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The SO 2 molecule is long known in the literature for its complex UV absorption spectrum, which is caused by a variety of strong couplings -not properly understood -between the electronic states involved. This long and rich history was augmented recently by new time-dependent spectroscopic methods, namely, Time-Resolved Photoelectron Spectroscopy (TRPES) and High-order Harmonic Generation (HHG). Additional open questions emerged immediately, e.g., what was the role of the di↵erent known electronic states, which were the relevant couplings and also the timescales of the di↵erent relevant processes.

To resolve some of these issues theoretically, we start by considering the electronic ground state together with the two lowest singlet excited states. The latter interact through strong non-adiabatic couplings leading to a complex photoabsorption spectrum. Our results were particularly accurate, especially concerning the so-called Clements bands, and provide the first comprehensive theoretical description of the photoabsorption spectrum. When further including the spin-orbit coupling, relevant for the weak long-wavelength absorption system, the three-states model turns into a 12 coupled-states system, which in turn can be reduced into two First of all I would like to acknowledge the members of the jury, who gave me the opportunity to defend this work.

subsystems by the use of symmetry. Analysis of the di↵erent couplings gives insight into the di↵erent mechanisms leading to the intersystem crossing. Three main points have been shown: (i) the preponderant role of a 3 B 2 state, (ii) the possibility of quantum interferences during the process and (iii) a new interpretation of the "forbidden" band.

The TRPES and the HHG spectroscopies have been used experimentally to probe the time-dependent dynamics in all these states. With the aid of first-principles simulations we show that the TRPES method is sensitive to the dynamics in the singlet and in the triplet states. The time profile of the photoelectron yield provides information on the time scales of the intersystem crossing and non-adiabatic transitions. The simulation of the HHG required first the development of a model, which includes explicitly the quantum nature of the nuclei. Then we show that this experiment is sensitive only to the intersystem crossing, but not to the dynamics in the singlet states. Good agreement between theory and experiment has been achieved both for TRPES and HHG spectra. 

Résumé

Le spectre d'absorption dans l'ultra-violet (UV) de la molécule de dioxyde de soufre (SO 2 ) est bien connu dans la littérature scientifique pour sa complexité résultante de forts couplages, pas encore entièrement élucidés, entre les états électroniques impliqués. Cette longue et riche histoire a récemment été complétée par de nouvelles études spectroscopiques permettant le suivi de l'évolution temporelle du système utilisant la spectroscopie de photoémission résolue en temps (TRPES) et la génération d'harmonique d'ordre élevé (HHG).

Immédiatement, de nouvelles questions sans réponse interpellent les expérimentateurs à propos du rôle des di↵érents états électroniques, des di↵érents mécanismes de couplage entre ces derniers ainsi que les temps caractéristiques des di↵érents processus.

Pour répondre théoriquement à certaines de ces questions, nos recherches ont, dans un premier temps, inclus l'état électronique fondamental de la molécule ainsi que ses deux premiers états excités. Ces derniers interagissent au travers d'un fort couplage, dit non-adiabatique, qui se traduit par une complexité accrue du spectre de photoabsorption. Les résultats ainsi obtenus se montrent précis, en particulier pour les dénommées bandes de Clements, fournissant ainsi la première explication théorique complète du spectre de photoabsorption. Le pas suivant fut d'inclure les coupages spin-orbites permettant une interaction entre les états singulets et triplets de spin, ces derniers jouant un rôle essentiel pour la partie de faible énergie du spectre,. Le modèle qui jusqu'alors comportait trois états en est augmenté de neuf, mais découplé équitablement en deux sousgroupes par symétrie. L'analyse des di↵érents couplages permet de mieux comprendre les mécanismes de conversion inter-system. Trois principaux résultats ont été obtenus : (i) une population forte (comparable aux états singulets) d'un état 3 B 2 , (ii) la possibilité d'interférences quantiques lors du processus de conversion inter-système et (iii) une nouvelle interprétation de la bande dite "interdite", à faible énergie.

Les spectroscopies mentionnées ci-dessus, i.e. TREPS et HHG, ont été mise en oeuvre expérimentalement pour étudier la dynamique temporelle du système complet. Grâce à des méthodes, dites ab-initio, de simulation numérique, nous avons pu démontrer la sensibilité de la spectroscopie TRPES quant à la dynamique nucléaire dans les états singulets et triplets. L'évolution temporelle du taux de photoémission permet d'extraire des expériences les temps caractéristiques des transition non-adiabatiques et de la conversion inter-système. Pour étudier la spectroscopie HHG, nous avons, en premier lieu, développer un modèle permettant de tenir compte explicitement de la nature quantique des noyaux. Ensuite il fut possible de montrer que cette méthode n'est sensible qu'à la dynamique de conversion inter-system alors que la dynamique des états singulets demeure inaccessible. Nos résultats sont appuyés par un très bon accord avec les di↵érentes expériences.

Chapter 1 Introduction

The interaction between light and matter is one of the few ways to probe and understand the organisation of atoms, molecules and solids. Over the last century spectroscopy, has been widely developed to probe the time independent quantum nature of the molecules. With the recent advent in laser technology, following di↵erent ways such as increasing intensity, reducing the time of the laser pulse, controlling delay between two laser pulses on the femtosecond time scale, fixing its phase, provides to chemists and physicists the tools to probe dynamically the motion of nuclei and electrons in molecules and/or atoms. The theoretical description of experiment is in many cases the state of the art of the ab-initio study, the development of theoretical tools to simulate new experimental setups is a major task to carry on with a deeper understanding of quantum systems on new time scale or field regime.

Particularly, since 2001, with the first generation of attosecond light pulses [1], impressive progresses concerning the generation and the characterisation [2,3,4] of these attosecond pulses, such that one can speak about "attosecond technology" and "attosecond science". Two principal types of applications are currently investigated, first the attosecond pulses are used in order to excite or ionise a medium of interest, to either initialise or probe an ultra-fast dynamics. This approach has been successfully applied in the case of atomic Auger decay [START_REF] Drescher | Time-resolved atomic inner-shell spectroscopy[END_REF], solid photoemission from core states [START_REF] Cavalieri | Attosecond spectroscopy in condensed matter[END_REF], atomic tunnelling ionisation [START_REF] Uiberacker | Attosecond real-time observation of electron tunnelling in atoms[END_REF] or electron wavepackets interferences [START_REF] Remetter | Attosecond electron wave packet interferometry[END_REF]. The second approach uses the mechanism of the attosecond emission as a signature of the generating medium itself. Thus the attosecond electronic wavepacket, released by the 1 strong interaction between the laser and the medium, is driven back to the core by the laser field half a cycle latter, emitting an ultrashort XUV pulse. This self-probing scheme can then be analysed by collecting the emitted light and provides, thanks to its inherent coherent nature, a quantum imaging of the system [START_REF] Boutu | Coherent control of attosecond emission from aligned molecules[END_REF][START_REF] Haessler | Attosecond imaging of molecular electronic wavepackets[END_REF].

Unprecedented insights are possible thanks to the knowledge of amplitude and phase of the wavefunction with respect to time and space [START_REF] Wagner | Extracting the phase of high-order harmonic emission from a molecule using transient alignment in mixed samples[END_REF]. This new piece of information has been successfully exploited in order to achieve a tomographic reconstruction of the molecular orbitals [START_REF] Itatani | Tomographic imaging of molecular orbitals[END_REF]. The High-order Harmonic Generation (HHG) also reveals its sensitivity to nuclear motion in the ionic states evolving during the excursion time of the ionised electron in the continuum, and applied in the case of H 2 [START_REF] Baker | Probing proton dynamics in molecules on an attosecond time scale[END_REF] or nuclear vibration in SF 6 [START_REF] Wagner | Monitoring molecular dynamics using coherent electrons from high harmonic generation[END_REF] and N 2 O 4 [START_REF] Li | Time-resolved dynamics in N 2 O 4 probed using high harmonic generation[END_REF], opening the way of a new time scale in molecular dynamics.

The high-order harmonic spectroscopy, demonstrated its sensitivity to the electronic structure of a molecule as well as to the molecular dynamics. It becomes the ideal candidate to probe chemical reactions, in which large amplitude nuclear motion occurs accompanied by a fast and important modification of the electronic wavefunction, particularly in the valence shell. The extraction of these simultaneous pieces of information, encoded in the XUV emission of the process, has been already achieved in the last years but only for the electronic ground state of the molecules [START_REF] Kanai | Quantum interference during high-order harmonic generation from aligned molecules[END_REF]. The extension to the study of the nuclear dynamics, for instance after a photoexcitation, has been experimentally achieved only at the beginning of our project, with the successful study of the Br 2 molecule [START_REF] Wörner | Following a chemical reaction using high-harmonic interferometry[END_REF], followed by the case of NO 2 [START_REF] Wörner | Conical intersection dynamics in NO 2 probed by homodyne high-harmonic spectroscopy[END_REF]. The former established the possibility to follow the bond cleavage in the molecule, while the latter studied the case of the nuclear dynamics in the vicinity of a conical intersection. While speaking of chemical reaction seems exaggerated in these cases, these studies have to be seen as prototype of such process with the bond breaking and the fast nuclear motion and modification of the electronic structures in the case of NO 2 .

The case of the conical intersection is not simply interesting for hypothetical future applications in chemical reactions, but it is primordial by itself. It is a well-known situation for which the Born-Oppenheimer approximation fails because of a strong correlation between the nuclear motion and the electronic configuration, leading to an important non-adiabatic coupling. The nuclei in such situation exhibit a fast motion accompanied by an electronic configuration mixing, leading to a coherent superposition of them. Because of their presence in almost all the molecular systems with more than two atoms, they received a considerable attention in the literature over the last decades and continue to be intensively studied nowadays. Their consideration in photophysics, photochemistry and photo-initiated reactions is mandatory to understand the complex photoabsorption and photoelectron spectra of many molecules [START_REF] Domcke | Conical Intersections: Electronic Structure, Dynamics & Spectroscopy[END_REF]. But their role goes beyond these fields with their implication in systems of biological interest. More specifically their role can explain the stability of the DNA molecule [START_REF] Domcke | Peptide deactivation: Spectroscopy meets theory[END_REF][START_REF] Barbatti | Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases[END_REF] with respect to radiation as well as the mechanism of the vision thanks to the study of the retinal [START_REF] Polli | Conical intersection dynamics of the primary photoisomerization event in vision[END_REF]. The theoretical treatment of the conical intersection remains a complex task.

Various quantal and classical approaches have been developed to deal with the inherent strong non-adiabatic coupling e↵ects, and required an approximate treatment [START_REF] Domcke | Conical Intersections: Electronic Structure, Dynamics & Spectroscopy[END_REF]. Most of the methods keep the concept of the Potential Energy Surfaces (PES), which are approximated or obtained from an ab-initio evaluation, and an approximate evaluation of the non-adiabatic coupling terms is done. One of these approaches, known as the linear vibronic coupling model, developed at the University of Heidelberg [START_REF] Köppel | Multimode molecular dynamics beyond the bornoppenheimer approximation[END_REF], rests on the Taylorseries expansion of the electron-nuclear interaction and has been successfully applied in numerous systems.

Nonetheless, its harmonic approximation of the PES remains drastic to study small molecules for which accurate evaluation of the adiabatic PES can be performed. Thus a recent diabatization scheme [START_REF] Köppel | Construction scheme for regularized diabatic states[END_REF][START_REF] Köppel | The concept of regularized diabatic states for a general conical intersection[END_REF] has been proposed in order to keep the anharmonic shape of the PES. This method, known as the regularised diabatic scheme, provides accurate results and treats the nuclear motion on a fully quantal basis.

The simultaneous theoretical study of nuclear dynamics, conical intersection and HHG required the choice of a small system. Unfortunately, conical intersection does not occur in diatomic systems, for which the only vibrational degree of freedom leads to avoiding crossing between the potential energy curves. Thus triatomic molecules must be investigated. In the large panel of triatomic systems, the sulfur dioxide (SO 2 ) particularly raises our curiosity by its implication in various fields of research and an intensive production in the literature. The study of electronic excited states of SO 2 started as an academic problem in the 30's, after the extensive investigation of diatomic systems, in which great advances have been achieved thanks to the development of quantum theory. The ground state properties of SO 2 were just investigated by infrared and Raman spectroscopy [START_REF] Bailey | Investigations in the infra-red region of the spectrum. Part II. The absorption spectrum of sulphur dioxide[END_REF], and Watson and Parker paved the way to the molecular excited state spectroscopy [START_REF] Watson | The ultraviolet absorption spectrum of sulfur dioxide[END_REF]. With the resolution and intensity available at this time, the so-called "first allowed band" was observed, and because of its complicated structures it opened a large debate over a decade for its vibrational assignment as well as the nature of the electronic state(s) [START_REF] Clements | On the absorption spectrum of sulphur dioxide[END_REF][START_REF] Asundi | The near ultra-violet absorption bands of SO 2[END_REF][START_REF] Metropolis | Vibrational analysis of the absorption system of sulphur dioxide at 3400-2600[END_REF], but remained unsolved. Photoabsorption spectrum of the sulfur dioxide in the near-vacuum UV domain between 3 9 eV. The three absorption bands discussed in the text are indicated, in red for the so-called "forbidden band", in green for the "first allowed" band and in blue for the "second allowed" band. The spectrum has been recorded by S. Manatt and A. Lane [START_REF] Manatt | A compilation of the absorption cross-sections of SO 2 from 106 to 403 nm[END_REF] in the gas phase at 293 ± 10 K.

Sulfur dioxide is then established as a major atmospheric pollutant in the middle of the 60's, and the reactivity of the excited electronic states is widely considered and established to play a role in acid rains, respiratory di culties, damage to vegetation and materials [START_REF] Urone | Sulfur dioxide in the atmosphere: a wealth of monitoring data, but few reaction rate studies[END_REF]. While its presence in the air was already under survey, large e↵orts have been deployed to study the photochemistry of the molecule and its reactivity with atmospheric compounds, such as O 2 [START_REF] Norrish | The combustion of hydrogen sulphide studied by flash photolysis and kinetic spectroscopy[END_REF], CO [START_REF] Calvert | Triplet sulfur dioxide-carbon monoxide reaction excited with the SO 2 ( 1 A 1 )!SO 2 ( 3 B 1 ) "forbidden" band[END_REF], hydrocarbons [START_REF] Dainton | The photochemical formation of sulphinic acids from sulphur dioxide and hydrocarbons[END_REF] etc., summarized by Calver and Pitts [36]. During the same time, new experimental methods were used to unravel the first allowed band of the molecule, and using strong magnetic field Douglas [START_REF] Douglas | The zeeman e↵ect in the spectra of polyatomic molecules[END_REF] observed a Zeeman e↵ect and assigned the "forbidden band" to electronic triplet state, later rotationally demonstrated to be of B 1 symmetry by Merer [START_REF] Merer | Rotational analysis of bands of the 3800 å system of SO 2[END_REF]. This first assignment of electronic excited states of the molecule is supported by the first ab-initio calculation of SO 2 in 1971 by Hillier and Saunders [START_REF] Hillier | A theoretical interpretation of the bonding, and the photoelectron and ultra-violet spectra of sulphur dioxide[END_REF]. The theoretical prediction of the di↵erent electronic states in this energy range make possible the rotational attribution of the "first allowed" band (Fig. 1.1), which concluded that the band is a transition to an excited state of A 2 symmetry [START_REF] Brand | The 3000-3400 å absorption of sulfur dioxide[END_REF]. Interestingly, the transition is dipole-forbidden but can borrow through vibronic coupling with the electronic state of B 1 symmetry predicted a non-vanishing transition dipole moment [START_REF] Hamada | Rotational structure at the long wavelength end of the 2900 å system of SO 2[END_REF]. This short introduction to the photophysics and photochemistry of SO 2 has been nicely reviewed for the photophysics by Herzberg [START_REF] Herzberg | Molecular Spectra and Molecular Structure (III): Electronic Spectra and Electronic Structure of Polyatomic Molecules[END_REF], then Heicklen et al. [START_REF] Heicklen | The photophysics and photochemistry of SO 2[END_REF] and for the atmospheric photochemistry by Calvert and Pitts [36], then Heicklen [START_REF] Heicklen | Atmospheric Chemistry[END_REF] and Calvert et al. [START_REF] Calvert | Mechanism of the homogeneous oxidation of sulfur dioxide in the troposphere[END_REF] and thus for the considerable work performed from 1930 to 1975.

In a period of thirty years, the electronic attribution of the "first allowed band" has been established.

Interestingly, the "second allowed band" does not puzzle much, and has been assigned to an electronic state of B 2 symmetry by Brand et al. [START_REF] Brand | The 2350 å band system of sulphur dioxide[END_REF][START_REF]Sulfur dioxide: Rotational constants and asymmetric structure of the 1 B 2 state[END_REF], theoretically confirmed later [START_REF] Katagiri | Experimental and theoretical exploration of photodissociation of SO 2 via the 1 B 2 state: identification of the dissociation pathway[END_REF]. To our knowledge, no recent review on SO 2 has been published, but the interest remains starting by the first observation in interstellar space [START_REF] Snyder | Radio detection of interstellar sulfur dioxide[END_REF] in 1975, followed by its detection on Venus [START_REF] Barker | Detection of SO 2 in the UV spectrum of Venus[END_REF][START_REF] Esposito | Sulfur dioxide at the Venus cloud tops, 1978-1986[END_REF][START_REF] Bertaux | VEGA 1 and VEGA 2 entry probes: An investigation of local UV absorption (220-400 nm) in the atmosphere of Venus (SO 2 aerosols, cloud structure)[END_REF], Mars [START_REF] Bourassa | Large volcanic aerosol load in the stratosphere linked to asian monsoon transport[END_REF] and Io [START_REF] Jessup | Sulfur volcanism on Io[END_REF][START_REF] Bertaux | Evidence of SO 2 on Io from UV observations[END_REF][START_REF] Ballester | Detection of the SO 2 atmosphere on Io with the Hubble space telescope[END_REF][START_REF] Mcgrath | Spatially resolved spectroscopy of Io's Pele plume and SO 2 atmosphere[END_REF] and its participation to the photochemistry of their atmospheres and in comets [START_REF] Kim | Upper limits of SO and SO 2 in comets[END_REF][START_REF] Despois | Radio line observations of molecular and isotopic species in comet C/1995 O1 (Hale-Bopp)[END_REF]. The molecule became relevant for astrophysics and accurate photoabsorption measurement for its detection continue to be an active research area [START_REF] Vandaele | Fourier transform measurements of SO 2 absorption cross sections: II.: Temperature dependence in the 29 000-44 000 cm 1 (227-345 nm) region[END_REF][START_REF] Hermans | Fourier transform measurements of SO 2 absorption cross sections: I. temperature dependence in the 24 000-29 000 cm 1 (345-420 nm) region[END_REF]. And the molecule continues to catch interest in many fields, with the study of volcano emission [START_REF] Bourassa | Large volcanic aerosol load in the stratosphere linked to asian monsoon transport[END_REF], and climate palaeontology with the first observation of Sulfur mass-independent fraction in Archean sediments [START_REF] Baroni | Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions[END_REF][START_REF] Gaillard | Atmospheric oxygenation caused by achane in volcanic degassing pressure[END_REF][START_REF] Hattori | SO 2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism[END_REF][START_REF] Whitehill | Vibronic origin of sulfur mass-independent isotope e↵ect in photoexcitation of SO 2 and the implications to the early Earth's atmosphere[END_REF], which increase greatly the interest in the molecule.

Because of the pertinence of SO 2 in these di↵erent fields, theoretical investigations have also been carried out [START_REF] Huzinaga | Abinitio and model potential calculations for the ground state of SO 2[END_REF][START_REF] Kamiya | Theoretical studies on the potential energy surfaces of SO 2 : Electronic states for photodissociation from the C 1 B 2 state[END_REF][START_REF] Li | Potential energy surfaces for low-lying electronic states of SO 2[END_REF] and provided single point calculation and cuts in the PES with a good overview of the pertinent potential energy surfaces of both the singlet and triplet states. While the molecule has been widely study over almost one century, only few studies have been performed, concerning the photo absorption spectrum [START_REF] Dehestani | Theoretical investigation of absorption spectrum of SO 2 molecule: Including S1-S2 vibronic coupling[END_REF] and the dynamics [START_REF] Müller | Adiabatic wave-packet motion on conically intersecting potential energy surfaces. The case of SO 2 ( 1 B 1 -1 A 2 )[END_REF] and do not provide enough information for the total understanding of the photophysics taking place in the 3.1 5.5 eV range.

The specific choice of SO 2 for this thesis has been greatly motivated by the recent experimental work carried out by I. Wilkinson, A. Stolow and D. Villeneuve from the university of Ottawa and H-J. Wörner at the ETH in Zürich [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF]. They performed two di↵erent pump-probe schemes in order to study the dynamics initiated by an excitation into the two first singlet excited states. One experiment used Time-Resolved Photo-Electron Spectroscopy (TRPES), method in which the probe ionised the molecular system after a controllable delay with the pump, and the yield of photoelectron is monitored as a function of the time. This method, in the same way as high-order harmonic spectroscopy, its sensitive to both the nuclei and valence-electron dynamics, which derives from the ionisation-matrix [START_REF] Hockett | Time-resolved imaging of purely valenceelectron dynamics during a chemical reaction[END_REF]. Using this probe, they have been able to track the signature of the dynamics of the wavepacket in the neutral excited states. The second set of experiment makes use of the HHG spectroscopy after a prior excitation with the same pump as before. While this method is established for unprecedented sensitivity to both nuclear and electron motion, no clear signature of dynamics is observed, while features similar to the case of NO 2 were expected. It shows that the HHG spectroscopy applied to molecular dynamics required theoretical investigation in order to understand its applicability and why it does not work for any kind of system.

The aim of our work is to answer to the previous interrogation and try to understand the limits of application of the HHG spectroscopy to study correlated electron-nuclear dynamics. In order to achieve this goal, two main points have to be studied. First we need an accurate description of the photophysics of SO 2 occurring after the excitation in the first absorption band. The singlet electronic states are known to be relevant, but a clear interpretation of the role of the triplet states is also required. This first step is mandatory before the consideration of the HHG in the molecule. The second point is the methodological development of a model to take into account the nuclear dynamics during the HHG process. A direct resolution for a system as SO 2 is beyond the scope of any work nowadays, a set of approximations has to be used, and our model will be based on the Strong-field approximation which has been successfully applied to atoms [START_REF] Lewenstein | Theory of high-harmonic generation by low-frequency laser fields[END_REF] and extended to molecules [START_REF] Lein | Attosecond probing of vibrational dynamics with high-harmonic generation[END_REF], but not for time-dependent dynamics.

The present document collects the results of the last three years to try to unravel the mentioned issues. The first part of the manuscript presents the theoretical framework that has been used to solve the problem. The separation of the electronic and nuclear degrees of freedom in order to solve separately the electronic and nuclear problem is presented, with the consideration of the coupling terms which, in the case of a conical intersection, breaks down the Born-Oppenheimer approximation. Then the concept of diabatic states is introduced and how quasi-diabatic states are obtained. It is followed by the introduction to the methods to solve the time-independent electronic Schrödinger equation, and the time-dependent one for the nuclear dynamics. This part is closed by the introduction of methods used to compute photoabsorption and photoelectron spectra in the time-dependent formalism as well as the methods used for the Time-resolved photoelectron spectra and our model for HHG with a quantum description of the nuclei.

The second part is dedicated to the results of the methodological section. The ab-initio potential energy surfaces of the di↵erent states considered are presented and discussed. Then the states coupled through a conical intersection have been diabatized. An important point of the work is the extension of the diabatization to take into account the geometry dependence of the spin-orbits coupling elements. The results of the method are detailed, and a brief summary of the diabatization of the transition dipole moment is proposed.

The second part will be ended by the results concerning the diabatization of the recombination matrix element required to describe the HHG in the molecule.

The results concerning the physics of the system are exposed in the third and forth part of the manuscript.

Starting by the dynamics in the singlet excited states and the analysis of the photoabsorption spectrum. Next the role of the triplet states is presented and the mechanisms of the intersystem conversion analysed as well as the low energy part experimentally assigned to them. A similar work has been carried out of the ionic states of the system, required to describe the TRPES and HHG processes. The TRPES simulations are presented with a di↵erent model in order to get information regarding the experiment carried out at his time.

The HHG is studied, first with a comparison of the wavepacket formulation and the classical description.

Then a wavepacket dynamic in the electronic ground state is proposed to understand the role of the di↵erent mechanisms with a simple system before the consideration of the dynamics in the excited states, and the comparison with the experiments.

Chapter 2

Theoretical Methods and Algorithms

Introduction

In this chapter the di↵erent methods and approximations that have been used in this thesis are presented.

In the field of atoms and molecules interacting with electro-magnetic fields the problem of a theoretician can be conveniently presented, it is just contained in one general equation:

ih d dt | (t)i = Ĥ(t)| (t)i, (2.1) 
the time dependent Schrödinger equation [START_REF] Schrödinger | Quantisierung als eigenwertproblem[END_REF]. Without going into further details, this equation is the basis of quantum mechanics, describing the physical law of the dynamics on the particle scale. It describes the time evolution of the wavefunction | (t)i, the representation of a quantum state of a system, under the influence of a Hamiltonian operator Ĥ(t). Solving this equation gives us the possibility to follow, from a set of initial conditions, the evolution in time of the system. Unfortunately analytical solutions are only possible for textbook examples and such solutions are generally not available for physical systems such as multi-electron atomic or molecular systems. The goal of this methodological part is to highlight how we solved the Schrödinger equation for our system, the di↵erent approximations we chose for the di↵erent physical processes we were interested on.

Even if we will try to be as general as possible, one should keep in mind that the final goal of this work 9 is to study the sulfur dioxide molecule, composed of one sulfur atom and two oxygen atoms with a total of 32 electrons. In principle all the methods discussed here can be applied to any system, but the choice of approximation and methods always have to be chosen for a particular system.

Quantum treatment of the nuclear motion

Starting from the general form of the Schrödinger equation (2.1), let us have a look on its di↵erent terms that compose it. We want to describe a molecular system in empty space without interaction with the rest of the universe. The molecule is composed of a finite number N of nuclei that can be labelled k, with k = 1, 2, 3 . . . , N. Each atom k has a number n k of electrons leading to a total of electron n = P N i n k in the system. Introducing a three-dimension orthonormal frame in space, we can attribute to each of the particles of our system a set of three Cartesian coordinates and define a position vector that we call R k for the nuclei and r i for the electrons. Projecting our quantum state | (t)i onto the basis formed by the position of the (N + n) particles we obtain a representation of the wavefunction (wf ) of the system (R, r, t) in this particular basis where we introduced R and r the vector collecting the positions of all nuclei and electrons, respectively.

The Hamiltonian Ĥ(t) describes all the interactions in the system and can be expressed as the sum of two terms:

Ĥ(R, r, t) = T (R, r) + U (R, r, t) (2.2) 
where we have introduced the kinetic energy operator T (R, r) and a general potential energy operator U (R, r, t). The latter can be decomposed in a time dependent and a time independent terms:

U (R, r, t) = V (R, r) + f (R, r, t). (2.3)
In the purpose of this section we will drop the time dependent part, f (R, r, t), of the potential function, because we will only study the molecular system. We will reintroduce it to deal with the interaction of the molecule with an external electric field later. Then our working Hamiltonian reads: Ĥ(R, r) = T (R, r) + V (R, r).

(2.4)

In the following the atomic unit system will be used [START_REF] Cvitas | Units and Symbols in Physical Chemistry -The Green Book[END_REF]. In the Cartesian basis that we introduced, the kinetic energy operator can be written,

T (R, r) = n X i 1 2 r 2 e,i + N X k 1 2M k r 2 k .
(2.5)

In the above equation r 2 e,i and r 2 k represent the Laplacian of the electron and of the k th nucleus, respectively.

M k is the ratio of the mass of nucleus k to the mass of an electron. The potential function V (R, r) describes all the electrostatic interactions between the particles of the systems, and can be written as:

V (R, r) = n X i N X k Z k |R k r i | + n X i>j 1 |r i r j | + N X k>l Z k Z l |R k R l | , (2.6) 
where we introduced Z k the nuclear charge of the k th nucleus. Reading the above equation from left to right, we have the electron-nucleus attractive interaction, the electron-electron and the nucleus-nucleus repulsive interactions. Our system is composed of two di↵erent particles, the electrons and nuclei, with di↵erent properties, so in the following we will rewrite Eq. (2.5) and (2.6) to concentrate on the electronic part of the Hamiltonian.

The Born-Huang expansion and Born-Oppenheimer approximation

The main idea of the Born-Oppenheimer (BO) approximation [START_REF] Born | Zur quantentheorie der molekeln[END_REF] is based on the mass ratio of the electrons and nuclei. The nuclei are composed by the nucleons (protons and neutron) and have masses ⇠ 1836 times heavier than the electron one. The resulting stronger inertia of the nuclei compare to the electron allows to consider that the electrons move in the field of fixed nuclei. In addition, the Hamiltonian does not depend on the time variable and we can proceed with the time-independent Schrödinger equation (TISE) [START_REF] Szabo | Modern quantum chemistry[END_REF][START_REF] Levine | Quantum Chemistry[END_REF],

Ĥ(R, r) (R, r) = E (R, r), (2.7) 
where we used the Hamiltonian from Eq. (2.4), and E the total energy of the system. The BO approximation results in the definition of the electronic wavefunction e (r; R), where the inclusion of the semi-colon indicates that the electronic wavefunction depends parametrically of the nuclei positions R. Collecting only the electronic part of the Hamiltonian (2.4), we define the time-independent electronic Schrödinger equation:

Ĥe (r; R) l e (r; R) = E l e (R) l e (r; R), (2.8) where the electronic energy E l e (R) depends on the position of nuclei and Ĥe (r; R),

Ĥe (r; R) = n X i 1 2 r 2 e,i n X i N X k Z k |R k r i | + n X i>j 1 |r i r j | (2.9)
is the electronic Hamiltonian. The set of eigenfunctions { l e (r; R)} forms a complete basis of the electronic space, spanning every value of R and we will detail later (see Sec. 2.4) how the l e (r; R) are obtained. We can use this complete basis to expand the full wavefuntion of the system (r, R) [START_REF] Domcke | Conical Intersections: Electronic Structure, Dynamics & Spectroscopy[END_REF],

(r, R) =

X i i e (r; R) i (R), (2.10) 
where i (R) is the vibrational nuclear wavefunction. Inserting this ansatz (2.10) in the Schrödinger equation Eq. (2.7), multiplying on the left by j⇤ e (r; R) and integrating over the electronic coordinates leads to a set of coupled di↵erential equations for the nuclear wavefunction j (R),

(E j e (R) + V N (R)) j (R) + X i Z
dr j⇤ e (r; R) TN (R) i e (r; R) i (R) = E j (R). (2.11) Note that the coupling term [ Noting G and F the matrices of r 2 R and r R onto the adiabatic electronic basis set, their matrix elements read,

P i • • • ] comes
G ji = h j⇤ e (R)|r 2 R | i e (R)i, F ji = h j⇤ e (R)|r R | i e (R)i. (2.15)
We can rewrite the non-adiabatic coupling operator as:

X i 1 2M (G ji + 2F ji .r R ). (2.16) 
Thus, by expressing the nuclear wavefunction as a vector = ( 1 (R), • • • , m (R)) † , the Schrödinger equation can be expressed in a matrix form:

E e + ( TN + V N )1. 1 2M (G + 2F.r) = E (2.17)
where E e is the diagonal electronic energy matrix, see Eq. (2.8), 1 is the unitary matrix and the gradient r is a vector in the nuclear space. It is instructive at this point to have a look on the characteristics of the scalar and vectorial coupling terms, starting with the latter, and using the orthogonality relation

h j (R)| i (R)i = ij one gets r R h j e (R)| i e (R)i = hr R j e (R)| i e (R)i + h j e (R)|r R i e (R)i = 0 and F ji = F ⇤ ij . (2.18)
Thus F is anti-Hermitian, and if the electronic wavefunction are chosen to be real, its diagonal is null, i.e.

F ii = 0. The gradient of F is 

r R F ji = h j e (R)
G ji = r R F ji X k F jk F ki . (2.21) 
It turns out that the non-adiabatic coupling is fully defined by the knowledge of F only, and Eq. (2.17) is rewritten as

[(E e + V N .1) 1 2M (r + F ) 2 E] = 0 (2.22)
with the help of (r + F ) 2 = r 2 + F .r + r.F + F .F = r 2 + F .r + G.

(2.23)

It is important to keep in mind that this relation results from the closure relation, and then is truly satisfied in a complete electronic basis only. This situation is impossible to obtain, but Eq. (2.22) is a convenient form to introduce the approximations that may be done to simplify and solve the problem [START_REF] Domcke | Conical Intersections: Electronic Structure, Dynamics & Spectroscopy[END_REF]. (i) The problem can be simplified by setting F = 0 in Eq. (2.22), which leads to a set of uncoupled equations. Each of them can be solved separately for an individual electronic solution i (R), and actually describes the nuclei wavefunction of the adiabatic Potential Energy Surface (PES) E i e (R) associated to i e (r; R). This approximation is the so-called Born-Oppenheimer approximation. (ii) A second possibility to simplify the resolution of Eq. (2.22), known as the Born-Huang approximation, is to neglect only the o↵ diagonal elements of F . In the case of real electronic wavefunction, it is equivalent to consider the diagonal matrix element of G, i.e. G ii , because of the anti-hermitianity of F, see Eq. 2.18, and leads also to a set of uncoupled equations. These approximations have been suggested because of the non-adiabatic coupling is inversely proportional to the nuclei masses and have been shown to be accurate in some situation (for example in our case it is perfectly suitable for the electronic ground state). But in some situations these approximation gives disastrous results, which we will discuss in the following.

The Breakdown of the Born-Oppenheimer approximation

To understand why neglecting the non-adiabatic coupling can lead to disastrous results, we have to come back to F , and particularly on the action of the nuclear gradient on the parametrized electronic wavefunctions and Hamiltonian H e (R). As F is anti-hermitian, only the case j e (r; R) and i e (r; R) with i 6 = j has to be considered, i.e.

r R h j e (R)|H e (R)| i e (R)i = E i e (R)hr R j e (R)| i e (R)i + h j e (R)|r R H e (R)| i e (R)i + E j e (R)h j e (R)|r R i e (R)i , F ji = h j e (R)|r R H e (R)| i e (R)i (E i e (R) E j e (R)) (2.24)
This relation is often called in the literature "non-diagonal" form of the Hellman-Feynman theorem [START_REF] Domcke | Conical Intersections: Electronic Structure, Dynamics & Spectroscopy[END_REF]. In the denominator appears the energy di↵erence between the two electronic states, which means that neglecting F is only possible for electronic states which are well separated in energy. This approximation breaks down in the case of electronic states with similar energies, and becomes worse for two degenerate electronic states, i.e.

with the same energy. As only electronic states with close energies are coupled, the idea has been proposed to restrict the infinite set of coupled Eq. (2.22) to a subgroup of strongly coupled states. We call {↵} this subgroup and we assume their coupling with the complementary manifold weak enough to be neglected. The Schrödinger equation can then be expressed for the subgroup {↵} as:

 ⇣ E {↵} e (R) + V N .1 ⌘ 1 2M (r + F ) 2{↵} E {↵} = 0 (2.25)
using the expanded form of (r + F ) 2{↵} of Eq. (2.23). The derivative coupling F {↵} is well defined in this subgroup of electronic states, but G contains a global interaction term Eq. (2.21),

G ji = r R F ji X k hr R j e (R)| k e (R)ih k e (R)|r R i e (R)i (2.26)
where the index k is running over the complete electronic basis. The truncation of the sum into the subspace {↵} introduces an error that can be estimated by making used of the same relation as Eq. (2.24) considering the diagonal and o↵-diagonal matrix elements,

G ji = 8 > < > : r R ⇣ h j e (R)|rRHe(R)| i e (R)i (E i e (R) E j e (R)) ⌘ P k h j e (R)|rRHe(R)| k e (R)ih k e (R)|rRHe(R)| i e (R)i (E k e (R) E j e (R))(E i e (R) E k e (R)) if i 6 = j h j e (R)|r R H e (R)| i e (R)i if i = j. (2.27)
An error is introduced in the o↵-diagonal terms of G, where the sum over k is restricted to the subspace {↵}. The terms which are neglected present in the denominator the inverse of the energy di↵erence between electronic states of {↵} and the complementary ones. As we assumed that the states of {↵} are energetically well separated to the other, these terms are small. The approximated Schrödinger equation in the subspace of electronic states {↵} is,

[(E (↵) e + V N .1) 1 2M (r + F (↵) ) 2 E] (↵) = 0, (2.28)
which is the expression of the nuclear function in a restricted space of electronic states. The subspace {↵} can include an arbitrary number of states, and Eq. (2.28) is exact when {↵} includes all of them.

Diabatic states

Once the problem reduced to the subspace {↵}, the singularity of F , in the case of degenerate electronic states, still remains. It is interesting to note that this di culty to solve the nuclear dynamics results from our way to handle the electronic calculation. By using adiabatic electronic states (obtained by setting T N = 0) to uncouple the nuclear motion from the electronic one, we introduced a coupling into the equation of the nuclear motion, which leads to a coupling between the di↵erent electronic states. Nevertheless, nowadays this method is certainly the most used for large set of system and the most practical one and then we have to deal with it. Coming back to our problem, the non-adiabatic coupling will be strongly reduced if the electronic functions have a smooth variation according to the nuclear displacement, or even vanishing if they do not depend of them. The method to handle the non-adiabatic coupling is to find a more suitable electronic basis to express the total wavefunction. Such basis are called diabatic basis and will be denoted in the following as

{ (d)
i (r; R)} where we have dropped the subscript " e " for electron. In the same idea we rename the adiabatic electronic basis { (a) i (r; R)} in the following discussion. The idea of the diabatization is to find a unitary transformation U (R), which minimises the non-adiabatic coupling, in the following we use the notation:

U R ⌘ U (R).
The diabatic electronic functions are defined as [80]

(d) = U † R (a) , (2.29) 
where (a) = (

(a) 1 (r; R), • • • , (a) m (r; R)) and (d) = ( (d) 1 (r; R), • • • , (d) 
m (r; R)) are row vectors collecting all the diabatic and adiabatic wavefunctions, respectively. The total wavefunction, which does not depend on the basis, can be expressed in the two basis as,

(R, r) = (d) . (d) = (a) . (a) (2.30)
where (d) and (a) collect the vibrational wavefunction in the diabatic and adiabatic basis, respectively with the notation introduced in Sec. 2.2.1. From the definition in Eq.(2.29), we obtain:

(a) = U R (d) and (d) = U † R (a) , (2.31) 
where we used the properties of an unitary matrix, i.e.

U 1 R U R = U † R U R = 1.
The diabatic vibrational wavefunctions can then be used in Eq. (2.22),

 (E e (R) + V N .1) 1 2M (r + F ) 2 E U R (d) = 0 , [E e (R) + V N .1 E]U R (d) 1 2M [r 2 U R + GU R + 2F rU R ] (d) 1 M [rU R + F U R ]r (d) 1 2M U R r 2 (d) = 0 (2.32) If we now assume that U R is chosen that rU R + F U R = 0 (2.33)
Eq. (2.32) not becomes only more simple but leads to another interesting property, when evaluating the gradient of Eq. (2.33) using Eq. (2.21)

0 = r(rU R + F U R ) = r 2 U R + GU R + 2F rU R . (2.34)
Thus Eq. (2.32) becomes

[E e (R) + V N .1 E] U (d) 1 2M U R r 2 (d) = 0, (2.35) 
that, when multiplying on the left by U † , leads to the more attractive equation

[E (d) e (R) + V N .1 E] (d) + TN 1. (d) = 0. (2.36)
However, it is still a set of coupled equations but now the coupling is transferred to the diabatic potential matrix

E (d)
e (R), given by

E (d) e (R) = U † R E e (R)U R .
(2.37)

The price to pay is that potential matrix is no longer diagonal and the o↵-diagonal terms of

E (d)
e (R) is a signature of the derivative coupling in the diabatic basis, which is not diagonal anymore. Eq. (2.33) could be di cult to fulfill (and often impossible), but it gives the condition to obtain an exact diabatic basis, which totally removes the non-adiabatic coupling. It is worth making a complete description of the di↵erent schemes that have been proposed to obtain an approximate solution for U R and obtain a set of quasi-diabatic states. Many approaches have been suggested within the last 40 years, and in the following we will focus on the one that we chose to perform in our work. We will highlight its advantage and its inconvenience.

Conical intersection and regularized diabatic states

Particular attention has been carried in the case when F becomes singular, i.e. when two adiabatic electronic states are energetically degenerate. The intersection of the adiabatic states is strongly related to symmetry properties of the states within the point group of the molecular system. Defining the latter gives us the possibility of labelling the di↵erent electronic states according to the irreducible representation in which they belong. The symmetry condition which are needed to have an intersection between two adiabatic electronic states can be easily understood from a general form of the diabatic potential matrix [START_REF] Tannor | Introduction to quantum mechanics: a time-dependent perspective[END_REF][START_REF] Domcke | Conical Intersections: Electronic Structure, Dynamics & Spectroscopy[END_REF], that we can write,

E (d) e (R) = 0 B @ E (d) 11 (R) E (d) 12 (R) E (d) 12 (R) E (d) 22 (R) 1 C A (2.38)
We know that the diagonalisation of the diabatic potential (2.37) leads to the adiabatic potential

E ± e (R) = 1 2  E (d) 11 (R) + E (d) 22 (R) ± q (E (d) 11 (R) E (d) 22 (R)) 2 + 4(E (d) 12 (R)) 2 .
(2.39)

The energy separation between the two adiabatic states E e (R) is given by

E e (R) = E + e (R) E e (R) = q (E (d) 11 (R) E (d) 22 (R)) 2 + 4(E (d) 12 (R)) 2 .
(2.40)

Both squared terms in the square root are positive quantities and to have a degeneracy ( E e (R) = 0) the matrix elements must satisfy simultaneously two conditions:

E (d) 11 (R) = E (d) 22 (R) (2.41) 
and

E (d) 12 (R) = 0. (2.42) 
For a system with only one degree of freedom (e.g. diatomic molecule), if the two electronic states belong to the same irreducible representation both conditions cannot be fulfilled and the well-known non-crossing rules of von Neumann and Wigner stands [START_REF] Von Neumann | über das verhalten von eigenwerten bei adiabatischen prozessen[END_REF]. In the case of two electronic states, which belong to two different irreducible representations, then the numerator of Eq. (2.24) vanishes, i.e. E (d) [START_REF] Itatani | Tomographic imaging of molecular orbitals[END_REF] (R) = 0 by symmetry, and the two states do not interact with each other and may freely cross. Generalizing these considerations for a N-dimension system, two coordinates are required to define the intersection point. In the space spanned by both coordinates, any variation of them lifts the degeneracy with a shape of a double-cone (Eq. (2.40)).

Due to this geometric particularity, these intersections are known as conical intersections.

According to the symmetry of the electronic states and nuclear vibrations, di↵erent kinds of conical intersections can be classified [START_REF] Domcke | Conical Intersections: Electronic Structure, Dynamics & Spectroscopy[END_REF]. (i) Conical intersections between electronic states of the same symmetry are called, same-symmetry conical intersection. This intersection can occur in a subspace of N-2 dimensions, with N the number of internal degree of freedom in the system. (ii) Conical intersections are called symmetryrequired when two electronic states belong the same degenerate irreducible representation, and thus are energetically degenerate. A small asymmetric distortion of the system will lift the degeneracy, leading to the popular example of the Jahn-Teller e↵ect. (iii) The last type of is the so-called symmetry-allowed conical intersections. It take place in a system that can be describe in a high-symmetric point group, but has one (or more) asymmetric dof that can lower its symmetry losing one (or more) symmetry elements. Thus, if in the high-symmetry representation two electronic states with di↵erent symmetry cross each other but belong to the same irreducible representation of the low symmetry group, a symmetry-allowed conical intersection appears. In the high-symmetry subspace, the condition

E (d)
12 (R) = 0 is fulfilled for any R. Defining N g as the number of symmetric dof and N u the number of asymmetric ones, the second condition of Eq. (2.60) is fulfilled in an hyperplane of N g 1 dimensions, where the two electronic state scan cross freely. because s fulfilled from symmetry reason. This type of conical intersection will take place in our system.

The important point in conical intersection is that symmetry plays a primordial role, and can be used to construct the diabatic basis. To continue the discussion on the construction of such basis, as proposed by H. Köppel et al. [START_REF] Thiel | Proposal and numerical test of a simple diabatization scheme[END_REF][START_REF] Köppel | Construction scheme for regularized diabatic states[END_REF][START_REF] Köppel | The concept of regularized diabatic states for a general conical intersection[END_REF], we limit the study into a subspace of two electronic states, i.e. ↵ = 2 in Eq.

(2.28). A general form of the two-state diabatic Hamiltonian, can be expressed as, according to Eq. (2.36),

H dia (R) = ( TN (R) + ⌃(R))1 + W (R) (2.43) = ( TN (R) + ⌃(R))1 + 0 B @ d(R) c(R) c(R) d(R) 1 C A . (2.44)
Diagonalizing the diabatic potential ⌃(R)1 + W (R) with an unitary transformation U R leads (Eq. (2.37)) to the adiabatic potential,

E e (R) = ⌃(R)1 + U R W (R)U † R .
(2.45)

Moreover, diagonalizing the potential matrix W (R) and introducing the Pauli matrix z ,

z = 0 B @ 1 0 0 1 1 C A (2.46)
permits to express Eq.(2.45) as,

E e (R) = ⌃(R)1 + (R) z (2.47) where (R) = p d 2 (R) + c 2 (R)
is the absolute value of the eigenvalue of W (R). By identifying the matrix elements of the adiabatic basis and with the ones of the diagonalised diabatic one, ⌃(R) and (R) can be expressed as a function of the adiabatic states:

⌃(R) = 1 2 (E 1 e (R) + E 2 e (R)) (2.48) (R) = 1 2 (E 1 e (R) E 2 e (R)).
(2.49)

The unitary matrix U R can be expressed for a two-state problem, without loss of generality, as a rotation matrix

U R = 0 B @ cos ✓ R sin ✓ R sin ✓ R cos ✓ R 1 C A , (2.50) 
with ✓ R ⌘ ✓(R) depends on the nuclear coordinates and is defined as the adiabatic-to-diabatic mixing angle. Explicitly writing the diagonalisation of W (R) with the used of U R leads to,

U † R W (R)U R = 0 B @ (cos 2 ✓ R sin 2 ✓ R )d(R) + 2 sin ✓ R cos ✓ R c(R) (cos 2 ✓ R sin 2 ✓ R )c(R) 2 sin ✓ R cos ✓ R d(R) (cos 2 ✓ R sin 2 ✓ R )c(R) 2 sin ✓ R cos ✓ R d(R) (sin 2 ✓ R cos 2 ✓ R )d(R) 2 sin ✓ R cos ✓ R c(R) 1 C A .
(2.51)

This latter becomes diagonal, when equalizing the o↵-diagonal term to 0. This leads to the expression of the

mixing angle ✓ R , (cos 2 ✓ R sin 2 ✓ R c(R) 2 sin ✓ R cos ✓ R d(R) = 0 , ✓ R = 1 2 arctan ✓ c(R) d(R) ◆ . (2.52)
As the singularity of F arises at the degeneracy point and raises numerical problems, the starting point to construct the diabatic basis is the degeneracy point of geometry R 0 . At this geometry both adiabatic states are energetically equal, and it results that

(R 0 ) = p d 2 (R 0 ) + c 2 (R 0 ) = 0 ) c(R 0 ) = d(R 0 ) = 0 (2.53)
or in other words, W (R 0 ) = 0. From this relevant geometry it is possible to expand W (R) in a Taylor series around R 0 , i.e.

W (R) = W (n) (R) + W (n+1) (R) + • • • (2.54)
where the di↵erent orders n with respect to the nuclear displacements are collected in W (n) (R). Considering only the first term of the Taylor expansion, the authors of Ref. [START_REF] Thiel | Proposal and numerical test of a simple diabatization scheme[END_REF] have shown that this leading term, W (n) (R), determines the singular part of the derivative coupling. It can be demonstrate by: (i) the diabatization of the electronic states and (ii) a back-transformation into the adiabatic basis to ensure that the singularity remained [START_REF] Thiel | Proposal and numerical test of a simple diabatization scheme[END_REF]. Using the mixing angle

✓ (n) R defined from W (n) (R) the unitary transformation U (n) R
removes totally the singularity in the diabatic basis. This transformation diagonalises the diabatic

potential matrix W n , U (n) † R W (n) (R)U (n) R = (n) (R) z (2.55)
Applying the inverse of the above transformation on the adiabatic potential matrix yields the expression of the diabatic one

W reg (R) = U (n) R E e (R)U (n) † R = ⌃(R)1 + (n) (R)U (n) R z U (n) † R .
(2.56) From Eq. (2.55) the transformation of the Pauli matrix can be expressed as

U (n) R z U (n) † R = W (n) (R) (n) (R) , (2.57) 
which leads to the final expression of the diabatic potential,

W reg (R) = ⌃(R)1 + (R) (n) (R) W (n) (R). (2.58)
It is important to notice that the Taylor expansion is only used to define the mixing angle

✓ (n)
R , and subsequently to (n) (R) and W (n) (R), but ⌃(R) and (R) are defined from the ab-initio calculations of the adiabatic states. Furthermore, we can see from Eq. (2.43) that when the non-adiabatic coupling term is weak (or vanishes), i.e. c(R) ⇠ 0, the diabatic potentials is similar (or equal) to the adiabatic ones. It happens in the C 2v subspace, but also far from the locus of the conical intersection, when the adiabatic picture is a good approximation (see Sec. 3.3).

