
HAL Id: tel-01165085
https://theses.hal.science/tel-01165085

Submitted on 18 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preparing depth imaging applications for Exascale
challenges and impacts

Asma Farjallah

To cite this version:
Asma Farjallah. Preparing depth imaging applications for Exascale challenges and impacts. Per-
formance [cs.PF]. Université de Versailles-Saint Quentin en Yvelines, 2014. English. �NNT :
2014VERS0050�. �tel-01165085�

https://theses.hal.science/tel-01165085
https://hal.archives-ouvertes.fr


Université de Versailles Saint-Quentin-en-Yvelines École Doctorale des Sciences et Technologies de Versailles

Preparing Depth Imaging Applications for Exascale
Challenges and Impacts

Étude de l’adéquation des machines Exascale pour les
algorithmes implémentant la méthode du

Reverse Time Migration

THÈSE
présentée et soutenue publiquement le 16 Décembre 2014

pour l’obtention du

Doctorat de l’université de Versailles Saint-Quentin-en-Yvelines
(spécialité informatique)

par

Asma Farjallah

Composition du jury

Directeur de thèse : William Jalby - Professeur, Université de Versailles

Président : Nahid Emad - Professeur, Université de Versailles

Rapporteurs : François Bodin - Professeur, Université de Rennes 1
Jean-Luc Lamotte - Professeur, Université Pierre & Marie Curie

Examinateurs : Henri Calandra - Expert, Total E&P, USA
Philippe Thierry - Docteur, Intel, Paris





Remerciements

Je tiens à remercier mon directeur de thèse, William Jalby, pour son accueil au
laboratoire Exascale Computing Research et son aide tout au long de ma thèse.
Je remercie également Henri Calandra pour m’avoir fait confiance et pour ses
précieux conseils.

Je remercie du fond du cœur mes collègues et mes copains qui m’ont épaulé
pendant ses quatre années. Eric et Sylvain, merci d’être toujours présents dans
les pires et les meilleurs moments. Thomas et Marc, merci pour tout ce que vous
m’avez appris et pour les longues discussions au tableau. Omar et Othman, merci
pour vos encouragements et votre soutien pendant la préparation de la soute-
nance. Philippe, merci pour ta patience et tes conseils qui ne tarissent jamais.
Issam, merci de toujours penser à moi.

A ma famille, j’offre cette thèse. Mon papa et ma maman, j’espère que cette
thèse est à la hauteur de vos sacrifices et vos efforts sans lesquels je ne serais pas de-
venue celle que je suis. Je pense très fort à mes sœurs Emna et Eya et leur souhaite
la réussite et le bonheur.

A l’élu de mon cœur, Wassim, j’offre cette thèse aussi. Merci d’être toujours là
pour moi, pour m’encourager et m’aider. J’espère que la vie nous réserve que le
bonheur et la joie de vivre.





À mes parents et Wassim.





Abstract

As we are expecting Exascale systems for the 2018-2020 time frame, perfor-
mance analysis and characterization of applications for new processor architec-
tures and large scale systems are important tasks that permit to anticipate the re-
quired changes to efficiently exploit the future HPC systems. The objective is to
assess the portability of the application and identify the key challenges for both
the application and the architecture. This thesis focuses on seismic imaging appli-
cations used for modeling complex physical phenomena, in particular the depth
imaging application called Reverse Time Migration (RTM). The study follows two
main axes. The first one is FDTD, the computational core of RTM, the second one
is the communication and IO of the full RTM application. A deep understanding
of the interaction of these kernels with the underlying architecture is the key to
predict the behavior of the overall application.

My first contribution consists in characterizing and modeling the performance
of the FDTD kernel. I identify and explore the major tuning parameters influencing
performance and the interaction between the architecture and the application.

The second contribution is an analysis to identify the challenges for a hybrid
and heterogeneous implementation of FDTD for manycore architectures. We tar-
get Intel’s first Xeon Phi co-processor, the Knights Corner. This architecture is an
interesting proxy for our study since it contains some of the expected features of
an Exascale system : concurrency and heterogeneity.

My third contribution is an extension of the performance analysis and model-
ing to the full RTM. This adds communications and IOs to the computation part.
RTM is a data intensive application and requires the storage of intermediate values
of the computational field resulting in expensive IO accesses.

My fourth contribution is the final measurement and model validation of my
hybrid RTM implementation on a large system. This has been done on Stampede,
a machine of the Texas Advanced Computing Center (TACC), which allow us to
test the scalability up to 64 nodes each containing one 61-core Xeon Phi and two
8-core CPUs for a total close to 5000 heterogeneous cores.

The performance analysis and characterization study of RTM on a cluster host-
ing manycore architecture allow us to alleviate the hardware features that signifi-
cantly impact the performance of the computational part. Furthermore, the mod-
eling of the influence of the increasing concurrency and heterogeneity on the full
RTM seismic imaging application is an important step to pave the way for the re-
quired code modernization and to pin-point the critical architectural bottlenecks



Abstract

in the process for future Exascale systems co-design.

Keywords. Exascale systems, seismic imaging applications, co-design, modeling,
performance characterization, Intel Knights Corner.

ii



Contents

Introduction vii

1 Motivations 1
1.1 Exascale Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Hardware Challenges . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Software Challenges . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3 Algorithmic Challenges . . . . . . . . . . . . . . . . . . . . . . 10
1.1.4 Co-Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.5 Previous Feasibility Studies . . . . . . . . . . . . . . . . . . . . 14

1.2 Geophysical Applications . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Seismic Imaging Applications . . . . . . . . . . . . . . . . . . . 15
1.2.2 Seismic Exploration Work Flow . . . . . . . . . . . . . . . . . . 17
1.2.3 Challenges in Seismic Imaging Applications . . . . . . . . . . 19

2 Seismic Modeling 21
2.1 Seismic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Body Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Surface Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Wave Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Elastic Wave Equation . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Acoustic Wave Equation . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Numerical Methods for Seismic Modeling . . . . . . . . . . . . . . . . 26
2.3.1 Integral methods . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Asymptotic methods . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Direct methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Application to the Acoustic Wave Equation . . . . . . . . . . . . . . . 29
2.4.1 Isotropic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Anisotropic media . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Stability Condition and Dispersion . . . . . . . . . . . . . . . . 32

3 Performance Study of FDTD Applications 33
3.1 Overview of Performance Modeling Techniques . . . . . . . . . . . . 33

3.1.1 Analytical Models . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Trace-based Models . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.3 Roofline Models . . . . . . . . . . . . . . . . . . . . . . . . . . 35



Contents

3.2 Performance Modeling of FDTD . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 FDTD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Modeling Theoretical Peak Performance . . . . . . . . . . . . 38

3.3 Performance Optimizations of FDTD . . . . . . . . . . . . . . . . . . . 41
3.3.1 NUMA-Awareness . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 Cache Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 Z-order Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 ASK: Adaptive Sampling Kit . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 ASK experimental setup . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Performance characterization of stencil computation . . . . . 50

4 Memory Bandwidth Cost Model for FDTD 55
4.1 Isotropic Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Performance Model for Extra DRAM Traffic . . . . . . . . . . . . . . . 57

4.2.1 Data Reuse Histogram . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 Applying the Reuse Distance Histogram to FDTD . . . . . . . 59
4.2.3 Updated Formulation of the Performance Model . . . . . . . . 62

5 FDTD Applications on Manycore Architectures 67
5.1 Intel Many Integrated Core Architecture . . . . . . . . . . . . . . . . . 67

5.1.1 Performance Gain Expectations . . . . . . . . . . . . . . . . . . 70
5.1.2 Programming Models on MIC . . . . . . . . . . . . . . . . . . 72

5.2 Single-node Implementation of FDTD Applications . . . . . . . . . . 72
5.2.1 FDTD Implementations Without Absorbing Conditions . . . . 72

6 Reverse Time Migration on Large Scale Systems 81
6.1 Related Work on Reverse Time Migration . . . . . . . . . . . . . . . . 81

6.1.1 State-of-the-art Implementations . . . . . . . . . . . . . . . . . 82
6.1.2 Velocity Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.3 Snapshots and I/O Strategies . . . . . . . . . . . . . . . . . . . 84

6.2 Performance Modeling of RTM . . . . . . . . . . . . . . . . . . . . . . 86
6.2.1 Computation Costs . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.2 Communication Costs . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.3 Snapshot Strategy Costs . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Implementation of RTM for Multi-node of Many-Core . . . . . . . . 90
6.3.1 Test System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.2 RTM Implementations . . . . . . . . . . . . . . . . . . . . . . . 94

Conclusion and Future Work 99

Bibliography 109

List of Figures 114

List of Algorithms 115

iv



Contents

List of Tables 117

v





Introduction

Given the expected changes affecting the HPC systems and the constraints that
may tailor their conception, application scientists need to lead off studies defining
the main changes affecting the development of their future applications. They also
need to define the new challenges they aim to overcome thanks to the increasing
compute capability of the Exascale machines. These upstream studies also concern
the current applications in order to be sure that their porting on Exaflopic systems
is relevant.

This thesis is a feasibility study of porting seismic imaging applications as Re-
verse Time Migration (RTM) to the Exascale. Co-design is the approach we rely on
to predict the behavior of these applications and anticipate solutions to remedy to
the expected hardware and software challenges in Exascale systems. Algorithms
and numerical schemes may consequently change in order to response to these
challenges. My contributions are the following:

• Performance modeling and characterization of FDTD. We characterize the
performance of finite-difference time-domain (FDTD) implementations widely
used in seismic imaging applications like RTM since they represent their
computational core. We consider two implementations. One in isotropic
media as an introductory example and one in transverse anisotropic media
tilted transverse isotropy (TTI) as it is commonly encountered in exploration
campaigns. This study was made possible using analytical models, Roofline
models and a sampling-based tool called Adaptive Sampling Kit (ASK).

• Memory bandwidth cost modeling. We demonstrate that the memory band-
width has a great impact on the performance of the FDTD applications and
we developed an analytical model predicting the DRAM traffic of these ap-
plications. This model can be used to predict performance on future Exascale
systems.

• FDTD on manycore architectures. We then focus on the Intel Many-Integrated
Core (MIC) architecture as it introduces new hardware features compared to
Nehalem and Sandy Bridge. This highly parallel architecture is represen-
tative of the manycore technology trend in Exascale. We study the impact
of concurrency using native implementations of the FDTD kernels. For this
particular architecture, we highlight the optimizations performed in terms of
data access and alignment, vectorization and cache blocking.



Introduction

• Exploring symmetric execution of RTM. We also developed symmetric im-
plementations in order to highlight the impact of heterogeneity on these ker-
nels. We use two programming models, MPI and OpenMP and perform
static load balancing in order to reduce communications overhead.

• Performance analysis of RTM on large scale cluster. We then focus on the
multi-node implementation of the full application RTM. We develop analyt-
ical models that accounts for computation, communications and I/O as a
prior study to porting on large scale systems. We make extrapolations based
on these models for these systems and considering a simple velocity model a
real velocity model. We also highlighted the bottlenecks, we encountered on
Intel Xeon Phi nodes before the actual porting on a real system and we iden-
tified the impact of the small memory available on these co-processors and
the need to over-decompose the compute grid which results in an overhead
due to communications.

• Full scale experimental validation. We give a proof of concept of a hybrid
heterogeneous implementation of RTM for cluster containing manycore ar-
chitectures and give measurements on Stampede. We give strong scalability
tests up to almost 16400 threads on 5000 heterogeneous core and compare
with other implementations of RTM.

In the following paragraphs, we give the outline of the thesis.

We start with an introductory chapter 1 where we describe the challenges brought
along the Exascale Era. It concerns hardware, software and algorithms levels. Due
to constraints on power consumption and cost in order to ensure the feasibility of
an Exascale machine, we can expect revolutionary changes on the hardware. As a
consequence and to guarantee the efficient use of the available resources, software
and algorithms will also know great modifications. The way around study is also
important. The existing algorithms and software stack may have constraints that
need to be considered while building a new system. This mutual interaction be-
tween all levels constituting a high performance machine is called the co-design
process and is considered as a key step towards the Exascale.

In the following chapter 2, we give an overview of the different numerical
methods used in seismic imaging. These various methods respond to different
needs in terms of the image resolution, time to solution, the available computa-
tional resources, the accuracy of the input models, etc. We provide in chapter 2
the equations governing wave propagation in isotropic and anisotropic media and
the resulting approximations using the finite-difference time-domain (FDTD) ap-
proach.

The third chapter 3 is a deep insight on performance study and characteriza-
tion. We give state-of-the-art performance modeling techniques and give a first
model for FDTD applications considering theoretical peak performances. We then
go through state-of-the-art optimizations approaches applied to FDTD and give

viii



an analytical model for cache blocking based on previous works. We also use a
sampling-based tool Adaptive Sampling Kit (ASK) in order to tune input and op-
timization parameters for FDTD. We consider the grid size, number of threads,
cache blocks sizes, the order of the numerical scheme and the variant of the kernel
where we apply some loop modifications or not.

Chapter 4 applies the Roofline model introduced in chapter 3 to FDTD appli-
cations. Optimizations are also applied gradually on our applications and demon-
strate their impact using the Roofline model. We implement a model of the DRAM
traffic based on the data reuse histogram. We have an updated formulation for
cache blocked versions since we had an over-estimation using the initial model in
this particular case.

In chapter 5, we implement heterogeneous and hybrid version of the FDTD ap-
plications. We study the impact of the increasing parallelism and heterogeneity on
these application through the use of Intel’s Xeon Phi as representative of a future
Exascale node.

The last chapter 6 is a feasibility study applied to an implementation of the
Reverse Time Migration (RTM) application. We extend the performance model to
communications and I/O for large scale systems. We also make prior modeling
for a heterogeneous system containing Xeon Phi which enabled us to identify the
expected bottlenecks on such systems. We then give measurements on the machine
Stampede.

Finally, we conclude by summarizing the different contributions and lessons
learned and we suggest some future work.

ix





CHAPTER 1

Motivations

1.1 Exascale Challenges

After the race to reach the Petascale performance and the tremendous impact
it had on the current HPC systems, scientists are facing another challenge with
the Exascale machines expected for the 2018-2020 time-frame. An Exascale ma-
chine delivers 1018 floating point operations per second, that is to say 1000x the
performance of the most powerful machines currently available. We think that
we have come to a turning point of computing technology evolution since merely
augmenting the number of the computing units in a machine is unlikely to ensure
an exaflopic performance. High performance computing (HPC) systems including
the computing, storage, interconnect and cooling systems need to be reviewed for
the Exascale era based on constraints fixed by the HPC community in order to en-
sure the feasibility of these future machines from an economical and environmen-
tal point of view. As a consequence, power and cost factors will be determining
characteristics in building systems for the Exascale.

Challenges will affect all conception levels of a computing machine from hard-
ware to software stack and applications. Hardware level includes the node archi-
tecture, interconnect and memory systems. The software stack concerns the oper-
ating systems, compilers, runtimes and programming models. Applications and
algorithms need to evolve in order to leverage the new hardware features offered
by the system. Resiliency and errors management are new constraints imposed
by the increasing number of cores and limitations on power consumption. The
current approaches of fault tolerance will be inefficient. More practical recovery
mechanisms need to be developed.

Another aspect of the Exascale transition is the co-design process. HPC experts
seem to agree that efficiently building such systems is conditioned by the collab-
orative effort conducted by the previously cited communities [Kogge et al., 2008;
Ashby et al., 2010; Dongarra et al., 2011]. Interacting mutually will help architects
to define new architectures that can be used efficiently by the applications and al-
gorithms communities. On the other hand, applications and software stack need
to be adapted to the constraints of the future hardware.

In the following paragraphs, we are going to detail all these challenges for the



1. Motivations

hardware, software and application communities and will describe the co-design
process.

1.1.1 Hardware Challenges

We present the hardware constraints we need to handle when designing an Ex-
ascale machine. The role of these constraints is to guarantee a feasible and main-
tainable system. We start with the energy efficiency challenge since it is expected
to drive the design of nodes, memory systems and interconnects. Resiliency is an-
other aspect that we should consider in an Exascale system. The recovery time
should be maintained the shortest possible in order to limit the system’s unavail-
ability.

Table 1.1 gives the characteristics of the top two machines, Tianhe-2 and Titan,
according to the ranking in the Top500 1 list of June 2014. In this 43rd edition of
the Top500 project, Tianhe-2, installed by China’s National University of Defense
Technology, is the most powerful system. It uses Intel Ivy Bridge sockets and Intel
Xeon Phi coprocessors. On the other hand, Titan, ranked second, is a Cray system
installed in the Oak Ridge National Laboratory based on AMD Opteron Interla-
gos sockets and NVIDIA Tesla K20x GPUs. The features of these two machines
and their performances summarized in table 1.1 will be used as a reference for
the comparison with the potential Exascale machine as described in the upcoming
paragraphs.

Titan Tianhe-2
System peak 27 54.9 [PFlops ]
HPL benchmark 17.59 33.86 [PFlops ]
System nodes 18,688 16,000
System cores 560,640 3,120,000
System memory 0.710 1.4 [PByte ]
Node performance 1.4 3.4 [TFlops]
Node concurrency 30 195
Node memory 32/CPU + 6/K20 64/CPU + 8/Phi [GByte ]
Power 8.2 17.8 [MWatt]

Table 1.1 Characteristics of the top 2 machines according to the ranking of top500 in June
2014.

The values of power consumption in table 1.1 corresponds to the power needed
by the processors, memory systems and interconnect only. Cooling is not included
in these values. We also give the theoretical system peak performance and the
effective peak performance measured by the High-Performance Linpack 2 (HPL)
benchmark [Dongarra et al., 2003].

1www.top500.org
2www.netlib.org/benchmark/hpl

2

www.top500.org
www.netlib.org/benchmark/hpl


1.1. Exascale Challenges

1.1.1.1 Power Management

For this paragraph, we consider the peak performance of Tianhe-2 and Titan
machines measured by the HPL benchmark and their power consumption as re-
ported in table 1.1. Exascale machines are expected to deliver a HPL peak perfor-
mance equal to 1018 floating-point operations per second. A linear extrapolation
of the power consumption of Tianhe-2 and Titan estimates over 500 MW of power
only for processors, memory and interconnect to attain exaflopic performance.
This prohibitive value proves that extending the actual petaflopic systems while
only adding computational resources is unlikely to deliver a maintainable system.
For obvious economical and environmental reasons, minimizing the power con-
sumption of Exascale systems is a major concern.

The US Defense Advanced Research Projects Agency (DARPA) launched in
2010 the Ubiquitous High Performance Computing (UHPC) program [DARPA,
2010; Carter et al., 2013]. It aims at building computing systems that respect an
energy efficiency constraint fixed to 50 GFlop/Watt for 2018 time frame. Therefore,
power consumption for Exascale systems will be equal to 20 MW without counting
the cooling consumption. As recommended by [Shalf et al., 2011b; Kogge et al.,
2008], exceeding this value is likely to hinder the system performance and it can
have a great influence on the machine cost.

Given the limitation on power consumption of an Exascale machine, a floating-
point operation requires 20 pJ of heat on this machine [Borkar, 2013]. Table 1.2
compares the amount of heat required to perform floating-point operations and
DRAM reads on current machines with expected values in Exascale. We await for
a reduction by at least a factor of 4 to ensure energy efficiency.

Figure 1.1 presents the evolution of power consumption considering only floating-
point operations for top machines since June 2008.

2011 2018 Expectations

DP FMA Flop 100pJ 20pJ
DP DRAM Read 2000 pJ 1000pJ
Local interconnect 7500 pJ 1000pJ
Cross System 9000 pJ 1500pJ

Table 1.2 From Shalf et al., 2011b. Data movement cost in term of power consumption.

Contribution of data movements between memory hierarchies to power con-
sumption in current systems is high as shown in the listing 1.2. It is even higher
when it comes to use the network in order to move data from one node to an-
other. Predicted costs for Exascale machines are expected to increase. Reducing
data movements is consequently mandatory to reduce the power consumption.
Leveraging data locality mechanisms is necessary as it enables the reuse of the
data fetched in the faster memory levels. It is also important to rethink applica-
tions in order to reduce communications between nodes and therefore limit the
use of the network. This results in a decrease of the demand on bandwidth and
the impact of latency of both memory and network.

3



1. Motivations

Road
runner.

June-08

Road
runner.

Nov-08

Road
runner.

June-09

Jag
uar.

Nov-09

Jag
uar.

June-10

Tian
he-1

A. Nov-10

Rike
n. June-11

Rike
n. Nov-11

Sequoia
. June-12

Titan
. Nov-12

Tian
he-2

. June-13

Exasc
ale

. 2020

0

1

2

3

4

·103

pJ
ou

le

Figure 1.1 Cost of a floating point operation in term of energy consumption for machines
ranked first in top500 from June 2008 to June 2013.

This leads us to the following paragraph where we depict the challenges re-
lated to memory systems design while maintaining low power consumption.

1.1.1.2 Memory Systems

As described in figure 1.2, memory hierarchies in computing systems are mainly
characterized by their latency, bandwidth and capacity. The cost per bit of memory
is also an important feature in computing systems since it can guide the trade-off
between capacity and speed. The figure 1.3 illustrates the evolution of dollars/M-
Byte and dollars/MFlop rates from 2002 to 2011 and shows a clear drop of flops
cost compared to the modest decrease of bytes cost. This explains the gap between
processing units and memory which results in the inefficacy of a wide range of
applications bounded by memory bandwidth or latency. This gap is expected to
be even wider in Exascale systems.

A machine balance is a metric expressing the number of bytes transferred per
a floating-point operation. The value of this metric gives an idea on the behavior
of an application on a given architecture. Depending on the arithmetic intensity
of this application, we can figure out if the memory bandwidth is going to be a
bottleneck or if it is the processing units. Rethinking the current memory systems
is important to maintain a low machine balance in Exascale and ensure a larger
number of applications running efficiently on these machines.

4



1.1. Exascale Challenges

CPU
Registers

O(kB)
1 cycle

Size:
Speed:

C
a
c
h
e
s

O(MB)
10 cycles

Memory

O(GB)
100 cycles

Disk

O(TB)
10,000 cycles

Figure 1.2 Memory system hierarchy.

In the following paragraphs, we give possible solutions in order to attenuate
the limitations on memory bandwidth, latency and capacity.

Figure 1.3 From Dave Turek, 2009. Reduction of Flops and Bytes costs.

Packaging Packaging of the memory and the processing unit can greatly influ-
ence the bandwidth rates. Re-defining the architecture of current systems may
result in an improvement of the bandwidth and thus increase the overall system
performance. The figure 1.4 is a roadmap proposed by Camp et al., 2010 describ-
ing trends in CPU and memory packaging likely to surpass the hardware limita-
tions we are facing today in increasing the bandwidth. Ultimately, a 3D stacked
packaging is expected to deliver a bandwidth greater than 1 TB/s at the cost of
challenging integration issues. [Coteus et al., 2011; Loh, 2008; Woo et al., 2010]

Memory Bandwidth As the number of cores per node is expected to increase
as we are moving towards the Exascale, the memory bandwidth will clearly be a
bottleneck that can greatly impact the application performance. New packaging
techniques as described previously give solutions to solve the bandwidth issue on

5



1. Motivations

Figure 1.4 From Camp et al., 2010. Roadmap for memory and CPU packaging in order to
respond to the bandwidth demand.

the hardware side. Data locality is another solution to get around the bandwidth
limitations on the applicative side which implies some modifications of the exist-
ing implementations.[Stevens et al., 2009].

Memory Capacity Figure 1.3 illustrates the evolution of the cost of floating point
operations and bytes in term of dollars. In 2011, flops are 1000 times cheaper than
in 2002. This is not the case of bytes barely 10 time cheaper in 2011 than in 2002.
Increasing of the aggregate memory capacity contributes greatly to the cost of the
whole system (see figure 1.3). Taking into consideration the economical constraints
for Exascale systems, this tendency observed on figure 1.3 is expected to continue
on Exascale systems, resulting in a great augmentation of the number of FPU com-
pared to the memory capacity. Shalf et al., 2011c estimate an improvement factor of
100x in memory capacity compared to a factor of 1000x in the system peak floating
point performance.

1.1.1.3 Node Architecture

Figure 1.5 describes the scaling of general-purpose processors from 1975 to
2012. We notice that since 2005 the frequency and the single-thread performance
are witnessing a slow-down of their evolution. On the contrary, the number of
cores is increasing greatly starting from 2005. It is the response to the decrease
of the single thread performance and frequency. An extrapolation to the Exascale
systems and taking into consideration to power limitations described in paragraph
1.1.1.1, the number of cores will continue to increase and as a consequence we ex-
pect unprecedented changes of the node architecture. In paragraph 1.1.1.2, we
considered the widening gap between memory system and the processing units.
A possible solution in order to hide latencies due to this gap is the use of multi-
threading as it permits to reschedule a second thread while the first one is, as an
example, waiting for data [Borkar et al., 2011].

6



1.1. Exascale Challenges

Figure 1.5 From Batten, 2010. General-purpose processors trends in terms of power con-
sumption, number of transistors, frequency and number of cores.

Parallelism It is reflected by the increase of the number of computing units which
are expected to double every 18-24 months [Hall et al., 2011]. As a consequence,
we need to compensate the need to higher compute capacities by the mean of par-
allelism at the node level using many cores and threads.

This leads us to two major trends in the node architectures and consequently
the whole system as described in Kogge et al., 2008. We can expect to have heavy-
weight nodes with relatively restricted number of cores but having advanced fea-
tures. On the other hand we can have lightweight nodes with a high number of
cores with less sophisticated capabilities but offering the possibility to use paral-
lelism to compensate the latencies.

Heterogeneity It is another opportunity to enhance computational capabilities
of the node while maintaining a reasonable power consumption. Current acceler-
ators are connected to the host via a PCIx interconnect and have separate memory
spaces. Therefore data movements between the two devices are not supported ex-
plicitly and data placement should be done at a high level in the application in
order to minimize the cost of data movements.

AMD fusion project is an example of the willing to get rid of the PCIx intercon-
nect and to homogenize the memory accesses in order to facilitate the program-
ming of these architectures while maintaining a lower bound on power consump-
tion.

