.95 4.90 56.99 6.94

γ0 0.90 0.01 0.8496 0.00116 0.8452 0.00108 0.8106 0.00161

γf 0.18 0.0025 0.178 0.00042 0.177 0.00038 0.211 0.00054

µγ 650.0 1600.0 647.42 921.23 650.1 946.91 644.99 1184.28

σγ 350.0 900.0 350.30 843.22 351.68 898.55 317.07 889.90

σg σ2
g ∼ IG(25, 2) 0.139 9.2e-6 0.140 1.3e-5 0.157 1.4e-5

σr σ2
r ∼ IG(25, 2) 0.163 9.5e-6 0.165 2.4e-5 0.166 3.1e-5

σq σ2
q ∼ IG(55, 2) 0.040 2.2e-7 0.046 2.5e-5 0.053 2.4e-5

σγγ σ2
γγ ∼ IG(55, 2) 0.038 2.4e-7 0.061 1.6e-4 0.071 2.5e-4

DIC 336.21 331.32 331.39 332.04

Table 8.29: Comparison of the estimations resulted from the one chain AMwG and
RPF in the case of the 2010 experimental dataset.

(a) µa (b) λ (c) γ0

(d) γf (e) µγ (f) σγ

Figure 8.20: Histogram of the posterior distributions of the six functional parameters:
µa, λ, γ0, γf , µγ and σγ in the LNAS model estimated by one chain AMwG (5000 000
iterations) with noise estimation based on the 2010 experimental dataset.
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(a) µa (b) λ (c) γ0

(d) γf (e) µγ (f) σγ

Figure 8.21: Normality test of the posterior distributions of the six functional parame-
ters: µa, λ, γ0, γf , µγ and σγ with QQplot in the LNAS model estimated by one chain
AMwG (5000 000 iterations) with noise estimation based on the 2010 experimental
dataset.

Figure 8.21 provides the normality test result of all the six posterior distributions,
which are illustrated in Figure 8.20. All the posteriors appear to be Gaussian, except
γ0. Considering that a large number of samples (5000 000 iterations) are included, this
result is not surprising. However, it also suggests that no multimodality was detected
and affirms that standard error is representative and capable of characterizing the
variability within the normal-like posterior distribution.

Given the fact that these methods do not cope well with this parameter, a Bayesian
model selection is carried out aiming at the most appropriate configuration with the
noise level which provides the best fitting.

II Model selection

In a general way, the estimation of the modelling noise parameters seem to be less
stable than those of the observation noise parameters, and therefore may be evaluated
via model selection methods and fixed in the following analysis.
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Settings :

As presented in Chapter 6, a grid of 10 modelling noise levels is formed for the
parameter σγγ to determine its optimum choice according to the Deviance Information
Criterion.

Different configurations of the number of functional parameters are also evaluated.
The order of the reduction of the parameter vector is give by the sensitivity analysis,
detailed in Section 6.1. The values of those parameters that are not estimated are fixed
according to their recommended values. Considering the Bayesian model selection
framework, the most suitable selection criterion is DIC. The RPF approach is used
to calibrate the model under different configuration, since it is more efficient than
one chain AMwG (as shown in the computational comparison in Section 8.5.4), and
provides similar result according to the previous tests.

d 1 2 3 4 5 6
σγγ DIC
0.00 329.92 326.01 322.10 324.03 326.01 332.40
0.01 329.10 325.88 322.15 323.89 325.92 331.98
0.02 329.05 325.49 321.98 323.92 325.93 332.09
0.03 328.85 325.53 322.02 324.11 325.71 331.94
0.04 327.97 325.48 321.95 323.86 325.66 331.81
0.05 327.95 325.77 321.80 324.08 325.41 331.42
0.06 328.14 325.61 321.93 323.79 325.44 331.39
0.07 328.08 326.01 321.89 323.82 325.60 331.54
0.08 328.17 325.82 322.27 323.94 325.69 332.01
0.09 329.52 326.21 323.41 323.93 325.82 332.12
0.10 329.29 327.58 324.69 324.06 326.07 332.04

Table 8.30: Evaluation of DIC with increasing number of functional parameters to
estimate in the LNAS model based on the 2010 experimental dataset.

d 1 2 3 4 5 6
E(Θ|Y )

√
V(Θ|Y ) E(Θ|Y )

√
V(Θ|Y ) E(Θ|Y )

√
V(Θ|Y ) E(Θ|Y )

√
V(Θ|Y ) E(Θ|Y )

√
V(Θ|Y ) E(Θ|Y )

√
V(Θ|Y )

γ0 0.9699 0.0130 0.9716 0.0146 0.8607 0.0340 0.8420 0.0316 0.8346 0.0304 0.8486 0.0329
µa 3.500 - 3.393 0.035 3.554 0.078 3.565 0.076 3.559 0.070 3.558 0.073
µγ 550.00 - 550.00 - 659.41 28.17 655.56 29.27 643.62 30.23 649.20 31.77
λ 60.00 - 60.00 - 60.00 - 59.13 2.12 59.03 2.02 59.54 2.08
γf 0.150 - 0.150 - 0.150 - 0.150 - 0.196 0.018 0.177 0.020
σγ 300.00 - 300.00 - 300.00 - 300.00 - 300.00 - 350.52 29.69

σg 0.161 - 0.158 - 0.152 - 0.148 - 0.150 - 0.145 -
σr 0.202 - 0.197 - 0.171 - 0.166 - 0.165 - 0.160 -
σq 0.081 - 0.076 - 0.060 - 0.062 - 0.058 - 0.048 -
σγγ 0.050 - 0.050 - 0.050 - 0.050 - 0.05 - 0.050 -

D̄ 343.90 335.51 332.82 333.82 333.54 332.46
D(Θ̄) 359.84 345.24 343.82 343.56 341.66 330.50
DIC 327.96 325.76 321.80 324.08 325.41 331.42

Table 8.31: Evaluation of DIC with increasing number of functional parameters to
estimate in the LNAS model based on the 2010 experimental dataset. The noise
parameter σγγ is fixed at 0.05. d: Number of functional parameters.
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Observations and remarks :

The results showed in Table 8.30 suggest that the modelling noise parameter σγγ is
better fixed at 0.05 based on the DIC. As for the number of functional parameters to
estimate, the best fitting is obtained in the case of three functional parameters which
are the most influential ones to the model based on the parameter screening method
of sensitivity analysis.

Therefore, the model calibration is carried out again with this obtained configura-
tion.

III Method comparison

In the following test, all the Bayesian estimation methods and GLS are applied to
the 2010 experimental dataset. The objective is to evaluate their performance facing
real experimental scenario.

Settings :

The configuration of three functional parameters and three noise parameters ob-
tained in the previous test is adopted. The noise parameter σγγ is fixed to 0.05. The
stopping criteria are used for each method to evaluate their estimation efficiency and
computational cost. Noted that for GLS, although the estimation is performed with
the deterministic version of the model, the observation noise parameters σg and σr can
still be estimated with the estimators given in Section 6.3. However, the modelling
noise parameters cannot be estimated, since no hidden state estimations are provided
by the method.

Prior MCMC DREAM Interacting
µ0 σ0 E(Θ|Y )

√
V(Θ|Y ) E(Θ|Y )

√
V(Θ|Y ) E(Θ|Y )

√
V(Θ|Y )

µa 3.40 0.20 3.553 0.079 3.554 0.071 3.554 0.059
γ0 0.90 0.10 0.8612 0.0341 0.8599 0.0302 0.8594 0.0236
µγ 650.0 40.0 658.08 28.18 658.98 25.22 659.31 19.90
σg σ2

g ∼ IG(21, 2) 0.148 0.002 0.151 0.002 0.149 0.002
σr σ2

r ∼ IG(21, 2) 0.165 0.002 0.168 0.003 0.164 0.002
σq σ2

q ∼ IG(56, 2) 0.039 0.001 0.040 0.002 0.038 0.001
−2L(Θ̄) 348.52 344.63 344.89 344.72
DIC 343.72 321.77 322.25 321.85

GLS∗ RPF EnKF UKF
E(Θ|Y )

√
V(Θ|Y ) E(Θ|Y )

√
V(Θ|Y ) E(Θ|Y )

√
V(Θ|Y ) E(Θ|Y )

√
V(Θ|Y )

µa 3.653 0.102 3.554 0.078 3.557 0.062 3.410 0.090
γ0 0.8120 0.0354 0.8607 0.0340 0.8995 0.0876 0.8717 0.0299
µγ 707.47 36.44 659.41 28.17 652.00 33.48 666.20 28.33
σg 0.138 - 0.152 0.002 0.148 0.003 0.167 0.005
σr 0.155 - 0.171 0.002 0.165 0.003 0.191 0.008
σq - - 0.060 0.003 0.045 0.004 0.065 0.007

−2L(Θ̄) 338.186 343.82 357.34 360.20
DIC - 321.80 324.51 332.17

Table 8.32: Comparison of the estimations resulting from the one chain AMwG,
DREAM, Interacting MCMC, GLS, RPF, EnKF and UKF in the case of the 2010
experimental dataset with noise parameter σγγ fixed to 0.05. GLS∗: the estimation is
performed based on the deterministic version of the LNAS model.
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Observations and remarks :

Like in the case of simulated data presented previously, the three MCMC-based
methods provided very close estimations. According to Table 8.32, similar results are
also given by RPF. The DIC confirms their comparable estimation qualities, with the
estimates of AMwG and RPF slightly better than those of the others. EnKF and UKF
depend on normal assumptions, and UKF suffers from limited samples, their estimates
are thus less accurate. The part of variability explained by the noises is thus more
important.
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Figure 8.22: Autocorrelation of estimations given by the one chain AMwG based on
the 2010 experimental dataset with noise parameter σγγ fixed to 0.05.

The corresponding computational cost is given for all the above methods.

UKF EnKF AMwG Interacting MCMC DREAM RPF/CPF
Number of simulations 15 200 000 186 500 62 000a 153 700b 200 000

CPU time 2s 12m46s 11m18s 1h27m 58m 16m13s
Real computational time 2s 6m11s 11m18s 15m22s 9m17s 7m58s

Memory (Gb) 4e-3 2.85 2.48 3.34 6.41 14.27

Table 8.33: The averaged computational cost of three functional parameter estimation
based on the 2010 experimental dataset, performed by one chain AMwG, DREAM,
Interacting AMWG, RPF, UKF, EnKF and GLS. a: Interacting MCMC is performed
with 1000 chains. b: DREAM is performed with 9 chains.

GLS provided the best point estimation based on the likelihood evaluation, how-
ever, since for the Bayesian methods, only the MMSE estimator is used instead of the
MAP estimator, the likelihood evaluation based on the mean estimates is not really
comparable.

For AMwG, the autocorrelation function is evaluated (Figure 8.22). In the case
that only three functional parameters are estimated, the acceptance rate obtained is
close to 22%, which also confirms an appropriate behaviour of convergence.

In Table 8.33, the computational cost of all the methods considered are given. This
result illustrates the advantage of the parallel computation. Although RPF requires
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more memory than the other methods, considering its estimation results, the real
computational time is very reasonable. In the meantime, among the MCMC-based
methods, the parallel chains did not help to reduce the computational time. For
DREAM, the convergence of all the chains are difficult to obtain, and for Interacting
MCMC, the 1000 parallel chains appear to be computational expensive.

8.8.3 Frequentist based iterative approaches

For the following tests, attempts are made to put more emphasis on the data
despite the lack of information. The iterative scheme is considered. Since the iterative
approaches aim to an point estimation that maximize the likelihood evaluation, to
perform the model comparison, MAP based criterion such as AIC and BIC are more
suitable, and are thus chosen.

We note that the model selection can also be carried out under this context to
identify the best combination of noise parameters to estimate and the complexity of
the model, as what we have performed for the Bayesian based approaches. However,
this test is extremely computationally expensive with iterative based filtering methods
with noise parameter assessment. Therefore, in this study, all the noise parameters
are estimated by the conditional approaches.

Model selection

Settings :

Based on the sensitivity analysis (results detailed in Section 9.2.2), the model se-
lection for the functional parameters is carried out with IRPF performing the fitting.

d 1 2 3 4 5 6
2L 345.65 341.97 338.52 335.77 332.76 329.47
AIC 347.65 345.97 344.52 343.77 342.76 341.47
AICc 347.80 346.45 345.52 345.50 345.49 345.49
BIC 348.98 348.63 348.52 349.10 349.42 349.46

Table 8.34: Evaluation of AIC, AICc and BIC with increasing number of functional
parameters to estimate in the LNAS model based on the 2010 experimental dataset.
All the four noise parameters are estimated.

Observations and remarks :

Unfortunately, according to Table 8.34, the opinion is not shared by different cri-
teria which put us in a dilemma. The AIC favours the model with six functional
parameters estimated, while the BIC prefers the model with three functional parame-
ters. AICc gives similar evaluation among the model with 3-6 parameters. To illustrate
the performance of the iterative approaches, we decided to estimate the six functional
parameters and the four noise parameters with the iterative approaches.
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Parameter estimation
Settings :

The uncertainty related to parameter estimation was assessed by parametric boot-
strap, by averaging the estimates obtained from both initializations for IRPF, and
the estimation yields the best log-likelihood evaluation for IAMwG. The estimation
results are presented in Table 8.36 together with estimated standard errors from 100
independent runs. The Monte Carlo sample size was increased geometrically and other
implementation details are similar to those that have been used for the simulated data,
which can be found in Section 8.6.

We finally compare the different filtering methods in the iterative framework. For
the conditional IRPF approach, 60 000 particles were initialized with the same prior
distributions as for the conditional IEnKF and IUKF approach. The maximum number
of particles is 350 000. For the conditional IEnKF approach, an ensemble size of 350 000
is adopted for the comparison purpose. A parametric bootstrap is also implemented
to evaluate the estimates’ uncertainty. Standard deviations and confidence intervals
are hence obtained from 300 bootstrap samples. The corresponding results are given
in Table 8.39.

Observations and remarks :

In Table 8.37, we present the means and the standard deviations of a 300-bootstrap
sample. Notice that the estimates of the three most important parameters (high sen-
sitivity indices) are very satisfactory, with low standard deviations relatively to their
mean values. Nevertheless, the estimations from the least influential parameters are
less satisfactory with higher standard deviations as expected from the simulated case.
A small bias in the mean estimated values from the bootstrap sample also confirms
the difficulty in estimating these parameters. Note also that the estimates of the noise
parameters are satisfactory.

Initialization I Initialization II
Parameter Initial distribution Estimation Initial distribution Estimation

µ0 σ0 E(E(Θ|Y ))
√
V(E(Θ|Y )) µ0 σ0 E(E(Θ|Y ))

√
V(E(Θ|Y ))

µa 3.40 0.2 3.563 0.078 3.45 0.4 3.599 0.092
λ 58.0 3.0 59.40 2.14 57.0 5.0 59.36 3.36
γ0 0.90 0.10 0.849 0.034 0.78 0.15 0.834 0.040
γf 0.18 0.05 0.188 0.021 0.20 0.05 0.198 0.023
µγ 650.0 40.0 642.01 32.12 630.00 50.0 640.81 36.21
σγ 350.0 30.00 319.96 28.84 300.0 40.0 306.13 36.58
σg 0.10 - 0.138 0.003 0.12 - 0.139 0.001
σr 0.10 - 0.152 0.003 0.12 - 0.155 0.001
σq 0.02 - 0.040 0.009 0.03 - 0.041 0.010
σγγ 0.05 - 0.058 0.011 0.03 - 0.062 0.012
−2L 347.82 - 333.44 0.36 338.71 - 335.96 0.43

Table 8.35: Comparison of the functional and noise parameter estimations resulting
from two different initializations based on the one chain AMwG performed E-step of
the iterative approach, in the case of the 2010 experimental dataset.

Note that in Table 8.36, the influence of the initialization is negligible for all the
parameters but σγ, which is the least influential parameter. This is also suggested
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by the small difference of the log-likelihood evaluations at the corresponding solutions.
The variability from independent runs of the algorithm was relatively high for the mod-
elling noise parameters (σq, σγγ), but by averaging a moderate number of independent
runs a better precision can be obtained.

Initialization I Initialization II
Parameter Initial distribution Estimation Initial distribution Estimation

µ0 σ0 E(E(Θ|Y ))
√
V(E(Θ|Y )) µ0 σ0 E(E(Θ|Y ))

√
V(E(Θ|Y ))

µa 3.40 0.2 3.565 0.062 3.45 0.4 3.563 0.059
λ 58.0 3.0 59.78 0.37 57.0 5.0 59.33 0.46
γ0 0.90 0.10 0.844 0.017 0.78 0.15 0.836 0.021
γf 0.18 0.05 0.190 0.002 0.20 0.05 0.198 0.001
µγ 650.0 40.0 642.64 5.96 630.00 50.0 641.02 6.46
σγ 350.0 30.00 319.59 13.62 300.0 40.0 297.78 14.80
σg 0.10 - 0.142 0.004 0.12 - 0.143 0.001
σr 0.10 - 0.164 0.004 0.12 - 0.167 0.001
σq 0.02 - 0.042 0.012 0.03 - 0.043 0.012
σγγ 0.05 - 0.064 0.012 0.03 - 0.064 0.012
−2L 347.82 - 331.17 0.23 338.71 - 331.18 0.26

Table 8.36: Comparison of the estimations resulting from two different initializations
based on the iterative RPF/CPF approach (EM variant), in the case of the 2010
experimental dataset.

RPF MLE Mean Std.