Until now, no approximation has been done in the construction of the diabatic states. The singular part of the derivative coupling is the one that leads the dynamics of the system nearby the conical intersection.

Thus in this work we consider only the leading part of the Taylor expansion. Moreover, we assume that in the resulting diabatic basis the nuclear kinetic energy operator ( TN ) is diagonal, which is the approximation of the model.

Nevertheless, the regularized diabatization scheme does not define univocally the transformation from adiabatic to diabatic states yet, because the definition of c(R) and d(R) is only given by one equation,

(R) = p c 2 (R) + d 2 (R). (2.59) 
The symmetry consideration of the conical intersection presented in the beginning of this section will help to solve this problem. In our case we want to deal with a symmetry allowed conical intersection between two electronic states. We call 1 and 2 the irreducible representation of the first and second electronic state, respectively. The two states will interact through a vibrational mode of symmetry v if,

1 ⌦ v ⌦ 2 A , (2.60) 
is fulfilled. This means that the direct product of the electronic and vibrational irreducible representations must include the totally symmetric representation A . As mentioned above, a symmetry allowed conical intersection results from a free crossing of the electronic states of two di↵erent irreducible representations, i.e. 1 6 = 2 . Thus, only an asymmetric vibration can fulfill the condition of Eq. (2.60) in this case. To discuss the vibrational degree of freedom of the molecular system the cartesian coordinates R, used until now, is not convenient. It is more suitable to introduce a set of coordinate Q, which describes molecule in term of vibrational modes, for instance the normal coordinates. We collect the symmetric vibrational modes in the subspace Q g and the asymmetric ones in Q u . In the case where the leading term of the Taylor expansion (Eq. (2.54)) is linear (n = 1), the symmetric coordinates do not couple the electronic states and thus are involved in the diagonal elements of the diabatic potential. It is the opposite for the asymmetric ones, which induced the coupling and thus are involved as o↵-diagonal elements. The diabatic potential reads,

W (1) (Q) = 0 B @ P Ng i  i Q g i P Nu j j Q u j P Nu j j Q u j P Ng i  i Q g i 1 C A , (2.61) 
where the index i runs over the N g symmetric displacement and the index j runs over the N u asymmetric displacement of the molecule. The displacements Q g i and Q u j are defined from the point of degeneracy Q 0 .

From the explicit form of the matrix elements of the diabatic potential, Eq. (2.59) can be rewritten as

(Q) = v u u u t 0 @ Ng X i  i Q g i 1 A 2 + 0 @ Nu X j j Q u j 1 A 2 .
(2.62)

Di↵erentiating the above equation with respect to the asymmetric displacement Q u j at the point of degeneracy

leads to @ (Q) @Q u j Q0 = j , j = 1 2 @(E 1 e (Q) E 2 e (Q)) @Q u j Q0 . (2.63) 
The same holds for the symmetric displacement

Q g i  i = 1 2 @(E 1 e (Q) E 2 e (Q)) @Q g i Q0
.

(2. [START_REF] Hattori | SO 2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism[END_REF] This means that the quantities needed to fully define the diabatic states can be evaluated from the knowledge of the adiabatic states only . As pointed out by the authors, the strength of the method is that no additional ab-initio calculations are requested to diabatize the electronic states. To determine the coupling constants using Eq. (2.63) and (2.64) the di↵erentiation has to be done at the intersection point Q 0 , but in the case of N g symmetric displacements the hyperplane of intersections has to be determined, which is not a straightforward task. Thus, this evaluation of the coupling constant is only manageable for small molecular systems.The authors of Ref. [START_REF] Köppel | Construction scheme for regularized diabatic states[END_REF] proposed a clever idea resulting from symmetry consideration, which consists of taking the adiabatic and diabatic states equal in the high symmetry subspace. This makes sense because the seam of conical intersections fully belongs to this subspace and the adiabatic states do not interact with each other. In this subspace W (1) (Q) is diagonal, and by identifying the diagonal elements to the adiabatic potential we obtain,

W (1) (Q) = 0 B @ 0 (Q g ) P Nu j j Q u j P Nu j j Q u j 0 (Q g ) 1 C A (2.65)
Where we introduced the notation 0 (Q g ) to describe the evaluation of (Q) in the sub-space Q g . Finally, the diabatic Hamiltonian becomes,

H dia (Q) = ( TN + ⌃(Q))1 + (Q) q 2 0 (Q g ) + P Nu j 2 j (Q u j ) 2 0 B @ 0 (Q g ) P Nu j j Q u j P Nu j j Q u j 0 (Q g ) 1 C
A .

(2.66)

The system that we consider (SO 2 ) is small enough to determine the seam of conical intersections and use the above diabatic Hamiltonian. But for larger system, Mahapatra et al. [START_REF] Köppel | Construction scheme for regularized diabatic states[END_REF] proposed to determine the coupling constants of the asymmetric motions, in a similar way than the one used for symmetric displacements,. The { j } can be computed by di↵erentiating (Q) with respect to the asymmetric displacement at all point of the high-symmetry subspace,

0 j = " 1 2 @ 2 (Q) @(Q u j ) 2 # 1/2 Q u j =0 . (2.67) 
Both methods to determine the coupling constants ( and 0 ) will be discussed later in this thesis (see Sec.

3.3.1)

. Now the unitary matrix to transform the adiabatic basis into the diabatic one is well defined.

Electronic properties from adiabatic to diabatic basis

The Quantum Chemistry packages, and more generally the solution of the electronic Schrödinger equation provides the adiabatic electronic wave functions, but these latter is not suitable to solve the nuclear Schrödinger equation. Then the di↵erent properties such as the transition and the dipole moments, the spin-orbit couplings and any other electronic properties are computed with the adiabatic wavefunction(s).

In other words, these properties are the matrix elements of a mono-or multi-electronic operator Ô in the adiabatic basis. Thus, they must be suitably transformed into the diabatic one. Considering a two-state problem, the matrix representation of O (a) in the adiabatic basis reads,

O (a) = 0 B @ O (a) 11 O (a) 12 O (a) 21 O (a) 22 1 C A . (2.68)
As the electronic wavefunction depends parametrically on R, the same stands for the matrix representation of the electronic operator. In this section, the electronic wf and the matrix elements depend on R but it will not be mention explicitly. Each matrix element is expressed as,

O (a) ij = h i(a) e | Ô| j(a) e i (2.69)
one can also express the diabatic electronic wavefunction as a linear combination of the adiabatic ones by applying the transformation U , as (2.70)

0 B @ 1(d) e 2(d) e 1 C A = U † 0 B @ 1(a) e 2(a) e 1 C A = 0 B @ U 11 
The matrix element of O (d) in the diabatic matrix can be expressed thanks to the matrix elements in the adiabatic basis, (2.72)

O (d) 11 = h 1(d) e | Ô| 1(d) e i (2.71) 
equivalently, if we use the matrix notation,

O (d) = U † O (a) U . (2.73)
All the methodology that is needed to deal with a two-state problem with a symmetry-allowed conical intersection has been reviewed at this point. Nevertheless, in our study we investigate the interaction between singlet and triplet electronic states through the Spin-Orbit Coupling (SOC). In the perturbation theory and thanks to the Breit-Pauli operator, it is possible to compute the latter. The resulting potential matrix is not diagonal, and contains the SOC as o↵-diagonal elements. If we diagonalise this potential matrix, a new basis of electronic states is obtained, with functions that are mixed configuration of singlet and triplet states. In this basis, the physical character of the electronic states is lost and the dynamics of the intersystem conversion is di cult to understand. The choice here is to keep the non-mixed basis function, even if the potential is not diagonal, to simplify the interpretation of the physical process during the nuclear dynamics. To be accurate, we have to take into account the SOC as a function of the nuclear geometry. Thus, all the SOC elements resulting from the ab-initio calculations must be transformed into the diabatic basis. It is reminiscent to the transformation discussed above, but now we have to deal with more than two electronic states. In the following, we discuss the diabatization of the SOC, in two di↵erent basic cases. First we can consider two singlet states coupled by a conical intersection and both interacting through the SOC with a third state, triplet of spin. The adiabatic potential matrix of the system reads,

E (a) = 0 B B B B @ E (a) 1 0 S 1 /T 0 E (a) 2 S 2 /T (S 1 /T ) † (S 2 /T ) † E (a) T 1 C C C C A , (2.74) 
where

E (a)
1,2 stands for the adiabatic PES of the two singlet states and E (a)

T for the one of the triplet state T .

We also introduced S i /T the SOC between the singlet state i and T . Note that each element of Eq. (2.76) depends on the nuclear coordinates. Since there is a conical intersection between the singlet states, they can be diabatized using the unitary transformation U S , construct exclusively in the singlet subspace. This transformation leaves unchanged the triplet state, and its general expression reads,

U tot = 0 B @ U S 0 0 t 1 1 C A . (2.75)
where U S is defined by Eq. (2.50), and 0 † = (0 0). This transformation matrix is easy to understand, applied on the total adiabatic potential matrix, it diabatizes the singlet states thanks to U S and leaves unchanged the adiabatic triplet state. Applying the transformation matrix, U tot , on the full adiabatic potential matrix (i.e. with o↵-diagonal elements), leads to the diabatic potential matrix and transform the adiabatic SOC onto the diabatic one.

In the second case we consider two singlet states coupled with a conical intersection and two triplet states also coupled by a conical intersection. These four electronic states interact with each other through the SOC, and the adiabatic potential matrix reads,

E (a) = 0 B B B B B B B B @ E (a) 1 0 S 1 /T 1 S 1 /T 2 0 E (a) 2 S 2 /T 1 S 2 /T 2 (S 1 /T 1 ) † (S 2 /T 1 ) † E (a) T1 0 (S 1 /T 2 ) † (S 2 /T 2 ) † 0 E (a) T2 1 C C C C C C C C A , (2.76) 
where we introduced a new triplet state T 2 , with its adiabatic PES on the diagonal and its coupling with the two singlet states as o↵-diagonal terms. Proceeding in the same way than above, we can diabatize separately the singlet and triplet states. From this diabatization, we determine the transformation matrix to diabatize the signet states U S and the triplet states U T . Thus, the total transformation matrix, which acts on the total adiabatic basis, reads,

U tot = 0 B @ U S 0 0 U T 1 C A , (2.77) 
where 0 stands now for 4x4 null matrix. Again applying this transformation on the full adiabatic matrix, the diabatic potential is obtained, with the correct diabatization of the SOC elements. These two cases can then be combined to study more complex situations, and will be detailed in Sec. 3.4.1 for the case of SO 2 .

Numerical Methods

Numerical formulation of the TDSE

To be numerically solved, the TDSE has to be formulated in a suitable set of equations. First we need a basis, equivalent to the primitive basis function discussed in the electronic problem (see Sec. 2.4). Two methods exist to formulate the wf and thus the Hamiltonian in a basis. One is known as the colocation method rewrites the wavefunction and the Hamiltonian on a set of discretized points along each coordinates.

In a discrete basis, the derivative operators can be approximated using finite di↵erence methods and the TDSE rewrites as a matrix problem. This approach is used, for instance, in the Cranck-Nicholson scheme [START_REF] Crank | A practical method for numerical evaluation of solutions of partial di↵erential equations of the heat-conduction type[END_REF]. Due to the finite di↵erence approximation of the spatial or temporal derivatives, the step between basis point must be small to avoid a too large numerical error. For a multidimensional systems such description

becomes not e cient or often impossible. The second method is known as spectral method. It considers that the nuclear wavefunction can be exactly expanded in any arbitrary basis of square-integrable functions:

(R, t) = X i a i (t) i (R). (2.78)
In this basis the Hamiltonian can be expressed in a matricial form, with matrix elements,

H ij = h i |H| j i = h i |T | j i + h i |V | j i = T ij + V ij . (2.79)
To be expressed numerically the set of functions { i } must be truncated up to a finite number N . The use of this finite representation is referred in the literature [START_REF] Beck | The multiconfiguration time-dependent Hartree (MCTDH) method: a highly e cient algorithm for propagating wavepackets[END_REF] as the Variational Basis Representation or shortly noted "VBR". To discuss the e↵ect of such a truncation on the TSDE, it is useful to introduce the projector, P N onto the subspace of the N basis functions [START_REF] Tannor | Introduction to quantum mechanics: a time-dependent perspective[END_REF],

P N = N X j=1 | j ih j |. (2.80)
Using orthogonal basis functions, the projection of the exact (or total) wavefunction onto the subspace reads then,

P N = N X j=1 X i a i | j ih j | i i = N X j=1 a j | j i = N (2.81) (2.82)
The complementary part of N , noted ? , to descrie the total wavefunction, can be obtained by applying

(1 P N ), ? = (1 P N ) = X i=N +1 a i | i i. (2.83)
As the total wavefunction can be expressed as the direct sum of N and its complementary,

= N + ? (2.84)
it is easy to show that N is a variational representation of the exact wavefunction. In order to have an accurate description of in the subspace, the latter must ensure that ? is negligible. This can be done by smartly choosing the basis functions to ensure fast convergence of the truncation or consider a large subspace N . The basis functions are not subject to any constraint for the moment, and can be chosen to have an analytical expression for evaluating the kinetic energy matrix elements and the position operator. A simple choice of such basis functions is the consideration of the eigenfunction of the kinetic energy operator. The matrix elements then read,

X ij = h i |x| j i (2.85) 
T (1) ij = h i | @ @x | j i (2.86) T (2) ij = h i | @ 2 @x 2 | j i. (2.87) 
The problem of the spectral method is the evaluation of the potential matrix elements,

V ij = h i |V | j i, (2.88) 
as in general, these matrix elements do not have analytical form. Their evaluation have to be done numerically over the range of the nuclear coordinates, because the basis functions are delocalised. In the general case it is even worst because the potential is obtained from ab-initio calculations and are known only for a discrete number of nuclear geometries, which make the evaluation not accurate. But the potential operator can be expressed as a function of the nuclear coordinates and then its matrix can be expressed as a function of the position matrix,

V F BR = V (X) (2.89)
where the superscript stands for Finite Basis Representation. This expression is an approximation of potential matrix V V BR in the VBR. The potential evaluated at a discrete set of nuclear coordinates {x k } n k=1 can be expressed analytically as a polynomial function L n (x) by the Lagrange polynomial interpolation, such as,

8x i 2 {x k }, L n (x i ) = V (x i ), (2.90) 
which interpolates the potential V between two consecutive points x k and x k+1 . From Lagrange interpolation theory, we know that L n is a polynomial of degree n 1 or smaller, and can be formally rewritten as,

L n (x) = l 0 + l 1 x + l 2 x 2 + • • • + l n 1 x n 1 = n 1 X i=0 l i x i . (2.91)
We do not care about the evaluation of the coe cient l i , the knowledge of this analytical expression of V is enough, and can be used to compare the VBR and FBR potential,

V V BR ⌘ P N V P N = P N n 1 X i=0 l i x i ! P N (2.92) 
and

P N V F BR P N = V (P N XP N ) = n 1 X j=0 l j (P N xP N ) j = n 1 X j=0 l j (P N x) j P N , (2.93) 
where we used the projector property, P 2 = P . Even if V F BR and V V BR look di↵erent, when the basis set is complete, the projector is then equal to the identity and both potentials are equal. Thus, the VBR and FBR representations are equivalent in a complete basis set but not in the case of the truncated one. Note that the FBR is not variational anymore. Due to the simplified expression of the potential in the FBR, this latter is used and to evaluate the potential, the position matrix can be diagonalised using the unitary transformation U,

X = U X diag U † . (2.94)
Noting {x ↵ } the set of eigenvalues of X diag , the potential matrix can be easily evaluated in this new basis and can be transformed back to the FBR, through

V F BR jk = N X ↵=1 U j↵ V (x ↵ )U ⇤ k↵ (2.95)
This procedure has been introduced by Harris et al. [START_REF] Harris | Calculation of matrix elements for one-dimensional quantum-mechanical problems and the application to anharmonic oscillators[END_REF] and they built the full Hamiltonian in the FBR.

An important step has been done by Dickson and Certain [START_REF] Heather | Discrete variable theory of triatomic photodissociation[END_REF], who showed that if the position operator is tridiagonal in the basis, which is the case for the classical orthogonal polynomials (Hermite, Legendre, etc.), then the FBR approximation turns to be a Gaussian quadrature approximation, with its well known quality.

The discrete variable representation (DVR) has then be introduced on the idea that the unitary matrix U used to diagonalise the position operator can actually be used to define a new basis, the DVR, to express the TDSE. In this basis the position operator is diagonal per construction, and the potential matrix easily computed Eq. (2.95).

Numerical solution of the TDSE

We introduced previously the DVR basis to represent the wavefunction, and its description by a collection of coe cients on the DVR grid points. As the TDSE and the TISE do not have an analytical solution, it requires the use of numerical methods to solve them. It seems thus primordial to think about the system, for which we need to solve the TDSE and how it is expressed on a computer. One of the goals of theoretical chemistry is to study polyatomic molecules. The nuclear wavefunction used to describe the latter is a function of the coordinates of all the atoms which composed it, that we call in the following N at . In our case we are interested at the molecular vibrations, and we can remove translational and rotational degree of freedom. The dimension of the wf remains to N at 5 or N at 6 vibrational degree of freedom, depending if the molecule is linear or not, respectively. Then to study molecule with a large number of atoms, the wavefunction has to be construct on a DVR grid, which is the product of the DVR used for each dof. The general form of the wf reads [START_REF] Beck | The multiconfiguration time-dependent Hartree (MCTDH) method: a highly e cient algorithm for propagating wavepackets[END_REF][START_REF] Worth | The heidelberg mctdh package: A set of programs for multi-dimensional quantum dynamics[END_REF],

(q 1 , • • • , q f , t) = n1 X j1=1 n2 X j2=1 • • • nf X jf =1 C j1,••• ,jf (t) f Y ↵=1 (↵) j↵ (q ↵ ) (2.96)
where we introduce q i as the coordinate of the dof i, n i the number of DVR functions used to describe the i th dof and f the total number of dof. The ↵ i↵ are the DVR functions which are used as a basis to represent the wf and C(t) the time dependent coe cient of the wf in this former. The total number n tot of DVR functions use to describe the system is,

n tot = f Y i=1 n i . (2.97)
To simplify, we consider that the same number DVR functions is used for each dof, i.e. n i = n 8i, and we get n tot = n f . The coe cients of the wavefunction are complex numbers and to be accurately described in the computation each of them is stored on 16 bytes. Moreover, to have an e cient calculation, the wavefunction must be stored in the RAM of the computer. Then the quantity of RAM needed is given by 16 ⇥ n tot bytes.

As a simple example, we can estimate the RAM required considering 50 points for each dof, the results are reported in Tab. 2.1. [START_REF] Beck | The multiconfiguration time-dependent Hartree (MCTDH) method: a highly e cient algorithm for propagating wavepackets[END_REF] It appears clearly that in this description of the wavefunction is not manageable for more than ⇠ 5 6 dof s, which represents triatomic molecules on one electronic state. The memory requirement depends also of the number of electronic states included in the calculation, as well as the integration scheme of the TDSE, etc. In our case, for the triatomic molecule SO 2 this method can be applied and has been actually used, except for the study of the multiphoton ionisation (see Sec. 2.5.2 and 5.2), for which we use an extra dof to describe the ionised electron. But generally speaking it is not suitable to study systems of chemical interest.

Hans-Dieter Meyer et al. [START_REF] Beck | The multiconfiguration time-dependent Hartree (MCTDH) method: a highly e cient algorithm for propagating wavepackets[END_REF], proposed an alternative ansatz for the wavefunction in the method called Multi-Configuration Time Dependent Hartree (MCTDH), which is able to deal with molecules including six atoms with 12 active dof s, and even larger. The "Hartree" in MCTDH comes from the description of the wf as an Hartree Product (HP),

HP (q 1 , • • • , q f , t) = c(t) f Y ↵=1 ↵ (q ↵ , t) (2.98) 
This ansatz for the electronic problem is incorrect due to the Pauli principle for fermions (see Sec. 2.4.1) but is suitable for the nuclear wf. The ↵ are the single-particle functions (spf ), and now depend of the time t.

These latter are expressed in the primitive basis, the DVR basis, which is time independent,

↵ (q ↵,t ) = n↵ X j=1 c j (t) (↵) j (q ↵ ).
(2.99)

In the same way that the Hartree-Fock (HF) approximation, the total wavefunction HP describes the multidimensional wf as a product of uncorrelated function of each dof. In the same manner, the equation of motions of MCTDH method can be derived thanks to a variational principle, and the Hamiltonian is composed of one part acting on one spf and a potential part, which describes the interaction between the di↵erent dof thanks to a mean field approximation. Then the HP wf will su↵er the same problem as the HF wf, with a lack of correlation. But this ansatz strongly reduces the size of the wavefunction,

n HP tot = f X i=1 n i (2.100)
and if we consider same n i = n for each dof, n tot = f ⇥ n. While the full expansion of the wf had an exponential scaling according the number of dof, the HP wf has a linear dependency on the former. The MCTDH method, which belongs to the class of MC-TDSCF methods, has exactly the same spirit that the MCSCF method (see Sec. 2.4.2). To bridge the HP wf and the full one, we consider a multiconfigurational wf, defined by a linear combination of HP to obtain the total wf,

MCT DH (q 1 , • • • , q f , t) = n spf 1 X j1=1 • • • n spf f X jf =1 A j1,••• ,jf (t) f Y ↵=1 (↵) j↵ (q ↵ , t). (2.101) 
where A j1,• 

= • • • = n spf f
= n spf and also an identical number of DVR points will be more e cient on localised wavefunction. It is the case for time-dependent calculation of wavepacket propagation but not for the eigenfunctions of the system which are largely delocalised. Now the TDSE has to be solved, and to this end the equations of motion (eom) have to be established, i.e. transforming the formal TSDSE into a suitable set of equations that are possible to solve. The MCTDH package makes use of the time-dependent variational principle of Dirac-Frenkel [START_REF] Dirac | On the annihilation of electrons and protons[END_REF][START_REF] Frenkel | Wave Mechanics; Advanced General Theory[END_REF], expressed as,

n 1 = • • • = n f = n and noting that the number of di↵erent A j1,••• ,jf grows as (n spf ) f , n MCT DH tot = n spf ⇥ n HP tot + (n spf ) f = n spf ⇥ f ⇥ n + (n spf ) f . ( 2 
h |H i@ t | i = 0 (2.103)
where @ t is the time derivative. Let's start with the eom for the exact expansion of the wavefunction Eq.

(2.96) and look at its variation according to its coe cients C j1,••• ,jf turns to be the partial derivative,

⌘ @ @C j1,••• ,jf = n1 X j1=1 • • • nf X jf =1 @C j1,••• ,jf (t) f Y ↵=1 (↵) j↵ (q ↵ ) (2.104)
because the primitive basis is fixed. We also can look at the derivative of with respect to time: 

@ t = n1 X j1=1 • • • nf X jf =1 Ċj1,••• ,jf (t) f Y ↵=1 (↵) j↵ (q ↵ ). ( 2 
h |H i@ t | i = 0 , h n1 X j1=1 • • • nf X jf =1 C j1,••• ,jf (t) f Y ↵=1 (↵) j↵ (q ↵ )|H| n1 X j1=1 • • • nf X jf =1 C j1,••• ,jf (t) f Y ↵=1 (↵) j↵ (q ↵ )i = ih n1 X j1=1 • • • nf X jf =1 C j1,••• ,jf (t) f Y ↵=1 (↵) j↵ (q ↵ )| n1 X j1=1 • • • nf X jf =1 Ċj1,••• ,jf (t) f Y ↵=1 (↵) j↵ (q ↵ )i (2.106)
which is true for any arbitrary C j1,••• ,jf , and also for the particular case where C j1,••• ,jf = 1 8j i = 1, and

C j1,••• ,jf = 0 8{j i } 2 J2
, fK, this simplifies Eq. (2.106) to:

h f Y ↵=1 (↵) j↵ (q ↵ )|H| n1 X j1=1 • • • nf X jf =1 C j1,••• ,jf (t) f Y ↵=1 (↵) j↵ (q ↵ )i = ih f Y ↵=1 (↵) j↵ (q ↵ )| n1 X j1=1 • • • nf X jf =1 Ċj1,••• ,jf (t) f Y ↵=1 (↵) j↵ (q ↵ )i , i Ċj1=1,••• ,jf =1 (t) = n1 X j1=1 • • • nf X jf =1 h f Y ↵=1 (↵) j↵ (q ↵ )|H| f Y ↵=1 (↵) j↵ (q ↵ )i (2.107)
where we have used the orthogonality of the DVR functions. Introducing the global index

J = {j 1 • • • ⌘ f } and the compact notation, J = Q f ↵=1 (↵)
j↵ (q ↵ ), Eq.(2.107) is simplified to

i ĊK = X J h K |H| J iC J , 8K (2.108) 
which is a set of Q f i=1 n i coupled di↵erential equations with initial condition which can be formally integrated as,

C(t) = e iHt C(0). (2.109)
The eom of the exact wavefunction are easily obtained, but are far too large to be solved for any systems.

For this latter the MCTDH approximation becomes advantageous, or often mandatory. The eom for the MCTDH wf has been already subject to many pedagogic reviews and will not be expressed here, further information can be found in Refs. [START_REF] Beck | The multiconfiguration time-dependent Hartree (MCTDH) method: a highly e cient algorithm for propagating wavepackets[END_REF][START_REF] Worth | The heidelberg mctdh package: A set of programs for multi-dimensional quantum dynamics[END_REF].

In the case of wavepacket propagation methods, the knowledge of an initial state (t = 0) is required to solve the TDSE, as seen in Eq. (2.109). The initial state depends on the physical process considered. In our case we only deal with transition from the electronic ground state of the system to electronic excited states.

Thus, the nuclear wf of the electronic ground state must be determined and to obtain it two di↵erent methods can be used. First, as it is an eigenfunction of the GS Hamiltonian, it can be obtained by diagonalizing it.

This method is discussed in Sec. 2.3.3, but can only be applied for small systems and is time consuming. An second possibility is to perform a relaxation, which is a propagation of a guess function using a imaginary time t = i⌧ [START_REF] Koslo↵ | A direct relaxation method for calculating eigenfunctions and eigenvalues of the schrödinger equation on a grid[END_REF]. The guest function, (t), can be expressed as a linear combination of the eigenstates of the GS Hamiltonian { j } of energy {E j }, as (t) = X j a j e iEj t j .

(2.110)

The introduction of an imaginary time in Eq. (2.110) transforms the imaginary exponent ( iE j t) to a real one ( E j ⌧ ). Thus each eigenfunction is damped to zero with a rate proportional to its eigenvalue. Thus, the ground state, of lowest energy, relaxes slower than the other eigenstates and for a time ⌧ long enough, it is the only one remaining.

Numerical integration of the equation of motion

The derivation of the eoms in the case of the exact and MCTDH wavefunction have been discussed in the previous section and they have now to be solved. Di↵erent methods can be employed in order to solve them as discussed and compared in Ref. [START_REF] Leforestier | A comparison of di↵erent propagation schemes for the time dependent schrödinger equation[END_REF]. In our case the Short Iterative Lanczos algorithm (SIL) and the Runge-Kutta at the eighth order (RK8) have been used. Both methods are already implemented in the MCTDH package. We choose to discuss only the SIL integration scheme and information concerning RK method can be found in Ref. [START_REF] Press | Numerical Recipes in FORTRAN; The Art of Scientific Computing[END_REF]. We have to solve Eq. (2.109), assuming that we know the initial conditions, i.e. the wf at time t = 0. This equation is simple to be solved if we know how to apply the exponential of the Hamiltonian. It is the goal of the SIL method, which has been introduced in the field of quantum chemistry by Park and Light in 1986 [93]. This method belongs to the general class of polynomial approximations, for which the propagator is approximated by a polynomial expansion

e iHt ⇠ X n a n P n (H), (2.111) 
where P n is a polynomial function. The SIL method is based on the iterative Lanczos reduction method [START_REF] Lanczos | An iteration method for the solution of the eigenvalue problem of linear di↵erential and integral operators[END_REF],

which uses the concept of the Krylov-subspace [START_REF] Krylov | On the numerical solution of the equation by which in technical questions frequencies of small oscillations of material systems are determined[END_REF]. The latter is mathematically defined as an invariant subspace of a linear operator. Denoting the Krylov-subspace as K m , its definition reads

HK m = {Hk | k 2 K m } ✓ K m .
(2.112)

One typical example of such subspace is the space spanned by m eigenfunctions of H. But the problem here is that the eigenfunctions of H are unknown and tedious or not possible to compute. The strength of the method is the possibility to build an approximate Krylov-subspace by successively applying the Hamiltonian on one arbitrary vector 0 ,

K 0 m = { 0 , H 0 , H 2 0 , • • • , H m 1 0 }. (2.113)
The Krylov-subspace constructed in this way depends on the vector 0 used. It is an approximation of an exact Krylov-subspace because the last vector H m 1 0 is not contained in K m , i.e. if the Hamiltonian acts on it

H(H n 0 ) = H n+1 0 ✓ K m , if n 6 = m 1 (2.114) H(H m 1 0 ) = H m 0 6 ⇢ K m .
(2.115)

The vector basis obtained are not orthogonal but can be orthogonalised during the construction thanks to a Gram-Schmidt procedure. If we call q i the resulting orthogonal vectors, the construction reads,

q 0 = 0 (2.

116)

Hq 0 = ↵ 0 q 0 + 0 q 1 (2.117) because Hq 0 is not orthogonal to q 0 , it can be expressed as a linear combination of two orthogonal vector q 0 and q 1 . The coe cients are then obtained by projecting Hq 0 on both of them giving,

↵ 0 = hq 0 |H|q 0 i, 0 = hq 1 |H|q 0 i. (2.118)
The third vector is obtained by applying H on q 1 ,

Hq 1 = 0 q 0 + ↵ 1 q 1 + 1 q 2 (2.119)
Again, the coe cients come from the projection of Hq 1 on the orthogonal vectors and read,

↵ 1 = hq 1 |H|q 1 i, 0 = hq 1 |H|q 0 i, 1 = hq 1 |H|q 2 i. (2.120)
We could imagine to continue like this until the basis is built, but the evaluation of higher vectors imply projection of the kind, 0 = hq 2 |H|q 0 i, hq 2 |↵ 0 q 0 + 0 q 1 i, = 0, (2.121) because of the orthogonality of the vectors q i . Then the general construction is a three-term recurrence, expressed as, Hq j = j 1 q j 1 + ↵ j q j + j q j+1 .

(2.122)

The ↵ i and i are the matrix elements of the Hamiltonian in the orthogonal Krylov-subspace. It is tridiagonal and reads,

H m = 0 B B B B B B B B @ ↵ 0 0 0 0 ↵ 1 1 . . . . . . . . . 0 m 2 ↵ m 1 1 C C C C C C C C A ,
and can be e ciently diagonalised numerically [START_REF] Press | Numerical Recipes in FORTRAN; The Art of Scientific Computing[END_REF]. An important point of the method is that the Krylovsubspace is constructed for both the Hamiltonian and the initial vector, thus the polynomial expansion is di↵erent for di↵erent initial vector. If 0 is chosen to be the initial wavefunction, 0 = (t = 0), then the polynomial expansion tailors the Hamiltonian as well as the wavefunction and is a good approximation of the evolution in the near future of the system. It is then convenient to solve the TDSE in the Krylov-subspace thanks to the tridiagonal shape of the Hamiltonian. However the wf has also to be expressed in this basis as well and the TDSE in this basis is expressed as function of the coe cients in the Krylov-subspace d, and satisfies

d(t) = e iHmt d(0). (2.123)
The initial condition is d(0) = (1, 0, • • • , 0) t because q 1 = (t = 0), and it always satisfies (even for (t 6 = 0))

if the wavefunction at time t is used to construct the Krylov-subspace. Diagonalizing H m with the unitary matrix U m such as,

H m = U 1 m H diag m U m (2.124)
we obtain the diagonal form of the Hamiltonian, this can be used to easily evaluate the propagator and solve Eq.(2.123),

d(t) = U 1 m e iH diag m t U m d(0). (2.125)
We obtain the time evolution of the coe cients in the Krylov-subspace, which can be transformed back to the initial basis.

Concerning the accuracy of the method, errors are introduced at two di↵erent stages of the method. The first one, which is numerical, arises during the orthogonalisation of the Krylov vectors and the second is inherent to the construction scheme of the Krylov-subspace. While the first suggests that a small Krylov-subspace should be used to avoid an increasing error in the vectors, the second requires a large space to avoid that the coe cient of the last Krylov vector plays a role in the dynamic, because we neglect its interaction with the complementary space. Actually this two antagonist e↵ects can be used to realise a robust integration scheme in the SIL. As we do not need to use the same Krylov-subspace to propagate the initial wf until time t, it is possible to slice the propagation in shorter time ⌧ , for which the polynomial expansion is accurate, i.e. |d m 1 (⌧ )| 2  ✏, with ✏ the error tolerance wished. Then, a small Krylov-subspace (m ⇠ 20) is used and minimises errors in the orthogonalisation process. At the next time step the same scheme is applied but the construction of the Krylov-subspace is done with (⌧ ).

We present now the formalism to obtain the solutions of the TISE, which helped us to attribute the di↵erent structures in the photo-absorption spectrum, or studied some aspects of the singlet-triplet interaction. We have used the Lanczos diagonalisation implemented in the MCTDH package, which computes the eigenvalues of an Hamiltonian, but as we were also interested in the eigenfunctions, we had to modify it. The idea behind the Lanczos diagonalisation is exactly the same as the one used in the SIL integrator.

This method has been widely spread in numerical diagonalisation for two interesting characteristics: first to compute the eigenvalues almost no storage is required (only 2 vectors of the dimensionality of the system), second the extrema of the Hamiltonian spectrum converges first, which is an advantage as we want to study the lowest ones. Using the construction scheme of the Krylov-subspace, the new matrix shares with the Hamiltonian the same set of eigenvalues, in addition its tridiagonal expression allows to use e cient algo-rithms to diagonalise it. The number of Lanczos vectors is identical to the number of iterations used in the Lanczos algorithm, one vector being constructed at each iteration, and the length of each vector is the same than 0 used to construct the Krylov-subspace. Even if the Lanczos matrix is a square matrix with the dimension of the number of iterations N , usually the number of physical eigenvalues is smaller because the algorithm leads to spurious ones that can be discarded, see for instance [START_REF] Press | Numerical Recipes in FORTRAN; The Art of Scientific Computing[END_REF]. Furthermore the eigenvectors of the Hamiltonian, required in our work, are not the same as the ones of the Lanczos matrix. It can be shown that the eigenfunctions of the Hamiltonian are linear combination of the Lanczos vectors with their respective coe cient being the eigenvectors of the Lanczos matrix. It is not possible for large systems as the one we consider to store the Lanczos vectors but manageable for the eigenvectors. Then we have used twice the Lanczos algorithm, first to generate the Lanczos eigenvectors, then to construct the eigenvectors of the Hamiltonian during the construction of the Lanczos vectors without storing them.

Eigenenergies and eigenfunctions for the electronic problem 2.4.1 Solving the electronic problem

We present here the methods used in this thesis to solve the electronic wave equation problems. Even though these methods are already well known, we wanted to briefly review then for the self-consistency of the manuscript. The electronic Hamiltonian reads [START_REF] Szabo | Modern quantum chemistry[END_REF],

Ĥe = n X i r 2 i 2 n X i N X I Z I |r i R I | + n X i n X j>i 1 |r i r j | (2.126)
we are looking for the n-electron wavefunction | 0 i such that:

Ĥe | 0 i = E 0 | 0 i, (2.127) 
which is the lowest eigenfunction of the electronic Hamiltonian with the associated energy (eigenvalue) E 0 .

The presence in Ĥe of the e e interaction makes the problem not solvable analytically. Let's first discard this term, and write an approximate form of the Hamiltonian:

Ĥapp e = n X i ĥ(i) (2.128)
where we define the one-electron operator ĥ(i) by: ĥ

(i) = r 2 i 2 N X I Z I |r i R I | .
(2.129) ĥ(i) describes the interaction of a single electron i in the field of the N nuclei. The wavefunction associated to this electron can be obtain from:

ĥ(i) a (i) = ✏ a a (i), (2.130) 
i.e. the time-independent one-electron Schrödinger equation. ĥ(i) is an hermitian operator, then an infinite set of { a } wavefunctions satisfy Eq. (2.130). We are interested to the approximate solution of the total approximate Hamiltonian:

Ĥapp e | app 0 i = E app 0 | app 0 i. (2.131) 
Then from the separability of Ĥapp e , it is possible to construct | 0 i as a product of the one particle function

{ a }, app 0 (r 1 , r 2 , • • • , r n ) = a (r 1 ). b (r 2 ) • • • k (r n ), (2.132) 
with a total energy E app 0 ,

E app 0 = k X l=a ✏ l . (2.133)
This approximation of the multi-electron wavefunction has been originally introduced by Hartree, and is known as an Hartree Product (HP). This wavefunction, due to its definition, represents n uncorrelated electrons in the field of fixed nuclei. Slater [START_REF] Slater | The theory of complex spectra[END_REF] has noted that this definition of the total wf does not satisfy the antisymmetry or Pauli principle, and proposed an alternative wavefunction to satisfy it, based on the HP,

| SD 0 i = | a • • • k i = 1 p N ! a (x 1 ) b (x 1 ) • • • k (x 1 ) . . . . . . . . . a (x n ) b (x n ) • • • k (x n ) . (2.134)
Here the superscript SD stands for Slater Determinant, which is the usual name of this wavefunction. The Hartree-Fock (HF) method, which is presented in the following, is an extension of the original Hartree method, with the used of SD as multi-electronon wavefunction. Even if we do not know the solution the electronic problem, because Ĥe is a Hermitian operator, we know that a set of eigenfunctions { a } and eigenvalues {E a } must satisfy the relation:

Ĥe | a i = E a | a i. (2.135) 
Then any function f of the electronic coordinates can be exactly written as a linear combination of the { a },

|f i = X a c a | a i = X a | a ih a |f i, (2.136) 
and its energy can be obtained as,

E f = hf | Ĥe |f i (2.137) = X a c a c ⇤ a E a hf | a ih a |f i. (2.138) 
The Rayleigh-Ritz variational principle [START_REF] Szabo | Modern quantum chemistry[END_REF] demonstrates that E f is an upper bound of the lowest eigenvalue of Ĥe , with equality only if f = 0 . The combination of the SD function and the variational principle is the corner stone of the Hartree-Fock method, for which the goal is to optimise thanks to the variational principle a SD to lower its energy in oder to converge to 0 . The energy of a SD can be expressed as,

E SD = h SD | Ĥe | SD i = h SD | n X i=1 ĥ(i) + n X i=1 n X j>i r 1 ij | SD i = n X i=1 h i | ĥ| i i + 1 2 n X i=1 n X j=1 [h i j |r 1 12 | i j i h i j |r 1 12 | j i i].
(2.139)

The above equation is derived using the Slater rules [START_REF] Szabo | Modern quantum chemistry[END_REF] to evaluate matrix elements with SD wavefunctions.

The two last terms arise from the e e interaction, the first one,

h i j |r 1 12 | i j i = Z dx 1 dx 2 ⇤ i (x 1 ) ⇤ j (x 2 ) 1 r 12 i (x 1 ) j (x 2 ) (2.140)
is the Coulomb repulsion between the two electrons, and can be used to define the Coulomb operator:

Ĵj = Z dx 1 | j (x 1 )| 2 r 1 12 .
(2.141)

The second term results from the fact that the electrons are indistinguishable and this term decreases the energy of the SD by exchanging the electron orbitals for electrons with the same spin. We can define the exchange operator Kj thanks to its action on one spin orbital i :

Kj i (x 1 ) = Z dx 1 ⇤ j (x 1 )r 1 12 i (x 1 ) j (x 2 ). (2.142)
It is then possible to rewrite the energy of the SD by making use of the Coulomb and exchange operators:

E SD = n X i=1 [h i | ĥ| i i + n X j=1 h i | Ĵj Kj | i i] (2.143)
and define the Fock operator F from the above expression as:

F (i) = ĥ(i) + n X j=1 ( Ĵj Kj ). (2.144)
The Fock operator is a mono-electronic operator, i.e. it acts on one electron orbital only. But the Coulomb and exchange operators are defined thanks to the remaining orbitals, it is self-consistent, which means that we need the knowledge of all the { j } to defined it. Inherently to its definition, the e e repulsion is treated as a mean field, i.e. the electron i will experience the mean field of the remaining n 1 electrons. To find the best SD in the variational sense, we can use the flexibility on the choice of the spin-orbitals, which composed the SD, with the constraint that they remain orthogonal,

h a | b i = ab . (2.145)
An elegant way to minimise the SD energy, with the above constraints, is to use once again the Lagrange multiplier method, which allows to minimise a functional under constraints. In this case the Langrangian reads:

L(x 1 • • • x n , ij ) = E ⇥ SD ⇤ n X i,j ij h i | j i, (2.146) 
where the ij are the Lagrange multipliers. The goal is to find the minimum of the energy

E SD = E[ SD ],
which is a functional of the SD wavefuntion. Mathematically, the minimum is obtained when the variation of L is null, i.e.

L = 0 , E ⇥ SD ⇤ + 8 < : n X i,j ij h i | j i 9 = ; . (2.147)
The di↵erentiation of the energy functional can be write:

E ⇥ SD ⇤ = h h SD | Ĥe | SD i i = n X i=1 h i | F | i i + c.c. (2.148) 
with c.c. standing for complex conjugate. The second term of Eq. (2.147), can be expressed as:

8 < : n X i,j ij h i | j i 9 = ; = n X i,j ij (h i | j i + h i | j i) (2.149) = n X i,j ij h i | j i + c.c. (2.150)
Injecting the above relation into eq. (2.147) gives:

n X i=1 h i | F | i i n X i,j ij h i | j i + c.c. = n X i=1 h i | 2 4 F | i i n X j ij | j i 3 5 + c.c. = 0. (2.151)
The above equation must be fulfilled for any i , which means that we obtain a system of n equations of a coupled eigenvalue problem for each spin-orbital

F | i i = n X j ij | j i, (2.152) 
known as the Hartree-Fock equations. It can be shown that the ij are equal to the matrix elements 

F ij = h i | F | j i of the
F | 0 i i = 0 ii | 0 i i (2.153) 
and are now uncoupled. The HF theory defines the problem that we have to solve. Using an initial function, which can be arbitrary chosen, it is possible to approach the exact solution of the electronic Hamiltonian H e , supposing that the initial function is defined up to a set of variable parameters. A general form of the parametrized initial wavefunction has been developed by Roothan and Hall in 1951 [START_REF] Roothaan | New developments in molecular orbital theory[END_REF][START_REF] Hall | The molecular orbital theory of chemical valency. viii. a method of calculating ionization potentials[END_REF] and established an e cient framework to numerically solve the HF equations, which remains nowadays the basis of most of the Quantum Chemistry calculations. Their idea is to rewrite the HF equations, which are a set of integro-di↵erential equations with respect to the spatial coordinates of the electron, starting from an a priori known basis functions of the electronic coordinates, which are called primitive basis functions { i }. The spatial orbitals { a } can be expanded exactly in the primitive basis, as far as the basis set is complete:

a (r) = 1 X i c ia i (r). (2.154)
Here c ia are the coe cient of a in the primitive basis, i.e. the projection of a on the set of { i }. The infinite summation prohibit numerical treatment, but supposing that the primitive basis is chosen such as a finite expansion describes correctly the orbitals, one obtains:

a (r) ⇡ nb X i c ia i (r), (2.155) 
where n b stand for the finite number of primitive functions needed to get correct accuracy. This expression gives a set of parameters {c ia } which can be optimised thanks to the HF procedure. Concretely, the expansion of the orbitals is optimised for any given set of primitive functions which are known, we will discuss later about their choice. Using this definition the HF equations can be rewritten as:

F | 0 a i = 0 aa | 0 a i , F nb X i c ia i (r) = 0 aa nb X i c ia i (r) (2.156)
multiplying on the left by ⇤ j and integrating over electronic coordinates,

nb X i c ia Z dr ⇤ j (r)F i (r) = 0 aa nb X i c ia Z dr ⇤ j (r) i (r) , nb X i c ia F ji = 0 aa nb X i c ia S ji (2.157) 
where the F ji are the matrix element of the Fock operator between the primitive basis function j and i, and S ji the overlap matrix,

S ji = Z dr ⇤ j (r) i (r). (2.158)
The latter is di↵erent to ij element because we did not impose orthogonality for the primitive functions.

The Roothan-Hall formulation Eq. (2.154) and subsequent can be rewritten more compactly in the matrix notation:

F C = SC . (2.159)
The introduction of a known primitive basis, totally defines the equations and the HF procedure can be applied. Nevertheless the HF method su↵ers of the loss of correlation between the electrons, principally due to the use of a mean field for the Coulomb repulsion. This overestimates the electrostatic repulsion, because the probability of finding two electrons of di↵erent spin in the same elementary space volume is not null. An additional limitation is the use of one SD, which strongly restricts the configuration space that the system may explore. An improvement on both issues can be obtained by considering a multi-determinant wavefunction, in the so-called post-HF methods that we propose to introduce below.

MCSCF and CI methods

Configuration Interaction method

The draw back of the HF method, concerning the correlation of the electron, has been partially corrected by the introduction of the configuration interaction (CI) method. The problem of HF method is the consideration of the mean-field operator to take into account the electron-electron repulsion. It overestimates this energy because the electron can be to close to each other. The idea of the CI method is to give more flexibility to the electronic wavefunction to remove this unphysical behaviour. From the HF solution, a set of molecular orbitals (same number as primitive basis function used) is obtained. This latter can be divided in a subset of occupied orbitals and one of virtual orbitals (with no electron). Let's label the occupied orbitals with Latin letters (a,b,• • • ) and the virtual ones with Greek letters (↵, ,• • • ). Introducing the so-called second quantisation formalism,

↵ a = âa â † ↵ 0 (2.160)
we can describe electron excitation from the occupied orbitals to the virtual ones. In Eq. (2.160) we introduced âa , the annihilation operator, which removes one electron of the spin-orbital a, and â † ↵ , the creation operator, which creates an electron in the spin-orbital ↵. These latter act on 0 , the HF wavefunction. To recover the correlation between the electrons, the full wf in the CI formalism, CI 0 , is constructed as a linear combination of all possible determinants,

CI 0 = c 0 0 + X a↵ c ↵ a ↵ a + X a<b ↵< c ↵ ab ↵ ab + • • • (2.161)
The determinants are constructed thanks the occupied and virtual molecular orbitals resulting from an HF calculation. Using the variational principle and the definition of the CI wavefunction, a set of equations can be derived to optimise the di↵erent coe cients, without optimizing the molecular orbitals. The problem of this method results from the number of determinants that must be constructed to obtain the CI wavefunction, which depends of the size of the primitive basis used. Methods using truncated CI wf, for instance considering only single and double excited determinants, are employed and give accurate results for the study of the electronic ground-state wavefunction for di↵erent systems. But concerning the excited states it turns out that the convergence is usually slow and the choice of the configurations that should be used is not trivial.

Multiconfigurational Self-consistent field Method

The problem of the convergence of the CI method, when only few excitations are considered, comes from the orbitals. As they are not optimised during the process, it turns out that a large number of configuration have to be included. The solution that has been proposed is to optimise, once again thanks to the variational principle, the expansion coe cients and the molecular orbitals to ensure convergence with a reduced expansion. The MCSCF wavefunction can be written as,

MCSCF = X I C I I (2.162) 
where I describes a configuration I and C I is its associated coe cient. The first attempts were done with an optimisation in two steps, with first an optimisation of the coe cients, then an updating of the molecular orbitals, recursively [START_REF] Werner | A quadratically convergent multiconfiguration self-consistent-field method with simultaneous optimization of orbitals and CI coe cients[END_REF]. In the new methods, the optimisation of both the CI coe cients and the molecular orbitals is done simultaneously to improve convergence [START_REF] Werner | A second order multiconfiguration SCF procedure with optimum convergence[END_REF][START_REF] Knowles | An e cient second-order MC SCF method for long configuration expansions[END_REF]. The idea is to apply a unitary transformation on the molecular orbitals to minimise the energy of the system. Indeed, If we consider that the CI wavefunction is the exact one, according to the choice of the primitive basis, to obtain the closest MCSCF wavefunction with less vector basis, the basis set is optimised.

The choice of the configuration that should be included in the MCSCF expansion is a key ingredient of the method. In our cases we use a so-called Complete Active Space (CAS), which is defined as a set of occupied and virtual orbitals, for which a full CI expansion is used [START_REF] Roos | A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach[END_REF]. Then to obtain the largest part of the correlation energy, after the MCSCF based on the CAS, a Multi-Reference Interaction Configuration (MRCI) considering single and double (SD) excitation is used. For this stage all the determinants are taken into account. The crucial point of this method is how to define the CAS, which is limited to few electrons and orbitals, this point will be detailed in Sec. 3.2.1.

The MCSCF method can be used to compute ground state wavefunction as well as excited states. In order to avoid convergence issues due to root flipping behaviour, it is useful to use state averaged MCSCF methods. In the case of avoiding crossing, two or more electronic states have close energies and during the SCF process the energy may converge to one or the other electronic state. To discard such problem, it is possible to compute more than one states using the same molecular orbital. Then the orbitals are not optimised individually for each solution but the set of orbitals is optimised to lower the energy of a set of electronic states. The average energy of the states is optimised as a weighted sum, where the coe cients are normalised.

