
HAL Id: tel-01165192
https://theses.hal.science/tel-01165192

Submitted on 18 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Procedural locomotion of multi-legged characters in
complex dynamic environments : real-time applications

Ahmad Abdul Karim

To cite this version:
Ahmad Abdul Karim. Procedural locomotion of multi-legged characters in complex dynamic environ-
ments : real-time applications. Modeling and Simulation. Université Claude Bernard - Lyon I, 2012.
English. �NNT : 2012LYO10181�. �tel-01165192�

https://theses.hal.science/tel-01165192
https://hal.archives-ouvertes.fr


N◦ d’ordre : 181-2012 Année 2012

THESE DE L’UNIVERSITE DE LYON

Délivrée par

L’UNIVERSITE CLAUDE BERNARD - LYON 1

Ecole Doctorale Informatique et Mathématiques

DIPLOME DE DOCTORAT

Procedural Locomotion of Multi-Legged Characters in
Complex Dynamic Environments: Real-Time Applications

Soutenue publiquement le 17 Octobre 2012

par Ahmad ABDUL KARIM

Composition du jury:

Rapporteurs

Mr. François FAURE Professeur à l’Université Joseph Fourier
Mr. Jean-Pierre JESSEL Professeur à l’Université Paul Sabatier

Examinateurs

Mme. Dominique FAUDOT Professeur à l’Université de Bourgogne
Mr. Serge MIGUET Professeur à l’Université Lumière Lyon 2
Mr. Axel BUENDIA Directeur de Spir.Ops, PAST au Cédric/CNAM

Directeur

Mme. Säıda BOUAKAZ Professeur à l’Université Claude Bernard Lyon 1

Co-encadrant

Mr. Alexandre MEYER Mâıtre de Conférences à l’Université Claude Bernard Lyon 1





I would like to dedicate this thesis to my loving parents.

Walid, Joumana, I would have never achieved this grade

without your support.

I hope I have made you proud of me.

Love you





Remerciements

Mes remerciements vont tout d’abord à Mme Säıda Bouakaz qui a

dirigé cette thèse. Malgré l’éloignement, elle a toujours été disponible

pour prodiguer des conseils et des orientations pertinentes.

Mes plus vifs remerciements vont également à M. Alexander Meyer

qui a co-dirigé cette thèse. Ses conseils et ses nombreuses relectures

de mes articles et de ce manuscrit m’ont permis de faire évoluer mes

connaissances et mon point de vue sur ce travail.

Mes remerciements également à M. Axel Buendia pour m’avoir accepté

au sein de l’entreprise Spir.Ops, pour sa présence tout au long de

ce travail, pour la confiance qu’il m’a accordée et pour ces conseils

formateurs et enrichissants.

Je tiens à remercier les rapporteurs de cette thèse M. François Faure et

M. Jean-Pierre Jessel pour la lecture, pour les retours et pour l’intérêt

qu’ils ont porté à mon travail. Je remercie également Mme Dominique

Faudot et M. Serge Miguet qui ont bien voulu accepter de participer

au jury de cette thèse comme examinateur.

Je ne trouve pas les mots pour exprimer ma reconnaissance envers

M. Thibaut Gaudin, pour toutes les connaissances pratiques que j’ai

acquises grâce à lui et qui a su orienter mes travaux dans les bonnes

voies. Merci à mes collègues : Florian, Patrick, William, Jérôme et

Denis pour m’avoir intégré au sein de l’entreprise ou je me suis sentis

comme dans une grande famille, merci pour leur retour autour de la

table de déjeuner.

J’adresse un grand merci à tous les amis que j’ai croisés pendant ces

trois ans à Paris, à Lyon et au laboratoire LIRIS qui ont rendu mon

séjour dans ces deux villes agréable, intéressant et chaleureux.

Du fond du coeur, je remercie ma famille, et plus particulièrement mes

parents et ma petite soeur, pour leur formidable soutien.





Abstract

Multi-legged characters like quadrupeds, arachnids, reptiles, etc. are an

essential part of any simulation and they greatly participate in making

virtual worlds more life-like. These multi-legged characters should be

capable of moving freely and in a believable way in order to convey

a better immersive experience for the users. But these locomotion

animations are quite rich due to the complexity of the navigated

environments and the variety of the animated morphologies, gaits,

body sizes and proportions, etc. Another challenge when modeling such

animations arises from the lack of motion data inherent to either the

difficulty to obtain them or the impossibility to capture them.

This thesis addresses these challenges by presenting a system

capable of procedurally generating locomotion animations for

dozens of multi-legged characters in real-time and without any

motion data. Our system is quite generic thanks to the chosen

Procedural-Based techniques and it is capable of animating

different multi-legged morphologies. On top of that, the simulated

characters have more freedom while moving, as we adapt the generated

animations to the dynamic complex environments in real-time. The

main focus is plausible movements that are, at the same time,

believable and fully controllable. This controllability is one of the

forces of our system as it gives the user the possibility to control all

aspects of the generated animation thus producing the needed style of

locomotion.

Keywords: Locomotion, Procedural Animation, Multi-Legged

Characters, Complex Dynamic Environment, Real-Time, User Style.



Résumé

Les créatures à n-pattes, comme les quadrupèdes, les arachnides ou les

reptiles, sont une partie essentielle de n’importe quelle simulation et

ils participent à rendre les mondes virtuels plus crédibles et réalistes.

Ces créatures à n-pattes doivent être capables de se déplacer librement

vers les points d’intérêt de façon réaliste, afin d’offrir une meilleure

expérience immersive aux utilisateurs. Ces animations de locomotion

sont complexes en raison d’une grande variété de morphologies et de

modes de déplacement. Il convient d’ajouter à cette problématique la

complexité des environnements où ils naviguent. Un autre défi lors de

la modélisation de tels mouvements vient de la difficulté à obtenir des

données sources.

Dans cette thèse nous présentons un système capable de générer de

manière procédurale des animations de locomotion pour des dizaines de

créatures à n-pattes, en temps réel, sans aucune donnée de mouvement

préexistante. Notre système est générique et contrôlable. Il est capable

d’animer des morphologies différentes, tout en adaptant les animations

générées à un environnement dynamique complexe, en temps réel, ce

qui donne une grande liberté de déplacement aux créatures à n-pattes

simulées. De plus, notre système permet à l’utilisateur de contrôler

totalement l’animation produite et donc le style de locomotion.

Mot Clés : locomotion, animation procédural, créatures à n-pattes,

environnement dynamique complexe, temps réel, style d’utilisateur.





Locomotion procédurale de créatures à n-pattes dans des
environnements complexes et dynamiques : vers des

applications en temps réel

Résumé étendu de la thèse en français

ix



Introduction

Chapitre 1 : introduction

Motivation : Les animaux réels ou imaginaires font de fréquentes apparitions

dans les jeux vidéo, les serious games [DAJ11], les films et les mondes virtuels.

L’animation de ces créatures virtuelles à n-pattes est essentielle pour rendre

ces mondes virtuels plus crédibles et plus réalistes. Des créatures comme les

quadrupèdes, les arachnides, les insectes, les reptiles ou les robots imaginaires

à n-pattes, etc. La tâche la plus commune que ces créatures à n-pattes effectuent

est la locomotion : la capacité de se déplacer librement dans des mondes virtuels

vers des points d’intérêt. Ces mouvements de déplacement sont essentiels pour

rendre les simulations virtuelles plus convaincantes et immersives, surtout quand

ils se rapprochent des animations des vrais animaux dans le monde réel. Si la

qualité des animations produites reste déterminante, dans le cas étudié l’efficacité

des techniques et leur application au contexte du temps réel sont des facteurs tout

aussi importants.

La richesse de ces animations de locomotion due à la variété des morphologies

animées (un chien et une araignée), à leurs démarches (galop et trot), etc. est

l’un des premiers défis lors de la création d’un système générique réutilisable

capable d’animer ces différentes créatures avec une configuration minimale. De

plus, ces créatures à n-pattes naviguent dans des environnements complexes

(des escaliers, carte de hauteur, etc.), avec différents types d’obstacles (stable,

instable, dynamique, etc.). Pour cela et afin de générer une simulation crédible, le

système d’animation doit s’adapter à l’environnement et produire des animations

de locomotion avec des franchissements d’obstacles, des traversées des terrains

irréguliers, des évitements d’objets dynamiques, etc.

Un autre défi lors de la modélisation de tels mouvements provient du manque

des données habituellement fournies par les systèmes d’acquisition (Motion

Capture (MoCap) data) inhérents à la difficulté de les obtenir (les insectes) ou

à l’impossibilité de les capturer (mammouths, créatures à 5-pattes). Et même

lorsque des données de mouvement existent comme pour la course d’un chien,

il est difficile d’adapter l’animation à un environnement différent de celui de la

capture.

x



Techniques d’animation - état de l’art

Contexte industriel : Cette thèse est une collaboration entre l’équipe

SAARA du LIRIS et une entreprise parisienne Spir.Ops. Le but de cette

collaboration est de profiter à la fois du savoir-faire de l’équipe SAARA dans les

systèmes d’animations et mondes virtuels, et des compétences de Spir.Ops dans

les systèmes d’intelligences artificielles décisionnelles et simulations de foules.

Contribution : Nous présentons un système procédural qui génère des

animations de locomotion pour des dizaines des créatures à n-pattes, en temps réel

et sans données de mouvement (MoCap). Notre système est générique et capable

d’animer différentes morphologies. Il est capable d’adapter l’animation générée à

des environnements complexes et dynamiques, en temps réel, ce qui donne la liberté

de déplacement aux créatures simulées. Notre système est hautement contrôlable

afin de permettre à l’utilisateur de configurer tous les aspects de l’animation finale

pour générer le style de locomotion voulu.

Chapitre 2 : techniques d’animation - état de l’art

Les créatures virtuelles sont souvent représentées par un maillage de polygones et

animées par un squelette. Un squelette articulé est constitué de plusieurs corps

rigides reliés par des articulations (figure 1).

Figure 1: Example d’une créature virtuelle avec son maillage et squelette.

xi



Techniques d’animation - état de l’art

Il existe de nombreuses techniques pour animer ce squelette. Multon et al.

[MFCD99] et van Welbergen et al. [vWvBE+10] ont identifié deux groupes

principaux: les techniques pilotées par les données et les techniques

procédurales. Chacune de ces techniques (et leurs sous-catégories) présente

des avantages et des inconvénients et offre un compromis entre : le contrôle, la

naturalité du mouvement généré et le temps de calcul.

Les techniques pilotées par les données utilisent des données de

mouvement pour produire l’animation des personnages virtuels. Ces données

d’animation sont généralement acquises (MoCap) ou créées manuellement

(Keyframe data). Ces techniques sont les plus naturelles, car elles gardent le

style du mouvement implicite du sujet capturé. Et elles sont bien adaptées à des

applications temps réel puisque les données d’animation sont rejouées en temps réel

sans coûts de calcul supplémentaires. Néanmoins, les techniques pilotées par

les données souffrent d’un manque de contrôle, car les données du mouvement

sont liées à une morphologie particulière et à un contexte spécifique. Plusieurs

techniques sont proposées pour résoudre ces problèmes.

• Motion Blending : fusionner plusieurs données de mouvement pour produire

une nouvelle animation. Ce mélange est en fonction des poids qui varient

dans le temps [HKG06, BMJC01, KG04].

• Retargeting : le processus de transfert des données de mouvement entre de

différentes morphologies [Gle97, PW99, CC10].

• Motion Warping : l’utilisation des commandes d’utilisateur et/ou

l’environnement pour modifier les trajectoires absolus des données

d’animation [Gle01, CKHL11, KHKL09].

La nécessité de plusieurs couches de traitement lorsque le contexte ou la

morphologie change et le manque de données d’animations sources pour les

créatures visées dans cette thèse nous a fait dévier de cette catégorie de techniques.

En revanche, les techniques procédurales n’utilisent pas de

données d’animation. L’animation finale est générée en utilisant soit

les méthodes cinématiques (l’utilisation des formules mathématiques et des

algorithmes qui sont généralement inspirés des données empiriques) soit

xii



Techniques d’animation - état de l’art

les méthodes physiques (l’utilisation des équations physiques pour calculer les

forces et les torsions qui dirigent le mouvement d’une figure articulée).

Les techniques procédurales sont plus génériques et s’adaptent mieux

au contexte et aux morphologies. L’utilisation des équations physiques dans

les méthodes physiques a permis à de nombreux systèmes d’animation de capturer

le réalisme de mouvement en simulant la physique du monde réel. Les animations

générées sont crédibles, avec des effets émergents naturels [KKI02, dLMH10]. Mais

le nombre élevé des équations utilisées dans ces simulations (plusieurs degrés de

liberté dans un squelette articulé et plusieurs contraintes à satisfaire) nécessite

l’utilisation de méthodes d’optimisation avec des fonctions de coût agissant

sur une ou plusieurs contraintes (minimiser l’énergie, minimiser les moments

angulaires, etc.) [LP02, PH05, dL11]. D’autres systèmes utilisent des méthodes

de simplification afin de réduire la complexité de ce problème non linéaire : IPM,

SLIP model [KKK+02, PT06, MdLH10], Feedback-Based (comme SIMBICON)

[YLvdP07, CBvdP10], système de vibration naturelles [KRFC09, NKZ12].

Les méthodes physiques souffrent donc de problèmes de temps de calcul, car

elles ne peuvent pas animer plus de deux personnages en même temps, ainsi que

de problèmes de contrôlabilité, car l’animation finale est contrôlée d’une manière

implicite en utilisant seulement les forces et les torsions.

Finalement, les méthodes cinématiques sont le meilleur choix dans le contexte

de cette thèse. En effet, elles offrent un bon compromis entre la quantité de

contrôle sur le mouvement, la crédibilité de l’animation résultante et le temps

de calcul. Des systèmes cinétiques comme le Versatile Walk Engine [BUT04]

génèrent l’animation de plusieurs bipèdes en même temps et avec plusieurs styles,

ou le PODA Animation System [GM85, Gir87] qui est capable d’animer des

créatures de différentes morphologies avec un minimum de contrôle utilisateur.

Dans les méthodes cinématiques, l’animation produite est contrôlée explicitement,

ce qui signifie la production de mouvement exacte pendant le temps attribué.

L’utilisation de la biomécanique et des données empiriques garantit la plausibilité

de la locomotion produite. Et en se concentrant sur la crédibilité du mouvement

[BHW96] plus que sur la précision de la simulation, et par rapport aux techniques

basées sur la physique, ces techniques sont capables d’animer un nombre important

de créatures, en temps réel.

xiii



Animation de créatures à n-pattes

Chapitre 3 : animation de créatures à n-pattes

La plupart des animaux terrestres se déplacent d’un endroit à l’autre en mettant

un pied devant l’autre de manière successive jusqu’à atteindre le point d’intérêt (la

cible). Lors du mouvement normal d’un pied, nous pouvons distinguer deux phases

principales : phase au sol et phase de vol [INM66]. Pendant la phase d’appui, le

pied reste bloqué au sol. Sinon, le pied vol selon une courbe parabolique sans

aucun contact avec le sol. Un cycle de locomotion (démarche) est l’acte de répéter

ces mouvements des pieds selon un certain rythme ou tempo (figure 2).

Figure 2: Cycle de locomotion: les barres représentent la phase de vol.

Figure 3: Simulation finale.

Notre système (figure 3) suit ces principes lors de la génération, procédurale

et en temps réel, d’animation de locomotion des créatures à n-pattes. Son but

principal est de satisfaire les quatre objectifs suivants :

• Adaptabilité : générer des animations qui s’adaptent aux différentes

morphologies et aux enivrements complexes.

xiv



Animation de créatures à n-pattes

• Contrôlabilité : donner des outils aux utilisateurs pour générer le style de

locomotion souhaitée.

• Crédibilité : la simulation finale doit être crédible pour créer une expérience

immersive.

• Efficacité : un système capable d’animer en temps réel des dizaines de

créatures.

Schéma général

Le système est composé de trois blocs principaux (figure 4):

Figure 4: Schéma général.

• Contrôle de la créature : la structure centrale qui gère la locomotion

globale de la créature à n-pattes. Elle repose sur les deux autres structures

pour calculer le mouvement des pieds et le déplacement du bassin.

• Gestion de la démarche : cette structure impose le rythme du mouvement

des pieds selon le tempo défini par l’utilisateur.

• Planification de la trajectoire des pieds : cette structure évalue pour

chaque pied toutes les cibles et trajectoires possibles en temps réel, et choisit

parmi toutes les possibilités le meilleur couple (trajectoire, cible), c’est-à-dire

xv



Animation de créatures à n-pattes

la meilleure trajectoire 3D qui traverse l’environnement vers la meilleure

cible (empreinte du pied). Elle utilise une structure de construction de

trajectoire en 3D pour calculer la trajectoire 3D d’un pied à l’aide d’une

représentation efficace discrète de l’environnement. Cette représentation est

maintenue en temps réel et mise à jour en prenant en compte les objets

dynamiques.

Nous utilisons le système de cinématique inverse (Inverse Kinematics (IK)) Cyclic-

Coordinate Descent (CCD) (figure 5) pour calculer la position des articulations

intermédiaires des jambes. En animant le bassin, les pieds et les jambes avec ces

trois blocs et le CCD, nous générons une animation complète du bas du corps, ce

qui correspond à une animation du corps entier pour la plupart des créatures que

nous traitons.

Figure 5: De gauche à droite : résolution d’un problème de cinématique inverse en utilisant
le CCD. Le but est de calculer les angles pour que l’extrémité du bras (e) atteigne la cible.

Contrôle de la créature

Elle est en charge de deux tâches principales.

• Gestion du mouvement des pieds : à chaque pas de simulation et selon la

démarche, certains pieds vont entrer en phase de vol. Pour chacun de ces

pieds, cette structure calcule une empreinte préférée selon la vitesse de la

créature et l’environnement. Ensuite, elle appelle la planification de la

trajectoire des pieds pour trouver le meilleur couple. Pour les pieds en

phase au sol, cette structure les bloque au sol ou sur un obstacle.

xvi



Animation de créatures à n-pattes

• Calcul du mouvement 3D du bassin : le mouvement 2D du bassin sur le

plan horizontal (Y est vers le haut) est calculé en utilisant la vitesse et

l’orientation. L’élévation et l’inclinaison du bassin sont calculées à partir de

l’environnement en dessous de la créature.

Gestion de la démarche

Cette structure organise et visualise le tempo des pieds et effectue les transitions

entre différents styles de mouvements. Comme la locomotion est cyclique, il nous

semblait naturel de représenter la démarche avec des cercles. Comme illustré sur la

figure 6, chaque cercle représente un pied et sa phase de vol est représentée par le

secteur coloré. L’aiguille active et désactive les secteurs en fonction de sa position

actuelle. L’activation d’un secteur signifie que le pied correspondant devrait entrer

dans sa phase de vol.

Figure 6: Gestion de la démarche : avec cette interface, l’utilisateur peut créer le tempo
souhaité.

Construction de trajectoire en 3D

L’environnement de travail est assez complexe comme le montre la figure 7. Il

est généré en utilisant une carte de hauteur avec plusieurs types d’obstacles,

ce qui signifie une énorme quantité de triangles pour représenter et rendre cet

environnement.

xvii



Animation de créatures à n-pattes

Figure 7: Un exemple d’un environnement complexe et dynamique que le système peut avoir
comme entrée.

Nous discrétisons l’environnement 3D en deux grilles 2D. La carte d’obstacles

décrit les zones navigables de l’environnement pour les pieds, comme illustré sur la

figure 8. Les cellules noires représentent les obstacles et sont appelées les cellules

interdites. La carte d’élévations contient l’élévation de l’obstacle le plus haut dans

chaque cellule (figure 9).

Figure 8: Carte d’obstacles.

Nous calculons d’abord la trajectoire en 2D sur le plan horizontal à l’aide des

projections de la source et de la cible sur ce plan. Notre planificateur discrétise

le plan et trouve le plus court chemin avec l’algorithme WaveFront [Kha86],

couplé avec une courbe B-spline (la courbe d’Hermite dans la figure 8). En

xviii



Animation de créatures à n-pattes

Figure 9: Carte d’élévations.

échantillonnant cette courbe 2D et en utilisant la carte d’élévations, nous calculons

l’élévation de chaque échantillon, ce qui nous donne la trajectoire 3D qui traverse

l’environnement sans collision (figure 10).

Planification de la trajectoire des pieds

C’est l’une des contributions importantes de cette thèse. Chaque trajectoire 3D

peut contourner ou passer au-dessus de chaque obstacle, ce qui génère de multiples

trajectoires vers une seule cible. En plus, notre algorithme évalue toutes les cibles

(empreintes de pied) autour de l’empreinte préférée désignée par le contrôle de la

créature. Notre espace de recherche est l’ensemble des trajectoires possibles qui

vont du point de départ vers toutes les cibles possibles. Notre algorithme choisit

le meilleur couple (empreinte, trajectoire), en temps réel. L’algorithme explore

l’espace des couples solutions et utilise les scores partiels des trajectoires et des

cibles pour limiter le nombre de solutions explorées. Le résultat final est illustré sur

la figure 10. Le temps d’exécution de cet algorithme est facilement contrôlable ce

qui nous permet d’implémenter des techniques de niveau de détail (Level of Detail

(LOD)) pour accélérer les calculs pour les créatures loin ou derrière la caméra. En

implémentant ces techniques de LOD, nous arrivons à augmenter le nombre de

créatures à n-pattes animées en temps réel.

xix



Animation de créatures à n-pattes

Figure 10: Les cibles potentielles : la couleur varie du vert (meilleure cible) au bleu (pire
cible). Les cellules marquées d’une croix sont les cellules traitées par notre algorithme, en rose
les trajectoires possibles et en noir la trajectoire choisie.

Performance et résultat

Notre système est capable d’animer une grande variété des créatures à n-pattes

(figure 11). L’animation finale est générée automatiquement avec un contrôle

total sur plusieurs paramètres de locomotion comme par exemple la vitesse de

déplacement souhaitée, l’orientation, la démarche, etc. Le temps de calcul moyen,

sur chaque étape de simulation, pour 100 créatures à 8-pattes est de l’ordre de 0.029

seconde dans un environnement composé d’une carte de hauteur de taille 100m2

et d’obstacles (3000 bôıtes, 40% dynamiques). La simulation finale (figure 3) est

réalisée en temps réel, 30 images par seconde (Frames Per Second (fps)).

Figure 11: Types de morphologie simulés.

xx



Vers des animations plus naturelles

Chapitre 4: vers des animations plus naturelles

Le système proposé produit des animations crédibles, mais en comparaison avec des

créatures naturelles il manque certains effets indispensables au réalisme. L’objectif

principal de ce chapitre est d’améliorer le réalisme en ajoutant les composants

suivants : mouvement pseudo physique du bassin et une colonne vertébrale flexible.

Mouvement pseudo physique du bassin

La trajectoire du bassin chez les humains [INM66] et la plupart des animaux

[Muy57] est sinusöıdale. Pour générer automatiquement ce mouvement sinusöıdal,

nous utilisons une particule pour représenter le bassin afin de simplifier les

équations physiques. Ce mouvement sur l’axe Y est régi par la force de gravité

qui pousse vers le bas et les forces des pieds qui poussent vers le haut. Nous

traitons chaque pied indépendamment des autres, comme si la particule du bassin

se trouvait sur un seul pied avec un ressort à la place de la jambe (un pogostick sur

la figure 12) et ce pied supporte la masse (m) entière du bassin. Ce pied pousse

vers le haut avec une certaine quantité de force pendant la phase au sol.

Figure 12: La trajectoire de la particule du bassin quand un pogostick est utilisé pour représenter
sa relation avec chaque jambe.

xxi



Vers des animations plus naturelles

Nous utilisons les lois du mouvement de Newton pour calculer la force exercée

par chaque pied (i) sur l’axe Y :

m · a bassin = W + F pied (1a)

m · a bassin = −m · g +m · a pied (1b)

(1c)

a pied est l’accélération du pied (i). Comme g est une force négative, l’équation 1b

devient :

a bassin = −g + a pied (2)

Nous savons que : a bassin =
vT − vC

T
avec T une durée, vT la vitesse souhaitée

après la durée et vC la vitesse actuelle. En remplaçant dans l’équation 3 :

a pied = g +
vT − vC

T
(3)

L’accélération a pied représente la force réelle que le pied va exercer sur la particule

du bassin. vT et T sont définis par la démarche. Cela signifie un contrôle

transparent pour l’utilisateur comme il n’a pas besoin d’ajuster des paramètres

supplémentaires. Notre système calcule la force de poussée pour chaque pied de

manière indépendante. Ensuite, la particule du bassin intègre toutes ces forces des

pieds (ai) pour générer son mouvement sinusöıdal (figure 13).

Figure 13: Trajectoire finale du bassin.

xxii



Vers des animations plus naturelles

Colonne vertébrale flexible

Les quadrupèdes ont une colonne vertébrale flexible, leur octroyant une grande

agilité, et donc une variété de mouvement étendue. Nous allons d’abord

décomposer le bassin de la créature en plusieurs noeuds virtuels de bassin (des

épaules), illustré sur la figure 14. Chaque pied est relié à l’un de ces noeuds,

à l’exception de la tête. Ces noeuds de bassin sont indépendants (hauteur,

inclinaison, emplacement des pieds, etc.) et connectés avec notre modèle de colonne

vertébrale flexible.

Figure 14: Les noeuds virtuels du bassin et la colonne vertébrale.

La colonne vertébrale est calculée par quatre étapes successives (figure 15).

Tout d’abord sur le plan horizontal, puis sur le plan sagittal pour la simplification.

Sur le plan horizontal, nous nous concentrons sur l’orientation 2D et la translation,

tandis que sur le plan sagittal, nous nous concentrons sur l’élévation (avec notre

système pseudo physique) et l’inclinaison.

Dans l’étape finale, nous combinons les positions 2D calculées dans les étapes

précédentes et les élévations calculées dans l’étape 3 pour obtenir les positions 3D

pour chaque noeud du bassin virtuel. En utilisant les orientations 2D calculées

précédemment et l’inclinaison calculée dans l’étape 3, nous obtenons les tangentes

dans le plan sagittal. Une courbe B-Spline (Hermite) est construite avec ces

données pour générer la colonne vertébrale finale (figure 16 et figure 17).

xxiii



Vers des animations plus naturelles

Figure 15: Les étapes de calculs de la colonne vertébrale.

Figure 16: Colonne vertébrale d’un loup.

Performance et résultat

Notre système reste temps réel après l’ajout de ces composants. De plus,

l’animation générée devient plus crédible pour les quadrupèdes avec colonnes

vertébrales flexibles (figure 18).

xxiv



Vers des animations plus naturelles

Figure 17: Colonne vertébrale d’un lézard.

Colonne 
VertébralInclinaison 

 Systèmes 
d’IK 

a) b) 

Figure 18: Un loup qui court avec sa colonne vertébrale flexible.

xxv



Effet d’oscillation contrôlé

Chapitre 5 : effet d’oscillation contrôlé

Nous proposons un système original qui ajoute des effets d’oscillation à n’importe

quel objet à base de squelette, en temps réel avec un contrôle complet en utilisant

des pendules 3D (figure 19). Notre système génère ces oscillations en utilisant

seulement la trigonométrie et sans recours à des équations physiques, ce qui le

rend plus contrôlable et stable. Les pendules que nous proposons ont trois degrés

de contrôle : temps de réaction, amortissement et direction repos (figure 19(a)).

Ils sont utilisés afin d’ajouter des mouvements secondaires [HOZ97] : effets

d’oscillation et de vibration de la queue d’un loup par exemple. Un pendule

(b) (a) 

Figure 19: (a) Représentation simplifiée des pendules, avec un ressort et une direction de repos.
(b) Pendule 3D.

est une barre avec de longueur fixe L, attiré vers sa direction de repos par un

ressort. Nous découpons ces pendules 3D en 2 ressorts sur chaque plan 2D (voir

figure 19(b)). Nous avons choisi ce système pour éviter le mouvement de rotation

en spirale autour de la direction de repos.

Contrôle temporel des ressorts

L’équation de mouvement d’un ressort est :

ẍ = −(k(x− x0) + cẋ)/m (4)

Pour une position donnée x de masse m, le ressort va osciller autour de la position

de repos x0, en cherchant à minimiser l’erreur (x − x0) jusqu’à atteindre zéro.

xxvi



Effet d’oscillation contrôlé

Cette oscillation dépend directement des constantes (k, c,m). Pour le contrôle

temporel, nous utilisons le principe de temps d’établissement (settling time) :

le temps nécessaire pour que la position x de masse m atteigne son amplitude

maximale à l’intérieur d’un intervalle d’erreur donné (figure 20). Avec le principe

de temps d’établissement et en supposant que m = 1, nous arrivons à calculer les

constantes (k, c) en utilisant l’amortissement et le temps de réaction seulement, ce

qui nous permet de contrôler parfaitement le mouvement du ressort.

 

  de départ 

 
   

Intervalle d'erreur 
souhaitée 

Sous-critique 
Sous-critique 
Critique 

Amortissement : 

Figure 20: Oscillation des ressorts différents avec des amortissements différents.

Les stratégies d’interaction

Le squelette est un arbre d’articulations. En connectant un pendule 3D entre

chaque articulation et en définissant la direction de repos de chacun de ces

pendules, nous obtenons un arbre de pendules (voir figure 21). Certains pendules

3D agissent comme un noeud père pour d’autres pendules. Quand ils se déplacent,

les points d’ancrage de leurs fils se déplacent.

Ces pendules ont besoin d’interagir les uns avec les autres afin d’avoir une

réaction crédible. Par exemple les noeuds fils doivent se déplacer selon le

mouvement de leur noeud père. Nous définissons deux stratégies utilisées en

conjonction pour atteindre notre objectif :

xxvii



Effet d’oscillation contrôlé

Nœud 
père 

Direction 
de repos 

Direction 
de repos 

3 nœuds 
fils 

Pendule 3D 

Figure 21: Arbre des pendules 3D.

• Stratégie de poursuite du père. L’objectif de cette stratégie est de propager

le mouvement du pendule père vers ses enfants, pour intégrer ce mouvement

dans leur propre mouvement.

• Stratégie de poursuite des fils. L’objectif de cette stratégie est de refléter la

perturbation qui peut se produire sur le niveau fils vers son noeud père.

Notre algorithme final effectue les calculs de l’arbre des pendules en deux passes

linéaires. Une passe de bas en haut pour propager les perturbations au niveau des

noeuds fils vers les noeuds pères et une autre passe de haut en bas pour refléter les

mouvements des noeuds père vers leurs fils. Avec ce système simple, nous arrivons

à générer des mouvements crédibles et contrôlables en temps réel.

Résultat

Nous avons ajouté ces effets d’oscillation aux antennes de nos créatures (fourmis,

araignées, etc.) et à la queue du loup ou d’un lézard comme l’illustre la figure 22.

Nous avons également ajouté ces oscillations au corps de fourmis/araignées pour

leur donner un effet moins rigide lors des déplacements.

xxviii



Conclusion

(a) (a) (b) (b) 

Figure 22: Image par image de l’animation de la queue de loup après l’ajout de mouvement
secondaire. (a) Simulation d’une queue souple. (b) Simulation d’une queue plus rigide.

Chapitre 6 : conclusion

Dans cette thèse, nous avons présenté un système de locomotion capable d’animer,

en temps réel, une grande variété de morphologies de créatures à n-pattes.