µa 3.564 3.562 0.123

λ 59.55 59.70 3.13

γ0 0.840 0.843 0.044

γf 0.194 0.182 0.053

µγ 642.33 654.89 62.40

σγ 308.69 336.62 109.95

σg 0.142 0.143 0.032

σr 0.165 0.158 0.024

σq 0.042 0.039 0.008

σγγ 0.064 0.073 0.015

MCMC MLE Mean Std.

µa 3.563 3.565 0.169

λ 59.40 59.15 3.57

γ0 0.849 0.850 0.062

γf 0.188 0.182 0.077

µγ 642.01 651.05 73.64

σγ 319.96 346.56 181.97

σg 0.138 0.139 0.006

σr 0.152 0.151 0.005

σq 0.040 0.039 0.002

σγγ 0.058 0.060 0.003

Table 8.37: Uncertainty assessment of estimates based on the 2010 experimental
dataset performed by parametric bootstrap and Iterative RPF and Iterative MCMC
(EM variant with the E-step performed by RPF or MCMC).

IUKF IEnKF IAMwG IRPF
CPU time 1m11s 4h13s 5h37s 6h13s

Real computational time 1m11s 1h42m 5h37s 2h21s
Memory (Gb) 0.15 6.51 6.19 25.47

Table 8.38: The averaged computational cost for the point estimation of 100 tests,
performed by the four iterative methods IEnKF, IRPF, IUKF and IAMwG, based on
the 2010 experimental dataset.
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IEnKF IRPF IUKF IAMwG GLS∗

E(E(P |Y ))
√
V(E(P |Y )) E(E(P |Y ))

√
V(E(P |Y )) E(E(P |Y ))

√
V(E(P |Y )) E(E(P |Y ))

√
V(E(P |Y )) E(P |Y )

√
V(P |Y )

µa 3.600 0.154 3.564 0.123 3.900 0.270 3.563 0.169 3.591 0.142

λ 60.16 6.51 59.55 3.13 60.18 6.49 59.40 3.57 59.49 7.96

γ0 0.830 0.087 0.840 0.044 0.800 0.064 0.849 0.062 0.824 0.112

γf 0.206 0.058 0.194 0.053 0.216 0.048 0.188 0.077 0.202 0.078

µγ 639.39 83.28 642.33 62.40 579.98 73.75 642.01 73.64 651.87 77.20

sa 276.18 149.83 308.69 109.95 338.31 44.89 319.96 181.97 277.72 228.59

σg 0.137 0.028 0.142 0.032 0.156 0.070 0.138 0.006 0.132 -

σr 0.166 0.027 0.165 0.024 0.193 0.092 0.152 0.005 0.149 -

σq 0.040 0.004 0.042 0.008 0.052 0.048 0.040 0.002 - -

σγγ 0.061 0.002 0.064 0.015 0.072 0.031 0.058 0.003 - -

−2L 334.75 - 329.46 - 353.37 - 333.44 - 329.97 -

Table 8.39: Estimated values and standard deviations for all the parameters of the
LNAS model provided by the iterative approaches as an EM variant with IEnKF,
IRPF, IUKF and IAMwG to perform the E-step. GLS∗: GLS is performed with the
deterministic version of the model.

Prior AMwG RPF EnKF
µ0 σ2

0 E(Θ|Y ) V(Θ|Y ) E(Θ|Y ) V(Θ|Y ) E(Θ|Y ) V(Θ|Y )

µa 3.40 0.04 3.556 0.006 3.551 0.005 3.507 0.013

λ 58.0 9.0 59.29 4.51 58.95 4.90 56.99 6.94

γ0 0.90 0.01 0.8496 0.00116 0.8452 0.00108 0.8106 0.00161

γf 0.18 0.0025 0.178 0.00042 0.177 0.00038 0.211 0.00054

µγ 650.0 1600.0 647.42 921.23 650.1 946.91 644.99 1184.28

σγ 350.0 900.0 350.30 843.22 351.68 898.55 317.07 889.90

σg σ2
g ∼ IG(25, 2) 0.139 9.2e-6 0.140 1.3e-5 0.157 1.4e-5

σr σ2
r ∼ IG(25, 2) 0.163 9.5e-6 0.165 2.4e-5 0.166 3.1e-5

σq σ2
q ∼ IG(55, 2) 0.040 2.2e-7 0.046 2.5e-5 0.053 2.4e-5

σγγ σ2
γγ ∼ IG(55, 2) 0.038 2.4e-7 0.061 1.6e-4 0.071 2.5e-4

DIC 336.21 331.32 331.39 332.04

Table 8.40: Comparison of the estimations resulted from the one chain AMwG, RPF
and EnKF in the case of the 2010 experimental dataset.

Compared to the iterative RPF, Table 8.35 suggests that the iterative AMwG
based algorithm provides estimates that are more dependent of the initial distribution.
Unlike the RPF approach, the shrinkage of the variance results in a more important
variability between the estimates given by independent runs for the iterative AMwG.

Since the IAMwG cannot be performed in a parallelized way as for the other SMC
based iterative approaches, according to Table 8.39, it is the most time consuming.
Judging from the estimation performance and the computational cost, despite the
important memory requirement, IRPF appears to be the most efficient method.
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We recall the estimation results (Table 8.29) given by the same Bayesian approaches
(without the iterative scheme). In comparison, the iterative approaches provide results
with better likelihood evaluations. In counterpart, the iterative approaches are much
more computational expensive.

8.9 Discussion

Despite built on different inference bases, globally, all the three types of methods,
the generalized nonlinear least squares method, the MCMC-based methods and the
filtering methods illustrate their robustness in model calibration facing the dynamic
state-space plant growth model LNAS. Only UKF based methods showed less good fits
compared to the other methods (Table 8.39 and Table 8.32) due to its small sample size
and the dependence of the normal assumption. GLS often gives unrealistic confidence
intervals (CI for sa with the 2010 experimental data), while other methods perform
better in this respect yet with a much longer computational time. If only judging on
the mean estimates, the estimations of iterative approaches yield better log-likelihood
evaluation than the Bayesian approaches, which can be understood since they put more
emphasis on the data and the prior distributions weight less in the final estimations.
Although GLS mean estimates seem to score the best the log-likelihood evaluation
in various occasions, the fact that it considers only the best fit estimate instead of
probability distribution makes the error term less meaningful. In the meantime, GLS
aims to find the MLE by avoiding the local maximums, while in the plant growth
context, sometimes the local maximums are preferred for they are biologically more
interpretable. On the other hand, the GLS estimator retains only the parameter set
that illustrates the best fit, while the mean estimates of the Bayesian based methods
provide the most frequently visited value, therefore, their estimates are not comparable.

If we compare the MCMC-based methods and the filtering methods, both of them
are Monte Carlo methods. However, in the Bayesian framework, the MCMC-based
methods are iterative while the filtering methods are not, for the former aim at
p(X0:n|Y0:n) while the latter compute only p(Xn|Y0:n). The filtering methods have
the advantage of being sequential, and therefore being able to process on-line, while
the MCMC-based methods cannot. Yet to achieve the off-line parameter estimation
objective, the MCMC-based methods appear to be more stable with less important
algorithmic error (Monte Carlo error). The inconvenient part is the need of full con-
ditional distributions or the tuning of the instrumental proposal distribution in the
MCMC-based algorithms, although the latter can be solved by applying an adaptive
scheme. Conventionally, a successful implementation of the MCMC-based methods
(achieve interpretable convergence) requires a pertinent prior knowledge of the studied
subject and a good practice of the MCMC algorithms, whereas the filtering methods
have usually less tuning parameters, there is no need of burn-in period, the concept is
easier to understand and thus the implementation is simpler. The small drawback is
that for an efficient exploration of the state-space, an important number of simulations
are necessary.

Furthermore, regarding the computational cost, both the parallel-chain methods
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and the SMC methods can be parallelized when a large sample size is required, while
the one chain AMwG cannot. The counterpart for the parallel MCMC is that the
convergence is difficult to achieve when an important number of chains are imple-
mented. The burn-in period is difficult to define for each of the chains and therefore
the posterior composed of pooled samples from all the chains are less accurate than
one chain AMwG. In the case of Interacting MCMC, by taking only the last sample of
each chain, although the mean estimation is very accurate for the computational power
is concentrated on the zone of interest by the importance sampling scheme, unfortu-
nately, a sampling bias is accordingly introduced, for the samples with less important
acceptance probability are rarely visited. Therefore, despite its efficiency of finding
the mean estimates, the resulting posterior is often less flat than it ought to be. This
could be potentially an issue for an appropriate uncertainty assessment, and influence
the future prediction results.

As a result, the following selection technique is suggested. If a rapid estimation is
required to get a rough idea of the parameters, then the GLS is recommended when no
prior information is available, and the Interacting MCMC is recommended when the
user has a prior knowledge on the studied subject with a good understanding of the
MCMC-based methods. On the other hand, if there is no time constraint, with a good
knowledge of the MCMC based methods, a one chain AMwG is advised, so that the
target distribution can be inferred appropriately. Finally, a compromise between the
estimation quality and the computational time are CPF/RPF and EnKF, which are
simple to develop and to implement and can be parallelized to be even more efficient.

N.B.

The model selection step is performed with RPF while other estimation methods can
also be considered, which could potentially results in different conclusions.

In this study, only normal priors are used while non-informative uniform priors can
also be used.
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CHAPTER 9

Prediction and
Uncertainty Assessment
with Data Assimilation

Sequential data assimilation techniques are considered as invaluable tools due to
their capability to improve prediction performances. The conventional strategy

is to use reference models like SUCROS (Guérif and Duke, 1998, 2000; Launay and
Guérif, 2005) or CERES (Dente et al., 2008) and to integrate the information obtained
by remote sensing to enhance the prediction quality. A few methods were developed
under this perspective (see Dorigo et al. (2007) for a review). The forcing method
consists in replacing a state variable of the model by the observed data (Delécolle
et al. (1992); Dente et al. (2008)). However, a considerable part of the model state
variables cannot be or are not observed and thus cannot be updated simultaneously
at each time step. Moreover, the method does not take into account the observation
error, which should not be neglected considering the general lack of accuracy of remote
sensing data.

Another approach is to use the available observation data to recalibrate some model
parameters and / or initial states that may presumably vary with local conditions
(Bouman, 1992; Guérif and Duke, 2000; Launay and Guérif, 2005). The drawback of
this method is that it requires a sufficient number of data to perform the calibration,
which is often costly and difficult to obtain. Besides, the global approach of this
calibration step usually fails to capture and to maintain the system dynamics and thus
is unable to improve the prediction accuracy.

In other research domains, the data assimilation problem have been commonly
reformulated and studied with a Bayesian probabilistic perspective, which allows the
sequential estimation of model states and parameters simultaneously (Jazwinski, 1970;
Van Leeuwen and Evensen, 1996) in the framework of generalized state-space models.
The most important applications concern weather forecasting (e.g. Anderson (2001))
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and hydrology (e.g. Reichle et al. (2002)).

In plant growth modelling, the first attempt to adapt a relatively simple crop model
into this perspective was made by Makowski et al. (2004). The method implementa-
tion relies on a probabilistic framework of crop model which is used to derive prior
distributions of the model state variables and parameters at time steps with available
observations while taking into account uncertainty in model prediction. Conditionally
to the experimental observations and the observation error, posterior distributions are
deduced according to Bayes’ law. An updated prediction of the model state variables
can thus be inferred. The procedure is repeated at all measurement dates. Classical
filtering methods used for this purpose are Ensemble Kalman Filter (see Jones and
Graham (2006) for an application in the context of crop models). However, among
many competing data assimilation approaches, the Particle Filters, have gained their
popularity because they are adaptive to nonlinearity and non-Gaussianity (see Naud
et al. (2007) for an application in the context of crop models).

However, one important constraint of this approach lies on the fact that it requires
the plant growth model described in a probabilistic framework, as a hidden Markov
model (Cappé et al., 2005). The classical and complex crop models (like STICS (Bris-
son et al., 1998), APSIM (Keating et al., 2003), CERES (Jones and Kiniry, 1986),
etc.) are not built in this perspective and their stochastic reformulation is therefore
far from straightforward: the large number of involved processes may potentially lead
to a drastic increase in the number of parameters to model process errors. One simple
solution to circumvent this problem is to only consider observation errors (Guérif et al.,
2006), but it may hinder a proper update of hidden state variables.

In this context, aiming at integrating limited information from different levels in
order to comprehend and to predict reasonable outcome, we propose in this chap-
ter a generic approach for data assimilation and prediction purpose in plant growth
modelling, which consists of 3 steps: sensitivity analysis, model calibration and data
assimilation. The performance of the data assimilation techniques with both Kalman
filter based methods and particle filter based methods are tested in the prediction of
biomass production and allocation in a dynamically evolving plant-growth model that
can be formalized as a nonlinear stochastic state-space model. We demonstrate that
this approach can also cope with classical complex crop models like STICS, originally
built in a deterministic framework.

The chapter is organized as follows. We first outline the full methodology proposed
for plant growth model prediction which consists of three principal steps. For each step,
the concerning methods and algorithms are presented, followed by the application to
the LNAS and STICS models with real experimental scenarios. Experimental data
collected in a different year, location or with a new cultivar are used for prediction.
The performances of the different algorithms are compared and the prediction related
issues are discussed.
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9.1 Three-step approach for prediction

With the purpose of achieving proper predictions with plant growth models given
some experimental datasets, which can be considered as a way to provide prior knowl-
edge, in this thesis, we propose a three step approach which consists of parameter
selection, parameter estimation and data assimilation. In the first place, the least
influential model parameters are screened using sensitivity analysis methods (Campo-
longo et al.Campolongo et al. (2007)) and are thus fixed to either their recommended
values, or the center value of their prior confidence intervals. Here, we consider cases
in which no satisfying problem specific prior distributions are available for the consid-
ered parameters, so that a first calibration step is performed on a previously obtained
dataset in a similar context to provide appropriate prior distributions. Afterwards, the
obtained prior distributions are used for data assimilation applications during which
experimental data of early growth stages are assimilated to improve model prediction
at later stages. Of course, the preliminary calibration step can be skipped if satisfying
prior distributions are available.

9.1.1 Parameter selection

The estimation of the unknown parameters from the available experimental data is
an important step. The prediction performance of the model depends on the accuracy
of the model calibration (Makowski et al., 2006). However, it is unrealistic to estimate
all the model parameters based on a limited dataset, for identifiability problem may
occur, especially when a complex model with an important number of parameters is
considered. Moreover, it is suggested that by fixing some parameters, the uncertainty
related to the estimated parameters could be reduced (Guo et al., 2006; Lamboni et al.,
2011). Therefore, a common strategy can be described as follows :

1. Select a subset of the model parameters and rank them according to sensitivity
analysis. Fix the least influential parameters to some nominal values (Wallach
et al., 2002; Monod et al., 2006).

2. Based on the ranking provided by sensitivity analysis, decide the number of
parameters to estimate based on the selection criteria (AIC / AICc / BIC /
DIC) according to the estimation method employed.

Sensitivity analysis

When a model contains a large number of parameters, as it is often the case for plant
growth models, parameter estimation based on limited experimental data is usually
considered to be a key issue which may affect strongly the quality of model prediction
with important estimates uncertainty. Therefore, sensitivity analysis (Campolongo
et al., 2007; Monod et al., 2006) can be applied in advance to select the most influential
parameters to be estimated, whereas those screened as the least influential ones can
be fixed to any values in their domains, conventionally the mean values are chosen. In
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the context of sensitivity analysis, this method is called “screening” or “factor fixing”
(Campolongo et al., 2007).

With this purpose, we implement the algorithm proposed by Wu et al. (2012)
to compute Sobol’s indices (first order and total order) of all the parameters of the
studied model based on its deterministic version. The generalized least-square criteria
is chosen as the output for the variance decomposition and the parameters are ranked
according to their total-order indices. More details of this method can be found in
Section 6.1.

We remark that a potentially important issue in sensitivity analysis can be the
determination of the distributions representing the uncertainty in the inputs, partic-
ularly when the parameters are empirical with no explicit biological meaning, and
specific methods have to be devised for this purpose (Wernsdörfer et al., 2008). Gen-
erally speaking, in crop models, all the functions represent well-known processes, as
for sugar beet with the LNAS model or for winter wheat with the STICS model, with
an important literature, so that it is relatively easy to assess proper variation intervals
for the parameters. The question for us is the following: for each parameter, what is
the reasonable range of possible values, or when calibrating our system what would
be acceptable values for the parameters? In regards to such criteria, it also seems
appropriate to select the uniform distribution after assessing the appropriate variation
intervals. Moreover some tests were performed by increasing the range of the least im-
portant parameters while decreasing the range of the most important ones to check the
possible bias induced by the choice of the ranges, but it did not affect the importance
ranking of the parameters, which is the result of interest for parameter screening.

Model selection criteria

Once the influence and the ranks of the parameters are determined, the parameter
selection problem is equivalent to a model selection problem in which candidate models
have different numbers of parameters. From a model with only one parameter (the
most influential one) to the model with all the parameters, the number of parameters
is increased one by one with respect to the ranking of the parameters. In other words,
the most influential parameters have the priority to be included in the model. The
objective is to find a balance between the complexity of the model and the quantity
of the data available based on an appropriate selection criterion. Indeed, by adding
more parameters to estimate, the likelihood can be increased. Unfortunately, this may
also entails overfitting. To avoid this problem, model selection criteria conventionally
take into account a penalty term for the number of parameters to estimate, such
as the Akaike Information Criterion (AIC), the corrected AIC (known as AICc which
contains an additional correction term for finite sample size), the Bayesian Information
Criterion (BIC) and the Deviance Information Criterion (DIC) usually considered for
Bayesian inference.

