N
N

N

HAL

open science

Enlarged Krylov Subspace Methods and Preconditioners
for Avoiding Communication

Sophie Moufawad

» To cite this version:

Sophie Moufawad. Enlarged Krylov Subspace Methods and Preconditioners for Avoiding Communi-
cation. General Mathematics [math.GM]. Université Pierre et Marie Curie - Paris VI, 2014. English.

NNT: 2014PA066438 . tel-01165960

HAL Id: tel-01165960
https://theses.hal.science/tel-01165960

Submitted on 21 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01165960
https://hal.archives-ouvertes.fr

UPMC M Lo

IAAl SORBONNE

Université Pierre et Marie Curie
Ecole Doctorale de Sciences Mathématiques de Paris Centre 386
Laboratoire Jacques-Louis Lions / Equipe Alpines

THESE DE DOCTORAT
Discipline : Mathématiques Appliquées

présentée par

Sophie MOUFAWAD

Enlarged Krylov Subspace Methods and
Preconditioners for Avoiding Communication

dirigée par Laura GRIGORI

Soutenue le ** **#* 2014 devant un jury composé de :

M. Prénom NOM Université président
M"® Prénom NoM Institut ~ examinateur
M™¢ Prénom NOM Université rapporteur
M. Prénom NOM Université directeur
M. Prénom NOM Université rapporteur

Laboratoire Jacques Louis Lions Ecole doctorale Paris centre
Boite courrier 187 Boite courrier 188

4, place Jussieu 4, place Jussieu

75252 Paris cedex 05 75252 Paris cedex 05

Contents

1 Introduction

2 Preliminaries

2.1

2.2

2.3

24

2.5
2.6

Notation o o e e e e
2.1.1 Communication e e e e
Graphs and partitioning techniques
22.1 Graphs e
222 Nesteddissection
2.2.3 K-way graph partitioning Lo
Orthonormalization e
2.3.1 Classical Gram Schmidt (CGS)
2.3.2 Modified Gram Schmidt MGS)
2.3.3 Talland skinny QR (TSQR)
The A-orthonormalization
2.4.1 Modified Gram Schmidt A-orthonormalization
2.4.2 Classical Gram Schmidt A-orthonormalization
24.3 Cholesky QR A-orthonormalization
Matrix powers kernel oL L Lo
Test matrices e e e e

3 Krylov Subspace Methods

3.1

32

Classical Krylov subspace methods
3.1.1 The Krylov subspaces
3.1.2 The Krylov subspace methods
3.1.3 Krylov projectionmethods
3.1.4 Conjugate gradient
3.1.5 Generalized minimal residual (GMRES) method
Parallelizable variants of the Krylov subspace methods
3.2.1 BlockKrylovmethods
3.2.2 Thes-step Krylovmethods

10
10
11
12
13
13
15
16
17
18
22
28
30
33

S. MOUFAWAD

3.2.3 Communication avoiding methods 48
324 OtherCGmethods 50
3.3 Preconditioners e 54
3.3.1 Incomplete LU preconditioner 56
3.3.2 Block Jacobi preconditionero 57
3.3.3 Restricted additive Schwarz preconditioner 58
Enlarged Krylov Subspace (EKS) Methods 61
4.1 The enlarged Krylov subspace 62
4.1.1 Krylov projectionmethods 66
4.1.2 The minimization property o v v v v it e 66
4.1.3 Convergenceanalysis e 67
4.2 Multiple search direction with orthogonalization conjugate gradient (MSDO-CQG)
method e 67
421 Theresidual 7y, 68
4.2.2 The domain search direction Py, 69
4.2.3 Finding the expressionof a1 and Bgrq . - . . - . o o oL 70
424 The MSDO-CG algorithm 70
4.3 Long recurrence enlarged conjugate gradient (LRE-CG) method 72
43.1 The LRE-CGalgorithm 73
4.4 Convergenceresults L 76
4.5 Parallel model and expected performance 81
45.1 MSDO-CG e 83
452 LRE-CG e 85
4.6 Preconditioned enlarged Krylov subspace methods 88
4.6.1 Convergence i i e e e e e 90
477 Summary . ..o oL e e e e e e e e e 94
Communication Avoiding Incomplete LU(0) Preconditioner 97
5.1 ILUmatrix powerskernel L oL 99
5.1.1 The partitioning problem 99
5.1.2 ILU preconditioned matrix powers kernel 100
5.2 Alternating min-max layers (AMML(s)) reordering for ILU(0) matrix powers kernel 102
5.2.1 Nested dissection + AMML(s) reordering of the matrix A 103
5.2.2 K-way + AMML(s) reordering of the matrix A 109
5.2.3 Complexity of AMML(s) Reordering 115
5.3 CA-ILUO preconditioner 118
5.4 Expected numerical efficiency and performance of CA-ILUO preconditioner 119

54.1 Convergence e 120

5.4.2 Avoided communication versus memory requirements and redundant flops

of the ILUO matrix powers kernel 123
5.4.3 Comparison between CA-ILUO preconditioner and block Jacobi precondi-
HONMEr e 128
5.5 Summary ... e e 129
6 Conclusion and Future work 131

Appendix A ILU(0) preconditioned GMRES convergence for different reorderings 143

S. MOUFAWAD

Chapter 1

Introduction

Many scientific problems require the solution of systems of linear equations of the form Az = b,
where A is an n x n matrix and b is an n x 1 vector. There are two broad categories for solving
systems of linear equations, direct methods and iterative methods. Direct methods solve the system
in a finite number of steps or operations. Examples of direct methods are matrix decompositions
like LU decomposition A = LU, Cholesky decomposition for symmetric positive definite A =
LL', and QR decomposition for full rank A = QR, where L is a lower triangular matrix, U and R
are upper triangular matrices, and () is an orthonormal matrix. After decomposing the matrix A,
the upper triangular and lower triangular systems are solved by backward and forward substitution.
The matrix A can be a dense or a sparse matrix. Several libraries that implement direct methods
for solving sparse systems have been introduced, like MUMPS [1], PARADISO [69, 55], and
SuperL.U [57, 58]. However, when the matrix A is sparse, the factors obtained after decomposition
are denser than the input matrix. Moreover, direct methods are prohibitive in terms of memory and
flops when it comes to solving very large systems, and they are not easily parallelized on modern-
day architectures. Thus, iterative methods that compute a sequence of approximate solutions for
the system Ax = b by starting from an initial guess, are a good alternative.

We are interested in solving systems of linear equations, Ax = b, where the matrix A is sparse.
Such systems may arise from the dicretization of partial differential equations. The Krylov sub-
space methods are among the most practical and popular iterative methods today. They are polyno-
mial iterative methods that aim to solve systems of linear equations (Az = b) by finding a sequence
of vectors z1, x2, 3, T4, ..., T} that minimizes some measure of error over the corresponding spaces

To + ,Ci(A,To), 1=1,..k

where 1 is the initial iterate, g is the initial residual, and K;(A, 7o) = span{rg, Arg, A%rq, ..., A" 1rg}
is the Krylov subspace of dimension :. Conjugate Gradient (CG) [47], Generalized Minimal Resid-
ual (GMRES) [66], bi-Conjugate Gradient [56, 30] and bi-Conjugate Gradient Stabilized [75] are
some of the Krylov subspace methods. These methods compute one basis vector or one search
direction vector at each iteration ¢, by performing a matrix-vector multiplication. Then, the 7"

5

6 S. MOUFAWAD

approximate solution is defined by performing saxpy (ax + y) and dot products (z'z), where a is
scalar, and z, y are vectors.

The performance of an algorithm on any architecture is dependent on the processing unit’s
speed for performing floating point operations (flops) and the speed of accessing memory and
disk. Moreover, the efficiency of parallel implementations is dependent on the amount of per-
formed computations per communication, data movement. This is due to the fact that the cost of
communication is much higher than arithmetic operations, and this gap is expected to continue
to increase exponentially [37]. As a result, communication is often the bottleneck in numerical
algorithms. In a quest to address the communication problem, recent research has focused on re-
formulating linear algebra operations such that the movement of data is significantly reduced, or
even minimized as in the case of dense matrix factorizations like LU factorization, QR factoriza-
tion, tall and skinny QR factorization [21, 38, 4]. Such algorithms are referred to as communication
avoiding.

The Krylov subspace methods are governed by Blasl and Blas2 operations like dot products
and matrix vector multiplications, as discussed above. Parallelizing dot products is constrained by
communication, since the performed computation is negligible. If the dot products are performed
by one processor, then there is a need for a communication before (synchronization) and after the
computations. In both cases, communication is a bottleneck. This problem has been tackled by
different approaches. One approach is to the hide the communication’s cost by overlapping it with
other communications and computations, like pipelined CG [23, 43] and pipelined GMRES [34].
Another approach consists of replacing Blas1 and Blas2 operations by Blas2 and Blas3 operations,
by either introducing new methods or by reformulating the algorithm itself. The first such methods
to be introduced, are block methods that solve a system with multiple right-hand sides AX = B,
like O’Leary’s block CG [63]. These methods compute at each iteration a block of vectors by
performing a matrix times a block of vectors. Then, the i block approximate solution is obtained
by solving small systems and performing tall skinny gaxpy’s, Ax + y, where A is an n x m matrix
with n >> m, and z, y are vectors.

Unlike the block methods, the s-step methods solve the system Az = b by computing s basis
vectors per iteration and solving small systems. Some of the s-step methods are s-step CG [19] and
s-step GMRES [26]. Both methods, block and s-step, use Blas2 and Blas3 operations. Recently,
communication avoiding Krylov methods, based on s-step methods, were introduced, like CA-
CG, and CA-GMRES [60, 48, 12]. The communication avoiding methods aim at further avoiding
communication in the Blas2 and Blas3 at the expense of performing some redundant flops. For
s = 1, where s-step methods are equivalent to classical methods, there are many available pre-
conditioners. One of them, block Jacobi, is a naturally parallelizable and communication avoiding
preconditioner. However, except a discussion in [48], there are no available preconditioners that
avoid communication and can be used with s-step methods for s > 1. This is a serious limitation of
these methods, since for difficult problems, Krylov subspace methods without preconditioner can
be very slow or even might not converge. In this thesis, we introduce a communication avoiding
ILU(0) preconditioner (CA-ILUOQ) [40], that can be computed in parallel, and applied to s vectors

CHAPTER 1. INTRODUCTION 7

of the form y; = (LU) ™! Ay;_; without any communication, for i = 1,2, .., s. This preconditioner
can be parallelized without communication due to the use of a heuristic reordering of the matrix
A, that we call alternating min-max layers AMML(s). Moreover, the CA-ILUO preconditioner can
also be used with classical Krylov subspace methods, where it avoids communication.

Since communication avoiding methods are based on s-step methods which have some stabil-
ity issues, we introduce a new type of Krylov subspace methods. We introduce a new approach
that consists of enlarging the Krylov subspace based on domain decomposition. First, we split
the initial 7y into ¢ vectors depending on a decomposed domain. Then, the obtained ¢ vectors
are multiplied by A at each iteration to generate the ¢ new basis vectors of the enlarged Krylov
subspace. Enlarging the Krylov subspace should lead to faster convergence and parallelizable al-
gorithms with less communication than the classical Krylov methods, due to the use of Blas2 and
Blas3 operations. In this thesis, we introduce two new versions of conjugate gradient. The first
version, multiple search direction with orthogonalization CG (MSDO-CQG), has the same structure
as the classical conjugate gradient method, where we first define ¢ new search directions, then find
the ¢ step lengths by solving a ¢ x ¢ system and update the solution and the residual. But unlike CG,
the search directions are not A-orthogonal. We A-orthonormalize the search directions, to obtain
a projection method that guarantees convergence at least as fast as CG. The second version, long
recurrence enlarged CG (LRE-CGQG), is similar to GMRES in that we build an orthonormal basis for
the enlarged Krylov subspace rather than finding search directions. Then, we use the whole basis
to update the solution and the residual.

The thesis is organized as follows. In chapter 2 we briefly introduce some notations and ker-
nels that are used throughout this thesis such as graphs and graph partitioning, orthonormalization
schemes, A-orthonormalization schemes, the matrix powers kernel, and the set of test matrices
used to test our introduced methods. In chapter 3 we discuss several variants of Krylov subspace
methods, such as classical Krylov subspace methods (CG and GMRES), block Krylov methods
(block CQG), s-step Krylov methods (s-step CG and s-step GMRES), communication avoiding
Krylov methods (CA-GMRES), and other parallelizable version (MSD-CG and coop-CG). We also
discuss preconditioners, such as incomplete LU preconditioner, block Jacobi preconditioner, and
restricted additive Schwarz preconditioner, which are crucial for the fast convergence of Krylov
subspace methods.

In chapter 4 we introduce the enlarged Krylov subspace, the MSDO-CG method, and the LRE-
CG method. We show that both methods are projection methods and hence converge at least as
fast as CG in exact precision. And we compare the convergence behavior of MSDO-CG and
LRE-CG methods using different A-orthonormalization and orthonormalization methods. Then
we compare the most stable versions with CG and other related methods. Both methods converge
faster than CG, but LRE-CG converges faster than MSDO-CG since it uses the whole basis to
update the solution rather than only ¢ search directions. We also present the parallel algorithms
with their expected performance, and the preconditioned versions with their convergence behavior.
This chapter is based on the article [41] which is in preparation for submission.

In chapter 5 we introduce the communication avoiding ILU(0) preconditioner (CA-ILUO) that

8 S. MOUFAWAD

minimizes communication during the construction of M = LU (i.e, the ILU(0) factorization), and
during its application to s vectors (z = M 'y = (LU) 'y)) at each iteration of the s-step methods.
In other words, it is possible to solve s upper triangular system and s lower triangular system, in
addition to the s matrix vector multiplications without any communication. First, we adapt the
matrix powers kernel to the case of ILU preconditioned systems. Then, we introduce the AMML(s)
heuristic reordering based on nested dissection and k-way graph partitioning. Then, we show that
our reordering does not affect the convergence of ILU(0) preconditioned GMRES, and we model
the expected performance of our preconditioner based on the needed memory and the redundant
flops introduced to reduce the communication. This chapter is based on some parts of a revised
version of the technical report [40], and on the article [39], which was submitted to SIAM journal
on scientific computing (SISC) and is in revision. Finally, in chapter 6 we conclude and discuss
possible future work in the introduced methods.

Chapter 2

Preliminaries

We will briefly introduce some notations (section 2.1) and kernels that will be used throughout
this thesis such as graphs and graph partitioning (section 2.2), orthonormalization (section 2.3), A-
orthonormalization (section 2.4), and the matrix powers kernel (section 2.5) . We will also describe
the test matrices (section 2.6) that will be used in Chapters 4 and 5.

2.1 Notation

We denote matrices or block of vectors by upper case letters. Whereas vectors are denoted by lower
case letters. All subscripts used for matrices, vectors, graphs, and sets serve as indices, indices
denoting iterations (x) or subparts (A; ;). We use matlab notation for matrices and vectors. For
example, given a vector y of size n x 1 and a set of indices v (which correspond to vertices in the
graph of A), y(«) is the vector formed by the subset of the entries of y whose indices belong to c.
For a matrix A, A(q, :) is a submatrix formed by the subset of the rows of A whose indices belong
to . Similarly, A(:, «), is a submatrix formed by the subset of the columns of A whose indices
belong to a. We have A(«, 8) = [A(a,:)](:, 5), the 8 columns of the submatrix A(«,:). Note
that the set of indices can be expressed explicitly like y(1 : 20) which is a vector with the first 20
entries of y or A(:, 1 : tk + ¢ — 1) which is a matrix containing the first tk + i — 1 columns of A.

2.1.1 Communication

In this thesis, the word “processor” indicates the component performing the computations and
“fetch” indicates the data movement. The definition of this “processor” and “fetch” depends on
the kind of communication that we want to avoid. The two broad categories are communication
in parallel computations (between processors) and communication in sequential computations (be-
tween different levels of memory hierarchy)

In the first case, communication can take the following forms, among others:

9

10 S. MOUFAWAD

e Messages between processors, in a distributed-memory system. (“processor’” = processor,
“fetch” = receive message)

e Cache coherency traffic, in a shared-memory system. (“processor’” = core, “fetch” = read)

e Data transfers between coprocessors linked by a bus, such as between a CPU (“Central
Processing Unit” or processor) and a GPU (“Graphics Processing Unit”). (“processor” =
GPU, “fetch” = copy from CPU memory to GPU memory)

In the sequential case, communication between levels of hierarchy can be between:
e cache and main memory.

e main memory and disk.

e local store (a small, fast, software-managed memory) and main memory.

In the three cases of sequential communication, the “processor” = processor and by “fetch” we
mean copy the data from the slow memory to the fast one.

In general, the estimated time for computing z flops is ~.z, where 7. is the inverse floating-
point rate, also called the floating-point throughput (seconds per floating-point operation) of the
processor. In the case of distributed-memory architecture, the estimated time for sending a mes-
sages of size k is a, + .k, where «. is the latency (with units of seconds) and f. is the inverse
bandwidth (seconds per word). Hence, the estimated runtime of an algorithm with a total of z
computed flops and s sent messages each of size k is the sum of their corresponding estimated
times .z + @.s + [..

2.2 Graphs and partitioning techniques

In this section we give the definitions of the notions such as graphs (section 2.2.1), nested dissection
(section 2.2.2), and k-way partitioning (section 2.2.3).