Notre système de locomotion satisfait quatre objectifs principaux. Il est capable

d’adapter l’animation générée à un environnement complexe dynamique et à de

différentes morphologies. L’utilisateur a un contrôle total sur la locomotion finale

et peut concevoir le style de locomotion désiré à travers nos interfaces. Le système

génère des animations crédibles et réalistes. Enfin, il est suffisamment efficace pour

simuler des dizaines de créatures à n-pattes en temps réel.

xxix





Contents

Contents xxxi

List of Figures xxxv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Industrial Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State Of The Art 7

2.1 Data-Driven Techniques . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Procedural-Based Techniques . . . . . . . . . . . . . . . . . . . . . 14

2.3 Physics-Based Techniques . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Hybrid Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Multi-Legged/Non-Human Characters . . . . . . . . . . . . . . . . 30

2.6 Path and Motion Planning . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Animating Multi-Legged Characters 41

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Character Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Feet Movement Task . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 3D Pelvis Movement Task . . . . . . . . . . . . . . . . . . . 48

3.3 Gait Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xxxi



3.4 3D Path Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Environment Grid-Based Representation . . . . . . . . . . . 54

3.4.2 3D Path Construction . . . . . . . . . . . . . . . . . . . . . 57

3.5 Footprints and Feet Path Planning . . . . . . . . . . . . . . . . . . 61

3.5.1 Potential Footprints and Trajectories scoring . . . . . . . . . 62

3.5.2 Finding Best Couple . . . . . . . . . . . . . . . . . . . . . . 63

3.6 System Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.1 Sequence 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.2 Sequence 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.3 Sequence 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.4 Sequence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Level of Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Performance and Results . . . . . . . . . . . . . . . . . . . . . . . . 71

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Adding Naturality and Realism 79

4.1 Pelvis Movement Using Pseudo Physics . . . . . . . . . . . . . . . . 80

4.2 Spine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Step 1: Spine Orientation . . . . . . . . . . . . . . . . . . . 89

4.2.2 Step 2: Spine Advancing . . . . . . . . . . . . . . . . . . . . 90

4.2.3 Step 3: Spine Elevation and Pitch . . . . . . . . . . . . . . 91

4.2.4 Step 4: Final 3D Spine . . . . . . . . . . . . . . . . . . . . 92

4.3 Other Visual Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Performance and Results . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Controlled Oscillation Effects 101

5.1 Pendulums System Overview . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Time Based Spring Dampers Control . . . . . . . . . . . . . . . . . 105

5.3 Pendulums Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.1 Father Pursuit Strategy . . . . . . . . . . . . . . . . . . . . 108

5.3.2 Son Pursuit Strategy . . . . . . . . . . . . . . . . . . . . . . 109

5.3.3 Final workflow . . . . . . . . . . . . . . . . . . . . . . . . . 110



5.4 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Implementation in Animation Systems . . . . . . . . . . . . . . . . 113

5.5.1 Adding Physical Reaction Effects to any Skeleton-Based

Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.2 Cloth Simulation . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5.3 Secondary Motion in Locomotion System: Results and

Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 General Conclusions 121

Glossary 125

Appendices 131

A PD Controller 133

B Physics Engines Responses 135

C Depth-First vs Breadth-First Search 137

D Locomotion System Parameters 139

E Main Algorithm 141

F Hermite Curve 143

References 145





List of Figures

1 Modèle 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

2 Démarche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

3 Simulation finale . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

4 Schéma général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

5 Cinématique inverse CCD . . . . . . . . . . . . . . . . . . . . . . . xvi

6 Gestion de la démarche . . . . . . . . . . . . . . . . . . . . . . . . . xvii

7 L’environnement de travail . . . . . . . . . . . . . . . . . . . . . . . xviii

8 Carte d’obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

9 Carte d’élévations . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

10 Trouver le meilleur couple . . . . . . . . . . . . . . . . . . . . . . . xx

11 Variété des morphologies . . . . . . . . . . . . . . . . . . . . . . . . xx

12 Trajectoire de la particule du bassin . . . . . . . . . . . . . . . . . . xxi

13 Trajectoire finale du bassin . . . . . . . . . . . . . . . . . . . . . . . xxii

14 Noeuds virtuels du bassin . . . . . . . . . . . . . . . . . . . . . . . xxiii

15 Etapes de calculs de la colonne vertébrale . . . . . . . . . . . . . . . xxiv

16 Colonne vertébrale d’un loup . . . . . . . . . . . . . . . . . . . . . . xxiv

17 Colonne vertébrale d’un lézard . . . . . . . . . . . . . . . . . . . . . xxv

18 Image par image d’un loup . . . . . . . . . . . . . . . . . . . . . . . xxv

19 Pendule 2D et 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

20 Contrôle temporel des ressorts . . . . . . . . . . . . . . . . . . . . . xxvii

21 Arbre des pendules 3D . . . . . . . . . . . . . . . . . . . . . . . . . xxviii

22 Image par image de la queue d’un loup . . . . . . . . . . . . . . . . xxix

1.1 Multi-Legged Characters in Video Games . . . . . . . . . . . . . . . 2

2.1 Skeleton Example: a Wolf . . . . . . . . . . . . . . . . . . . . . . . 8

xxxv



2.2 MoCap Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Motion Blending-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Motion Blending-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Retargeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Motion Path Editing . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Motion Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Example of a Gait Pattern . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 Anatomy Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.10 IK Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.11 Cyclic-Coordinate Descent Method . . . . . . . . . . . . . . . . . . 18

2.12 Example of a MoCap based IK System . . . . . . . . . . . . . . . . 19

2.13 Skeleton Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.14 Walk Cycle FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.15 QP Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.16 Inverted Pendulum Model . . . . . . . . . . . . . . . . . . . . . . . 24

2.17 Spring Loaded Inverted Pendulum Model . . . . . . . . . . . . . . . 25

2.18 Feedback Based Controller . . . . . . . . . . . . . . . . . . . . . . . 26

2.19 PD Controller Introduced Delay . . . . . . . . . . . . . . . . . . . . 28

2.20 Adding Responses to motion data . . . . . . . . . . . . . . . . . . . 29

2.21 Morphology Variations in Spore . . . . . . . . . . . . . . . . . . . . 31

2.22 Path Planning Problem . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.23 Path Planning Roadmap . . . . . . . . . . . . . . . . . . . . . . . . 33

2.24 Path Planning Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.25 Grasp Based Planning . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Simulation Snapshot 1 . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 System Overview Detailed . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Spider and Wolf Morphological Parameters . . . . . . . . . . . . . . 46

3.5 Character Controller Feet Movement Task . . . . . . . . . . . . . . 47

3.6 Foot Preferred Footprint Target . . . . . . . . . . . . . . . . . . . . 48

3.7 Feet Spacing Interface . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Pelvis Preferred Height Calculation . . . . . . . . . . . . . . . . . . 49



3.9 Feet Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 Gait Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 Gait Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.12 Environment from Heightmap . . . . . . . . . . . . . . . . . . . . . 53

3.13 Obstacles Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.14 Complex and Dynamic Environment . . . . . . . . . . . . . . . . . 54

3.15 3D Path Construction Steps . . . . . . . . . . . . . . . . . . . . . . 55

3.16 Obstacles’ Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.17 Elevations Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.18 Obstacle Size Increase . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.19 Wavefront Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.20 Wavefront Modification . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.21 Bresenham’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.22 Final 2D plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.23 Final 3D plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.24 Potential Footprints . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.25 Main Algorithm Slices . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.26 Finding Best Couple . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.27 Sequence 1 Initial Position . . . . . . . . . . . . . . . . . . . . . . . 67

3.28 Sequence 1 - 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.29 Sequence 1 - 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.30 Sequence 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.31 Sequence 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.32 Sequence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.33 Color Coded Simulation LOD . . . . . . . . . . . . . . . . . . . . . 71

3.34 Example of Animated Characters . . . . . . . . . . . . . . . . . . . 72

3.35 Simulation Snapshot 2 . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.36 Frame By Frame: Spider . . . . . . . . . . . . . . . . . . . . . . . . 73

3.37 Frame By Frame: Robot . . . . . . . . . . . . . . . . . . . . . . . . 74

3.38 Performance Char - 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.39 Performance Char - 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Fixed Pelvis Problem and Solution . . . . . . . . . . . . . . . . . . 80



4.2 Human Walking Pelvis Movement . . . . . . . . . . . . . . . . . . . 81

4.3 Dog Galloping Pelvis Movement . . . . . . . . . . . . . . . . . . . . 81

4.4 Pogo Stick Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Foot Pushing Phases . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Pelvis Sinusoidal-Like Ballistic Movement . . . . . . . . . . . . . . . 84

4.7 Per Foot Sinusoidal-like Ballistic Movement . . . . . . . . . . . . . 86

4.8 Spine Deformation while Galloping . . . . . . . . . . . . . . . . . . 87

4.9 With and Without a Spine Results . . . . . . . . . . . . . . . . . . 88

4.10 Pelvis Virtual Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.11 Spine Model Calculation Workflow . . . . . . . . . . . . . . . . . . 89

4.12 Spine Rotation Steps . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.13 Spine Advancing Steps . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.14 Pelvis Virtual Nodes Preferred Height Calculation . . . . . . . . . . 92

4.15 Abstract Lizard Spine Model . . . . . . . . . . . . . . . . . . . . . . 93

4.16 Non-Linear Character Progression . . . . . . . . . . . . . . . . . . . 94

4.17 Random Gait Examples . . . . . . . . . . . . . . . . . . . . . . . . 95

4.18 Frame By Frame: Lizard . . . . . . . . . . . . . . . . . . . . . . . . 96

4.19 Frame By Frame: Wolf . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.20 Average Calculation Time with Pseudo Physics . . . . . . . . . . . 98

4.21 Average Calculation Time with Spine . . . . . . . . . . . . . . . . . 98

5.1 Pendulums Uses Examples . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 A 2D Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 The 3D Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Time Based Spring Dampers Control . . . . . . . . . . . . . . . . . 106

5.5 3D Pendulums Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Father Pursuit Strategy . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 Son Pursuit Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.8 Animating a Lifeless Octopus Model . . . . . . . . . . . . . . . . . 114

5.9 Adding Oscitation to MoCap . . . . . . . . . . . . . . . . . . . . . 115

5.10 Cloth 3D Pendulums System . . . . . . . . . . . . . . . . . . . . . . 116

5.11 Cloth Reaction Sequence . . . . . . . . . . . . . . . . . . . . . . . . 116

5.12 Examples of Pendulums Integration . . . . . . . . . . . . . . . . . . 117



5.13 Wolf Tail Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.14 Pendulums Tree Added Calculation Time . . . . . . . . . . . . . . . 118

6.1 Frame By Frame: Biped . . . . . . . . . . . . . . . . . . . . . . . . 124

A.1 PD Controller Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.1 Example of Physics Engines Responses . . . . . . . . . . . . . . . . 135

C.1 Depth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C.2 Breadth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . 138

F.1 Hermite Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144





Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Industrial Context . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

Real or imaginary animals make frequent appearances in video games (Figure 1.1),

serious games [DAJ11], films and virtual world simulations. Animating these

virtual multi-legged characters like quadrupeds, arachnids, insects, reptiles or

any imaginary n-legged robots or creatures make these virtual worlds believable

and more life-like. The interest in animating these multi-legged characters

is gaining momentum in recent years in computer graphics and in robotics

[SRH+08, SRH+09], even if most of the proposed systems focus on human-like

(biped) characters [vWvBE+10].

The most common task that these virtual multi-legged characters perform

is locomotion: the ability to move freely in virtual worlds toward the points of

interest. These displacement movements are quite essential in order to deliver a

convincing simulation to the users. And, these locomotion animations should be

1



Motivation Introduction

as close as possible to their real-life counterparts, to create a better immersive

experience. The produced animation quality is important, as well as the efficiency

of the techniques with more and more real-time simulations (e.g. video games)

populate their virtual worlds with many creatures, as shown in Figure 1.1. Artists

in these simulations want to have a total control over the produced motion, in

order to generate the needed and imagined user experience.

Figure 1.1: Example of multi-legged characters in video games, From top to bottom: wolf
packs in Assassin’s Creed III, the imaginary antlion bugs in Half Life 2, horses in Read Dead
Redemption, sentry bots in RAGE and finally mammoths in Skyrim.

These locomotion animations are quite rich due to the variety of animated

morphologies (a dog vs. a spider), gaits (galloping vs. trotting), body sizes and

proportions (a wolf vs. a horse), etc. which is one of the first challenges when

2



Introduction Contribution

creating a generic reusable system capable of animating these different creatures

with minimum configuration and tweaking. On top of that, these multi-legged

characters normally navigate through complex environments with many obstacles

often dynamic. So to produce a believable simulation, any animation system

should adapt the motion to the surrounding environment and produce locomotion

animations with obstacles overcoming, uneven terrain crossing, dynamic objects

avoidance, etc.

Another challenge when modeling such motions arises from the lack of Motion

Capture (MoCap) data inherent to either the difficulty to obtain them (insects)

or the impossibility to capture them (like mammoths or 5-legged creatures). Even

when motion data exists, it needs to be recaptured when the context changes. For

example, motion data for a dog running on a plain terrain can not be used in an

another simulation with irregular terrain: a recapture is needed.

1.2 Contribution

Locomotion animation is an essential part of any simulation and it is the main

goal in this thesis, with four essential objectives. It needs to Adapt to complex

environments and different morphologies. It needs to be Controllable, allowing

the user to configure all aspects of final animation, giving him the tools to generate

the desired locomotion style. Final simulation should be Believable, to create a

better immersion experience. And, the system needs to be Efficient, to be used

in real-time simulations.

Considering these four objectives, we present a system that procedurally

generates locomotion animations for dozens of multi-legged characters, in real-

time, without any motion data. Our system is quite generic as it is capable

of animating different morphologies: varied number of legs, different body sizes,

different number of leg sections, etc. and it is capable of adapting the generated

animations to dynamic complex environments, in real-time, giving the simulated

multi-legged characters more freedom when moving. The controllability is one

of the advantages of the chosen Procedural-Based techniques (see Section 2.2

for more details), as it allows the user to control the generated animation thus

3



Industrial Context Introduction

producing the needed style of locomotion.

Our system uses a combination of techniques to achieve these four objectives:

• Terrain analysis and 3D trajectory construction, to give to the animated

characters the tools to navigate in a complex environment.

• Feedback control, in order to adapt the locomotion to moving obstacles.

• Biomechanics parameters, to define different styles of locomotion and to add

realism.

• Intelligent feet placement, that mimics the choices that real-life creature

takes when placing their feet.

• Pseudo physics and secondary motions, to generate more plausible and

believable multi-legged characters animation.

• User-friendly interfaces, to edit and customize the final animation in real-

time and ensure the controllability of our system.

Final simulation is rendered using OpenGL with C++. We use GLSL Shaders in

order to improve 3D visuals and rendering speed, thus enhancing immersion and

believability.

1.3 Industrial Context

The presented work is a collaboration between SAARA1 team at the LIRIS 2 in

Lyon and Spir.Ops3 a company based in Paris. It is funded by the CNRS4 and

Spir.Ops.

The team SAARA is part of the image department of the LIRIS. Their research

topics concern the simulation, analysis and animation of complex scenes containing

virtual characters (like humans and any other multi-legged characters), with an

1 Simulation, Analysis, Animation for Augmented Reality
2 Laboratoire dÍnfoRmatique en Image et Systèmes d’information, UMR5205 CNRS, F-69622,
France

3 http://www.spirops.com/
4 Centre National de la Recherche Scientifique

4



Introduction Thesis Organization

orientation on augmented reality environments. Their main goal is to enrich

movements in virtual worlds by proposing tools based on motion capture or, like

in the case of this thesis, on procedural approaches based on physics or geometry.

Spir.Ops is a private research company in Artificial Intelligence (AI), founded

in 2003, that develops tools and propose services in decisional AI. Their research

topics concern evolved AI behaviors that bring simulated agents to a new level

of believability, crowd simulations and most importantly procedural animation.

They have a broad domain of applications like video games, serious games, robotics

and industrial simulations (crowd simulations in entertainment parks and public

transportation).

1.4 Thesis Organization

In Chapter 2, we present a thorough overview of the existing animation

techniques in general, and locomotion controllers in specific. We list their

advantages and disadvantages in order to justify the choices made in this thesis.

In Chapter 3, we detail the first contribution in this thesis: our multi-

legged characters locomotion system. The generic adaptive animation system

that satisfies the four objectives: adaptability, controllability, believability and

efficiency. Chapter 4 focuses more on the realism and naturality of the locomotion

produced by the system, as we add more control layer (pseudo physics, flexible

spine model, etc.) to make the generated animation even more plausible and

life-like. Chapter 5 focuses also on the realism of the generated animation, as

it presents a system of 3D pendulums that adds secondary motion to the final

simulation. Secondary motions are indirect motions derived from the primary

motion, but essential in order to add more realism to the final simulation [HOZ97].

Finally, Chapter 6 contains final thoughts, general conclusion, future work and

short/long term ambitions concerning the presented animation system.

5





Chapter 2

State Of The Art

Contents

2.1 Data-Driven Techniques . . . . . . . . . . . . . . . . . . 9

2.2 Procedural-Based Techniques . . . . . . . . . . . . . . . 14

2.3 Physics-Based Techniques . . . . . . . . . . . . . . . . . 19

2.4 Hybrid Techniques . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Multi-Legged/Non-Human Characters . . . . . . . . . . 30

2.6 Path and Motion Planning . . . . . . . . . . . . . . . . . 32

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Virtual creatures are often represented by a 3D polygon mesh and animated

through a skeleton as illustrated in Figure 2.1; An articulated skeleton consists of

several rigid links connected by joints. After animating this skeleton, the 3D mesh

animation and deformation is typically achieved using a skinning method. We use

the classical linear blend skinning in this thesis [CHP89, TSC96, Tur95, GB08]

concentrating only on the skeleton deformation of the articulated figure.

There are many techniques for animating this skeleton. Multon et al. in

[MFCD99] and more recently van Welbergen et al. in [vWvBE+10] identified two

main groups: Data-Driven and Procedural-Based techniques. Each of these

techniques and their subcategories have advantages and disadvantages as they offer

a trade-off between: the amount of control over the motion, the naturalness of the

resulting motion and calculation time.

7



State Of The Art

3D Polygon Mesh 

Skeleton 

Figure 2.1: Example of a 3D mesh with its skeleton.

Data-Driven techniques use input data to produce the virtual characters

animation in the virtual world. These input data are usually captured,

called Motion Capture (MoCap) data (Figure 2.2) or manually created, called

Keyframe data.

(a) (b) (c) (d) 

Figure 2.2: Example of optical motion capture, courtesy of [McC10]. a) Performer wears
reflective dots that are followed by several cameras. b) Raw captured data. c) Final skeleton is
animated using the motion data. d) Final 3D mesh is animated using the MoCap data.

8



State Of The Art Data-Driven Techniques

On the other hand Procedural-Based techniques do not use any motion data.

Final animation is generated using either kinematics or physics :

• Kinematics : the use of mathematical formulas and algorithms that are

usually inspired by biomechanics and/or empirical data (Section 2.2).

• Physics : the use of actual physics (dynamics) to calculate the torques/forces

that govern the articulated figure animation (Section 2.3).

In the following sections we discuss in details these techniques plus their advantages

and disadvantages, in order to explain and justify the choices that we made in the

system proposed in this thesis.

We must note that the interest in legged creatures locomotion can be found in

the robotics domain also, as legged robots provide better mobility than wheeled

ones. They can choose the best footprints in the reachable terrain, in a way that

optimize support and traction [Rai86]. Most importantly, legged robots decouple

the path of the body (which is smooth) from the path of the feet (that adapts

to the terrain). Nevertheless, with these advantages comes a whole new type of

problems like balance controls, complex articulated figures control, etc. Stability

is the most important thing in the robotic domain (as discussed by Van de Panne

et al. in [VdPLHF00]), as there are problems and constraints that does not exist in

computer graphics like the mechanical capabilities of the actual joints (motor) or

actual physics constraints from the actual world. While in computer graphics the

most important thing is visual quality, in order to generate a believable immersive

virtual world.

2.1 Data-Driven Techniques

Data-Driven techniques use motion data as input (Figure 2.2), preserving the

naturalness and the visual fidelity of the captured or created animation data.

They are more suited for real-time applications, as playing motion data is usually

negligible in term of calculation time. But these techniques suffer from several

issues related to a lack of control, as the motion data are fixed to a specific

morphology and a specific context. For example, motion data for a character

9



Data-Driven Techniques State Of The Art

going-up stairs do not tolerate any small change of steps height, neither a change of

body parts proportions. Moreover, to achieve the multitude of possible movements

(different walk styles, walking on uneven terrain, etc.) a good amount of MoCap

or keyframe data are needed and stored normally in a database, presenting even

more problems to use and combine these motion data. Finally, any new movement

demands the re-capture or re-creation of a new animation.

Several techniques are proposed to overcome these shortcomings and create

a natural looking animations. Like Motion Blending: the process of producing

new motion by blending multiple motion clips according to some time-varying

weights. Retargeting: the process of transferring motion data between different

morphologies. And many others.

Figure 2.3: A motion generated by blending the upper body of a person carrying a cup with the
lower body of a person stepping up onto a platform, courtesy of [HKG06].

Motion blending is used to create seamless transitions between motion data,

allowing the generation of lengthy and complicated animations out of simpler clips.

And is also used to combine these clips, like blending the upper body movement in a

MoCap clip with the lower body movement from another MoCap clip in [HKG06]

(Figure 2.3). Motion blending can be complex like in [BMJC01] as they blend

several motion clips cooperatively and concurrently based on the needed tasks. A

typical method to achieve the blending is Linear Blending : the ith motion frame

resulting from linear blend is the weighted average of the skeletal parameters (like

joints angles) at the ith frame of each input motion. But this type of blending

can fail when motions have different timing and corresponding events occur at

different absolute times (Figure 2.4). A solution is to timewarp the input motions

10



State Of The Art Data-Driven Techniques

(like the system proposed by Kovar and Gleicher in [KG04]), so corresponding

events occur simultaneously and transition between motions occur in a logical

way. Timewarping can also be used to change the duration of a MoCap clip in

a natural way, which means slowing down or accelerating the motion data while

respecting some physical rules [HdSP07].

Figure 2.4: A transition between walking and jogging that spans two locomotion cycles. Only
the right leg is shown. Without timewarping (Top), out-of-phase frames are combined and the
character floats above the ground with its legs nearly straight, courtesy of [KG04].

Retargeting (Figure 2.5) is the process of adapting an existing motion data

to a new morphology. The main goal is to always preserve as much as possible

the look and feel of the original motion clips. A common use of retargeting

is computer puppetry [SLGS01]: mapping the movements of a performer

(MoCap) on an animated character in real-time. Several methods are used to

achieve this retargeting like numerical constraints (spacetime and motion signal)

[Gle97, GL98, Gle98, PW99], Inverse Kinematics (IK) solvers [LS99, SLGS01]

(more about IK systems in Section 2.2), real-time stochastic calculations [CC10],

the use of actual physics (dynamics) to account for the change in the body

parts proportions and weights while preserving contextual information (contacts

and collision with the environment) [ZH99, OM01, SKG03, PW99, MKHK08].

Retargeting becomes more difficult when motion data contains many contact

constraints as final animation should maintain the spatial relationship between

the new character and its environment and other characters [HKT10]. Or when

retargeting between morphologies with drastically different kinematic structure

[PW99]. Several papers propose the use of an intermediate model in order to

11



Data-Driven Techniques State Of The Art

facilitate the process [PW99, KMA05, MKHK08]. This model decomposes the

general movement of the human body into syntax-based movement of its main

parts (arms, legs, trunk, etc. ).

Figure 2.5: Example of motion data retargeting possibilities, courtesy of [Gle01]. The original
skeleton from the MoCap data is shown in the center.

Motion Path Editing or Motion Warping. Normally MoCap data occurs

on a certain absolute path in the virtual world, Like a walk animation on a

straight line in Figure 2.6. But what if we need the same animation to occur

on a curved path? These techniques (like the system proposed by Gleicher in

[Gle01]) have a goal of altering these paths based on external user control and/or

environment, while ensuring several constraints [CKHL11]: non-penetration,

contact preservation, continuity and motion constraints. An interesting use of

motion warping is to synchronize the motion between several characters, which

demands the ability of inserting and deleting motion clips based on the user

manipulations, as seen in [KHKL09].

As we mentioned before, a typical simulation can have a database with many

motion data (MoCap or keyframe). To manage this huge amount of motion data

several papers use Motion Graphs: graphs that manage the transition between

different motion data clips. Final motion can be simply generated by building

walks on the motion graph (Figure 2.7). These graphs can be simple [KGP02,

AF02, GSKJ03, RP07] or parametric [HG07].

12



State Of The Art Data-Driven Techniques

(a) (b) 

Figure 2.6: An example of motion warping, courtesy of [Gle01]. a) Original motion data. b)
Edited MoCap after altering the original path.

 

Figure 2.7: Example of motion graphs, courtesy of [SKG05, BPP07].

These motion graphs can be quite complex containing predefined avoidance

motions [OM11] and can be manually created or generated automatically. A

typical technique is to calculate the postural similarities between motion clips,

to identify the best transition between them, thus automatically generating the

motion graphs [KGP02, GSKJ03]. Reinforcement learning (RL) techniques (with

immediate and long-term rewards) are also used to construct these motion graphs.

Like in [TLP07, LKL10] they explore all the possibilities of sequences to be

applied starting from all the possible starting positions (poses) in order to

achieve predefined goals: walking, running, turning, obstacle avoidance, etc. RL

techniques can be used to navigate through these motion graphs in an optimal way

[AFO05]. Lee et al. in [LLP09] identifies the subset of motion data that covers a

13



Procedural-Based Techniques State Of The Art

given task (like navigating an environment, going up-stairs, down-stairs, etc. ) to

use less MoCap clips when constructing the motion graphs. Finally, some papers

generate responses animations (a biped responding to an external perturbation)

without using any dynamics. Like Yin et al. in [YPP05] with their system that

blends and edits a database of MoCap data containing animations of people

responding to random pushes.

A common artifact from any attempt of modifying or blending motion data is

FootSkating : where a foot slides on the ground when it should be planted firmly.

This can be solved using IK systems [LLP09]. Mixing IK solvers with offline

analysis [IAF06] or allowing small and smooth changes in the bone lengths of the

skeleton [KSG02]. Some systems concentrated more on the smoothness of the

resulting animation while allowing some of this FootSkating [BUT04, CKJ+11].

So Data-Driven techniques are the most naturally looking techniques as they

are directly captured from real life subjects or created (tweaked) by hand. But

they lack the control, as a change in the animated morphology or the context

requires, most of the time, the use of many processing layers in order to effectively

use motion data in the virtual worlds. On top of that, it is quite hard to

capture the movement of the creatures that we aim to animate in this thesis:

spiders, ants, wolves, lizards, etc. and even sometimes it is impossible to do

the capture: imaginary 5-legged robots. That is what pushed us toward the

Procedural-Based ones.

2.2 Procedural-Based Techniques

Procedural-Based techniques are gaining momentum in recent years specially

in computer-based applications (simulations, video games) as these applications

are becoming more interactive, narrative and AI-intensive, requiring simulated

characters to perform at run-time a wider range of actions and gestures that

are difficult to anticipate (sometimes even impossible) during conception. With

this added complexities, capturing or creating all motion data in advance is

becoming quite difficult and time consuming. Indeed, more animation systems

are starting to use Procedural-Based techniques as they are more generic than

Data-Driven ones, adapt better to the environment and can integrate external

14



State Of The Art Procedural-Based Techniques

perturbations. These criteria are what made us orient our work toward the

procedural approaches. The essential reasons that got us interested in these

techniques. In this section we concentrate on kinematics-based techniques, while

in Section 2.3 we detail physics-based ones.

When it comes to locomotion, Procedural-Based techniques in general and

kinematics-based ones in specific use biomechanics studies and observations as a

source for their control policies. For instance, Muybridge et al. in [MT55, Muy57]

studied the walk and run behavior of humans and over 40 animals. Inamn in

[INM66] propose a study about the sinusoidal movement of the pelvis in humans

and the general phases of the feet: stance and swing. There are also interesting

studies on gait transitions, like the transition from run to walk in humans [Hod91]

or from trotting to pacing in quadruped [Rai90]. In [HWC00], Hoyt et al. studied

the effect of limb and step length on running speed for a variety of species, during

different situations: load carrying, inclined terrain, etc. Bertram and Ruina in

[BR01] show the relationship between walking speed and step frequency (gait)

in humans. While Youn et al. in [YPS07] studied phases and gait mechanics in

animals, like: galloping, trotting, pacing, etc. Most studies show that humans and

animals move in a way that minimizes the energy consumed as much as possible.

Many systems (like ours) use mathematical parametrization and algorithms

coming from biomechanics experimental data, to generate for example bipeds

locomotion [BMtT90]. PODA is one of the earliest procedural-centric locomotion

controllers by Girard et al. [GM85, Gir87]. They use it to animate a wide range

of multi-legged characters on planar terrain (bipeds, quadrupeds, etc. ). The user

needs only to specify the gait pattern (an example of a gait pattern is shown in

Figure 2.8), everything else is calculated automatically.

Figure 2.8: Example of a gait pattern: a dog walk cycle, solid bars represent the legs flight
phase (swing phase), courtesy of [CKJ+11].

15



Procedural-Based Techniques State Of The Art

They add pseudo-physics calculations to the pelvis of the multi-legged

character, making it reacts to the feet movement in the horizontal and sagittal

plane in a more believable way. The anatomy plans are illustrated in Figure 2.9.

Figure 2.9: Anatomy planes for humans, which can be generalized to all other creatures.

Many kinematics-based techniques are based on Inverse Kinematics (IK

systems). The problem can be explained as follow: the generalized location of

an end-effector e (the joint at the end of a chain of joints, shown in Figure 2.10)

is a function of the rotations of all joints in that chain q.

e = f(q) (2.1)

A typical IK problem is calculating these joints rotations using the location of the

end-effector only: given the desired position of a skeleton’s hand (Target), what

must be the angles of the skeleton’s joints?

q = f−1(s) (2.2)

Equation 2.2 may not always have a (unique) solution. Indeed, there are multiple

and sometimes endless combinations of joint Degrees of Freedom (DOF) values that

put the end-effector in the right location. Van Welbergen et al. in [vWvBE+10]

identify several numerical techniques proposed to solve this problem, like the

16



State Of The Art Procedural-Based Techniques

Y 

X 

Target 

Figure 2.10: Example of an IK problem: given the desired position of a skeleton’s hand (Target),
what must be the angles of the skeleton’s joints?

Jacobian Inverse method used in [GM85, Gir87] which is an iterative method

that tries to approximates a good solution using the relation between the joint

velocities and the velocity of the end-effector :

ė = Jq̇ with J =
∂f

∂q
(2.3)

J is an m × n matrix, with m the dimension of the end-effector (three for the

position only, six for the position and rotation) and n is the number of joint

variables. Inverting equation 2.3 gives the joint velocities:

q̇ = J−1ė (2.4)

Then, an iterative approach is used to find q. Find the derivative of e : ė = ˙f(q),

calculate J , invert J , use equation 2.4 to calculate q̇, integrate q̇ to obtain

q and finally repeat until f(q) is close enough to e. Typically, J is non-

square. J−1 then has to be replaced by the pseudo-inverse of J+ (which is

computationally expensive). Optimization Based methods converts the IK

problem into a minimization problem using the distance between f(q) and e as

an error measurement. The goal is then to find the DOF vector q that minimizes

the error, which is a classical non-linear constraint optimization problem [Wel94]

that can be solved using standard numerical methods for which several toolkits are

available. In our system, we use the Cyclic-Coordinate Descent (CCD) method

17



Procedural-Based Techniques State Of The Art

proposed in [Lue84, WC91]. The CCD iterates through the joints, typically

starting with the one closest to the end-effector, and varies one joint variable at a

time based on a heuristic. An example of such a heuristic is shown in Figure 2.11

where the goal is to minimize the angle between the vector originating from the

current joint toward e and the vector from the current joint towards f(q). Unlike

the Jacobian Inverse method, which distributes joint rotation changes equally

along the chain, CCD has a preference of moving distal links first. We chose

this CCD IK system over the others thanks to its performance: in the following

chapters we are going to use it to calculate the position of over a 500 limb in real-

time. We chose it also thanks to its simplicity and controllability: calculations

time can be easily controlled (Section 3.7).