1.1.1.4 System Resiliency

The increasing number of cores and the need to use a threshold for power may
be the reason for frequent fault accidents. The recovery time, known as the Mean

7



1. Motivations

Time To Repair (MTTR), is expected to increase in an Exascale machine. Fault ac-
cidents and time needed to recover them are also expected to grow. Resiliency can
be permanent and in this case it occurs in the hardware or transient and it happens
in the software level. In this last case, It can be recovered relatively quickly.

Mechanisms such as I/O checkpointing to prevent these failures are extremely
important but they should not be intrusive and degrade the application perfor-
mance.

1.1.1.5 Network Interconnect

Many applications need domain decomposition techniques in order to remedy
to shortage in memory capacity on the computing nodes.

This implies massive utilization of the communication network. Consequently,
latency and bandwidth of the network have great impact on performance on appli-
cations and neglecting the I/O may induce issues for data intensive applications.

For Exascale machines, the issue of I/O bounded applications will persist and
even worsen. Overlapping I/O with computations and the use of asynchronous
accesses will be probably used but they won’t be enough in reducing the overhead
generated. New technologies such as Photonics introduced by Intel and Fujitsu
are needed to alleviate this issue [Coteus et al., 2011; Camp et al., 2010].

1.1.1.6 Potential Exascale System

As a summary, the potential Exascale systems can have two possible config-
urations as described in the DARPA’s report on Exascale transition [Kogge et al.,
2008].

• First Lane where cores are expected to be complex. These systems will be
the earlier version of Exascale machines and are expected around 2018. This
configuration will induce reduced number of nodes.

• Second Lane where cores are rather lightweight and their number will in-
crease per compute node. This is the long term version of an Exascale sys-
tem where thread level parallelism will be an important mechanism to hide
latencies.

Table 1.3 summarizes of the potential characteristics of an Exascale system as
described in the technical reports of the US Department of Energy (DOE).These are
a preliminary results subject to modifications with the upcoming machines [Kogge
et al., 2011].

A profusion of architectures is emerging in order to study the possibilities of
saving energy while performing the required floating-point performance to reach
an exaflopic performance. The Echelon architecture implemented by Nvidia and
described in Keckler et al., 2011 is an example of architectures that aim to limit
energy consumption to 20 pJ per floating-point operation. We can also name Run-
nemede an Intel architecture that is a response to the UHPC project. This architec-
ture leverages a co-design process in order to respect the architectural constraints

8



1.1. Exascale Challenges

Tianhe-2 1st Lane 2nd Lane

System peak 54.9 Pf/s - -
HPL benchmark 33.86 Pf/s 1 Ef/s 1 Ef/s
System nodes 16,000 O(106) O(105)
System cores 3,120,000
System memory 1,4 PB 32-64 PB 32-64 PB
Node performance 3.4 TF/s 1 TF/s 10 TF/s
Node concurrency 195 O(103) O(104)
Node memory 64 GB CPU + 8 GB Phi 32-64 GB 0.32-0.64 TB
Power 17.8 MW 20 MW 20 MW

Table 1.3 Potential Exascale systems.

fixed by DARPA for a feasible Exascale system. Another example of architecture
enabling energy efficiency in order to facilitate the transition to Exascale systems,
we can also name the Green Wave architecture introduced in Krueger et al., 2011
to study hardware/software co-design for seismic modeling applications.

1.1.2 Software Challenges

Exascale is not only a matter of hardware features. It also implies tremendous
modifications of the current software stack as discussed in [Barrett et al., 2012;
Dongarra et al., 2011]. We are going to expose the possible modifications affect-
ing the operating systems, compilers, runtimes and programming models and de-
bugging tools in order to prepare them to the expected hardware constraints in
Exascale systems. We need to take into account the increase of concurrency and
parallelism, the expected limitations on main-memory and networks in terms of
bandwidth and latency, the power efficiency requirements and the resiliency con-
siderations. This is an important task to undertake to ensure an efficient use of the
hardware.

1.1.2.1 Operating Systems

Operating systems are important components of the software stack on the cur-
rent machines. On Exascale systems also, their role will be essential in maintaining
an efficient use of the hardware resources since inadequate operating systems can
result in dramatic impact on performance.

Two approaches are possible either rewrite from scratch a new operating sys-
tem or upgrade an existing implementation based on the expected architectural
features of the future systems. In both cases, we should take into considerations
few constraints such as the increasing concurrency and the need to hide the sys-
tem latencies using many threads per core. The execution of a single task using
many threads will be therefore a common technique. We need also to think of new
mechanisms to unburden the shared resources between the computing cores. The
memory bus, for example, can cause great performance issues.

9



1. Motivations

1.1.2.2 Programming Models & Runtimes

As the number of cores per node are expected to increase greatly, we need to
maximize parallelism in applications and have a reliable runtime in order to ensure
an efficient scheduling of tasks among the workers. This important feature needs
to be handled transparently by the programming model. Developer’s concern is
focused on programming the scientific application.

For Exascale, we might also need more than a programming model to han-
dle the increasing number of cores per node and ensure interoperability between
them. As an illustration, we can consider hierarchical programming where we
perform communications using message passing interface MPI and computation
using a shared memory model such as openMP. The combination of these two
models depend on the needs of the application. We can have a master-slave model
where the MPI communication is performed by a single thread, the master, and
the openMP threads compute. An other configuration consist of multiple commu-
nications performed by multiple threads simultaneously. For this case, the MPI
implementation should be thread safe. On the other hand, MPI implementations
should support a more sophisticated manner to identify threads rather than tags
which cannot offer sufficient flexibility for all applications.

Partitioned Global Address Space (PGAS) programming models such as Co-
Array Fortran (CAF) represent an interesting opportunity. Open64 compiler sup-
ports an implementation of CAF. [Eachempati et al., 2012] is a proof of concept
that this programming model can easily included in an industrial code. Scalability
and performance reported on Reverse Time Migration give an encouraging start to
adopt these programming models in industry but CAF is more suitable for appli-
cations with regular communication patterns. I/O are also a challenge to consider
as they represent one of major bottlenecks for these data-intensive applications

1.1.2.3 Compilers

Compilers have a great impact on applications performance since they guaran-
tee the efficient use of the underlying architecture. Low level optimizations such
as loop modifications like padding and tiling, vectorization, software prefetching
are architecture-dependent optimizations and are fastidious implementing within
the application code. For Exascale, we will be facing heterogeneity on one hand
in order to profit from the low power consumption of some devices such as accel-
erators. On the other hand, we need to ensure the efficient use for every single
architecture since they can have different vector widths and different instructions.

1.1.3 Algorithmic Challenges

As section 1.1.1.1 suggests, data movements in Exascale systems are expected
to be extremely expensive in terms of pJoule/Byte. The main reason is the growing
gap between arithmetic units and the memory system and the increasing power
consumption that it will generate. As a consequence, neglecting data locality
may hinder extremely the performance of applications on Exascale systems. Algo-
rithms need to enhance data locality in time and space in order to reuse as much

10



1.1. Exascale Challenges

as possible data fetched in caches and avoid unnecessary memory traffic.
Extrapolations to Exascale predict that floating operations are going to be avail-

able in abundance and compared to memory traffic they will be almost free. We
can use these arithmetic units to introduce more complexity in our computations
when overlapped with communications, we can hide network latencies. [Don-
garra et al., 2012]

Communication-avoiding Algorithms. Many applications are bounded by the
time spent in communications and in memory traffic. Since the gap between
the processing units and memory systems is exponentially increasing and since
the latency on network can be penalizing, we need to limit the data movements
for the current Petascale systems and more urgently for the Exascale machines.
Communication-avoiding algorithms aim to minimize the impact of these commu-
nications on performance by minimizing the number of messages transferred and
their volume. They also can rely on redundant computations. These algorithms are
mainly dense and sparse linear algebra algorithms which require the implemen-
tation of new numerical methods while ensuring the stability of these new solu-
tions [Khabou, 2013]. For example, the Strassen algorithms are a communication-
avoiding variant of matrices multiplications [Lipshitz et al., 2012]. Apart from the
impact on performance, minimizing the data movements in these new algorithms
will reduce the power consumption compared to the usual implementations.

Fork-join Model. This technique is extensively used in scientific applications.
Programming models such as OpenMP permit to use multi-threading capabilities
in order to accelerate the computing loops. As the number of cores per node in
Exascale machines is expected to greatly increase, the overhead due the initializa-
tion of these parallel sections and due to the synchronization will consequently
increase and deteriorate the overall performance of applications.

Load Balancing. As heterogeneous architectures are expected to be extensively
used in Exaflopic machines, we need to implement algorithms that enable load
balancing in order to avoid stalls that are inherent to this heterogeneity. In some
cases, handling the load balancing may require the implementation of hardware
specific modules and even the modification of the whole algorithm in order to
introduce new mechanisms such as scheduling and tasks queuing. The aim is a
better management of available resources.

Multi-scale algorithms also require load balancing. We can name multi-grid
algorithms applied to seismic modeling. The mesh refinement is performed only
in the area where the simulation needs more precision.

Auto-tuning. This refers to a set of tools used to determine the best combination
of optimization factors for an application class depending on the targeted archi-
tecture. It involves the number of threads, cache blocking factors, padding length,
etc. Since heterogeneity is inevitable in Exascale systems, machines will be more

11



1. Motivations

complex. As a result, the optimization process will be tedious and time consum-
ing task which explains the need to auto-tuning tools in order to use efficiently the
architecture.

Performance Metrics. New metrics are emerging as we are preparing Exascale
systems. Considering the constraints on power consumption, usual performance
metrics reporting the number of operations performed per a unit of time for ex-
ample will not be considered as the unique reference on the efficiency of a given
application. Metrics such as pJoule/Byte or pJoule/operation are going to be de-
terminant in illustrating an application behavior on Exascale systems [Camp et al.,
2010].

1.1.4 Co-Design

The Department of Energy (DOE) Exascale Computing program is an initia-
tive to gather efforts in hardware and software areas and work jointly in order to
build efficient Exascale systems. This is the opportunity to establish a co-design
process applied to Exascale. In this study, the applications design take part in the
improvement of the hardware. Interaction between developers and architects is a
key element to elaborate new architectures that take into consideration algorithmic
requirements. On the other hand, an Exascale system is expected to introduce var-
ious changes on the hardware. It may concern the node architecture, interconnect
and the cooling of the whole system. Consequently, algorithms will need to adapt
in order to efficiently run on these architectures. This includes data management,
the use of memory system and the arithmetic-unit and IO bandwidth. The figure
1.6 is a high level illustration of co-design. For applications side, we need to con-
sider the algorithms, the underlying performance models and the implementation.
On the system side, we need simulators, building of new micro-architectures and
interconnects. We also need the development of an adapted software stack that
enables an efficient use of the hardware.

The Co-Design for Exascale (CoDEX) project [Shalf et al., 2011a] is a response
to the DOE initiative. It combines a bunch of tools that range from cycle accurate
simulator to node architecture to an extrapolation of memory and interconnect
for the Exascale. These tools allow a software/hardware co-design illustrated in
[Krueger et al., 2011] for an energy study applied to seismic modeling.

In order to facilitate the co-design process, applications are not studied as a
whole. We instead consider lighter versions of these applications ranging from
simple kernels capturing the computational core of the application to more sophis-
ticated versions gradually including physic considerations and I/O operations
since they are extensively use in real applications. The classification of the dif-
ferent versions leading to real applications are explained in table 1.4 as described
in [Shalf et al., 2011c] where the word surrogate was used to designate this light
versions. They are extremely useful in a co-design process since they permit to
highlight the architectural features impacting the performance at each level.

For the feasibility study in Exascale applied to seismic imaging applications,
we will rely on these surrogates in order to overcome the burden in production

12



1.1. Exascale Challenges

Application

Hardware Software Stack

Application Side

System Side

Model
Algorithms

Simulator
Architecture
Interconnect

Compilers
Operating System

Programming Models

Figure 1.6 High level description of the co-design process. We emphasize on the interac-
tion between the application side and the system side in order to enable the design of the
adequate hardware and algorithms.

Surrogate Description

Compact application Small app with fewer features and simplified boundary
conditions relative to a full app

Mini-application Small, self-contained program that embodies essential per-
formance characteristics of key apps

Skeleton application Program that captures an app’s control flow and communi-
cation pattern; can be run only in a simulator

Proxy application General term for all other surrogates

Mini-driver Small programs that act as drivers of performance-
impacting library packages

Kernel Program that captures an algorithm’s node-level aspects

Table 1.4 From Shalf et al., 2011c. Definition of application surrogates.

codes. We will start with kernels highlighting the computational behavior of imag-
ing applications on the node level. We will particularly focus on an application
called Reverse Time Migration (RTM) as it is widely used by Oil & Gas companies.
We will then consider a compact-application version of RTM to facilitate the port-

13



1. Motivations

ing on a representative architecture of the trend in Exascale systems. It’s the Intel
Many-Integrated Core (MIC) architecture. This will enable us an extrapolation to
a larger scale system with representative features of an Exascale machine.

1.1.5 Previous Feasibility Studies

In [Bhatele et al., 2011] and [Gahvari et al., 2010], we can find feasibility stud-
ies of Exascale systems based on extrapolations of hardware features and perfor-
mance models of representative application classes commonly used in scientific
computing.

Gahvari et al., 2010 conducted a study on FFTs and basic geometric multigrid.
Scalability was studied in both cases for the Exascale and an evaluation of the
requirements in terms of latency and memory bandwidth on such systems was
presented based on performance models of these applications.

A similar work was presented by Bhatele et al., 2011 where the applications
considered are molecular dynamics, cosmological simulations and finite element
solvers. The study concerns the weak and strong scalability of these applications
on Exascale machines. It also considers memory requirements and the volume of
communications compared to computation requirements.

Further co-design studies can be found in [Czechowski et al., 2011a], for exam-
ple, where authors revisited simple metrics commonly used by the HPC commu-
nity such the balance principle, Little’s law, Amdahl’s law, etc.

The co-design principle can also be applied to the energy efficiency challenge.
Krueger et al., 2011 give a study that aims to minimize the power consumption.
They consider a seismic imaging application called Reverse Time Migration RTM.
Co-design studies also focused on other applications such as FFT [Czechowski et
al., 2011b; Czechowski et al., 2012], molecular dynamics, finite-element solvers and
cosmological simulations [Bhatele et al., 2011].

1.2 Geophysical Applications

The establishment of the theories governing geophysical phenomenons started
since 1960. As the methods developed are mainly compute intensive, the comput-
ing technologies evolution in the 80’s was extremely promising since they made
possible their effective application in a real context such as seismic exploration.
They also prove to be beneficial to study earthquakes and to image the earth lay-
ers in order to facilitate the localization of hydrocarbon deposits.

As a consequence, the evolution of the seismic applications is historically re-
lated to the evolution of computers and afterward HPC systems. The growth of
the compute capacities and the amount of the data they handle permitted the uti-
lization of new numerical methods with complex physics and the exploration of
wider area with higher resolutions.

Given the actual HPC context, seismic applications constitute an important
class that we need to consider in the co-design process. Classification and charac-
terization of the major approaches in seismology using modeling is an interesting

14



1.2. Geophysical Applications

task that permits the extrapolation of the performance on different architectures
and herein determines which methods are more suitable for Exascale machines.

Figure 1.7 depicts the resource requirements as a function of the complexity in
terms on computation. Resource needs increase exponentially as the media stud-
ied is complex and as the method is compute demanding. The figure is also an
illustration of the trends in seismic imaging. It shows that the increase in compute
capacity permits to tackle geophysical complexity easily. It enables more accurate
modeling of wave physics, higher grid resolution and wider frequency content.

Computational Complexity

R
es

ou
rc

es
(F

LO
Ps

/
Ba

nd
w

id
th

)

Rays
Beams

RTM
Acoustic

RTM
Elastic

FWI
Elastic

FWI
Viscoelastic

Isotropic

TTI

VTI

Figure 1.7 Seismic imaging applications.

1.2.1 Seismic Imaging Applications

Exploration seismology techniques are widely studied by the scientific com-
munity. One can find detailed descriptions of these techniques in a multitude of
studies such as [Sheriff et al., 1995; Biondi, 2006] to name few. In the following
paragraphs, we define some of these seismic imaging applications.

15



1. Motivations

1.2.1.1 Seismic Modeling

Seismic modeling applications build a synthetic image of the earth based on
a model of the velocity making assumptions on the physical properties of the
medium studied. In order to approximate the wave equation, seismic modeling
can rely on a multitude of numerical methods such as integral methods, asymp-
totic methods and direct methods presented in chapter 2.

1.2.1.2 Reverse Time Migration

The Reverse Time Migration (RTM) is an application widely used by Oil and
Gas companies in order to build an image of the earth crust. Figure 1.8 depicts
from a high level point of view the 3 steps in RTM.

We start with a forward modeling using an initial model of the velocity. Then,
we perform a retro-propagation of the wave equation using the recorded data.
It is the backward modeling. Finally, we produce the final image using a cross-
correlation applied on the computed values in the previous steps.

Initial
Model

Forward
Modeling

Recorded
Data

Backward
Modeling

Imaging
Condition

Final Image

Figure 1.8 Reverse time migration work flow.

1.2.1.3 Full Wave Inversion

The Full Wave Inversion (FWI) aims to build a velocity model of the subsurface
studied. As described in figure 1.9, we compute the misfit between the computed
wavefield and the observed data and iterate on the corrected data until we con-
verge.

16



1.2. Geophysical Applications

Initial
Model

Forward
Modeling

Misfit
Calculation

Converge?

Gradient
Calculation

Model
Update

no

yes

Figure 1.9 Full wave inversion work flow.

1.2.2 Seismic Exploration Work Flow

Seismic exploration surveys are long processes that aim to have a precise local-
ization of hydro carbon deposits in a given area which enables quick and precise
drilling. This is an important process for Oil and Gas companies because it permits
to significantly save time and money.

The data acquisition during these surveys is followed by other steps before
obtaining a final image. It consists in : velocity modeling, wave field migration
and interpretation.

1.2.2.1 Data Acquisition

Data acquisition is performed during exploration campaigns. These campaigns
occur whether on land or in marine. The approach is the same in the two environ-
ments but involve different tools. The process consists of four steps.

The creation of a wave propagation using seismic vibrators or explosive sources
in land or compressed air guns in marine. The wave generated propagates into the
earth crust. At discontinuities, reflections occur. The reflected waves are recorded
using geophones in land and hydrophones in marine. Preprocessing is the last
step. It aims at preparing the collected data during the survey. It consists in re-
moving the noise contained in the raw data since it can interfere in the final image
and result in misinterpretation. Figure 1.10 explains the different steps required

17



1. Motivations

during seismic acquisition in marine and in land. The previous four steps are il-
lustrated in both cases.

(a) Marine seismic acquisition (b) Land seismic acquisition

Figure 1.10 Seismic acquisition steps in marine and in land: 1) acoustic source emits en-
ergy 2) seismic waves propagate in subsurface layers 3) reflected waves are recorded by
geophones or hydrophones 4) raw data is processed. Courtesy of Sercel, 2014.

1.2.2.2 Migration/Imaging

Migration places geometrically the discontinuities of the subsurface encoun-
tered during the wave propagation. It aims at reconstructing an image of the crust.
The migration complexity depends on the nature of the area explored. Therefore,
as described in [Sheriff et al., 1995], we have the following approaches:

• Time migration. It produces an image function of time. It is used when con-
trasts are small and when the geological structure is simple. This explains
why it is mainly used for sedimentary basins.

• Depth migration. It gives an image function of depth. It’s more appropri-
ate for complex structures with sharp slopes. It is also used in subsurfaces
containing salt domes. As described in [Farmer et al., 2009], depth migra-
tion can be ray-based like Kirchhoff migration and beam migration. These
approaches are used for steep structures but are inefficient when strong ve-
locity variations are encountered. Wave equation migration techniques are
another family of depth migration. We have the one-way wave equation mi-
gration which is unable to image accurately salt structures with strong dip-
ping flanks. This limitation is removed in the two-way wave equation migra-
tion which is more efficient in imaging steep structures and extreme velocity
variations especially on the surfaces neighboring salt structures. Figure 1.11
illustrates the one-way and two-way migrations using the BP 2004 bench-
mark [Billette et al., 2005]. The yellow circles depicts the weaknesses of the
one-way migration next to the salt dome flanks.

We call seismic trace the data recorded by the receivers during the recording
time of the seismic acquisition. The migration can occur before the summation of

18



1.2. Geophysical Applications

(a) One-way wave equation migration: split-step
Fourier plus interpolation.

(b) Two-way wave equation migration: reverse
time migration.

Figure 1.11 Images showing the difference of imaging for two different depth migration
algorithms. Courtesy of Farmer et al., 2006.

these traces and it is called pre-stack migration in this case. Or, it can be applied on
the result of their summation and then we call it post-stack migration. Pre-stack
migration gives more accurate results but requires more computations compared
to the post-stack migration.

1.2.2.3 Interpretation

The image produced by the migration algorithms need to be studied in order
to localize the possible hydrocarbon deposits. The quality of the image depends
on the algorithm used for the migration.

1.2.3 Challenges in Seismic Imaging Applications

Challenges in seismic imaging applications are related to the nature of the sub-
surface studied and the available resources to give a precise image of the subsur-
face in a reasonably short time.

Time-to-solution vs cost-to-solution Time-to-solution is the time needed for an
application to converge while cost-to-solution includes the necessary resources
needed in terms of compute capabilities, energy, maintenance, etc. Among ma-
jor concerns when it comes to production codes, such as RTM and FWI, is to find
a trade-off that minimizes both time- and cost-to-solution.

Data management and I/O issues When implementing a time domain approach,
the wavefield produced by the forward step has to be available while resolving the
backward step. For real cases, the data generated needs to be stored on disk and
results in I/O accesses which can constitute a bottleneck. In order to reduce the
amount of data stored during the forward propagation, checkpointing methods
can be applied as described in Dussaud et al., 2008 for example. We will give more
details on these methods in the last chapter 6.

19



1. Motivations

In the case of frequency domain implementations, we avoid this I/O issues
since each frequency can be treated separately. For this approach, we need in-
stead an efficient solver. The choice of the time domain or the frequency domain
depends on the problem we are solving.

Efficiency of the numerical scheme The choice of the numerical scheme is also
important. Their efficiency and the quality of the image they produce depend
closely of the nature and the characteristics of the subsurface imaged. Chapter 2
gives in details the advantages and limits of each numerical method.

20



CHAPTER 2

Seismic Modeling

This chapter is an overview of the numerical methods used for seismic mod-
eling. This introduction to these methods is important in order to understand the
algorithms and challenges faced during the implementation. This understanding
offers also the opportunity to pick the appropriate method according to the under-
lying architectures we are studying. Usually, we have a specific numerical method
widely used in a discipline. In seismic imaging, the choice of the method depends
on the aims of the study, the available resources and the environment. This re-
sulted in a multitude of methods each has its advantages and its drawbacks. In
this chapter, we begin with defining to the seismic waves and describe the differ-
ence between them. Then, we introduce the main families of numerical methods
approximating the equations governing wave propagation in elastic and acoustic
media : integral methods, asymptotic methods and direct methods. These meth-
ods were widely studied for seismic imaging and one can find more details in
[Carcione et al., 2002; Virieux et al., 2011] for example. In the last section, we give
more details on finite-difference techniques since we implement them in our ap-
plications. We will go through dispersion and convergence studies. Finally, we
will introduce the boundary condition methods such as the Absorbing Boundary
Conditions (ABCs) and Perfectly Matched Layer (PML) methods since we approx-
imate the wave equation in a limited domain and we need to eliminate the artifacts
due to reflections on boundaries.

2.1 Seismic Waves

2.1.1 Body Waves

We distinguish two types of body waves. Compressional waves also known as
the P-wave since they correspond to the first event recorded when an earthquake
occurs. Then we have shear wave also called S-wave and they are recorded in
second place in earthquake. Figure 2.1 illustrates the propagation directions of P-
and S- waves. The S waves can be decomposed into two components: SV vertical
component and SH horizontal component.



2. Seismic Modeling

Figure 2.1 Body waves: P and S.

In a homogeneous and isotropic media the velocities of P and S waves are the
following:

Vp =

√
λ+ 2 µ

ρ
Vs =

√
µ

ρ
(2.1)

Where λ and µ are the coefficients of Lamé and ρ is the density. As the shear
modulus µ is equal to 0 in fluid, S waves don’t propagate in water. Also, given the
expressions of velocities Vp and Vs, we notice that the P waves have always greater
velocity than S waves.

2.1.2 Surface Waves

We have two types of surface waves: Rayleigh waves and Love waves. Rayleigh
waves, also called ground roll, propagate when the surface of the medium is free
or considered as free like air since the elastic constants and density are very low
compared to their values in rocks. Rayleigh waves are dissipative this means that
their amplitude diminishes with depth. Love waves, also known as Q waves, ap-
ply horizontal transformations to the surface of the earth.

Figure 2.2 depicts the behavior of the Rayleigh and Love waves in comparison
to the propagation direction of the seismic wave.

Figure 2.2 Surface waves: Rayleigh and Love.

22



2.2. Wave Equations

2.2 Wave Equations

In Virieux et al., 2011 and Carcione et al., 2002, we find overviews of the dif-
ferent approaches to resolve wave equation depending on the needs and the ap-
plication domain. We can adopt a time-domain approach or a frequency-domain
approach depending on the computational needs and on the available resources.

Time Domain Approach

It simulates the variation in time of the wavefield u from sources to receivers.
A usual work flow in a time domain approach consists of 3 majors steps. We first
introduce a source term to create a wavefield. We then advance in time using the
numerical approach chosen. When the wavefield has propagated from all sources
to all the receivers used during the acquisition, we stop the computation.

The numerical methods commonly used for time-domain approaches are finite-
difference and finite-element methods. They are popular for their efficiency and
their straightforward implementation.

Frequency Domain Approach

This approach expresses the seismic modeling problem in the frequency do-
main using a Fourier transformation in time. As a result, the wave equation be-
comes a set of linear systems, one for each frequency. Also, the time-dependency
is eliminated which permits the resolution of each systems independently.