For the detailed description of these criteria, please refer to Section 6.2.
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9.1.2 Parameter estimation

In this step, numerous parameter estimation methods can be carried out based on
the calibration dataset. In this thesis, both Bayesian and frequentist perspectives are
considered. First, we distinguish the selected functional model parameters Θ1 from
the noise model parameters Θ2. A joint update scheme is adopted to estimate Θ1 and
Θ2 as follows (detailed in Section 6.3) :

the estimation of the selected functional parameters Θ1 are conducted with different
methods, mainly with both MCMC based methods (Adaptive MCMC, Interacting
MCMC, DREAM) and filtering-based SMC methods (UKF, EnKF, RPF). In addition,
we also employ one frequentist approach, the Generalized Least Squares estimator,
which is commonly used in plant growth model calibration.

Moreover, in order to put more emphasis on the calibration dataset and to reduce
the influence of the prior distribution, an iterative scheme is considered and formulated
as a variant of an EM type of algorithm. More precisely, the posterior distribution of
iteration k is regarded as the prior distribution for iteration k+1 as if the same dataset
is repeatedly obtained. In this way, the lack of available data can be mended. However,
since this iterative framework results in diminishing variances that approach 0, the
uncertainty related to the unknown parameters is assessed by parametric bootstrap.
(For a theoretical justification of this approach when normal priors are used for the
selected parameters, please refer to Section 5.1).

Note that except with GLS, all the other methods allow an estimation of hidden
state variables combined with the estimation of Θ1. Once the estimation of Θ1 and
the hidden states variables of interest are converged, the modelling and measurement
noises Θ2 can thereafter be evaluated. Three methods are proposed in this thesis to
evaluate the noise parameters : noise parameter selection, noise parameter update with
conjugate priors for MCMC based methods and empirical estimation (see Chapter 6
for detailed descriptions).

Based on our tests presented in Chapter 8, we propose in Table 10.1 a strategy with
the objective to select the most appropriate method according to the type of situation,
the specific need / emphasis in this step.

9.1.3 Data assimilation

In this prediction step, a new experimental dataset, comparable to the calibration
dataset (for instance same type of crop but observed in a different year, or at a different
location, or of different genotype...) with few early measurements is introduced. With
the purpose of performing predictions of yield or other state variables of interest, an
on-line filtering approach (such as EnKF, CPF/RPF and UKF) can again be carried
out by regarding the results of the calibration step as prior information (Chen and
Cournède, 2014). In this step, the probability density is represented by a large number
of samples (particles) which evolve with time. Hence, after a short readjustment period
while model parameters and state variables are updated based on the available mea-
surements, the particles continue to propagate so as to forecast the system evolution
and to evaluate the uncertainty related to these state variables of interest.
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Conditions Recommended method(s)

• Time constraint, no reliable prior,

only point estimation is needed ⇒ GLS

• Time constraint, slightly non linear model ⇒ UKF

• Unknown parameter vector with important dimension ⇒ DREAM

• Precision of the mean value ⇒ Interacting MCMC

• Reliable prior, need precise CI%, no time constraint,

implementation expertise in MCMC ⇒ One long run AMwG

• Reliable prior, time constraint ⇒ CPF, EnKF

• Less reliable priors ⇒ Iterative SMC, especially ICPF/IRPF

Table 9.1: Selection strategy for estimation method.

Note that as a stochastic approach, the prediction and the data assimilation results
entail Monte Carlo errors. To reduce the uncertainty related to both the mean esti-
mates and the variance estimates, in our implementation, a large number of particles
are chosen (350 000) which generally ensure an appropriate precision.

Comparison criteria
For method comparison purpose, the Root Mean Squared Error for Prediction (RM-
SEP) and Relative Error (RE) are chosen as the criteria to evaluate the quality of
prediction in our application, for they seem to be the most suitable considering the
structure of our data.

If n denotes the total number of prediction dates, Ŷi and Y exp
i denote the mean

predicted value and the experimental observation for the ith prediction date respec-
tively, then for each type of observation (Qg and Qr in our application), the RMSEP
is defined as :

RMSEP =

√
E[(Y exp − Ŷ )2].

The unbiased estimator of RMSEP can be defined as follows (Wallach et al., 2006) :

ˆRMSEP =

√√√√ 1

n

n∑
i=1

(Ŷi − Y exp
i )2.

The RE can be obtained by :

RE =
1

Y exp
i

|Ŷi − Y exp
i |.

9.2 Application to the LNAS model

9.2.1 Experimental data

The data used for this study were obtained by the French institute for sugar beet
research (ITB, Paris, France) in 2006, 2008 and 2010 with slightly different cultivars
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and in different locations with different observed densities (details of the experimental
protocols can be found respectively in Lemaire et al. (2008), Lemaire et al. (2009) and
Baey et al. (2013a)). For the test case, the 2010 dataset is chosen for estimation since
more observation points are available compared to the other five datasets (of course, in
real applications, the older datasets are supposed to be used for parameter estimation).
Dry matter of root and leaves were collected on 50 plants at 14 dates (in days after
sowing):

O2010 = {54, 68, 76, 83, 90, 98, 104, 110, 118, 125, 132, 139, 145, 160} .

whereas for assimilation and prediction, other datasets (2006 and 2008) are used. The
same type of observations were made at 7 different dates given by

O2006 = {54, 59, 66, 88, 114, 142, 198} ,

and

O2008 = {39, 60, 67, 75, 88, 122, 158} ,

respectively. For each plant, the green foliage mass denoted by Qg and the root com-
partment mass denoted by Qr were measured. The observation vector Yn is obtained
by averaging each data on all the samples and extrapolated at m2 level by multiplying
by the observed density.

We note that among the four 2008 datasets used for assimilation in different
density conditions, three of them are of the same genotype as in the 2010 dataset
(11.9 plants/m2) Radar, but with different density conditions (5.4 plants/m2, 10.9
plants/m2, 16.4 plants/m2). The other 2008 dataset is of a different genotype Harmo-
nia with a density of 10.7 plants/m2. As for the 2006 dataset, the density condition is
9.6 plants/m2.

9.2.2 Results and method comparison

Step 1.1: Parameter ranking by Sensitivity Analysis

Sobol’s indices (first order and total order) of all the functional parameters of the
LNAS model (without counting the noises parameters) were computed using a gen-
eralized least-squares criterion as output (see Cournède et al. (2013)). According to
the sensitivity analysis result, we screened the parameters µsen and ssen, as their total
order indices are all below 0.02. We note that for these two senescence related param-
eters, some complementary experimental data can be used to determine appropriate
values. For the six other functional parameters, we choose to use the model selection
approach to determine which of them will be estimated from the experimental data.



210 9.2. APPLICATION TO THE LNAS MODEL

Figure 9.1: Comparison of the first and total order indices for parameters of the LNAS
model: µa, λ, γ0, γf , µγ, sa, µsen, ssen.

Step 1.2: Model selection
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Figure 9.2: (a): Model selection based on the DIC with σγγ fixed at 0.05 for the
Bayesian approaches. (b): Model selection based on the AIC, the AICc and the BIC
for the iterative approaches with all the noise parameters estimated.

Settings :

Based on the sensitivity analysis results, the full unknown parameter vector for the
deterministic part of the model is assumed to be Θ1 = (µγ, λ, µa, γ0, γf , sa) and the
unknown noise parameter vector is Θ2 = (σQ, σγ, σg, σr). To determine the number
of parameters to estimate, a model selection is conducted. RPF is performed with
different configurations of the LNAS model to determine the best fitting. Due to the
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identifiability issue of the modelling noise parameter σγγ, its value is fixed for the
Bayesian approaches, while for the frequentist iterative approaches, all the four noise
parameters are estimated. The implementation details and detailed test results can
be found in Section 8.8.2 for Bayesian inference and Section 8.8.3 respectively for the
iterative approaches.

Observations and remarks :

Figure 9.2 sums up the model selection results. For the Bayesian approaches, the
Deviance Information Criterion suggests that the model of three functional param-
eters outperforms the others. On the other hand, for the iterative approaches, the
three model selection criteria give different conclusions. For the purpose of illustrat-
ing the robustness of the proposed iterative approach, the model with six functional
parameters is selected and considered as the most robust one. Moreover, the AIC are
generally preferred in a prediction context.

Step 2: Parameter Estimation

For this second step, we can perform the parameter estimation with any of the
methods presented in Chapters 4 and 5 based on the 2010 experimental dataset. Below,
we recall the results obtained in Chapter 8 for the two types of approaches :

– the Bayesian approaches with three functional parameters estimated {µa, µγ, γ0}
as suggested by the DIC,

– the iterative approaches with six functional parameters estimated {µa, λ, µγ, σ2
γ, γ0, γf}

as suggested by the AIC and AICc.

Note that the estimates given by the frequentist method GLS are also listed as a
reference.

Step 2a: Parameter Estimation with Bayesian approaches

The Bayesian inference is carried out based on the 2010 experimental dataset. The
Bayesian approaches presented in Chapter 4 are implemented, the configuration and
the implementation details of which are detailed in Section 8.8.2. Here we simply recall
the obtained results (Table 8.32).

Step 2b: Parameter Estimation with iterative approaches

In the same fashion, the iterative approaches presented in Chapter 5 are applied
to the 2010 dataset. The obtained results are summarized in Table 8.39. For more
details regarding the implementation, please refer to Section 8.8.3.
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Prior AMwG DREAM Interacting

µ0 σ0 E(P |Y )
√
V(P |Y ) E(P |Y )

√
V(P |Y ) E(P |Y )

√
V(P |Y )

µa 3.40 0.20 3.553 0.079 3.554 0.071 3.554 0.059

γ0 0.90 0.10 0.8612 0.0341 0.8599 0.0302 0.8594 0.0236

µγ 650.0 40.0 658.08 28.18 658.98 25.22 659.31 19.90

σg σ2
g ∼ IG(21, 2) 0.148 0.002 0.151 0.002 0.149 0.002

σr σ2
r ∼ IG(21, 2) 0.165 0.002 0.168 0.003 0.164 0.002

σq σ2
q ∼ IG(56, 2) 0.039 0.001 0.040 0.002 0.038 0.001

−2L(θ̄) 348.52 344.63 344.89 344.72

DIC 343.72 321.77 322.25 322.94

GLS∗ RPF EnKF UKF

E(P |Y )
√
V(P |Y ) E(P |Y )

√
V(P |Y ) E(P |Y )

√
V(P |Y ) E(P |Y )

√
V(P |Y )

µa 3.653 0.102 3.554 0.078 3.557 0.062 3.410 0.090

γ0 0.8120 0.0354 0.8607 0.0340 0.8995 0.0876 0.8717 0.0299

µγ 707.47 36.44 659.41 28.17 652.00 33.48 666.20 28.33

σg 0.138 - 0.152 0.002 0.148 0.003 0.167 0.005

σr 0.155 - 0.171 0.002 0.165 0.003 0.191 0.008

σq - - 0.060 0.003 0.045 0.004 0.065 0.007

−2L(θ̄) 338.186 343.82 357.34 360.20

DIC - 321.80 322.51 332.17

Table 9.2: Comparison of the estimations resulting from the one chain AMwG,
DREAM, Interacting MCMC, GLS, RPF, EnKF and UKF in the case of the 2010
experimental dataset with noise parameter σγγ fixed to 0.05. GLS∗: reference results.
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IEnKF IRPF IUKF IAMwG GLS∗

E(E(P |Y ))
√
V(E(P |Y )) E(E(P |Y ))

√
V(E(P |Y )) E(E(P |Y ))

√
V(E(P |Y )) E(E(P |Y ))

√
V(E(P |Y )) E(P |Y )

√
V(P |Y )

µa 3.600 0.154 3.564 0.123 3.900 0.270 3.563 0.169 3.591 0.142

λ 60.16 6.51 59.55 3.13 60.18 6.49 59.40 3.57 59.49 7.96

γ0 0.830 0.087 0.840 0.044 0.800 0.064 0.849 0.062 0.824 0.112

γf 0.206 0.058 0.194 0.053 0.216 0.048 0.188 0.077 0.202 0.078

µγ 639.39 83.28 642.33 62.40 579.98 73.75 642.01 73.64 651.87 77.20

sa 276.18 149.83 308.69 109.95 338.31 44.89 319.96 181.97 277.72 228.59

σg 0.137 0.028 0.142 0.032 0.156 0.070 0.138 0.006 0.132 -

σr 0.166 0.027 0.165 0.024 0.193 0.092 0.152 0.005 0.149 -

σq 0.040 0.004 0.042 0.008 0.052 0.048 0.040 0.002 - -

σγγ 0.061 0.002 0.064 0.015 0.072 0.031 0.058 0.003 - -

−2L 334.75 - 329.46 - 353.37 - 333.44 - 329.97 -

Table 9.3: Estimated values and standard deviations for all the parameters of the
LNAS model provided by the iterative approaches as an EM variant with IEnKF,
IRPF, IUKF and IAMwG to perform the E-step. GLS∗: reference results.

Step 3: Data Assimilation and model prediction

In this step, a SMC filtering method is used to perform data assimilation and model
prediction based on a new dataset. The model calibrations carried out by both the
Bayesian inference and the iterative approaches are considered.

Step 3a: Data Assimilation with the calibrations performed by Bayesian
inference

We first investigate the predictive capacity of the Bayesian estimates. The posterior
distribution resulting from the Bayesian inference was used as prior information in the
assimilation step, in which the (classical) CPF algorithm is applied.

Data assimilation and model prediction with three functional parameters
In this first attempt, the optimized configuration obtained in the previous model se-
lection step (estimation with three functional parameters) is adopted. The objective
is to compare the prediction results with and without data assimilation of data from
the early growth stages.

Settings :

For both the 2006 and 2008 datasets, 500000 particles are simulated, all but the
last two measurements (corresponding to data until day 114 for the 2006 dataset, and
until day 88 for the 2008 dataset) are used to update and correct the parameter and the
state estimates. The propagation of particles through the stochastic dynamic model is
carried on without any further correction until day 198 for the 2006 dataset and day 158
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for the 2008 dataset. At last, the simulated values of the state variables Qg and Qr on
day 142 and day 198 (resp. day 122 and day 158 for the 2008 dataset) given by all the
particles as well as their associated weights are used to build the posterior predictive
distributions, from which both the mean prediction and the credibility interval are
obtained.

In order to provide reference values of the prediction without assimilation, an Un-
certainty Analysis (UA) is performed. 500000 particles are initialized in the same way
as in the CPF approach, from the prior distribution given by the parameter estima-
tion step, and the distribution of the model outputs of interest is approximated by
propagating independently through the stochastic dynamic system all the particles.
No parameter or state update is performed from the experimental data of the early
stages.

Observations and remarks :

The prediction results based on the Bayesian estimations seem to be unsatisfac-
tory after being performed with both the 2006 and 2008 datasets (Tables 9.4 and 9.5
respectively). Almost all the predictions relative errors are above 10% for the 2006
dataset, which is quite disappointing. The relative errors for the Qg prediction of the
2008 dataset appear also to be quite significant. The estimation of EnKF which is
associated with larger variance in the calibration step seems to show slightly better
performance in the prediction step. Considering that the estimations given by AMwG,
DREAM and RPF in the previous step are very close, the similarity of their prediction
results is understandable.

Real value
AMwG DREAM RPF

RE (%) Std. RE (%) Std. RE (%) Std.

Qg (t142) 355.2 21.9% 85.2 22.2% 84.4 21.8% 85.4

Qg (t198) 320.6 25.1% 76.3 25.0% 74.8 25.2% 76.0

Qr (t142) 1459.2 24.8% 302.2 24.7% 300.0 24.9% 301.9

Qr (t198) 2400.0 14.6% 454.1 14.6% 453.2 14.7% 453.8

GLS∗ Interacting EnKF UKF

RE (%) Std. RE (%) Std. RE (%) Std. RE (%) Std.

20.0% 79.1 30.3% 92.2 11.8% 78.4 19.9% 95.4

24.1% 71.5 32.2% 86.3 17.9% 72.8 22.3% 88.0

24.3% 284.9 26.9% 301.2 24.9% 302.0 17.8% 329.0

14.5% 430.6 16.2% 454.4 15.4% 454.2 9.8% 494.1

Table 9.4: Comparison of the prediction capacity of the estimations resulting from the
one chain AMwG, DREAM, Interacting MCMC, GLS, RPF, EnKF and UKF in the
case of the 2006 experimental dataset with data assimilation. RE: relative error in %.
GLS∗: the GLS estimates are given as a reference.
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Figure 9.3: Comparison of the predictions for Qr of the LNAS model given by the
CPF approach with the RPF’s estimates and predictions given by the uncertainty
analysis (UA) based on the 2006 dataset. The red squares correspond to the assimilated
experimental data while the pink squares represent the data used for validation.

Real value
AMwG DREAM RPF

RE (%) Std. RE (%) Std. RE (%) Std.

Qg (t122) 373.5 22.1% 68.2 22.3% 68.0 22.2% 68.5

Qg (t158) 380.6 24.0% 71.3 24.1% 70.2 24.2% 71.1

Qr (t122) 1559.1 6.9% 242.5 6.6% 241.8 6.8% 242.6

Qr (t158) 2327.7 8.3% 357.7 8.4% 357.3 8.4% 357.6

GLS∗ Interacting EnKF UKF

RE (%) Std. RE (%) Std. RE (%) Std. RE (%) Std.