2.2.1 Graphs

The structure of an unsymmetric n x n matrix A can be represented by using a directed graph
G(A) = (V, E), where V is a set of vertices and F is a set of edges. A vertex v; is associated with
each row ¢ of the matrix A. An oriented edge e;; from vertex j to vertex ¢ is associated with each
nonzero element A(j,7) £ 0 as shown in Figure 2.1 where the vertex is represented by its index.
A weight w; and a cost c;; are assigned to every vertex v; and edge e;; respectively. Let B be a
subgraph of G(A) (B < G(A)), then V(B) is the set of vertices of B, V(B) < V(G(A)), and
E(B) is the set of edges of B, E(B) < E(G(A)). Leti and j be two vertices of G(A). The vertex

CHAPTER 2. PRELIMINARIES 11

(x x 0 x 0 0
0 x x 0 x 0 1 2 3
0 0 x 0 x x
x 0 0 x x 0 $\$ / $
x 0 0 x x X
00 x 0 0 x) 4 S 6
(a) Matrix A (b) Graph of A

Figure 2.1: The figure shows the sparsity pattern of a matrix A and its corresponding graph.

j 1s reachable from the vertex ¢ if and only if there exists a path of directed edges from i to j. The
length of the path is equal to the number of visited vertices excluding ¢. Let .S be any subset of
vertices of G(A). The set R(G(A), S) denotes the set of vertices reachable from any vertex in .S
and includes S (S < R(G(A),S)). The set R(G(A), S, m) denotes the set of vertices reachable
by paths of length at most m from any vertex in S. The set R(G(A), S, 1) is the set of adjacent
vertices of S in the graph of A and we denote it by Adj(G(A),S). The set Adj(G(A),S) — S is
the open set of adjacent vertices of S in the graph of A and we denote it by opAdj(G(A), S). An
undirected graph of a symmetric matrix is a special case of directed graphs where all the edges are
bidirectional. Since there is no need to specify a direction, the edges are undirected.

Note that the structure of a sparse matrix can also be represented by a hypergraph H = (V, N),
where V is a set of vertices and N is a set of hyperedges (nets) where each hyperedge can connect
several vertices.

To exploit parallelism and reduce communication when solving a linear system Az = b using
an iterative solver, the input matrix A is often reordered using graph partitioning techniques such
as nested dissection [33, 52] or k-way graph partitioning [51]. These techniques assume that the
matrix A is symmetric and its graph is undirected. In case A is unsymmetric, then the undirected
graph of A + A is used to define a partition for the matrix A. Graph partitioning techniques can
be applied on both graphs and hypergraphs (see e.g. [13, 3]), and they rely on identifying either
edge/hyperedge separators or vertex separators. In sections 2.2.2 and 2.2.3 we describe Nested
Dissection and K-way briefly in the context of undirected graphs.

2.2.2 Nested dissection

Nested dissection [33] is a divide and conquer graph partitioning strategy based on vertex sepa-
rators. For undirected graphs, at each step of dissection, a set of vertices that forms a separator
is sought, that splits the graph into two disjoint subgraphs once the vertices of the separator are
removed. We refer to the two subgraphs as €2, ; and €2 », and to the separator as 3; ;. The vertices

12 S. MOUFAWAD

of the first subgraph are numbered first, then those of the second subgraph, and finally those of the
separator. The corresponding matrix has the following structure,

Ap Az
A
Aszs

Az Az
The algorithm then continues recursively on the two subgraphs (2, ; and €); . The separators
subgraphs and the subdomains subgraphs introduced at level 7 of the nested dissection are denoted
by ¥, ; and €2, respectively, where j < 27,1 < 2°, 4 < t and t = log(P) (P is the number of
processors). The vertices of the separators and the final subdomains are denoted by S, ; = V(% ;)
and D; = V(§,) respectively. Thus, at level i we introduce 2! new separators and 2° new
subdomains. We illustrate nested dissection in Figure 2.2 which displays the graph of a 2D 5
point-stencil matrix A, where the vertices are represented by their indices. For clarity of the figure,
the edges are not shown in the graph, but it must be noted that there are oriented edges connecting
each vertex to its north, south, east and west neighbors. This corresponds to a symmetric matrix
with a maximum of 5 nonzeros per row. Figure 2.2 presents the subdomains and the separators
obtained by using three levels of nested dissection. All the following figures of graphs in this thesis
have the same format.

12 3 456 7 8 910
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

(a63)

232 233 234 235 236 237 238 239 240 241
242 243 244 245 246 247 248 249 250 251
252 253 254 255 256 257 258 259 260 261
262 263 264 265 266 267 268 269 270 271
272 273 274 275 276 277 278 279 280 281

282 283 284 285 286 287 288 289 290 291
292 293 294 295 296 297 298 299 300 301
302 303 304 305 306 307 308 309 310 311
312 313 314 315 316 317 318 319 320 321
322 323 324 325 326 327 328 329 330 331

[211 212 213 214 215 216 217 218 219 220

222 223 224 225 226 227 228 229 230 231]

E142m444445446447448449450451

453454455456457458459460461462]

106 107 108 109 110 111 112 113 114 115
116 117 118 119 120 121 122 123 124 125
126 127 128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143 144 145
146 147 148 149 150 151 152 153 154 155

156 157 158 159 160 161 162 163 164 165
166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185
186 187 188 189 190 191 192 193 194 195
196 197 198 199 200 201 202 203 204 205

337 338 339 340 341 342 343 344 345 346
347 348 349 350 351 352 353 354 355 356
357 358 359 360 361 362 363 364 365 366
367 368 369 370 371 372 373 374 375 376
377 378 379 380 381 382 383 384 385 386

387 388 389 390 391 392 393 394 395 396
397 398 399 400 401 402 403 404 405 406
407 408 400 410 411 412 413 414 415 416
417 418 419 420 421 422 423 424 425 426
427 428 429 430 431 432 433 434 435 436

Figure 2.2: An 11 by 43 5-point stencil, partitioned into 8 subdomains using 7 separators . The bidirectional
edges connecting each vertex to its north, south, east and west neighboring vertices are omitted in this figure.

2.2.3 K-way graph partitioning

K-way graph partitioning by edge separators aims at partitioning a graph G = (V, E) into k > 1
parts T = {Qq,Qs, .., V1, Qx}, where the k parts are nonempty (€; # ¢, Q; < V for 1 <i <k,
and uleﬁi = V'), and the partition 7 respects the balance criterion

W; < (14 €)Waug, 2.1)

CHAPTER 2. PRELIMINARIES 13

where W; = >, o wj is the weight associated to each part i, Wayy = (2,1, wi)/k is the perfect
weight, € is the maximum allowed imbalance ratio, and w; is the weight associated to vertex v;. In
addition, k-way graph partitioning minimizes the cutsize of the partition 7

X(m) = D, ay 2.2)

617_7‘655;

where &y, is the set of external edges of 7, £ < E, and ¢; j is the cost of the edge e; ; where i < j.
In graph partitioning, the term edge-cut indicates that the two vertices that are connected by an
edge belong to two different partitions. The edge which is cut is referred to as an external edge. In
this thesis, we use w; = 1 and ¢; ; = 1.

2.3 Orthonormalization

Given an n x tk matrix () whose tk column vectors are orthonormal and an n x ¢ matrix Py, we
discuss in this section how to obtain ¢(k + 1) orthonormal vectors. This will be used in chapters 3
and 4 for describing CA-GMRES and LRE-CG where at each iteration k, ¢ new vectors are com-
puted and have to be orthonormalized against the previously computed ¢k orthonormal vectors.
Let D = [@Q, Py.1], then this can be done by orthonormalizing D(:, tk + i) against all the previous
vectors of D, D(:,1: (tk+i—1)), for 1 < i < t using classical Gram Schmidt or modified Gram
Schmidt. However, this can not be parallelized efficiently. Thus, it is better to split the orthonor-
malization into two tasks. The first consists of orthonormalizing the ¢ newly computed vectors of
Py, against all the tk orthonormal vectors of (). Then, the vectors of P, are orthonormalized
against each others.

Orthonormalizing a tall and skinny n x ¢ matrix Fj 1, can be done using classical Gram Schmidt
(CGS), modified Gram Schmidt (MGS) or a QR factorization like Householder factorization or
based on Cholesky factorization. In [21], the authors presented a parallelizable QR version of a
tall and skinny matrix based on binary reduction trees with local householder QR which they called
tall and skinny QR (TSQR) factorization. As for the orthonormalization of P, against (), this can
be done using MGS or CGS and its block version. We will briefly discuss CGS orthonormalization
(section 2.3.1), MGS orthonormalization (section 2.3.2), and TSQR (section 2.3.3).

2.3.1 Classical Gram Schmidt (CGS)

We will start by introducing the orthonormalization of P, ;’s vectors against ()’s vectors, then
against each others using CGS.

Assuming that the vectors of Q. are orthonormal , i.e. QLQ) = I forall j = 1,2, ..,tk, then
the orthonormalization of the vectors of Py, against the vectors of (). is defined by projecting
Pr11(:,) onto all the Q(:,7) vectors and subtracting it from Py, (:, j) as follows. For all j =

14 S. MOUFAWAD

]-7 27 "‘7t’ by lettlng ﬁk—i—l(:hj) = Pk'—i-l(:?j) - Z:’il(@kta i>tpk+1(:7j>>Qk(:7 Z)» we get

ﬁk+1(:7j)tQk<:a 0) = Pk+1(:7j>tQk(:7 O) - Zfil(@k(a i>th+1<:7j>)Qk(:7 i)tQk(:7 0)
Pk+1(:7j>tQk(:7 0) - (Qk(:> O)tpk-&-l(:vj))Qk(:’ O>tQk(:7 0)
0

forallo = 1,2,..., tk since QLQy = I.

Algorithm 1 Orthonormalization against previous vectors with CGS

Input: @)y, the tk orthonormal vectors; Py 1, the ¢ vectors to be orthonormalized against ()
Output: P, 1, the vectors orthonomalized against ()

2: forj=1:tdo
3 forz'Nzl:tk;dON
4: Pk+1(:7j) = Pk-i—l(:?j) - (Qk(7z)tpk+l(7j))Qk(72)
5 end for -
D o Py
6 P (,9) = 1 Bes1 Gl
7: end for

Algorithm 2 Orthonormalization against previous vectors with BCGS

Input:)y, the tk orthonormal vectors; Py 1, the ¢ vectors to be orthonormalized against ()
Output: Py, 1, the vectors orthonomalized against ()

1: Pyy1 = Pry1 — Qk(QiPk’H)
2: forj=1:tdo

. B(ooa) — _PeniGd)
3: Pira(:,j) = 1P y1(:0) 2
4: end for

Algorithm 3 Orthonormalization of tall and skinny matrix using CGS

Input: P, the matrix to be orthonormalized

Output: P, 1, the orthonomalized matrix (P} Py =1
1: Let .ﬁkJrl = Pk+1
2: fori=1:tdo
3: for j =1: (1 — 1)~d0 N N
4 Pro1(5,1) = Poya(5,9) — (P15 5) Pos1 (,9)) P (5, 5)
5: end for B
6 Benld) = 50
7: end for

CHAPTER 2. PRELIMINARIES 15

Algorithm 1 summarizes the CGS orthonormalization of P, 1’s vectors against (). However,
a better parallelizable block version of the algorithm can be presented by eliminating the for loops
as shown in Algorithm 2. As for the orthonormalization of the tall and skinny matrix Py, using
CGS, it follows the same pattern as shown in Algorithm 3. In [71], the authors present a more
stable version of CGS (Algorithm 3) that differs in the normalization step. The normalization in
Algorithms ?? could be changed accordingly.

2.3.2 Modified Gram Schmidt (MGS)

It is known that CGS has some numerical stability problems due to the errors resulting from the
projection of the initial vector repeatedly against all other vectors [36, 71] ,i.e. Pyy1(:,j) = Per1(:
) — Zzlil(@k(:, i)' Pry1(:,7))Qx(:, 7). The modified Gram Schmidt partially fixes this issue by
orthogonalizing the initial vector P, 1(:, j) against Q4 (:, 1) and then the obtained vector Py (:, §)
is orthogonalized against Qx(:, 2) and so on. We will start by introducing the orthonormalization of
Py +1’s vectors against () ’s vectors, then against each others using MGS. Algorithm 4 summarizes
the MGS orthonormalization of P ’s vectors against (J;. As for the orthonormalization of the
tall and skinny matrix Py using MGS, it follows the same pattern as shown in Algorithm 5.

Algorithm 4 Orthonormalization against previous vectors with MGS

Input: (), the ¢k orthonormal vectors

Input: P, 4, the ¢ vectors to be orthonormalized against ()
Output: IBkH, the vectors orthonomalized against ()

1: forj=1:¢do

2 for:=1:tkdo

3 Pios1(:7) = Prar (4,7) — (Qu(:,) P (1,.)) Qn (2, 4)
4: end for
5
6:

oY PeaGg) Pr1(5,)
Prii(i,) = SO/ Prg1 (25)t Py (9)

Algorithm 5 Orthonormalization of tall and skinny matrix using MGS

Input: Py, the matrix to be orthonormalized

Output: P4, the orthonomalized matrix (P}, P11 = I)
1: fort =1:tdo

2 forj=1:(i—1)do

3 P (18) = P (1,8) — (P (45) Prora (5,)) P (5,)
4: end for
5
6:

. . _ Pk+1(l,i) _ Pk+1(1,i)
P’““("Z) T Pep GOI T \/Pkﬂ(:,i)tpkﬂ(;,i)
end for

16 S. MOUFAWAD

2.3.3 Tall and skinny QR (TSQR)

The QR factorization of an n x ¢ matrix P is its decomposition into an n x ¢ orthogonal matrix
Q (Q'Q = I)and at x t upper triangular matrix R. The QR factors can be obtained using Gram
Schmidt orthogonalization, Givens rotations, Cholesky decomposition, or Householder reflections.

Tall and Skinny QR (TSQR) introduced in [21], refers to several algorithms that compute a QR
factorization of a “tall and skinny” n x ¢ matrix P (n » t) based on reduction trees with local
Householder QR. The matrix P is partitioned row-wise P = (FPy P; ... Pype—1))" where pa is the
number of partitions. The sequential TSQR is based on a flat reduction tree, where pa is chosen
so that the row-wise blocks of P fit into cache. Whereas, the parallel TSQR can be based on
binary trees (pa = number of processors) or general trees (pa > number of processor). The TSQR
version used in CA-GMRES [60] is a hybrid of parallel and sequential QR, where pa is chosen so
that the row-wise blocks of P fit into cache. Then each processor is assigned a set of blocks that
it factorizes using sequential TSQR to obtain () and R factors. The obtained ¢ x ¢ R factors are
stacked and factorized using LAPACK’s QR.

Assuming that the number of row-wise partitions pa of P is four, then the sequential TSQR
starts by performing the Householder QR factorization of the § x ¢ matrix Py = Qoo where Qg
is an % x t orthonormal matrix, Ry is a ¢ x t upper triangular matrix, and [is the % x 7 identity
matrix.

Py QoRo Qo Ry
p_ P _ P _ 1 P
P3 Py I P

Then the obtained ¢ x ¢ Ry is stacked over the 7 x ¢ matrix P and a Householder QR is
performed, where @ is an (% +t) x t orthonormal matrix and R, is a ¢ x ¢ upper triangular matrix.
Similarly, the obtained R, is stacked over the 7 x ¢ matrix I and factorized using Householder
QR, where @ is an (%} + t) x t orthonormal matrix and R is a ¢ x ¢ upper triangular matrix .
Finally, R; is stacked over P; and factorized into the (} + t) x ¢ orthonormal matrix ()3 and the

t x t upper triangular matrix ?s.

Ry
R R
Pl Qi ") QR Ry '\
- P2) P2 -) _Q3R3
Py Py P
Py Py
Py

Then the R factor is R3, and the () factor is

Qo
1
I Q
Q= 7 1 - < 2])Qs

CHAPTER 2. PRELIMINARIES 17

As for the hybrid TSQR, each of the four processors i decomposes its block F; into the 7 x ¢
orthonormal matrix (); and ¢ x ¢ upper triangular matrix R; for ¢« = 0, 1, 2, 3, using the sequential
TSQR described above.

Py QoRo Qo Ry
p_| D @B |_ Q; R,
P2 QQRQ QQ R2
P3 C931’:{3 Qg Rg
Then the R; factors, for s = 0, 1, 2, 3, are stacked and factorized using LAPACK’s QR,
Ry Qo
i = 4Ry, where () = @ Q4,and R = Ry.
Ry Q2
Ry Q3

Note that ()4 is a 4¢ x t orthonormal matrix, () is the n x ¢ output orthonormal matrix, and R = R,
is the ¢t x ¢ output upper triangular matrix that satisfy P = QR

2.4 The A-orthonormalization

Given a set of k£ matrices P; for: = 1, 2, .., k, of dimension n x ¢, where the total tk column vectors
are orthonormal, i.e. P/P; = 0 for j # i and P/P; = I. Let Py be an n x ¢ newly computed
matrix. We discuss in this section how to A-orthonormalize P}, against all the previous vectors
P;’s for i < k + 1, and then against each others, to obtain ¢(k + 1) orthonormal vectors. This will
be used in chapters 4 for describing MSDO-CG method where at each iteration k, ¢t new vectors
are computed and have to be A-orthonormalized against the previously computed ¢k orthonormal
vectors.

The A-orthonormalization is simply an orthonormalization with the A inner product (< ., . > 4=
< ., A . >)rather than the L2 inner product (< . , . >). A-orthonormalizing a tall and skinny n x ¢
matrix Py, or alternatively computing the oblique QR factorization of P4, has been discussed
in [64] and [59] in terms of stability and ease of parallelization. The goal is to get a PkH, such
that Pk +1APk+1 = [. There are two main classes for computing this oblique QR factorization of

P = PkHR The first class is to factorize the matrix A = BB using Cholesky decomposition
or eigenvalue decomposition, which is expensive. Then P}, AP,1 = (BPys1)"(BPy41), where
the oblique QR factorization of Py, is transformed into a Euclidean QR factorization of the ma-
trix BP,,1 = QpRp with P,.; = B™'Qp and R = Rp. The second class consists of avoiding
any factorization of A, like CGS, CGS2, MGS, and the Cholesky factorization of the ¢ x ¢ matrix
P +1AP; 1. For A-orthonormalizing P, against all the previous vectors F; with i < k + 1, it is
possible to use CGS, CGS2, MGS and A-choleskyBGS which was discussed in Hoemmen'’s thesis
([48], page 115).