In order to solve these systems, we can use direct solvers or iterative solvers.
For direct solvers, LU and incomplete LU can be used but can cause prohibitive
storage requirements in 3D cases. For the iterative solvers, we can opt for the
multigrid-preconditioned Krylov methods. The main difficulty of these approaches
is the convergence of the solver.

2.2.1 Elastic Wave Equation

The elastic wave equation is established using the Newton’s second law of mo-
tion and Hooke’s law.

Newton’s law states that the acceleration of a particle when multiplied by its
mass is equal to the sum of forces applied on it. We assume that we are in the case
of small displacements in order to satisfy the elasticity condition.

Applying the previous laws leads to the system 2.2 which is the velocity-stress
first order equation of wave propagation.

ρ
∂vi
∂t

=
∂σij
∂xj

+ fvi

∂σij
∂t

= cijkl
∂vk
∂xl

+ fσij (2.2)

23



2. Seismic Modeling

Where vi components of velocity vector; σij components of stress tensor; cijkl
components of stiffness tensor; ρ density; fvi components of force source vector
and fσij components of moment rate source tensor.

The displacement second-order elastodynamic equation

ρ
∂2ui
∂t2

=
∂cijkl
∂xi

∂uk
∂xl

+ fi (2.3)

Where uk are the components of the displacement vector.

2.2.2 Acoustic Wave Equation

Through the following sections, we use the notation x = (x, y, z) ∈ R3 to de-
note spatial position and t ∈ R+ to denote time.

Let u denote the acoustic pressure field and ρ the density of the medium in
which the acoustic wave travels. In its scalar form, the second-order partial differ-
ential equation in time can be written as follows

1

ρ(x)c2(x)

∂2u(x, t)

∂t2
−∇

(
1

ρ(x)
∇u(x, t)

)
= 0 (2.4)

Where ∇ = (∂/∂x, ∂/∂y, ∂/∂z)T ; ρ is the density and c is the compressional
wave velocity. Density and velocity are strictly positive functions of the position
x.

2.2.2.1 Isotropic Media

An isotropic media has the same physical characteristics independently of the
direction. As a consequence, the density ρ is constant and the wave equation 2.4
can be rewritten like in 2.5.

1

c2

∂2u(x, t)

∂t2
−∆u(x, t) = 0 (2.5)

2.2.2.2 Anisotropic media

Transverse isotropy is the common form of anisotropy encountered in explo-
ration campaigns. In this case, we have an axis of symmetry orthogonal to planes
of isotropy. This can be the case for layered subsurfaces [Alkhalifah, 2000; Fletcher
et al., 2009].

The equation 2.6 is the second-order coupled equation governing the acoustic
wave propagation in a homogeneous TTI media. In this equation 2.6, we have p
the pressure wavefield and q an auxiliary wavefield. We consider P and SV wave
modes and denote vpz the P-wave velocity in the direction normal to the symmetry
plane, whereas vsz designates the SV velocity normal to the symmetry plane. We
also use ε and δ the anisotropic parameters. The angles θ and phi are the dip
measured to the vertical and the azimuth of the axis of symmetry respectively.

24



2.2. Wave Equations

∂2p

∂t2
= v2pz(1 + 2ε)H2p+ αv2pzH1q + v2szH1(p− αq)

∂2q

∂t2
=

1

α
v2pz(1 + 2δ)H2p+ αv2pzH1q − v2szH2(

1

α
p− q) (2.6)

Where the operator H1 and H2 are defined as follows

H1 = sin2θ cos2φ
∂2

∂x2
+ sin2θ sin2φ

∂2

∂y2
+ cos2θ

∂2

∂z2

+ sin2θ sin2φ
∂2

∂x∂y
+ sin2θ sinφ

∂2

∂y∂z

+ sin2θ cosφ
∂2

∂x∂z

H2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
−H1 (2.7)

2.2.2.3 Boundary Condition : Perfectly Matched Layer

Truncating the domain where the wave propagation occurs introduce artifacts
to computations. This is due to reflections of the wave on the boundaries. We add
an Absorbing Boundary Condition (ABC) to blur the boundaries and thus avoid
reflections.

In the finite-difference time-domain implementations we are studying, we use
the Perfectly Matched Layer (PML) method as a boundary condition. This tech-
nique was designed by Jean-Pierre Berenger in 1994 for Maxwell’s equation. He
suggested to add an artificial layer placed adjacent to the edges of the grid as
shown on the figure 2.3. The wave will be attenuated in this layer.

Wave Source

Perfectly matched Layer

Outgoing waves

Figure 2.3 Computation Domain Truncated by a Perfectly Matched Layer.

On figure 2.4, we illustrate the impact of the PML layer on the incident wave
front in an isotropic medium.

25



2. Seismic Modeling

(a) Isotropic wavefield without absorbing condi-
tions on boundaries.

(b) Absorbing conditions, PML in this example, re-
move the reflections on boundaries.

Figure 2.4 Impact of the PML method.

2.3 Numerical Methods for Seismic Modeling

Numerically, wave equation can be approximated using the spectral formula-
tion or a strong formulation or a weak formulation.

Spectral formulation produces efficient results for simple geological structures
whereas the strong formulation via finite-difference methods can give a good com-
promise between the quality of images and the computational cost. On the other
hand, weak formulation via finite-elements e.g. continuous or discontinuous Galerkin
methods are more suitable for areas with complex subsurfaces.

For our study, we consider a time-domain approach and approximate the wave
equation using finite-difference. We will also consider two formulations of the
equation. One in isotropic media and one in tilted transverse isotropic media (TTI).

2.3.1 Integral methods

These methods are based on Huygens principle that stipulates that every point
in the wavefield can be considered as a secondary source.

For the integral form of the scalar wave equation in homogeneous media we
use the Green function G

G(x,xs, t) =
δ(t− |x− xs|/c0)

4π|x− xs|
(2.8)

p(x, t) =

∫
G(x,xs, t− t′) q(xs, t

′) dxs dt
′ (2.9)

Green function are used as a response to a source in the studied media. The
source location is xs. p is the pressure generated by the particles displacement in
media.

These approaches are more efficient in homogeneous medium.

26



2.3. Numerical Methods for Seismic Modeling

2.3.2 Asymptotic methods

They are also called ray-tracing methods and are used when the medium is
heterogeneous. In such media, the Green’s functions cannot be computed simply.

An example of the asymptotic approch is the Kirchhof approximation widely
used in migration as described in Biondi, 2006.

Kirchhof approximations are based on the assumption of high frequencies.

2.3.3 Direct methods

Direct methods are based on a discretization of the computational domain. The
approximation of wave equation can be done using strong formulations such as
finite-difference and pseudo-spectral approaches. We can also rely on weak for-
mulations like finite-element and finite-volume methods.

We also need a time integration in order to approximate the wave equation.
Depending on the formulation chosen for the equation, the space and time deriva-
tives can be either second or first order.

The source term is added to the right hand part of the equation in order to be
able to resolve the equation.

2.3.3.1 Pseudo-Spectral Methods

Pseudo-spectral (SP) methods also known as the Fourier methods are strong
formulations of partial differential equations. Using these approaches, pressure
values p(x) are approximated using basis functions ψj like in equation 2.10

p(x) =

N∑
j=1

p(xj)ψj(x) (2.10)

In the case of regular grids, one can use Fourier polynomials as basis functions.
On the other hand Chebychev polynomials are used for irregular grids. In Kosloff
et al., 1982, we have a description of the Fourier methods applied to forward mod-
eling with comparison with finite-difference and finite-element methods. Con-
trary to finite-difference, pseudo-spectral methods are global. Modifications when
they occur affect the whole computing grid. When we opt for the pseudo-spectral
methods, we reduce the number of unknowns. We also reduce the number of grid
points compared to finite-difference while achieving the same accuracy.

Pseudo-spectral methods can show some limitations when the topography is
complex. Finer grid discretization in order to adapt to the complexity of the surface
results in higher computational cost. This impacts the efficiency of this numerical
method. Restraining it to relatively simple topographies.

2.3.3.2 Finite-Difference Methods

Finite-difference (FD) approaches are also a strong formulation of partial dif-
ferential equations. They are based on the discretization of the computation grid

27



2. Seismic Modeling

where we compute values of the wavefield. For finite-difference, we have approxi-
mations of spatial derivatives using for example the equation 2.11 where ∆x is the
spacing between two values of the field u.

du

dx
= lim

∆x→0

u(x+ ∆x)− u(x)

∆x
(2.11)

The derivative can be approximated by the value given in equation 2.12. This
is a forward difference approximation.

du

dx
≈ u(x+ ∆x)− u(x)

∆x
(2.12)

One can have a backward difference approximation of the derivative like de-
scribed in equation 2.13

du

dx
≈ u(x)− u(x−∆x)

∆x
(2.13)

Combining the forward 2.12 and backward 2.13 approximations one can have
a central approximation given by the equation 2.14.

∂u

∂x
=
u(x+ ∆x)− u(x−∆x)

2 ∆x
(2.14)

For higher order approximations, Taylor expansion enables the computation of
the derivatives as well as an estimation of the error.

In Moczo et al., 2007 and Kelly et al., 1976, we have detailed studies of the
finite-difference methods applied in isotropic and anisotropic medium. All aspects
ranging from the grids used to the boundary conditions are discussed.

Major difficulties in FD methods are due to the discretization grids. The space
steps are constrained by the minimal value of the velocity in the media. For het-
erogeneous medium, the space discretization requires lots of computations.

FD methods are inefficient when the topography is complex. In order to have
a precise approximation, space discretization steps need to be very small which
results in a huge computational demand.

Finite-difference methods can be applied in both frequency and time domains.
Frequency domain may be more efficient in inversion problems than time domain
when multiple source locations are used [Pratt, 1999; Virieux et al., 2009; Operto
et al., 2009]. In the case of forward modeling, time domain is widely used since
it is more adapted to the computation requirements of such applications [Moczo
et al., 2007; Virieux et al., 2011].

Finite-difference methods need to satisfy important conditions in order to guar-
anty their effectiveness. It consists of stability, convergence and consistency :

• Stability means that the solution is bounded when the analytical solution of
the PDE is bounded.

• Consistency means that the truncation tends to zero when the spatial grid
spacing and the time tend to zero.

28



2.4. Application to the Acoustic Wave Equation

• Convergence is satisfied when the solution using a finite-difference approach
the analytical solution of the partial differential equation.

For finite-difference methods, we can have either an explicit or an implicit
scheme. Explicit schemes use previous values of the wavefield in order to update
a given grid point for the current time step. On the other hand, implicit scheme
updates the whole grid at the current time step using an inversion of a matrice
[Chu et al., 2012].

2.3.3.3 Finite-Element Methods

Finite-element (FE) methods are weak formulation of partial differential equa-
tions. We use for these methods functions as basis to approximate the wavefield.

Finite-element approaches are more efficient in complex topography than finite-
difference and pseudo-spectral methods. They enable a more precise approxima-
tion of the surface.

According to the conditions we can ensure in approximating wave motion, we
have different ways to adopt the finite-element method. The following paragraphs
give more details on the different variations of this method.

Continuous Finite-Element
Continuous finite-element methods such as spectral-element (SE) suppose that

the wavefield is continuous on the boundaries separating the elements where we
compute locally its values or gives explicitly the values of the wavefield at the
boundaries.

Discontinuous Finite-Element
Discontinuous Galerkin methods remedy to the strong affirmation we have in

the continuous formulation of the standard finite-element methods. These new
methods introduce the notion of flux exchange instead.

2.4 Application to the Acoustic Wave Equation

In this section, we detail the necessary steps for the application of a finite-
difference time domain (FDTD) to acoustic wave equations. We consider isotropic
and anisotropic media and provide the formulas in each case.

2.4.1 Isotropic Media

We assume constant density and velocity in the media studied. We consider the
wave equation 2.5 and the FDTD approach as mentioned above. The discretization
is performed on both space and time domains enabling the computation of the
values of the wavefield.

Let us denote xijk = (i∆x, j∆y, k∆z) and tn = n∆t where ∆t,∆x,∆y and ∆z
designate time and space discretization steps respectively and {i, j, k, n} ∈ N. unijk
is the solution computed for the point xijk for the time step tn.

29



2. Seismic Modeling

Figure 2.5 Wavefront in isotropic media.

2.4.1.1 Time Discretization

The numerical scheme used for time discretization is explicit and centered. Our

goal is to compute a second order accurate approximation of
∂2un

ijk

∂t2
.

The standard approach to evaluating this approximation is to expand each of
the function values of u in a Taylor series about the point t:

u(x, t+∆t) = u(x, t) + ∆t
∂u(x, t)

∂t
+

∆t2

2

∂2u(x, t)

∂t2
+O(∆t3)

u(x, t−∆t) = u(x, t)−∆t
∂u(x, t)

∂t
+

∆t2

2

∂2u(x, t)

∂t2
+O(∆t3)

(2.15)

Summing the above expressions leads us to the expression of the approxima-
tion :

∂2u(x, t)

∂t2
=

u(x, t+∆t)− 2u(x, t) + u(x, t−∆t)

∆t2
(2.16)

Thus the approximation of the time derivative for (xijk, t
n) is :

∂2unijk
∂t2

=
un+1
ijk − 2unijk + un−1

ijk

∆t2
(2.17)

2.4.1.2 Space Discretization

Similarly to the time discretization, we opt for an explicit centered scheme.
The approximation we are intending to compute is p order accurate. Hence, we
will need p+ 1 points of the grid to compute this approximation.

30



2.4. Application to the Acoustic Wave Equation

We proceed as in the previous paragraph and we write Taylor series in order p
for each dimension of the domain. We obtain the following approximation of the
Laplace operator :

∆unijk =
1

∆x2

p∑
l=−p

alu
t
i+l,j,k +

1

∆y2

p∑
l=−p

alu
t
i,j+l,k +

1

∆z2

p∑
l=−p

alu
t
i,j,k+l (2.18)

When l ∈ {−p
2 ,

p
2}, the constants al are the Taylor coefficients for the order p.

The values of these coefficients are shown in table 2.1 for different accuracy orders.
Since the numerical scheme we are using is centered, the coefficients al and a−l are
the same.

Order a0 a1 a2 a3 a4 a5 a6 a7

2 -2 1

4 −5
2

4
3

−1
12

6 −49
18

3
2

−3
20

1
90

8 −205
72

8
5

−1
5

8
315

−1
560

Table 2.1 Taylor Coefficients

Combining all the previous results, 2.18 and 2.17, in equation 2.5 gives us the
final formula 2.19 where the wavefield is calculated using a discretization of order
2p in space and 2 in time.

ut+1
i,j,k =2uti,j,k − ut−1

i,j,k + c2∆t2

 1

∆x2

p∑
l=−p

alu
t
i+l,j,k

+
1

∆y2

p∑
l=−p

alu
t
i,j+l,k +

1

∆z2

p∑
l=−p

alu
t
i,j,k+l

 (2.19)

The finite-difference time-domain applications we are going to study in the
next chapters are based on the formula 2.19. We will give further explanations
when describing their algorithms.

2.4.2 Anisotropic media

In the case of anisotropic medium, we use the same discretization techniques
in time and space applied to the equation 2.6.

31



2. Seismic Modeling

Figure 2.6 Wavefront in anisotropic TTI subsurface where α = 1, θ = π
6 , φ = π

3 , ε = 0.24
and δ = 0.1.

2.4.3 Stability Condition and Dispersion

When solving hyperbolic partial differential equations numerically, we need a
condition for convergence. We consider the CFL condition named after Richard
Courant, Kurt Friedrichs and Hans Lewy who described it in their paper [Courant
et al., 1967].

For wave equation, the time step ∆t must be less than the time for the wave to
travel adjacent grid points. Thus, when the grid point separation (∆x, ∆y and ∆z)
is reduced, the upper limit for the time step also decreases.

For a general n-dimensional problem and in the case of a p-order approxima-
tion in space, the CFL condition is given by equation 2.20.

c ∆t

ndim∑
i=1

1

∆x2i
≤ 2

[
ndim

p
2∑

l=− p
2

|al|
]−1/2

(2.20)

32



CHAPTER 3

Performance Study of FDTD
Applications

Among the numerical methods used in seismic modeling to approximate the
wave equation as described in chapter 2, we focus on the finite-difference time-
domain (FDTD) approach since it is widely implemented in seismic imaging appli-
cations. It represents the computational part of these applications and contributes
greatly to their execution time. For example, Ortigosa et al., 2008 report that in
an implementation of the Reverse Time Migration, 90% of the execution time is
spent in the computational part based on finite-difference approach. In this chap-
ter, we extract an FDTD proxy and focus on the study of its performance. The aim
is to deeply understand the behavior of this proxy at node level in order to high-
light the architectural features impacting their performance. This characterization
is useful for the co-design as it permits the extrapolation of the FDTD performance
on future architectures. Possible optimizations on the core and node levels are
studied. We detail their advantages and their limits. We position all these study in
the context of a co-design process.

We will begin with a presentation of the performance study levels as they are
used for the co-design. We explore state-of-the-art performance modeling tech-
niques. Then, we give a deep insight on performance of isotropic and titled trans-
verse isotropic (TTI) FDTD kernels. These implementations are the building blocks
of the Reverse Time Migration (RTM). The whole application will be studied in the
last chapter 6.

3.1 Overview of Performance Modeling Techniques

Performance characterization can be split into 5 categories. These levels corre-
spond to a different stage in performance study process. The last 4 levels tightly
related to the underlying hardware and correspond to different levels of the archi-
tecture. The figure 3.1 is a high level summary of the different stages of perfor-
mance study as a preparation for the co-design process.



3. Performance Study of FDTD Applications

Simulator
level

Core
level

Socket
level

Node
level

Cluster
level

Large
upscaling

Small
upscaling

Small
upscaling

Large
upscaling

Application traces Hardware counters
Communication
& topology

Figure 3.1 From Imbert et al., 2011. Incremental performance study levels .

Simulators Cycle accurate CPU simulators are very interesting when the under-
lying architecture is not accessible. Simulators need application traces as an input
in order to generate the simulated performance. This gives us a starting point to
identify the bottlenecks on future architectures.

Core Level On this stage, the performance study aims to find out the most im-
portant optimizations such as vectorization, prefetching, loop modifications, cache
utilization, etc.

Socket Level We consider at this level multi-threading and shared memory par-
allelization. It’s important to see their effect on bandwidth. It also means a better
management of the shared caches and the reuse of data fetched into the last level
cache.

Node Level Here, we are more concerned by the Non Uniform Memory Accesses
(NUMA) between sockets. Threads pinning is of major importance in order to
remove performance drop due threads migration from one socket to another. A
well known technique to prevent NUMA effect is the first-touch that permits to
allocate data the nearest possible to the thread that made the allocation.

Cluster Level We use distributed memory configurations and introduce another
programming models to handle communications such MPI. Interconnect latency
can be penalizing in some networks which can be the cause of poor performance
in applications where we perform a lot of communications and I/O movements.
We also need to have load balancing approach mainly in heterogeneous clusters
and for applications where tasks spread among nodes are not similar and some of
them are likely to take more time to finish.

The Advanced Scientific Computing Research (ASCR) report on performance
modeling and simulation [Hoisie et al., 2012] defines the different approaches to
model performance of scientific applications. We present 3 different techniques:
analytical models, trace-based models and Roofline models.

34



3.1. Overview of Performance Modeling Techniques

3.1.1 Analytical Models

In analytical or semi-analytical models, we capture the performance behavior
in mathematical formulas where machine parameters such as number of cores,
bandwidth, cache size, are considered as knowns. We can also use statistics to
elaborate these formulas. In some cases, this method depends on the underlying
implementation. On the other hand, compilers and operating systems influence is
usually discarded by this type of modeling which results in discrepancies between
the actual performance and the prediction. For a fixed implementation, the models
can be extrapolated to other architectures which represent an interesting task to
initiate before porting to new architectures. Models with few relevant hardware
parameters can be extremely beneficial to predict performance.

Analytical models can be very helpful for auto-tuning. For some optimization
techniques, using the hardware features as an input enables to compute necessary
parameters of the optimizations while maximizing the performance formulas.

3.1.2 Trace-based Models

Traces and measurements collected using performance tools can also help to
characterize performance. We can think of communications patterns for example.
In the case of the applications parallelized using the message passing approach,
traces can visualize compute time and communication time per worker. Possible
load imbalance between the workers can easily detected. These traces can concern
a single event such as DRAM bandwidth or the application runtime.

3.1.3 Roofline Models

The Roofline model, as introduced by Williams et al., 2009, is a graph gathering
useful informations on the architecture studied and gives an insight on its impact
on performance of a given application.

On a Roofline model, we plot the peak performance values of the underlying
machine. It consists of the floating point peak performance and the peak band-
width. One can use the sustained bandwidth measured with a benchmark like
STREAM. The floating point performance can also be adjusted to the theoretical
performance of the algorithm under consideration. These new values give a more
realistic estimation of the achievable performance on the machine used.

The figure 3.2 is an illustration of the Roofline model. On the x-axis, we have
the arithmetic intensity which is the ratio of the number of the floating point opera-
tions by the number of bytes transferred between the processing unit and memory.
On the y-axis, we have the performance in terms of Gflop/s. Performance mea-
surements are done using hardware counters for example.

Depending on which side of the arithmetic intensity of the machine the per-
formance is located, one can determine whether the application is bandwidth or
compute bound. We can also have a preliminary estimation of the efficiency of the
algorithm compared to the peak performances of the machine. For example, ker-
nel 2 is less efficient than kernel 3. As a result, kernel 2 is subject to optimizations
in order to perform better on the computing resources.

35



3. Performance Study of FDTD Applications

Bandwidth
Bound

Compute
Bound

kernel 1

kernel 2

kernel 3

Peak FP

Pea
k Ban

dwid
th

Flop/byte

G
Fl

op
/s

Figure 3.2 Example of the Roofline model. Kernel 1 is limited by the bandwidth avail-
able on the machine. On the contrary, kernel 2 and kernel 3 are limited by the compute
capabilities of the hardware.

On figure 3.3, we place schematically the performance gain when optimiza-
tions are applied gradually on both sides. In order to reduce the gap between the
actual performance and the estimation of peak performances, we proceed gradu-
ally with these optimizations.

add/mul imbalance

w/out SIMD

Peak FP

Pea
k Ban

dwid
th

Flop/byte

G
Fl

op
/s

(a) Core optimizations.

w/out SW
pref

etc
h

w/out NUM
A

Peak FP

Pea
k Ban

dwid
th

Flop/byte

G
Fl

op
/s

(b) Bandwidth optimizations.

Figure 3.3 Optimizations on the Roofline model.

3.2 Performance Modeling of FDTD

In this section, we present the algorithm that results of the equations described
in chapter 2. We also present a performance model for theoretical performance.
For this aim, we make some assumptions on the cache behavior and on the number
of floating point operations performed.

36



3.2. Performance Modeling of FDTD

3.2.1 FDTD Algorithm

The finite-difference techniques applied to the equations 2.5 and 2.6 conducted
us to discrete formulations approximating the pressure field on the compute grid.
For example, we obtain the equation 2.19 in the isotropic medium. Contributions
of neighboring values at a time step t are required to update the value of a central
point at time step t + 1. The pattern visualizing these contributions in order to
compute a central value is called stencil.

The order of the stencil corresponds to the order of the Taylor expansion used
to approximate the partial differential derivatives. For example, the stencil de-
scribing the Laplacian in equation 2.18 is of order 2.p. Discretization in time is of
order 2.

Depending on the medium where the wave equation is approximated, we may
have different patterns. For example, the 7-point stencil in figure 3.4a can be
used in an approximation in isotropic medium using an order 2 in space. On the
other hand, the figure 3.4b represents a stencil used in the case of tilted transverse
isotropy (TTI). The second-order mixed derivatives in the equation 2.6 implies the
use of the values of the diagonal neighbors.

(a) Isotropic stencil when p = 1 (b) Stencil of TTI when p = 1

Figure 3.4 Centered grid.

The algorithm 1 is the result of the formula 2.19. Some implementations per-
form the update of the array u in place reducing the memory required to save the
intermediate values of the wavefield. In our implementation, we opt for double
buffering and use two arrays ut−1 for time steps t − 1 and ut for t. The values for
t+1 are stored in ut+1. The roles of ut−1 and ut are inverted. This method is likely
to facilitate the parallelization of the code even if it implies more data to allocate
in memory.

37



3. Performance Study of FDTD Applications

3.2.2 Modeling Theoretical Peak Performance

We now consider the peak performance of the FDTD applications. The the-
oretical peak performance can be computed using the number of floating point
operations and the number of bytes in the algorithm 1 for example. For this pur-
pose, we need to make some assumptions regarding the architecture. The table 3.1
summarizes the number of the floating point operations of our isotropic and TTI
codes per a point update when assuming an infinite cache and an infinite memory
bandwidth. We also give the number of DRAM reads and DRAM writes.

Algorithm 1 4D loop to compute the wavefield u in an isotropic medium.
for t← Tmin, Tmax do

for k ← 1, Nz do
for j ← 1, Ny do

for i← 1, Nx do
Laplacian u = a0 ∗ ut(i, j, k)

+ a1 ∗ {ut(i− 1, j , k ) + ut(i+ 1, j , k )

+ ut(i , j − 1, k ) + ut(i , j + 1, k )

+ ut(i , j , k − 1) + ut(i , j , k + 1)}
...

+ ap ∗ {ut(i− p, j , k ) + ut(i+ p, j , k )

+ ut(i , j − p, k ) + ut(i , j + p, k )

+ ut(i , j , k − p) + ut(i , j , k + p)}

ut+1 = 2 ut − ut−1 + c2 ∆t2 Laplacian u
end for

end for
end for

end for

Add Mul Flops/update DRAM read DRAM write
Isotropic 6p+ 2 p+ 3 7p+ 5 3 1

TTI 30p+ 38 18p+ 62 48p+ 100 24 2

Table 3.1 Theoretical Peak Performance

38



3.2. Performance Modeling of FDTD

Microarchitecture Intel Westmere EP Xeon X5680

Clock[GHz] 3.33
Node sockets/cores/threads 2 / 12 / 24
FP peak performance [GFlop/s] 159.84
L1/L2/L3 cache 32KB / 256KB / 12MB
Socket theoretical bandwidth [GB/s] 32.0
Socket sustained bandwidth [GB/s] 21.0

Table 3.2 Test machine specifications.