Y 

X 

Target S 
S S S 

Step 1 Step 2 Step 3 Step 4 

Figure 2.11: From left to right: typical steps for the CCD IK method.

We must note that it exists other types of IK systems beside the analytical

ones. These systems use motion data (MoCap or keyframe) to automatically learn

a model of logical and natural poses [GMHP04, Kal08, WTR11, KG04]. The goal

of these systems is to generate the most natural poses: poses that are most similar

to the space of poses in the training data (Figure 2.12). Finally, there is also Mesh

Based IK techniques, like in [SZGP05, DSP06], that directly moves the vertices

and polygons of the 3D model in order to deform the mesh toward the needed

position.

18



State Of The Art Physics-Based Techniques

Figure 2.12: Left: cubes in red represent the possible 3D hand positions from raw MoCap
Data and the yellow sphere represent the needed position. Right: the use of motion blending and
sampling to achieve the non-existent needed position, courtesy of [KG04].

An important aspect in IK systems is joint constraints: in humans the shoulder

joint has 3-DOF while the knee has only 1-DOF, etc. Integrating these constraints

in the IK process is really important in order to generate logical movements that

satisfies the specifications of the needed morphology . There is a good amount of

papers (specially in the medical field) about the range of motion of joints either

in humans [BA79, MT98] or in multi-legged characters. We use these data as an

input constraints to our CCD based IK system. There is also many techniques to

enforce these constraints on the virtual joints, like using reach cones in [WG01] to

constrain ball-and-socket joints (the human shoulder).

2.3 Physics-Based Techniques

Many motion effects observed in real-life like balance control, momentum

propagation, etc. are due to real world physics. Physic-based techniques

concentrate on using dynamics and virtual body characteristics in order to produce

physically realistic motions. These techniques simulate the actual physics forces

that act on the articulated body parts, then they calculate the forces and torques

that should be applied in order to achieve the desired movement. These techniques

are also used for secondary motions like simulating the clothes of the animated

characters, animating the tail of a dog, etc.

19



Physics-Based Techniques State Of The Art

An articulated figure has links connected with each other by different kind

of joints, resulting in many Degrees of Freedom (DOF) (e.g. a human or a

horse, Figure 2.13). The computation of the physics laws that govern this

articulated figure is quite expensive, especially with the increase of DOF.

One to Three 
DOF joints 

Figure 2.13: Example of articulated figures and their many DOF.

Kokkevis in [Kok04] classifies the methods that simulate these articulated

bodies physics (commonly called a ragdoll) into: maximal coordinate methods

[Bar96] and reduced coordinate methods [Fea99a, Fea99b]. Maximal coordinate

methods, like in [Bar96, Fau99], treat each bone as a separate rigid body and use

explicate constraints to remove the extraneous degree of freedom. These methods

are reputed to be easy to implement but they are computentially expensive.

Another drawback is that they operate in cartesian space which makes it difficult to

guaranty length constraints. Reduced coordinate methods, like the one proposed

by Featherstone in [Fea87], eliminates any cyclic calculation problems and breaks

the computation into several linear passes (whether from the root of the skeleton

toward the leaf joints or the inverse). In [Fea99a, Fea99b] Featherstone extends

his work, providing stable solution to animate articulated bodies with branches

and loops (Divide-And-Conquer algorithm), a method used in many systems

[RGL05, MZ90].

20



State Of The Art Physics-Based Techniques

Beside articulated body physics equations, a Physic-Based locomotion

controller needs to move the simulated creature based on the simulation needs. A

typical way to do that is to use a gait pattern (manually created or automatically

generated) represented by a Finite-State Machine (FSM) (See the walking pattern

represented by an FSM in Figure 2.14). Each state in this FSM consists of a body

pose: body part positions or target angles for all joints in respect to their parent

links. Transitions between these states can occur after a fixed durations of time,

after a new foot contact or any other criteria.

Figure 2.14: An example of a Finite-State Machine (FSM) of a walk cycle, courtesy of
[YLvdP07].

During simulation, each body link attempts to drive towards its target position

using external calculated forces in order to generate the needed locomotion. Or

every individual joint attempts to attain its target angle using internal torques

calculated by systems like the Proportional Derivative (PD) controllers 1.

A common source to create this gait patterns are empirical and biomechanics

data, like general locomotion data [LvdPE96, LvdPF97, RH91], or more specific

gait patterns like athletes running, bicycling, vaulting [HWBO95] or swimming

(with fluid dynamics) [YLS04]. Most previous controllers are simulated in a

1 A PD controller is a feedback control mechanism that calculates a torque based on the difference
between the current state and the desired one. It uses the proportional and derivative constants
(Kd,Kp), that are normally tweaked by hand, in order to output this torque (Appendix A).

21



Physics-Based Techniques State Of The Art

fully dynamic world, which means that legged characters need to maintain their

equilibrium to counter gravity. Otherwise these simulated characters will fall off to

the ground even while not moving. To counter gravity, most systems use a balance

controller, an essential part of any physics-based technique. Many biology and

biomechanics-based research papers studied this balance control behavior, mostly

in humans. Like the studies about balance strategies in humans while standing on

a moving platforms under several conditions [PLB95, Rob06, VHB+08]: lights

on/off, holding a cup, holding a safety bar, etc. Faure et al. in [FDCM97]

studied torques and actuator data during a human walk. Other studied

human Center Of Mass (COM) trajectory while balancing, walking or running

[PP97, LF98, SvABV09]. Zordan in [Zor10] shows the importance of angular

momentum in balance control strategies (like windmilling) and during locomotion

(like the movement of the arms and the trunk in response to the legs movement).

Popovic et al. in [PHH04] studied the main principles of human locomotory

function in order to generate natural looking walking animation, like joints spin

angular momentum, the total sum of joint torque squared, etc.

As we can see, in addition to the complexity of the articulated figure physics

(due to their numerous DOF) there are objective functions that need to be

satisfied (minimized or maximized like the balance controller) plus constraints

that should be respected in order to have a logical simulation. Constraints

imposed by the simulation itself (collision, joints range of angles, etc. ) or imposed

by the user (gait pattern, a planted foot should not skate, symmetry of the

movement, etc. ). The complexity of such problem is what pushed many systems

to use optimization methods with intuitive fitness functions and what pushed

others to use simplification methods in order to make this non-linear problem

more tractable.

Optimization Methods

Many systems use optimization techniques to find a solution to the non-linear

equations and constraints that govern the articulated figure physics, as it is quite

intuitive to find a fitness function that summarize how close a given solution is

to achieving the set aims. Fitness function like minimizing energy consumption,

22



State Of The Art Physics-Based Techniques

minimizing torques and angular momentum, etc. Quadratic programming (QP)

based systems are an example of optimization techniques, like the one used by Liu

and Popovic in [LP02] (and similarly by Fang and Pollard in [FP03]). Their system

focus on the synthesis of highly dynamic movement such as jumping, kicking,

running, and other gymnastics (Figure 2.15). The animator defines key poses in the

3D space (keyframes) with their timing, then a QP solver is used to minimize the

objective functions: minimum mass displacement, minimal velocity of DOF and

static balance. While respecting the constraints: the poses fixed by the animator,

the transition poses estimated between those poses and environmental constraints.

The final results of their QP solver are the orientation of each joint and position

of the COM at each frame (the final animation).

Figure 2.15: Example of an animation generated by a QP solver, courtesy of [LP02]. Top:
simple input animation. Bottom: synthesized realistic animation.

Balance control can be achieved with optimization methods in response

to external perturbations [PH05] or ground friction (slippery ice-like terrain)

[AdSP07]. One of the advantage of these systems is their ability to generate

human-like strategies for balance controls like arm swinging and bending in

[KKI02], stepping strategies in [KKI06], etc. which were not coded explicitly in

the controller. This allows for complex animations, like in the system proposed by

Jain et al. in [JYL09], where the character can decide to take several small steps

then supports itself on a wall in response to an external push.

Objective functions can be either weighted [AdSP07, KKI06, PH05, JYL09]

or prioritized [dLH09, dLMH10, dL11] allowing interesting animation results with

the simulated creatures sacrificing comfort in order to achieve a needed goal.

The main advantage of optimization methods (and the main advantage of

the physics-based/Procedural-Based techniques) is the ability to adapt the

23



Physics-Based Techniques State Of The Art

locomotion animation to the environment: rough terrain with large drops and

gaps, uneven terrains, slops, etc. [MdLH10, WZ10]. They do so more easily than

the Data-Driven techniques as they are not constrained by the original motion

data context, allowing more varieties in the simulated environments. On the other

hand, physics-based techniques are not real-time or cannot simulate more than two

characters at the same time.

Simplification Methods

The strategy of these methods is to represent complex dynamic characters by

simpler models with less DOF. The Inverted Pendulum Model (IPM) is a typical

example and it is used to represent the whole body when it is supported by a

single leg. An IPM is a massless telescopic leg that connects the COM of the

body with the needed foot (Figure 2.16). This simple model is used to avoid

complex kinematics and dynamics calculations on the original multi-segments

skeleton [KKK+01a, Rat05, PT06]. The use of the IPM is not limited to computer

graphics, it is also used in robotics like in [KKK+02, SA09, KKK+03]. One of

the main uses of the IPM is in predicting the best foot position to maintain

balance (stepping strategy) [KKI06] specially after an external perturbation (a

push) [PT06, RCP07].

Figure 2.16: An example of an IPM model, courtesy of [TLC+10].

24



State Of The Art Physics-Based Techniques

An IPM is only valid for locomotion with low inertia change (like walking) that

is why other papers use Spring-Loaded Inverted Pendulum (SLIP) (Figure 2.17)

that generalizes the IPM by replacing the fixed length leg with a spring, thereby

capturing energy storage and release during running [SK00, BSG+07]. The SLIP

(and the IPM) can be used to generate the actual gait pattern like in [MdLH10],

instead of using the fixed gait patterns previously represented by an FSM.

Figure 2.17: An example of a SLIP model, courtesy of [SK00]. a) The actual model. b) SLIP
in action.

Many biomechanics-based papers studied these two models (like the energy

changes in [KDR05]). Specially, how an IPM can be successfully used to predict

the preferred walking and running speed for test subjects [SR06] and how it is a

good approximation of the human walking mechanism [Kuo02], using relationships

between speed and step length [Kuo01]. Although simple models like the IPM and

the SLIP are good approximations of the actual legs in multi-legged characters,

Full and Koditschek in [FK99] show how these models fail in capturing the

diversities in locomotion animations. They show also the importance of having

realistic models based on the actual morphology and physiology of an animal

(legs, joints, muscles, etc.) in order generate more natural looking and realistic

locomotion animation. These realistic models can integrate these simple models

(IPM, SLIP, etc.).

Feedback (feed forward) systems are another type of simplification methods

and one of the inspirations for our final locomotion controller. Instead of

calculating everything offline, these methods uses an initial controller that generate

the animation, then these controllers adapt themselves based on the feedback

25



Physics-Based Techniques State Of The Art

of the environment (changing the control strategy, anticipating a fall, etc.). A

typical feedback loop is shown in Figure 2.18. By doing so, these systems are more

responsive and adapt better to uncertain simulations where it is nearly impossible

to anticipate everything in advance. The previously presented PD controller, the

IPM and the SLIP are common components of these kind of systems. The main

system, explained in this thesis (Chapter 3), is a feedback-based one, but we use

kinematics instead of dynamics.

 

Animation 
Controller 

Dynamic 
Simulation 

Environment 

Render 

Pose, Initial 
Animation 
etc. 

Final 
Animation 

Feedback 

Figure 2.18: Feedback (feed forward) based animation controller.

A good example of feedback-based systems is SIMple BIped CONtrol

(SIMBICON) proposed by Yin et al. in [YLvdP07]: a system capable of generating

locomotion animation for a variety of bipeds on irregular terrains while undergoing

external perturbations. Their controller synthesizes animations in real-time and

produces locomotion by using feedback strategies: continuously adapting the

motion to the real environment by changing the PD controllers default target

angles (shown in Figure 2.14) based on the environment feedback.

Many systems couple this SIMBICON (or a SIMBICON-like) controller

with other techniques in order to achieve more. Like adding a footprint

constraint during each step that the biped should satisfies (achieve) in order

to anticipate next steps [CBYvdP08]. Using Genetic Algorithm. techniques in

order to produce naturally looking walking animation [WFH09]. Making the

previous controller more robust by using exploratory Reinforcement learning (RL)

techniques [CBvdP09], or by optimizing it based on certain scenarios (walking on

a narrow passage, changing walking speed etc ) [WFH10]. In [CBvdP10], Coros

et al. couple a SIMBICON inspired motion generator with an IPM in order to

26



State Of The Art Hybrid Techniques

generate in real-time a walk animations for a biped that can keep its balance,

reach objects, lift and push boxes.

Finally, there are interesting simplification systems like in [KRFC09, NKZ12]

that do not animate each joint by itself. They identify the subset of joints, using

modal analysis, that are sufficient to animate the whole virtual creature. Final

animation is generated by making this subset of joints vibrates with specific periods

and with low frequencies, which induces passive movement in other connected

joints and rigid bodies. They aim at simulating the regular pushes from the muscles

that are necessary to re-inject back to the system lost energy from the movement

itself.

2.4 Hybrid Techniques

The systems in this section marry the advantages of the Data-Driven techniques

(naturalness) with the Procedural-Based ones (controllability and adaptability)

in order to generate more realistic animations. The benefit of this mix can

be directly observed in physics-based techniques. As it is always challenging to

manage the functions that leads to the successful completion of the desired task

while ensuring the generation of a visually appealing animation that meets the

user requirements. Some physics-based techniques, use motion data (MoCap or

keyframe) as an input to refine the generated animation, making it more close to

reality.

A good example is the system in [ZH02]. Zordan et al. propose a boxing

simulator using MoCap data and dynamics. At each simulation time step, the

system determines a desired state for the simulation from the motion data, then the

Proportional Derivative (PD) controllers compute torques based on those desired

values and based on the balance controller output. The simulation is integrated

forward in time, the state variables are updated, and the process repeats. The idea

is to calculate the needed torques in order to drive the articulated figure toward

the MoCap data. During this tracking process, this articulated figure can undergo

external forces and have responses motions that were not present in the original

motion data. The previous torques can be calculated offline [MLPP09] or directly

in run-time using these PD controllers [ZH02, LKL10, ZMCF05] or any other

27



Hybrid Techniques State Of The Art

system. But one of the main problems in this tracking technique is the possibility

of introducing a delay in the produced animation between the target pose and the

response even if there is no external perturbation, as shown in Figure 2.19. Our

pendulums system [AKGM+11] overcomes this problem while adding more control

(Chapter 5).

Figure 2.19: An example of the time delay that can be introduced by a PD controller, courtesy
of [ZH02].

Using this simple tracking idea [ZMCF05] and by adding specific motion

data like response animations [ZMM+07, NWB+10] and anticipation animations 1

[ZMM+07, MZH+08] found in biomechanics studies [GRVT06], these systems

are capable of creating more rich simulations than pure MoCap ones with more

predictable and controlled results compared to physics-based one. A typical control

loop in these simulations is illustrated in Figure 2.20 with the articulated figures

tracking MoCap data, blending-out toward dynamic reactions (pure physics or

more controlled dynamics) when there is an external perturbation, then blending-

in toward the closest MoCap data when the external perturbation is finished or

the best motion data is found.

Tracking motion data is only one example of the methods that mixes

Data-Driven and Procedural-Based techniques as there are other systems

that take advantage of this mix benefits, like adding balance control to MoCap

1 Leaning or pulling away from the threat, turning away with the goal of orienting the face away
from the threat, pulling the free extremities in towards the body, etc.

28



State Of The Art Hybrid Techniques

 

* Playing MoCap Data 

* Detecting the 
ball 
* Playing 
Anticipation 
Animation 

* Blend-in: toward 
Response MoCap 

* Blend-out: Dynamic 
Simulation 

* Blend-in: 
toward start 
MoCap 

(1) 

(2) 

(3) (4) 

(5) 

Figure 2.20: Example of a system that adds responses to motion data, original image courtesy
of [ZMM+07].

data using an Inverted Pendulum Model (IPM) [WMZ08, KH10, TLC+10] or

by using optimization methods [MZS09, dSAP08, MPP11], editing motion data

using dynamics and optimization methods (like altering the landing position of

a jump clip) [ALP04, SP05]. And the main goal of most of these techniques is

to extend the existing motion data by integrating extra motions (responses to

external perturbations, balance control, etc. ) that are either context dependents:

changing the weight of the manipulated box in MoCap data [AP06], or hard to

predict during capture or creation: external perturbation [YP03, AFO05].

Finally, most of the previously mentioned Data-Driven and

Procedural-Based systems can be categorized as Foot Placement Driven

Techniques. Techniques with the feet driving the locomotion and the overall

trajectory of the COM, not the opposite. These techniques either adapts existing

MoCap data to satisfy footprints fixed in the environment, using IK systems

[BK96], greedy optimizations techniques [vBPE10], IPM [SKRF11], etc. Or they

use these footprints as active constraints in dynamic systems [Tor97, TvdP98] in

order to simplifies calculations. But these techniques suffer from a biomechanics

29



Multi-Legged/Non-Human Characters State Of The Art

problem: normally, the lower body (the legs) is not the one controlling the

locomotion. On the contrary, the upper body (e.g. COM or pelvis) imposes a

logical trajectory that the lower body tries to follow as discussed by Berthoz in

[Ber09]. Our system like [GM85, Gir87, CR06] respects this concept: the pelvis

can adapt its movement based on the feet feedback, but it is always the one

imposing the overall trajectory.

2.5 Multi-Legged/Non-Human Characters

More and more studies started exploring locomotion and animation of non-

human (non-biped) characters, like animating birds during flight phase using

aerodynamics and biomechanics observations [WP03]. Creating valid swimming

animation for aquatic creatures using fluid simulations and QP solvers [TGTL11].

Even generating locomotion animation for box-based fictional creatures using

genetic algorithm [Sim94], where the locomotion was optimized using genetic

algorithm, as well as the morphology of the creatures itself in order to generate

the best combination (morphology - locomotion) for a given task. In [FRDC04,

CKJ+11, HRE+08, WP09] they generate animation for legged characters, which

consists of a wide panel of creatures like quadrupeds, six-legged characters,

imaginary three-legged creatures etc. All these non-human systems use the same

previous animation techniques as shown by Skrba et al. in [SRH+08, SRH+09]:

Data-Driven methods, physics-based models, IK systems, or some combination

of the above. In this thesis, we have mostly animated n-legged creatures with

n > 2, which is related to this family of methods.

Data-Driven based systems use a wide variety of input data to generate the

multi-legged character animation. Like using gait patterns observed in biology

and dynamics (oscillatory based) to animate six-legged characters (a cockroach)

that adapts to planar and uneven terrain [MZ90], extracting 3D cyclic motion

of animals from video sequences using image processing techniques [FRDC04],

using gait patterns and dynamic values (forces/torques) extracted from MoCap

coupled with PD controllers in run-time, to animate a dog capable of a wide range

of locomotion on a straight line [CKJ+11], and so on. These systems are, most

of the time, morphology specific meaning that they can animate only a specific

30



State Of The Art Multi-Legged/Non-Human Characters

morphology like a dog in [CKJ+11], a horse in [TCHL12] or a quadruped robot

(Called BigDog by Boston Dynamics TM) in [RBNP08].

We are more interested in morphology independent systems like the previous

PODA system [GM85, Gir87] as they can animate a multitude of morphologies

with nearly no constraints. One of the most interesting morphology independent

systems is the one used in the game Spore TM (by Maxis Studio TM ). Where

Hecker et al. in [HRE+08] created a system capable of animating multi-legged

characters whose morphologies are unknown when creating the actual animation

system. These characters can be created by the user in run-time, an example of

the possible morphologies can be seen in Figure 2.21. Their animation database

contains semantically generalized keyframe data, for example: moving the links

that connect the right most grasper and the spine, in a certain way (created by

the animator), relatively to the creature limb length and to the ground. In run-

time these movements are specialized (real-time retargeting) based on the actual

new morphology, using a special iterative numeric IK system. The animators need

only to create gaits for six and less legged characters, then their system generates

plausible locomotion animation for any legged character (6-legs or more). Different

leg groups could be in different gait styles simultaneously on the same character.

For example, two short legs could be running while four long legs are trotting.

Figure 2.21: Example of the possible user created morphologies in the game SporeTM, courtesy
of [HRE+08].

31



Path and Motion Planning State Of The Art

In [WP09], Wampler and Popovic present a system capable of generating

plausible locomotion animation for multi-legged characters (biped, 4-legged, 5-

legged, etc.), with totally different morphologies (long legs, short legs, long

body, etc.) and single point contact feet. Using dynamics and offline spacetime

constraints optimization process, their system is capable of generating a plausible

locomotion animation by using as input the masses of the body links, the desired

velocity and a user defined feet tempo (the time, in a gait cycle, when a given foot

should be in contact with the ground). Their system can optimize the morphology

also, but they differ from other techniques in that they only vary the lengths and

radii of the animal’s limbs (they do not add a new leg), while in [Sim94] the whole

morphology is optimized and changed. So their system is capable of adapting

the morphology to the previously mentioned user constraints and new ones like

keeping the head on a certain height. And by assuming that each foot touches the

ground for only a single interval during a gait cycle, they are capable of optimizing

the actual gait based on the creature morphology.

Finally, most of the systems discuss the importance of adding a spine-like

model while animating multi-legged characters (specially quadrupeds) in order

to generate more natural results [CKJ+11, CR06]. An important issue that we

elaborate in more details in Section 4.2.

2.6 Path and Motion Planning

Path planning in general is the method of finding a trajectory (a path), in 2D

or 3D, that connects a start position S with a goal G, while avoiding collision

with known obstacles (Figure 2.22). A typical use of a path planner is to calculate

characters route in the virtual world. In our case, we use it to plan feet trajectories

that navigates the environment in 3D, an always present problem that needs to be

solved in real-time (Section 3.4).

There are two main methods for path planning: Geometric-Based or Grid-

Based. In Geometric-Based algorithms a graph is generated based on the

environment, called a roadmap: it is a graph that connects nodes/waypoints that

exist in the free space or on the edge of the obstacles, as shown in Figure 2.23.

There are different ways for generating this roadmap graph. Manually, which is a

32



State Of The Art Path and Motion Planning

(a) (b) (c) 

Start Goal 

Free Space 

Obstacle 

Figure 2.22: a) Example of a path planning problem. b) Invalid path (collides with an obstacle).
c) Valid path.

(a) (b) 

Figure 2.23: Example of possible roadmaps (In 2D for simplification). a) Sample based. b)
Triangulation based.

tedious approach. Sampling techniques (Figure 2.23(a)), which samples the free

space then connects the selected points in a way that does not intersect with any

obstacle. Triangulating the environment (Figure 2.23(b)), then connecting the

center of each triangle and S and G. And many other techniques for roadmap

construction.

These roadmaps can be in 3D with waypoints positioned in the 3D space and

connected using 3D segments. Or they can be in 2D (Figure 2.23), coupled with

3D elevation information like the ceiling height in [Lam09] or the elevations map in

our system (Section 3.4.1). By doing this coupling, the path planner is capable

33



Path and Motion Planning State Of The Art

of doing pseudo 3D planning (2.5D) without the complexity of generating and

updating 3D roadmaps.

After generating this roadmap, final path can be calculated by traveling from

the S node toward G. There are several algorithms to optimize this search and

calculate the optimal path. Naive techniques like the Depth-First Search (DFS)

and Breadth-First Search (BFS) explore all possibilities until finding the first

solution (Appendix C). There are more elaborate techniques like the Dijkstra’s

algorithm [Dij59] that evaluates the cost of moving between waypoints in order

to chose the lowest cost path, the A* (A-Star) algorithm [HNR68] that optimizes

the Dijkstra’s algorithm calculation time and memory usage through the use of

heuristics, the HPA* (Hierarchical Path-Finding A*) that splits huge roadmaps

into hierarchical ones in order to accelerate path calculation and many other

techniques for graph navigation.

In Grid-Based algorithms, a grid with fixed cell size is overlaid on the

environment which helps in discretizing the environment (shown in Figure 2.24).

Final path can be calculated using the same techniques of the roadmap traveling, or

(a) (b) 

Figure 2.24: Example of possible planning grid. a) Overlaying the grid. b) Discretizing the
environment.

more specialized ones like the wavefront algorithm porposed by Khatib in [Kha86]

and used in our final system (explained in details in Section 3.4). Actually the

main locomotion system presented in this thesis (Chapter 3) uses a hybrid Grid-

Based 3D path planning algorithm, as the Grid-Based algorithms adapts better

34



State Of The Art Path and Motion Planning

to the complex environment that we simulate (a heightmap with moving obstacles,

shown in Figure 3.14).

In animation systems, path planning can be more complicated as it needs to

take into account the actual abilities of the virtual creatures being animated. This

complexity is more apparent in robotics as controllers have to accommodate for

the capabilities of each robot and the real-physical world constraints. A typical

solution for this problem in robotics is to use the current robot configuration

plus a discrete set of feasible, statically-stable footstep placement positions with

their associated pre-computed and balanced stepping motions. Using these

data, a set of stable footsteps are generated, that connects the starting position

with the goal position while satisfying extra constraints: comfort constraints,

allowing/disallowing stepping on obstacles, etc. Obstacles can be either static

[KKK+01b, KKN+03] or dynamic [CLC+05] (ASIMOTM Humanoid robot).

Finding the collision-free trajectory that navigates through the environment

for a character with many DOF while generating the animation itself can be quite

a challenging task. The problem is the near infinite number of the 3D creature

poses, which means that a certain pose could easily invalidate a path that could

have been valid with another pose. This problem is called Motion Planning

and several methods were proposed to solve it. Most notably the Randomized

Path Planning (RPP), the Probabilistic Path Planning (PPP), the Reinforcement

learning (RL) techniques and Greedy-based motion planners.

In the RPP, the planner tries randomly several configurations (joint angles,

chosen grasps, etc.) and several 3D/2D position in the environment (near

randomly sampled roadmap) in a way that moves the character closer to its

goal configuration, then the planner converges toward the best step based on the

gradient descent method. As this technique can fall deep into a local minima

or enter in collision, a common solution is to use backtracking : the planner rolls

back the current motion plan to a chosen backtracking point and then restarts

the planning process from there. PPP techniques differ only in their roadmap

generation as they use probability calculations when sampling the environment

(waypoints picking) [CLS03, SKG05]. RPP and PPP motion planners are used to

generate a collision free animation for articulated figures. Like when manipulating

objects: grasping an object from inside a box while walking [SKF07]. Or to

35



Path and Motion Planning State Of The Art

generally plan the locomotion of a human model with many DOF in a complex

environment [PSL02, YKH04, PZLM10]. Kalisiak and van de Panne in [KvdP00]

(Figure 2.25) generate locomotion for a human model that can walk, crawl,

climb and swing in a constrained environment using RPP. They used a simple

representation of the human body with only 10-links (Figure 2.25(a)) and manually

placed grasp points (Figure 2.25(b)) that the character can use as a foothold,

handhold or both. They have an FSM (Figure 2.25(c)) to represent the four

modes of locomotion, possible transitions among them, as well as their relative

preference. Posture correction step is introduced at key points in the solution as

a mean of modeling preferences for particular posture characteristics. Trajectory

filters are added to ensure the fluidity of the final synthesized motion.

 

(a) 

(b) (c) 

Figure 2.25: Grasp based planning, courtesy of [KvdP00]. a) Simplified representation of
the human body. b) Manually placed grasp points and the final animation. c) The FSM that
represents the transition between the locomotion modes.

RL based motion planner use controllers that learns the optimal policy, in

offline, using the immediate and long-term reward notion: selecting the next action

(motion clip) so that the long term reward is maximized (reaching a point in space

or grasping), at every time step and from any possible state. In run-time they

36



State Of The Art Path and Motion Planning

only need to define a goal (for example a needed 3D position), and their controller

planes everything based on what it learned [LZ08]. This type of systems can

be successfully used to generate in real-time locomotion animation agents with

dynamic obstacles, hostile enemies and needed target positions [IAF05].

Finally there is Greedy-Based motion planner that tries all possibilities before

choosing the good one, like the one proposed by Lau and Kuffner in [LK06]. They

use a Grid-Based planning technique to generate the actual path between the

start position and the goal position. Then they use a typical gait FSM to generate

trees (of fixed depth) that represent all possible transitions starting from each

FSM state. Like after walking, the character can turn left, continue walking or

turn right, then starting from the previous left turn node the character can turn left

again, continue walking or turn right and so on. They decomposed the generated

path into intermediates waypoints. Then, by placing the pre-computed tree on

each intermediate start pose, they are able to connect the waypoints using simple

tree search techniques. Final animation is generated by simply traveling the chosen

path in the tree and playing the corresponding clips associated to each tree node.

This Motion Planning problem is solved implicitly in our thesis. The system

presented in the following chapters allows the user to control the speed and

direction of the simulated creatures in real-time (video games approach), and it

reacts near instantly to his commands. While at the same time, the generated

locomotion is always adapting to the environment: collision avoidance, heightmap

adaptation, etc. So our system is capable of following any logical trajectory (that

does not go through walls for example) that navigates through the environment

without any explicit Motion Planning steps.

As simulated environments can be dynamic, more and more path planning

techniques are starting to integrate the temporal component when generating the

final trajectory [LLKP11, LLL11]. They use dynamic space-time roadmaps to

generate a valid path that avoids obstacles (static and dynamic) and uses moving

platforms in order to achieve the target goal. We solve this dynamic path planning

for the feet trajectories using a different approach that we detail in Chapter 3.

37



Conclusion State Of The Art

2.7 Conclusion

In the previous sections we presented a detailed overview of the animation

techniques in general, and locomotion controllers in specific. Which are classified

into two main categories [MFCD99, vWvBE+10]: Data-Driven techniques

and Procedural-Based techniques with two subcategories kinematics-based and

physics-based .

Choosing Procedural-Based techniques over the Data-Driven ones was

intuitive in our case as motion data for the multi-legged characters that we target

are either rare or non-existent. Although that Data-Driven techniques are the

most natural ones, as they capture the essence and implicit style of the captured

subjects. Plus, they are well adapted to real-time applications, as the motion data

is replayed with no extra calculation cost. Nevertheless, the difficulty sometimes

to capture motion data and the need for many processing layers when the context

or morphology changes made us deviate from this category of techniques.

Procedural-Based techniques are more generic and adapt better to the

context and morphologies, which are important points to the recent and ever

demanding complex simulations (and video games). The use of dynamics

in the physics-based techniques allowed many systems to capture this realism

through the simulation of real world physics, generating animations that are more

realistic than the kinematics-based ones. The generated locomotion are quite

believable with immigrant life-like movements not coded explicitly in the controller

[KKI02, KKI06, dLMH10, MdLH10] (to name a few). But these techniques have

several drawbacks. One of the most important ones is the lack of controllability.

Physics-Based techniques lack the predictability on the resulting animation, since

the interaction with the system occurs only by indirect physical forces. Although

that in computer graphics visual fidelity is more important than physical accuracy.

Another drawback is the bad performance of the physics-based techniques, they

cannot animate more than one or two characters. They are computationally

expensive due to the number of equations to solve (even after simplification):

equations of external forces acting on the articulated body, equations of internal

torques plus constraints equations. That limits the possibility of animating several

characters at the same time, a problem that made us deviate from these techniques.

38



State Of The Art Conclusion

Appendix B shows some of the problems when simulating real world physics using

State-of-The-Art commercial and open-source physics engines.