20.5% 61.7 31.1% 69.4 19.9% 63.3 24.8% 79.3

23.8% 69.3 32.8% 73.2 25.3% 23.7 25.3% 89.5

7.3% 233.2 8.7% 243.5 6.8% 244.6 11.7% 329.0

9.5% 349.1 10.3% 357.7 10.4% 357.9 5.8% 494.1

Table 9.5: Comparison of the prediction capacity of the estimations resulting from the
one chain AMwG, DREAM, Interacting MCMC, GLS, RPF, EnKF and UKF in the
case of the 2008 experimental dataset with data assimilation. RE: relative error in %.
GLS∗: the GLS estimates are given as a reference.

Figure 9.3 displays the prediction results with and without data assimilation when
the calibration was performed with the RPF method. We remark the small reduction
of the uncertainties associated to the prediction with DA compared to the results of
UA. In this concrete example, DA did not apparently improve much the prediction
performance. Indeed, most methods showed the same poor prediction performance.
The prediction results performed based on different calibrations are comparable for
both Qr and Qg in both the 2006 and 2008 datasets. It could be resulted from either
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the lack of data, or the misspecification of the model, or the lack of liberty to re-
adjust the model with only three functional parameters. The first two possibilities are
difficult to verify, while the last possibility can be verified by taking into account all
the possible candidate models selected in the first step.

Data assimilation and model prediction with model comparison
The following test is conducted to identify the best candidate model (with different
numbers of parameters calibrated in step 2 and updated in step 3) based on the
perspective of data assimilation in the prediction step.

Settings :

Six configurations of the LNAS model with different numbers of functional param-
eters being calibrated in step 2 and updated in step 3 are evaluated with regards to
their prediction performance. RPF is selected to perform the calibration based on the
2010 dataset, and CPF is used to perform the data assimilation and prediction for
all the six candidate models. For both situations, 350 000 particles are used. In the
following, we present the prediction results performed based on the 2006 experimental
dataset (density 9.6) and on the 2008 experimental dataset (density 10.9). The average
estimates are given with their corresponding 95% credibility intervals obtained with
the posterior distributions.

The Root Mean Squared Error for Prediction (RMSEP) and Relative Error (RE)
are used as the criterion to evaluate the quality of prediction for model comparison
purpose.

Nb of 1 2 3

parameters d RE (%) Std. RE (%) Std. RE (%) Std.

Qg (t142) 67.9% 96.6 44.6% 88.4 21.8% 85.4

Qg (t198) 64.5% 84.6 44.1% 79.4 25.2% 76.0

Qr (t142) 31.2% 377.8 28.3% 349.9 24.9% 301.9

Qr (t198) 19.1% 564.8 17.5% 516.6 14.7% 453.8

4 5 6

RE (%) Std. RE (%) Std. RE (%) Std.

Qg (t122) 7.2% 64.5 11.1% 68.6 15.6% 73.3

Qg (t158) 9.5% 56.1 14.2% 70.1 11.4% 67.1

Qr (t122) 8.7% 261.0 6.2% 312.3 12.7% 302.3

Qr (t158) 7.6% 426.9 4.5% 468.9 8.7% 456.4

Table 9.6: Comparison of the prediction capacity with different numbers of parameters
estimated by RPF in the calibration step and updated in the data assimilation step
by CPF based on the 2006 experimental dataset. RE: relative error in %.
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Figure 9.4: Comparison of model prediction capacity of different numbers of parame-
ters estimated and updated by RPF, evaluated by Root Mean Squared Error of Pre-
diction (RMSEP) based on the 2006 datasets with assimilation of data at the early
growth stages.

Observations and remarks :

According to Table 9.6 and Table 9.7, we notice that the selected configuration in
the first step (model selection for the calibration) did not result in the best performance
in the data assimilation and prediction step. For the 2006 dataset, the best prediction
result is obtained with the models with 4 and 5 parameters. For the 2008 dataset,
again the model with 4 parameters appears to provide the most accurate prediction.

Nb of 1 2 3

parameters d RE (%) Std. RE (%) Std. RE (%) Std.

Qg (t122) 60.4% 69.1 26.4% 68.8 22.2% 68.5

Qg (t158) 54.0% 72.0 42.0% 71.0 24.0% 71.1

Qr (t122) 11.0% 288.3 8.2% 270.5 6.8% 242.6

Qr (t158) 12.6% 422.0 9.3% 395.3 8.4% 357.6

4 5 6

RE (%) Std. RE (%) Std. RE (%) Std.

Qg (t122) 6.3% 58.1 15.9% 66.2 13.9% 65.5

Qg (t158) 4.8% 58.9 18.3% 70.9 14.2% 69.2

Qr (t122) 2.6% 250.5 5.4% 241.1 4.8% 236.7

Qr (t158) 3.4% 370.2 7.0% 355.7 6.0% 350.2

Table 9.7: Comparison of the prediction capacity with different numbers of parameters
estimated by RPF in the calibration step and updated in the data assimilation step
by CPF based on the 2008 experimental dataset (density 10.9). RE: relative error in
%.
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Figure 9.5: Comparison of model prediction capacity of different numbers of parame-
ters estimated and updated by RPF, evaluated by Root Mean Squared Error of Pre-
diction (RMSEP) based on the 2008 datasets with assimilation of data at the early
growth stages.

Figure 9.4 and Figure 9.5 indicate that the model selection results with the per-
spectives of calibration and of prediction may not share the same conclusion, especially
when models with fewer parameters are preferred in the calibration step since the
penalty term for the number of parameters to be estimated is important in the selec-
tion criteria. While in the prediction step, it seems that models with more functional
parameters calibrated tend to outperform those with less parameters. One potential
issue is that with limited data available to perform the calibration, models with more
parameters could entail identifiability and over-fitting problems. Undoubtedly, it is
also important to note that this model comparison conducted based on the evaluation
of prediction capacity is only a posterior comparison, in real applications, the choice
regarding the model configuration should be made before the assimilation step. This
issue is further discussed in Section 9.2.8.

Step 3b: Data Assimilation with the calibration performed by iterative
approaches

Regarding the estimates of the iterative approaches, the model with six functional
parameters was selected in the calibration step. Given the fact that generally, the
IRPF estimates obtain often better likelihood evaluation than those of the other it-
erative approaches, the prediction performance based solely on the IRPF estimates is
thoroughly investigated in the first place.

Settings :

Similar to the settings used with the Bayesian estimates for prediction purpose,
based on the parameter estimation results of the 2010 dataset, we compare the predic-
tive capacity of the model for the 2006 and the 2008 experiments, with and without
data assimilation (denoted DA and UA respectively), regarding the last two observa-
tions (t142 and t198 for 2006 and t122 and t158 for 2008). The RPF approach is used
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with 350 000 particles to perform DA. The average estimates are given with their
corresponding 95% credibility intervals obtained with the posterior distributions.

Figure 9.6: Comparison of the predictions for Qg with and without data assimilation
regarding the 2006 dataset. Based on the calibration performed by IRPF, the data
assimilation is performed by the RPF approach and the predictions without data
assimilation is performed by the uncertainty analysis. The red squares correspond to
the assimilated experimental data while the pink squares represent the data used for
validation.

Observations and remarks :

Although the six experiments are quite different (different locations, in different
years, and different cultivars), the proposed RPF-based data assimilation approach
was proved to provide fair predictions in most cases and managed to reduce the pre-
diction errors compared to the results obtained with UA (without data assimilation),
as demonstrated by Figure 9.6. These results confirm the assumption that by esti-
mating only the three most influential functional parameters while fixing the others
to recommended values like in the previous test case, the data assimilation cannot be
performed efficiently. It is particularly spectacular for the leaf biomass (Qg) prediction
(Table 9.8, Table 9.15).

Real Data 2006 DA estimates 95% CI UA estimates 95% CI
(relative error in %) (relative error in %)

Qg (t142) 355.2 357.5 (0.7%) [202.5; 518.6] 513.3 (44.5%) [256.0; 770.3]
Qg (t198) 320.6 339.4 (5.9%) [174.5; 516.2] 459.9 (43.4%) [226.3; 693.7]
Qr (t142) 1459.2 1583.8 (8.5%) [1238.8; 1979.3] 1928.7 (32.2%) [1222.0; 2639.4]
Qr (t198) 2400.0 2469.5 (2.9%) [1933.5; 3080.4] 2893.8 (20.6%) [1849.0; 3938.3]

Table 9.8: Comparison of the prediction results of the LNAS model with and without
data assimilation based on the 2006 dataset (density 9.6).
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Real Data 2008 DA estimates 95% CI UA estimates 95% CI
(relative error in %) (relative error in %)

Qg (t122) 373.5 403.6 (8.1%) [294.4; 526.0] 521.7 (39.7%) [253.7; 789.7]
Qg (t158) 380.6 408.7 (7.4%) [288.0; 570.3] 510.6 (34.2%) [247.1; 774.1]
Qr (t122) 1559.1 1466.7 (5.9%) [1094.4; 1920.6] 1673.0 (7.3%) [1053.6; 2292.3]
Qr (t158) 2327.7 2187.6 ( 6.0%) [1610.1; 2889.2] 2349.5 (0.9%) [1494.1; 3205.0]

Table 9.9: Comparison of the prediction results of the LNAS model with and without
data assimilation based on the 2008 dataset (density 10.9).

Real Data 2008 ICPF estimates 95% CI UA estimates 95% CI
(relative error in %) (relative error in %)

Qg (t122) 385.8 407.2 (5.6%) [324.4; 510.1] 525.9 (36.3%) [379.6; 672.3]
Qg (t158) 345.1 416.9 (20.8%) [315.9; 552.7] 502.0 (45.5%) [358.9; 645.0]?

Qr (t122) 1326.8 1410.6 (6.3%) [1200.4; 1641.2] 1654.5 (24.7%) [1372.5; 1936.6]?

Qr (t158) 1778.9 2051.1 (15.3%) [1725.5; 2417.3] 2350.6 (32.1%) [1924.6; 2776.7]?

Table 9.10: Comparison of model prediction with and without data assimilation based
on the 2008 dataset variety Harmonia (density 10.7). ?: the predicted credibility
interval does not contain the real observed data.

Real Data 2008 DA estimates 95% CI UA estimates 95% CI
(relative error in %) (relative error in %)

Qg (t122) 318.6 407.5 (27.9%) [279.7; 555.1] 552.8 (73.5%) [403.1; 702.5]?

Qg (t158) 385.5 399.5 (3.6%) [269.9; 548.2] 523.6 (35.2%) [378.2; 669.0]
Qr (t122) 1319.5 1482.5 (12.35%) [1158.0; 1659.2] 1689.2 (28.0%) [1401.5; 1977.0]?

Qr (t158) 2368.5 2260.9 (4.5%) [1906.5; 2560.7] 2416.0 (2.0%) [1983.4; 2848.7]

Table 9.11: Comparison of the prediction results of the LNAS model with and without
data assimilation based on the 2008 dataset (density 16.4). ?: the predicted credibility
interval does not contain the real observed data.

Real Data 2008 DA estimates 95% CI UA estimates 95% CI
(relative error in %) (relative error in %)

Qg (t122) 297.6 351.1 (18.0%) [276.0; 486.6] 483.0 (62.3%) [342.1; 624.0]?

Qg (t158) 408.1 387.4 (5.1%) [268.9; 493.8] 467.5 (14.6%) [328.5; 606.6]
Qr (t122) 1551.4 1462.7 (5.7%) [1288.8; 1632.0] 1590.7 (2.5%) [1316.9; 1864.5]
Qr (t158) 2535.0 2266.5 (10.6%) [1946.6; 2585.3] 2285.6 (9.8%) [1886.3; 2684.8]

Table 9.12: Comparison of the prediction results of the LNAS model with and without
data assimilation based on the 2008 dataset (density 5.4). ?: the predicted credibility
interval does not contain the real observed data.

Tables 9.8 to 9.12 illustrate the prediction results of the two methods (with or
without data assimilation) for different experiments. According to the results based on
the 2006 dataset (Table 9.8) and on the 2008 dataset with observed density 10.9 (Table
9.9), the prediction results are clearly improved both in terms of the mean prediction
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and the associated uncertainty assessment for nearly all the predictions given by the
CPF-based approach compared to those provided by UA. All the predictions have a
relative error close or inferior to 10%, which indicates that the ICPF calibration results
combined with CPF-based data assimilation method result in an excellent predictive
performance. Although in Table 9.9, the mean predictions of UA are already quite
accurate, the standard deviations of the DA predictions are much smaller than those
given by the UA. Considering the important level of observation error (≈15%), the
uncertainty associated to the mean estimates is indeed crucial in yield prediction. The
proposed credibility intervals all include the real value of the last two measurements
and are generally narrower than those given by the UA.

On the other hand, as suggested by Figure 9.6, the 95% credibility interval provided
by the UA can be considered non-reliable since it does not always contain the real mea-
surement values in several cases (cf. Table 9.11, Table 9.12 and Table 9.10). These
cases correspond to very different crop densities compared to the 2010 dataset used
for the calibration (16.4 and 5.4 plants/m2 respectively compared to 11.9 plants/m2)
or a different cultivar (Harmonia compared to Rada). The limitation of the simple
prediction approach (performed by UA) can thus be recognized, since the prediction
conditions are out of the strict range of validity of the domain. Therefore, it is im-
portant to learn that the data assimilation approach broadens the range of applicable
cases and enhances the model predictive capacity.

9.2.3 Influence of the noise level

Figure 9.7: Decomposition of the uncertainties related to the prediction of Qr in 2006
(density 9.6) performed with data assimilation based on the ICPF estimates.

We highlight that when the step 3 is performed with the RPF approach, the likeli-
hood of the observations is considered known explicitly, thus we are able to decompose
the uncertainty associated to the prediction into two parts, one related to the parame-
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ter and modelling errors, and the other due to the observation errors, as demonstrated
by Figure 9.7.

Undeniably, the noise related to parameters play a crucial role in the uncertainty
assessment of the predictions, however, we are not certain neither if the Gaussian
assumption holds for the observation likelihood function, nor if the noise level remains
the same for observations made in different locations or in different years. Bearing this
thought in mind, the RPF and CPF approaches for data assimilation and uncertainty
propagation are compared, three observation noise levels are taken into account.

Settings :

Three assumptions for observation noise level, 0.01, 0.08 and 0.15, are tested for
the data assimilation step, performed with CPF (kernel estimator, considering the
likelihood function unknown) and RPF (considering the likelihood function known)
with 350 000 particles.

Small noise (1%) Medium noise (8%) Large noise (15%)

DA(RPF) relative error in % Std. relative error in % Std. relative error in % Std.

Qg (t142) 0.9% 15.8 1.2% 36.1 0.8% 80.5

Qg (t198) 8.1% 15.1 6.9% 34.3 5.9% 72.1

Qr (t142) 4.0% 51.4 6.6% 142.2 8.9% 205.3

Qr (t198) 3.8% 58.3 4.1% 189.4 5.2% 317.9

DA(CPF) relative error in % Std. relative error in % Std. relative error in % Std.

Qg (t142) 0.8% 15.9 2.2% 38.4 2.1% 82.4

Qg (t198) 10.2% 15.3 7.0% 36.1 7.2% 75.5

Qr (t142) 4.8% 52.9 12.9% 146.7 7.9% 238.2

Qr (t198) 4.2% 59.8 7.3% 187.3 4.9% 344.4

UA relative error in % Std. relative error in % Std. relative error in % Std.

Qg (t142) 44.7% 53.6 44.7% 89.8 44.3% 138.3

Qg (t198) 43.5% 48.1 43.6% 74.3 43.1% 116.8

Qr (t142) 32.3% 102.5 32.3% 193.8 32.0% 354.2

Qr (t198) 20.1% 136.2 20.2% 282.1 20.2% 522.3

Table 9.13: Comparison of model prediction errors and predicted standard deviation
(Std.) with and without data assimilation for the LNAS model based on the 2006
dataset (density 9.6) according to different assumptions of noise levels.

Observations and remarks :

According to our tests (Table 9.13), the uncertainty associated to the prediction
results is quite sensitive to the level of observation noises compared to the mean pre-
dicted values. The prediction results obtained with Gaussian assumptions appear to
be closer to the real measurements and more stable when the noise level assumption
changes, which suggests a small advantage of the RPF approach.

Another meaningful thought is that since the level of noise parameter evaluated
on one year may not represent properly the corresponding level in another year or in
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a different location, applying the same level of noises in the assimilation step with a
different dataset is debatable. Further studies are hence needed to address the influence
of the observation noise level to the prediction quality.

We remark that in the LNAS model, we opt for a multiplicative noise model while
additive models and log normal models are also widely used and could also be tested.
Preliminary tests have suggested better performances of the multiplicative noise model
compared to the additive one in the calibration step. However, further investigation
is still required.

9.2.4 Impact of the calibration precision

Prediction performance of calibrations performed by IEnKF, IRPF, IUKF
and IAMwG
Regarding the prediction based on the iterative approaches, as illustrated by Table
9.14, the best performance in the evaluation of the log-likelihood was achieved by the
IRPF estimates. The same conclusion holds for the AICc and the BIC evaluations as
well. In the following test, the goal is to identify the difference of the predictive perfor-
mance only due to the estimation precision in the calibration step (prior information
of the assimilation step).

In this first study case, we choose the RPF as the only algorithm to perform the
assimilation step. The prediction performed by EnKF and UKF are further compared
in Section 9.2.5. Another thought-provoking comparison between the prior information
given by the RPF and the IRPF algorithm with the same configuration in the context
of data assimilation problems can be found in Chen et al. (2013a).

