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French abstract 

 

En Imagerie par Résonance Magnétique (IRM), l’augmentation de la valeur du champ 

magnétique statique permet en théorie de fournir un rapport signal sur bruit accru, améliorant 

ainsi la qualité des images produites. L’objectif de l’IRM à ultra haut champ est d’atteindre 

une résolution spatiale suffisamment haute pour pouvoir distinguer des structures si fines 

(soit l’échelle de quelques centaines de neurones) qu’elles sont actuellement impossibles à 

visualiser de façon non-invasive. Le Commissariat à l’Energie Atomique et aux Energies 

Alternatives (CEA) s’inscrit directement dans cette dynamique, avec l’installation imminente 

d’un imageur IRM clinique à 11.7 Tesla unique en son genre. Celui-ci est actuellement en 

fabrication, et sera rendu opérationnel au cours de l’année 2015 à NeuroSpin. Cet appareil 

de nouvelle génération, dont la réalisation en elle-même mobilise d’importants moyens, 

ambitionne de faire avancer l’imagerie médicale à un niveau inédit. 

Cette dynamique tournée vers les hauts champs est un formidable élan qui mobilise de 

nombreux chercheurs du monde entier afin de développer de nouvelles méthodes 

d’acquisition prenant en compte le changement de régime imposé par les fréquences 

électromagnétiques très élevées (transmission et reconstruction parallèles, impulsions 

radiofréquences et réseaux d’antennes dédiées...). En effet, à de telles valeurs de champs 

magnétiques statiques, la longueur d’onde du rayonnement électromagnétique envoyé pour 

basculer les spins des protons de l’eau est du même ordre de grandeur que l’objet dont on 

souhaite faire l’image (soit environ 13 cm à 7 Tesla). Des phénomènes d’interférences 

ondulatoires sont alors observés, ce qui se traduit par l’inhomogénéité de ce champ 

radiofréquence (RF) au sein de l’objet, qui est d’autant plus accentuée à très hauts champs. 

Ces interférences engendrent alors des artefacts de signal et/ou de contraste dans les 

images IRM, et rendent ainsi leur exploitation délicate voire impossible dans certaines 

régions du corps. Il est donc crucial de fournir des solutions pour atténuer la non-uniformité 

de l’excitation des spins. A défaut de quoi, de tels systèmes d’imagerie à très haut champ ne 

pourront atteindre leurs pleins potentiels. 

Pour obtenir des diagnostics cliniques pertinents à très haut champ, il est donc nécessaire 

de créer des impulsions RF homogénéisant l'excitation de l'ensemble des spins (ici du 

cerveau humain), optimisées pour chaque individu que l’on souhaite imager. Pour cela, un 

système de transmission parallèle (pTX) à 8 canaux a été installé au sein de notre imageur à 

7 Tesla. Alors que la plupart des systèmes IRM cliniques n’utilisent qu’un seul canal 

d’émission, l’extension pTX permet de jouer différentes formes d’impulsions RF de concert 
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sur plusieurs canaux. La somme résultante de ces interférences doit alors être optimisée 

pour atténuer la non-uniformité observée classiquement. 

L’objectif de cette thèse est donc de synthétiser ce type d’impulsions RF élaborées, en 

utilisant la transmission parallèle. Ces impulsions auront pour contrainte supplémentaire le 

respect des limitations internationales en vigueur concernant l'exposition à des champs 

radiofréquence, qui induit une hausse de température dans les tissus. En ce sens, de 

nombreuses simulations électromagnétiques et de températures ont été réalisées en 

introduction de cette thèse, afin d’évaluer la relation entre les seuils recommandés 

d’exposition RF et l’élévation de température effectivement prédite dans les tissus. Les 

résultats de ces simulations indiquent que les recommandations de TAS (Taux d’Absorption 

Spécifique) semblent : 1) être une métrique adaptée pour s’assurer que la température dans 

la tête ne dépasse pas des valeurs dangereuses pour la santé dans le cadre d’examens IRM 

en transmission parallèle à 7 Tesla et 2) sont plus limitantes que des seuils de température 

(qui reste très difficile à mesurer en temps réel), à l’exception des yeux. 

Cette thèse porte plus spécifiquement sur la conception de l’ensemble des impulsions RF 

refocalisantes utilisées dans des séquences IRM non-sélectives, basées sur l’écho de spin. 

Dans un premier temps, seule une impulsion RF a été générée, pour une application simple : 

l’inversion du déphasage des spins dans le plan transverse, dans le cadre d’une séquence 

spin écho classique. Dans un deuxième temps, sont considérées les séquences à très long 

train d’échos de refocalisation appliquées à l’imagerie in vivo. Dans tous les cas, l’opérateur 

mathématique agissant sur la magnétisation, et non pas son état final comme il est fait 

classiquement, est optimisé. Le gain en imagerie à très haut champ est clairement visible 

puisque les opérations mathématiques (c’est-à-dire la rotation des spins) voulues sont 

réalisées avec bien plus de fidélité que dans le cadre des méthodes de l’état de l’art. 

Pour cela, la génération de ces impulsions RF combine une méthode d’excitation des spins 

avec navigation dans l’espace de Fourier, les kT-points, et un algorithme d’optimisation, 

appelé Gradient Ascent Pulse Engineering (GRAPE), utilisant le contrôle optimal. Le principe 

des kT-points est de limiter la trajectoire de l’espace-k de transmission (parcourue avec les 

gradients du scanner) à un petit groupe de points autour du centre de cet espace. De cette 

façon, comme les inhomogénéités RF sont dominées par de basses fréquences spatiales, la 

limitation des excursions dans l’espace-k garantit qu’aucune énergie n’est gaspillée à des 

fréquences spatiales élevées d’un faible intérêt pour l’uniformisation de l’excitation des spins. 

De plus, le temps requis pour couvrir les quelques kT-points est minimisé, permettant une 

faible durée des impulsions simultanées résultantes.  

Pour étendre la portée des kT-points aux séquences utilisant l’écho de spin, il est nécessaire 

de leur donner des propriétés refocalisantes du déphasage des spins, induit dans le plan 

transverse, pour produire une image de qualité, sans utiliser les approximations typiquement 
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utilisées. Les stratégies d'optimisation classiques font en effet une approximation, appelée 

« classe linéaire de grand angle de bascule », pour optimiser l’angle de rotation des spins de 

façon homogène. Toutefois, ces stratégies d’optimisation tentent une telle opération via une 

approximation rendue possible par une certaine symétrie imposée dans les impulsions RF et 

dans la trajectoire dans l’espace k. Cette approximation se détériore pour de grandes valeurs 

d’angles de bascule et introduit donc des erreurs dans la manipulation de la magnétisation, 

qui se répercutent ensuite dans l’image produite. Pour finir, ce formalisme n’est strictement 

valide qu’en l’absence d’offset de champ statique dans le repère tournant, une approximation 

plus que grossière dans le cerveau humain à très haut champ.  

Une originalité supplémentaire de cette méthode est qu’elle permet la conception 

d’impulsions RF avec des contraintes spécifiques, selon l’utilisation faite de l’impulsion RF 

dans la séquence. Celle-ci peut par exemple posséder un angle de refocalisation de valeur 

choisie, ou encore soit une distribution de phase précise, soit une distribution de phase 

laissée libre. La totalité des impulsions RF utilisées dans une séquence d’imagerie à très 

long train d’échos peut être conçue par le biais de cette méthode en une seule fois, ce qui 

constitue également une nouveauté (le plus souvent, une seule impulsion est conçue, puis 

dilatée pour obtenir les autres). Cette conception est relativement rapide par rapport à l’état 

de l’art, grâce à des calculs analytiques plus directs que des méthodes de différences finies. 

La prise en compte d’un très grand nombre de paramètres nécessite l’usage de GPUs 

(Graphics Processing Units) pour atteindre des temps de calcul compatibles avec un 

examen clinique. 

Cette méthode de conception d’impulsions RF a été validée expérimentalement avec succès 

sur l’imageur 7 Tesla de NeuroSpin, sur une cohorte de volontaires sains. Un protocole 

d’imagerie, d’abord testé à de multiples reprises sur fantômes (des boules d’eau de la taille 

d’un cerveau humain servant à tester les réglages de la machine), a été développé pour 

évaluer l’amélioration de la qualité des images par rapport à des impulsions RF non 

optimisées, typiquement utilisées. 

L’ensemble des développements méthodologiques réalisés au cours de cette thèse a donc 

contribué à améliorer les performances de l’IRM à très haut champ à NeuroSpin, en 

augmentant le nombre de séquences IRM compatibles en mode de transmission parallèle. 

De futurs développements sont prévus afin d’augmenter encore les possibilités de la 

transmission parallèle, en particulier concernant l’acquisition ultra-rapide et simultanée de 

plusieurs coupes d’imagerie. L’ensemble des travaux présentés dans ce manuscrit, ainsi que 

les futurs travaux menés, devraient contribuer à faire fonctionner le futur aimant corps entier 

de 11.7 Tesla à son plein potentiel.  
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General Introduction 

 

Medical imaging is the technique of creating visual representations of the body internal 

structures. It concerns a wide variety of methods dedicated to aid the diagnosis process and 

to contribute to the understanding of pathological conditions. It incorporates advanced 

techniques such as: X-ray radiography, magnetic resonance imaging, ultrasounds imaging 

and nuclear medicine imaging.  

Recording techniques like electroencephalography (EEG), magnetoencephalography (MEG) 

and electrocardiography (ECG), which are not designed to produce images, can also be 

considered as forms of medical imaging. 

From the perspective of both patient comfort and clinical performance, in particular when 

considering delicate anatomical structures with limited regenerative capabilities such as the 

brain, non-invasive medical imaging techniques are preferable. The term noninvasive is used 

to denote a procedure where no instrument is introduced into a patient's body, which is the 

case for most imaging techniques currently used.  

Over the years, several non-invasive tomography methods have been developed to provide 

clinically relevant images. Among the most well-known three-dimensional imaging 

techniques to date are: Computed Tomography (CT), Positron Emission Tomography (PET) 

and Magnetic Resonance Imaging (MRI).  

Although each of the aforementioned techniques has its merits (with regards to spatial 

resolution, temporal resolution, sensitivity, cost, etc.), the first two of them both involve 

ionizing radiations, which are inherently harmful and potentially lethal to biological tissues, 

the latter property being used in radiotherapy for the treatment of cancer. 

CT is a technology that uses X-rays to produce a three-dimensional image of the inside of an 

object from a large series of two-dimensional radiographic images taken around a single axis 

of rotation. Nuclear medicine uses radioactive material to diagnose or treat various 

pathologies. Relatively short lived isotope is administered to the patient and gamma 

cameras are used to detect regions of biologic activity that may be associated with disease, 

such as tumors. MRI uses powerful magnets to polarize and excite hydrogen nuclei in water 

molecules of living tissues, producing a detectable signal which is further spatially encoded, 

resulting in images of the exposed organ. Unlike the two methods cited above, MRI does not 

involve the use of ionizing radiation and is therefore not associated with the same health 

hazards. There are no known long-term effects on health due to exposure to MRI scans yet. 

MRI has a wide range of applications in medical diagnosis and there are estimated to be 

over 25,000 scanners in use worldwide in 2013. MRI is the investigative tool of choice for 



15 
 

brain and central nervous system imaging, as well as musculoskeletal, osteoarticular, breast, 

abdominal, pelvic and cardiac imaging, it is also vastly used in oncology. Last, functional 

MRI (fMRI), a functional neuroimaging procedure using MRI technology that measures brain 

activity by detecting associated changes in blood flow, is a formidable research tool. 

With the aim of continuously improving MRI, higher main magnetic field strengths are 

explored. Combined with recent advances in phased-array-coil technology and sequence 

development, these Ultra High Field (UHF) systems start to probe spatial resolutions 

comparable to those of the cytoarchitectonic structures in the brain. Beyond these gains, 

UHF MRI has been also shown to provide unique functional and physiologic information. 

Nevertheless, with strength of 3 Tesla already, the radiofrequency (RF) wavelength 

corresponding to the proton Larmor frequency becomes comparable to the dimensions of 

some imaged human body parts. This results in zones of shade and losses of contrast 

distributed across the images of large organs. When migrating to 7 Tesla and above, RF 

interferences cause inhomogeneous excitation profiles to emerge in the human brain. 

Consequently, a sub-optimal Signal-to-Noise Ratio (SNR) is obtained and a strong bias 

introduced on the desired contrast, hampering tissue delineation with high confidence. It is 

therefore crucial to provide adequate solutions to mitigate these excitation non-uniformities 

so that these systems can reach their full potential. 

Parallel transmission (pTX) is one of the most promising solutions available to mitigate these 

artifacts. It utilizes multiple independently driven coil-elements to facilitate relatively short 

excitation pulses with the flexibility to obtain nearly any excitation pattern (the pulse design 

approach), almost insensitive to RF distortions. However, there are certain difficulties 

inherent in this approach, stemming mainly from the potential occurrence of highly localized 

energy deposition in the exposed volume. Therefore, special care must be taken to prevent 

tissue damage. In spite of the fact that the relevant safety parameter is the RF induced 

temperature, for simplicity the Specific Absorption Rate (SAR) is often considered instead. 

This measure of the energy deposition may then be constrained according to standardized 

guidelines to provide adequate safety with respect to temperature.  

Over the years, various very interesting applications have benefited from the enhanced 

degrees of freedom introduced by the pTX approach. This thesis herein focuses on the 

development and demonstration of pTX-based techniques and pulse design to provide 

substantial advances towards RF pulse refocusing quality in any spin echo-based MRI 

sequence. 
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Thesis Overview  

 

In the first chapter of this thesis, the fundamental concepts of NMR and MRI are introduced, 

underlying both the advantages encountered at UHF and the corresponding challenges that 

need to be faced. Subsequently, the concepts and techniques related to pulse design and to 

the pTX approach are detailed in Chapter 2, followed by an overview of the experimental 

setup (Chapter 3) used throughout the following chapters. With respect to the goals stated 

earlier, different scientific and practical contributions were made to the development of the 

pTX platform at NeuroSpin. The method developed to evaluate the RF energy deposition in 

the context of human brain imaging, and its experimental validation, are discussed in 

Chapter 4. Then in Chapter 5, numerical simulations were performed in order to assess the 

compliance of the SAR guidelines, recommended for MRI scans, with the biological primary 

parameter of interest, the temperature, to avoid local thermal damage or thermoregulatory 

problems in the context of parallel transmission MRI. Subsequently, a new pulse design 

strategy relying on optimal control is introduced to achieve non-selective uniform refocusing 

at UHF, followed by an in-vitro demonstration at 7 Tesla for the 180° pulse of a spin-echo 

sequence (Chapter 6). This concept is then generalized to any rotation angle, with a specific 

focus on the design of rotation matrices rather than final magnetization states. The proposed 

combination of these refocusing RF pulses is evaluated in-vivo at 7 Tesla in one of the most 

commonly used T2-weighting 3D sequences: the variable flip angle turbo spin echo sequence 

(Chapter 7). This thesis is concluded with a summary of its scientific contributions and a brief 

outlook on possible future developments.  
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1. Scientific Background 

 

1.1. Nuclear Magnetic Resonance 

 

1.1.1. Nuclear spins 

 

Most particles have, besides properties such as mass and charge, an intrinsic form of 

angular momentum referred to as spin, a quantum mechanical property. Particles with half-

integer spins, such as 1/2, 3/2, 5/2, are known as fermions, while particles with integer spins, 

such as 0, 1, 2, are known as bosons. The two families of particles obey different rules and 

broadly have different roles in the world around us. The Hydrogen proton is the most 

abundant spin 1/2 nucleus in organic tissues (Frieden, 1972), making it the best candidate 

for medical imaging techniques. All of the experiments performed in this work pertain to 

proton imaging. 

Nuclear Magnetic Resonance (NMR) (Rabi et al., 1938) is by nature a quantum phenomenon 

and all its theory can be derived from quantum mechanics. However, a classical mechanics 

description of a magnetic moment in a magnetic field is possible for single spin systems and 

is therefore often adopted for simplicity. The basic motion of the proton spin thus may be 

understood by imagining it as a spinning gyroscope that is also electrically charged, creating 

its own current loop, capable of interacting with external magnetic fields as well as producing 

its own. When immersed in a static magnetic field (B0), the magnetic moment vector of the 

spin will tend to align itself along the static field and precess around the magnetic field 

direction. The precession angular frequency is referred as the proton Larmor angular 

frequency: 

 

        (1.1) 

 

where γ is the gyromagnetic ratio (
 
  ⁄ = 42.58 MHz/T for the Hydrogen proton in water). For 

a proton with two quantum states, only two alignments are possible: parallel alignment (low 

energy) and anti-parallel alignment (high energy). The quantum energy difference between 

the two is:  

 

         (1.2) 
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where ħ is the Planck constant divided by 2π. Due to this energy difference, at thermal 

equilibrium the proportion of spins oriented in the parallel direction is greater than that of the 

spins in the antiparallel direction, the difference being given by Boltzmann’s law. 

 

1.1.2. Bloch equation 

 

The magnetization vector M0, which results from the magnetic moment sum of the spin 

population at thermal equilibrium, immersed in the above-mentioned static magnetic field and 

when kT>>E, is: 

 

    
   

   

   
   (1.3) 

 

where ρ0 is the spin density and k is the Boltzmann’s constant. This magnetization vector is 

measured by tipping it away from the external field direction thanks to a transverse 

radiofrequency (RF) magnetic field whose frequency is adjusted to the Larmor frequency (on 

resonance). When perturbed by a magnetic field Bext, the magnetization vector M = {Mx(t), 

My(t), Mz(t)}
T obeys the Bloch equation (Bloch, 1946): 

 

 
  

  
             

 

  
(     )   

 

  
   (1.4) 

 

where:           is the transverse magnetization. T1 and T2 are the longitudinal 

relaxation and the transverse relaxation times respectively (Bloch, 1946). These relaxation 

terms describe the return to equilibrium when only a static field pointing to the z-axis is 

present. In addition, instead of describing the magnetization in the laboratory frame of 

reference, it is often more convenient to consider it in the frame rotating at the Larmor 

frequency ω0, when Bext = B0 ez.  

In the context of MRI, the flip-angle (FA or θ) is often adopted to express the result of a RF 

excitation. If the initial state of the magnetization is M0ez, and Mz is the longitudinal 

component after the excitation, then the flip angle is expressed by:  

 

        (
  

‖ ‖
) (1.5) 

 

The value of the angle is given, on resonance, by: 
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    ∫   
 ( )  

 

 

 (1.6) 

 

with T the duration of the RF pulse and   
  

 

 
(          ) the positively rotating RF 

magnetic field applied.  

 

1.1.3. Relaxation 

 

Spin-lattice relaxation (T1) is the mechanism by which the longitudinal component of the 

magnetization vector comes into thermodynamic equilibrium with its surroundings. Indeed, 

nuclei are held within a lattice structure, and are in constant vibrational and rotational motion, 

creating a complex fluctuating magnetic field. The magnetic field caused by thermal motion 

of nuclei within the lattice is called the lattice field. The lattice field of a nucleus in a lower 

energy state can interact with nuclei in a higher energy state, causing the energy of the 

higher energy state to distribute itself between the two nuclei. In the rotating frame, it writes: 

 

 (
   

  
)
 

  
 

  
(     ) (1.7) 

 

which has the solution: 

 

   ( )    (    
  

  
⁄

) (1.8) 

 

The relaxation parameter T1 ranges from hundreds to thousands of milliseconds for protons 

in human tissues over all static field strengths available for NMR. 

The spin-spin relaxation (T2) is the mechanism by which MT, the transverse component of the 

magnetization vector, exponentially decays towards its equilibrium value of zero. Indeed, 

spins experience local fields which are combinations of the applied field and the fields of their 

neighbors. Since time variations of the local field lead to different local precession 

frequencies, the individual spins tend to fan out in time, reducing the net transverse 

magnetization (equation in the rotating frame): 

 

 (
   

  
)
 

   
 

  
   (1.9) 

 

with the solution: 
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 (1.10) 

 

In practice, the dephasing due to static field inhomogeneities is distinguished from the rapidly 

varying ones. The former leads to an additional dephasing of the magnetization (T2’). The 

overall relaxation observed T2* is defined as: 

 

 
 

  
  

 

  
 

 

  
  (1.11) 

 

The loss of transverse magnetization T2’, which is both device and sample dependent, is 

recoverable in theory, thanks to the spin echo phenomenon, which will be described in 

Section 1.2.5. The intrinsic T2 losses however are not recoverable as they are related to local 

random time-dependent field variation. The relaxation parameter T2 is on the order of tens of 

milliseconds for protons in human tissues. Solids have much shorter T2 than liquids. Table 

1.1 provides several T1 and T2 values of the human brain tissues at 7 Tesla (Rooney et al., 

2007; Visser et al., 2010): 

 

Tissue T1 (ms) T2 (ms) 

Gray Matter (GM) 2132±103 55±4 

White Matter (WM) 1220±36 46±2 

Cerebrospinal fluid (CSF) 4425±137 ~2300 

 

Table 1.1: Several T1 and T2 values of the human brain tissues measured at 7 Tesla, with 

mean ± standard deviation (SD). 

 

1.1.4. The NMR signal 

 

The previous sections briefly explained how an ensemble of protons immersed in a magnetic 

field may be excited, and the mechanisms that allow it to relax back to equilibrium. However, 

in order to exploit this behavior in the framework of NMR, a measurable signal needs to be 

extracted. As discussed above, the magnetization can be rotated away from the B0 axis by 

applying a RF magnetic field for a short time (i.e. an RF pulse). This pulse is produced by a 

nearby ‘transmit’ coil tuned at the Larmor frequency. Following this RF excitation, the 

magnetic moment precesses in the transverse plane at the Larmor frequency. Considering 

now a ‘receive’ coil placed close to the sample, the rotating magnetic field of the nuclear 
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magnetization thus generated induces an electromotive force (EMF) in the coil (Hoult and 

Bhakar, 1997), a consequence of Faraday’s law, given by: 

 

     ∮
 

  
(     

 )    (1.12) 

 

B1
- being the static field produced by the receive coil per unit current. Since the induced EMF 

is proportional to the field produced by the oscillating magnetic moment, a suitable analog-to-

digital converter (ADC) may be used to observe the time evolution of the system and 

facilitate subsequent computerized post-processing. Because the current induced in the 

receive coil is directly proportional to the transverse magnetization, the loss of coherence 

due to T2* relaxation will result in the recording of an attenuated signal. This measurement 

corresponds to what is commonly referred to as the free induction decay (FID) (Hahn, 

1950a). Due to this Faraday’s law, and from previous equations, it follows that the signal 

from an MR experiment will depend on the square of the static magnetic field: 

 

          
    

   
 

 (1.13) 

 

This is why the interest in higher fields stems from the growth of the signal with field strength, 

this will the subject of Section 1.4. 

 

1.2. Magnetic Resonance Imaging 

 

1.2.1. Principle 

 

In 1952, the first transitional steps from NMR to MRI were reported by Herman Carr in his 

PhD thesis, where he produced a one-dimensional MRI image (Carr, 1952). His technique 

was later extended by Paul Lauterbur in 1973. Lauterbur published the first 2D MRI image 

(Lauterbur, 1973) and the first cross-sectional image of a living mouse in January 1974. 

These experiments were still performed using a standard NMR spectrometer with an added 

field gradient, thus introducing the concept of frequency encoding (Figure 1.1). The key goal 

of this imaging technique is thus to correlate a series of signal measurements with the spatial 

locations of the various sources. The inversion of the signal is greatly facilitated through a 

connection to Fourier transforms. With more gradient coils, data reconstruction by inverse 

Fourier transformation can be carried in more spatial dimensions and enable two- and three-
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dimensional imaging. These much faster imaging techniques involving multiple linear field 

gradients were pioneered by Peter Mansfield in the 1970s (Mansfield and Maudsley, 1977; 

Mansfield, 1977). These techniques are closer to what is now common practice, rather than 

the projection technique originally used by Lauterbur. Raymond Damadian, along with Larry 

Minkoff and Michael Goldsmith, performed the first MRI body scan of a human being on July 

3, 1977. The first MRI systems dedicated to healthcare were available at the beginning of the 

1980s and spread rapidly worldwide (Sijbers et al., 1996). Diffusion MRI (dMRI) came into 

existence in the mid-1980s and allows the mapping of the diffusion process of molecules 

(mainly water) in living biological tissues (Le Bihan and Breton, 1985). Functional MRI (fMRI), 

which emerged in the 1990s, measures brain activity by detecting associated changes in 

blood flow (Ogawa et al., 1990). At the beginning of the year 2014, more than 40 UHF MRI 

scanners (7 Tesla and above) are installed in the world. 

 

 

 

Figure 1.1: Frequency encoding in MRI (Cloos, 2012). a: Three compartments filled with 

water immersed in a static magnetic field B0 result in a FID whose spectrum shows the 

Larmor frequencies present in the sample, e.g., a single proton peak in this case. b: Same 

compartments with position r immersed in a linear field gradient G on top of the static 

magnetic field result in a FID with a range of resonance frequencies. Each frequency in the 

spectrum corresponds to a spatial location along the direction of the gradient. Thus, the 

spectrum gives a projection of the imaged object after Fourier Transform. 
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1.2.2. MRI hardware 

 

Most current clinical MRI systems use superconducting electromagnets, which work 

continuously and consist of a superconductive coils cooled by liquid helium. They produce 

strong, homogeneous magnetic fields, but are expensive and require regular maintenance. In 

the event of loss of superconductivity, electrical energy is instantly dissipated as heat. This 

heating causes a rapid boil-off of the liquid Helium (a quench). To reduce the stray field 

strength, the device has a shielding system that is either passive (metallic) or active (an outer 

superconducting coil whose field opposes that of the inner coil). 

Gradient coils, placed in each spatial direction, produce linear variations in magnetic field 

intensity in three directions of space. They modify the spin resonance frequency according to 

the position in the sample and in proportion to their current. This variation in Larmor 

frequency also causes a dispersion of spin phases. Gradient performances are linked to their 

maximal amplitude (in mT/m), which determines maximal spatial resolution (slice thickness 

and field of view), their slew rate, corresponding to their switching speed, and their linearity. 

The rapid switching of the gradients induces currents in the conducting materials in the 

vicinity of the gradient coils. These so-called Eddy currents will oppose the gradient fields 

and distort the desired patterns. Pre-emphasis can be used to reduce their effect. Last, 

gradient switches produce Lorentz forces causing vibrations in the gradient coils and their 

supports. These vibrations are the main source of the characteristic MRI noise. 

The radiofrequency system comprises the set of components for transmitting and receiving 

the radiofrequency waves involved in exciting the spins. In transmission, the goal is to deliver 

uniform excitation throughout the scanned volume. On reception, the coils must be as 

sensitive as possible. Last, as the resonance frequency of protons is very close to that of the 

radio waves used in radio broadcasting and the FM band, the MR device is therefore placed 

in a Faraday cage to insulate it from external RF signals which could pollute the signal. A 

brief depiction of an MRI system is provided in Figure 1.2. 
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Figure 1.2: Schematic overview of a current MRI system (Cloos, 2012). 1: The main 

superconducting magnet cooled with liquid helium, responsible for the static magnetic field in 

the z-direction (B0). 2: Gradient coils used to produce linear field gradients along the x and y 

direction through the subject (in a limited region of interest). 3: Gradient coils used to 

produce linear field gradients along the z-axis. 4: Head coil used for RF excitation and NMR 

signal reception. Many clinical systems are also equipped with a larger RF transmission coil 

for whole body applications (not shown), comparable in size to the gradient coil diameter. 5: 

Subject. 6: Patient table. 

 

1.2.3. MRI signal acquisition & contrast 

 

As previously described, the NMR signal is extracted after at least one RF excitation (or 

possibly more depending on the MRI sequence considered). Imaging gradients during the 

ADC readout enable frequency encoding, as multiple frequencies are introduced into the FID 

dependent on the location of the source. The same encoding principle is used with 

transverse phase for 2D and 3D imaging. Once the spins are excited, they are left free to 

precess and relax, and then the signal is acquired around an “Echo Time” (TE). Last, the 

excitation is repeated at a “Repetition Time” (TR) to image another section of k-space. 

Since the tissues of the human body have different T1 and T2 parameters, the two imaging 

parameters TE and TR determine the value of both transverse and longitudinal 

magnetizations of the different tissues when the signal is acquired. In that way, MRI images 

have a specific “weighting”, depending on which relaxation parameter is emphasized. 

Usually, when the FA is not too low: 
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- A short TR and a short TE give a T1-weighted image. 

- A long TR and long TE give a T2*-weighted image. 

- A long TR and short TE give a proton density (PD-weighted) image, that is to say, 

little influenced by T1 and T2.  

 

A substance with long T1 and long T2 (e.g. the cerebrospinal fluid, CSF) will give a hypo-

intense T1-weighted signal and a hyper-intense T2-weighted signal. 

There are two basic acquisition schemes to cover a volume of interest: 2D and 3D, yet MRI 

sequences can have different strategies to fill k-space. The 3D acquisition strategy generally 

implies that the whole volume within the coil sensitivity range is excited before spatial 

encoding. As a result, a 3D k-space needs to be filled, with one read-out direction and two 

phase-encoding directions. However, the most common approach in MRI (and the historical 

one) is in fact the selective excitation of a single slice prior to 2D imaging. Stacking adjacent 

slices then allows the reconstruction of the 3D volume of interest. Nevertheless, the main 

advantages of 3D acquisitions are a high SNR, as the whole volume contributes to signal, 

and the possibility of achieving high isotropic resolution. Indeed, in multi-slice 2D mode, the 

slice thickness is limited by the gradient strength and excitation duration, and the thinner the 

slice, the lower the signal as well. However, being able to excite and image only a part of the 

attainable volume also presents clear advantages. One may not be interested in imaging the 

whole volume, and selecting only a given spatial location leads to considerable gain in scan 

time while removing aliasing concerns in the selection direction. 2D and 3D acquisitions will 

be both addressed in the following sections. Yet, remembering the aim of this work is the 

design of non-selective excitation, only the 3D acquisition strategies will be considered later. 