Kinematics-Based techniques are the best choice in the context of this thesis,

as they offer a good compromise between the amount of control over the motion,

the naturalness of the resulting animation and calculation time. The produced

animation is controlled explicitly, which means producing the exact needed

movement at the exact assigned time. Their use of biomechanics and empirical

data ensure the naturalness of the produced locomotion. And by concentrating

on the plausibility of the movement more than the accuracy of the simulation,

these techniques are capable of animating a significant number of creatures in

comparison to the physics-based one. Brazel et al. introduces the idea of plausible

motion in [BHW96], they show that end-users are more interested in the visual

plausibility of the movement than the actual calculations. Brazel extends this

plausibility of motion concepts to fake the dynamics of ropes and springs in [Bar97],

his techniques were successfully used to animate Slinky Dog in the movie Toy

StoryTM. Most kinematics-based systems (like the one proposed in Chapter 3)

aim at satisfying this plausibility of the movement while staying as accurate as

possible.

Sure that the chosen kinematics-based techniques offer lots of advantages but in

the same time there is many problems that needs to be addressed and solved. The

Main problems are creating a morphology independent animation system, the need

for a real-time dynamic feet trajectory planner as the simulated environment in

this thesis is dynamic (Chapter 3) and the system should be capable of animating

dozens of creatures in real-time (main focus throughout this thesis). Also, there

is a small gap between plausibility and naturality which is sometimes difficult to

achieve, a problem that we address in Chapter 4 and one of the main contributions.

We hope that our final system pushes the industry and developers of real-time

simulators (e.g. video games) toward relaying less on Data-Driven techniques,

making virtual worlds less repetitive and more rich when it comes to unique

characters locomotion styles.

39





Chapter 3

Animating Multi-Legged

Characters

Contents

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Character Controller . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Feet Movement Task . . . . . . . . . . . . . . . . . . . . 47

3.2.2 3D Pelvis Movement Task . . . . . . . . . . . . . . . . . 48

3.3 Gait Manager . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 3D Path Constructor . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Environment Grid-Based Representation . . . . . . . . . 54

3.4.2 3D Path Construction . . . . . . . . . . . . . . . . . . . 57

3.5 Footprints and Feet Path Planning . . . . . . . . . . . . 61

3.5.1 Potential Footprints and Trajectories scoring . . . . . . 62

3.5.2 Finding Best Couple . . . . . . . . . . . . . . . . . . . . 63

3.6 System Loop . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.1 Sequence 1 . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.2 Sequence 2 . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.3 Sequence 3 . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.4 Sequence 4 . . . . . . . . . . . . . . . . . . . . . . . . . 69

41



Animating Multi-Legged Characters

3.7 Level of Details . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Performance and Results . . . . . . . . . . . . . . . . . . 71

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 78

The goal of our system is to generate locomotion animations for multi-legged

characters. Locomotion is the act of moving from one place to another. For most

terrestrial animals that means putting one foot in front of the others in a successive

way until reaching the designated point of interest (target). During a normal foot

movement there are two main phases Stance and Swing phase [INM66]. During

the stance phase a foot is blocked on the ground. While in swing phase (flight

phase) the foot flies in a parabolic-like curve toward its target without any ground

contact. Locomotion cycle is the act of repeating these feet movements, based on

a certain rhythm or tempo, called a Gait Pattern (Figure 2.8).

Figure 3.1: Snapshot from final simulation.

Our system, shown in Figure 3.1, follows these principles when generating,

procedurally and in real-time, multi-legged characters locomotion. Its main goal

is to satisfy the four objectives: adaptability, controllability, believability and

efficiency. Plus, it covers a huge panel of real-life creatures like insects: ants,

beetles, crickets, etc. quadrupeds: dogs, horses, wolves, etc. arachnids: spiders,

42



Animating Multi-Legged Characters System Overview

scorpions, etc. reptiles: lizards, crocodiles, Gecko’s, etc. and also covers other

imaginary legged creatures like 3-legged or 5-legged robots.

In the following sections we will explain in details our system (Section 3.1),

and its main components: character controller (Section 3.2), gait manager

(Section 3.3), 3D path constructor (Section 3.4) and footprints and feet path

planning (Section 3.5). Section 3.6 gives a more in-depth step-by-step examples

of our system. In Section 3.7 we explain the implemented Level of Detail (LOD)

techniques that allowed the animation of even more multi-legged characters in

real-time. And finally we speak about the performance of the system and compare

it to other proposed systems in Section 3.8.

3.1 System Overview

  

Feet Path 
Planning 

Pelvis 

Figure 3.2: Animation/Locomotion system overview.

The overall locomotion process is computed by four main blocks as shown in

Figure 3.2:

• The character controller is the central main structure that manages the

overall locomotion of the multi-legged character (see Section 3.2). It relies on

the three other structures to compute the motion of the feet and the overall

pelvis displacement.

43



System Overview Animating Multi-Legged Characters

• The gait manager regulates the feet tempo according to the movement

patterns defined by the user (see Section 3.3).

• The 3D path constructor that computes the 3D trajectory for a foot using

an efficient discrete representation of the environment that can be easily

maintained and updated with dynamic objects (see Section 3.4).

• The footprints planner evaluates for each foot all the possible targets and

trajectories in real-time, and chooses the best couple: best 3D trajectory

that navigates through the environment toward the best footprint target

(see Section 3.5).

These four blocks work together (Figure 3.3) in order to generate the movement of

the feet and the pelvis in 3D. In a complex and dynamic environment as shown in

Figure 3.14, that can be defined by a heightmap (Figure 3.12) and contains many

obstacles (Figure 3.13) with different types: moving or static.

First, the character controller on Figure 3.3 moves the creature pelvis based

on several criteria’s as explained in Section 3.2.2. Based on the pelvis movement

and the gait manager (Section 3.3), the character controller queries the footprints

planner about the best couple for each foot in swing phase (Section 3.5). The

footprints planner uses the 3D path constructor (Section 3.4) in order to calculate

these best couples. Then, the character controller moves the feet in swing phase

based on their best couple and blocks the feet in stance phase (Section 3.2.1).

We use the CCD IK system to calculate the position of the intermediate legs

joints that connect the creature pelvis with its feet, we chose it over other IK

systems because of its performance and simplicity. By animating the pelvis, the

feet and the legs, we generate a complete lower body animation which is a full

body animation for most of the multi-legged characters that we address. Finally,

the feet send feedback information about their movement to be incorporated in

the pelvis movement in the next simulation step.

Our system generates the locomotion animations using several input

parameters that the user provides or controls in real-time. All the parameters

(except the morphological ones) can be edited at any time by the user or by any

automatic character controller when the focus is to animate a crowd of creatures.

An overview of all the parameters follows and can be found on Appendix D.

44



Animating Multi-Legged Characters System Overview

Character Controller: Section 3.2

Move Pelvis
2D Orientation
Speed
Elevation(1)

Prepare FeetMove Feet

(2)

(5)

(8) Feedback

Gait Manager
Section 3.3(2)

Feet State

Footprints Planner
Section 3.5

(3)

(4)

Best Couples

3D Path Construction
Section 3.4
Figure 3.15

CCD IK

(6)

(6)

(7)

Render

Environment

Figure 3.3: The general steps taken by our locomotion system in order to calculate the creature
final locomotion animation.

• Multi-legged character morphology: the user provides an initial static

skeleton that can be associated with a skinned mesh. To automatically map

the morphology, the user provides the system with the name of each leg hip

joint and the name of its end-effector (e.g. the joint before the foot). Out of

45



System Overview Animating Multi-Legged Characters

these inputs the system detects the number of feet, leg sections, the relative

hip positions, spine model (if it exists) and the initial feet relative positions.

The user also needs to provide the system with the desired joint limits (for

the legs CCD IK system and the spine model (if it exists)), real body center,

projected body bounding box, body thickness, and finally the projected foot

shape (if it exists) an example is shown in Figure 3.4.

• Gait/Tempo: using our interface, the user designs each foot cycle (stance

and swing phases). These cycles describe the tempo (pattern) of the feet

movement. The final gait can be symmetrical or asymmetrical.

• Locomotion speed: speed of the movement in meters per second.

• Locomotion direction: the needed orientation on the ZX-plane.

• Step height: the preferred foot step height in meter.

• Feet spacing: the preferred position of each foot, relative to the pelvis.

(b) (a) 

(c) (d) 

Figure 3.4: Top: spider model. Bottom: wolf model. (a,c) Internal representation with the IK
systems, in pink is the projected bounding box of the creature body, in blue the feet orientation.
(b,d) The actual 3D mesh.

46



Animating Multi-Legged Characters Character Controller

3.2 Character Controller

The character controller is the coordinator of the overall system. It is in charge of

two main tasks: managing the movement of the feet (Section 3.2.1) and computing

the pelvis 3D movement (Section 3.2.2). Everything is generated based on the user

needs, the environment and the feet feedback.

3.2.1 Feet Movement Task

Foot Path Planning 

For Each Foot 

 

Do Nothing 

Stance

Check 3D 
Trajectory 

Already in 
Swing Phase 

Valid? Yes 

New to Swing Phase 

No 

Calculate Preferred Target 

Footprints 
Planner 

 Yes No 

3D Path 
Constructor 

Foot State? 

Forced Replan? 

Figure 3.5: Main job of the character controller per foot: based on the current foot state it can
take different decisions.

Figure 3.5 explains how the character controller manages the movement of the

feet. At each time step, the gait manager informs the character controller about the

feet that are going to enter in swing phase (detailed in Section 3.3). For each one

of these feet, the character controller calculates a preferred footprint target, shown

in Figure 3.6. Where the foot step length is calculated based on the current speed,

multi-legged character morphology and the foot relative position that the user can

47



Character Controller Animating Multi-Legged Characters

impose as illustrated and explained directly in Figure 3.7. After calculating this

foot step length, we use the initial position of the foot to calculate this preferred 3D

target position based on the environment (see Figure 3.6). Finally, the character

controller calls the foot path planner to compute the 3D trajectory that this foot

will follow during its flight phase, as described in Section 3.5.

 

3) Naive Target 
Position 

4) Preferred Target Position 

Vertical Slice in the Environment 

1) Initial Position 

2) Step Length 

Figure 3.6: How the computation of the preferred footprint target for each foot is done. The
vertical slice in the environment can contain objects and obstacles. The naive target position
is calculated by querying the environment about the elevation of the 2D point resulted from the
initial position + the step length.

Feet that were already in swing phase may need a new a 3D trajectory (path)

for several reasons: a new pelvis orientation (when turning), a new desired relative

position of the foot (Figure 3.7), a new overall speed, or something changed in the

environment thus invalidating its current 3D trajectory or its current target. In

these cases the character controller processes this foot as if it just started its swing

phase, and therefore it is redirected to the previously explained foot path planning

phase. For the stance feet, the character controller simply blocks their 3D position

on the ground or on an obstacle.

3.2.2 3D Pelvis Movement Task

The 2D movement of the pelvis on the ZX-plane (assuming the Y -axis is up) is

calculated using only the speed and orientation, The computation of the pelvis

height is more complex, as shown in Figure 3.8: we first construct a convex hull

based on the height of the environment underneath the creature (using its bounding

48



Animating Multi-Legged Characters Character Controller

Character 
Front 

Feet with Equal Target 
and Current Relative 

Position 

Foot Current 
Relative Position 

Foot Target 
Relative 
Position 

Position 
Interpolation 

Top View 

Figure 3.7: 8-Legged Character Feet Spacing Interface

box) and the actual position of the feet. By projecting the multi-legged character

center on this convex hull we get the needed pelvis height and by adding the body

thickness we get the actual pelvis height. The pitch angle of the multi-legged

character body is calculated directly from the convex hull: it is the slope of the

line segment that contains the projected center of the multi-legged character.

1) Environment 
Convex Hull 

Multi-legged Character Body 
Bounding Box Projection 

2) Final 
Convex Hull 

3) Center 
Projection 

Pitch Angle 

Figure 3.8: Again: a vertical slice in the environment can contain objects and obstacles.
Computation of the pelvis’ height using several convex hulls that covers the environment slice.

49



Character Controller Animating Multi-Legged Characters

After moving the feet, the character controller refines the pelvis movement

based on the feet error feedback (shown in Figure 3.9). This error comes from the

fact that each foot can choose a better target (different from the previous preferred

target) that better adapts to the context (Section 3.5). For that, the character

controller averages the offset between the preferred footprint targets (Figure 3.9

in blue) and the effectively chosen one (in green). The controller incorporates

this offset in the pelvis movement when it is quite significant, based on the multi-

legged character morphology, otherwise it discards it. By doing so, the upper

body is always the one imposing the final trajectory while the lower body tries to

follow [Ber09].

As we do not add any other movement to the pelvis, final animation can look

rigid and un-natural. Which is an important point that we discuss and resolve in

Chapter 4.

Foot 
Chosen 
Target 

Movement Direction 
Pelvis 

Foot 
Pelvis 

Needed 
Target 

2D Top View 

Figure 3.9: Feet feedback: during the computation of the pelvis displacement, we use the feet
feedback.

50



Animating Multi-Legged Characters Gait Manager

3.3 Gait Manager

The role of the gait manager is to organize and visualize the pattern of the feet’s

cycle and to perform the transition between patterns. Since locomotion is cyclic,

it seemed natural to represent the gait with circles. As illustrated in Figure 3.10,

each circle represents a foot, with the colored sectors representing the swing phase

portion of the foot movement. The feet needle activates sectors and deactivates

others based on its current position, while turning clockwise. Activating a sector

means that the corresponding foot should enter its swing phase.

Foot Currently in 
Swing Phase Feet Needle 

Needles 
Rotation 
Direction 

Next Feet to enter 
Swing Phase 

Un-active Foot 0 
Foot 1 
Foot 2 
Foot 3 

Figure 3.10: An example of a four feet gait as shown by the gait manager. With this interface,
the user can edit the pattern to create the desired gait. In this figure each foot cycle (swing and
stance phase) is repeated twice to show the capabilities of our gait manager.

Gaits interpolation/transition. During a locomotion cycle, most characters

change their gait constantly to adapt to the environment, to change movement

style and while turning, slowing down, accelerating etc. To accommodate for this

changes in the gait and to introduce more variety in the locomotion styles, the

gait manager allows the transition between any needed gaits on the fly using our

interpolation system.

Each swing phase sector has a start and a finish, we compute the transition

to another (destination) gait by simply interpolating the start of the source sector

51



Gait Manager Animating Multi-Legged Characters

toward the start of the destination sector using a clockwise or counterclockwise

direction. To choose this interpolation direction, we consider the area covered

by the source and destination gait sector (the union) as the allowed area of

interpolation and all the rest of the circle is forbidden. The postulate that

this forbidden zone (Figure 3.11) is the zone where the user does not want

the interpolation to pass through. Based on that, we chose the direction of

interpolation in the direction that does not pass by the finish of the destination

sector. By doing so, the interpolation does not pass by this forbidden zone. In

Figure 3.11(a) we chose the clockwise direction while in Figure 3.11(b) we chose the

counterclockwise one. The interpolation of the duration of the swing phase (the

size of the sector) is quite straightforward, and the speed of all these processes

(transition time) can be fixed in advance by the user. To effect the new gait

on the foot, we replace its disk when it is in stance phase (not active) with the

new disk calculated in the interpolation process, resulting in seamless and logical

interpolation.

Source Gait Destination Gait 

Sector 
Start 

Sector 
Finish 

Foot 0 
Foot 1 

(a) 

1 2 3 4 5 

(b) 

1 2 3 4 5 1 2 3 4 5

Forbidden 
Zone 

Clockwise 
Interpolation 

Counter 
Clockwise 

Interpolation 

Figure 3.11: Interpolations options. a) Deciding to do a clockwise position interpolation
based on the actual disposition of the gait disks. b) Deciding to do a counter-clockwise position
interpolation.

52



Animating Multi-Legged Characters 3D Path Constructor

3.4 3D Path Constructor

During the swing phase, each foot has a current position (source) and a footprint

target. The role of the 3D path constructor is to compute the foot 3D trajectory

that navigates through the environment, from this current position toward any

footprint target without colliding with any obstacle. 3D path construction is

requested several times with different footprint targets by the foot path planner

as it will be explained in Section 3.5. That is why there is a huge emphasis on

performance.

The working environment is quite complex as shown in Figure 3.14 and

generated using a heightmap (Figure 3.12) with several type of obstacles

(Figure 3.13). Meaning that we use a huge amount of triangles to represent this

environment and render it.

 

Source Height 
Map 

Generated Environment in 3D 

Figure 3.12: Example of a heightmap image (left) and the corresponding generated environment
(right).

 

Static Box 
Dynamic (Moving) 

Box 

Figure 3.13: Obstacles (boxes) types: static and moving.

53



3D Path Constructor Animating Multi-Legged Characters

Figure 3.14: An example of a complex and dynamic environment that the system can have as
input.

That is why we have oriented this path construction process toward a

discrete grid-based planning approach, as it will be explained in this section.

Actually, once the environment is converted and represented by our grids/maps

(Section 3.4.1), the path construction (Section 3.4.2) becomes independent of

the object’s complexity. Moreover, discrete algorithms are easier to implement

compared to vectorial-based ones.

Figure 3.15 illustrates the steps needed in order to construct the final 3D

path. The algorithm starts by discretizing the environment (Section 3.4.1).

Then, it constructs the 2D path on the ZX-plane using the wavefront algorithm,

bresenham’s algorithm and a b-spline curve (Hermite). After that the 2D path

curve is discretized, elevated and the final 3D path is constructed (Section 3.4.2).

3.4.1 Environment Grid-Based Representation

We convert the 3D environment near the animated multi-legged character into two

2D grids: the obstacles’ map and the elevations map. The obstacles’ map describes

the areas of the environment where the feet are allowed to pass, as illustrated in

Figure 3.16, where black cells represent the obstacles and called forbidden cells.

While the elevations map contains the elevation of the highest obstacle in each

cell as shown in Figure 3.17. These maps are relatively small as they are only

computed around the animated multi-legged character, speeding up calculations.

54



Animating Multi-Legged Characters 3D Path Constructor

Section 3.4.1 Section 3.4.2

Environment
Discretization

On ZX-plane:
Wavefront Algo.

[Kha86]

On ZX-plane:
Bresenham’s Algo.

[Bre65]

On ZX-plane:
Hermite Curve

Curve Discretization
and Elevation in 3D

Final 3D Path

Figure 3.15: A step by step illustration that shows how the final 3D path is constructed. The
algorithm starts by discretizing the environment. Then, it constructs the 2D path on the ZX-plane
using the wavefront algorithm, bresenham’s algorithm and a b-spline curve (Hermite). After that
the 2D path curve is discretized, elevated and the final 3D path is constructed.

These two maps are computed using the terrain heightmap and the obstacles

(objects): the bounding box of each object is voxelized onto the maps. Concave

objects are subdivided into convex ones. We pre-compute the map’s representation

of static objects, while we compute the map’s representation of dynamic objects

55



3D Path Constructor Animating Multi-Legged Characters

 

Forbidden Cells 

Free Cells 

Trajectory 

Start 

Target 

Figure 3.16: Example of the obstacles’ map.

when they move near the multi-legged character in real-time. In order to avoid legs

crossing, we add for each foot the projection of other legs into the obstacles’ map as

forbidden cells. We do not need to add the trajectory of other feet nor the

trajectory of dynamic obstacles as the character controller verifies the validity

of each already calculated foot trajectory on each simulation step (Section 3.2.1).

When it detects a collision, a new trajectory is calculated starting from the actual

position of the foot.

 
Start Position Pelvis Preferred Target 

Ground Cell 
Obstacle Interior 

Obstacle Corner 
Obstacle Edge 

Obstacle Size Increase 

Figure 3.17: An example of the environment discretization: pink spheres represent the ground,
yellow spheres contain the corner of an obstacle, green spheres contain an obstacle edge, blue
spheres are an obstacle interior and red spheres are an obstacle size increase.

56



Animating Multi-Legged Characters 3D Path Constructor

Since a foot is not punctual, we use the bounding box of the foot shape to

increase the size of the obstacles in the opposite direction of the foot, as shown

in Figure 3.18. This ensures the non penetration of the foot with the obstacles and

satisfies the creature comfort: most real-life creatures, as observed by Alexander

in [Ale03, Ale96], prefer to place their foot at a certain distance of an obstacle to

avoid unpredicted collision or uncomfortable movement when trying to clear the

obstacle during the next step.

Foot Shape and 
Orientation 

Obstacle 

Contextual 
new obstacle 

Foot Center 

Figure 3.18: We increase each obstacle size using the bounding box of the foot and its
orientation in order to better avoid collisions.

3.4.2 3D Path Construction

Always with a performance concern, we firstly compute the trajectory from the

actual foot position toward the preferred footprint in 2D on the ZX-plane using

the projections of the source and the target on this plan (in black in Figure 3.17,

in blue in Figure 3.20).

Our path planner is grid-based and uses the wavefront algorithm proposed

by Khatib in [Kha86] (used mainly in robotics like in [Nat11]). It is a, real-

time, artificial potential field algorithm that avoids collisions using a Breadth-

First Search (BFS) approach (Appendix C). The wavefront algorithm goal is to

construct a path from point S (start in blue) to point G (goal in blue) through

57



3D Path Constructor Animating Multi-Legged Characters

a discretized workspace, as shown in Figure 3.19(a). 0 designates a cell of free

space, -1 designates a cell fully occupied by an obstacle in black. Starting at G,

which is assigned the value 1 at the beginning, each cell is assigned a value which

corresponds to the number of moves required for the shortest path from that cell

to the goal (in a BFS way). To plan an optimal path (not always the shortest), the

algorithm starts from S and picks on each step the next cell that has the minimum

value of all adjacent cells until reaching the goal G. These picked cells (called the

naive cells) construct the needed path, shown in yellow in Figure 3.19(e).

(a) (b) 

(c) (d) 

(d) 

Figure 3.19: Steps of the wavefront algorithm.

58



Animating Multi-Legged Characters 3D Path Constructor

Afterward, these naive cells undergo two processes:

1. We refine them using queries of line-of-sight in order to reduce the number

of treated cells, refined cells are called final cells.

2. We connect the final cells using a curve in order to have a smooth 2D

trajectory.

Our line-of-sight queries uses the rasterization algorithm proposed by

Bresenham in [Bre65], in order to identify cells that can be connected without

any intersection with a forbidden cell (obstacle). Thus eliminating extra cells and

keeping only the final cells of the plan (waypoints in red in Figure 3.20).

Figure 3.20: To compute the path between the source and the destination cells (in blue). We
use the wavefront algorithm (result in yellow). Then we refine the result with line-of-sight queries
(in red). The black cells represent the obstacles (forbidden cells).

Bresenham’s algorithm is used normally to rasterize any 2D line projected on

a grid. By default, it does not calculate all cells Figure 3.21(a), that why in this

thesis we modify Bresenham’s algorithm in order to calculate/activate all cells

that any line passes through, as seen in Figure 3.21(b).

After applying the modified Bresenham’s algorithm on the naive cells (in yellow

on 3.22), we obtain the final cells of the plan (in red on 3.22). These red cells are

used as control points for a parametric Hermite curve (Appendix F) in order to

obtain a smooth 2D path, as shown on Figure 3.22. Hermite curve is a known

59



3D Path Constructor Animating Multi-Legged Characters

 

          

          

          

          

          

          

          

          

          

          

 

          

          

          

          

          

          

          

          

          

          

 (a) (b) 

Figure 3.21: a) Original Bresenham’s algorithm for line rasterization, b) Modification on
Bresenham’s algorithm to activate all cells.

b-spline curve, the tangents of this curve are calculated automatically using the

matrix presented in Appendix F. In the following steps, the 3D path constructor

verifies that this 2D curve does not collide with any obstacle.

Figure 3.22: First, we construct the path in a 2D voxel-based representation of the environment
(yellow dots) and then generate the final curve (in black) with a selection of waypoints (red dots).

In order to optimize this 2D path construction, we limit the search space using

a virtual rectangle that contains the start position and the preferred target, with

a width that varies based on the multi-legged character morphology (leg reach).

By doing so, the previously explained wavefront algorithm processes less number

of cells, accelerating the ZX-path construction. This virtual rectangle is shown in

Figure 3.16 and in Figure 3.22.

So, in Figure 3.22 we obtained the 2D curve that navigates the complex

environment on the ZX-plane. We sample this 2D Hermite curve using a fixed

60



Animating Multi-Legged Characters Footprints and Feet Path Planning

step and elevate it in 3D using the elevations map. During this sampling phase

we make sure that this curve is collision-free. By constructing a convex hull out

of these elevated sample points, we obtain the final 3D waypoints that navigates

the environment collision-free (see Figure 3.23). Resulting waypoints are used as

control points to define a 3D Hermite curve: this curve represents the final 3D

trajectory that navigates through the environment in 3D, as shown in Figure 3.26.

We optimize the previous waypoints by eliminating the ones that are too close

to each others, in order to generate a smoother (less curvature change) b-spline

curve.

Figure 3.23: Using the elevations map and the previous 2D trajectory we construct the 3D
trajectory.

3.5 Footprints and Feet Path Planning

In Section 3.2, we explained that starting from the initial foot position

the character controller calculates a preferred footprint target according to

the locomotion parameters (Appendix D) and the surrounding environment

(Figure 3.14). But these calculations do not take into consideration the actual

state of the foot and its preferences (e.g. the preferred target calculated by the

character controller can be too close to an obstacle, on the edge of a crate, etc.).

That is why in this step we calculate and assign to each foot the best trajectory

toward the best target in the current environment. We call this trajectory-footprint

combination a couple. Meaning that our main algorithm (Section 3.5.2), evaluates

potential footprints and trajectories (Section 3.5.1) in order to find and assign the

best couple (footprint-trajectory) to the current foot based on the current state

of the environment.

61



Footprints and Feet Path Planning Animating Multi-Legged Characters

3.5.1 Potential Footprints and Trajectories scoring

Our algorithm evaluates several footprint targets by exploring the potential cells

around the preferred footprint (the one computed by the character controller in

Figure 3.17). Several operations are done to do that using both discretization

maps (the obstacles’ map and the elevations map):

1. Increase the size of the obstacles using the foot shape (see Figure 3.18 and

Figure 3.17 in red).

2. Eliminate possible intersection with other feet by filling the

obstacles’ map with the position of these other feet.

3. Identify all the potential cells that may accept a footprint: all the non-

forbidden cells that are not a size increase ones (Figure 3.24).

For each potential target, we calculate a score based on several criteria’s normalized

between 0 and 1. Criteria’s like:

• The distance to the preferred footprint:

value = 1 − Dist(CurrentTarget, PreferredTarget)/F ixedDistance,

where the FixedDistance is based on the character morphology.

• Number of obstacle-free cells: value = Num(FreeCells)/8.

• Is it an obstacle edge? value = 0.8, in order to penalize cells on obstacle

edge as they are less comfortable than other cells.

• Leading or not to a feet crossing: value = 0 or 1.

The combination of all these criteria’s provides the final cell’s score (footprint

score) normalized between 0 (worst target) and 1 (best target), shown in

Figure 3.24. Most of these criteria’s were chosen based on biomechanics studies,

like how most characters avoid footprints that are too close to an obstacle as it

could lead to an uncomfortable and unrealistic movement on the next takeoff in

order to avoid collision [Ale96, Ale03].

We also generate for each created 2D/3D trajectory (Section 3.4) a score

based on the application specifications, like the total length of the path, the

62



Animating Multi-Legged Characters Footprints and Feet Path Planning

Start 
Position 

Pelvis Preferred 
Target 

Figure 3.24: Potential targets: the color varies from green (best target with score = 1) to blue
(worst target with score = 0).

acceleration and the curve tangents profile, etc. For instance, the current system

prefers trajectories that are more straight (direct) with less curvature, a preference

observed in biomechanics as it minimizes the energy cost.

3.5.2 Finding Best Couple

During the 3D path construction (see Section 3.4.2), the forbidden cells in the

obstacles’ map designate the parts of the environment that the 2D trajectory is

going to avoid and go around, in order to avoid collision with these obstacles.

This 2D trajectory passes through cells that have an elevation. The 3D path

constructor uses this elevation to construct the final 3D trajectory. The system

uses this obstacles’ map to process an obstacle: either going around it or going

over it.

So avoidance-wise, if the system wants to go around an obstacle, it just needs

to add it to the obstacles’ map as forbidden cells. In that way, the resulting 2D

trajectory will definitely go around it. While if the system wants to go over an

obstacle, it does not need to do anything special as the obstacle is already present

in the elevations map. And the obstacle will be avoided accordingly based on its

elevation.

In order to achieve this avoidance distinction in an optimal way in a

complex environment (heightmap plus obstacles), our system discretize the

63



Footprints and Feet Path Planning Animating Multi-Legged Characters

elevations map on the Y -axis into slices (for instance slices of 10cm in Figure 3.25).

This slice size is based on the simulated characters morphologies. For each slice,

the system fills the obstacles’ map with the cells that have higher elevation than

this slice. In that way, all calculated trajectories will go over all obstacles, objects

and pieces of the environment that have an elevation lower or equal to the slice’s

elevation. At the same time, all calculated trajectories will go around all obstacles,

objects and pieces of the environment that have an elevation higher than the chosen

slice’s elevation. Everything can be visualized in Figure 3.25 with two obstacles.

We must emphasize that the actual environment (the heightmap) is treated in the

same way automatically through the elevations map . Meaning that during the

process of defining slices, the system considers the part of the environment higher

than the slice’s height as forbidden cells.

So each trajectory can go around or over each obstacle, which generates

multiple trajectories toward a target. Each one of these trajectories has a score.

The search space is all the possible trajectories that go from the starting point

toward all the possible targets. Out of this multitude of possibilities, our main

algorithm picks up the best couple (target-trajectory) through an intelligent

heuristic that uses partial scores to limit the number of explored solutions (not a

simple max heuristic).

Our algorithm (results shown in Figure 3.26) loops on all the possible targets

based on their score (in a descending way). For each one of these targets, the

algorithm first generates the 2D trajectory and scores it, if the score of the couple

(target-trajectory in 2D) is better than the current best couple found till now, it

continues. Then it generates the 3D trajectory based on the 2D one and scores

it, if the score of the new couple (target-trajectory in 3D) is better than the

current best couple, then it tags this new couple as the best one and continues.

The algorithm continues evaluating the couples until it reaches a couple (target-

trajectory in 3D) with a score worse than the current best one, in this case it stops

and the current best couple is the best one. So, at the end of the algorithm we

obtain the best footprint target and 3D trajectory that this foot should follow.

We calculate the length of this 3D trajectory. Using the needed time given by the

character controller, we move the foot on the curve at a constant speed. A pseudo

code of the algorithm can be found in Appendix E.

64



Animating Multi-Legged Characters Footprints and Feet Path Planning

2D Side View 2D Top View 
Z 

Y 

Z 

X 

Goal 
Start Goal 

Start 

2D 
Path 

2D 
Path 

Nothing to 
Avoid 

Avoid 

Avoid 

Slice Line 

Forbidden 

Allowed 

Obs1 
Obs2 

b) 10cm Slice 

a) No Slice 

c) 20cm Slice 

d) 30cm Slice 

Figure 3.25: Visualized explantation on how to use slices in order to avoid or go around
obstacles. a) No slice: the 2D trajectory goes over all obstacles. b) 10cm slice: avoid both
obstacles by adding them to the obstacles’ map. c) 20cm slice: avoid the second obstacle (Obs2)
while going over the first obstacle (Obs1). d) 30cm: go over all obstacles also.

The search space of this algorithm can be controlled easily (limiting exploration

tree), yielding to a better performance. This aspect is discussed in details in

Section 3.7.

65



System Loop Animating Multi-Legged Characters

Figure 3.26: Potential targets: the color varies from green (best target with score = 1) to blue
(worst target with score = 0). Crossed cells are the cells processed by our algorithm, in pink
possible trajectories, in black the chosen one.

3.6 System Loop

This section contains a step-by-step diagrams that shows the previous system in

action, the resulting curves and the reaction of the IK systems.

3.6.1 Sequence 1

In sequence 1, Figure 3.27, the highlighted leg (in green) is going to enter its swing

phase on next simulation step, based on the gait manager.

In Figure 3.28 the preferred target assigned to the foot by the character

controller (in yellow) and the chosen target by the feet path planning algorithm (in

red) are the same. Meaning that the estimated target by the character controller

was right and comfortable to the foot. The foot now follows the chosen 3D

trajectory of the best couple throughout its swing phase. While this foot is

following its curve, the CCD IK system is called to calculate the positions of this

leg parts based on the foot end-effector position.