Let us consider the machine described in 3.2 and the isotropic kernel. If we
maintain the hypotheses of infinite cache and infinite memory bandwidth, a the-
oretical peak performance of this FDTD kernel can be computed using the total
number of floating point operations nFP and is equal to Peak1 given by equation
3.1.

Peak1 =
nFP

8 Flop/cycle
(3.1)

On the Westmere machine 3.2, independent adds and multiplications can be
performed in parallel which results in a second estimation of the theoretical peak
performance equal to Peak2 defined in equation 3.2.

Peak2 =
max(nAdd, nMul)

4 Flop/cycle
(3.2)

As a result, the efficiency of the peak performance for the isotropic kernel is
equal to the expression 3.3 and illustrated in figure 3.5 as a function of the half
stencil order.

Efficiency = 100× Peak1

Peak2

= 50× 7p+ 5

6p+ 2
(3.3)

The same discussion can be applied to the anisotropic kernel TTI in order to
compute the efficiency using the theoretical values of floating point operations
and DRAM read and write in table 3.1

In the first estimation of the peak performance, we considered an infinite mem-
ory bandwidth and an infinite cache. The performance is only limited by the com-
pute resources available in the underlying architecture. However, this value is
never reached in real cases since memory bandwidth and caches will be limiting
factors. As a consequence, we can compute an other estimation for the perfor-
mance given the theoretical memory bandwidth β. We will also need a characteri-
zation of the algorithm. We use the arithmetic intensity defined as the ratio of the
theoretical floating point operations nFP by the number of the bytes transferred

39



3. Performance Study of FDTD Applications

2 4 6 8 10 12 14 16
p

60

70

80

90

100
E
ff
ic
ie
n
cy

Isotropic
TTI

Figure 3.5 Efficiency of the peak performance for isotropic and TTI kernels when the cache
is infinite.

nB. For this new estimation, we will maintain the assumption of an infinite last
level cache. The expression 3.4 gives the definition of this new estimation and its
value in the isotropic case.

Peakalgo = β × nFP

nB

=
β

sizeofreal
× 7p+ 5

3 + 1
(3.4)

The efficiency of this new theoretical estimation compared to the machine float-
ing point peak performance is given by the expression 3.5. We consider the West-
mere machine in 3.2. Its clock frequency is equal to 3.33 GHz and its theoretical
bandwidth per socket is equal to 32 GByte/s. The figure 3.6 illustrates the results
for isotropic and TTI applications (only the single precision case is considered).

Efficiency =
Peakarch
Peakalgo

=
8× freq
β
4 ×

7p+5
3+1

(3.5)

We could also consider the maximum sustainable bandwidth measured with
the STREAM benchmark [McCalpin, 2000] for example. The new upper limit on
the peak performance will decrease and consequently will be a more accurate
value compared to the previous estimations.

40



3.3. Performance Optimizations of FDTD

2 4 6 8 10 12 14 16
p

0

10

20

30

40

50

60

70

80

E
ff
ic
ie
n
cy

Isotropic
TTI

Figure 3.6 Efficiency of the peak performance estimation given the memory bandwidth
in comparison with the floating point peak performance of the machine. We consider the
isotropic and TTI implementations.

The estimation of the peak performance on a given machine is an important
step in studying the performance of applications. This is the first step we need to
perform before starting to think about the possible optimizations of the code. We
are going to use these values in the following sections in order to identify method-
ically the possible optimizations that can be applied on FDTD applications.

3.3 Performance Optimizations of FDTD

In this section, we present state-of-the-art optimizations performed on stencil
computations on node level. We explain the advantages and limitations of each
strategy. We also consider a multi-threaded version of the FDTD applications in
order to fully benefit from the resources available.

For the node level, we are going to overview mechanisms such as the soft-
ware prefetching in modern architectures and its impact on performance. We will
also study the NUMA effect in multi-socket configurations and highlight the solu-
tions to get around this issue. Then, we consider cache optimizations to cope with
memory bandwidth and latency limitations. The goal of these optimizations is to
enhance data locality in caches. Cache optimizations can be hardware-dependent
such as spatial and temporal blocking. They can also hardware-free and use a
cache oblivious approach. As a conclusion to this paragraph, we explore the auto-
tuning techniques applied to stencil codes as they offer the opportunity to quickly
produce an optimized code for an underlying architecture.

In a multi-node level, the focus is rather held on communications and load bal-

41



3. Performance Study of FDTD Applications

ancing between processes. This implies domain decomposition strategies, com-
munications overlapping with computations, work stealing and scheduling.

3.3.1 NUMA-Awareness

In the case of multi-core architectures with more than a single socket per node,
we can be confronted to the NUMA effect. This effect is noticed for the codes using
multi-threading via mechanisms offered by an appropriate programming model
like openMP. The effective allocation of the arrays and data used by threads oc-
curs when they are accessed the first time and in some cases the allocation can take
place in the memory of the neighboring socket, resulting in asymmetric memory
accesses and thus additional latencies which imply dramatic drop in performance.
One can remedy to this issue using the first touch mechanism. It consists of access-
ing the arrays before starting the computation using the same pattern in order to
pin them in the appropriate memory bank.

3.3.2 Prefetching

Prefetching is a mechanism that reduces the pressure on the memory band-
width. It anticipates the upcoming requests of the program and brings into caches
more elements than initially needed. The following requests can be satisfied quickly
since the required element is already in the cache. Prefetching can be implemented
in two ways: in the hardware or in the software [Lee et al., 2012].

3.3.3 Cache Optimizations

Cache optimizations aim to use efficiently the cache hierarchy in order to hide
memory latencies and reduce the pressure on the bandwidth. This is possible
when the locality principle is applied properly. For caches, it consists in the spatial
locality and the temporal locality.

• Spatial locality When an element is fetched to the cache upon a DRAM read
request, the other elements on the same cache line will be used.

• Temporal locality Data already in the cache can be reused for the future com-
putations.

Within a program, a data request upon a read for example can generate misses
when cache can not serve the request. Misses can have three reasons.

• Compulsory misses occur when the program starts. Data needed by the in-
structions are not yet fetched in the cache. They are also called cold start
misses.

• Capacity misses happen when all elements used by the program can not hold
in the cache. This can generate high DRAM traffic in order to serve con-
stantly the instructions requests.

• Conflict misses result from conflicting memory addresses that have the same
cache banks.

42



3.3. Performance Optimizations of FDTD

3.3.3.1 Spatial Blocking

Spatial blocking aims to enhance data locality in order to reduce capacity misses.
This optimization increases data reuse in cache and thus reduces the amount of
data brought from memory. This is an important optimization approach for mem-
ory bound and latency bound applications. Codes as stencil computations reap a
gain in performance from spatial blocking.

For spatial blocking, the 3D loop on the computation grid is decomposed into
smaller loops that enables data to fit into the last level cache. The algorithm 1 is
transformed into the algorithm 2 where we introduce loop steps blockx, blocky and
blockz . These are the blocking factors along the X, Y and Z axis respectively. The
aim is to bring a block into the cache and to perform all computations for the time
step t+1 on its elements.

The figure 3.7 is an illustration of the spatial blocking as described in algorithm
2. The green arrows show the data access pattern inside the block.

Algorithm 2 3D loop used to compute the wavefield u at time step t+1 in an
isotropic medium using cache blocking.

for k ← 1, Nz, blockz do
for j ← 1, Ny, blocky do

for i← 1, Nx, blockx do
Laplacian u = a0 ∗ ut(i, j, k)+ ...

ut+1 = 2 ut − ut−1 + c2 ∆t2 Laplacian u
end for

end for
end for

The effectiveness of cache blocking strategy depends of the blocking factors.
Their sizes should take into consideration the size of the last level cache, the num-
ber of threads sharing the cache and the number of arrays involved in the algo-
rithm. Determining the optimal block sizes can be done using analytical perfor-
mance models [Datta et al., 2008].

In the following paragraphs, we denote C the cache size and Nth the number
of threads sharing this cache.

3D Blocking This approaches is described in figure 3.7. The blocking is per-
formed along the X, Y and Z dimensions. The block size is equal to blocksize =
blockx × blocky × blockz and needs to satisfy the inequality 3.6.

Nth × blockx × blocky × blockz ≤ C (3.6)

In modern architectures, software prefetching is an important mechanism used
to enhance spatial and temporal localities in caches and to lessen the pressure on
memory bandwidth. Studies like [Datta et al., 2008; Rivera et al., 2000] showed that
cache blocking can interfere with software prefetching and results in a regression
of the overall performance compared to the non-blocked version. As shown on

43



3. Performance Study of FDTD Applications

N
z

Nx

N y

bl
oc

k z

blockx blo
ck y

x

yz

Figure 3.7 Spatial blocking of the computation grid using the blocking factors blockx,
blocky and blockz . The unit stride direction is on the X dimension. The green arrows inside
the block indicate how the data is accessed.

figure 3.7, the unit stride access within the block can be smaller than the prefetch-
ing distance. As a consequence, prefetching will bring into the cache elements that
are not useful for the computations on the current block.

2.5D Blocking This approach was introduced by Rivera et al., 2000 for a Jacobi
kernel. It is also used by Nguyen et al., 2010 for their stencil codes. It performs
blocking only on the X and Y dimensions and stream on the Z direction. The
figure 3.8 gives an example for a stencil of order 2 in space. In order to compute
the values of elements in the plane k at time step t+1, we need to bring into the
cache the k − 1, k and k + 1 planes at time step t. In a general case, for a stencil of
order 2p in space, we need to hold in cache only (2p + 1) XY planes. The size of
these XY planes is equal to blockx × blocky which leads to the inequality 3.7.

Nth (2p+ 1) blockx blocky ≤ C (3.7)

The figure 3.8 is an illustration of the 2.5D blocking for a stencil of order 2 in
space. The colored planes depict the elements that we need to keep in the cache in
order to reuse it efficiently while updating the wave field.

Taking into consideration the possible interaction between prefetching and block-
ing as described in [Datta et al., 2008], we tend to maximize the length of the block
on the unit stride dimension (X in this case) and choose it equal to the grid size
Nx. This limits the unknowns in the previous inequality 3.7 to blocky.

blocky ≤
C

(2p+ 1) Nx Nth
(3.8)

As a result the size of blocky needs to satisfy the system of inequalities 3.9. The
figure 3.9 delimits the region containing the possible values when Nx = Ny.

44



3.3. Performance Optimizations of FDTD

blo
ck y

blockx

ui jk ui+1 jk

x

yz

Figure 3.8 For simplicity matter, we consider a half stencil order p = 1. In this example
we update the grid elements on the red plane for time step t+1 using elements contained
in the red plane and in blue planes in time step t. For p = 1, we only need to keep 3 XY
planes in cache each of size blockx × blocky .




blocky ≤ C
(2p+1) Nx Nth

blocky ≤ Ny

(3.9)

0 200 400 600 800 1000
Nx

0

200

400

600

800

1000

b
lo

ck
y

Ny

C

(2p + 1) Nx Nth

Figure 3.9 The size of the block along the y direction is contained in the region resulting of
the intersection between the green and pink regions which give the values satisfying the
inequalities of the system 3.9.

When blocking along the y direction and streaming along the z direction, we
ensure for each thread an optimal data reuse. The update of the first red plane as

45



3. Performance Study of FDTD Applications

illustrated in figure 3.8 requires the fetching of the (2p + 1) XY planes. Within a
single time step and for the following planes, we only need to load a single plane
XY since the remaining 2p planes are already in cache.

3.3.3.2 Temporal Blocking

Similarly to spacial blocking, the temporal blocking aims to increase the tem-
poral locality of the data. In this case, the blocking is performed on the outermost
loop in algorithm 1. We perform blockt iterations on the same data before loading
the next data set. This reduces the number of data transfers due to the intermediate
write-backs and loads. Many methods exist for temporal blocking. We introduce
the time skewing and the temporal wavefront blocking approaches.

Time Skewing. It is a loop transformation that exchanges the spacial and tem-
poral loops. As a result, the blockt time steps are executed on the same elements.
As illustrated on figure 3.10 for a 3-point stencil, we perform multiple computa-
tions in the blue area and we load a single element. On the figure 3.10, we only
have 1D illustration but this temporal blocking can also be applied to 2D and 3D
computations.

t

x

computed values

cached values

co
m

pute

co
m

pute

co
m

pute

load

Figure 3.10 Time skewing for p = 1. We only keep elements in the blue area. We can
perform multiple computations and only load an elements.

Temporal Wavefront Blocking As described in [Wellein et al., 2009],[Treibig et
al., 2011] and [Wittmann et al., 2010], wavefront blocking takes advantage of the
shared cache in the multi- and many-cores architectures. Wave updates are per-
formed in a pipeline fashion among threads sharing a last level cache (L2 or L3).
Depending on the size of the stencil considered and after the pipeline start-up by
the first thread, the remaining threads update the plane for the next time steps.
Synchronizations are needed though to prevent from race conditions. The aim of
this blocking is to reduce the pressure on bandwidth and ensure better temporal

46



3.3. Performance Optimizations of FDTD

locality of data. Figure 3.11 illustrates the wavefront blocking approach for a sten-
cil of order 2 (p = 1).

x

t = 0

t = 1

t = 2

t = 3

Figure 3.11 Wavefront blocking for p = 1 and cache group equal to 4. Elements in the block
are computed by the same thread. Blocks with the same color are computed by different
threads simultaneously.

3.3.3.3 Cache Oblivious

Cache oblivious is an approach developed by Frigo et al in [Frigo et al., 1999]
that overcomes the hardware features of the machine e.g. cache size and number of
threads and performs an optimal blocking that uses finer grain than spatial block-
ing. The main idea of this algorithm is based on divide and conquer technique.
As the resulting algorithm modifies greatly the initial implementation of the algo-
rithm 1, it can be judicious to implement it in an auto-tuning framework such as
PATUS [Christen et al., 2011]. Some programming models adopted the concept of
cache oblivious and integrated it in the runtime in order to have straightforward
use of this algorithm capabilities, namely Cilk.

3.3.4 Z-order Curve

The z-order curve, also known as Morton order, is a particular case of the space-
filling curves [Butz, 1968]. The main idea of this approach is to define a function
that maps coordinates of elements contained in a multidimensional space to 1D
space. The curve of this function connects these elements and defines a path within
the domain.

This technique is used for data management in data intensive applications to
cope with latencies and bandwidth limitations when fetching data from disk or
memory [Pascucci et al., 2001; Mellor-Crummey et al., 2001]. It is also used for
computations reordering to enhance data locality [Jin et al., 2005; Davis et al.,
2011]. This approach can be very useful for cache sensitive applications where
data reuse has a great impact on performance. The native z-order curve is applied
to domains with dimensions power of two. It uses binary representation of the
coordinates in this first domain and combines them in order to compute the cor-
responding coordinate in the new 1D domain. Figure 3.12a is an example of the
coordinates conversion from a 2D to 1D. Figure 3.12b gives the z-order curve when
considering multiple levels of data structures. Threads, such as OpenMP threads,

47



3. Performance Study of FDTD Applications

0 0 0 1

0 0

0 1

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1

(a) Coordinates conversion for the z-order curve.
Interleaving the binary representations gives the
coordinates in the 1D space.

(b) The z-order path recursively access-
ing data structures from wider to finer
grain parallelism.

Figure 3.12 Illustration of the z-order approach.

share the computation grid. In this particular example, we consider 4 threads and
the domain partition uses a Cartesian topology. Inside every chunk, we perform
cache blocking. The z-order is applied on the threads level first, then it consid-
ers the order of the cache blocks processing and even inside a single block we can
apply it. This approach guaranties an optimal reuse of data and consequently pre-
serves data locality [Bader et al., 2006].

As mentioned before, initially the z-order technique was introduced for do-
mains with dimensions that are power of 2. Valsalam et al., 2002 presents a more
general approach that can be applied on matrices with arbitrary sizes. Their tech-
nique consists in recursively applying z-order on blocks that satisfy the power 2
condition. The results of this generalization were presented for matrix multiplica-
tions using a Strassen implementation.

3.4 ASK: Adaptive Sampling Kit

Common optimizations aim to enhance data locality through spatial and tem-
poral cache blocking, loop tiling and padding. Most of these optimizations are
machine dependent and need to be manually tuned, for instance by selecting the
best blocking size and padding width. Performance modeling helps the tuning
process by exploring the performance trade-offs in a large parameter space. For
such exploration, we use the Adaptive Sampling Kit (ASK) [Oliveira Castro et al.,
2013]. This tool uses sampling methods and gives an insight on the performance
on the underlying architecture without executing all the possible combinations of
parameters.

In this section, we use the isotropic FDTD implementations and explore the
following parameters range:

• the grid size (X,Y, Z) where each dimension is independently selected in the

48



3.4. ASK: Adaptive Sampling Kit

range [768 : 1536] by steps of 128,

• the half stencil order p in [1 : 8],

• the number of threads in {4, 8, 16, 32},

• the number of blocks (NX,NY,NZ) respectively onX direction in {1, 2, 4, 8, 16},
Y and Z directions in {4, 16, 32, 64, 128},

• the variant of the algorithm. The first variant, isotropic, corresponds to
the code in figure 1. The second variant, isotropic-split, is the same
code after loop splitting.

The possible factor combinations amount to more than 2.7 million.

3.4.1 ASK experimental setup

To produce the results presented in section 3.4.2, we build a performance model
of the FDTD kernel using ASK. The target machine is the same Westmere 32-core
four-socket Xeon X7550 at 2.00GHz with 128GB of RAM. Threads were distributed
evenly among sockets with KMP_AFFINITY=scatter.

Points are sampled in 16 batches of 50 points, using three different sampling
strategies: HVS, HVSrelative and Random. The surrogate model, GBM, was man-
ually tuned on a small set of points, before starting the full ASK experiment.
The selected GBM parameters are: shrinkage=0.05, ntrees=10 000, depth=9,
minobsinnode=3.

In order to evaluate the error, we measure the real response of 3225 randomly
selected points, which represent more than 60 hours of experiments on the 32-
core machine. Since the test set is small compared to the design space, confidence
intervals of the prediction error are computed using 1000 ordinary bootstrap iter-
ations [Efron et al., 1986].

Figure 3.13 shows the RMSE and mean percentage error for the three sampling
strategies. The experiment is stopped after 16 sampling steps to show ASK capa-
bility of building a performance model with a limited number of samples. HVS
RMSE error curve seems to be still progressing. The most accurate model is built
using HVS and GBM with a final mean error of 7.71% and an RMSE error of 4.14.
The difference between HVS and random sampling in this experiment is small.
Our intuition is that the design space has a high variability and gives few opti-
mization opportunities to HVS which benefits mostly from flat regions. HVSrela-
tive RMSE error is higher than the other methods. Since HVSrelative optimizes for
relative error, this result is not surprising. However, HVSrelative does not show
relative error improvement compared to the other methods in this experiment.

A GBM performance model of the FDTD kernel is built using the HVS 800
points sampling. Next section, uses this model to study the interactions between
the different parameters of the FDTD kernel.

49



3. Performance Study of FDTD Applications

6

9

12

15

200 400 600 800
samples

R
M

S
E

Strategy

HVS

HVSrelative

Random

10

15

20

25

30

35

200 400 600 800
samples

M
ea

n 
%

 E
rr

or

Strategy

HVS

HVSrelative

Random

Figure 3.13 Root mean square error and Mean percentage error for the three tested strate-
gies in the FDTD case study. The error is evaluated against a randomly selected test set of
3225 points. The vertical black lines show the bootstrap confidence intervals.

3.4.2 Performance characterization of stencil computation

The GBM model offers a useful feature that allows sorting the model factors
by their relative influence. Figure 3.14 shows the relative influence of the different
factors considered in our experiment. The relative influence is computed using the
method proposed by Friedman in [Friedman, 2001] and determines how much a
given variable affects the response in the GBM model. Dominant factors of perfor-
mance are the order of the stencil, the code variant, number of blocks on X and
Y and the number of threads. Figure 3.14 gives an insight on the parameters to
consider in priority to enhance performance. The following paragraphs give more
details on the way these parameters affect performance. The metric used is the
number of cycles required per lattice update.

50



3.4. ASK: Adaptive Sampling Kit

0

20

40

60

or
de

r

va
ria

nt NX NY T X NZ Y Z

factor

re
la

tiv
e 

in
flu

en
ce

 (
%

)

Figure 3.14 Relative influence of input factors in the FDTD kernel. The influence deter-
mines how much a factor affects the response. For the GBM model, it is computed as
described in Friedman, 2001.

The Variant Influence We consider two variants of the FDTD implementation.
The first variant, isotropic in figure 1 computes the Laplacian in a triple nested
loop. In the second variant, isotropic-split, the inner loop is split into p
smaller loops. Each split loop corresponds to one of the bp factored blocks. Fig-
ure 3.15 shows that the number of cycles per update increases for both variants
as the stencil order increases. Yet, for high stencil orders with 2.p > 10, the
isotropic variant is significantly more costly than the isotropic-split vari-
ant. The goal of loop splitting is to lower the register pressure and the number of
concurrent memory streams. It is particularly effective on large loop bodies, such
as the ones needed by high-order stencils.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8
stencil half−order (p)

cy
cl

es
 p

er
 u

pd
at

e Algorithm Variant

isotropic

isotropic−split

Figure 3.15 Performance of the isotropic and isotropic-split code variants. For p
larger than five, the isotropic-split version is significantly faster.

51



3. Performance Study of FDTD Applications

The Blocking Influence This section studies the impact of the spatial cache block-
ing on performance in the isotropic-split variant with p = 4. Results are
similar for other configurations. As seen in section 3.3.3, cache blocking aims to
increase data locality by reusing data before eviction from the cache. The loop
illustrated in figure 1 can be blocked across the three dimensions.

Figure 3.16 illustrates the impact of blocking on the innermost dimension X .
The grid is tiled with blocks: increasing the number of blocks reduces each block
size. Performance deteriorates as the number of blocks on dimension X increases.
Indeed, for small block sizes on X, the hardware prefetcher streams additional
data, which are evicted from the cache before being used. Therefore, using small
X block sizes result in an increase of memory traffic. The number of blocks in the
X dimension should be kept low.

On the other hand, the outer Y and Z loops should be blocked to make the
data working set of all the threads fit the cache. Figure 3.17 shows the correlation
between the number of Y blocks and the number of threads. For high number
of threads, configurations with a high number of Y blocks are the best. All the
threads in the same socket share the same Last Level Cache (LLC). As the num-
ber of threads increases, the cache budget per thread decreases requiring smaller
block sizes. Blocking across Z also helps, but the pay-off is smaller since it exposes
less data reuse. Similar conclusions can be found in other studies on performance
optimization of stencil computations such as [Nguyen et al., 2010; Rivera et al.,
2000].

0

10

20

30

40

50

60

1 2 4 8 16
Number of blocks on X dimension

cy
cl

es
 p

er
 u

pd
at

e

Figure 3.16 Performance of different X blocking configurations. The size of the blocks is
inversely proportional to the number of blocks. Large blocks sizes across X exhibit the
better performance.

52



3.4. ASK: Adaptive Sampling Kit

4 threads 8 threads

16 threads 32 threads

20

30

40

50

60

20

30

40

50

60

4 16 32 64 128 4 16 32 64 128
Number of blocks on Y dimension

cy
cl

es
 p

er
 u

pd
at

e

Figure 3.17 Performance of different Y blocking configurations. For a high number of
threads, reducing the Y block size improves performance.

Scalability This section studies the strong scalability of a stencil of order 8 (p = 4)
with the best variant and blocking parameters determined in the previous analysis.
The selected parameters are isotropic-split, p = 4, NX = 1, NY = 128, and
NZ = 32.

Figure 3.18 shows the scalability for two different grid sizes.
The kernel scales well up to 16 threads. ASK pinpoints a potential scalability

problem, at 32 threads the speedup is around 26. Since the results are extrapolated
from the model, we cross validate this result by direct measurement. Despite some
small local discrepancies, the model predicts the general trend.

●

●

●

●

●

●

●

●

size = 896x896x768 size = 1280x1280x1024

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
threads

sp
ee

d 
up model

● HVS

True response

Figure 3.18 Scalability for the isotropic-split implementation with half order p = 4,
NX = 1, NY = 128, and NZ = 32. The speedup is computed using the single thread
performance with the same parameters.

53



3. Performance Study of FDTD Applications

The model generated by ASK allowed us to tune the variant, the blocking fac-
tor, and to detect a scalability problem. The analysis presented here reaches simi-
lar conclusions to previous studies on stencil performance. Our results with ASK
show that adaptive sampling is a valid approach for real application performance
exploration.

ASK permitted to identify the most influencing parameters This chapter fo-
cuses on optimizations applied to FDTD applications affecting data accesses pat-
tern and data reuse. Based on the algorithm describing lattice updates, we derived
a performance model that accounts for theoretical peak performance of the ma-
chine. This gives us bounds on the expected performance.

ASK permitted us to identify the most influencing parameters for FDTD. The
order of the stencil studied has the greatest impact on performance followed by
the loop split and the size of the cache block on the X dimension.

In the next chapter, we define more precisely the interaction between architec-
ture and the FDTD applications.

54



CHAPTER 4

Memory Bandwidth Cost Model for
FDTD

In the previous chapter, we gave an insight on the optimizations suitable for
stencil-based applications class. In this chapter, we explore these optimizations on
actual codes in order to highlight the architectural features that impact the perfor-
mance and to quantify their influence.

We consider for our experiments isotropic implementations and we are inter-
ested in their multi-threaded versions. Our aim is the use of the full capacity of
a computing node in order to delimit the scope of the applied optimizations on a
node level.

For these experiments, we vary the arithmetic intensity of the applications
studied while maintaining the same memory size allocated for wavefields. Hence,
for the same problem size, we have more or less floating point operations.

We also bring to a focus the impact of the widening gap between floating point
rates and memory. We use the reuse-distance, i.e. the distance separating consecu-
tive references to the same element and accounting for distinct accesses, as a metric
for data locality and for efficient use of the caches. This metric results in a model
for performance prediction.