 

1.2.4. MRI sequences 

 

An MRI sequence is a preselected set of defined RF and gradient pulses, usually repeated 

many times during a scan, wherein the time interval between pulses and the amplitude and 

shape of the gradient waveforms will control NMR signal reception and affect the 

characteristics of the MR images. Over the years, a plethora of imaging methods has been 

introduced. The several MRI sequences discussed in this thesis are depicted in Figure 1.3, 

as part of two categories: the Gradient-Recalled-Echo (GRE) and the Spin-Echo (SE): 
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Figure 1.3: Overview of several MRI sequences addressed in this thesis. SE (Hahn, 1950b), 

EPI (Mansfield, 1977), RARE/FSE/TSE (Hennig et al., 1986), FLAIR (Hajnal et al., 1992a), 

SPACE (Mugler, 2000), GRE (Frahm et al., 1986), FLASH (Haase et al., 1986), AFI 

(Yarnykh, 2007), MP-RAGE (Mugler and Brookeman, 1990), XFL (Fautz et al., 2008; 

Amadon et al., 2012). All these acronyms are detailed in the Nomenclature. For a more 

complete review of all the different imaging techniques, the reader is directed to one of the 

numerous textbooks such as (Bernstein et al., 2004). 

 

After a short explanation of how the GRE sequence (Frahm et al., 1986) works in the context 

of a volumetric acquisition and how EPI readout (Mansfield, 1977) can accelerate acquisition, 

a more precise description of imaging sequences in the framework of the spin echo 

phenomenon is given: first the SE phenomenon and the related MRI sequence are studied; 

then following the research advances achieved in the past decades, several imaging 

techniques will be presented: RARE (Hennig, 1988; Hennig et al., 1986; Hennig, 2000), 

FSE/TSE (Constable et al., 1992), Hyperechoes (Hennig and Scheffler, 2001), TRAPS 

(Hennig et al., 2003), SPACE (Mugler, 2000; Busse et al., 2006), FLAIR (Hajnal et al., 

1992a, 1992b) and DIR (Bydder and Young, 1985; Madelin et al., 2010). 

In a GRE sequence (Figure 1.5.a) the excitation pulse tilts the magnetization by a flip angle 

typically between 0° and 90°. The data are sampled during a gradient echo, which is 

achieved by dephasing the spins with a gradient before they are rephased by a gradient with 

opposite polarity to generate the echo. The signal generated by a gradient echo depends on 

the longitudinal magnetization and the flip angle. Additional gradients and RF pulse phase 

shifts may be introduced in order to spoil the transverse magnetization (Epstein et al., 1996). 

GRE usually have a low SAR and are sensitive to field inhomogeneities.  

EPI (Stehling et al., 1991; Turner et al., 1991) is an ultrafast MRI pulse sequence, vastly 

used in diffusion imaging (Turner et al., 1990), real-time imaging (Uecker et al., 2010) and 
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fMRI (Kwong et al., 1992). EPI employs a series of bipolar readout gradients to generate a 

train of gradient echoes and thus produces an image in only a few tens of milliseconds with 

modern gradient hardware. Since no additional RF is needed, images are produced really 

fast and with an adapted phase-encoding gradient, multiple lines of k-space can be filled in a 

single shot. However, EPI is more prone to a variety of artifacts (Yang et al., 1998; Zakhor et 

al., 1991) and is not really used in 3D imaging. 

 

1.2.5. Spin echo-based MRI sequences 

 

A Spin Echo (Figure 1.4) is the refocusing of the magnetization vector by a 180° rotation RF 

pulse. For a given population of spins, the NMR signal observed following an initial excitation 

pulse decays with time due to both intrinsic spin T2 relaxation and by external field 

inhomogeneities which cause different spins in the sample to precess at different rates. The 

inhomogeneous static dephasing can be removed by applying this 180° refocusing pulse. If 

the refocusing pulse is applied after a period t of dephasing, the phase will rewind to form an 

echo at time 2t. The intensity of the echo relative to the initial signal is given by e-2t/T
2. 

 

 

 

Figure 1.4: The Spin Echo (SE) phenomenon (Hahn, 1950b). Following a 90° excitation 

along the x-axis, magnetization is flipped along the y-axis in the transverse plane. The spins 

gradually dephase due to local magnetic field inhomogeneities. The red spin has a phase 

advance and the blue spin a phase delay. By applying a 180° flip angle pulse oriented along 

the y-axis at t=TE/2, the magnetization configuration is flipped (green arrow) so that the 

phase of the magnetization is negated with respect to the phase of the refocusing pulse. 

Progressively, the phases slowly rewind and come back in coherence. Complete refocusing 
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occurs at t=TE on the y-axis. An accurate T2 echo can be measured with all T2’ effects 

removed. 

 

The main advantage of a SE pulse sequence (Figure 1.5.b) is its ability to obtain a specific 

contrast weighting (T1, T2, PD) (Hendrick, 1999) depending on TE and TR, as described in 

Section 1.2.3. Because the SE signal decays with T2 (and not T2*), it enables the use of 

longer TE values than GRE sequences. From the clinical point of view, diseased tissue often 

contains more free water than healthy tissue, leading to a longer T2. This is why T2-weighted 

images are sought to enhance their visibility. SE images are typically obtained in 2D, so that 

the interleaved acquisition strategy can be used.  

 

 

 

Figure 1.5: a. The Gradient Echo (GRE) sequence chronogram. The echo is formed when 

the gradient momentum is zero. b. The Spin Echo (SE) sequence chronogram. A refocusing 

pulse is placed between excitation and signal acquisition. For both sequences, signal 

acquisition is 3D Cartesian. The arrows indicate how the phase-encoding gradient amplitude 

changes successively to sample the whole k-space.  

 

SE images can be acquired with either a single-echo or a multiple-echo (Feinberg et al., 

1985) pulse sequence, depending on the number of RF refocusing pulses that are applied in 

each TR interval. Because the signal decays exponentially, the number of useful echoes in 

the echo train is limited. In that case, each echo fills its own independent k-space and 

contributes to an independent image. In that way, several contrasts (PD and T2 for instance) 

can be achieved simultaneously. Yet, k-space is filled one line at a time, making the 

acquisition time too long for clinical T2-weighted 3D imaging.  
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1.2.6. Turbo Spin Echo-based MRI sequences 

 

As explained in Section 1.1.3, transverse magnetization lifetime is governed by spin-spin 

relaxation time T2. In the case of a single-echo SE sequence, data is thus acquired only for a 

small fraction of this lifetime and the considerable portion of the signal that can be potentially 

acquired before and after this acquisition window is therefore wasted. Yet, as long as some 

transverse magnetization remains, additional 180° refocusing pulses could be added to form 

a train of spin echoes, acquiring more data.  

Rapid Acquisition with Relaxation Enhancement (RARE), is a fast imaging sequence that 

employs an RF excitation pulse followed by a train of refocusing pulses to produce multiple 

RF spin echoes (Hennig et al., 1986). Each echo is distinctively spatially encoded so that 

multiple k-space lines can be sampled following each excitation pulse. RARE can be used in 

either 2D or 3D acquisition mode and is compatible with virtually all k-space sampling 

strategies, including rectilinear Fourier (Hennig et al., 1986) and spiral (Pauly et al., 1993) 

imaging.  

Especially when dealing with T2-weighed imaging (i.e. when long TR are considered), RARE 

provides considerable time savings compared to conventional SE sequences. This MRI 

sequence is therefore a great candidate in clinical settings, with similar or even better scan-

time and less sensitivity to off-resonance effects than EPI or GRASE (Oshio and Feinberg, 

1991). On the other hand, the major drawbacks of RARE include increased RF power 

deposition (due to the multiple 180° pulses of the echo train, which is especially problematic 

at UHF) (Hennig et al., 2003) and blurring (because high frequencies are often acquired at 

the end of the echo train where signal is low) (Alsop, 1997). Since the initial introduction of 

RARE, a number of variations and modifications of the sequence have been developed. 

Along with these developments, many names appeared, including Fast-Spin-Echo (FSE), 

Turbo-Spin-Echo (TSE), and others (Constable et al., 1992; Le Roux and Hinks, 1993). A 

chronogram of the RARE sequence is provided in Figure 1.6. 
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Figure 1.6: The RARE sequence chronogram (3D rectilinear Fourier imaging). A slab is 

selected by the 90°|x excitation pulse. Refocusing pulses (180°|y) are not selective. The 

primary phase encoding is performed during the echo train, whereas secondary phase 

encoding is performed every TR. For both, phase-rewinding gradients follow the readout 

gradient. Crusher gradients surrounding the RF refocusing pulses (not represented here) in 

readout and partition directions are used to cut undesired FIDs.  

 

The Echo Train Length (ETL) is the number of RF refocusing pulses, corresponding to the 

number of signal echoes that could be sampled in one TR. It determines the scan-time 

reduction compared to conventional SE sequences. Maximal ETL is practically determined 

by T2 relaxation time and the interval between two consecutive spin echoes. The latter being 

known as the Echo Spacing (ES), is limited by RF pulses duration, SAR and gradient 

specificities. Non selective refocusing pulses shorten ES, which allows a longer ETL to be 

used. The readout gradient waveforms of RARE are identical to SE’s ones. Phase encoding 

throughout the echo train can be performed along either the primary (ky) or the secondary 

(kz) phase-encoded directions. The phase encoding in the other direction is accomplished at 

the rate of one step per TR interval. But because each refocusing pulse negates the 

accumulated phase of the spin echo, the secondary phase-encoding step will alternate sign 

throughout the echo train (i.e. –kz, kz, -kz, kz, etc.). Thus, an extra step is required to sort the 

3D k-space data and confine all ky lines in the same kz plane. An additional problem with this 

approach is that the phase-encoding value of the stimulated echoes does not coincide with 

the one of the primary spin echoes, causing image artifacts. To solve both issues, gradient 

waveform along the partition direction includes series of phase-encoding/phase-rewinding 

paired lobes for each echo, similar to those used in the phase direction, except that lobe 
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areas remain the same throughout one echo train. Crusher gradients surrounding the RF 

refocusing pulses in readout and partition directions are used to cut undesired FIDs. 

Depending on the number of independent RF excitation pulses used to sample k-space, 

RARE/TSE/FSE can be single-shot, where the entire k-space is acquired with one excitation, 

or multi-shot, where only fractions of k-space are acquired with each shot. 

The intervals between the refocusing pulses are twice as long as the time between the 

excitation and the first refocusing pulse. To reduce accumulating effects of imperfections of 

the 180° pulses, a π/2 phase shift between the excitation pulse and the subsequent 

refocusing pulses is commonly set. This timing and phase relationship of the RF echo train is 

known as the “Carr-Purcell-Meiboom-Gill” (CPMG) condition (Carr and Purcell, 1954; 

Meiboom and Gill, 1958). This condition is crucial when considering variable flip angle Turbo 

Spin Echo-based MRI sequences and will be explained in the subsequent section. 

There has been a growing interest for isotropic 3D acquisitions over the years. Indeed, such 

acquisitions do not have the partial volume issues typically related to slice thickness in 2D 

multi-slice acquisitions. Thus they allow the observation of lesions in any direction, which is 

particularly interesting for several structures. Yet, high-resolution 3D TSE sequences are still 

long. Indeed, the decay of the signal after the excitation pulse is too fast to authorize the 

acquisition of more than several dozen echoes for one repetition. Under these conditions, 

even when using parallel imaging acceleration factors, it is not possible to obtain images with 

a high isotropic resolution in less than 60 minutes. To address this T2-weighted 3D imaging 

acquisition time challenge, longer echo train pulse sequences need to be considered, with 

alternative strategies to keep the transverse magnetization at a measurable level for a period 

of time larger than T2.  

 

1.2.7. Variable Flip Angle Turbo Spin Echo-based MRI sequences 

 

As explained before, high-resolution 3D acquisitions enable precise characterization and 

localization of anatomy and pathology, but acquisition times are prohibitively long, so T2-

weighted sequences are usually only viable in 2D mode. Acquisition speed is limited by the 

length of the echo train and very long echo trains are generally not possible due to loss of 

contrast and blurring. Latter developments on the RARE sequence thus focused on reducing 

the flip angle of all the refocusing pulses, as a useful mean of addressing high RF power 

deposition, and extending the duration of the echo train limited by the T2 decay, in order to 

accelerate acquisition times.  

The first approach consisted in applying the same reduced flip angle for the refocusing 

pulses (Hennig, 1988). In that case, the transverse magnetization is partially tipped onto the 
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longitudinal axis, partially refocused as usual, and partially left intact. Similarly, the 

longitudinal magnetization is partially excited to the transverse plane, partially inverted and 

partially left along the longitudinal axis. Each of these magnetization components is further 

divided following the subsequent non-180° refocusing pulse. The transverse magnetization 

component continues to accumulate phase until it is affected by the next RF pulse. The 

phase evolution of the magnetization is depicted in an Extended Phase Graph (EPG), 

provided in Figure 1.7 with detailed explanations. 

 

 

 

Figure 1.7: RF refocusing pulse train and its associated Extended Phase Graph (EPG). 

Each line represents a particular pathway of a magnetization component. These pathways 

are often referred to as signal pathways or signal coherence pathways. The effect of imaging 

gradients is not considered here, thus only B0 field inhomogeneities induce phase 

accumulation. Horizontal lines (gray) represent longitudinal magnetization, vertical lines 

(dashed) indicate phase reversal, and diagonal lines (solid) denote the phase accumulation 
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of the transverse magnetization. Whenever the phase of a coherence pathway crosses zero, 

an echo is produced. If a coherence pathway experiences a phase reversal at every 

refocusing pulse, the echoes it generates are primary spin echoes (blue circles). If a 

coherence pathway is initially in the transverse plane after the excitation, an α-pulse brings 

one of its components on the longitudinal axis, and a second β-pulse further reverses it, 

giving rise to a stimulated echo (red circle). If a coherence pathway is initially along the 

longitudinal axis, it accumulates phase in the transverse plane after the α-pulse and is 

likewise further reversed by the β-pulse to create a secondary spin echo (green circle). FIDs 

produced are denoted as black triangles. Both FIDs and secondary spin echoes are usually 

eliminated by crusher gradients. 

 

As more non-180° refocusing pulses are included, the number of echoes increases. These 

echoes produced by various coherence pathways are generally not in phase and can cause 

signal cancellation. Therefore, it is crucial to design the sequence to ensure that echoes only 

occur at the desired temporal positions with similar phase. The CPMG condition (Carr and 

Purcell, 1954; Meiboom and Gill, 1958) is a set of three conditions to ensure that these two 

requirements are met: 

 

Condition 1: The refocusing pulses must be 90° out of phase with respect to the excitation 

pulse, and evenly positioned with equal spacing between any two consecutive pulses, this 

spacing must be twice the one between the excitation pulse and the first refocusing pulse. 

Condition 2: The phase accumulated by a spin isochromat between any two consecutive 

refocusing pulses must be equal. 

Condition 3: If a pulse has a non-uniform yet smooth phase distribution across the sample, 

then all other pulses must share the same phase pattern to fulfill everywhere both condition 1 

and 2. 

 

Reduced flip angle refocusing approaches lengthen the usable echo train length, since the 

complex combination of spin and stimulated echoes introduces T1 dependence to the signal 

evolution. Significantly reduced SAR at comparable SNR can be obtained using a variable 

flip angle pulse train designed to produce constant echo amplitude (Alsop, 1997; Le Roux 

and Hinks, 1993). The spin echo amplitude approaches a temporary steady state which then 

slowly decays due to T1 and T2 relaxation. Because this “steady state” is actually only 

temporary, it will be referred to as a Pseudosteady State (PSS). The empirically determined 

pseudosteady state echo amplitude is well approximated by the sine of half the refocusing 

flip angle (Alsop, 1997). A method for optimizing the flip angles of the first few refocusing 

pulses to achieve a constant amplitude echo train was presented in (Le Roux and Hinks, 
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1993). It demonstrated that beginning the RF pulse train with higher amplitude pulses that 

slowly decrease and approach a constant, or asymptotic, flip angle can produce constant 

echo amplitude from the very first echo.  

Among the other strategies employed to manipulate signal along a very long echo train one 

could also cite Hyperechoes (Hennig and Scheffler, 2001) or TRAPS (Hennig et al., 2003), 

which enable the central line of k-space to be acquired with full signal strength.  

A different approach using variable flip angles has been suggested for 3D applications 

(Mugler, 2000). By keeping the refocusing angle below 100°, the fractional T2 contribution is 

kept low and magnetization is efficiently stored in stimulated echo pathways. This allows 

quite long echo trains at the cost of some penalty in signal intensity. The increased 

contribution of stimulated echoes combined with the use of very long echo trains will also 

lead to a somewhat reduced T2 contrast (Hennig et al., 2003). It is therefore possible to 

obtain an almost constant signal from the tissue of interest for the main part of the signal 

acquisition, by using prescribed signal evolutions which include relaxation effects in the 

calculation of refocusing flip angles. Flip angles need to be optimized for only one tissue of 

interest as the prescribed signal evolutions depend only weakly on the T1 and T2 relaxation 

times and are therefore similar for many other tissues. Using an initial exponential decay, a 

constant and then another exponential decay for the prescribed signal evolution produces 

images in which the contrast is quite similar to those obtained using conventional T2-

weighted Spin Echo sequences. This approach allows very long echo trains and 3D imaging, 

since the effective T2 of the echo train is longer than physical T2 for tissues with long T1s (≥ 

10 T2). In this way, acquisition times can be commensurately reduced, or sequence 

resolution increased. “T2-weighted” 3D whole brain images with low SAR values thus can be 

acquired with echo train lengths of up to 250 echoes. 

The Variable Flip Angle Turbo Spin Echo (VFA TSE) sequence, also called the SPACE 

sequence, for: Sampling Perfection with Application optimized Contrasts using different flip 

angle Evolution (Siemens manufacturer), is the MRI sequence born from this formalism. This 

acronym will be subsequently used in this manuscript. In the SPACE sequence, an excitation 

pulse is used followed by a long variable angle refocusing pulse train acquiring multiple k-

space lines per TR, as each echo is distinctively spatially encoded. Careful adjustment of the 

targeted angles and the echo spacing between the acquisition blocks, as well as the usual 

imaging parameters, allow excellent contrast between gray matter (GM), white matter (WM) 

and Cerebrospinal fluid (CSF) (Busse et al., 2006). Other names of the sequence depend on 

the manufacturer: CUBE for General Electric and VISTA for Phillips. A chronogram of the 

sequence is provided in Figure 1.8. 
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Figure 1.8: The SPACE sequence chronogram (3D rectilinear Fourier imaging). A slab is 

selected by the 90°|x excitation pulse. Refocusing pulses (α|y, β|y, ε|y, etc.) whose rotation 

angle values are determined by the EPG formalism, are not selective. The primary phase 

encoding is performed during the echo train, whereas secondary phase encoding is 

performed every TR. For both, phase-rewinding gradients follow the readout gradient. 

Crusher gradients surrounding the RF refocusing pulses in readout and partition direction are 

used to cut undesired FIDs. 

 

The hyperintense fluid signal in T2-weighted images often complicates the detection of 

lesions with long T2s, such as edemas surrounding brain tumors, or multiple sclerosis 

plaques. CSF signal can be nulled using the inversion-recovery phenomenon, because its T1 

value is very high. Based on the RARE sequence, the fluid-attenuated inversion recovery 

(FLAIR) sequence (Hajnal et al., 1992a, 1992b) has become the key sequence for imaging 

pathologies in the central nervous system, including vascular diseases, multiple sclerosis, 

tumors, and degenerative diseases (Bachmann et al., 2006). The current drive toward 

detection of subcortical and intracortical lesions in multiple sclerosis and epilepsy requires 

images with sub-millimeter resolution in three dimensions, with high SNR and good contrast 

(Mainero et al., 2009; de Graaf et al., 2012). The intrinsic high SNR and good parallel 

imaging properties of UHF MRI have the potential to fulfill these requirements (Visser et al., 

2010; Zwanenburg et al., 2010). Yet, this MRI sequence is particularly prone to the 

disadvantages of UHF (described in Section 1.4.2), including the lengthening of T1 constants 
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of GM and WM while the T1 of the CSF is relatively field independent, the increased 

inhomogeneity of the RF transmit field B1
+ and the constraints on the maximum allowed SAR 

which limits the use of high refocusing flip angles and adiabatic pulses for inversion. 

The Double Inversion Recovery (DIR) (Bydder and Young, 1985; Madelin et al., 2010) MRI 

sequence combines two inversion pulses in order to simultaneously suppress signals from 

tissues with different longitudinal relaxation times. For the brain, DIR allows to selectively 

image GM by nulling the signal from WM and CSF at the time of the excitation pulse. 

Imaging GM structures is important in the study of many neurological disorders such as 

Alzheimer's disease, epilepsy and multiple sclerosis (Madelin et al., 2010). The loss of SNR 

due to the longitudinal magnetization preparation could be counteracted by the 

implementation of DIR on high field scanners, adopting a careful modification of sequence 

parameters. 

Both FLAIR and DIR sequences can benefit from a variable flip angle turbo spin echo train of 

RF refocusing pulses. The implementations of the SPACE and FLAIR sequences with such 

an echo train, in a parallel-transmission setup at 7 Tesla, are addressed in Chapter 7. 

 

1.3. Specific Absorption Rate 

 

1.3.1. Definition 

 

During an MRI exam, radiofrequency waves are transmitted to acquire images of a subject. 

These RF waves deposit energy into the tissues, resulting in an increase of temperature that 

could potentially lead to tissue damage. Therefore, regulation committees provide guidelines 

indicating the maximum allowed energy deposition in human subjects in the case of non-

ionizing radiations (IEC, 2010). These guidelines refer to the energy deposition as the 

Specific Absorption Rate (SAR), given locally by: 

 

    ( )  
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  ( )
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   (1.14) 

 

This power is expressed in W/kg and depends on the conductivity σ(r), the density ρ(r), the 

electric field distribution E(r,t) inside the subject, and the time of integration T during which 

instantaneous energy deposition is averaged.  

 

1.3.2. Guidelines 
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The International Electrotechnical Commission (IEC) guidelines (IEC, 2010) refer to a set of 

4 limits considering the maximum allowed energy deposition in the human head. These limits 

pertain to the global SAR, i.e. the SAR averaged over the entire head, and the local SAR, 

defined as the SAR averaged over any closed 10-g volume of tissue. The 4 limits provided 

by the guidelines consider both the T=10-second average and T=6-minute average. The 

following table provides a summary of the SAR limits as defined for diagnosis experiments 

exposing the human head to an RF field: 

 

IEC 2010 10-s averaged 6-min averaged 

Local SAR 20 W/kg 10 W/kg 

Global SAR 6.4 W/kg 3.2 W/kg 

 

Table 1.2: International guidelines on SAR limits acceptable for the human head, given for 

two spatial and temporal scales (IEC, 2010). 

 

Remembering that the primary biological parameter of interest is the temperature, to avoid 

local thermal damage or thermoregulatory problems (Collins et al., 2004), it is also specified 

in these guidelines that the localized temperature in the head should never exceed 39 °C, 

and that care should be taken to limit the temperature rise in the eyes to +1 °C. 

Considering the possible health hazard induced by the exposure to RF waves, a solid 

assessment of the energy sent into the subject tissue through the MRI coil is mandatory. 

Indeed, some indications of the heating effects from the energy emitted by radio transmitters 

appeared in the late 1930s. The phenomena became well known with the development of 

radar during World War II. Quite simply, people noticed that they got warm when they stood 

in front of radar antennas (which allowed Dr. Percy Spencer to invent the microwave oven). 

The first human exposure guidelines were developed by the U.S. military in the 1950s. The 

military funded most of the research at that time because they owned most of the high-power 

transmitters.  

Nowadays, with the blossoming of wireless communications (Internet with WIFI, 4G mobile 

phones, etc.), fixing relevant guidelines is a public safety issue which should be considered 

wisely. Regarding the MRI systems case, several specifications like the duration of exposure 

or the position of the subject in the coil needs to be taken into account. Explanations of how 

conventional MRI works will be given in the 4th Chapter of this manuscript, as well as a 

dedicated methodology for parallel transmission-enabled MRI systems. In Chapter 5, the 

relationship between SAR and temperature is studied extensively. 
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1.4. Ultra High Field MRI 

 

1.4.1. Advantages 

 

So far, the impact of working with an ultra-high main magnetic field has not been considered 

in detail for MRI. The advantages of ultra-high field strength for MR imaging are twofold: 

 

a. Increased Signal-to-Noise-Ratio (SNR), which can be used to increase spatial 

resolution, to shorten scan time, and/or to enable imaging of low-sensitivity nuclei 

other than hydrogen. 

b. Enhanced contrast mechanisms such as those based on susceptibility-related effects. 

 

The corresponding challenges associated with UHF MRI include increased inhomogeneity of 

the static and RF fields (resulting in artifacts in various MRI sequences) and increased RF 

energy deposition into tissues, as quantified by SAR, which can limit the range of sequence 

parameters to be employed safely during a clinical scan. These challenges and solutions 

deployed to mitigate their effects will be described in detail in the next sections. 

Despite these challenges, over the years, UHF MRI has been shown to provide unique 

anatomical, functional and physiologic information beyond just gains in SNR. Enabling better 

resolution provides new information on very small structures in the brain, breast, torso, 

pelvic, cardiac, spine and osteoarticular imaging. Last, several imaging modalities such as 

fMRI, Magnetic Resonance Angiography (MRA), Magnetic Resonance Spectroscopy (MRS) 

and Magnetic Resonance Microscopy (MRM) have been shown to benefit from higher field 

strengths. 

Demonstrating the first advantage, it can be shown that both the signal-to-noise ratio (SNR) 

and contrast-to-noise ratio (CNR) are dependent on the field strength. In general for 3D 

imaging, the SNR is proportional to: 

 

           
       √

                          

  
    (       ) (1.15) 

 

where M0 is the thermal equilibrium magnetization, B1
− the receive sensitivity (RF magnetic 

field per unit current in the receive coil), Δx, Δy, Δz are the spatial dimensions of the voxels, 

Nphase the number of phase encoding steps, Npartition the number of partition encoding steps, 

Nread the number of samples in the readout, Navrg the number of averages, BW is the readout 

bandwidth, and fseq (TR, TE, θ) is a factor dependent on sequence parameters. Therefore, 
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once receive coils and sequence parameters are adjusted to their optimal performance, the 

only options left to improve the MR signal are to increase M0 or decrease the resolution. 

When high resolution images are desired, the only remaining possibility is to increase 

magnetization. Looking back at equation (1.3) the net magnetization can be increased in two 

ways: the temperature of the object under investigation can be reduced or the magnetic field 

can be increased. When considering living biological tissues, significantly decreasing the 

temperature is unrealistic, thus leaving only the magnetic field strength as a free parameter. 

In addition of direct improvement in SNR due to an increased M0, pushing up the main 

magnetic field strength brings other advantages. Most notably are the enhanced T2* contrast, 

and performance boost when adopting parallel imaging methods (Sodickson and Manning, 

1997; Pruessmann et al., 1999; Griswold et al., 2002). 

 

 

 

Figure 1.9: Comparison of T2*-weighted images of a coronal slice through the brain acquired 

with a quadrature head coil. CNRs are enhanced for the same acquisition time and the same 

spatial resolution. a: Image acquired at 3 Tesla, with FA=50° (~Ernst Angle) and TE=40 ms 

(~T2*). b: Image acquired at 7 Tesla, with FA=35° (~Ernst Angle) and TE=25 ms (~T2*).  

 

Comparing T2*-weighted images obtained at different field strengths, large improvements in 

CNRs can be obtained when migrating from 3 to 7 Tesla (Figure 1.9), as increasing static 
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magnetic field strength allows better sensitivity to magnetic susceptibility (Ciobanu et al., 

2012). This increased T2* contrast is not only beneficial for structural brain imaging but also 

for BOLD-based fMRI, as the physiological noise contributions (venous blood) are expected 

to decrease with increased resolutions while the BOLD signal increases nearly linearly with 

field strength (Triantafyllou et al., 2005).  

UHF also provides benefits to the following imaging modalities: 

 

- The prolonged longitudinal relaxation time of blood available at UHF is used in 

Arterial Spin Labeling (ASL) perfusion studies to visualize the tagged blood for a 

longer time during the passage through the tissue (Zuo et al., 2013).  

- High field MR systems have allowed acquiring spectroscopic data sets with a better 

spectral differentiation of the individual metabolites (Uğurbil et al., 2003). 

- One particular application that has also been shown to profit from higher field 

strengths is time-of-flight (TOF) MR Angiography, thanks to a longer T1 and higher 

SNR (Schmitter et al., 2014). 

- The primary interest of MRM for biology and medicine is the visualization of small 

biological structures weighted by various MR contrasts. Access to high resolution 

information on MR relaxation times or other MR measurable quantities inside 

microscopic structures thanks to UHF is of great interest (Jelescu et al., 2013). 