Settings :

Based on the 2006 experimental dataset (density 9.6) and the 2008 experimental
dataset (density 10.9), the calibration carried out by the iterative approaches are com-
pared with regards to their prediction capacity. RPF with 350 000 particles is used
to perform the data assimilation and the prediction. The uncertainty analysis is also
conducted to illustrate the predictive performance of the raw estimates without the
assimilation of data obtained at early growth stages. The Root Mean Squared Error
for Prediction (RMSEP) is used as the criterion to evaluate the quality of prediction.

Observations and remarks :

Generally speaking the assimilation step has well established its value as demon-
strated by Table 9.14 compared to the prediction without assimilation (UA). The es-
timation relative error was greatly reduced when data assimilation was performed. In
the meantime, the uncertainties (standard errors) associated to the prediction were also
significantly decreased in all cases with the assimilation of data from the early growth
stages. IAMwG and IRPF estimates resulted in similar estimations, with IAMwG a
slightly better prediction for Qr and IRPF a small advantage in Qg prediction.
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Estimation methods IRPF IEnKF IUKF IAMwG

DA UA DA UA DA UA DA UA

Qg (t142)
Relative error 0.7% 44.5% 3.2% 45.8% 5.7% 55.6% 0.8% 45.1%

Std. 80.5 128.7 80.8 163.7 89.7 165.0 82.7 162.8

Qg (t198)
Relative error 5.9% 43.4% 9.8% 46.5% 12.1% 58.5% 6.1% 43.2%

Std. 72.1 116.8 75.1 141.2 94.3 144.2 77.4 149.7

Qr (t142)
Relative error 8.5% 32.2% 7.8% 29.8% 9.3% 43.1% 8.0% 31.7%

Std. 205.3 354.3 208.0 384.3 259.4 479.2 192.8 367.1

Qr (t198)
Relative error 2.9% 20.6% 2.0% 18.6% 4.0% 29.8% 2.6% 20.3%

Std. 317.9 522.3 321.4 553.4 402.7 693.6 296.9 539.1

Table 9.14: Comparison of model prediction capacity based on the estimates provided
by four iterative methods (IEnKF, IRPF, IUKF and IAMwG) performed with the
2006 dataset (density 9.6). DA: with assimilation of data at the early growth stages,
UA: uncertainty analysis without data assimilation.

Real Data 2008 IEnKF estimates Std. IRPF estimates Std.
(relative error in %) (relative error in %)

Qg (t122) 373.5 419.5 (12.3%) 68.9 403.6 (8.1%) 59.2
Qg (t158) 380.6 433.1 (13.8%) 73.4 408.7 (7.4%) 71.8
Qr (t122) 1559.1 1460.5 (6.3%) 197.5 1466.7 (5.9% ) 210.7
Qr (t158) 2327.7 2125.6 (8.7%) 324.1 2187.6 (6.0%) 326.2

Real Data 2008 IUKF estimates Std. IAMwG estimates Std.
(relative error in %) (relative error in %)

Qg (t122) 373.5 440.9 (18.1%) 80.4 423.8 (13.5%) 79.5
Qg (t158) 380.6 461.1 (21.2%) 91.2 444.1 (16.7%) 90.0
Qr (t122) 1559.1 1508.8 (3.2%) 235.2 1391.2 (10.8%) 220.5
Qr (t158) 2327.7 2213.7 (4.9%) 361.4 2028.4 (12.9%) 344.2

Table 9.15: Comparison of model prediction capacity of estimates provided by four
iterative methods (IEnKF, IRPF, IUKF and IAMwG) based on the 2008 dataset with
assimilation of data at the early growth stages.

For the green leaf biomass allocation Qg, it has always been the IRPF estimates
that led to the best predictions for both years, as indicated by Table 9.15 and Table
9.14. This may be related to the important nonlinearity of its evolution.

IUKF provided the best 2008 root prediction as indicated by Figure 9.8. A possible
explanation lies on the fact that the root biomass allocation is more linear than the
green leaf biomass allocation according to Figure 9.9, Figure 9.10 and Figure 9.11.
This may also explain the fact that the prediction based on the IUKF estimates for
the green leaf biomass are less accurate compared to the results given by the other three
methods for the two years. The limited sample size of sigma-points could still have
some difficulty when facing relatively important nonlinearity with multidimensional
estimations required.
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(a) 2006 dataset (density 9.6) (b) 2008 dataset (density 10.9)

Figure 9.8: Comparison of model prediction capacity of estimates provided by four it-
erative methods (IEnKF, IRPF, IUKF and IAMwG) evaluated by Root Mean Squared
Error of Prediction (RMSEP) based on the 2006 and 2008 datasets with assimilation
of data at the early growth stages.

Figure 9.9: Comparison of the predictions of Qr in 2008 (density 10.9) performed with
or without data assimilation (Uncertainty Analysis) based on IUKF estimates.

However, it is not always the case for the 2006 root biomass prediction. Although
the IEnKF estimates displayed the best performance, we notice that the performance
of the four sets of predictions were relatively close, as suggested by Table 9.14.

Therefore in general, the most accurate predictions are those obtained based on the
IRPF estimates (in the calibration step), if we disregard the computation time and
the memory requirements.
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Figure 9.10: Comparison of the predictions of Qr in 2006 (density 9.6) performed with
or without data assimilation (Uncertainty Analysis) based on IEnKF estimates.

Figure 9.11: Comparison of the predictions of Qg in 2008 (density 10.9) performed
with or without data assimilation (Uncertainty Analysis) based on IAMwG estimates.
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Figure 9.12: Comparison of the predictions of Qg in 2008 performed with data assim-
ilation based on IEnKF, IUKF, ICPF and IAMwG estimates.

Note that the UKF and the EnKF algorithms can also be adapted to perform the
data assimilation step. Therefore, the data assimilation step is also carried out with
these Kalman filter based methods in the following study case.

9.2.5 Data assimilation with UKF and EnKF

As mentioned previously, other SMC filtering methods than CPF/RPF can also be
used to perform the model prediction by propagating the uncertainty and re-adjusting
the system on-line. In this test, we aim to compare the predictive capacity of UKF,
EnKF and RPF with the calibration performed based on their iterative version with
the 2010 dataset.

Settings :

EnKF is performed in the data assimilation step with an ensemble size of 350
000 based on the IEnKF calibration. The prediction with UKF is conducted with the
unscented transform (21 sigma-points) based on the IUKF calibration. Their predictive
performances are evaluated by both the relative error and the associated prediction
uncertainty, and are compared to the RPF approach using 350 000 particles with the
IRPF calibration. The experimental dataset of 2006 is used for the prediction test.
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Real Data 2006 EnKF Std. RPF Std. UKF Std.
(RE in %) (RE in %) (RE in %)

Qg (t142) 355.2 396.4 (11.6%) 83.4 357.2 (0.7%) 80.5 363.5 (2.3%) 99.7
Qg (t198) 320.6 370.6 (16.6%) 78.4 339.4 (5.9%) 72.1 328.4 (2.4%) 98.3
Qr (t142) 1459.2 1459.2 (2.9%) 203.2 1583.8 (8.5%) 205.3 2002.1 (37.2%) 270.0
Qr (t198) 2400.0 2312.5 (3.6%) 321.4 2469.5 (2.9%) 317.9 2499.7 (4.2%) 438.9

Table 9.16: Comparison of model prediction capacity of three filtering methods
(IEnKF, IRPF and IUKF) using the estimates obtained with their respective iter-
ative approaches based on the 2006 dataset with data assimilation. Relative error
(RE) and standard deviations (Std.) for the prediction are given.

Observations and remarks :

According to Table 9.16, all the three SMC methods, EnKF, RPF and UKF were
used to perform the prediction (data assimilation) step based on the estimation results
of their respective iterative approaches. We remark that the confidence intervals given
by UKF are the widest, so are the prediction error for the root compartment Qr. The
EnKF and the RPF estimates are comparable, especially for Qr prediction. However,
the IUKF estimates seem to be improved for Qg prediction compared to Table 9.14
while the IEnKF estimates appear to be worse. In all cases, their uncertainty associated
to the predictions are increased compared to the DA step performed by RPF. The result
thus suggests that RPF is more appropriate to perform the assimilation step, since it is
not constrained by the Gaussian assumption as the Kalman-based the filtering methods
are.

9.2.6 Influence of the number of assimilated data

As argued previously, the experimental data are obtained with heavy protocols
which are extremely costly. Therefore, in applications, we should seek for the best
compromise between the cost of the data and the prediction quality. The tests pre-
sented in this section can be regarded as a first step towards the optimization of
experimental design to improve the predictive capacities of a model.

Settings :

In the following test, based on the 2006 experimental data, we attempt to eliminate
some of the observation dates, and evaluate the impact on the prediction accuracy. The
last two dates t122 and t158 are used for prediction. The impact of the remaining five
dates on the prediction results is investigated. In Table 9.17, the observation dates
that are available for data assimilation among the total five are marked as “o”, while
those that are eliminated are marked as “−”.

For all prediction tests, the DA step is carried out with RPF (350 000 particles)
based on the 2010 IRPF estimates obtained in the calibration step.
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DA 5 4 4 4 4 4
dates (t54−114) (t54−88) (t59−114) (t54, t59, t88, t114) (t54−66, t114) (t54, t66, t88, t114)

ooooo oooo- -oooo oo-oo ooo-o o-ooo
RE Std RE Std RE Std RE Std RE Std RE Std

Qg (t122) 0.7% 80.5 2.6% 119.6 4.4% 82.4 2.5% 82.3 0.3% 85.3 2.9% 82.4
Qg (t158) 5.9% 72.1 2.9% 108.3 12.2% 75.2 8.6% 75.3 4.0% 79.7 9.1% 75.6
Qr (t122) 8.5% 205.3 11.0% 258.8 7.8% 206.5 8.7% 207.3 8.9% 208.3 8.7% 211.2
Qr (t158) 2.9% 317.9 4.2% 376.1 3.6% 320.1 2.0% 322.2 2.6% 322.2 2.5% 330.6

3 3 3 2 2 2
(t54−66) (t66−114) (t54, t66, t114) (t54, t59) (t88, t114) (t59, t88)
ooo- - - -ooo o-o-o oo- - - - - -oo -o-o-

RE Std RE Std RE Std RE Std RE Std RE Std
Qg (t122) 24.9% 142.4 0.8% 83.3 0.2% 85.5 29.4% 149.2 4.0% 83.0 1.6% 107.8
Qg (t158) 27.6% 118.8 5.8% 76.7 4.1% 80.1 32.0% 124.9 10.1% 76.5 3.3% 94.9
Qr (t122) 19.2% 294.2 8.7% 211.2 8.8% 211.8 20.9% 288.6 8.8% 214.9 9.7% 254.1
Qr (t158) 10.1% 414.2 3.2% 331.2 2.5% 330.9 11.1% 406.0 1.9% 340.5 2.4% 375.8

1 1
(t114) (t88)

- - - -o - - -o-
Error Std Error Std

Qg (t122) 3.6% 84.0 17.6% 110.6
Qg (t158) 9.3% 77.9 24.9% 99.6
Qr (t122) 9.2% 216.9 9.1% 254.3
Qr (t158) 2.9% 343.7 3.0% 378.4

Table 9.17: Comparison of the relative errors (RE) and standard deviations corre-
sponding to the prediction uncertainty resulting from the data assimilation step per-
formed with different numbers of data used for assimilation by RPF, based on the
IRPF estimates with the 2006 experimental dataset. On each observation date, two
measurements Qg and Qr are obtained.

Observations and remarks :

Table 9.17 illustrates the point prediction quality resulting from different combina-
tions of observation dates. As expected, the result suggests that the most important
data to enhance the prediction accuracy is the one closest to the prediction. When
observation dates are close, the data appear to be less useful: we can see that elimi-
nating one observation date between t54 or t59 did not influence much the prediction
results. The root compartment Qr prediction does not vary much among the various
configurations, while the green leaf compartment Qg prediction is more sensitive to
the lack of certain data. This is probably due to the nonlinearity of the Qg evolution.
If only the observations of the first two dates are available (t54 and t59), which are
very close, we are at risk of over-correcting the evolution curve. Taking the last two
observations dates (t88 and t114) seems to be the optimal choice.

Likewise, the impact of different observation dates on the uncertainty assessment
varies. When the observation date is close to the prediction date, the uncertainty
associated to the prediction is reduced in a more significant way. However, this result
may be contextual. Further tests should be conducted.

Another key issue is the type of data to observe. Here we only considered the green
leaf biomass Qg and root compartment biomass Qr, however, one can imagine using
data obtained by drone or satellite images (Baret et al., 2007). The observations such
as the LAI can be derived with image processing methods. Indeed, remote sensing
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images tend to be less costly than the experimental measurements, which could be
considered as a very attractive source of information despite the important observation
error. Therefore, this research subject is worth further investigations.

9.2.7 Influence of the number of updated parameters

In this test, we try to decrease the number of parameters to update in the prediction
step to see its influence on the prediction performance. Note that the prediction tests
are conducted based on the six functional parameters estimated in step 2 by IRPF.

Settings :

The functional parameters are eliminated according to the order given by the pa-
rameter ranking of the sensitivity analysis. Those parameters that are calibrated but
not selected for the re-calibration are propagated as in the case of UA (distributions
characterized by the mean value and the standard deviation). The data assimilation
is performed by RPF with the IRPF estimations given in step 2. 350 000 particles are
used by RPF for prediction purpose.

Figure 9.13: Comparison of model prediction capacity of IRPF estimates with different
numbers of parameters updated by RPF, evaluated by Root Mean Squared Error of
Prediction (RMSEP) based on the 2006 datasets with and without (d = 0) assimilation
of data at the early growth stages.

d 6 5 4 3 2 1 0 (UA)

RE Std RE Std RE Std RE Std RE Std RE Std RE Std

Qg (t122) 0.7% 80.5 0.4 % 96.9 5.7% 100.2 6.8% 101.5 7.7% 102.8 9.3% 103.1 44.5% 128.7
Qg (t158) 5.9% 72.1 4.8 % 105.2 12.8% 98.4 12.9% 97.6 13.5% 98.9 15.4% 99.6 43.4% 116.8
Qr (t122) 8.5% 205.3 12.2 % 241.5 12.5% 251.3 12.7% 252.5 12.9% 252.1 14.6% 253.4 32.2% 354.3
Qr (t158) 2.9% 317.9 9.2 % 350.2 7.6% 367.8 7.7% 368.0 8.3% 370.4 10.7% 371.1 20.6% 522.3

Table 9.18: 2006 experimental dataset: comparison of the relative errors (RE) and
standard deviations resulting from the data assimilation step performed with differ-
ent numbers of parameters updated by RPF, based on the IRPF estimates of the
calibration step.
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Observations and remarks :

Table 9.18 and Figure 9.13 indicate that it is important to recalibrate all the six
functional parameters, for right from the configuration with five parameters (with only
σγ eliminated), the prediction of Qr became significantly less accurate (even though
the prediction of some variables may be improved). Between the configurations with
3 and 4 parameters recalibrated, the prediction relative errors are very close, while in
the following when more parameters are eliminated, the prediction quality is largely
deteriorated. This result somehow coincides with the result of the sensitivity analysis
(Figure 9.1) for the parameter 4 and 3 (λ and µγ resp.) have similar impacts. The
same remark is made for the parameter 6 and 5 (σγ and γf resp.) as well.

Note that unlike the results given by the Bayesian approach (cf Table 9.6 and
Table 9.7), the uncertainty related to the prediction was not greatly influenced by the
number of updated parameters, for the uncertainty associated with those parameters
are still taken into account and propagated in the prediction while in the Bayesian
case, the non-selected parameters are fixed at their recommended values.

Likewise, this result could be contextual.

9.2.8 Discussion

The three-step data assimilation approach proposed in this thesis generally appears
to be robust, which allows us to improve the prediction accuracy and to reduce the
associated uncertainty.

However, when the Bayesian methods were used in the parameter estimation step
(step 2), the model configuration (in terms of the number of parameters to estimate)
selected by the DIC based on the learning dataset proved not to be the best one
regarding the predictive capacities in the assimilation step (step 3). Therefore, the
model selection result can be contextual or the DIC may not be the most adapted
selection criterion for prediction perspective. It is a risk to take when applying such an
approach, since in real application, the prediction results are unknown. It seems that
by increasing slightly the number of parameters suggested by the DIC in the estimation
step, or rather by using a more tolerant criteria, the quality of the prediction results
obtained with data assimilation could be improved.

As for the prediction results based on the iterative calibration, the predicted cred-
ibility intervals provided by the RPF-based approach are nearly in all cases narrower
than those of the UA. It is of course an expected result for data assimilation: to reduce
the prediction uncertainty based on the available information. However, regarding the
point estimations, the results of the CPF-based method were not always more accurate
than those provided by UA, especially for the root mass, as shown in Table 9.15 for
Qr(t158) or in Table 9.12 for Qr(t122) or Qr(t158). However, when it happened, the
corresponding predictions of leaf biomass given by the UA were nonetheless far from
the real observed values and can be considered as unreliable. This may reveal some
particular plasticity in root biomass production that was not well captured by the
model, which can be regarded as a drawback of our simplified model LNAS. However,
even in the few cases when the proposed method failed to improve the point prediction
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of some variables, it always managed to provide reasonable credibility intervals which
contained the real values of the observations.