18 S. MOUFAWAD

Thus, we start by discussing the A-orthonormalization using modified Gram Schmidt in section
2.4.1. However, this version is not easily parallelized on distributed-memory architectures, and
requires a lot of communication ((tk + 1)log(t) + 2(t — 1)log(t) messages) as compared to the
classical Gram Schmidt version. Then, in section 2.4.2 we adapt the A-orthonormalization of the
vectors of Py, against P;’s for © < k + 1 using the classical Gram Schmidt (CGS) to obtain
a Block Gram Schmidt (BGS) version (Algorithm 10) with A inner product that requires only
2log(t) messages. As for the A-orthonormalization of the Py, vectors against each others, we
introduce a parallelizable version with reduced communication ((2t — 1)log(t) messages). Note
that CGS2, section 2.4.2.3, consists of calling the algorithm CGS twice. Thus its cost is twice
the cost of CGS. In section 2.4.3, we briefly discuss the A-orthonormalization of P}, using the
Cholesky factorization (CholQR) of the ¢ x ¢ matrix P} +1 APy 41 which is referred to as A-CholQR
and requires only log(t) messages. We also present the Pre-CholQR version that was introduced
in [59] and requires 3log(t) messages.

2.4.1 Modified Gram Schmidt A-orthonormalization

We start by introducing A-orthonormalization of the vectors of Py, against the vectors of all the
P;s for i < k + 1, then against each others in section 2.4.1.1 . In section 2.4.1.2 , we discuss
versions that save flops and reduce communication. And in section 2.4.1.3, the parallelization of
both kernels is described.

2.4.1.1 The A-orthonormalization using MGS

Assuming that the vectors of P; are A-normalized, i.e. P;(:,7)'AP;(:,j) = 1 forall j = 1,2,..,¢
and ¢ = 1,2, .., k, then the A-orthonormalization of the vectors of P, against the vectors of all
the previous P;’s for ¢ < k£ + 1 is defined in Algorithm 6.

Algorithm 6 A-orthonormalization against previous vectors with MGS

Input: A, the n x n symmetric positive definite matrix
Input: Py, P,,.., P..1, the k + 1 sets of search directions
Output: Py, 1, the search directions A-orthonomalized against Py, Ps,.. , P
1: foro=1:%¢tdo %loop over the vectors of Pj 1
2 for:=1:kdo %loop over the different P;’s
3 for] =1:tdo %loop over the vectors of P;
1 Pis1(:,0) = Pra(:,0) = (Bi(:,) AP (1, 0)) B (2,)
5: end for
6 end for
7
8:

Pr.1(:,0) Prt1(:,0) .
P c0) = =k 1 %A-normalize
b+1(50) = TRGo — Vhmeotarmtg "

CHAPTER 2. PRELIMINARIES 19

At each inner iteration, one matrix-vector multiplication has to be computed (AP, 1(:,0)), 1
dot product, and 1 saxpy, which costs 2nnz—n+ (2n—1)+2n = 2nnz+3n—1 flops. Then, at each
outermost iteration, one matrix-vector multiplication is computed (AP, (:,0)), 1 dot product, 1
square root and 1 division which costs 2nnz —n + (2n — 1) + 2 = 2nnz + n + 1. The total cost of
Algorithm 6 is (2nnz + 3n — 1)t*k + (2nnz + n + 1)¢, which is of the order of nnzt*k + nt’k.

As for the A-orthonormalization of the vectors of Py, against each others, it is defined in
Algorithm 7. Similarly, the cost of the inner loop is 2nnz + 3n — 1 flops and that of the outer loop
is 2nnz + n + 1, but the total cost is (2nnz + 3n — 1)(t — 1)% + (20nz + n + 1)t flops, which is of
the order of nnzt? + nt2.

Algorithm 7 A-orthonormalization against each others using MGS

Input: A, the n x n symmetric positive definite matrix
Input: P4, the search directions to be A-orthonormalized
Output: P, 1, the A-orthonomalized search directions

l: fori=1:¢do %loop over the vectors of P41

2 fOI‘j =1: (Z — 1) do %A-orthogonalize against the vectors P41 (:,1:4— 1)

3 Ppi1(:,1) = Peya(51) = (Prega(5,5) APy (59)) Peya (5, 7)

4: end for

5

6:

. P Y P B .
Pk-‘rl('a Z) G0 41 (:10) 9% A-normalize

T MPeriGillla Prgp1 (50 APgr1 (d)

2.4.1.2 Saving flops in the A-orthonormalization using MGS

Since the A-orthonormalizations are expensive in term of flops, we present another alternative for
computing the A-orthonormalizations that reduces the computed flops at the expense of storing
more vectors. In Algorithm 7 and Algorithm 6, some matrix vector multiplications are repeatedly
computed. For example in Algorithm 7, AP;,(:,1) is computed ¢t — 1 times, AP;,1(:,2) is
computed ¢ — 2 times, and generally, AP, 1(:,7) is computed ¢ — 7 times, which means that the
matrix A is accessed (t — 1)% times for every call of the algorithm. Thus, it is possible after A-
orthogonalizing a vector Py, 1(:,4) to compute and store w; = AP, 1(:,7). This eliminates the
redundant flops and reduces the number of accesses of A to ¢ times, but there is a need to store ¢
extra vectors (w;).

Moreover, it is possible to further reduce the computations and the number of times A is ac-
cessed at the expense of storing ¢tk vectors as shown in Algorithm 8, where the multiplication
Wii1 = APy is first performed by only reading the matrix A once. Then the vectors Wy 1(:, %)
are updated and stored.

The A-orthonormalization against previous vectors with flops reduction can be performed as
in Algorithm 8. Then, the cost of the A-orthonormalization against previous vectors in Algorithm
8 is (6n — 1)t*k + (4n + 1)t of the order of 6nt*k flops.

20 S. MOUFAWAD

Algorithm 8 A-orthonormalization against previous vectors with MGS Flops

Input: Py, P,.., P;.1, the k£ + 1 sets of search directions
Input: Wy, Wa,.., Wi, the k + 1 sets of AP,
Output: Py, 1, the search directions A-orthonomalized against Py, Ps,.. , P

1: foro=1:tdo %loop over the vectors of Py 1
2: for i=1:kdo %loop over the different P;’s
3: for j =1:tdo %loop over the vectors of P;
4 Pia(:,0) = Piwi(0) = (Wi, 5) Pea(:,0)) Bi(:,)
dn —1
5: Wii(:,0) = Witi(0) = (Wil 5) Pera(:, 0))Wils,)
2n
6: end for
7: end for
8: paprs1 = Wi1(:,0)' Piyi(:,0) 2n — 1
9 Puyi(:0) = ?#i;fjand Wit (:,0) = % on + 2
10: end for
Algorithm 9 Flops reduction in A-orthonormalization against each others with MGS Flops

Input: P, the search directions to be A-orthonormalized

Input: Wy, 1, AP,

Output: P, 1, the A-orthonomalized search directions

Output: W1, AP, where P, is the A-orthonomalized search directions

1: fori=1:tdo %loop over the vectors of Pj 1

2: fOI‘j =1: (Z — 1) do % A-orthogonalize against the vectors Py 1 (:,1:4— 1)

3: Pies1(:,4) = Peea(d) = Wha(5,5) Prra (,9)) P (5,)
dn — 1

4: Wi (:,9) = Wiri(9) = (Whra (5 0) P (5 0)) Wi (5,)
2n

5 end for

6: papg1 = Wk+1(3’i>tpk+1(5, i) 2n —1

. Py X L. W i
70 Pea(si) = \/’;*T%and Wit (1) = Z%iﬂ) 2n + 2
8: end for

As for the A-orthonormalization of Py ’s vectors against each others using MGS with flops
reductions, it can be performed as in Algorithm 9. The cost of this version of A-orthonormalization
(Algorithm 9) is (6n — 1)(t — 1)5 + (4n + 1), which is of the order of 3nt?.

CHAPTER 2. PRELIMINARIES 21

2.4.1.3 Parallelization of the A-orthonormalization using MGS

In Algorithm 8, at each inner iteration we are A-orthonormalizing the updated vectors Py (:,0)
against the vector P;(:, j), where the vector Py, 1(:,0) is changed at each inner iteration. Thus it
is not possible to have a block MGS by eliminating all the for loops. However, it is possible to
eliminate one for loop in Algorithm 8 as shown in Algorithm 10, by A-orthonormalizing the whole
block Py against the vector P;(:, j), where Pyy1(:,0) = Pry1(:,0) — (Prey1 (s, 0)' Wi, 1)) P, §)
forallo =1,2,...,t. Let [P;(:, 7)]¢ be an n x ¢ block containing ¢ duplicates of the vector P;(:, j).
Then, Py1 = Pey1 — [Bi(5, J) lediag(PL Wi, 7))-

Algorithm 10 A-orthonormalization against previous vectors with MGS Flops

Input: Py, P,.., P;.1, the k + 1 sets of search directions
Input: Wy, Wa,.., Wi,q, the k + 1 sets of AP,
Output: Py, 1, the search directions A-orthonomalized against Py, Ps,.. , P

1: for i=1:kdo %loop over the different P;’s

2: for] =1:tdo %loop over the vectors of P;

3 Pest = Posr — [P, 5)]idiag(Wil,) Pesr) (4n — 1)t
& Wit = Wit — [Wis,)]ediag(Wi(:,) Pesr) 2t

5: end for

6: end for

7. foro=1:tdo

8: papi+1(0) = Wii1(:,0) Peia(:, 0) 2n —1
9: end for
10: papgs1 = (\/PaPrt1) t
11: Pyyy = Pridiag(papeiq) ™t and Wy = Wy 1diag(papr.1) ™" (2n + 2)t

In Algorithm 9, rather than A-orthonormalizing each vector Py (:, 7) against all previous vec-
tors Py.1(:, 7), we can A-orthogonalize Py (:,i+ 1 : t) against the A-normalized vector Py (:, 1)
as shown in Algorithm 11. Let [Py41(:,7)]¢—; be an n x (t — i) block containing ¢ — ¢ duplicates
of the vector Py11(:, 7). Then Pry1 (i +1:t) = Py (i + 10 8) — [Prsa (5, 9) Ji—idiag(Wii o (¢
V) Peyr(s, i+ 1:1))

Then the parallelization of Algorithms 10 and 11 goes as follows. We assume that we have ¢
processors with distributed memory, and each processor pi is assigned a rowwise part of all TW;
(W;(6pi,2)) for j = 1,2, .., k+1 and the same rowwise part of all P; (P;(,;,:))forj = 1,2, .., k+1
where 0,; N, = ¢ forall pi # hand U},_ 6, = {1,2,3,...,n}.

At each inner iteration of Algorithm 10, each processor pi has to compute P q(0p,:) =
Prv1(0pis) — [Pi(Opi, J)]ediag(Wi(:, j) Pey1). First, each processor pi computes a part of the
matrix vector multiplication W;(0p;, 7)" Pr+1(dpi,:). Then, a communication of the form “all re-
duce” is performed to send the 1 x ¢ W;(:, 7)" Pyy1’s value to all the processors. Finally, processor
pt computes Py 1 (0,;,:) and Wi (6p,2).

22 S. MOUFAWAD

Algorithm 11 A-orthonormalization against each others with MGS

Input: Py, the search directions to be A-orthonormalized

Input: Wy, 1, AP 4

Output: P, the A-orthonomalized search directions

Output: W, AP;,, where P, is the A-orthonomalized search directions

1: fori=1: (t — 1) do % A-orthogonalize against the vectors Py 1 (:,1:4— 1)

2: Pey1(yi+1:t) = Pea (i + 10 t) — [Preyr (5, 5) i—idiag(Wiia (5, 8) Py (i + 12 1))
3: Wi (i +1:8) = Wi (i + 10 8) — [Wiaa (5, 9) Ji—idiag(Wies1 (5, 0) Py (5,1 + 12 1))
4: paprs1 = Wi (5,0 + 1) Py (0 + 1)

S Pepalsi+ 1) = BB and W (o6 + 1) = Healitl)

6: end for

Finally, each processor pi computes its corresponding part of the dot product Wy, 1(6;, 0) Pyy1(0;,0)
forall o = 1,2, ...t and an “all reduce” is used to send papy1’s value to all the processors. Then,
each processor A-normalizes Py 1(0,;,0) and Wy1(0,;,0). All the communication in Algorithm
10 is of the form “all reduce” of a ¢ x 1 vector which is equivalent to sending log(t) messages and
tlog(t) words. So, in total (tk + 1)log(t) messages and (tk + 1)tlog(t) words are sent in Algorithm

8. Hence, by ignoring lower order terms we obtain
Timenast ., ~ 16nt%k + a.tklog(t) + B.t*klog(t)

As for the parallelization of Algorithm 11, it is similar to that of Algorithm 10 where at each in-
ner iteration processor pi computes a part of the matrix vector multiplication Wi 1 (0, i) Pry1 (0piy i+
1 : t) and then receives the whole 1 x t vector, Wy y1(:,4) Pry1(:,4 + 1 : t), using an “all reduce”.
Then, it computes Py 1(pi, 1), Wit1(dp:, 1) and a part of the dot product papy 1, and receives the
whole dot product by an “all reduce”. Finally, each processor A-normalizes its part of Py, (:,1)
and Wy 1(:,4). Thus, at each iteration 2 “all reduce” communications are performed, where ¢
words are sent in the first and one word in second. So, in total 2(¢ — 1)log(t) messages are sent in
Algorithm 11 where (t — 1)(¢ + 1)log(t) words are sent. Hence, by ignoring lower order terms we
obtain

Timenasa,,,, = YVe3nt® + a2tlog(t) + Bt*log(t)

2.4.2 Classical Gram Schmidt A-orthonormalization

Since the MGS A-orthonormalization is costly in terms of communication, we introduce the clas-
sical Gram Schmidt (CGS) A-orthonormalization and show that it is equivalent to a QR decompo-
sition with A inner product rather than the usual L2 inner product. Then we present the paralleliza-
tion of the introduced algorithms. In section 2.4.2.1, the A-orthonormalization against previous
vectors using CGS is discussed, whereas in section 2.4.2.2 we discuss the A-orthonormalization of
the vectors using CGS. Then in section 2.4.2.3 we introduce the CGS A-orthonormalization with
reorthogonalization.

CHAPTER 2. PRELIMINARIES 23

2.4.2.1 A-orthonormalization against previous vectors using CGS

The A-orthonormalization of Py, against the vectors of all the previous P;’s for i < k + 1 is
defined as in Algorithm 12.

Algorithm 12 A-orthonormalization against previous vectors with CGS

Input: A, the n x n symmetric positive definite matrix
Input: Pl&PQ,.. , P11, the k + 1 sets of search directions
Outgut: P11, the search directions A-orthonomalized against Py, Ps,.. , P

1. Let Pyyy = P
2: foro=1:%¢do %loop over the vectors of Py 1
3: for:=1:kdo %loop over the different P;’s
4. for j~: 1:¢do N%loop over the vectors of P;
5: Fi1(:,0) = Peya(:,0) = (P, 5) APiia (5, 0)) (s,)
6: end for
7: end for 5 5
10,0 1,0)
8: Pk+1(:,0) = Hﬁkitl((’o)fu = \/ﬁk+1(i2)1t(1413)k+1(:,o) %A-normalize
9: end for

More precisely,

ﬁkﬂ(% 0) = Piu(i0) — Zf:l Z;:1<Pi(:vj)t14pk+1(:7 0))Pi(:,)
= Pini(:0) = X, P(PIAP(:,0))

If we let Wy 1 = APyi1, then Pyy1(:,0) = Prya(:,0) =S | P(PfWii1(:,0)). Moreover, Py q =
Piy1 — Y0 Bi(P!Wii1). Let Qq = [P1, Pa, ..., P, then Pyyy = Pryr — Qu(Q4Wii1). This
represents a Block classical gram schmidt (BCGS) version of the A-orthonormalization (Algorithm
13). The total flops performed in Algorithm 13 is

Total Flops = 2(2nnz —n)t + (2n — 1)t*k + 2t%kn + 3nt
= 4nnzt + nt + [4nt* — t*|k
4nnzt + 4nt?*k

2

As for the parallelization of Algorithm 13, it is straightforward due to the block format. Assuming
that we have ¢ processors with distributed memory, and each processor p: is assigned a rowwise part
of A (A(dpi, 1)), a rowwise part of Qx (Qx(Jyi, 1)) and a rowwise part of Py 1, where d,; N 0, = ¢
forall pi # hand U!_ 0, = {1,2,3,...,n}.