 

1.4.2. Challenges 

 

Unfortunately, working at ultra-high field does not only come with advantages. The increase 

in T1 with field strength sometimes leads to longer scan times because repetition times need 

to be increased. Variations in magnetic susceptibility produce larger unwanted static field 

inhomogeneities, especially at interfaces, resulting in very short T2* and overall image 

degradation. Last but not least, increasing the field strength means working at higher radio-

frequencies for excitation and reception.  

The biggest challenge raised by the spreading of UHF MRI is thus the increased level of RF 

excitation non-uniformity. Indeed, when moving toward UHF (7 Tesla and beyond), the 

increased resonance frequency of proton nuclei (297 MHz at 7 Tesla) causes the RF 

wavelength to become smaller than the human brain, leading to an inhomogeneous 

distribution of the transmit magnetic field (B1
+) (Figures 1.10.a and 1.10.b). These spatial B1

+ 

inhomogeneities generate significant SNR and CNR variations for any given tissue across 

the brain (Figures 1.10.c and 1.10.d) (Van de Moortele et al., 2005; Visser et al., 2010; Cloos 

et al., 2012a, 2012b; Massire et al., 2014). If not addressed, these can notably produce 

signal voids where all the information is lost, detrimental to medical diagnosis. 
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Figure 1.10: RF excitation non-uniformity at UHF. a, b: Comparison of the excitation 

uniformity in the small-flip-angle regime (expressed in flip-angle maps in degrees) obtained 

at 3 Tesla (low dispersion, Siemens Magnetom Tim Trio) and 7 Tesla (high dispersion, 

Siemens Magnetom), with a quadrature head coil. c: Image acquired with a proton density-

weighted FLASH sequence at 7 Tesla equipped with a quadrature head coil. Blue rings 

indicate what is commonly referred to as the central brightening effect, whereas the red rings 

indicate the areas of signal loss. c: T2-weighted image acquired with the SPACE sequence at 
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7 Tesla (0.6 mm isotropic resolution, with 1Tx/32Rx Nova Medical head coil). Blue arrows 

refer to local losses of contrast, whereas red arrows show signal voids.  

 

Besides the observed increased non-uniformity of the excitation field, energy deposition is 

proportional to the square of the frequency (Bottomley and Andrew, 1978). As an example, 

when considering the idealized case of a homogeneous spherical phantom centered in a 

quadrature coil, the following relation between the absorbed power (P) by the sphere and the 

Larmor frequency, and therefore the static field strength, is found (Hoult and Lauterbur, 

1979): 

 

    
   

   
    

  
 (1.16) 

 

where a is the radius of the sphere. Moreover, depending on the setup at hand, the 

maximum local-SAR to global-SAR ratio may increase as a result of the reduced wavelength 

and enhanced interference effects.  

Consequently, many SAR-demanding imaging protocols commonly adopted at low field 

strength need to be redesigned before application at UHF. It is however at the same time 

highly desirable to minimize the acquisition time of a MRI sequence, not only for patient 

comfort and cost efficiency, but also to limit motion artifacts. Indeed, as the acquisition time 

becomes longer, it becomes increasingly difficult for the subject to refrain from moving. 

Furthermore, even small artifacts due to involuntary movements such as swallowing and 

breathing can be problematic when considering ultra-high-resolution structural imaging. 

 

1.4.3. Solutions 

 

As mentioned earlier, unique information relevant to various disease processes is currently 

available at UHF. There has been some hesitation about clinical use of UHF, given concerns 

about whether traditional clinical information remained available at such field strengths 

despite changes in contrast, signal inhomogeneity, SAR and acquisition time limitations.  

Yet, with appropriate RF coils, pulse sequence modifications, and imaging protocol 

optimizations, UHF scanners may be used without losing most of the key clinical information 

content present in traditional imaging protocols at lower field strengths. This means that 

unique information of new clinical value may now be accessed without sacrificing routine 

clinical information. Last, after a period of exploratory development, a variety of robust 

commercial UHF coils is now available.   
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Parallel imaging (Sodickson and Manning, 1997; Pruessmann et al., 1999; Griswold et al., 

2002) is one of the most potent tools available to decrease the acquisition time while 

maintaining contrast and resolution. This technique exploits the different sensitivity profiles 

from multiple receive elements (Roemer et al., 1990) to reconstruct an under-sampled 

image. The key principle behind these methods is the complementarity between the different 

receive-sensitivities. With increased field strength, therefore shortened RF wavelengths, the 

receive profiles corresponding to each of the coil elements become more distinct. 

Consequently, higher acceleration factors can be reached with only limited image quality 

degradation (Ohliger and Sodickson, 2006). 

Parallel-transmission (pTX) is the counterpart of parallel imaging, this time dealing with RF 

pulses. Subject-specific pulse design can be employed to mitigate B1
+ inhomogeneities at 

UHF and restore signal and contrast in the entire image. Combining the latter with the former 

enables better latitude to improve mitigation performances, as more degrees of freedom are 

considered. Indeed, Transmit-SENSE (Katscher et al., 2003), exploits the full potential of 

transmit-array coils by tailoring the RF waveforms to apply to each of the individual coil-

elements. This transmission generally occurs in concert with magnetic field gradients. All 

these considerations will be described in the upcoming chapter. 
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2. MRI Pulse Design & Parallel Transmission 

 

2.1. Radio-Frequency Pulse Design 

 

In the previous chapter, we explained how MRI is based on the use of RF pulses to 

manipulate magnetization in order to achieve imaging contrasts useful to medical diagnosis. 

We also saw that UHF MRI could provide tremendous improvements, but also bring 

challenges to obtain desired improvement in image quality, the RF excitation non-uniformity 

and the increased energy deposition being the main targets to tackle in this work. 

Analysis and design of RF pulses, as well as MRI sequence conception, is a stimulating field 

of investigation in MRI. When individual transmit sensitivities B1
+ are considered as inputs for 

the pulse design, we deal with RF-tailored pulses. These are no longer generic shaped-

pulses but singular objects, designed thanks to optimization algorithms, which solve a 

subject-specific problem, and achieve better performance regarding spin excitation, and thus 

better image quality. In this chapter, the concepts, techniques, strategies and tools which 

were developed by the different research communities to face MRI methodological 

challenges will be investigated, ending with the key technique: parallel-transmission (pTX). 

 

2.1.1. Multi-dimensional RF Pulses and k-space interpretation 

 

Multi-dimensional RF pulses (Bottomley and Hardy, 1987) are spatially selective in more 

than one direction, as opposed to familiar slice-selective RF pulses. These pulses have long 

duration and require gradient waveforms to be played in concert with. They could be used for 

excitation, but also saturation, inversion and refocusing (Pauly et al., 1989b).  

By making an analogy with the Fourier encoding used in the imaging process, the concept of 

k-space can also be extended to the domain of multi-dimensional RF pulse design (Pauly et 

al., 1989a). Indeed, the spin excitation may be seen as scanning the applied RF energy 

across the same k-space as used for acquisition. This statement can be verified by studying 

the small-tip-angle approximation (STA), which assumes that the longitudinal magnetization 

remains equal to its equilibrium value during RF exposure (Hoult and Lauterbur, 1979; Pauly 

et al., 1989a). This assumption allows linearizing the Bloch equation (Equation 1.4), whose 

first two components could be written as a single complex differential equation, ignoring 

relaxation: 
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where G and B1
+ are the time-dependent gradient and complex transverse magnetic field, 

respectively. If the system is initially in the state M = (0, 0, M0), solving this differential 

equation for the final magnetization at time T and using the STA results in: 
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   (2.2) 

 

The first exponential term represents the phase accrued due to main field inhomogeneities 

ΔB0. Similar to the spatial frequency covered during image encoding, we can define the k-

space trajectory k(t)=[kx(t) ky(t) kz(t)], weighted by a complex RF pulse shape b(t) and the coil 

complex transmit sensitivity s(r), as: 
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 (2.3) 

 

Hence the “k-space interpretation” is found, where k(t) constitutes a trajectory corresponding 

to a set of pre-defined gradient waveforms. This expression then gives explicit weighting of k-

space by the RF excitation (Pauly et al., 1989a). With this interpretation, we can see that the 

resulting transverse magnetization is simply the Fourier transform of the k-space-weighted 

RF waveform.  

 

 

 

Figure 2.1: Schematic overview of the different steps involved in the design of a single-

channel Fourier-based small-tip-angle 2D pulse. a: The desired target magnetization. b: The 

RF-waveform corresponding to the inverse Fourier-transform of target excitation pattern, 

added to gradient waveforms played during transmission to get an Echo-planar (EP) k-space 

trajectory, super-imposed in green on top of the inverse Fourier-transform of the target 
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magnetization. c: Final image after application of the designed RF and gradient waveforms in 

a suitable imaging sequence. 

 

On the other hand, when considering the target MT(r) distribution shown in Figure 2.1.a, the 

RF pulse is simply its inverse Fourier-transform, as it follows the Cartesian trajectory in 

Figure 2.1.b. This implies the RF-waveform is played in concert with the gradients, resulting 

in an excitation with the desired characteristics (Figure 2.1.c). This procedure begins to fail 

for pulses with larger flip angles due to the non-linearity of the Bloch Equation. In those 

cases, the RF pulse can be determined by iterative numerical optimization methods, such as 

the Shinnar-Le Roux (SLR) algorithm (Pauly et al., 1991). 

Albeit a powerful tool for spatial selection, most potential applications involving 

multidimensional RF pulses are hampered by hardware limitations. In particular, gradient 

slew-rate and amplitude limits constrain the minimal pulse duration due to the wide spatial-

spectral range necessary to facilitate an arbitrary excitation profile. Although a judiciously 

chosen k-space design may help reduce hardware limitations, highly selective excitations 

generally still result in unacceptably long pulse durations. These may not only exceed the 

repetition time desired, but also deteriorate image quality due to off-resonance, relaxation, 

and magnetization transfer effects during the pulse. Thanks to the introduction of array coils, 

accelerated multidimensional RF pulses can be considered. Equation (2.3) now suggests 

many different k-space trajectories to achieve specific spin excitations. 

 

2.1.2. Trajectories through k-space  

 

Just like EPI readout, echo planar (EP) trajectories are used to generate 2D RF pulses. 2D 

spiral (Pauly et al., 1989a) is another popular k-space trajectory for 2D RF pulses (Figure 

2.2.a), because it uses two oscillating gradients to cover efficiently k-space. Spiral pulses 

have excellent immunity to flow artifacts, whereas EP pulses provide control of the slab 

thickness in the two dimensions (Bernstein et al., 2004). Apart from these two conventional 

strategies, several interesting designs have been published. Each of these techniques 

addresses a different goal, ranging from non-selective RF non-uniformity mitigation to 

selectively exciting an arbitrarily shaped three-dimensional sub-volume.  

Among the above-mentioned methods, the “fast-kz” trajectory (Saekho et al., 2006) has been 

studied extensively (Setsompop et al., 2008c). The sparse design of this trajectory allows 

slice-selective uniform excitations with relatively short pulse durations. The key principle of 

this method resides in the combination of a dense k-space sampling along the slice direction 

interleaved with a few short gradient blips orthogonal to this direction. When viewed as a 
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path through k-space, the fast-kz trajectory resembles a set of spokes, hence their nickname: 

“Spokes” (Figure 2.2.b). Thanks to pTX-enabled k-space acceleration (see Section 2.4.) 

there has been a renewed interest in multidimensional RF pulse design dedicated to 

volumetric imaging. Designs that selectively excite an inner-volume are explored to facilitate 

un-aliased “zoomed” MRI. Instead of a sparse k-space distribution, the 3D-selectivity 

necessitates sampling an extensive portion of 3D k-space by adopting accelerated stacks of 

2D-spirals (Saekho et al., 2005) or 3D-spirals (Schneider et al., 2013) (Figure 2.2.c). Finally, 

non-selective uniform excitations can benefit from the multidimensional tailored RF pulse 

design approach by only exploring a few locations in k-space. This method, the so-called “kT-

points” (Figure 2.2.d) was initially introduced in 2010 (Cloos et al., 2012a). For a 

homogeneous 3D excitation, the kT-points embody a limited number of excitation sub-pulses, 

interleaved with gradient blips, to travel between transmission sites in three-dimensional k-

space. Sub-pulses can simply be square or more elaborate shapes and no gradient is played 

a priori while pulsing RF. The name ‘‘kT-points’’ indicates that RF-power is applied only while 

stationary in k-space, ‘‘kT’’ standing for transmission k-space. It therefore operates in a way 

so as to not waste time and energy at spatial frequencies which need not be addressed in 

the context of smooth RF inhomogeneities. Indeed, only a few locations in the vicinity of the 

k-space center are excited. When applied in conjunction with parallel transmission, sub-

millisecond pulses are made possible, leading to a broad spectrum of potential applications 

in 3D-acquired sequences. The kT-point framework will be used in the pulse design methods 

presented in this manuscript. 
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Figure 2.2: Several k-space trajectories considered for multi-dimensional RF pulses, each 

one addressing a different goal (Cloos, 2012). a: 2D-Spiral: 2-dimensionnal excitation 

pattern. b: Spokes: uniform selective excitation. c: 3D-spiral: inner-volume selection. d: kT-

points: uniform non-selective excitation. 

 

2.2. MRI Coils 

 

2.2.1. Types of MRI coils 

 

Radiofrequency coils are a central part of the radiofrequency hardware system in MRI. Most 

clinical MRI scanners use volume coil to perform whole-body imaging, and smaller volume 

coils have been constructed for the head and other extremities. 

 

- Volume coils: Volume coils have a better RF homogeneity than surface coils. The most 

commonly used design is a birdcage coil (Hayes et al., 1985). This consists of a number 

of rods running along the z-direction, arranged to give a sine current variation around the 

circumference of the coil.  



49 
 

 

- Surface coils: A surface coil is essentially a loop of conducting material, such as copper. 

This type of receiver coil is placed directly close to the region of interest for increased 

magnetic sensitivity. The loop may form various shapes and be bent slightly to conform to 

the imaged object. Surface coils have a good SNR for tissues adjacent to the coil and 

their sensitivities decrease with distance. 

 

- Transceiver coils: An RF coil that acts as a transmitter, producing the B1
+ excitation 

field, and as a receiver (B1
-) of the MRI signal, is called a transceiver coil. Such a coil 

requires a T/R switching circuit to switch between the two modes. A body coil is typically 

a T/R coil, but smaller volume T/R coils (head/extremities) are also used. 

 

As mentioned in the previous chapter, RF inhomogeneity increases with B0, progressively 

introducing a stronger bias in the acquired images, which can be come problematic for 

diagnosis purposes above 3 Tesla. 

 

2.2.2. Multiple channel coils 

 

To mitigate the above-mentioned effects, transmit-arrays consisting of multiple independent 

coil-elements, exhibiting spatially different sensitivity patterns, were introduced (Ibrahim et 

al., 2001; Adriany et al., 2005). In contrast with the phased arrays used for reception 

(Roemer et al., 1990), most modern MRI systems are not equipped with multi-transmit 

capabilities. Those investigational devices fitted with a multi-transmit extension are typically 

limited to 8 independent channels, whereas the latest clinical MRI systems already offer up 

to 128 receive channels (for example: Magnetom Skyra, Siemens Medical Systems, 

Erlangen, Germany). 

Cylindrically symmetric transmit-coils, such as the birdcage (Hayes et al., 1985) and TEM 

resonator designs (Vaughan et al., 1994), are driven in their Circularly Polarized (CP)-mode 

by simply adjusting the relative phase between the transmit-elements according to their 

azimuthal angle (Adriany et al., 2005). A multi-transmit array system however is not limited to 

the above-mentioned CP-mode. In addition, an N-channel design supports N-1 additional 

and orthogonal eigenmodes (Alagappan et al., 2007). A pseudo-Circularly-Polarized mode 

with constructive interferences of the B1
+ in the center of the imaged object is often used as 

an initial setting of a multi-transmit coil. 

Yet at UHF, none of the eigenmodes of a multi-transmit array system demonstrates a 

homogenous RF-field. Some improvement can be obtained by adjusting the relative phases 
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and amplitudes of the RF pulses between the coil-elements. This method, referred to as RF-

shimming, can substantially reduce the RF non-uniformity in several conditions (Van de 

Moortele et al., 2005). Yet in practice at 7 Tesla, RF-shimming with a typical 8-channel multi-

transmit configuration does not allow the desired level of FA uniformity to be reached 

throughout large regions of interest such as the entire human brain (Cloos et al., 2012a, 

2012b; Massire et al., 2013). However, recent advances in the field of transmit-array coil 

design (with more coil elements or different element geometries) could yield more flexible 

solutions (Kozlov and Turner, 2009; Wu et al., 2013). Parallel transmission (pTX), which will 

be the subject of Section 2.4, provides more latitude than RF-shimming to reach desired 

excitation uniformity and is consequently used throughout this thesis. 

 

2.3. B1
+ Mapping 

 

When considering an MRI exam with a transmit-array coil and before any subject-specific RF 

optimization can be computed, the spatially-dependent transmit sensitivities B1,n
+ (where n is 

the coil channel index) have to be estimated. These transmit-sensitivities quantify the 

amplitude and relative phase of the co-rotating RF-field produced by each coil-element and 

can be then be deduced from a dedicated MRI measurement. This should take as little time 

as possible and requires good accuracy. To this end, numerous techniques have been 

proposed over the years (Yarnykh, 2007; Fautz et al., 2008; Nehrke and Börnert, 2012). 

Recent endeavors known as to MRI fingerprinting (Ma et al., 2013) propose an alternative 

method to evaluate the transmit sensitivities in a short duration.  

Although B1
+-mapping sequence development is still a very active field of research, the 

actual flip-angle imaging (AFI) sequence (Yarnykh, 2007), including various improvements 

(Amadon and Boulant, 2008; Nehrke, 2009; Boulant et al., 2010), is currently among the 

most popular methods. Due to its steady-state implementation, short repetition times are 

feasible without the need for a SAR intensive reset pulse. Nevertheless, the AFI sequence 

applied to transmit-arrays is still relatively time-consuming and SAR-demanding. Considering 

that these calibrations have to be repeated for each subject before clinically relevant 

measurements can be started, various faster yet less accurate methods have been 

proposed, such as the DREAM sequence (Nehrke and Börnert, 2012).  

The XFL sequence (Fautz et al., 2008; Amadon et al., 2012) is a 2D multi-slice 

magnetization-prepared turbo-FLASH sequence. Magnetization preparation is achieved 

using a very selective VERSE’d saturation pulse, which produces a spatially-dependent FA 

to be measured (partial saturation). This preparation pulse is immediately followed by a 

gradient spoiler and a centric-ordered FLASH readout train. Non-prepared FLASH scans 
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acquire the transmit phase maps. The XFL sequence produces 3D B1
+ maps in less than 5 

minutes for 8-channel coil arrays with excellent correlation and identical resolution compared 

to the ones produced by the AFI sequence. This is why this sequence was used for all in vivo 

experiments in this thesis. 

In any case, with a transmit-array, regions far away from the transmitting element under 

investigation are usually dominated by noise. To counteract this problem, the matrix-based 

field mapping approach (also known as the interferometric method) was proposed (Brunner 

and Pruessmann, 2009). This procedure combines the transmit-channels in different linear 

combinations, allowing the transmit-sensitivities corresponding to the individual transmit-

channels to be retrieved after adapted post-processing, that is to say a matrix inversion. To 

this end, typically the pseudo-CP mode is considered as a “reference”, which is perturbed by 

cyclically adding π to the phase on each one of the channels. The advantage of this method 

is that the peak power per channel can be reduced while simultaneously obtaining a more 

favorable signal-to-noise distribution. This method can be combined with any of the above-

mentioned sequences. 

 

2.4. Parallel Transmission 

 

2.4.1. Origins 

 

The development of parallel imaging began with the introduction in the 1980s of the phased 

array coil concept (Roemer et al., 1990) as a suitable hardware platform to increase the SNR 

and/or to shorten the acquisition. Parallel imaging makes use of the spatially varying 

sensitivities of individual coil elements forming a receive coil array that can be used to 

encode spatial information during signal reception. This signal encoding allows for the 

reduction of the number of necessary phase-encoding steps conventionally required and 

thus the acceleration of scanning and/or the increase of spatial resolution. Different 

algorithms have been elaborated in order to combine the individual coil data and to 

compensate for the residual reception inhomogeneities (Roemer et al., 1990). In contrast to 

some early ideas, which tried to overcome conventional phase encoding completely, these 

approaches to accelerated parallel imaging perform sensitivity and phase encoding 

simultaneously. Consequent subsampling in k-space makes image reconstruction more 

complicated than just using the Fourier transform. These different techniques can be divided 

according to the k-space and the image-space domains, in which the processing is mainly 

performed. SMASH (Simultaneous Acquisition of Spatial Harmonics) (Sodickson and 

Manning, 1997) was proposed as an approach to perform parallel imaging in k-space. The 
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same holds for GRAPPA (Generalized Autocalibrating Partially Parallel Acquisition) 

(Griswold et al., 2002), a further refinement that incorporates the idea of autocalibration. In 

contrast to these, the processing in SENSE (for Sensitivity Encoding) (Pruessmann et al., 

1999) is performed in the spatial domain. Numerous generalizations and refinements have 

been further elaborated, making nowadays the strict distinction between k-space and image 

domain rather impractical. As shown in Figure 2.3., the SENSE imaging method takes 

advantage of the distinct receive-sensitivity profiles of the coil-elements to reconstruct an un-

aliased image from a reduced k-space acquisition.  

 

 

 

Figure 2.3: Schematic overview of two imaging and reconstruction strategies. a: The 

standard reconstruction method, sampling the full k-space (green). b: A 2x under-sampled 

acquisition, resulting in an aliased image with conventional reconstruction (yellow). Parallel 

imaging (SENSE), using the receive sensitivities corresponding to the different coil-elements 

(blue), enables correct data reconstruction with the corresponding acceleration factor.  
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The young history of pTX shows some similarities with the developments in parallel imaging. 

With the introduction of human UHF proton MRI systems, problems of B1
+ inhomogeneities 

caused by dielectric resonance effects came into focus. Multiport excitation for birdcage-type 

coils was proposed as a measure to improve the RF homogeneity in the excited volume 

(Ibrahim et al., 2000). The underlying hardware could thus be considered as a multi-element 

transmit coil array, which allows independent adjustment of the phase and amplitude of the 

otherwise identical waveforms for the individual ports (i.e. performing RF shimming) (Adriany 

et al., 2005). Inspired from parallel imaging, multiple transmit coils can be utilized to perform 

parallel transmission. Again, the two initial approaches proposed for parallel transmission 

differ in the central matrix inversion. Either it is performed in the Fourier space (Katscher et 

al., 2003) or in the spatial domain (Zhu, 2004). The so-called “Transmit-SENSE” (Katscher et 

al., 2003) method allows a desired target excitation to be reached with a reduced k-space 

sampling during RF transmission, using multiple transmit coil elements, each of which 

exhibiting a spatially different sensitivity pattern and being driven by a specific time-

dependent RF waveform (Figure 2.4.). The pTX additional degrees of freedom offer the 

possibility to improve spatially selective multidimensional RF pulses (Pauly et al., 1989a), for 

example by shortening the pulse duration, enhancing their spatial definition, or reducing their 

required RF power. This enables multidimensional RF-pulses to be included in fast 

sequences with short repetition times, while simultaneously reducing the impact of relaxation 

and off-resonance effects during the RF pulse. Furthermore, it facilitates the application of 

3D pulses, which are limited by the finite lifetime of the transverse magnetization and the 

main field homogeneity. Finally, the compensation of patient-induced RF inhomogeneities is 

a major application of the approach, particularly at UHF. 
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Figure 2.4: Schematic overview of 3 transmission strategies, each one indicated with arrows 

of a different color. Green: The standard single-channel-tailored multidimensional RF-

excitation, as described in section 1 of this chapter. Yellow: The effect of under-sampling k-

space by a factor 2 during transmission, resulting in non-desired excited magnetization. 

Blue: When adopting parallel transmission and taking into account the transmit-sensitivity of 

each coil-element, the same target magnetization is produced while under-sampling the k-

space by a factor of 2. 

 

Parallel transmission is not simply the reciprocal of parallel imaging. Both approaches are a 

combination of a forward and an inverse matrix problem. Parallel imaging and parallel 

transmission can be applied during an MRI sequence without any interference. Parallel 

imaging is based on the acquisition k-space whereas parallel transmission is based on the 

excitation k-space. Thus, the main goal of parallel imaging is the shortening of acquisition 

times, and the main goal of parallel transmission is the shortening of RF pulse durations. 

These considerations can be expressed as two central questions, individually related to 

parallel imaging and parallel transmission, respectively: 
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- In parallel MRI, given multiple measured, undersampled k-space data sets from the 

individual receive coils, how does one get a single, entire image?  

- In pTX, given a single, entire spatial excitation pattern as a target, how does one get 

the individual, undersampled spatial patterns for each of the transmit coils coming 

with their individual sensitivity profiles? 

When dealing with multi-element coil design, it is observed that an array geometry suitable 

for parallel imaging is generally also suitable for parallel transmission. Thus, the use of coil 

arrays capable for both is possible, which therefore eases coil array design. Nevertheless, for 

parallel imaging, a suboptimal geometry of the coil array leads to a nonlinear enhancement 

of the noise in the reconstructed image (Pruessmann et al., 1999). On the other hand, for 

parallel transmission, a suboptimal geometry of the coil array leads to a nonlinear 

enhancement of the SAR (Zhu, 2006). Last, a negligible influence of the geometric coil-array 

configuration on the resulting quality of the excitation pattern reproduction has been shown 

with simulations (Katscher et al., 2005), this result only being affected for extreme cases, for 

example when coil elements are lying almost on top of each other. 

For an elegant and concise review of the different parallel imaging and parallel excitation 

techniques and frameworks, the reader is directed to (Katscher and Börnert, 2006, 2007). 

 

2.4.2. Spatial Domain method 

 

The Spatial Domain Method (SDM) (Grissom et al., 2006) is a formulation of transmit-SENSE 

in the spatial domain. It allows for spatially variant excitation error weighting and thus ROI 

specification. Main field inhomogeneity ΔB0 is easily incorporated in the design. Last, this 

method does not require computation of a Jacobian for compensation of k-space velocity and 

density, nor does it require interpolation between excitation k-space trajectories. It is a multi-

coil generalization of the iterative pulse design method (Yip et al., 2005), optimization is 

based on the minimization of a quadratic cost function that consists of an excitation error 

term, which quantifies excitation error in the spatial domain, and a choice of regularization 

terms. The regularization terms can be used to control the integrated and peak RF power. 

The minimization problem can be solved iteratively via the conjugate gradient method or 

brute-force inversion.  

As shown in equation (2.2), the STA transverse magnetization MT resulting from a single coil 

could be rewritten as the Fourier Transform of the k-space trajectory traversed and weighted 

by the RF excitation. This formalism can be extended to analyze the parallel excitation 

induced by a transmit-array, based on the property of linearity: 
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where N denotes the total number of coil elements, sn the transmit spatial sensitivity and bn 

the complex RF shapes of the element n. The use of a multiple transmit coil, with each 

element exhibiting a spatially different sensitivity pattern and driven by a specific RF 

waveform, could therefore be used to reduce the path to be traversed in excitation k-space, 

thereby shortening the RF pulses without sacrificing spatial definition.  

The k-space trajectory is equal to the time-reversed integration of the gradient waveforms to 

be played during excitation. By discretizing space and time with Ns and Nt samples 

respectively, we may write the transverse magnetization as a NS-length column vector, via 

horizontal concatenation of the matrices DnA and vertical concatenation of the vectors bn, 

resulting in: 
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where Dn(r) = diag{sn(r)} is a NS x NS diagonal matrix containing spatial samples of the 

transmit sensitivity map of coil element n, bn is a Nt-length vector of RF pulse samples for 

coil-element n, and A is a NS x Nt matrix, whose elements are: 
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Given a target transverse magnetization profile vector mdes containing NS samples, finding 

the RF pulse btot is a linear inverse problem. In order to produce a well-conditioned convex 

optimization problem, a Tikhonov regularization is often introduced. Effectively, it adds to the 

least squares residual a cost function proportional to the RF power integrated over time and 

coil elements, thereby suppressing solutions with large integrated RF powers. The standard 

method uses the same Tikhonov parameter for all the elements in the coil to reduce the 

overall RF power by solving the following minimization problem: 
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The regularization method was subsequently refined with channel-dependent Tikhonov 

parameter values, in order to reduce the maximum local SAR (Cloos et al., 2010a). 

 

2.4.3. Magnitude Least Square Problem 

 

The previously introduced SDM considers a Least Square (LS) optimization, that is to say a 

cost function with a complex magnetization target to aim at. The associated optimization 

method is convex, but selecting an alternative target phase distribution results in a different 

and possibly more optimal RF-solution. Yet for many excitation applications, the quantity of 

interest is only the magnitude of the magnetization and the optimal solution among all 

possible phase distributions is desired. Indeed, as long as they are not too large within a 

voxel, low-order spatial phase variations do not impose a significant penalty. 

The Magnitude Least Squares (MLS) optimization was therefore subsequently applied to 

improve excitation magnitude profile and reduce the required RF power, taking advantage of 

relaxed constraints on the phase profile (Setsompop et al., 2008a). In the SDM minimization 

formulation above (Equation 2.7), RF waveforms that are found will reduce the deviations 

from the target profile in both the magnitude and phase. However, when only magnitude 

images are of interest, the primary metric of interest is the fidelity of the magnitude profile 

while the phase profile is relatively unimportant, leading to the following minimization 

problem: 
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Here, mdes is specified as a real-valued vector. Unlike the LS, the MLS optimization is not 

convex and generally cannot be solved with a guarantee of global optimality.  