Evaluation of the spin-orbit coupling

The spin property of the particle is intrinsically linked to the foundation of the quantum mechanics with its discovery by Stern and Gerlach [START_REF] Gerlach | Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld[END_REF][START_REF] Gerlach | Der experimentelle nachweis des magnetischen moments des silberatoms[END_REF], in their famous experiment, demonstrating its existence. In the case of the above theory of the electronic calculation, the spin of the electron appears as an ad-hoc quantity, which has been introduced because we know that it exists. This intrinsic electronic angular momentum only appears naturally in the Dirac equation [START_REF] Dirac | The quantum theory of the electron[END_REF], which makes use of a full-relativistic description of the electron and has been interpreted as the angular momentum of the particle at rest. The Dirac equation shows also the possible coupling of the spin of the electron with its angular momentum. This e↵ect is known as the spin-orbit coupling (SOC). The Dirac equation has been derived for one electron, and nowadays no many body fully-relativistic equation is established [START_REF] Marian | Spin-orbit coupling in molecules[END_REF]. Then an approximate Hamiltonian is used in the case of a molecular (multi-electron) system. The one used in this work, and probably the most famous, is the so-called Breit-Pauli spin-orbit Hamiltonian, ĤBP SO , which has been derived from the relativistic approximate many body Hamiltonian known as the Dirac-Coulomb-Breit Hamiltonian. One draw-back of this operator is its relativistic nature, and contains coupling terms involving the electronic continuum states and the positronic one (with negative energy continuum), and then the variational principle can not be used anymore. It is the principal reason why the SOC calculation are always limited to the first-order perturbation theory [START_REF] Szabo | Modern quantum chemistry[END_REF] and can applied to the electronic wavefunctions of di↵erent order of approximation, and in our case the MRCI level has been chosen. The detailed implementation of this operator in Molpro [107] (used for our work), which can be found in Ref.

[108], while an interesting historical and technical discussion about the theory of the SOC can be found in the review of C. Marian [START_REF] Marian | Spin-orbit coupling in molecules[END_REF]. We just stress that a large work is performed nowadays to avoid the reduction of the relativistic operator, as the development of the Dirac package [START_REF] Dirac | a relativistic ab initio electronic structure program[END_REF].

2.5 Spectroscopy as an important experimental probe

One photon absorption spectroscopy: Weak field regime

Spectroscopy is historically the experiment that reveals the quantum nature of atoms and molecules, and is still the best way of understanding and probing the quantum e↵ects in systems. A very large expansion of spectroscopy methods appears over the last decades, which gives the possibility to probe systems on a large range of time scales with a high spatial resolution. It is crucial, to continue the progress of our understanding of the matter, to develop models and methods to simulate the experimental observables. In the following, we are discussing three di↵erent kinds of spectroscopy and how we manage to compute experimental observables.

The first kind of spectroscopy method that we have to introduce is photoabsorption, which historically was first accessible. To describe the one photoabsorption cross section (E) in a molecular or atomic system with the time-independent Schrödinger equation the use of the time-dependent perturbation theory up to the first order leads to [START_REF] Balint-Kurti | Time-dependent quantum dynamics of molecular photofragmentation processes[END_REF],

i!f (E) = 4⇡ 2 ↵ 3 E|h f | µ fi • ✏| i i| 2 (E E fi ). (2.163)
We introduced i,f for the initial (i) and the final (f ) state of the system and E fi = E f E i is the energy di↵erence between them. The electronic transition dipole matrix element is noted µ fi and ✏ is the electric field strengh. In addition ↵ stands for the fine-structure constant. Starting from an initial state and being interested to all possible vibrational and electronic transitions, Eq. (2.163) has to be rewritten as a sum over all the transitions,

tot (E) = 4⇡ 2 ↵ 3 E X e X ⌫ |h ⌫,e | µ ⌫ei • ✏| i i| 2 (E E ⌫ei ) (2.164)
where the index e runs over all possible electronic states and ⌫ over all vibrational ones. Using the timeindependent formalism, the knowledge of the eigenstates of the system is required, but, as discussed before, this is not easily evaluated for molecules. Using the symmetry properties of the Dirac's function, its integral formulation and extending the modulus of the matrix element of the transition [START_REF] Heller | The semiclassical way to molecular spectroscopy[END_REF], Eq. (2.164) can be expressed as,

tot (E) = 2⇡↵ 3 E X e X ⌫ Z 1 1 dth i | µ ⌫ei • ✏| ⌫,e ih ⌫,e | µ ⌫ei • ✏| i ie i(E+Ei E⌫ e )t .
(2.165)

The above expression can be further simplified. First, noticing the presence of the completeness relation, and then the propagator on the final electronic states,

tot (E) = 2⇡↵ 3 E Z 1 1 dt h µ ⌫ei • ✏ i | e iHet | µ ⌫ei • ✏ i i e i(E+Ei)t . (2.166)
Physically it means that the photoabsorption spectrum is related to the time-dependent propagation, under the influence of the Hamiltonian of the electronic excited states, of an initial wavefunction

| 0 i = | µ ⌫ei •✏ i i.
This latter is nothing else than the initial state of the system multiplied by the electronic transition dipole along the laser field polarisation axis. Introducing the autocorrelation function c(t) = h 0 | 0 (t)i the relation is the Fourier transform from the temporal to the energetically domain of the autocorrelation function,

tot (E) = 2⇡↵ 3 E Z +1 1 c(t)e i(Ei+E)t dt. (2.167) 
This relation between the photoabsorption spectrum and the wavepacket (wp) propagation makes very attractive and popular the time dependent formalism, because it does not require the diagonalisation of the Hamiltonian to compute observables [START_REF] Beck | The multiconfiguration time-dependent Hartree (MCTDH) method: a highly e cient algorithm for propagating wavepackets[END_REF][START_REF] Worth | The heidelberg mctdh package: A set of programs for multi-dimensional quantum dynamics[END_REF]. This relation is often not used directly like this but restriction of the integral, used of gate function to avoid Gibbs oscillation and time symmetry are useful and implemented in MCTDH and are discussed for instance in the Ref. [START_REF] Worth | The heidelberg mctdh package: A set of programs for multi-dimensional quantum dynamics[END_REF].

Since the seminal work of Zewail [START_REF] Zewail | Laser selective chemistry-is it possible?[END_REF], experiments using short laser pulses can excite a coherent superposition of vibrational eigenstates of a molecule, providing a time evolution of the nuclear density. To study and model such a kind of experiments the above method cannot be used anymore and the laser field has to be explicitly taken into account. In the framework of the dipole approximation, which results from the consideration that the molecular characteristic length is negligible compare to the laser wavelength, the interaction with the field can be described by the following interaction Hamiltonian,

H l (t) = E(t) • µ. (2.168)
Here E(t) is the electric field and µ the transition dipole moment operator. The solution of the TDSE with the explicit consideration of electric field can be done by discretizing the time variable in such way that for a time interval ⌧ the time-dependent Hamiltonian is assumed to be constant, i.e.

H l (t i , t f ) ⇡ (tf ti)/⌧ X n=0 H(t i + n⌧ ). (2.169)
This expression holds with the help of the linearity of the TDSE according to the time variable. The methods presented to numerically solve the problem can be used if ⌧ is small according to the characteristic time evolution of H l (t), which in the present case is the frequency of the electric field.

Time resolved photoelectron spectra

We have been as well interested by the photoionisation of the molecule. The total photoelectron spectra can be obtained in a similar way than the photoabsorption one. But to study the ionisation of the molecule taking into account explicitly the laser field, another model has to be used. The following will present the key point of the method, valuable additional information may be found in Refs. [START_REF] Burkey | Discretization in the quasi-continuum[END_REF][START_REF] Burkey | Multichannel excitation of the quasi-continuum[END_REF][START_REF] Seel | Femtosecond time-resolved ionization spectroscopy of ultrafast internalconversion dynamics in polyatomic molecules: Theory and computational studies[END_REF]. The idea here is to describe a set of p neutral states, | N p i which can be ionised toward a set of q ionic states | I q i, the full wavefunction of the system reads,

| tot i = X p | N p i + X q Z 1 0 dE| I q (E)i (2.170)
where the integration over the electron energy E takes explicitly into account the electronic continuum associated to each ionic state. These latter are considered as a free-electron continuums, i.e. the electron does not interact with the molecular ion after ionisation. The full Hamiltonian of the system can be written as,

Ĥ = 0 B @ Ĥp Hl (t) Hl (t) Hq 1 C A , (2.171) 
where Ĥp,q are the Hamiltonians describing the dynamics into the neutral and ionic manifolds, respectively.

No assumption has been done concerning these Hamiltonians and can describe coupled dynamics into each manifolds. The Hamiltonian describing the interaction through the laser field is denoted Hl (t), where the time dependence arises from the explicit consideration of the laser pulse. The particularity arises from the elements labelled by " . ", which means that they are infinite due to the presence of the electronic continuum.

Each elements ij of Hq , diagonal (i = j) or o↵-diagonal (i 6 = j), reads

Hij q = V qiqj (R) + Z 1 0 dE | I q (E)iEh I q (E)|. (2.172)
Where V qiqi denotes the electronic PES of the ionic state q i and V qiqj a possible coupling between the ionic states q i and q j . The photoelectron spectrum is then obtained from the population of the di↵erent continuum states by integration over the nuclear coordinates when the laser pulse is over at time t l ,

P (E) / X q |h tot (t l )| I q (E)i| 2 . (2.173) 
The transition matrix element for the ionisation is considered to be independent of the kinetic energy of the released electron as well as the photon energy of the exciting laser pulse. With these additional approximations, the description of the continuum can make use of the "quasi-continuum" description of Burkey and

Cantrell [START_REF] Burkey | Discretization in the quasi-continuum[END_REF][START_REF] Burkey | Multichannel excitation of the quasi-continuum[END_REF], which turns out thanks to the work of Seel and Domcke [START_REF] Seel | Femtosecond time-resolved ionization spectroscopy of ultrafast internalconversion dynamics in polyatomic molecules: Theory and computational studies[END_REF] to be adequately described by a DVR. Moreover, as shown in these studies, the range of the continuum can be truncated after a critical value due to the fact that the matrix element of the transition converges to zero when the energy tends to infinity. The integrals in the above equations are reduced to a sum over N point of a DVR, and following the implementation of G. Worth et al [START_REF] Worth | Using photoelectron spectroscopy to unravel the excitedstate dynamics of benzene[END_REF], the continuum energy is described as a coordinate of the full wavefunction,

tot (R, E, t) = X p N p (R, E, t) + X q I q (R, E, t) (2.174)
which is suitably propagated by the MCTDH package.

High-order Harmonic Generation

The strong field approximation

From classical electro-dynamics, we know that the emitted field comes from the acceleration a(t) of the electron. The power spectrum is given by the Fourier transform of a(t):

a(⌦) = Z e i⌦t h (t)|a| (t)idt , (2.175) 
which, by integration by parts, leads to

a(⌦) / ⌦ 2 Z e i⌦t D(t)dt with D(t) = h (t)|x| (t)i (2.176)
and | (t)i is the wavefunction of the electron at time t. Eq. (2.176), shows that the harmonic spectrum emitted by a system can be computed thanks to the dipole moment, D(t). But the evaluation this latter requires the knowledge of the electronic time-dependent wavefunction. Solving the TDSE for a poly-electronic system, such as SO 2 , even in the clamped nuclei model, is far to be manageable. Recently, theoretical investigation have been carried out to describe such kind of systems, but their are still limited to few electrons [START_REF] Zanghellini | An mctdhf approach to multielectron dynamics in laser fields[END_REF][START_REF] Miyagi | Time-dependent restricted-active-space self-consistent-field theory for laserdriven many-electron dynamics[END_REF][START_REF] Miyagi | Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics. ii. extended formulation and numerical analysis[END_REF]. In the following we consider the single active electron approximation and the interaction with a linearly x-polarised laser field, E(t) = E 0 cos (!t).e x , is described in the dipole approximation. In the length gauge, we can write the Schrödinger equation for one active electron, describes by | (t)i, as:

i @ @t | (t)i =  1 2 r 2 + V (r) E 0 cos (!t)x | (t)i (2.177)
where the dipole approximation is used to take into account the interaction with the laser field and we introduced V (r), the Coulomb interaction between the electron and the nucleus. It is possible to solve Eq.(2.177) numerically, but to simplify the problem we used the Strong Field Approximation (SFA) [START_REF] Lewenstein | Theory of high-harmonic generation by low-frequency laser fields[END_REF],

1. We consider only the contribution of the ground state |0i and continuum states |vi, the other bound states are neglected.

2. The depletion of the ground states is neglected.

3. After tunneling the electron is assumed free in the laser field (the potential V (r) is neglected).

Thanks to these set of approximation it is possible to greatly simplify the TDSE. With the first assumption we can write the time dependent wavefunction as,

| (t)i = e iIpt ✓ b 0 (t)|0i + Z d 3 vb(v, t)|vi ◆ (2.178)
with b(v, t) the amplitude of continuum state |vi and |0i is the ground state of the system with an ionisation potential Ip and its amplitude b 0 (t). According to the second assumption, the ground state amplitude remains unity, i.e. b 0 (t) = 1. This assumption holds if the ionisation of the system remains weak. The third assumption, which is the more drastic one, approximates the continuum states |vi with plane waves. Using the ansatz of Eq.(2.178) in the TDSE (Eq. (2.177)), we obtain the Schrödinger equation for the continuum amplitudes b(v, t), which can be solved exactly [START_REF] Lewenstein | Theory of high-harmonic generation by low-frequency laser fields[END_REF],

b(v, t) = i Z t 0 dt 0 E 0 cos (!t 0 )d x [v + A(t) A(t 0 )] exp ✓ i Z t t 0 dt 00 [(v + A(t) A(t 00 )/2 + I p )] ◆ (2.179)
where we introduce

d x [v] = d[v].e x = hv|x|0i
.e x , the atomic dipole matrix element for the bound-free transition and A(t) the vector potential of the electric field, (E(t) = @A(t) @t ).

Proceeding with the b(v, t) coe cients, the dipole moment in Eq. (2.176) can be write:

D(t) = Z d 3 vd ⇤ x (v)b(v, t) + c.c. (2.180)
and introducing the canonical momentum p = v A(t), we get the final expression

D(t) = i Z t 0 dt 0 Z d 3 pE cos(!t 0 )d x [p + A(t 0 )]e iS(p,t,t 0 ) d ⇤ x [p + A(t)] + c.c. (2.181) 
where

S(p, t, t 0 ) = Z t t 0 dt 00 ✓ (p + A(t 00 )) 2 2 + I p ◆ (2.182)
is the semi-classical action. Equation (2.181) has a nice physical interpretation, with from left to right, the product of probability amplitude of three distinct phenomena. The first term describes the probability amplitude for an electron to make the transition to the continuum at time t' with the canonical momentum p. The second one describes the phase accumulation during the propagation in the continuum through out the semi-classical action and the third corresponds to the probability amplitude to recombine with the parent ion.

Reinjecting the new expression of the dipole into the spectrum expression (2.176) we obtain

a(⌦) / i⌦ 2 Z dt Z t 0 dt 0 Z d 3 pE cos(!t 0 )d x [p + A(t 0 )]e i S(p,t,t 0 ⌦) d ⇤ x [p + A(t)] + c.c. (2.183)
where S(p, t, t 0 , ⌦) is defined as:

S(p, t, t 0 , ⌦) = S(p, t, t 0 ) ⌦t (2.184)
This model has been widely used to describe HHG in atomic target and this even with the crude approximations that are used. It turns that this formulation leads to an useful interpretation of the results which can be more di cult in the case of the resolution of the time-dependent Schrödinger equation. The di↵erent integrals of Eq. (2.183), can be solved using the saddle-point approximation as we will discussed latter. This model has then been extended to the study of the molecular system by M. Lein [START_REF] Lein | Attosecond probing of vibrational dynamics with high-harmonic generation[END_REF], and successfully applied [START_REF] Chirilȃ | Influence of nuclear vibration on harmonic generation in molecules[END_REF][START_REF] Chirilȃ | Strong-field approximation for harmonic generation in diatomic molecules[END_REF][START_REF] Falge | Vibrational-state and isotope dependence of high-order harmonic generation in water molecules[END_REF].

Molecular SFA

Using the total wavefunction of the system as a product of a vibrational nuclear function (R, t) and an electronic wavefunction

R (r, t), (r, R, t) = (R, t) R (r, t), (2.185) 
and considering the assumptions of Ref. [START_REF] Lewenstein | Theory of high-harmonic generation by low-frequency laser fields[END_REF], M. Lein [START_REF] Lein | Attosecond probing of vibrational dynamics with high-harmonic generation[END_REF] showed that the time dependent dipole moment along an axis n can be expressed as,

D n (t) = iN v Z t 0 dt 0 Z d 3 p (2⇡) 3 Z 1 0 dR ⇤ 0 (R)n • d ⇤ rec [p + A(t), R]e iS(t 0 ,t,p,R) U R (t t 0 )d ion [p + A(t 0 ), R, t 0 ] 0 (R) + c.c. (2.186)
where N v take into account the number of equivalent electron, and U R (t, t 0 ) is the evolution operator of the molecular ion for the time duration of the excursion of the electron in the continuum. In the following we consider a molecular system with n electrons in the framework of the SAE. The coordinates of the active electron will be denoted by r and the coordinates of the n 1 remaining inactive electrons are collected in

r 0 ⌘ (r 2 , r 3 , • • • , r n ).
The ionisation and recombination dipole matrix elements can be expressed as [START_REF] Chirilȃ | Influence of nuclear vibration on harmonic generation in molecules[END_REF],

d ion [p, R, t] = Z drdr 0 (2⇡) 3/2 ⇥ e ip•r + R (r 0 ) ⇤ ⇤ E(t) • r R (r, r 0 ), (2.187) d rec [p, R] = Z drdr 0 (2⇡) 3/2 ⇥ e ip•r + R (r 0 ) ⇤ ⇤ r R (r, r 0 ). (2.188)
where we introduced the neutral R (r, r 0 ) and the ionic + R (r) electronic wavefunctions, which parametrically depends of the nuclear coordinates R. To simplify the expression of the time-dependent dipole according to the integration over the nuclear coordinates it is assumed that the ionisation launches a vibrational wp (R) which is uncorrelated with the initial momentum p of the ionised electron,

d ion [p, R] 0 (R) ⇡ dion [p] (R).
(2.189)

This approximation removes actually the nuclear dependence of the time-dependent dipole expression and gives the possibility to factorise the nuclear wavefunction, .190) where the autocorrelation function C(t) is introduced and describes then the projection of the propagated ionic wp onto the initial one [START_REF] Patchkovskii | Nuclear dynamics in polyatomic molecules and high-order harmonic generation[END_REF]. The autocorrelation function plays the role of a damping function as function of the excursion time of the electron in the continuum. Indeed with an initial normalised wp 0 (R), if no dynamics occurs in the ionic states then C(t) remains unity, and if dynamics occurs, the autocorrelation function will decay toward its minimum value 0. It is interesting to compare this approximation to the method used in our work to compute the photoelectron spectra, for which we project the vibrational ground state wavefunction onto the di↵erent electronic ionic states. The photoelectron spectrum was then computed by using the Fourier transform of the autocorrelation function, which turns to be exactly the same As in the atomic case the power spectrum of harmonic emission is obtained by the Fourier transform of the dipole acceleration and reads,

D n (t) = iN v Z t 0 dt 0 C(t t 0 ) Z d 3 p (2⇡) 3 n • d ⇤ rec [p + A(t)]e iS(t 0 ,t,p) d ion [p + A(t 0 ), t 0 ] + c.c. ( 2 
a(⌦) = iN v ⌦ 2 Z dt Z t 0 dt 0 C(t t 0 ) Z d 3 p (2⇡) 3 n • d ⇤ rec [p + A(t)]e i S(t 0 ,t,p,⌦) d ion [p + A(t 0 ), t 0 ] + c.c. (2.191)
where the modified semi-classical action S has the same expression than previously.

Saddle-point approximation

In the framework of the SFA approximation the time-dependent dipole can be obtained by solving the numerous integral over the momentum, times, and for molecules R. While the integral in the definition of the semi-classical action is often analytical, the others need to be evaluated numerically. However according to the expression of S, in Eq. (2.184), its exponential give a highly oscillatory term in the integrand and the numerical integration has to be done with precaution. Actually as pointed out directly by M. Lewenstein [START_REF] Lewenstein | Theory of high-harmonic generation by low-frequency laser fields[END_REF],

the fast oscillations of the integrand as function of p can be advantageously used to perform the integration with the saddle point approximation (sdp). For the molecular case the stationary condition of S according to p reads,

r p S(p, t, t 0 , ⌦) = Z t t 0 (p + A(⌧ ))d⌧ = 0 ) p st (t, t 0 ) = R t t 0 dt"A(t") (t t 0 ) (2.192)
and the power spectrum after the sdp integration turns to,

a(⌦) = iN v ⌦ 2 Z dt Z t 0 dt 0 (i(t t 0 ) + ✏) 3/2 C(t t 0 )n • d ⇤ rec [p st + A(t)]e i S(t 0 ,t,p st ,⌦) d ion [p st + A(t 0 ), t 0 ] + c.c. (2.193)
where ✏ is a regularisation parameter to avoid singularities and for convenience we drop the temporal dependence of p st . This approximation holds if the other quantities of the integrand are smooth functions of p, which is not the case when the molecular plane and the field polarisation are not orthogonal. In our work we will only discuss the case of the orthogonality relation holds to simplify the resolution of the equation and also because experimental results are available for this case. The use of the sdp approximation as then be extended by [START_REF] Milosevic | Quantum-orbit theory of high-order atomic processes in intense laser fields[END_REF] on the integration over temporal integrals to lead to the so-called quantum orbit model.

The stationary conditions according to t 0 and t reads,

@ @t 0 S(p, t, t 0 , ⌦) = (p + A(t 0 st )) 2 2 + I p = 0 (2.194) @ @t S(p, t, t 0 , ⌦) = (p + A(t st )) 2 2 ⌦ + I p = 0 , ⌦ = (p + A(t st )) 2 2 + I p (2.195)
The sdp equations show the three di↵erent steps of the semi-classical model. Equation (2.194), concerns the ionisation step, and indicates that the sum of the kinetic energy of the electron and the ionisation potential must be null. The only possibility to fulfil this condition is to use imaginary time, and assigns it to a trace of the (classically forbidden) tunnel process. Eq. (2.192) deals with the propagation of the electron in the continuum, expressed as:

Z t t 0 p(⌧ )d⌧ = Z t t 0 ẋ(⌧ )d⌧ = x(t) x(t 0 ) = 0 (2.196)
This means that the electron's dominant path is closed and starts from the nucleus and comes back to it.

Finally, Eq. (2.195) is related to the recombination of the electron on to the nucleus. From this equation, which is the energy conservation law, energy of the emitted photon is the sum of the electron's kinetic energy and the ionisation potential. Finally, the expression for the HHG spectrum reads, .197) where the summation over u runs over all the stationary solutions. The interpretation of the set of approximations is that only the main electronic path is taken into consideration. Then the only computation needs to determine the stationary times and momentum, then the resolution is fully analytical. Even if the quantum orbit model has weakness, and many of them, it is a useful tool to understand physical mechanism of the HHG, and is still widely studied and used.

a(⌦) / iN v ⌦ 2 X u ✓ i (t st t 0 st ) 2 ◆ 3 det( S00 ) ! 1 2 C(t st t 0 st ) n • d ⇤ rec [p st + A(t st )] ⇥e i S(t 0 st ,tst,p st ,⌦) d ion [p st + A(t 0 st ), t 0 st ] + c.c. ( 2 

Dynamics in neutral states and conical intersection

The influence of the nuclear dynamics, in the HHG spectra, has been exclusively studied theoretically for the dynamics occurring in the molecular cation [START_REF] Baker | Probing proton dynamics in molecules on an attosecond time scale[END_REF][START_REF] Lein | Attosecond probing of vibrational dynamics with high-harmonic generation[END_REF][START_REF] Chirilȃ | Influence of nuclear vibration on harmonic generation in molecules[END_REF][START_REF] Chirilȃ | Strong-field approximation for harmonic generation in diatomic molecules[END_REF]. The dynamics in the ionic states influence the HHG and it gives the possibility to probe nuclear dynamics with attosecond resolution. These interesting properties have been experimentally extended to nuclear dynamics into the neutral state, but no theoretical consideration is available to describe such process. However it raises considerable interest especially to understand non-adiabatic dynamics [START_REF] Wörner | Conical intersection dynamics in NO 2 probed by homodyne high-harmonic spectroscopy[END_REF].

The model described above is not suitable especially because of the approximations that have been used

to describe the nuclear dependencies of the di↵erent electronic quantities. If we want to follow a dynamics in the neutral states thanks to HHG, then quantities such as the ionisation potential or the transition dipole matrix elements are expected to change. Their evolution during the wp motion will impact the harmonic generation and will be detected in the experiments. It seems clear that to describe these evolutions the nuclear dependencies of the di↵erent electronic quantities must be explicitly considered. Another possibility, which have been used, is the calculation at di↵erent key geometries of the di↵erent electronic quantities, to point out the likely mechanisms. But these methods can leads to substantial di↵erence with the inclusion of the quantum nature of the nuclei [START_REF] Castiglia | The influence of the quantum nature of nuclei in high harmonic generation from H + 2 -like molecular ions[END_REF]. Moreover this description is clearly not suitable in the case of multidimensional wp, with a much more delocalised wp evolution.

To describe such kind of experimental steep for a molecule, we try to keep the SFA approximation and the saddle-point method to ensure fast calculations. In addition it provides a simple pictures for the HHG process. We extend the above model to apply it when wp dynamics in the neutral states is considered.

If we want to correctly describe a time-evolution of a nuclear wp and the impact in HHG spectroscopy, we first need to look at the di↵erent time-scales involved in the process. On the time scale of the nuclear dynamics the electrons instantaneously adjusted their motion to the nuclei one. This reasoning gives rise to the well-known concept of PES. The characteristic time evolution of a nuclear wavefunction is hundreds of femtosecond for the vibrational periods, but in the case of a conical intersection the electronic structure of the molecule can change on a femtosecond time scale. The goal of this work is to probe the correlated nuclear/electronic dynamics induced by the nuclear dynamics and once again the concept of PES is well adapted. To go beyond these approximations, the TDSE for the nuclei and the electron should be solved, which is impossible. Keeping a femtosecond time scale for the coupled dynamics, it is fruitful to compare it with the time scale of the HHG process in the SFA approximation [START_REF] Lewenstein | Theory of high-harmonic generation by low-frequency laser fields[END_REF] within the three steps model [START_REF] Corkum | Plasma perspective on strong field multiphoton ionization[END_REF]. The first step is the tunnel ionisation, which occurs only at the maximum of the IR-laser field, and its characteristic time is 0.05 laser period if we consider either the long or short trajectory or 0.1 for both of them. In the case of a Ti-saphir laser at 800 nm, this time corresponds to ⇠ 0.13 fs for the first case and ⇠ 0.26 fs for the second. On this time scale the nuclei, especially for heavy element such as oxygen and sulfur atoms, the time dependent nuclear wp can be assumed fixed, i.e.

(R, t) ⇡ (R). (2.198) In order to obtain the nuclear wavefunction at the interesting time t, just before the amplitude maxima of the probe laser pulse, the time-dependent Schrödinger equation is solved, neglecting the interaction between the molecule and the laser field. This scheme gives the possibility to achieve the first step of the three-step model. The second step is the excursion of the electron in the continuum and the propagation of the nuclear wavepacket on the ionic potential energy surfaces, assuming as previously no correlation between the released electron and the remaining ionic wp,

a(⌦) / iN v ⌦ 2 Z 1 0 dR X u ✓ i (t st (R) t 0 st (R)) 2 ◆ 3 det ⇣ S00 R ⌘ ! 1 2 (R)U R (t st (R) t 0 st (R)) (R) (2.199) n • d ⇤ rec [k st (R) + A(t st (R)), R]e i SR d ion [k st (R) + A(t 0 st (R)), t 0 st (R), R] + c.c.
where we drop the variable of SR for visibility. If the nuclear dynamics in the ionic states is neglected, the

nuclear term, (R)U R (t st (R) t 0 st (R)) (R), can be approximated by | (R)| 2
and becomes a factor of the summation over the sdp solutions. Thus it describes the averaging of the HHG over the nuclear coordinates.

Basically the model is natural and simple it just reestablished the coordinate dependence of the electronic properties, which were neglected so far. Because of the assumption that no dynamics occurs in the molecular ion, the autocorrelation function is transformed to the density probability. Then the model can be view as the SFA calculation which is computed for each molecular geometry and weighted according to the probability density of the nuclear wavefunction. In the case of a wp dynamics in a set of coupled electronic states, the vibrational wavefunction is expanded on each of the electronic state (see Eq. (2.10) of Sec. 2.2.1). For the time of ionisation, using the approximation of Eq. (2.198), the full wavefunction reads,

(R, r) = X j j (R) j (r; R). (2.200)
In addition, as the electronic wavefunctions j (r; R) are solution of the time-independent electronic Schrödinger equation, we have

| (R)| 2 = X j h j (R) j | X i i (R) i i = X j | j (R)| 2 (2.201)
Eq. ( 2.199) can be rewritten in this case as,

a(⌦) / iN v ⌦ 2 X j Z 1 0 dR| j (R)| 2 X u ✓ i (t st (R) t 0 st (R)) 2 ◆ 3 det ⇣ S00 R ⌘ ! 1 2 (2.202) n • d ⇤ rec [p st (R) + A(t st (R)), R]e i SR d ion [p st (R) + A(t 0 st (R)), t 0 st (R), R] + c.c.
We include an initial wavefunction, which is expanded on di↵erent electronic states, then the transitiondipole matrix elements are also to be reconsidered, because the final ionic states can change depending on the neutral excited state. Let's first assume that only the highest occupied molecular orbital (HOMO) can be ionised, and this for each neutral electronic states. Then the transition dipole matrix element for the neutral state j reads,

d jl ion [p, R, t] = Z drdr 0 (2⇡) 3/2 ⇥ e ip•r l R (r 0 ) ⇤ ⇤ E(t) • r j R (r, r 0 ), (2.203) d jl rec [p, R] = Z drdr 0 (2⇡) 3/2 ⇥ e ip•r l R (r 0 ) ⇤ ⇤ r j R (r, r 0 ). (2.204)
where l R (r 0 ) is the electronic wf of the final ionic state l. Including all the relevant states of the molecule but neglecting the propagation in the ionic states, the emitted harmonic spectrum reads,

a(⌦) / iN v ⌦ 2 X j X l Z 1 0 dR| j (R)| 2 X u ✓ i (t st t 0 st ) 2 ◆ 3 det( S00 R ) ! 1 2 (2.205) n • d jl⇤ rec [p st + A(t st ), R]e i SR d jl ion [p st + A(t 0 st ), t 0 st R] + c.c.
where we dropped the R dependence of the sdp solutions. The first step in the HHG is the tunnel ionisation of the active electron, which in the SFA exhibits an exponential decay as a function of the ionisation potential and then the summation over the ionic states can be limited to the lower one.

Transition dipole matrix element

The method described above requires the evaluation of the di↵erent transition dipole matrix elements as a function of the nuclear geometry. First, to simplify the reasoning we use the relation between the ionisation and recombination dipole,

d jl ion [p, R, t] = E(t) • d jl rec [p, R], (2.206) 
i.e. the ionisation dipole is just the projection of the recombination dipole onto the polarisation axis of the laser field. The recombination matrix element can be reexpressed as,

d jl rec [p, R] = Z drdr 0 (2⇡) 3/2 ⇥ e ip•r l R (r 0 ) ⇤ ⇤ r j R (r, r 0 ) = 1 p n Z dr (2⇡) 3/2 e ip•r r Dyson R (r).
(2.207)

where n is the number of electrons in neutral state and the Dyson orbital Dyson R (r), a single electron function, which describes the orbital which was occupied by the ionised electron. This orbital takes into account the relaxation of the electronic wavefunction after the ionisation, as well as the electron correlation, and is defined by [START_REF] Morini | Benchmark dyson orbital study of the ionization spectrum and electron momentum distributions of ethanol in conformational equilibrium[END_REF],

Dyson R (r) = p nh l R | j R (r)i r 0 . (2.208)
Then the recombination dipole can be expressed as the partial derivative over the electron momentum of the Fourier transform of the overlap between the ionic and the neutral electronic functions. Note that the ionised electron is described by a plane wave and we can rewrite Eq. (2.207) as

d jl rec [p, R] = i @ @p Z dr (2⇡) 3/2 e ip•r Dyson R (r).
(2.209)

The Dyson orbital can be expressed in the basis of the molecular orbitals of the neutral wavefunction, using the cofactor expansion of the Slater determinant of the neutral wavefunction,

Dyson R (r) = X m ( 1) m+1 ' neutral m (r)h l R |â m j R i r 0 . (2.210)
where ' neutral m (r) is the molecular orbital of the neutral wavefunction, for which we drop notation for its nuclear geometry dependence, and the index m runs over all the molecular orbitals of the neutral electronic wavefunction. The annihilation operator âm remove the electron of the m th orbital and the sign holds for the cofactor expansion according to the first line of the Slater determinant. Using the linearity of the Fourier transform, and noting that h l R |â m j R i r 0 is nothing else than a coe cient, the transition dipole matrix element can be rewritten as,

d jl rec [p, R] = i X m ( 1) m+1 h l R |â m j R i r 0 @ @p 'neutral m (p) (2.211)
where 'neutral m (p) stands for the Fourier transform of the molecular orbital. As introduced previously the solution of the electronic Schrödinger equation has been obtained using the LCAO approximation, then the molecular orbital can be expressed by a linear combination of primitive basis functions,

' neutral m (r) = X µ C mµ µ (r;R) ) 'neutral m (p) = X µ C mµ ˜ µ (p;R). (2.212)
The interesting point is that almost all the calculations can be performed using Quantum Chemistry package, and the Fourier transform of the primitive basis functions is analytical. Thus their evaluation does not present any particular di culty, which is the major advantage of using the SFA approximation. The di cult task actually occurs for the evaluation of the coe cient of the Dyson orbital, and is addressed now.

The evaluation of the set of coe cient needed to define the Dyson orbital depends of the accuracy of the total electronic wavefunction, which is used for the neutral and ionic states. For instance if we make use of the Hartree-Fock wavefunction and the Koopman's approximation, this evaluation is straightforward and

leads to Dyson R (r) = ' neutral HOMO (r), (2.213) 
where the Dyson orbital is equivalent to the HOMO orbital of the molecule. But we discussed that the HF approximation fails in many cases, especially to describe electronically excited states. More sophisticated methods have to be employed, such as for example in the work of A. Krylov [START_REF] Oana | Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: Theory, implementation, and examples[END_REF][START_REF] Oana | Cross sections and photoelectron angular distributions in photodetachment from negative ions using equation-of-motion coupled-cluster dyson orbitals[END_REF], where she uses EOM-CCSD equations to compute the Dyson orbitals. Another possibility is to use a single expansion of SD to describe both the neutral and the ionic state using a CI expansion. The problem of using standard method for separate calculation of the neutral and ionic wavefunctions is that we end up with non-orthogonal Slater determinants to describe our system. Here we present how we solve the problem in the case of a CASSCF followed by an MRCI(SD) calculation, which remains quiet a well spread method in Quantum Chemistry.

Let us first introduce the notation of the neutral and ionic wavefunctions,

| neut. i = X I A I I (2.214) | ion i = X J B J J (2.215)
where A I , B J are the coe cients of the di↵erent configurations I , J of the neutral and ionic wavefunction, respectively. After MRCI step, each configuration, either as Configuration state function (CSF) or a Slater determinant, is a special arrangement of the electrons in the molecular orbitals obtained after the MCSCF optimisation. Let us consider the evaluation of the coe cient of the m I (r) molecular orbital,

h ion |â m neut i = X J X I A I B ⇤ J h J |â m I i. (2.216)
Applying the annihilation operator directly defines the cofactor

(m)
I , which is a Slater Determinant built with n 1 orbitals. To obtain the general expression let us assume that the electronic wavefunctions are described by CSF, the other case being an exception of this general formulation. Each CSF can be written as a sum of SD, which are constituted by the same set of molecular orbitals with a di↵erent organisation of the spin of the lonely electrons. We obtain,

h ion |â m neut. i = X J X I A I B ⇤ J X i2CSFI X j2CSFJ c i d j h SD J,j | SD(m) I,i i, (2.217) 
where c i (d j ) is the weight of the Slater determinant SD I,i ( SD J,j ) in the CSF of the configuration I (J). Now let's discuss the overlap between the two Slater determinants. In the case of orthogonal molecular orbitals, Slater's rules can be used to compute it, but as we have non-orthogonal molecular orbitals the Lödwin rules must be used. There are an extension of the Slater ones especially for this case. Introducing ⇣(r) as the molecular orbital of the ionic wavefunction, the Lödwin rule reads [START_REF] Löwdin | Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction[END_REF],

h SD J,j | SD(m) I,i i = det{d JI (kl)}, (2.218) 
where d JI (kl) is the overlap between the orbital k of the ion and the orbital l of the neutral molecule, i.e.

d JI (kl) = Z ⇣ ⇤ k (r)' l (r)dr. (2.219)
Then Eq. (2.218) reduces the calculation of the overlap between two Slater determinants to the determinant of all the overlap integrals of the di↵erent set of ionic and neutral orbitals. Using the molecular orbital expansion in the primitive basis functions, the overlap reads,

Z ⇣ ⇤ k (r)' l (r)dr = X µ X ⌫ C N lµ C I k⌫ Z µ (r;R)✓ ⌫ (r;R)dr. (2.220)
Where C N lµ , C I k⌫ are the expansion coe cients of the molecular orbital in the primitive basis functions for the neutral and ionic wavefunction, respectively. It turns out that the above equation can be greatly simplified if we use the same primitive basis for both wavefunction, which is not a constraint because it is more consistent for ab-initio calculation, then

Z ⇣ ⇤ k (r)' l (r)dr = X µ X ⌫ C N lµ C I k⌫ S µ⌫ (R) (2.221)
the overlap matrix S µ⌫ appears, and is naturally computed during the electronic calculation.

Collecting all the above results give an "ugly" equation, which becomes our working equation for the transition dipole matrix element in the SFA approximation, but as shown each part of the calculation is straightforward and uses either analytical results or data obtained directly using Quantum Chemistry package. The point with this method is that the multi-electron nature of the molecule is taken into account concerning the correlation between electron and the relaxation after ionisation.

We would like just to mention that the calculation of the Dyson orbital is not specific to the Strong field physics and High order harmonic generation. Its role is as well relevant for the photoelectron study, as discussed by A. Krylov [START_REF] Oana | Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: Theory, implementation, and examples[END_REF][START_REF] Oana | Cross sections and photoelectron angular distributions in photodetachment from negative ions using equation-of-motion coupled-cluster dyson orbitals[END_REF], because the Dyson orbital contains all the required information for the electron ionisation.

Chapter 3

Electronic Structure Results

Introduction

We propose in this section the presentation and the discussion of the di↵erent results obtained concerning the application of the di↵erent theories introduced previously in order to solve the Schrödinger equation. While, until now the formalism was rather general, the molecular system under interest (SO 2 ) is now considered.

The sequential application of the di↵erent methods is presented in the following, with first the results of the adiabatic calculations, followed by the discussion of the diabatization scheme employed, their comparison and their limits. Then the formalism introduced in order to take into account the spin-orbit couplings between the manifolds of electronic states is presented, and its application is discussed. The end of the methodological application will discuss the diabatization of the di↵erent electronic properties and the calculation of the transition matrix elements in the framework of the strong-field approximation.

Adiabatic potential energy surfaces 3.2.1 Active space and primitive basis

In this section we will discuss the Potential Energy Surfaces (PES) computed ab-initio using the MRCI level of theory. An important point concerns the need of a consistent set of PES for the di↵erent electronic states.

The latter are the electronic ground state, the two first singlet excited states, the three lowest triplet excited states and finally the three first ionic states. The idea is to try to describe these states with the same level of accuracy employing similar techniques. Even if this is not primordial to describe neutral and ionic states on the same footings, it is mandatory for the singlet and triplet excited states, which are in a close energy range, involving di↵erent crossing between the states.

To compute di↵erent electronic states at the same level of accuracy using the MC-SCF followed by a MRCI calculation, the active space has to be appropriately chosen. The optimization of the latter has to be done to lower the energy of the state (variational principle), keeping in mind that CPU timing must be under control to proceed on the evaluation of thousands of points for di↵erent geometries. We choose 18 active electrons in 12 orbitals consisting for the C 2v symmetry of: five orbitals of a 1 symmetry with four occupied orbital and one virtual, two of b 1 symmetry with one occupied and one virtual orbitals, four orbitals of b 2 symmetry with three occupied and one virtual orbitals and finally one occupied orbital of a 2 symmetry. In C s symmetry, the same CAS space is used with nine actives orbital of a 0 symmetry composed by seven occupied and two virtual orbitals and three actives orbitals of a" symmetry with two occupied and one virtual. This active space has been already used in [START_REF] Katagiri | Experimental and theoretical exploration of photodissociation of SO 2 via the 1 B 2 state: identification of the dissociation pathway[END_REF] and is known as the full-valence active space. The CPU e↵ort to include one additional orbital increased drastically. We used the correlation consistent polarized valence triple zeta (cc-pVTZ) basis set [START_REF] Dunning | Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen[END_REF] for all our calculations. The potential energy surfaces have been computed along the three degrees of freedom

Adiabatic electronic ground state

R s = (R 1 + R 2 )/2, Q u = (R 1 R 2 )/2
and , see Fig. 3.1. The following grid parameters have been used, 1.1  R s  2.15 Å with a variation R s of 0.025 Å, 70   177.5 with a step of 2.5 and 0  Q u  0.3 with Q u = 0.05 Å and is extended by symmetry to 0.3 Å. It turns out that the grid is large enough for the electronic GS, but to study the photodynamics involving the excited states, the previous grid has been extended. The angle has been decreased to 60 , while the R s and Q u coordinates have been increased to 2.2 Å and 0.85 Å, respectively.

The electronic configurations are obtained from the coe cient of the CI vector after the MRCI calculation.

The two predominant electronic configurations at the equilibrium geometry of the GS are:

[core] 14 (5a 1 ) 2 (3b 2 ) 2 (6a 1 ) 2 (4b 2 ) 2 (7a 1 ) 2 (2b 1 ) 2 (5b 2 ) 2 (1a 2 ) 2 (8a 1 ) 2 (3b 1 ) 0 (9a 1 ) 0 (6b 2 ) 0 [core] 14 (5a 1 ) 2 (3b 2 ) 2 (6a 1 ) 2 (4b 2 ) 2 (7a 1 ) 2 (2b 1 ) 2 (5b 2 ) 2 (1a 2 ) 0 (8a 1 ) 2 (3b 1 ) 2 (9a 1 ) 0 (6b 2 ) 0
with a coe cient of ⇠ 0.94 for the first and ⇠ 0.15 for the second. While the first configuration represents the arrangement of the electrons in the Hartree-Fock MO of lowest energy, the second configuration depicts the promotion of both electrons of the 1a 2 to the 3b 1 orbital. For larger values of R s , the mixing between both configurations becomes more important and they are almost on the same footing for R s ⇠ 2.0 Å. For small angle (lower than 80 ) and small R s , an avoiding crossing with the 2 1 A 1 state (⇠ 70 ) changes abruptly the configuration of the ground state to:

[core] 14 (5a 1 ) 2 (3b 2 ) 2 (6a 1 ) 2 (4b 2 ) 2 (7a 1 ) 2 (2b 1 ) 2 (5b 2 ) 0 (1a 2 ) 2 (8a 1 ) 2 (3b 1 ) 2 (9a 1 ) 0 (6b 2 ) 0
Concerning the excited states, at the minimum of energy, the electronic configurations of the 1 1 B 1 state are principally:

[core]

14 (5a 1 ) 2 (3b 2 ) 2 (6a 1 ) 2 (4b 2 ) 2 (7a 1 ) 2 (2b 1 ) 2 (5b 2 ) 2 (1a 2 ) 2 (8a 1 ) 1 (3b 1 ) 1 (9a 1 ) 0 (6b 2 ) 0 [core] 14 (5a 1 ) 2 (3b 2 ) 2 (6a 1 ) 2 (4b 2 ) 2 (7a 1 ) 2 (2b 1 ) 2 (5b 2 ) 1 (1a 2 ) 1 (8a 1 ) 2 (3b 1 ) 2 (9a 1 ) 0 (6b 2 ) 0 .
The first configuration, which represents an excitation of one electron from the HOMO (8a 1 ) to the LUMO (3b 1 ), has a preponderant weight ⇠ 0.88. The second configuration is relevant with a smaller coe cient 0.19, standing for a double excitation from 1a 2 and 5b 2 to 3b 1 . For the 1 1 A 2 state, the dominant configurations are:

[core]

14 (5a 1 ) 2 (3b 2 ) 2 (6a 1 ) 2 (4b 2 ) 2 (7a 1 ) 2 (2b 1 ) 2 (5b 2 ) 1 (1a 2 ) 2 (8a 1 ) 2 (3b 1 ) 1 (9a 1 ) 0 (6b 2 ) 0 [core] 14 (5a 1 ) 2 (3b 2 ) 2 (6a 1 ) 2 (4b 2 ) 2 (7a 1 ) 2 (2b 1 ) 2 (5b 2 ) 2 (1a 2 ) 1 (8a 1 ) 1 (3b 1 ) 2 (9a 1 ) 0 (6b 2 ) 0 .
The first configuration, with a weight of ⇠ 0.88, results from an excitation of one electron in the 5b 2 orbital to the 3b 1 orbital. The second configuration has a lower weight ( 0.21) and describes a double excitation from 8a 1 and 1a 2 orbitals to the 3b 1 orbital.

These results can be compared with previous and subsequent works of the literature as well as the CCSD evaluation of A. Komainda from his master thesis (cf. Tab. 3.1). In addition to the published investigation [START_REF] Lévêque | Ab initio quantum study of the photodynamics and absorption spectrum for the coupled 1 1 A 2 and 1 1 B 1 states of SO 2[END_REF], three new studies have been published later and the results are included here. The calculations by Li et al. [START_REF] Li | Potential energy surfaces for low-lying electronic states of SO 2[END_REF] were performed using the CASSCF-MRPT2 and the cc-pVTZ basis, the work of Xie et al. [START_REF] Xie | Ab initio determination of potential energy surfaces for the first two UV absorption bands of SO 2[END_REF] used the same method than our with a slightly larger primitive basis (aug-cc-pVTZ) and larger number of states in the state-averaging. a From Ref. [START_REF] Lévêque | Ab initio quantum study of the photodynamics and absorption spectrum for the coupled 1 1 A 2 and 1 1 B 1 states of SO 2[END_REF] b From Ref. [START_REF] Li | Potential energy surfaces for low-lying electronic states of SO 2[END_REF] c From Ref. [START_REF] Xie | Ab initio determination of potential energy surfaces for the first two UV absorption bands of SO 2[END_REF] d From Ref. [START_REF] Mai | Non-adiabatic and intersystem crossing dynamics in SO 2 . II. the role of triplet states in the bound state dynamics studied by surface-hopping simulations[END_REF] e From Ref. [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF] f From Ref. [START_REF] Herzberg | Molecular Spectra and Molecular Structure (III): Electronic Spectra and Electronic Structure of Polyatomic Molecules[END_REF][START_REF] Hamada | Rotational structure at the long wavelength end of the 2900 å system of SO 2[END_REF] It is also important to compare the vertical and adiabatic excitation energies. The first one is obtained as the energy di↵erence between one excited state and the ground state at the equilibrium geometry of the GS.

The second one is obtained as the energy di↵erence of the equilibrium geometries of each state. In both cases the energy minimum of the GS is used as reference. The results are reported in Tab. 3.2 and are compared with other available results. For small angle ( < 80 ), one can see (Fig. 3.2) that the 1 1 A 1 and 1 2 A 2 states cross each other. But they belong to two di↵erent irreducible representations in both C 2v and C s symmetries and these states do not interact through the molecular vibration. Nevertheless, the consideration of the molecular rotation would couple these two states, but this is beyond the scope of the present work. The cut of the PES along the R s coordinate shows that for large values of R s , the 1 1 B 1 and 1 1 A 2 states are almost degenerate. One should keep in mind that for angles larger than ⇠ 115 , the 1 1 B 1 state has a lower energy than the 1 1 A 2 state, while for smaller angle it is the opposite.

In the C s point group both electronic excited states belong to the same irreducible representation (A") and the two states repulse each other as shown in Fig. 3.3. For Q u = 0 one can see that the blue and green curves cross each other, but for displacement along the Q u coordinate, this crossing is avoided. The consequence is that the electronic configuration of the lower and upper adiabatic surfaces in the C s symmetry changes abruptly. Considering the lower adiabatic state, for small angle the dominant character is similar to the one of the 1 1 A 2 state, while for larger angle (> 115 ) the dominant character is close to the one of the 

1 1 B 1 state.