First, processor pi computes A(:, i) Pr+1(0p,:) and receives the full n x ¢ matrix Wi,
via an “all reduce”. Then it computes Q(d,i,:) Wi11(d,:,:) and obtains the full tk x ¢ matrix
Q% W1 using an “all reduce”. Then, processor pi computes f’kﬂ(épi, D) = Pro1(0piy 1) — Qr(0ps, :

24 S. MOUFAWAD

Algorithm 13 A-orthonormalization against previous vectors with BCGS Flops

Input: A, the n x n symmetric positive definite matrix

Input: Q. = [Py, P, ..., P], the tk search directions

Input: Pk¢1, the ¢ search directions to be A-orthonormalized

Output: P, the search directions A-orthonomalized against Py, Ps,.. , Py

1: Wip1 = APy (2nnz — n)t
2: Pk+1 = Pk+1 - Qk(Q};Wk-&-l) (271— 1)t2]€+ (th?— 1)nt+
nt
30 Wi = APy (2nnz — n)t
4: fori:=1:¢tdo %loop over the vectors of Py and A-normalize
B(i) = Preali))
> Pisa (1) 1Pes1Gadlla A/ Bryr(58) Wit (40) 3n
6: end for

)(QLWii1). Another “all reduce” is needed so that processor pi has the full D,.1 needed to

~

compute Wiy1(9pi,:) = A(0pi, \)P,1. Processor pi computes ¢ partial dot products of the form
Pr41(0pi, 0)'Wi1(8i, 0) and obtains the full dot products via an all reduce. Finally each processor

IBHfD(IT;)l’f(IiZi)l(:,i) forall i = 1,2,..,t. So in total
there is a need to perform 4 all reduce for parallelizing Algorithm 13.

It is possible to reduce the communication to only two by assuming that Wy, ; = AP, has al-
ready been computed and it is an input to Algorithm 14 along with Wy, = AQy, = [W1, W, ..., Wi].
The only communication is an “all reduce” of the ¢tk x ¢t matrix Q% W}, and another “all reduce”
of the vector of size ¢ containing the norms of the columns of f’kﬂ. We assume that it is possible

to send a message of size £k words at once. Thus, 2log(t) messages are sent with (tk + 1)tlog(t)
words where w = (6n — 1)tk + 4n flops are performed in parallel. Hence, by ignoring

lower order terms we obtain

A-normalizes its part of Py 1, i.e]3k+1(6pi, i) =

Timepcags,,,, ~ Yo6ntk + a.2log(t) + Bt?klog(t)

2.4.2.2 A-orthonormalization of a set of vectors using CGS

Given a set of vectors Py, that are A-normalized, i.e the diagonal of P} +1 AP is equal to
ones, we A-orthonormalize it (P}, AP, = I) using a classical Gram Schmidt procedure as in
Algorithm 15.

The CGS A-orthonormalization can be reformulated as a QR factorization

Pui1 = PR

where ﬁkﬂ is an A-orthonormal matrix, and R is a ¢ x t upper triangular matrix defined by the

CHAPTER 2. PRELIMINARIES 25

Algorithm 14 A-orthonormalization against previous vectors with BCGS Flops

Input: Q; = [Py, P, ..., P;], the tk search directions

Input: P4, the ¢ search directions to be A-orthonormalized

Input: W1 = APpy1; Wi = Ak N R
Qutput: Py 1, the search directions A-orthonomalized against Qy; Wiy 1 = AP,

1: Pk+1 = Pk+1 - Qk(QZaWk+l> (2n— 1)t2]€+ (Qt/{?— 1)nt+
nt

20 Wior = Wi — Wk(QZWk-&-l) 2nt’k

3: fori=1:¢do %loop over the vectors of Py and A-normalize

4: Let np = \/JBkH(:, i)thH(:, i) 2n

50 Pu(ni) = 2200 and W (- 0) = Hentld) 2n

6: end for

Algorithm 15 A-orthonormalization against each others using CGS

Input: A, the n x n symmetric positive definite matrix
Input: Py, the search directions to be A-orthonormalized
Output: P, the A-orthonomalized search directions

2: fori=1:tdo %loop over the vectors of P41
3: fOl’j =1: (Z — 1) do % A-orthogonalize against the vectors Py 1 (:,1:4— 1)
4 Pri1(5,49) = Popa (58) — (Pera (4, 5) AP (4,8)) P (1,)
5: end for N N

5 L. Pjoy1(:,1) Proy1(:52) .
6: Poi(i1) = = = ML %A-normal

k+1()) [Bes1 (i)l \/Pk+1(:ai)tAPk+1(:,i) normalize

7: end for

entries r;; forall j = 1,2, ..;iand 7 = 1,2, .., ¢.

ri1 Tie Tz o Tig Ipilla <P1,p2>a <D1,p3>a -+ <D1,Pt >4

To2 T23 -+ Tat 72,2 <PpP2,P3 >4 - <P2,Pt>A

R = rss o T3x | = 33 o < P3Pt >aA
Tt Tt

Although the CGS A-orthonormalization is equivalent to a QR factorization with the A inner prod-
uct, we were not able to parallelize it using reduction trees with the same communication pattern
as in TSQR [21]. But we can optimize the communication in Algorithm 15 by noticing that once
a vector p; is orthonormalized, we can compute the corresponding entries of the matrix R, i.e
R(i,i + 1 : t). By taking this into consideration, algorithm 15 can be restructured, as shown in

26 S. MOUFAWAD

algorithm 16.

Algorithm 16 QR factorization with A inner product using CGS Flops

Input: A, the n x n symmetric positive definite matrix
Input: Py, the search directions to be A-orthonormalized
Output: Pk+1, the A-orthonomalized search directions Pk HAPkH =1

Output: R, the upper triangular matrix such that Py, = PkHR

1: Wk+1 == AP]{;_;'_l (2nnZ - n)t

2 R(1,1) = A/Proa (5, D)W (5, 1) 2n

30 Pea(1) = P’;zﬁ,(i’)l) n

4: fori=2:1 do N

5: R(i—1,i:t) = Pey1(:,i — 1) Wyiq (5,0 :) 2n—1)(t—i+1)
6: Pii1(5,0) = Peya(6,9) — Pea (5,1 :d = 1)R(1 i — 1,7) 2i—1)—1n+n
7 R(i,i) = \/ﬁk (5 8) AP (2 4) 2nnz — n) + 2n

8: P (1) = —P’}ii(lf) n

9: end for

The total flops of Algorithm 16 is of the order of nnzt + nt?.

Total = 2nnzt —nt +3n+ Y. ,[(2n —1)(t —i+ 1)+ 2(i — 1)n + (2nnz + 2n)]
= 2nnzt —nt +3n + S _,[(2n — 1)(t + 1) — (2n — 1)i + 2ni — 2n + 2nnz + 2n]
= 2nnzt —nt +3n+ >0, [(2n — 1)(t + 1) + i + 2nnz]
= 2nnzt—nt+3n+[(2n—1)(t+1)+2nnz](t—1)+@—1
= dnnzt —2n0nz —nt +3n + (2n — 1)(2 — 1) + £ 1
= dnnzt — 2nnz — nt + 0+ 2nt? — 2 4 Ef

4nnzt — 2nnz — nt + n + 2nt? + ft;n

The parallelization of Algorithm 16 starts by distributing the data similarly to Algorithm 13.
Processor pi computes A(:, 6,;) Pr+1(9,:,) and receives Wy via an “all reduce”, and computes

Pr1(6pi, 1)'W (0, 1), and receives the full dot product Py (:,1)'W(:, 1), needed to compute
Pk+1(5pi71)
R(1,1)

At each iteration , processor pi computes Pk+1(5pz, — 1)"Wi11(0pi, @ : t) and receives the full
R(i — 1,7 : t) by an all reduce. Then, it computes Pkﬂ(ép“ i) = Pry1(0pisi) — PkH((Spi, 1:
i —1)R(1 : i — 1,4) and receives the Py 1(53pi,%) from myp adJacent processors where Bm =
Adjacent(G(A),(Spi).NThen it computes Wis1(0pi, 1) = A(pZ?sz)PkJ,-l(Bp“ i) and Pyy1(0pi,7)" Wk+1(6p,, i)
and receives the full Py (:, ~z’)tAPkJrl(:, i), needed to compute R(7,7), via an all reduce. Finally,
it computes ﬁ’kﬂ(épi, i) = W. So, there is a need for a total of 2¢ — 1 “all reduce” and ¢
communications with the mj,p neighboring processors.

R(1,1), via an “all reduce”. Then, it computes Py1 (6, 1) =

CHAPTER 2. PRELIMINARIES 27

Algorithm 17 QR factorization with A inner product using CGS Flops

Input: P, 4, the search directions to be A-orthonormalized; W}, 1, = APy 1
Output: P, the A-orthonomalized search directions; W~k+1
Output: R, the upper triangular matrix such that P, = P R

11 R(1,1) = A/Pea (s, (:,1) 2n

2 P, 1) = %535)“ and W,m(1) = Heald 2n

3: fori=2:tdo

4 R(i—1i:t) = Pati —) Waga (i 1 1) (2n —1)(t —i+1)
55 Den(n1) = P (58) = B (5 10i = DR(L: i — 1,4) 2(i—1)—Dn+n
6: Wii1(5,70) = Wig1 (50) = W (5,10 = D) R(1 24— 1,4) 2(i —1)n

7 R(i) = \/ﬁ,m(‘ D W () o

8 Du(ei) = P'g(l(and Wi (:,1) = M0 2

9: end for

It is possible to reduce the communication to only 2¢ — 1 “all reduce” by assuming that Wy, =
APy 1 has already been computed and it is an input to Algorithm 17. Then, at each iteration
i, an “all reduce” of the vector R(: — 1,7 : t) of size t — i + 1 is performed and another “all
reduce” of the entry R(i,4) is performed. Thus, a total of (2t — 1)log(t) messages are sent with

ni24n z<1 t) B
(L+ X t+2—1i)log(t) = t“ "4 164(t) words where St ? =3nt +n+ % flops are

performed in parallel. Hence, by ignoring lower order terms we obtain

TimeQrcGs.,, ~ Vednt + a2tlog(t) + Bt log(t)

2.4.2.3 CGS with reorthogonalization (CGS2)

The CGS with reorthogonalization (CGS) consists of calling the CGS algorithms twice, be it for
A-orthonormalizing Py, against previous vectors of (), (Algorithm 18), or A-orthonormalizing
Prt1.

Algorithm 18 A-orthonormalization of Py, against previous vectors of (), using CGS2

Input: (), the ¢tk search directions

Input: P4, the ¢t search directions to be A-orthonormalized

Input: Wiy, = APj1; Wi, = AQk N N
Output: P4, the search directions A-orthonomalized against P, P,.., P, Wy = APy
: Call Algorithm 14 with Py, and W, as input and with P,C 41 and Wk 41 as output

2: Call Algorithm 14 with P, 41 and W, 41 as input and with P41 and Wk+1 as output

28 S. MOUFAWAD

In the case of L~'AL™t-orthonormalization of P}, against previous vectors of (), where
L™t = (L"), the CGS2 algorithm is defined in Algorithm 19. Note that we have to solve 6
systems with multiple right hand sides. If L is a lower triangular matrix, then we perform three
backward substitutions and three forward substitutions.

Algorithm 19 L' AL *-orthonormalization against previous vectors of @, with CGS2

Input: A, the n x n symmetric positive definite matrix; L, n x n preconditioner
Input: (), the ¢tk search directions

Input: Py, the ¢ search directions to be L_IA(Lt)_l-orthonormalized
Output: Pk+1, the search directions L~ 1A(Lt) -orthonomalized against (),
Output Wk:-i-l L'AL- th+1

I Wi = L7YAL"Ppiy
20 Pep1 = Pry — Qk&@ZWk+1)
3: Wk+1 = L_lAL_thJrl
4: fori=1:tdo %loop over the vectors of Pk+1 and L—1 AL~*-normalize
: Do Pyy (240) Py (i) W . Wi 41(:,9)
5: Priai(5,0) = Pors o)l 1 ap s \/Pk+1(D and Wy11(:,4) = B (o) Wara (o)
6: end for N
7o Pryr = Pepr — Qk/(\Qi;Wk+1)
8: Wk+1 = L_lAL_thJrl
9: for:=1:tdo %loop over the vectors of Pk+1 and L—1 AL~*-normalize
: D (. Pyt (:0) Py (211) w. (- Wi 1(:,1)
10: Priai(s,0) = Bors Gl -1 ans \/Pk+1(B and Wy11(:,4) = NI
11: end for

2.4.3 Cholesky QR A-orthonormalization

A orthonormahzlng the n x t full rank matrix Py is equlvalent to a QR factorization Py, =
PkHR where Pk+1APk+1 = I. Thus, P}, AP1 = (PkHR) APkHR R'R and R can be
obtained by performing a Cholesky factorization of the SPD matrix P/, AP;,. Then, Pkﬂ =
P, R~ is obtained by solving the lower triangular system Rt]—?’,;S +1 = P{., with multiple right-
hand sides. This procedure is called A-CholQR and summarized in Algorithm 20 [64, 59]. Simi-
larly to the other A-orthonormalization methods, we may assume that 1/, is already computed,
then the obtained A-CholQR is described in Algorithm 21. Note that the only difference between
the A-CholQR, Algorithms 20 and 21, for A-orthonormalizing Py 1, and the CholQR algorithm
[72] for orthonormalizing P is in the definition of C. In A-CholQR C' = P} +1 APy 1, whereas
in CholQR C' = P}, | Py1.

The parallelization of Algorithm 21 assumes that we have ¢ processors and each is assigned
a rowwise part of Py, and Wy, corresponding to the ¢; subset of indices defined previously,
Pis1(8;,2) and Wy 1(8;,:). And each processor i should compute Py, (d;,:) and I/IN/kJrl((S,-,).

CHAPTER 2. PRELIMINARIES 29

Algorithm 20 A-CholQR Flops

Input: A, the n x n symmetric positive definite matrix
Input: P4, the search directions to be A-orthonormalized
Output: P, the A-orthonomalized search directions

1: Compute Wy, 1 = APy 41 (2nnz — n)t
2: Compute C' = W}, | Py (2n — 1)t
3: Compute the Cholesky factorization of C' = R'R to obtain R t2
4: Solve R'P{., = P}, nt?
5: fort=1:tdo _ » -
. D N &/ (1) N Pry1 (i
6: Pk+1(’z> HPIC+1(:”L‘)||A \/ﬁk+1(2,i)tAﬁk+1(Z,i) 3n
7: end for
Algorithm 21 A-CholQR Flops

Input: P, 4, the search directions to be A-orthonormalized, Wy 1 = APy,
Output: P, 1, the A-orthonomalized search directions; Wy 1 = APy,

1: Compute C' = W}, | Py (2n —1)¢?
2: Compute the Cholesky factorization of C' = R'R to obtain R t2

3: Solve R'P{ , = P, t*n

4: Solve R'W}, =W}l , t*n

5: fori=1:tdo

6: Let np = \/.ﬁk+1(:7 0 Wiesn (2, 1) 2n

7 Pe(i) = 228 and Wy (i) = Dl 2n

8: end for

Then each processor i computes Wy, 1(0;,:) Py 1(0;, ;) and receives the ¢ x ¢ matrix C' via an “all
reduce” or equivalently log(t) messages and t*[og(t) words. Finally, each processor ¢ can compute
the Cholesky factorization of the matrix C' to obtain R which is needed to solve Rtﬁkﬂ (65,:)F =
Pry1(0;,:)" and RthH((&,)t = Wii1(0;,)", Thus, it is possible to parallelize the A-CholQR A-
orthonormalization, Algorithm 21, by sending log(t) messages with t?log(t) words and performing

t? + M ~ 4nt flops in parallel. Hence, by ignoring lower order terms we obtain

Timea_chogr = Yeint + alog(t) + B.t’log(t)

In the case of A-orthonormalization of P, 1, where A = L~YAL~* and L~ = (L!)~!, the A-
CholQR algorithm is defined in Algorithm 22. Note that we have to solve 2 systems with multiple
right hand sides. If L is a lower triangular matrix, then we perform a backward and forward
substitution.

Recently, Lowery and Langou presented a new version of A-CholQR in [59], which they call

30 S. MOUFAWAD

Algorithm 22 A-CholQR

Input: A, the n x n symmetric positive definite matrix; L, n x n preconditioner
Input: P, ,, the search directions to be A-orthonormalized; W;,, 1, = L~ *AL7'P, .,
Output: f’kﬂ, the A-orthonomalized search directions; Wkﬂ = L_lAL_tIBkH

1: Compute C' = W/ Priq

2: Compute the Cholesky QR factorization of C' to obtain R

3. Solve R'Pf. |, = P},

4: Compute Wy = L™YALtD,,,

S:foriflztdo - - N .

6: Do (i) = —2enild o Pl and Wi, (:, 1) = —— N1l
k+1() 1Pe41Gi8)l|a \/Pk+1(i’i)th+1(¢,i) k+1() \/Pk+1(1:i)th+1(hi)

7: end for

Pre-CholQR (Algorithm 23). It consists in performing a Euclidean QR factorization with L2 before
calling the A-CholQR A-orthonormalization, Algorithm 20. The QR factorization of P, can
be done using the TSQR [21], which requires sending log(t) messages, each of size % words
and computing 2nt + §t3log(t). Then, parallelizing Algorithm 20 requires performing two “all
reduce” or 2log(t) messages with (nt + t?)log(t) words. In total, parallelizing Algorithm 23
requires sending 3log(t) messages with (nt + 1.5t%)log(t) words. Hence, by ignoring lower order

terms we obtain

2 3
Timeprechoior ~ Ve(6nt + +§t3log(t)) + a.2log(t) + Be(nt + §t2log(t))

Algorithm 23 Pre-CholQR
Input: A, the n x n symmetric positive definite matrix
Input: P, the search directions to be A-orthonormalized
Output: 13k+1, the A-orthonomalized search directions
1: Compute the QR factorization of Py, = P,; R
2: Call Algorithm 20 with A and P,; +1 as input and with IBkH as output

2.5 Matrix powers kernel

The matrix powers kernel takes as input an n x n sparse matrix A, a dense vector (¥ of length n
and a scalar s and computes s powers vectors x1 = Axg, 1o = A%z, ..., x5 = A%x(where z; =
Ax; 4 for 0 < @ < s. This kernel has the advantage of performing s matrix vector computations

CHAPTER 2. PRELIMINARIES 31

per fetching the matrix A once. Whereas in the classical GMRES, the matrix A is fetched at
each iteration to perform one matrix-vector multiplication only. By definition, this kernel avoids
communication by avoiding the fetching of A (s — 1) extra times. Demmel and coworkers have
proposed sequential, parallel, and hybrid implementation of the matrix powers kernel that further
avoid communication [22, 60, 48] by ghosting and computing redundantly on each processor the
data required for computing its part of the vectors with no communication. These implementations
work optimally for sparse matrices A that have a partitionable graph such that the non-overlapped
partitions have a small surface-to-volume ratio, where “surface” indicates the boundary between
two partitions. In other words, the ratio of the boundary vertices over the total vertices in a partition
should be small, where the boundary vertices of some partition are those vertices share at least an
edge with some vertex from another partition. This is true for many types of sparse matrices,
including discretizations of partial differential equations.