To perform MLS optimization, the variable exchange method, which iteratively resets the 

target phase to the previously obtained phase pattern, is generally used. As a result, MLS 

optimization procedure greatly reduces the RF power while enhancing the excitation fidelity. 

Yet selecting an alternative initial target phase distribution may still result in a different RF 

pulse, whose performance may vary significantly. In particular, some of the initial targets may 

not work well at all. Therefore, the initial phase distribution has to be selected with some 

care. Although not necessarily the optimal solution, selecting the phase distribution 

corresponding to the CP-mode as an initial target generally performs well (Kerr et al., 2007).  

Very recently, several other strategies dedicated to solve the MLS problem in 3D were 

investigated (Hoyos-Idrobo et al., 2013), both in the small and the large FA regimes. These 

strategies consist of two stages: initializations and nonlinear programming approaches. Hard 



58 
 

constraints on SAR and power were also introduced, instead of commonly used 

regularization parameters. Small tip angle and inversion pulses are returned in less than 10 

seconds in both cases, while respecting the constraints, allowing the use of the proposed 

approaches in routine. 

 

2.4.4. Large Tip Angle design and Optimal Control theory 

 

In the previous sections, various methods to design pTX-enabled RF-waveforms dedicated 

to many different applications have been presented. Most of these approaches rely on the 

STA approximation (Pauly et al., 1989a), which assumes that the longitudinal magnetization 

remains constant during the RF pulse (Section 2.1.1.). Albeit not an exact representation of 

the physics involved, this simplification can be applied to small or moderate FA excitations 

because in this domain the FA demonstrates an approximately linear dependence on the 

applied excitation field. Therefore, excitations pulses based on the STA approximation 

generally perform well when targeting a FA up to 90° (Boulant and Hoult, 2012). 

Beyond this domain, the non-linear behavior of the Bloch equations must be considered. 

Nonetheless, a careful analysis of this non-linear system revealed that under certain 

conditions, the STA approximation may also yield viable large tip-angle (LTA) results (Pauly 

et al., 1989b). Consequently, when designing LTA pulses based on the STA approximation, 

sub-optimal levels of excitation fidelity are often obtained. 

Large-tip-angle multidimensional pulses have been proposed for refocusing, transmit field 

inhomogeneity mitigation and 3-D volume-selective tagging. In the aforementioned 

applications, pulses are often designed either by segmenting the pulses into many 

successive STA pulses, or weighted by a 1-D envelope designed with a 1-D large-tip-angle 

pulse design method (SLR pulses). The emergence of pTX recently drove a renewed interest 

in multidimensional LTA pulse design. Yet, adhering to constraints imposed by the linear 

class of LTA (LCLTA) requires additional pulse length to correct LTA distortions in small-tip-

designed RF pulses (Xu et al., 2007). Therefore, optimization techniques have been 

subsequently proposed to mitigate excitation defects that arise due the non-linear behavior of 

the Bloch equations in this regime (Grissom et al., 2008). Although not ensuring a global 

optimum, LTA excitations designed via optimal control methods (Conolly et al., 1986) have 

been demonstrated to provide robust results (Xu et al., 2008; Grissom et al., 2009). These 

methods are iterative algorithms that design RF pulses by minimizing a cost function. The 

Bloch equation is iteratively evaluated using the current pulses. Gradients with respect the 

cost function are computed, and the pulse is updated by stepping in the negative gradient 

direction. The cost function framework used in optimal control also allows the user to include 
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regularizers and to refine gradient waveforms. Though the method is efficient in terms of 

convergence and pulse quality, evaluation of the Bloch equation at every iteration is 

computationally expensive. 

Recasting the problem formulation into the spin-domain (Pauly et al., 1991) as proposed in 

(Grissom et al., 2009) reduces the computational load, and provides valuable tools to design 

refocusing pulses. Ultimately a direct LTA pulse design method, omitting the STA and 

including a direct k-space optimization routine, is desired to approach a truly optimized RF 

solution. An optimal control algorithm for the design of unitary propagators (Khaneja et al., 

2005), originally dedicated to MR spectroscopy and quantum computing, and herein 

formulated into the spin-domain, is the core of the pulse design method developed in this 

thesis.  
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3. Experimental Setup 

 

3.1. MRI system 

 

3.1.1. Magnet 

 

All experimental results presented in this manuscript were obtained using the Siemens 

Magnetom 7 Tesla MRI system (Siemens Medical System, Erlangen, Germany) (Figure 

3.1.a) equipped with parallel transmission capabilities and located at NeuroSpin, a CEA 

research center on brain imaging. As opposed to 3 Tesla MRI systems like the Trio, this 

system was built around an unshielded 90-cm-diameter-bore superconducting magnet 

(Magnex Scientific, Oxford, England) (Figure 3.1.b). The entire setup is enclosed in a 500-ton 

steel room to suppress stray fields outside the confines of the magnet room and in a Faraday 

cage to minimize RF noise from the outside. Each of the subsequent sections provides 

details concerning the MR components most relevant to the work presented in the 

succeeding chapters. 

 

 

Figure 3.1: a: Siemens Magnetom 7 Tesla MRI system. b: 90-cm-diameter-bore 

superconducting magnet. 
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3.1.2. Gradient & Shim Coils 

 

Since its installation in 2007, the above-mentioned MRI system is equipped with two 

complete gradient sets, a whole-body gradient system (Siemens) and a head-only gradient 

insert (AC84, Siemens). The first closely resembles what is typically available on a high-end 

clinical MR system (max slew-rate: 200 T/m/s, max amplitude: 45 mT/m). However, this 

whole-body gradient is not operational for imaging purposes at NeuroSpin. Nevertheless, it is 

currently used in static mode for shimming. 

The gradient insert, on the other hand, can reach higher slew-rates (400 T/m/s) and larger 

gradient amplitudes (80 mT/m)1. However, due to its asymmetric design and smaller 

diameter (40 cm), gradient linearity is limited to a head-sized elliptical volume oriented along 

the main axis of the magnet. Bearing in mind NeuroSpin’s exclusive focus on brain imaging 

and particular interest in diffusion MRI, the benefits provided by the head gradient insert are 

generally considered to outweigh the constraints imposed by the restricted inner radius.  

However, with such a configuration, care needs to be taken not to introduce parasitic 

excitations. Particularly at ultra-high field, where the loaded magnet bore acts somewhat as a 

waveguide (Brunner et al., 2009), most head-only RF-coils demonstrate an increased 

sensitivity in the shoulder and chest regions. Due to the relatively small dimensions of the 

gradient insert and its dropping spatial encoding capacity beyond the above-mentioned 

ellipse, signal arising from these areas are aliased into the region of interest (Figure 3.2.a). 

To mitigate these “third-arm” artifacts, the shim coils from the body gradient set can be 

utilized to dephase the signal originating from the shoulder regions (Wiggins et al., 2010). 

This technique, referred to as the “double-shim” method, applies opposing currents on the 

second order Z-shim coils of both gradient sets, effectively spoiling the signal arising from the 

shoulder regions (Figure 3.2.c).  

An alternative strategy currently studied consists in placing a jacket (Accusorb® MRI) on the 

subject which acts as an RF shield and absorbs RF waves (Favazza et al., 2013) (Figure 

3.2.b). This jacket is made of a patented material (made of absorbent passive RF circuits and 

a thermal protection for patient safety) and was originally dedicated to military applications 

such as radar camouflage. This solution is already adopted in many clinical sites around the 

world for standard applications. Combination of both methods results in nearly complete 

parasitic artifact suppression (Figure 3.2.d). 

 

                                                           
1
 The slew-rate and the maximum gradient amplitude were willingly limited to 333 T/m/s and 50 mT/ m respectively. 
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Figure 3.2: Coronal views from a 3D MP-RAGE sequence, with several configurations 

(courtesy from A. Vignaud). a: Without any correction, the “V”-shaped signal artifact aliased 

from the neck region is clearly visible. b: Image acquired on same volunteer without 

repositioning, with the vest around the subject neck. c: Image acquired with almost same 

positioning, but this time with opposing currents set in the body and head gradient z-shim 

coils. d: Same image with both correction methods.  

 

3.1.3. Radio-Frequency Chain 

 

In contrast to current clinical MR systems, typically equipped with only a single transmit-

channel, the 7-Tesla system at NeuroSpin has been equipped with a pTX-extension 

including eight independent RF-pathways. The console used to operate the pTX-enabled 

system consists of 2 computer systems referred to as master and slave. The master controls 

a single transmit-channel (channel 8), and provides all the necessary tools to configure and 

prepare a new acquisition. The slave system allows any protocol prepared on the master 

system to be dispatched to all 8 transmit-pathways.  

Eight independent modulators are each attached to their own power amplifier, providing up to 

1-kW peak power each (Dressler, Fort Collins, USA). Via a directional coupler, the forward 

power coming from each amplifier is monitored in real-time by the Transmit Antenna Level 

Sensor (TALES) component, allowing the 20-µs, 100-ms, 1-s, 10-s, and 6-min averaged 

power to be constrained (reflected power is not considered in the switch-off mechanism). In 

the event that one of the pre-specified limits is exceeded, the acquisition is terminated. 

However, it should be noted that currently, it remains the research institution’s responsibility 

to derive the appropriate time-averaged power limits such that compliance with the SAR 

guidelines is ensured. This work will be described in the next chapter. A brief description of 

the architecture involved here is provided in Figure 3.3. 
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Figure 3.3: Schematic representation of the RF-chain corresponding to the 8-channel pTx-

extension. Each of the individual transmit-channels is provided with its own modulator and 

amplifier. The forward power sent by each of the amplifiers is monitored. Reflected power 

and contributions from mutual coupling between coil-elements are dissipated in circulators.  

 

3.1.4. Transmit-Array Coil 

 

For pTX MRI scans, an array coil is necessary, which raises the question of the coil 

architecture: either a transmit-receive-array (transceiver) where dipoles (or loops) are used 

for both transmission and reception, or two dedicated sets of coils where dipoles are used 

only in transmission and reception loops are placed closer to the subject to receive MR 

signal. Coil design is a very complex and challenging matter and is beyond the scope of this 

work, however a transceiver coil is presumably easier to build in terms of architecture, mutual 

coupling between coil elements and spatial congestion. 

This is why a home-made transceiver-array head coil was developed in collaboration with the 

Institut de Recherche des Lois Fondamentales de l’Univers2 at CEA (Ferrand et al., 2010). 

The coil itself consists of 8 stripline dipoles distributed every 42.5° on a cylindrical surface of 

27.6-cm diameter, leaving an 8.2-cm-wide window in front of the subject’s eyes. The housing 

for the dipoles is made out of two polyoxymethylene half cylinders milled to provide close-

fitting slots to hold each of the coil-elements. The dipoles themselves consist of a 280 x 28 x 

2 mm3
 high purity solid copper strip (Figure 3.4.e). Each of them is fed via a BALUN 

(BALanced UNbalanced transformer) that acts as an electrical transformer between the 

                                                           
2
 Design and implementation by Michel Luong and Guillaume Ferrand at Commissariat à l’Energie Atomique, Direction des 

Sciences de la Matière, Institut de Recherche des lois Fondamentales de l’Univers, Service des Accélérateurs, de la Cryogénie 
et du Magnétisme. 
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coaxial feed line and the symmetrical central feeding points. Air is used as the dielectric 

between ground plane and dipole. To first order, each element was tuned using capacitive 

disks; subsequent fine-tuning is provided via the pi-circuit incorporated into each element. At 

the end of the coil, a semi-circular polyoxymethylene “crown” is attached (Figure 3.5) to 

provide the enclosure for the in-house-developed transmit/receive switches (-56 dB isolation 

between transmit and receive paths) and preamplifier circuits (23 dB amplification, 1.1 dB 

noise figure)3. 

 

 

 

Figure 3.4: Exploded view of a dipole antenna and the transmit-array coil used throughout 

this thesis. The body of the coil consists of two halves (a & b). The top half (b), contains an 

opening (c) allowing the subject to look backwards out of the magnet bore via a mirror. Both 

parts of the coil body contain close-fitting slots to hold four dipoles in place (d). Each coil-

element (e) consists of a substrate that supports the BALUN. The auxiliary circuit has its own 

tracks to connect the elements used for frequency tuning and impedance matching. 

 

                                                           
3 Design and implementation by Marie-France Hang and Eric Giacomini at Commissariat à l’Energie Atomique, Direction des 

Sciences du Vivant, Institute d’Imagerie Biomédicale, NeuroSpin, Unité d'Imagerie RMN et de Spectroscopie. 
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Figure 3.5: T/R switches on the crown and complete home-made coil used in this thesis. 

 

To provide the necessary resources for SAR assessment (see next chapter), Finite Element 

(FE)-based simulations were performed. To this end, the coil was modeled with HFSS 

(ANSYS, Canonsburg, PA, USA) along with a human head load. Since the FE method allows 

volume elements of variable size and shape, it is particularly important to use a fine mesh 

near the coil-elements where strong spatial variations in the conservative electric fields are 

expected. This, in combination with the complexity of the human head model, requires a 

large number of tetrahedrons. Therefore a dedicated computer system equipped with 64 GB 

of working memory and 8 CPU cores was used (Dell, Precision T7500), thus allowing 

complex models made of approximately 1 million tetrahedrons to be evaluated within a 

reasonable time (approximately 10 hours for all eight channels simultaneously). 

Future work includes the manufacture of a 12-channel transceiver coil, with better efficiency 

and smaller weight. In parallel, addition of 10 surface loops interleaved between transmission 

dipoles is considered to increase reception capability of the coil. 

 

3.2. Other Materials 

 

3.2.1. MRI phantom manufacturing 

 

Imaging phantoms, or simply phantoms, are specially designed objects that are scanned or 

imaged in the field of medical imaging to evaluate, analyze, and tune the performance of 
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various imaging devices. These objects are more readily available and provide consistent 

results, avoiding exposing a living subject to possible risk.  

In order to perform relevant electromagnetic and thermal simulations that will be used for 

SAR assessment and safety studies (Chapters 4 & 5), as well as MRI pilot scans for 

sequence design (Chapters 6 & 7), several properties of the human brain at 297 MHz need 

to be considered in making an MRI phantom (Figure 3.6.): 

 

Longitudinal relaxation T1 ~ 1680 ms 

Transverse relaxation T2 ~ 50 ms 

Electrical conductivity σ ~ 0,55 S/m 

Relative permittivity εR ~ 52 

Thermal conductivity k ~ 0,54 W/m/K 

Material density ρ ~ 1030 kg/m3 

Heat capacity CP ~ 3650 J/kg/K 

 

Table 3.1: Several physical properties of the human brain at 297 MHz. All these values are 

extracted from (Visser et al., 2010; Massire et al., 2012) and averaged for a mix of gray and 

white matter, assuming a ratio of ~1.0 in the brain.  

 

To get a solution with these properties, several chemical compounds easily available could 

be used in a distilled water solution: 

 

- The classic chemical compounds used for T1 doping are: CuSO4, MnCl2, GdCl3 or Ni-

DTPA. 

- Agar powder reduces T2 relaxation whilst hardly affecting T1 relaxation.  

- Realistic electrical conductivity can be achieved with the addition of NaCl, but this 

improves B1
+ homogeneity at the expense of B1

+ magnitude, the phantom diameter 

(here 16 cm) also needs to be considered. 

- Addition of sucrose mostly decreases T1 and εR. 

 

Of course, all these physical properties are affected at different levels by all chemical 

compounds. To prevent any degradation of the phantom due to the presence of sucrose, 

diazolidinyl urea could be used as an anti-bacterial and anti-fungal agent. Last, the phantom 

must be sealed to prevent any external contamination, as well as water evaporation. 

As an example, a concentration of NaCl of 4 g/L and a concentration of Agar of 10 g/L 

produced an electrical conductivity of 0.78 S/m and a relative permittivity of 74,3. 
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T1 relaxation of the phantom was measured with the DESPOT1 method (two 3D GRE 

sequences with different flip angles (5° and 20°) and a 3D AFI sequence to measure B1). T2 

relaxation was evaluated thanks to various 2D SE-EPI sequences (central coronal slice) with 

different TE ranging from 10 ms to 500 ms. Signal was fitted with an exponential decay and 

corrected for T1. Electric properties were measured with a dedicated device (EpsiMu®, 

Institut Fresnel, Marseille, France). 

 

 

 

Figure 3.6: Picture of one of the MRI phantoms made (16 cm diameter). 

 

3.2.2. Computational Resources 

 

To run electromagnetic simulations and pulse design software, a powerful desktop station 

equipped with two Intel Xenon E5-2670 CPUs (128 GB of RAM) paired with two high-

performance-computing graphics card CUDA-enabled Tesla® KeplerTM K20 (NVidia 

Corporation, Santa Clara, CA, USA). These cards, equipped with a Graphics Processing 

Units (GPUs) GK110 containing 2496 cores, and 5 GB of errorcode-correction DDR5 

memory, facilitate massive numbers of concurrent threads for the parallel evaluation of both 

SAR and Bloch equations. All the software tools developed in-house on GPU are based on a 

combination of C++ and Compute Unified Device Architecture (CUDA®, NVidia Corporation, 

Santa Clara, CA, USA). They are detailed in the subsequent chapters.  
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4. Specific Absorption Rate Assessment 

 

4.1. Ensuring patient safety 

 

4.1.1. Aims 

 

As stated in the first chapter of this manuscript, RF exposure could lead to local thermal 

damage or thermoregulatory problems. MRI systems are therefore subject to safety 

concerns, just like telecommunication devices are. For MRI, a rational way to ensure patient 

safety would be to: 

 

- Predict the temperature increase in all the tissues due to a specific RF exposure, 

corresponding itself to a particular MRI sequence and a particular individual, prior to 

the exam.  

- Ensure that the local temperature never exceeds the safety thresholds, thanks to a 

direct local temperature control during the MRI exam. 

 

This optimal procedure is not achievable for several reasons. First, an accurate prediction of 

the local temperature rise requires: 

 

A. A subject-specific model to account for inter-individual variability and subject position 

in the coil. 

B. Dedicated software and powerful hardware capabilities to perform quasi-

instantaneous simulation of the deposited energy. 

C. A proven theoretical temperature increase model in biologic tissues for accurate 

predictions.  

 

Second, to perform a real-time monitoring of the patient exam, one would want: 

 

D. Both theoretical framework and dedicated technology to monitor efficiently the local 

temperature in the subject. 

E. Insurance that the system is working without failure. 

 



69 
 

Conditions A, C and D cannot be entirely fulfilled and alternative strategies were established 

as a consequence. 

 

4.1.2. Strategies 

 

The current gold standard consists in performing simulations of the interaction between the 

MRI coil and the subject body to produce accurate maps of the electric and magnetic fields 

generated and thus quantify the RF exposure of the body. However, when considering 

typical tissue dimensions, field maps with at least 5 mm of isotropic resolution seem the 

extreme minimum acceptable, and more precise maps are necessary to represent accurately 

layers of bones, cartilage, liquid, fat and other tissues, which own various electric and 

thermal properties (see for example Table 5.1). Moreover, head dimensions and brain 

properties have large inter-subject variations. This is due for instance to: 1/ age: electrical 

conductivity, as well as WM/GM/CSF proportions evolve through normal aging (Ge et al., 

2002)), 2/ gender: women usually have smaller heads than men; and of course children and 

babies heads are significantly smaller than adults ones, or 3/ a pathology’s presence: 

neurodegenerative diseases alter the brain composition, tumors have higher electrical 

conductivity (Restivo et al., 2014), ischemia and strokes locally change blood perfusion of the 

tissues. Given all these reasons, the subject-specific aspect of condition (A) seems 

mandatory. Nevertheless, getting a personal model for each individual is very laborious, as it 

requires several time-consuming stages to build the model and several hours of 

electromagnetic simulations. This is why generic (simplified yet representative) models of the 

human head (Makris et al., 2008; Christ et al., 2010) are more practical, yet with an 

appropriate safety margin. The reasonable approach is therefore to select several relevant 

models to account for a broad spectrum of inter-individual variability, perform all simulations 

with them and take the worst-case. For instance one can choose: a male adult in the center 

of the coil, a female adult in the same position and a third one with the subject’s head closer 

to the RF coil, then simulate the SAR deposition for any given MRI sequence and last ensure 

that the worst case scenario is still under the threshold recommended by the international 

committees. 

A solid but still perfectible alternative method to model-based SAR estimation, based on the 

postprocessing of B1
+ maps (Katscher et al., 2012; Voigt et al., 2012), could fulfill condition 

(A). This procedure automatically includes the individual patient and the current status of the 

transmit-channels, overcoming corresponding problems of the generic model-based SAR 

estimation. The advantage of this B1
+-based SAR estimation is counterbalanced by the 

incomplete knowledge of the spatial magnetic field components, required to accurately 
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calculate local SAR. Therefore, performing a generic model-based SAR estimation still 

remains the most frequently used method. 

Not satisfying condition (A) however makes achievable the fulfillment of condition (B), 

because as described in (Graesslin et al., 2012) the SAR prediction concept could be divided 

in two independent subsequent steps. In the first preparatory step, which is carried out only 

once, model-related data (e.g. the normalized electric and magnetic fields) are determined 

via relatively time-consuming numerical simulations. These simulated fields are appropriately 

pre-processed and stored for the subsequent SAR calculation step. In the second phase, the 

actual SAR is simulated, as this time the MRI sequence-related parameters are introduced 

(e.g. RF waveforms). This evaluation is, as opposed to the first one, very short and takes 

less than a second. SAR prediction and monitoring in the case of pTX will be fully explained 

and discussed in the next sections. 

Condition (C) fulfillment is more arduous, as finding an accurate model of temperature 

increase in biologic tissues is a challenging task. The gold standard method is known as the 

bioheat Pennes model (Pennes, 1948), which is basically a generalization of the heat 

equation of Fourier, applied to living tissues. This model (described in Chapter 5) assumes a 

constant blood temperature, and was experimentally verified on the living human arm 

(Wissler, 1998). This model could presumably work for MRI, yet other safety studies suggest 

considering the blood temperature as a time-dependent function (Shrivastava et al., 2011). 

Temperature simulation could be run quickly with any numerical method available, including 

the Finite-Difference-Time-Domain (FDTD) method. 

Experimental proof of the Pennes’ model relevance for MRI could be achieved thanks to MRI 

thermometry. Still, the temperature increases induced by MRI scans are small and the 

Proton Resonance Frequency Shift (PRFS) method (Hindman, 1966) is sensitive to any 

source of phase disturbance, e.g. breathing (Boulant et al., 2014). In any case, this method 

requires some MRI scan time. These concerns lead to lower one’s ambitions about the 

fulfillment of condition (D), because direct temperature measurements thanks to optical 

probes are clearly invasive. If temperature is right now too difficult to predict and monitor, 

alternative ways therefore need to be considered.  

On the other hand, monitoring the SAR is technically feasible. The key principle is to 

measure the transmitted power and this way ensures that the predicted global SAR is the 

energy actually delivered in the subject’s tissues. These methods will be detailed in the next 

section. 

Last, condition (E) is the responsibility of the system manufacturer, yet the case when the 

MRI coil is damaged must also be considered.  
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4.2. Methods for SAR prediction and assessment 

 

4.2.1. Conventional MRI systems 

 

As previously introduced, conventional MRI systems (without parallel transmission) evaluate 

the SAR based on the anticipated transmitted power. This assessment typically relies on a 

single simulation of the RF coil in use, loaded with a human model exposed to a CP mode. 

This leads to a fixed scaling factor (the so-called “k” factor) between the transmitted power 

and the maximum local/global SAR, which is tabulated on the console so the system can 

validate the compliance with a set of pre-defined limits such as those summarized in Section 

1.3.2. When the proposed acquisition is expected to exceed these SAR limits, the system will 

prevent the user from starting the measurement. If the requirements are met, the transmitted 

power is monitored to ensure that the RF-power remains within the appropriate limits. In the 

event that any of these power limits is exceeded, the acquisition is terminated. SAR 

prediction and monitoring for conventional MRI systems is therefore straightforward and only 

relies on model relevance and power monitoring accuracy. 

 

4.2.2. pTX-enabled MRI systems 

 

Introducing a pTX-extension however complicates the SAR evaluation due to the multiplicity 

of interference scenarios that can occur between the fields produced by the different 

transmit-channels playing in concert. For a given set of RF-sources in the array, the 

combination of incident amplitudes and phases can vary over time depending on the pulse 

design. Consequently, a generalized version of the single-channel SAR Equation (1.14) must 

be considered: 
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This equation now includes a summation over the electric field distributions produced by the 

N RF sources. For a given pTX excitation pulse, i.e. a combination of complex coefficients 

αn(t), the ratio between peak local and global SAR can be quite high (Collins et al., 2007). 

Therefore, in contrast to the conventional systems, it is no longer viable to derive the local 

and global SAR from a concise set of parameters (Mao et al., 2007). Nonetheless, based on 

the maximum ratio between peak local and global SAR, a conservative generalization of the 
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conventional RF safety method is possible (Collins et al., 2007). However, this results in a 

large overestimation of the actual SAR, severely restricting pTX applications. To remedy this 

situation, Equation (4.1) has to be evaluated for every RF pulse scenario, and the results 

compared to the guidelines. In theory, only those acquisitions that are in compliance with the 

RF safety limits then should be allowed by the system.  

In practice, only predicting the SAR before the measurement is not sufficient to fully 

guarantee patient safety. Indeed, without validating the implemented RF waveforms on the 

scanner, the actual interference patterns may deviate from the anticipated and result in 

substantially different SAR distributions. This is true not only for the amplitudes but also for 

the relative phases of the independent channels. This is why simply limiting the transmitted 

power is not sufficient, unless some extra safety margins are taken (see Section 4.4.1.) 

Many methods for SAR assessment are available in the literature (Collins et al., 2007; 

Brunner et al., 2008; Gagoski et al., 2009; Graesslin et al., 2009a; Boulant et al., 2011), with 

some deriving more conservative power limits than others. The resulting safety margins in 

general depend on the monitoring equipment available, which must confirm all the 

information used in the SAR calculation (amplitude, phase, power, etc.), and on the accuracy 

of the simulated field maps. 

The next section of this chapter describes NeuroSpin’s endeavors to validate the 

electromagnetic simulations and characterizations of the transmit array coil presented in 

Section 3.1.4. via B1
+ measurements (remembering that B1

+ is the only electromagnetic field 

easily measurable with MRI) and magnetic resonance thermometry, in order to provide 

accurate anticipation of SAR levels during parallel transmission MRI scans.  

In a second time, considering that during this thesis, the only monitoring method available 

was based on the TALES measurements, the online SAR assessment based on time-

averaged power measurements method adopted at NeuroSpin will be described. 

 

4.3. SAR prediction validation 

 

4.3.1. B1
+ measurements and electromagnetic simulations 

 

Throughout this work, the finite element method (FEM) was adopted to provide full-wave 

simulations (HFSS, ANSYS, Canonsburg, PA, USA) corresponding to our home-built 8-

element transceiver-array coil (Section 3.1.4) and a MRI phantom (Section 3.2.1). All coil-

elements were tuned ideally at 297 MHz corresponding to the proton Larmor frequency at 7 

Tesla and matched identically to a 50 Ohm line impedance. However, each dipole resonated 

at a slightly different frequency due to the interaction with the subject-model placed in the 
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coil. Electric and magnetic field maps thus obtained were normalized to 1 W incident power 

for each coil-element and projected onto a 5x5x5 mm Cartesian grid. In contrast to the FDTD 

method, where the field distribution can significantly be affected by the mesh size, the 

tetrahedron density relates to the accuracy of the volume boundaries. HFFS has a reliable 

mesh adaption tool to optimize the mesh density, ensuring reliable field simulations. 

The MRI coil is simulated and loaded with a MRI phantom containing a gel with known 

electromagnetic properties (σ=0.78 S/m and εR=74.3). The position of the phantom is (-

0.4cm; 0cm; -0.5cm). The plinth used is made of RF-unabsorbent blue foam. The simulation 

was stopped after 13 passes of tetrahedrons mesh refinement: 

 

 - Final ΔS = ~0.01    - Memory used: ~112 GB 

 - Final number of tetrahedra: ~2280000 - Total duration: ~13h 

 

Last, an interpolating frequency sweep was performed in the 280-320 MHz range. 

 

 

 

Figure 4.1: Screenshot of the simulated MRI coil and phantom in the HFFS software. 

Position of the phantom (σ=0,78 S/m and εR=74.3) in the coil was set carefully (-0,4cm;0cm;-

0,5cm). Simulation characteristics were: 13 iterations, ΔSMag = 0.01, ΔSPhase = 4.5°. 
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Figure 4.2: Electromagnetic simulation characteristics with iterations. a: Convergence. b: 

Number of tetrahedra. 

 

The actual flip-angle imaging sequence (Yarnykh, 2007) was employed to map the transmit 

sensitivity corresponding to each of the coil-elements using an interferometric acquisition 

method (Brunner and Pruessmann, 2009). B0 inhomogeneity effects were corrected as 

proposed in (Boulant et al., 2010). Sequence parameters were: TR: 250 ms, TE: 1.1/2.2/3.2 

ms, 5mm isotropic resolution. Comparing the simulated and measured B1
+ amplitude maps 

(Figure 4.3.) resulted in correlation factors between simulated and experimental maps well 

above 0.9 for all coil-elements (Figure 4.4.).  