But the obstacle in Figure 3.28 is a moving one. When it moves the foot needs

a new 3D trajectory. So in Figure 3.29 and each time the obstacle moves, the feet

path planning is called to find the new best couple.

66



Animating Multi-Legged Characters System Loop

Figure 3.27: Foot highlighted in green is entering its swing phase.

Preferred 
Target 

Chosen 
Target 

Elevation 
Points 3D Trajectory 

Potential 
Targets 

CCD IK System 

Figure 3.28: First planning choice made in sequence - 1 by the highlighted foot.

3.6.2 Sequence 2

In sequence 2, Figure 3.30, the highlighted foot disregards completely the preferred

target and chooses a new one, because the preferred target is right on the edge

of the obstacle, which is not comfortable for the foot. So the best couple search

yields a new target and a 3D trajectory that this foot will follow. Again, our IK

system is called on each calculated position on this curve.

67



System Loop Animating Multi-Legged Characters

 

Obstacle 
Moving Up 

New 3D Trajectory 
Old Followed 

Trajectory 

Figure 3.29: Obstacle moves up which means a need for a re-plan.

Chosen 
Target 

3D Trajectory 

Preferred 
Target 

Figure 3.30: Highlighted foot disregards the preferred target and chooses a new one.

3.6.3 Sequence 3

In sequence 3, Figure 3.31, the character controller orders a re-plane for the

highlighted foot because of a drastic change in the pelvis speed. In that case

the feet path planning algorithm is called and a new best couple is found (new

target in green). We can notice that the previously chosen target is no longer

valid.

68



Animating Multi-Legged Characters System Loop

New Chosen 
Target 

Preferred 
Target 

Old Chosen 
Target 

Figure 3.31: A new re-plan was ordered by the character because of a pelvis speed change.

3.6.4 Sequence 4

In sequence 4, Figure 3.32, when a foot is in stance phase, it is blocked. But with

the possibility of an obstacle movement, the character controller always ensures

that the blocked foot 3D position is valid.

Fix 3D Position 

1) 2) 

Obstacle 
Moving Up 

Figure 3.32: Fix the stance foot position based on the obstacle movement.

69



Level of Details Animating Multi-Legged Characters

3.7 Level of Details

In order to simulate dozens of multi-legged characters in real-time, we have

developed a Level of Detail (LOD) techniques that we apply on the previously

presented locomotion system. The main purpose of these techniques is to limit

the search space for the off-screen and far away creatures in order to accelerate the

computations. To ensure a believable simulation, these creatures will always takes

coherent choices (Figure 3.33), even with a smaller search space, and the saved up

Central Processing Unit (CPU) time allows the simulation off new multi-legged

characters.

The execution time of the feet path planning algorithm explained in

Section 3.5.2 can be controlled easily. This comes from the ability of controlling

two main criteria’s of this algorithm: the number of evaluated couples (target-

trajectory) and the size of the slices used when avoiding obstacles (see Figure 3.25).

But in order to always have this plausible and coherent locomotion animation,

we start applying these LOD calculations after finding the first valid couple

(target-trajectory), in this way we ensure that the algorithm assigns to each foot

a valid trajectory toward a valid target before starting optimizations. The LOD

techniques are applied as follow:

1. Controlling number of evaluated couples: for off-screen characters, the

algorithm stops directly when finding this first couple. While for the on-

screen characters, we limit the number of evaluated couples after finding

this first couple in a linear way based on the distance of that multi-legged

character from the camera. In this way for far on-screen characters the

algorithm stops also when it finds the first couple.

2. Controlling the size of the slices: for off-screen characters the algorithm tries

to go over any obstacle using no slices (not going around any obstacle). While

for the on-screen characters, we increase the size of the slices explained in

Figure 3.25 (for example 10cm, 15cm...no slices) in a linear way based on

the distance of that character from the camera. This LOD process can be

simply formulated as: the more the character is far away from the camera (or

off-screen) the less our algorithm worries if the chosen couple is comfortable.

70



Animating Multi-Legged Characters Performance and Results

Max Distance Lowest LOD 

Min Distance Highest LOD 

Figure 3.33: Color coded LOD: far characters from the observer (in red) has lower level of
details than near characters (in green).

After applying this LOD, the final assigned couple to each foot is not always

the best couple, especially for the off-screen and far away creatures. Because by

limiting the number of evaluated couples and changing the slices size, the search

space is not as exhaustive as previously explained.

Finally, we differ from other LOD techniques like in [RGL05] in that we do

not change the number of joints in the IK systems, as the used CCD IK system is

efficient enough for our real-time simulation. We only stop these IK calculations

for off-screen characters. In the next section we discuss in details the performance

of the real-time system and the effectiveness of these LOD techniques.

3.8 Performance and Results

Our system is quite generic as it animates a large range of multi-legged character

models automatically (Figure 3.34) with a total control over many locomotion

parameters (Section 3.1) like for instance the desired overall speed, the step height,

the gait (interface illustrated in Figure 3.10), etc.

71



Performance and Results Animating Multi-Legged Characters

(a) (b) (c) 

Figure 3.34: (a) Spider model avoids crates flagged as forbidden and steps on others flagged as
safe (b) Ant model on a heightmap (c) Imaginary 5-legged robot.

The system was tested on different kinds of terrain (flat surface, smooth terrain,

regular stairs, etc.) with different kinds of obstacles (static crates and moving

ones). The size of the discretization maps used in these tests is 70 × 70 with

7cm cells, which consumes little memory and is precise enough since the maps

describe only the environment close to each animated character. The animated

multi-legged characters gaits are inspired from biology studies [Wil67, Bla05].

The following results show that our system is both generic and well adapted

for real-time applications. In Figure 3.35 we show many morphologically different

characters animated in real-time using an i7 Quad Core 2.7 GHZ, 8 GB RAM,

6870 ATI Radeon HD with 1GB vRam. We use 4 threads in order to exploit the

overall capabilities of the computer.

Figure 3.35: Simulation snapshot showing morphological varieties.

72



Animating Multi-Legged Characters Performance and Results

(1 (2 (3 

(4 (5 (6 

(7 (8 (9 

(10 (11 (12 

Figure 3.36: A spider moving forward in an environment filled with moving obstacles.

In Figures 3.36 and 3.37, we show a frame by frame snapshot of the simulation

with a 5-legged robot going uphill with a robotic-inspired gait and a spider

moving forward in an environment filled with moving obstacles. Other type of

morphologies will be shown in next chapters.

Table 3.1 shows average computation time, on each simulation step, for 100

8-legged characters. The environment consists of a heightmap and obstacles (3000

crates, 40% dynamic). In the line called LOD, we make sure that all of the

characters are in the camera field of view, while in during LOD Zoomed (Z-LOD),

we zoom on one character and make sure that at least 50% of the characters are

shown on the screen. As we can observe, the preparation time of the maps is

73



Performance and Results Animating Multi-Legged Characters

 

(1 (2 (3 

(4 (5 (6 

(7 (8 (9 

(10 (11 (12 

(13 (14 (15 

(16 (17 (18 

Figure 3.37: A 5-legged robot going uphill.

fixed. It is pre-computed once, on each simulation step, for all characters at the

same time. In LOD Zoomed (Z-LOD) the system loses some computation time

per character as there are more characters doing full search for the best couple,

while in the same time gains computation time in the CCD IK systems as we do

not calculate the IK for the off-screen characters. By using our previous LOD

techniques, we maintain a simulation with ∼30 Frames Per Second (fps), which is

qualified as real-time.

74



Animating Multi-Legged Characters Performance and Results

Total for Characters Maps Preparation CCD IK Systems Average FPS
LOD 0.029s 0.004s 0.013s ∼30 fps

LOD Zoomed 0.032s 0.004s 0.006s ∼30 fps
No LOD 0.051s 0.004s 0.013s ∼18 fps

Table 3.1: Average computation time for 100 8-legged characters

The following charts show the effect of the number of simulated characters

and the environment complexity on our real-time system performance. Based on

Table 3.1, we are only interested in the performance using the LOD techniques. All

tests use 8-legged creatures (spider model). In Figure 3.38, we show the average

calculation time for all characters on each simulation step, when a heightmap (H)

exists versus a plain terrain (!H). There is no obstacles in the environment and

values are in seconds. Our system calculation time increases in a linear way in

relation to the number of simulated characters. And on a plain terrain it is more

efficient, which is logical as the 3D trajectory construction is simpler on a flat

surface (Section 3.4).

In Figure 3.39, we observe that our system is more efficient when populating

the environment with obstacles (3000 crates, 40% dynamic), this is thanks to the

obstacle size increase process. Again our main algorithm searches for the best

couple using the process of defining slices explained in Figure 3.25. The obstacles

and the actual heightmap are always processed equally during that process as

everything is presented by the elevations map . As our system increases the size of

each obstacle (Figure 3.18) for the previously explained comfort raisons, the cells

tagged as an obstacle size increase are forbidden targets. Which decreases the

evaluated targets in our feet path planning algorithm (Section 3.5). Decreasing

the search space during the best couple exploration.

Based on the previous results, our locomotion system is quite efficient compared

to recent ones. Systems like the one proposed in [CKJ+11] can only animate 2-3

quadrupeds, in real-time, in a fairly simple environment. Actually, by simulating

complex real world dynamics like friction, body parts collisions, gravity (balance

controller), etc. the number of characters that can be animated at the same time

decreases drastically. Only one biped in [dLMH10] using QP solvers with 50%-

75



Performance and Results Animating Multi-Legged Characters

Figure 3.38: Our system performance when a heightmap (H) exists versus a plain terrain (!H).
There is no obstacles.

Figure 3.39: Our system performance when a heightmap (H) exists versus a heightmap and
obstacles (H & O, 3000 obstacles with 40% dynamic).

100% real-time performance1 (depending on the complexity of the morphology)

on a plain terrain. 2-10 fps2 for one biped in [JYL09], with a complex balance

controller that can use the surrounding environment for its advantage. In complex

environments, systems like in [WZ10] can simulate up to 4 characters in real-time

with an 2.5 hours offline optimization process3. One biped in [MdLH10] with

15%-55% real-time results 4.

1 DualCore 3.0 GHz Intel Xeon CPU, 4GB RAM.
2 Single core of 2.93 GHz Intel Core 2 Duo Processor.
3 Offline: 4 machines with dual quad-core 2.66 GHz Processor. Real-Time: 1 machine 2.10 GHz
Intel Core 2 Duo Processor.

4 Intel i7 Quad Core 2.7 GHz processor

76



Animating Multi-Legged Characters Performance and Results

By using simplified dynamics, systems like [TLC+10] (using an IPM) can

simulate one biped1 in real-time that adapts to a simple environment. 1-2 bipeds2

in [CBvdP10] (using an IPM too). Feedback (feed forward) systems are more

efficient. In SIMBICON [YLvdP07] they simulate up to 5 bipeds in 2D3 and 1-2

bipeds in 3D4. The animation system in [CBvdP09] (based on SIMBICON) can

animate from 1 to 3 bipeds5 based on their morphology with an offline process

that can take up to 9 hours based on the needed objectives.

The previously mentioned systems can look more realistic as they simulate real

world physics, but in this thesis our main goal is real-time systems and real-time

performance. On top of that, our locomotion animations stay quite plausible and

believable using the kinematics-based techniques while being totally controllable.

By using motion data (like MoCap and keyframe), systems like the one

proposed by Johansen in [Joh09] benefits from the Data-Driven techniques

performance. His system can adapt, in real-time, the motion data of 10 bipeds/10

quadrupeds to a complex environment6. In [TLP07], Treuille et al. can animate

7-8 bipeds7 in real-time in a near optimal way using an offline trained controller.

In industrial real-time applications (most notably video games) the motion

data driven systems are the one used most of the times coupled with IK systems.

Systems like [HRE+08] (SporeTM) can animate 7-8 creatures with totally different

morphologies on a not-so-much powerful machine (Single Core Pentium M, 1.7

GHz). In video games (like Crysis 2, Assassin’s Creed Series, etc.) they can

animate more than 20 character in real-time, with complex interactions between

characters and a life-like results.

1 Intel Core 2 Duo 3 GHz Processor
2 2.4GHz Dual Core processor, 2Gb RAM
3 1.8 Ghz CoreDuo Processor.
4 Pentium 4 3.2 Ghz Processor.
5 2.4 GHz Intel Core 2 Duo Processor.
6 2.4 GHz Intel Core 2 Duo processor.
7 Dual Core 3.5 GHz Intel Xeon processor

77



Conclusion Animating Multi-Legged Characters

3.9 Conclusion

So far, we presented a system capable of procedurally generating believable

locomotion animation of several multi-legged characters (like arachnids, insects, or

any imaginary n-legged robots or creatures) in real-time with no a priori motion

data nor any information about the environment. Our system is quite generic as we

do not use any morphology specific calculations when generating the locomotion

itself, at the same time the user can control many parameters (Section 3.1 and

Appendix D) like the gait, the speed, the direction, etc. that can be changed

in real-time in order to generate the desired locomotion. This system can serve

as input to higher level characters’ controllers that would like to provide more

animations than only the locomotion, like touching objects for discovering the

environment, studying insect’s behavior, etc.

This procedural system [AKGM+12] is published in the Computer Animation

and Virtual Worlds (CAVW) journal and was presented in the Computer

Animation and Social Agents (CASA) Conference 2012 in Singapore.

But in its current state, the produced motion sometimes lacks realism and

naturality because of things like the lack of natural pelvis movement, the non-

existence of flexible spine model, etc. All of those missing components make

the produced motion more robotic than life-like. Thus, in Chapter 4 we add

several blocks to the character controller that help in generating more believable

locomotion animations: more naturally-inspired pelvis movement, flexible spine-

like structure, which is essential when simulating quadrupeds [CKJ+11]. In

Chapter 5 we address secondary motions in final simulation: ants antennas,

wolf/lizard tail, etc. To do so, we propose a Pendulums system.

78



Chapter 4

Adding Naturality and Realism

Contents

4.1 Pelvis Movement Using Pseudo Physics . . . . . . . . . 80

4.2 Spine Model . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Step 1: Spine Orientation . . . . . . . . . . . . . . . . . 89

4.2.2 Step 2: Spine Advancing . . . . . . . . . . . . . . . . . . 90

4.2.3 Step 3: Spine Elevation and Pitch . . . . . . . . . . . . 91

4.2.4 Step 4: Final 3D Spine . . . . . . . . . . . . . . . . . . 92

4.3 Other Visual Effects . . . . . . . . . . . . . . . . . . . . . 93

4.4 Performance and Results . . . . . . . . . . . . . . . . . . 95

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 99

In the previous chapter, we presented our main locomotion system. A generic

real-time system capable of animating a wide range of multi-legged characters

morphologies, with a total user control over the generated locomotion. But the

proposed system, in its current state, tends to produce unrealistic (robotic-like)

locomotion animations that are less plausible when compared to real-life examples.

The main objective of this chapter is to add naturality and realism to the previously

generated locomotion.

We achieve that by resolving two main problems: the fixed pelvis movement

(Section 4.1) and the fixed rigid spine (Section 4.2). We add other visual effects to

79



Pelvis Movement Using Pseudo Physics Adding Naturality and Realism

the final simulation to make it more realistic, like non-linear character progression

in Section 4.3. We discuss our new system performance in Section 4.4. Like before,

the user has a total control over the produced locomotion, as he can activate,

deactivate or configure all the effects presented in the following sections.

4.1 Pelvis Movement Using Pseudo Physics

The character controller explained in Section 3.2 moves the pelvis based on the

user needs (speed and orientation), feet error feedback (Figure 3.9) and also in a

way that reacts to the environment underneath the multi-legged character. But

by only doing so, the pelvis floats above the ground in an unnatural way, as shown

in Figure 4.1(a).

 

a) 

b) 

2D Side View 

Pelvis Trajectory 

Figure 4.1: Possibilities of pelvis movement for a spider model. a) A fixed pelvis movement
producing a straight line. b) More realistic sinusoidal-like ballistic pelvis movement produced
implicitly by the feet gait pattern. Frequency of oscillations is exaggerated on purpose in (b) to
illustrate the controllability of our system.

On the other hand, many biomechanics based studies and observations

show that the pelvis trajectory in humans [INM66] (Figure 4.2) and in most

animals [Muy57] (Figure 4.3) is sinusoidal-like. The amplitude and frequency

of this movement vary based on several criteria’s, like the creature morphology,

overall speed, gait pattern, style and so on. The goal of this section is to implicitly

generate this sinusoidal-like ballistic pelvis movement observed in nature, as shown

in Figure 4.1(b).

80



Adding Naturality and Realism Pelvis Movement Using Pseudo Physics

Figure 4.2: The pelvis trajectory of a walking human, courtesy of [INM66].

Figure 4.3: The pelvis trajectory of a galloping dog, original image courtesy of [Muy57].

We generate this movement by applying on the pelvis a pseudo particle-

based physics, a technique inspired by the PODA animation system proposed

by Girard et al. in [GM85, Gir87]. The main fundamental difference between our

work and theirs is the feet force. In PODA the user needs to fix and tweak by

hand the force of each foot in order to achieve the needed effect, while in our

system we use the gait pattern, set by the user, to calculate this force. This

means a transparent control for the user, with no need for any extra settings.

We have deliberately chosen this simplified approach for ease of implementation,

performance and controllability.

We use a particle to represent the pelvis in order to simplify the physics

equations (neither rotation nor angular momentum equations). This particle

motion on the sagittal plane (the up Y -axis in Figure 2.9) is governed by the

81



Pelvis Movement Using Pseudo Physics Adding Naturality and Realism

gravity force (pushing downward) and the feet force (pushing upward), shown

in Figure 4.4. While in the horizontal and coronal plane (ZX-plane) the pelvis

particle movement is governed by the character controller commands explained in

Section 3.2.

For the purpose of clarity, let us study the case of having only one foot (n = 1).

In this case, the foot and the pelvis particle can be seen as a pogo stick1, shown

in Figure 4.4, with the foot (leg) supporting the whole mass m of the pelvis alone.

This foot pushes the pelvis particle upward with certain amount of force when the

pogo stick spring is compressed. We will later discuss the case of a multi-legged

character.

 

Y-axis 

Ground Time 

Pelvis Particle 

Leg 
Spring 

Gravity Foot 
Touching the 

Ground 

Leg 
Compression 

Leg Max 
Compression 

Spring Force 
Release 

Air Phase 

Foot 
Force 

Figure 4.4: The trajectory of the pelvis particle when a pogo stick is used to represent its
relationship with one leg.

To calculate the force that this foot is exerting on the pelvis particle, we use

the gait pattern set by the user as follows. Each foot has two phases: stance and

swing phase. In swing phase the foot cannot participate in pushing the pelvis, as it

does not have any contact with the ground. While in stance phase it can push the

pelvis upward. We decompose this stance phase into two other distinctive phases,

as shown in Figure 4.5: reception phase where the foot decelerates the downward

movement of the pelvis to a stop, propulsion phase where the foot starts pushing

1A pogo stick is a device for jumping off the ground in a standing position with the aid of a
spring, used as a toy or exercise equipment. It consists of a pole with a handle at the top and
footrests near the bottom, and a spring located somewhere along the pole.

82



Adding Naturality and Realism Pelvis Movement Using Pseudo Physics

the pelvis upward in order to prepare for the swing phase. The duration of the

reception phase is equal to the duration of the propulsion phase and it is half of

the stance phase duration (Treception = Tpropulsion = 1
2
Tstance), a choice we made

based on biomechanics observations [Ale96, Ale03, Muy57].

 

Swing 
Phase 

Reception  

Propulsion 

Stance 
Phase 

Rotation 
Direction 

Rotation 
Direction 

Swing 
Phase 

Reception  

Propulsion 

Stance 
Phase 

(a) (b) 

Figure 4.5: Reception and propulsion phases during the foot stance phase. In (a) swing phase
has the same duration of the stance phase while in (b) swing phase is longer.

For now we are studying the case of having only one foot supporting the whole

mass m of the pelvis. We use Newton second law’s of motion to calculate the force

which this foot is going to apply on the pelvis particle. We consider only the Y

axis in our computations.

m · apelvis = W + Ffoot (4.1)

apelvis is the pelvis acceleration, W is the weight force and Ffoot is the foot pushing

force, all on the Y axis.

m · apelvis = −m · g +m · afoot (4.2a)

apelvis = −g + afoot (4.2b)

g is the gravity acceleration (which is negative) and afoot is the foot acceleration

on the Y axis. We now calculate this foot acceleration (afoot) based on the gait

pattern. This acceleration represents its actual upward force. We know that:

apelvis =
vT − vC

T
(4.3)

83



Pelvis Movement Using Pseudo Physics Adding Naturality and Realism

With T a duration, vT is the needed velocity to achieve at the end of that

duration (T ) and vC is the current velocity. By replacing apelvis by its value from

equation 4.2b, equation 4.3 becomes:

−g + afoot =
vT − vC

T
(4.4a)

afoot = g +
vT − vC

T
(4.4b)

In reception phase, the foot goal is to decelerate the pelvis into a stall (vpelvis = 0).

The beginning of this phase is the end of a swing phase, which means that the

pelvis will be falling down under the gravity force. So the goal of this phase is to

achieve vT = vpelvis = 0 with T is the reception phase duration. By replacing the

values in equation 4.4b we can easily calculate the needed acceleration afoot of this

foot, which represents this foot pushing upward force (Figure 4.6).

Reception 

Decelerate 

Propulsion 

Accelerate 

 

Preferred 
Height 

Needed
 
Swing 

Y-axis 

Ground 

(a 

Preferred Height 

Ground 

Reception Propulsion Swing 

Time 

Needed
 

 

(b Y-axis 

Figure 4.6: Sinusoidal-like ballistic pelvis movement generated implicitly using the foot force
calculated based on the reception and propulsion phases. Preferred height is the one fixed by the
user. a) Trajectory is generated using the Gait Pattern (a) from Figure 4.5(a). b) Trajectory is
generated using the Gait Pattern (b) from Figure 4.5(b).

84



Adding Naturality and Realism Pelvis Movement Using Pseudo Physics

In propulsion phase, the foot goal is to achieve a vpelvis at the end of the stance

phase, that ensures the ballistic movement of the pelvis during this foot swing

phase (Figure 4.6). To do so, we use the following basic motion equation:

yt =
1

2
at2 + v0t+ y0 (4.5a)

a = −g (4.5b)

v0 =
yT − y0

T
− 1

2
gT (4.5c)

v0 = vpelvis is the needed velocity (Figure 4.6), T is the (propulsion + swing) phase

duration, y0 is the current height and yT is the preferred height fixed by the user.

By replacing the values in equation 4.4b we calculate the needed acceleration afoot

of this foot. These calculations are done on each simulation step, giving us the

punctual force (acceleration) that this foot is going to exert on the pelvis particle

on each simulation step. Again, during swing phase the foot acceleration is null

(afoot = 0).

In the case of a multi-legged character n > 1, the movement of the pelvis

particle is influenced by several feet at the same time. Let ai be the acceleration

of the foot i calculated using the previous equations, which was denoted afoot

previously. This acceleration is calculated for each foot using the postulate that

it is alone and using its gait pattern. So the pelvis particle needs to integrate

all forces (ai) of each foot to calculate its final apelvis. In our system we use the

postulate thatm = n×mi where n is the number of feet andmi is the share of mass

that each foot supports. As if the feet share equally the mass of the pelvis particle.

Thus, apelvis =
∑n

i=1 ai/n and the resulting sinusoidal-like ballistic movement of

the pelvis is shown in Figure 4.7. A weighted average can also be used in order

to give more importance to legs with more masses (heavy feet), back legs or any

other user needs.

If the gait pattern is symmetrical as in Figure 4.7 (swing phase duration is

equal to the stance phase duration) the resulting pelvis movement is a sinusoid.

But with other gait patterns, the pelvis movement can be totally different as phases

duration can be different. Like a gait pattern with 2
3
swing phase and 1

3
stance

phase, illustrated in Figure 4.5(b) with the resulting trajectory in Figure 4.6(b).

85



Spine Model Adding Naturality and Realism

 

Foot 0 
Foot 1 
Foot 2 
Foot 3 
Foot 4 

Reception Mode 

Propulsion Mode 

Swing Phase 

Current Gait 

Gait Needle 

Final Pelvis Trajectory 

Per Foot Pelvis Trajectory 

Figure 4.7: The trajectory per foot and the final pelvis sinusoidal-like ballistic movement.

The user has a total control over this movement through the gait pattern with no

need to set any extra values apart from the preferred height (Section 3.1). On top

of that, these pseudo physics calculations are used to validate the plausibility of

the gait pattern designed by the user. As with a badly designed gait pattern the

forces calculated will be too large and not natural. We must note that any change

in the character speed can occur only during the propulsion phase, as it is the only

phase where a foot is virtually propelling the multi-legged character forward.

4.2 Spine Model

Quadruped animals like mammals (dog, horse, wolf, etc.) and reptiles (crocodile,

lizard, gecko, etc.) have a flexible spine, which is an essential component for

these type of animals during locomotion and other types of movements [Ale96,

Ale03, Muy57]. They use the flexibility of this structure into their advantage (see

Figure 4.8) to achieve a high variety of locomotion styles, as it gives them more

agility (more DOF).

86



Adding Naturality and Realism Spine Model

Figure 4.8: The deformation of the dog flexible spine structure (in green) while galloping,
original image courtesy of [Muy57].

A variety of kinematic quadruped systems [SRH+08, SRH+09] implement a

flexible spine in order to achieve more realism in the final generated animation.

In [CKJ+11], Coros et al. show how the produced motion of their quadruped (a

dog) loses its plausibility and naturalness when a rigid spine is used. By adding a

flexible spine model, the animated wolf illustrated in Figure 4.9 looks more natural

as it turns in a more realistic way.

To add this flexible spine model, we decompose the multi-legged character

morphology into several virtual pelvis nodes (shoulders), seen in red in Figure 4.8

and in Figure 4.10. Each foot is connected to one of these nodes, except for the

head node which has no foot connected to it. These virtual pelvis nodes (pelvis

nodes for shortening) are quite independent in regard to height control, pitch

control, footprint placement, etc. and are connected by the flexible spine model.

We calculate this spine model using four successive steps, described in

Figure 4.11). Firstly, on the horizontal and coronal plane (ZX-plane) then on

the sagittal plane (Y -axis) for simplification. On the ZX-plane we concentrate

on the 2D orientation (Section 4.2.1) and translation (Section 4.2.2), while on the

sagittal plane we concentrate on the elevation and pitch control (Section 4.2.3). In

Section 4.2.4, we put everything together to calculate the final 3D spine model.

87



Spine Model Adding Naturality and Realism

 

Current Orientation 

Needed 
Orientation 

Rigid Spine Flexible Spine 

Simulation Possibilities a) b) 

Figure 4.9: The visual difference of adding a spine model when executing a change in orientation
command. a) Without a spine, the wolf model turns in a rigid way. b) With a flexible spine, the
wolf model turns in a more natural way.

Ground 

Foot Trajectory 

Virtual Pelvis Node: Head 

Virtual Pelvis Node: Feet 

Spine 

Spine 

Spine Up Pitch 

Feet 

2D Side View 

Figure 4.10: The pelvis virtual nodes extracted from the morphology of a fictional 6-legged
creature.

88



Adding Naturality and Realism Spine Model

 

Step 1: On ZX 
Rotation 

Step 2:  On ZX 
Translation 

Step 4: In 3D 
Hermite Curve 

Step 3: On Y 
Elevation and Pitch 

Final 
Spine 
Model 

New Orientation and position in 2D 
after Rotation 

Elevation and Pitch of 
2D Pelvis Nodes  

New Orientation and position in 2D 
after Advancing 

Figure 4.11: A workflow explaining the different steps used to calculate the flexible spine model.

4.2.1 Step 1: Spine Orientation

In Figure 4.12, we explain how the rotation (orientation change) is achieved. The

spine nodes are nodes between the virtual pelvis nodes and part of the spine model

with no foot attached to them. An exception is the head node which is considered

as a virtual pelvis node. We need to calculate the final position and orientation

of the spine nodes as they are part of the original multi-legged character spine

morphology.

When a new orientation is needed (on the ZX-plane), we propagate this needed

orientation on the pelvis nodes from the head node toward the back pelvis node.

Each pelvis node will try to satisfy its share based on its relative angular limits,

sending the unsatisfied rest in the propagation direction (the joints limits are fixed

by the morphology parameters, as described in Section 3.1). When all pelvis nodes

are constrained, as in Figure 4.12 - Step 1.3, we rotate the whole spine around one

of the pelvis nodes in order to satisfy the needed orientation. In our animation

system we always choose the pelvis node just before the head node, a preference

that we observed in real-life animal videos. In all previous steps, bones length is

always satisfied. So after calculating the position of the pelvis nodes, we place the

spine nodes between them based on this bones length constraint.

We must note that a pelvis node can be constrained by joint angular limits and

by the feet attached to it. For example, a pelvis node with a fully extended foot

in stance phase cannot move without breaking the leg bone length limit. These

kind of constraints are processed in the final step of our method (Section 4.2.4).

89



Spine Model Adding Naturality and Realism

 

Head Node 

Pelvis Node 

Pelvis Node 

Back Pelvis Node 

Spine Nodes 

Needed 
Orientation 

Turn Around 
Previous Pelvis 

Node 

Turn Around 
Previous 

Pelvis Node Respect 
Bones 

Lengths 

All Pelvis Nodes are 
still constrained 

Turn Spine around 
a Pelvis Node

Head Node 

Step 1.1 Step 1.2 Step 1.3 

Needed 
Orientation 

X 

Z 

Back Pelvis 
Node 

Turn 
Around 

Self 

Fixed 

Fixed 

Fixed 

All Pelvis Nodes are 
constrained now 

Current 
Orientation 

X 

Z 

2D Top View 

Angular 
Limit: 

Cannot 
turn 

Step 1.4 

Figure 4.12: A step by step illustration that shows how the change of spine orientation is
computed on the ZX-plane.

4.2.2 Step 2: Spine Advancing

In Figure 4.13, we explain how we translate the spine model. Based on the current

orientation and the needed distance, a new head node position is calculated (the

target head node in red). The needed distance is calculated using the needed pelvis

speed fixed by the user. To maintain a coherent movement of the spine model, we

90



Adding Naturality and Realism Spine Model

place the virtual pelvis nodes (in blue) on the previous step spine model (in black)

in a way that respects the bones length constraint. In this way, the last step spine

model is considered as a support model that helps in maintaining the fluidity of

the movement. In Figure 4.13(b), we re-calculate the relative orientation between

pelvis nodes based on the new positions and the support model. For the back

pelvis node, we change the relative orientation in way that relaxes the constraints

(in green) in a temporal way. The duration of this relaxation is based on empirical

data. At the end of this step, we obtain the position and orientation of the spine

model on the ZX-plane and 3D calculations begin.

 X 

Z 

No change in 
relative 

orientation 

Change in relative orientation 

Head 
Node 

Back Pelvis Node 

Target Head 
Node 

Length 
Constraint 

Change in 
relative 

orientation 

a) b) 

Pelvis 
Node 

Pelvis 
Node 

Back Pelvis Node 

Place Spine Nodes 

2D Top View 

Target 
Head 
Node 

Figure 4.13: Illustration on how we translate the pelvis and spine nodes, on the ZX-plane,
based on an orientation and needed distance.

4.2.3 Step 3: Spine Elevation and Pitch

As we decomposed the character pelvis into several virtual nodes, we decompose

also the previous height and pitch calculations found in Figure 3.8 into its

respective nodes, as shown in Figure 4.14. In this way, we obtain the preferred

height for each pelvis node based on its convex hull projection. We integrate the

pseudo physics system in each virtual pelvis nodes to add more realism to the spine

model. By doing so, the final needed pelvis node elevation is calculated using the

pseudo particle-based physics instead of the preferred height only.