Adiabatic triplet excited states

1 3 B 1 , 1 3 A 2 and 1 3 B 2
Three excited triplet states are lying within the same energy range than the singlet ones. Using the same active space and a state-averaging over these states, we computed the three dimensional PES. The same grid parameters have been employed, with the variation of from 70 to 177.5 , R s from 1.35 to 2.15 Å, and Q u between 0 to 0.5 Å and extended by symmetry to 0.5 Å. The energy minimum of the 13 B 2 state and its geometry have been computed from the interpolated PES and is obtained for a bending angle of 105 and an equal SO bond length of 1.577 Å. In the vicinity of the equilibrium geometry, the electronic configuration of the state is:

[core] 14 (5a 1 ) 2 (3b 2 ) 2 (6a 1 ) 2 (4b 2 ) 2 (7a 1 ) 2 (2b 1 ) 2 (5b 2 ) 2 (1a 2 ) 1 (8a 1 ) 2 (3b 1 ) 1 (9a 1 ) 0 (6b 2 ) 0 ,
with a weight of 0.91, approximately. For valence angles larger than 150 , the 1 3 A 1 state converging to the configuration of the 1 3 B 2 PES to:

[core] 14 (5a 1 ) 2 (3b 2 ) 2 (6a 1 ) 2 (4b 2 ) 2 (7a 1 ) 2 (2b 1 ) 2 (5b 2 ) 2 (1a 2 ) 2 (8a 1 ) 1 (3b 1 ) 0 (9a 1 ) 1 (6b 2 ) 0 .
This intersection occurs at high energies (> 6 eV) and the 1 3 B 2 state is approximated to the lowest adiabatic

1 3 A 0 state.
In other words we neglect the non-adiabatic coupling and the conical intersection (note that this approximation is later supported by the dynamical results). Concerning the 1 3 B 1 and 1 3 A 2 states, they have the same electronic configurations than the singlet states of the same symmetry discussed previously (Sec. 3.2.2), but with parallel spin for the single electrons. In agreement with the Hund's rules, their energy are slightly below the energy of the respective singlet states.

The equilibrium geometries are R s = 1.517 Å and = 126 for the 1 A symmetry-allowed conical intersection takes place between the 1 3 B 1 and 1 3 A 2 states, Fig. We present in Fig. 3.4 two di↵erent cuts of the adiabatic PES, the first one along the bending angle for fixed value of R s and the second along the R s coordinate for a fixed , both are in C 2v symmetry with Q u = 0. On the left panel, the lowest triplet state change as a function of , with at small angle (< 107.5 ) the 1 3 A 2 state has the lower energy while the 1 3 B 1 is the lower for larger angles. Concerning the variation along R s , the 1 3 B 2 state is the lowest for values larger than ⇠ 1.65 Å. We do not show a representation of the conical intersection for the triplet states, because of its similitude with the one of the singlet states. In the previous section we discussed on the electronic GS (Sec. 3.2.2), which is singlet of spin, as well as the operator to describe the interaction with light (Sec. 2.5.1). The latter does not operate on the spin of the electrons, so no transition may occur between the GS and the triplet excited states if we neglect the coupling between the singlet and triplet states. To take into account these interactions, the spin-orbit coupling (SOC) must be introduced as discussed later. At this point, it is interesting to look at the singlet and triplet excited states. In Fig. 3.5, the di↵erent electronic states are represented as a function of the bonding angle into the C 2v symmetry. The singlet and triplet states of the same symmetry (A 2 or B 1 ) never cross each other and are almost parallel for all the C 2v geometries. There is an intersystem crossing between the 1 3 A 2 and 1 1 B 1 states nearby by the minimum of the latter, and the same occurs as well between the 1 1 A 2 and 1 3 B 1 . In the vicinity of this crossing, the 1 3 B 2 state cross both singlet states at almost the same energy range. Turning in the C s symmetry (Q u = 0.05 Å), the crossing pattern changes radically for the adiabatic states. The higher adiabatic singlet state (2 1 A") does not cross any triplet state anymore and this holds for all the geometries computed. The lowest triplet adiabatic state (1 3 A") crosses the lowest singlet adiabatic state (1 1 A") for small angle, large Q u and R s . But both 2 3 A" and 1 3 A 0 states still cross the lowest adiabatic singlet state.

Energy (eV) 

A '' 3 1 A ' 1 2 A '' 1 1 A '' 1 2 A ''

Adiabatic ionic doublet states

1 2 A 1 , 1 2 B 2 and 1 2 A 2
The three lowest ionic doublet states 1 2 A 1 , 1 2 B 2 and 1 2 A 2 have also been computed during this study, because they are required to compute photoelectron spectra as well as for the calculation of the HHG spectra. The same level of accuracy and the same active space than for neutral states have been used. In order to correctly describes the nuclear dynamics the value of the R s coordinate has been decreased to 1.25 Å . The other parameters of the grid are the same than for the electronic triplet excited states. At the GS equilibrium geometry, the three lowest ionic states of the molecular cation SO + 2 have the following dominant electronic configurations:

1 2 A 1 : [core] 14 (5a 1 ) 2 (3b 2 ) 2 (6a 1 ) 2 (4b 2 ) 2 (7a 1 ) 2 (2b 1 ) 2 (5b 2 ) 2 (1a 2 ) 2 (8a 1 ) 1 1 2 B 2 : [core] 14 (5a 1 ) 2 (3b 2 ) 2 (6a 1 ) 2 (4b 2 ) 2 (7a 1 ) 2 (2b 1 ) 2 (5b 2 ) 1 (1a 2 ) 2 (8a 1 ) 2 1 2 A 2 : [core] 14 (5a 1 ) 2 (3b 2 ) 2 (6a 1 ) 2 (4b 2 ) 2 (7a 1 ) 2 (2b 1 ) 2 (5b 2 ) 2 (1a 2 ) 1 (8a 1 ) 2 .
The ionic ground state for the equilibrium geometry of SO 2 , namely 1 2 A 1 , is obtained from an ionisation of the electron in the 8a 1 orbital, while the two first doublet excited states result from ionisation of the 5b 2 and 1a 2 orbitals for the 1 2 B 2 and 1 2 A 2 state, respectively. While only optimization of the di↵erent characteristic points of the ionic states has been previously discussed in the literature, no full 3-D PES has ever been computed before the present work. We have compiled in Table I our data compared to the earlier theoretical ones. with a vertical energy lying 0.5 eV higher than the ionic GS. This is in contradiction with experimental and other theoretical results, but somehow consistent with the CCSD results, for which we obtained an energy di↵erence of 0.32 eV between the 1 2 A 1 and 1 2 B 2 states. Only Palmer reported the adiabatic energies of the ionic states, which are in close agreement with ours concerning the relative energy of the three di↵erent Because of the singularity of the non-adiabatic coupling in the adiabatic basis, it is compulsory to transform this latter into a "quasi-diabatic" basis in order to consider the nuclear dynamics. For the case of the singlet states, we propose two di↵erent approaches of diabatization (see Sec. 2.2.4). The numerical determination of the coupling constant from the PES follows two di↵erent ways. It has been shown that both ways remove the singular part of the non-adiabatic coupling but do not handle the non-singular part in the same manner [START_REF] Köppel | Construction scheme for regularized diabatic states[END_REF]. But, as the singular part should govern the dynamics, both methods should give similar results. The first method implies the computation of along the seam of CI. An interpolation of the PES has been used

to localise this seam, and was computed from Eq. (3.1) (see Sec. 2.2.4 Eq. (2.66)).

seam = 1 2 @(E 1 e E 2 e ) @Q u R seam s , seam (3.1)
This evaluation of seam is cumbersome because the seam of conical intersections must be determined and for system with more than 3 dof s, the determination of the hyper-plane of intersection becomes a hardly manageable task. But the attractive point is that the approximation of the model is well defined. A more systematic approach to compute the coupling term, C2v , is to project onto the high-symmetry sub-space the di↵erentiation of the two PES di↵erence along Q u , as presented in Eq. (3.2) (see Sec. 2.2.4 Eq. (2.70)).

C2v =  1 2 @ 2 @Q 2 u 1/2 R seam s , seam . (3.2)
The results of both methods are presented in Fig. Actually, these regions of uncoupled geometries have been artificially set to zero, because the coupling turns from a real value function to an imaginary one. It can easily be understood from Eq. (3.2) that it occurs at geometries for which the di↵erence between both PES is larger in the C 2v sub-space than in the C s one.

Physically this means that for these geometries, there is no repulsion between the PES anymore. This feature is a direct consequence of the method, which removes only the singular part of the derivative coupling, leading, as stated in Sec. 2.2.4, to the linear form of W 12 in Eq. (2.63). We assume that interactions between states can be neglected in such cases (i.e. = 0), which implies that diabatic states recover adiabatic ones. This approximation a↵ects the treatment of the non-singular derivative couplings only, which are not the goal of the concept of regularized diabatic states. The good agreement of the two diabatization variants, emerging below, shows that the non-singular derivative couplings are indeed of minor importance also from a more practical point of view (see also Ref. [START_REF] Köppel | Construction scheme for regularized diabatic states[END_REF] for related findings).

In this framework, the diabatic Hamiltonian for our system can be established as

H dia = (T N + ⌃)1 + (R s , , Q u ) p 2 0 (R s , ) + 2 Q 2 u 0 B @ 0 (R s , ) Q u Q u 0 (R s , ) 1 C A . (3.3)
Collecting the diagonal potential terms, it defines the diabatic potential energy surfaces which reads,

W 11,22 dia = ⌃ ± (R s , , Q u ) • 0 (R s , ) p 2 0 (R s , ) + 2 Q 2 u . (3.4)
The results of the diabatic PES are presented in Fig. 3.9 for either = C2v or = seam . By construction both methods give diabatic states identical to the adiabatic one in C 2v symmetry, but are di↵erent in the C s one. For a small value of asymmetric coordinate (Q u = 0.05 Å), the di↵erence between both method are hardly noticeable for the entire range of bending angle, except that the diabatic states obtained from

C2v exhibit a faster convergence to the adiabatic states far from the conical intersection, where the diabatic 1 B 1 ( C2v ) state (full blue) join the 1 1 A" state (black line) for ⇠ 127 , while the 1 B 1 ( seam ) (dashed blue) stay above the latter. ) For a larger value of the asymmetric stretching (Q u = 0.15 Å), the di↵erence between both methods becomes more important. In the case of C2v , for which we enforced C2v = 0 for large angles, it leads to an unphysical behaviour of the 1 B 1 ( C2v ) and 1 A 2 ( C2v ) states. The convergence of these diabatic states to the adiabatic ones is abrupt and a discontinuity appears in the diabatic states. For the second method, both diabatic states obtained from seam are smooth and with a much slower convergence to the adiabatic states

( ) C2v λ ( ) C2v λ ( ) λ seam ( ) 2 1 A 1 1 A E (eV) 1 A ( 2 1 B 1 1 A 2 1 B 1 seam (°)
2 1 A 1 1 A E (eV) 1 A ( 2 1 B 1 1 A 2 1 B 1 seam (°)

DIABATIZATION OF THE ADIABATIC STATES COUPLED THROUGH CONICAL INTERSECTION87

with a smoother behavior. As along the seam of conical intersection both methods give identical results for , the position of the intersection between the diabatic states is unchanged from a method to another, as well as the shape of the diabatic potential in its vicinity. The two methods have the same properties because both take care of the singular part of the derivative coupling and away from the conical intersection the diabatic states recover the adiabatic ones because the coupling is weak and the adiabatic picture is valid.

This feature has already been discussed by the authors of Ref. [START_REF] Köppel | Construction scheme for regularized diabatic states[END_REF], pointed out the interpolating behaviour of the method between a good diabatic basis, i.e. the C 2v subspace, and the the adiabatic basis away from the intersection, when the non-adiabatic coupling becomes weak. The problem with the method involving

C2v is rather general, we found the same behaviour concerning the diabatization of the doublet and triplet states, while the other method gives always smooth diabatic PES.

The non-adiabatic coupling terms (o↵-diagonal elements of the diabatic potential matrix), is defined by (see Sec. 2.2.4 Eq. (2.69)): 

W 12 = (R s , , Q u ) • Q u p 2 0 (R s , ) + 2 Q 2 u . ( 3 

Diabatization of the

1 3 B 1 /1 3 A 2 and 1 2 A 1 /1 2 B 2

adiabatic states

The conical intersections between either the triplet or doublet states are also symmetry-allowed and the diabatization scheme is thus identical to the case of the singlet states. As pointed out in the previous section, it turns out that both methods are not equally convenient. So, we decide to continue only with the determination of along the seam of conical intersections, because as it will be presented later (Sec. 4.2.1), both methods lead to almost identical results for the wavepacket dynamics. The seam of conical intersections (see Fig. 3.11) has been evaluated thanks to the interpolation of the PES on the ab-initio grid. Its topology is similar than the one of the singlet states, and can be defined as a function of the R s coordinate. For both set of state, its variation with respect to the bonding angle is similar, with ⇠ 100 for small values of R s and smoothly increases to ⇠ 120 while R s becomes larger.

For the ionic states the seam is almost a linear function of the symmetric coordinates, while seam of CI of the triplet states is curved for R s > 1.9 Å and the value of starts to decrease to smaller values. One can notice that in both cases the seam of conical intersections is located at smaller angles than in the case of the singlet states (see Sec. 3.3.1). An important feature can be stressed from Fig. 3.11, noticing that the seam of conical intersections are in both cases located near the minimum of the coupled states, which presage that its impact on the wavepacket dynamics. In the lower panel the potential coupling between the diabatic states is given for the triplet (left) and ionic states (right), at fixed value of Rs = 1.448 Å.

The coupling constant has been evaluated for the ionic and the triplet states and the results are reported on Fig. 3.12. For both set of states the values of are smaller than in the case of the singlet states, with roughly ⇠ 0.5 eV/ Å for the ionic states and ⇠ 1.0 eV/ Å for the triplet states. These results will directly a↵ect the coupling between the states, and we expect a stronger role of the conical intersection in the dynamics of the singlet states than for the ionic states and then for the triplet states. Of course the time-dependent evolution of the wavepacket can overcome this statement. On the bottom of the Fig. 3.12 are shown the di↵erent coupling terms (W 12 ) for the triplet (left) and ionic (right) states. The coupling is slightly smaller in the case of the triplet states.

Grid for quantum dynamics

The di↵erent PES that we will consider in the wavepacket dynamics have been computed on a three dimensional grid as a function of adapted internal coordinates. As introduced in the theoretical part of this manuscript (see Sec. 2.3.1), the dynamics needs also a grid to describe the nuclear wavefunction and a DVR as been used. The PES have to be evaluated at each point of the DVR and the coordinate system has been changed from the internal coordinates system { , R s , Q u } to a set of Jacobi coordinates {r v , r d , ✓}. This consideration arises naturally after the diabatization of the PES because for the coupled states the adiabatic PES are not smooth functions of the nuclear coordinates and present as well a double minima, which leads to di culties to accurately interpolate or fit them. On the contrary, the diabatic states are smooth, thus this procedure is more convenient and a better accuracy is usually achieved. To transform and evaluate the PES on the DVR points, two possibilities have been adopted. First we fit the 3D PES with a function to obtain an analytical form in the first set of coordinates and the second option is to use an interpolation of the PES to transform them, which is related to a polynomial fit. The first possibility has been used at the first stage of this work to study the wp dynamics on the singlet states [START_REF] Lévêque | Ab initio quantum study of the photodynamics and absorption spectrum for the coupled 1 1 A 2 and 1 1 B 1 states of SO 2[END_REF]. Let's see the advantage of the method and the issue.

The good point with a fitting procedure is that one can choose physical and smooth functions of the nuclear coordinates and expect that, if required, an extrapolation of the ab-initio grid will be accurate enough. The Morse potential is used to describe them:

V 1,2 (R 1,2 ) = 1 (1 exp ( (R 1,2 /R 0 1,2 1)) (3.6) 
where and R 0 i are parameters controlling the width and the bottom of the Morse potential, respectively.

For the bending angle , a third order polynomial expansion has been used:

V 3 ( ) = A 1 ( 0 ) + A 2 ( 0 ) 2 + A 3 ( 0 ) 3 (3.7)
where the coe cient A i and the reference angle 0 are also parameters, note that we use in radian for the fit. As the above functions are only dependent of one coordinate, we use a polynomial expansion of them, up to the fourth order:

V (R 1 , R 2 , ) = a+b+c4 X a,b,c C a,b,c V 1 (R 1 ) a V 2 (R 2 ) b V 3 ( ) c . (3.8)
The fit has been carried out with Mathematica software [144] using the least-square method and as it is a non-linear problem, only locally optimized fitting parameters can be obtained. The o↵ diagonal coupling term has also to been fitted and a polynomial function of the internal coordinates is used:

W f it 12 = 12 X a=0 12 X b=0 4 X c=0 C abc a R b s Q c u . (3.9)
should be, as far as possible, kept high for a larger region. According to the experimental spectrum resulting from an excitation to these states, it results that energy below 5.5 eV are involved in the dynamics and the accuracy will be focused on this region of the PES. The fit of the full PES does not fulfilled our requirements, especially along the R s coordinate and we decide to split the PES in two parts for R s < 1.6 Å and R s > 1.575

Å . The overlap between the two regions is done on purpose to avoid an abrupt connection between them.

The results of the fitted 1 B 1 PES are reported in Fig 3 .14 for Q u = 0 (left panel) and Q u = 0.15 Å (right).

On the same figure, the red contour line indicates energies below 6.0 eV of the ab-initio potential, which may be involved in the dynamics. For this region the fit in the C 2v geometry as an error below 0.05 eV, except at the grid edges of the coordinate, which is satisfactory. As mentioned, for the C s geometries such accuracy has been obtained thanks to two di↵erent fitting functions, for which, the connection is indicated by a black line on the PES. In this way a similar convergence is obtained for the region below 6.0 eV. Note that the energy at the junction between the two functions does not exceed 0.04 eV and usually stays below 0.02 eV, which is reasonable. The same results are presented also for the 1 A 2 state in Fig. 3.15. The general accuracy is similar to the one obtained for the 1 B 1 state, but we can notice that for energies higher than 6.0 eV, either for small or large values of R s the error exceeds 0.1 eV. The branching between the two fitted parts of the PES exhibits an energy di↵erence below 0.02 eV. An important point to notice is that the fit of the 1 A 2 state describes correctly the PES nearby its energy minimum but also the PES in the vicinity of the 1 B 1 minimum. The same holds for the fit of the 1 B 1 PES. As both states are coupled through the coupling W 12 , an incorrect description would have lead to erroneous adiabatic surfaces.

Let's discuss now the case of the diabatic states obtained with C2v , for which we already pointed out the problem of the imaginary values of and the discontinuity in the PES. This feature is clearly problematic and particularly to fit the PES, because the accuracy of the fitting function is determined thanks to the relative energy di↵erence between the ab-initio points and the analytical function. Then, in this case, an inherent error comes from the "cusp" of the diabatic states that makes the convergence not possible. Furthermore an intrinsic error (⇠ 0.2 eV) is introduced in a non-controllable way because because smooth analytical functions are used. The following strategy has been used to obtain the most accurate fitting function. First we noticed that irregularities in the PES arise principally at high energies (⇠ 5.5 eV) and the lower energy part of the PES is mandatory, so the ab-initio point at energy higher than 5. We present the results for both fitted diabatic states in Fig. 3. [START_REF] Kanai | Quantum interference during high-order harmonic generation from aligned molecules[END_REF]. We can see that the fitting procedure chosen manages to obtain a global accuracy below ⇠ 0.1 eV, with a maximum error of 0.2 eV in the higher energy regions of the PES represented by the red line. This holds for various values of Q u but the global accuracy decreases when Q u increases. These results are reasonable according to the PES to be fitted. The fitting process avoids the irregularity of the diabatization scheme providing smooth diabatic PES. From the fitted diabatic PES we transform them back to the adiabatic basis, and we found that the error does not exceed 0.2 eV in the energy region under interest. Nevertheless this di↵erence of accuracy with the other diabatization scheme is not negligible and can lead to di↵erent results in the dynamic.

The di↵erence of accuracy between the two diabatization scheme is not negligible and clearly the deter- mination of along the seam of conical intersection is a better choice in our case, providing convenient PES to be fitted. Actually, the fitting process always introduces an error in comparison to the bare ab-initio data, but we expect a correct extrapolation of the PES in comparison to an interpolation procedure. It turns out that the extrapolation is not good as well (as discussed later) and introduces a non-negligible error in the dynamics of the wp. Then we decided to compute large ab-initio grid and to use the interpolation of the PES to change the coordinate system and evaluate the PES on the DVR grid. In the case of a three-dimensional system the time to compute extra data or obtain a correct fit is similar but the result are clearly superior with the former.

Spin-orbit Coupling and Transition dipole moment

Spin-orbit Coupling

In the theoretical part (Sec. 2.4.2), we already introduced the way of computing the SOC with the Molpro package [107] by the use of the perturbation theory and the Breit-Pauli operator. In our study, the SOC between the three singlet and the three triplet states have been considered, as they are in close vicinity.

Previous study rarely considered the geometry dependency of the SOC and/or considered an average potential of the non-degenerate components of the triplet states. As the goal is to study the photodynamics of the
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with each o↵-diagonal elements being the SOC matrix element coupling two states and the diagonal elements are the adiabatic PES presented previously (see Sec. 

M S i + = 1 p 2 (|S, M S i + |S, M S i) (3.11) |S, M S i = 1 p 2 (|S, M S i |S, M S i), (3.12) 
it is possible to rewrite the potential matrix in a block diagonal form with one block of A 0 symmetry,

V soc A 0 = 0 B B B B B B B B B B B B B B B @ V1 A1 p 2C 1 p 2R 1 p 2R 2 C 2 C 3 p 2C 1 V 3 B 2 C 10 C 11 p 2R 5 p 2R 6 p 2R 1 C 10 V 3 B + 1 0 0 p 2C 12 p 2R 2 C 11 0 V 3 A + 2 p 2C 12 0 C 2 p 2R 5 0 p 2C 12 V3 B 0 1 0 C 3 p 2R 6 p 2C 12 0 0 V3 A 0 2 1 C C C C C C C C C C C C C C C A (3.13)
which contains the electronic ground state, the triplet 1 3 B 1 and 1 3 A 2 with two di↵erent spin components (0 and +) as well as the triplet 1 3 B 2 state with spin component ( ). The other states, i.e.

{1 1 B 1 , 1 1 A 2 , 1 3 B 2 (+), 1 3 B 2 (0), 1 3 B 1 ( ), 1 3 A 2 ( )} belong to the A" symmetry block, V soc A" = 0 B B B B B B B B B B B B B B B @ V1 B1 0 p 2R 3 C 4 p 2C 5 p 2C 6 0 V1 A2 p 2R 4 C 7 p 2C 8 p 2C 9 p 2R 3 p 2R 4 V 3 B + 2 0 C 10 C 11 C 4 C 7 0 V3 B 0 2 p 2R 5 p 2R 6 p 2C 5 p 2C 8 C 10 p 2R 5 V 3 B 1 0 p 2C 6 p 2C 9 C 11 p 2R 6 0 V 3 A 2 1 C C C C C C C C C C C C C C C A . (3.14)
The usual next step is to diagonalise the full potential energy matrix to obtain the new electronic states, which are mixed between singlet and triplet states. Here the diagonalization is not performed for two reasons. On the one hand, it facilitates the interpretation of the results by keeping unmixed states of di↵erent spin. On the other hand, it also facilitates the diabatization of the states. Because of the di↵erent conical intersections taking place in the manifold of states, we need to transform the full potential matrix into the diabatic electronic basis. Making use of Eq. (2.50) from Sec. 2.2.5, we can build the adiabatic-todiabatic transformation matrix U for each manifold of states. Starting with the symmetry A 0 , let's call U T r the transformation matrix which diabatizes the triplet 3 A 2 and 3 B 1 states obtained in the previous section.

Then the full transformation matrix, which diabatizes the A' manifold can be written as

U A 0 = 0 B B B B @ 1 2 0 0 0 U Tr 0 0 0 U Tr 1 C C C C A , (3.15) 
using the notation introduced in Sec. 2.2.5 and 1 2 the two-by-two identity matrix. The adiabatic states V1 A1 and V 3 B 2 are not coupled vibronically with any other states, and we collect them with their SOC into

P no CI , P no CI = 0 B @ V1 A1 p 2C 1 p 2C 1 V 3 B 2 1 C A . (3.16)
The remaining states are coupled through the symmetry-allowed conical intersection with respect to their spin components and they are collected into V + Tr and V 0 Tr ,

V +,0 Tr = 0 B @ V 3 B +,0 1 0 0 V 3 A +,0 2 1 C A . (3.17) 
The SOC between the di↵erent block are then denoted by I P/T +,0 between the blocks P no CI and V +,0 Tr , I T + /T 0 between V + Tr and V 0 Tr . The A' block, Eq. (3.13), reads now:

V soc A 0 = 0 B B B B @ P no CI I P/T + I P/T 0 I T + /P V + Tr I T + /T 0 I T 0 /P I T 0 /T + V Tr 1 C C C C A . ( 3.18) 
The potential matrix is then transformed into the diabatic basis as,

U A 0 • V soc A 0 • U † A 0 = 0 B B B B @ P no CI I P/T + • U Tr I P/T 0 • U Tr U † Tr • I T + /P U † Tr • V + Tr • U Tr U † Tr • I T + /T 0 • U Tr U † Tr • I T 0 /P U † Tr • I T 0 /T + • U Tr U † Tr • V Tr • U Tr 1 C C C C A . ( 3.19) 
A similar scheme can be use to diabatized the block of A" symmetry if we consider the full transformation matrix defined by

U A" = 0 B B B B @ U Si 0 0 0 1 2 0 0 0 U Tr 1 C C C C A , (3.20) 
where we introduced the transformation matrix of the singlet coupled states 1 A 2 and 1 B 1 as U Si . After the diabatization of the potential matrix, the potential part of the Hamiltonian can be built on the DVR grid using an interpolation to define it at the di↵erent DVR points. One of the issue is that the sign of the electronic wavefunction of each state is arbitrary defined and can change from one geometry to another. An example of this issue is presented in Fig. 3.17, where the surface represents the interpolation of the absolute value of the spin-orbit coupling and the red and green points are the ab-initio data with positive and negative values, respectively. The variation of the sign between to di↵erent geometries does not a↵ect the eigenvalues of the system, but the ab-initio data must be interpolated to evaluate the PES at the DVR points used for the dynamics.

The fact that the sign changes is only a problem because we do not have ab-initio data at each point of the DVR used for the forth-coming propagation. Note that if the mixed singlet/triplet states are used (i.e. the Right panel is the result of the diabatization for the SOC between the 1 1 A1/1 3 B1(0) states (green) and 1 1 A1/1 3 A2(0) states (blue).

potential matrix is diagonalized) the problem would have not appeared and then is inherent to the method used here. The sign flipping can arise between two geometries for any of the electronic wavefunction, but as the SOC is computed using the perturbation theory, the sign of each spin component of one triplet state is the same, reducing the possibility distributed over six states. The result of changing the sign of one electronic wavefunction in the potential matrix is simply obtained by multiplying on the left and right the potential matrix by a diagonal matrix with elements equal to one except for the desired state for which it is 1.

Considering all the possible permutation over all the number of states leads to

n 1 X i=0 0 B @ n i 1 C A (3.21)
where n is the number of states. In our specific case, it gives 72 di↵erent transformations that must be applied at the di↵erent geometry. Starting from one geometry as a reference to have the relative sign of the di↵erent SOC elements, the transformations are applied to minimise the variation of the sum of the SOC elements. It ensures that the larger SOC elements do not experience anymore sign flipping. Concerning the smaller SOC elements (less than 10 cm 1 ), the method is not optimal but the error in the interpolation and evaluation over the DVR grids will be small. Then to avoid to store the transformed potential over the ⇠ 2000 geometries the diabatization step is performed directly for each geometry after optimization of it sign. It is useless to present all the 18 SOC elements and the result of the diabatization, so we propose to study one specific case of each symmetry block, i.e. A' and A". manifold. The left column presents results for 1 1 A" (full) and 1 3 A" (dashed) states, on top the two lowest adiabatic states are presented with the colour code changing from green (A2 character) to blue (B1 character) along the bending angle the dashed area indicate when both states have di↵erent characters, which occurs in-between the two CI. For these geometry the SOC is expected to be non-vanishing as presented on the bottom. The right column is similar for 2 1 A" (full) and 1 3 A" (dashed) states. Note that Rs = 1.448 Åis fixed at GS equilibrium geometry and Qu = 0.05 Å.

First let's remind that all the conical intersections are symmetry allowed. Then in the C 2v subspace no diabatization is required because the PES cross each other and the electronic character remains for all nuclear geometries of this subspace and then only the C s subspace has to be carefully studied. First let consider the case where the SOC matrix elements are determined between two states with a conical inter-

section (1 3 B 1 (0)/1 3 A 2 (0)
) and a third one (1 1 A 1 ). With respect to the increasing or decreasing bond angle the electronic character of the adiabatic states changes and the influence on the SOC appears as displayed in Fig. 3.18. For values of for which the adiabatic states are associated to a A 2 symmetry, the SOC is rather small, as shown in blue, and an opposite behaviour is obtained for the B 1 symmetry in green. Applying the adiabatic-to-diabatic transformation, the electronic character is preserved, providing a smooth and large SOC between the GS and the diabatic 1 3 B 1 (0) state (green in Fig. 3.18, left panel) . A vanishing coupling is obtained for the diabatic 1 3 A 2 (0) state (blue), as expected from symmetry consideration.

We also present a more complicated case when the SOC are evaluated between singlet and triplet states coupled through a conical intersection. The results are presented in Fig. 3.19 for two di↵erent SOC elements.

The behaviour of the SOC according to the bending angle shows a particularly interesting dependency. In one case the SOC is almost null for all the geometries, except for few angles between 105 and 115 . In the second case, the opposite appears with large values of the SOC except for the angles discussed before, for which smaller values are obtained. These variations of the SOC are simply explained by looking at the di↵erent CI between the singlet and triplet states. The CI between the singlet states occurs at 115 , while the one between the triplet states takes place at 105 . It results that when we consider the lowest singlet and triplet adiabatic states (first case), for small angles , the SOC is computed between states of the "same" symmetry A 2 and is weak (forbidden in C 2v subspace). After the CI between the singlet states, the SOC is evaluated between states of A 2 /B 1 symmetry and is large. Then, after the CI between the triplet states the SOC is once again computed between states of "same" symmetry (B 1 ) and becomes weak again (see Fig. 3.19). The opposite scheme appears for the SOC between the lowest adiabatic singlet (triplet) and higher adiabatic triplet (singlet) states (second case). Applying the diabatization scheme introduced above, we obtained the SOC matrix elements between the diabatic states, which preserve the electronic character from one side of the conical intersection to the other. Then a smooth dependency according to the bending angle is obtained, as presented in Fig. 3.20. The SOC between the singlet and triplet states of the same symmetry (B 1 ) depicted by the red surface is weak, while the SOC between the singlet and triplet states of di↵erent symmetries ( 1 A 2 and 3 B 1 ) is smooth and large. In the same figure, the SOC in the adiabatic basis is showed and for the higher surface the green part corresponds to the SOC between 1 B 1 and 3 A 2 , while the blue part of the SOC, after the CI corresponds to the one between 1 A 2 and 3 B 1 .

Transition Dipole Moment

The transition dipole moment (TDM) is needed to describe the interaction between the electrons of the molecule and an electric field, which leads to the electronic excitation of the molecule. The latter has been computed using Molpro [107] at MRCI level of theory on the same grid than the SOC, because to be accurate the nuclear coordinates dependency of this latter has also to be considered. The TDM associated with all possible transitions between the manifold of states have been computed according to the di↵erent polarisation of the electric field in the Cartesian coordinates system used to describe the molecular coordinates. The presence of the di↵erent conical intersections between electronic excited states leads to an abrupt evolution of the TDM depending of the nature of the adiabatic states. Thus it is required to transform it into the diabatic basis. This transformation is straightforward and is handled in the same way than the diabatization of SOC.

Table 3.7: Summary of the non-vanishing element of the dipole operator between the di↵erent electronic states. state

1 A 1 /1 1 A 0 1 B 1 /1 1 A" 1 A 2 /2 1 A" 3 B 1 /1 3 A" 3 A 2 /2 3 A" 3 B 2 /1 3 A 0 1 A 1 /1 1 A 0 z/y,z x/x -/x -/- -/- -/- 1 B 1 /1 1 A" x/x z/y,z y/y,z -/- -/- -/- 1 A 2 /2 1 A" -/x y/y,z z/y,z -/- -/- -/- 3 B 1 /1 3 A" -/- -/- -/- z/y,z y/y,z 0/x 3 A 2 /2 3 A" -/- -/- -/- y/y,z z/y,z x/x 3 B 2 /1 3 A 0 -/- -/- -/- 0/x x/x z/y,z
The transition between states of di↵erent spin multiplicities are forbidden when the SOC are not taken into account but it relaxes when there are included in the Hamiltonian. In our approach the electronic GS stays purely singlet but the full wavefunction, i.e. the electronic times vibrational wavefunctions (or vibronic) will also being partially of triplet character. This will appear by a small fraction of the vibrational wavefunction partially delocalized on the triplet states and then the full wavefunction of the vibrational lowest level reads,

0 (R, r) = X s2A 0 a s s (R) s (r; R). (3.22)
This formulation of the vibrational ground state will be discussed in more details in the next part of this manuscript, but due to this formulation di↵erent excitations from the perturbed GS to the triplet states can take place. We reported in Tab. 3.7 the di↵erent transitions allowed by symmetry (C 2v and C s ) according to the di↵erent polarisation of the electric field.

An interesting point appears, as the GS total wavefunction lies into A 0 symmetry, the polarisation of the electric field in the molecular plan leads to transition in the manifold of A 0 states either with y or z direction. Concerning the x polarized exciting light, it will lead to excitation from the A 0 manifold to the A" manifold of states. To study these di↵erent transitions, the TDM have been computed and as previously diabatized when a conical intersection appears between two states.

Recombination matrix element in the SFA approximation

Using the Molpro package [107], we used the configuration interaction vector of the di↵erent electronic states in order to reconstruct the electronic wavefunctions. Thus the Dyson orbitals for the relevant ionisation channels are constructed, and subsequently the SFA recombination matrix elements. These latter are required to study the HHG process in SO 2 . The diabatization of the recombination matrix elements does not present any particular di culty. We first present the results obtained for the electronic GS, 1 1 A 1 , which can ionise to the coupled 1 2 A 1 and 1 2 B 2 states. The geometry dependency of the transition matrix element, in the adiabatic basis, presents an abrupt variation for ⇠ 100 , where the seam of conical intersections between the 1 2 A 1 /1 2 B 2 states is located. The diabatization of the electronic states leads to a smooth variation of transition matrix element with respect to the molecular geometry. We obtained almost vanishing recombination matrix elements between the GS and the 1 1 B 2 state.

The ionization of the singlet excited states, 1 1 B 1 and 1 1 A 2 , to the lowest ionic states 1 2 A 1 and 1 2 B 2 is slightly more complicated, because the two initial and final states are vibronically coupled. Thus it required the evaluation of the Dyson orbitals and the recombination matrix elements for all the possible channels.

The results in the adiabatic basis are displayed in Fig. 3.22. A strong variation of the recombination matrix elements is obtained for 100 < < 120 . These variations take place between the seam of CI between the ionic states and the one between the singlet states. This behaviour is the same than the one obtained for the SOC elements of Fig. 3.20, discussed previously (see Sec. the ionisation of the 1 1 B 1 state to the ionic 1 2 A 1 state and for the ionisation the 1 1 A 2 state toward the ionic 1 2 B 2 state are presented in Fig. 3.23. The remaining transition matrix elements are close to zero after the diabatization procedure. This two transition matrix elements are very similar concerning their variation with respect to the molecular geometry and also concerning their values. It emanates because for the two ionisation channels the same electron is ionized, i.e. the one from the 3b 1 orbital. The ionisation of the di↵erent triplet states has also to be considered. The triplet states of spatial symmetry B 1 and A 2 can be ionised following the same channels than the ones of the singlet states. The electron of the 3b 1 orbital is ionized and because of their similarity with the singlet states, we decided to use the results from the singlet states ionisation to describe their recombination matrix elements. Concerning the 1 3 B 2 state the lowest ionisation energy is obtained from removing the electron of the 3b 1 orbital, leading to the 1 2 A 2 ionic state.

The matrix elements for this channel has been evaluated and it exhibit a similar behaviour in comparison to Å and an electron momentum p = 0.9 a.u. (a) between the 1 1 A" state and 1 2 A 0 state, (b) between the 2 1 A" state and 2 2 A 0 state, ( c) between the 2 1 A" state and 1 2 A 0 state and (d) between the 1 1 A" state and 2 2 A 0 state. the ones obtained for the singlet states but with slightly larger values.

Chapter 4

Weak field spectroscopy:

Photoabsorption and photoelectron spectra

Introduction

Di↵erent methods of spectroscopy can be applied to a system to learn about its properties. The following results have been obtained using the theoretical work introduced in Sec. 2 and the results presented in the Sec. 3. We propose the following organisation of the discussion, starting with the dynamics in the singlet excited states and the resulting photoabsorption spectra. Then we introduce the role of the triplet states in this simple system and we discuss the role of the SOC and the "forbidden band" of the experimental spectrum.

Photoabsorption: the Clements band

Time dependent wavepacket propagation

The photoabsorption spectrum of the sulfur dioxide molecule has been already widely studied experimentally. In the UV regime (3-8 eV) the spectrum can be classified in three distinct parts, with first the so-called "forbidden band" (3.1-3.6 eV) which has been experimentally associated with a transition from the electronic ground state to the lowest triplet state ( 3 B 1 ). Then the first allowed band, in the energy region of 3.5-5.5

eV, has been studied by Clements and results from a transition to the 1 B 1 state, strongly perturbed by the presence of the 1 A 2 state. At higher energies, the second allowed band occurs at 5.5-7.5 eV and has been assigned to a transition to the 1 B 2 state.

In this part we consider only the first allowed band, which presents an interesting vibrational progression with a well separated vibronic absorption in the low energy range called the "Clements bands" and usually labelled by Latin letters. In the higher energy range a pseudo-continuum of absorption is observed. Using the 3D diabatic states introduced in Sec. 3.3.1, the TDSE can be numerically solved using as initial wavefunction the vibrational GS, on which the transition dipole operator is applied. This is similar to an experiment with a laser pulse of an infinitesimal time duration. Thus results to an infinite frequency spectrum, giving the full absorption spectrum in one calculation. The full wavefunction is expanded on the two electronic singlet states (1 1 B 1 /1 1 A 2 ) and reads,

(t) = 1 1 (t) + 2 2 (t). (4.1)
and evolves under the action of the excited states Hamiltonian, including the diabatic potential of the excited states. TN is the nuclear kinetic energy operator, expressed in Jacobi coordinates Fig. 3.1 as,

TN = 1 2µr d @ 2 @r 2 d r d 1 2Mr v @ 2 @r 2 v r v 1 2I ✓ sin ✓ @ @✓ sin ✓ @ @✓ (4.2)
where the following notations have been introduced:

M = 1 2 m O (4.3) µ = 2m S m O m S + 2m O (4.4) I ✓ =  1 Mr 2 v + 1 µr 2 d 1 (4.5)
with m O and m S the masses of the oxygen and of the sulphur atom respectively and I ✓ the three-body moment of inertia.

As only the transition to the 1 B 1 state is symmetry allowed, the initial excited wavepacket lies exclusively on the diabatic 1 B 1 state, as depicted by the diabatic electronic population of Fig. In the theoretical Section 2., we used the system of atomic units, but this system is not specially adapted to discuss the evolution of SO 2 . Principally, the atomic unit of time, ⌧ ⇠ 24.18884 as, is not adapted to follow the nuclear dynamics, taking place on the femtosecond time scale. In the following we use the conversion 1 fs = 41.3414 ⌧ . The time-dependent evolution of the wavepacket gives us piece of information on the time evolution of the density probability as a function of the nuclear geometry. While the initial wavepacket is well localised, its time evolution produces a fast delocalisation and after tens of femtosecond it usually 110CHAPTER 4. WEAK FIELD SPECTROSCOPY: PHOTOABSORPTION AND PHOTOELECTRON SPECTRA span the energetically allowed part of the PES, render tedious its analysis. In the following we focus on its propagation on the coupled electronic states during the first 65 fs. We report in Figs. At time t = 0 fs the initial wavepacket is entirely located on the 1 1 B 1 diabatic state; this transition is the only dipole-allowed (no transition to the 1 1 A 2 state). Then 100% of the population is on this state as seen in The wp splits in two and starts to explore both, minima, exciting thereby the asymmetric stretching mode in Fig. 4.3 (red contour lines). The wp belongs then exclusively in the C s symmetry, along the seam of conical intersections where the electronic states are close in energy and the non-adiabatic-coupling is strong.

At ⇠ 28 fs the wp reaches its turning point along ✓ and turns backwards to smaller value of |✓ 90 |, i.e. small values of Q u (blue contour lines). The two other modes of the molecule are also excited with an important increase of r v at 20 and 40 fs (red and blue). In the same time, relative increases of the r d coordinate is observed, see Fig. 4.2. During this nuclear motion, the adiabatic population becomes close to unity (99.8%) on the LAS, while after its fast population transfer, the diabatic population exhibits a plateau from 15 to 35 fs. The radically di↵erent behaviours of the adiabatic and diabatic populations can be clarified if we look at the adiabatic-to-diabatic mixing angle. We computed it for a sample of coordinates explored during these times and we found values close to ⇡/4. For this value the diabatic wavefunctions are an equal mixture of adiabatic states; the same mixing occurs for the densities. A large transfer of diabatic population (30%) occurs again from 40 to 60 fs from the 1 1 B 1 state to the 1 1 A 2 state: then the population on the 1 1 B 1 state is 15%, while the adiabatic population does not change significantly. During these times the wp is exploring decreasing values of |✓ 90 | (i.e. decreased of Q u ), after reaching the turning point along this coordinate and then turns back to C 2v symmetry, as seen when comparing this two timing (blue and green) in Fig. 4.3. This is accompanied by a decrease of the bond angle.

For motion on the LAS this amounts to a population transfer from the 1 1 B 1 to the 1 1 A 2 state. At 65 fs the part of the wp located on the LAS is coming back to the seam of CI near the FC area (green lines in Figs. 4.2-4.3). A part of the wp on the LAS is transferred to the UAS, as it appears on the left panel. Thereby 8% of the population is transferred between the states as shown in Fig. 4.1. The smaller recurrence at t ⇠ 65 fs comes from a return of the wp on the LAS along R 1 + R 2 ⇠ r v + r d . However, the di↵erence r v r d (⇠ ) clearly deviates from the value at t = 0, i. e. the bond angle is smaller. Then the wp starts to broaden and the interpretation becomes di cult. We can stress that we obtain another small revival at around 80 fs (2 T UAS ) and one around 130 fs (2 T LAS ). Another important revival is observed at 150 fs.

The absorption spectra are computed as the Fourier transform of the autocorrelation function. Since we start with real initial wavefunctions, we compute C(2t) = h ? (t)| (t)i, from the wavefunction at time t [START_REF] Manthe | Multiconfigurational time-dependent hartree study of complex dynamics: Photodissociation of NO 2[END_REF][START_REF] Engel | The calculation of autocorrelation functions for spectroscopy[END_REF]. The spectra from the propagation on the coupled diabatic states are given in Fig. 4.5 and compared with the experiment from Ref. [START_REF] Vandaele | Fourier transform measurements of SO 2 absorption cross sections: II.: Temperature dependence in the 29 000-44 000 cm 1 (227-345 nm) region[END_REF]. The red (black) line represents the theoretical (experimental) spectrum. The theoretical spectrum has been shifted by 1960 cm 1 (0.243 eV) in order to match the first oscillations of the experimental spectrum, with the correction of the Zero-point energy (ZPE). Our calculation reproduces quantitatively the low-energy part of the spectrum, with an accurate matching of the spacing of the absorption peaks and a satisfactory agreement concerning the relative intensities. A recent theoretical study of [START_REF] Dehestani | Theoretical investigation of absorption spectrum of SO 2 molecule: Including S1-S2 vibronic coupling[END_REF], was able to give a rough agreement with the experimental spectrum. The di↵erence with the experiment was explained by the neglect of the anharmonicity of the potential. In our study we consider the full potential, which seems crucial and this is a very important point of the method used in this work. Also the high-energy part of the spectrum is qualitatively well reproduced: there is no total matching, but still a good overall agreement with the experiment. We emphasised that we performed our study concerning the diabatization following two di↵erent ways.

The bottom panel of Fig. 4.5 compares the simulated spectra with the two methods. In blue we show the result by determining in the C 2v subspace and in red the one by determining along the seam of CI. We shifted both to match the oscillations of the experimental spectrum (1960 cm 1 for the red and 1890 cm 1 for the blue spectrum). Both methods match perfectly in the low-energy part with each other as well as with experiment. For the high-energy part the spectral structures are very similar with a shift of 70 cm 1 . It was shown in Ref. [START_REF] Köppel | Construction scheme for regularized diabatic states[END_REF] that the method using the computation of in the total C 2v space contains also a non-singular part of the derivative coupling and may explain the shift obtained between the two methods.

The pronounced -and seemingly quite regular -peak progression at lower energies in Fig. 4.5 raises the question of the underlying vibrational motion involved, which would be better dubbed as vibronic in view of the coupled electronic and vibrational degrees of freedom. From our results we first note that the energy spacing E is ⇠ 220 cm 1 corresponds to a time T = 2⇡h/ E ⇠ 152 fs, i.e. the time when we see the most prominent recurrence in C(t) in Fig. 4.4. This happens, as seen in Fig. 4.6, when the wp approached again the FC zone, but somewhat closer and from another side than at t ⇠ 65 fs. Here, larger values of (around ⇡ 120-140 ) are explored, where the LAS corresponds to the 1 1 B 1 -state. In this sense, the revival time 150 fs could be related to the oscillation period of the bending mode. However, one should keep in mind that the wp does not evolve on the uncoupled 1 1 B 1 -state, but on both states, 1 1 B 1 and 1 1 A 2 , with the 1 1 A 2 state dominating (see Fig. 4.1). This is further confirmed when computing the absorption spectra (Fig. 4.7) from the uncoupled surfaces, which displays a vibrational spacing of ⇠ 220 cm 1 for the hypothetical 1 1 A 2 state spectrum but not for the (dipole-allowed) 1 1 B 1 state. Moreover, the uncoupled 1 1 B 1 spectrum shows a similar envelop than the coupled one Fig. 4.5, but a drastically di↵erent vibrational features. The comparable envelop is consistent with the fact that the 1 1 B 1 state is the dipole-allowed transition. The uncoupled spectrum is probably due to a succession of the symmetric stretching mode for the high intensity features which present a spacing of ⇠ 760 cm 1 . The systematic pics of low intensity arising ⇠ 380 cm 1 after the ones of high intensity results from a transition to the first excitation level of the bending mode, subsequent to the excitation of the symmetric stretching. This assignment is consistent with the equilibrium geometries of the GS and the 1 1 B 1 state (Tab. 3.1), which exhibit similar values of but di↵erent ones for the R s coordinate. As only the first bending mode is excited in the 1 1 B 1 state, its energy spacing is higher than the one observed in the Clements bands. But when we compare with the hypothetical uncoupled spectrum of the 1 1 A 2 state, a higher density of states is excited, probably lead by the bending mode. This is due to the large di↵erence of ⇠ 25 between the equilibrium angle of the GS and the 1 1 A 2 state. The enegitical spacing in smaller (⇠ 200 cm 1 ) and more consistent with the one observed in the total spectrum. The Clements bands seem then to arise from the coupling of the few vibrational levels of the 1 1 B 1 state with the high density of vibrational level of the 1 1 A 2 state and a quantitative study is presented in the next section.

Both theoretical spectra exhibit in the high-energy range a regular absorption pattern, which is not observed experimentally. According to the energetic spacing of these peaks, its results from the revival in the autocorrelation function at t ⇠ 65 fs, when the wavepacket is along the double minimum of the PES. The wp is moving on part of the PES which has been extrapolated from the analytical fit performed, but gave a potential energy higher than the subsequent ab-initio calculation of this part of the PES. Using the large ab-initio grid and an interpolation of the PES, these features do not appear anymore in the spectrum, see for instance Fig. 4.22 a. The agreement is better but the result remains qualitative for this energy range. Concerning earlier experimental work, low-energy vibrational progressions in this band system have been assigned to the bending mode [START_REF] Hamada | Rotational structure in the absorption spectrum of SO 2 between 3000 å and 3300 å[END_REF]. Also, it has been known for a long time that the geometrical parameters underlying the rotational structure correspond more to the A 2 than to the B 1 state [START_REF] Kullmer | Vibronic coupling in SO 2 , and its influence on the rotational structure of the bands in the 300-330 nm region[END_REF]. Our present findings are consistent with these results but also extend them to higher energies. This holds for the regular "bending mode" progression in Fig. 4.5 as well as for the nuclear motion proceeding more on the A 2 than on the B 1 state, see Fig. 4.1 (thus dominating the rotational constants). In this sense we have achieved, for the first time, an unified and ab-initio based interpretation of the key features underlying both the vibrational and rotational structures of the complex absorption spectrum of SO 2 . This makes the photoabsorption spectrum fascinating, because the excitation occurs from the GS to the 1 1 B 1 state but the forbidden transition is the observed one! As the ab-initio spectrum describes quantitatively this energy range, we can go toward a deeper understanding by analysing the di↵erent eigenstates of the system. This step can be performed either by direct diagonalisation of the Hamiltonian or making use of the spectral quantisation method.

Latter Xie et al. proposed a similar study [START_REF] Xie | Ab initio determination of potential energy surfaces for the first two UV absorption bands of SO 2[END_REF], with slightly larger primitive basis for the ab-initio calculations and using the diabatization scheme implemented in Molpro [107]. Their results concerning the photoabsorption spectrum is similar to our results without any significant improvement.