 

 

 

Figure 4.3: Simulated (top line) and measured (bottom line) individual magnitude B1
+ maps 

for all channels (central axial slices of an agar-gel MRI phantom, first to eighth channel, from 

left to right). Sequence parameters were: TR: 250 ms, TE: 1.1/2.2/3.2 ms, 5mm isotropic 

resolution. Simulation characteristics were: 13 iterations, ΔSMag = 0.01, ΔSPhase = 4.5°. 

 

The magnitude of these correlation factors is invariant under scalar multiplication. Therefore, 

this metric only concerns the comparability of the relative spatial variations. To determine the 
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unknown scalar, the slopes between the measured and simulated maps were calculated. 

Indeed, whereas during simulation, exactly 1 W of incident power was applied per channel, in 

practice the actual incident power depends on the amplifier output and cable losses. 

Because the aforementioned parameters were not included in the simulation, a set of 

calibration factors must be obtained before the SAR can be evaluated accurately for an 

arbitrary pulse. 

 

 

 

Figure 4.4: Correlation between the simulated and measured transmit-sensitivity maps 

(magnitudes). The scatter plots are showing the correlation for every voxel of the phantom. 

Corresponding correlation factors and slope are included in the top of each subfigure (first to 

eighth channel, from left to right). 

 

Nevertheless, demonstrating excellent correspondence between measured and simulated 

magnitude distributions alone is not sufficient to validate the electromagnetic simulations with 

high confidence (Alon et al., 2011). Therefore, additional verifications were performed by 

incorporating the relative transmit-phase, for which good correspondences were found: 
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Figure 4.5: Simulated (top line) and measured (bottom line) individual relative phase B1
+ 

maps for all channels (central axial slices of an agar-gel MRI phantom, first to eighth 

channel, from left to right). Sequence parameters were: TR: 250 ms, TE: 1.1/2.2/3.2 ms, 

5mm isotropic resolution. Simulation characteristics were: 13 iterations, ΔSMag = 0.01, ΔSPhase 

= 4.5°. 

 

4.3.2. MRI Thermometry and temperature simulations 

 

Incorporating the previously found calibration factors, the simulated E-fields corresponding to 

the phantom were adopted to simulate the expected temperature rise in the phantom by 

solving numerically (FDTD method) the heat equation: 

 

  ( )  ( )
  ( )

  
    ( )   ( )   ( ) (4.2) 

 

where ρ is the density in kg/m3, Cp the specific heat in J/kg/K, T the local temperature in 

Kelvin and k the thermal conductivity in W/m/K. Corresponding measurements based on the 

proton resonance shift method (Equation 4.3) (Hindman, 1966; Kuroda et al., 1997) were 

performed on the phantom: 

 

    
  

     
 (4.3) 

 

The frequency shift coefficient α was first measured for our setup thanks to several 

temperature measurements with thermal probes. MRI phase measurements stability was 

evaluated acquiring ten consecutive GRE sequences, with no significant drift reported. The 

heating protocol was then as following: 

 

- Phantom brought at thermal equilibrium. 
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- One “Reference” GRE sequence (TR: 33 ms, TE: 24 ms). 

- RF only without imaging gradients (V= 180 V, 5% duty cycle, duration: 10 minutes). 

- One “Final” GRE sequence (similar to reference). 

 

When comparing data (Figure 4.6.), simulations underestimate the peak rise by 5%, in 

agreement with the discrepancies observed in the B1
+ measurements.  

 

 

 

Figure 4.6: Temperature rise comparisons between simulated temperature rise maps and 

measured ones thanks to MRI thermometry (PRFS method). Simulations underestimate the 

peak rise by 5%.  

 

4.4. Online SAR assessment based on time-averaged power 

measurements 

 

After validating the simulations necessary to assess the SAR distribution corresponding to 

our particular setup, the electric fields produced in realistically positioned anatomically 

accurate human head models were evaluated. For this purpose, the head and shoulders of 
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the Ansoft human body model (Aarkid, East Lothian, Scotland) were extracted to provide an 

8-anatomical-tissue human head model. In addition, the “Ella” (26-year-old woman) model 

from the “Virtual Family” (Christ et al., 2010) was converted for use in HFSS. Last, a realistic 

man model was generated thanks to MRI data (Makris et al., 2008), as fully described in 

Chapter 5. For each of these objects the outer-surface was triangulated by means of in-

house-developed code. Consequently, decimation and file conversion were performed with 

the commercial tool VR-Mesh Studio (VirtualGrid, Seattle, WA, USA) before loading the 

models into HFSS. Based on these simulated field-maps, the SAR was evaluated with the 

following method to derive appropriate time-averaged power limits. 

 

4.4.1. Methods 

 

Because the time-averaged power monitors do not allow the relative phase between RF-

channels to be evaluated, all possible phase combinations have to be covered so as not to 

underestimate the true deposited SAR. One way to facilitate this is to assume constructive 

interference of the E-fields at every point in space. Starting from Equation (4.1) the 

corresponding upper limit of the SAR expressed in W/kg is the following: 
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This expression depends on the conductivity σ, the density ρ, the electric field distribution E 

inside the subject, the complex coefficients αn of the RF-waveform played on the nth coil 

channel, and the time of integration T during which instantaneous energy deposition is 

averaged.  

A first quite simple safety assessment considers the two following quantities: the worst-case 

local 10g-averaged SAR when assuming constructive interference of the E-fields at every 

point (SARL), and the global SAR corresponding to the cumulative forward power divided by 

the exposed body mass (SARW). The factor k between the aforementioned parameters is: 

 

   
    

    
 (4.5) 

 

Assuming that the power is equally distributed over all available transmit-channels, a 

conservative time averaged power limit (Plim) can be deduced if k is already known for a 

given RF coil: 



79 
 

 

      
   

 

      

 
  (4.6) 

 

where N is the number of transmit-pathways, M is the head mass, and SARlim is the local 

SAR limit specified in the guidelines (IEC, 2010). To take the approximately ±10% accuracy 

of the power meters into consideration, the enforced limits are scaled down by a factor 0.9. 

For simplicity, and to provide an additional safety margin, both the 10-s and 6-min time 

averaged power limits are restricted to the more conservative guidelines corresponding to 

the 6-min SAR limits. Furthermore, a conservative average head mass of 5 kg is assumed to 

provide a subject independent power limit. Assuming constructive interference, no cable loss, 

a complete absorption of the incident power by the head, and a relatively light average head, 

is clearly unphysical but allows deriving a very conservative but usable time-averaged power 

constraint.  

Omitting the assumption that the energy is distributed evenly among channels, a less 

restrictive yet also conservative approach can be derived to enforce compliance with the 

SAR guidelines (Boulant et al., 2011). Expanding equation (4.4) gives: 
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where the second term R is the sum of the cross products for all channels: 
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Calling Pn the average power of the nth RF pulse:  

 

    
 

 
∫   

 ( )  
 

 

 (4.9) 

 

and using the Cauchy-Schwartz inequality, the following upper bound of the SAR is obtained: 
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This way, tailored to the set of RF waveforms at hand, a set of appropriate average power 

limitations can be derived for each one of the available transmit-channels. The calculation 

depends only on the average power of each pulse so that their shape is irrelevant and real-

time amplitude monitoring is not required. This computation constitutes an upper bound of 

the SAR that yields in general a mild 25% overestimation of the value that would be obtained 

if the true waveforms (but still ignoring the phases) were taken into account (Boulant et al., 

2011). Although this approach again results in an overestimation of the SAR, it is significantly 

less restrictive than considering the maximum local to global SAR ratio. 

 

4.4.2. Practical implementation 
 

In order to use the above proposed SAR assessment method for pTX MRI scans, the time-

averaged power limits for every coil channel have to be re-evaluated based on the tailored 

RF pulses to be played. To this end, the team SAR assessment tool (Figure 4.7.), referred to 

as “CEASAR” (Cloos et al., 2010b), evaluates both the global and local 10g-averaged SAR 

over several pre-simulated data sets. Each one of them contains the simulated fields 

corresponding to all of the transmit elements in the presence of several human head models. 

In addition, a pre-calculated “averaging-matrix” is included to facilitate rapid evaluation of the 

corresponding 10g-averaged SAR. Here the cuboid approach has been retained, to create 

an averaging matrix from the density distribution with a simple region-growing algorithm. First 

the borders of a cuboid centered on the voxel of interest are expanded cyclically in all 6 

directions. When more than 10-g is contained, the other 5 extension directions are probed to 

provide a volume as close as possible to 10-g. The averaging matrix is calculated only once. 
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Figure 4.7: Screenshots taken from CEASAR. a: The main screen, showing a default 

protocol, in compliance with the SAR guidelines. Main features are indicated with arrow and 

labels. b: Example of a protocol with arbitrary pTX RF-waveforms in compliance with the 

SAR guidelines, but which requires the time-averaged power-limits to be updated. c: 

Alternative screen with the arbitrary pTX RF-waveforms. The k-space trajectory could also be 

shown.  

 

Before the exam, a default protocol is first evaluated to obtain a set of initial time-averaged 

power limits for each of the individual transmit-channels (same energy on all channels). 

These limits typically facilitate all the initial calibration acquisitions such as B0-shimming or 

transmit-sensitivities mapping. Nevertheless, every time a new protocol including tailored 

pTX RF pulses is prepared, CEASAR evaluates the corresponding SAR and, if necessary, 

provides an appropriate set of alternative time-averaged power limits. The possibility to set 

different average power limits on different channels gives additional flexibility in pulse design, 

while strictly enforcing safety. When excessive SAR is predicted, the option to increase the 

repetition time or decrease the voltage is provided. In any case, only protocols that passed 

the CEASAR evaluation could be played on the scanner. This is effectively enforced by only 
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copying validated protocols to the slave-system used to operate the pTX extension. During 

acquisitions, the power out of the amplifiers is measured through the TALES. In the event 

that one of the limits is exceeded, the acquisition is terminated. 

 

4.4.3. Future SAR monitoring 

 

As more and more parallel-transmission-enabled 7 Tesla MRI scanners are available in the 

world, a robust and less conservative method for local SAR prediction and monitoring (and 

associated hardware technology) is needed. To answer to this need, the recently updated 

pTX-systems now provide new means for online RF supervision, whose capabilities consist 

of two subsystems. One subsystem is dedicated for global power supervision, the other for 

local SAR supervision. The first subsystem relies as before on the TALES, which measures 

global power and are phase insensitive. The forward and backward power of each transmit 

channel is detected and average power is updated every 10 μs. Whole body SAR is 

calculated from the absorbed RF power divided by the body weight.  

As explained above, evaluating peak local SAR for a particular waveform, with the help of 

pre-simulated anatomical models, is conventionally performed by superposing the time-

dependent electrical field vectors that are caused by the individual transmission channels, 

evaluating the power density and the local averaging values for peak spatial SAR according 

to the SAR standards (IEC, 2010). The VOPs (Virtual Observation Points) (Eichfelder and 

Gebhardt, 2011; Lee et al., 2012) concept helps to perform this evaluation very rapidly, by 

using only a limited set of matrices that still provide a conservative estimation of local SAR 

when the actual multi-channel RF waveform is evaluated, and was therefore adopted. The 

VOPs are generated by expressing the local power density as a quadratic form. The 

simulated local electrical fields and the local conductivities are combined to local matrices 

(Graesslin et al., 2012). Local SAR prediction as well as online supervision is then based on 

these VOPs. The forward and reflected RF signals (phase and amplitude) are measured with 

directional couplers in order to monitor the system. Even if this method is provided by the 

manufacturer, it is still the responsibility of the user to ensure a true prediction of the local 

SAR with accurate simulated models. 
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5. Thermal simulations in the human head for 

high field MRI using parallel transmission 
 

 

 

 

 

This Chapter has been accepted for publication as: Massire A, Cloos MA, Luong M, Amadon 

A, Vignaud A, Wiggins CJ, Boulant N. Thermal simulations in the human head for high field 

MRI using parallel transmission. Journal of Magnetic Resonance Imaging 35, 1312-1321 

(2012). 

 

The methods & principles contained in this chapter were also published as an abstract in the 

proceedings of the Annual Meeting of the International Society for Magnetic Resonance in 

Medicine 2012. 
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Abstract 

 

Purpose: To investigate, via numerical simulations, the compliance of the specific absorption 

rate versus temperature guidelines for the human head in magnetic resonance imaging 

procedures utilizing parallel transmission at high field. 

 

Materials and Method: A combination of finite element and finite-difference time-domain 

methods was used to calculate the evolution of the temperature distribution in the human 

head for a large number of parallel transmission scenarios. The computations were 

performed on a new model containing 20 anatomical structures. 

 

Results: Among all the radiofrequency field exposure schemes simulated, the recommended 

39 °C maximum local temperature was never exceeded when the local 10-g average SAR 

threshold was reached. On the other hand, the maximum temperature barely complied with 

its guideline when the global SAR reached 3.2 W/kg. The maximal temperature in the eye 

could very well rise by more than 1 °C in both cases.  

 

Conclusion: Considering parallel transmission, the recommended values of local 10-g SAR 

may remain a relevant metric to ensure that the local temperature inside the human head 

never exceeds 39 °C, although it can lead to rises larger than 1 °C in the eye. Monitoring 

temperature instead of SAR can provide increased flexibility in pulse design for parallel 

transmission. 
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5.1. Introduction 

 

For any clinical applications exposing the subject to radiofrequency (RF) electromagnetic 

fields including Magnetic Resonance Imaging (MRI), regulating committees such as the 

International Electrotechnical Commission (IEC) have issued guidelines to ensure patient 

safety. The primary biological parameter of interest being the temperature, to avoid local 

thermal damage or thermoregulatory problems, it is specified in the latest guidelines (IEC, 

2010) that the localized temperature in the head should not exceed 39 °C in the “normal” 

mode, and that care should be taken to limit the temperature rise in the eye to 1 °C when 

localized transmit-coils are used (IEC, 2010). Because local temperature is generally difficult 

to assess, more tractable specific absorption rate (SAR) thresholds were derived to ensure 

compliance with the temperature guidelines. For volume coils, head average (or global) and 

10-g average SAR limits of 3.2 and 10 W/kg respectively were redundant quantities, the 

former being implied by the latter via calculations based on a simplified model (Athey, 1989; 

Hoult and Lauterbur, 1979; ICNIRP, 2004). The model thereby predicted that the 

temperature rise of any small unperfused sphere such as the eye would not exceed 1 °C and 

that global SAR was a good guide to ensure safety. It was furthermore in agreement with 

measurements performed on anesthetized sheep at 64 MHz (Barber et al., 1990). Although 

these thresholds have been challenged at different field strengths via numerical simulations 

(Collins et al., 2004; Wang et al., 2007a), the SAR limits seem to have remained 

conservative compared to the temperature ones. Consistent with the IEC guidelines, it was 

shown that compliance with the global SAR limit only was no longer sufficient when using 

surface coils (Collins et al., 2004).  

Performing MRI experiments with higher static magnetic fields allows larger signal to noise 

ratios to be obtained. Due to the shortening of the RF wavelength corresponding to the 

proton Larmor frequency, the community has been facing the increasingly challenging 

problem of B1 field inhomogeneity. This phenomenon, if not addressed, can yield zones of 

shade and significant losses of contrast across the image (Van de Moortele et al., 2005). A 

substantial methodological leap to overcome this problem occurred with the development of 

parallel transmission (Grissom et al., 2006; Katscher et al., 2003; Zhu, 2004), which consists 

of placing an array of transmit-elements around the subject and whose corresponding 

waveforms can be independently modulated in amplitude and phase. The additional degrees 

of freedom provided by this method then allow for improved mitigation of the B1 

inhomogeneity via optimization algorithms, but significantly complicate SAR management. 

Nonetheless, driven by the potential applications of parallel transmission, considerable 

efforts in the predictions, control and optimizations of SAR have been made (Brunner and 
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Pruessmann, 2010; Graesslin et al., 2008; Zelinski et al., 2007). Despite this new complex 

technology and the multifactorial dependence of temperature on SAR (Collins et al., 2004), to 

our knowledge little has been done to confirm whether or not the SAR guidelines were still 

applicable in this context to guarantee that the temperature limits were not exceeded. 

In this paper, we attempt to answer this question via numerical simulations on a human head 

model at the RF frequency used at 7 Tesla, i.e. 297 MHz, using finite elements and finite 

difference time domain (FDTD) techniques for the electromagnetic and temperature 

calculations respectively. The model of the coil used was a home-made eight-channel 

transceiver coil that has been used at numerous occasions in vivo (Cloos et al., 2012a). 

Temperature evolution throughout the head was calculated by integrating the Pennes’ 

bioheat equation (Pennes, 1948), including the physiological responses with respect to 

temperature, for 1000 parallel transmission scenarios corresponding to random static RF 

configurations. For comparison, we also simulated the synthesized circularly polarized (CP) 

mode as a tentative approach to reproduce some results obtained previously for volume 

coils. Finally, we computed the evolution and distributions of the temperature during realistic 

parallel transmit RF exposures corresponding to standard sequences not only to gain 

additional understanding of heating during a real MRI exam, but also to foresee possible 

benefits in using temperature monitoring rather than SAR monitoring in parallel transmission. 

 

5.2. Materials and Methods 

 

5.2.1. Head model 

 

In this study, a high-resolution MRI-based numerical model of the human head was adopted 

based on the data reported in (Makris et al., 2008). This original model was constructed from 

T1-weighted images acquired on a 1.5 T scanner, with a spatial isotropic resolution of 1 mm3. 

Subsequently, 49 anatomical structures entities (ASE) were identified by a certified 

neurosurgeon and classified by their electrical properties at 300 MHz. 

We converted this voxel-based model into a surface-based one so that it could be imported 

by the electromagnetic finite-elements simulation software we used (HFFS, Ansys, 

Canonsburg, PA). To this end, a surface reconstruction algorithm was implemented in Matlab 

(The MathWorks, Natick, MA). Each individual entity was identified by its relative permittivity. 

The resultant point cloud was hollowed out and then meshed using a triangulation algorithm 

based on Delaunay's method (Szczerba et al., 2010). In order to constrain the number of 

tetrahedrons required during finite-element simulation, decimation and smoothing were 

performed using VRMesh (Virtual Grid, Bellevue City, WA).  
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Figure 5.1: 3-D view of head model. a: White Matter (yellow), blood vessels (red), nerves 

(green) & Cerebellum (purple). b: Grey Matter (dark blue), orbital fat (yellow), eyes (blue), 

vertebral column (black). c: Skull (cyan), facial bones (gray). d: Air & mastoid cells (green), 

adipose (purple). e: cartilage (orange), subcutaneous muscles (pink). f: Whole model. 

 

At this stage many ASEs could be merged because they shared identical electrical and 

thermal properties. Memory limitations during finite element simulation further constrained 

the number of ASEs to 20. In order to have a representative load in the coil, we also added 

shoulders using the model provided by Aarkid (East Lothian, Scotland) with single tissue 

properties that we chose to be those of the skin (whose properties appear to be the average 

ones), as it was shown recently that the precise anatomy in that region was relatively 

unimportant for SAR calculations in the head (Wolf and Speck, 2011). Electrical and thermal 

properties were taken from the literature (Makris et al., 2008; Wang et al., 2007a). The 

different layers of the skull bones were merged together and their physical constants were 

averaged according to their volume proportion. Figure 5.1 shows different views of the 

resulting surface-based model while Table 5.1 provides the 20 ASEs and their respective 
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electrical and thermal properties. In the end, because of the complexity of the procedure and 

the finite amount of memory available, the initial voxel-based model could not be exactly 

preserved. Despite the slight differences, it was however deemed realistic and relevant to 

conduct this study. 

 

Table 5.1: Electrical and thermal properties of the 20 anatomical structures used in 

electromagnetic and thermal calculations 

 

ASE ρ σ εr k Cp Q0 B0 

 kg/m
3 

S/m  W/m/K J/kg/K W/m
3 

W/m
3
/K 

Grey matter 1030 0.69 60 0.57 3700 7100 45090 

White matter 1030 0.41 43.77 0.5 3600 7100 15925 

Cerebellum 1030 0.97 59.7 0.57 3700 7100 37630 

CSF 1010 2.22 72.73 0.62 4200 0 0 

Adipose 920 0.07 11.74 0.25 2500 300 1700 

Air 1.3 0 1 0.03 1005 0 0 

Eyes (humors) 1010 1.51 69.01 0.6 4200 0 0 

Blood vessels 1000 1.31 65.65 0.46 3553 1600 9000 

Facial bones 1850 0.14 18.3 0.4 1300 590 3300 

Skin 1100 0.64 49.82 0.42 3500 1620 8065 

Ears 1100 0.55 46.77 0.47 3500 1600 9000 

Skull bones 1830 0.12 16.57 0.4 1300 610 3400 

Mastoid cells 1.3 0 1 0.03 1005 0 0 

Muscles 1040 0.79 58.97 0.5 3600 480 3360 

Nasal structures 1100 0.55 46.77 0.47 3500 1600 9000 

Nerves 1040 0.41 36.9 0.46 3500 7100 40000 

Orbital fat 920 0.07 11.74 0.25 2500 300 1700 

Eyes (retina, sclera) 1170 0.95 58.9 0.58 4200 0 0 

Spinal cord 1040 0.41 36.9 0.46 3500 7100 40000 

Subcutaneous tissues 980 0.43 35.35 0.47 3550 900 4000 

CSF = Cerebrospinal fluid. 

ASE = Anatomical Structure Entities 

 

5.2.2. Coil design and electromagnetic simulations 

 

The head coil used in this study consisted of eight stripline dipoles distributed every 42° on a 

cylindrical surface with 27.6-cm diameter, leaving an open space in front of the eyes of the 

patient for fMRI studies. Each dipole corresponds to a balanced strip fed by a so-called 

geometric matching (Magill et al., 2010). Thanks to the fair stability of this design regarding 
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the loading conditions, each dipole does not need to be tuned and matched individually. A 

unique feed spacing was chosen to match at best all dipoles to a 50-Ohm line impedance 

when the coil was loaded with the head model. The tuning was obtained using an 

appropriate value for the two disk capacitors placed at the ends of the strip. Again, the same 

value was considered for all dipoles. Finally, all dipoles were tuned and matched ideally at 

297 MHz corresponding to the proton Larmor frequency at 7 T. However, each dipole 

resonated at a slightly different frequency due to the interaction of the human head model 

placed in the center of the coil; but the reflected power coefficient for each channel and the 

strongest mutual power coupling coefficient were still maintained below 10% at the common 

field excitation frequency. For each channel, the electric and magnetic complex-valued maps 

were produced for an incident power of 1 W in HFSS. Results for an arbitrary excitation could 

then be calculated by linearity. Figure 5.2 presents the final model with the coil. 

The mesh used by HFSS to perform the electromagnetic calculations consisted of 1 million 

tetrahedrons. Special care was taken to have a refined mesh adjacent to the copper surfaces 

in order to adequately represent potential steep rises in conservative E-fields. The resulting 

electric and magnetic field maps were interpolated by the software onto a Cartesian grid with 

a resolution of 2.5 x 2.5 x 2.5 mm3 for SAR and thermal calculations, which was chosen as a 

compromise between accuracy and computation time. Good convergence of the temperature 

at such a resolution was reported in (Wang et al., 2009). But because the convergence of the 

peak 10-g SAR appeared to be slower, we repeated SAR calculations at a resolution of 5 x 5 

x 5 mm3 and compared the results. 
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Figure 5.2: 3-D view of the whole model. The coil is an 8 channel-transceiver coil with 27.6 

cm diameter. The head model includes 20 different anatomy structures entities. Shoulders 

were added to provide an appropriate load inside the coil. 

  

5.2.3. SAR calculation 

 

Local SAR is defined as a function of the local conductivity σ, local mass density ρ, the pulse 

duration T and the local electric field strength E: 
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where Ek is the electric field vector map obtained from the excitation of coil element k alone 

(1 W incident power) and αk is the corresponding waveform (in W-1/2). For a given set of αk(t), 

the global SAR (SARW) could then be calculated by integrating Eq. [1] over space while we 

used a region growing algorithm to calculate the SAR 10-g average (SARL). For most 

locations, the masses enclosed in the averaging boxes resulted in masses between 9.5 and 

10.5 g, thereby obtaining the 5 % required accuracy in the averaging mass (Kozlov et al., 

2009). For those locations where we could not obtain such tolerance in the mass, we 

interpolated linearly two steps in the region growing procedure corresponding to masses 

smaller than 9.5 g and larger than 10.5 g. 

 

5.2.4. Thermal calculations 

 

The temperature within our human head model exposed to electromagnetic fields, was 

obtained by integrating numerically the Pennes’ bioheat equation (Collins et al., 2004; Wang 

et al., 2007a; Pennes, 1948; Wang and Fujiwara, 1999):  

 

  ( )  ( )
  ( )

  
  ⃗ ( ( ) ⃗  ( ))   ( )   ( )   ( )   ( )  ( )      (5.2) 

 

where ρ is the ASE density in kg/m3, Cp the specific heat in J/kg/K, T the local temperature in 

Kelvin, k the thermal conductivity in W/m/K, Q the metabolic rate in W/m3 and B the perfusion 

coefficient in W/m3/K. All the parameters in Equation [5.2] are tissue-dependent, and thus 

spatially dependent. For convenience, we will assume throughout the paper this dependence 
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and omit their explicit notation. The boundary conditions (convection, sweat and radiation) 

we used were:  

 

  
  

  
   (    )        (5.3) 

 

where n is the unit vector normal to the surface and h the effective convective heat-transfer 

coefficient in W/m2/K. Due to the small temperature rises encountered here, contribution of 

the radiation was included in the convection coefficient by linearization for simplicity, yielding 

in the end a value of 10.5 W/m2/K (54 % radiation, 46 % natural convection). The blood 

temperature is Tb, here considered to be constant in time and equal to the core temperature 

(i.e. 37 °C). The ambient temperature of the air surrounding the subject is Ta, and was set to 

24 °C.  

Temperature-dependent formulations for sweat, perfusion and metabolic rates were used 

(Bernardi et al., 2003). Under a temperature of 39 °C, the perfusion rate is only temperature-

dependent for the skin. It can be expressed as: 

 

         (      )          
  
  (5.4) 

 

where B0 is the basal perfusion rate (see Table 5.1). In this equation, two inputs are used to 

model the regulation of the blood perfusion coefficient in the skin through vasodilatation: the 

hypothalamic temperature rise TH–TH0, and the average skin temperature rise ΔTS. 

Coefficients W1 and W2 were set to 17 500 W/m3/K2 and 1100 W/m3/K2, respectively. The 

exponent in the equation is the local temperature rise. For internal tissues, the blood 

perfusion coefficient depended on the local tissue temperature only above 39 °C: 

 

        (        )  (5.5) 

 

where SB is a coefficient set to 0.8 K-1. Sweat regulation was modeled similarly as skin 

perfusion: 

 

            (      )          
  
   (5.6) 

 

with W3 and W4 being equal to 140 W/m2/K and 13 W/m2/K, respectively. The basal 

evaporation heat loss from the skin P was set to 4 W/m2. The metabolic rate was increased 

with temperature for all ASE as follows: 
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An equilibrium temperature distribution was first calculated with no SAR source by integrating 

Eq. [5.2] (FDTD, 5 sec time-step) for 40 minutes after setting a uniform temperature through 

the head of 37 °C. We verified that the steady state regime was reached everywhere by 

inspecting the time evolution of the temperature at a few well-separated locations. This 

equilibrium temperature distribution was then saved and used as the initial temperature 

distribution for the RF exposure simulations. Lastly, our thermal simulator was validated via a 

comparison with an analytical solution on a sphere with uniform SAR, and for the spatial and 

time resolutions specified here. 

 

5.2.5. Monte Carlo simulations 

 

To have a representative sample of the possible SAR and heating patterns one may obtain in 

parallel transmission, we simulated 1000 static RF configurations by generating 8 random 

phases in αk  (uniform distribution from 0 to 2π) while keeping their magnitude equal to 1 

(see Eq. [5.1]). The SAR maps, with their corresponding global and peak 10-g averages 

were calculated and saved. The statistics of their ratio was also computed as it is sometimes 

used in worst-case scenarios (Collins et al., 2007) or to see possible trends between global-

local SAR relationships. The temperature was calculated for ½ hour of RF exposure scaled 

to correspond either to the global SAR or the 10-g average local SAR limit (separate 

simulations) specified in the latest IEC guidelines (IEC, 2010) for the “normal” mode, i.e. 3.2 

and 10 W/kg respectively. The maximal absolute temperature as well as the, maximal 

temperature rise in the head and in the eyes was recorded. The calculations were performed 

on a standard desktop workstation, with 3.2 GB RAM memory and Intel Xeon duo-core 1.6 

GHz, using Matlab. A single run roughly took 7 minutes, yielding approximately a-10 days 

duration for the 2x1000 scenarios computation. 

 

5.2.6. Circularly-polarized mode simulations 

 

As a special case, the CP mode was synthesized by incrementing the phase of each 

transmitting element according to their azimuthal angle in the transverse plane, with equal 

magnitudes. The corresponding SAR map, as well as the head and peak 10-g average 

values were then calculated. Likewise, the temperature throughout the head was computed 

with respect to time for an RF exposure of 30 minutes after having scaled up the SAR map 
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so that whatever limit, i.e. global or local, was reached first. With this a comparison of our 

simulated results with certain theoretical idealizations (Athey, 1989) and other simulations 

(Collins et al., 2004; Wang et al., 2007a) could be attempted. We also repeated the same 

calculation by scaling up the SAR map so that a head average of 4 W/kg was obtained, to 

compare with some of the experimental results reported in (Barber et al., 1990). 