Demmel and coworkers have presented 2 implementations PA1 and PA2 for the matrix powers
kernel on distributed-memory architecture [22]. In their paper [60], they presented an implemen-
tation for shared-memory multicores architecture which is based on a simplified version of PA1.
Two sequential implementations are also presented, the implicit and the explicit algorithm. The
main purpose of both algorithms is to minimize the data movement between levels of memory
hierarchy. As for the hybrid implementation, that nests a parallel and a sequential matrix powers
kernel algorithm, it minimizes data dependency between the processors and the data movement
between levels of memory hierarchy of each processor.

In this section, we present a generic algorithm for distributed-memory or shared-memory par-
allel implementation of the matrix powers kernel for computing the s monomial basis vectors of
the Krylov subspace. First, the data and the work is split equally between the p processors where
the indices set & = 1 : n is partitioned using some graph or hypergraph partitioner into p subsets
§; fori = 1,2, ...p, where 6 = U”_,0;. Each processor i is assigned the §; part of 2y and has to
compute the same part of z1(6;) = A(d;,:)xo, x2(0;) = A(d;,)z, till 2°(6;) = A(6;,:)xs—1 With-
out any communication with other processors. To do so, each processor ¢ determines (Algorithm
24) and fetches all the data needed from the neighboring processors, to compute its part §; of the s
vectors (Algorithm 25).

Algorithm 24 s-step Dependencies for the Matrix Powers Kernel

Input: G(A); s, number of steps; d;, subset of unknowns assigned to processor i
Output: Sets §; ; forall j = 1till s
Let 51"0 = 5@
forj=1:s
Find 6, ; = Adj(G(A),di,5 — 1)
end for

bl e

Due to the fact that A is a sparse matrix, x5(0;) = A(0;, 9;1)Ts—1(0;1), where §;1 = Adj(A, ;)
is the adjacent of ¢; in graph of A. To compute z,_1(;1) = A(0;1,0;2)Ts—2(d;2) where J;5 =

32 S. MOUFAWAD

Algorithm 25 Matrix Powers Kernel

Input: A(d;,:), 0(0;), s: number of steps, d;: subset of unknowns assigned to processor ¢
Output: y;(ay), where 1 < i < s
1: for each processor: = 1: p do

2 Processor ¢ calls the algorithm 24

3 Processor i fetches the missing parts of A(d; 5—1, ;) and x(6; s)

4 for;=1:sdo

5: Processor ¢ computes ;(8; s—j) = A(is—j, 0is—j+1)Tj—1(0is—j+1)
6 Save z,;(9;), which is the part that processor 7 has to compute

7 end for

8: end for

Adj(A,d;1) = R(A, 6;,2), 5-2(0;2) must be computed. And similarly, to compute x;_o(d;2) =
A(éi’g, 61"3)ZE3_3(5Z"3) where (51"3 = Adj(A, (5@2) = R(A, 62'7 3), xs_g(éi,:g) must be computed.

In general, x5_;(0; ;) = A(8i;,0ij+1)Ts—j—1(0; j+1) where §; ;41 = Adj(A,d; ;) = R(A, 6, j+
1). Thus, from the beginning, processor 7 fetches the missing data of z((d;) and A(d; -1, ;)
from its neighboring processors and store it redundantly, where 6; ; = R(A, d;, s). Finally, each
processor ¢ computes the set d; ,_; = R(G(A), d;, s — j) of the vectors z; for j = 1,2, .., s without
any communication with the other processors as shown in Algorithm 25. Note that Algorithm 25
can be used for a sequential implementation where the number of partitions p is chosen so that the
blocks would fit into cache.

1 2 3 4 5 6 7 8 9 10)51|52)53)54 55 56 57 58 59 60
11 12 131415 16 17 18 19 2061626364 65 66 67 68 69 70
21 22 23 24 25 26 27 28 29 30|71)72 7374 75 767778 79 80
31 32 33 34 35 36 37 38 39 40|81|82]83)84 85 86 87 88 89 90
41 42 43 44 45 46 47 48 49 50|91)92]93§94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110§151§152§153 154 155 156 157 158 159 160)|
111 112 113 114 115 116 117 118 119 120§161§162 163 164 165 166 167 168 169 170
121 122 123 124 125 126 127 128 129 1304171 172 173 174 175 176 177 178 179 180
131 132 133 134 135 136 137 138 139 140|181 182 183 184 185 186 187 188 189 190
141 142 143 144 145 146 147 148 149 150|191 192 193 194 195 196 197 198 199 200|

Domain & ghost zone i
—_— Domain 1
for one step
Domain & ghost zone Domain & ghost zone
for two steps for three steps

Figure 2.3: Needed data to compute three multiplications y; = Ay;_1 on Domain 1 using Matrix Powers
kernel

CHAPTER 2. PRELIMINARIES 33

Figure 2.3 shows the needed data for each step on Domain 1 with s = 3 where the graph
of a 2D 5 point stencil matrix with n=200 is partitioned into 4 subdomains. Since §; < 015 =
R(G(A), 01, s), it is obvious that the more steps are performed, the more redundant data is ghosted
and flops are computed. In addition, partitioning plays an important role in reducing the size of
the ghost data and balancing the load among processors. In [13] and [11], hypergraph partitioning
models where introduced to reduce the volume of communication in matrix vector multiplication
and matrix powers kernel.

2.6 Test matrices

In this section we describe the test matrices (Table 2.1) used in Chapters 4 and 5.

The first matrix Po1ssoN2Dis a block tridiagonal matrix obtined from Poisson’s equation (sparse)
using matlab’s gallery("poisson’,100) function. As for the matrices, UTM3060, BCcssTK18 and
WATT2, their full description can be found in [20]. The matrices refered to as NH2D, NH2D]1,
NH2D2, SKY2D, SKY2D1 SKY3D, SKY3D1, and ANI3D, arise from boundary value problem of the
convection diffusion equations

n(x)u + div(a(z)u) — div(k(z)Vu) = finQ
u = 0ondQp

5= OonaQN
o

Jo5)

where 2 = [0,1]", (n = 2, or 3) and 0Qy = 0Q\0S2p. The function 7, the vector field a, and
the tensor « are the given coefficients of the partial differential operator. In the 2D case, we have
0Qp = [0,1] x {0, 1}, and in the 3D case, we have 0Q2p = [0,1] x {0,1} x [0,1]. We focus on
the following cases:

e NH2D, NH2D1, NH2D2: A non-homogeneous problem with large jumps in the coefficients. The
coefficient 77 and a are both zero. The tensor « is isotropic and discontinuous. It jumps from
11

3 | 1 T -
the constant value 10 in the ring 5= < |z — ¢| < 5, ¢ = (3,3)", to 1 outside.

e SKY2D, SKY2DI, SKY3D, and SKY3D1 Skyscraper problems : The tensor « is isotropic and
discontinuous. The domain contains many zones of high permeability which are isolated
from each other

(x) = 10° # ([10 # o] + 1) if [10z;] is odd, i = 1,2
S 1, otherwise.

where we note [x] as the integer value of x.

e ANI3D Anisotropic layers : the domain is made of 10 anisotropic layers with jumps of up to
four orders of magnitude and an anisotropy ratio of up to 10° in each layer. The domain is

34 S. MOUFAWAD

divided into 10 layers parallel to z = 0, of size 0.1, in which the coefficients are constant.
We have x, = 10k, and x, = 1000%,. The velocity field is zero.

Bo1l and Bo2 matrices are from a simulation of a black oil reservoir model, based on a com-
positional triphase Darcy flow simulator (oil, water and gas) !, The permeability is heterogeneous,
with jumps on the order of 28.

PO1SSON2D, NH2D and SKyY2D1 are discretized on a 100 x 100 2D cartesian grid. NH2D1 and
SKY2D are discretized on a 200 x 200 2D cartesian grid and NH2D2on 400 x 400 2D cartesian
grid. SKY3D1 and ANI3D are discretized on a 20 x 20 x 20 3D grid and SKY3D on a 40 x 40 x 40
3D grid. Bol and Bo2 are discretized on a 15 x 15 x 8 grid, and a 30 x 30 x 16 grid.

The matrices Cp20r1, Cp50r1, Cp100P1, CD200P1, CD20P2, CD50P2, and CD100P2 arise
from the boundary value problem of the convection-diffusion equations —Awu — 2P g—z + 2Pg—Z =g
on {2 = (0,1) x (0,1) used in [6, 25] for testing preconditioners, where P > 0 and the right-hand
side g and the boundary conditions are determined by the solution u(x,y) = 62}:21;?1’1 + 6622?:11.
The matrices were generated by Pierre-Henri Tournier using FreeFem++ [46] with Finite Element
P1 and P2 schemes with an adaptive mesh for P = 20, 50, 100, 400, 500.

As for the ELASTICITY3D matrix, it arises from the linear elasticity problem with Dirichlet and
Neumann boundary conditions, defined as follows:

div(o(u))+ f =0 on (,
U = up on 0f)p,
olu)n =g on 02y,

where 2 is a 3D 30 x 10 x 10 parallelepiped, €2 is the Dirichlet boundary, €2y is the Neumann
boundary, u is the unknown displacement field, f is some body force, o(u) is the Cauchy stress
tensor given by Hooke’s law. The ELASTICITY3D matrix was discretized with P1 finite elements
and a triangular mesh using FreeFem++ [46]. For a detailed description of the problem refer to
[42].

IThese matrices were provided to us by R. Masson, at that time at IFP Energies Nouvelles

CHAPTER 2. PRELIMINARIES

Table 2.1: The test matrices

Matrix Size Nonzeros | Symetric | 2D/3D Problem
PoIssoN2D 10000 49600 Yes 2D Poisson equations
NH2D 10000 49600 Yes 2D Boundary value
NH2D1 40000 199200 Yes 2D Boundary value
NH2D2 160000 | 798400 Yes 2D Boundary value
SKY2D1 10000 49600 Yes 2D Boundary value
SKY2D 40000 199200 Yes 2D Skyscraper
SKY3D1 8000 53600 Yes 3D Skyscraper
SKY3D 64000 438400 Yes 3D Skyscraper
ANI3D 8000 53600 Yes 3D Anisotropic Layers
Bol 1800 11670 Yes 3D Black oil reservoir
Bo2 14400 97080 Yes 3D Black oil reservoir
UtM3060 3060 42211 No 3D Electromagnetics
BCsSTK18 11948 149090 Yes 3D Structural (Stiffness Matrix)
WATT2 1856 11550 No 3D Computational fluid dynamics
Cp20pr1 3190 21908 No 2D Convection diffusion P1 FE
CbD50pr1 3413 23439 No 2D Convection diffusion P1 FE
Cp100pr1 3909 26885 No 2D Convection diffusion P1 FE
Cp200pr1 5262 36224 No 2D Convection diffusion P1 FE
CD20pP2 12423 141279 No 2D Convection diffusion P2 FE
CD50pP2 13413 152589 No 2D Convection diffusion P2 FE
Cp100pP2 14612 166280 No 2D Convection diffusion P2 FE
ELasTICITY3D | 11253 373647 Yes 3D Linear Elasticity P1 FE

35

36

S. MOUFAWAD

Chapter 3

Krylov Subspace Methods

The Krylov Subspace methods are named after the Russian applied mathematician and naval engi-
neer Alexei Krylov. In this chapter we discuss several variants of Krylov subspace methods. In the
first section, we introduce Classical Krylov subspace methods, specifically CG [47] and GMRES
[66]. In the second section we briefly introduce variants of Krylov methods that are better paral-
lelizable and require less communication like block methods, s-step methods and communication
avoiding methods. Finally, we discuss preconditioners which are crucial for the fast convergence
of the Krylov methods.

3.1 Classical Krylov subspace methods

In this section we define the Krylov subspaces and list its properties. Then we will define the
classical Krylov Subspace methods and the Krylov projection methods like CG [47] and GMRES
[66].

3.1.1 The Krylov subspaces

In linear algebra, a Krylov subspace of order-i K; is generated by an n x n matrix A and an n x 1
vector y where K;(A,y) = span{y, Ay, A%y, ..., A"y}, Thus, the Krylov Subspace is the linear
subspace spanned by the images of y under the first i powers of A and it verifies the following
properties:

o Ki(Ay) = Ka(A,y) € K3(Ay) = Ka(A,y) = .. < Ku(4A,y) < ..
L4 A’Ck(Av y) < ICk+1(A, y)

37

38 S. MOUFAWAD

The proof of the first property is trivial and it is based on the definition of Krylov subspaces. As
for the second poof, we let

r = doy+ diAy + do A%y + ..+ dj_ Ay
— Ax = dyAy + di A%y + dy Ay + ..+ dj_1 APy e K (A, y)

3.1.2 The Krylov subspace methods

The Krylov Subspace methods are polynomial iterative methods that aim to solve linear equations
of the form Az = b by finding a sequence of vectors

T1,T2,XT3, T4y ..., Tk
that minimizes some measure of error over the corresponding spaces
To + ’CZ(A, To), for i = 1, ey k

where 1z is the initial iterate or guess, 7o = b — Az is the initial residual and IC;(A, o) is the
Krylov subspace of order i generated by A and ry. Conjugate gradient (CG) [47], generalized min-
imum residual (GMRES) [66], bi-conjugate gradient (Bi-CG) [56, 30], and bi-conjugate gradient
stabilized (Bi-CGstab) [75] are Krylov Subspace methods.

3.1.3 Krylov projection methods

The Krylov projection methods find a sequence of approximate solutions x € zo+K; (k = 1,2, ..)
of the system Ax = b by imposing the Petrov-Galerkin constraint on the k" residual r, = b — Ax,

TkJ_Lk

where £, < R” (or £ C") is a well-defined subspace of dimension k. The subspace £ can be
the same as the Krylov subspace K;, or different. The different choices of £, give rise to different
methods [65]. Thus, the different Krylov Projection methods are defined by the subspace £ and
the following 2 conditions:

1. Subspace condition: xj, € xo + Ky
2. Petrov-Galerkin condition: 7, | L <= (rx)'y =0 Vye Ly,

Conjugate Gradient and GMRES are Krylov projection methods where £, = Ky, and L) =
AKy respectively.

CHAPTER 3. KRYLOV SUBSPACE METHODS 39

3.1.4 Conjugate gradient

The conjugate gradient, which was introduced by Hestenes and Stiefel in 1952 [47], is an iterative
Krylov Projection method for symmetric (Hermitian) positive definite matrices of the form

Ar = b
{ A = A 3.1)
2'Ar > 0,Vo #0

Given an initial guess or iterate x, at the k" iteration CG finds the new approximate solution
Ty = Tp_1 + agpy that minimizes ¢(x) = %(x)tAx — b'z over the corresponding space g +
Kir(A, 7o), where k > 0, pp € Kp(A,rg) is the k" search direction and o, is the step along the
search direction.

The minimum of ¢(x) is given by 7¢(x) = 0 which is equivalent to \7¢(x) = Az — b = 0.
Thus, by minimizing ¢(z) we are solving the system (3.1). As the name of the method indicates,
the gradients \/¢(z;) for all i should be conjugate. And since CG is a projection Krylov method,

the residual r, = b — Axy, should respect the Petrov-Galerkin condition
Tk 1 ’Ck

Thus, (rx)'y = 0 V y € Kx. Hence, the residuals form an orthogonal set, (ry)'r; = 0, Vi < k.
Moreover, the Petrov-Galerkin condition 7, L Kx(A, 7o) is equivalent to the conjugacy of the
gradients V¢ (zx)" v ¢(z;) = 0 Vi # k. Once z; has been chosen, either x;, is the required
approximate solution of Az = b or a new search direction p;,; # 0 and a new approximation
Try1 = Tk + api1Pre1 are computed. This procedure is repeated until convergence or until the
maximum number of allowed iterations has been reached without convergence. The convergence
criterion is set as
|7kl < €|]b]|2, for someeeR

where 7, = b — Axy € K1 (A, 70) is the k' residual.

Theorem 3.1.1. The Petrov-Galerkin condition (r,)'y = 0 YV y € Ky implies the A-orthogonality
of the search directions ptAp; = 0 Vi # j.