Experiments are performed on the Westmere machine described in table 3.2
and we use the Roofline model as described in 3.1.3 to plot the performance vari-
ations on this particular machine depending on the optimizations performed and
the half stencil order p. For the peak rates, we use the peak floating point per-
formance and the sustained bandwidth for a single socket. These values are also
given in table 3.2.

4.1 Isotropic Kernel

On figure 4.1, we plot the performance in terms of Gflop/s for the isotropic im-
plementation when using different stencil orders. The multi-threaded version runs
on a single socket on the node 3.2 and uses the 6 cores available on it. Performance
measurements are done using LIKWID , a lightweight tool that permits to measure
hardware counters simply using model specific registers (MSRs) from user space



4. Memory Bandwidth Cost Model for FDTD

0.5 1 2 4 8 16
Flop/byte

4

8

16

32

64

128

256

512

GF
lo

p/
s

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

Figure 4.1 Roofline for the non-blocked isotropic implementation.

[Treibig et al., 2010]. We retrieve the GFlop/s data and the corresponding number
of Bytes and floating point instructions.

We also show the theoretical arithmetic intensity through the dashed vertical
lines. It is computed using values reported in table 3.1 and only accounts for the
compulsory traffic. The intersections of these dashed lines with the peak perfor-
mance rates of the machine represent upper bounds for the performance of the
application depending on the value of the half stencil length p. Hence, the aim
is to approach these values. Plotting performance measurements on a Roofline
model is an easy way to figure out the possible optimizations that we can apply.
It also shows the gap between the peak performance rates and the achievable per-
formance and thus the efficiency of an implementation.

On figure 4.1, we notice that the real data measurements are rather in the band-
width bound area of the Roofline model and that for almost half stencil lengths the
performance on single socket is limited by the bandwidth. We also notice that for
values of p greater than 5 performance decreases and it is not only limited by the
bandwidth. This is due to register spilling in the case of high stencil orders. It
results in increased pressure on the memory bus and increased instruction count.
We opt for the split of the inner loop in algorithm 1 into smaller ones since it rep-
resents the hotspot of the application. This reduces the pressure on registers and
the number of the instruction count within the loops. As a result, performance
increases and is only bounded by the bandwidth as shown on figure 4.2.

We are interested in data movement optimizations and their impact on these
versions of the FDTD application. We focus on the cache blocking technique and

56



4.2. Performance Model for Extra DRAM Traffic

0.5 1 2 4 8 16
Flop/byte

4

8

16

32

64

128

256

512

GF
lo

p/
s

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

Figure 4.2 Roofline for the non-blocked isotropic implementation after loop splitting.

we choose an optimal block size. The figure 4.3 shows the impact of the blocking
on the initial version of the application. We still have the drop of the performance
due to register spilling for p greater than 5. We notice that the measured per-
formance is getting closer to peak performance of the algorithm. On figure 4.4,
we also have the same tendency. Efficient use of cache guaranties data locality
and since the application we are studying is bounded by the bandwidth, reducing
DRAM traffic results in better performance.

On figure 4.4, we notice that even after applying the cache blocking in order to
enhance data locality, we still have extra DRAM traffic. This is illustrated by the
discrepancy between the theoretical value presented by the dashed line and the
real data collected. Our goal is to explain this gap between the two values. We use
the reuse distance histogram in order to compute this extra DRAM traffic for both
blocked and non-blocked versions of the application.

4.2 Performance Model for Extra DRAM Traffic

The previous section showed that the FDTD application is bounded by band-
width and that optimizations affecting data movements are extremely important
in order to increase the overall performance on a node level. As shown on figure
4.4 cache blocking has a great impact on data locality in the case of FDTD applica-
tions.

In the following paragraphs, we aim to predict the amount of the extra DRAM
traffic generated. We use the data reuse histogram in order to quantify capacity
misses rate.

57



4. Memory Bandwidth Cost Model for FDTD

0.5 1 2 4 8 16
Flop/byte

4

8

16

32

64

128

256

512

GF
lo

p/
s

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

Figure 4.3 Roofline for the blocked isotropic implementation.

0.5 1 2 4 8 16
Flop/byte

4

8

16

32

64

128

256

512

GF
lo

p/
s

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

Figure 4.4 Roofline for the blocked isotropic implementation after loop splitting.

4.2.1 Data Reuse Histogram

Reuse distance is defined by Beyls et al., 2001 as the number of unique memory
locations separating the last use and the reuse of an element. This metric is also
known as the LRU (Least Recently Used) stack distance in reference to stack algo-
rithms for cache management studied by Mattson et al., 1970. On this basis and

58



4.2. Performance Model for Extra DRAM Traffic

considering a fully associative cache, memory trace is represented as a stack where
the last data requested is placed on the top of it. Hence, the reuse distance is the
distance separating consecutive references to the same element and accounting for
distinct accesses. Table 4.1 is an illustration of how this metric is computed. The
reuse distance of an element that has never been used before is equal to∞.

Time: 1 2 3 4 5 6 7 8 9 10
Access: d f a b a d e f a b
Reuse distance: ∞ ∞ ∞ ∞ 1 3 ∞ 4 3 4

Table 4.1 An example of reuse distance computation considering memory address granu-
larity.

Reuse distance is a metric that enables performance prediction independently
of the hardware used. It rather describes data accesses pattern in the algorithm
implemented. Many studies have used this metric to evaluate and analyze data
locality [Shen et al., 2003; Ding et al., 2003; Marin et al., 2004; Zhong et al., 2007].

Reuse distance gives another definition of the cache misses introduced by the
3C’s model presented in paragraph 3.3.3. In the case of a fully associative LRU
cache:

• Compulsory miss corresponds to a reuse distance equal to∞.

• Capacity miss happens when the reuse distance is greater than the cache size.

• Conflict miss occurs for a reuse distance smaller than the cache size.

4.2.2 Applying the Reuse Distance Histogram to FDTD

Since capacity misses dominate the cache misses rate and since advanced com-
piler optimizations reduce efficiently conflict misses, we use reuse distance metric
to compute capacity miss rates for the FDTD applications.

According to the algorithm 2, updating a value of the wavefield u requires to
load its previous value and those of arrays containing velocity and Laplacian and
to store the latest value of u.

Equation 4.1 defines the Extra DRAM traffic as the ratio between the actual
DRAM traffic and its theoretical value as counted in table 3.1.

Extra DRAM traffic =
load (u) + load (others) + store (u)

3 + 1
(4.1)

We consider the figure 4.5 describing the accesses by a single thread when it
updates a single value within the block assigned to it. Therefore, we can estimate
the DRAM traffic per a lattice update (LUP).

59



4. Memory Bandwidth Cost Model for FDTD

never used before (compulsory)

used for previous plane

used for previous line

used for previous element

x

yz

Figure 4.5 Data access patterns for stencil based applications. We consider XY planes and
lines on the X direction.

The figures 4.6 and 4.7 plot the capacity misses per a lattice update as a function
of the reuse distance D. We have two figures because we consider both blocked
and non blocked cases.

If we use cache blocking, we have a single compulsory miss. On the other
hand, if we are out of the cache, we expect 2p+1, where p is the half stencil length.

6p+1

4p+1

2p+1

1
Reuse distance (elts)

Misses/Point

1 Nx NxNy

1 compulsory miss

C
ac

he
si

ze

Figure 4.6 Data reuse histograms without cache blocking. Nx and Ny refer to the grid size
on the X and Y directions.

Based on the algorithm 2 and according to the implementation of the FDTD
application we are studying, we need to store the latest value of u, load 2 elements
from other arrays (velocity and Laplacian) and load values of u at time steps t and
t − 1. The system 4.2 summarizes the number of elements needed for a lattice
update. The variable D represents the reuse distance.

60



4.2. Performance Model for Extra DRAM Traffic

6p+1

4p+1

2p+1

1
Reuse distance (elts)

Misses/Point

1 Nx NxNy

1 compulsory miss

C
ac

he
si

ze

Figure 4.7 Data reuse histograms when cache blocking is used. In this case, Nx and Ny
represent the size of cache blocks on the X and Y directions.

store (u) = 1
load (others) = 2

load (u) = 1 + f(D) where f(D) =


0 if D > NxNy

2.p if D > Nx

4.p if D > 1
6.p else.

(4.2)

Replacing the values of system 4.2 in the expression 4.1 results in an estimation
of the extra DRAM traffic equal to the expression 4.3 where D is the reuse distance.

Extra DRAM traffic =
4 + f(D)

4
(4.3)

For an accurate prediction, we consider the sizes of the arrays involved in the
compute of a lattice update. Laplacian and velocity arrays has the same size of the
wavefield nfield = Nx Ny Nz while we need extra elements on boundaries for the
wavefield u.

The compute grid is equal to ngrid = (Nx + 2 p) (Ny + 2 p) (Nz + 2 p). For
each time step we need to load nfield elements for velocity and for Laplacian and
ngrid elements for u. We also need to store nfield elements of the wavefield u. As
a result, the number of bytes required to update a single lattice at each time step
are computed in equation 4.4.

bytes per lup = sizeofreal

(
nfield+ 2 ngrid+ ngrid

ngrid
+ f(D)

)
(4.4)

We assume that the cache size can hold Nx elements at least but is not large
enough to hold Nx Ny elements. We are in the case illustrated in figure 4.6 which
means that f(D) = 2.p. Hence, the number of bytes per a lattice update is equal to
the expression 4.5.

bytes per lup = sizeofreal

(
3 + 2 p+

nfield

ngrid

)
(4.5)

61



4. Memory Bandwidth Cost Model for FDTD

On the figure 4.8, we compare the measured DRAM traffic per a lattice update
with the predicted values using the model as described in equation 4.5. This com-
parison concerns both the blocked and the non-blocked cases. We first notice the
discard between these two versions in terms of the generated DRAM traffic which
confirms the positive effect of the cache blocking on it. We also notice that the
theoretical model in equation 4.5 predict almost perfectly the DRAM traffic in the
non-blocked case. On the contrary, we overestimate the DRAM traffic using this
model when we have cache blocking.

1 2 3 4 5 6 7 8
p

10

20

30

40

50

60

70

80

90

DR
AM

 T
ra

ffi
c 

[B
yt

es
/L

UP
]

Data wo CB
Data w CB
Model

Figure 4.8 Extra DRAM traffic prediction for different stencil orders

Let us place the theoretical model in equation 4.5 on the previous Rooflines.
This gives us the figures 4.9 and 4.10. We keep the dashed lines that compute the
arithmetic intensity of the application for compulsory traffic and we introduce the
thick lines for the model 4.5. As in figure 4.8, we have an overestimation of the
DRAM traffic when cache blocking is used and we have a better estimation for
non-blocked FDTD application.

We need to adjust this discard in the case we use cache blocking since it gives
better performance. The following paragraph is dedicated to the improvement of
the model.

4.2.3 Updated Formulation of the Performance Model

In this paragraph, we introduce the needed adjustments to adapt the model in
equation 4.5 to the blocked case. We need to take into account the data reuse within
the block. At each time step and for single lattice update in the block, we load
nblock = Bx By Bz elements of the velocity and Laplacian arrays and ngridblock =
(Bx + 2 p) (By + 2 p) (Bz + 2 p) elements of u. We store nblock elements of u. This

62



4.2. Performance Model for Extra DRAM Traffic

0.5 1 2 4 8 16
Flop/byte

4

8

16

32

64

128

256

512

GF
lo

p/
s

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

(a) No loop split

0.5 1 2 4 8 16
Flop/byte

4

8

16

32

64

128

256

512

GF
lo

p/
s

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

(b) With loop split

Figure 4.9 Good estimation of the DRAM traffic without cache blocking.

0.5 1 2 4 8 16
Flop/byte

4

8

16

32

64

128

256

512

GF
lo

p/
s

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

(a) No loop split

0.5 1 2 4 8 16
Flop/byte

4

8

16

32

64

128

256

512

GF
lo

p/
s

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

(b) With loop split

Figure 4.10 Overestimation of the DRAM traffic with cache blocking.

results in equation 4.6.

bytes per lup = sizeofreal

(
3 + 2 p+

nblock

ngridblock

)
(4.6)

The DRAM traffic on figure 4.11 shows a better estimation than in figure 4.8 for

63



4. Memory Bandwidth Cost Model for FDTD

cache blocked version with the updated model in equation 4.6.

As in the previous paragraph, we compare the updated model 4.6 to the actual
data on Rooflines. On the figures 4.12, we also notice that in the blocked case, we
decrease greatly the overestimation of the DRAM traffic for both split and not split
versions of the FDTD application.

For high stencil orders, we still have a slight overestimation of the DRAM traf-
fic that we can see on figure 4.11 and on Rooflines 4.12.

1 2 3 4 5 6 7 8
p

10

20

30

40

50

60

70

80

90

DR
AM

 T
ra

ffi
c 

[B
yt

es
/L

UP
]

Model wo CB
Data wo CB
Model w CB
Data w CB

Figure 4.11 Extra DRAM traffic prediction for different stencil orders after updating the
model.

In this chapter, we applied the Roofline model in order to characterize the
FDTD applications. We identified the memory bandwidth as a limiting factor for
this application class even for high order schemes. Applying optimizations af-
fecting the data access pattern and data reuse showed a great enhancement of the
overall performance.

The reuse distance histogram applied to FDTD applications resulted in a model
predicting their DRAM traffic. We had to adapt this model to kernels using cache
blocking techniques. This model was validated using all stencil order in isotropic
media.

64



4.2. Performance Model for Extra DRAM Traffic

0.5 1 2 4 8 16
Flop/byte

4

8

16

32

64

128

256

512

GF
lo

p/
s

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

(a) No loop split

0.5 1 2 4 8 16
Flop/byte

4

8

16

32

64

128

256

512
GF

lo
p/

s
p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

(b) With loop split

Figure 4.12 Better estimation with cache blocking after updating the model.

65





CHAPTER 5

FDTD Applications on Manycore
Architectures

This chapter gives a study of the finite-difference time-domain (FDTD) applica-
tions on manycore architecture. We use an Intel Xeon Phi coprocessor since it has
two main characteristics of a node in an Exascale system as described in chapter ??.
We confront our code to an increasing amount of concurrency since a Knights Cor-
ner (KNC), Intel’s first commercial product hosting a Xeon Phi coprocessor, has up
to 61 cores. We also identify the possible difficulties related to heterogeneity since
we can use both the host and the CPU.

In this chapter, we first start with an introductory section describing this new
architecture and the new hardware features that characterize it. The following
sections describe the porting of the FDTD applications on KNC. We conduct a
single node study and focus on the challenges we faced in order to benefit from this
highly parallel architecture. Communications aspects and load balancing tasks
were highlighted in the last section of this chapter using a KNC cluster. The work
presented in this chapter is done in preparation for the porting of the Reverse Time
Migration (RTM) application on KNC. This upstream study is important since the
computational core of the RTM we are considering uses FDTD in isotropic and
anisotropic media.

5.1 Intel Many Integrated Core Architecture

We use a Knights Corner (KNC) prototype of Intel Xeon Phi 7120. This pro-
totype hosts 2 Intel Many Integrated Core (MIC) coprocessors connected to a 2-
socket Xeon E5-2670 codename Sandy Bridge EP host via PCIe. Each MIC copro-
cessor has 61 cores with 4 threads each for a total of 244 threads. Two instructions
of the same hardware context can not execute on the core. Using a single thread
per core means that 50% of the compute capacity of the coprocessor is not used.
The width of the SIMD vector is equal to 512-bit against 256-bit on Sandy Bridge
which makes this architecture more adequate to highly vectorized and parallel
codes. On this coprocessor, each core has only 2 cache levels L1 and L2. The last
level caches are connected via a double channel ring interconnect. There are 8



5. FDTD Applications on Manycore Architectures

memory controllers each supporting 2 GDDR5 channels. These hardware features
are summarized in table 5.1 where we give those of Sandy Bridge also. Figure 5.1
is a high level illustration of the Intel MIC architecture.

Knights Corner Sandy Bridge

Number of cores 61 16
Threads per core 4 1
Cache L1/L2/L3 32KB/256KB/ - 32KB/256KB/20MB
Memory 16 GB 60 GB
CPU frequency 1.238 GHz 2.6 GHz
SIMD width 512-bit 256-bit
Peak performance SP 2416.5 Gflop/s 665.6 Gflop/s
Energy TDP 300W 115W

Table 5.1 Hardware features of an Intel Knights Corner prototype.

L2

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

M
em

or
y

C
on

tr
ol

le
r

M
em

or
y

C
on

tr
ol

le
r

GDDR5 GDDR5

Figure 5.1 Block diagram of Intel MIC coprocessor.

Component Version

OS on host Red Hat Enterprise Linux Server 6.1
Kernel 2.6.32-220.el6.x86 64
Manycore Platform Software Stack (MPSS) 3.1.2
Compiler Intel 14.0.1
MPI Intel 4.1 update 3

Table 5.2 Software stack on the Knights Corner prototype.

Characteristic of the software stack on the prototype we used are detailed in
table 5.2. The nodes topology is illustrated in figure 5.2. We used the Portable

68



5.1. Intel Many Integrated Core Architecture

Machine (56GB)

NUMANode P#0 (24GB)

Socket P#0

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#16

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#17

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#18

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#19

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

PU P#20

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#5

PU P#21

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#6

PU P#22

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#7

PU P#23

PCI 8086:225c

mic0

PCI 8086:1d6b

PCI 8086:1521

eth0

PCI 8086:1521

eth1

PCI 102b:0522

PCI 8086:1d02

sr0 sda

NUMANode P#1 (32GB)

Socket P#1

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#8

PU P#24

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#9

PU P#25

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#10

PU P#26

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#11

PU P#27

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#12

PU P#28

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#13

PU P#29

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#14

PU P#30

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#15

PU P#31

PCI 8086:225c

mic1

Host: knc1

Indexes: physical

Date: Sun 07 Sep 2014 08:52:43 PM CEST

Figure 5.2 The phi, denoted mic0 and mic1 are respectively connected to NUMA domain 0
and 1 corresponding to the two sockets.

Hardware Locality (hwloc) tool [Broquedis et al., 2010] to generate this figure. As
we can see, the coprocessor mic0 is connected to the socket 0 of the host. This
socket 0 is also connected to the Gigabit Ethernet interfaces eth0 and eth1. The
coprocessor mic1 is connected to socket 1.

We measured the unidirectional bandwidth using the pingpong provided in
the Intel MPI Benchmark (IMB) suite. Figure 5.3 reports these values. We notice
that the bandwidth between socket 0 and the coprocessor mic0 and mic1 is the
same. We had the same values for socket 1. On the KNC prototype 5.1, we use
the x16 Gen2 PCIe interface which has a maximum theoretical bandwidth of 8
GBytes/s. The bandwidth measured between the host and the coprocessor for 4
MBytes messages is equal to 5.6 GBytes/s.

In the case of communications between the coprocessors mic0 and mic1, the
bandwidth is only 933 MBytes/s for 4 MBytes messages.

69



5. FDTD Applications on Manycore Architectures

0 2 8 32 128 512 2 KB

0

50

100

150

[M
By

te
s/

s]

S0 - MIC0

S0 - MIC1

MIC0 - MIC1

(a) Small messages

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

0

2,000

4,000

6,000

[M
By

te
s/

s]

S0 - MIC0

S0 - MIC1

MIC0 - MIC1

(b) Large messages

Figure 5.3 Bandwidth measurements for intra-node communications.

As explained in chapter 1, DOE reports advise the use of concurrency as a
response to power efficiency of Exascale machines. Data movements between
nodes contribute greatly to power consumption and increasing the number of
cores within the node reduces these movements. As a result, we increase the on-
node parallelism. DOE reports also predict that at least the first versions of an Ex-
ascale machine will probably use heterogeneous architectures. Concurrency and
heterogeneity are found in Intel Knights Corner. We explore the impact of these
characteristics on the FDTD applications and on the RTM application in chapter 6.

5.1.1 Performance Gain Expectations

In this paragraph, we evaluate the theoretical gain when using the MIC co-
processor compared to Sandy Bridge. The table 5.3 gives the theoretical DRAM
bandwidth and the sustainable bandwidth for both architectures. The achievable
bandwidth for MIC was measured using the STREAM Triad benchmark based on
Intel recommendations for the compiler knobs [Raman, 2013].

• -opt-prefetch-distance=64,8 : 64 cache lines prefetched for L2 cache
and 8 cache lines for L1 cache.

• -opt-streaming-cache-evict=0 : all cache line evicts turned off.

• -opt-streaming-stores always : streaming stores enabled.

• -DSTREAM_ARRAY_SIZE=64000000 : array size at least equal to 4x the
size of the sum of all L2 caches.

The results of this benchmark are illustrated on figure 5.4. These results are
given when Error-Correcting Code (ECC) memory is activated or not. We notice

70



5.1. Intel Many Integrated Core Architecture

that ECC memory results in an overhead and impacts the overall memory band-
width. We keep the ECC memory activated for our stencil-based computations
which avoids us bit-flip and thus numerical issues.

0 50 100 150 200 250
Number of Threads

0

50

100

150

200

ST
RE

AM
 T

ria
d 

[G
B/

se
c]

ECC=off
ECC=on

Figure 5.4 Results of STREAM Triad benchmark on Intel MIC coprocessor. The best results
are obtained when the ECC memory is disabled.

Channels Frequency[MHz] βt[GB/s] βs[GB/s]

Sandy Bridge 4 1600 102.4 78
Knights Corner 16 2750 352 195/165

Table 5.3 Theoretical and sustainable bandwidth measurements for MIC and Sandy Bridge
Architectures.

For compute bound applications, we consider the single precision peak perfor-
mances as reported in table 5.1. We also assume that a compute bound application
on Sandy Bridge remains compute bound on Knights Corner. This ratio is equal to

Pmic
Psnb

=
2147 Gflop/s

665 Gflop/s
= 3.2

We make the same assumption in the case of bandwidth limited applications
and consider the expression 3.4 defined in chapter 3 for stencil computations. The
ratio of performances is equal to the ratio of bandwidth values. For Knights Cor-
ner, we activate the ECC memory. Based on the values of table 5.3, we have this
ratio

71



5. FDTD Applications on Manycore Architectures

Pmic
Psnb

=
βmic
βsnb

=
165 GB/s

78 GB/s
= 2.1

Based on these ratios, we expect for stencil-based computations a speedup
comprised between 2.1x and 3.2x relatively to 2-socket Sandy Bridge. In the fol-
lowing paragraph, we port our isotropic and anisotropic applications on Knights
Corner and explore the real performance gain on this new architecture.

5.1.2 Programming Models on MIC

Intel MIC offers the possibility to use three different programming methods.

• Native mode : the whole application runs directly on the coprocessor. The
host is not involved in this case.

• Offload mode : the application runs on the host and some parts are executed
on the coprocessor. Data are transfered via the PCIe.

• Symmetric mode : both the coprocessor and the host are used simultaneously
as two independent nodes.

5.2 Single-node Implementation of FDTD Applications

Throughout this section, we study the impact of the manycore architecture on
the FDTD applications. In this chapter, we only investigate the impact on perfor-
mance at the node level. We also consider the impact of the programming models
provided by Intel Knights Corner and presented in paragraph 5.1.2.

5.2.1 FDTD Implementations Without Absorbing Conditions

For our FDTD implementations, we mainly focus on native and symmetric
modes. The offload implementation induces an overhead due to transfers of the
whole wavefield and the allocation of memory on the coprocessor side at each time
step.

5.2.1.1 Native Implementation

For the native implementation on MIC, we use a multi-threaded version of the
FDTD applications. In this study, we focus on two aspects of these implementa-
tions. We are first interested in the performance behavior of the stencils of order 8
in space and 2 in time since they are widely used in oil and gas production code.
We also consider the impact of the variation of the stencil order on performance
when using MIC. We describe the optimizations we need to perform on MIC in
order to benefit from its new hardware features.

Figures 5.5 and 5.6 depicts the impact of the multi-threading on the perfor-
mance of the isotropic and TTI implementations of the FDTD applications. This
experience highlights the positive impact of hyper-threading on the FDTD imple-
mentations when we have 2 threads per core compared to the performance when

72



5.2. Single-node Implementation of FDTD Applications

a single thread is used per core. This is due to the hardware context switch in
the case of 2 threads. We have almost 50% gain in performance for both isotropic
and anisotropic cases. For example in the isotropic implementation, performance
increases from 122 Gflop/s for 1 thread to 180 Gflop/s for 2 threads.

When we add more than 2 threads per core, performance decreases. We have
a slowdown of 17% when we use 4 threads per core for both isotropic and TTI
implementations. This decrease of the performance is due to contention in the L2
cache on MIC since it is shared by the 4 threads.

1 2 3 4
Number of threads per core

120

130

140

150

160

170

180

190

Pe
rfo

rm
an

ce
 [G

flo
p/

se
c]

p=4

Figure 5.5 Performance of the isotropic kernel using an order 8 in space in native mode as
a function of the number of threads per core on Intel MIC architecture.

Figures 5.7 and 5.8 respectively illustrate the performance variation of the isotropic
and TTI implementations when the half stencil orders in space vary from 1 to 8 and
when we vary the number of threads per core also. Increasing the order of the sten-
cil in space increases the arithmetic intensity of the application while maintaining
the same memory requirements for the same grid size. We notice that for both
implementations, performance drops for higher stencil orders (p ∈ 5..8).

Vectorization. In this paragraph, we show the impact of vectorization on the
FDTD kernels using the Intel MIC architecture. On figures 5.9 and 5.10, we illus-
trate the performance when we deactivate vectorization using the options -no-vec
and -no-simd during compilation. We compare this performance with the result
we obtain when we place the SIMD pragma above the inner loops. We also give
the results for different thread numbers per core. Vectorization can increase per-
formance up to 17x in the isotropic case on Intel MIC. On Sandy Bridge, we have
a speedup of 3.8 as shown on figure 5.11. For TTI, we have an increase of 8x on
MIC and an increase of 3x on Sandy Bridge. Due to wider SIMD vectors on MIC,
vectorization impact is more noticeable on this architecture that on Sandy Bridge

73



5. FDTD Applications on Manycore Architectures

1 2 3 4
Number of threads per core

90

95

100

105

110

115

120

125

130

Pe
rfo

rm
an

ce
 [G

flo
p/

se
c]

p=4

Figure 5.6 Performance of the TTI kernel using an order 8 in space in native mode depend-
ing on the number of threads per core on Intel MIC architecture.