Concerning the prediction results based on the 2008 dataset with the cultivar Har-
monia (cf Table 9.10), there is an important improvement of the predictive performance
with data assimilation compared to the case without assimilation (UA), for which the
predicted credibility intervals for 3 variables out of 4 do not even contain the real
values of the measurements. However, the relative errors with data assimilation are
all around 15% to 20% for the last measurement date, which is not satisfactory for
practical applications. This may be linked to the fact that the prior information result-
ing from the calibration step is not appropriate, it represents the level of uncertainty
of the parameters of a specific cultivar, in a given environment. If the adaptation to
other environmental conditions via data assimilation seems to work rather well, the
adaptation to a different cultivar appears more difficult, at least in the case when
the environmental conditions are also different. However, it is still reassuring to note
that the real values of the last two observations are still in the computed credibility
intervals.

Regarding the uncertainty assessment, when the estimated modelling noises are
quite small (around 2%), it usually implies a good adaptation of the model, whereas
when it is above 5%, the prediction gain with data assimilation could be limited.
When the observation noises are important, it indicates that the observations may not
be reliable enough to update parameters and state variables. Thus in the assimilation
step they may also prevent the algorithm to retrieve the most useful information out
of the few available data, especially when we consider the likelihood function cannot
be computed explicitly (CPF).

By keeping in mind the importance of the uncertainty assessment for the predictive
capacity of the data assimilation method, some numerical tests were performed using
artificially different levels of observation noise in place of the ones estimated from the
2010 dataset. A comparison of prediction capacity linked to three different levels of
observation noises (1%, 8% and 15%) was carried out. UA provided close point esti-
mations in all the three cases while the width of the 95% credibility interval increased
with the observation noises. However, the level of the noises influenced significantly
the point estimations given by the CPF-based method. For the last two measure-
ments regarding the biomass of root compartment, the prediction quality was greatly
improved with the decrease of the observation noises, while for the prediction of leaf
biomass, it is the reverse, the prediction may even be slightly deteriorated on account
of the small noises.

Hence, given the sensitivity of the filtering-based data assimilation methods with
regards to the observation noises, their proper evaluation is crucial to improve the
accuracy and reliability of the method, especially regarding the uncertainty associated
to the prediction. It is clearly a bottleneck for real applications since the observation
noises in practice tend to vary a lot according to the experimental configurations (for
example in two different years or in two different fields), so that their proper evaluation
may remain quite difficult.

In this study case, the three SMC methods were used to carry out the prediction
and data assimilation step. RPF showed a small advantage compared to EnKF. The
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estimates achieved by IRPF, IEnKf, IUKF and IAMwG in the calibration step were
also compared. Overall, the IRPF estimation provided the most accurate predictions
with narrowest confidence intervals. Nonetheless, the IEnKF approach despite the nor-
mality assumption which led to slightly worse prediction results, sometimes provides
similar or even more accurate predictions. By taking into account the computational
cost, the use of IEnKF in the calibration step could be preferable, unless the nonlinear-
ity is remarkable, the Gaussian assumption does not hold or more precise calibration
results are required. In these cases, the ICPF approach is more suitable.

Regarding the time-consuming problem related to an iterative use of the particle
filtering methods, it might also be interesting to be less strict on the model parameter
estimation and loosen the convergence criterion so as to reduce the iteration numbers.
Given the fact that the parameters will be further adjusted in the assimilation step,
the importance of the first calibration step might be over-evaluated.

Finally, towards an optimized design of experiments, a few tests have been con-
ducted to study the effect of the number of observation data and of the selection of the
observation dates on the prediction accuracy. The results in Table 9.17 suggest that it
is not evident that more observations lead to more precise predictions. Irregular and
non-dispersed observation dates usually result in poor predictions except when the
observation dates are close enough to the prediction dates. Consequently, the collec-
tion of new data should be guided by targeting the optimal conditions. Similar results
have been obtained by Varella et al. (2010). The strategy proposed is that ideally, the
observation dates should be evenly placed, with the preference of being close to the
prediction dates. It is obvious that the latest observation weighs more and is thus more
valuable, however the objective remains to provide accurate yield predictions with less
new data and as early as possible. Satellite images (remote sensing) although often
imprecise may help to follow closely the evolution of LAI, and this could be a useful
and efficient way to update the prediction so as to improve its accuracy and reduce
the associated uncertainties (Bouman, 1992; Delécolle et al., 1992; Guérif and Duke,
1998, 2000; Dorigo et al., 2007; Baret et al., 2007; Dente et al., 2008).

9.3 Application to the STICS model

9.3.1 Experimental data

The data used for this study were obtained by INRA (Institut National de
Recherche Agronomique) in the context of the Aquateam project (http://www.projet-
aquateam.org/) whose objective is to develop decision aid tools for crop irrigation.
The experiments were carried out at Villamblain (France). The growth of two
commercial varieties of winter wheat were monitored: Raffy in two experimental
campaigns, 2011-2012 (sowing date: 25 October 2011; harvesting date: 25 July 2012)
and 2012-2013 (sowing date: 29 October 2012; harvesting date: 30 July 2013) and
Numeric in one experimental campaign, 2012-2013 (sowing date: 29 October 2012;
harvesting date: 30 July 2013). In our study, the 2012 dataset of variety Raffy
was used for parameter estimation. For the sake of clarity for the readers already
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familiar with the STICS model, we use the classical notations for state variables
and parameters recalled extensively in Brisson et al. (2008). Dry matter of green
leaves (denoted mafv, g·m−2), above-ground dry matter (denoted masec, g·m−2), soil
averaged water content (denoted hur, mm/unit area) and dry matter of grain yield
(denoted magrain, g·m−2) were measured and collected at different dates in 2012 (in
days after sowing):

Omafv2012 = {155, 185} ,
Omagrain2012 = {269} ,

Omasec2012 = {155, 185, 213, 239, 269} ,
Ohur2012 = {155, 171, 178, 192, 203, 219, 234, 247, 260} .

For data assimilation and prediction, the two 2013 datasets corresponding to both
varieties were used. Additional measurements of LAI (denoted LAI, m2 leaf ·m−2

soil) were available for the 2013 dataset (obtained with the SunScan Canopy Analysis
System of Delta-T Devices), while the dry matter of green leaves was not measured.
The observation dates are given as follows:

Ohur2013 = {21, 79, 114, 155, 170, 182, 198, 210, 226, 240, 255, 275} ,
Omagrain2013 = {266} ,

OLAI2013 = {162, 175, 191, 203, 212, 219, 233} .

Daily mean values of air temperature, solar radiation, potential evapotranspiration,
and total daily rainfall were obtained from French meteorological advisory services
(Météo France) 3 km away from the experimental site.

9.3.2 Results and method comparison

Parameter Screening by Sensitivity Analysis

Since STICS has a large number of parameters, and regarding the reduced exper-
imental data sets that are available for its parameterization, a preliminary parameter
selection was conducted in the first place. 16 variety-dependent parameters that are
relevant to the concerned model state equations were selected to perform the sensitiv-
ity analysis, for the output chosen as a generalized least-square criterion based on the
2012 dataset.

According to Sobol total order indices, the four most influential parameters,
VLAIMAXP, EFFICIENCE, STAMFLAXV and UDLAIMAXP were selected for the
next calibration step. Their definitions are given by Table 9.19. The other parameters
(with total order indices below 0.02) were hence fixed to the mean values of their
variation intervals (deduced from literature (Brisson et al., 2008)).

As illustrated by Figure 9.14, the difference between the first order and the total
order indices is little, which indicates a high linearity of the system (Campolongo et al.,
2007).
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Figure 9.14: First and total order indices for parameters of STICS wheat crop model.

EFFICIENCE: maximum radiation use efficiency (g·MJ−1)

STAMFLAXV: duration between the end of the juvenile phase and the maximal of leaf area index

(deg C.days)

UDLAIMAXP: maximal daily relative development of LAI (no unit)

VLAIMAXP: daily relative development of LAI at the inflexion point (no unit)

Table 9.19: Definition of the selected parameters for the calibration of STICS.

Parameter Estimation

In the deterministic case, the conditional ICPF approach coupled with the para-
metric bootstrap used for the LNAS model is not possible. We thus estimated the
unknown parameter vector

Θ = (EFFICIENCE, STAMFLAXV,UDLAIMAXP, V LAIMAXP )
with the classical CPF. 100000 particles were drawn from the distributions used for
sensitivity analysis and obtained from the literature (Brisson et al., 2008). Means and
standard deviations of all the four parameters are thus obtained based on the posterior
distribution provided by the population of the particles and their associated weights.
The results are presented in Table 9.20.

Data Assimilation with CPF

Data assimilation was subsequently performed using as prior distributions the pos-
terior distributions of the parameters provided by the estimation step. 100000 particles
were simulated for the two 2013 datasets. The recalibration was carried out based on
the first seven observations of soil water content hur and the first three observations
of LAI, corresponding for both cases to data obtained before Day 199 after sowing.
The values of these state variables along with the grain yield were then simulated for
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Parameter Prior CPF
Distribution Estimates Std.

EFFICIENCE N (4.00, 0.202) 3.62 0.19
STAMFLAXV U (250, 350) 277.05 35.88
UDLAIMAXP N (3.00, 0.52) 2.89 0.67
VLAIMAXP N (2.20, 0.22) 1.91 0.14

Table 9.20: Estimated values and approximated standard deviations obtained by CPF
for the 4 selected parameters of the STICS winter wheat model, based on the 2012
experimental data.

all particles until the end of the growing season (Day 275 after sowing), which allows
us to build the posterior distribution of the prediction.

Uncertainty Analysis (UA) was also performed in this study to provide reference
values for the prediction with 100000 particles as well initialized in the same way as
for the prediction with assimilation.

Figure 9.15 and Figure 9.16 illustrate the model prediction for the LAI variable,
with and without data assimilation. The assimilation step has clearly enhanced the
predictive capacity of the model. The results are detailed in Table 9.21 for the variety
Raffy and Table 9.22 for the variety Numeric: the predictions and relative prediction
errors as well as the prediction uncertainty (given by the credibility intervals) are
given for the soil water content hur, LAI, and grain yield magrain, with and without
data assimilation. The relative error of prediction was greatly reduced when taking
advantage of the early data by assimilation, and the prediction uncertainty was also
significantly decreased in almost all the cases.

Real Data DA estimates 95% CI UA estimates 95% CI
2013 (RE in %) (RE in %)

hur (t210) 0.296 0.311 (5.2%) [0.298; 0.324] 0.308 (4.0%) [0.304; 0.312]
hur (t226) 0.296 0.305 (3.2%) [0.292; 0.318] 0.303 (2.3%) [0.296; 0.310]
hur (t240) 0.293 0.304 (3.7%) [0.291; 0.317] 0.301 (2.8%) [0.294; 0.308]
hur (t255) 0.247 0.266 (7.8%) [0.253; 0.279] 0.273 (10.6%) [0.255; 0.292]
hur (t275) 0.252 0.253 (0.4%) [0.238; 0.268] 0.268 (6.5%) [0.233; 0.304]
LAI (t203) 3.51 2.91 (17.2%) [2.16; 3.65] 2.04 (41.9%) [0.27; 3.81]
LAI (t212) 4.39 3.87 (11.9%) [3.10; 4.69] 2.25 (49.8%) [0.00; 4.51]
LAI (t219) 4.37 4.06 (7.2%) [3.24; 4.87] 2.33 (46.7%) [0.00; 5.06]
LAI (t233) 5.21 5.00 (4.0%) [3.65; 6.35] 2.48 (52.4%) [0.00; 6.56]
magrain (t266) 829.93 769.70 (7.3%) [613.18; 926.22] 449.11 (45.9%) [41.08; 857.14]

Table 9.21: Comparison of the prediction results of the STICS model with and without
data assimilation performed with CPF calibration for the 2013 dataset variety Raffy.
RE: relative error.

9.4 Discussion

Similar to the application of the LNAS model for sugar beet, the mean prediction
and prediction credibility intervals are generally greatly improved with data assimila-
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Figure 9.15: Comparison of the predictions of LAI obtained with CPF-based assimila-
tion and by the uncertainty analysis (without assimilation) based on the 2013 dataset
for variety Raffy. The red squares correspond to the assimilated experimental data
while the pink squares represent the data used for validation.

Figure 9.16: Comparison of the predictions of LAI obtained with CPF-based assimila-
tion and by the uncertainty analysis (without assimilation) based on the 2013 dataset
for variety Numeric. The red squares correspond to the assimilated experimental data
while the pink squares represent the data used for validation.

tion compared to simple prediction by uncertainty analysis.

A noteworthy point concerns the special climatic conditions of year 2013 for the
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Real Data DA estimates 95% CI UA estimates 95% CI
2013 (RE in %) (RE in %)

hur (t198) 0.276 0.272 (1.7%) [0.260; 0.283] 0.290 (5.0%) [0.286; 0.295]
hur (t210) 0.274 0.303 (10.3%) [0.284; 0.322] 0.308 (12.2%) [0.303; 0.313]
hur (t226) 0.289 0.297 (2.6%) [0.278; 0.316] 0.303 (4.7%) [0.295; 0.310]
hur (t255) 0.239 0.262 (9.7%) [0.240; 0.283] 0.272 (14.0%) [0.253; 0.291]
hur (t275) 0.257 0.260 (1.2%) [0.229; 0.291] 0.267 (4.0%) [0.233; 0.302]
LAI (t203) 4.24 4.51 (6.6%) [3.10; 5.92] 3.5 (17.8%) [0.47; 6.49]
LAI (t212) 4.74 4.63 (2.3%) [2.75; 6.40] 3.84 (18.9%) [0.00; 7.69]
LAI (t219) 4.23 4.87 (15.2%) [2.39; 7.34] 3.99 (5.5%) [0.00; 8.64]
LAI (t233) 4.91 5.22 (6.2%) [1.57; 8.86] 4.27 (13.0%) [0.00; 11.21]
magrain (t266) 819.38 804.33 (1.8%) [611.68; 996.98] 550.58 (32.8%) [128.97; 972.20]

Table 9.22: Comparison of the prediction results of the STICS model with and without
data assimilation performed with CPF calibration for the 2013 dataset for variety
Numeric.

winter wheat data, since severe stresses due to heavy rain and frost in winter were
observed which resulted in a far lower plant density compared to 2012. However, since
there was more space available for each plant, a compensation phenomenon was ob-
served. The LAI curve got delayed but finally nearly caught up with what would have
been observed with the regular climate conditions, and therefore grain yield was not
seriously influenced. However, the prediction performed without assimilation was not
able to capture this compensation phenomena and thus failed to provide a reasonable
prediction for the LAI and for the final yield (cf. variable magrain in Table 9.22
and Table 9.21), while the proposed approach has remarkably tackled this issue by
updating properly the parameters and hidden variables based on the available data.
As a result, the satisfactory predictions demonstrated its robustness in case of extreme
weather scenarios.

On the other hand, the prediction improvement is less impressive with the soil
water content variable, probably due to the fact that the prediction results obtained
without data assimilation were already satisfactory, and there was no soil parameter
selected by sensitivity analysis, and only light water stress conditions: the influence of
the crop parameters updated in the data assimilation is limited, so that the difference
with the case without assimilation is not so apparent (while still to the advantage of the
assimilation method). In the light of this example, we may also consider a more subtle
selection of parameters in the first step of our approach to improve the prediction of a
specific output variable of interest when needed.

Finally, it is important to underline that when the proposed approach is applied to
a deterministic model, the resulting uncertainty assessment is less rigorous in both the
estimation and assimilation steps. As presented in Section 8.3.2, CPF can bring arti-
ficial dynamics to the deterministic STICS model by introducing two kernel functions
associated to Xa

n and Yn, so that more variations are tolerated and the estimation
can be considered as a distribution. In practice, a value of cx ≈ 1 assured a good
exploration of the state-space. Nevertheless, in this case, the posterior distributions
obtained with the CPF approach are extensively influenced by the tuning parameters
of the algorithm, especially the choice of the kernel functions and their bandwidth pa-
rameters, so that the credibility intervals computed should be regarded as contextual
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approximations. This directly results from the fact that the model does not have a
probabilistic framework, which of course restricts the validity of the statistical analysis.
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CHAPTER 10

Discussion and Perspective

To improve the predictive performance of plant growth models, various efforts are
made from different perspectives in literature. However, based on the existing

approaches and strategies, the plant growth prediction application appears to be very
case-specific, the methods and the data analysis settings employed are often either too
superficial regarding the prediction objective or simply chosen based on their availabil-
ity, without a profound analysis. A full methodology dedicated to guide a good practice
of the data assimilation technique could benefit the development of applications.

In this context, this thesis encompasses the essential core steps of modelling, in-
cluding model design, sensitivity analysis, model calibration (also known as param-
eterization), model selection, uncertainty analysis, model prediction and eventually
design of experiments. Aiming to enhance the predictive performance in terms of both
point estimation and the associated uncertainty assessment, we attempted to provide
such an approach described in a probabilistic Bayesian framework to perform data
assimilation. In this last chapter, we overview and discuss the principal results and
contributions of this thesis, some possible future research directions are accordingly
proposed.

10.1 Contributions and results

The objective of this thesis is to develop a full methodology to address the data
assimilation and prediction issues in plant growth models from different perspectives.
Our main contributions can be summarized in four categories, described below.

10.1.1 Model design

Firstly, from a model design perspective, a simple crop model, the Log-Normal
Allocation and Senescence (LNAS) model was elaborated and adapted to the imple-
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mentation of a Bayesian approach to perform model prediction with a special focus on
the characterization of the inevitable uncertainty present in plant growth models. To
facilitate the application of Bayesian based methods, the plant growth model used for
prediction purpose should be described in a general state-space model form. The cur-
rent trend in plant growth modelling is to develop sophisticated models with detailed
description of plant-environment interactions Yin and Struik (2010), which leads to
an important number of parameters in the model. With insufficient number of avail-
able observation data, estimation difficulties can frequently occur, while the generally
deterministic model form does not allow a proper assessment of uncertainty.