 

5.2.7. Realistic parallel transmission RF exposure simulations  

 

Although we assume that the Monte-Carlo studies mentioned above offer a representative 

sample of SAR scenarios, we have simulated the temperature evolution throughout the head 

for more standard sequences, namely a magnetization-prepared rapid gradient echo (MP-

RAGE) (Bernstein et al., 2004) and an axial multi-slice T1 gradient recalled echo (T1-GRE) 

sequence. In the former case, the kT-points method, which consists of a limited number of 

non-selective excitations distributed in 3D k-space (Cloos et al., 2012a), was used to design 

both the inversion (flip angle = 180°, duration = 3.5 ms) and the small tip angle (flip angle = 

12°, duration = 380 µs) pulses. Optimal control theory (Xu et al., 2008) was also used to 

complement the kT-points method for the design of the inversion pulse. The parameters of 

the MP-RAGE sequence were: TR = 2.1 s, TI = 1.1 s, echo spacing of 9 ms and 360 

partitions, while the parameters for the multi-slice T1-GRE were: flip angle = 90°, TR = 350 

ms, number of slices = 24. For that second sequence, and for each slice, a pulse was 

designed to homogenize the flip angle using the spokes method (Saekho et al., 2006) 

combined with the magnitude least squares optimization technique (Setsompop et al., 

2008a). Three sinc-shapes played back to back, apodized with Hanning windows, each of 

duration 1 ms and time-bandwidth product 2.7 therefore were optimized in amplitude and 

phase for each channel, and for each targeted slice. In all cases, the homogenization of the 

flip angle was targeted over the brain region only and yielded normalized root mean square 

errors around 5 %. 

For both sequences, the SAR maps were calculated and then scaled up so that whichever 

SAR limit was reached first, i.e. the global or the 10-g average one. Physically, this could 

simply be obtained by adjusting the repetition time. The temperature was then calculated in 

six different scenarios: 1) MP-RAGE for 12 minutes, 2) T1-GRE for 12 minutes, 3) MP-RAGE 

for 6 minutes followed by T1-GRE for 6 minutes, 4) same as before with the time average 

(over 12 minutes) SAR map, 5) the MP-RAGE for 6 minutes, followed by no RF for 6 

minutes, followed by the T1-GRE for 6 minutes, 6) same as before with the time-average 

(over 18 minutes) SAR map. These durations were chosen to encompass the 6 minute 

averaging window specified in the guidelines (IEC, 2010). For the 4th and 6th cases, the goal 
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was to check whether temporal averaging (Graesslin et al., 2009b), initially invented to lower 

SAR values, likewise could be used to lower temperature when considering larger time-

scales. In each temperature simulation, the intermittent nature of the RF exposure was not 

considered as it has been shown that the timescales involved in the thermal dynamics were 

much longer than the ones involved in such scans (Wang et al., 2007b). As a result the SAR 

maps were averaged over their corresponding repetition times, and those were used as the 

source terms in Pennes’ bioheat equation. 

 

5.3. Results 

 

5.3.1. SAR in the human head model 

 

The histogram of the SARL/SARW ratios for our Monte-Carlo simulations is shown in Figure 

5.3.  The mean, standard deviation, maximum and minimum values were 9.2, 2.4, 19.5 and 

4.2 respectively. Because of its proximity to the coil elements, the peak 10-g SAR was found 

in the skin in 66 % of the cases, the remaining 34 % being found in the CSF due to its high 

conductivity.  

We also calculated the global and local SAR results based on the electromagnetic fields 

exported onto a 5 x 5 x 5 mm3 grid resolution for the 1000 parallel transmission scenarios. 

We found a root mean square of the relative error with the 2.5 mm isotropic Cartesian grid of 

2.9 % for local 10-g SAR and 0.3 % for the global SAR. If there is a dependence of the 

results on the resolution, this indicates that they have pretty much converged at this finer 

resolution. 
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Figure 5.3: Histogram of local 10-g SAR over global SAR ratios for the 1000 static RF 

configurations (mean value: 9.21, standard deviation: 2.38).  

 

5.3.2. Temperature distributions for random static RF configurations 

 

Because the minimum SARL/SARW ratio was always larger than 10/3.23.1, the 10-g 

average SAR limit was always reached first. In such a case, the local temperature did not 

exceed 37.7 °C in more than 90 % of the 1000 scenarios (Figure 5.4.a), even after 30 

minutes of RF exposure, which is a relatively long duration for an MRI exam, considering a 

typical scan duty cycle of 50 % (Brix et al., 2001). Only six scenarios yielded maximal 

temperatures that barely exceeded 38 °C. The corresponding maximum rises in temperature 

are shown in Figure 5.4.b. There is no clear correlation between these rises and the absolute 

local temperatures. As far as the eye is concerned, we found that the maximum temperature 

rise in that region was larger than 1 °C in 20 % of the cases, the shortest duration to reach 

this value being 7 minutes. As an example, we provide in Figure 5.5 the 10-g SAR maps and 

the corresponding temperature rises for two extreme SARL/SARW scenarios (4.4 and 19.5), 

where in both cases SARL = 10 W/kg. 

When the SAR maps were scaled up in order to reach 3.2 W/kg for the head average, over 

half of them exceeded 38 °C in just 6 minutes of RF exposure, the maximal temperature 

(Figure 5.4.c) usually rising up to 39 °C for 40 % of the cases after the 30 minutes period. 

The corresponding maximum rises in temperature are shown in Figure 5.4.d.  

To investigate the impact of the dependence of the physical constants on temperature, we 

repeated a few randomly selected scenarios using only the basal rates. The maximum 

deviation was around 5 %, showing their small impact in mild RF exposure, in agreement 

with (Wang et al., 2008). 
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Figure 5.4: a: Maximum local temperature histogram after 30 minutes of RF exposure when 

SARL = 10 W/kg for the 1000 static RF configurations. b: Corresponding maximum rises in 

local temperature. c: Maximum local temperature after 30 minutes of RF exposure when 

SARW = 3.2 W/kg for the 1000 static RF configurations. d: Corresponding maximum rises in 

local temperature.  

 

 

 



97 
 

Figure 5.5: a: Local 10-g average SAR distribution (in W/kg) for a low SARL/SARW ratio 

(4.42) static RF configuration. b: Corresponding local rise in temperature (in °C) after a 30 

minute RF exposure when SARL = 10 W/kg. c: Local 10-g average SAR distribution (in W/kg) 

for a high SARL/SARW ratio (19.47) static RF configuration. d: Corresponding local rise in 

temperature (in °C) after a 30 minute RF exposure when SARL = 10 W/kg. From left to right 

in each sub-figure are shown coronal, sagittal and axial slices going through the 10-g SAR 

hot spot.  

 

5.3.3. CP-mode simulations 

 

The SAR values and temperature evolutions were computed for the CP-mode (see B1 

distribution in Figure 5.6.a) in the same conditions. For this particular case, the SARL/SARW 

ratio being found equal to 3.2, i.e. almost equal to 10/3.2, scaling up the SAR map yielded a 

result where both the local and global SAR limits were equally attained to a good 

approximation. The CSF situated in the center of the brain absorbed a relatively high amount 

of power (see scaled local SAR map on Figure 5.6.b and 10-g average SAR map on Figure 

5.6.c). Despite thermal conduction, the rise in the central brain region however remained 

moderate (0.5 °C max) due to perfusion (see Figure 5.6.d). Lastly, when the global SAR was 

scaled up to 4 W/kg, the maximum temperature rise in the eye was 0.71 °C after 20 minutes, 

and 0.79 °C after 30 minutes of RF exposure.   

 

 

Figure 5.6: a: B1 distribution (in µT) with 1 W of incident power for each coil element. b: SAR 

distribution (in W/kg). c: Local 10-g average SAR distribution (in W/kg). d: Local rise in 

temperature distribution (in °C) after a 30 minute CP-mode RF exposure when SARL = 10 
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W/kg and SARW ~ 3.2 W/kg. From left to right in each sub-figure are shown coronal, sagittal 

and axial slices going through the SAR hot spot. The increased SAR due to the high 

conductivity of the CSF is clearly visible on the sagittal slice. 

 

5.3.4. MRI sequence simulations 

 

The two MRI sequences simulated did not yield temperature rises exceeding individually 

0.8°C after 12 minutes (see Figure 5.7). Local SAR limits were for these two sequences 

more restrictive than the global ones, with SARL/SARW ratios of 3.8 and 5.3 for the MP-

RAGE and the T1-GRE respectively. All temperature recommendations, even those 

concerning the eyes, were ensured when the peak 10-g average SAR did not exceed 10 

W/kg.  

 

 

Figure 5.7: a: Local rise in temperature distribution (in °C) after a 12 minute MP-RAGE 

sequence. b: Local rise in temperature distribution (in °C) after a 12 minute T1-GRE 

sequence. In both cases, the initial temperature was the equilibrium temperature.  

 

When played back to back (6 minutes duration each), the final maximum temperatures were 

barely changed, due to a relatively rapid thermal equilibration time for the location at which 

the maximum occurred (see Figure 5.8.a). As shown in Figure 5.8.b, the irradiation including 

a six minute pause did not influence the final maximum temperature. Perhaps not 

surprisingly, one can also see that temporal SAR averaging over long time periods can yield 

different temperature trajectories during the course of the experiment, especially if there is a 

significant pause between the two acquisitions. 
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Figure 5.8: a: Evolution of the maximal local temperature (in °C) in the head for a 6-minutes 

MP-RAGE followed by a 6-minutes T1-GRE (solid line), and same as before but with the 

corresponding time-averaged SAR map (dashed line). b: Evolution of the maximal local 

temperature (in °C) in the head for a 6-minutes MP-RAGE followed by no RF for 6 minutes, 

and by a 6-minutes T1-GRE (solid line), and same as before but with the corresponding time-

averaged SAR map (dashed line). 

 

5.4. Discussion 

 

In this study we have investigated SAR and temperature within the context of parallel 

transmission at 7 T on a new numerical head model. For that purpose, we have run a series 

of 1000 SAR and thermal simulations based on random static RF configurations. One could 

argue that these scenarios do not reflect real experiments. However, given the plethora of 

degrees of freedom available in Transmit-Sense, it was our hope that such procedure would 

sample reasonably well the space of SAR maps, the point being mainly to detect a possible 

flaw in the SAR guidelines.   

In agreement with previous results (Collins et al., 2004; Wang et al., 2007a), it was again 

confirmed that the relationship between SAR and temperature is not straightforward. In areas 

of high perfusion, such as the brain, high SAR levels often leads to a minimal temperature 

increase, while in areas of lower perfusion rate, such as muscle or the eyes, temperature 

may increase significantly even with relatively low SAR inputs. Whereas the local 10-g limit of 

10 W/kg throughout this study seemed to be a good guide to ensure that a temperature of 38 

°C would almost never be reached, it certainly seems very conservative when considering 

the new temperature of 39 °C indicated in the latest edition of the IEC guidelines (IEC, 2010). 

If this temperature is now deemed a safe limit for the “normal” mode, the simulations 

reported here then show that the SAR constraints could probably be relaxed. On the other 

hand, we found that even with 10 W/kg as the maximum SAR 10-g average, the maximum 
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temperature rise in the eye could be above 1 °C. As with surface coils, the simplified model 

presented in (Athey, 1989) hence does not apply here. When using parallel transmission, this 

suggests extra caution regarding this organ. The SAR could be possibly decreased in that 

region by penalizing high powers on the coil elements the closest to it (Cloos et al., 2010a). A 

coil design may be also helpful in which the coil element spacing is increased near the eyes.  

The CP-mode was studied to allow us to compare our results to earlier work. When driven as 

such, the simulations reported here show that this particular coil behaves, as expected, as a 

volume coil, namely that global SAR is a good guide to ensure patient safety (Athey, 1989), 

the SARL/SARW ratio is close to the theoretical one for a homogeneous sphere (Hoult and 

Lauterbur, 1979), and that the calculated rise of temperature in the eye of 0.71 °C after 20 

minutes is close to the measured value of 0.8 ± 0.1 °C on anesthetized sheep when the 

global SAR was set equal to 4 W/kg (Barber et al., 1990). Although the measurement was 

performed on a different species and at a different frequency, this provides reasonable 

support for our simulated results. Moreover, already at 3 T, SAR demanding sequences such 

as the turbo spin echo sequence can force the user to implement less than 180° refocusing 

pulses (Hennig et al., 2003). The results presented here suggest that a higher local SAR 

threshold and thus 180° pulses could possibly be used, especially given the latest 

temperature guidelines with head volume coils.    

The thermal simulations performed for more realistic MRI sequences revealed three 

important things. First, the SAR limits may be quite conservative compared to the 

temperature ones, especially if the new 39 °C limit is considered (IEC, 2010). Secondly, 

temporal averaging over longer time periods (see Figure 5.8) should not be used in general 

since the individual SAR maps used as power sources in Equation [5.2] for 6 minutes each 

yielded different temperature trajectories than observed for the corresponding time-averaged 

SAR maps. Finally, Figure 5.8 suggests that two MRI sequences whose corresponding 

thermal steady states do not exceed the recommended maximum temperature could likewise 

satisfy this criterion when played back to back. This is however merely based on our 

example and we cannot rule out for the moment the existence of a counterexample. But if 

this was more general, a thermal analysis could possibly be done separately for each 

sequence without tracking the whole scan history. Exploiting this principle for RF pulse 

design would require a deeper understanding of the SAR-temperature relationship. For a 

start, the dependence on the thermal equilibration time of the organ involved should be 

further studied (Brix et al., 2002). In pulse design and in parallel transmission, one often 

needs to make a trade-off between pulse performance and SAR. The first point mentioned 

above then suggests that significantly more latitude could be gained in pulse design if 

temperature, instead of SAR, was taken into account. However, because of a larger inter-
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individual variability, one would likely need to monitor it online via magnetic resonance 

thermometry (Rieke and Pauly, 2008).    

All conclusions and observations in this work cannot be guaranteed for other coils, head 

models and positions. They also rely on the validity of the Pennes’ bioheat model. 

Alternatively, the generic bioheat transfer model reported by Shrivastava et al. (Shrivastava 

et al., 2011) likewise could be used. Despite its experimental success in predicting the 

temperature rise in pigs’ brains at 296 MHz and using a head coil (heating period of 3 hours, 

global SAR of 3 W/kg), further investigations are needed to verify the validity of this model to 

humans under representative conditions. In particular, the effects of anesthesia, which is 

known to affect thermoregulatory thresholds and blood flow (Mount, 1979; Shrivastava et al., 

2011), should be isolated during experimental validation. For these reasons, and the good 

experimental results demonstrated in the human forearm (Wissler, 1998), we chose to use 

the Pennes’ model. 

In conclusion, based on Pennes’ bioheat equation, using recommended values of 10 W/kg 

for 10-g average SAR in parallel transmission seems to indicate that, with our setup, the local 

temperature inside the human head never exceeds 39 °C (and barely 38 °C) but temperature 

rises larger than 1 °C may occur in the eye. Monitoring temperature during scans not only is 

safer but could also provide significantly more freedom in pulse design. 
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6. Design of non-selective refocusing pulses 

with phase-free rotation axis by gradient ascent 

pulse engineering algorithm in parallel 

transmission at 7 T 
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Abstract 

 

At ultra-high magnetic field (>7 T), B1 and ΔB0 non-uniformities cause undesired 

inhomogeneities in image signal and contrast. Tailored radiofrequency pulses exploiting 

parallel transmission have been shown to mitigate these phenomena. However, the design of 

large flip angle excitations, a prerequisite for many clinical applications, remains challenging 

due the non-linearity of the Bloch equation. In this work, we explore the potential of gradient 

ascent pulse engineering to design non-selective spin-echo refocusing pulses that 

simultaneously mitigate severe B1 and ΔB0 non-uniformities. The originality of the method 

lays in the optimization of the rotation matrices themselves as opposed to magnetization 

states. Consequently, the commonly used linear class of large tip angle approximation can 

be eliminated from the optimization procedure. This approach, combined with optimal control, 

provides additional degrees of freedom by relaxing the phase constraint on the rotation axis, 

and allows the derivative of the performance criterion to be found analytically. The method 

was experimentally validated on an 8-channel transmit array at 7 T, using a water phantom 

with B1 and ΔB0 inhomogeneities similar to those encountered in the human brain. For the 

first time in MRI, the rotation matrix itself on every voxel was measured by using Quantum 

Process Tomography. The results are complemented with a series of spin-echo 

measurements comparing the proposed method against commonly used alternatives. Both 

experiments confirm very good performance, while simultaneously maintaining a low energy 

deposition and pulse duration compared to well-known adiabatic solutions.  
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6.1. Introduction 

 

One of the main purposes of Ultra High Field (UHF) MRI is to improve spatial resolution, 

thanks to an increased signal to noise ratio. On the other hand, the applicability of most MRI 

sequences is challenged due to enhanced non-uniformities in the transmit-sensitivity (Van de 

Moortele et al., 2005). If not addressed, these can yield zones of shade and significant 

losses of contrast across the images, detrimental to diagnostics. Simple hard or sinc pulses 

are highly susceptible to RF field inhomogeneities, while adiabatic pulses (Garwood and Ke, 

1991; Silver et al., 1984) are generally considered too SAR intensive for practical use at 7 T 

and above (Cloos et al., 2012a; Moore et al., 2012). On top of that, as the static magnetic 

field increases, MR scans become more prone to off-resonance effects resulting in 

susceptibility artifacts, with similar imaging consequences. 

Over the last few years, a lot of research has been devoted to solve the above-mentioned 

problems, leading to an assortment of new powerful tools including shaped pulses, RF 

shimming (Adriany et al., 2005), Spokes (Saekho et al., 2006) and Parallel transmission 

(pTx) (Katscher et al., 2003; Zhu, 2004; Grissom et al., 2006). The latter, using tailored k-

space trajectory designs, has been shown to produce highly uniform magnetization at UHF 

while maintaining a good slice selection profile and relatively short excitation duration 

(Setsompop et al., 2008c).  

In this framework, whole-brain non-selective uniform excitations were recently demonstrated 

at 7 T with the kT-point method (Cloos et al., 2012a). This technique proposes a minimalistic 

transmit k-space trajectory concentrated around the center of k-space to compensate for the 

smooth RF inhomogeneities present in large volumes such as the human brain, thus 

enabling energy efficient, sub-millisecond pulses yielding normalized root mean square 

errors (NRMSE) down to 6%. This method was then extended to large tip angles (Cloos et 

al., 2012b) using optimal control theory (Xu et al., 2008). When applied to T1-weighted 

imaging (e.g. with the MP-RAGE sequence (Mugler and Brookeman, 1990) such pulses were 

shown to provide excellent spatial uniformity throughout the human brain, outperforming 

adiabatic pulses played in conventional Circularly-Polarized mode (CP) and subject-specific 

RF-shim, while simultaneously reducing the cumulative energy deposition (Cloos et al., 

2012b). 

On the other hand, to the best of our knowledge the non-selective refocusing pulses included 

in the 3D spin-echo (SE), turbo spin-echo (TSE) and gradient spin-echo (GRASE) 

sequences, all relevant for T2-weighted imaging at UHF have not been addressed. Most work 

carried out so far has exclusively been in 2D and has relied on a state description of the 

dynamics and on the, not always fulfilled, linear class of large tip angle (LCLTA) criteria 
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(Pauly et al., 1989b) to presume consistent behavior for arbitrary states (Setsompop et al., 

2008b; Xu et al., 2007). 

In this manuscript, we evaluate the potential of the GRadient Ascent Pulse Engineering 

algorithm (GRAPE) (Khaneja et al., 2005; Borneman et al., 2010) combined with the 

successfully demonstrated kT-point method to design non-selective refocusing pulses. Using 

a dedicated phantom that produces strong B1 and ΔB0 non-uniformities at 7 Tesla, the fidelity 

of these new refocusing pulses is assessed by incorporation into a 3D spin-echo sequence. 

For comparison, the performances of RF shim and BIR-4 adiabatic pulses are also 

evaluated. Finally, the rotation induced by the proposed pulse design is characterized via 

several magnetization measurements.  

 

6.2. Theory 

 

Due to its flexibility for systematically imposing desirable constraints and richness in efficient 

algorithms, the optimal control method has produced many interesting results regarding 

pulse design (Conolly et al., 1986; Xu et al., 2008). In the framework of refocusing pulses, 

formulating the problem by specifying a target propagator (i.e. a rotation matrix) is appealing 

as the initial magnetization state is not likely known accurately or it can simply be arbitrary. If 

the linear class of large tip angle approximation is omitted, a state description requires a 

predefined phase of the transverse RF field to determine the desired output state. 

Consequently, an unnecessary constraint is imposed, missing the fact that the dephased 

magnetization due to ΔB0 gradients can be refocused regardless of that phase.  

To alleviate the above-mentioned restrictions, we adapt the GRAPE algorithm (Khaneja et 

al., 2005; Borneman et al., 2010) to tailor excitations that approach the target propagator 

corresponding to a 180° rotation about a free transverse rotation axis. The procedure 

maximizes a wisely chosen performance criterion using optimal control theory, so that its 

derivatives with respect to the control parameters can be calculated analytically and that the 

phase of the rotation axis is left free. Although random initial guesses could possibly lead to 

good results, the starting point of the GRAPE algorithm here is a solution of the linearized 

Bloch equation, i.e. the so-called Small Tip Angle (STA) regime, rescaled to the refocusing 

rotation angle FA = 180° (cf. the so-called “high tip angle approximation” (Boulant and Hoult, 

2012). For non-selective pulse design, the excitation k-space trajectory uses the kT-point 

approach as in (Cloos et al., 2012b), where inversion pulses were targeted rather than 

refocusing pulses. 
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6.2.1. Spin-domain Bloch equation 

 

To save computation time and memory requirements, the SU(2) group formalism is used. If 

relaxation effects are neglected, the Bloch dynamics of the magnetization is simply 

expressed by a 2 x 2 unitary matrix, the so-called spin-domain representation. In this domain, 

a rotation by an angle Φ about a vector n (nx, ny, nz) can be described by the complex-valued 

Cayley-Klein parameters (α, β) (Pauly et al., 1991):  

 

 U = [
    

   ], with | |  | |   . (6.1) 

 

For a given RF pulse B1(r,t) and gradient waveform G(t), a static field offset of ΔB0, the α and 

β representing the rotation they induce at a spatial location r is obtained by solving the spin-

domain Bloch equation (Pauly et al., 1989b): 
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When an array of m transmit coils is used, the total effective B1 field is a function of both 

space and time. SR and SI are the real and imaginary parts of the transmit sensitivities, while 

uk and vk are the control parameters, which represent real and imaginary parts of the RF 

shape of the kth transmitter: 
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Alternatively, the Bloch equation can also be recast as: 
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which is simply Schrodinger’s equation. Here, H0 is the Hamiltonian corresponding to the ΔB0 

and gradient fields, both inducing rotations about the z axis, while Huk/Hvk are the 

radiofrequency Hamiltonians corresponding to the available control parameters (i.e. real and 

imaginary parts of each RF waveform):   
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where σx, σy and σz are the Pauli matrices, which together with the Identity matrix constitute a 

basis in SU(2). 

 

6.2.2. Performance criterion 

 

The desired target and candidate propagators shall be denoted by UF and U(T) respectively 

(T being the duration of our candidate pulse). A possible metric to measure their distance is: 
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Using the unitary property of these matrices, minimizing this distance corresponds to 

maximizing: 
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where   
  denotes the Hermitian conjugate of UF and Tr is the trace operation. If a  rotation 

about the x axis is targeted (UF = -iσx), a candidate rotation U(T) parameterized by (α, β) 

yields: 〈  | ( )〉    ( ) while if instead a  rotation about the y axis is targeted (UF = -iσy), 

we obtain: 〈  | ( )〉     ( ). As a result, by defining the target operator UF = σx + iσy 

= [
  
  

], and taking the squared absolute value of the projection of U(T) onto UF, we obtain 

our desired performance criterion: 
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where the summation is performed over all voxels (N). That way,  is equal to one, its 

maximum value, if and only if the rotation angle is 180° and the rotation axis is purely 

transverse everywhere. Note that UF does not correspond to a physical rotation matrix, as it 

is not unitary. It is simply a convenient mathematical trick that removes the phase constraint 

on the transverse rotation axis. After discretizing the duration T in NT time steps so that the 

final propagator U(T) is the product of NT elementary Uj unitary matrices, we now need to 

take the derivatives of the resulting performance function with respect to all control 

parameters to compute its gradient. It reads (Khaneja et al., 2005):  
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where the products of rotation matrices for each time step j of the pulse are defined as:  
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Using the conjugate gradient method, the new control parameters at the hth iteration are: 
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The Polak and Ribiere coefficient βPR (Press et al., 2007) was chosen, as we found that it 

returned here superior converge properties compared to the one of Fletcher-Reeves. Each 

iteration step size, ε, was determined via a line search algorithm. 

 

6.2.3. GRAPE algorithm 

 

The algorithm starts with the choice of the initial controls, which could be completely random. 

However, an educated guess generally leads to faster convergence. For this reason, we took 

the solution returned by the kT-points method with a large flip angle approximation to start the 

iterative optimal control algorithm. 

 

GRAPE algorithm steps: 

 

1) Design initial pulse candidate. 

2) Perform Bloch simulation, compute φ and store all the Xj. 

3) Compute the gradient of φ by calculating its derivatives with respect to all control 

parameters. 

4) Compute βPR.  

5) Determine the optimal ε.  

6) Update all the controls. 

7) Go to step 2 with the new controls and stops when the performance index is 

sufficient or if the maximum number of iterations has been attained. 
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6.2.4. Extension to tailoring gradient waveforms 

 

In the theory presented so far, the gradient waveforms were supposed to be given and fixed, 

i.e. they consisted of blips and led to a kT-points trajectory. Likewise, magnetic field gradients 

could be considered as control parameters and the derivative of the performance criterion is 

given by: 

 

 
   

   ( )
     {⟨  |        ⟩⟨  |  ⟩}  (6.12) 

 

where       
 

 
    is the Hamiltonian term for the gradient waveform along the x axis, and 

so forth for the gradients along the y and z axis. As in (Yip et al., 2007) for magnetization 

states, hence joint design of RF pulses and k-space trajectory can elegantly be integrated 

into the GRAPE algorithm to target this time rotation matrices. On the other hand, given that 

this increases the computational load, and as we have found in practice that it was not as 

critical, we chose to perform only ten alternate updates of the gradient waveforms at the 

beginning of the algorithm, limited to time points corresponding to the gradient blips. In other 

words, the location of the kT-points was changed. 

 

6.3. Experiments 

 

6.3.1. Experimental setup 

 

Experimental validation was performed on a 7 Tesla Magnetom scanner (Siemens, Erlangen, 

Germany), equipped with an 8-channel transmit array (1 kW peak power per channel) and an 

AC84 head gradient system (Siemens, Erlangen) allowing amplitudes up to of 50 mT/m and 

a slew rate of 330 mT/m/ms. For both RF transmission and reception, a home-made 

transceiver- array head coil was used (Figure 6.1.a) (Ferrand et al., 2010). The array 

consists of 8 stripline dipoles distributed every 42.5° on a cylindrical surface of 27.6-cm 

diameter, leaving a small open space in front of the subject's eyes. All dipoles were tuned 

ideally at 297.18 MHz corresponding to the proton Larmor frequency at 7 T and matched 

identically to a 50 Ohm line impedance. A Dotarem-doped (0.25 mM) salted (6 g/L) distilled 

water phantom (16 cm diameter, T1~600 ms, T2~500 ms), was used to generate B1 

inhomogeneities. In addition, a ping-pong ball was inserted in the phantom to generate 

substantial B0 field inhomogeneities due to the difference in susceptibility between air and 

water (Figure 6.1.b). Second order shims were used prior to any imaging sequences. 
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Figure 6.1: Experimental setup. a: Eight channels transmit-array coil used in this work. b: 

Spherical phantom with ping-pong ball. 

 

6.3.2. B1 and B0 mapping 

 

With an approximate CP-mode, the 3D spoiled steady-state actual flip-angle imaging (AFI) 

sequence (Yarnykh, 2007), including spoiling improvements (Nehrke, 2009), combined with 

the interferometry (Brunner and Pruessmann, 2008) and the B0 correction methods 

(Boulant et al., 2010), was used to map the B1
+ field. The amplitude maps were then 

smoothed using 3D polynomial fits. The sequence parameters were: TR1/TR2 20/100 ms, 

TE1/TE2 1ms, 5-mm isotropic resolution with a 48 x 48 x 36 matrix in transverse acquisition 

and eight simultaneous 250 µs 180 V hard pulses. The maximum values of the ΔB0 map 

reaching up to 800 Hz, and given our gradient capabilities, it was impossible to directly 

measure this map using a multi-echo sequence without inducing phase excursions larger 

than . For this reason, the measurement of the ΔB0 map was performed via three separate 

GRE acquisitions with different TEs (0.6, 1.1 and 1.6 ms). Finally, a mask was applied to all 

data, keeping only values of ΔB0 approximately within the range of the values encountered in 

the human brain at 7 T (Cloos et al., 2012b). For the whole study, magnitude images from 

each channel were summed with the sum of squares method. Regarding the phase, the 

complex images were combined in such a way that the phases were aligned in the central 

voxel for a given reference first acquisition. The same linear combination was then kept 

throughout the study to remain consistent with this reference. 