Quantum attribution of the lowest part of the photoabsorption spectrum

The assignment of the spectrum is obtained by the determination of the nodal planes along the di↵erent vibrational modes of the molecule. In the case of SO 2 three vibrational modes are involved (n 1 ,n 2 ,n 3 ), with n 1 the symmetric stretching mode (symmetric elongation of both bond lengths), n 2 the bending mode (variation of Ô SO angle) and n 3 the asymmetric stretching mode. Even so we consider the lowest vibronic states 

A 2 =0
.002) of vibrational wavefunction of the electronic 1 1 A2 state as a function of rv, rd and ✓ with its positive (red) and negative (blue) sign. From right to left are presented the third (E3), fifth (E5) and tenth (E10) eigenfunctions, to respect the usual assignment order. E3 corresponds to one nodal plane in the asymmetric stretching mode, E5 exhibits in addition to the previous nodal plane a new one along the bending mode (increases of rv and decreases of rd). E10 exhibits the first nodal plane for the symmetric stretching mode (simultaneous increasing of rv and rd).

of the excited molecule, the photoabsorption spectrum presents numerous features, which make tedious the attribution. Thus we limited our study to the first 175 eigenvalues and we consider only the eigenstates with a non-negligible intensity (> 10 7 ). As the computations were performed using the Jacobi coordinates, let us first link them to the internal coordinates to facilitate the discussion. The symmetric stretching mode, described by the R s internal coordinate, matches to a simultaneous increase of both r v and r d coordinates (Fig. 4.8, left panel). The bending mode, described by , corresponds to a simultaneous increase of r v and decrease of r d (middle panel). Finally, the asymmetric stretching mode describes by Q u matches directly the angle ✓ in the Jacobi coordinates, as presented in Fig. 4.8 (right panel). It is preferable, as presented in Fig. 4.8, to study the vibrational wavefunctions using iso-surfaces directly represented with respect to the three coordinates. This choice avoided the issue of the partial integration over one degree of freedom, which washed out partially the nodal plane of the eigenstates.

The intensity of the di↵erent excited vibrational states is directly linked to the Franck-Condon factors as only non-vanishing overlap between the vibrational GS (without any node) and the vibrational excited states will play a role in the spectrum. In our case, the electronic state plays also a preponderant role, because only the transition to the 1 1 B 1 electronic state is dipole allowed. Then only eigenstates with density on the electronic 1 1 B 1 state and an even number of nodal planes according to ✓ lead to a spectral intensity. To illustrate this symmetry property, the GS vibrational and the two first vibrational excited wavefunctions are presented in Fig. 4.9. As represented by the dashed white circle, the overlap between the GS wavefunction (green) and the lobe of sign (either red or blue) of the excited wf is cancelled out by the equal contribution of the second lobs of the opposite sign.

Symmetry properties also enter into account concerning the wf, which belongs to the 1 1 A 2 electronic states. As a direct transition from the GS is dipole-forbidden, the vibrational wf of this state must be coupled to the one of the 1 1 B 1 electronic state through the non-adiabatic coupling. As it takes place only during the excitation of the asymmetric stretch of the molecule, only odd quantum number of this mode is present in the vibrational wf of the 1 1 A 2 state. It is verified from the attribution presented in Tab. 4.1.

These symmetry considerations show that the optically active transition results from eigenstates for which the total vibrational wf is a combination of a symmetric wf on the 1 1 B 1 state and an asymmetric wf one on the 1 1 A 2 state with respect to the asymmetric stretching mode.

We mentioned already the peculiarity of the spectrum which exhibits features assigned to the forbidden electronic state. This statement holds when the vibrational eigenfunction are studied, particularly for the low energy part, where more than 70% of the total wavefunction lies on the 1 1 A 2 electronic state. We decided to label the di↵erent transitions according to this part of the wavefunction. The first 80 eigenfunctions present a simple pattern in the nodal structures that allows a direct assignment. It give primordial pieces of information according the energy of the bending (⇠ 270 cm 1 ), the symmetric stretching (⇠ 760 cm 1 ) and the asymmetric stretching mode (⇠ 1150 cm 1 ).

From the assignment and the shape of the vibrational eigenstates, it is possible to understand the intensity evolution of the di↵erent series of quantum number. For instance, we observed that the intensity of a transition depends on the population on the 1 1 B 1 state, because this transition is dipole-allowed. This dependence is, for instance, observed for series (0,n 2 ,1). When the number of node for the bending mode (n 2 ) increases, the intensity of the transition increased because the population of the 1 1 B 1 state increases, see Tab. The band A is constituted principally from transitions to (2, 2, 3) and (4, 1, 1). The band B is assigned almost exclusively to a transition to the (4, 2, 1) level. Concerning the band C, again two transitions, (5, 0, 1) and (4, 3, 1), are equally represented, while the D band results from absorption to (4, 4, 1) level. It turns out that only one series appears recurrently in the description of the Clements bands (4,n 2 ,1), with a variation of the bending mode n 2 . According to this statement the absorption to (4, 0, 1), below the Clements band A, is the first element of the pattern. For all the series identified in these first bands, the bending mode plays the most dominant role and gives this energy di↵erence of 220 cm 1 . Concerning higher energies, the assignment has not been established, but the repartition of the eigenvalues shows that the complexity increases involving Table 4.1: Attribution of the low energy part of the photo absorption spectrum (3.56 4.05 eV) according to the vibrational structure of 1 1 A 2 state. Each entry is labelled by its energetical order in the full-spectrum of the Hamiltonian, and the intensity (overlap with vibrational GS) and the electronic probability are reported. for the series (0,n,1) with n = 0 to 6. The GS wf is represented for an iso-density of 0.0001 and the excited one for 0.0006 to highlight the overlap. The overlap for 0  n  3 increases thanks to the increased of the density of the excited state in the FC area, but for larger n the total overlap decreases because of the sign variation of the excited vibrational state in the FC zone.

more transitions for all the bands. The band E seems to result from one predominant transition as well as for the F band with for both of them an intensity ⇠ 3.5 higher than the other. The G band is the most complex one, with five transitions of similar weight, while the bands H-J turn again describe by one predominant transition.

Including the triplet states

The Clements bands are well described by the consideration of the singlet states only, as we discussed previously. Nevertheless many experimental studies pointed out evidences of the role of the low-lying triplet states in this energy range. The "forbidden-band" of the photoabsorption spectrum (⇠ 3.1 3.7 eV) has been attributed to triplet excited electronic states [START_REF] Douglas | The zeeman e↵ect in the spectra of polyatomic molecules[END_REF] thanks to the Zeeman e↵ect observed in the presence of strong magnetic field. Later, this state has been identified as the 1 3 B 1 electronic state [START_REF] Merer | Rotational analysis of bands of the 3800 å system of SO 2[END_REF]. The theoretical work of Hillier and Saunders [START_REF] Hillier | A theoretical interpretation of the bonding, and the photoelectron and ultra-violet spectra of sulphur dioxide[END_REF], using SCF calculations, predicted not one but three triplet states in the energy range of the "forbidden band", namely 1 3 B 2 , 1 3 B 1 and 1 3 A 2 from lower to higher energy, respectively.

Attempts to a direct observation of the two "new" triplet states failed [START_REF] Heicklen | The photophysics and photochemistry of SO 2[END_REF], but they have been observed by indirect coupling with the 1 3 B 1 state; vibronic in the case of the 1 3 A 2 state and rotational concerning the 1 3 B 2 state [START_REF] Brand | The 3 B 1 -1 A 1 band system of sulfur dioxide: Rotational analysis of the (010), (100), and (110) bands[END_REF]. The question of the role of these states and of the intersystem crossing yields remain open and we propose to consider them in the following. To conduct this study we take advantage of the block diagonal form of the Hamiltonian (see Sec. 3.4.1) to reduce the number of electronic states required.

The excited singlet 1 1 B 1 state belongs to the A" manifold and is the only allowed transition in the region of interest. Therefore this manifold of state is considered in the dynamics of the wp. The di↵erent SOC matrix elements playing a role between the states of the A" manifolds have been already discussed. For clarity of the following discussion, we mention again that the A" manifold is composed of the following electronic states,

{1 1 B 1 , 1 1 A 2 , 1 3 B 2 (+), 1 3 B 2 (0), 1 3 B 1 ( ), 1 3 A 2 ( )}.
It results a complex system with the presence of two symmetry-allowed conical intersections between the electronic states of symmetry B 1 and A 2 for either singlet or triplet spin. This complexity is increased by numerous intersystem crossings between the singlet and triplet states of the di↵erent symmetry. The situation is summarised in Fig. 4.12, where these di↵erent intersections have been labelled either "CI" or "ISC" for conical intersection and intersystem crossing, respectively. As already mentioned, both 1 3 B 2 states cross the two singlet electronic states nearby their energy minimum, while the remaining triplet states present only one crossing at similar energies. 

2 3 B (+) 2 3 B (0) 2 1 B 1 1 A 2 3 B (-) 1 { Figure 4
.12: One-dimensional cut through the PES of the A" states, along the bending angle . The two singlet states, 1 1 B1 (1 1 A2), are represented in thick dark blue (thin green) line, respectively. In the same way, the triplet 1 3 B1 (1 3 A2) states are represented in thick dashed light blue (thin dashed light green) line. The triplet 1 3 B2 state has two di↵erent spin components, (0) or (+), both represented in full and dotted-dashed red, respectively, with an artificial shift to separate them. In the inset we magnify the central region where ICS and CI occur.

To solve the time dependent Schrödinger equation, the same method as before is used and the initial state is obtained by the projection of the vibrational GS through the transition dipole operator. Note that in our case the SOC is totally included in the diabatic potential matrix of the Hamiltonian and the dipole operator that must be used is the one obtained in the electronic basis of pure spin states and not the one computed after the diagonalisation of the electronic Hamiltonian. Then the initial wf is strictly the same than the one in the case of the singlet states only.
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We report, in Fig. 4.13, the time-dependent electronic populations of the full wavefunction integrated over the di↵erent electronic states for 1 picosecond. The population into the triplet states occurs only after few femtoseconds but become important after hundreds of femtoseconds, with at the end of the calculation ⇠ 30 % of the total population being into triplet electronic states. Interestingly, the time dependent profile of the singlet states population presents the same oscillatory behaviour as when we did not consider the triplet states. Except for the 100 first femtoseconds, the population of all the triplet states increase monotonically with the time. The population of the 3 B 2 (0) state is predominant with 17% and this for all the time of the propagation. The population in the 1 3 B 2 (+) is also relevant with 8%. The coupled 3 B 1 ( ) and 3 A 2 ( ) states end up with less than 10% of the total population with an oscillation due to the conical intersection.

As schematised on Fig. 4.12, the system is complex and to understand its time evolution and the underlying 4

.12 is used. In thick dark blue and thin dark green lines are the population in the electronic singlet 1 1 B1 and 1 1 A2, respectively. The major part of the population into the triplet manifolds belongs to the 1 3 B2(0), in full red and 1 3 B2(+), in dotted-dashed red. The remaining density is shared between the 1 3 B1(-), in thick dashed light blue and 1 3 A2(-) in thin dashed light green.

mechanisms for the singlet-triplet conversion, we focus on the first hundreds of femtosecond of the propagation, a time for which the wp does not spread much over the singlet state surfaces but remains localised. In the following, we will refer to the di↵erent crossings or CIs that are labelled in Fig. 4.12, and adopt a divide and conquer way, by simplifying the full system to understand the di↵erent mechanisms.

4.

3.1 Intersystem crossing to the 1 3 B 1 (-) and 1 3 A 2 (-) states

We start with the case of the 1 1 B 1 (-) and 1 3 A 2 (-) electronic states (the spin component (-) is drop at this point because there is no confusion), which are coupled through a conical intersection. Because of this coupling both states have to be studied simultaneously. We displayed in Fig. 4.14 (left panel) the population of these states as well as their sum for the first 200 fs. The latter is a relevant quantity because the conical intersection (CI2) between these two states allows the wp to move from one state to another and could hide the dynamics of the SOC-triggered transfer. We have also added the autocorrelation function (dotted-dashed blue line) the lack of di↵erence in the time evolution shows that they do not play a significant role for the intersystem crossing to the 1 1 B 1 and 1 3 A 2 states. It means that the system is actually well described over this period of time as a four-state problem, which greatly decreases the number of possible channels to populate the states.

C(t) = |h (0)| (t)i|, with ( 
Switching on and o↵, successively or simultaneously, the remaining four couplings between the states, gives a simple way to identify the mechanism, as presented Fig. 4.14 (left panel). The simulation that includes the SOC between the two singlet states and the 1 3 A 2 (dotted brown) shows two of the three steps observed in the population transfer. The missing step is obtained when the simulation includes the SOC between the singlet and the 1 3 B 1 state (dotted green). In addition simulations with the coupling with only one singlet state e cient. Then the non-adiabatic coupling between 1 3 A 2 and 1 3 B 1 (CI2) will transfer in a few fs (⇠ 7 fs)

the population from the former to the latter, but the sum of populations remains constant until t ⇠ 55 fs.

During this time, the majority of the singlet population is transferred to 1 A 2 through CI1. According to the results of Fig. 4.14, the second step can be attributed to the 1 1 A 2 ! 1 3 B 1 interaction, when the wp comes back near the Frank-Condon (FC) area, but with a smaller angle [START_REF] Balint-Kurti | Time-dependent quantum dynamics of molecular photofragmentation processes[END_REF], which is located in the vicinity of ISC5 (Fig. 4.15). 
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A 2 ) of the diabatic 1 1 B1 and 1 3 A2 states, in blue for Qu = 0 Å. The red line indicate the intersystem crossing.(bottom row) The first three panels present the reduced density (blue line) of the 1 1 A2 electronic state in the same coordinates than previously at times indicated in the inset. The superimposed contour purple plot shows the energy di↵erence (W1
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B 1 ) of the diabatic 1 1 A2 and 1 3 B1 states. The last panel shows the evolution as a function of Qu of the intersystem crossing seam between the 1 1 B1/1 3 A2 in blue and 1 1 A2/1 3 B1 in purple with a variation of Qu = 0.05 Å.

This dynamics of the wp is confirmed by the revival in C(t) at t ⇠ 65 fs. This transfer turns to be e cient because ISC5 occurs at a turning point of the wp, where it spends tens of fs in its vicinity. After this time, the population of the considered triplet states is not as constant as before but weakly increases. This phenomenon seems to result from the partial delocalisation of the wp allowing transfer such as in the first step for 1 1 A 2 ! 1 3 B 1 . More interestingly, the third step takes place during the 16 fs following the next revival in C(t) at t ⇠ 150 fs, when the wp returns to a geometry very close to the initial one, allowing the same transfer 128CHAPTER 4. WEAK FIELD SPECTROSCOPY: PHOTOABSORPTION AND PHOTOELECTRON SPECTRA as step 1. Here again the turning point of the wp makes the transfer e cient. We did not identify any other relevant mechanisms for the intersystem crossing and we believe that the di↵erent channels presented above are active for longer time of propagation but the delocalisation of the wp smooth the step-like transfer. The dynamics of the singlet/triplet transfer is highly sensitive to the localisation of the ISC. In the case of ISC 3 and 5, the energy di↵erence between 1 1 A 2 /1 3 B 1 and 1 1 B 1 /1 3 A 2 present a sharp profile, as displayed in the contour line of Fig. 4.15, and due to the weakness of the SOC elements the transfers take place only at localised geometries on the PES.

Intersystem crossing to the 1 3 B 2 (+) state

We follow the same reasoning to understand the population transfer to the 3 B 2 (+) state, which presents a similar but slightly smoothed step-like time evolution shown in Fig. 4 4.17. The transfer is weak because the SOC values between 1 1 B 1 and 1 3 B 2 (+) are small for 90 < < 120 , see Fig. 4.17. This transfer does not play any significant role before ⇠ 150 fs, when the wp is back to the FC zone as discussed previously, with again a weak e ciency.

Interestingly, the result of the simulation where only the SOC between the 1 1 A 2 and the 1 3 B 2 (+) states is considered, displayed by the green line of Fig. 4.16 (left), is similar to the one obtained by the full Hamiltonian. This shows the preponderant role of the 1 1 A 2 ! 1 3 B 2 (+) transfer. This transfer occurs first at ⇠ 8 fs (see inset Fig. 4.16), time for which the wp starts to move along the Q u coordinate and thus explores the C s symmetry. Doing so the wp is leaving geometries for which the SOC and the non-adiabatic coupling are nulls. A sequential transfer from the 1 1 B 1 state to the 1 1 A 2 state (IC1) occurs and is directly followed by the 1 1 A 2 ! 1 3 B 2 (+) transfer. It will take place again with a stronger yield between ⇠ 25 40 fs, when the wp in the 1 1 A 2 state reveals the turning point along the Q u coordinate. The wp is during this time, in the vicinity of ISC6 where the SOC elements are large, see Fig. occurs, but three times more e cient. During the short interval of time between the two transfers, the wp turns back to C 2v symmetry (small value of Q u ) and overlaps the FC area with small values of ⇠ 90 , see Fig. 4.17. For these geometries the SOC is weaker and this can explain the break observed in the transfer and allows a backward transfer 1 1 A 2 1 3 B 2 (+) (decay of 3 B 2 (+) population). In the mean time population of the 1 1 A 2 state increased through non-adiabatic coupling nearby IC1, reaching its highest value (⇠ 80%).

The wp in the 1 1 A 2 state experiments again an asymmetric elongation render possible a new transfer, highly e cient thanks to the large population of 1 1 A 2 and the direct vicinity of ISC6. This mechanism is then taking place again along the time propagation while the wp spreads over the PES. 
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Full System

Only state A weak 1 1 A 2 ! 1 3 B 2 (0) transfer is observed few fs after the excitation. The wp starting on the 1 1 B 1 state, the transfer can take place only subsequently to the non-adiabatic transition to the 1 1 A 2 state (IC1).

B (0)
The interesting point here is to understand the di↵erence with the case of the 1 3 B 2 (+) state. For the first few femtoseconds of the dynamics, we noticed (see inset Fig. 4.18) that the population of the 1 3 B 2 (0) state occurs with a small delay and results from 1 1 A 2 ! 1 3 B 2 (0) transfer. In the FC area the wp lies nearby both intersection lines between the 1 3 B 2 and either 1 1 B 1 1 and 1 1 A 2 states. In opposite of the previous case, now the SOC between 1 1 B 1 and 1 3 B 2 (0) is null in the C 2v symmetry but not the one between 1 1 A 2 and 1 3 B 2 (0), and right after the non-adiabatic coupling induced by IC1 the population (⇠ 20%) can transfer through ISC2. Then with the extension of the wp along the Q u coordinate the transfer from 1 1 B 1 becomes possible. Concerning the second steps of the transfer, we clearly see another di↵erence with previously with a similar importance of the from both singlet states. While 1 1 A 2 ! 1 3 B 2 (0) remains similar to previously a transfer of similar amplitude occurs from 1 1 B 1 . This can be interpreted thanks to the SOC evolution, which becomes large for displacement along Q u , while the wp remains in the vicinity of ISC2. For longer time, the transfer from 1 1 A 2 are the same than previously with a slightly higher e ciency because of the SOC non-vanished in C 2v , while the transfer from the 1 1 B 1 state results from the variation of the SOC along the nuclear geometry which make it likely in this case. The mechanisms proposed and the explanations of the transfer to the 1 3 B 2 (0) are consistent concerning the simplified model, but as presented the SOC values di↵er from the ones of the 1 3 B 2 (+) but hardly explain the large di↵erence of population between these two states (factor of ⇠ 1.9) in the total system.

Quantum Interferences

Our simplified Hamiltonians and the wp evolution in the singlet states gave us the possibility to quantitatively describes the di↵erent mechanisms involved in the intersystem crossing of SO 2 . But it raised also an interesting question. For each reduced Hamiltonians, describing either the coupled 1 3 A 2 (-)/1 3 B 1 (-), the 1 3 B 2 (0) or the 1 3 B 2 (+) states, a large di↵erence in the total yields of the intersystem conversion is observed in comparison to the state-by-state simulations. It is also true when we consider the full Hamiltonian of the system. The most spectacular example is di↵erence of a factor ⇠ 1.7 observed in the populations of the

1 3 B 2 (0) state. A factor of ⇠ 1.
3 is also noticed in the case of 1 3 A 2 and 1 3 B 1 states. Concerning the 1 3 B 2 (+) state the di↵erence is smaller and presents an opposite behaviour than the two previous ones with a global 132CHAPTER 4. WEAK FIELD SPECTROSCOPY: PHOTOABSORPTION AND PHOTOELECTRON SPECTRA decreased of the population.

In the following, the reduced Hamiltonians (see Sec. 4.3.1-3) are considered. Each of them includes the two singlet states and the relevant triplet states, namely

1 3 B 2 (0), 1 3 B 2 (+) or both 1 3 A 2 (-)/1 3 B 1 (-) states.
In the case of the two triplet 1 3 B 2 states, the population in these latter can come from the 1 1 A 2 or the 1 1 B 1 states, leading to two di↵erent pathways. In the case of the 1 3 A 2 (-)/1 3 B 1 (-) states, the population in these coupled states can results from four di↵erent paths. Indeed the wp in each singlet state can end up in each triplet states. But the couplings between the singlet and triplet states with the same spatial symmetry are too weak to be observed and then its reduced to two relevant pathways. Physically speaking, in the state-by-state simulations we artificially removed the pathways one after the other, while both are active at the same time in the reduced Hamiltonian. It is strongly reminiscent to well known Young interference experiment and makes thing about quantum interferences because the sum of the population obtained from the incoherent paths leads to a large di↵erence with the coherent sum. To ensure that constructive interferences are indeed observed, we arbitrary change the sign of one of the SOC element. Doing so we obtained destructive interferences leading to a yield 10 times smaller for the final population in the 1 3 B 2 (0) state, see Fig. 4. [START_REF] Domcke | Conical Intersections: Electronic Structure, Dynamics & Spectroscopy[END_REF]. This trick provides us as well an indication on how interference occurs as well as when, we can notice that during the first step of population transfer at ⇠ 45 fs, the incoherent simulations gave the same population transfer to the triplet state.

The case of 1 3 B 2 (+) presents the only example of destructive interferences, which modulate the yields in function of the time. For the time considered here, the interferences are either constructive or destructive for one triplet state but no flipping is observed. Continuing this simulation for longer time scales could be instructive to track such kind of behaviour. What we can state from this results is also the interferences seems involved principally when the transfer occurs between both singlet states on the same time, and are preponderant when the transfer have comparable weights, as seen at ⇠ 45 fs for the 1 3 B 2 (0) state.

These interesting phenomena deserve clearly a deeper investigation, to be correctly understood because of its predominant role in the intersystem crossing yield. is the population when only the coupling between the singlet (1 1 A2/1 1 B1) states and 1 3 B2(0) is considered. In thin dashed blue (thin dashed green), we represent the population when only SOC between 1 1 B1 (1 1 A2) and 1 3 B2(0) is used. The incoherent sum of these former populations is represented in thick dashed purple. The destructive interference (dotted-dashed thin grey) is obtained by changing arbitrarily the sign of the coupling between 1 1 B1 and 1 3 B2(0) states.

The "Forbidden band"

Experimentally, the existence of the 3 B 1 and 3 A 2 states is evidenced via the observation of the forbidden band (3.1 3.7 eV). But there is no direct observation of the 3 B 2 state, which, according to our simulations seems inducing a predominant intersystem crossing. The simulation including the full Hamiltonian can be used to compute the photoabsorption spectrum of the A" manifold, using the Fourier transform of the autocorrelation. In comparison to the one obtained when only the singlet excited states were considered, no signature of the triplet states is obtained, see Fig. 4.22 a. Using the Lanczos diagonalisation, the forbidden band is obtained and surprisingly it is not comparable to the experimental one (red line in Fig. 4.22 d), concerning its intensity and also its vibrational progression (see Fig. 4.22 b). As the forbidden band has been assigned to the 3 B 1 state, we computed the spectrum of an hypothetical excitation to this state, launching directly the initial wp on the PES and discarding the SOC. It confirms that the vibrational progression of our ab-initio PES is in good agreement with the experiment (not shown). In addition, it supports that the forbidden band arises from the 3 B 1 state, but it does not appears from the wavepacket propagation in the 134CHAPTER 4. WEAK FIELD SPECTROSCOPY: PHOTOABSORPTION AND PHOTOELECTRON SPECTRA A" manifold.

In the full Hamiltonian, we neglected so far the SOC between the A' states (1

1 A 1 , 1 3 B 2 ( ), 1 3 B 1 (+), 1 3 A 2 (+), 1 3 B 1 (0), 1 3 A 2 (0)).
Due to the SOC between the electronic GS and the excited triplet states, the total nuclear wavefunction of the initial state can not anymore be assumed as purely singlet but reads,

0 (R, r) = X s2A 0 a s s (R) s (r; R). (4.6) 
where the index s runs over all the states of the A' block. The electronic and nuclear coordinates are collected, as before, in r and R, respectively. The coe cients a s are the amplitudes, s (R) the vibrational wavefunctions on the electronic state s, and s (r; R) the corresponding electronic wavefunctions. This new vibrational state will be referred to as the perturbed vibrational GS to distinguish it from an unperturbed GS resulting from the 1 A 1 state alone. The perturbed vibrational GS wavefunction is then obtained using the Lanczos diagonalisation of the full Hamiltonian of the A' states that is, including all the SOC elements.

Despite the large energetic gap (⇠ 3 eV) between the 1 1 A 1 and the manifolds of triplet states, a small but non negligible contribution from the triplet states is found, with the principal contributions coming from the triplet states 1 3 B 1 (0) with a coe cient of ⇠ 2.6 10 5 and the 1 3 A 2 (+) state with ⇠ 2 10 6 . The other triplet states are involved with coe cients smaller than 10 8 and the weakest weight is obtained for the 1 3 B 2 ( ). These di↵erent contributions can be understood by looking at the di↵erent SOC elements between the electronic GS and the triplet states for geometry of the minimum energy of this state. The SOC with the 1 3 B 1 (0) is the strongest with a value ⇠ 145 cm 1 , then the one with the 1 3 A 2 (+) ⇠ 50 cm 1 . The perturbation mainly occurs from direct coupling with the GS and the excited states. The coupling with the 1 3 B 2 ( ) state is particularly small (⇠ 0.5 cm 1 ), explaining its weak contribution to the perturbed GS.

While the two remaining triplet states present vanishing SOC with the GS in the C 2v symmetry, their nonzero contribution can be explained by the conical intersections

1 3 A 2 (0)/1 3 B 1 (0) and 1 3 A 2 (+)/1 3 B 1 (+) with
states with a strong SOC with the GS. Then we computed the photoexcitation process when we consider the full Hamiltonian (including twelve states see Fig. 4.20).

An important fact arises from dealing with the perturbed GS, is the appearance of new transitions that A (+)

2 3 B (+) 1 3 B (+) 2 3 
A (0)

2 3 B (0) 1 3 B (0) 2 1 A 1 1 B 1 1 A 2 { 3 B (-) 1 { { Figure 4
.20: Cut of the potential energy surfaces of SO2 along the bending angle for the 12 electronic states considered. Those belonging to the A' or A" block of the Hamiltonian are represented as dashed and solid lines, respectively. The electronic GS of SO2 is in black. The 1 3 B1 (1 1 B1) states are in light (dark) blue, while the light (dark) green lines represent the 1 3 A2 (1 1 A2) states and the magenta lines are the 3 B2 states. Splitting between the di↵erent spin components is artificial, and given for a better graphical representation. In the cartoon the molecule and the Cartesian reference system used along this work are displayed. The molecule lies in the {y, z} plane, the x axis being perpendicular to the figure.

can take place not only between the A' and A" states but also between the A' states depending in the light polarisations that interact with SO 2 . If we assume the unperturbed GS of the molecule, the only allowed transition, will be between the 1 A 1 state and the 1 B 1 state, implying a x-polarised light. Then, due to the non-adiabatic coupling and the SOC between the di↵erent excited states involved, the wavepacket would spread over the A" states, as it was considered in the previous section. In Fig. 4.21a, we present the mechanisms of excitation consistent with this scheme. This is usually the only excitation considered in the absorption process, thus no polarisation issue has ever been addressed.

However, if we consider the perturbed GS more transitions may take place depending on the polarisation of the exciting radiation, see Figs. 4.21b and 4.21c. Let μ, be the total dipole moment operator and μx , μy , μz its Cartesian components. From symmetry considerations μx induces transitions between states of the A' and A" blocks, while μy , μz provide transitions between states within the same symmetry block (see Tab.

3.7)

. Before the excitation, the initial wavefunction, perturbed or unperturbed, belongs to the A' block, and 136CHAPTER 4. WEAK FIELD SPECTROSCOPY: PHOTOABSORPTION AND PHOTOELECTRON SPECTRA thus the μy , μz operators provide excitations within the A' block only. The transition matrix can be written as:

h f |μ| 0 i = X u h u | " X s2A" h s |μ x | 0 i + X s2A 0 h s |μ y | 0 i + X s2A 0 h s |μ z | 0 i # . (4.7) 
Here, the initial wavefunction 0 is projected, through the dipole moment operator, onto a final state f .

The index u runs over all the vibrational states of the excited electronic states, the vibrational state of 0 being already included in its definition. Due to the specific form of 0 , the transition dipole moments as well as the dipole moments are involved in the excitation. More precisely, y-polarised excitation is dominated by the dipole moment (expectation value) promoting the triplet contribution of the perturbed GS to the corresponding triplet excited states, while z-polarised excitation is mostly governed by the transition dipole moment between di↵erent electronic states. Therefore interferences between the di↵erent mechanisms are hardly noticeable. Additionally, one should keep in mind that, as (i) we work in a diabatic basis and (ii) the SOC matrix elements are o↵-diagonal couplings, transitions between pure states of di↵erent spin multiplicities are forbidden. A direct photoabsorption (straight arrow) can take place from the GS to the 1 1 B1 state with x-polarised light. The vibrational excited states are coupled through a conical intersection between the 1 1 B1 and 1 1 A2 states and SOC (blue and orange bent arrows) between all the di↵erent states of the A" block. Additionally, a conical intersection occurs between the states 1 3 B1 and

a b c 3 A (-) 2 3 B (-) 1 3 B (-) 2 3 A (+) 2 3 B (+) 1 3 B (+) 2 3 A (0) 2 3 B (0) 1 3 B (0) 2 1 A 1 1 B 1 1 A 2 Photo 
1 3 A2. (b)
The GS is perturbed by the SOC in the A' block. More direct transitions could take place considering x-polarised light, where the same coupling occurs as in (a). (c) Direct transitions from the perturbed GS to the states of the A' block with y-or z-polarised light. A direct excitation to the triplet A' states takes place. Then, di↵erent couplings occur such as two conical intersections between the same spin components of the 1 3 B1 and 1 3 A2 states.

We shall consider now, from a formal perspective, the two possible coupling schemes among the electronic states and their influence in the photoabsorption processes, in particular in relation to the "forbidden band".

The most straightforward picture results from the consideration of the excitation of the unperturbed GS to the A" manifolds where spin-orbit coupling induce an intersystem crossing between excited singlet and triplet states. Then, after a certain time after the excitation process, the wavepacket would start spreading over the remaining coupled states. But an additional mechanism would arise if the SOC also induced a mixing of the singlet electronic ground state and the triplet states leading to the perturbed GS, notwithstanding the energetic gap between them. The unperturbed GS is responsible for the time-dependent population transfer between excited singlet and triplet states in the molecule seems more plausible at first glance, as addressed previously. This allowed transition dominates the excitation of the molecule in the 3.5-5.5 eV energy range and enables for the intersystem crossing to take place but does not account for the photoabsorption spectrum. For x-polarised light, the spectrum (Fig. 4.22b) exhibits features in the low energy region (E < 3.5 eV), which are two orders of magnitude smaller than the experimental ones, and show a totally di↵erent vibrational progression. This strong discrepancy refutes this idea. If, on the other hand, we consider the excitation of the perturbed GS by using y-or z-polarised radiation (Fig. 4.21c), we obtain the characteristic part of the triplet spectrum (Figs. 4.22c,d) with an excellent agreement with experiment [START_REF] Hermans | Fourier transform measurements of SO 2 absorption cross sections: I. temperature dependence in the 24 000-29 000 cm 1 (345-420 nm) region[END_REF], both regarding the spectral intensity distribution as well as and the absolute intensity for the y-polarised excitation. This result demonstrates that the perturbation occurring on the GS vibrational wavefunction due to the SOC in the A' manifold of states is mandatory to interpret the experimental spectrum.

To clarify further the role of the SOC in the di↵erent manifolds of states (A' or A"), we have performed simulations where we either include the SOC in the excited states with the unperturbed GS wavefunction (Fig. 4.21a) or neglect the SOC in the excited states keeping the perturbed wavefunction for the GS, the results are presented in Fig. 4.23. In the first case, only a transition along the x-polarisation can take place as the y and z excitations are forbidden by symmetry. The resulting spectrum Fig. 4.23a is identical to the one in Fig. 4.22b, when the perturbed GS is considered. It shows that the perturbed GS plays no significant role in the dynamics in the A" manifolds as we implicitly assumed in Sec. 4.3.1-4. In the second case, when the SOC is not included in the A" manifolds, the y-and z-polarised spectra, Figs. 4.23c and b, respectively, no significant modifications are obtained, while the x-polarised spectrum presents no features anymore below 3.55 eV. Therefore, we conclude concluded that the triplet spectrum of SO 2 is attributed exclusively to the perturbed GS wavefunction, resulting from the SOC within the A' state manifold. To the best of our knowledge, the proposed mechanism has never been suggested before in this context and provides a new way to depict the photoexcitation of SO 2 . It is reminiscent of what is reported in the spectroscopy of certain transition metal complexes [START_REF] Lever | Inorganic Electronic Spectroscopy[END_REF], for which a strong SOC induces a large mixing for both ground and excited states and permits the observation of bands otherwise forbidden. In contrast, in SO 2 , the GS mixing is the only relevant aspect present in the triplet absorption spectrum. It should be mentioned that, in the context of the radiative lifetime of formaldehyde, P. Phillips and E. Davidson pointed out in their ab-initio study [START_REF] Phillips | Interchange perturbation theory and phosphorescence: application to formaldehyde[END_REF] a similar mixing scheme between distant electronic states (energetic gap 1 eV). The study was limited to the computation of the transition dipole moment, and the e↵ect on the vibronic states of the molecule was not included. However this makes us believe that this e↵ect is not limited to the sulfur dioxide but is a rather general one. To ensure that the SOC between the GS and the A' triplet states is the only responsible mechanism of the observation of the "forbidden-band", three test have been performed. (a) For the x-polarised excitation the SOC have been only considered either in the A" manifold with an unperturbed GS (thin black line), or only in the A' manifold (perturbed GS) and neglected for the states of A" symmetry (thick orange line). In both cases the intensity is far to low and the vibronic structures do not match the experiment. (b) Photoabsorption spectrum for z-polarised excitation when the SOC in the A" manifold is neglected. If the SOC in the A' states is not considered no transition can occur with this polarisation. The spectrum is similar to the one obtained with the full Hamiltonian for features and intensity. (c ) Same as previously for the case of a y-polarised excitation. The experimental spectrum is obtained with only the consideration of the SOC in the A' manifold, and demonstrates that these coupling are compulsory to explain the experiments.

These results also give the possibility to understand the mysterious role of the 1 3 B 2 states, which dominates the intersystem crossing, but it is no observed experimentally. First we established its role in the A" manifold for its spin component (0) and (+) states for which there is no coupling with the GS. Secondly, for this manifold no signature of the triplet states has been found in our simulations, with a very low intensity in the energy range of the forbidden band and masked by the singlet spectrum for higher energies. In the A' manifold, the 1 2 B 2 ( ) state does not play a role because of its extremely low weight (10 11 ) in the perturbed GS. As we shown that the experimental spectrum results exclusively from the perturbed GS and excitations in the A' manifold, it is not surprising anymore that information concerning the 1 3 B 2 state has not been directly obtained experimentally.

The interesting point that should be stressed is that the excitation to the A" and the A' manifolds present an antagonistic dependence on the polarisation of light. Thus provides us with an experimental way to disentangle their contribution. To this end, the SO 2 molecules should be oriented prior to excitation with linearly polarised UV light. This orientation could be achieved for instance through impulsive laser excitation In the full blue line the spectrum is shown resulting from a y-polarised excitation and in the dashed orange line as resulting from z-polarised excitation. For better visibility, the z-polarised spectrum has been multiplied by a factor 3 [START_REF] Kraus | Two-pulse field-free orientation reveals anisotropy of molecular shape resonance[END_REF][START_REF] Litvinyuk | Alignment-dependent strong field ionization of molecules[END_REF] as it has been already successfully demonstrated precisely for SO 2 [START_REF] Lee | Field-free threedimensional alignment of polyatomic molecules[END_REF][START_REF] Spector | Axis-dependence of molecular high harmonic emission in three dimensions[END_REF]. We show, in Fig. 4.24, the signal from the y-polarisation, which is strongly damped at energies higher than 4 eV. But for the z-polarised excitation, the spectrum exhibits a stronger absorption for energies between 3.7 and 5 eV. This new part of the spectrum, never observed or predicted before, results mainly from the excitation from the 1 3 B 1 (0) component of the GS wavefunction to the excited 1 3 A 2 (0) state via the transition dipole moment operator along the z-axis. Of course an experimental perfect alignment in order to avoid any excitation into the A" states does not seem realistic, but the antagonistic e↵ect of the polarisation on the A' and A" sub-systems, makes it possible to elucidate the di↵erent mechanisms and obtain the corresponding spectra.

The experimental probe/test of role played by the perturbed GS relies on the fact that the triplet part of the spectrum shows up at lower energies than the singlet signal. For an anisotropic distribution of the molecules in the sample, incident polarised light will modulate the relative intensity between the singlet and triplet part of the spectrum. We emphasise that our reasoning is not limited to SO 2 , but is relevant to many other systems where a symmetry element is present, allowing one to distinguish experimentally the SOC e↵ects involving the ground state (here A' symmetry) from the SOC within the excited-state manifold (here A" symmetry). Thus, it may apply to any triatomic molecule and also to larger systems where, for a given dynamic process, a plane of symmetry (or similar) plays a role [START_REF] Phillips | Interchange perturbation theory and phosphorescence: application to formaldehyde[END_REF][START_REF] Schmidt | Communication: Multi-state analysis of the OCS ultraviolet absorption including vibrational structure[END_REF][START_REF] Schröder | New aspects of the photodissociation of water in the first absorption band: How strong is excitation of the first triplet state?[END_REF][START_REF] Schinke | Photodissociation of N 2 O: Triplet states and triplet channel[END_REF][START_REF] Grebenshchikov | Spin-orbit mechanism of predissociation in the Wulf band of ozone[END_REF].

General discussion about the intersystem crossing

Our work concerning the role of the triplet states in SO 2 raised two fundamental points for the description of such complex systems. The first one is obviously the role of quantum interferences, which strongly governed the e ciency of the intersystem crossover. They result from the consideration of the geometry dependency of the SOC matrix elements as well as the consideration of the di↵erent spin components of the triplet states, which have been explicitly included. Looking at the previous works concerning the spin-orbit coupling, the latter is often computed for selected molecular geometries and assumed to be constant, see for instance Ref. [START_REF] Schinke | Photodissociation of N 2 O: Triplet states and triplet channel[END_REF]. Such approximation has been used recently for the specific case of the SO 2 molecule [START_REF] Xie | Ab initio determination of potential energy surfaces for the first two UV absorption bands of SO 2[END_REF], but we demonstrate that we need to go beyond this approximation to achieve quantitative results. It may be possible than the yields of intersystem crossing can be either under or over estimated by a important factor when such approximations are used and it shows the benefits of our method. An other advantage of this method is the straightforward possibility to handle many conical intersections in the system. Moreover the method can be easily extended to study larger systems, keeping in mind that the limiting factor is the computation of the SOC elements. In addition the physical interpretation of the results is simplified thanks to the used of the spin-pure and diabatic electronic states, providing in our case a new interpretation of mechanisms involved in the photoabsorption spectra of the triplet states. We actually do not believe that this e↵ect is a peculiarity of the sulfur dioxide molecule but should be rather general as far as two or more pathways conducts to the same final states. In the literature, the role of the triplet states is often not considered in the same way that we did. Indeed in the majority of the study, the di↵erent SOC between the considered states are computed (with or without geometry dependency), as well as the transition dipole moment including the SOC. But the initial wp is obtained by applying the di↵erent transition operators and the propagation is performed on one electronic state considering an "averaged" electronic states for the di↵erent spin components. We clearly established in this study that this approximation could be actually dangerous because it is not possible to know the quality of such statement when di↵erent states are involved. Such kind of approximation should give results closer to the incoherent sum of populations, missing in such way a large contribution of the triplet states or overestimated it. vides results in agreement with our work, with a slight di↵erence concerning the yields. This di↵erence can results from the di↵erent methods used, because the semi-classical description of the system cannot take into account the interference e↵ects that we observed. The PES can also be involved in the discrepancy, because the intersystem conversion is strongly dependent of the localisation of the seam of intersection between the singlet and triplet states, as discussed in Sec. 4.3.1-3. In our case, we obtained the photoabsorption spectrum of the triplet states which give us the possibility to adjust, with a global energy shift, the energy of these states. The coupled 1 3 B 1 /1 3 A 2 states must be shifted by the same amount, but the 1 3 B 2 state could be shift in a di↵erent way. As no experimental results are available for this state, we shifted it with the same energy than the other triplet states to be consistent. So caution as to be taken when considering the di↵erent yields, because the interference may change when the energy change but as they are present for all the states, their primordial role remains believed.

The photoabsorption spectrum of Ref. [START_REF] Xie | Ab initio determination of potential energy surfaces for the first two UV absorption bands of SO 2[END_REF] puzzled us because with our elaborated model we do not obtained similar results. It turns out, after a set of simulation, that it occurs only from an unphysical SOC introduced in the model of the "adiabatic" triplet state and the constant SOC. Then two wrong couplings are implicitly introduced between the triplet states of same spatial symmetry. But these couplings are extremely weak for C s symmetry and null for the C 2v sub-space. Without these strong (⇠ 60 cm 1 ) but unphysical couplings, the photoabsorption spectrum is not obtained anymore. Actually, the spectrum of Ref. [START_REF] Xie | Ab initio determination of potential energy surfaces for the first two UV absorption bands of SO 2[END_REF] results exclusively from the coupling between the 1 1 B 1 /1 3 B 1 states.

Photoelectron spectra

In a large variety of pump-probe scheme used to follow the molecular dynamics experimentally, the ionic states of the molecule are involved either as a final states, for instance in time-resolved photoelectron spectroscopy, or as an intermediate state in the case of High Harmonic spectroscopy. In order to theoretically describes such kind of experiments, the evaluation of accurate cationic states for the molecule is primordial.

The photoelectron spectrum of the molecule, in the 12-18 eV energy range, presents three distinct bands which have been experimentally investigated by Wang et al. in 1987 [143] and later by Holland et al. [START_REF] Holland | An experimental and theoretical study of the valence shell photoelectron spectrum of sulphur dioxide[END_REF].

The first two bands (12-15 eV) are close in energy and have been assigned to three di↵erent electronic states, X for the first and two ( Ã and B) for the second band, respectively. The third band (including the C, D and Ẽ states), 2.5 eV higher in energy, has already been widely studied [START_REF] Norwood | A study of the unimolecular dissociation of SO + 2 ( C, D, Ẽ) using the photoelectron-photoion coincidence method[END_REF][START_REF] Meng | A CAS study on S-loss and O-loss dissociation mechanisms of the SO + 2 ion in the C, D, and E states[END_REF][START_REF] Yong-Feng | Ab initio calculations of the ionization spectrum of SO 2[END_REF][START_REF] Li | E electronic states of the SO + 2 ion studied using multiconfiguration second-order perturbation theory[END_REF] and will not be discussed here.

Based on the theoretical work available at that time [START_REF] Hillier | A theoretical interpretation of the bonding, and the photoelectron and ultra-violet spectra of sulphur dioxide[END_REF][START_REF] Cederbaum | A di cult assignment problem: The ionic states of ozone and sulphur dioxide[END_REF], the di↵erent electronic states X, Ã and B have been identified as 1 2 A 1 , 1 2 A 2 , and 1 2 B 2 , respectively. This designation was valid until the work of Li et al. [START_REF] Li | The 1 2 A 1 ,1 2 B 2 , and 1 2 A 2 states of the SO + 2 ion studied using multiconfiguration second-order perturbation theory[END_REF], in which they computed, at the CASPT2 level, the three lowest ionic states of SO 2 and the corresponding ionisation potentials. They pointed out that the ordering of the electronic states of the second band should be in fact 1 2 B 2 and 1 2 A 2 . This new assignment has been confirmed then by many other ab-initio works [START_REF] Palmer | The electronically excited and ionic states of sulphur dioxide: an ab initio molecular orbital CI study and comparison with spectral data[END_REF][START_REF] Yong-Feng | Ab initio calculations of the ionization spectrum of SO 2[END_REF][START_REF] Chang | Theoretical calculations of C 2v excited states of SO + 2[END_REF]. Note that, while a cut along the bending mode of the molecule in C 2v symmetry was computed in [START_REF] Li | The 1 2 A 1 ,1 2 B 2 , and 1 2 A 2 states of the SO + 2 ion studied using multiconfiguration second-order perturbation theory[END_REF], revealing the presence of a symmetry-allowed conical intersection (CI) between the 1 2 A 1 and the 1 2 B 2 states, it was not addressed in that work nor in any other subsequent ones.

Photoelectron spectra of SO 2 were already computed in two theoretical works where they addressed di↵erent bands. In the first one, Zhang et al. [START_REF] Zhang | Ab initio calculations and spectral simulation of the photoionization process[END_REF] studied the first band ( X) of the spectrum using an iterative Franck-Condon analysis from optimised geometry calculations. In spite of not handling the CI in the system, they obtained a very good agreement between their results and the experimental ones [START_REF] Holland | An experimental and theoretical study of the valence shell photoelectron spectrum of sulphur dioxide[END_REF]. The second work, carried out by Chang et al. [START_REF] Chang | Theoretical calculations of C 2v excited states of SO + 2[END_REF], addressed the issue of the B state of the spectrum. It has been obtained from the calculation of the Franck-Condon factors in a harmonic approximation, including only the C 2v symmetry. As the state 1 2 A 2 , which gives rise to this band, is not coupled with the lower ones, their results are also in good agreement with the experimental ones [START_REF] Wang | Molecular beam photoelectron spectroscopy of SO 2 : Geometry, spectroscopy, and dynamics of SO + 2[END_REF][START_REF] Holland | An experimental and theoretical study of the valence shell photoelectron spectrum of sulphur dioxide[END_REF]. Note that no work addressed the role of the à state in the spectrum before ours.

In the same manner than the case of photoabsorption, the photoelectron spectra can be computed using the Fourier transform of the autocorrelation function Eq. (2.166) in Sec. 2.5.1. The only di↵erence resides in the transition matrix elements for the transition. In the case of the photoelectron spectra, the transition matrix elements of the ionisation should be considered. These latter depend on the final electronic states as well as the photo energy of the exciting radiation and the geometry of the molecule. These quantities can be accurately computed thanks to the use of the Dyson orbital [START_REF] Oana | Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: Theory, implementation, and examples[END_REF][START_REF] Oana | Cross sections and photoelectron angular distributions in photodetachment from negative ions using equation-of-motion coupled-cluster dyson orbitals[END_REF]. Such kind of study is relevant when the role of the photon energy and/or the molecular orientation according to the light polarisation are considered. In our case we want to compare our results with experiments carried out without alignment and with a large photon energy in comparison to the ionisation potential of the system. Thus we prefer to use a set of approximations. First, as we work in a diabatic electronic basis, we assume a smooth variation of the photoionisation cross section with the molecular geometry. Then we consider that no resonance or autoionising state is involved. With this two statements, we can approximate the photoionisation cross section as a constant, here takes to unity. The selection rules for the ionisation are di↵erent from the case of bond-state excitations, because no transition is forbidden by symmetry, then the ground state ionises to any of the three ionic states.

To obtain the first band X, we start the propagation of the initial wavepacket on the 1 2 A 1 state. Due to its coupling with the 1 2 B 2 state through the CI, the propagation includes both states. The time dependent diabatic (dashed green) and adiabatic (red line) populations are reported in Fig. 4.25a. Despite the presence of the conical intersection, the wavepacket stays almost exclusively on the 1 2 A 1 state, leading to a very small di↵erence between the adiabatic and diabatic populations over 300 fs.