For each pelvis node pitch angle, we calculate first the environment-based pitch

using the projection of the virtual pelvis nodes on the convex hull, in blue in

Figure 4.14. Second, we calculate the pitch of the pelvis node caused by the

91



Spine Model Adding Naturality and Realism

1) Environment 
Convex Hull 

Multi-legged Character Body 
Bounding Box Projection 

2) Final 
Convex Hull 3) Nodes 

Projection 

Environment 
Pitch 

Foot Induced 
Pitch 

Final Pitch 

Spine 

Figure 4.14: Computation of each node’s height using several convex hulls that covers the
environment slice and computation of each virtual pelvis node pitch.

relative position of each foot. Let
−→
Vi be the vector that connects the current pelvis

node with the foot i (in orange in Figure 4.14). We calculate the perpendicular

vector on
−→
Vi in the direction of the creature progression. This perpendicular vector

represents how much this foot affects the pitch angle of its pelvis node. We call

this perpendicular vector the foot induced pitch. Final pelvis node pitch is the

average of the environment pitch and the feet induced pitches.

4.2.4 Step 4: Final 3D Spine

Using the 2D positions calculated in Step 1-2 (Section 4.2.1 & 4.2.2) and

elevations calculated in Step 3 (Section 4.2.3), we obtain a preliminarily 3D

position for each virtual pelvis node. And using the 2D orientations calculated

in Step 1-2 and pitches calculated in Step 3, we obtain a preliminarily tangent

direction for each of them. We construct a B-Spline (Hermite) curve between these

92



Adding Naturality and Realism Other Visual Effects

3D positions using the previous tangents data (Appendix F). We sample this curve

using the bones length constraint in order to calculate the final pelvis and spine

nodes position and 3D orientation. By doing so, the visual representation of each

pelvis node can have a different 3D position from the one calculated in the previous

steps. We consider the 3D positions calculated until Step 3 as guidelines for the

Hermite curve, making the pseudo particle-based physics system independent from

the visual system. Sometimes, the final position of the virtual pelvis nodes can

not be satisfied by the CCD IK system because of joint constraints. In this case,

Step 4 is repeated based on the closer position that the IK system can ensure

from the needed one. In Figure 4.15, we show the final generated flexible spine

model on an abstract lizard model. Its spine consists of 3 pelvis nodes and 9 spine

nodes.

 

2D Spine Model 
on ZX-Plane 

Step1-2 2D 
Model 

Sampled 
Hermite Curve 

Final 3D Spine 

Pitch 

Elevation Elevation 

2D ordination 

Figure 4.15: Final generated flexible spine model in an abstract lizard model.

4.3 Other Visual Effects

To make the final animation more realistic, we add two components: non-linear

character progression and gait randomizer. The idea behind adding these

components is to make each simulated character locomotion more distinctive and

to make the final simulation less repetitive.

93



Other Visual Effects Adding Naturality and Realism

Non-Linear Character Progression. Some of the simulated animals (like

insects, arachnids, etc.) move in a burst-like style. They accelerate (toward a

max speed) and decelerated (come to a stall) in a random-like way. They never

maintain a constant speed [Ale96, Ale03, Wil67]. We implement this kind of burst-

like movement by varying each multi-legged character speed using a sinusoidal-like

wave (Figure 4.16). This sinusoidal-like wave amplitude is the max speed imposed

by the user. We only vary the wavelength, static period and max speed period

randomly throughout the simulation. This effect can be turned off in real-time by

the user.

 

0 
Random Wave Length Static Period 

Max Speed Period 
Accelerate  Decelerate  User 

Imposed 
Speed 

Speed 

Time 

Figure 4.16: Example of the speed variations during the random non-linear character
progression.

Gait Randomizer. By randomizing the gait of each multi-legged character,

the final simulation becomes less repetitive as different characters will not have

the same locomotion style at the same time (doing the same feet movement at

the same time). When generating these random gaits, shown in Figure 4.17, we

make sure that not all feet are in swing phase at the same time and that each foot

enters its swing phase before another random foot enters its stance phase. The

idea is to cover the whole gait disk, in a logical way. We couple the gait randomizer

with the non-linear character progression (if it is active) by affecting a new gait to

the multi-legged character each time its speed drops to zero (it comes to a stall).

Again these small effects can be turned off in real-time by the user.

94



Adding Naturality and Realism Performance and Results

 

c) 

b) a) 

Figure 4.17: Examples of the resulting random gaits for different morphologies. (a) 8-legged.
(b) 5-legged. (c) 4-legged.

4.4 Performance and Results

In this section we discuss the performance of the locomotion system after adding

the pseudo physics and the flexible spine. The non-linear character progression

and gait randomizer have little to no-effect on the overall performance of the

locomotion system: their contribution is more visual.

In Figures 4.18, we show a frame by frame snapshot of a lizard running upward.

By adding a visual yaw effect to the spine model tangents, the animated lizard

moves in a believable way compared to a real life lizard. We calculate the yaw

value for each foot based on its current position (in white in Figures 4.18) and its

rest position (in green). The value of the final visual yaw effect is the average yaw

for all feet.

In Figures 4.19, we show a frame by frame snapshot of a wolf running with a

gallop like gait. With the integration of the pseudo physics and the flexible spine,

the wolf moves in a quite natural and life-like way, relatively similar to Figure 4.3

and 4.8.

95



Performance and Results Adding Naturality and Realism

Visual Yaw 
Effect 

Figure 4.18: A lizard running upward in a believable way compared to a real life lizard, the top
image is courtesy of [Mar93]. The visual yaw effect is calculated using the current position of
the feet on the ZX-Plane. Lizard tail is animated using the system presented in next chapter.

We use the same previously described environment to do the performance tests:

heightmap with obstacles (3000 crates, 40% dynamic). The simulation include the

LOD aspect with all characters in the camera field of view. We do not add any new

LOD techniques on these newly added components. In all tests the final simulation

stays real-time (∼30fps).

In Figure 4.20 we show average calculation time, on each simulation step, when

adding pseudo physics to 8-legged creatures (spider model). We can observe that

calculation time increases by 9%. Meaning that our pseudo physics system is

efficient enough to be used without any performance hit.

96



Adding Naturality and Realism Performance and Results

Spine Pitch 
IK 

Systems 

a) b) 

Figure 4.19: A wolf running (galloping) to the left with its spine model being deformed based
on the pseudo physics and the pitch control. a) 3D mesh. b) spine model and IK systems

In Figure 4.21 we show average calculation time, on each simulation step, when

adding the spine model coupled with the pseudo physics to 4-legged creatures (wolf

and lizard model). Every quadruped has 3 virtual pelvis nodes and an average of 7

spine nodes. We can observe that calculation time increases, when adding a spine

model, for about 30-40%. This increase is caused by several things: triple pelvis

elevation calculations, sampling of the Hermite curve, rotation and translation

propagation, etc. As for coupling the flexible spine with pseudo physics, we can

97



Performance and Results Adding Naturality and Realism

observe the same calculation time increase (9%) shown before in Figure 4.20. This

performance hit, by using a spine model, is justified as quadrupeds now move in

a more natural and realistic way.

Figure 4.20: Average calculation time when adding pseudo physics to the locomotion system.

Figure 4.21: Average calculation time when adding our spine model coupled with pseudo physics
to the locomotion system. In second.

98



Adding Naturality and Realism Conclusion

4.5 Conclusion

We presented several components in this chapter that adds naturality and realism

to the real-time locomotion system. We implemented a pseudo physics system

capable of adding more realistic movements to the pelvis. Making the animated

creatures more believable as they move on the sagittal plan based on the user

assigned gait, while keeping the calculations simple as we use minimalist dynamics

modeling from particle-based physics. We added also a flexible spine model that

gives the simulated quadrupeds more DOF, allowing them to move in a life-

like way. The proposed model uses simple geometric calculations and satisfies

joints limits. By implementing other visual components like non-linear character

progression and gait randomizer, the final simulation looks less repetitive and the

multi-legged characters behave in a more organic-way. Our system even maintains

its efficiency, as adding these extra blocks does not affect the total performance in

a drastic way.

The generic spine model and pseudo-physics system [AMG+12] were accepted

in the 9th Workshop on Virtual Reality Interaction and Physical Simulation

(VRIPHYS) 2012 and to be presented in the conference next December held in

Darmstadt, Germany.

99





Chapter 5

Controlled Oscillation Effects

Contents

5.1 Pendulums System Overview . . . . . . . . . . . . . . . 104

5.2 Time Based Spring Dampers Control . . . . . . . . . . 105

5.3 Pendulums Strategies . . . . . . . . . . . . . . . . . . . . 107

5.3.1 Father Pursuit Strategy . . . . . . . . . . . . . . . . . . 108

5.3.2 Son Pursuit Strategy . . . . . . . . . . . . . . . . . . . . 109

5.3.3 Final workflow . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Implementation in Animation Systems . . . . . . . . . 113

5.5.1 Adding Physical Reaction Effects to any Skeleton-Based

Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.2 Cloth Simulation . . . . . . . . . . . . . . . . . . . . . . 115

5.5.3 Secondary Motion in Locomotion System: Results and

Performance . . . . . . . . . . . . . . . . . . . . . . . . 117

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 119

An articulated body is a chain of rigid bodies, with many Degrees of Freedom

(DOF), length constraints, angular limits, etc. The physics that govern its

movement is computationally expensive, numerically imprecise, and often difficult

to predict and to control. Many surveys (Chapter 2) like the one by van Welbergen

101



Controlled Oscillation Effects

Figure 5.1: Some example uses of our system. Red arrows represent external perturbations.
Green arrows represent the system’s response.

et al. [vWvBE+09] gives a good overview of the different methods and paradigms

used to simulate these articulated bodies, and shows the tradeoffs between

animation control and motion naturalness. In this context, there is a crucial

demand for real-time methods providing physically plausible with controllable

effects [BHW96].

In this chapter, we propose an original system that adds physical like reaction

effects to any skeleton-based object, in real-time with a full user control using a

proposed 3D pendulums paradigm. The effects we seek to obtain are based on

damped oscillatory motions that propagate through an articulated chain. The

effect may be visually plausible like a rope moving in the wind, or a body reacting

to external forces. In our system each bone of the articulated body is animated by a

3D pendulum. Each pendulum is guided by a spring damper that pulls it toward

a user-definable target direction. Our approach has two objectives. Firstly, we

ensure body length constraint (Hard Constraint) between any two joints by only

working on the angle between the bodies. Secondly, we make a predictable real-

time system in which we can control the reaction time to reach a user-defined

102



Controlled Oscillation Effects

direction and also the regime (critical or underdamped) of the oscillations around

this direction. Our pendulums have three degrees of control: reaction time,

damping and target direction. This concept of 3D pendulums may be applicable

in a multitude of scenarios with some of them illustrated in Figure 5.1. Plus

these 3D pendulums can be used in the previously presented locomotion system

in order to add secondary motions, introducing oscillation/vibration effects to the

final simulation. We must emphasize that our system is better suited for acyclic

bodies.

Anchor 

Mass 

 

L 

Another Preferred 
Direction 

Preferred Direction (Vertical) 

2D Side View 

Figure 5.2: Simplified representation of the pendulums that we propose, with the spring and
the preferred target direction.

Our system is really easy to implement, as we will see in the following sections,

with no need for a full physics simulation, or any kind of complex calculations

(like in a fully physics-based simulation). 3D pendulums (described in Section 5.1)

are the building blocks of our system, with each bone of an articulated body

animated with a pendulum. A pendulum is an anchored bar, with a fixed length

L, attracted to its target direction by a spring (see Figure 5.2). This spring pulls the

pendulum toward this direction. This idea allows the system to easily add plausible

oscillations to any animation with a temporal control (explained in Section 5.2).

In Section 5.3 we present the linear algorithms that deals with a tree of pendulums

103



Pendulums System Overview Controlled Oscillation Effects

or a skeleton and how the motion of a single pendulum is propagated to its father

and sons. In Section 5.4 we explain more our contribution in contrast of existing

techniques: PD controller and the Model Reference Adaptive Control (MRAC)

controller. Performance and uses are discussed in more details in Section 5.5.

We concentrate only on deforming the skeleton of the articulated body, without

any specific treatment to the 3D mesh (like in [CGC+02]). Our mesh is animated

by the classical linear blend skinning. In Section 5.5.2, we show a rigid tissue

represented by a tree of bones animated by our approach with a large time-step

and controllable computation, with no intention to compete against realistic fabric

simulation, like the one presented by Volino et al. in [VMTF09].

5.1 Pendulums System Overview

Our pendulums oscillate visually like real 3D pendulums by computing their

movements with a mass-spring approach on the angle. A mass-spring approach is

a very simple way to simulate physics-based animation [MSJT08], as it offers an

intuitive and flexible means of modeling a mechanical system. In Pixar’s movie

WALL-E [KL08], they used a mass-spring system in a derived fashion to animate

large crowds of humans and robots in a believable way. While in [NH04], Nagurka

and Huang used a mass-spring damper model to generate a plausible animation

of a bouncing ball.

We design a pendulum
−→
V as a rotating bar attracted to its preferred direction

by two springs: one spring on each 2D plane XY and ZY as illustrated in

Figure 5.3. We choose this scheme with two springs instead of one spring to avoid

spiral rotation motion around the target direction. The computation of pendulum−→
V motion is done using its projections

−−→
VXY ,

−−→
VZY independently. During the motion,

after calculating the two new spring positions in 2D
−−→
VXY and

−−→
VZY , the 3D position−→

V is obtained by combining them and ensuring that ‖−→V ‖ = ‖−−→VXY ‖ = ‖−−→VZY ‖ = L.

In the current implementation we omit the twist component around the axe of

the 3D pendulum
−→
V which is the third DOF (to be added in future work). It

is interesting to notice that by using the target direction
−−→−Y , we can give the

impression of gravity that always pulls the bodies toward the ground.

104



Controlled Oscillation Effects Time Based Spring Dampers Control

 

Y 

Z 

X 

 
 

3D Pendulum 

O 

 

  
 

=  

= = L

Preferred Direction (Vertical) 

Figure 5.3: A 3D pendulum composed of two 2D pendulums with Y as their preferred direction.

5.2 Time Based Spring Dampers Control

Let m be a mass connected to a spring with stiffness constant k. This mass

oscillates around a rest position x0 with a viscous damper that has a damping

coefficient c. Based on Newton’s second law of physics the acceleration is

ẍ = −(k(x − x0) + cẋ)/m where x is the current position of the mass, and ẋ

is its velocity. We integrate this motion using the Verlet scheme [MSJT08] which

was numerically stable during our experiment. Giving a random position x to the

mass, it oscillates around the rest value x0, seeking to minimize the error (x− x0)

until reaching zero. This oscillation depends directly on the constants (k, c,m).

In order to achieve temporal control on the spring damper movement, we use the

Settling Time Ts principle. It is the time required for the mass position x to reach

its max amplitude inside a given error interval (see Figure 5.4) and remains inside

it. This interval is symmetrical around x0.

Ts = − ln(tolerancefraction)

ζ ∗ w0

(5.1)

105



Time Based Spring Dampers Control Controlled Oscillation Effects

Where the tolerance fraction is the needed error interval shown in Figure 5.4, w0

is the natural frequency and ζ is the damping of the ordinary differential equation

governing a damped harmonic oscillator:

mẍ+ cẋ+ k(x− x0) = 0

or

ẍ+ 2 ∗ ζ ∗ w0 ∗ ẋ+ w2
0 ∗ (x− x0) = 0

with

ζ =
c

2mw0

, w0 =

√
k

m
(5.2)

We fix the tolerance fraction to 5% based on our experiments in equation (5.1).

The user only needs to provide the settling time Ts (reaction duration) and

damping value ζ (critically damped or underdamped). Using this tolerance fraction

constant, settling time and damping, the natural frequency w0 is automatically

calculated from equation (5.1) and the spring damper constants k and c are

calculated from equation (5.2). With that we achieve a total control over the

curve of the spring damper based on the user needs while maintaining its dynamic

aspect.

 

Under damped 
Under damped 
Critical damping Starting  

 
   

Needed Error 
Interval 

Figure 5.4: Spring oscillation under different damping values.

106



Controlled Oscillation Effects Pendulums Strategies

Figure 5.4 illustrates springs oscillating under different damping values. They

oscillates around their x0 until full stop, with their respective settling time. The

third spring damper is a critical spring damper which converges toward x0 faster

than the others, and without oscillation.

5.3 Pendulums Strategies

The skeleton of an articulated body is a tree of connected joints (articulations). By

connecting several 3D pendulums and by defining the target direction for each one

of them, the final result is a tree of pendulums that map the articulated structure,

as shown in Figure 5.5. Some of the 3D pendulums act as a father node for several

others. When they move, the anchor points of their children move.

A Father 
Node 

Target 3D 
Pendulum 
Direction 

A 
Target 
Pose 

3 Son 
Nodes 

3D 
Pendulum 

Figure 5.5: 3D pendulums tree in black with target direction in grey.

These 3D pendulums need to interact with each other in order to have

a believable reaction like when the son nodes move according to their father

movement. We define two strategies used in conjunction to achieve this goal:

Father Pursuit strategy (Section 5.3.1) and Son Pursuit strategy (Section 5.3.2).

For simplicity, these strategies will be described in a 2D plane.

107



Pendulums Strategies Controlled Oscillation Effects

5.3.1 Father Pursuit Strategy

The objective of this strategy is to propagate the motion of the father 3D pendulum

toward its children, thus they need to incorporate this movement in their own

motion. Figure 5.6 illustrates two connected pendulums PA and PB. A and B are

the positions of each mass. LA,LB are the lengths of the bars. θA,θB are the errors

that each pendulum seeks to minimize. In this example the preferred direction of

the pendulums are identical (the dashed
−−→−Y ).

 

 

 

 

 
 

 

 
  

 

 

 

  
 

Y 

Anchor 

X 

Anchor 

Z 

Figure 5.6: Father Pursuit Strategy.

The update system is a top-down system scheme, starting from the anchor

toward the leaf. First, on time t1 (in black) the error that we try to minimize is

θA1 in PA and θB1 in PB. Now, on time t2 (in red):

1. PA moves. Its spring damper tries to minimize the error, and has a new

position A2.

2. PB: the angle εAB between the two vectors
−−−→
B1A1 and

−−−→
B1A2 is added to its

own error, αB = θB1 + εAB.

3. PB: letting the spring damper integrate its equations, we obtain a new angle

value θB2 which contains the new pursuit error.

4. PB: based on LB the new position B2 (in blue) is calculated.

108



Controlled Oscillation Effects Pendulums Strategies

Without this process, the new position of PB would have been B3 (in green),

which is not correct and would have produced a non-logical disconnected motion.

This Father Pursuit process is extended to every pendulum in the chain. A third

pendulum PC follows the motion of its father PB, and so on. By extending this

process in 3D we have a totally plausible physical chain of 3D pendulums. Each

one reacting to its father’s movement while oscillating around its target direction.

5.3.2 Son Pursuit Strategy

The objective of this strategy is to reflect the perturbation that can occur on

the son level, to reflect it on its father. It occurs when the mass of PB takes a

perturbation as a result of being pulled or collided with another object, as seen in

green in Figure 5.7. The perturbation is regarded as a change in the position, as

if we only take the final position resulted of an impulse applied to a rigid body.

Perturbation 
 

 

 

 

 

 
 

 

 

 

 

Anchor Anchor 

 

Figure 5.7: Son Pursuit Strategy.

1. The perturbation induces its full impact as if the mass PB was not attached

(in red).

2. PB’s mass has two positions: B1 (the old one) and B3 (the new one).

Inverting the previously detailed computation of the father induced error

εAB, we calculate the child error εBA, the angle between
−−−→
A1B3 and

−−−→
A1B1

and adding it to θB1, we obtain αB = θB1 + εBA.

109



Pendulums Strategies Controlled Oscillation Effects

3. The mass of PA should follow, as it is being pulled by its son now. The new

position A3 is calculated easily by choosing on the line A1B3 the point A3

where ‖A1B1‖ = ‖A3B3‖.

4. This process propagates toward the anchor.

5. The new positions are recalculated based on the fixed anchor position.

With this scheme, all the errors that the spring dampers need to minimize because

of a perturbation are calculated in a bottom-up way starting from the son that

took the perturbation toward the anchor.

5.3.3 Final workflow

In a tree of pendulums, calculation cycles may occur when two nodes are

influencing each others in an endless loop (father influencing its son, then the

son influencing its father, and so on.). To avoid these kinds of loops, we

use an update system inspired by Featherstone’s divide-and-conquer algorithm

[Fea99a, Fea99b]. This algorithm eliminates any cyclic calculation problems and

breaks the computation into two main linear passes. The first is a bottom-up pass

through the articulated body tree, and the second is carried out from the top to

the bottom. We adopt this paradigm completely. Only the calculations differ, as

listed below:

1. For each 3D pendulum perturbed in the tree: resolve this perturbation by

applying it on its mass then calculate the errors ε in a bottom-up iteration

toward its ancestors according to the Son Pursuit strategy.

2. For each father 3D pendulum integrate all the children errors (ε1,ε2 etc.) to

its own error θ.

3. Start the standard top-down pass starting from the anchor toward the leaf

according to the Father Pursuit strategy.

110



Controlled Oscillation Effects Advantages

In the previous step 2, there are many ways to calculate the integration:

• Summing up all the perturbation errors coming from its children: it is the

method used to produce all of our results. It is the simplest method, and

the one we have chosen after testing.

• Calculating an average: the father node will be perturbed in the same

direction as the previous method, but with less amplitude. It is useful when

the application decides that the father should be less affected by its children.

• Doing a weighted average based on:

– The Mass: the heavier son has more influence on its father.

– The importance of each branch: assigning predefined priorities on the

children.

We can imagine many other possibilities based on a specific application’s needs.

Our system is quite easy to implement and the actual calculations in each strategy

require only basic knowledge of 3D vector math. No prior knowledge of physics

systems is required; we do not compute the inertia matrix nor do we use the notion

of force. At the same time we can use physics principles to enhance the end result

like in the case of the father pendulum integrating its children’s errors based on

the inertia matrix.

5.4 Advantages

In the following section we demonstrate our system with a skeleton based skinned

3D models. Starting from the bind (rest) pose of the skeleton, we automatically

create a 3D pendulum for each skeletal connection (bone) with the same length

and with its preferred rest direction calculated from the bone rest pose orientation.

By maintaining the hierarchy of the base skeleton, we have a tree of pendulums

that maps this skeleton perfectly. While playing motion data, we modify the target

direction of each corresponding pendulum, exactly mimicking the base animation.

If the 3D pendulums start to react to an external perturbation, each of the 3D

pendulums orientation and position is applied to its corresponding bone.

111



Advantages Controlled Oscillation Effects

Our method may be related to a PD controller, and also to the MRAC controller

that uses the Adaptive Control proposed by Landau in [Lan79] and used by

Kokkevis et al. in [KMB96]. Like the PD controller, a MRAC controller is used

to add reaction effects to articulated bodies, but differs in the way that it adapts

its calculated response based on the needed reference model. It provides the user

with direct control over the speed and type of response to sudden changes. All of

these controllers main goal is like our pendulums: to bring a bone to a preferred

direction. But we differ in several essential ways. Firstly, even without any external

perturbation, the other methods always try to return to a preferred direction (or

position). This introduces a delay (Figure 2.19) in the produced animation between

the target pose (keyframe or MoCap data) and the response of the PD controller

(as seen in [ZH02]). On the other hand, our system is a superimposed layer over the

motion data and only reacts when there is an external perturbation. Our system

plays exactly the motion data with no delay, and only adds the reaction effects

when needed. Another difference is the controllability; our system is designed to

be temporally controlled (control over the reaction time). Temporal control in the

case of the PD controller is hard to achieve and demands some hand tuning of the

gain constants. In [ACSF07], Allen et al. show the ability to temporally control

PD controllers (using adaptive calculation of the gain constants), but it involves

some heavy calculations of the inertia matrix of each joint on each motion clip, with

specific calculations in the case of an external perturbation (calculating the re-entry

motion clip). Finally, all the mentioned controllers are always critically damped.

On the other hand, our pendulums can be critically damped or underdamped while

maintaining the temporal control (Figure 5.4). A MRAC controller is designed

to be temporally controlled but it calculates and adapts its gain constants on

each frame using forces and torque calculations. Our pendulums do not need any

adaptive pass once the user sets the reaction time and damping. Additionally, this

reaction time and damping can be modified in real-time.

112



Controlled Oscillation Effects Implementation in Animation Systems

5.5 Implementation in Animation Systems

In this section, we present several ways to use the 3D pendulums tree: adding

physical effects to lifeless models like an octopus, modifying pre-defined motion

data with physics reactions, anecdotally a cloth simulation (which is normally a

closed-loop problem) and most importantly, integrating these 3D pendulums in

our original locomotion system (secondary motion in Section 5.5.3).

In all cases, the pendulum’s reaction time, damping, and target direction is

totally controllable. We do not manage collisions, but we can easily imagine a

system that creates an impulse (change in the position) on each 3D pendulum to

counter any penetrations that occur. Section 5.5.1 and 5.5.2 use the following test

machine: Intel Core 2 Duo 2GHz, 2 GB RAM, with an ATI X1400, 256 MB.

5.5.1 Adding Physical Reaction Effects to any Skeleton-

Based Bodies

In Figure 5.8, we use our system on a lifeless octopus model. By adding some

simple procedural animation to its tentacles (pulling only the root node of each

tentacle toward the center at random intervals) the rest of the model reacts in a

passive way, modifying the animation and adding plausible physics effects. The

octopus model performance data can be found on table 5.1.

Joints Number Perturbations Number Only MoCap With oscillation effects
Octopus 150 8 NaN 0.3 ms
Alien 92 2 0.06 ms 0.46ms

Table 5.1: Average pendulums calculation time per frame on our test machine.

We can also use our system on animated models. In that case on each frame,

the motion data takes control of the skeleton changing the preferred direction of

each pendulum. With no external perturbations, the 3D pendulums rigorously

follow the animation data. When an external perturbation occurs, our system

reacts to this while continuously trying to return to the desired target pose.

With such a technique, our system adds plausible physical reaction effects to

predefined animation data, as a superimposed animation layer. These reactions

113



Implementation in Animation Systems Controlled Oscillation Effects

Figure 5.8: From top left: [1] The model with its 3D pendulums. [2] Rest pose. [3] We pull all
the tentacles toward the center. [4] Reacting. [5] Tentacles overshooting (underdamped regime).
[6] Return to rest pose.

can furthermore be customized by making a section of the body more rigid, more

flexible, changing the reaction time, or tuning the damping. This gives the user

a powerful tool to modulate the reaction of the body in a very easy and intuitive

way.

Performance data for the alien model in Figure 5.9 can also be found

on table 5.1. As we can observe, the average computation time for each frame

rises from 0.06 ms to 0.46 ms, which stays negligible. This added cost is the result

of reading the motion capture data in order to change the pendulum’s target

direction, integrating the perturbation and then performing the main integration

(as previously described).

114



Controlled Oscillation Effects Implementation in Animation Systems

Figure 5.9: From top Left: [1] Original (on the left) and our simulated articulated body (on the
right). [2] Two perturbations. [3] to [5] Reaction and returning to the original MoCap.

5.5.2 Cloth Simulation

Although cloth is a closed loop problem, we are capable of giving the impression

of an animated cloth by simply creating several vertical 3D pendulums that cover

the cloth, plus attaching several horizontal 3D pendulums to each vertical one (one

vertical is shown in Figure 5.10).

By doing a weighted average between the positions of all horizontal pendulums

activated by their vertical father, weighted based on the distance between each

horizontal pendulum and its vertical father, we compute the final cloth position.

This results in a fully reactive cloth, without any tearing problems, that maintains

its horizontal and vertical dimensions, while giving total control over the reaction

time. We are not aiming to compete against more general, visually and physically

accurate cloth simulators that are, for example, better suited to simulate actual

115



Implementation in Animation Systems Controlled Oscillation Effects

Horizontal 3D 
Pendulums: 

Child 

Vertical 3D 
Pendulums: 
Father 

Figure 5.10: A cloth represented as a tree of pendulums.

human cloth. We are just proposing a less sophisticated, but stable and

relatively fast method that can plausibly simulate the motion of reactive cloth.

In Figure 5.11, an external perturbation is applied to the middle three vertical

pendulums. In order to optimize calculation time, those three vertical pendulums

are the only ones actively being simulated (with the horizontal children of each

one of them). The mesh is simulated using approximately 1500 3D pendulums.

The average calculation time of these pendulums with the post calculations for the

final cloth is around 5 ms.

Figure 5.11: Cloth being pulled in the middle with a visual representation of the 3D pendulums.

116



Controlled Oscillation Effects Implementation in Animation Systems

5.5.3 Secondary Motion in Locomotion System: Results

and Performance

We integrate the previous 3D pendulums in the main locomotion system presented

in Chapter 3. We add these oscillation effects to the ant/spider antennas and

wolf/lizard tail, shown in Figure 5.12. We also add these oscillations to the actual

ant/spider body, giving them a more organic-feel. These added secondary motions

make the final simulation more realistic, as body parts of the simulated creatures

react to its actual movement, which gives the multi-legged characters a plausible

and a believable organic feeling.

 

b) 

c) 

3D Pendulums 

a) 

Figure 5.12: Examples of the integration of the 3D pendulums system in the main locomotion
system. a) Ant antennas and body. b) Wolf tail. c) Spider antennas and body.

In Figure 5.13 we show the resulting wolf tail animation after adding secondary

motion to it. The resulting wolf tail is more life-like and reacts to the actual wolf

movement. We show also two varieties of the tail responses (a flexible vs. a rigid

tail), which is easy to achieve and change in real-time using the presented 3D

pendulums system. Lizard tail is shown in Figure 4.18.

In Figure 5.14 we show the average calculation time for the 3D pendulums,

on each simulation step, when integrated in our real-time locomotion system. We

added 3 pendulums tree to each simulated multi-legged character, with an average

of 5 nodes per tree. Environment is simple (flat terrain with no obstacles).

117



Implementation in Animation Systems Controlled Oscillation Effects

(a) (a) (b) (b) 

Figure 5.13: Frame by frame example of the wolf tail animation after adding secondary motion.
(a) Simulating a flexible tail. (b) Simulating a more rigid tail.

Figure 5.14: Added Calculation time when using pendulums tree in our locomotion system. In
seconds.

We can observe that our oscillator system is quite efficient: for a 110 characters

(330 pendulums tree, 1550 3D pendulums) it takes only ∼3 milliseconds to change

the target direction, integrate the root node movement using previous strategies

and to do a dynamic step for all spring dampers. Which means an increase of

about 10% in the overall locomotion system calculation time. This added cost

is quite negligible compared to the visual effects of the added secondary motions

that helps generating a better immersive virtual simulation.

118



Controlled Oscillation Effects Conclusion

5.6 Conclusion

The presented system for secondary motions is linear, straightforward, and based

on simple 3D pendulums. It is capable of adding physical like reaction effects to

skeleton-based bodies very easily. Additionally it is highly customizable as we can

control in real-time the target direction, reaction time and damping of the motion.

And the results show a better final animation as adding these secondary motions

give an organic feel to the simulated multi-legged characters. Thus, it helps in

making the generate locomotion animations more plausible and believable.

This pendulums system [AKGM+11] is published in the Transactions on

Edutainment VI journal and was presented in the Computer Animation and Social

Agents (CASA) Conference 2011 in China.

The current system does not enforce angular constraints. We need to

incorporate them into our future work in order to simulate real-life joint constraint

that exists in most skeleton-based bodies.