1 2 3 4
Number of threads per core

0

50

100

150

200

Pe
rfo

rm
an

ce
 [G

flo
p/

se
c]

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

Figure 5.7 As we increase the order of the stencil, we increase the number of arithmetic
operations to compute the Laplacian of the wavefield. We notice that hyper-threading has
a positive impact on the isotropic implementation.

for example. This confirms the need to have a highly vectorized code in order to
benefit of the MIC.

74



5.2. Single-node Implementation of FDTD Applications

1 2 3 4
Number of threads per core

0

20

40

60

80

100

120

140

160

Pe
rfo

rm
an

ce
 [G

flo
p/

se
c]

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

Figure 5.8 TTI Implementation using different orders in space while varying the number
of threads per core in native mode on Intel MIC.

1 2 3 4
0

50

100

150

200

x 11.3

x 11
x 11.8

x 17

Number of threads per core

G
flo

p/
s

With vectorization W/o vectorization

Figure 5.9 Vectorization impact on the isotropic implementation on Intel Knights Corner.

5.2.1.2 Offload Implementation

In offload implementation, the computational part of the application is com-
puted on the coprocessor. This implies multiple transfers of the data during the

75



5. FDTD Applications on Manycore Architectures

1 2 3 4
0

50

100

150

x 7.7

x 7.2 x 7.9

x 8

Number of threads per core

G
flo

p/
s

With vectorization W/o vectorization

Figure 5.10 Vectorization impact on the TTI implementation on Intel Knights Corner.

Isotropic TTI
0

50

100

150 x 3.8

x 3

G
flo

p/
s

With vectorization W/o vectorization

Figure 5.11 Vectorization impact on isotropic and TTI implementations on Sandy Bridge.

computation back and forth between the coprocessor and the host.
The openMP regions we intend to accelerate are offloaded to the card and in

the case of the FDTD applications, we transfer the whole wavefield at each time
step to perform the computation on the MIC. This results in latencies due to the
utilization of the PCIe. The code in figure 5.12 explains the offload pragma used in
the isotropic implementation.

76



5.2. Single-node Implementation of FDTD Applications

1 ! d i r $ o f f l o a d t a r g e t ( mic ) &
2 ! d i r $ i n o u t ( u0 , u1 ) &
3 ! d i r $ in ( roc2 , c o e f 0 , c o e f x , c o e f y , c o e f z )
4
5 ! $omp p a r a l l e l &
6 ! $omp s h a r e d ( u0 , u1 , r o c 2 ) &
7 ! $omp s h a r e d ( c o e f 0 , c o e f x , c o e f y , c o e f z ) &
8 ! $omp s h a r e d ( xmin , xmax , ymin , ymax , zmin , zmax ) &
9 ! $omp p r i v a t e ( l ap , i , j , k )

10 do k=zmin , zmax
11 do j =ymin , ymax
12 ! d ec$ simd
13 do i =xmin , xmax
14 lap = coef0 * u0 ( i , j , k ) &
15 + coefx ( 1 ) * ( u0 ( i +1 , j , k ) &
16 + u0 ( i −1, j , k ) )
17 end do
18 end do
19 end do

Figure 5.12 The offload pragma defines the targeted coprocessor and the data needed for
the computation. The arrays u0 and u1 are transferred back and forth while the other
arrays are copied only once.

Considering the Amdahl’s law and the amount of time needed to perform
transfers through the PCIe, we think that the offload mode is not likely to greatly
enhance the performance of the FDTD applications. We need to conjointly use the
host and the coprocessor while minimizing the effect of the PCIe transfers on the
whole performance. This leads us to the symmetric mode which is presented in
more details in the next section.

5.2.1.3 Symmetric Implementation

The symmetric mode is a hybrid and heterogeneous implementation. It in-
volves the host and the MIC and consists in a hybrid MPI plus OpenMP imple-
mentation of the FDTD kernels. On a node level, we have one MPI rank per device
i.e. 2 MPI ranks for a Sandy Bridge and a coprocessor. The MPI buffers involved
during these communications correspond to the layers of ghost cells. Their num-
ber is equal to the half stencil order. Our domain decomposition is done along
the Z direction because the slices sent in this case are contiguous in memory. We
illustrate this MPI decomposition on figure 5.13.

As we are using a heterogeneous machine where the frequency and the num-
ber of the processing units are different on host and on MIC, we pay attention to
our domain decomposition as load imbalance can induce a drop in performance.
In this implementation, we have a static load balancing using a parameter denoted
as z-cut equal to the ratio of the sizes of the sub-domains on Z direction respec-
tively for the CPU and the MIC. For every run, we report timings for computation,
MPI communications and overhead due to synchronizations. Figure 5.14 illus-

77



5. FDTD Applications on Manycore Architectures

G
ho

st
C

el
ls

z-
cu

t

CPU

MIC

x

z

Figure 5.13 Domain decomposition for the symmetric implementation is only done on the
Z direction. Only ghost cells are transferred through the PCIe.

trates percentages of these timings relatively to the main loop in FDTD for many
values of z-cut. It depicts that for equal sub-domain sizes (z-cut=1), 5.3% of the
time is wasted due to imbalance. We reduce this value to 1% of the execution time
for a z-cut equal to 0.9.

0.5 0.9 1 1.1 1.5
0

20

40

60

80

100

z-cut

Ti
m

e
[%

]

Computation Communication Imbalance

Figure 5.14 Percentages of the computation, the MPI communications and the over-
head,relatively to the time spent in the main loop of the isotropic implementation for 2
values of z-cut.

As mentioned previously, we only need to transfer p layers of ghost cells where
p is the half stencil order at each time step. As a consequence, we reduce the over-
head due to data transfers on the PCIe compared to the offload mode where the

78



5.2. Single-node Implementation of FDTD Applications

0.4 0.6 0.8 1.0 1.2 1.4 1.6
z-cut

70

75

80

85

90

95

Ef
fic

ie
nc

y 
[%

]

Figure 5.15 The efficiency corresponds to the ratio of the performance of the sub-domains
on MIC and on CPU and the performance of the symmetric implementation. Varying the
z-cut value enables the modification of the size of these sub-domains on both devices.

whole grid is transferred at each time step. For computation, we use the OpenMP
threads. We deploy different number of threads on the CPU and on the MIC. We
also pay attention to the cache block sizes we choose on these two different parts
of the machine.

We compute an efficiency ratio defined as:

Efficiency =
Psymmetric

Pnative(mic) + P (snb)

The figure 5.15 plots the values of the efficiency for the same z-cut values in
figure 5.14. The most efficient domain decomposition (98%) is one the that uses
z-cut=0.9 which confirms the results on figure 5.14.

Figure 5.16 illustrates the relative performance compared to a Sandy Bridge
socket. We notice that that MIC is slightly better than the 2-socket Sandy Bridge
implementation and that we have a 2.12x speedup when we the symmetric imple-
mentation.

In this chapter, we highlighted the impact of manycore architecture on FDTD.
The increasing parallelism required to pay attention to the vectorization impact
and to data movements. Heterogeneity required a tuning of the domain decom-
position in order to reduce the load imbalance between the two devices due to
the difference in compute capabilities. We have also constraints on the dimension
where we apply the domain decomposition. We choose the Z direction in order to
have contiguous data transferred via the PCIe interconnect.

79



5. FDTD Applications on Manycore Architectures

2-socket
SNB

MIC MIC +
2-socket SNB

0

0.5

1

1.5

2

2.5

1
1.16

2.12

Sp
ee

du
p

Figure 5.16 Relative performance compared to a single Sandy Bridge socket.

80



CHAPTER 6

Reverse Time Migration on Large Scale
Systems

As described in chapter 1, Reverse Time Migration is one of the most important
seismic imaging applications. It is widely used by the Oil and Gas companies
since it makes a good trade-off between the quality of the image and the time-to-
solution. Therefore, studying this application and characterizing it is important in
order to prepare it for new architectures and for the upcoming Exascale systems.

We aim to conduct a co-design study applied to the Reverse Time Migration
in isotropic and anisotropic media. Performance models for communication and
computation will be used for the extrapolation to Exascale machines.

As an intermediate system, we use a cluster of Intel’s Knight Corer (KNC).
Porting RTM on such system will help us highlight the impact some of the Exascale
constraints on it, such as heterogeneity, concurrency and memory limitations.

We study the impact of communications on the whole applications when we
use a hybrid and heterogeneous implementation. We also consider the I/O issues
since RTM is data intensive and we expect it to be limited by the I/O operations
on Exascale systems.

6.1 Related Work on Reverse Time Migration

The section 1.2.1 of the first chapter 1 described from a high level point of view
the main steps of RTM. The implementation we consider is a time-domain approx-
imation of the partial differential equation governing the wave motion.

Algorithms 3 describes schematically the three steps required in RTM. We have
2 time loops, the first one is needed for the forward propagation during the record-
ing time. Snapshots of the synthetic data are stored during the first loop. The
second loop is the retro-propagation in time of the wave using the recorded data
by the receivers. In order to perform the cross-correlation the forward values are
restored at each time step.



6. Reverse Time Migration on Large Scale Systems

Algorithm 3 Reverse Time Migration (RTM)
for t← T init, T final do

Forward one step(velocity model)
Save snapshot(t)

end for
for t← T final, T init do

Backward one step(receivers)
Restore snapshot(t)
Imaging condition(Forward(t), Backward(t))

end for

6.1.1 State-of-the-art Implementations

RTM has always been subject to study on new architectures in order to take
advantage of the new hardware features. Several adaptations of RTM can be found
but we only present two of them. We start with a homogeneous implementation
on CPUs. We present then the GPUs and their impact on the application.

Central Processing Unit (CPU)

RTM took advantage of the evolution of CPUs. Thanks to the increase of fre-
quencies, the use of wide vectors and the instruction level parallelism (ILP), more
complex computations were performed. The evolution of the memory hierarchies
and the use of mechanisms such as the hardware and software prefetching, limita-
tions due to the bandwidth can be overcome.

These new hardware features require modification of the implementation in
order to ensure the vectorization and the efficient use of caches for example.

With the multi-core era, we have to consider the NUMA effect and make sure
that the threads are correctly binded in order to avoid unnecessary traffic that hin-
der the overall performance.

After the node level optimizations, one should also consider the impact of the
communications on performance and avoid as much as possible pending requests.
We can consider load balancing between MPI processes through work stealing
mechanisms which enables dynamic balancing.

Some CPU implementations rely on high speed networks to hide latencies
when communicating like in Perrone et al., 2012. Their counter intuitive imple-
mentation took advantage of the low network latency and over decomposed the
computational domain in order to save the snapshots in the node’s main memory.

Graphics Processing unit (GPU)

Figure 6.1 is a high level description of a GPU architecture. It contains a bunch
of multiprocessors. Each of them is composed of streaming threads. Multiproces-
sors have a user programmable memory shared by all thread blocks. For every

82



6.1. Related Work on Reverse Time Migration

thread block we have a set of registers and a shared memory. They are equivalent
to caches in CPUs.

GPUs are connected to a host via a PCIe to enable the data transfer between
the devices. Accelerated parts of the code are fetched to the accelerator. GPUs are
highly parallel architectures due to the streaming threads within multiprocessors.
They are well suited for applications exploiting Single Instructions Multiple Data
(SIMD) mechanism. The multi-threading in GPUs helps hiding memory latencies.

Global Memory

CPU

PCIe

M
em

M
em

M
em

M
em

Figure 6.1 High-level description of GPUs architecture.

The main issues in GPUs are the memory limitations since global memory is
not large enough to hold wavefields and the PCIe link that can be a bottleneck
when computing the cross-correlation.

Another issue in GPU is the need to re-write the code using CUDA in order to
ensure the optimal use of the architecture capacities.

Multi-GPU implementations like described in Micikevicius, 2009 is a solution
to the shortage of memory on accelerators.

State-of-the-art implementations of RTM can be found in [Foltinek et al., 2009;
Araya-Polo et al., 2011; Liu et al., 2009; Ortigosa et al., 2008] to name few. The chal-
lenges in these implementations is to overcome the little memory space available
and the overhead due to data transfers trough the PCIe.

6.1.2 Velocity Models

A variety of benchmarks are used as input velocity models for RTM. Figure 6.2
is the velocity model for the 2004 BP benchmark. The study of sub-salt environ-
ments is highlighted since they are challenging for imaging applications due to the
reflectivity at their edges. These salt structures can be encountered in the Gulf of
Mexico and the off-shore West Africa [Billette et al., 2005].

The Marmousi benchmark in figure 6.3 is another velocity model representing
a complex subsurface [Bourgeois et al., 1991; Versteeg, 1993].

83



6. Reverse Time Migration on Large Scale Systems

Figure 6.2 The 2004 BP velocity-analysis benchmark.

Figure 6.3 The Marmousi velocity model.

6.1.3 Snapshots and I/O Strategies

Cross-correlation, described in 6.1, requires an access to the value of the wave-
field computed during the forward propagation for the same time step. This
means that we need to save these values for each time step which results in tremen-
dous usage of memory space. Domain decomposition techniques may reveal in-
sufficient to fulfill the storage requirements and the network latencies can result
in performance degradation because of the increase of the communication over
computation ratio [Anderson et al., 2012].

Figure 6.4 is an illustration of the temporal cross-correlation in Reverse Time
Migration. We present the forward propagation from the initial time step until the
end of recording. We then have a propagation backward in time. The green circles
in the middle correspond the imaging condition.

i(x, y, z) =
∑
shots

tmax∑
t=0

s(x, y, z, t)r(x, y, z, t) (6.1)

We present the main computational strategies used in adjoint state problems.
The aim of these strategies is to reduce the burden of the disk I/O while maintain-
ing a minimum impact on the resulting image. Dussaud et al., 2008 describes these
approaches and give also the complexities in terms of storage space and number
of computations.

84



6.1. Related Work on Reverse Time Migration

Tinit

Trecord

Tinit

Forw
ar

d Backward

Imaging Condition

Figure 6.4 Computation of the imaging condition requires the forward and the backward
wavefields at the same time step. Retrieving the necessary value of the forward field when
retro-propagating the backward field can result in I/O bottlenecks.

Re-computation of the whole wavefield. At each time step in the backward
propagation, we perform two wave propagations the velocity model and the recorded
data and then compute the imaging condition for the current time step. We only
need to store a single forward wavefield for the next computations.

In terms of computation, this method requires
∑T

t=1(T − t) = O(T 2) floating
point operations. The memory usage is only O(N).

Naive Wave field Storage. Forward wavefield values are stored for each time
step. This approach requires prohibitive storage space and is not appropriate for
industrial applications using real datasets.

Memory requirement is
∑T

t=1N = O(N.T ) while computation for the forward
propagation is equal to zero.

Wave field Storage. Forward wavefield values are stored every k-time step. Dur-
ing the backward propagation, the needed forward value is recomputed starting
from the nearest k-time step. This approach reduces the amount of memory needed
by a factor k. On the other hand, the amount of computation increases in the back-
ward propagation. For this approach, we need to make a trade-off between the
number of values stored and the number of computations performed in order to
satisfy the imaging condition.

Computation O(k.T ) and memory O(k.N).

Boundaries Storage. This approach concerns only the boundaries of the compu-
tational domain when damping is required to remove the artifacts due to reflec-
tions on the boundaries of the grid. During the forward propagation, only these
values are saved. This approach reduces significantly the storage space needed
even if it implies more computations.

Computation O(d.N2/3) where d is the length of the damping zone and mem-
ory O(N.T ).

85



6. Reverse Time Migration on Large Scale Systems

Checkpointing [Symes, 2007]. We store several pairs (ut−1, ut) during the for-
ward step. When a boundary condition like PML is used, we store its value for
the time step t. In order to recompute the value of the wavefield in the backward
step, these pairs can be used as initial values. Optimal selection of these pair was
introduced by Griewank et al., 2000.

Griewank requires O(logN) computations.

Random Boundaries Strategies. Clapp, 2009 gives an implementation of ran-
dom boundaries in Reverse Time Migration in order to avoid the I/O bottleneck
encountered when the imaging condition is performed. In this approach reflec-
tions on boundaries are distorted in order to minimize artifacts.

Data compression can be used with all the previous methods in order to accel-
erate the I/O operations. This may result in the reduction of the amount of data
stored and transferred but this can be done at the expense of the image quality.
It is also important to have a low compute cost for the compression. Otherwise,
overhead due to compression is subject to decrease performance.

6.2 Performance Modeling of RTM

Trtm = Tfwd + Tbwd + Tsnap + Tic︸ ︷︷ ︸
Tintranode

+ Tcomm︸ ︷︷ ︸
Tinternode

(6.2)

Where

Tfwd Cost of FDTD applied to input models.

Tbwd Cost of FDTD applied to recorded data.

Tsnap Computational cost of the snapshot strategy.

Tic Cost of the imaging condition.

Tcomm Cost of communications.

We make some assumptions in order to facilitate the modeling of the cost of
each part of the algorithm. We first assume that communications are not over-
lapped by computations. Both their contributions are counted. We then consider
single precision data and we don’t use any compression methods for I/O opera-
tions.

6.2.1 Computation Costs

We use the notations as defined in table 6.1 for the following model.

Tcomp = Tfwd + Tbwd + Tsnap + Tic

86



6.2. Performance Modeling of RTM

N = nx.ny.nz Domain size
dx, dy, dz Width of damping layers on x, y and z directions respectively

p Half stencil order
T Number of steps
c Number of cores per node
th Number of threads per core
f Frequency
r Number of FP ops per core

Φ = r.c.f Peak rate of FP ops per node
ϕ Number of FP ops of the kernel
ζ Number of FP ops per lattice update per time step

βmem Memory bandwidth
αnet Network latency
βnet Network bandwidth
R Number of MPI ranks

Table 6.1 Notations used in the models of RTM.

Hypothesis

Tfwd = Tbwd

=
T

Φ
ϕkernel

=
T N

Φ
ζkernel

Where kernel ∈ {iso, tti} and ζkernel is defined as the number of floating point
operations per lattice update per time step.

Similarly, we define Tic.

Tic =
T

Φ
ϕic

=
T N

Φ
ζic

We obtain:

Tcomp =
3 T N

Φ
ζkernel +

T N

Φ
ζic

= (3 ζkernel + ζic)
T N

Φ

For imaging condition, we need to perform an addition and a multiplication
which results in ζic = 2. According to the table 3.1, the number of floating point
operations is equal to ζiso = 7 p+ 5 for isotropic implementation and ζtti = 48 p+
100 for TTI.

87



6. Reverse Time Migration on Large Scale Systems

Finally, we obtain the computation time depicted in table 6.2 for isotropic and
TTI implementations.

Isotropic TTI

Tcomp 7 (p+ 1) T N
Φ (48 p+ 102) T N

Φ

Table 6.2 Computation Time for isotropic and TTI kernels and imaging condition.

6.2.2 Communication Costs

Domain decomposition is very important since the number of elements trans-
ferred depends on the strategy we opt for. We consider the decomposition strate-
gies illustrated in figure 6.5. We consider a cubic computational domain which
implies N = n3.

(a) Slab. (b) Pencil. (c) Cube.

Figure 6.5 Spatial Domain Decomposition

Each MPI rank communicates with its neighbors using point-to-point MPI calls.
Communication time is proportional to the volume of data transferred and can be
modeled using the following expression.

Tcomm =
4× h(n,R)

βnet

h(n,R) designates the number of elements transferred per MPI rank. Its value
depends on the domain decomposition strategy implemented. The size of the sur-
faces transferred are summarized in tabular 6.3.

slabs pencils cubes

h(n,R) p n2 p n2
√
R

p n2

R2/3

Table 6.3 Size of the surfaces transferred depending on the domain decomposition
method.

88



6.2. Performance Modeling of RTM

The figures 6.6 and 6.7 plot the execution time of the MPI calls for each MPI
rank considering the domain decomposition methods presented above. These fig-
ures show that the slab subdomains imply higher communication cost compared
to pencil and cubic subdomains.

1 2 4 8 16 32 64 128 256 512 1024
MPI processes

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Co
m

m
un

ic
at

io
n 

Ti
m

e 
[s

ec
]

slab
pencil
cube

Figure 6.6 Strong Scaling. Communication time per MPI rank for fixed values of N , p and
βnet.

These models are only considering the case of homogeneous cluster. All nodes
have the same hardware characteristics. In the case of a heterogeneous cluster,
containing accelerators such as GPUs or coprocessors like Intel’s MIC, the com-
munication model will be different since these devices are connected to the host
via PCIe and as a consequence the bandwidth will be quite different from the net-
work bandwidth.

We also assume no-overlapping of the communications by computations which
means that execution time of the application is the sum of computation time by
communication time as described by the expression 6.2.

6.2.3 Snapshot Strategy Costs

The implementation we consider for RTM has an isotropic and anisotropic ver-
sions. It uses a snapshot strategy based on the storage of boundaries. The storage
is performed every nt time steps. The intermediate values are computed using an
interpolation.

The number of snapshots is equal to

dT − 2

nt
e+ 1 (6.3)

89



6. Reverse Time Migration on Large Scale Systems

1 2 4 8 16 32 64 128 256 512 1024
MPI processes

0.0

0.5

1.0

1.5

2.0

Co
m

m
un

ic
at

io
n 

Ti
m

e 
[s

ec
]

slab
pencil
cube

Figure 6.7 Weak Scaling. Communication time per MPI rank for fixed values of N , p and
βnet. We use the same values as the strong scaling experiment.

The size of the boundaries stored for each time step is equal to

2dz nx ny + 2dy(nx − 2dx)(nz − 2dz) + 2dxny(nz − 2dz) (6.4)

We need to consider the number of the wavefields involved in order to have
a precise estimation of the memory requirements in this implementation. In the
isotropic case we have a single wavefield, while for TTI we need to multiply the
previous formula by 2 since we have two wavefields p and q according to the
equation 2.6.

Hypothesis: dx = dy = dz = d and nx = ny = nz = n. This implies some simpli-
fications in the equation 6.4 and gives us the size of the snapshots as a function of
the size of the velocity model and the number of time steps.

2 d (3 n2 − 6 n d+ 4 d2) (dT − 2

nt
e+ 1) (6.5)

Considering the simplifying hypothesis concerning the computing domain and
the damping zone, we study the impact of the boundaries storage strategy with a
downsampling factor on the size of the snapshots. Figure 6.8 illustrates the size of
these snapshots as a function of the size of the velocity model. On the other hand,
on figure 6.9 we show the correlation between time steps on the number and hence
the size of time steps.

6.3 Implementation of RTM for Multi-node of Many-Core

This section is a proof of concept of porting an RTM code on cluster of KNCs.
The main concern when it comes to time domain implementations is to handle the

90



6.3. Implementation of RTM for Multi-node of Many-Core

163 323 643 1283 2563 5123 10243

Size of the velocity model [Elements]

2-7

2-5

2-3

2-1

21

23

25

27

Si
ze

 o
f t

he
 s

na
ps

ho
ts

 [G
By

te
s]

64GB

 8GB

Figure 6.8 Size of snapshots as a function of the velocity model size. We give memory size
on Sandy Bridge (64GB) and on MIC (8GB) as upper bounds on a KNC node.

I/Os efficiently.

We consider a single shot for our study. Memory is going the main issue on
the current version of MICs. On the KNC we used, the maximum memory we had
access to is equal to 8GB. Snapshots generated for a single shot is counted in Tera
bytes.

As a result, a single KNC with 2 coprocessors won’t be able to hold one shot of
RTM. Inevitably, we resort to use MPI and domain decomposition to get around
the memory capacity shortage on MICs.

6.3.1 Test System

The target system used for our experiments is the machine Stampede from the
Texas Advanced Computing Center (TACC) at the University of Texas at Austin.
This machine is ranked 7 in the TOP500 list of June 2014 with a theoretical peak
performance equal to 8.5 PFlop/s and maximum power usage equal to 4.5 MWatts.

Stampede has 6400 nodes, each one containing at least one Intel Xeon Phi co-
processor. Only 480 nodes have 2 coprocessors. The interconnect is FDR Infini-
Band delivering a network performance equal to 56 Gb/s to the node. The table
6.4 gives more details on the main hardware characteristics of Stampede. Compute
nodes characteristics are summerized in table 6.5. We note that the memory avail-
able on host is only 32 GB compared to the 64 GB we have on the KNC prototype
5.1 used for the FDTD applications. We also note that on Stampede we have the
Xeon Phi SE10P which has lower frequency and less memory than Xeon Phi 7120.

91



6. Reverse Time Migration on Large Scale Systems

0 5000 10000 15000 20000 25000 30000
Number of time steps

2-6

2-4

2-2

20

22

24

26

28

210

Si
ze

 o
f t

he
 s

na
ps

ho
ts

 [G
By

te
s]

64GB

 8GB

1
3
10

(a) A small velocity model 2563 with a damping width equal to 22 on x, y and z
directions.

0 2000 4000 6000 8000 10000
Number of time steps

2-2

2-1

20

21

22

23

24

25

26

27

28

29

210

211

212

Si
ze

 o
f t

he
 s

na
ps

ho
ts

 [G
By

te
s]

64GB

 8GB

1
3
10

(b) A real velocity model 621× 711× 1201 with a damping width equal to 22 on
x, y and z directions.

Figure 6.9 Size of snapshots as a function of the number of time steps which is determined
using the CFL condition and the discretization steps. We consider a small and a real ve-
locity models with 3 downsampling factors 1, 3 and 10. As we increase the downsampling
factor, we reduce the size of the snapshots.

92



6.3. Implementation of RTM for Multi-node of Many-Core

The software stack characteristics are shown on table 6.6. The Manycore Platform
Software Stack (MPSS) available on Stampede when we performed the porting of
RTM is the MPSS 2.1.