Proof. By definition, p; € K; and K; < ;1. Thus p; € ;. for ¢ = 0. By the Petrov-Galerkin
condition 7},_,p; = 0fori < k—1landrip; = 0. Thus, rip; = ri_,p; —aplAp;, = 0fori < k— 1.
This implies that p{, Ap; = 0 for i < k — 1 since o # 0. Therefore, the A-orthogonality of the
search directions. 0

This theorem means that the A-orthogonality of the search directions has to be ensured or else
the Petrov-Galerkin condition won’t be respected. On the other hand, the search direction p; € K,
is chosen according to the following recursion relation:

br = To
3.2
{ Pk = Th—1+ BePr—1 (3-2)

40 S. MOUFAWAD

where p; is set equal to ry since the initial residual is equal to negative the gradient — <7 ¢ ()
which is the steepest descent from xy. But pj, is not set to r;_1, the steepest descent from z;_; for
k > 1, since the residuals are not A-orthogonal. It can be shown that the search directions defined
in (3.2) are A-orthogonal i.e. pt Ap; = 0 forall i < k — 1. Fori < k — 1, we have

PLAp; = i1 Api + Brp_1Api = Bibl_1 Ap; (3.3)

since 7}, _; Ap; = 0 by Petrov-Galerkin condition. In addition, },_,p; = 7} _op; — ag—1p,_;Ap; = 0

with 7§ _,p; = 0 since ¢ < k — 2. Thus, p},_, Ap; = 0. Therefore, p, Ap; = 0 fori < k — 1.
Asfori=k—1,r, [App_1 # 0and p,_,Apx_1 # 0 for p;_; # 0. Thus, §;, = —%

is chosen so that pt Ap,_1 = 0

(pe)'re—1 _ |lre—1ll3

o Ape — e S chosen such that,

At each iteration, the step oy, =

o(zr) = min{p(xr_1 + api), Va € R}.

_ (re1)'Apk g llre—1ll3

Using the definition of oy, [= e Ans = el
c—1 -1 Tk— 2
Algorithm (26).

The CG algorithm is presented in

Algorithm 26 The CG Algorithm

Input: A, the n x n SPD matrix; b, the n x 1 right-hand side
Input: ; z(, the initial guess or iterate
Input: ¢, the stopping tolerance; k4., the maximum allowed iterations
Output: z,, the approximate solution of the system Az = b
1: g = b— A.Z’O,p(] = HT'()H%,k: 1
2: while (,/p,_1 > €[[b]|2 and k < kg,) doO
3: if k=1)thenp = rg
else f=2"andp=r+fFp

T pr—2

4.

5: end if

6: w= Ap

. __ Pk—1

7: o= Do

8: Tr=x+ap
9: r=r—aoaw
10: pr. = Ir[l3
11: k =k+1

12: end while

The CG Algorithm 26 has short recurrences, where the memory requirements and computed
flops per iterations are constant. Hence, four vectors are stored along with the sparse matrix A.

CHAPTER 3. KRYLOV SUBSPACE METHODS 41

After performing k. iterations, O(k.(10n + 2nnz)) flops are computed. It is shown in [65] that the
speed of convergence of CG is

VR -1
NCES!

where 7, is the exact solution of Ax = b, z;, is the k' approximate solution Ax = b, Kk =

conds(A) = j\\Z“: » Amagz 18 the maximum eigenvalue of A, and A,,;, is the minimum eigenvalue of
A.

k
||:c*—xk|A<2[}Hx*—onA

3.1.5 Generalized minimal residual (GMRES) method

The generalized minimal residual method (GMRES), introduced by Saad and Schultz in 1986 [66],
is a Krylov projection method for solving general linear systems,

Ax =10

where the residual 7, is chosen to be orthogonal to £, = AK.
The GMRES method solves the system Az = b by approximating the solution at the k"
iteration with the vector z;, € o + K, such that

7|2 = ||b — Azxgl||e = min{||b — Az||s, Vo € 2o + Kk}

The minimum of the L2 norm ||b— Ax||, is zero which is equivalent to solving the system Az —b =
0. It can be shown that the Petrov Galerkin condition r, L AK is equivalent to minimizing
|6 — Ax||5 for all zy + Ky.

Unlike the Conjugate Gradient method, the residuals in GMRES do not form an orthonormal
basis for ;. Thus, an orthonormal basis is built for /C; using the Arnoldi process, which gen-
erates basis vectors and orthonormalizes them using modified Gram Schmidt procedure. At each
Arnoldi iteration a new basis vector is computed and orthonormalized against previous vectors.
The Arnoldi process reduces a general, nonsymmetric 7 x n matrix A into an upper Hessenberg
form by the similarity transform

A=QHQ" or AQ = QH,

where H is an i x i upper Hessenberg matrix and () is an n x ¢ matrix with Q'Q = I. Note that
i < n is the largest index such that ¢; # 0. Since Q) satisfies Q@) = I, then the columns of Q,
{¢1, 2, ---, ¢;} form an orthonormal basis for ;. For 1 < k < i we have the following relation:

AQi—1 = QrHj—4

where (), is an n x k orthogonal matrix and Hy_; is a k x (k — 1) upper Hessenberg matrix. Note
that at the k" iteration of the Arnoldi process the k" basis vector, g, = Agqi_1, is computed and

42 S. MOUFAWAD

orthonormalized against {q1, g2, ..., gx_1}, thus producing the last column of Hj_, where Q; =
[Qk-1,qx] and

After building up the Arnoldi orthonormal basis {q1, g2, ..., g} for the subspace /Xy, the least

squares problem min}C ||b — Ax||, is transformed into min ||poely1 — Hyyl|2 where z = zg +
zexo+Ky yeRF

Qry, Qk is an n x k orthogonal matrix, Hy is a (k + 1) x k upper Hessenberg matrix, po = ||7o||2
andely,; =[100..0]"isak + 1 x 1 vector.

The final step is finding the optimal y;, € R* that minimizes ||poely 1 — Hyyl||o. This is
equivalent to solving the system

Hyy = poey. (3.4)

By exploiting the special structure of Hy, the system (3.4) is transformed into an upper tri-
angular system using Givens rotations. Then the obtained upper triangular system is solved us-
ing backward substitution. Note that it is not necessary to solve for y;, and compute z;, at each
iteration. This can be done once convergence is attained. Thus, the norm of the k" residual
pr = ||pk — Hyykl|2 has to be evaluated without finding yx, where py is a (k + 1) x 1 vector
corresponding to the application of Givens rotations on pgely 1. Since Hy is a (k + 1) x k upper
triangular matrix, where the last row has zero entries, and Hy(1 : k,1 : k)yr = pr(1 : k), we
conclude that py = ||pr — Hryellz = |[pe(k + 1)|.

Algorithm 27 The GMRES algorithm

Input: A, the n x n matrix; b, the n x 1 right-hand side; x, the initial guess or iterate
Input: ¢, the stopping tolerance; k..., the maximum allowed iterations
Output: x;, the approximate solution of the system Az = b
1: Compute ro = b — Axg, po = ||ro|]2, 1 = %0, er = [1,0], p1 = poet, k=1
2: while (pg > €||b|]2 and k < k0,) do
Generate the (k + 1) vector of the Arnoldi basis Q. and the £ column of the Upper
Hessenberg matrix Hy,
Let Hy11 = Hj and apply Givens rotations on H, and py
pr = pu(k + 1)], e1 = [e1,0], prar = poel, k =k + 1
end while
Let k = k — 1, and perform backward substitution on Hy (1 : k,1: k)y = pr(1 : k)
T = To + Qrlk

b

® >0k

The GMRES Algorithm 27 has long recurrences, where at each iteration a new basis vector gy ;1
is computed and orthonormalized against all the previous vectors q1, qa, ..., qx. Thus the memory

CHAPTER 3. KRYLOV SUBSPACE METHODS 43

requirements and computed flops increase with every iteration. In case of limited memory, it is
possible to restart GMRES with 2y = ;. However, there is a possibility that it stagnates.

After performing k. iterations, k. + 1 vectors of length n and a (k. + 1) x k. upper Hessenberg
matrix have to be stored along with the n x n sparse matrix A. And O(k.n? + k?n) flops are
computed.

As for the convergence, GMRES method is known for its superlinear convergence behavior,
where the rate of convergence seems to improve as the iterations proceed [76]. Assuming that
| — All2 < p < 1 Kelley [50] proves the following relation between the k% error and the initial
one,

ler — 2|2 < p*llzo — 2|2 (3.5)

where z* is the exact solution, z is the initial guess, and z;, is the k*" approximate solutions.

3.2 Parallelizable variants of the Krylov subspace methods

The classical Krylov subspace methods, discussed in the previous section, are governed by Blasl
and Blas2 computations like dot products and matrix vector multiplication. Parallelizing dot prod-
ucts is not efficient due to the negligible amount of performed flops with respect to the cost of the
data movement. The solution multiply a matrix by a set of vectors and solve small systems instead
of matrix vector multiplications and dot products. For example, in block methods the idea is to
solve a system with multiple right hand sides. Whereas in s-step methods the idea is to merge
the computations of s iterations of classical Krylov methods in order to compute s matrix-vector
multiplications at a time. Communication avoiding methods are based on s-step methods with
algorithmic and implementation level improvements for avoiding communication communication.
In sections 3.2.1, 3.2.2, and 3.2.3 we discuss block methods, s-step methods and communication
avoiding methods respectively. Finally in section 3.2.4 we discuss two CG parallelizable variants,
cooperative CG (coop-CG) and multiple search direction CG (MSD-CG). In coop-CG, the idea is
having multiple agents or threads that cooperate to solve the system Az = b, ¢t times in parallel
starting with ¢ initial distinct guesses. In MSD-CG, a domain decomposition method, the idea is to
have multiple search directions at each iteration. These search directions are defined on different
subdomains.

3.2.1 Block Krylov methods

The block Krylov methods solve a system with multiple right-hand sides
AX =B

where A is an n x n matrix, X is an n x t block of vectors, B is an n x ¢ block of vectors, and ¢ is
the number of right-hand sides. The block Krylov methods are iterative methods that approximate

44 S. MOUFAWAD

the solution of AX = B at the k" iteration by X}, € Xy + Ky (A, Ry), where Ry = B — AX, is
the initial block residual, and K (A, Ry) = block — span{Ry, ARy, A*Ry, ..., A* Ry} is the block
Krylov subspace. Every n x t block Z € Kj11(A, Ro) is defined as Z = Zle A'Ro(; where is
at x t matrix.

The first block method, block CG [63], was introduced in 1980 by O’Leary. As for block
GMRES which was introduced in Vital’s PhD thesis [78], it is based on the block Arnoldi method
(refer to [45]). Block CG is only described in section 3.2.1.1. For a brief description of block
GMRES refer to [45].

3.2.1.1 Block conjugate gradient (B-CG) method
In 1980 O’Leary introduced a block CG version [63] that solves an SPD system with multiple

right-hand sides
AX = B,
{ A = A (3.6)
x

Az > 0,Vo #0

where A is an n x n matrix, X € R™*! is a block vector, and B is a block vector of size n x ¢
containing the multiple right hand sides.

Starting with an initial guess X, € R™*?, initial residual Ry = B — AX,, P, = Ryy; with
~v1 at x t full rank freely chosen matrix, the B-CG searches for an approximate solution X, €
Xo + Kii1(A, Ry) where Ky, 1(A, Ry) = block — span{Ry, ARy, A’Ry, ..., A¥ Ry} is the block
Krylov subspace. By the Petrov-Galerkin condition we have that Ry,q | Ky.1(A, Ry). Then,
R; Y = 0forall Y € X;,1(A, Ry), which implies that R} | R; = 0 and R}_, AP, = 0 for all
1< k+ 1.

Then, for k£ > 0 the iterates are defined similarly to CG:

Xiy1 = Xip+ BPeprogn € Ki+1(A, Ry)
Riy1 = Ry —APpopn € Kpi2(A, Ro)
Piro = (Ris1+ Pros1Bri2) k2 € Kig2(A, Ry)

where

a1 = (Pl APe) " v(RLRy)
Brrz = Yiii(RLRe) " (Ris1Res1)

Note that a1 is chosen such that ¢(Xy,1) = min{d(Xy + Prr1c), for alla € R*}. As for
Bra1, it is chosen to ensure the A-orthogonality of the Py and Py, ((Pyy1)' AP, = 0). Whereas
is a ¢t xt full rank matrix that can be chosen freely to decrease roundoff errors in the implementation.

CHAPTER 3. KRYLOV SUBSPACE METHODS 45

Moreover, the search direction Py, 1 € Ky, 1(A, Ro) of the block conjugate gradient method is A-
conjugate, (Py.1)'AY = 0, for all Y € Ky(A, Ry). This leads to the A-orthogonality of the
search direction = (Fy,1)'AP; = 0, for all i < k + 1. The Block-CG algorithm is presented in
Algorithm 28.

Algorithm 28 The Block CG Algorithm

Input: A, the n x n symmetric positive definite matrix
Input: B, the n x ¢ block of ¢ right-hand sides; X, the block of ¢ initial guesses or iterates
Input: ¢, the stopping tolerance; k4., the maximum allowed iterations
Output: X, the block of ¢ approximate solutions of the multiple right-hand side system
AX =B

1: RO :B—AX(),k=1

2: while (Not converged and k < k4,) do

3: if k=1) then Let P = R,

4: else Let P = (R + Pp)

5: Orthogonalize the vectors of P against each others and define ~y
6: end if

7. a=(P'AP)"'7'(R'R)

8: X =X+ P«

9: Rk,1 = R

10: R=R—- AP«

1 B=9(Ri_ Rea) " (R'R)
12: k=k+1

13: end while

3.2.2 The s-step Krylov methods

The s-step Krylov methods are parallelizable version of classical Krylov methods where s itera-
tions of classical Krylov methods are merged and computed simultaneously. The first introduced
s-step method was Van Rosendale’s s-step CG [77]. However, Chronopoulos and Gear where
the first to call their method “s-step” CG [19]. On the other hand, in 1985 Walker introduced
s-step GMRES [79] for numberical stability purposes. Since then many improved s-step CG and
GMRES versions were introduced. For a brief overview, refer to [48] on page 34. In this section,
Chronopoulos and Gear’s s-step CG (section 3.2.2.1) and Walker’s s-step GMRES (section 3.2.2.2)
are briefly described.

3.2.2.1 The s-step conjugate gradient

Chronopoulos and Gear’s s-step CG [19] starts by defining the first s search directions as the
basis vectors, p;; = AJ7'rg where 1 < j < s. Let P, = [p11,P12, .-, P1s), then at the k™

46 S. MOUFAWAD

iteration xy, = x,_1 + Pray where oy 1s the s x 1 step lengths vector. The «y is chosen so
that ¢(xy) = min{d(z| for all x € Ky)} = min{xg_1 + Pralfor all o € R*} where
¢(x) = sa' Az — b'x.

Let F(o) = ¢(Xy—1 + Pra). Then,

1
F(a) = 5(%—1 + Poa) A(zg_y + Pra) — (21 + Pra)'d

1
= ¢($k_1) + 5[($k_1)tAPkOé + @t(Pk)tA$k_1 + Oét(Pk)tAPkOé] — Oét<Pk>tb
1 1
= ¢($k71) + 5[($k,1)tAPkOé — at(Pk)tAl’k,1] + §Oét(pk)tAPkOé — th(Pk)tT’k,1

1
= ¢(rp—1) + §ozt(Pk)tAPkoz —a'(B)'ry_1, since Ais spd.

The minimum of F'(«) is givenby F'(a) = (PfAPy)a—Plry_; = 0. Thus, ay = (PLAPy) (Pire_1),
and Ty = b— ACEk =Tkr-1 — APkozk

As for the new s search directions, Py, = By + P where By, = [ry,, Ary, A%ry,, ..., A Iy,
and [is an s x s matrix chosen to ensure the A-orthogonality of Py, against Py, PLAP1 = 0.
Thus 8y, = (PLAP,) "' (P{ABy). The s-step CG algorithm is summarized in Algorithm 29.

Algorithm 29 The s-step CG Algorithm

Input: A, the n x n symmetric positive definite matrix ; s, the number of steps per iteration
Input: b, the n x 1 right-hand side; ¢, the n x 1 initial guess or iterate
Input: ¢, the stopping tolerance; k.., the maximum allowed iterations
Output: z,, the approximate solution of the system Az = b
1: r=b— Axg,P = [r, Ar, A%r, ., A5 Ir], p=rir, k=1
2: while (\/p > €||b||z and k < k0,) do
3 a = (P'AP)"Y(P'r)

4: r=x+ Pa

5: r=r— AP«

6: B = [r,Ar, A%r, .., A5 1r]
7. B =(P'AP)"'(P'AB)

8: P = (B+ Pp)

9: p=rir

10: k =k+1

11: end while

3.2.2.2 The s-step GMRES

s-step GMRES ([79, 26] and references therein) is based on replacing the Arnoldi iteration by
the Arnoldi(s) process where s basis vectors Arg, A®r, ..., A®ry are computed and then V, , =

CHAPTER 3. KRYLOV SUBSPACE METHODS 47

[ro, Arg, A%ry, ..., A°rq] is orthonormalized using MGS, CholQR, Householder QR, or any other
QR factorization. In Walker’s s-step GMRES Houselder QR is used for its numerical stability
where V1 = Q411 R, 1. After orthonormalizing the s basis vectors, the upper Hessenberg matrix
is reconstructed. Assuming that the orthonormal vectors obtained form Arnoldi(s) with House-
holder QR are the same as those obtained from Arnoldi process with MGS , i.e. the diagonal
entries of R are real positive numbers, then the upper Hessenberg is reconstructed as follows.

By definition of the construction of s basis vectors, AV, = V1 E, where Es = [eg, €3, ..€511]
is an (s+1) x s matrix, and e; is the i*" canonical vector with one at the i’ entry and zero elsewhere.
By Householder QR we have that V, = Qs R, and Vi1 = Qs 1Rs.1 where Qs = Qs11(:,1 : s)
and Ry = Rg11(1:s,1:). Then

AVy = Vi Es

AQsRs = QS+1RS+1E8
AQS = Qs+1Rs+1ESRS_1
AQS = Qerlea

where H, = R, FE,R;"' is an upper Hessenberg matrix. Solving the least square ||pe; — H,y|| is
equivalent to solving the system H,y = pe; by reducing it into an upper triangular system using
Givens rotations. Then, y is obtained by backward substitution of the upper triangular system. If
s == x + sy is not the desired solution, then s-step GMRES Algorithm 30 is restarted.