119





Chapter 6

General Conclusions

In this thesis we have been interested in locomotion animations, an essential part of

virtual worlds simulations. Virtual creatures should have the ability to move freely

through these virtual worlds, in order to make these computer based simulations

more immersive. The generated animations should be life-like and convincing,

and the system should be efficient enough to populate the simulation with the

maximum number of characters. These points are what motivated us in developing

our locomotion system. Our system is Procedural-Based because motion data

for the multi-legged characters that we target are either rare or non-existent

and because Procedural-Based techniques are more generic, controllable and

adaptive compared to Data-Driven ones. We use kinematics-based techniques

with a minimal physics approach as fully physics-based ones suffer from bad

performance problem, difficulty to implement and lack of controllability.

We presented in this thesis a real-time generic locomotion system capable

of animating a wide range of multi-legged character morphologies with intuitive

user control. Our locomotion system fulfills four main objectives. It is capable

of adapting the generated animation to a complex dynamic environment and

different morphologies. The user has a total control over the final locomotion

and can design the style needed through our user-friendly interfaces. The system

generates plausible animations that are believable and life-like. Finally, it is

efficient enough to simulate dozens of creatures in real-time. The system is

kinematics-based and uses biomechanics observations in order to generate final

animation. Observations like the one found in [INM66, MT55, Muy57, Ale96] that

121



General Conclusions

describe how most terrestrial animals move: placing one foot in front of the others

in a successive way until reaching the creature point of interest (target).

Our system is composed of four main blocks that interact with each other

in order to generate final animation: a character controller, a gait manager, a

3D path constructor and a footprints planner. The character controller is

the central main structure in our system and relies on the three other blocks to

generate final locomotion. It manages the feet movement by using the tempo set

by the user in the gait manager. It calls the footprints planner whenever a foot

is in swing phase in order to calculate this foot 3D trajectory. The character

controller manages also the pelvis movement using the assigned 2D orientation,

speed and the elevation of the environment underneath the multi-legged character.

The gait manager is responsible of the locomotion cycle tempo. The user can

design the needed gait by setting the stance and swing phase of each foot using

our user-friendly interface. The 3D path constructor is capable of efficiently

generating 3D trajectories between any two 3D points in the environment using

a Grid-Based path planner and two discretization maps: obstacles’ map and

elevations map . Finally, the footprints planner evaluates in real-time all

possible 3D trajectories that navigates through the environment toward all possible

targets starting from the current foot position. Then, our main algorithm picks

the best couple in this search space: best 3D trajectory toward best footprint

target. This algorithm is efficient enough to be called several times for each

creature, which helps in navigating dynamic environments. By using the CCD

IK system to calculate the position of the intermediate leg joints that connects

the pelvis with the feet, we generate the multi-legged character final locomotion

animation. We implement also several LOD techniques that help in increasing the

number of simulated characters while always generating plausible animations. Our

system can animate dozens of multi-legged characters, in real-tim, in a dynamic

and complex environment.

In order to make final animation more life-like we added three main components

that help making the generated animation more realistic without affecting the

efficiency of our system. First, pelvis movement using pseudo physics.

We generate the sinusoidal-like ballistic movement of the pelvis (observed in

nature), using particle-based physics computations and values of the gait pattern.

122



General Conclusions

This pseudo physics system uses Newton laws and the feet phases in order to

automatically calculate the forces that each foot is exerting on the pelvis. Without

any extra setting, the user can edit this movement easily through the gait manager

interface. Another added component is a flexible spine model. We proposed a

simple geometry-based calculations and 3D Hermite curves in order to generate a

flexible spine model while animating quadrupeds. This spine is an essential part

when animating these quadrupeds as it gives them more agility (more DOF). Our

model is easy to implement and enforces joint limits in order to have logical results.

Finally, we introduced a tree of 3D pendulums that adds secondary motions to

the animated multi-legged characters. These oscillation effects (like in the ants

antenna or the wolf tail) help in giving an organic feel to the animated creatures,

thus helping in creating a better immersive experience. The developed system uses

simple 3D vector-based math without any physics calculations.

Through our user-friendly interfaces, users can control our system parameters

to generate the desired locomotion. List of all parameters can be found in

Appendix D. We are currently working on an automatic method that calculates

the best parameters values based only on one or two user criteria’s. Like finding

the best gait pattern and feet spacing based only on a fixed speed, to generate a

natural looking locomotion.

An interesting aspect in future work is adding balance strategies to the multi-

legged characters, like taking small steps, weight shifting, changing support, etc. to

counter external pushes and perturbations. To achieve that we need to have more

morphology specific preferences in order to simulate the way real-life creatures

counter these kind of external perturbations. We also need more complex physics

and dynamics to simulate the effects of these forces.

Our system is capable of generating locomotion for bipeds as shown in

Figure 6.1. But the final locomotion still lacks realism, because in the case of

humans the animation should be as close to reality as possible otherwise it will

not be convincing. To achieve that we need a better foot model with a better

simulation of the metatarsus1 movement in order to capture the essence of human

1The metatarsus or metatarsal bones are a group of five long bones in the foot located between
the tarsal bones of the hind- and mid-foot and the phalanges of the toes.

123



General Conclusions

locomotion. Generating natural human locomotion will be one of our main focus

as future work.

By achieving all these perspectives, our system will be a near complete generic

animation system. Our ambition that it will be used in the industry, as it can

resolve many problems that currently exist. Until now, recent real-time simulations

like video games and serious games still suffer from repetition in the characters

animation, long development cycle and the need of application specific systems.

Our system will give these animated characters the capabilities to adapt and react

to the environment in real-time, in a natural and logical way. Plus, it is reusable

and generic thus decreasing development time.

 

(1 (2 (3 

(4 (5 (6 

(7 (8 (9 

Figure 6.1: A biped moving forward.

124



Glossary

MoCap Motion capture is the process of recording a movement and translating

that movement on to a digital model. It refers to the process of recording

actions of an actor/creature, and using that information to animate a digital

model in 2D or 3D computer animation. x–xii, 3, 8, 10–14, 18, 19, 27–30,

77, 112, 115, 129

Motion graphs are graphs that manage the transition between different motion

data clips. 12–14

AI Artificial Intelligence. 5, 14

BFS Breadth-First Search is a search algorithm that begins at the root node and

explores all the neighboring nodes. Then for each of those nearest nodes, it

explores their unexplored neighbor nodes, and so on, until it finds the goal.

34, 57, 58, 138

CCD Cyclic-Coordinate Descent. xvi, 17–19, 44–46, 66, 71, 74, 93, 122

COM Center Of Mass is a point in space where, for the purpose of various

calculations, the entire mass of a body is concentrated. 22–24, 29, 30

Convex hull is the minimal convex set containing a group of points. 48, 49, 61,

91

CPU Central Processing Unit is the portion of a computer system that carries out

the instructions of a computer program, to perform the basic arithmetical,

logical, and input/output operations of the system. The CPU plays a role

somewhat analogous to the brain in the computer. 70

125



Glossary Glossary

Database is an organized collection of data, managed to some level of quality

(measured in terms of accuracy, availability, usability, and resilience). 10,

12, 14

DFS Depth-first search is an algorithm for traversing or searching a tree, tree

structure, or graph. One starts at the root (selecting some node as the root

in the graph case) and explores as far as possible along each branch before

backtracking. 34, 137

DOF Degrees of freedom is the number of independent parameters that define

the displacement and deformation of the body. Like the shoulder joint has

three rotation DOF while the knee has only one rotation DOF. A car has

two translation DOF (normally it does not fly). 16, 17, 19, 20, 22–24, 35,

36, 86, 99, 101, 104, 123

Fps Frames Per Second (fps) is the frequency (rate) at which an imaging device

produces unique consecutive images called frames. The term applies equally

well to computer graphics, video cameras, film cameras, and motion capture

systems. xx, 74–76, 96

FSM Finite-State Machine is a mathematical model used to design computer

programs and digital logic circuits. It is conceived as an abstract machine

that can be in one of a finite number of states. The machine is in only one

state at a time; the state it is in at any given time is called the current state.

It can change from one state to another when initiated by a triggering event

or condition, this is called a transition. A particular FSM is defined by a list

of the possible transition states from each current state, and the triggering

condition for each transition. 21, 25, 36, 37

Genetic algorithm is a search heuristic that mimics the process of natural

evolution. This heuristic is routinely used to generate useful solutions to

optimization and search problems, using techniques inspired by natural

evolution, such as inheritance, mutation, selection, and crossover 26, 30

GLSL OpenGL Shading Language is a high-level shading language based on the

syntax of the C programming language. It was created by the OpenGL ARB

126



Glossary Glossary

to give developers more direct control of the graphics pipeline without having

to use assembly language or hardware-specific languages. 4

IK Inverse Kinematics problem is simply stated as: given the desired position of

the skeleton’s hand, what must be the angles at all of the skeleton’s joints?

xvi, 11, 14, 16–19, 29–31, 44–46, 66, 67, 71, 74, 77, 93, 97, 122

IPM Inverted Pendulum Model is a pendulum which has its mass above its pivot

point. It is used in dynamic animation systems as an approximation of the

whole articulated body when it is supported on one leg. 24–26, 29, 77

Keyframe They are poses in animation, manually generated, that defines the

starting and ending points of any smooth transition. They are called

”frames” because their position in time is measured in frames. A sequence of

keyframes defines which movement the viewer will see, whereas the position

of the keyframes in an animation defines the timing of the movement.

Because only two or three keyframes over the span of a second do not create

the illusion of movement, the remaining frames are filled with in-betweens.

xii, 8, 10, 12, 18, 23, 27, 31, 77, 112, 129

LOD Level of details in computer graphics, involves decreasing the complexity of a

3D object representation as it moves away from the viewer or according other

metrics such as object importance, eye-space speed or position. This basic

concept can be generalized into other domains like animations, physics, etc.

xix, 43, 70, 71, 73–75, 96, 122

Mesh A polygon mesh or unstructured grid is a collection of vertices, edges and

faces that defines the shape of a polyhedral object in 3D computer graphics

and solid modeling. The faces usually consist of triangles, quadrilaterals or

other simple convex polygons, since this simplifies rendering, but may also

be composed of more general concave polygons, or polygons with holes. 7,

8, 18, 45, 46, 97, 104, 116

Motion blending produces new motions (blends) by combining multiple clips

according to time-varying weights. xii, 10, 19

127



Glossary Glossary

Motion warping Motion Warping consists of modifying a single motion in order

to fit a new trajectory. xii, 12, 13

MRAC Model Reference Adaptive Control is a closed loop controller with

parameters that can be updated to change the response of the system. The

output of the system is compared to a desired response from a reference

model. The control parameters are update based on this error. The goal is

for the parameters to converge to ideal values that cause the plant response

to match the response of the reference model. 104, 112

OpenGL OpenGL (Open Graphics Library) is a standard specification defining

a cross-language, cross-platform API for writing applications that produce

2D and 3D computer graphics. 4

PD Proportional-Derivative is a generic control loop feedback mechanism

(controller) and it is the most commonly used feedback controller. A PD

controller calculates an error value as the difference between a measured

process variable and a desired setpoint. The controller attempts to minimize

the error by adjusting the process control outputs. The response of the

controller can be described in terms of the responsiveness of the controller

to an error, the degree to which the controller overshoots the setpoint and

the degree of system oscillation. 21, 26–28, 30, 104, 112, 133

PPP Probabilistic Path Planning. 35

QP Quadratic programming is a special type of mathematical optimization

problem. It is the problem of optimizing (minimizing or maximizing) a

quadratic function of several variables subject to linear constraints on these

variables. 23, 30, 75

Rasterize is the task of taking an image described in a vector graphics format

(shapes) and converting it into a raster image (pixels or dots) for output on

a video display or printer, or for storage in a bitmap file format. 59

128



Glossary Glossary

Retargeting is the process of adapting an existing motion data to a new

morphology, the motion data can be captured or generated (MoCap or

keyframe respectively.) xii, 10–12, 31

RL Reinforcement learning is a trial and error learning that learns froms directily

interacting with an environment. The system learns from the consequences

of its actions, rather than from being explicitly taught. It selects its actions

based on its past experiences (exploitation) and new choices (exploration).

13, 26, 35, 36

RPP Randomized Path Planning. 35, 36

Secondary motion are passive motions generated in response to the movements

of characters and other objects or environmental forces [HOZ97]. Secondary

motions are not normally the main focus of an animated scene, yet their

absence can distract or disturb the viewer, destroying the illusion of reality

created by the scene. 4, 5, 19, 78, 103, 113, 117–119, 123

SIMBICON SIMple BIped CONtrol. 26, 77

Skinning Every vertex in a Polygon Mesh is tied to at least one joint through an

influence. An influence stores the vertex, the joint index and a weight which

specify how much influence the joint has over the vertex. A vertex can have

several influences but only one for each joint. The sum of all the weights

in a vertex’ influences should always be 1.0. So by animating the joints the

vertex follows in a logical way, and the actual mesh is animated. 7, 104

SLIP Spring-Loaded Inverted Pendulum generalizes the IPM by replacing the

fixed length leg with a spring, thereby capturing energy storage and release

during running. 25, 26

129



Glossary Glossary

130



Appendices

131





Appendix A

PD Controller

Many systems use PD controllers in order to calculate the needed torques to
be applied in the joints. A PD controller is a feedback control mechanism that
calculates this torque based on the following equation:

τ = Kd(θG − θC) +Kp( ˙θG − ˙θC) (A.1)

(Kd, Kp) are the propotional/derivative constants. (θG, ˙θG) goal (needed)
angle/angular velocity. (θC , ˙θC) current angle/angular velocity. τ is the calculated
torque. So on each simulation step, the PD controller calculates the error between
the current and goal values, then it outputs a torque based on this error and the
constants (Kd, Kp) , shown in Figure A.1. So the controller adapts itself based

 

P: Angular Error  

D: Angular Velocity Error  

∑ 
+ 

+ 

Simulation Torrque (τ) ∑ 
Needed 
Values 

Error + 

- 

PD Controller 

Figure A.1: PD controller loop.

on the feedback of the simulation. The final calculated torque depends heavily on
the constants (Kd, Kp) that are normally manually tweaked: the PD can be High
Gain (rigid, respond faster to error but less stable 1) or Low Gain (soft, respond
slower to error but more stable).

1 [TGTL11] propose a stable high gain PD controller

133





Appendix B

Physics Engines Responses

Figure B.1 show some of the results we obtained from experimenting with State-of-
The-Art commercial and open-source physics engines. Even when simulating real
world physics, we can notice a huge disparity between the generated results after
first collision of identical spheres and cubes with identical starting status. Even a
completely different behavior of a chain of rigid bodies connected to a fixed point
in space. Which one is the ground truth?

Static Plane 

Chain 
of 

Object

Gr
av

ity
 

Falling Objects 

Scale 

Figure B.1: Example of physics engines responses (commercial and open-source). Left to
right: Newton Dynamics, PhysX by NVidia, Havok, IPION and Bullet Physics. A snapshot of
the simulation after first collision of identical spheres and cubes with identical starting status.
And final position of a chain of rigid bodies connected to a fixed point in space after several
simulation steps.

135





Appendix C

Depth-First vs Breadth-First
Search

Depth-First Search (DFS) is an algorithm for naively traversing or searching a
tree, tree structure, or graph. Starting from the root, this algorithm explores as
far as possible along each branch before backtracking, as shown in Figure C.1.

 

A 

B C 

D E F 

G H I 

1) A 

B C 

D E F 

G H I 

2) A 

B C 

D E F 

G H I 

3) 

A 

B C 

D E F 

G H I 

4) A 

B C 

D E F 

G H I 

5) A 

B C 

D E F 

G H I 

6) 

A 

B C 

D E F 

G H I 

7) A 

B C 

D E F 

G H I 

8) A 

B C 

D E F 

G H I 

9) 

Figure C.1: Depth-First Search.

137



Depth-First vs Breadth-First Search

While Breadth-First Search (BFS) begins at the root node and explores all
the neighboring nodes. Then for each of those nearest nodes, it explores their
unexplored neighbor nodes, and so on, until it finds the goal, as shown in
Figure C.2.

A 

B C 

D E F 

G H I 

1) A 

B C 

D E F 

G H I 

2) A 

B C 

D E F 

G H I 

3) 

A 

B C 

D E F 

G H I 

4) A 

B C 

D E F 

G H I 

5) A 

B C 

D E F 

G H I 

6) 

A 

B C 

D E F 

G H I 

7) A 

B C 

D E F 

G H I 

8) A 

B C 

D E F 

G H I 

9) 

Figure C.2: Breadth-First Search.

138



Appendix D

Locomotion System Parameters

The presented system in Chapter 3 has the following parameters that the user can
edit and set in real-time:

Parameter Name Unit Count Type Description
Pelvis Speed m/s 1 M The needed pelvis speed.
Step Height m 1 O The needed step height.
Orientation radians 1 O The needed orientation.

Per Foot

Gait % 2 M The start of the foot swing phase and its
duration, represented as a percentage of the
whole cycle.

Relative Position V ec2D 2 M The needed relative position of the foot,
represented as a 2D vector on the horizontal
plane (Figure 3.7).

Table D.1: A detailed description of the locomotion system parameters. M designate
mandatory parameters. O designate optional parameters.

Based on Table D.1, a quadruped has 1 + 4× 2 + 4× 2 = 17 parameters that
are essential to describe its locomotion animation style. By fixing one parameter
like the pelvis speed, other parameters can be optimized in order to find the best
gait and feet spacing to accommodate for this needed speed. And the feet forces
described in Section 4.1 can be used as a fitness function.

139





Appendix E

Main Algorithm

The goal of the algorithm is to find the best couple (target-trajectory) in the
search space. The search space contains all the possible trajectories that go from
the starting point toward all the possible targets. The algorithm uses partial scores
to limit the number of explored solutions.
Algorithm:

C is an abbreviation for Current
B is an abbreviation for Best
S is an abbreviation for Score
H is an abbreviation for Height
StartH = Starting Position elevation
- Declare: BPath3D, BPath3DS, BTarget, BTargetS
for all Sorted Targets do
- Get CurTarget = Target that we want to test
if CurTargetS<BTargetS × BPath3DS then
Stop The loop, best pair (Target,3D Trajectory) is already found
end if
TargetH = CurTarget Elevation
for all Heights between StartH & TargetH by slices of 10cm do
- Add all the obstacles with elevation higher than the needed height as
forbidden cell in the obstacles’ map then
- 2D path planning toward this target
- ScoreC2D=CurTargetS × CurPath2DS
- ScoreB=BTargetS × BPath3DS
if ScoreC2D>ScoreB then
- 3D path planning toward this target
- ScoreC3D=CurTargetS × CurPath3DS

141



Main Algorithm

if ScoreC3D >ScoreB then
- Set all the B variables:BPath3D, BPath3DS, BTarget, BTargetS from
the current values
end if
end if
end for
end for

142



Appendix F

Hermite Curve

Hermite Curve is a third-degree spline with each polynomial of the spline in
Hermite form. The Hermite form consists of two control points and two control
tangents for each polynomial. Hermite Curves, Figure F.1, are used to smoothly
interpolate data between key-points (like object movement in keyframe animation
or camera control), and in our case to smoothly connect 3D waypoints producing
our 3D trajectories. To calculate a hermite curve, the following vectors are needed:

• −→
P1: the start waypoint of the curve.

• −→
T1: the tangent (e.g. direction and speed) how the curve lefts the start
waypoints.

• −→
P2: the end waypoint of the curve.

• −→
T2: the tangent (e.g. direction and speed) how the curves enters the end
waypoint.

To calculate each point on the curve P , the following equation is used:

P = S ×H × C (F.1)

S is the Step Vector and it is given as follow:

S =

⎡
⎢⎢⎣
s3

s2

s1

1

⎤
⎥⎥⎦ where s = [0..1] (F.2)

143



Hermite Curve

Figure F.1: Example of a Hermite curve.

C is our Control Points Vector:

C =

⎡
⎢⎢⎢⎣

−→
P1−→
P2−→
T1−→
T2

⎤
⎥⎥⎥⎦ (F.3)

And finally H represents the hermite polynomials, it is a matrix of constants
that defines the Hermite Curve behavior:

H =

⎡
⎢⎢⎣
+2 −2 +1 +1
−3 +3 −2 −1
+0 +0 +1 +0
+1 +0 +0 +0

⎤
⎥⎥⎦ (F.4)

To automatically calculate the previous tangents (
−→
T1,

−→
T2), a subset of Hermite

Curves called Cardinal splines can be used.

−→
Ti = a× (

−−→
Pi+1 −−−→

Pi−1) where a = [0..1] (F.5)

144



References

[ACSF07] Brian Allen, Derek Chu, Ari Shapiro, and Petros Faloutsos. On the
beat!: timing and tension for dynamic characters. In Proceedings of
the 2007 ACM SIGGRAPH/Eurographics symposium on Computer
animation, SCA ’07, pages 239–247, Aire-la-Ville, Switzerland,
Switzerland, 2007. Eurographics Association. 112

[AdSP07] Yeuhi Abe, Marco da Silva, and Jovan Popović. Multiobjective
control with frictional contacts. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
SCA ’07, pages 249–258, Aire-la-Ville, Switzerland, Switzerland,
2007. Eurographics Association. 23

[AF02] Okan Arikan and D. A. Forsyth. Interactive motion generation from
examples. ACM Trans. Graph., 21:483–490, July 2002. 12

[AFO05] Okan Arikan, David A. Forsyth, and James F. O’Brien.
Pushing people around. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
SCA ’05, pages 59–66, New York, NY, USA, 2005. ACM. 13, 29

[AKGM+11] Ahmad Abdul Karim, Thibaut Gaudin, Alexandre Meyer, Axel
Buendia, and Saida Bouakaz. Transactions on edutainment vi.
chapter Adding physical like reaction effects to skeleton-based
animations using controllable pendulums, pages 111–121. Springer-
Verlag, Berlin, Heidelberg, 2011. 28, 119

[AKGM+12] Ahmad Abdul Karim, Thibaut Gaudin, Alexandre Meyer, Axel
Buendia, and Saida Bouakaz. Computer animation and virtual
worlds. chapter Procedural Locomotion of Multi-Legged Characters
in Dynamic Environments. 2012. 78

[Ale96] R.M.N. Alexander. Optima for animals. Princeton paperbacks.
Princeton University Press, 1996. 57, 62, 83, 86, 94, 121

145



REFERENCES REFERENCES

[Ale03] R.M.N. Alexander. Principles of animal locomotion. Princeton
University Press, 2003. 57, 62, 83, 86, 94

[ALP04] Yeuhi Abe, C. Karen Liu, and Zoran Popović. Momentum-based
parameterization of dynamic character motion. In Proceedings of
the 2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation, SCA ’04, pages 173–182, Aire-la-Ville, Switzerland,
Switzerland, 2004. Eurographics Association. 29

[AMG+12] Ahmad Abdul Karim, Alexandre Meyer, Thibaut Gaudin, Axel
Buendia, and Saida Bouakaz. Generic Spine Model with Simple
Physics for Life-Like Quadrupeds and Reptiles. In VRIPHYS
2012: 9th Workshop on Virtual Reality Interaction and Physical
Simulation, December 2012. 99

[AP06] Yeuhi Abe and Jovan Popović. Interactive animation of
dynamic manipulation. In Proceedings of the 2006 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
SCA ’06, pages 195–204, Aire-la-Ville, Switzerland, Switzerland,
2006. Eurographics Association. 29

[BA79] Donna C. Boone and Stanley P. Azen. Normal range of motion of
joints in male subjects. The Journal of Bone and Joint Surgery,
61:756–759, 1979. 19

[Bar96] David Baraff. Linear-time dynamics using lagrange multipliers. In
Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’96, pages 137–146, New York,
NY, USA, 1996. ACM. 20

[Bar97] Ronen Barzel. Faking dynamics of ropes and springs. IEEE Comput.
Graph. Appl., 17:31–39, May 1997. 39

[Ber09] Alain Berthoz. La simplexité. Odile Jacob, 2009. 30, 50

[BHW96] Ronen Barzel, John F. Hughes, and Daniel N. Wood. Plausible
motion simulation for computer graphics animation. In Proceedings
of the Eurographics workshop on Computer animation and
simulation ’96, pages 183–197, New York, NY, USA, 1996. Springer-
Verlag New York, Inc. xiii, 39, 102

[BK96] Norman I. Badler and Hyeongseok Ko. Animating human
locomotion with inverse dynamics. IEEE Comput. Graph. Appl.,
16:50–59, March 1996. 29

146



REFERENCES REFERENCES

[Bla05] R.W. Blake. Efficiency And Economy in Animal Physiology.
Cambridge environmental chemistry series. Cambridge University
Press, 2005. 72

[BMJC01] Vincent Bonnafous, Eric Menou, Jean-Pierre Jessel, and René
Caubet. Co-operative and concurrent blending motion generators.
In WSCG (Short Papers), pages 130–, 2001. xii, 10

[BMtT90] Ronan Boulic, Nadia Magnenat-thalmann, and Daniel Thalmann.
A global human walking model with real-time kinematic personifi-
cation. The Visual Computer, 6:344–358, 1990. 15

[BPP07] Philippe Beaudoin, Michiel Van De Panne, and Pierre Poulin.
Automatic construction of compact motion graphs, 2007. 13

[BR01] John E. A. Bertram and Andy Ruina. Multiple walking speed
frequency relations are predicted by constrained optimization.
Journal of Theoretical Biology, 2001. 15

[Bre65] J. E. Bresenham. Algorithm for computer control of a digital plotter.
IBM Syst. J., 4:25–30, March 1965. 55, 59

[BSG+07] Reinhard Blickhan, Andre Seyfarth, Hartmut Geyer, Sten Grimmer,
Heiko Wagner, and Michael Günther. Intelligence by mechanics.
Hilosophical Transactions of the Royal Society - Series A:
Mathematical, Physical and Engineering Sciences, 365, 2007. 25

[BUT04] Ronan Boulic, Branislav Ulicny, and Daniel Thalmann. Versatile
walk engine. Journal of Game Development, 1:2004, 2004. xiii, 14

[CBvdP09] Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. Robust
task-based control policies for physics-based characters. In ACM
SIGGRAPH Asia 2009 papers, SIGGRAPH Asia ’09, pages 170:1–
170:9, New York, NY, USA, 2009. ACM. 26, 77

[CBvdP10] Stelian Coros, Philippe Beaudoin, and Michiel van de Panne.
Generalized biped walking control. In ACM SIGGRAPH 2010
papers, SIGGRAPH, pages 130:1–130:9, New York, NY, USA, 2010.
ACM. xiii, 26, 77

[CBYvdP08] Stelian Coros, Philippe Beaudoin, Kang Kang Yin, and Michiel
van de Pann. Synthesis of constrained walking skills. ACM Trans.
Graph., 27:113:1–113:9, December 2008. 26

147



REFERENCES REFERENCES

[CC10] N. Courty and A. Cuzol. Conditional stochastic simulation for
character animation. Comput. Animat. Virtual Worlds, 21:443–452,
May 2010. xii, 11

[CGC+02] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran
Popović. Interactive skeleton-driven dynamic deformations. In
Proceedings of the 29th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’02, pages 586–593, New York,
NY, USA, 2002. ACM. 104

[CHP89] J. E. Chadwick, D. R. Haumann, and R. E. Parent. Layered
construction for deformable animated characters. In Proceedings
of the 16th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’89, pages 243–252, New York, NY, USA,
1989. ACM. 7

[CKHL11] Myung Geol Choi, Manmyung Kim, Kyunglyul Hyun, and Jehee
Lee. Deformable motion: Squeezing into cluttered environments.
Comput. Graph. Forum, 30(2):445–453, 2011. xii, 12

[CKJ+11] Stelian Coros, Andrej Karpathy, Ben Jones, Lionel Reveret, and
Michiel van de Panne. Locomotion skills for simulated quadrupeds.
In ACM SIGGRAPH 2011 papers, SIGGRAPH ’11, pages 59:1–
59:12, New York, NY, USA, 2011. ACM. 14, 15, 30, 31, 32, 75,
78, 87

[CLC+05] Joel Chestnutt, Manfred Lau, German Cheung, James Kuffner,
Jessica Hodgins, and Takeo Kanade. Footstep planning for the
honda asimo humanoid. In in Proceedings of the IEEE International
Conference on Robotics and Automation, 2005. 35

[CLS03] Min Gyu Choi, Jehee Lee, and Sung Yong Shin. Planning biped
locomotion using motion capture data and probabilistic roadmaps.
ACM Trans. Graph., 22:182–203, April 2003. 35

[CR06] Grégori Clauzel and Lionel Revéret. Animation 3d en temps-réel
de quadrupèdes par simulation physique rapport. Master’s thesis,
INRIA Rhône-Alpes, 2006. 30, 32

[DAJ11] Damien Djaouti, Julian Alvarez, and Jean-Pierre Jessel. Classifying
Serious Games: The G/P/S Model. In Patrick Felicia, editor, Hand-
book of Research on Improving Learning and Motivation through
Educational Games: Multidisciplinary Approaches, chapter 6, pages
118–136. IGI Global, http://www.igi-global.com, 2011. x, 1

148



REFERENCES REFERENCES

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs.
NUMERISCHE MATHEMATIK, 1(1):269–271, 1959. 34

[dL11] Martin de Lasa. Feature-Based Control Of Physics-Based Character
Animation. PhD thesis, 2011. xiii, 23

[dLH09] Martin de Lasa and Aaron Hertzmann. Prioritized optimization
for task-space control. In Proceedings of the 2009 IEEE/RSJ
international conference on Intelligent robots and systems, IROS,
Piscataway, NJ, USA, 2009. IEEE Press. 23

[dLMH10] Martin de Lasa, Igor Mordatch, and Aaron Hertzmann. Feature-
based locomotion controllers. ACM Trans. Graph., 29(4):131:1–
131:10, July 2010. xiii, 23, 38, 75

[dSAP08] Marco da Silva, Yeuhi Abe, and Jovan Popović. Interactive
simulation of stylized human locomotion. In ACM SIGGRAPH 2008
papers, SIGGRAPH ’08, pages 82:1–82:10, New York, NY, USA,
2008. ACM. 29

[DSP06] Kevin G. Der, Robert W. Sumner, and Jovan Popović. Inverse
kinematics for reduced deformable models. In ACM SIGGRAPH
2006 Papers, SIGGRAPH ’06, pages 1174–1179, New York, NY,
USA, 2006. ACM. 18

[Fau99] Francois Faure. Fast refinable equation solution for articulated
solid dynamics. IEEE TRANSACTIONS ON VISUALISATION
AND COMPUTER GRAPHICS, VOLUME 5, NUMBER, 3:268–
276, 1999. 20

[FDCM97] François Faure, Gilles Debunne, Marie-Paule Cani, and Franck
Multon. Dynamic analysis of human walking. In 8th Eurographics
Workshop on Computer Animation and Simulation, Sep 1997. 22

[Fea87] Roy Featherstone. Robot Dynamics Algorithm. Kluwer Academic
Publishers, Norwell, MA, USA, 1987. Manufactured By-Publishers,
Kluwer Academic. 20

[Fea99a] Roy Featherstone. A divide-and-conquer articulated body algorithm
for parallel o(log(n)) calculation of rigid body dynamics. part 1:
Basic algorithm. 1999. 20, 110

[Fea99b] Roy Featherstone. A divide-and-conquer articulated-body algorithm
for parallel o(log(n)) calculation of rigid-body dynamics. part 2:
Trees, loops,& accuracy. 1999. 20, 110

149



REFERENCES REFERENCES

[FK99] R.J. Full and D.E. Koditschek. Templates and anchors
neuromechanical hypotheses of legged locomotion on land. The
Journal of Experimental Biology, 1999. 25

[FP03] Anthony C. Fang and Nancy S. Pollard. Efficient synthesis of
physically valid human motion. ACM Transactions on Graphics
(SIGGRAPH 2003), 22(3):417–426, July 2003. 23

[FRDC04] Laurent Favreau, Lionel Reveret, Christine Depraz, and Marie-Paule
Cani. Animal gaits from video. In ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, SCA, Grenoble, France, 2004.
30

[GB08] James Gain and Dominique Bechmann. A survey of spatial
deformation from a user-centered perspective. ACM Trans. Graph.,
27:107:1–107:21, November 2008. 7