The compute nodes topology was captured using the version 1.8 of the Portable
Hardware Locality (hwloc) tool. Figure 6.11 shows that the coprocessor mic0 is
attached to socket 0 along with the Gigabit Ethernet interfaces and the local disk
sda while the coprocessor mic1 shares the PCI link to the socket 1 with InfiniBand
(IB) card. This topology is not symmetric relatively to the IB card. Notice also that
on nodes with single coprocessor like the figure 6.10 the coprocessor mic0 is linked
to the socket 1 and not to socket 0.

Nodes 2 8-core XeonE5 processors
1 or 2 61-core Xeon Phi coprocessor

6400 nodes

Memory 32 GB / node 206 TB (aggregate)
Shared disk Lustre 2.1.3 parallel file system 14 PB
Local disk SATA (250 GB) 1.6 PB (aggregate)
Interconnect InfiniBand Mellanox Switches / HCAs FDR 56 Gb/s

Table 6.4 Characteristics of Stampede used to run hybrid version of RTM. Courtesy of
TACC

Component Technology

Sockets per Node/Cores per Socket
Coprocessors/Cores

2/8 Xeon E5-2680 2.7GHz
1/61 Xeon Phi SE10P 1.1GHz

Motherboard Dell C8220, Intel PQI, C610 Chipset
Memory Per Host
Memory per Coprocessor

32GB 8x4G 4 channels DDR3-1600MHz
8GB GDDR5

Interconnect
Processor-Processor
Processor-Coprocessor

QPI 8.0 GT/s
PCI-e

PCI Express Processor
PCI Express Coprocessor

x40 lanes, Gen 3
x16 lanes, Gen 2 (extended)

250GB Disk 7.5K RPM SATA

Table 6.5 Characteristics of compute node in Stampede. Courtesy of TACC.

Component Version

Kernel 2.6.32-358.18.1.el6.x86 64
Manycore Platform Software Stack (MPSS) 2.1
Compiler Intel 13.1.0
MPI Intel 4.1.0.030

Table 6.6 Software stack on Stampede.

93



6. Reverse Time Migration on Large Scale Systems

Machine (32GB)

NUMANode P#0 (16GB)

Socket P#0

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#7

PCI 8086:1521

eth0

PCI 8086:1521

eth1

PCI 1a03:2000

PCI 8086:1d02

sda

NUMANode P#1 (16GB)

Socket P#1

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#8

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#9

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#10

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#11

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#12

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#13

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#14

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#15

PCI 15b3:1003

ib0

mlx4_0

PCI 8086:225c

mic0

Host: c415-704.stampede.tacc.utexas.edu

Indexes: physical

Date: Sun 07 Sep 2014 01:12:24 PM CDT

Figure 6.10 Topology of a compute node on Stampede with a single coprocessor.

We performed bandwidth measurements on Stampede using the Intel MPI
Benchmark (IMB) tool. Figures 6.12 and 6.13 depicts the bandwidth values and
communication time respectively. We give values of unidirectional bandwidth us-
ing pingpong benchmark for intra-node and inter-node communications. In com-
parison with the measurement that we performed on the Intel Xeon 7140 5.1, the
bandwidth values for the intra-node communications on figure 5.3 are higher that
the values that we measure on Stampede. Notice that the MPSS version available
on Stampede and the MPI used are older.

6.3.2 RTM Implementations

We study a TTI implementation of RTM and we use a velocity model of size
5123. We consider 3 versions of this implementation of RTM. First we have an MPI
only implementation. We have a hybrid version where we use MPI for commu-
nications and OpenMP to parallelize computations within the node. This hybrid
version was run on Sandy bridge nodes only and in a symmetric mode using the
KNCs as presented in the previous chapter 5.2.1.3.

Figure 6.14 illustrates the distribution of the MPI ranks and the OpenMP threads
within the nodes of the cluster Stampede. We did not perform any work load bal-
ancing on the current version of RTM. We have the same sub-domain per device.
We only adapt the value of runtime variable and the cache size.

94



6.3. Implementation of RTM for Multi-node of Many-Core

Machine (32GB)

NUMANode P#0 (16GB)

Socket P#0

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#7

PCI 8086:1521

eth0

PCI 8086:1521

eth1

PCI 8086:225c

mic0

PCI 1a03:2000

PCI 8086:1d02

sda

NUMANode P#1 (16GB)

Socket P#1

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#8

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#9

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#10

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#11

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#12

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#13

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#14

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#15

PCI 15b3:1003

ib0

mlx4_0

PCI 8086:225c

mic1

Host: c545-001.stampede.tacc.utexas.edu

Indexes: physical

Date: Sun 07 Sep 2014 01:08:18 PM CDT

Figure 6.11 Topology of a compute node on Stampede with 2 coprocessors.

0 2 8 32 128 512 2 KB

0

200

400

600

[M
By

te
s/

s]

Host-MIC Intra-Node

MIC-MIC Intra-Node

MIC-MIC Inter-Node

Host-Host Inter-Node

(a) Small messages

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB
0

2

4

6

[G
By

te
s/

s]

Host-MIC Intra-Node

MIC-MIC Intra-Node

MIC-MIC Inter-Node

Host-Host Inter-Node

(b) Large messages

Figure 6.12 Bandwidth measurements on Stampede for intra- and inter-node communica-
tions.

95



6. Reverse Time Migration on Large Scale Systems

0 2 8 32 128 512 2 KB

0

5

10

15

[µ
se

c]

Host-MIC Intra-Node

MIC-MIC Intra-Node

MIC-MIC Inter-Node

Host-Host Inter-Node

(a) Small messages

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

0

2,000

4,000

6,000

8,000

[µ
se

c]

Host-MIC Intra-Node

MIC-MIC Intra-Node

MIC-MIC Inter-Node

Host-Host Inter-Node

(b) Large messages

Figure 6.13 Communication time for inter- and intra-node communications

We perform strong scalability study using the velocity model of size 5123. We
plot the execution time in two cases : a single coprocessor per node and two co-
processors per node. Figure 6.16 illustrates these timing for the whole shot, MPI
communications, computation and I/Os. As we increase the number of nodes, the
execution time is bounded by the communication overhead. The use of 2 copro-
cessors does not seem to improve performance. We believe that this is due to the
poor intra-node bandwidth values that we reported on figure 6.12.

We used the Intel Trace Analyzer and Collector (ITAC) to report on the MPI
communications. We could not run it on Stampede since the tool was not avail-
able. We only report the MPI trace for a single node execution using 2 coprocessors
in figure 6.15. Blue regions refer to computations while the red ones correspond
to MPI communications. P0 corresponds to the host and P1 and P2 refer to mic0
and mic1 respectively. We notice strong disparities between the host and the co-
processor. This suggests that we need a more adapted domain decomposition as
we done for the FDTD applications. For RTM, dynamic load balancing is more
adequate for large systems. Static load balancing using a manual domain decom-
position in unlikely to be efficient for such applications.

Figure 6.17 gives a comparison between all the implementations considered for
these experiments. We give the execution time as well as the speedup relatively to
an execution on a single node. As we can see, the results for the hybrid version on
Sandy Bridge give the best results for the first 64 nodes followed by the MPI only
version then the symmetric version. In terms of scalability, the MPI only version
is the version that scales the best. This does not reflect the real execution time. On
Stampede using 2 programming models with RTM showed good results. But the

96



6.3. Implementation of RTM for Multi-node of Many-Core

use of coprocessors did not improve execution time. Load balancing issues, high
latencies and low bandwidth degrade the overall performance.

P
C
Ie

MPI

MPI

P
C
Ie

MPI

MPI
P
C
Ie

MPI

MPI

Network

CPU

MIC

OpenMP OpenMP OpenMP

OpenMP
CPUCPU

OpenMP OpenMP

MIC MIC

Figure 6.14 Hybrid and heterogeneous implementation of RTM on a KNC cluster. Com-
munications are performed by MPI processes while computations are made by OpenMP
threads.

Figure 6.15 MPI communications of RTM in intra-node.

97



6. Reverse Time Migration on Large Scale Systems

1 2 4 8 16 32 64

0

100

200

300

400

500

Nodes

Ti
m

e
[s

ec
]

Shot

Communication

Computation

IO

(a) 1 MIC + CPU

1 2 4 8 16 32 64

0

100

200

300

400

Nodes

Ti
m

e
[s

ec
]

Shot

Communication

Computation

IO

(b) 2 MIC + CPU

Figure 6.16 Performance of RTM in terms of communication, computation and IO on Stam-
pede.

1 2 4 8 16 32 64

0

500

1,000

Nodes

Ti
m

e
[s

ec
]

1 MIC + CPU

2 MIC + CPU

1 MPI + 16 OMP

2 MPI + 8 OMP

1 MPI / Node

(a) Execution times

1 2 4 8 16 32 64

0

10

20

30

40

Nodes

Sp
ee

du
p

1 MIC + CPU

2 MIC + CPU

1 MPI + 16 OMP

2 MPI + 8 OMP

1 MPI / Node

(b) Speedup

Figure 6.17 Comparison of the different implementations of RTM on Stampede.

98



Conclusion and Future Work

This work analyzes extensively the seismic imaging application Reverse Time
Migration (RTM) and covers all the aspects that influence its performance. As a
preparation for the Exascale systems, we highlight the features that impact perfor-
mance and we consider for this the hardware and the software parts.

One of the major challenges when it comes to optimizing an application is to
determine the values of the optimization parameters and their optimal combina-
tion. The sampling-based tool ASK permitted us to determine this combination
for the FDTD kernels.

We started by studying the compute core of this application consisting in a
finite-difference time-domain (FDTD) kernel. In order to characterize these ker-
nels, we used the Roofline model as a simple and straightforward model to illus-
trate the interaction between the application and the underlying architecture. This
characterization showed that FDTD kernels are bandwidth limited and that they
are greatly impacted by the DRAM bandwidth. Hence, the applied optimizations
targeted the data reuse and data access patterns. These optimizations resulted
in increasing the arithmetic intensity of the application and approaching conse-
quently the theoretical arithmetic intensity where we assume a perfect use of the
last level cache. We also modeled the DRAM traffic with and without cache block-
ing and we based our model on the reuse distance histogram. The predicted values
are pretty close to the real ones which constitutes a useful tool to predict the DRAM
traffic on unavailable architectures.

The second step of our study consisted in porting the FDTD kernel on a many-
core architecture such as the Intel Knights Corner (KNC) co-processor in order
to highlight the influence of concurrency and heterogeneity. The use of the co-
processor in native mode emphasizes the importance of vectorization and the op-
timal data reuse. Multi-threading in this particular architecture has an important
impact on performance compared to a single thread per core but it can also hin-
der optimal data reuse. The simultaneous use of the host and the co-processor
highlighted the impact of heterogeneity. We implemented an efficient symmetric
version of the FDTD using these two devices. We use MPI and OpenMP program-
ming models and we tune the domain decomposition in order to reduce the load
imbalance due to compute capacity differences.

We conducted a feasibility study of RTM on large scale systems where we mod-
eled the costs of computation, communication and I/O. We highlighted the impact



Conclusion and Future Work

of domain decomposition and checkpointing strategy on this data intensive appli-
cation. We then focused on heterogeneous systems involving manycore architec-
tures like Intel Knights Corner Xeon Phi (KNC). We determined the bottlenecks
that we are going to deal with on these particular architectures using performance
models and showed that due to the small memory available on KNC, we are forced
to over-decompose the computation grid over the nodes. We were also aware of
the overhead introduced by the PCIe interconnect and its great impact on MPI
communications. We ported a hybrid and heterogeneous implementation RTM
on the system Stampede hosted in TACC. Our measurements confirmed the ex-
pected bottlenecks and showed the great impact of the MPI communications on
performance. We also made a comparison between this hybrid and heterogeneous
implementation with MPI only and hybrid implementations on multicore architec-
tures. The current symmetric implementation of RTM struggles to efficiently scale
due to the PCIe interconnect and due to poor memory hierarchy, in particular the
inefficient shared last level cache (L2).

Future Work As heterogeneity did not impact positively the performance of RTM
and the lack of memory capacity on the co-processor we used for our experiments
resulted in an over-decomposition of the compute grid, we would like to study
more in depth the impact of concurrency using the next generation of Intel’s many-
core architecture, the Knight Landing (KNL) since it is expected to address some
of the limitations we encountered on the Knights Corner. The PCIe interconnect
will be removed and the memory capacity and bandwidth will be increased con-
siderably. We would like also to consider other manycore architectures such as the
Kalray Multi-Purpose Processing Array (MPPA) architecture offering a CPU-like
control units and floating point units. It also comprises a high speed low latency
network on chip and limits power consumption to 5-10 Watt.

On the algorithmic side, we want also to pursue the study using other numer-
ical schemes applied to RTM like the finite-element methods and more precisely
the high-order Discontinuous Galerkin Method (DGM) since they are well suited
to run on highly parallel architectures. Operators in DGM are applied locally and
the high order of this method results in a high arithmetic intensity. We can also
study an other approach of approximating the wave equation using an asymptotic
method and more precisely the Kirchhoff method known to be computationally
intensive which makes it a suitable candidate for manycore architectures. The
Prestack Kirchhoff time migration (PSTM) is one of the most popular migration
techniques thanks to its efficiency and simplicity.

100



Bibliography

Alkhalifah, T. (2000). “An acoustic wave equation for anisotropic media”. In: GEO-
PHYSICS 65.4, pp. 1239–1250 (see p. 24).

Anderson, John E., Lijian Tan, and Don Wang (2012). “Time-reversal checkpointing
methods for RTM and FWI”. In: Geophysics 77.4, S93 (see p. 84).

Araya-Polo, Mauricio, Javier Cabezas, Mauricio Hanzich, Miquel Pericas, Felix Ru-
bio, Isaac Gelado, Muhammad Shafiq, Enric Morancho, Nacho Navarro, Ed-
uard Ayguade, et al. (2011). “Assessing accelerator-based HPC reverse time mi-
gration”. In: Parallel and Distributed Systems, IEEE Transactions on 22.1, pp. 147–
162 (see p. 83).

Ashby, Steve, P Beckman, J Chen, P Colella, B Collins, D Crawford, J Dongarra,
D Kothe, R Lusk, P Messina, et al. (2010). “The opportunities and challenges
of exascale computing”. In: Summary Report of the Advanced Scientific Computing
Advisory Committee (ASCAC) Subcommittee (November 2010) (see p. 1).

Bader, Michael and Christoph Zenger (2006). “A cache oblivious algorithm for
matrix multiplication based on peano’s space filling curve”. In: Proceedings
of the 6th international conference on Parallel Processing and Applied Mathematics.
PPAM’05. Pozna&#324;, Poland: Springer-Verlag, pp. 1042–1049 (see p. 48).

Barrett, R.F., S.D. Hammond, C.T. Vaughan, D.W. Doerfler, M.A. Heroux, J.P. Luit-
jens, and D. Roweth (2012). “Navigating an Evolutionary Fast Path to Exas-
cale”. In: High Performance Computing, Networking Storage and Analysis, SC Com-
panion: 0, pp. 355–365 (see p. 9).

Batten, Christopher Francis (2010). “Simplified vector-thread architectures for flex-
ible and efficient data-parallel accelerators”. PhD thesis. Massachusetts Insti-
tute of Technology, Dept. of Electrical Engineering and Computer Science (see
p. 7).

Beyls, Kristof and Erik D’Hollander (2001). “Reuse distance as a metric for cache
behavior”. In: Proceedings of the IASTED Conference on Parallel and Distributed
Computing and systems. Vol. 14, pp. 350–360 (see p. 58).

Bhatele, Abhinav, Pritish Jetley, Hormozd Gahvari, Lukasz Wesolowski, W.D. Gropp,
and L. Kalé (2011). “Architectural constraints to attain 1 Exaflop/s for three



Bibliography

scientific application classes”. In: Parallel & Distributed Processing Symposium
(IPDPS), 2011 IEEE International. IEEE, pp. 80–91 (see p. 14).

Billette, Frederic and Sverre Brandsberg-Dahl (2005). “The 2004 BP velocity bench-
mark.” In: 67th Annual Internat. Mtg., EAGE, Expanded Abstracts. EAGE, B035
(see p. 18, 83).

Biondi, Biondo (2006). 3D seismic imaging. 14. Society of Exploration Geophysicists
(see p. 15, 27).

Borkar, Shekhar (2013). “Exascale computing - A fact or a fiction?” In: Parallel Dis-
tributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, pp. 3–3
(see p. 3).

Borkar, Shekhar and Andrew A. Chien (May 2011). “The future of microproces-
sors”. In: Commun. ACM 54.5, pp. 67–77 (see p. 6).

Bourgeois, A, M Bourget, P Lailly, M Poulet, P Ricarte, and R Versteeg (1991).
“Marmousi, model and data”. In: The Marmousi Experience, pp. 5–16 (see p. 83).

Broquedis, Francois, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,
Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst (2010).
“Hwloc: A Generic Framework for Managing Hardware Affinities in HPC Ap-
plications”. In: Proceedings of the 2010 18th Euromicro Conference on Parallel, Dis-
tributed and Network-based Processing. PDP ’10. Washington, DC, USA: IEEE
Computer Society, pp. 180–186 (see p. 69).

Butz, Arthur R. (1968). “Space filling curves and mathematical programming”. In:
Information and Control 12.4, pp. 314 –330 (see p. 47).

Camp, William J. and Philippe Thierry (2010). “Trends for high-performance sci-
entific computing”. In: The Leading Edge 29.1, pp. 44–47 (see p. 5, 6, 8, 12).

Carcione, J., G. Herman, and A. ten Kroode (2002). “Seismic modeling”. In: GEO-
PHYSICS 67.4, pp. 1304–1325 (see p. 21, 23).

Carter, N.P., A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dunning, J. Fryman,
I. Ganev, R.A. Golliver, R. Knauerhase, R. Lethin, B. Meister, A.K. Mishra, W.R.
Pinfold, J. Teller, J. Torrellas, N. Vasilache, G. Venkatesh, and J. Xu (2013). “Run-
nemede: An architecture for Ubiquitous High-Performance Computing”. In:
High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th Interna-
tional Symposium on, pp. 198–209 (see p. 3).

Christen, Matthias, Olaf Schenk, and Helmar Burkhart (May 2011). “PATUS: A
Code Generation and Autotuning Framework for Parallel Iterative Stencil Com-
putations on Modern Microarchitectures”. In: Proc. 25th IEEE International Sym-
posium on Parallel and Distributed Processing (25th IPDPS’11). Anchorage, Alaska,
USA: IEEE Computer Society, pp. 676–687 (see p. 47).

102



Bibliography

Chu, C. and P. Stoffa (2012). “Implicit finite-difference simulations of seismic wave
propagation”. In: GEOPHYSICS 77.2, T57–T67 (see p. 29).

Clapp, Robert G (2009). “Reverse time migration with random boundaries”. In:
79th Annual International Meeting, SEG Expanded Abstracts. Vol. 28, pp. 2809–
2813 (see p. 86).

Coteus, Paul W., John U. Knickerbocker, Chung H. Lam, and Yurii A. Vlasov (2011).
“Technologies for exascale systems”. In: IBM Journal of Research and Development
55.5, p. 14 (see p. 5, 8).

Courant, R., K. Friedrichs, and H. Lewy (1967). “On the partial difference equations
of mathematical physics”. In: IBM J. Res. Dev. 11.2, pp. 215–234 (see p. 32).

Czechowski, Kenneth, Casey Battaglino, Chris McClanahan, Aparna Chandramowlish-
waran, and Richard Vuduc (2011a). “Balance principles for algorithm-architecture
co-design”. In: Proc. USENIX Wkshp. Hot Topics in Parallelism (HotPar). Berkeley,
CA, USA (see p. 14).

Czechowski, Kenneth, Chris McClanahan, Casey Battaglino, Kartik Iyer, P.-K. Ye-
ung, and Richard Vuduc (2011b). “Prospects for scalable 3D FFTs on hetero-
geneous exascale systems”. In: In Proc. ACM/IEEE Conf. Supercomputing (SC).
(poster; extended version available as Georgia Tech report GT-CSE-11-02) (see
p. 14).

— (2012). “On the communication complexity of 3D FFTs and its implications for
exascale”. In: Proc. ACM Int’l. Conf. Supercomputing (ICS). San Servolo Island,
Venice, Italy (see p. 14).

DARPA (2010). Ubiquitous High Performance Computing (UHPC) program. URL: http:
//www.darpa.mil/Our_Work/MTO/Programs/Ubiquitous_High_
Performance_Computing_(UHPC).aspx (see p. 3).

Datta, Kaushik, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter,
Leonid Oliker, David Patterson, John Shalf, and Kathy Yelick (Nov. 2008). “Sten-
cil computation optimization and auto-tuning on state-of-the-art multicore ar-
chitectures”. In: 2008 SC - International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pp. 1–12 (see p. 43, 44).

Dave Turek (2009). “The Strategic Future: The Push to Exascale!” In: IBM Science
and Innovation Summit (see p. 5).

Davis, Kristofer and Yaoguo Li (2011). “Fast solution of geophysical inversion us-
ing adaptive mesh, space-filling curves and wavelet compression”. In: Geophys-
ical Journal International 185.1, pp. 157–166 (see p. 47).

Ding, Chen and Yutao Zhong (May 2003). “Predicting Whole-program Locality
Through Reuse Distance Analysis”. In: SIGPLAN Not. 38.5, pp. 245–257 (see
p. 59).

103

http://www.darpa.mil/Our_Work/MTO/Programs/Ubiquitous_High_Performance_Computing_(UHPC).aspx
http://www.darpa.mil/Our_Work/MTO/Programs/Ubiquitous_High_Performance_Computing_(UHPC).aspx
http://www.darpa.mil/Our_Work/MTO/Programs/Ubiquitous_High_Performance_Computing_(UHPC).aspx


Bibliography

Dongarra, J. J. and A. J. van der Steen (May 2012). “High-performance computing
systems: Status and outlook”. In: Acta Numerica 21, pp. 379–474 (see p. 11).

Dongarra, Jack J, Piotr Luszczek, and Antoine Petitet (2003). “The LINPACK bench-
mark: past, present and future”. In: Concurrency and Computation: practice and
experience 15.9, pp. 803–820 (see p. 2).

Dongarra, Jack, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio, Jean-
Claude Andre, David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand Braun-
schweig, Franck Cappello, Barbara Chapman, Xuebin Chi, Alok Choudhary,
Sudip Dosanjh, Thom Dunning, Sandro Fiore, Al Geist, Bill Gropp, Robert Har-
rison, Mark Hereld, Michael Heroux, Adolfy Hoisie, Koh Hotta, Zhong Jin,
Yutaka Ishikawa, Fred Johnson, Sanjay Kale, Richard Kenway, David Keyes,
Bill Kramer, Jesus Labarta, Alain Lichnewsky, Thomas Lippert, Bob Lucas, Bar-
ney Maccabe, Satoshi Matsuoka, Paul Messina, Peter Michielse, Bernd Mohr,
Matthias S. Mueller, Wolfgang E. Nagel, Hiroshi Nakashima, Michael E Papka,
Dan Reed, Mitsuhisa Sato, Ed Seidel, John Shalf, David Skinner, Marc Snir,
Thomas Sterling, Rick Stevens, Fred Streitz, Bob Sugar, Shinji Sumimoto, William
Tang, John Taylor, Rajeev Thakur, Anne Trefethen, Mateo Valero, Aad Van Der
Steen, Jeffrey Vetter, Peg Williams, Robert Wisniewski, and Kathy Yelick (Feb.
2011). “The International Exascale Software Project roadmap”. In: Int. J. High
Perform. Comput. Appl. 25.1, pp. 3–60 (see p. 1, 9).

Dussaud, E, WW Symes, and P Williamson (2008). “Computational strategies for
reverse-time migration”. In: 78th SEG Annual Meeting, pp. 2267–2271 (see p. 19,
84).

Eachempati, Deepak, Alan Richardson, Terrence Liao, Henri Calandra, and Bar-
bara M. Chapman (2012). “A Coarray Fortran Implementation to Support Data-
Intensive Application Development”. In: SC Companion. IEEE Computer Soci-
ety, pp. 771–776 (see p. 10).

Efron, B. and R. Tibshirani (1986). “Bootstrap methods for standard errors, confi-
dence intervals, and other measures of statistical accuracy”. In: Statistical science
1.1, pp. 54–75 (see p. 49).

Farmer, Paul A, Ian F Jones, Hongbo Zhou, Robert I Bloor, and Mike C Goodwin
(2006). “Application of reverse time migration to complex imaging problems”.
In: First Break 24.9 (see p. 19).

Farmer, Paul, Zheng Zheng Zhou, and David Jones (2009). “The role of reverse
time migration in imaging and model estimation”. In: The Leading Edge 28.4,
pp. 436–441 (see p. 18).

Fletcher, Robin P., Xiang Du, and Paul J. Fowler (2009). “Reverse time migration
in tilted transversely isotropic (TTI) media”. In: Geophysics 74.6, WCA179 (see
p. 24).

104



Bibliography

Foltinek, Darren, Daniel Eaton, Jeff Mahovsky, Peyman Moghaddam, and Ray Mc-
Garry (2009). “Industrial-scale reverse time migration on gpu hardware”. In:
2009 SEG Annual Meeting (see p. 83).

Friedman, J.H. (2001). “Greedy function approximation: a gradient boosting ma-
chine.(English summary)”. In: Ann. Statist 29.5, pp. 1189–1232 (see p. 50, 51).

Frigo, M., C.E. Leiserson, H. Prokop, and S. Ramachandran (1999). “Cache-oblivious
algorithms”. In: Foundations of Computer Science, 1999. 40th Annual Symposium
on, pp. 285–297 (see p. 47).

Gahvari, Hormozd and William Gropp (2010). “An introductory exascale feasibil-
ity study for FFTs and multigrid”. In: Parallel & Distributed Processing (IPDPS),
2010 IEEE International Symposium on. IEEE, pp. 1–9 (see p. 14).

Griewank, Andreas and Andrea Walther (Mar. 2000). “Algorithm 799: revolve: an
implementation of checkpointing for the reverse or adjoint mode of compu-
tational differentiation”. In: ACM Transactions on Mathematical Software 26.1,
pp. 19–45 (see p. 86).