This behaviour can be understood when we look at the vertical ionisation energies (IP) (see Tab. slightly di↵erent (⇠ 10 ) between these states. Thus, few levels of the bending mode are populated. The comparison with the experimental results [START_REF] Wang | Molecular beam photoelectron spectroscopy of SO 2 : Geometry, spectroscopy, and dynamics of SO + 2[END_REF][START_REF] Holland | An experimental and theoretical study of the valence shell photoelectron spectrum of sulphur dioxide[END_REF] and the theoretical work of Ref. [START_REF] Zhang | Ab initio calculations and spectral simulation of the photoionization process[END_REF] is very good. For the first six peaks of the spectrum, we found a constant energetic gap of ⇠ 403 cm 1 between two successive excitations, identical to the experimental one (404 ± 1 cm 1 ). Our results of the time-dependent population show a strong adiabatic behaviour of the wp, and confirm the adiabatic approximation used in Ref. [START_REF] Zhang | Ab initio calculations and spectral simulation of the photoionization process[END_REF]. We performed a similar calculation for the B band. It originates from the photoionisation of the GS to the 1 2 A 2 state, which does not interact with the other ones. This gives us the possibility to propagate the initial wavepacket only on this state. The spectrum, see Fig. 4.27(c), is again in excellent agreement with previous theoretical work [START_REF] Chang | Theoretical calculations of C 2v excited states of SO + 2[END_REF] and the available experimental data [START_REF] Wang | Molecular beam photoelectron spectroscopy of SO 2 : Geometry, spectroscopy, and dynamics of SO + 2[END_REF][START_REF] Holland | An experimental and theoretical study of the valence shell photoelectron spectrum of sulphur dioxide[END_REF]. The energy spacing of ⇠ 460 cm 1 between the first intense peaks comes from the periodic revival at 72 fs seen in the autocorrelation function in Fig. 4.26(c). The second peak progression, with a lower intensity, is also well reproduced with an energetic belongs exclusively in the C s symmetry, a transfer to the 1 2 B 2 state occurs e ciently. Then both diabatic wp explore the respective minimum of their PES. At t = 60 fs, the wp on the 1 2 B 2 state turns back to the seam of CI in the direction of the FC area, its larger extension in Q u provides a large non-adiabatic coupling and subsequently an e cient transfer. The decay in the adiabatic population indicates that a part of the wp goes back to the initial state and a large revival in the autocorrelation function appears. This dynamics shows up again between 100-200 fs, but the wp remains now principally in the LAS state. The wp on this state is split in two parts, each of them localised near one of the minimum along . This explains the damping in the autocorrelation function and the time-dependent evolution of the population in the di↵erent states.

Interestingly, one should note that the spectrum of the à state (Fig. 4.27(b)) presents some features in the same energy range than the spectrum of X (12.1 < E < 12.4 eV) with a shift of one quantum of oscillation in the asymmetric stretching mode (! ⇡ 1200 cm 1 ). Furthermore, the fact that the small peaks around 12.4-12.5eV are also present in the experimental results indicates that: (i) it is not an experimental artefact;

(ii) the primordial role of the CI in this system. More specifically, through the mixing of the 2 A 1 and 2 B 2 electronic states, vibrational levels of the 2 A 1 state with B 2 vibronic symmetry, i.e. with an odd number of quanta of the coupling mode (asymmetric stretching), become excited in the 2 A 1 band. This amounts to the "shifted progression" in question and constitutes the intensity borrowing e↵ect well known in spectroscopy [START_REF] Köppel | Multimode molecular dynamics beyond the bornoppenheimer approximation[END_REF] but never addressed so far for SO 2 . for the final ionic state f . Assuming that ⌧2 A1 = 1 we find that ⌧2 B2 ⇡ p 1.88 and ⌧2 A2 ⇡ p 2. On the other hand the ratio between the first and the second band is closer to the one obtained experimentally in [START_REF] Wang | Molecular beam photoelectron spectroscopy of SO 2 : Geometry, spectroscopy, and dynamics of SO + 2[END_REF],

where the He I excitation (photon energy of 21.23 eV) has been used. The di↵erence of the relative intensities between the X, Ã and B bands in the two experiments [START_REF] Holland | An experimental and theoretical study of the valence shell photoelectron spectrum of sulphur dioxide[END_REF][START_REF] Wang | Molecular beam photoelectron spectroscopy of SO 2 : Geometry, spectroscopy, and dynamics of SO + 2[END_REF], results from the di↵erent energies of photon used. Indeed, the partial photoionisation cross sections depend on the photon energy. This dependency can be extracted for the di↵erent energies, as shown above, and the results are shown in Fig. 4.28(c). This quantitative agreement with the experiment is asserting both the quality of our PES and our wavepacket propagation.
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Ionization potential (eV) (c) according to the partial photoionisation cross section (see text). Very good agreement is achieved between the spectra, except a small shift between the X and à bands ⇠ 0.1 eV. A global shift of ⇠ 0.3 eV has been applied to the theoretical spectra.

Chapter 5

Strong field spectroscopy: Following time-dependent dynamics

Introduction

The di↵erent results that we mentioned so far have been obtained by solving the time-dependent Schrödinger equation, introducing in our interpretation of the results the time-dependent evolution of the system. But the experimental results, i.e. the observable of the system, were time-independent and can be described by solving the time-independent Schrödinger equation (see Sec. 4.2.2). The time dependency was introduced as a mathematical tool to simplify the resolution of the equation and to avoid the diagonalisation of the Hamiltonian which describes the system, far too large to be totally solved. This formalism describes an experiment in which the initial wp results from light excitation of a laser field of an infinitesimal time duration, which obviously is not available experimentally, but experimentally it is possible to observe similar dynamics.

multiphoton ionisation: Following wavepacket dynamics

Time-resolved spectroscopy is nowadays a fundamental method to understand the dynamics that occurs during a physical or chemical process. Since the seminal studies of Zewail [START_REF] Zewail | Femtochemistry: Atomic-scale dynamics of the chemical bond[END_REF], in which the femtosecond time scale was obtained, this method has been widely applied to "follow" chemical reaction or vibration/rotation in molecular systems. The corner stone of the time-resolved spectroscopy is the pump-probe scheme, in which the system is initially excited by a pump to initiate the dynamics in the system and is then probed by a second field, the probe. By varying the delay between the pump and the probe, snapshots of the induced dynamics can be followed. To study vibrational dynamics or bond breaking in a molecular system, the Time-Resolved PhotoElectron Spectroscopy (TRPES) is convenient and well spread technique. The pump is a laser pulse, which excites the molecule and populates di↵erent vibrational levels of the electronically excited states. In order to obtain a coherent superposition of vibronic states and thus initiates a dynamics, a short pulse duration is required. Then a second laser is used as a probe and ionises the system after a delay ⌧ .

The photoelectrons, ionised by the probe are then collected and the dynamics of the neutral molecule can be followed. A review on the subject has been published a few years ago [START_REF] Stolow | Time-resolved photoelectron spectroscopy of nonadiabatic dynamics in polyatomic molecules[END_REF].

Coming back to SO 2 , such experiments have been recently performed by I. Wilkinson et al. [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF]. In this case the molecule was first excited by the pump to obtain a coherent superposition of the vibrational states involved in the Clements bands. To this end a laser pulse with a duration of 100 fs and three di↵erent pump energies have been used: ⇠ 4.03 eV to excite the C-D bands, ⇠ 4.12 eV to excite the F-G bands and ⇠ 4.28 eV to excite the NN'-O system, see Fig. 5.1 from Ref. [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF]. Then after some delay ⌧ a probe was used to ionise the system and the photoelectron rate is recorded as a function of ⌧ . To understand the oscillatory behaviour of the photoelectron rate with respect to the time-delay obtained in the experiment [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF], see Fig. 5.2, di↵erent mechanisms can be evoked. But according to the time period of the photoelectron rate evolution, it seems likely that the wp dynamics in the Clements band is observed. To clarify the role of the di↵erent steps of the process and determine the most important contributions we carried out a theoretical study of this experiment.

The key points of the experiment have been enumerated in the original article [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF] and can be summarised as follow, (i) first the molecule in its vibrational ground state is excited to the first singlet excited states with the pump pulse, (ii) then it freely evolved in the manifolds of states during the pump-probe delay to finally pulses used, multiphoton absorption has to be considered in order to understand the experimental results.

The absorption of only one photon of the pump and the probe leaves the system ⇠ 5 eV below the ionisation threshold. Therefor the ionisation must involve a multiphoton absorption processes, either from the pump or the probe. The energy range of the emitted photoelectrons extend from 0.35 to 4.15 eV. Four principal bands (Fig. 5.2) can be identified and are coming from di↵erent photo-absorption processes. All these di↵erent paths have been detailed in Ref. [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF] and only the first band (0.40-0.75 eV), which exhibits the most interesting time-dependent behaviour, is considered here. the absorption of one photon from the pump and three from the probe leads to the ionisation of the system for almost any geometry. Therefore, when the wp evolves between the di↵erent states no modification of the time-dependent ionisation probability is expected. However if a resonant Rydberg state is invoked, as it has been suggested by Wilkinson et al. [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF], it can resonantly enhanced one of the ionisation channel. It is the case of the Rydberg state G with a vertical energy of 9.768 eV [START_REF] Xue | Observation of the singlet-triplet pair of the 4p Rydberg state and assignment of the Rydberg series of SO 2[END_REF], which is resonant with respect to the absorption of 2 photons of the probe, then a third photon can ionise the system. A two-photon transition is only possible for initial and final states, which belong to the same irreducible representation. Initially, the G state has been assigned by Suto et al. [START_REF] Suto | Fluorescence yields from photodissociation of SO 2 at 1060-1330 å[END_REF] to a transition from the 8a 1 to the 4s orbital, providing then A 1 symmetry for G. Later, Xue et al. [START_REF] Xue | Observation of the singlet-triplet pair of the 4p Rydberg state and assignment of the Rydberg series of SO 2[END_REF] have shown that the transition is in fact from the 8a 1 orbital to 4p, thanks to a two-photon experiments. This new assignment of G gives three di↵erent possibilities for its symmetry, namely A 1 , B 1 or B 2 depending on the component of the p orbital, p z , p x or p y , respectively.

Nonetheless they attributed A 1 symmetry to G following the incorrect assignment of [START_REF] Suto | Fluorescence yields from photodissociation of SO 2 at 1060-1330 å[END_REF]. According to experiment performed in Ref. [START_REF] Xue | Observation of the singlet-triplet pair of the 4p Rydberg state and assignment of the Rydberg series of SO 2[END_REF], it seems more likely that they observed the p x orbital, leading to a B 1 symmetry, which is consistent with the work of Palmer et al. [START_REF] Palmer | The electronically excited and ionic states of sulphur dioxide: an ab initio molecular orbital CI study and comparison with spectral data[END_REF]. Moreover, according to [START_REF] Palmer | The electronically excited and ionic states of sulphur dioxide: an ab initio molecular orbital CI study and comparison with spectral data[END_REF] there is only one state of B 1 symmetry in this energy range. Then, to avoid the computation of a three-dimensional PES for this Rydberg state, we assume that it is equal to the ionic state to which it is converging, i.e. 1 2 A 1 , with a global shift in energy. This leads to the introduction of a "gate" in the sense that only one of the singlet excited state, namely 1 1 B 1 can be excited toward G and then e ciently ionised compared the 1 1 A 2 state.

Then comes the role of the final electronic state of the molecular cation. According to the energy of the released electron (⇠ 0.6 eV) and the process envisaged for our model, the molecular energy cannot exceed ⇠ 13.05 eV, for the highest energy pump used. Using our previous results concerning the photoelectron spectra (see Sec.4.4), we showed that the ionisation to the 1 2 A 2 state is possible for energy equal or higher than ⇠ 13.2 eV. Moreover the process include the excitation to the G state, which converge to the GS cation, and as discussed in [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF], vibrational overlap with the latter will be preponderant. Then it seems reasonable to consider only the first two ionic states.

All the physical ideas for the experimental interpretation are included in the above model, which includes the electronic GS, the two first singlet excited states, the approximate G state and the two first ionic states.

The system still remains fairly large, principally when we keep in mind that the laser field has to be included explicitly in the simulations. We limit our study for values of ⌧ > 110 fs to avoid a temporal overlap between the pump and the probe. Thus the three steps can be simulated separately. The first step is performed on the three lowest singlet electronic states (1 1 A 1 , 1 1 B 1 and 1 1 A 2 ) with the corresponding Hamiltonian expressed as:

Ĥpump (t) = T N (Q)1 3 + 0 B B B B @ W GS µ GS1 • E p (t) µ GS2 • E p (t) µ GS1 • E p (t) W1 B1 W 12 µ GS2 • E p (t) W 12 W1 A2 1 C C C C A , (5.1) 
where E p (t) is the pump pulse and 1 3 the 3 ⇥ 3 unit matrix. As the excitation can only take place along one polarisation direction, we drop the vectorial representation of the electric field and describe it with a sin-squared envelope: 

E p (t) = E 0p cos (! p t)
µ GSi (Q) = h e i (Q)|µ e | e GS (Q)i, (5.3) 
collecting the nuclear coordinates in Q = { , R s , Q u }. We introduced µ e , the electronic part of the dipole operator and e , the electronic wavefunction. Both quantities have been computed at the MRCI level all over the 3D PES. The terms W1 B1 , W1 A2 and W 12 are the diagonal and the o↵-diagonal elements of the potential matrix W reg of Sec. 3.3.1, while W GS is the PES of the GS 1 1 A 1 . In C 2v symmetry, the transition from the GS to the 1 1 A 2 state is dipole-forbidden (µ GS2 = 0) but in C s symmetry this rule is relaxed and the transition becomes possible with a weak transition dipole moment. We included this transition dipole in our simulations, but neglecting it does not change the results.

For time t > T p , the GS wavefunction is removed from the Hamiltonian because it is uncoupled when the pump laser field is o↵ and the propagation is performed only with the singlet excited states. Physically this second step evolution ends up when the probe excites the system, but it is more e cient to propagate this second step for all the range of time, and store the wf as an initial condition for the probe excitation.

In the third step, we performed the propagation with a 5-state Hamiltonian built from the singlet excited states (1 1 B 1 and 1 1 A 2 ), the two lowest ionic states (1 2 A 1 and 1 2 B 2 ) and the intermediate Rydberg state G.

Therefore, the full wavefunction has five components and can be written as [START_REF] Seel | Femtosecond time-resolved ionization spectroscopy of ultrafast internalconversion dynamics in polyatomic molecules: Theory and computational studies[END_REF][START_REF] Worth | Using photoelectron spectroscopy to unravel the excitedstate dynamics of benzene[END_REF]:

| (t)i = | 1 B1 (t)i + | 1 A2 (t)i + | Ryd (t)i + X i=1,2 Z 1 0 dE |I i (E, t)i, (5.4) 
where the index i = 1, 2 corresponds to the ionic electronic state 1 2 A 1 , 1 2 B 2 , respectively. The Hamiltonian reads :

Ĥprobe (t) = T N 1 2N +3 + 0 B B B B B B B B B B B B @ W1 B1 W 12 ↵ R • E 2 s (t) 0 0 W 12 W1 A2 0 0 0 ↵ R • E 2 s (t) 0 W Ryd µ R1 • E s (t) µ R2 • E s (t) 0 0 µ R1 • E s (t) W 1 W ion 12 0 0 µ R2 • E s (t) W ion 12 W 2 1 C C C C C C C C C C C C A . ( 5.5) 
The electric field for the probe pulse E s (t) is again given by Eq. ( 5.2), with the following parameters ! s = 3.09 (3.12) eV, T s = 120 fs and the probe intensity I 0s = 4 ⇥ 10 12 W/cm 2 to match the experimental conditions of Ref. [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF] . We introduced the coupling constant ↵ R , which describes the two-photon absorption from the 1 B 1 state to the Rydberg state. This is the only possible transition from the valence excited states as the transition from the 1 A 2 state is forbidden by symmetry. The description of the electron continuum has been introduced in Sec. 2.5.2. In addition the Hamiltonian, Eq. (5.5), involves 2 other transition matrix elements, µ R1 , and µ R2 which couple the Rydberg state G to the two ionic states, 1 2 A 1 and 1 2 B 2 . Computing ↵ R , µ R1 , and µ R2 is a rather di cult and tedious task because it requires the determination of the electronic wavefunction associated to G, which we chose not to perform. We opted for empirical determination of these values, with ↵ R = 11 a.u., µ R1 = 0.25 a.u. and µ R2 = 0.05 a.u. These choices were motivated by (i) the physical meaning of the couplings, (ii) reproducing the experimental results of [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF] and (iii) independence, apart from a scaling factor, of the spectrum and time-dependent populations when dividing these coupling constants or the probe intensity by two. For example, the choice of µ R1 >> µ R2 arises from the fact that µ R1 describes the transition G ! 1 2 A 1 , which corresponds to a direct ionisation of the Rydberg orbital leaving the ionic core unchanged. On the other hand, µ R2 describes the transition G ! 1 2 B 2 , which involves a two electrons process with the ionisation of the Rydberg orbital and the excitation of the ionic core, making it less likely than the previous one. The signal in the experiment present a period of ⇠ 140 fs, then a step of 25 fs for the delay between the pump and the probe was chosen.

The results of the time-resolved photoelectron spectra are reported in Fig. It is interesting to note that, despite the noticeable energy di↵erence of the pump frequency (0.25 eV), the energy of the photoelectron peak remains the same, near 0.55 eV. This behaviour is also observed in the experimental work of I. Wilkinson et al. [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF] and arises from the two-photon resonance with the Rydberg state. Due to the similarity of the electronic structure of the G state and the ionic ground state 2 A 1 , the PES of both states exhibits similar topographies. While this statement is assumed in our model, the experimental work of Ref. [START_REF] Xue | Observation of the singlet-triplet pair of the 4p Rydberg state and assignment of the Rydberg series of SO 2[END_REF] confirms a similar vibrational progressions. Hence, large Franck-Condon factors are obtained when the ionisation leaves the ionic core in the same vibrational states than the ones populated in the Rydberg state. Thus, the additional energy of the pump photon ends up as vibrational excitation of the resulting ion rather than as photoelectron kinetic energy. In order to determine the period of oscillation (T = 2⇡/!) and the damping time (⌧ d ) of the photoelectron spectrum, we fit the yields obtained after integration using an oscillating function with an exponential damping, S(t) = a + e t/⌧d (b + c cos (⌦t + )).

(5.6)

The results of the fit are presented in Fig. 5.4 for the di↵erent pump frequencies in addition to a di↵erent probe energy (3.09 eV) for the 4.12 eV pump. One should note, in the latter case, a shift in the energy of the photoelectron energy ⇠ 0.06 eV, which is exactly the di↵erence of energy provided during the excitation to the G state, confirming its essential role in the ionisation process. Periods and "lifetimes" extracted from the fits are collected in Tab. The excellent agreement obtained when comparing our spectra with those of the experiments [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF], demonstrates that our model includes all important physical features of the mechanism. It clearly demonstrates the important role of the two-photon resonance with the G state of symmetry B 1 . Furthermore, we showed the possibility to map directly onto the photoelectron yield the wavepacket dynamics on the lowest excited states

(1 1 B 1 and 1 1 A 2 ), via a "pump-probe" scheme. This provides us information on both the periodic motion of the wp and its spreading over the time.

Intersystem crossing and experimental evidence of

1 3 B 2
Over the first 600 fs of the pump-probe scheme, we showed that the vibrational spreading of the wp on the coupled singlet states is responsible for the damping of the photoelectron signal as a function of the time. In the experimental results, the damping is observed over a large time (picosecond time scale) and the question of the mechanism has to be investigated. In order to know if the vibration is the only mechanism involved, we extend the time delay between the pump and the probe until 1.5 ps, using exactly the same method than for shorter times. The results are presented in Fig. 5.5 and interestingly the damping of the photoelectron yields do not continue and revivals are even observed. These features can be explained by the fact that the pump laser populated few eigenstates of the coupled singlet states and without anymore interaction the wavepacket dynamics remains the same.

It gives us a strong evidence that other mechanisms are responsible for the damping for time larger than 500 fs. We have shown that the triplet states are relevant in SO 2 (see Sec. 4.3) and they should be included

S 1 S 2 S 3 S 4 µ GS2 • E p (t) W s 12 W1 A2 S 5 S 6 S 7 S 8 0 S ⇤ 1 S ⇤ 5 V 3 B + 2 S 9 S 10 0 0 S ⇤ 2 S ⇤ 6 S ⇤ 9 V3 B 0 2 S 11 S 12 0 S ⇤ 3 S ⇤ 7 S ⇤ 10 S ⇤ 11 W 3 B 1 W T 12 0 S ⇤ 4 S ⇤ 8 S ⇤ 12 0 W T 12 W 3 A 2 1 C C C C C C C C C C C C C C C C C C C A . (5.7) 
Not taking into account the coupling between the GS and the remaining states of the A 0 block considerably reduces the complexity of the system, discarding five electronic states as well as the di↵erent transition which would take place for a x-polarised excitation. We introduced the non-adiabatic coupling W T 12 between the diabatic W 3 B 1 and the W 3 A 2 states. In addition the di↵erent spin-orbit couplings in the diabatic basis (obtained from Sec. 3.4.1) have been labelled S i . To be accurate, the interaction with the probe should include all the possible the ionisation channels from the 6 neutral electronic states. But to simplify our

S 1 S 2 S 3 S 4 ↵ R • E 2 s (t) 0 0 W s 12 W1 A2 S 5 S 6 S 7 S 8 0 0 0 S ⇤ 1 S ⇤ 5 V 3 B + 2 S 9 S 10 0 0 0 0 S ⇤ 2 S ⇤ 6 S ⇤ 9 V3 B 0 2 S 11 S 12 0 0 0 S ⇤ 3 S ⇤ 7 S ⇤ 10 S ⇤ 11 W 3 B 1 W T 12 0 0 0 S ⇤ 4 S ⇤ 8 S ⇤ 12 0 W T 12 W 3 A 2 0 0 0 ↵ R • E 2 s (t) 0 0 0 0 0 W Ryd µ R1 • E s (t) µ R2 • E s (t) 0 0 0 0 0 0 µ R1 • E s (t) W 1 W ion 12 0 0 0 0 0 0 µ R2 • E s (t) W ion 12 W 2 1 C C C C C C C C C C C C C C C C C C C C C C C C C C A . (5.8)
The physical process, described here, is an ionisation occurring exclusively from the singlet 1 B 1 state, as previously, but now the dynamics in the neutral states take also into account the intersystem crossing with the triplet manifold. The resulting photoelectron spectra are presented in Figs. 5.6, with ! pump = 4.03 and 4.12 eV for pump-probe delays until 1.5 ps. Compared to the previous results a damping is obtained after 500 fs, which is directly due to the intersystem crossing. Still two issues remain when we want to compare our results with the experiments. First the yield of the emitted photoelectron decreases as a function of the time. It obviously results from our model in which the population of the singlet states is transferred to the triplet states but these latter cannot be ionised. This suggests their role also in the photoelectron signal via ionisation and not only in the dynamics of the neutral molecule. The second di↵erence is the variation of the signal when varying the polarisation between the pump and the probe. This point was not discussed in our previous model because the relevant transition occurs only via the two-photon absorption of the probe and then is independent of the polarisation. Pump-Probe Delay (fs)

A (-) 3 2 A 1 2 B 1 1 B (-) 3 1 
B (0) + B (+) Pump-Probe Delay (fs)

A (-) 3 2 A 1 2 B 1 1 B (-) 3 1 
B (0) + B (+) Wilkinson [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF]. For the three cases the population in the 1 3 B2 states (sum over (0) and (+) components) presents a fast increasing over the first 500 fs to reach ⇠ 40% of the total population (red line). This time scale is in agreement with the experimental one. The role of the 1 3 B1( ) state (dashed green) is less important with a population below 10% for all the time.

Strong field spectroscopy: towards attosecond resolution using HHG

In the previous section we discussed the possibility to follow the nuclear vibration of SO 2 via the TRPES experimental setup. The limitation of the methods is directly linked to the time duration of the probe, which is on the time scale of 100 fs and the complex interpretation of the experimental results. The high-order harmonic generation recently paves the way to the attosecond (as) time scale, taking into account that from one harmonic to another, the excursion time of the electron in the continuum varies by ⇠ 100 as. Then, if a time dependent process occurs during the harmonic generation, the di↵erent harmonic orders would give information in the as time scale. This possibility raised considerable interest to probe electronic and nuclear processes. The electronic dynamics have been successfully observed, for example in the case of the Auger decay [START_REF] Drescher | Time-resolved atomic inner-shell spectroscopy[END_REF]. Concerning the molecular dynamics, the work of Baker et al. [START_REF] Baker | Probing proton dynamics in molecules on an attosecond time scale[END_REF] shows that the nuclear dynamics in the H + 2 cation can be probed via the HHG spectra. This work has been extended by many other theoretical and experimental evidences for a large variety of systems. This experiment used the fact that after the ionisation, the nuclear wp is launched on the ionic states and starts to evolve under the action of the ionic Hamiltonian. When the electron is driven back to the molecular cation it recombines with the latter and the e ciency of the recombination will be a direct probe of the overlap between the ionic wp and the neutral one. One important point of all the experiments described is that only processes which occur during the time of the HHG can be probed. Usually, an IR laser with a period of ⇠ 2.6 fs is used, which means that the dynamics is probed during a time, which is short compare to chemical reactions. To relate this method to a classical pump-probe scheme, we can use the three-step model [START_REF] Corkum | Plasma perspective on strong field multiphoton ionization[END_REF][START_REF] Kulander | Dynamics of short-pulse excitation, ionization and harmonic conversion[END_REF] to described the HHG process.

The first step is the tunnel ionisation of the electron and plays the role of the pump, then the propagation of the electron in the continuum plays the role of the delay line. Finally, the recombination step probes the system and it is why the HHG is often refer to as a self probing scheme. Keeping in mind this possibility of as resolution, di↵erent experiments have been performed to probe nuclear vibration in molecules as well as dissociation mechanisms. Such kind of experiments has been used to study the vibration of the N 2 O 4 molecule [START_REF] Li | Time-resolved dynamics in N 2 O 4 probed using high harmonic generation[END_REF]. First, a dynamic is initiated by the excitation of one vibrational degree of freedom of the molecule thanks to a short laser pulse. Then the HHG takes place with the irradiation of the system with a strong IR pulse. The rate of the emitted harmonics di↵er according to the path which is involved in the ionisation step. A weak signal is observed when the HOMO-1 is likely ionised while a strong one occurs from ionisation of the HOMO. More complex systems have been then under consideration, with the possibility of probing dynamics which occurs in the vicinity of a conical intersection, as presented in Ref. [START_REF] Wörner | Conical intersection dynamics in NO 2 probed by homodyne high-harmonic spectroscopy[END_REF]. Here again the first step of the experiment is the excitation of the molecule (pump), then the probe is performed by the HHG and the harmonics are detected. For these kind of experiments no previous theoretical model tried to take into account the nuclear wp dynamics and our model is applied in the case of SO 2 , for which experimental results have been obtained recently [170].

5.3.1 SO 2 in the vibrational ground state: "Classical" vs "Quantum" description of the molecule for HHG

The High order Harmonic Generation in atoms and molecules has been subject to numerous reviews [171, 172],

which deal with the theoretical and experimental side. In this section we consider the Sulfur dioxide molecule in its vibrational ground state. An overview of the important characteristics of the HHG process are depicted for this specific case but here we tried to keep the discussion focus on the novelty of our work. The publications mentioned previously can provide an larger overview of this young research field. We propose in addition to discuss a well spread approximation in the context of the molecular HHG, which consists of the description of the nuclei as a classical system. To solve the electronic part of the problem the single active electron (SAE) approximation is used and the TDSE can be solved either numerically or using the Strong Field Approximation (SFA) [START_REF] Lewenstein | Theory of high-harmonic generation by low-frequency laser fields[END_REF]. In addition, the SFA equation can be solved numerically as well or using the saddle point approximation (sdp) to deal with one or all the integrals of Eq. (2.191) of Sec. 2.5.3. These approaches are a direct extension of the atomic case, where the quantum nature of the nuclear is negligible.

Here, we want to discuss the quantum nature of the nuclei and the electronic problem is solved with the SFA and the full sdp approximation for the integrals. We do not discuss in this manuscript but just stressed that the di↵erent approximations mentioned give reasonable results when compared with the TDSE or even the experiments, see for instance [START_REF] Risoud | Quantitative extraction of the emission times of high-order harmonics via the determination of instantaneous frequencies[END_REF][START_REF] Shafir | Resolving the time when an electron exits a tunnelling barrier[END_REF].

In the classical description of the molecule, the equilibrium geometry of the GS to describe the system.

Then the Dyson orbitals (see Sec. 2.5.3) are used to compute the matrix elements describing the ionisation and the recombination of the electron. It is important to note that in this approach, the molecular electronic wavefunction at the MRCI level of theory is used to compute the di↵erent matrix elements. The results are presented in Fig. 5.8 for the case of an ionisation to the 1 2 A 1 and 1 2 A 2 ionic states. In a Hartree-Fock representation, these transitions correspond to an ionisation from the HOMO and the HOMO-2 molecular orbitals, respectively. The ionisation to the 1 1 B 2 state is equal to zero in the case of a x-polarised laser field.

We first consider the ionisation of the HOMO, which is the most likely case because the tunnel ionisation rate decays exponentially with respect to the ionisation potential. The resulting HHG spectrum is presented in Fig. 5.9 and presents two di↵erent parts. The first one, with a constant emission rate for low harmonic orders, is called the "plateau" and the second part, which presents an exponential decay, is the so-called "cut-o↵".

The position of the cut-o↵ can be estimated as 3.17U p + I p [START_REF] Lewenstein | Theory of high-harmonic generation by low-frequency laser fields[END_REF], with U p the ponderomotive energy,

U p = E 2 0 4! 2 , (5.9) 
where E 0 is the electric field amplitude and ! its pulsation. Its position depends only on the characteristic of the molecular system (Ip) and the ones of the laser (!, E 0 ). Using the saddle-point approximation to solve Eq. (2.191), it introduces naturally in the model the notion of ionisation time t i and recombination time t r . In the simple's man (or three-steps model) of Corkum [START_REF] Corkum | Plasma perspective on strong field multiphoton ionization[END_REF] and Kulander et al. [START_REF] Kulander | Dynamics of short-pulse excitation, ionization and harmonic conversion[END_REF], these times correspond to the time when the electron is released in the continuum and when the electron recombines with the molecular ion, respectively. When the maximal amplitude of the electric field is reached, a burst of electron is released in the continuum depicted by the green squares in Fig. 5.9 and are accelerated by the electric field far from the ionic core. Then the field direction changes and the electrons are driven back to the ion and can recombine with it at di↵erent times t r (green open circles) and a photon is emitted. The energy of the latter is the sum of the kinetic energy acquired by the electron in the continuum and the ionisation potential I p . From Fig. 5.9, one can see that the harmonics in the cut-o↵ result from one event, i.e. one set of {t i , t r } (light green). But the harmonics in the plateau result from two di↵erent sets of solution for the ionisation and recombination time, describing two di↵erent trajectories of the electron. These trajectories are classified according to the time spent by the electron in the continuum. For one harmonic of the plateau, one 166CHAPTER 5. STRONG FIELD SPECTROSCOPY: FOLLOWING TIME-DEPENDENT DYNAMICS trajectory is ionised at a time t i (intermediate green square) when the field amplitude is maximal and recombine at time t r after one half-period of the electric field (intermediate green circle). The second trajectory is ionised slightly later (dark green square), when the amplitude of the field already decayed and recombines systematically before 3/4 of the laser period (dark green circle). The first trajectory spent systematically more time (t r t i ) in the continuum than the second one and thus is called the long trajectory, while the second one is the short trajectory. The full process appears each half laser cycle (blue colour code) and this periodicity of the process and the symmetry of the system will construct the final shape of the total spectrum with the emission of only odd harmonics of the exciting laser frequency. The saddle-point approximation The HHG spectrum of the electronic GS of SO2 is presented, with the indication of the two main characteristics, the "plateau" and the "cut-o↵". On top, the di↵erent trajectories participating to the emission of one harmonic are represented by their emission (open squares) and recombination (open circles) timing, for one and half optical cycle of the laser (left). For each maximum of the laser field, two distinct trajectories emit a photon of the same energy, and are classified as "long" and the "short" trajectory with respect to the electron's excursion time in the continuum.

gives the possibility to compute the emission yields for any frequency because it enters in the set of equation as a parameter. But only the odd harmonics are observed experimentally or theoretically with a "long" (few cycles) laser pulses and from now only the odd harmonics are computed and discussed. can recombine with the ionic core at di↵erent times. When the electron spends more than one optical cycle of the laser in the continuum, the recombination with the core is called "multiple-return" and they are displayed in the top inset. The colour map indicated the intensity of the emitted photons. The bottom displayed the di↵erent instant of ionisation for these multiple-returns.

When the electron is in the continuum and is driven back to the parent ion, it is also possible that no recombination happens and the electron continues its evolution in the continuum. In the case of the short trajectories the electron comes back to the ion only once but for the long trajectories the electron visits the ion regularly. At each of these times a recombination can occur and a photon can be emitted. This situation is presented in Fig. 5.10, where only one half-cycle of the laser is used to ionise the system (bottom) but the recombination times are computed over three laser cycles. The colour associated to a set of {t i , t r } indicates the intensity of the emitted harmonic. We clearly see that the first recombination (first laser cycle) is predominant in the spectrum, the other returns being at least one order of magnitude less e cient.
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Looking closer at the ionisation times, it appears that for all the multiple-returns the electron is ionised nearby the maximum amplitude of the laser field. Their emission times are on the same time scale than the emission of the long trajectory of the first recombination. Moreover, these so-called "multiple-returns" do not participate to the higher harmonics of the spectrum, with the cut-o↵ starting systematically before the 20 th harmonic. We neglect the multiple-returns in the following, because they weakly participate to the final harmonic spectrum. In addition, for the case of SO 2 their participation in the spectrum decreases when the nuclear dynamics is included. Indeed, this dynamic weights each trajectory with the autocorrelation function High-order harmonic spectra for the ionisation of the electronic GS of SO2 toward the 1 2 A1 state (HOMO) displayed in solid green line. The spectrum resulting from ionisation to the 1 2 A2 state (HOMO-2) is displayed in solid red line, the coherent sum of the two spectra is presented in dotted blue line.

Not only one channel exists for the ionisation of the molecule. Even if the ionisation of the HOME is most likely, ionisation can occur for each molecular orbitals during the HHG process. We already mentioned that the transition matrix element to the 1 2 B 2 state with a x-polarised laser is zero, but the ionisation to the 1 2 A 2 state can play a role with a non-vanishing transition probability, see Fig. 5.8. The incoherent spectra resulting from each of the ionisation channels are presented in Fig. 5.11, as well as their coherent sum. It results that the spectrum is almost not a↵ected by the process involving the 1 2 A 2 state and will be not considered anymore. Note that the role of the di↵erent molecular orbitals can be strongly a↵ected by the laser polarisation and such study for the special case of SO 2 should be interesting.
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Let us now consider our model for the HHG process. Here, the key point is the explicit consideration of the nuclear wavefunction. In the case of the vibrational GS of the molecule, the maximum of probability is obtained for the geometry used to describe the "classical" molecule. Thus, in the case of the classical description, the harmonic spectrum is computed using the mean value of the nuclear wf. For the quantum description (see Eq. (2.202)), the harmonic spectrum is computed for each geometry includes in the DVR and the total spectrum is the coherent sum of all emissions, weighted by the nuclear wf. The lowest vibrational state of the electronic GS is shaped as a Gaussian function and both models give similar results, as presented in Fig. 5.12. The results may seem quiet disappointing because our model required the evaluation of more than 10 5 spectra to finally recover the result of the classical description. It is not surprising that the quantum description agreed that well with the classical one, because nuclear wf exhibits a well defined maximum at the equilibrium geometry. Thus the coherent sum is leaded by the emission of the equilibrium geometry or similar to it. But if the nuclear wf exhibits di↵erent maxima or is delocalised, the two descriptions will lead to di↵erent results. It is the case, for instance, when a nuclear dynamic is induced prior to the HHG process. .12: High-order harmonic spectra for "classical" description of the nuclei in green and for the "quantum" description in red. In this case only the ionisation to the 1 2 A1 state is considered.

Tracking vibrational dynamics: the case of the electronic ground state

The goal of using HHG spectroscopy, in a chemical point a view, is to be able to follow a chemical reaction thanks to the sensitivity of the HHG with respect to the electronic wavefunction. First, we decided to con-sider the electronic ground state with a vibrational excited wavefunction. This situation can be obtained experimentally, for instance, by using a non-resonant Raman excitation, because SO 2 has a permanent dipole.

No such experiment has been yet performed for this molecule and to simplify the simulation we excited the molecule by simply shifting the ground state PES by 0.6 a.u. along the r v coordinate. An interesting point of this approach is also the creation of a localised wavepacket with a large amplitude nuclear motion, which seems adequate for our purpose. The two important quantities that are the mean value of the potential ionisation (Ip) and the autocorrelation function are reported in Fig. 5.13. The FC area, where the wp starts its dynamics, exhibits low Ip values. The mean value of the Ip changes over the dynamics, oscillating between ⇠ 12.2 and ⇠ 12.6 eV with a pseudo periodicity ⇠ 65 fs (see Fig. 5.13). A similar periodicity is obtained concerning the autocorrelation function. Basically the dynamics can be seen as a wavepacket motion with a periodicity ⇠ 65 fs, which evolves on the PES and presents an Ip variation between the two turning points.

The emission rates of harmonic 11 to 17 are depicted in Fig. 5.14 as a function of the time, for the short (a) and long (b) trajectories. For all the harmonics and for both trajectories the time evolution of the emission rate presents a similar profile. The emission rate exhibits maxima with a periodicity of ⇠ 65 fs, which is the same than the one obtained in the wp dynamic. These maxima occur when the mean value of Ip exhibits a minimum, thus the harmonics are highly sensitive to the variation of the Ip. This is not surprising because of the exponential dependency of the ionisation probability with respect to Ip. In addition to the maxima discussed above, maxima of lower intensity are also observed with a periodicity of ⇠ 65 fs, but shifted by half a period (⇠ 32 fs) in comparison to the previous ones. In comparison to the evolution of the mean value of Ip, they appear when the Ip is maximum. The ratio between the di↵erent maxima series slightly changes between the long and short trajectories, with a larger di↵erence in the case of the short one. time scale probed by the HHG rates is actually the two turning points. But the maxima of lower intensity appearing for value of Ip close to the maxima are counterintuitive. To clarify this, additional simulations have been carried out to disentangle the role of the two important quantities, the Ip and the transition dipole variations. To study the role of the Ip, we arbitrarily fixed the transition dipole to unity for all geometries and momentum. In the same way, we fixed the value of Ip at 12.5 eV to understand the role of the transition dipole. The results obtained for the 13th harmonic are presented in Fig. 5.15 for the long (a) and short (b) trajectories. The results for the other harmonics are similar. When the dipole transition is fixed, the harmonic yields present roughly an oscillation period ⇠ 65 fs, and its time variation is an exact mapping of the time evolution of the mean value of Ip. For the simulation with a constant Ip, the time evolution of the harmonic rate exhibits a periodicity of ⇠ 65 fs for the high intensity maxima and the same periodicity for the low intensity maxima, shifted by ⇠ 32 fs. This result is similar to the full calculation, but the ration between the high and low maxima is smaller, particularly for the short trajectories. These simulations shows that the full calculation exhibits an evolution, which can be seen as the evolution of the transition dipole modulated by the evolution of the ionisation potential. Then, when the Ip is minimum and the transition dipole is at a maximum we get an intense signal. But when the Ip is at the maximum as well as transition dipole the low intensity maxima is observed in the full calculation. The comparison of the full calculation and the simulation with a constant Ip shows that the modulation resulting from the Ip is more important for the short trajectory than for the long one. It is due to the di↵erent ionisation timing of these two trajectories. The ionisation of the long trajectory takes place at the maximum of the laser field amplitude, while the ionisation of the short one arrises when the field amplitude has already decayed (see Fig. We show here that the HHG spectroscopy is sensitive to the Ip and the transition dipole variations but not in a straightforward way. Nonetheless, when the wavepacket exhibits a "localised" dynamics, our model seems to propose a alternative approach to theoretically describe the time dependent HHG signal. Indeed, it is then possible to consider the time evolution of the mean values of the Ip and the transition dipole to compute the time-evolution of the emission rate. We only discussed the short and long trajectories separately, but we can also coherently sum the emission of the two trajectories. Doing so the time evolution of the rate changes dramatically with the interplay of destructive and constructive interferences. These interferences and a fast decay of the autocorrelation function is not obvious at all. It means that a simple evidence of the non-adiabatic dynamics is not enclose in the autocorrelation function. But if we compare the dynamics with or without taking into account the non-adiabatic coupling (see Fig. 5.16), the evolution of the autocorrelation function is drastically di↵erent. This established that the HHG spectroscopy provide piece of informations of the non-adiabatic dynamics, but requires a comparison with a theoretical description of the system. Thus accurate simulations of the HHG process and experiments can provide enough information to reconstruct the molecular dynamic in such complex situations. Moreover, the HHG provides direct information on the shape of the ionic potential energy surfaces.

We showed that the HHG probes the two di↵erent dynamics, (i) the dynamics occurring in the GS thanks to the time-dependent evolution of the emission rate and (ii) for one given time, it probes the dynamics in the ionic states by considering the di↵erent harmonic orders. Including explicitly the wavepacket dynamics in both cases shows that the di↵erent yields relate the two-dimensional map of the autocorrelation function presented in Fig. 5.16 if we compare it with the case without dynamics in the ionic states. Looking at the emission rate from one harmonic to another at one time t of the dynamic in the GS. Fort he short trajectories, the emission rate decreases with respect to the increasing harmonic order, because the excursion time ⌧ of the electron in the continuum increases. The opposite e↵ect is obtained when we consider the long trajectories, because the excursion time ⌧ of the electron in the continuum decreases when the harmonic order increases.

Experimentally, to observe these e↵ect di↵erent isotopes of the molecule must be considered. But in the case of a molecule such as SO 2 the isotopic substitution we lead to a small e↵ect in comparison to molecule with lighter atoms.

To investigate the role of the explicit consideration of the wp dynamics in the ionic states, we compare our results with the one obtained from Eq. (2.197) (see Sec. 2.5.3). In the second case the nuclear dynamics in the ionic states is described by the autocorrelation function. Such a comparison is presented in Fig. 5.17 for the 13th (c) and 19th (a) harmonics. The results are slightly di↵erent but time-evolution of the rates are similar for the two harmonics and either the short or long trajectories. We already mentioned that the separation between short and long trajectories seems to be the best choice to obtain the simplest interpretation of the harmonic rate with respect to the nuclear dynamics. But interestingly, when the dynamics in the ionic states in taken into account with the explicit wp dynamics or with the autocorrelation function, the interferences pattern between the trajectories is strongly di↵erent. The case of the 13th and 19th harmonics is the most remarkable, as seen in Fig. 5.17 (b)-(d). These results point out that the HHG is not only sensitive to the displacement of the wp during the dynamics in the ionic states, but also to the evolution of the phase of the nuclear wp during this dynamics.

Probing singlet excited state dynamics

Our previous results showed that the HHG is sensitive to the wp dynamic and the possibility to extract information about the latter. It is possible because transition matrix elements and the ionisation potential depends on nuclear geometry. The method seems ideal to probe chemical dynamics, in which the electronic wavefunction will change over the time and provide information. The dynamics into the excited state manifold presents the principal ingredient of a chemical reaction, with the electronic rearrangement induced by the non-adiabatic coupling and the large amplitude nuclear motion.

Experimentally, the study of the excited state dynamics is particularly di cult, because the pump usually excites only a small fraction of the system. The harmonic emission will principally emanate the molecule in the electronic GS and can mask the emission of the population in the excited states and thus their time- evolution. In order to avoid this disagreement, H-J. Wöner et al. [START_REF] Wörner | Following a chemical reaction using high-harmonic interferometry[END_REF] introduced a judicious experimental setup. A sinusoïdial grating of excited molecules is formed in the medium thanks to two crossing laser pulses.

Then a probe pulse is used to generate the harmonics, with a delay ⌧ . In the far field the zero order di↵racted signal can be approximated as,

I m=0 (⌦, t) = |c g d g (⌦) + X i c i (t)d i (⌦)| 2 (5.11)
where i runs over the manifold of excited states. The zero-order di↵racted signal (m = 0) is the coherent sum of the emission of the di↵erent states weighted by their respective population. But the first-order di↵racted 5.3. STRONG FIELD SPECTROSCOPY: TOWARDS ATTOSECOND RESOLUTION USING HHG 177 Figure 5.18: Experimental result of the time evolution of the di↵racted signal 5.12 with respect to the pump-probe delay for the harmonic 11 to 17. The pump excitation first excites the system in the Clements band, and the excitation is probe by an IR pulse at 800 nm with an intensity of 10 14 W.cm 2 . From [170].

signal (m = ±1),

I m=±1 (⌦, t) = | X i c i (t)(d i (⌦) d g (⌦))| 2 , ( 5.12) 
is the interference between the excited and non-excited dipoles, but weighted by the population of the excited states only. It provides a stronger contrast than the zero-order signal.

A pump-probe scheme similar to the one used for the TRPES (see Sec. 5.2) is used. First a pump at 304 nm (4.08 eV) excites the system followed by the HHG probe induced by an IR pulse at 800 nm with an intensity of 10 14 W.cm 2 . Considering explicitly the pump, we compute the time-dependent diabatic populations of the excited states, see Fig. 5.19. The results are similar to the one presented in the case of the TRPES experiment (see Sec. 5.2.2). Note that we did not renormalise the population of the excited states because the part of the wavepacket in the GS plays also a role here, see Eq. (5.11). The system is more complicated than the one considered previously (Sec. 5. around 400 fs but this time scale is not observed in the dynamics of the singlet excited states in the Clements bands. In order to describe the experiment, a set of model has been used. First we consider the simple case of a constant transition matrix element for all the transitions and the time-dependent mean value of Ip for each electronic state. This choice is supported by the similar transition dipole matrix elements obtained in Sec.

3.4.3 as well as the previous results obtained concerning the GS dynamics (see Sec. 5.3.2). The calculation of the time-dependent wp is similar to the one performed for TRPES: during the first 100 fs the system is excited by the pump and then evolves freely in the excited states. Concerning the probe we consider only one-generation cycle, which provides a pump-probe delay identical to the propagation time. The initial time (t = 0) is defined as the beginning of the pump pulse. The results of the simulations are displayed in Fig. 5.20 for the 15th and 17th harmonics.

For the two harmonics and either the short or the long trajectory an oscillation of the emission rate with respect to the pump-probe delay is observed. The signal presents strange minima of the emission rate with of Ip for each electronic state involved. This simple model was suggested from the results obtained in the case of the GS. The di↵erent harmonic, here the 15th (left) and 17th (right) exhibit minima over the time propagation with a period of ⇠ 148 fs, which is the one obtained for the population dynamics between the two 1 1 B1 and 1 1 A2 states. This sensitivity of the harmonic yields is unfortunately not the one observed experimentally.

periodicity of ⇠ 148fs. This periodicity is similar to the one obtained for the oscillation of the population between the 1 1 B 1 and 1 1 A 2 singlet states in the Clements bands. Thus this simple description of the system suggests the possibility to probe the wp dynamics, but it is in total disagreement with the experimental results. As our simple model can not correctly describe the system, it seems mandatory to take into account explicitly the wp dynamics. These simulations have been performed using the energy di↵erence between the neutral and ionic states to define the ionisation potential at each molecular geometry. In the following we will call this description model 1. The results of the simulation are depicted in Fig. 5.21 for the 11th harmonic until the 19th harmonic. For time delays smaller than 1 ps, the long trajectories present, once again, an oscillation of the emission rate characteristic of the wp dynamics in the Clements bands. For larger time delays, the 11th and 19th harmonics do not exhibit features related to the singlet dynamics but rather a faster oscillation with a lower amplitude. Looking at the diabatic population of the excited states (Fig. 5.19), we can see that at ⇠ 1 ps the population in the 1 3 B 2 electronic states becomes higher than the one in singlet states. Thus di↵erent behaviour observed before and after 1 ps can results from the emission of the 1 3 B 2 states. For the other harmonics, a similar but less pronounced e↵ect is observed. Concerning the short trajectories, maxima in the emission rates are observed for the 11th and 13th harmonics with a period of ⇠ 148 fs. Minima are observed for the 17th harmonic with a similar period. Model 1 predicts, for the 15th and 19th harmonics, a more complicated time-evolution of the emission rate, from which signature of the wp In the case of long trajectory (left) a strong suppression of the harmonic yields is periodically obtained. This period is a clear signature of the wavepacket dynamics (⇠ 148 fs). In the case of short trajectory (right) this signature is obtained by maxima in the case of the 11th and 13th harmonics and minima for the 17th. The harmonic 15th and 19th exhibits a more complex evolution, with no direct relation with the dynamics of the system.

is almost absent. The results for these two harmonics are reminiscent to the experimental observations. The model 1, which explicitly take into account the dynamics of the nuclear wp induced by the pump provides results in better agreement with the experiment, but are still not convincing.

One of the assumption of model 1 concerns the ionisation potential, which is defined as the energy difference between the neutral and ionic states. Physically this definition describes the Ip as the electronic ionisation potential. But in the case of a molecular system, the ionisation potential should be evaluated between vibronic levels and is thus di↵erent from purely electronic one. Even if this vibronic definition of the Ip the adequate one for a molecule, including this definition in a wavepacket approach is not a trivial task.

Moreover, considering a time-independent approach would require the diagonalisation of the nuclear Hamiltonian of the full system, which is far too di cult for large systems. In order to simplify the implementation of a model, which considers the vibronic ionisation, we investigate the physical processes taking place in the system. In the experiment, the pump excites few vibronic states with a spectral width of ⇠ 30 meV. Within the time-independent picture, these states are eigenstates of the coupled singlet and triplet PES. Moreover, the ionisation of the singlet states will launched a wp onto the two ionic states 1 2 A 1 and 1 2 B 2 , which also share a set of eigenfunctions because of the conical intersection. First, we assume that the energy di↵erence (⇠ 30 meV) between the vibronic states populated by the pump is negligible. In other words, we assume that the wp in the neutral states is described by a single vibronic state with an energy equal to 4.08 eV.