[Gir87] Michael Girard. Interactive design of 3-d computer-animated legged
animal motion. In Proceedings of the 1986 workshop on Interactive
3D graphics, I3D ’86, pages 131–150, New York, NY, USA, 1987.
ACM. xiii, 15, 17, 30, 31, 81

[GL98] Michael Gleicher and Peter Litwinowicz. Constraint-based motion
adaptation, 1998. 11

[Gle97] Michael Gleicher. Motion editing with spacetime constraints, apr
1997. xii, 11

[Gle98] Michael Gleicher. Retargetting motion to new characters. In
Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’98, pages 33–42, New York, NY,
USA, 1998. ACM. 11

[Gle01] Michael Gleicher. Comparing constraint-based motion editing
methods, mar 2001. xii, 12, 13

[GM85] Michael Girard and Anthony A. Maciejewski. Computational
modeling for the computer animation of legged figures. In
Proceedings of the 12th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’85, pages 263–270, New York,
NY, USA, 1985. ACM. xiii, 15, 17, 30, 31, 81

[GMHP04] Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran
Popović. Style-based inverse kinematics. ACM Trans. Graph.,
23:522–531, August 2004. 18

150



REFERENCES REFERENCES

[GRVT06] Alejandra Garćıa Rojas, Frédéric Vexo, and Daniel Thalmann.
Individualized reaction movements for virtual humans. In
Proceedings of the 4th international conference on Computer
graphics and interactive techniques in Australasia and Southeast
Asia, GRAPHITE ’06, pages 79–85, New York, NY, USA, 2006.
ACM. 28

[GSKJ03] Michael Gleicher, Hyun Joon Shin, Lucas Kovar, and Andrew
Jepsen. Snap-together motion: assembling run-time animations.
ACM Trans. Graph., 22:702–702, July 2003. 12, 13

[HdSP07] Eugene Hsu, Marco da Silva, and Jovan Popović. Guided time
warping for motion editing. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
SCA ’07, pages 45–52, Aire-la-Ville, Switzerland, Switzerland, 2007.
Eurographics Association. 11

[HG07] Rachel Heck and Michael Gleicher. Parametric motion graphs. In
Proceedings of the 2007 symposium on Interactive 3D graphics and
games, I3D ’07, pages 129–136, New York, NY, USA, 2007. ACM.
12

[HKG06] Rachel Heck, Lucas Kovar, and Micheal Gleicher. Splicing upper-
body actions with locomotion. In Eurographics, 2006. xii, 10

[HKT10] Edmond S. L. Ho, Taku Komura, and Chiew-Lan Tai. Spatial
relationship preserving character motion adaptation. ACM Trans.
Graph., 29(4):33:1–33:8, July 2010. 11

[HNR68] Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis
for the Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2):100–107,
February 1968. 34

[Hod91] Jessica k. Hodgins. Biped gait transitions. In Proceedings of the
IEEE International Conference on Robotics and Automation, 1991.
15

[HOZ97] Jessica K. Hodgins, James F. O’Brien, and Victor Brian Zordan.
Combining active and passive simulations for secondary motion.
In ACM SIGGRAPH 97 Visual Proceedings: The art and
interdisciplinary programs of SIGGRAPH ’97, SIGGRAPH ’97,
pages 168–, New York, NY, USA, 1997. ACM. xxvi, 5, 129

151



REFERENCES REFERENCES

[HRE+08] Chris Hecker, Bernd Raabe, Ryan W. Enslow, John DeWeese,
Jordan Maynard, and Kees van Prooijen. Real-time motion
retargeting to highly varied user-created morphologies. ACM Trans.
Graph., 27:27:1–27:11, August 2008. 30, 31, 77

[HWBO95] Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and
James F. O’Brien. Animating human athletics. In Proceedings of
the 22nd annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’95, pages 71–78, New York, NY, USA,
1995. ACM. 21

[HWC00] Donald F. Hoyt, Steven J. Wickler, and Edward A. Cogger. Time of
contact and step length the effect of limb length, running speed, load
carrying and incline. The Journal of Experimental Biology, 2000. 15

[IAF05] Leslie Ikemoto, Okan Arikan, and David Forsyth. Learning to
move autonomously in a hostile world. In ACM SIGGRAPH 2005
Sketches, SIGGRAPH ’05, New York, NY, USA, 2005. ACM. 37

[IAF06] Leslie Ikemoto, Okan Arikan, and David Forsyth. Knowing when
to put your foot down. In Proceedings of the 2006 symposium on
Interactive 3D graphics and games, I3D ’06, pages 49–53, New York,
NY, USA, 2006. ACM. 14

[INM66] VERNE T. INMAN. Human locomotion. Canadian Medical
Association, 1966. xiv, xxi, 15, 42, 80, 81, 121

[Joh09] Rune Skovbo Johansen. Dynamic Walking With Semi-Procedural
Animation. PhD thesis, 2009. 77

[JYL09] Sumit Jain, Yuting Ye, and C. Karen Liu. Optimization-based
interactive motion synthesis. ACM Trans. Graph., 28:10:1–10:12,
February 2009. 23, 76

[Kal08] Marcelo Kallmann. Analytical inverse kinematics with body posture
control. Comput. Animat. Virtual Worlds, 19:79–91, May 2008. 18

[KDR05] Arthur D. Kuo, J. Maxwell Donelan, and Andy Ruina. Energetic
consequences of walking like an inverted pendulum: Step-to-step
transitions. American College of Sports Medicine, 33, April 2005.
25

[KG04] Lucas Kovar and Michael Gleicher. Automated extraction and
parameterization of motions in large data sets. In ACM SIGGRAPH

152



REFERENCES REFERENCES

2004 Papers, SIGGRAPH ’04, pages 559–568, New York, NY, USA,
2004. ACM. xii, 11, 18, 19

[KGP02] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs.
ACM Trans. Graph., 21:473–482, July 2002. 12, 13

[KH10] Taesoo Kwon and Jessica Hodgins. Control systems for human
running using an inverted pendulum model and a reference
motion capture sequence. In Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’10, pages 129–138, Aire-la-Ville, Switzerland, Switzerland,
2010. Eurographics Association. 29

[Kha86] O Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. Int. J. Rob. Res., 5:90–98, April 1986. xviii, 34, 55, 57

[KHKL09] Manmyung Kim, Kyunglyul Hyun, Jongmin Kim, and Jehee Lee.
Synchronized multi-character motion editing. In ACM SIGGRAPH
2009 papers, SIGGRAPH ’09, pages 79:1–79:9, New York, NY, USA,
2009. ACM. xii, 12

[KKI02] Shunsuke Kudoh, Taku Komura, and Katsushi Ikeuchi. The dynamic
postural adjustment with the quadratic programming method. In In
International Conference on Intelligent Robots and Systems, pages
2563–2568, 2002. xiii, 23, 38

[KKI06] Shunsuke Kudoh, Taku Komura, and Katsushi Ikeuchi. Stepping
motion for a human-like character to maintain balance against large
perturbations. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA 2006), pages 2661–2666. IEEE,
2006. 23, 24, 38

[KKK+01a] S Kajita, F Kanehiro, K Kaneko, K Yokoi, and H Hirukawa.
The 3d linear inverted pendulum model: a simple modeling
for a biped walking pattern generation. Proceedings 2001
IEEERSJ International Conference on Intelligent Robots and
Systems Expanding the Societal Role of Robotics in the the Next
Millennium Cat No01CH37180, 1(4):239–246, 2001. 24

[KKK+01b] James Kuffner, Jr. Koichi, Nishiwaki Satoshi Kagami, Masayuki
Inaba, and Hirochika Inoue. Footstep planning among obstacles
for biped robots. In Proc. of 2001 IEEE Intl. Conf. on Intelligent
Robots and Systems (IROS, pages 500–505, 2001. 35

153



REFERENCES REFERENCES

[KKK+02] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara,
Kazuhito Yokoi, and Hirohisa Hirukawa. A realtime pattern
generator for biped walking. In ICRA, pages 31–37, 2002. xiii,
24

[KKK+03] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara,
and Kensuke Harada Kazuhito Yokoi. Biped walking pattern
generation by using preview control of zero-moment point. In in
Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1620–1626, 2003. 24

[KKN+03] James Kuffner, Satoshi Kagami, Koichi Nishiwaki, Masayuki Inaba,
and Hirochika Inoue. Online footstep planning for humanoid robots.
In in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA, pages 932–937, 2003. 35

[KL08] Paul Kanyuk and Chris Lawrence. Brain springs: fast physics
for large crowds on wall e. In ACM SIGGRAPH 2008 talks,
SIGGRAPH, pages 26:1–26:1, New York, NY, USA, 2008. ACM.
104

[KMA05] R. Kulpa, F. Multon, and B. Arnaldi. Morphology-independent
representation of motions for interactive human-like animation.
Computer Graphics Forum, Eurographics 2005 special issue, 24:343–
352, 2005. 12

[KMB96] Evangelos Kokkevis, Dimitri Metaxas, and Norman I. Badler.
User-controlled physics-based animation for articulated figures.
In Proceedings of the Computer Animation, CA ’96, pages 16–,
Washington, DC, USA, 1996. IEEE Computer Society. 112

[Kok04] E. Kokkevis. Practical physics for articulated characters. In
Proceedings of Game Developers Conference, 2004. 20

[KRFC09] Paul Kry, Lionel Revéret, François Faure, and Marie-Paule Cani.
Modal locomotion: animating virtual characters with natural
vibrations. Comput. Graph. Forum, 28(2):289–298, 2009. Special
Issue: Eurographics 2009. xiii, 27

[KSG02] Lucas Kovar, John Schreiner, and Michael Gleicher. Footskate
cleanup for motion capture editing, 2002. 14

154



REFERENCES REFERENCES

[Kuo01] Arthur D. Kuo. A simple model of bipedal walking predicts the
preferred speed-step length relationship. Journal of Biomechanical
Engineering, pages 264–269, 2001. 25

[Kuo02] Arthur D. Kuo. Energetics of actively powered locomotion using
the simplest walking model. Journal of Biomechanical Engineering,
2002. 25

[KvdP00] Maciej Kalisiak and Michiel van de Panne. A grasp-based motion
planning algorithm for character animation. In Eurographics
Workshop on Computer Animation and Simulation, pages 43–58,
2000. 36

[Lam09] Fabrice Lamarche. TopoPlan: a topological path planner for
real time human navigation under floor and ceiling constraints.
Computer Graphics Forum, 28(2), March 2009. 33

[Lan79] Yoan D. Landau. Adaptive control : the model reference approach.
Dekker, New York :, 1979. 112

[LF98] Cynthia R. Lee and Claire T. Farley. Determinants of the center
of mass trajectory in human walking and running. The Journal of
Experimental Biology, 1998. 22

[LK06] Manfred Lau and James J. Kuffner. Precomputed search trees:
planning for interactive goal-driven animation. In Proceedings of
the 2006 ACM SIGGRAPH/Eurographics symposium on Computer
animation, SCA ’06, pages 299–308, Aire-la-Ville, Switzerland,
Switzerland, 2006. Eurographics Association. 37

[LKL10] Yoonsang Lee, Sungeun Kim, and Jehee Lee. Data-driven biped
control. ACM Trans. Graph., 29:129:1–129:8, July 2010. 13, 27

[LLKP11] Sergey Levine, Yongjoon Lee, Vladlen Koltun, and Zoran Popović.
Space-time planning with parameterized locomotion controllers.
ACM Trans. Graph., 30:23:1–23:11, May 2011. 37

[LLL11] Thomas Lopez, Fabrice Lamarche, and Tsai-Yen Li. Space-time
planning in dynamic environments with unknown evolution. In
Proceedings of the 4th international conference on Motion in Games,
MIG’11, pages 316–327, Berlin, Heidelberg, 2011. Springer-Verlag.
37

155



REFERENCES REFERENCES

[LLP09] Yongjoon Lee, Seong Jae Lee, and Zoran Popović. Compact
character controllers. In ACM SIGGRAPH Asia 2009 papers,
SIGGRAPH Asia ’09, pages 169:1–169:8, New York, NY, USA, 2009.
ACM. 13, 14

[LP02] C. Karen Liu and Zoran Popović. Synthesis of complex dynamic
character motion from simple animations. ACM Trans. Graph.,
21:408–416, July 2002. xiii, 23

[LS99] Jehee Lee and Sung Yong Shin. A hierarchical approach to
interactive motion editing for human-like figures. In Proceedings of
the 26th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’99, pages 39–48, New York, NY, USA,
1999. ACM Press/Addison-Wesley Publishing Co. 11

[Lue84] David G. Luenberger. Linear and Nonlinear Programming. Addison-
Wesley, 1984. 18

[LvdPE96] Joseph Laszlo, Michiel van de Panne, and Fiu Eugene. Limit
cycle control and its application to the animation of balancing and
walking. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’96, pages 155–162,
New York, NY, USA, 1996. ACM. 21

[LvdPF97] Joseph F. Laszlo, Michiel van de Panne, and Eugene Fiume. Control
of physically-based simulated walking. In IMAGINA, 1997. 21

[LZ08] Wan-Yen Lo and Matthias Zwicker. Real-time planning for
parameterized human motion. In Proceedings of the 2008 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’08, pages 29–38, Aire-la-Ville, Switzerland, Switzerland, 2008.
Eurographics Association. 37

[Mar93] Etienne-Jules Marey. Locomotion comparée chez les différents
animaux, nouvelles applications de la chronophotographie. La
Nature, pages 215–218, 1893. 96

[McC10] Luke McCann. What is motion capture? http://lukemccann.

wordpress.com/motion-capture/, September 2010. 8

[MdLH10] Igor Mordatch, Martin de Lasa, and Aaron Hertzmann. Robust
physics-based locomotion using low-dimensional planning. ACM
Trans. Graph., 29(4):71:1–71:8, July 2010. xiii, 24, 25, 38, 76

156



REFERENCES REFERENCES

[MFCD99] Franck Multon, Laure France, Marie-Paule Cani, and Gilles
Debunne. Computer animation of human walking: a survey. Journal
of Visualization and Computer Animation (JVCA), 10:39–54, 1999.
Published under the name Marie-Paule Cani-Gascuel. xii, 7, 38

[MKHK08] Franck Multon, Richard Kulpa, Ludovic Hoyet, and Taku Komura.
Motion in games. chapter From Motion Capture to Real-
Time Character Animation, pages 72–81. Springer-Verlag, Berlin,
Heidelberg, 2008. 11, 12

[MLPP09] Uldarico Muico, Yongjoon Lee, Jovan Popović, and Zoran Popović.
Contact-aware nonlinear control of dynamic characters. In ACM
SIGGRAPH 2009 papers, SIGGRAPH ’09, pages 81:1–81:9, New
York, NY, USA, 2009. ACM. 27

[MPP11] Uldarico Muico, Jovan Popović, and Zoran Popović. Composite
control of physically simulated characters. ACM Trans. Graph.,
30:16:1–16:11, May 2011. 29

[MSJT08] Matthias Müller, Jos Stam, Doug James, and Nils Thürey. Real
time physics: class notes. In ACM SIGGRAPH 2008 classes,
SIGGRAPH, New York, NY, USA, 2008. ACM. 104, 105

[MT55] E. Muybridge and R. Taft. The human figure in motion. Dover
pictorial archive series. Dover Publications, 1955. 15, 121

[MT98] Walter Maurel and Daniel Thalmann. Human shoulder modeling
including scapulo-thoracic constraint and joint sinus cones.
Computers and Graphics, 24:203–218, 1998. 19

[Muy57] E. Muybridge. Animals in Motion. Dover Publications, Inc., 1957.
xxi, 15, 80, 81, 83, 86, 87, 121

[MZ90] Michael McKenna and David Zeltzer. Dynamic simulation of
autonomous legged locomotion. In Proceedings of the 17th
annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’90, pages 29–38, New York, NY, USA, 1990. ACM. 20,
30

[MZH+08] Ronald Metoyer, Victor Zordan, Benjamin Hermens, Chun-Chi
Wu, and Marc Soriano. Psychologically inspired anticipation and
dynamic response for impacts to the head and upper body. IEEE
Transactions on Visualization and Computer Graphics, 14:173–185,
January 2008. 28

157



REFERENCES REFERENCES

[MZS09] Adriano Macchietto, Victor Zordan, and Christian R. Shelton.
Momentum control for balance. ACM Trans. Graph., 28:80:1–80:8,
July 2009. 29

[Nat11] P. Nattharith. Mobile Robot Navigation Using a Behavioural
Control Strategy. University of Newcastle upon Tyne, 2011. With
University of Newcastle upon Tyne. School of Mechanical and
Systems Engineering. 57

[NH04] Mark Nagurka and Shuguang Huang. A mass-spring-damper model
of a bouncing ball. American Control Conference, 2004. Proceedings
of the 2004, pages 499 – 504, June 2004. 104

[NKZ12] Rubens F. Nunes, Paul G. Kry, and Victor B. Zordan. Using
natural vibrations to guide control for locomotion. In Proceedings of
the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, I3D ’12, pages 87–94, New York, NY, USA, 2012. ACM.
xiii, 27

[NWB+10] Nam Nguyen, Nkenge Wheatland, David Brown, Brian Parise,
C. Karen Liu, and Victor Zordan. Performance capture
with physical interaction. In Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’10, pages 189–195, Aire-la-Ville, Switzerland, Switzerland,
2010. Eurographics Association. 28

[OM01] Masaki Oshita and Akifumi Makinouchi. A dynamic motion control
technique for human-like articulated figures. Comput. Graph.
Forum, 20(3), 2001. 11

[OM11] Masaki Oshita and Naoki Masaoka. Generating avoidance motion
using motion graph. In MIG’11, pages 120–131, 2011. 13

[PH05] Marko B Popovic and Hugh Herr. Global motion control and support
base planning. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2005. xiii, 23

[PHH04] Marko Popovic, Andreas Hofmann, and Herr Hugh. Angular
momentum regulation during human walking: biomechanics and
control. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 2405–2411, 2004. 22

158



REFERENCES REFERENCES

[PLB95] T. Pozzo, Y. Levik, and A. Berthoz. Head and trunk movements
in the frontal plane during complex dynamic equilibrium tasks in
humans. Exp Brain Res, 106(2):327–38, 1995. 22

[PP97] Y C Pai and J Patton. Center of mass velocity-position predictions
for balance control. Journal of Biomechanics, 30(4):347–354, 1997.
22

[PSL02] Julien Pettre, Thierry Simeon, and Jean-Paul Laumond. Planning
human walk in virtual environments. In Proc. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and System, volume 3, pages
3048–3053, lausanne, Switzerland, 2002. 36

[PT06] Jerry E. Pratt and Russ Tedrake. Velocity-based stability margins
for fast bipedal walking. In Fast Motions in Biomechanics and
Robotics, pages 299–324. Springer, 2006. xiii, 24

[PW99] Zoran Popović and Andrew Witkin. Physically based motion
transformation. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’99,
pages 11–20, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co. xii, 11, 12

[PZLM10] Jia Pan, Liangjun Zhang, Ming C. Lin, and Dinesh Manocha.
A hybrid approach for simulating human motion in constrained
environments. Comput. Animat. Virtual Worlds, 21:137–149, May
2010. 36

[Rai86] Marc H. Raibert. Legged robots that balance. Massachusetts Institute
of Technology, Cambridge, MA, USA, 1986. 9

[Rai90] Marc H. Raibert. Trotting, pacing and bounding by a quadruped
robot. Journal of Biomechanics, 23, 1990. 15

[Rat05] Ori Ratner. The Inverted Pendulum Model In Multi-Agent
Simulations. PhD thesis, 2005. 24

[RBNP08] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, and Rob Playter.
Bigdog, the rough-terrain quadruped robot. The 17th World
Congress The International Federation of Automatic Control, 2008.
31

[RCP07] John Rebula, Fabián Cañas, and Jerry Pratt. Learning capture
points for humanoid push recovery. In 7th IEEE-RAS International
Conference on Humanoid Robots, 2007. 24

159



REFERENCES REFERENCES

[RGL05] Stephane Redon, Nico Galoppo, and Ming C. Lin. Adaptive
dynamics of articulated bodies. ACM Transactions on Graphics
(SIGGRAPH 2005), 24(3), 2005. 20, 71

[RH91] Marc H. Raibert and Jessica K. Hodgins. Animation of dynamic
legged locomotion. SIGGRAPH Comput. Graph., 25:349–358, July
1991. 21

[Rob06] Thomas Robert. Analyse Biomécanique Du Maintien De L’équilibre
Debout Suite À Une Accélération Transitoire De La Surface D’appui.
PhD thesis, 2006. 22

[RP07] Paul S. A. Reitsma and Nancy S. Pollard. Evaluating motion graphs
for character animation. ACM Trans. Graph., 26, October 2007. 12

[SA09] Benjamin Stephens and Christopher Atkeson. Modeling and control
of periodic humanoid balance using the linear biped model. The 9th
IEEE-RAS International Conference on Humanoid Robots, 2009. 24

[Sim94] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st
annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’94, pages 15–22, New York, NY, USA, 1994. ACM. 30,
32

[SK00] WJ Schwind and DE Koditschek. Approximating the stance map of
a 2-DOF monoped runner. Journal of Nonlinear Science, 10(5):533–
568, 2000. 25

[SKF07] Ari Shapiro, Marcelo Kallmann, and Petros Faloutsos. Interactive
motion correction and object manipulation. In Symposium on
Interactive 3D Games and Graphics, I3D’07, 2007. 35

[SKG03] Hyun Joon Shin, Lucas Kovar, and Michael Gleicher. Physical
touch-up of human motions. In Proceedings of the 11th Pacific
Conference on Computer Graphics and Applications, PG ’03, pages
194–, Washington, DC, USA, 2003. IEEE Computer Society. 11

[SKG05] Mankyu Sung, Lucas Kovar, and Michael Gleicher. Fast and
accurate goal-directed motion synthesis for crowds. In Proceedings of
the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation, SCA ’05, pages 291–300, New York, NY, USA, 2005.
ACM. 13, 35

160



REFERENCES REFERENCES

[SKRF11] Shawn Singh, Mubbasir Kapadia, Glenn Reinman, and Petros
Faloutsos. Footstep navigation for dynamic crowds. In Symposium
on Interactive 3D Graphics and Games, I3D ’11, pages 203–203,
New York, NY, USA, 2011. ACM. 29

[SLGS01] Hyun Joon Shin, Jehee Lee, Michael Gleicher, and Sung Yong Shin.
Computer puppetry: An importance-based approach, apr 2001. 11

[SP05] Adnan Sulejmanpašić and Jovan Popović. Adaptation of performed
ballistic motion. ACM Trans. Graph., 24:165–179, January 2005. 29

[SR06] Manoj Srinivasan and Andy Ruina. Computer optimization of a
minimal biped model discovers walking and running. Nature, 2006.
25

[SRH+08] Ljiljana Skrba, Lionel Reveret, Franck Hétroy, Marie-Paule Cani,
and Carol O’Sullivan. Quadruped animation. In Eurographics State-
of-the-Art Report, pages 1–17, Hersonissos, Creete, Greece, 2008. 1,
30, 87

[SRH+09] Ljiljana Skrba, Lionel Reveret, Franck Hétroy, Marie-Paule Cani,
and Carol O’Sullivan. Animating Quadrupeds: Methods and
Applications. Computer Graphics Forum, 28, 2009. 1, 30, 87

[SvABV09] H. Martin Schepers, Edwin H. F. van Asseldonk, Jaap H. Buurke,
and Peter H. Veltink. Ambulatory estimation of center of mass
displacement during walking. IEEE Transactions On Biomedical
Engineering, 2009. 22

[SZGP05] Robert W. Sumner, Matthias Zwicker, Craig Gotsman, and Jovan
Popović. Mesh-based inverse kinematics. ACM Trans. Graph.,
24:488–495, July 2005. 18

[TCHL12] Yi-Jheng Huang Ting-Chieh Huang and Wen-Chieh Lin. Real-time
horse gait synthesis. 2012. 31

[TGTL11] Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu. Articulated
swimming creatures. In ACM SIGGRAPH 2011 papers, SIGGRAPH
’11, pages 58:1–58:12, New York, NY, USA, 2011. ACM. 30, 133

[TLC+10] Yao-Yang Tsai, Wen-Chieh Lin, Kuangyou B. Cheng, Jehee Lee,
and Tong-Yee Lee. Real-time physics-based 3d biped character
animation using an inverted pendulum model. IEEE Transactions
on Visualization and Computer Graphics, 16:325–337, March 2010.
24, 29, 77

161



REFERENCES REFERENCES

[TLP07] Adrien Treuille, Yongjoon Lee, and Zoran Popović. Near-optimal
character animation with continuous control. In ACM SIGGRAPH
2007 papers, SIGGRAPH ’07, New York, NY, USA, 2007. ACM. 13,
77

[Tor97] Nick Torkos. Footprint Based Quadruped Motion Synthesis. PhD
thesis, 1997. 29

[TSC96] Daniel Thalmann, Jianhua Shen, and Eric Chauvineau. Fast realistic
human body deformations for animation and vr applications.
In Proceedings of the 1996 Conference on Computer Graphics
International, CGI ’96, pages 166–, Washington, DC, USA, 1996.
IEEE Computer Society. 7

[Tur95] Russell Turner. LEMAN: a system for constructing and animating
layered elastic characters, pages 185–203. Academic Press Ltd.,
London, UK, UK, 1995. 7

[TvdP98] Nick Torkos and Michiel van de Panne. Footprint-based quadruped
motion synthesis. In Graphics Interface, 1998. 29

[vBPE10] B. J. H. van Basten, P. W. A. M. Peeters, and A. Egges. The step
space: example-based footprint-driven motion synthesis. Comput.
Animat. Virtual Worlds, 21:433–441, May 2010. 29

[VdPLHF00] Michiel Van de Panne, Joe Laszlo, Pedro Huang, and Petros
Faloutsos. Dynamic human simulation: Towards agile animated
characters. In IEEE International Conference on Robotics and
Automation, 2000. 9

[VHB+08] Miomir Vukobratovic, Hugh M. Herr, Branislav Borovac, Mirko
Rakovic, Marko B. Popovic, Andreas Hofmann, Milos Jovanovic,
and Veljko Potkonjak. Biological principles of control selection for
a humanoid robot’s dynamic balance preservation. I. J. Humanoid
Robotics, 5(4):639–678, 2008. 22

[VMTF09] Pascal Volino, Nadia Magnenat Thalmann, and François Faure.
A simple approach to nonlinear tensile stiffness for accurate cloth
simulation. ACM Transaction on Graphics, 2009. 104

[vWvBE+09] H. van Welbergen, B.J.H. van Basten, A. Egges, Z.M. Ruttkay,
and M. H. Overmars. Real time character animation: A trade-off
between naturalness and control. In Eurographics, 2009. 102

162



REFERENCES REFERENCES

[vWvBE+10] Herwin van Welbergen, Ben J. H. van Basten, Arjan Egges, Zsófia
Ruttkay, and M. H. Overmars. Real time animation of virtual
humans: A trade-off between naturalness and control. Computer
Graphics Forum, Eurographics 2010, 29, 2010. xii, 1, 7, 16, 38

[WC91] L. C. T. Wang and C. C. Chen. A combined optimization method for
solving the inverse kinematics problems of mechanical manipulators.
Robotics and Automation, IEEE Transactions on, 7(4):489–499,
1991. 18

[Wel94] Chris Welman. Inverse Kinematics and Geometric Constraints
for Articulated Figure Manipulation [microform]. Simon Fraser
University, 1994. 17

[WFH09] Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Optimizing
walking controllers for uncertain inputs and environments. ACM
Trans. Graph., 2009. 26

[WFH10] Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Optimizing
walking controllers for uncertain inputs and environments. ACM
Trans. Graph., 29(4):73:1–73:8, July 2010. 26

[WG01] Jane Wilhelms and Allen Van Gelder. Fast and easy reach-cone joint
limits. J. Graph. Tools, 6:27–41, September 2001. 19

[Wil67] Donald M. Wilson. Stepping patterns in tarantula spiders. The
Journal of Experimental Biology, 1967. 72, 94

[WMZ08] Chun-Chih Wu, Jose Medina, and Victor B. Zordan. Simple steps for
simply stepping. In Proceedings of the 4th International Symposium
on Advances in Visual Computing, ISVC ’08, pages 97–106, Berlin,
Heidelberg, 2008. Springer-Verlag. 29

[WP03] Jia-chi Wu and Zoran Popović. Realistic modeling of bird flight
animations. In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03,
pages 888–895, New York, NY, USA, 2003. ACM. 30

[WP09] Kevin Wampler and Zoran Popović. Optimal gait and form for
animal locomotion. In ACM SIGGRAPH 2009 papers, SIGGRAPH
’09, pages 60:1–60:8, New York, NY, USA, 2009. ACM. 30, 32

[WTR11] Xiaomao Wu, Maxime Tournier, and Lionel Reveret. Natural
character posing from a large motion database. IEEE Comput.
Graph. Appl., 31:69–77, May 2011. 18

163



REFERENCES REFERENCES

[WZ10] Chun-Chih Wu and Victor Zordan. Goal-directed stepping
with momentum control. In Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’10, pages 113–118, Aire-la-Ville, Switzerland, Switzerland,
2010. Eurographics Association. 24, 76

[YKH04] Katsu Yamane, James J. Kuffner, and Jessica K. Hodgins.
Synthesizing animations of human manipulation tasks. ACM
Transactions on Graphics (SIGGRAPH 2004), 23(3), August 2004.
36

[YLS04] Po-Feng Yang, Joe Laszlo, and Karan Singh. Layered dynamic
control for interactive character swimming. In Proceedings of
the 2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation, SCA ’04, pages 39–47, Aire-la-Ville, Switzerland,
Switzerland, 2004. Eurographics Association. 21

[YLvdP07] KangKang Yin, Kevin Loken, and Michiel van de Panne. Simbicon:
simple biped locomotion control. ACM Trans. Graph., 26, July 2007.
xiii, 21, 26, 77

[YP03] KangKang Yin and Dinesh K. Pai. Footsee: an interactive animation
system. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation, SCA ’03, pages 329–338, Aire-
la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.
29

[YPP05] Kangkang Yin, Dinesh K. Pai, and Michiel Van De Panne. Pacific
graphics (2005) abstract data-driven interactive balancing behaviors,
2005. 14

[YPS07] Jesse W. Young, Biren A. Patel, and Nancy J. Stevens. Body
mass distribution & gait mechanics in fat-tailed dwarf lemurs
(cheirogaleus medius) & patas monkeys (erythrocebus patas).
Journal of Human Evolution, 2007. 15

[ZH99] Victor B. Zordan and Jessica K. Hodgins. Tracking and modifying
upper-body human motion data with dynamic simulation. In
COMPUTER ANIMATION AND SIMULATION, pages 13–22,
1999. 11

[ZH02] Victor Brian Zordan and Jessica K. Hodgins. Motion capture-
driven simulations that hit and react. In Proceedings of the

164



REFERENCES REFERENCES

2002 ACM SIGGRAPH/Eurographics symposium on Computer
animation, SCA ’02, pages 89–96, New York, NY, USA, 2002. ACM.
27, 28, 112

[ZMCF05] Victor Brian Zordan, Anna Majkowska, Bill Chiu, and Matthew
Fast. Dynamic response for motion capture animation. ACM Trans.
Graph., 24:697–701, July 2005. 27, 28

[ZMM+07] Victor Zordan, Adriano Macchietto, Jose Medin, Marc Soriano,
Chun-Chih Wu, Ronald Metoyer, and Robert Rose. Anticipation
from example. In Proceedings of the 2007 ACM symposium on
Virtual reality software and technology, VRST ’07, pages 81–84, New
York, NY, USA, 2007. ACM. 28, 29

[Zor10] Victor Zordan. Angular momentum control in coordinated
behaviors. In Proceedings of the Third international conference on
Motion in games, MIG, pages 109–120, Berlin, Heidelberg, 2010.
Springer-Verlag. 22

165



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