In this context, we aim to find a balance between the complexity of the model
and the quantity of available data in order to avoid identifiability problems. In this
regard, being built from a probabilistic perspective, the LNAS model describes only
the essential ecophysiological processes involved in biomass budget based on the anal-
ysis of Delécolle et al. (1992), for instance, biomass production, biomass allocation,
senescence and leaf surface development. Although the parameters of these functions
are no longer supposed to be from genetic origin only, our assumption is that the em-
pirical functions describing the ecophysiological processes are flexible enough to adapt
to a large range of situations, and robust enough so that the mean prediction remains
pertinent. Moreover, such simplification allows an easier representation of the model
errors without increasing significantly the number of parameters. Indeed, an extra
attention is paid in the construction of the LNAS model to describe the uncertainty
in crop growth. The introduction of both modelling noises and observation noises
helps to avoid an excessive forcing of the model towards the observations and allows
to take into account multiple stochastic factors, including environmental noises and
various stress and compensation factors not included in the model. As a counterpart,
the combination of these two types of noises alters the dependence structure and pro-
duces significant computational difficulties. Therefore, extensive numerical simulation
integration methods are required for conducting statistical inference. The parameter
estimation of such a state space model becomes a major challenging research subject.
In the following, we present the contributions of this thesis in these regards.

10.1.2 Parameter estimation and uncertainty assessment

Dynamic crop models are generally characterized by complex interacting processes
and a large number of model parameters. As a specificity of agricultural systems,
experimental data acquisition tends to be costly (when direct field data collections are
involved) or inaccurate (for indirect measurements such as satellite images), and gen-
erally irregular. Therefore, due to the nonlinear dynamics of the system equations, the
restricted experimental data and the considerable uncertainty of the inputs, the pa-
rameterization of these models is generally regarded as a key issue which may strongly
affect the quality of model prediction. Efficient and precise parameter estimation with
proper assessment of the parameter uncertainty is thus crucial to ensure reliable and
satisfactory prediction performance.

In this thesis, a thorough research is conducted regarding model parameterization
methods, with a special focus on Bayesian estimation, involving both MCMC-based



CHAPTER 10. DISCUSSION AND PERSPECTIVE 243

methods and SMC methods.

Bayesian inference
Regarding MCMC based methods, we investigated the three strategies that are of-
ten opposed in applications, namely “one long run”, “some median runs” and “many
short runs”. For this purpose, we respectively implemented and studied the Adapted
Metropolis-within-Gibbs algorithm (Haario et al., 2001; Andrieu and Thoms, 2008),
the DREAM algorithm (Vrugt et al., 2009a) and interacting parallel MCMC (Campillo
et al., 2009). For the three strategies, a new scheme was proposed to deal with the
issue of poor mixing between hidden states and parameters in state-space plant growth
models. The convergence properties and behaviours of each method were studied and
compared based on both the simulated datasets and a real experimental dataset.

Globally, the three algorithms provided accurate mean estimates. Although the
one long run has the advantage to provide accurate mean and variance estimates, the
algorithm cannot be parallelized and suffers from the long computational time. For
the sake of computational efficiency, parallel chains are also widely studied.

When parallel chains are engaged without communication, the overall speed of
convergence is limited by the convergence of each chain. The DREAM algorithm
proposes to hasten the convergence of individual chains by creating communications
between the chains. However, according to our results, it still appears to have slow
convergence issues and the burn-in period for each of its chains is difficult to define.
Moreover, it requires an appropriate starting distribution which is over-dispersed. The
performance of the classical Gelman-Rubin criterion for multiple chains convergence
diagnostic is also proved to be inefficient. Therefore, when the number of chains
increases, more and more outliers could be included in the final pooled estimates which
are used to construct the posterior distribution, while a small number of chains are
very likely to underestimate the mean posterior variance. In order to determine the
number of samples of the chains that should be discarded pertinently, an efficient way
is to take only the last sample of each chain, as in the case of the interacting parallel
MCMC algorithm.

By gathering the candidates of all the individual chains together and being selected
by all the chains, the idea is to concentrate the computational effort on the zone of
interest. Although one iteration of Interacting MCMC generally takes more time than
one iteration of parallel independent MCMC, our tests demonstrated that the interact-
ing scheme, which can be regarded as a sort of importance sampling, clearly improved
the convergence efficiency. Nevertheless, manifestly the algorithm suffered from the
sample impoverishment issue and failed to provide appropriate variance estimates to
characterize precisely the target distributions, for the regions with small acceptance
probability are rarely visited. Although some efforts of improvement were made to
extend the interacting parallel runs without the interacting scheme, the variance esti-
mates still remained less accurate than those of a long run.

Our results suggest that multiple chains perform less efficiently than a single chain
(at least for the type of situations considered in this thesis). They may save some
computational time, but their estimation of posterior distribution is less accurate than
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one long run methods, especially for nonlinear models and limited data. Most impor-
tantly, it seems more difficult to define a proper way to diagnose the convergence for
multiple parallel chains.

Another important category of Bayesian estimation methods are the SMC filters.
The Unscented Kalman Filter (Julier and Uhlmann, 1997; Quach et al., 2007), the
Ensemble Kalman Filter (Evensen, 1994) and the Regularized/Convolution Particle
Filter (Musso and Oudjane, 1998; Oudjane and Musso, 1998; Campillo and Rossi,
2009) were also implemented and studied. The three methods are designed to confront
nonlinear systems. Contrary to the MCMC-based approaches, the filtering methods
are performed in a sequential way. They are able to take into account the variation of
parameters over time and carry out on-line updating. Based on the Kalman prediction-
correction filter equations, UKF uses a small set of sigma-points to approximate both
the mean and the covariance matrix in the prediction step. EnKF relies on normality
assumptions in order to improve the accuracy of its estimates with a more important
number of samples. Finally, CPF and RPF are particle filter-based methods, they
intend to provide better approximation of the exact posterior distributions by creating
a set of randomly drawn samples that are propagated in the dynamic system. Each
trajectory has an associated weight, evolving at each filtering step. A kernel smoothing
method is used to change the discrete approximation of the filtering density into an
absolutely continuous approximation. The difference between CPF and RPF is that
for CPF, a convolution kernel is used to regularize the likelihood of the observations
as well. Since in our application to the LNAS model, the likelihood of the observation
is considered known, RPF was used to perform the model calibration.

According to our tests, unlike the MCMC-based methods that generally provided
similar estimations and remain stable, UKF, EnKF and RPF usually disagreed on the
estimation results. The estimations given by RPF were often similar to those of the
MCMC based methods, which suggests a reliable performance, even though the Monte
Carlo error was generally larger. On the other hand, UKF is limited by its sample
size which often led to poor estimations, especially when the system is characterized
by a strong nonlinearity. In comparison, the other Kalman based filter EnKF behaved
better. Its larger sample size makes it more adapted to nonlinear systems than UKF,
but it is still affected by the underlying Gaussian approximation, and finally yielded
less accurate estimations than those of RPF.

Iterative approaches
We highlight that when the number of data is limited, one crucial point to define
the performance of Bayesian inference is the choice of prior. In the context of plant
growth modelling, when a new model is developed (as for LNAS), there might be
a lack of accuracy in the prior knowledge that could be gathered, since few specific
studies on the parameterization of the model exist. The desirable strategy is hence to
put more emphasis on the data, while still preserving an interpretable context and to
benefit from the robustness of Bayesian based methods. Motivated by this thought, in
this thesis, an iterative scheme was proposed based on the SMC or MCMC Bayesian
estimation methods to improve the estimation accuracy. It can be regarded as a variant
of the Expectation-Maximization algorithm under the normal assumption of the prior
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distributions. A theoretical framework was elaborated in this regard to describe this
variant of EM type algorithm. The term Gaussian randomization was introduced to
designate that the initial model could be seen as the special case of an extended model
which includes all the Gaussian distributions with the parameters of the original model
as the means.

The estimation results showed that the iterative RPF performed better than the
MCMC-based iterative approach. It can be explained by the fact that since the vari-
ance of the posterior tends to 0 with the EM iterations, the resampling scheme allows
RPF to introduce and to maintain the dynamics among the population or particles,
which cannot be achieved by the MCMC-based iterative approach. Accordingly, para-
metric bootstrap was used to evaluate the uncertainties associated with the mean
estimates of the parameters.

For both Bayesian and iterative methods, when the parameters of the noise model
are unknown, a conditional approach was described for their estimation. The noise
parameters were jointly estimated with the functional parameters and the hidden state
variables to characterize the uncertainty present in plant growth models. The noise
parameters were either updated with conjugate priors, or estimated with empirical
estimators, or fixed by model selection. The simulation results indicate that such a
framework usually allows for the quantification of uncertainty both at parameter level
and error model level.

Finally, a decision aid table for the choice of estimation strategies is proposed as
follows with regards to different situations and needs:

Conditions Recommended method(s)

• Time constraint, no reliable prior,

only point estimation is needed ⇒ GLS

• Time constraint, slightly non linear model ⇒ UKF

• High-dimensional parameter vector ⇒ DREAM

• Precision of the mean estimate ⇒ Interacting MCMC

• Reliable prior, need precise CI%, no time constraint,

implementation expertise in MCMC ⇒ One long run AMwG

• Reliable prior, time constraint ⇒ CPF, EnKF

• Less reliable priors ⇒ Iterative SMC, especially ICPF/IRPF

Table 10.1: Selection strategy for estimation methods.

10.1.3 Data assimilation approach

Thirdly, a three step data assimilation methodology was proposed as a guide to
tackle model prediction problems. The most influential parameters are first selected
by global sensitivity analysis and accordingly estimated in a Bayesian framework by
either Sequential Monte Carlo (SMC) methods or Markov chain Monte Carlo (MCMC)
methods in the calibration step. The posterior distribution obtained from this step



246 10.1. CONTRIBUTIONS AND RESULTS

can be subsequently considered as prior information for the prediction performed with
data assimilation. In this last step, a SMC-based on-line estimation method is applied
to update state and parameter estimates based on the data obtained at early growth
stages, with the purpose of improving model predictions and assessing or even reducing
the associated prediction uncertainty.

Sensitivity analysis and model selection
For the first step, a sensitivity analysis method is carried out first to rank the functional
model parameters according to their influences on model outcome variables of interest.
Then, by selecting an increasing number of parameters to estimate (following the
importance ranking and starting with the most influential one), a family of models is
built. The parameters that are not selected are fixed to their recommended values.
To reduce the number of candidate models, a threshold can also be defined to even
exclude a priori of the selection process the least influential parameters.

A selection method is then applied to determine the best model, and subsequently,
the number of parameters to estimate. Generally the selection process is based on
model calibration and standard criteria, like AIC, AICc or DIC.

In the applications to the LNAS and STICS models, this step allowed us to reduce
the number of parameters from 6 to 3 and from 16 to 4 respectively. The other param-
eters are thus fixed to their recommended values given by literature and considered as
constants.

However, it is important to note that the best model selected from the calibration
step is not proved to be the best model in a predictive context, with data assimilation.
If the DIC criterion is used with bayesian estimation methods in the calibration step,
it seems that it penalizes too much the number of parameters, finally allowing too
little flexibility in the data assimilation step, to the detriment of model adaptation
and predictive capacity. This results suggest that a model selection criterion with less
penalty on the number of the model parameters could be preferred for the prediction
objective.

Parameter estimation for stochastic state space models
In this second step, when a calibration data set is available, the estimation methods
investigated in Chapter 4 and Chapter 5 can be applied. For the type of models
considered in this thesis and the type of classically available data, Bayesian methods
(principally one long run AMwG and RPF/CPF) were able to provide fair posterior
distributions, that could be used in the data assimilation step.

The iterative approaches were also able to provide estimates that approach MLE,
which is a desirable feature when the prior information is not pertinent. The con-
fidence intervals obtained by parametric bootstrap were however far larger than the
credibility intervals given by the Bayesian approaches. Although these intervals can-
not be compared for they bear different meanings, the predictive performances of the
two approaches (Bayesian versus Iterative) were evaluated in our data assimilation
application for the LNAS model.
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Prediction with assimilation
In the last step, the model prediction with assimilation of data from early growth
stages was carried out with the four SMC filtering methods (CPF, RPF, UKF, EnKF).
Unlike RPF, CPF applies when the likelihood cannot be computed explicitly, another
convolution kernel being introduced for the likelihood computation of the observation
function. It is useful when the form of the observation error is not known. In our tests,
data assimilation with CPF showed similar prediction performances as RPF.

Regarding the comparison with the prediction by UKF and EnKF, generally,
CPF/RPF yielded more accurate mean estimates and reduced more the prediction
uncertainty than the other two Kalman based filtering methods, and therefore CPF
and RPF appears to be more robust and suitable in our application context.

The influence of the calibration precision was also studied. Generally, the preci-
sion has a direct impact on the prediction accuracy. However, some exceptions were
detected, specifically when the environmental conditions were very different in the pre-
diction phase compared to the calibration phase, and when the model was not able to
handle this difference. In that case, the accuracy of the prior induced some bias in the
prediction step, by restraining the model adaptability.

Likewise, multiple observation noise levels were considered. The impact on the
mean predictions was small, but it was important on the evaluation of prediction
uncertainty. This result suggests that the evaluation of the observation noise level is
crucial and should be determined with care, since it could vary from one experiment
to another and can be influenced by many factors that are difficult to assess.

Moreover, we also demonstrated that in our study case, the number of parameters
recalibrated in the data assimilation step was also of great importance. Generally
speaking, the issue is to determine the proper number of parameters to be re-calibrated
allowing a sufficient liberty for the calibrated system to re-adjust itself to the new
context, while preserving the model robustness and avoiding the identifiability issues.
As mentioned above, the optimal choice in terms of prediction is difficult to determine
a priori. It seems that by increasing slightly the number of parameters suggested by
the DIC in the estimation step, or rather by using a more tolerant criteria, the quality
of the prediction results obtained with data assimilation could be improved.

Finally, the impact of the number of data based on which data assimilation can be
performed and the impact of their acquisition dates were evaluated. As expected, the
latest observed data (that is to say those that are close to the prediction dates) tend
to be the most informative, and consequently, they improve greatly prediction results
compared to cases when the same data is not available for assimilation. More dispersed
observation dates also appeared to yield better prediction precision. Furthermore,
the number of repetitions of observations did not appear to be as important as their
acquisition dates for the prediction quality. This part opens some perspectives towards
the optimal design of experiments, regarding the choice of the observation dates and
of the type of data to collect, with the objective to improve the predictive capacity.
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10.1.4 Application with real experimental data

Finally, from an application point of view, the proposed methods are implemented
and evaluated with two crop models, the STICS model for winter wheat and the LNAS
model for sugar beet, to illustrate the robustness of the proposed data assimilation ap-
proach. Five datasets obtained in various experimental conditions were used for the
sugar beet LNAS model, and three datasets for the winter wheat STICS model. In both
studies, one dataset was used for a priori parameter estimation and the others were
used to test the model predictive capacity, both with and without data assimilation.
The RPF-based data assimilation approach showed promising predictive capacity and
provided robust and reduced credibility intervals in various test configurations (differ-
ent years for calibration and prediction by assimilation, different experimental sites,
different cultivars, different crop densities, different levels of water stresses), which sug-
gests that the combination of such an approach with both types of crop models (simple
probabilistic model or complex deterministic model) is quite reliable and can therefore
be regarded as a potential tool for yield prediction applications in agriculture. The
fact that the method can be applied straightforwardly to deterministic model is very
interesting. There is however a limitation since the confidence intervals produced by
this method are not statistically relevant (since there is no statistical model for this
purpose).

10.2 Perspectives

While answering a few of the initial questions addressed in this thesis, a lot of issues
remain unsolved or were raised during this work. In the following, some perspective
and research directions are discussed.

10.2.1 Modelling Uncertainty

Assumption for noise models
The proper assessment of uncertainty appears as a crucial point for the usefulness
of plant models (Ford and Kennedy, 2011). In the construction of the LNAS model
introduced in Section 2.1, a multiplicative Gaussian noise structure is adopted for both
the modelling noises and the observation noises.

However, other distributions could have been tested in a model selection perspec-
tive. The log-normal distribution is a classical choice, specifically to prevent positivity
loss. Both log additive or log multiplicative noise can be considered. In this case, our
evolution model can be transformed to:

Q(t) = F t
Q(Qf (t); Θ) eηQ(t),

γ(t) = Γt(Θ) eηγ(t), t ≥ 1,

where {ηQ(t)}t≥1 and {ηγ(t)}t≥1 are independent from X0 sequence of mutually inde-
pendent centered Gaussian random variables with variances σQ and σγγ respectively.
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So as the observation equations:

Y (t) =

(
logQg(t) + ξg(t)
logQr(t) + ξr(t)

)
, (10.1)

where {ξg(t)}t≥1 and {ξr(t)}t≥1 are i.i.d. mutually independent sequences of centered
Gaussian random variables with variances σ2

g for ξg(t) and σ2
r for ξr(t), and assumed

to be independent from {ηQ(t)}t≥1 and {ηγ(t)}t≥1.

Regarding the deterministic STICS model presented in this thesis, it could also be
interesting to consider its adaptation in a state-space form described in a probabilistic
framework in order to characterize and identify different sources of uncertainty. Similar
log-normal noise models can be introduced for biomass production, allocation and the
stress functions. Of course, some more experimental data would be available to avoid
identifiability problems, since potentially many different modelling noises could be
introduced.