Then, we suppose that the ionisation of the singlet vibronic states leads to vibronic state of the coupled ionic PES with the same (or similar) energy. A lower bound of the vibronic Ip can thus be determined from the higher adiabatic excitation energy of the two ionic states, i.e. the one of 1 2 B 2 . With these approximations we can roughly estimate the lower value of the vibronic Ip as Ip= 8.25 eV (see Tab. 3.6 of Sec. 3.2.4). As the tunnel-ionisation rate exponentially decreases as a function of Ip, we can expect that higher Ip will not contribute to the process. The same approximation holds for the 1 3 B 1 ( ) and 1 3 A 2 ( ) states, which are ionised to the same ionic states and the same value of Ip is thus assumed. The case of the 1 3 B 2 states is slightly di↵erent because they ionised to the 1 2 A 2 state, which is uncoupled and at higher energies. Following the above reasoning, a constant Ip= 9.25 eV is assumed for the 1 3 B 2 states. The results obtained with this qualitative model of the vibronic Ip, called model 2 in the following, are displayed in Fig. 5.22. ps. In the case of long (left) and short (right) trajectories the vibronic definition of Ip (see text) leads to complex time modulation of the harmonic yields with respect to the time. No clear signature of the underlying wavepacket dynamics is observed. Note that the yields increased for the long trajectories of harmonic 15 (light blue) and 17 (dark green), which is reminiscent to the experimental observations. In this case, the time-evolution of the emission rate does not exhibit a periodicity similar to the one of the dynamics in the singlet states. The important point is that it is true for the rate of all the harmonics as well as for the short and long trajectories and irrespectively to the time delay between the pump and the probe. In this sense the agreement with the experimental results is good. Interestingly, for the 13th, 15th and 17th harmonics the emission rate of the long trajectories increases for a time delays larger than 500 Figure 5.23: Comparison between the two di↵erent definition of Ip for the harmonic emission of the singlet electronic states, (a) when the Ip is defined for the electronic wavefunction and depend of the molecular geometry. In solid green (dashed purple) line the emission from the 1 1 B1 (1 1 A2) state. In dotted blue, their coherent sum, which shows coherent interferences for the emission maxima of the 1 1 A2 state and destructive interferences for the maxima of 1 1 B1. (b) Consideration of a vibronic Ip = 8.25 eV, the solid red (dashed orange) line displayed the emission yields of the 1 1 B1 (1 1 A2) state. In this case their coherent sum presents only constructive interferences, which hides the dynamics modulation of the emission yields.

The role of the evolution of the transition matrix elements with respect to the molecular geometry has also been investigated. In order to see its impact we simulate, using model 1 and 2, the harmonic emission using constant transition matrix elements for the two singlet states and equal to unity. We did not observe any influence for the 1 1 A 2 state, except a global modification of the emission rate. Concerning the 1 1 B 1 state, see Fig. 5.24, an important modification of the time-evolution of the emission rate is obtained. When the constant or geometry dependent Ip is used, the time evolution of the emission rate remains similar. But if the transition dipole is constant, the emission rate exhibits new maxima. According to the results obtained for the GS dynamics (see Sec. 5.3.2), we see that the variation of the transition dipole with respect to the molecular geometry strongly modulate the time evolution of the emission rate. It allows the harmonic emission for only restricted sub-space of molecular geometry for the 1 1 B 1 state. Of course the modulation from the population still dominates the total time dependent profile.

Nonetheless, with our approximation of the vibronic Ip in model 2, based on an intuition more than formal demonstration at this point, we can disentangle the role of the di↵erent triplet states in the harmonic signal. We continue the investigation of the long trajectory of the 15th harmonic for which the emission rate increases when the population in the triplet states becomes important. The first order di↵racted signal of the full simulation (model 2) is displayed with coherent signal from the singlet states in Fig. 5.25 a. Two main di↵erences appear the first one for time delays smaller than 500 fs and the second for longer ones. First, for time delays below 500 fs, the emission rate of the full simulation is lower and decreases faster when the triplet states are included, but the features of the time evolution remain the same. For the first tens of femtosecond, almost no di↵erence is observed between the two results, it indicates that destructive interferences arise from the emission of the triplet states. Secondly, after 500 fs, a global minimum of the emission is reached in the full simulation and then increases again. This behaviour is not observed when the triplet states are not included, the emission rate is smaller and remains almost constant for these times. To clarify the role of the di↵erent triplet states, simulations including only the triplet states (see Fig. With this goal in mind, we first tried to describe accurately the molecular system. First we considered the electronic ground state and the two lowest singlet excited states. The latter are interacting through strong non-adiabatic couplings, leading to a complex photoabsorption spectrum. Our results were particularly accurate, especially for the Clements band energies, and provided the first comprehensive theoretical description of the photoabsorption spectrum. In addition to the validation of our model, we went a step further and assigned the low energy part of the spectrum analysing the di↵erent final states of the transition.

Our conclusions, in agreement with experiment, are unusual by strong non-adiabatic e↵ects, which lead to the absorption to a "dark" state (1 1 A 2 ) thanks to the coupling with the bright one (1 1 B 1 ). While these first results were encouraging, the heart of the problem was still unsolved, concerning the role of the di↵erent triplet states. In order to describe accurately the intersystem crossing, we extended the quasi-diabatization method in order to include the geometry dependence of the spin-orbit coupling elements. a factor ⇠ 10 and gives the possibility for these states to exhibit a clear signature in the harmonic signal.

Concerning the perspectives of this work, there are admittedly more questions at this point than answers concerning the SO 2 molecule as well as the theoretical development of wavepacket HHG methodology. Let us discuss first about the molecule itself. We present a new picture of the photophysics of the molecule, including consistently the singlet and triplet states. This description could benefit from the study of the rotationally active conical intersection between the electronic ground state and the 1 1 A 2 state, providing a radiationless pathway for the deexcitation of the molecule. Moreover numerous Renner-Teller couplings occurring at the linearity of the molecule have been neglected and could be relevant for longer-time dynamics. The inclusion of these di↵erent features could lead to interesting behaviour in the dynamics of the system.

But the model developed in this work is as well suitable to study open questions in other fields such as the intriguing Sulfur-mass independent isotope e↵ect. This latter has been observed in sediments before the great oxygenation of the Earth, and is mandatory to understand the history of our planet. Our new mechanisms, which include the triplet states, could give a possible way of research on this e↵ect. I would have been interested to understand the role of the 1 3 B 2 state and also the interference patterns in the di↵erent isotopologues, which are missing in the recent theoretical work. Moreover the direct photoabsorption to the triplet states could play a role as well.

In the near future we also plan the study of the higher excited electronic states than the ones mentioned in this work, and their computation has been recently finished but not yet used for dynamics. These states are of interest because they provide the first dissociative paths of the molecule after photo photoexcitation.

While the lowest one has been already investigated theoretically, the double seams of conical intersection with the higher state have not been addressed and could help in our description and comprehension of the photo-dissociation of the molecule. Available experiments on the subject motivate this perspective [START_REF] Brand | The 2350 å band system of sulphur dioxide[END_REF][START_REF]Sulfur dioxide: Rotational constants and asymmetric structure of the 1 B 2 state[END_REF].

The model developed to describe the HHG experiment in order to study the correlated electron-nuclei dynamics is probably the most "frustrating" part of my work. Not because we do not perfectly obtain com-parable results with the experiments, which is not the primordial goal of this simple model, but because in my view open questions remain unsolved. The model will greatly benefit from a step-by-step comparison on a simpler system. The numerical solution of the TDSE for SO 2 will certainly not appear in the near future, but a comparison considering simpler systems such as H as GAMESS-US. Nevertheless, these additional steps, even if they will be time consuming, do not present di culties, and will give the possibility to make the model more accurate.

Concerning the model itself, an improvement can be provided thanks to the factorisation of the three step-model, for which each of the steps can be described in a better way, but keeping in mind the numerous nuclear geometries which have to be taken into account. For instance the recombination transition matrix will benefit from a correct description of the continuum states (di cult to incorporate), and a better description of the tunnel ionisation.
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qu'il ne s'est écoulé de secondes depuis la naissance de l'univers, il y a Breit-Pauli dans le cadre de la théorie des perturbations.

Energies et fonctions propres du problème électronique

Une place importante est naturellement dévouée à la description théorique des di↵érentes méthodes de spectroscopies, point central de ce travail de thèse. Dans le cadre d'une approche dépendante du temps le spectre de photoabsorption peut être calculé grâce à la transformée de Fourrier de la fonction d'autocorrélation, qui est la projection de la fonction d'onde nucléaire à un instant t sur la fonction d'onde à l'instant initial (t= 0).

En utilisant comme fonction initiale, l'état fondamental de la molécule et en projetant ce dernier sur les états excités par l'intermédiaire du moment dipolaire de transition, une propagation permet d'obtenir la totalité du spectre expérimental, sans inclure explicitement le laser. 
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 2 Molekül ist in der Literatur seit langem bekannt für sein komplexes UV Absorptionsspektrum, welches durch eine Vielzahl von starken und nicht ausreichend verstandenen Kopplungen zwischen den beteiligten elektronischen Zuständen bestimmt wird. Kürzlich wurden die zur Verfügung stehenden experimentellen Methoden zur Untersuchung von SO 2 um die Time-Resolved Photoelectron Spectroscopy (TRPES) und High-order Harmonic Generation (HHG) Methoden erweitert. Die Untersuchungsergebnisse werfen eine Reihe von Fragen bezüglich der Rolle der elektronischen Zustände, der relevanten Kopplungen und der Zeitskala der unterschiedlichen relevanten Prozesse auf. Zur Beantwortung dieser Fragen mittels theoretischer Methoden betrachten wir zunächst den elektronischen Grundzustand sowie die zwei niedrigsten angeregten Singulett-Zustände. Die letzteren wechselwirken miteinander durch starke nicht-adiabatische Kopplungen, wodurch ein komplexes optisches Absorptionsspektrum entsteht. Unsere Ergebnisse sind besonders genau, speziell im Bezug auf die sogenannten Clements-Banden und liefern die erste umfassende theoretische Beschreibung des optischen Absorptionsspektrums. Die Hinzunahme der Spin-Bahn Kopplung, relevant für das System mit schwacher Absorption im langwelligen Bereich, verwandelt das Drei-Zustands-Modell in ein Modell mit 12 gekoppelten Zuständen, welches seinerseits durch Anwendung von Symmetrieauswahlregeln in zwei Teilsysteme aufgeteilt werden kann. Die Analyse der unterschiedlichen Kopplungen gewährt einen Einblick in den Mechanismus, der zum sog. Intersystem Crossing führt. Drei wichtige Aspekte wurden herausgearbeitet: (i) die beherrschende Rolle des 3 B 2 Zustandes, (ii) die Möglichkeit des Auftretens von Quanteninterferenzen während des Prozesses und (iii) die neuartige Interpretation der "verbotenen" Bande. Die Methoden der TRPES-und HHG-Spektroskopie wurden bereits eingesetzt, um die zeitabhängige Kerndynamik in allen drei genannten Zuständen experimentell zu studieren. Mit Hilfe von ab-initio Simulationen konnten wir zeigen, dass die TRPES-Methode empfindlich gegenüber Kerndynamik in den Singulett-und Triplett-Zuständen ist. Das zeitabhängige Profil der Photoelektronenausbeute liefert Informationen bezüglich der Zeitskala des Intersystem Crossing und der nicht-adiabatischen Übergänge. Zur Simulation von HHG war die Entwicklung eines Modells notwendig, welches die quantenmechanische Natur der Atomkerne explizit berücksichtigt. Mittels dieses Modells konnten wir zeigen, dass das Experiment empfindlich ausschließlich gegenüber Intersystem Crossing und nicht gegenüber der Kerndynamik in den Singulett-Zuständen ist. Gute Übereinstimmung zwischen Theorie und Experiment konnte sowohl für TRPES als auch für HHG-Spektren erzielt werden. IV V
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 11 Figure 1.1: Photoabsorption spectrum of the sulfur dioxide in the near-vacuum UV domain between 3 9 eV. The

  from the action of the nuclear kinetic energy operator on the parametrized electronic wf. The resolution of the Schrödinger equation is cumbersome because of this coupling term. Using the explicit form of TN (R) expressed in Eq. (2.5) we obtain, , the term in square brackets is known as the non-adiabatic coupling operator and acts on the nuclear wavefunction. The first aspect to emphasise is that this operator is composed of one scalar component, i.e.

  introducing the closure relation,P k | k e (R)ih k e (R)| = 1, becomes

  autocorrelation function introduced in Lein's model. The coe cient of the di↵erent eigenstates of the ionic wp are simply the Franck-Condon (FC) factors. Theoretical and experimental works gave evidence that in the strong field regime the vibrational distribution of the ionic molecule after the ionisation is strongly di↵erent to the FC distribution, which point out the strongest weakness of the model. To go further di↵erent works took into account the correlation between the ionic wp and the electron momentum of the ionised electron but so far only 1D model have been used. Another problem appears, this time concerning the suppression of the R dependence of the transitiondipole matrix element, which obviously should depend of the nuclear coordinates. Actually it has been demonstrated that interferences, related to "double slit" interferences, appear in HHG spectra, and results from the transition-dipole. Such interference are only possible, for a diatomic system, if the projection of internuclear axis onto the polarisation axis of the laser does not cancel, and leads to a high oscillatory behaviour of the transition dipole. Then for a general molecular system such interferences are not present if the polarisation axis and the molecular plan are orthogonal.
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 31 Figure 3.1: Definition of the two sets of coordinates used throughout this work. In black, the two SO bond lengths R1 and R2 and the Ô SO angle represent the internal coordinates which have been used in the PES calculations. In blue, rv , rd, and ✓ represent the Jacobi coordinates used to formulate the Hamiltonian and perform dynamical calculations.
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 4 10 eV). For the 1 1 A 2 state, the di↵erences of vertical excitation energy are in the same range than for the 1 1 B 1 state, with an equal result between our MRCI and Xie et al. results concerning the vertical excitation and 0.06 eV concerning the adiabatic one. Mai et al. results are closer to the CCSD results with 4.85 eV for vertical excitation. Concerning the relative energy between the excited states all the results agreed up to 0.07 eV for the vertical excitation and 0.11 eV for the adiabatic ones.
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 132 Figure 3.2:Left panel, cut of the PES along the bending angle with Rs = 1.448 Å and Qu = 0 Å, the GS equilibrium geometry. And right panel, similar than previously with variation of Rs for = 119.8 . The black line represents the electronic ground state, blue line the 1 B1 state and the green line the 1 A2 state. Along the bending angle the conical intersection between the 1 B1 and 1 A2 states appears at 113 . The intersection between 1 A1 and 1 A2 is not vibronically active, and both states are coupled only rotationally.
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 33 Figure 3.3: Conical intersection between the 1 1 A" (blue) and 2 1 A" (green) adiabatic electronic states for Rs = 1.448 Å as a function of Qu and . In C2v symmetry (Qu = 0) the two states cross freely each other.

  3.4. Using an interpolation of the PES, we localized in the C 2v symmetry the geometry and the energy of the energy minimum of the seam of conical intersections. The equal bond lengths are 1.547 Å and the angle is 109.15 , with a energy of 3.345 eV. Only Mai et al. reported in the literature this characteristic point with an equal value of R s , a slightly larger angle of 111.1 and an energy of 3.59 eV. Di↵erences between the angles and the energies are in the same order than the di↵erences between the di↵erent characteristic points of the electronic states.

Figure 3 . 4 :

 34 Figure 3.4: Left panel, cut of the PES along the bending angle with Rs = 1.448 Å and Qu = 0 Å, the GS equilibrium geometry. And right panel, similar than previously with variation of Rs for = 119.8 . The Red line represents the 3 B2 state, blue line the 3 B1 state and the green line the 3 A2 state. Along the bending angle the conical intersection between the 3 B1 and 3 A2 states appears at 105 . The intersection between 3 B2 and the other states is not vibronically active, but the spin-orbit coupling can leads to coupling between them.
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 35 Figure 3.5: Representation of the PES along the bonding angle for Rs = 1.448 and Qu = 0 (left panel) and Qu = 0.05(right panel). The same colour code as previously is useddashed lines depict the triplet states. One can notice the numerous intersystem crossings between the sets of states, and the triplet and singlet of the same symmetry are essentially parallel to each other without crossing.
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 37 Figure 3.7: Representation of the conical intersection between the two lowest adiabatic ionic states, namely, 1 2 A 0 in red and 2 2 A 0 in blue, as a function of the asymmetric stretching (Qu) and the bending angle ( ). A contour plot of the 1 2 A 0 state is represented on the bottom.
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 38 Note that seam is a function of the seam coordinates only, which, in our case is similar to a function of R s , while C2v is a function of the two symmetric coordinates, i.e. R s and . As expected both methods give exactly the same values of along the seam of conical intersection. We can note that the largest values of C2v are not obtained along the seam of CI, but rather for 100 < < 110 and 1.55 < R s < 1.7 Å with a maximum value at 4.71 eV/ Å for R s = 1.63 Å and = 102.5 . The maximum of seam = 4.572 eV/ Å is slightly smaller than the case of C2v and is obtained for R s = 1.65 Å. The Franck-Condon (FC) point is near the seam of CI and both methods give di↵erent coupling values, C2v = 3.7 eV/ Å and seam = 4.19 eV/ Å. Then concerning the minimum energy of conical intersection, which is at lower energy that the FC point, both method give 4.46 eV/ Å close to the maximum. In the work of Müller et al.[START_REF] Müller | Adiabatic wave-packet motion on conically intersecting potential energy surfaces. The case of SO 2 ( 1 B 1 -1 A 2 )[END_REF], a single average value of has been used to construct diabatic states. This value (3.29 eV/ Å) is smaller than ours with both methods used and this di↵erence (⇠ 30%) will change slightly the time evolution of the wavepacket.An important point of Fig.3.8 is that C2v is null for small values of R s and either < 90 or > 125 .
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 38 Figure 3.8: Representation of the evaluated according to the two methods detailed in the text. In dashed blue are isolines of the values of C 2v (eV/ Å), and in dashed red the same for seam. Both result coincide along the seam of conical intersection represented by the full green line.

Figure 3 . 9 :

 39 Figure 3.9: Representation of the adiabatic and diabatic surfaces for the two methods. The two left panels are a cut for fixed Rs = 1.448 Å and Qu = 0.05 Å and the two right panels for Qu = 0.15 Å . Note that the bottom panels are zoom in of the upper ones. The lower (upper) adiabatic state is represented in black (red), while the diabatic 1 1 B1 state is in blue, and the diabatic 1 1 A2 state is in green. The dashed line is for diabatization from seam and the full line for C 2v . For the smaller value of Qu both methods give similar results while for larger value the diabatic states from C 2v recover to fast the adiabatic states, introducing a discontinuity in the PES.
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 310 Figure 3.10: Potential coupling term W12 for both methods are presented in this figure for two values of Rs = 1.55 Å (left) and Rs = 1.8 Å (right). The blue lines are results from C 2v and dashed red are results from seam, both give in Hartree. We see that for small Rs the coupling W C 2v 12 is falling to zero for angle larger than 140 , accordingly to the zero value of C 2v . Otherwise both methods give similar results. A representation of it is shown in Fig. 3.10, where each panel depicts W 12 for both methods (W C2v 12 in
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 311 Figure 3.11: Localization of the seam of conical intersection (black line) between the 3 B1/ 3 A2 (left panel) and

Figure 3 . 12 :

 312 Figure 3.12: We report the value of (upper panel) in the case of the triplet states (left) and the ionic states (right).

RFigure 3 . 13 :

 313 Figure 3.13: Three dimensional plot of PES of the ground state 1 1 A1 from polynomial fitting for Qu = 0 (left panel) and Qu = 0.15 Å (right panel). The contour plot on the bottom represents the error in eV between the interpolation and the fit. The white shading is for error below 0.01 eV and the error increases by 0.01 eV for each darker zones.
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 315 Figure 3.15: Three-dimensional plot of PES of the 1 1 A2 excited state from polynomial fitting for Qu = 0 (left panel) and Qu = 0.15 Å (right panel). See legend Fig. 3.14

  75 eV have been discarded to enforce convergence of the smooth part of the PES. Moreover only values of R s < 1.925 Å and < 165 have been used. These restrictions of the grid have been obtained thanks to the results of wp dynamics with the other diabatization scheme (see Sec. 4.2.1). Finally the diabatic states are transformed back into the adiabatic basis to check the accuracy as rigorous as possible.
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 316 Figure 3.16: Contour line of the error of the fitted PES (|Wab initio Wfitted|) for the 1 1 B1 (blue) 1 1 A2 (green) states for diabatization performed with C 2v as a function of and Rs for Qu fixed at 0, 0.1 and 0.2 Å. The error increased with darker zone, 0.05 (light), 0.1 (intermediate) and < 0.15 eV (dark).

  3.2.2 and 3.2.3). The SOC elements can be either real or imaginary and are labelled by R i and C i , respectively. The label also indicates which SOC element are identical between di↵erent states and in this case the relative sign is indicated. To be general, the discussion will consider the C s symmetry (C 2v being a particular case of it), but to keep the discussion as clear as possible the electronic states are labelled in the C 2v symmetry. Due to the introduction of the SOC, the degeneracy of the di↵erent spin components (m S = 0, ±1) is lifted and they have to be considered separately, resulting of 12 coupled states. Using the symmetry adapted spin basis functions, which results from the linear and anti-linear combinations of the spin basis function with m S = ±1, |S,

60 » 2 CFigure 3 . 17 :

 602317 Figure3.17: Modulus of the SOC between the 3 B + 1 and 3 A 0 2 states as a function of Rs and for fixed value of Qu = 0.05 Å. The surface presents a smooth evolution as a function of the coordinates and the dots represent the ab-initio data points. The sign of the SOC changes arbitrary from one geometry to another, alternating between positive (red) and negative (green) values.
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 1401318 Figure3.18: Spin-orbit coupling with respect to the bending angle and symmetric stretching coordinates for Qu = 0.05 Å. Left panel is the adiabatic SOC between the electronic ground state and the coupled 1 3 B1(0)/1 3 A2(0) triplet states. Right panel is the result of the diabatization for the SOC between the 1 1 A1/1 3 B1(0) states (green) and 1 1 A1/1 3 A2(0) states (blue).
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 61319 Figure 3.19: Adiabatic SOC between adiabatic states when a conical intersection occurs in the triplet and singlet
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 601320 Figure 3.20: Spin-orbit coupling with respect to the bending angle and symmetric stretching coordinates for Qu = 0.05 Å. Left panel is the adiabatic SOC introduced in Fig. 3.19. Right panel is the result of the diabatization for the SOC between the 1 A2/ 3 B 1 states (purple) and 1 B1/ 3 B 1 states (red).
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 341321 Figure 3.21: Transition matrix element (in a.u.) displayed as a function of the Rs and coordinates for Qu = 0.05 Å and an electron momentum p = 0.9 a.u. (a) Results for the calculation in the adiabatic electronic basis between the 1 1 A1 and 1 2 A 0 sate. (b) Adiabatic matrix element for ionisation of the 1 1 A1 and 2 2 A 0 . (c-d) Results after the diabatization of the conical intersection between the ionic states. ( c) Transition from the 1 1 A1 state to the 1 2 A1 ionic state. (d) Transition from the 1 1 A1 state to the 1 2 B2 ionic state.
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 322 Figure 3.22: Transition matrix element (in a.u.) displayed as a function of the Rs and coordinates for Qu = 0.05
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 323 Figure 3.23: Diabatic transition matrix element (in a.u.) displayed as a function of the Rs and coordinates for Qu = 0.05 Å and an electron momentum p = 0.9 a.u. (a) For the ionisation of the 1 1 B1 state to the 1 2 A1. (b) For the ionisation of the 1 1 A2 state toward the 1 2 B2 state.
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 41 Figure 4.1: Time-dependent diabatic and adiabatic populations of SO2. The full lines represent the adiabatic population and the dashed lines depict the diabatic population. The blue lines show the results for = C 2v , determined in the total C2v subspace and the red lines indicate populations for = seam, evaluated along the seam of CI.

  4.2 and 4.3 the reduced density (integrated over ✓ for Fig. 4.2 and over r d for Fig. 4.3) of the wp, superimposed on the contour plot of the corresponding adiabatic potential energy surfaces, i.e. the lower adiabatic surface for the left column and the upper adiabatic state for the right column on both figures. We kept the third coordinate, on which the integration has been performed, at the equilibrium geometry of the GS: ✓ = 90 and r d = 0.743 Å. The seam of conical intersections is indicated by the blue dashed line, the FC point by a green circle and the minimum of conical intersection by an open red circle. From the wp propagation we compute the diabatic and adiabatic populations which are represented in Fig. 4.1. An important quantity is the auto-correlation function, from which we can extract the absorption spectrum. These quantities are presented in Figs. 4.4 and 4.5, respectively.

Figure 4 . 2 :

 42 Figure 4.2: Time-dependent reduced adiabatic densities | (rv, rd)| 2 integrated over ✓ and drawn separately for the lower (left) and upper (right) states. The densities are plotted for di↵erent times, 0 fs (purple), 20 fs (red), 40 fs (blue) and 65 fs (green). The densities are superimposed on iso-energy contour of the adiabatic PES (black dotted line) in C2v symmetry. The green closed circle indicates the Franck-Condon point and the open red circle the minimum energy CI. The thick blue line indicates the CI seams. For clarity the upper adiabatic density at 20 and 40 fs have been multiply by 10 to be visible.
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 41 Fig. 4.1, however the wp is already partially localised on the seam of conical intersections, as shown on Fig. 4.2 for t = 0, and when projected onto the adiabatic electronic states, 85% of the population belongs to the Lower Adiabatic State (LAS), see Fig. 4.1. Then the wp starts to move under the action of the excited-state
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 43 Figure 4.3: Same as Fig. 4.2, for the reduced density | (rv, ✓)| 2 .

  Fig. 4.3 and does not participate in C(t).

Figure 4 . 4 :

 44 Figure 4.4: Result for the autocorrelation function h (t = 0)| (t)i between 0 and 200 fs. The propagation has been extended to 200 fs in order to obtain a better resolution. The full blue line is for = C 2v and the red dashed line for = seam.
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 445 Figure 4.5: Comparison of the theoretical and experimental absorption spectra of SO2. (Top) Experimental [60] (black line) and theoretical spectrum with seam (red). (Bottom) Spectrum computed with seam (red) and with C 2v (blue). Theoretical spectra are obtained from the Fourier transform of the autocorrelation function with a damping time equal to 300 fs. The same extended propagation time is used as in Fig.4.4. The theoretical spectra are shifted to match with the first oscillation of the experimental one (1960 cm 1 for the red and 1890 cm 1 for the blue with ZPE correction).
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 46 Figure 4.6: As Fig. 4.2 at time t = 150 fs when a strong revival appears in C(t). In light blue, the initial wavepacket (t = 0 fs) is shown.
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 447 Figure 4.7: Theoretical absorption spectra from propagation on uncoupled diabatic surfaces. (Left panel) Spectrum from propagation on the diabatic 1 1 B1 state. (Right panel) Spectrum from propagation on the diabatic 1 1 A2 state. Spectra are obtained from the Fourier transform of the autocorrelation function with a damping time equal to 300 fs.

Figure 4 . 8 :

 48 Figure 4.8: Representation of an isosurface (
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 449 Figure 4.9: Overlap between the lowest vibrational state (0,0,0) of the electronic ground state (green) and the two first one (E1 and E2) lying on the 1 1 B1 electronic state (red and blue), which is a dipole-allowed transition. The isosurface of the wavefunctions is GS = B 1 = 0.0001. The white dashed circles indicate the overlap zone between the two vibrational functions.

  4.1. But for n 2 4 the population of the 1 1 B 1 state increases but not the intensity. The wf on the 1 1 B 1 state is displayed for this series in Fig. 4.10. One can clearly see that with increasing values of n 2 the wavefunction is localised closer to the GS one and the FC overlap becomes larger. While for n 2 < 4 the lob becomes more and more predominant in the FC area, for larger values of n 2 lobs with an opposite sign start to reduce the FC factor. Note that there is no nodal plan along the asymmetric stretching mode, but we notice a weak probability of the wf in the C 2v symmetry, i.e. ✓ = ⇡/2. It is due to the shape of the PES, which presents a local maximum in C 2v . Similar explanations can be provide as well for the other series, also according to n 1 and n 3 . The study of the eigenfunctions has been performed until 4.05 eV, energies of the low energetic Clements bands (A-D). The results of the preponderant series are presented in Fig. 4.11, with in full black line the spectrum obtained from the Fourier transform of the autocorrelation function (cf. part wp dynamics) superimposed in dashed dark blue the intensities of the eigenvalues resulting from the diagonalisation of the Hamiltonian.
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 410 Figure 4.10: Evolution of the overlap between ground state wf (green) and the 1 1 B1 vibrational wf (red and blue)

122CHAPTER 4 . 40 Figure 4 . 11 :

 440411 Figure 4.11: Contribution in the Clements bands of the di↵erent series, which have been identified in this study. The stick spectrum in dashed line represent the overlap between the GS wavefunction and the eigenfunction obtained from Lanczos diagonalisation. The full-line spectrum in black line results from the Fourier transform of the autocorrelation function, and the Clements band in this energy range have been labelled (A D). Only the predominant eigenstates are highlight, for the weaker contributions c.f. Tab. 4.1. Interestingly the Clements bands A and C arise for almost two equivalent excitations, but the B and D exhibit only one transition. This behaviour has been observed also for the two next bands E F but their attributions have not been completed at this stage.
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 413 Figure 4.13: Populations on the di↵erent electronic states as a function of time. The same colour code as in Fig.

  t), being the full wavefunction of the system. We clearly see three steps during the internal conversion, the first one takes place between 0 and 16 fs, the second between 55 and 65 fs and the third one for times between 150 and 165 fs. Systematically, these transfers are accompanied by a revival in the autocorrelation function. Following the wp dynamics in not trivial for many states and 3 degrees of freedom and in order to get insight we start by studying the di↵erent transfer in di↵erent model Hamiltonians. First we discard the role of the SOC among the manifold of triplet states, keeping active only direct transfer from singlet to triplet states. The result for the population in the 1 1 B 1 and 1 3 A 2 states is presented on Fig. 4.14 (middle panel) by the orange line. The population is almost identical to the one obtained from the total Hamiltonian. Thus it establishes that the indirect couplings are not relevant during the propagation of the first 200 fs. In the same spirit the triplet states of B 2 symmetry are artificially removed from the Hamiltonian and again

Figure 4 . 15 :

 415 Figure 4.15: (top row) Snapshot of the reduced density (purple line) as a function of Rs and of the 1 1 B1 electronic state for di↵erent characteristic times of the intersystem conversion. This time evolution is superimposed with the energy di↵erence (W1 B 1

  .16. Similar reduced Hamiltonians have been used to target the possible mechanisms and gave us the possibility to work with the consideration of the singlet states and the 3 B 2 (+) state only without loss of generality (Fig. 4.16 left panel). In the first ⇠ 50 fs two clean steps are obtained in the population of the triplet state for the reduced (right panel) and full (left panel) Hamiltonian. But unlike the previous states a decay of the population occurs at ⇠ 43 and ⇠ 120 fs for a duration of ⇠ 10 fs. Considering the first transfer, which occurrs between 0 and ⇠ 10 fs, it can be assigned to a 1 1 B 1 ! 1 3 B 2 (+) transfer, exclusively. It takes place thanks to the location of the Franck-Codon zone nearby by ISC1, as confirmed by the wp in Fig.
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 417416 Figure 4.16: (left panel) Population of the electronic 1 3 B2(+) state for the first 200 fs, considering the full Hamiltonian (dashed purple), without the SOC between the triplet states manifold (orange full line) and with only the 1 3 B2(+) state and the two singlet ones in dotted-dashed blue line. (right panel) Results of the state-by-state simulations considering only the SOC between the 1 1 B1 and 1 3 B2(+) states in red or only the 1 1 A2/1 3 B2(+) coupling in green. The blue line is the sum of the two previous simulations. The inset presents a zoom for the first 25 fs of the calculations.
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 331 Intersystem crossing to the 1 3 B 2 (0) state Both triplet states B 2 share the same PES and thus also the di↵erent intersystem crossings with either the singlet or triplet states. Then any di↵erence of the time dependent population should arrived from the di↵erent SOC values with the manifold of states. The population of the 1 3 B 2 (0) state, in the di↵erent simulations performed and displayed in Fig.4.18, presents a similar evolution in comparison to the one of the 1 3 B 2 (+) but with a stronger yield (⇠ ⇥2). From the state-by-state analysis (Fig.4.18, left panel), we observed also the predominant role of the 11 A 2 ! 1 3 B 2 (0) transfer but in this case the 1 1 B 1 ! 1 3 B 2 (0)transition is somehow larger, especially for the first 50 fs of the propagation where both channels provide similar transfer yields. 130CHAPTER 4. WEAK FIELD SPECTROSCOPY: PHOTOABSORPTION AND PHOTOELECTRON SPECTRA -

Figure 4 . 17 :

 417 Figure 4.17: (top row) Snapshot of the reduced density (purple line) as a function of Qu and of the 1 1 B1 electronic state at t = 0 fs (dark purple) and t = 16 fs (light purple). Superimposed is the energy di↵erence (W1 B 1

Figure 4 . 18 :

 418 Figure 4.18: (left panel) Population of the electronic 1 3 B2(0) state for the first 200 fs, considering the full Hamiltonian (dashed purple), without the SOC between the triplet states manifold (orange full line) and with only the 1 3 B2(0) state and the two singlet ones in dotted-dashed blue line. (right panel) Results of the state-by-state simulations considering only the SOC between the 1 1 B1 and 1 3 B2(0) states in red or only the 1 1 A2/1 3 B2(0) coupling in green. The blue line is the sum of the two previous simulations. The inset presents a zoom for the first 25 fs of the calculations.
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 419 Figure 4.19: In full thick red is represented the result from the full Hamiltonian in addition the full thick grey line

  Photo-absorption SOC triplet-triplet SOC singlet-tripletConical intersectionUnperturbed GSPerturbed GS Perturbed GS
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 4214 Figure 4.21: Di↵erent mechanisms and couplings for the photoexcitation of SO2. We use the same colour code as in Fig. 4.20.(a) Excitation from the unperturbed electronic GS of SO2. A direct photoabsorption (straight arrow) can take place from the GS to the 1 1 B1 state with x-polarised light. The vibrational excited states are coupled through a conical intersection between the 1 1 B1 and 1 1 A2 states and SOC (blue and orange bent arrows) between all the di↵erent states of the A" block. Additionally, a conical intersection occurs between the states 1 3 B1 and 1 3 A2. (b) The GS is perturbed by the SOC in the A' block. More direct transitions could take place considering x-polarised light, where the same coupling occurs as in (a). (c) Direct transitions from the perturbed GS to the states of the A' block with y-or z-polarised light. A direct excitation to the triplet A' states takes place. Then, di↵erent couplings occur such as two conical intersections between the same spin components of the 1 3 B1 and 1 3 A2 states.
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 4422 Figure 4.22: Theoretical photoabsorption spectra obtained from the Fourier transform of the autocorrelation function from a wavepacket propagation for 1 ps (except for x-polarisation for which we used diagonalisation due to the weakness of the spectrum in comparison to the singlet one (a). A damping function of 300 fs is used to reproduce the experimental linewidth. (a) Full spectrum in the range 3.15 5.5 eV, with the Clements bands resulting from the singlet states (E > 3.7 eV). Frames b-d present the spectra of the triplet states (three orders of magnitude lower in intensity) after alignment of the molecules and for x-, y-and z-polarised light, respectively. The theoretical spectrum (blue line) of d is superimposed with the experimental spectrum (red line) of Hermans et al. [61], showing very good agreement.
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 4 Figure 4.23: To ensure that the SOC between the GS and the A' triplet states is the only responsible mechanism

140CHAPTER 4 . 3 Figure 4 . 24 :

 43424 Figure 4.24: Theoretical photoabsorption spectra (same as Fig. 4.22b,c) depicted from 3 to 5.5 eV that is, in the energy range of the Clements bands. In the full blue line the spectrum is shown resulting from a y-polarised excitation and in the dashed orange line as resulting from z-polarised excitation. For better visibility, the z-polarised spectrum has been multiplied by a factor 3
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 4 WEAK FIELD SPECTROSCOPY: PHOTOABSORPTION AND PHOTOELECTRON SPECTRA During the elaboration of this work, two studies have been performed concerning the role of the triplet states in the sulfur dioxide molecule. The first published one considered a simpler model than our and obtain a correct agreement with the experimental "forbidden band". Moreover a quite large intersystem crossing to an "adiabatic" triplet state, without any distinction of spin components, has been pointed out. The second work, published recently, used surface hopping techniques to investigate the intersystem crossing and pro-
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 425 Figure 4.25: (a) Representation of the lower adiabatic (red) and 1 2 A1 diabatic (dashed green) populations as a function of the time. The wavepacket starts on the 1 2 A1 state and only a small fraction reaches the 1 2 B2 state. (b)Lower adiabatic (red) and same diabatic (dashed green) population with the initial wavepacket launched on the 1 2 B2 state.

Figure 4 . 26 :

 426 Figure 4.26: Representation of the autocorrelation function as a function of the time. (a) Resulting from the propagation starting on the 1 2 A1 state, (b) starting on the 1 2 B2 state, and (c) starting on the 1 2 A2 state.
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 427 Figure 4.27: Theoretical photoelectron spectra for the di↵erent ionic states. On the left panel, the photoelectron spectrum for wp initially launched on the 1 2 A1 state. In the middle, spectrum from an initial wavepacket on the 1 2 B2 state and on the right panel, spectrum for the uncoupled 1 2 A2 state.

Figure 4 . 28 :

 428 Figure 4.28: Comparison of the theoretical spectrum (a) with the experiment (b) and the adjusted theoretical one
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 51 Figure 5.1: Room temperature, gas phase absorption spectrum of SO2 recorded by Vandaele et al. [60] showing the profile of the Clements bands. The (blue) spectral profiles of the femtosecond excitation laser pulses used in this study are overlaid at the relevant excitation energies, the (red) probe pulse spectrum is shown in the upper right inset. The principal discrete absorption bands have been labelled accordingly to the notation used by Clements [28]. Figure from the publication of I. Wilkinson et al. [71].
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 2152 Figure 5.2: TRPES spectra following excitation between 4.03 and 4.28 eV (pump intensity of ⇠ 10 12 W.cm 2 ) and multiphoton ionisation at 3.12 eV. The traces on the right-hand side of the spectra show the kinetic energy integrated (0.40-0.75 eV) temporal profiles of the principle photoelectron band. (Figure from the publication of I. Wilkinson et al. [71]).
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 5353 photon energy, the wp evolves periodically between the 1 B 1 and 1 A 2 states, which is well reproduced in the time-dependent photoelectron signal presented in Fig.5.3 (a) with a period of ⇠ 150 fs. The integration of the photoelectron spectrum, in the energy range 0.40 to 0.75 eV, reveals that these oscillations are slowly

Figure 5 . 4 :

 54 Figure 5.4: Fit of the integrated time-dependent photoelectron yield over the energy range 0.40 0.70 eV making use of Eq. (5.6). The solid black line (black dots), the dashed red line (red open circles), and the dotted green line (triangle) represent the fit (data) obtained for !p = 4.28, 4.12, 4.03 eV, respectively, in addition to !s = 3.12 eV. The thin blue (blue squares) is used to represent the results using !p = 4.12 eV and !s = 3.09 eV.

5 . 1 .

 51 For all cases, we obtain similar period of oscillation of the signal (⇠ 149 fs), which is the characteristic time of the Clements bands. The slightly lower value for ! p = 4.28 eV (⇠ 130 fs) is probably due to the numerous vibrational states excited by the pump, but its value is not specially accurate because of the very large damping, as seen in Fig.5.4.158CHAPTER 5. STRONG FIELD SPECTROSCOPY: FOLLOWING TIME-DEPENDENT DYNAMICSVery di↵erent damping times are obtained when changing the pump energy, ranging from rather long ⇠ 850 fs for ! p = 4.03 eV to very short ⇠ 70 fs, obtained for a pump at ! p = 4.28 eV. For ! p = 4.12 eV we obtain a signal time constant of ⇠ 190 fs for both probe energies. This damping time is a direct signature of the spreading of the wavepacket onto the singlet excited states PES.
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 56 Figure 5.6: (a-b) Photoelectron yields as a function of the pump-probe delay for pump energy of 4.03 eV (a) and 4.12eV (b), when the dynamics in the neutral states includes the SOC and the all the A" triplet states. In comparison with the previous results we see a damping of the photoelectron yields for both pump energies when the signal is integrated (solid blue line). (c-d) Population in the diabatic 1 1 B1 electronic state as a function of the pump-probe delay when the triplet states are included (solid blue line) or not (dashed green line). The population when the triplet states are included is systematically lower and the di↵erence increases for longer time delay to end up with a factor ⇠ 2.5 in both cases.
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 57 Figure 5.7: Population of the di↵erent diabatic states as a function of the pump-probe delay for the three pump energies of the experiment of I. Wilkinson[START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF]. For the three cases the population in the 1 3 B2 states (sum over (0) and (+) components) presents a fast increasing over the first 500 fs to reach ⇠ 40% of the total population (red line). This time scale is in agreement with the experimental one. The role of the 1 3 B1( ) state (dashed green) is less important with a population below 10% for all the time.
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 316558 Figure 5.8: (left) Imaginary part of the transition matrix element, as a function of the electron momentum, for the ionisation from the GS (1 1 A1) to the 1 2 A1 state, the real part being zero. (right) Same as before but for the transition to the 1 2 A2 state. In this case the matrix element is only real valued.
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 59 Figure 5.9: The HHG spectrum of the electronic GS of SO2 is presented, with the indication of the two main
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 3510 Figure 5.10: After the ionisation, the electron is driving back and forth in the continuum by the laser field and

(Figure 5 .

 5 Figure 5.11: High-order harmonic spectra for the ionisation of the electronic GS of SO2 toward the 1 2 A1 state

Figure 5

 5 Figure 5.12: High-order harmonic spectra for "classical" description of the nuclei in green and for the "quantum"
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 513 Figure 5.13: The mean value of the ionisation potential (red) and the autocorrelation function (dashed green) are displayed for the time duration of the wp dynamics.
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 514 Figure 5.14: Time evolution of the yields of the harmonic 11-17 during the propagation of the wp on the electronic GS, (a) for the short and (b) long trajectories.
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 515 Figure 5.15: (a) To elucidate the role of the ionisation potential and the transition matrix element in the simulation, the Ip has been fixed to 12.5 eV (dashed purple) and the transition matrix dipole to 1 (solid green line) in two di↵erent simulations. The results are compared with the full simulation (dashed blue) for the long trajectory of the 13th harmonic. (b) Similar simulations have been performed concerning the short trajectory.
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 3175516 Figure 5.16: (left) Time evolution of the diabatic ionic 1 2 A1 state population over the first 3 fs after ionisation(vertical axis) for the first 200 fs of the dynamics in the electronic ground state 1 1 A1 (horizontal axis). Even for short time dynamics in the coupled ionic states large (⇠ 40%) population transfer occurs through the non-adiabatic coupling. (middle) Same as before for the absolute value of the autocorrelation function between ionised wavepacket at time t = 0 and the propagated one at time t. A strong variation is obtained for the di↵erent propagation times in the GS, but no direct match is found with the population transfer. (right) Absolute value of the autocorrelation function of an hypothetical uncoupled diabatic 1 2 A1 ionic state. The evolution of the autocorrelation function is clearly a↵ected by the presence of the non-adiabatic coupling between the 1 2 A1 and 1 2 B2 state, providing a trace of the conical intersection.
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 5517 Figure 5.17: (a)-(b) Comparison the time-dependent intensity of the 19th harmonic, when we consider the wp dynamics in the ionic states and when the latter is approximated by the autocorrelation function. (a) The short and long trajectories are presented in both cases. (b) The coherent sum of the short and long trajectories is displayed. (c)-(d) Similar than previously for the 13th harmonic. Note that in this case, the intensity of panel (c) has been multiplied by a factor 6.

3 . 2 )Figure 5 . 19 :

 32519 Figure 5.19: Time evolution of the diabatic population of the di↵erent electronic states considered with an excitation by a laser pulse of a time duration of 100 fs, energy of 304 nm (4.08 eV) and an intensity of 10 12 W.cm 2 turning on in the grey zone of the plot. In solid blue (green) line is displayed the population of the 1 1 A2 (1 1 B1) state. In the same way the dashed blue (green) depicts the population of the 1 3 A2( ) (1 3 B1( )) state. The population of the 1 3 B2(0) (1 3 B2(+)) state is represented by the solid (dashed) red line. In our model of the HHG, the pump-probe delay and the propagation time are the same.
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 3520 Figure 5.20: Simple model of a constant transition matrix element and a time-dependent variation of the mean value
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 5521 Figure 5.21: First order di↵racted signal Eq. (5.12) for the harmonic 11 to 19 for wavepacket propagation of 2.1 ps.

Figure 5 . 22 :

 522 Figure 5.22: First order di↵racted signal Eq. (5.12) for the harmonic 11 to 19 for wavepacket propagation of 2.1

184CHAPTER 5 .Figure 5 . 24 :

 5524 Figure 5.24: Emission yields of the 15th harmonic of the electronic 1 1 B1 state, in the case of a constant transition dipole (purple), a constant value of Ip defined as the vibronic Ip (dashed red) and for the full simulation (green), i.e. with the geometry dependent definition of Ip. The di↵erent results obtained between the first and the two last cases show the important role of the geometry variation of the transition matrix elements.

  5.25 b) have been performed. The results show a dominant emission of the 1 3 B 2 states for time delays larger than 500 fs. The emission from the 1 3 B 1 ( ) and 1 3 A 2 ( ) states is much weaker. But this latter interferes destructively with the emission of the 1 3 B 2 states, as observed in the total signal. With these simulations the signal of the full simulation can be interpreted as follows: the first 200 fs are lead by the emission of the singlet states because the population in the triplet states remains low (see Fig. 5.19). Between 200 and 500 fs the population in the 1 3 B 2 states increases and the emission of these latter interferes destructively with the one of the singlet states. It results Chapter 6 Conclusions and Perspectives

  It is time now to conclude this manuscript and make a last point on the work carried out over these past three years. It started with the discussion on unexpected experimental results on the SO 2 molecule when new time-dependent spectroscopic methods are employed, namely TRPES and HHG. The open questions were numerous to understand what was going on, the role of the di↵erent known electronic states, the di↵erent kinds of couplings present, namely non-adiabatic and spin-orbit and their respective time scales.