 

6.3.3. Pulse design 
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Our design started with initial guesses obtained from the kT-points method targeting FA=90° 

for the excitation pulse and an inversion pulse for the refocusing pulse, both to be used in the 

spin-echo sequence. Non-selective uniform excitation of the phantom was achieved by 

selecting a 7 kT-point trajectory surrounding the center of k-space. The peak amplitude of the 

designed waveforms was constrained to the maximum voltage available per channel (180 V). 

For the excitation, the magnitude least squares approach (Setsompop et al., 2008a), with an 

initial target transmit phase map obtained from the conventional CP mode, was employed. 

Subsequently, another optimal control approach (OCA) using magnetization state as 

opposed to rotation matrices was applied to optimize the 90° excitation pulse as described in 

(Xu et al., 2008). For the refocusing pulse, our GRAPE algorithm returned the result after 250 

iterations, as described in the Theory section. The complete procedure was implemented in 

C++ including GPU-enabled CUDA extensions. Based on the performance of a 2.6-Ghz Intel 

Xenon system paired with an NVIDIA Tesla C2050 GPU, 180° refocusing pulses, optimized 

with a 10 μs sampling time, were typically found in about 5 minutes.  

 

6.3.4. Measurement of the rotation matrix induced by the refocusing pulse 

 

A set of measurements was dedicated to evaluate the rotation generated by our refocusing 

pulse, using a procedure called Quantum Process Tomography (Boulant et al., 2003; Nielsen 

and Chuang, 2010). The idea is to apply the refocusing pulse to different input magnetization 

states forming a set of linearly independent vectors, measure the corresponding output 

states, and retrieve the linear mapping via a mathematical recipe (Havel, 2002). Although in 

general the procedure can characterize non-unitary dynamics, here for simplicity and due to 

the fact that the RF pulse was short compared to T1 and T2, we assumed the dynamics to be 

unitary, which reduced the number of necessary measurements.  

First an AFI sequence was implemented to characterize, as accurately as possible, a given 

reference excitation pattern, in this case a pseudo CP-mode. Second, a GRE sequence with 

the same excitation pattern was implemented with TR = 2.4 s. Because TR >> T1, the 

magnitude of the signal was simply f(r)exp(-TE/T2*)sin(FA) where , f and FA are the spin 

density, reception sensitivity and flip angle respectively. Knowing the flip angle in every voxel 

thanks to the AFI sequence then allows to compute f(r)exp(-TE/T2*) and to normalize all 

subsequent data with it. Last, this allows to compute the magnetization state at the end of the 

pulse for each voxel: [Mx My Mz]=[sin(FA)cos() sin(FA)sin() cos(FA)], where  is the 

returned measured phase. This constitutes the first input state. Two other independent states 

were simply generated by shifting the phase of each RF transmitter, or equivalently , by 45° 

and 90°, thereby yielding the second and third input states. Finally, the same pulses were 
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concatenated with our tailored 180° refocusing pulse and inserted into their respective GRE 

sequence. Likewise, the measured signal allowed to determine [Mx
out My

out Mz
out] in each case 

by using the output signal, phase and normalization condition, again assuming unitary 

dynamics. The procedure thus can be expressed with the following matrix equation:    
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As long as the flip angle of the preparation pulse is neither zero nor 90°, the input matrix is 

invertible so that our first estimation of the rotation matrix simply is                . 

Nevertheless, because of experimental errors, noise and not perfectly unitary dynamics, it is 

clear that Res is not strictly speaking a rotation matrix. Fitting procedures could be used to 

obtain the closest rotation matrix consistent with the data. However, a theorem by Fan and 

Hoffman (Fan and Hoffman, 1955) states that a (much faster) polar decomposition yields the 

closest unitary matrix Rot for any unitarily-invariant norm. This procedure returns: 

  

         (√       )    (6.14) 

 

Matrix inversions and polar decompositions were performed with MATLAB (The MathWorks, 

Natick, MA, USA). Cayley-Klein parameters and axis angle representation of the rotation 

were then extracted from the eigenvalues and eigenvectors of the rotation matrices. 

 

6.3.5. Spin echo sequence 

 

To evaluate the spatial uniformity and the refocusing performance, a 3D spin echo sequence 

was also modified to incorporate the proposed refocusing pulse design and several 

commonly employed alternatives. In all cases, crusher gradients surrounded the refocusing 

pulse.  Repetition time and echo time were set to 800 ms and 25 ms respectively to generate 

significant intra-voxel dephasing artifacts in the absence of a refocusing pulse. Resolution 

was 5-mm isotropic, with a 48 x 48 x 32 matrix in transverse acquisition.  

First the performance of the 90° excitation was qualitatively evaluated with a 3D GRE. Then 

3D spin echo sequences including this excitation and either one of the following refocusing 

pulses were run for comparison. In all cases, the pulse voltage reached its maximum 

available (180 V) on at least one of the transmit channels: 
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1/ 630-µs square pulses in pseudo CP-mode (FA=180° targeted in center of phantom). 

2/ 1270-µs square pulses in RF shim mode (the duration is doubled because FA=180° is 

targeted on average over the entire volume). 

3/ our GRAPE-designed pulse. 

4/ a 5-ms adiabatic BIR-4 (Staewen et al., 1990) with RF-shim phase configuration (~same 

duration as GRAPE pulse). 

5/ a 10-ms adiabatic BIR-4 with phase RF-shim. 

 

6.4. Results 

 

6.4.1. Pulse design 

 

Individual B1
+ maps obtained with our coil on the phantom at 7 T are shown in Figure 6.2.a. 

In pseudo CP-mode, the measured standard deviation divided by the mean value of B1 is 

around 25 %.  

 

Figure 6.2: Radiofrequency and static field maps. a: Transmit sensitivity and relative phase 

maps measured for each of the eight transmit elements (central axial slices). b: ΔB0 map 

measured in Hz, central sagittal slice. c: Example of tailored RF shape on one channel 

(amplitude and phase). 

 

To stay consistent with human brain pulse design constraints, large values of ΔB0 were 

cropped out of the ROI (B0 excursion was kept between -250 Hz and 500 Hz approximately). 
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One can see the dipolar pattern on the central sagittal slice in Figure 6.2.b due to the 

difference in susceptibilities between air and water. The excitation pulse tailored with OCA 

had a simulated 9.6 % NRMSE and therefore provided a fairly homogeneous spin excitation. 

Returned tailored pulses durations were 2470 µs for the 90° excitation and 4650 µs for the 

refocusing. 

Pulse performances were calculated via numerical Bloch simulations in the spinor domain 

(relaxation was ignored). To assess refocusing quality, many metrics were computed: the 

Cost Function of GRAPE (CF): ∑ (  |  |
 )   

   ), the Rotation Angle Normalized Root Mean 

Square Error (RA NRMSE): 
 

 
√∑ (    )

    
     (i being the rotation angle in the ith voxel), 

and the Axis Normalized Root Mean Square Error (A NRMSE): √∑ (  (  
    

 ))   
   . 

Table 6.1. summarizes all these metrics calculated for the proposed method and its 

alternatives. In addition to these metrics, the total energy of the pulses was computed. 

 

Pulses Duration (µs) Cost Function (%) RA NRMSE (%) A NRMSE (%) Energy (J) 

CP-mode 630 52.6 53.0 15.0 3.3 

RF-shim 1270 13.3 24.1 13.2 6.6 

STA 4650 17.6 13.6 37.6 9.2 

GRAPE 4650 2.55 8.1 10.2 15.7 

Short BIR-4 5000 6.9 8.8 23.0 22.9 

Long BIR-4 10000 3.4 3.0 17.9 46.7 

 

Table 6.1: Pulse design metrics. Simulation results. 

 

Both pseudo CP-mode and RF-shim hard pulses performed relatively poorly, as expected. 

The initial kT-points solution based on the STA approximation results in a better RA NRMSE, 

but globally worse cost function, and with elongated pulse duration and roughly 50% 

increased energy. After GRAPE optimization, simulations show a sharp improvement of all 

metrics, with a reasonable amount of energy. A BIR-4 adiabatic pulse of equivalent duration, 

with a higher energetic cost, is not able to produce the refocusing quality of our tailored 

pulse. A 10-ms BIR-4 pulse however is producing rather comparable performance, but takes 

twice as long and requires about three times the energy. In Figure 6.3 is shown the evolution 

of the cost function (%) and the cumulative energy deposition (J), targeting a 180° transverse 

rotation with the GRAPE algorithm, as a function of the number of iterations. Clearly, the 

energy of the GRAPE pulse could have been a bit lower, with only a mild cost in 

performance. 
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Figure 6.3: Cost function and pulse energy versus the number of iterations. Evolution of the 

cost function in % (solid line) and the cumulative energy deposition in Joules (dashed line) 

targeting a 180 degrees rotation angle with the GRAPE algorithm, function of the number of 

iterations. 

 

6.4.2. Measurement of the rotation matrix induced by the refocusing pulse 

 

Figure 6.4.a provides axial slices for both measured and simulated angles of rotation, 

obtained with Quantum Process Tomography and Bloch simulations respectively. Good 

correspondence is found between them, as the experimentally obtained RA NRMSE for the 

whole phantom is 7.14 % (8.07 % simulated). The cost function (1-|β|²) is shown as well on 

Figure 6.4.b, experimental value being 3.44 % (2.55 % simulated). In-plane rotation angle 

profiles along several segments are also provided. 
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Figure 6.4: Quantum process tomography results (axial central slices). a: Measured rotation 

angle in degrees. b: Corresponding simulated rotation angle in degrees. c: Measured cost 

function (1-|β|²). d: Corresponding simulated cost function. e: 1-D in-plane rotation angle 

profiles along the segments marked in a. (red: measured, blue: simulated). 

 

6.4.3. Spin echo measurement 

 

In Figure 6.5 are provided images of the central slices of the phantom, after data post-

processing was applied to remove the reception profile contribution. First, one can clearly 

see that when only tailored 90° excitation is played, the signal is lost in areas with strong ΔB0 

gradients, i.e. close to the ping-pong ball. Pseudo CP-mode refocusing hard pulses yield a 

poor quality image, where the signal is significantly reduced in most regions, except in the 

middle where the 180° rotation was calibrated. Likewise, spin-echo hard pulses with RF-shim 

resulted in similar signal attenuations albeit occurring at different locations. The modified 

spin-echo with both tailored excitation and refocusing pulses however brings back most of 

the dephased signal and yields good uniformity. The images produced adopting a 5-ms BIR-

4 refocusing pulse still contain signal inhomogeneities and the dephased signal around the 

ping-pong ball is not completely retrieved. The 10-ms BIR-4 pulse yields rather good 

homogeneity and signal recovery, as predicted by our simulations, but requires three times 

more energy (Table 6.1). In all cases, the RF refocusing pulses being sandwiched by crusher 

gradients, the ΔB0 evolution was to some extent refocused, but with a signal intensity in 
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principle varying as sin2(/2) (Sodickson and Cory, 1998), where  is the rotation angle of the 

refocusing pulse (assuming purely transverse rotation axis). In all figures, some signal 

inhomogeneities remain due to an imperfect knowledge of the reception profile, whose 

estimation suffered from a low signal to noise ratio in some regions. 

 

 

 

Figure 6.5: Spin-echo results. a: Excitation only (OCA). b: Spin-Echo with hard pulses in 

pseudo CP-mode c: Spin-Echo with hard pulses in RF-shim configuration. d: GRAPE Spin-

Echo. e: Spin-Echo with short adiabatic pulse. f: Spin-Echo with long adiabatic pulse.  From 

left to right in each subfigure are shown sagittal, coronal and axial central slices. 

 

6.5. Discussion 

 

6.5.1. The GRAPE algorithm 

 

In this study, we have investigated a new algorithm dedicated to the design of non-selective 

refocusing pulses with a phase-free transverse rotation axis. This method, named gradient 

ascent pulse engineering can simultaneously mitigate severe B1 and ΔB0 inhomogeneities 

comparable to what may be expected for human brain at 7 T. The power of this method lays 

in the optimization of the rotation matrices themselves and in the relaxation of the phase 

constraint on the rotation axis, which gives more freedom in pulse design. In addition, the 

analytical computation of the derivatives with respect to the control parameters speeds up 

the algorithm compared to other numerical methods. To this end, and further validate the 
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results predicted by the simulations, several MRI experiments were performed on a 7 T 

scanner with an 8-channel transmit array, including an innovative application of Quantum 

Process Tomography to MRI.  

The optimal control GRAPE algorithm presents several advantages compared to 

conventionally used finite difference methods, as it requires fewer computations. Indeed, 

finite difference methods require adding a small perturbation to the total magnetic field for 

every control parameter. Once the perturbation is added, the elementary matrix rotation 

induced is constructed, and then concatenated with the other unaffected elementary rotation 

matrices. The resulting overall net matrix rotation finally gives the new performance index 

and thus the gradient, allowing the control parameters to be updated. The GRAPE algorithm 

spares the pulse designer all these elementary calculations due to the analytical result 

(Equation 6.9). This enables a significantly faster computation which can efficiently be 

evaluated on GPUs allowing the final result to be obtained in less than 5 minutes. If this time 

is considered unsatisfactory, Figure 6.3 indicates that almost equivalent performance could 

have been obtained in 100-150 iterations, thereby halving this computation time. Finally, and 

in agreement with (Setsompop et al., 2008b), we have found that it was possible to 

undersample by at least a factor of 2 the number of voxels without affecting substantially the 

performance criterion. As a result, such pulses can be realistically designed in less than 2 

minutes with the above-described computing capabilities.     

It has been found in practice that the choice of the initial candidate pulse greatly influences 

the final result of the optimization. The full optimization of these degrees of freedom, the kT-

point locations and order, remains the topic of further study. The continuous k-space 

trajectory optimization could as well be addressed using the GRAPE algorithm but we fear 

that the increased dimensions of the parameter space may result in worse local minima. 

Last, in the approach that we report here, we have found the conjugate gradient technique to 

yield significantly better results than the steepest descent method. 

 

6.5.2. Phase-free refocusing pulses are strictly equivalent to inversion pulses 

 

One can find a few instances in the literature where pulse designs relying on a state 

description of the dynamics (by looking at the initial magnetization along z) to perform 

inversion pulses were boldly attempted for refocusing purposes. For instance in (Grissom et 

al., 2008), the pulses yielded good refocusing performance while leaving some residual 

phase inhomogeneity in the region of interest, despite the fact that only a few, but not all, 

LCLTA criteria were presumably fulfilled. As we will now demonstrate, this behavior can also 

be understood using the spinor formalism. 
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The Mz magnetization state in SU(2) corresponds to the [1 0]’ vector. Propagating this vector 

by an arbitrary unitary matrix parameterized by α and β yields: 

 

 (
 
 )  (

    

   )(
 
 
) (6.15) 

 

Finally, projecting this result along the –Mz state, i.e. the [0 1]’ vector, and taking the 

absolute value square returns: 
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 | |  (6.16) 

 

which is just our performance index. The two recipes, from the mathematical point of view, 

thus are strictly equivalent. This could possibly explain the results in (Grissom et al., 2008), 

including the remaining phase dispersion in the region of interest. The similarity however 

stops here, i.e. with 180° rotations. As we have tried to convey in the theory section, the 

performance metrics can involve a different angle of rotation as well as a target phase for the 

axis of rotation (Khaneja et al., 2005). Many applications thus requiring the implementation of 

true arbitrary rotations could benefit from the GRAPE approach. Finally, it saves a factor of 

two in computation time compared to other optimal control approaches where the spin 

dynamics is calculated for two orthogonal states (Deng et al., 2011).  

 

6.5.3. Quantum Process Tomography 

 

We have applied for the first time Quantum Process Tomography to MRI in order to 

characterize the rotation matrix in every voxel. The obtained results confirmed the successful 

implementation of a 180° rotation with a phase-free transverse axis of rotation. 

Simplifications could be done due to the fact that the duration of the pulse was short 

compared to T1 and T2. Had it not been the case, seven more measurements would have 

been needed to fully characterize the process and the analysis would have been more 

elaborate (Weinstein et al., 2004). But for many applications where the pulses are 

reasonably short compared to the relaxation times, quantum process tomography is a fairly 

straightforward procedure to implement and can thus be used to characterize the axes and 

angles of the rotation matrices. It may become a standard to verify the correct 

implementation of desired rotation matrices for the pulse designer. 
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6.5.4. Spin-echo results 

 

Our spin echo results demonstrate a sharp improvement of the GRAPE pulses over hard 

pulse configurations (RF-shim, pseudo-CP mode). Compared to adiabatic pulses, the main 

advantage of GRAPE is the small pulse duration and energy required to obtain the same 

level of performance, although energy penalties were not enforced here. According to our 

simulations (Table 6.1), even a BIR-4 pulse twice longer than our GRAPE pulse and 

requiring about 3 times more energy did not perform nearly as good.  

 

6.6. Conclusion 

 

A joint pulse design algorithm for producing non-selective phase-free refocusing pulses able 

to mitigate severe B1 and B0 inhomogeneities has been investigated in the context of 

parallel transmission MRI at 7 T. The gradient ascent pulse engineering algorithm uses 

optimal control to tailor the propagator corresponding to the RF pulse shape and gradient 

blips to achieve a phase-free 180° transverse rotation of the spins, regardless of the initial 

state of the magnetization. The approach was experimentally validated by using Quantum 

Process Tomography and standard spin-echo sequences. Future work involves the inclusion 

of specific absorption rate constraints in order to make this technique more viable for in-vivo 

studies. 
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7. Parallel-transmission-enabled 3D T2-

weighted imaging of the human brain at 7 Tesla 

 

 

 

 

 

This Chapter has been accepted for publication as: Massire A, Vignaud A, Robert B, Le 

Bihan D, Boulant N, Amadon A. Parallel-transmission-enabled 3D T2-weighted imaging of the 

human brain at 7 Tesla. Magnetic Resonance in Medicine doi: 10.1002/mrm.25353 (2014). 

 

The methods & principles contained in this chapter were also published as an abstract in the 

proceedings of the Annual Meeting of the International Society for Magnetic Resonance in 

Medicine 2014. 

  



122 
 

Abstract 

 

Purpose: A promise of Ultra High Field MRI is to produce images of the human brain with 

higher spatial resolution due to an increased signal to noise ratio. Yet, the shorter 

radiofrequency wavelength induces an inhomogeneous distribution of the transmit magnetic 

field and thus challenges the applicability of MRI sequences which rely on the spin excitation 

homogeneity. In this work, the ability of parallel-transmission to obtain high-quality T2-

weighted images of the human brain at 7 Tesla, using an original pulse design method is 

evaluated.  

 

Methods: Excitation and refocusing square pulses of a SPACE sequence were replaced 

with short non-selective transmit-SENSE pulses individually tailored with the gradient ascent 

pulse engineering algorithm, adopting a kT-point trajectory to simultaneously mitigate B1
+ and 

ΔB0 non-uniformities.  

 

Results: In vivo experiments showed that exploiting parallel-transmission at 7T with the 

proposed methodology produces high quality T2-weighted whole brain images with uniform 

signal and contrast. Subsequent white and gray matter segmentation confirmed the expected 

improvements in image quality. 

 

Conclusion: This work demonstrates that the adopted formalism based on optimal control, 

combined with the kT-point method, successfully enables 3D T2-weighted brain imaging at 7T 

devoid of artifacts resulting from B1
+ inhomogeneity. 
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7.1. Introduction 

 

T2-weighted imaging is a fundamental MRI technique employed for the diagnosis of brain 

diseases or injuries involving gray matter and white matter lesions such as strokes, ischemia 

and multiple sclerosis (van der Kolk et al., 2011; de Graaf et al., 2012). T2-weighted imaging 

is commonly achieved thanks to the spin-echo phenomenon, which consists in reversing the 

dephasing of the transverse magnetization to create a signal echo. RARE imaging (Hennig et 

al., 1986) (also known as Turbo Spin Echo or Fast Spin Echo) increases the speed of spin-

echo imaging by acquiring a series of spin echoes with different phase encodings after each 

excitation. Later developments on RARE focused on reducing and continuously varying the 

flip angle of the refocusing pulses as a useful means of addressing high radiofrequency (RF) 

power deposition and typical RARE image artifacts such as blurring (Hennig and Scheffler, 

2001; Hennig et al., 2003, 2004; Busse et al., 2006). The variable flip angle turbo spin echo 

sequence, referred to as “SPACE” (Sampling Perfection with Application optimized Contrasts 

using different flip angle Evolution) (Mugler, 2000), is now among the most commonly 

employed 3D sequences to obtain T2-weighted anatomical images of the brain. To this end, 

an excitation pulse is followed by a long variable angle refocusing pulse train acquiring an 

entire k-space partition plane per repetition (TR). Careful adjustment of the targeted angles 

and the echo spacing between the acquisition blocks, as well as the usual imaging 

parameters, allows excellent contrast between gray matter (GM), white matter (WM) and 

Cerebrospinal fluid (CSF) at field strengths up to 3 Tesla (Busse et al., 2006). Alternative 

imaging contrasts are created with preparation (typically inversion) pulses prior to excitation, 

as in the fluid attenuation inversion recovery (FLAIR) imaging (Visser et al., 2010; de Graaf 

et al., 2012), one of the most efficient techniques for highlighting contrast between GM and 

WM, and the double inversion recovery (DIR) imaging (Madelin et al., 2010; de Graaf et al., 

2012), widely used for GM visualization. 

T2-weighted imaging should benefit from the increased signal-to-noise ratio available at high 

field strengths (7 Tesla and beyond) to enable higher spatial resolution acquisitions and 

hence better visualization of small structures and fluid interfaces of the brain. However, when 

moving towards Ultra High Fields (UHF), the increased resonance frequency of proton nuclei 

(297 MHz at 7 Tesla) causes the RF wavelength to become smaller than the human brain, 

leading to an inhomogeneous distribution of the transmit magnetic field (B1
+). This spatial B1

+ 

inhomogeneity gives rise not only to variations in signal intensity for a given tissue across the 

brain, but more importantly, to different levels of contrast in the same image (Madelin et al., 

2010; Visser et al., 2010). Parallel transmission (pTX) (Katscher et al., 2003; Zhu, 2004; 

Grissom et al., 2006) has been repeatedly shown to successfully mitigate these issues. This 
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technique utilizes multiple independently-driven coil elements distributed around the subject. 

In its simplest form, referred to as RF-Shimming (Van de Moortele et al., 2005), the B1
+ fields 

from all coil elements are combined optimizing the amplitude and phase of each array 

element, while keeping the waveforms identical, to optimize the B1
+ distribution in a region of 

interest (ROI). RF-shimming has already demonstrated its ability to mitigate the B1
+ field 

inhomogeneity at 3 T in the context of T2-weighted imaging with a TSE sequence (Malik et 

al., 2012). Further generalization of this concept led to the introduction of Transmit-SENSE, 

exploiting the full potential of the transmit-array by tailoring the RF waveforms to apply to 

each of the individual coil-elements. This transmission generally occurs in concert with 

magnetic field gradients to provide additional degrees of freedom in order to maximize the 

final excitation uniformity. 

In that framework, whole-brain non-selective uniform spin excitations were demonstrated at 7 

Tesla using a kT-point trajectory (Cloos et al., 2012a). This technique proposes a minimalistic 

transmit k-space trajectory concentrated around the center of k-space to compensate for the 

smooth RF inhomogeneities present in volumes such as the human brain. This method was 

then extended to large tip angles (Boulant and Hoult, 2012; Hoyos-Idrobo et al., 2013). Using 

optimal control theory (Xu et al., 2008) and when applied to MP-RAGE T1-weighted imaging, 

such pulses were shown to provide excellent spatial uniformity throughout the human brain 

(Cloos et al., 2012b). More recently, further optimized non-selective phase-free refocusing 

kT-points pulses able to mitigate severe B1
+ and ΔB0 inhomogeneities have been investigated 

to achieve a target transverse rotation of the spins, regardless of the initial state of the 

magnetization at 7 Tesla with pTX (Massire et al., 2013), thanks to the GRadient Ascent 

Pulse Engineering algorithm (GRAPE) (Khaneja et al., 2005). In the meantime, self-

refocused kT-points pulses were placed in a SPACE sequence and provided T2-weighted 

images of improved quality in terms of signal and contrast homogeneity (Eggenschwiler et 

al., 2013). However in that study, only one RF pulse was designed and subsequently scaled 

for the whole RF echo train, an approximation that worsens with the angle value. A purely 

transverse rotation axis was also assumed by imposing self-refocused pulses (Pauly et al., 

1989b), likewise an approximation that deteriorates at high flip angle values and when there 

are off-resonance effects.   

The objective of this work thus is to extend the GRAPE algorithm formalism, combined with 

the successfully demonstrated kT-point method, to design all the individual non-selective 

excitation, inversion and refocusing pulses that are used in 3D T2-weighted brain imaging. In 

order to significantly improve the signal homogeneity observed at 7 Tesla, no approximations 

on the refocusing process are made and off-resonance effects are considered throughout in 

the pulse design. Such tailored pulses were included in a home-made variable flip angle 

turbo spin echo sequence (SPACE) to replace the conventionally used hard pulses. This 
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sequence seeks to drive the signal evolution of the flip angle train for a specified couple of T1 

and T2 relaxation times, achieving a pseudo-steady state (Mugler, 2000). It can be 

supplemented by preparation pulses to achieve alternative contrasts (FLAIR & DIR). 

Experimental results obtained at 7 T with both conventional (pseudo-Circularly Polarized 

mode and RF-shim configuration) and hereby proposed pTX methods are compared in terms 

of image quality. Subsequent white and gray matter segmentation emphasizes the expected 

improvements. 

 

7.2. Theory 

 

In a previous study (Massire et al., 2013), a new algorithm dedicated to the design of non-

selective refocusing pulses with a phase-free transverse rotation axis was investigated. This 

method, named GRAPE, can simultaneously mitigate severe B1
+ and ΔB0 inhomogeneities 

typically observed in the human brain at 7 Tesla. The power of this method lays in the 

optimization of the rotation matrices themselves, which is very appealing in the framework of 

refocusing pulses encountered in the SPACE sequence, as the initial magnetization state 

before each refocusing pulse can be arbitrary. Still, in the SPACE sequence, all refocusing 

pulses must share the same phase pattern to fulfill the assumed Carr-Purcell-Meiboom-Gill 

(CPMG) condition (Mugler, 2000; Hennig and Scheffler, 2001; Hennig et al., 1986, 2003, 

2004; Busse et al., 2006). Last, the analytical computation of the derivatives with respect to 

the control parameters provided by the algorithm spares the pulse designer many time-

consuming elementary calculations necessary to other numerical methods. In this section, 

various adaptations of the GRAPE algorithm are described in order to tailor every single RF 

pulse of a SPACE-like sequence to obtain sustainable refocusing of magnetization. 

 

7.2.1. GRAPE aiming at any given refocusing angle with a phase-free 

transverse rotation axis 

 

The running of the gradient ascent pulse engineering algorithm for the design of a 180° 

refocusing pulse is already described in details in (Massire et al., 2013). This formalism is 

extended here to tailor excitations that approach the target propagator corresponding to any 

rotation angle about a free transverse rotation axis, through a new performance index to 

maximize using optimal control, and a new target operator to aim at. The phase constraint on 

the rotation axis of this reference pulse is relaxed, which gives more freedom to improve its 

performance, as the dephased magnetization due to ΔB0 offsets is refocused regardless of 
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that phase. Once this improved reference pulse is found, it dictates the phase pattern for all 

the other pulses in order to fulfill the CPMG condition.  

To save computation time and memory requirements, the spin-domain representation is used 

to express Bloch dynamics of the magnetization for the nth voxel when an RF pulse of 

duration T is applied, as a 2 x 2 unitary rotation matrix with complex-valued Cayley-Klein 

parameters (α, β) (Pauly et al., 1991): 
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with an angle Φ about a rotation axis vector n (nx, ny, nz). In the case of refocusing, the target 

is a rotation matrix of a given angle, with a purely transverse axis, whose in-plane direction is 

left free. Once a proper target is established, a metric to optimize its distance with the 

candidate pulse needs to be found. Mathematically, minimizing the L2 norm of these two 

unitary matrices difference is strictly equivalent to maximizing their inner product, which 

directly quantifies the overlap between the two. If θ is the desired rotation angle, building 

upon our previous work (Massire et al., 2013), two “virtual” target rotation matrices 

decomposing the desired operation can be used: 
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To tailor the RF pulse rotation matrix in the nth voxel, a possible performance criterion φn is: 
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Evaluation of    shows that this criterion is equal to one, its maximum value, if and only if: 
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, where k is an integer. (7.5) 

  

In practice, the second case is not encountered, as the required energy would be 

considerably higher for the same pulse duration. After summing this performance criterion for 

all voxels (  
 

 
∑   

 
   ), a cost function equal to 1- is minimal, if and only if the rotation 

angle is θ and the rotation axis is purely transverse everywhere in the ROI. Note that UF1 and 

UF2 do not correspond to physical rotation matrices, as they are not unitary. It is simply a 

mathematical convenience that removes the phase constraint on the transverse rotation axis. 

After time discretization, the derivatives of this performance function with respect to all 

control parameters uk (which are the real and imaginary parts of the RF pulse on each coil 

channel) are taken to compute its gradient, knowing that for each voxel:  
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In this way, the original analytical formulation of the derivative proper to the GRAPE 

algorithm could be retrieved, acknowledging the fact that this function is not strictly speaking 

differentiable at φ1,2 = 0 (see references (Khaneja et al., 2005; Massire et al., 2013) for the 

whole expression of the derivative with 2 x 2 rotations matrices). Control parameters are then 

updated using the conjugate gradient method. As in (Massire et al., 2013), gradient blips 

intensities are also considered as additional degrees of freedom and optimized with the RF 

throughout this work in order to modulate the k-space trajectory. 