Finally, the evaluation of the appropriateness of a noise model could be contextual,
the assessment of uncertainty still remains a critical and crucial point to determine
the performance of the prediction. An excessive forcing of the model towards the
observations is not desired, yet too much noise could conceal the useful information.
How to extract most information from the available data while still addressing the
uncertainty in an appropriate way in order to provide reliable credibility intervals?
Further investigations are still required.

Climatic uncertainty
A very strong assumption was used in all our prediction tests: we assumed that the
climatic data were known, even after the last data acquisition that was used for assimi-
lation. Of course, this is not the case in real situations. For real prediction applications,
it would be useful to also consider the uncertainty in the climatic variables. The most
classical way in this objective is to use historical climate data, for example in the last
50 years, and use these data to run simulations for each of these 50 climatic scenarios.
Ideally, these 50 simulations should be run for each particle describing the posterior
distribution obtained in the filtering process. However, since after the last filtering
step, we are in a pure uncertainty analysis situation (propagation of uncertainty in the
plant dynamic system), the number of particles can be reduced.

A problem of this classical approach based on historical scenarios is that the sim-
ulations run after the last filtering step at date tf are based on climatic scenarios
that are independent of the observed climatic variables until tf while these are avail-
able, and there exist long dependence chains in the climatic time series. For this
purpose, it would be interesting to couple our approach with stochastic weather gener-
ators that simulate weather scenarios conditionally on the observed climatic variables
(Yiou, 2014).

Towards population-based models
In this thesis, both the LNAS and the STICS models consider only mean population
values to assess the impact of covariates and to perform the model prediction. How-
ever, if there is a strong variability among individuals, the conclusion can be severely
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biased. Indeed, describing plant populations only in terms of mean growth is often not
adequate. Although the modelling noises allow to take into account some variations
resulting from the population effect, it is still different from studying specifically the
inter-individual variability, which could help us to understand population behaviour
and thus enhance the predictive capacity of plant growth models at field scale.

For this purpose, individual centered models like the LNAS or GreenLab mod-
els can be extended to a population level using mixed effect models, as proposed by
Baey et al. (2013b); Baey (2014); Baey et al. (2014). They also proposed an estima-
tion method combining multiple chains Monte Carlo with Expectation-Maximization
algorithm (Stochastic Approximation of EM algorithm, see Delyon et al. (1999)) to
mimic the population dynamics. In order to study the covariates’ effect, the maximum
likelihood function used in the MCMC algorithm should therefore be based on the
joint density of the observation given the covariates, and the Wald test can be used
for model selection. Different types of covariance structures as well as different noise
models can be considered and compared, so as the significance of the random effect
introduced. Given the fact that the variance estimates of the random effects provided
by the Maximum Likelihood method can be biased (Meza et al., 2007), it can be as-
sessed with the Restricted Maximum Likelihood (REML) (see Foulley et al. (2000)
and Foulley and Van Dyk (2012)).

Finding population data adapted to the GreenLab population model iss difficult
since data at organ scales are heavy to collect, and it is of course multiplied when we
are interested in a population of individuals ... Moreover, the population formulation
was based on a deterministic version of the GreenLab model, without modelling noise.
Therefore, further study can be conducted by combining this population approach
with other simplified plant growth models described in a probabilistic framework to
avoid identifiability problems and to take into account growth process variations via
modelling noises. The LNAS model is a good candidate for this purpose since it
requires far less data than the GreenLab model for its parameterization and would
thus open the way to wider applications, with more individual plant samples.

Moreover, if an important number of sample plants are available, we could assume
that some modelling noises (random effects) are generated from a non-parametric
distribution (e.g. a mixture of mass points with each corresponding to a cluster of
plants) in order to admit more variability among the plant population while avoiding
over-fitting problem by introducing more parameters (see for example Debashis et al.
(2011)).

It would also be interesting to adapt the Bayesian methods investigated in our
thesis, to take advantage of the prior knowledge on model parameters, and also to avoid
the iterative process of the EM algorithm which repeats a large number of MCMC
computations and is thus very expensive in the context of mixed models when the
population size becomes important. One chain should be enough in the Bayesian
frame, even if of course the convergence could be very slow according to the number
of parameters and of mixed effects to consider.

Finally, methods like cross validation can be used to identify the bias of model
selection. Population based models and average individual based models can therefore
be compared with regards to their predictive capacity.
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10.2.2 Estimation Methods

In terms of estimation, the results obtained by AMwG with our proposed scheme to
handle the parameter - hidden states mixing issue, the RPF / CPF approach, and the
iterative versions of RPF / CPF are very satisfactory regarding our parameterization
and uncertainty assessment objectives. However a few interesting perspectives could
still be considered. The first one concerns the interacting paralell MCMC (Campillo
et al., 2009), for which a few things could be tested to improve the under-evaluation
of the posterior variances. Another promising approach is the hybrid Particle MCMC
method introduced by Andrieu et al. (2010).

A hybrid Particle MCMC method
The objective of MCMC based methods for parameter estimation in state-spaces mod-
els can be reformulated as follows: given a batch of observation y1:tmax , we seek the
posterior distribution π(Θ|y1:tmax) ∝ p(y1:tmax |Θ)π(Θ) with π(Θ) the prior distribution.
This posterior distribution is typically not available in closed form. A possible remedy
is to include the hidden state variables x1:tmax as auxiliary variables. Therefore, a joint
update scheme is proposed.

– Update Θ′ ∼ π(Θ|x1:tmax , y1:tmax).
– Update x′1:tmax ∼ π(x1:tmax|Θ, y1:tmax).

By sampling Θ conditionally on both the observed data and the hidden state vari-
ables, it generally simplifies the update. For non-conjugate models as in our case, a
MH step is used to replace the exact update. However, the second step is much less
straightforward.

In practice, slow mixing occurs frequently when strong temporal dependencies are
present in the model. Many efforts are made in the literature to improve the sampling
process of the hidden states estimation, including dividing the trajectory in blocks
and updating them subsequently (see Carter and Kohn (1994) for block independence
sampler), or updating the whole trajectory from its full conditional (see Rabiner and
Juang (1986) for the Kalman filter algorithm and Scott (2002); Fearnhead (2006) for
the forward-backward algorithms). However, the block updating may result in slow
mixing at the boundaries of the blocks, Shephard and Pitt (1997) suggest that the
blocks to be updated can be chosen randomly.

Another alternative consists in simulating directly from the full conditional of the
hidden state variables, but there is the important constraint that the full conditional
can be expressed analytically, which cannot be applied to many models. Likewise,
independent proposals are built under the Gaussian assumption and thus can only be
used for limited models. It is possible to obtain good proposals for state-space models
in a more general way, but this can be a challenging task, especially for models with
high-dimensional states and important nonlinearity.

Note that this can be regarded as another argument for simplified model design,
since the more sophisticated a model is, the more difficult its parameterization will be,
and very limited methods can be applied considering the computational constraint.
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A promising approach for block updates of hidden state variables has been recently
proposed by Andrieu et al. (2010), which is based on employing SMC methods within
a Markov chain. The idea is to benefit from the efficiency of the SMC methods by
generating a proposal distribution for the trajectory of the hidden state variables inside
an MCMC algorithm. This framework is described as Particle Markov chain Monte
Carlo (PMCMC).

As we stated in Section 4.1.4, ideally the proposal q(x′1:tmax|Θ
′) should be taken as

p(x′1:tmax|Θ
′, y1:tmax), but since it is difficult to achieve, anther way to approximating

the intractable π(Θ|y1:tmax) required for the computation of the acceptance probability
of the MH update is to use importance sampling estimates :

π̃(Θ|y1:tmax) =
1

N

N∑
k=1

π(Θ, x1:tmax(k)|y1:tmax)

q(x1:tmax(k)|Θ)
with x1:tmax(k)

i.i.d.∼ q(x1:tmax|Θ).

So that the acceptance probability can be simplified as :

min

(
1,
π̃(Θ′|y1:tmax)q(Θ|Θ′)
π̃(Θ|y1:tmax)q(Θ

′|Θ)

)
.

However, in a general way, the success of this approach relies greatly on using
a large number of particles M in the underlying particle filtering method, to obtain
accurate kernel approximations. Although it seems to be a natural requirement, it also
implies that a lot of computational resources are wasted. This can be explained by the
fact that at each iteration of the Gibbs sampler, a large number of particles are used
to extract a single state trajectory.

Based on the actual version of AMwG described in Section 4.1.4 and its demon-
strated performance, a more simple way to improve the PMCMC performance could
be to introduce a particle filter inside the parameter update every k iterations for the
updates of hidden states, or to consider a smaller sample size for a more often hidden
state update. The performance of different proposal distributions can also be explored.
We believe this idea is worth further investigation for our applications of interest in
plant growth model calibration.

10.2.3 Data assimilation applications

Of course, a deeper investigation on real test cases is necessary to show the robust-
ness of the proposed approach. For example, a potentially interesting performance
comparison for future study can be using both a sophisticated model like STICS and
a probabilistic model like LNAS to perform model prediction with the same crop and
same observation datasets.

With real applications in mind, a crucial aspect is the assimilation of data obtained
via remote sensing techniques, either from satellite images or aerial (drone for example)
images. It has been a long-standing challenge and there were already several pioneer
applications carried out Guérif and Duke (2000); Launay and Guérif (2005). It will be
interesting to see how this kind of information can be integrated into our probabilistic
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model and how it helps for its predictive capacity. The information provided by these
techniques are potentially cheap and quite frequently available during the crop cycle.
However, few biophysical variables can be estimated, and the level of uncertainty re-
mains pretty high. Observations of some agronomic variables in the field (phenological
stages for example, or direct LAI measurements with LAI analyzers, some biomass
sampling ...) could greatly complement the remote sensing data.

More generally, since the acquisition of field measurements is expensive, the study
of experimental design can be useful to reduce the number of measurements and to
find a compromise between the prediction accuracy and the measurement cost. Not
only the number of data, their precision and the date of observations can be studied,
but of course also the type of measured variables, and the combination of different
acquisition sources (e.g LAI analyzer versus satellite / drone image analysis). The
answer would differ with the type of models considered.

The ’Information Theory’ is the scientific field that can help tackle the issue of
Design of Experiments (DOE). A design space has to be chosen, and the question is
mainly about how to identify the aggregation of the data points among all the candidate
points in order to best reflect the information in the considered design space. In the
meantime, it is also important to identify some validation points in order to test the
accuracy of the model. Various methods are proposed in the literature, among which
two main statistical approaches (Koehler and Owen (1996), chapter 9), one based
on frequentist sampling technique, like Latin Hypercube Sampling, Scrambled net and
Grids. The other concerns the Bayesian experimental design techniques which takes
into account prior knowledge, such as Minimas Designs, Mean Squared-Error designs
or Maximum Entropy Sampling. For both approaches an optimal design is one that
maximizes a given optimality criterion. The two most suitable DOE techniques for
sequential design problems as for plant growth modelling are D-optimal design and
Bayesian Entropy Sampling.

To sum up, plant growth modelling offers promising perspectives, for example for
virtual experimentation in the context of breeding, or to provide yield potential predic-
tion for decision support. However, there still remain a considerable amount of issues
to be addressed to ensure the quality of model predictions. How to find a balance
between the complexity of the model (a good indicator of this complexity being the
number of functional model parameters) and the necessary data for its parameteriza-
tion in order to avoid over-fitting and under-fitting? How do parameters vary across
years, different locations or genotypes? How to distinguish and to identify the different
sources of variations and uncertainty? How to take into account in the yield prediction
the uncertainty related to the climate (and climate change!)? How to optimize the de-
sign of experiments? These issues should be considered crucial and properly addressed
by the new generation of plant models.
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Notations

• Plant Growth State-Space Model

− M : Metamodel.

− Qn : Biomass produced at time n.

− tmax : Last date of observations.

− Θ1 : Functional parameter vector.

− Θ2 : Noise parameter vector.

− Θ : Parameter vector, Θ = (Θ1,Θ2).

− Xn : Hidden state vector.

− Xa
n : Augmented hidden state vector, Xa

n = (Xn,Θn) .

− Yn : Observation vector.

− E : Environmental control vector.

• Probability

− P : Probability.

− E : Expectation.

− ∼ : Sampled from or distributed according to.

− V : Variance.

− Var, Cov : Variance, covariance.

− diag(V ) : Diagonal matrix with elements of V on the diagonal.

− p(·) : Probability distribution function.



• Abbreviations

− ACF : Autocorrelation function.

− AIC : Akaike information criterion.

− AICc : Akaike information criterion with correction.

− AM : Adaptive Metropolis.

− AMwG : Adaptive Metropolis-within-Gibbs.

− a.s. : almost surely.

− BIC : Bayesian information criterion.

− CLT : Central limit theorem.

− CPF : Convolution particle filter.

− DA : Data assimilation.

− DIC : Deviance information criterion.

− DREAM : Differential evolution adaptive Metropolis.

− EM : Expectation-Maximization.

− EnKF : Ensemble Kalman filter.

− GLS : Generalized least squares.

− i.i.d. : independent and identically distributed.

− KF : Kalman filter.

− MCMC : Markov chain Monte Carlo.

− MH : Metropolis-Hastings.

− ML : Maximum likelihood.

− MLE : Maximum likelihood estimator.

− RPF : Regularized particle filter.

− SA : Sensitivity analysis.

− SMC : Sequential Monte Carlo.

− UA : Uncertainty analysis.

− UKF : Unscented Kalman filter.
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predictive capacity of five plant growth models for sugar beet. In 4th international
symposium on Plant Growth and Applications (PMA12), Shanghai, China. IEEE,
2012.

C. Baey, A. Didier, S. Lemaire, F. Maupas, and P.-H. Cournède. Parametrization of
five classical plant growth models applied to sugar beet and comparison of their
predictive capacity on root yield and total biomass. Ecological Modelling, 2013a.

C. Baey, A. Didier, S. Lemaire, F. Maupas, and P.-H. Cournède. Modelling the in-
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M. Launay and M. Guérif. Assimilating remote sensing data into a crop model to
improve predictive performance for spatial applications. Agriculture, Ecosystems &
Environment, 111:321–339, 2005.

F. Le Gland and N. Oudjane. Stability and uniform approximation of nonlinear filters
using the Hilbert metric and application to particle filters. Ann. Appl. Probab., 14
(1):144–187, 2004. doi: 10.1214/aoap/1075828050.

F. Le Gland, C. Musso, and N. Oudjane. An Analysis of Regularized Interacting
Particle Methods for Nonlinear Filtering. In Proceedings of the 3rd IEEE European
Workshop on Computer-Intensive Methods in Control and Signal Processing, pages
167–174, 1998.
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C. Meza, F. Jaffrézic, and J.-L. Foulley. REML estimation of variance parameters
in nonlinear mixed effects models using the SAEM algorithm. Biometrical journal.
Biometrische Zeitschrift, 49(6):876–88, 2007.

R. Mittler. Abiotic stress, the field environment and stress combination. Trends in
Plant Science, 11(1):15 – 19, 2006.

H. Monod, C. Naud, and D. Makowski. Uncertainty and sensitivity analysis for crop
models. In D. Wallach, D. Makowski, and J. Jones, editors, Working with Dynamic
Crop Models, pages 55–100. Elsevier, 2006.

J. Monteith. Climate and the efficiency of crop production in Britain. Proceedings of
the Royal Society of London B, 281:277–294, 1977.

M. Moran, Y. Inoue, and E. Barnes. Opportunities and limitations for image-based
remote sensing in precision crop management. Remote Sensing of Environment, 61
(3):319 – 346, 1997.

S. Moulin, A. Bondeau, and R. Delecolle. Combining agricultural crop models and
satellite observations: From field to regional scales. International Journal of Remote
Sensing, 19(6):1021–1036, 1998. doi: 10.1080/014311698215586.

L. M. Murray. Distributed Markov chain Monte Carlo. In NIPS Workshop: Learning
on Cores, Clusters and Clouds, 2010.

C. Musso and N. Oudjane. Regularization schemes for branching particle systems as
a numerical solving method of the nonlinear filtering problem. In Proceedings of the
Irish Signals and Systems Conference, 1998.

C. Musso, N. Oudjane, and F. Le Gland. In A. Doucet, N. de Freitas, and N. Gordon,
editors, Sequential Monte Carlo Methods in Practice. New York.

P. Mykland, L. Tierney, and B. Yu. Regeneration in Markov chain samplers. Journal
of the American Statistical Association, 90:233–241, 1995.

C. Naud, D. Makowski, and M.-H. Jeuffroy. Application of an interacting particle
filter to improve nitrogen nutrition index predictions for winter wheat. Ecological
Modelling, 207(24):251 – 263, 2007.

N. Oudjane and C. Musso. Regularized particle schemes applied to the tracking prob-
lem. In International Radar Symposium, Munich, Proceedings, 1998.

N. Oudjane and C. Musso. Multiple model particle filter. In 17ème Colloque GRETSI,
Vannes 1999, pages 681–684, 1999.

E. Parzen. On Estimation of a Probability Density Function and Mode. Annals of
Mathematical Statistics, 33:1065–1076, 1962.

D. Pham. Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear
Systems. Monthly Weather Review, 129(5):217–244, 2001.



T. Polacheck, R. Hilborn, and A. Punt. Fitting surplus production models: Comparing
methods and measuring uncertainty. Can. J. Fish. Aquat. Sci., 50:2597–2607, 1993.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averag-
ing. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.
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