  2 , H + 2 • • • is possible. Concerning numeric, we showed that standard Quantum Chemistry packages provide enough information in order to compute required quantities to study HHG. It is mandatory, in my opinion to check to quality of the arbitrary truncation of the MRCI wavefunction from our version of Molpro, with for instance a comparison open-source packages such

  14 milliards d'années. Ainsi pour observer la dynamique électronique il faut disposer d'un phénomène su samment rapide pour mesurer le système. Ce défi fut relevé en 2001, avec la génération de la première impulsion lumineuse d'une durée de quelques centaines d'atto-secondes.Pour générer de si courtes impulsions, un phénomène d'optique hautement non-linéaire est utilisé, la génération d'harmonique d'ordre élevé (HHG). Ce phénomène est observé lorsqu'un atome ou une molécule est excité par un laser de très haute intensité, arrachant un électron du système et accélérant ce dernier. Lorsqu'un demi-cycle optique plus tard le champ électrique prend la direction opposée, l'électron est ramené vers l'ion parent et peut se recombiner avec celui-ci en émettant un photon, d'une énergie proportionnelle à l'intensité du champ électrique initiateur du processus. Ce phénomène est aujourd'hui utilisé de deux façons distinctes pour étudier les dynamiques atto-seconde. Le rayonnement harmonique émit peut être utilisé pour générer des impulsions lumineuses ultra-brèves, ces dernières étant ensuite utilisées dans des expériences similaires à celle développées ultérieurement pour l'échelle de la femto-seconde. Ce sont des expériences dites "pompe-sonde", dans lesquelles la sonde permet une résolution atto-seconde. La seconde branche de recherche développée utilise les informations contenues dans le rayonnement harmoniques lui-même comme signature du processus physique sous-jacent, ces expériences sont dites "d'auto-sonde", par leur particularité de sonder la dynamique du système entre les instants d'ionisation et de recombinaison.Le succès de ces deux approches a bouleversé la physique moderne en permettant une observation de nombreux phénomènes physiquse sur des échelles de temps jamais atteintes, la première méthode s'illustrant par des observations tels que l'ionisation par e↵et tunnel, la relaxation par émission Auger dans les atomes, l'émission de photoélectrons. La seconde méthode se remarque, quand à sa cohérence, permettant la détermination de l'amplitude mais également de la phase de la fonction d'onde électronique, conduisant dès lors aux premières reconstructions tomographiques d'orbitales moléculaires, jusqu'alors "simple" concept mathématique pour la résolution l'équation de Schrödinger, et conservant une sensibilité aux dynamiques nucléaires. Cette méthode s'impose ainsi comme le candidat idéal pour l'étude des réactions chimiques, dans les quels des modifications importantes de la fonction d'onde électronique et des mouvement nucléaires important sont les acteurs principaux. Le début de ce projet de recherche est ainsi marqué par l'application avec brio de cette méthode pour l'étude de la photodissociation de la molécule Br 2 suivit par celle de NO 2 pour laquelle la séparation indépendante de la masse des isotopes du soufre dans des sédiments datant de l'archéen.Avec la multiplicité de ces domaines de recherche pour lesquels le dioxyde de soufre est un composé majeur, les études théoriques se sont multipliées à partir des années 90 avec l'évaluation des surfaces d'énergies potentielles (PES) en fonction des di↵érents degrés de liberté vibrationnels de la molécule, fournissant une bonne représentation des di↵érents états électroniques impliqué dans le spectre de photo absorption, ce spectre a été calculé pour la première fois en 2011 avec un accord très limité avec l'expérience et une étude de dynamique de paquet d'onde a été e↵ectuée antérieurement sans discuter du spectre de photo absorption, donnant une compréhension sommaire de la photo physique de la molécule.Le choix de cette molécule pour nos recherches a été également encouragé par les expériences récentes de I. Wilkinson, A. Stolow and D. Villeneuve de l'université de Ottawa ainsi que de H.-J. Wörner de l'ETH à Zürich. Ils ont réalisé des expériences de type pompe-sonde pour étudier la dynamique vibrationnelle de la molécule dans les états excités, en utilisant et comparant deux sondes di↵érentes, la première étant la spectroscopie de photoémission résolue en temps, pour laquelle la sonde ionise la molécule après un délai avec la pompe et le taux de photoélectrons est mesuré en fonction du temps. Cette méthode, déjà utilisé dans de nombreux systèmes, est connue pour sa sensibilité concernant le mouvement nucléaire et électronique, et dans le cas de SO 2 révèle une signature de la dynamique nucléaire du paquet d'onde dans les états excités. La deuxième méthode expérimentale utilise la génération d'harmonique, et contrairement au cas de NO 2 , "aucune" information concernant la dynamique nucléaire n'est obtenue. Ce cas particulier montre l'importance des études théoriques pour mieux comprendre la génération d'harmonique dans les molécules excités et les limites de cette méthode.Le but du travail de thèse présenté ici est justement d'établir des éléments de réponses concernant les deux nouvelles méthodes expérimentales utilisées dans le cas de SO 2 et de comprendre la di↵érence entre les résultats obtenus. Pour atteindre cet objectif deux buts sont dégagés, dans un premier temps il faut une description précise de la photo physique de la molécule après une excitation, et comprendre le rôle des di↵érents états électroniques singulets et triplets présent à ces énergies. Le deuxième est de proposer un modèle pour décrire la génération d'harmonique dans le système, pour lequel la dynamique nucléaire doit explicitement être prise en compte.R ÉSUM Éde répulsion électrostatique entre ces derniers. Un second problème de la méthode est l'impossibilité de décrire des états électroniques pour lesquels di↵érentes configurations électroniques sont prépondérantes.Pour remédier à ces limites, l'utilisation de la méthode MCSCF, associée au concept d'espace actif complet (CAS), a été utilisée. Cette méthode repose sur une description de la fonction d'onde électronique comme une combinaison linéaire de di↵érentes configurations électroniques, permettant ainsi de considérer sur le même pieds di↵érentes configuration. De plus la méthode d'interaction de configuration à références multiples (MRCI) est utilisée pour améliorer la description de la corrélation. Les fonctions d'ondes électroniques ainsi obtenues peuvent être utilisées pour calculer le couplage spin-orbite par l'intermédiaire de l'opérateur de
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 532 La spectroscopie, une sonde expérimentale importantePour pouvoir comparer les résultats expérimentaux à nos simulations, il est nécessaire de calculer les observables adéquates. Dans le cas de la spectroscopie de photoémission résolue en temps, l'énergie cinétique des électrons ionisés doit être calculée. Les travaux ultérieures de Domcke et Seel ont été utilisés pour décrire notre système. Le cas de la spectroscopie par émission d'harmoniques fait l'objet d'une étude détaillée qui présente le modèle que nous avons développé pour inclure la dynamique nucléaire. L'accent est également mis sur le calcul des éléments de matrice de transition qui repose sur l'approximation de champ fort, qui considère une description du continuum par des ondes planes, négligeant ainsi le potentiel Coulombien de l'ion moléculaire. Dans cette approximation les éléments de matrice de transition peuvent être calculés viaR ÉSUM É Diabatisation des états couplés par une intersection coniquePour décrire l'excitation électronique de la molécule dans la gamme d'énergie 3.2-5.5 eV, six états électroniques ont été nécessaires, et dans le cadre de nos travaux sur les nouvelles méthodes de spectroscopie trois états ioniques viennent compléter le tableau. Parmi ces di↵érents états, des intersections coniques autorisées par symétrie sont présentes entre les di↵érents états électroniques. La complexité du spectre de photo absorption a été attribuée antérieurement à l'intersection conique entre les états singulets 1 1 B 1 et 1 1 A 2 , la méthode de diabatisation est donc particulièrement détaillée pour ces derniers, avec également la comparaison de deux di↵érentes approximations pour la construction des états diabatiques. Le cas des intersections coniques entre les états triplets 1 3 A 2 /1 3 B 1 et ioniques 1 2 A 1 /1 2 B 2 est similaire à celui des état singulets, mais sont étudié ici pour la première fois. Les di↵érentes surfaces diabatiques ainsi obtenues peuvent ensuite être utilisé pour la propagation de la fonction d'onde nucléaire.

3. 3 4 . 1 1 B 1 et 1 1 A 2 .
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 2 Considération des états tripletsLes di↵érents états triplets ont été par la suite incorporés au modèle pour comprendre leur rôle dans la dynamique liée à l'excitation. Utilisant la séparation en sous-système de l'Hamiltonien total, seuls les états Le modèle a été ensuite utilisé dans le cadre d'une hypothétique dynamique dans l'état électronique fondamental, provoquée par exemple par une excitation Raman. Cette dynamique est ensuite sondée en utilisant une méthode de type pompe-sonde, la sonde étant la génération d'harmoniques. Dans ce cas, la variation simultanée de l'énergie d'ionisation et des éléments de matrice d'ionisation change le profile temporelle de l'intensité des di↵érentes harmoniques émises. Dans ce cas simple, impliquant une dynamique sur un seul état excité, on retrouve une corrélation entre l'évolution temporelle de l'intensité des harmoniques et la dynamique nucléaire. Pour aller plus loin, la dynamique dans les états ioniques a également été considérée, et les interférences entre trajectoires longues et courtes montrent une sensibilité marqué à la phase accumulée par le paquet d'onde lors de son évolution dans les états ioniques, en modifiant le caractère destructif ou constructif des interférences.Le cas plus compliqué de la dynamique dans les états excités a ensuite été étudié. En approximant l'énergie d'ionisation vibronique du système, nous avons reproduit qualitativement les résultats expérimentaux, qui résultent d'une émission similaire des deux états excités 1 1 B 1 et 1 1 A 2 , ne permettant pas l'observation de la dynamique nucléaire. Cependant il semble probable que la variation de la population des états 1 3 B 2 est observée par une augmentation de l'intensité harmonique grâce à un dipôle de transition plus grand et cela malgré un potentiel d'ionisation plus important.6 Conclusion et perspectivesConcernant la molécule de dioxyde de soufre, nous avons dessiné au cours de ces trois années de recherche une nouvelle compréhension de la photo physique de la molécule. Avec les nouveaux mécanismes que nous avons établi pour son excitation il est légitime de s'interroger sur leur rôle concernant dans séparation indépendante de la masse des isotopes du soufre car aucun travail n'a considéré l'état 1 3 B 2 . De plus, nous nous sommes restreints aux niveaux électroniques de plus faibles énergies, mais nous avons cependant commencé l'étude des deux états électroniques d'énergie supérieure, impliqués dans la deuxième bande du spectre de photo absorption. Ces états permettent la photodissociation de la molécule et n'ont jamais été étudiés par des méthodes de dynamique quantique qui pourrait mettre en évidence le rôle des couplages entre ces deux états. Concernant le modèle développé pour la description de la génération d'harmoniques lors d'une dynamique, ce dernier devrait être testé dans le cadre d'un système simple, comme par exemple le dihydrogène, pour R ÉSUM É permettre une comparaison avec des résultats numériques "exacts" et ainsi fournir des informations cruciales sur la qualité des di↵érentes approximations. Les calculs des éléments de matrice de transition ont été fait avec MOLPRO, qui cependant ne permet un accès que partiel à la fonction d'onde électronique au niveau MRCI car il e↵ectue une troncation arbitraire des vecteurs CI, dans la version utilisée ici. Une implémentation de la méthode dans un logiciel "libre" comme GAMESS-US pourrait être particulièrement avantageux pour l'étude d'autres systèmes.
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			1: Memory requirement for the storage of the wavefunction	
	f	1	2	3	4	5	6	7
	Memory 100 octet 4.88 ko 244.14 ko 11.92 Mo 596.05 Mo 29.10 Go 1.42 To

  Fock operator and then is Hermitian, and can be diagonalised by the use of an unitary transformation. The new basis of orbital { 0 a } in which the Fock operator is diagonal are known as the canonical orbitals and the Hartree-Fock equation expressed in this basis reads,

  Performing a geometry optimization in C 2v and C s symmetry, we found equal SO bond lengths of 1.447 Å for the equilibrium geometry of the ground state in the C 2v symmetry. The comparison with the optimization in C s symmetry confirmed the C 2v geometry of the GS with a bond length di↵erence (Q u ) found to be smaller than 1.2 ⇥ 10 4 Å, which lies within the expected accuracy of the method. The Ô SO valence angle , is opti-mized in C 2v to119.05 , 0.02 larger than in C s . Concerning the absolute energy both optimizations agreed up to the fourth decimal to give 547.9022 Hartree. This absolute energy is only interesting concerning the variational principle, but is not comparable with experiments in which relative energies are observed. In the same way, we performed geometry optimizations for the two lowest singlet excited states in C 2v symmetry, while in C s symmetry, because of the conical intersection, the optimization did not converge. The point of minimum energy of the 1 1 B 1 state is obtained for equal bond length of 1.544 Å and a bending angle of 118.83 . Concerning the equilibrium geometry of the 1 1 A 2 state, a similar bond length is obtained, 1.554 Å but with a much smaller bending angle = 94.64 . The absolute energy of both state minimum are 547.7606 and 547.7798 Hartree for the 1 1 B 1 and 1 1 A 2 state, respectively.

1 1 A 1 and singlet excited states 1 1 B 1 and

1 1 A 2

  Then Mai et al.[START_REF] Mai | Non-adiabatic and intersystem crossing dynamics in SO 2 . II. the role of triplet states in the bound state dynamics studied by surface-hopping simulations[END_REF] used a smaller CAS[START_REF] Itatani | Tomographic imaging of molecular orbitals[END_REF][START_REF] Boutu | Coherent control of attosecond emission from aligned molecules[END_REF] with a ano-rcc-vdzp primitive basis and Wilkinson et al.[START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF] used a CAS[START_REF] Itatani | Tomographic imaging of molecular orbitals[END_REF][START_REF] Boutu | Coherent control of attosecond emission from aligned molecules[END_REF] with modified aug-cc-pVTZ and MCQDPT2 approach for dynamical correlation. Our MRCI optimizations give consistent results regarding experimental data and former computations. We notice that the CCSD optimization ( = 118.7 and R s = 1.436 Å) gives results for R s close to those of Li et al. which are smaller than our MRCI results. One can notice that only the work of Mai et al. gives an error of 1 in the angle estimation, probably due to the small size of the CAS space. For excited states there is no experimental data available. We see that the CASSCF-MRPT2 results of Li et al.and our CCSD give a larger value for in the 1 1 B 1 than in the 1 1 A 1 state. This is the opposite for all other works at the MRCI level of approximation, which obtained a larger angle in the 1 1 A 1 than in the 1 1 B 1 state.

Table 3 .

 3 1: Geometries of the minima of the 1 1 A 1 ground state and the 1 1 A 2 and 1 1 B 1 excited states of SO 2 in C 2v symmetry. The results of the present work are compared with literature data. (R s in Å and in degree).

	State	Coord.	MRCI a	CCSD a	Li b	Xie c	Mai d	Wilkinson e Expt f
	1 1 A 1	R s	1.448 119.1	1.436 118.7	1.437 119	1.454 119.2	1.453 120.5	1.439 119.4	1.432 119.5
	1 1 B 1	R s	1.544 118.8	1.515 120.7	1.527 120	1.550 118.7	1.549 117.8	1.559 116.9	--
	1 1 A 2	R s	1.554 94.7	1.527 93.4	1.537 93	1.558 93.6	1.556 95.3	1.554 97	1.53 99

Table 3 .

 3 2: Computed vertical (vert., i.e., for the ground state equilibrium geometry) and adiabatic (adiab.) excitation energies (in eV) for SO 2 . From Ref.[START_REF] Li | Potential energy surfaces for low-lying electronic states of SO 2[END_REF] c From Ref.[START_REF] Xie | Ab initio determination of potential energy surfaces for the first two UV absorption bands of SO 2[END_REF] d From Ref.[START_REF] Mai | Non-adiabatic and intersystem crossing dynamics in SO 2 . II. the role of triplet states in the bound state dynamics studied by surface-hopping simulations[END_REF] e From Ref.[START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF] f From Ref.[START_REF] Hamada | Rotational structure at the long wavelength end of the 2900 å system of SO 2[END_REF][START_REF] Hamada | Rotational structure in the absorption spectrum of SO 2 between 3000 å and 3300 å[END_REF] Concerning the vertical excitation energy of the 1 1 B 1 state, all the results predict a similar energy with the largest di↵erence, 0.27 eV, between the works of Xie et al. and Mai et al. Our MRCI and CCSD calculations are consistent with an energy di↵erence of 0.16 eV. The results of Xie et al. are slightly lower than our MRCI ones, probably due to the larger primitive grid used. Finally, the ones of Mai et al. are 0.23 eV above our MRCI results, probably due to the smaller CAS used. The Adiabatic excitation energies, in relation to the vertical ones, are a useful piece of information to compare the PES used in the di↵erent works, because it reveals the topology of the two important points, i.e. the Franck-Condon point and the minimum of the PES. We can see that the energy di↵erence between the vertical and the adiabatic excitations in our MRCI calculations and the one of Xie et al. di↵er from 0.01 eV, which seems to indicate a close topology of the PES with a global shift for the 1 1 B 1 state. CCSD and MRCI results are also similar within 0.03 eV.

	State	Exc.	MRCI a	CCSD a	Li b	Xie c	Mai d	Wilkinson e Expt f
	1 1 B 1	Vert. Adia.	4.23 3.78	4.39 4.03	-4.10	4.19 3.750	4.46 -	-3.1	3.46 -
	1 1 A 2	Vert. Adia.	4.61 3.32	4.84 3.62	-3.58	4.61 3.263	4.85 -	-3.5	3.95 -

a From Ref. [132] b We can note the low adiabatic energy obtained by Wilkinson et al. (3.1 eV) and the large one of Li et al.

Table 3 .

 3 3: Geometries of the minima of the 1 3 B 1 , 1 3 A 2 and 1 3 B 2 electronic states in C 2v symmetry. Results of the present work are compared with literature data. (R s in Å and in degree)

	State	Coord.	MRCI a	CCSD a	Li b	Xie c	Mai d	Wilkinson e Expt f
	1 3 B 1	R s	1.517 126.1	1.491 125.6	1.484 129	1.517 125.0	1.517 125.7	1.522 124.5	1.493 126.2
	1 3 A 2	R s	1.554 94.0	1.528 93.5	1.538 94	1.547 92.1	1.556 95.0	1.553 96.9	--
	1 3 B 2	R s	1.576 105.4	1.558 106.2	1.561 106	--	1.576 106.6	1.572 106.9	--

a From Ref.

[START_REF] Lévêque | Ab initio quantum study of the photodynamics and absorption spectrum for the coupled 1 1 A 2 and 1 1 B 1 states of SO 2[END_REF] 

b From Ref.

[START_REF] Li | Potential energy surfaces for low-lying electronic states of SO 2[END_REF] 

c From Ref.

[START_REF] Xie | Ab initio determination of potential energy surfaces for the first two UV absorption bands of SO 2[END_REF] 

d From Ref.

[START_REF] Mai | Non-adiabatic and intersystem crossing dynamics in SO 2 . II. the role of triplet states in the bound state dynamics studied by surface-hopping simulations[END_REF] 

e From Ref.

[START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF] 

f From Ref.

[START_REF] Brand | The 3 B 1 -1 A 1 3880 å band system of sulfur dioxide: Rotational analysis of the 0-0 band[END_REF] 

Table 3 .

 3 Note that all the theoretical results are in good agreement, and describe accurately the experimental results for the 13 B 1 , see Tab. 3.3.The vertical and adiabatic excitation energies are also reported in Tab. 3.4 using the energy minimum of the GS as reference. Our MRCI and CCSD results and Xie's calculations agree for the state ordering with respect to the vertical energy. The 1 3 B 1 sate has the lowest energy, followed by the 1 3 B 2 state, lying ⇠ 0.88 eV above. On the top the 1 3 A 2 state lies ⇠ 1 eV above the 1 3 B 1 state. A very good agreement is obtained between the MRCI and CCSD results for the 1 3 B 1 and 1 3 B 2 states. These methods provide slightly di↵erent energies (0.2 eV) for the 1 3 A 2 state. Concerning the adiabatic energies, more information are available in the literature and gave the possibility to compare the results of the 1 3 B 2 state, not considered in the work of Xie et al. Concerning the 1 3 B 1 and 1 3 A 2 states, their relative energy minimum are slightly di↵erent depending on the methods. While in our MRCI results the 1 3 A 2 minimum is 0.02 eV above the 1 3 B 1 state, Xie et al. obtained the opposite with a di↵erence of 0.007 eV between these states. The CCSD calculations provide the same ordering than the one obtained in our MRCI calculations, but with a di↵erence of 0.11 eV. This di↵erence of energy is similar to the one obtained by Li et al.. Wilkinson et al. found an energy di↵erence even larger for these states with 0.2 eV. The work of Mai et al. is the only one which obtained the 1 3 A 2 state 0.11 eV above the 1 3 B 1 state. According to the experimental data available, our results are in close agreement concerning the energy di↵erence and ordering.

	State	Exc.	MRCI a	CCSD a	Li b	Xie c	Mai d	Wilkinson e Expt f
	1 3 B 1	Vert. Adia.	3.34 3.07	3.39 3.14	-3.20	3.33 3.057	-3.41	-3.0	-3.19
	1 3 A 2	Vert. Adia.	4.30 3.09	4.50 3.25	-3.29	4.37 3.050	-3.32	-3.2	-3.22
	1 3 B 2	Vert. Adia.	4.18 3.22	4.27 3.53	-3.41	--	-3.54	-3.5	--

3 

B 1 state and R s = 1.554 Å and = 94 for the 1 3 A 2 state. While the geometry of the latter is almost identical to the one for the 1 1 A 2 state, a larger di↵erence is obtained for the 1 3 B 1 state and its homologue. The banding angle is (⇠ 5 ) larger and bond length (⇠ 0.3 Å) smaller for the triplet state. 4: Computed vertical (vert., i.e., for the ground state equilibrium geometry) and adiabatic (adiab.) excitation energies (in eV) for the triplet states of SO 2 .

a From Ref.

[START_REF] Lévêque | Ab initio quantum study of the photodynamics and absorption spectrum for the coupled 1 1 A 2 and 1 1 B 1 states of SO 2[END_REF] 

b From Ref.

[START_REF] Li | Potential energy surfaces for low-lying electronic states of SO 2[END_REF] 

c From Ref.

[START_REF] Xie | Ab initio determination of potential energy surfaces for the first two UV absorption bands of SO 2[END_REF] 

d From Ref.

[START_REF] Mai | Non-adiabatic and intersystem crossing dynamics in SO 2 . II. the role of triplet states in the bound state dynamics studied by surface-hopping simulations[END_REF] 

e From Ref.

[START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF] 

f From Ref.

[START_REF] Brand | The 3 B 1 -1 A 1 3880 å band system of sulfur dioxide: Rotational analysis of the 0-0 band[END_REF][START_REF] Heicklen | The photophysics and photochemistry of SO 2[END_REF] 

Table 3 .

 3 5: Equilibrium geometries of the ionic states of SO 2 , namely 1 2 A 1 , 1 2 B 2 and 1 2 A 2 in C 2v symmetry. Results of the present work are compared with literature data. (R s in Å and in degree) From Ref.[START_REF] Lévêque | Excited state dynamics in SO 2 . III. an ab initio quantum study of single-and multi-photon ionization[END_REF] b From Ref.[START_REF] Zhang | Ab initio calculations and spectral simulation of the photoionization process[END_REF] c From Ref.[START_REF] Chang | Theoretical calculations of C 2v excited states of SO + 2[END_REF] d From Ref.[START_REF] Li | The 1 2 A 1 ,1 2 B 2 , and 1 2 A 2 states of the SO + 2 ion studied using multiconfiguration second-order perturbation theory[END_REF] e From Ref.[START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF] Figure3.6: One-dimensional cut of the ionic PES in C2v symmetry. Panel (a), representation of the electronic states as a function of the symmetric stretching (RS). In dotted black, the ionic ground state 1 2 A1, in full red the 1 2 B2 state and in dashed green the 1 2 A2 state. Panel (b) the same colour code is used to represent the PES as a function of the bending angle .The vertical and adiabatic ionisation energies of the di↵erent states have been reported in Tab. 3.6 in addition to the experimental work of Wang et al.[START_REF] Wang | Molecular beam photoelectron spectroscopy of SO 2 : Geometry, spectroscopy, and dynamics of SO + 2[END_REF]. Our results are slightly lower (⇠ 0.2 eV) than Palmer's ones[START_REF] Palmer | The electronically excited and ionic states of sulphur dioxide: an ab initio molecular orbital CI study and comparison with spectral data[END_REF] for the two first excited states and ⇠ 0.15 eV for the ionic GS. these di↵erences are similar with the work of Zhang et al. with 0.22 eV for the GS and 1 2 A 2 state and 0.27 eV for the 1 2 B 2 state. Our results are fully consistent with a global shift of ⇠ 0.2 eV which can results from the CAS space Table3.6: Computed vertical (vert., i.e., for the ground state equilibrium geometry) and adiabatic (adiab.) excitation energies (in eV) for the ionic states of SO 2 . From Ref.[START_REF] Lévêque | Excited state dynamics in SO 2 . III. an ab initio quantum study of single-and multi-photon ionization[END_REF] b From Ref.[START_REF] Zhang | Ab initio calculations and spectral simulation of the photoionization process[END_REF] c From Ref.[START_REF] Palmer | The electronically excited and ionic states of sulphur dioxide: an ab initio molecular orbital CI study and comparison with spectral data[END_REF] d From Ref.[START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF] e From Ref.[START_REF] Wang | Molecular beam photoelectron spectroscopy of SO 2 : Geometry, spectroscopy, and dynamics of SO + 2[END_REF] 

	State	Coord.	MRCI a	CCSD a Zhang b	Chang c	Li d	Wilkinson e
	1 2 A 1	R s	1.449 131	1.430 130.7	1.444 132.6	--	1.439 132	1.446 128.3
	1 2 B 2	R s	1.497 99.7	1.472 99.5	--	1.494 99.2	1.491 99.9	1.486 100.9
	1 2 A 2	R s	1.511 108.7	1.488 108.5	--	1.51 108.5	1.504 109.3	1.501 109.7

a Note that we did not optimise the stationary points of the PES but extracted them from the interpolation performed after the computation of the 3D PES. In general, there is a very good agreement between all values (few pm in bond length or degrees in Ô SO angle), indicating that the various methods employed, e.g. MRCI (our work), CASPT2 (Li et al. [141]), CCSD(T) with either 6-311+G (2d,p) primitive basis set (Zhang et al. [139]) or aug-cc-pVTZ primitive basis (Chang et al. [140]) and CASSCF with MCQDPT2 from Wilkinson et al. [71] are all consistent. a chosen to be identical than the one of neutral states, and not especially optimized for the ionic states. For calculation of the ionic states, Wilkinson et al. used a di↵erent CAS (11,10) than for the neutral states by adding a new active virtual orbital. While they obtained close results than Li et al. and Palmer for the ionic ground state and 1 2 A 2 excited state, it seems that they obtained an "over stabilization" of the 1 2 B 2 state,

  sin 2 (⇡t/T p ) for 0  t  T p (5.2) 154CHAPTER 5. STRONG FIELD SPECTROSCOPY: FOLLOWING TIME-DEPENDENT DYNAMICS with ! p the laser frequency, E 0p its amplitude and T p the total pulse duration. We choose the same values as in the experiments carried out, namely ! p 2 [4.03, 4.12, 4.28] eV , T p = 100 fs and the pump intensity I 0p = 10 12 W/cm 2 . The transition dipole moments µ GS1 and µ GS2 are expressed as

Table 5 .

 5 1: Fit parameters. The energies of the pump and probe are indicated in eV.

	Pump|Probe	⌦	Period (fs)	⌧ d (fs)		a	b	c
	4.12|3.12	0.0426	147.6	173.5	-0.398	0.115	-0.0594	0.457
	4.12|3.09	0.0416	151.1	215.1	-0.213	0.107	-0.0310	0.367
	4.03|3.12	0.0423	148.6	847.5	-0.203	0.066	-0.0052	0.091
	4.28|3.12	0.0484	129.7	70.7	-1.475	0.136	-0.0497	1.836

  Until 300 fs the rate of the harmonics provides the possibility to follow the variation of the mean value of Ip during the wp propagation. But for longer time, the wp spreads over the PES the rate evolution does not follow the one of the Ip. For instance, at t = 341 fs a local minimum in the harmonic rate occurs at the minimum value of Ip (see Figs.5.13 and 5.14). Analysing the wavepacket dynamics over the first 250 fs reveals that the
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⇧ u state at linearity ( = 180 ), crosses the 1 3 B 2 state. While in C 2v this crossing is allowed by symmetry, in C s a symmetry-allowed conical intersection takes place between them. This changes abruptly the electronic

A1/ 2 B2 states (right panel). In addition the two PES are represented in the C2v symmetry as lines of iso-energy with a step of 0.5 eV. For the triplet states the green and dashed blue line represent the

B1 and 3 A2 states, respectively. Concerning the ionic states, the red line is for the 2 A1 state and the dashed blue for 2 B2 state.
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et l'intensité des méthodes utilisées à cette période, le spectre de photoabsorption permet l'observation de la première bande "permise", dénotée ainsi par la suite, mais la complexité de la structure de cette bande, ouvre un grand débat quand à son attribution vibrationnelle et électronique, qui ne sera pas résolue. Trente ans plus tard, cette molécule connaît un regain d'intérêt pour son implication dans la pollution atmosphérique, provoquant des pluies acides, des di cultés respiratoires ainsi que des dégâts sur les plantes et les matériaux et le rôle de la réactivité des états excités est mis à jour. La présence de la molécule dans l'air est ainsi mise sous haute surveillance, et un e↵ort considérable pour comprendre la photochimie (réaction chimique activée par l'absorption de photons) de SO 2 dans l'atmosphère est déployé, étudiant sa réactivité en présence de dioxygène, de monoxyde de carbone, d'hydrocarbures par exemple. Les questions non-résolues des années trente sont remises au goût du jour, avec l'utilisation de nouvelles méthodes de spectroscopie permettant ainsi à Douglas, par l'intermédiaire de l'e↵et Zeeman, d'observer la bande dite "interdite" à basse énergie, et de l'attribuer à un état électronique triplet de spin. La symétrie B1 de ce dernier est ensuite déterminée par Merer, grâce à l'analyse rotationnelle du spectre. Les premières études théoriques concernant cette molécule voient également le jour, avec en 1971 la publication des travaux de Hillier et Saunders, déterminant les di↵érents états électroniques d'énergies similaires au spectre expérimental. Ils permettent l'attribution de la première bande "permise" à un état électronique singulet de spin et de symétrie A 2 . Ces résultats, loin de simplifier la compréhension de la molécule exacerbe sa complexité, car une transition entre l'état fondamental et cet état électronique est, en principe, interdite, et ne peut opérer que par l'intermédiaire d'un couplage vibronique fort avec l'état singulet de spin de symétrie B1 prédit théoriquement. Ce bref résumé de l'histoire de la spectroscopie du dioxyde de soufre montre une richesse et une complexité rare et mouvementée pendant plus de 60 ans, avant l'attribution des états électroniques impliqués dans le spectre de photoabsorption. Ceci fut accompagné de nombreux ouvrages de revue regroupant et classifiant les dernières avancées et les questions encore irrésolues à cette époque. Depuis les années 80, la molécule continue d'intéresser les scientifiques de nombreux domaines, notamment avec la découverte de sa présence dans les milieux interstellaires en 1975, et sa détection dans l'atmosphère de Vénus, Mars et le satellite de Jupiter Io ainsi que dans les comètes, devenant ainsi une molécule d'intérêt pour l'astrophysique. Son importance ne se limite pas aux confins de l'univers, mais intéresse également les géologues pour la prédiction et l'impact environnemental des éruptions volcaniques et les climato paléontologues depuis la découverte de

CHAPTER 3. ELECTRONIC STRUCTURE RESULTS

This polynomial fitting function gives very accurate fit of the o↵-diagonal potential but no extrapolation can be done. As we showed in the previous section, far away from the seam of conical intersections the diabatic states converge to the adiabatic ones due to the lack of interaction. Then outside our ab-initio grid, the fitted potential W f it 12 is set to zero. This is required because the polynomial fit often diverges outside the fitted region and would give anomalous strong couplings in region for which it is almost negligible. The fit of the electronic ground state PES is presented in Fig. 3.13 as a function of the symmetric coordinate for two di↵erent values of Q u set to 0 and 0.15 Å. As a contour plot, we also represent the di↵erence (in eV) between the interpolated and the fitted PES. The geometries nearby the equilibrium geometry are the most important part of this state for us, because it is only used to obtain its lowest vibrational nuclear wavefunction. and Qu = 0.15 Å (right panel). The contour plot on the bottom represents the error in eV between the interpolation and the fit. The lightest blue shading is for error below 0.01 eV and the error increases by 0.01 eV for each darker blue zones. The red contour line is an iso-line for energy at 6 eV, which is slightly higher than the Franck-Condon energy and the upper boundary of the photo absorption spectrum under interest (< 5.5 eV). The error does not exceed 0.05 eV, except for large angle but remains below 0.1 eV. The black line on the PES indicates the junction between the two fits (see text) for small and large Rs.

For this region, an accuracy below 0.01 eV is obtained for the fitted PES and this for the total range of Q u . In general, the largest part of the PES remains below an error of 0.05 eV. The accuracy becomes worst for the grid boundary of where the maximum of error is 0.1 eV, but this part of the PES is not used in the dynamics. The fit of the excited potential is not that straightforward because we expect a dynamic of the wavepacket, which will explore a larger set of geometry than in the case of the GS. Then the accuracy molecule and to be as accurate as possible, we computed the SOC elements for ⇠ 2000 di↵erent geometries.

The full potential matrix of our system reads then,

have been performed, with either the coupling 1 1 B 1 /1 3 A 2 or 1 1 A 2 /1 3 B 1 (solid lines). The comparison with the previous results shows that the SOC between the singlet and triplet states of the same spatial symmetry do not play a significant role. Indeed, in the C 2v symmetry, only the SOC between the 1 1 B 1 /1 3 A 2 and 1 1 A 2 /1 3 B 1 states are not vanishing. The coupling between the 1 1 B 1 /1 3 B 1 and 1 From these simulations the three-step transfer, similar to the ones of the full system are observable when the sum of the di↵erent channels is considered (blue line). In addition the wp motion in the singlet states of the full Hamiltonian give the physical interpretation as a function of the ISC and CI in the system (Fig. 4.15). The population in orange line results from considering all electronic states and switching o↵ the SOC between all the triplet states, while in dashed-doted grey the triplet states of spatial B2 symmetry are not considered.

In dashed purple the result o↵ the full calculation is added for comparison. (right panel) Results from state-by-state coupling, with in green line for including only the 1 1 A2/1 3 B1( ) coupling, while in dotted green the couplings between both singlet states and the 1 3 B1( ) are considered. In orange line (dotted) similar results from the consideration of the coupling between 1 1 B1 (singlet states) and 1 3 A2( ) states. Then the blue line (dotted) is the sum of the obtained population of the two previous simulations.

The first step is attributed to the principal contribution of a 1 1 B 1 ! 1 3 A 2 transfer, when the nuclear wp, launched on the 1 B 1 state, is in the direct vicinity of the intersection with the 1 3 A 2 state (ISC3) and follows this intersection over the first ⇠ 15 fs of the dynamics. A small contribution of a 1 1 A 2 ! 1 3 B 1 transfer takes place after ⇠ 10 fs with a rather short duration ⇠ 5 fs. The weakness of the transfer is not due to the low population of the 1 1 A 2 state, already 50% of the total wp transferred through (IC1), but results from the fast motion of the wp in vicinity of ISC5, and the asymmetric elongation (see Fig. 4.17 where the same wp is plotted in di↵erent coordinates). This shifts the seam of ISC5 (see Fig. 4.15) making the transfer less spacing of ⇠ 500 cm 1 . This part of the spectrum has been already studied in Ref. [START_REF] Chang | Theoretical calculations of C 2v excited states of SO + 2[END_REF] and results from the excitation of the bending mode of two di↵erent series of the symmetric stretching mode. This assignment is consistent with the equilibrium geometry of the 1 1 A 1 and 1 2 A 2 PES (see Tabs. 3.1 and 3.5). The di↵erence between the bending angles is ⇠ 11 and the di↵erence between the bond length is ⇠ 0.06 Å.

We now turn to the last band ( Ã) of the spectrum taking place between the X and B bands. This part of the photoelectron spectrum has never been discussed before. It emanates from the ionisation to the 1 A fast and e cient transfer of the adiabatic population (red line) is observed between the UAS and the Lower Adiabatic State (LAS). During the first 10 fs, 50% of the total wp is carried over the LAS and the population of the latter reaches 95% after ⇠25 fs. After this fast transfer, the wavepacket remains principally located on the LAS until the end of our propagation. This second part of the dynamics is reminiscent to the one obtained in Sec. 4.2.1 for the dynamics in the singlet excited states.

The diabatic population in the 1 2 A 1 state (dashed green line) presents a totally di↵erent variation. For the first 60 fs, its population first increases to reach ⇠ 35 % until 20 fs and then decreases below 20% until 60 fs. This behaviour was not observed in the case of the singlet states dynamics. The adiabatic PES of the two lowest ionic states are similar to the ones of the singlet states (see Fig. 4.3 and 4.3). The UAS exhibits a minimum for geometries of C 2v symmetry with respect to the Q u coordinate, while the LAS has a double minima. When the wp reaches the seam of CI, it is most likely in the UAS with a predominant C 2v symmetry, for which the non-adiabatic coupling is nil. Thus only a small transfer occurs to the 1 2 A 1 , because of the small spatial extension of the wp along the asymmetric coordinate. For the first fs of the dynamics, the wp shows that the R s coordinate is increased. Then it starts to explore small bending angle towards the minimum energy of the 1 2 B 2 state ( ⇠ 100 ). For small angles the PES surface of the 1 2 A 1 state is higher in energy than the 1 2 B 2 state (see Fig. into our model to describe this "long" time dynamics . We decided to include only the A" block of the full Hamiltonian. It is the one that leads the intersystem crossing of the molecule and we neglect the mixing of the GS wavefunction. The Hamiltonian, which describes the full system with the triplet states, includes 10 electronic states. It can be simplified, as previously, as a 7-state problem for the probe, reading

simulations, we make the following assumptions: (i) we do not consider the direct 3-photon ionisation but only resonant ionisation, (ii) only the G Rydberg state is taken into account. The former approximation is similar to the one we previously used and we showed that it reproduces the main feature of the TRPES.

The second one is more drastic because it has been experimentally shown that a triplet Rydberg state of B 1 symmetry occurs at similar energy range than the singlet G state. This approximation does not result from the fact that including a new intermediate state would be numerically too demanding but because new unknown quantities for the 2-photon absorption and the one photon ionisation matrix elements should be guest. Then depending of their values the role of this mechanism can drastically change and we prefer to assume that it does not play a direct role in the photoelectron rate. With these assumptions, the following Hamiltonian can describe the interaction with the probe,

cancel out the high intensity maxima observed before. Nonetheless, the signal (not shown) presents the characteristic periodicity of ⇠ 65 fs, but the low intensity maxima, discussed before, are now the more intense.

Thus, separation of the di↵erent trajectory greatly simplified the interpretation of the spectra.

The model can be extended in order to take into account the dynamics occurring in the ionic states. It has been shown that HHG spectroscopy is particularly sensitive to the nuclear motion during the time spent by the electron in the continuum. One famous example of this phenomena is the di↵erent yields obtained by considering the H 2 and D 2 molecules, which leads to a sub-femtosecond resolution of the nuclear dynamics in the ionic states. In the case of SO 2 , the atoms are much heavier and this e↵ect would be negligible on a time scale of few femtosecond. But as we consider a wp dynamic in the electronic GS, di↵erent parts of the ionic PES are probed. Because the two lowest ionic states are coupled through a conical intersection (see

2) a fast dynamics is expected to occur. Because our initial state is time-dependent, we adopted the following strategy. For each time step (1 fs) of the dynamics in the electronic GS the wavepacket is launched on the diabatic ionic 1 2 A 1 state, without any correlation with the outgoing electron. Then the wavepacket is propagated on the coupled ionic states for 3 fs, with a time step of 0.1 fs. This limit has been chosen because all the electrons are coming back to the molecular ion over the first optical cycle of the laser, i.e. 2.6 fs. Then each trajectory is weighted by the overlap between the GS vibrational wavepacket and the ionic one after the excursions time ⌧ , i.e.

⇤ GS (t, R) Ion (⌧, R).

(5.10)

Considering only the first 200fs of the dynamic, for every time-step of the propagation in the GS, the wp is used as an initial condition for subsequent dynamics in the coupled ionic states. Then the autocorrelation function is computed during the dynamic in the ionic states and is depicted in Fig. 5.16. Even for short time dynamics (3 fs), a large population transfer between the 1 2 A 1 and 1 2 B 2 state can take place. But the HHG is sensitive to the autocorrelation function. The autocorrelation can decays for two reasons: (i) the wp is transferred from the 1 2 A 1 state to the 1 2 B 2 state or (ii) wp stays in the 1 2 A 1 state but moves far from the FC area. The first case give a direct information concerning the non-adiabatic dynamics of the wp and the second one informs us on the gradient of the PES. Comparing the population transfer between the ionic states and the autocorrelation function (see Fig. 5.16), we can see that a mapping between large population transfer fs. This behaviour is similar to the one observed experimentally (Fig. 5.18), but somehow smoother and at longer time delays.

To understand why the di↵erent definitions of the Ip in the model 1 and 2 considerably a↵ect the results, we performed a state-by-state analysis of the HHG emission. In the following, we will only discuss the results obtained for the long trajectory of the 15th harmonic, because its emission rate is similar to the experimental one for the model 2. To clarify why with the model 1 the dynamics in the singlet states is observed and not in the model 2 we compute the emission rate of the 1 1 A 2 and 1 1 B 1 , displayed in Fig. 5.23, and the coherent sum of the emission. The two models give very similar results. The variation of the time-dependent emission rate matches the evolution of the population of the electronic states. For each electronic state, the maximum of the emission is obtained when the population in the state is maximum. But the di↵erence occurs when the coherent emission of the two states is considered. Model 1 exhibits constructive interferences for each maximum of the 1 1 A 2 emission rate and destructive interferences for each maximum of the 1 1 B 1 one. Thus, this interference pattern strongly enhanced the contrast of the dynamics in the singlet states. But model 2 presents a constructive interference pattern for all the pump-probe delays, which leads to a high oscillation of the total rate and the dynamics of the wp in the singlet states is not observed anymore. These results show an interesting point concerning the role of the di↵erent definitions of the ionisation potential. The definition of Ip does not influence the time-evolution of the total emission rate because of the exponential decay for the tunnel ionisation, but rather strongly a↵ects the relative phase of the emitted harmonics by the di↵erent electronic states.

The fact that di↵erent Ip induced a di↵erent phase is already known, but we did not suspect that the time-evolution of total emission rate is actually drastically a↵ected by it. Thus to obtain a quantitative description of the HHG in time-dependent molecular systems, we have to define correctly the ionisation potential during the dynamics, which is a real challenge because the vibronic eigenstates are often unknown in these systems. Moreover, in many case the comparison of the di↵erent HHG channels for a single geometries, as performed for instance in instance in [START_REF] Li | Time-resolved dynamics in N 2 O 4 probed using high harmonic generation[END_REF], without considering the vibrational energy can lead to an inaccurate description. Unfortunately, because of a lack of time, we did not manage such kind of study, which seems not adequate on such large system but would be interesting for smaller ones. 

a fast decay in the total emission rate with a global minimum around 550 fs. Then the population in the 1 3 B 2 states is higher than the one in the singlet state and leads the evolution of the total signal, which increases between 600 fs and 1 ps.

The role of each triplet B 2 state is displayed in Fig. 5.25 c and shows constructive interferences between their respective emission, because the two states share the same Ip and the same transition matrix elements.

The predominance of the emission from the triplet B 2 states is due to the slightly larger transition dipole matrix element, which compensates the larger Ip. The total emission rate does not increase in model 1 and to elucidate why, the emission from the 1 3 B 2 states is reported in Fig. 5.25 d. The emission from each state presents more oscillations with respect to the time delay but their emission remains constructive. So the constant value of Ip, assumed in model 2, is not responsible for their phase relation. But the di↵erence between the vibronic (model 2) and the "electronic" (model 1) Ip is large enough to reduce the emission rate by a factor ⇠ 10. Even if destructive interferences between the singlet states and 1 3 B 2 states are also present, in model 1 the emission of the latter is too weak to be clearly observed in the full signal.

From our di↵erent simulations, it seems safe to assigned the time evolution of the experimental signal, observed for time delays larger than 400 fs, to the contribution of both 1 3 B 2 states. Moreover the vibronic energy of the nuclear wavepacket plays a primordial role to understand the experimental results. Nevertheless, the intersystem crossing in the experiment seems not correctly reproduce in our simulation. These di↵erences could come from our simplified introduction of the vibronic Ip, which could change the interferences and the di↵erent emission yields. But actually also physical processes can be involved. We saw in the case of the TRPES that weaker laser intensity was already leads to multiphoton absorption, for either the pump or the probe [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF]. Such process could as well occur here, even with a 800 nm laser is used. Moreover, M. Lein et al.

[175], recently established that the intersystem conversion can be controlled using strong laser field. Thus, this process could occur as well. It lies on the Stark shift e↵ect, which induces a shift of the di↵erent PES and as we discussed before (see Sec. 4.3.1-4) the topology of the crossing seam between the singlet and triplet states plays primordial role.

To conclude the comparison with the experimental work, we also stress that we did not include explicitly 

Figure 5.25: First order di↵racted signal Eq. (5.12) for the 15th harmonic and comparison of the partial emission of the di↵erent states for the vibronic definition of Ip. (a) The full simulation (green), the emission of all the electronic states is considered with signal resulting from the consideration of the singlet states (1 1 A2 and 1 1 B1) only (dashed purple). (b) Partial emission from the 1 3 B2(0) and 1 3 B2(+) in dotted green, and for the 1 3 A2( ) and 1 3 B2( ) in solid red line. The coherent sum of these signals is displayed in dashed orange and destructively interfere. (c) Partial signal from the consideration of the 1 3 B2(+) (1 3 B2(+)) in solid green (dashed blue) line, and their coherent sum in dotted brown. (d) Same as (c) but for the geometry dependent Ip, which leads to weaker emission yields.

the probe pulse, but only consider the harmonic generation from one laser cycle. Experimentally the duration of the probe pulse is 120 fs and the dynamics will be averaged over its duration. To finish with the possible mechanisms responsible for the discrepancy with the experiment, the role of the dynamics in the ionics states as been discard in our simulations and can a↵ect the results (see Sec. ).

One advantage of the model, which is not presented here, is the possibility to study the di↵erent processes thanks to the wavepacket dynamics. For instance the Stark shift e↵ect [START_REF] Sala | Laser control of the radiationless decay in pyrazine using the dynamic Stark e↵ect[END_REF] and the multiphoton excitation
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have been already formulated in the case of nuclear dynamics and the resulting dynamics can be easily used in our model.

Our three states model turns into a complex 12 coupled-states system, cleverly reduced into two subsystems.

A careful analysis of the di↵erent couplings gave us insight into the di↵erent mechanisms leading to the intersystem crossing. The two main points, which have been pointed out, are the preponderant role of the 1 3 B 2 state, confirmed experimentally by I. Wilkinson [START_REF] Wilkinson | Excited state dynamics in SO 2 . I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy[END_REF], and the possibility of quantum interferences during the process. While the first point is specific to SO 2 , the second is general, and shows how these interferences lead the yield of the di↵erent populations, making their consideration mandatory to a quantitative description of the experiments.

The second subsystem, which couples the electronic ground state with the triplet excited states, reveals a new mechanism for the "forbidden band". It turned out that this band results exclusively from the SOC in the A' manifold containing the GS, irrespectively of the energetic gap between them. The comparison with the experiment is excellent and validates the model and shows a di↵erent polarisation dependence than the singlet states absorption. It provides also a possibility to perform new experiments in order to verify the mechanisms, and excite selectively the triplet states.

While the photophysics of the molecule appears to be more complicated and richer than expected, we turned back to our initial questions concerning the TRPES and HHG spectroscopies. Both methods use ionisation of the system in order to probe the dynamics in the neutral states. Concerning the former, the final state of the system, is the ionised molecule and the released electron, while the latter used ionisation as an intermediate state to produce high harmonics, which are then detected. In order to deal with such an experimental schemes the three lowest ionic states have been considered. Previous experiments assigned the two first photoelectron bands to the three lowest ionic states, and the theoretical description of the lowest one was already performed as well as the higher energetic part of the second one. But no attempts were made concerning the energy range of the 1 2 B 2 ionic state. We stressed that there is a symmetry-allowed conical intersection between the two lowest ionic states, responsible for the complexity of the photoelectron spectrum. Our simulations provide a full and accurate description of the photoelectron spectra.

Our di↵erent models for the electronic states seem accurate enough to start simulations of the TRPES.

Thanks to the interpretations of the observations of the experimental team, we built a simplified model of the mechanisms involving first an excitation of the singlet states only with the pump, and the dynamics was probed by three-photon ionisation with a two-photon resonance via a Rydberg state. This model provides the characteristic oscillating behaviour of the photoelectron yields according to the pump-probe delay, demonstrating the sensitivity of the method to the coupled dynamics between the 1 1 A 2 and 1 1 B 1 electronic states. This sensitivity is obtained because the "gating" performed by the Rydberg states. To go beyond this simple model the triplet manifold has later been introduced in the simulation, providing, within our set of approximations, a second decay time constant. Then the analysis of the role of the 1 3 B 2 state has been obtained thanks to the study of the time-dependent electronic population according to the energy of the pump pulse. The experiments of Wilkinson are the first experimental evidence for the role of the 1 3 B 2 state and are strongly supported by our simulations.

The question of the HHG experiments was somewhat more involved due to the recent and fast evolution of the field. We tackled this issue from a totally di↵erent point of view than developed until now. The largest part of the theoretical work in this field primarily focused on the electronic dynamics during the process, which is obviously mandatory. Thanks to a simple quasi-analytical model for the description of the electronic dynamics known to provide qualitative results, we focused on the "quantum nature" of the nuclear motion, and more particularly on its time dependence. Using our model, we first confirm that for time-independent experiments, the model developed by M. Lein et al. is more than satisfactory, with no significant variation of the results due to the approximations used. The situation is very di↵erent in the case of coherent vibrational wavepackets, for which we show that the time-dependent profile of the emitted harmonics strongly depends on the variation on the transition matrix elements and on the ionisation potential. Moreover the consideration of the dynamics in the ionic states during the excursion of the released electron presents the first evidence of the sensitivity of HHG spectroscopy to the phase accumulated by the nuclear wavepacket.

While numerous investigations have been devoted to the case of the electronic ground state, the study of the excited ones turns out to be more complex because of the large number of ionisation channels. Our model, with the consideration of approximate vibronic ionisation potentials could qualitatively describe the experimental results. Concerning the emission of the singlet states, we show that the latter does not influence the emission yields of the states, but its relative phase. Concerning the 3 B 2 states, the yield is increased by

List of Publications

This thesis has been partially published:

l'utilisation de la transformée de Fourier de la fonction de Dyson. On montre que ce traitement permet d'avoir une évaluation principalement analytique de ces éléments, hormis pour le calcul de la fonction de Dyson.

Résultats de structures électroniques

Cette partie est dédiée à la présentation des résultats méthodologiques, c'est à dire résultant de l'application des théories présentées dans la première partie. Les méthodes expérimentales qui ont été utilisées pour sonder la dynamique de la molécule font toutes les deux intervenir l'ionisation du système, dans le cas de la photoémission en tant qu'état final et dans le cas de la génération d'harmoniques en tant qu'état intermédiaire. Pour pouvoir théoriquement modéliser de telles expériences l'évaluation des surfaces d'énergie potentielle des états ioniques de la molécule a également été nécessaire. Trois états ioniques (1 2 A 1 , 1 2 B 2 et 1 2 A 2 ) sont proches énergétiquement et peuvent jouer un rôle, l'état de première ionisation pour la géométrie de l'état fondamental correspond à une ionisation vers l'état 1 2 A 1 , suivie par l'état 1 2 B 2 et enfin à plus haute énergie l'état 1 2 A 2 de façon similaire aux travaux antérieurs.

Surface d'énergie potentielle adiabatique