Algorithm 30 s-step GMRES

Input: A, the n x n matrix; b, the n x 1 right-hand side; x, the initial guess or iterate
Input: ¢, the stopping tolerance; s, the maximum allowed iterations before restart
Input: %,,,., number of restarts
Output: z,, the approximate solution of the system Ax = b

1: Compute Tro = b— A.f(), Po = ||7"0H2, v, = %J, k=1

2: Let ES+1 = Is’ €1 = E5+1(I,].),pl = pPo€1, ES = E5+1(Z,2 S+].)
Perform Arnoldi(s) process

3: Compute vy = Avy, v3 = Avs,.., V541 = Avs and let Viq = [v1, Vg, .., Us41]
Factorize V1 = Q41 Rs41 using Householder QR and let Ry = Ry, 1(1:5,1: 5)
Reconstruct the upper Hessenberg matrix H, = R, E,R;*

Solve Least Square ||py — Hyl|
Apply Givens rotations on H; and p;
Solve the upper triangular system H,y = p; by backward substitution to obtain y;
Ps = le - HsysHa k=k+1

Ts = To + sts

10: if (ps = €||b||2 and k < K0,) then

11: Let xq = x4 and restart by calling s-step GMRES with k4. = kige — 1

12: else x4 is the approximate solution

13: end if

AN

0 ® 2D

48 S. MOUFAWAD

Although the memory requirement in s-step GMRES are fixed for a given s and are much less
than that of GMRES, however the method has to restart after computing s basis vectors, where
s << n.

3.2.3 Communication avoiding methods

The communication avoiding methods are based on s-step methods with the goal of further re-
ducing communication. There are several CA methods like CA-GMRES [60] , CA-CG [48],
CA-BiCG, CA-CGS, and CA-BiCGStab [12]. In this section we will briefly discuss CA-GMRES
which is based on s-step GMRES with several improvements like differentiating between the restart
length and the s-step basis length .

3.2.3.1 Communication avoiding GMRES (CA-GMRES)

CA-GMRES [60, 48] is based on s-step GMRES (section 3.2.2.2) where the Arnoldi(s) process
is replaced by Arnoldi(s,t). The Arnoldi(s) process restarts after computing s basis vectors in one
iteration, where the restart length is equal to the s-step basis length. Whereas, the Arnoldi(s,t)
restarts after ¢ iterations and after computing st basis vectors, where the choice of ¢ is independent
from s.

At the i'" iteration of the Arnoldi(s,t) process where 1 < i < t, s basis vectors are computed
using the matrix powers kernel [22] without any communication. Then they are orthonormalized
against the previous s(i — 1) vectors using BCGS (Algorithm 2) and finally the s basis vectors
are orthonormalized using TSQR (section 2.4.2.2). A total of 3log(p) messages are sent at the 7
iteration of the Arnoldi(s,t) process , where p is the number of processors. Whereas in classical
GMRES, #log(p) messages are sent after performing s iterations of the Arnoldi process. Thus
by replacing the MGS in Arnoldi process by the BCGS+TSQR in the Arnoldi(s,t), the communi-
cation is reduced.

Then similarly to s-step GMRES, the upper Hessenberg is reconstructed (refer to [48]) and the
least square problem y,; = min||poer — Hgyl|2 is solved where e; is an si + 1 vector and H; is
an (si + 1) x si upper Hessenberg matrix.

At the end of the ¢ iterations of the Arnoldi(s,t) process, st + 1 computed orthonormal basis
vectors, Qst-‘,—l’ satisfy the following relation, AQSt = Qst+1Hst, where Qst = Qst+1< 1:st)isan
n x st column orthogonal matrix, and Hst is an st + 1 x st upper Hessenberg matrix. The st + 1
basis vectors, (s¢+1, obtained from Arnoldi(s,t) process may differ by a unitary scaling 6 from
the st + 1 basis vectors ()1 obtained from Arnoldi process with MGS. Q11 = Q5110551 Where
the absolute value of 0. is the (s + 1) x (s + 1) identity matrix. It is shown in [48] how obtain
the approximate solution z,; of CA-GMRES equal to that of GMRES.

Algorithm 31 summarizes the main steps in CA-GMRES. For a detailed algorithm refer to [48],
where the author shows that it is possible to delay the reconstruction of the (si + 1) x si upper
Hessenberg matrix Hy; and the solution of the least square problem until convergence is attained

CHAPTER 3. KRYLOV SUBSPACE METHODS 49

Algorithm 31 CA-GMRES

1: Compute ry = b — Axg, po = ||r0]

Input: A, the n x n matrix; b, the n x 1 right-hand side; x, the initial guess or iterate
Input: ¢, the stopping tolerance; s, the s-step basis length; ¢, the number of Arnoldi(s,t)
iterations

Input: %,,.., the maximum number of restarts

Output: z,t, the approximate solution of the system Ax = b

2,@12%,i=1,]€=1

2: Let Egiq = I, e1 = Es1(5, 1), p1 = poer

10:

12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:

: while (p; > €

eI

b||2 and i <t) do
Perform Arnoldi(s,t) iteration
Compute vg(i—1)4+2 = AVs(i=1)+1> Vs(i=1)+3 = AVs(i—1)425--» Usi+1 = Avg; using
the Matrix Powers kernel (Algorithm 25)
if i = 1 then
Let Vi1 = [v1,09,..,0s11] be ann x (s + 1) matrix
Orthonormalize V., using TSQR algorithm (section 2.4.2.2) and let Q511 = [Vi11]
else
Let Viis1 = [Usii—1)+2, Us(i—1)+3, --» Usi+1] be an n x s matrix
Orthonormalize Vi;, 1 against V,1,.., Vi_1)11 using BCGS (Algorithm 2)
Orthonormalize Vj;,, using TSQR algorithm (section 2.4.2.2)
Let Quiv1 = [Qs(i—1)+1, Veis1] and Qg = Quiy1(:, 1 : 50)
end if
Reconstruct the sz + 1 x si upper Hessenberg matrix H,i where AQy; = Qg1 H;
Solve Least Square ys; = miny||pr — Hyy||
Apply Givens rotations on H; and p;
Solve the upper triangular system H;y = p; by backward substitution to obtain y;
psi = |Ipr — Haysill, i =i+ 1L,k =k +1,p1 = [p1, 0]
end while
if (ps; = €||b]|2) and k < k0, then
Leti=1¢—1,and xy; = x¢ + QsiYsi
Let g = x; and restart by calling CA-GMRES with k4. = Kjjar — 1
else xis the approximate solution
end if

or a restart is needed. In total, as explained in [48], CA-GMRES communicates a factor of O(s)
fewer messages in parallel than GMRES. In a sequential machine with two levels of fast and slow
memory, it reads the sparse matrix and vectors from slow memory to fast memory a factor of O(s)
fewer times.

50 S. MOUFAWAD

3.2.4 Other CG methods

Apart from s-step and communication avoiding methods that merge s iterations of the classical
Krylov methods to reduce communication in parallel implementations, other ideas were intro-
duced. In this section we discuss two CG variants that are related to our introduced enlarged
Krylov subspace CG variants. The first method is called cooperative-CG (coop-CG) [8] which
was recently introduced, solves the system Az = b by starting with ¢ distinct initial guesses. This
is equivalent to solving the system AX = b+ 1, (algorithmically very similar to Block CG) where
1 is a vector of ones of size . The authors also present a parallel implementation that needs 2 to
3 synchronizations per iteration (section 3.2.4.1). As for the multiple search directions CG (MSD-
CG) [44], it solves Az = b by partitioning A’s domain into ¢ subdomains and defining a search
direction on each of the ¢ subdomains. Then z; = z;_1 + Py, where P, is a matrix containing all
the ¢ search directions and «, is a vector of size ¢ (section 3.2.4.2). Unlike CG, block CG and coop
CG, MSD-CG does not have the A-orthogonality condition of the search directions, i.e. P,iAPi is
not equal to zero for all 1 not equal to k. Hence it is not a projection method. This causes MSD-CG
to have slower convergence than CG as we will see later in section 4.4.

3.24.1 Coop-CG

Recently, in 2012, Bhaya et al. presented a new version of conjugate gradient which is similar in
structure to the Block conjugate gradient method. The coop-CG [8] solves the system Ax = b
by starting with ¢ different initial guesses and solving the same system ¢ times in parallel, where
t threads/agents cooperate to find the solution. This is equivalent to solving the system AX =
b = ones(1,t) where X is a block-vector containing the ¢ initial guesses, Ry = AXy — b = 1, is
the block residual, P, = R, is the initial block search direction. Then the derivations and the
algorithm of the coop-CG (Algorithm 32) are the same as the Block-CG with v, = I, where
Riq1 L K1 (A, Ro).
For k > 0 the iterates are defined similarly to B-CG:

Xir1 = Xp+ B € Kis1(A, Ry)
Riy1 = Rp— APypyi0g41 € Kr+2(A, Ro)
Pivo = Rps1+ PeyiBrie € Kiga(A, Ro)

where

Ag+1 = (PI§+1APk+1)_1(RZPk) = (P1§+1API~:+1)_1(RZR1€)
Brve = (P{1APe1) (Pl ARpr) = (RLRe) " (Rps1Risr)

CHAPTER 3. KRYLOV SUBSPACE METHODS 51

Algorithm 32 The Coop-CG Algorithm

Input: A, the n x n symmetric positive definite matrix

Input: b, the n x 1 right-hand side; X, the n x ¢ initial guesses or iterates
Input: e, the stopping tolerance; k4., the maximum allowed iterations
Output: z,, the approximate solution of the system Az = b

1: RQ :b*OTleS(l,t)—AXO ,PIR(),k=1

2: p = min(||Ro(:, DI[3, [[Ro(:, 2)|[3, -, [[Ro(:, t = D3, [[Ro(:, £)]13)
3: while (\/p > €l|b||; and k < K0,) do

4 o= (P'AP) (R'P)

5: X=X+ Pa

6: R=R—- AP«

7 B =(P'AP)"\(P'AR)

8: P = (R+ Pp)

o p=min(|RG DI 1R, 2)I, o, [RC,t — DR IR H)IR)
10: k =k+1

11: end while

A parallel implementation has also been introduced in [8]. First, W = AP is computed where
each agent i performs AP(:, i) followed by synchronization to obtain the full W. Then, since
P'AP = P'W is a symmetric ¢ x ¢ matrix, only the upper triangular part needs to be computed.
This work is split between the ¢ agents followed by a synchronization. Then, each agent : computes
R'P(:,1), solves for a(:,i), updates X (:,4) and R(:,i), computes W*R(:,), solves for §(:,1),
updates P(:,i), and computes ||R(:,4)||3. Then, a synchronization is needed to find p and check
for convergence. A total of 3/og(t) messages are sent with O(nt) words.

We can further reduced communication in the above parallel implementation. First, every agent
fetches the matrix A and P. Then agent i performs W (:,7) = AP(:, i), followed by P*W (:, 7). So
a communication is avoided by computing the full matrix P?AP rather than the upper triangular
part only. After that, a communication is needed so that every agent ¢ has the full £ x ¢ matrix
P'AP needed for finding «(:,7) and j(:, %), and then updating X (:,4), R(:,i) and P(:,%) in the
order indicated in the previous paragraph. A total of 2log(t) messages are sent with O(nt) words.

3.24.2 MSD-CG

The multiple search directions CG (MSD-CQG), introduced by Gu et al. [44], solves the system
Ax = b, and starts by having a partitioned domain and by defining at each iteration k a search
direction p¥ on each of the ¢ subdomains (0;, i = 1,2,...,t) such that p¥(d;) = 0 for all j # i.
Then, the approximate solution at the k'" iteration is defined as x, = x,_; + Pyoy, where P, =
[p* ph pk ... p¥] is a matrix containing all the k" search directions, and ay, is a vector of size t.
Given an initial guess x, the residual is defined as r, = b — Ax;, for £ > 0. The first set

of domain search directions is defined by the initial residual 7y, such that p}(5;) = ro(d;) for

52 S. MOUFAWAD

¢t = 1,2,...,t and zero otherwise. Then, for £ > 1 the domain search directions are defined as
follows, pf = T(rp_1) + ﬁfpf_l fori = 1,2,...,t where ¥ is a scalar and 7; is an operator that
projects a vector onto the subdomain ¢; ([Z;(x)](0;) = 0 for j # ¢ and [T;(z)](6;) = =(0;)). The
search directions block has the following sparsity pattern for all &,

* 0 0 0
>l.< 0 0 0
0 * 0 0
0 * 0 0
P, =
0 0 * 0
0 0 * 0
0 0 0 *
0 o o %/ pxt
As for a = (PLAP)"'Plr;_y, it is chosen such that it minimizes ¢(x;,) = min{¢(zp_1 +

Pya),Va € R}, Unlike CG, block CG and coop-CG, MSD-CG does not have the A-orthogonality
condition of the search directions, i.e. P{AP; is not equal to zero for all ¢ # k. Thus, [, =
(P! AP, 1)"'P}!_|Ar,_ is chosen so that the global search direction p¥ = > pF is A-
orthogonal to the previous domain search direction pf‘l, ie. (pF)IAP,_, = 0,fori = 1,2,..,t.
As for the convergence, it is shown that the rate of convergence of MSD-CG is at least as fast
as that of the steepest descent method. Yet, steepest descent is known for its slow “zig-zagging”
convergence. This causes the MSD-CG to have slower convergence than CG, and in some cases it
does not converge at all with respect to the given stopping criteria as shown in section 4.4.

Similarly to coop-CG, the parallel implementation of MSD-CG Algorithm 33 starts by com-
puting W = AP where each processor i performs W (:,i) = AP(:,i) followed by followed by
C(:,i) = P'W(:,7) and P'(i,:,)r. After that, a communication is needed so that every agent ¢ has
the full ¢ x ¢ matrix C' = P'AP needed for finding v and (3, the full P'r vector, and W (Adj(5;), :).
Then, solving for a can be done using iterative or direct methods in parallel where some commu-
nicating might be needed depending on the choice of the method. After finding «, every processor
i can compute z(0;) = x(0;) + P(d;,).

As for r = r — APq, it can be computed similarly to x. But then there would be a need for
communication before computing P* Ar = W'r. To avoid this communication, we compute 7 (~;),
where v; = Adj(G(A), §;) rather than r(9;), i.e. (7;) = () — W (7, :)a. Then each processor i
can compute W(i, :)r = W*(i,:)r(v;) independently. Then, the processors solve for 3 using some
iterative or direct methods with some communication. Finally, each processor ¢ updates its p;. In
this parallelization scheme, there are 3 global communications, two of which are when solving for
a and [3.

CHAPTER 3. KRYLOV SUBSPACE METHODS 53

Algorithm 33 The MSD-CG Algorithm

Input: A, the n x n symmetric positive definite matrix

Input: b, the n x 1 right-hand side; x, the initial guess or iterate
Input: ¢, the stopping tolerance; k4., the maximum allowed iterations
Output: z,, the approximate solution of the system Az = b

1: Tozb—Al’g,szroH%,kzl

2: for i =1, ...t do Let P(:,i) = T;(ro)
3: end for

4: while (\/p > €|[b|2 and k < kpnq,) do
5: a = (P'AP)~Y(Pir)

6: r=x+ Pa

7 r=r— AP«

8: B = (PtAP)"Y(P'Ar)

9: fori =1,..,tdoLet P(:,i) = T;(r) + 5(i) P(:,1)
10: end for

=3

12: kE=k+1
13: end while

In [44], the authors proposed to solve the ¢ x ¢ o and 3 systems inaccurately by using Jacobi
method which for regular structured matrices would need local communication with neighboring
processors. They call this version global inner products free CG, GIPF-CG method. Given the
system Cav = f, where C' = D + R with D being the diagonal of C' and LU = C — D the
remainder, then at iteration k, the Jacobi method approximates the solution by o, = D7(f —
LUaqy_1). At each iteration, processor ¢ computes oy, (1) = D~ (i,4)(f(i) — LU(4,:)ay_1) where
only a1 (Adj(G(LU), 1)) is needed. Then the processors send their part to check for convergence
and communicate with neighboring processors to fetch oy (opAdj(G(LU),1)).

We present another alternative than the usual Jacobi method which needs local communication
after each iteration. We present the s-step communication-avoiding Jacobi method which consists
of perform s iterations and then checking for convergence where each processor fetches ag(€2s),
LU(Qs-1,:), f(Q-1),and D™ (Q_1, Q1) where Q, = R(G(U), 1, s). Then at iteration 1 < k <
S, Processor i computes ak(Qs—k) = Dil(Qs—ka Qs—k)(f(Qs—k) - LU(Qs—ka :)O‘k—l(Qs—k-&-l))'
After computing s, every processor sends its part of o to the main processor that checks for
convergence. If the method did not converge then each processor fetches «s({2) and starts over.
By replacing the Jacobi method with the s-step communication-avoiding version, we reduce the
communication by a factor of s.

54 S. MOUFAWAD

3.3 Preconditioners

Preconditioning is a process in which the original system of equation Ax = b is transformed into
a new system with the same solution by applying a preconditioner M, where A is an n X n matrix.
There are three types of preconditioning.

1. Left preconditioning: M ' Az = M~1b
2. Right preconditioning: AM 'y = b, where y = Mx
3. Split preconditioning with M = M, My: M;*AMy 'y = M 'b where y = Myx

The preconditioned system should have a faster rate of convergence than the original system, when
solved using iterative methods. This is often realized by choosing M such that the condition
number condy(M ' A) ~ 1 for left preconditioners, conds(AM 1) ~ 1 for right preconditioners
and condy (M AM;) ~ 1 for split preconditioners, where M ~! ~ A~'. Moreover, building the
preconditioner M should be cheap in terms of flops and communication. And the preconditioner
M must be chosen such that the application of M ~! to an n x 1 vector is inexpensive, z = M 'z,
or alternatively the solution of Mz = z should be inexpensive in case M ! is not computed.
Note that it is not necessary to compute the full matrices M and M ~!, they could be operators on
vectors.