 

7.2.2. GRAPE aiming at any given refocusing angle with a specific phase 

pattern target 

 

In the case of the SPACE sequence, the formalism described above is used to tailor a 

reference refocusing pulse of the RF echo train. This pulse then dictates a phase pattern for 

the whole sequence. For all subsequent refocusing pulses, as well as the initial excitation 

pulse, care has to be taken as the CPMG condition fulfillment is mandatory to obtain the 

desired refocusing of magnetization. Indeed, as several types of echoes (primary echo, 

stimulated echo, etc.) arise from multiple refocusing pathways, it is crucial that 

simultaneously acquired echoes are kept phase-coherent. Following the original GRAPE 

algorithm (Khaneja et al., 2005), we can target a specific phase pattern, precisely the one of 
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the reference refocusing pulse, and change only the rotation angle. Hence, the target rotation 

matrix is:  
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where θ is the new desired target rotation angle,     and     the normalized components of 

the first refocusing pulse axis of rotation (voxel-dependent). The performance criterion is 

then: 
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The optimization procedure and the updating of the control parameters then is the same as 

in (Massire et al., 2013), the only difference being smaller latitude in the optimization, as the 

target operator is more specific. Last, thanks to the smooth variation of the angle values 

along the RF train, a previously designed pulse can be used as an initial guess for the next 

one, thus greatly speeding up the algorithm convergence.  

A flowchart of the whole procedure in order to tailor every single RF pulse of a SPACE-like 

sequence is provided in Figure 7.1. 
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Figure 7.1: Flowchart for SPACE/FLAIR pulse design. Step 1: The initial guess waveform is 

the solution returned by the small tip angle approximation, using the kT-points method 

[16,17]. Step 2: The reference refocusing pulse is designed with a phase-free rotation axis. 

Its phase pattern is stored and used as a target for the design of all subsequent refocusing 

pulses (steps 3-4). Step 5: The excitation pulse design is similar, targeting 90° and the same 

phase pattern dephased by +π/2 to fulfill CPMG condition. Step 6: The GRAPE algorithm 

described in (Massire et al., 2013) can be used to design an additional inversion pulse if 

needed (e.g. for FLAIR). 

 

7.3. Methods 

 

7.3.1. Experimental setup 
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Experimental validation was performed on a 7 Tesla Magnetom scanner (Siemens, Erlangen, 

Germany), equipped with parallel transmission capabilities and an AC84 head gradient 

system allowing amplitudes up to of 50 mT/m and a slew rate of 333 T/m/s, on four different 

healthy volunteers. Our study was approved by our institutional review board and informed 

consent was obtained from all volunteers. For both RF transmission and reception, a home-

made transceiver-array head coil was used (Ferrand et al., 2010). The array consists of 8 

stripline dipoles distributed every 42.5° on a cylindrical surface of 27.6-cm diameter, leaving 

a small open space in front of the subject's eyes. All dipoles were tuned ideally at 297.18 

MHz corresponding to the proton Larmor frequency at 7 Tesla and matched identically to a 

50 Ohm line impedance. Second-order B0 shims were used prior to any imaging sequence.  

 

7.3.2. Online fast pTX calibration and pulse design 

 

Transmit sensitivity profiles of every coil element were acquired with the 2D multi-slice 

magnetization-prepared turbo-FLASH B1
+ mapping XFL sequence (resolution: 5 mm 

isotropic, total acquisition time: 4 min) (Amadon et al., 2012; Fautz et al., 2008). 

Magnetization preparation was achieved using a very selective VERSE’d saturation pulse, 

producing a spatially-dependent flip angle (FA) to be measured. In addition, the 

interferometric method with a 180°-phase-offset on each channel to obtain individual transmit 

sensitivity profiles was used (Brunner and Pruessmann, 2009).  

To complete the pulse design input, a fast 2D 3-echoes spoiled Gradient Echo (GRE) 

sequence, was employed to map the ΔB0 field (TA ~ 20s). This was followed by a 2.5 mm 

isotropic higher resolution 2D GRE acquisition to define, with the aid of the brain extraction 

tool from the FSL software package (Smith, 2002), the three-dimensional ROI corresponding 

to the brain on which pulse design should be made (TA ~ 1 min). The complete pulse design 

procedure was implemented in C++ including GPU-enabled Compute Unified Device 

Architecture (CUDATM, Nvidia Corporation, Santa Clara, CA, USA). Based on the 

performance of two Intel Xenon E5-2670 CPUs paired with two NVIDIA Tesla Kepler K20 

GPUs, the entire pulse train design was typically achieved in less than 3 minutes. 

To focus on the improvement provided by our tailored pulses in terms of contrast and signal 

homogeneity, the contribution of the highly non-uniform reception profile B1
- of our transceiver 

coil was removed in all in-vivo images (Mauconduit et al., 2014). The reception profile was 

obtained with a GRE sequence with very low flip angle (1°) and relatively short TR (150 ms), 

after dividing the image by the computed CP transmit profile (known from the B1
+ mapping 

procedure). A 3D polynomial filter (8th order) was subsequently applied to the resulting map 

to abrogate remaining contrast of tissues due to proton density. 
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7.3.3. Sequence design and validation 

 

The variable flip angle series of the SPACE sequence that yields prescribed signal evolution 

was calculated as in (Mugler, 2000) and subsequent studies, using the Spatially Resolved 

Extended Phase Graph (SR-EPG)  for specified T1 = 1400 ms and T2 = 40 ms relaxation times 

(min. angle: 10°, max angle: 100°). Conventional square pulse durations were set to 600 µs 

and 900 µs for the CP-mode and RF-shimming respectively. An initial candidate waveform 

fed to the GRAPE algorithm consisted of solving the Magnitude Least Squares problem 

(Setsompop et al., 2008a) with a 3 kT-point self-refocused trajectory (i.e. k(0)=0) surrounding 

the center of k-space. The location of the kT-points was determined empirically off-line for an 

initial case study (Cloos et al., 2012a) and was kept the same for all the subjects, keeping in 

mind that these locations were then free to move thanks to the GRAPE algorithm. The 

reference refocusing pulse design was achieved after about 100 iterations of the first 

adaptation of the GRAPE algorithm presented in the theory section. For the other pulses, a 

quasi-linear scaling of their duration with respect to the prescribed angle was followed by 2 to 

10 iterations of the GRAPE algorithm presented in the second part of the theory section. With 

this setup, about 50 different pulses needed to be designed, since several similar pulses are 

used in the echo train. The peak amplitudes of the designed waveforms were constrained to 

the maximum voltage available per channel (180 V). Replacing the original hard pulses of the 

SPACE sequence with sets of sub-pulses and gradients blips inevitably increases their 

durations and Specific Absorption Rate (SAR) contributions. This inherently affects the TR of 

the sequence, the echo spacing ES and the shape of the RF echo train. The following 

sequence protocols were implemented: 

 

SPACE: TR: 6 s, ES: 9 ms, effective TE: 315 ms, Echo Train Length: 96 pulses, resolution: 1 

mm isotropic, matrix size: 256x224x160, GRAPPA factor: 2, Partial Fourier: 6/8, TA: 12 min. 

 

FLAIR: same as SPACE, except TR: 9 s, TI: 2.5 s, TA: 18 min. 

 

As an aside, the same GRAPE recipe was used for a 0.8 mm isotropic version of the SPACE 

sequence with similar acceleration factors, bringing the echo train length to 117 pulses and 

the acquisition time to 14 minutes. The sequence is expected to hold well in terms of 

Contrast to Noise Ratio (CNR) and SAR, at the expense of a decrease in Signal to Noise 

Ratio (SNR). Last, to ensure that GRAPE-tailored pulses led to the expected signal evolution 

during the refocusing echo train, a “4-dimension” SPACE sequence was run on a spherical 
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phantom (16 cm diameter, filled with agarose gel and CuSO4-doped salted distilled water, T1: 

1100±50 ms, T2: 50±2 ms). In this longer sequence, all echoes of the refocusing train encode 

the same phase-encoded line during a repetition time. In that way, if there are N echoes, N 

images of the phantom are generated, each with its own signal intensity. As a result, this 

sequence provides a spatially-dependent signal evolution monitoring during the echo train.  

 

7.3.4. SAR evaluation 

 

In this study, SAR was never directly taken into account in the pulse design procedure for 

simplicity. On the other hand, compliance with the SAR guidelines (IEC, 2010) was checked 

by monitoring the TR-averaged RF power levels for each transmit-channel. Similarly to some 

endeavors dedicated to provide accurate SAR predictions (Graesslin et al., 2012), our SAR 

assessment tool (Cloos et al., 2010b) evaluates both the global and local 10-gram SAR over 

four pre-simulated data sets (different anatomies, different positions) in a conservative 

manner (Boulant et al., 2011). From these models, the software then returns the worst case 

SAR scenario and ensures that 10-g and whole-head average SAR values respect the IEC 

guidelines (10 W/kg and 3.2 W/kg respectively). On average, our conservative approach 

(Boulant et al., 2011) typically overestimates the true absorbed energy by a factor 5. In all 

cases, the 10-g local SAR found approached its limit more closely than the global one. 

 

7.4. Results 

 

7.4.1. pTX calibration and pulse design 

 

Individual B1
+ maps obtained with our coil on the first subject are shown in Figure 7.2.a. For 

the four subjects scanned in CP-mode, the measured standard deviation divided by the 

mean value of B1
+ was around 26.5±2.3% in the ROI. Measurements of ΔB0 inhomogeneities 

(Figure 7.2.b.) showed a mean standard deviation of around 40 Hz, with peak values up to 

about 250 Hz. The durations of the tailored pulses varied approximately from 300 µs to 2 ms. 
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Figure 7.2: Online fast pTX calibration and pulse design. a. Measured transmit sensitivity 

magnitudes of the eight transmit elements (central axial slices). b. ΔB0 map measured in Hz, 

central sagittal slice. c. Brain mask extracted with FSL (central slices). d. Eight-channel 

transceiver-array coil used in this work. e. Flip angle train designed for the SPACE sequence 

used in this study. f. Example of a tailored RF pulse on one of the Tx-channels (amplitude, 

phase and gradient blips). 

 

Based on the four volunteers’ data, Bloch simulations were performed to evaluate the 

theoretical performance of the first refocusing pulse designed (example on one channel on 

Figure 7.2.f.), whose performance is similar to any subsequent refocusing pulse. The cost 

function defined in the Methods section directly quantifies how good the rotation of the 

prescribed angle along a purely transverse axis is. On average, the GRAPE optimization 

achieved a 37±2% relative improvement of this cost function, starting from RF pulses 

designed with the STA approximation, with 100 iterations in about 30 seconds. Even though 

the cost function employed here is useful because it is concise and its derivatives are 

analytical (Massire et al., 2013), it remains that the numbers returned are more abstract 
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compared to more standard pulse designers’ metrics. For this reason we also defined two 

metrics: a. the dispersion of the angle value itself, called here Rotation Angle Normalized 

Root Mean Square Error (RA NRMSE): 
 

 
√∑ (    )

    
     ( being the prescribed rotation 

angle, Φi the effective rotation angle in the ith voxel and N the total number of voxels), and b. 

the deviation of the rotation axis from the transverse plane, called here Axis NRMSE: 

√∑ (  √  
    

 )    
   . On average, the GRAPE optimization reaches a RA NRMSE of 

12.1±0.4% and an A NRMSE of 5.5±0.3% across subjects. These values are 3 to 4 times 

better than the ones obtained from hard pulses played in CP-mode (40.6±0.5% and 

17.6±0.6%) or in a 3D-optimized RF-shim mode (34.6±1.1% and 20.2±0.4%), both 

configurations being inherently strongly affected by the ΔB0 distribution. Experimental 

validation of individual RF pulse could be performed using Quantum Process Tomography 

applied to MRI, just like in (Massire et al., 2013). 

 

7.4.2. Sequence validation 

 

Figure 7.3 displays a comparison of the signal evolution throughout the RF echo train 

between hard pulses played in CP-mode and GRAPE-tailored kT-points pulses, for the 

spherical phantom. Regions of interest for signal assessment were selected in the central 10-

mm-thick sagittal slice, one in the center and the three others in random locations between 

the center and the borders. Whereas the CP-mode enables very good behavior of the signal 

in the center of the phantom (black line) compared to the expected one predicted by the SR-

EPG framework (a light grey area is used to illustrate the standard deviation of measured 

phantom T1 and T2), signal persistence is altered in other regions (grey lines). GRAPE pulses 

on the other hand were able to reproduce to a good extent the same pattern for the whole 

phantom, confirming the expected signal behavior as well as a better signal homogeneity in 

the whole pulse design ROI.  
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Figure 7.3: Measured signal behavior along the RF echo train in the central sagittal slice, in 

percent of the first signal echo intensity (light grey area: theory; black line: ROI in the center 

of the phantom; grey lines: ROI in other regions). a. Hard pulses played in a pseudo-

Circularly Polarized mode. b. Proposed methodology with the GRAPE algorithm. 

 

7.4.3. SPACE & FLAIR T2-weighted images 

 

SPACE images for three configurations (CP-mode, RF-shim configuration and GRAPE 

design) are displayed on Figure 7.4, for one of the subjects. The conventional CP-mode 

method implemented at 7 Tesla resulted in strong signal voids in the cerebellum and in 

temporal lobes. Application of a subject-specific RF-shim improved image quality to some 

extent, thus allowing cerebellar GM/WM to be distinguished. Even so, residual B1
+ non-

uniformities introduced significant signal variations in other regions of the brain, complicating 

distinction between GM and WM in these regions with confidence. Using GRAPE-tailored kT-

points improved every refocusing profile and led to higher signal homogeneity for a given 

tissue across the brain. Considerable improvements occurred in the cerebellum, in the upper 

brain region and in the temporal lobes. In addition, intricate structures of the cortex can now 

be resolved in greater detail. This is particularly true in the 0.8 mm isotropic SPACE images 

provided in Figure 7.5, where 117 RF pulses are used to encode one partition of the k-space. 
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Figure 7.4: T2-weighted SPACE images of Subject #2 at 1mm isotropic resolution (all 

images are corrected for coil reception profile). From top to bottom: a. Conventional hard 

pulses played in a pseudo-Circularly Polarized mode. b. Hard pulses played in a static RF-

shim configuration. c. Proposed methodology with GRAPE-tailored pulses for excitation and 

refocusing.  

 

 

 

Figure 7.5: T2-weighted SPACE images (coronal, sagittal and axial slices, from left to right) 

of Subject #3 with 0.8mm isotropic resolution and GRAPE-tailored RF pulses (all images are 

corrected for coil reception profile). 

 

To perform the FLAIR inversion necessary to nullify the CSF signal, a 5180 µs duration 180° 

GRAPE pulse was designed (Number of kT-points: 8, RA NRMSE: 6.55%, A NRMSE: 1.53%, 

pulse energy: 7.8 J) and placed before the SPACE sequence block. FLAIR images are 

provided in Figure 7.6. The CSF signal is clearly suppressed everywhere in the ventricles 
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and around the brain and the cerebellum, confirming the quality of the inversion on the whole 

ROI. Last, as opposed to what is commonly seen in clinical studies at 7 Tesla (Visser et al., 

2010; de Graaf et al., 2012), here the cerebellum and the temporal lobes visibility is 

increased thanks to the proposed design. In addition, the energy of the GRAPE inversion 

pulse is smaller than the one of an adiabatic pulse traditionally used for inversion purposes 

and therefore compatible with UHF exams (Massire et al., 2013). 

 

 

 

Figure 7.6: T2-weighted FLAIR images (coronal, sagittal and axial slices, from left to right) of 

Subject #4 with 1mm isotropic resolution and GRAPE-tailored RF pulses (all images are 

corrected for coil reception profile). 

 

7.4.4. T2-weighted images automated segmentation 

 

MRI is a sensitive modality for visualizing multiple sclerosis lesions. For the diagnosis of this 

disease, T2-weighted image analysis could outperform T1-weighted image analysis in term of 

accuracy (de Graaf et al., 2012). Yet, automated tissue segmentation from T2-weighted 

images is a prerequisite for large-scale estimation of lesion volumes. In this work, we adapt 

the brain tissue segmentation pipeline of the BrainVisa (BrainVISA/Anatomist, 2014) 

software, to extract a voxel classification from our improved T2-weighted images. As shown 

in Figure 7.7, these images could be accurately segmented, even in the temporal lobes, 

where signal is commonly lacking with conventional methods at such high field strength. 
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Figure 7.7: Results of automated brain tissue segmentation on 1 mm isotropic resolution 

SPACE images of Subject #2. Voxels identified as GM are superimposed in green, whereas 

voxels identified as WM are superimposed in red. Image post-processing includes contrast 

inversion, edges detection and bias correction. 

 

7.5. Discussion 

 

We have investigated in this study how the GRAPE algorithm can simultaneously mitigate 

severe B1
+ and ΔB0 inhomogeneities to produce high quality T2-weighted images of the 

human brain. Given that this optimal control process proposed is directly applied to rotation 

operators, refocusing pulses perform well regardless of the initial magnetization state and 

enforce proper magnetization evolution during the refocusing echo train. We proposed a 

novel approach to use the GRAPE optimization which enables the design of either an 

arbitrary RF phase pattern with a prescribed rotation angle, or a specific RF phase pattern 

with a prescribed rotation angle. The GRAPE algorithm presents several advantages 

compared to other optimization strategies (Eggenschwiler et al., 2013), as it makes no 

approximation such as the linear class of large tip angle (Pauly et al., 1989b) and fully takes 

into account ΔB0 offsets for each pulse. Not properly taking into account the latter likely 

introduces a loss of coherence among the different echoes and thus a loss of signal in the 

image. Considering our pulse design, because the duration of the pulses varied across the 

pulse train, it was critical to ensure the same free evolution time between all consecutive 

pulses. Last, CPMG conditions are kept to comply with the assumptions made in the flip 

angle series algorithm (Mugler, 2000) and therefore reduce the latitude in the optimization 

process. A very interesting approach would be then to ignore CPMG conditions, model and 

optimize the signal throughout the SPACE sequence with the SR-EPG framework, as 
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suggested in (Malik et al., 2012), and include this into a whole iterative pulse design 

procedure. 

It has been found in practice that the choice of the initial candidate pulse influences only to 

some extent the final result of the GRAPE optimization. Indeed, the k-space trajectory 

optimization is partially addressed using the GRAPE algorithm but somewhat restricted, as 

we note that the large number of control parameters may trap the cost function in non-

optimal local minima. This is why RF pulses used as initial guesses in this study were 

already self-refocused pulses with fairly good refocusing performance. When non-self-

refocused pulses with random k-space trajectories are used as initial guesses, improvements 

of the cost functions shown here are considerably larger, but in the end they always achieve 

worse (yet comparable) refocusing performances than self-refocused initial guesses. The full 

optimization of the kT-points number, locations and order, remains the topic of further study.  

In this study, neither additional local SAR constraints nor energy deposition penalties were 

taken into account. Indeed, despite the compression model of SAR constraints through 

VOPs (Virtual Observation Points) (Eichfelder and Gebhardt, 2011; Lee et al., 2012), taking 

directly into account the SAR in the optimization procedure does not seem tractable yet due 

to the large number of degrees of freedom considered here (about 3000 only for the 

excitation pulse for instance). Nevertheless, perhaps the use of second-order optimization 

methods (de Fouquieres et al., 2011; Hoyos-Idrobo et al., 2013) could reduce substantially 

this number while still achieving good performance. These endeavors led the way to pulse 

design achieving very good mitigation performances with direct local SAR constraints 

(Brunner and Pruessmann, 2010; Guérin et al., 2013; Hoyos-Idrobo et al., 2013), or even 

with local temperature constraints (Boulant et al., 2013). This is also the subject of future 

work.  

Since refocusing pulses of variable angles are used in the SPACE sequence, the 

magnetization vector is not purely transverse throughout the echo train: its decay occurs 

more slowly than T2, and image contrast is altered by T1 relaxation through stimulated 

echoes (Busse et al., 2006). The effective TE (defined as the time at which the center of k-

space is sampled) thus no longer corresponds to the expected amount of spin-echo T2 

contrast. In our sequence, the effective TE was directly set by the Partial Fourier factor, yet 

several studies (Hennig and Scheffler, 2001; Hennig et al., 2004) suggest delaying the 

sampling of the center of k-space to retrieve the original T2 contrast from 180° refocusing.  

This complex matter, which requires a dedicated study, is beyond the scope of this work, 

whose purpose was only signal conservation for a specified T1/T2 target. Regarding the 

FLAIR contrast at 7T, the incomplete recovery of GM and WM at TI, due to the prolonged T1 

relaxation, alters the observed T2 contrast, as well as image SNR (Visser et al., 2010). These 
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issues could be overcome with a dedicated magnetization preparation block prior to the 

excitation with the cost of higher SAR (Visser et al., 2010). 

Although in-vivo images were obtained with fairly high resolution (0.8 mm isotropic), still 

better in-plane resolution could be achieved without any SAR and acquisition time increase. 

Indeed, for the same TR, a greater acceleration factor could be used and/or more echoes 

could be inserted to acquire more lines of the k-space. In that case, the values of the angles 

prescribed by the pseudo-steady state algorithm are lower, thus maintaining the SAR level of 

the sequence at an interestingly similar value. However higher resolution would require more 

SNR and consequently better coil-arrays than the one used in this study. This is why the pTX 

methods comparison done in this work was made on images of 1 mm isotropic resolution, 

considering the poor SNR obtained here with conventional pTX methods. In future studies, 

the receive performance should be enhanced substantially by including a dedicated receive 

loop-array. As far as SAR is concerned, a less conservative approach is required if one 

wants to decrease the acquisition time, or when more energy is needed to increase spatial 

resolution in partition direction while keeping a similar acquisition time. 

For the moment, about 6 preliminary minutes of subject-specific calibration data acquisition 

are still necessary at the beginning of a pTx exam; this duration is likely to decrease in the 

near future. Pulse design itself can presumably be done while performing a more basic MRI 

acquisition, in order to save time. 

 

7.6. Conclusion 

 

In the end, we have demonstrated the soundness of the GRAPE pulse design method in the 

framework of parallel transmission applied to T2-weighted 3D-imaging of the human brain at 

7 Tesla. Replacing the original hard pulses of a SPACE sequence by our tailored pulses 

provides restoration of the expected excitation/refocusing uniform distribution, and 

consequently T2-weighted images of high quality in terms of signal and contrast 

homogeneity. 
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General Conclusion & Perspectives 

 

In the framework of medical imaging, with the aim of generating always better-resolved MR 

images, ultra-high main magnetic field strengths are explored. While progressively ramping 

up the static field enhances the NMR signal, it simultaneously increases the proton Larmor 

frequency. Considering clinical systems operating at 3 Tesla, the corresponding RF 

wavelength already becomes comparable to the dimensions of the human body. As a result, 

when investigating large organs, zones of shades and losses of contrast arise in the image. 

Migrating to 7 Tesla, the resulting RF non-uniformities are so strong that these artifacts 

happen even in smaller regions such as the human brain. In preparation of the arrival of the 

11.7 Tesla system dedicated to human imaging at NeuroSpin, it becomes increasingly urgent 

to provide adequate solutions to mitigate these excitation non-uniformities. Otherwise, such 

ultra-high field systems cannot reach their full potential. 

To develop the techniques necessary to tackle the above-mentioned challenges, an 8-

channel parallel transmission setup was installed in our 7 Tesla MRI system. Whereas most 

clinical MRI systems only use one transmit-channel at a time, the pTX extension allows 

different RF waveforms to be played through multiple channels in concert. The additional 

degrees of freedom provided by this pTX extension can be used to mitigate excitation non-

uniformities and reach solutions with more favorable energy distributions. 

Nevertheless, the inherent potential occurrence of highly localized energy depositions in the 

imaged subject during a pTX exam requires special care to ensure safety. This is why 

numerical simulations were performed in order to assess the compliance of the SAR 

guidelines with the biological primary biological parameter of interest: the temperature, to 

avoid local thermal damage or thermoregulatory problems, in the context of parallel 

transmission MRI at 7 Tesla. Based on Pennes’ bioheat equation, these simulations showed 

that the local temperature inside the human head never exceeds 39 °C (and barely 38 °C) 

but temperature rises larger than 1 °C may occur in the eye, when using the recommended 

values of SAR in parallel transmission MRI exams. 

The core of this thesis was a new pTX-based pulse design strategy relying on optimal 

control, introduced to tackle non-selective uniform refocusing at UHF in any spin echo-based 

3D MRI sequence. This approach was first experimentally validated by using Quantum 

Process Tomography and standard spin-echo sequences. In the end, the soundness of the 

GRAPE pulse design method in the framework of parallel transmission applied to T2-

weighted 3D-imaging of the human brain at 7 Tesla was demonstrated, providing restoration 

of the expected excitation/refocusing uniform distribution. 
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The work presented herein completes what was done at NeuroSpin regarding MRI 

sequences such as GRE or MP-RAGE, giving the community potent tools to perform 

anatomical 3D imaging at UHF. As this thesis comes to its end, other current endeavors at 

NeuroSpin focus on: pulse optimization under strict SAR constraints, brain local temperature 

estimation, homogeneous 2D imaging, ultra-fast echo-planar imaging, simultaneous multi-

slice imaging, advanced coil design, inner volume excitation and selection, and many more 

exciting fields of study. 
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Nomenclature 

 

ADC    Analog-to-Digital Converter 

AFI    Actual Flip-angle Imaging 

ASE    Anatomical Structure Entity 

ASL   Arterial Spin Labeling 

B0    Static magnetic field 

B1
+    Transmit sensitivity 

B1
-    Receive sensitivity 

BOLD    Blood Oxygen Level Dependent effect 

BW    Bandwidth 

C++   C Object-Oriented Programming Language 

CNR    Contrast-to-Noise Ratio 

CP    Circularly Polarized 

CPMG   Carr-Purcell-Meiboom-Gill 

CSF    Cerebrospinal fluid 

CT   Computed Tomography 

CUDA   Compute Unified Device Architecture 

ΔB0   Static magnetic field offset 

DIR    Double Inversion Recovery 

dMRI    Diffusion Magnetic Resonance Imaging 

DREAM  Dual Refocusing Echo Acquisition Mode 

ECG   Electrocardiography 

EEG   Electroencephalography 

EMF    Electromotive force 

EPG   Extended Phase Graph 

EP    Echo Planar 

EPI    Echo Planar Imaging 

ES    Echo Spacing 

ETL   Echo Train Length 

FA    Flip Angle 

FDTD    Finite-Difference-Time-Domain 

FEM    Finite Element Method 

FID    Free Induction Decay 

FLASH   Fast low angle shot  
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FLAIR   Fluid Attenuation Inversion Recovery 

FM   Frequency Modulation 

fMRI    Functional Magnetic Resonance Imaging 

FSE    Fast Spin Echo 

GM    Gray Matter 

GPU    Graphics Processing Units 

GRAPE  Gradient ascent pulse engineering 

GRAPPA  GeneRalized Autocalibrating Partially Parallel Acquisitions 

GRASE  Gradient Spin Echo 

GRE    Gradient-Recalled Echo 

IEC   International Electrotechnical Commission 

L2   Euclidian Norm  

LCLTA   Linear Class of Large-Tip-Angle 

LTA    Large-Tip-Angle 

LS   Least Square 

M0   Magnetization vector at equilibrium 

MEG   Magnetoencephalography 

MLS   Magnitude Least Square 

MP-RAGE   Magnetization-prepared rapid gradient echo 

MR    Magnetic Resonance 

MRA    Magnetic Resonance Angiography 

MRI    Magnetic Resonance Imaging 

MRS   Magnetic Resonance Spectroscopy 

MT   Transverse Magnetization 

MZ   Longitudinal Magnetization 

MRM    Magnetic Resonance Microscopy 

NMR    Nuclear Magnetic Resonance 

NRMSE   Normalized Root Mean Square Error 

OCA   Optimal Control Approach 

PET    Positron Emission Tomography 

PD   Proton Density 

PRFS   Proton Resonance Frequency Shift 

PSS   Pseudo-Steady-State 

pTX    Parallel transmission 

QPT   Quantum Process Tomography 

RA   Rotation Angle 

RARE   Rapid Acquisition with Relaxation Enhancement 
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RF   Radio Frequency 

ROI   Region of Interest 

SAR    Specific Absorption Rate 

SD   Standard deviation 

SDM   Spatial Domain Method 

SE    Spin Echo  

SENSE   Sensitivity encoding 

SLR   Shinnar-Le Roux 

SMASH   Simultaneous Acquisition of Spatial Harmonics 

SNR   Signal-to-Noise Ratio 

SPACE  Sampling perfection with application optimized contrasts using different 

flip angle evolution 

STA    Small-Tip-Angle 

SU(2)   Spin Domain 

T1    Spin-lattice relaxation 

T2    Spin-spin relaxation 

T2*   Apparent spin-spin relaxation 

TALES  Transmit Antenna Level Sensor 

TE    Time of echo 

TOF   Time of Flight 

TSE    Turbo Spin Echo 

TI    Inversion time 

TR    Time of repetition 

T/R    Transmit-Receive 

UHF    Ultra-high fields 

VERSE  Variable-rate selective 

VFA   Variable Flip Angle 

VOP   Virtual Observation Point 

WIFI    Wireless local area network 

WM    White matter  
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