Hall, Mary, Richard Lethin, Keshav Pingali, Dan Quinlan, Vivek Sarkar, John Shalf,
Robert Lucas, Katherine Yelick, Pavan Balaji ANL, Pedro C Diniz, et al. (2011).
“ASCR Programming Challenges for Exascale Computing”. In: (see p. 7).

Hoisie, Adolfy, Darren Kerbyson, Robert Lucas, Arun Rodrigues, John Shalf, Jef-
frey Vetter, William Harrod, Sonia Sachs, Kevin Barker, Jim Belak, Greg Bron-
evetsky, Chris Carothers, Boyana Norris, and Sudhakar Yalamanchili (2012).
Report on the ASCR Workshop on Modeling and Simulation of Exascale Systems and
Applications. Tech. rep. (see p. 34).

Imbert, David, Khadija Imadoueddine, Philippe Thierry, Hervé Chauris, and Leonardo
Borges (2011). “Tips and tricks for finite difference and i/o-less FWI”. In: SEG
International and Exposition 81st Annual Meeting, San Antonio. San Antonio, USA,
pp. 3174–3178 (see p. 34).

Jin, Guohua and J Mellor-Crummey (2005). “Using space-filling curves for com-
putation reordering”. In: Proceedings of the Los Alamos Computer Science Institute
Sixth Annual Sympo- sium, pp. 1–9 (see p. 47).

Keckler, S.W., W.J. Dally, B. Khailany, M. Garland, and D. Glasco (2011). “GPUs
and the Future of Parallel Computing”. In: Micro, IEEE 31.5, pp. 7–17 (see p. 8).

Kelly, K., R. Ward, S. Treitel, and R. Alford (1976). “Synthetic Seismograms: A
Finite-Difference Approach”. In: GEOPHYSICS 41.1, pp. 2–27 (see p. 28).

Khabou, Amal (2013). “Dense matrix computations: communication cost and nu-
merical stability.” PhD thesis. Université Paris Sud-Paris XI (see p. 11).

105



Bibliography

Kogge, P.M. and T.J. Dysart (2011). “Using the TOP500 to trace and project tech-
nology and architecture trends”. In: High Performance Computing, Networking,
Storage and Analysis (SC), 2011 International Conference for, pp. 1–11 (see p. 8).

Kogge, Peter, Study Lead, Keren Bergman, Shekhar Borkar, Dan Campbell, William
Carlson, William Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry
Hill, Jon Hiller, Sherman Karp, Stephen Keckler, Dean Klein, Robert Lucas,
Mark Richards, Al Scarpelli, Steven Scott, Allan Snavely, Thomas Sterling, R
Stanley Williams, and Katherine Yelick (2008). ExaScale Computing Study: Tech-
nology Challenges in Achieving Exascale Systems. Tech. rep. (see p. 1, 3, 7, 8).

Kosloff, D. and E. Baysal (1982). “Forward modeling by a Fourier method”. In:
GEOPHYSICS 47.10, pp. 1402–1412 (see p. 27).

Krueger, Jens, David Donofrio, John Shalf, Marghoob Mohiyuddin, Samuel Williams,
Leonid Oliker, and F.J. Pfreundt (2011). “Hardware/Software Co-design for
Energy-Efficient Seismic Modeling”. In: Proceedings of SC2011 (see p. 9, 12, 14).

Lee, Jaekyu, Hyesoon Kim, and Richard W. Vuduc (2012). “When Prefetching Works,
When It Doesn’t, and Why”. In: TACO 9.1, p. 2 (see p. 42).

Lipshitz, Benjamin, Grey Ballard, Oded Schwartz, and James Demmel (Nov. 2012).
“Communication-Avoiding Parallel Strassen: Implementation and Performance”.
In: SC’12 CD-ROM: Conference on High Performance Computing Networking, Stor-
age and Analysis. Salt Lake City, UT, USA: ACM SIGARCH/IEEE Computer
Society (see p. 11).

Liu, Wei, Tomas Nemeth, Alexander Loddoch, Joseph Stefani, Ray Ergas, Ling
Zhuo, Bill Volz, Oliver Pell, and James Huggett (2009). “Anisotropic reverse
time migration using coprocessors”. In: SEG Technical Program Expanded Ab-
stracts 2009. Chap. 610, pp. 3040–3044 (see p. 83).

Loh, G.H. (2008). “3D-Stacked Memory Architectures for Multi-core Processors”.
In: Computer Architecture, 2008. ISCA ’08. 35th International Symposium on, pp. 453–
464 (see p. 5).

Marin, Gabriel and John Mellor-Crummey (2004). “Cross-architecture Performance
Predictions for Scientific Applications Using Parameterized Models”. In: Pro-
ceedings of the Joint International Conference on Measurement and Modeling of Com-
puter Systems. SIGMETRICS ’04/Performance ’04. New York, NY, USA: ACM,
pp. 2–13 (see p. 59).

Mattson, R. L., J. Gecsei, D. R. Slutz, and I. L. Traiger (June 1970). “Evaluation
Techniques for Storage Hierarchies”. In: IBM Syst. J. 9.2, pp. 78–117 (see p. 58).

McCalpin, John D (2000). STREAM: Sustainable memory bandwidth in high perfor-
mance computers (see p. 40).

106



Bibliography

Mellor-Crummey, John, David Whalley, and Ken Kennedy (June 2001). “Improv-
ing Memory Hierarchy Performance for Irregular Applications Using Data and
Computation Reorderings”. In: International Journal of Parallel Programming 29.3,
pp. 217–247 (see p. 47).

Micikevicius, Paulius (Mar. 2009). “3D finite difference computation on GPUs us-
ing CUDA”. In: Proceedings of 2nd Workshop on General Purpose Processing on
Graphics Processing Units, (2nd GPGPU’09) in conjunctions with (14th ASPLOS’09).
Vol. 383. ACM International Conference Proceeding Series. Washington, DC,
USA: ACM, pp. 79–84 (see p. 83).

Moczo, Peter, Johan OA Robertsson, and Leo Eisner (2007). “The finite-difference
time-domain method for modeling of seismic wave propagation”. In: Advances
in Geophysics 48, pp. 421–516 (see p. 28).

Nguyen, Anthony, Nadathur Satish, Jatin Chhugani, Changkyu Kim, and Pradeep
Dubey (2010). “3.5-D Blocking Optimization for Stencil Computations on Mod-
ern CPUs and GPUs”. In: Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and Analysis. SC ’10.
Washington, DC, USA: IEEE Computer Society, pp. 1–13 (see p. 44, 52).

Oliveira Castro, Pablo de, Eric Petit, Asma Farjallah, and William Jalby (2013).
“Adaptive sampling for performance characterization of application kernels”.
In: vol. 25. 17, pp. 2345–2362 (see p. 48).

Operto, S, Jean Virieux, and A Ribodetti (2009). “Finite-difference frequency-domain
modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic
(TTI) media”. In: Geophysics 74.5 (see p. 28).

Ortigosa, Francisco, Mauricio Araya Polo, Felix Rubio, Jose Maria Cela, Raud de la
Cruz, and Mauricio Hanzich (2008). “Evaluation of 3d rtm on hpc platforms”.
In: 2008 SEG Annual Meeting (see p. 33, 83).

Pascucci, Valerio and Randall J. Frank (2001). “Global static indexing for real-time
exploration of very large regular grids”. In: Proceedings of the 2001 ACM/IEEE
conference on Supercomputing (CDROM). Supercomputing ’01. Denver, Colorado:
ACM, pp. 2–2 (see p. 47).

Perrone, M., Lurng-Kuo Liu, Ligang Lu, K. Magerlein, Changhoan Kim, I. Fed-
ulova, and A. Semenikhin (2012). “Reducing Data Movement Costs: Scalable
Seismic Imaging on Blue Gene”. In: Parallel Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, pp. 320–329 (see p. 82).

Pratt, R Gerhard (1999). “Seismic waveform inversion in the frequency domain,
Part 1: Theory and verification in a physical scale model”. In: Geophysics 64.3,
pp. 888–901 (see p. 28).

Raman, Karthik (2013). Optimizing Memory Bandwidth on Stream Triad. https :
//software.intel.com/en-us/articles/optimizing-memory-

107

https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-stream-triad
https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-stream-triad
https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-stream-triad


Bibliography

bandwidth-on-stream-triad. [Online; accessed 09-September-2014] (see
p. 70).

Rivera, Gabriel and Chau-Wen Tseng (2000). “Tiling optimizations for 3D scientific
computations”. In: Proceedings of the 2000 ACM/IEEE conference on Supercomput-
ing (CDROM). Supercomputing ’00. Washington, DC, USA: IEEE Computer
Society (see p. 43, 44, 52).

Sercel (2014). What on Earth is Geophysics? [Online; accessed 06-January-2014]. URL:
http://www.sercel.com/about/what-is-geophysics.aspx (see
p. 18).

Shalf, John, David Donofrio, Curtis Janssen, and Dan Quinlan (2011a). CoDEx Web
page. URL: http://www.nersc.gov/research-and-development/
exascale-computing/codex-project/ (see p. 12).

Shalf, John, Sudip Dosanjh, and John Morrison (2011b). “Exascale computing tech-
nology challenges”. In: Proceedings of the 9th international conference on High per-
formance computing for computational science. VECPAR’10. Berkeley, CA: Springer-
Verlag, pp. 1–25 (see p. 3).

Shalf, John, Dan Quinlan, and Curtis Janssen (2011c). “Rethinking Hardware-Software
Codesign for Exascale Systems”. In: IEEE Computer 44.11, pp. 22–30 (see p. 6,
12, 13).

Shen, Xipeng, Yutao Zhong, and Chen Ding (2003). “Regression-based multi-model
prediction of data reuse signature”. In: (see p. 59).

Sheriff, R.E. and L.P. Geldart (1995). Exploration Seismology. Cambridge University
Press (see p. 15, 18).

Stevens, Rick, Andrew White, Sudip Dosanjh, Al Geist, Brent Gorda, Kathy Yelick,
John Morrison, Horst Simon, John Shalf, Jeff Nichols, and Mark Seager (2009).
Scientific Grand Challenges Architectures and technology for extreme scale computing.
Tech. rep. (see p. 6).

Symes, William W. (2007). “Reverse time migration with optimal checkpointing”.
In: Geophysics 72.5, SM213–SM221 (see p. 86).

Treibig, Jan, Georg Hager, and Gerhard Wellein (2010). “LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments”. In: CoRR
abs/1004.4431 (see p. 56).

Treibig, Jan, Gerhard Wellein, and Georg Hager (2011). “Efficient multicore-aware
parallelization strategies for iterative stencil computations”. In: Journal of Com-
putational Science 2.2, pp. 130 –137 (see p. 46).

Valsalam, Vinod and Anthony Skjellum (2002). “A framework for high-performance
matrix multiplication based on hierarchical abstractions, algorithms and opti-

108

https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-stream-triad
https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-stream-triad
http://www.sercel.com/about/what-is-geophysics.aspx
http://www.nersc.gov/research-and-development/exascale-computing/codex-project/
http://www.nersc.gov/research-and-development/exascale-computing/codex-project/


Bibliography

mized low-level kernels”. In: Concurrency and Computation: Practice and Experi-
ence 14.10, pp. 805–839 (see p. 48).

Versteeg, R. (1993). “Sensitivity of prestack depth migration to the velocity model”.
In: GEOPHYSICS 58.6, pp. 873–882 (see p. 83).

Virieux, J and S Operto (2009). “An overview of full-waveform inversion in explo-
ration geophysics”. In: Geophysics 74.6, WCC1 (see p. 28).

Virieux, Jean, Henri Calandra, and R.É. Plessix (2011). “A review of the spectral,
pseudo-spectral, finite-difference and finite-element modelling techniques for
geophysical imaging”. In: Geophysical Prospecting 59.5, pp. 794–813 (see p. 21,
23, 28).

Wellein, G., G. Hager, T. Zeiser, M. Wittmann, and H. Fehske (2009). “Efficient
Temporal Blocking for Stencil Computations by Multicore-Aware Wavefront
Parallelization”. In: Computer Software and Applications Conference, 2009. COMP-
SAC ’09. 33rd Annual IEEE International. Vol. 1, pp. 579–586 (see p. 46).

Williams, Samuel, Andrew Waterman, and David Patterson (Apr. 2009). “Roofline:
an insightful visual performance model for multicore architectures”. In: Com-
mun. ACM 52.4, pp. 65–76 (see p. 35).

Wittmann, Markus, Georg Hager, Jan Treibig, and Gerhard Wellein (2010). “Lever-
aging Shared Caches For Parallel Temporal Blocking Of Stencil Codes On Mul-
ticore Processors and Clusters”. In: IPDPS (see p. 46).

Woo, Dong Hyuk, Nak Hee Seong, D.L. Lewis, and H.-H.S. Lee (2010). “An op-
timized 3D-stacked memory architecture by exploiting excessive, high-density
TSV bandwidth”. In: High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on, pp. 1–12 (see p. 5).

Zhong, Y., S.G. Dropsho, Xipeng Shen, A Studer, and Chen Ding (2007). “Miss Rate
Prediction Across Program Inputs and Cache Configurations”. In: Computers,
IEEE Transactions on 56.3, pp. 328–343 (see p. 59).

109





List of Figures

1.1 Cost of a floating point operation in term of energy consumption for
machines ranked first in top500 from June 2008 to June 2013. . . . . 4

1.2 Memory system hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 From Dave Turek, 2009. Reduction of Flops and Bytes costs. . . . . . 5
1.4 From Camp et al., 2010. Roadmap for memory and CPU packaging

in order to respond to the bandwidth demand. . . . . . . . . . . . . . 6
1.5 From Batten, 2010. General-purpose processors trends in terms of

power consumption, number of transistors, frequency and number
of cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 High level description of the co-design process. We emphasize on
the interaction between the application side and the system side in
order to enable the design of the adequate hardware and algorithms. 13

1.7 Seismic imaging applications. . . . . . . . . . . . . . . . . . . . . . . . 15
1.8 Reverse time migration work flow. . . . . . . . . . . . . . . . . . . . . 16
1.9 Full wave inversion work flow. . . . . . . . . . . . . . . . . . . . . . . 17
1.10 Seismic acquisition steps in marine and in land: 1) acoustic source

emits energy 2) seismic waves propagate in subsurface layers 3) re-
flected waves are recorded by geophones or hydrophones 4) raw
data is processed. Courtesy of Sercel, 2014. . . . . . . . . . . . . . . . 18

1.11 Images showing the difference of imaging for two different depth
migration algorithms. Courtesy of Farmer et al., 2006. . . . . . . . . . 19

2.1 Body waves: P and S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Surface waves: Rayleigh and Love. . . . . . . . . . . . . . . . . . . . . 22
2.3 Computation Domain Truncated by a Perfectly Matched Layer. . . . 25
2.4 Impact of the PML method. . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Wavefront in isotropic media. . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Wavefront in anisotropic TTI subsurface where α = 1, θ = π

6 , φ = π
3 ,

ε = 0.24 and δ = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 From Imbert et al., 2011. Incremental performance study levels . . . . 34
3.2 Example of the Roofline model. Kernel 1 is limited by the band-

width available on the machine. On the contrary, kernel 2 and ker-
nel 3 are limited by the compute capabilities of the hardware. . . . . 36

3.3 Optimizations on the Roofline model. . . . . . . . . . . . . . . . . . . 36



List of Figures

3.4 Centered grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Efficiency of the peak performance for isotropic and TTI kernels

when the cache is infinite. . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Efficiency of the peak performance estimation given the memory

bandwidth in comparison with the floating point peak performance
of the machine. We consider the isotropic and TTI implementations. 41

3.7 Spatial blocking of the computation grid using the blocking factors
blockx, blocky and blockz . The unit stride direction is on the X di-
mension. The green arrows inside the block indicate how the data
is accessed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 For simplicity matter, we consider a half stencil order p = 1. In this
example we update the grid elements on the red plane for time step
t+1 using elements contained in the red plane and in blue planes in
time step t. For p = 1, we only need to keep 3 XY planes in cache
each of size blockx × blocky. . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 The size of the block along the y direction is contained in the re-
gion resulting of the intersection between the green and pink re-
gions which give the values satisfying the inequalities of the system
3.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.10 Time skewing for p = 1. We only keep elements in the blue area. We
can perform multiple computations and only load an elements. . . . 46

3.11 Wavefront blocking for p = 1 and cache group equal to 4. Elements
in the block are computed by the same thread. Blocks with the same
color are computed by different threads simultaneously. . . . . . . . 47

3.12 Illustration of the z-order approach. . . . . . . . . . . . . . . . . . . . 48
3.13 Root mean square error and Mean percentage error for the three

tested strategies in the FDTD case study. The error is evaluated
against a randomly selected test set of 3225 points. The vertical
black lines show the bootstrap confidence intervals. . . . . . . . . . . 50

3.14 Relative influence of input factors in the FDTD kernel. The influence
determines how much a factor affects the response. For the GBM
model, it is computed as described in Friedman, 2001. . . . . . . . . . 51

3.15 Performance of the isotropic and isotropic-split code vari-
ants. For p larger than five, the isotropic-split version is significantly
faster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.16 Performance of different X blocking configurations. The size of the
blocks is inversely proportional to the number of blocks. Large
blocks sizes across X exhibit the better performance. . . . . . . . . . . 52

3.17 Performance of different Y blocking configurations. For a high num-
ber of threads, reducing the Y block size improves performance. . . . 53

3.18 Scalability for the isotropic-split implementation with half or-
der p = 4, NX = 1, NY = 128, and NZ = 32. The speedup is com-
puted using the single thread performance with the same parameters. 53

4.1 Roofline for the non-blocked isotropic implementation. . . . . . . . . 56

112



List of Figures

4.2 Roofline for the non-blocked isotropic implementation after loop
splitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Roofline for the blocked isotropic implementation. . . . . . . . . . . . 58
4.4 Roofline for the blocked isotropic implementation after loop splitting. 58
4.5 Data access patterns for stencil based applications. We considerXY

planes and lines on the X direction. . . . . . . . . . . . . . . . . . . . 60
4.6 Data reuse histograms without cache blocking. Nx and Ny refer to

the grid size on the X and Y directions. . . . . . . . . . . . . . . . . . 60
4.7 Data reuse histograms when cache blocking is used. In this case, Nx

and Ny represent the size of cache blocks on the X and Y directions. 61
4.8 Extra DRAM traffic prediction for different stencil orders . . . . . . . 62
4.9 Good estimation of the DRAM traffic without cache blocking. . . . . 63
4.10 Overestimation of the DRAM traffic with cache blocking. . . . . . . . 63
4.11 Extra DRAM traffic prediction for different stencil orders after up-

dating the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.12 Better estimation with cache blocking after updating the model. . . . 65

5.1 Block diagram of Intel MIC coprocessor. . . . . . . . . . . . . . . . . . 68
5.2 The phi, denoted mic0 and mic1 are respectively connected to NUMA

domain 0 and 1 corresponding to the two sockets. . . . . . . . . . . . 69
5.3 Bandwidth measurements for intra-node communications. . . . . . . 70
5.4 Results of STREAM Triad benchmark on Intel MIC coprocessor. The

best results are obtained when the ECC memory is disabled. . . . . . 71
5.5 Performance of the isotropic kernel using an order 8 in space in na-

tive mode as a function of the number of threads per core on Intel
MIC architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Performance of the TTI kernel using an order 8 in space in native
mode depending on the number of threads per core on Intel MIC
architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 As we increase the order of the stencil, we increase the number of
arithmetic operations to compute the Laplacian of the wavefield.
We notice that hyper-threading has a positive impact on the isotropic
implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.8 TTI Implementation using different orders in space while varying
the number of threads per core in native mode on Intel MIC. . . . . . 75

5.9 Vectorization impact on the isotropic implementation on Intel Knights
Corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.10 Vectorization impact on the TTI implementation on Intel Knights
Corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.11 Vectorization impact on isotropic and TTI implementations on Sandy
Bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.12 The offload pragma defines the targeted coprocessor and the data
needed for the computation. The arrays u0 and u1 are transferred
back and forth while the other arrays are copied only once. . . . . . . 77

113



List of Figures

5.13 Domain decomposition for the symmetric implementation is only
done on the Z direction. Only ghost cells are transferred through
the PCIe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.14 Percentages of the computation, the MPI communications and the
overhead,relatively to the time spent in the main loop of the isotropic
implementation for 2 values of z-cut. . . . . . . . . . . . . . . . . . . . 78

5.15 The efficiency corresponds to the ratio of the performance of the
sub-domains on MIC and on CPU and the performance of the sym-
metric implementation. Varying the z-cut value enables the modifi-
cation of the size of these sub-domains on both devices. . . . . . . . . 79

5.16 Relative performance compared to a single Sandy Bridge socket. . . . 80

6.1 High-level description of GPUs architecture. . . . . . . . . . . . . . . 83
6.2 The 2004 BP velocity-analysis benchmark. . . . . . . . . . . . . . . . . 84
6.3 The Marmousi velocity model. . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Computation of the imaging condition requires the forward and the

backward wavefields at the same time step. Retrieving the neces-
sary value of the forward field when retro-propagating the back-
ward field can result in I/O bottlenecks. . . . . . . . . . . . . . . . . 85

6.5 Spatial Domain Decomposition . . . . . . . . . . . . . . . . . . . . . . 88
6.6 Strong Scaling. Communication time per MPI rank for fixed values

of N , p and βnet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.7 Weak Scaling. Communication time per MPI rank for fixed values

of N , p and βnet. We use the same values as the strong scaling ex-
periment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.8 Size of snapshots as a function of the velocity model size. We give
memory size on Sandy Bridge (64GB) and on MIC (8GB) as upper
bounds on a KNC node. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.9 Size of snapshots as a function of the number of time steps which
is determined using the CFL condition and the discretization steps.
We consider a small and a real velocity models with 3 downsam-
pling factors 1, 3 and 10. As we increase the downsampling factor,
we reduce the size of the snapshots. . . . . . . . . . . . . . . . . . . . 92

6.10 Topology of a compute node on Stampede with a single coprocessor. 94
6.11 Topology of a compute node on Stampede with 2 coprocessors. . . . 95
6.12 Bandwidth measurements on Stampede for intra- and inter-node

communications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.13 Communication time for inter- and intra-node communications . . . 96
6.14 Hybrid and heterogeneous implementation of RTM on a KNC clus-

ter. Communications are performed by MPI processes while com-
putations are made by OpenMP threads. . . . . . . . . . . . . . . . . . 97

6.15 MPI communications of RTM in intra-node. . . . . . . . . . . . . . . . 97
6.16 Performance of RTM in terms of communication, computation and

IO on Stampede. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.17 Comparison of the different implementations of RTM on Stampede. . 98

114



List of Algorithms

1 4D loop to compute the wavefield u in an isotropic medium. . . . . . 38
2 3D loop used to compute the wavefield u at time step t+1 in an

isotropic medium using cache blocking. . . . . . . . . . . . . . . . . . 43
3 Reverse Time Migration (RTM) . . . . . . . . . . . . . . . . . . . . . . 82





List of Tables

1.1 Characteristics of the top 2 machines according to the ranking of
top500 in June 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 From Shalf et al., 2011b. Data movement cost in term of power con-
sumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Potential Exascale systems. . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 From Shalf et al., 2011c. Definition of application surrogates. . . . . . 13

2.1 Taylor Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Theoretical Peak Performance . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Test machine specifications. . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 An example of reuse distance computation considering memory ad-
dress granularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Hardware features of an Intel Knights Corner prototype. . . . . . . . 68
5.2 Software stack on the Knights Corner prototype. . . . . . . . . . . . . 68
5.3 Theoretical and sustainable bandwidth measurements for MIC and

Sandy Bridge Architectures. . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Notations used in the models of RTM. . . . . . . . . . . . . . . . . . . 87
6.2 Computation Time for isotropic and TTI kernels and imaging con-

dition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Size of the surfaces transferred depending on the domain decompo-

sition method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Characteristics of Stampede used to run hybrid version of RTM.

Courtesy of TACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.5 Characteristics of compute node in Stampede. Courtesy of TACC. . . 93
6.6 Software stack on Stampede. . . . . . . . . . . . . . . . . . . . . . . . 93


	Introduction
	Motivations
	Exascale Challenges
	Hardware Challenges
	Software Challenges
	Algorithmic Challenges
	Co-Design
	Previous Feasibility Studies

	Geophysical Applications
	Seismic Imaging Applications
	Seismic Exploration Work Flow


	Seismic Modeling
	Seismic Waves
	Body Waves
	Surface Waves

	Wave Equations
	Elastic Wave Equation
	Acoustic Wave Equation

	Numerical Methods for Seismic Modeling
	Direct methods

	Application to the Acoustic Wave Equation
	Isotropic Media
	Anisotropic media
	Stability Condition and Dispersion


	Performance Study of FDTD Applications
	Overview of Performance Modeling Techniques
	Analytical Models
	Trace-based Models
	Roofline Models

	Performance Modeling of FDTD
	FDTD Algorithm

	Performance Optimizations of FDTD
	NUMA-Awareness
	Prefetching
	Cache Optimizations

	ASK: Adaptive Sampling Kit
	ASK experimental setup
	Performance characterization of stencil computation


	Memory Bandwidth Cost Model for FDTD
	Isotropic Kernel
	Performance Model for Extra DRAM Traffic
	Data Reuse Histogram
	Applying the Reuse Distance Histogram to FDTD
	Updated Formulation of the Performance Model


	FDTD Applications on Manycore Architectures
	Intel Many Integrated Core Architecture
	Performance Gain Expectations
	Programming Models on MIC

	Single-node Implementation of FDTD Applications
	FDTD Implementations Without Absorbing Conditions


	Reverse Time Migration on Large Scale Systems
	Related Work on Reverse Time Migration
	State-of-the-art Implementations
	Velocity Models
	Snapshots and I/O Strategies

	Performance Modeling of RTM
	Computation Costs
	Snapshot Strategy Costs

	Implementation of RTM for Multi-node of Many-Core 
	Test System
	RTM Implementations


	Conclusion and Future Work
	Bibliography
	List of Figures
	List of Algorithms
	List of Tables