Finding a preconditioner M, for some sparse linear system, that satisfies the above conditions
is not an easy task. For systems obtained from the discretization of PDE’s, it is possible to build
preconditioners based on the geometry of the original problem. However, we will only discuss
algebraic preconditioners that are defined by the matrix A only. The simplest algebraic precondi-
tioners in terms of construction and application to a vector are those preconditioner based on the
classical iterative methods like Jacobi, Gauss-Seidel, successive over relaxation (SOR), and sym-
metric successive over relaxation (SSOR) methods. These preconditioners are based on splitting
the matrix A into A = D — ' — F where —F is the strict lower triangular part of A, —F’ is the strict
upper triangular part of A, D is the diagonal part of A, and nnz is the number of nonzero entries in
A. Then, the preconditioners are defined as follows, where we show the cost of z = M ~1o:

e M = D, Jacobi preconditioner where z = M ~'v costs n flops

e M = D—F, forward Gauss Seidel preconditioner where solving the upper triangular system
Mz = v costs nnz flops

e M = D — F, backward Gauss Seidel preconditioner where solving the lower triangular
system M z = v costs nnz flops

e M = (D—FE)D'(D—F), symmetric Gauss Seidel preconditioner where solving the lower
and upper triangular systems M z = v costs 2nnz + n flops

CHAPTER 3. KRYLOV SUBSPACE METHODS 55

o M = %D — I, successive over relaxation (SOR) preconditioner where solving the upper
triangular system M z = v costs nnz + n flops

e M = 2—(1D— E)(1D)"Y(1D — F) symmetric successive over relaxation (SSOR) pre-
conditioner where solving the lower and upper triangular systems M z = v costs 2nnz + 3n
flops

A second type of preconditioners is based on an approximate factorization of A, like incomplete
LU preconditioner and incomplete Cholesky preconditioner. The ILU preconditioner is based on
the ILU factorization of A = LU + R. Here M = LU, L is sparse lower triangular , U is sparse
upper triangular, and R is the residual R = A — M. Incomplete Cholesky (IC) preconditioner for a
symmetric positive definite A is based on the IC factorization A = LLT + R, where M = LL!, L
is sparse lower triangular, and R is the residual R = A — M (refer to [70] and references therein) .

A third type of preconditioners is sparse approximate inverse (SPAI) . It is known that the
inverse of a sparse matrix is a full matrix. Thus, SPAI preconditioner is based on the idea of
choosing some sparse matrix 7" € S that minimizes || — T A||r = || — A'"T"||r for left precon-
ditioning, or minimizes ||/ — AT'||p for right preconditioning, where S is a set of sparse matrices,
and ||I — AT||% = 2", |les — AT(:,4)]|3 is the Frobenius norm. Thus finding the M ' = T is
equivalent to solving n independent least square problems since

n

minges()) lle; — AT, 0)ll3) = Y (minges|le; — AT(:,9)|[3)

i=1 1=1

For an overview of different SPAI techniques and of their parallelization, refer to [7, 16, 15] and
references heirin.

A fourth type of preconditioners is based on domain decomposition of the unknowns. The
subdomains can be overlapping like restricted additive Schwarz (RAS) or non-overlapping like
block Jacobi preconditioner (BJ). Then the preconditioner is equal to the blocks of A restricted to
the subdomains.

Deflation is used to accelerate the convergence of Krylov subspace methods, and it can be done
through preconditioning or augmenting the Krylov subspace by some vectors [32]. Deflation as a
preconditioning method was first introduced for speeding up the convergence of CG [62] in 1987.
Since then a lot of work has been done on the subject of deflated CG [67, 73, 31, 54], deflated
GMRES [27, 29, 53, 14], and augmented Krylov methods [28, 61].

There are other types of preconditioners that we do not describe in this thesis, like algebraic
multigrid preconditioners and algebraic multilevel preconditioners. For an introduction to alge-
braic multigrid preconditioners, which are based algebraic multigrid methods [17] that solve the
problem on a coarser grid of unknown z and then interpolates the solution back to the initial fine
grid, refer to [80] and references herein. For an introduction to algebraic multilevel precondition-
ers, refer to [2, 68, 9].

56 S. MOUFAWAD

The preconditioned versions of CG, GMRES, and the other parallelizable variants are slightly
different from the original methods. The matrix A is replaced by M ~*A, AM " or M; *AM, " and
b by M~'bor M; 'b depending on the preconditioning type. In all the Krylov methods discussed
in this section, the matrix A is either multiplied by a vector or a block of vectors. Thus, there is no
need to multiply the matrices A and M ~, it should only be possible to apply the preconditioner to
a vector M ~'v. For the full preconditioned versions refer to [65, 50, 63, 44, 8].

In this section, ILU preconditioner (section 3.3.1), block Jacobi preconditioner (section 3.3.2),
and RAS preconditioner (section 3.3.3), are briefly described. For a survey on preconditioning
techniques refer to [5].

3.3.1 Incomplete LU preconditioner

Incomplete LU preconditioners is based on incomplete LU factorizations where A = LU + R and
M = LU. The complete LU factorization is a Gaussian elimination, where the obtained L and
U factors have more nonzero entries than the input sparse matrix A. There are several incomplete
LU factorizations that drop some entries of the L and U matrices to obtain sparse factors . The
dropping process is based on some condition, that can be a sparsity pattern or some drop tolerence.
Some of the ILU factorizations are zero fill-in ILU(0), level of fill ILU(p), threshold ILUT, and
modified ILU (MILU), and other variants. For a full description of the different ILU factorizations
refer to [65].

(x x 0 x 0 0 \
x x x 0 x 0 1 - 2 3
0 0 x 0 x x
x 0 0 x x 0
X 0 0 X X X 4 5 6
\ 0 0 x 0 0 x/ =
(a) Matrix A (b) Graph of A

Figure 3.1: The figure shows the sparsity pattern of a matrix A and its graph. The lower triangular blue part
along with the diagonal represents the sparsity pattern of the L matrix obtained from the ILU(0) factorization
of A. Whereas the upper triangular red part along with the diagonal represents the sparsity pattern of the U
matrix. Similarly, the blue edges in Figure 3.1(b) represent the graph of L, whereas the red ones represent
that of U.

In this section, we will briefly discuss the ILU(0) factorization and preconditioner. Although
we do not address the issue of parallelizing the factorization, there has been a lot of work on
parallelizing ILU factorization based on applying some reordering to obtain a set of rows that can

CHAPTER 3. KRYLOV SUBSPACE METHODS 57

be eliminated in parallel. For a brief overview of the different approaches for parallelizing the
ILU factorization, refer to [18] and references herein. Recently, Chow et al. [18] presented a new
approach for parallelizing the ILU factorization which is not based on reordering the matrix, but it
is based on reformulating the ILU factorization as a solution of a set of bilinear equations.

The ILU(O) factorization of A = LU + R produces L and U factors that have the same sparsity
pattern as the lower and upper triangular part of A as shown in Figure 3.1. This is obtained by
performing an LU factorization, where only the nonzero entries of A are modified as shown in
Algorithm 34. The obtained L matrix has ones on the diagonals. As it is clear in figure 3.1, the
graph of L has all the edges of G(A) connecting vertex i to j where j < i. Whereas, the graph of
U has all the edges of GG(A) connecting vertex j to ¢ where j < i. Thus, in chapter 5, the figures
with the graph of A also represent the graph of L and U obtained from the ILU(0) factorization of
A.

Algorithm 34 ILU(0) factorization

Input: A, the n x n matrix; b, the n x 1 right-hand side

Output: L, U, the lower and upper triangular matrices from the ILU(0) factorization of A
1. L=1
2: fori =2:ndo

3 for k =1:7—1and A(i, k) # 0 do

4: A(i, k) = A(i k) /A(k, k)

5: for j =k +1:nand A(i,j) # 0do

6: A(Zvj) = A(Za]) o A(Z’ k)A(kvj)

7: end for

8: end for

9: Let L(i,1:i—1) = A(i,1:7—1)and U(i,i : n) = A(i,i : n)
10: end for

The complete LU factorization of a dense n x n matrix, where the A(i, k) # 0 and A(i,j) # 0
conditions in Algorithm 34 are dropped, costs %n?’ + 2n? flops. Whereas the ILU(0) factorization
of A costs at most 2nnz flops where nnz is the number of nonzero entries in A.

On the other hand, the multiplication of the ILU(0) preconditioner to a vectors z = M 'y =
(LU)™ v is equivalent to solving an upper and lower triangular system LUz = v, where Ly = v
and Uz = y. Given that L and U have the same sparsity pattern as the lower and upper part A, the
cost of computing z = (LU) !v is 2nnz flops.

3.3.2 Block Jacobi preconditioner

Block Jacobi preconditioner can be considered as a domain decomposition preconditioner, where
the unknowns are partitioned or alternatively the graph of A is partitioned into p subgraphs that
are connected by a few edges. The matrix A can be permuted and partitioned using k-way graph

58 S. MOUFAWAD

partitioning or other partitioning techniques with edge separators. Let § = {1, 2, .., n} be the set of
indices associated with the vertices of permuted A’s graph. Then 6 = U?_,;, where the 0;’s are
the set of indices associated with the subgraphs’ vertices, d; N d; = ¢ for j # 7, and ¢; is a set of
consecutive indices. Then, the block Jacobi preconditioner M is defined as M (;,d;) = A(d;, 6;)
and zero elsewhere, which is equivalent to a block diagonal matrix.

Each of the blocks is factorized using some incomplete factorization, like ILU(0) or incomplete
Cholesky factorization for SPD matrices. If the blocks are small then it is possible to use the com-
plete factorizations. A four blocks Jacobi preconditioner with ILU factorization has the following
form, where M; = M (9;,9;) = A(d;,0;) = L;U; fori = 1,2,3,4.

M, 0 0 0 Ly 0 0 0 U 0 0 0
0 My 0 0 | | 0 L 0 0 0 U 0 0 |_
M = 0 0 My O | | o o0 L3 0 0 0 Us 0 = LpsUss
0o 0 0 M, 0 0 0 Ly 0 0 0 U,

The cost of performing the p independent ILU factorizations of M is less than the cost of per-
forming the ILU factorization of the matrix A. The multiplication 2 = M ~'v = (Lg;Ugys) v
is naturally parallelizable due to the block format of Lp; and Up;. Each processor i solves
L;U;z(0;) = v(d;) by solving L;y(;) = v(6;) and U;z(0;) = y(d;) without any communication
with the other processors. And its cost is less than solving the L and U systems obtained from the
ILU factorization of A. For example, the cost of the ILU(0) factorization of all M; = L;U;’s is less
than 2nnz flops, where nnz is the number of nonzero entries in A. And solving the corresponding
upper and lower triangular system costs less than 2nnz flops. The exact cost depends on the size
of the blocks. The smaller the blocks are, the cheaper the preconditioner is. But it becomes less
efficient as a preconditioner, since a lot of information has been dropped out.

3.3.3 Restricted additive Schwarz preconditioner

Restricted additive Schwarz (RAS) is a domain decomposition method. Similarly to block Jacobi
method, the graph of A is partitioned into p subgraphs with § = U?_,0; = {1,2,..,n} the set of
indices associated with the vertices of the permuted A or the permuted unknowns. Unlike BJ, RAS
has overlapping subdomains, and the size of the overlap defines the different preconditioners.
Let 6} = Adj(G(A),d;) = R(G(A),4,1) and in general 67 = R(G(A), ¥, 7). The classical
additive Schwarz AS(j) preconditioner is defined as follows:
p
M~ = > RIA'R]
i=1
where R’ is an n x n restriction matrix with R’ (67, 67) = I and zero elsewhere, and A; = R AR’

with 4;(87,67) = A(67,67) and zero elsewhere. When multiplying z = M ~'v in parallel, each pro-

177 177

cessor can fetch A; and v(87) and compute z;(57) = [R} A7 RIv](67). But 2(67) = D0, 2(57) #

CHAPTER 3. KRYLOV SUBSPACE METHODS 59

zi(67) due to the fact that 67~ 6] # ¢ for some h # i. Thus there is a need for communication to
get z(d7). The RAS preconditioner avoids this communication.
The RAS(j) preconditioner, introduced in [10], is defined as follows:

-1 _ iR?Az_le

i=1

where RY isannxn restrlctlon matr1x with RY(;, 0;) = I and zero elsewhere, and A; = A(S) 51)

177

When computing z = M ~1v = L RYAT IRJ v in parallel, each processor ¢ fetches A; and v(éj)
and computes z(0;) = z;(J;) = [ROA 1RJ](5). This is due to the replacement of R by R}. A;
is not invertible, however A(éj 67) is. Thus, processor i computes y(67) = A~1(57 5] v (5]) by

1771 17 7

solving the system A(57,67)y(5!) = v(57) similarly to block Jacobi. Then, z(5;) = y(d;) where

177

the overlapping entries of y(0]) are dropped.

60

S. MOUFAWAD

Chapter 4

Enlarged Krylov Subspace (EKS) Methods

In this chapter we introduce the new enlarged Krylov subspace (section 4.1) which is based on
domain decomposition. The purpose of enlarging the Krylov subspace is to obtain enlarged Krylov
subspace (EKS) methods that converge faster than the classical Krylov methods when solving the
system Ax = b. Moreover, we would like the EKS methods to be better parallelizable, than the
Krylov subspace methods, while avoiding communication, similarly to block methods (section
3.2.1), s-step methods (section 3.2.2), and communication avoiding methods (section 3.2.3) that
replace BLAS 1 and BLAS 2 computations by BLAS2 and BLAS 3. This chapter is based on the
article [41] which is in preparation for submission.

We introduce two enlarged Krylov projection methods. The first is called Multiple Search
Direction with Orthogonalization Conjugate Gradient (MSDO-CG) method which is based on the
idea of using multiple search directions at each iteration. This idea is not new, it was introduced
in [44]. However, in MSDO-CG (section 4.2) after defining the ¢ search directions, they are A-
orthonormalized against previous search directions and against each others, to obtain a projection
method. The second method is called Long Recurrence Enlarged Conjugate Gradient (LRE-CG)
method where rather than defining search directions, an orthonormal basis for the Enlarged Krylov
subspace is built (section 4.3). At each iteration k, t new basis vectors are computed for the
enlarged Krylov subspace. Then, rather than having short recurrences, the approximate solution
xy, 1s defined by all the basis vectors as in GMRES.

By enlarging the Krylov subspace, the MSDO-CG and LRE-CG converge faster than CG in
exact precision. In section 4.4, we present the convergence results of both methods in finite pre-
cision and compare them to existing methods, like CG (section 3.1.4), coop-CG (section 3.2.4.1),
MSD-CG (section 3.2.4.2). Both methods, MSDO-CG and LRE-CG, require saving at most tk
vectors versus one search direction in CG. Yet LRE-CG converges faster than MSDO-CG (section
4.4) at the expense of solving growing systems of size tk. Several remedies to this problem are
discussed in section 4.3.1. In section 4.5, we present possible parallel versions of the methods and
their expected performance. Finally, in section 4.6, we present the preconditioned versions of the
methods and their convergence behavior.

61

62 S. MOUFAWAD

Although we only discuss in this thesis EKS conjugate gradient versions, it is possible to derive
other enlarged Krylov methods, like EKS-GMRES which has been derived but not tested yet.

4.1 The enlarged Krylov subspace

The enlarged Krylov subspace and methods are based on a partition of the unknowns, or alterna-
tively the rows of the n x n matrix A. Assume that the index domain § = {1,2,..,n} is divided
into ¢ distinct subdomains d;, where § = U!_,d;. Note that the partitioning of the index domain ¢
can be obtained by partitioning the graph of A, G(A) = (V, E) into ¢ subgraphs {4, o, ..., 4}
as discussed in section 2.2 , where 6; = V' (§;) and 6 = V(G(A)).

We define T;(x) to be the operator that projects the vector x onto the subdomain ;. Let
y = T;(z), then y(6;) = x(0;) and zero elsewhere. Then, we define 7'(x) to be an operator
that transforms the n x 1 vector x into ¢ vectors of size n x 1 that correspond to the projec-
tion of = onto the subdomains ¢; for : = 1,2,..,¢. If the obtained ¢ vectors are assembled in
increasing order into a block vector X, then we have X (d;,i) = x(d;) for all ¢ and zero else-
where. We will refer to R as the block containing the ¢ vectors obtained from 7'(r(). Note that
Ry # T'(ry) since Ry is a matrix, whereas T'(rg) = {11(ro), Ta(r0), ..., Tt(r0)} is a set of vectors.
But Ry = [T’ (ro) To(ro) Ty(r0)], where the brackets |..| denote a matrix format.

Definition 4.1.1. Let

Kip = span{T(ro), AT(ro), A2T(10), ..., AT (rg)}

span{Tl(ro), TQ(T()), ceey ,I‘t(T()), ATl(’I"()), ATQ(T()), ceey AE(T()), ceey Ak_lTl(T‘Q), ceey Ak_lﬂ(’l"g)}

be an enlarged Krylov subspace of dimension k < z < tk generated by the matrix A and the vector
ro, and associated to a given partition defined by 6, fori = 1,2, .., t.

The enlarged Krylov subspaces K; 1. (A, o) are increasing subspaces, yet bounded. We denote
by kimas the upper bound k& for which the dimension of the enlarged Krylov subspace K; (A, ro)
stops increasing. For simplicity, we will denote the enlarged Krylov subspace generated by A and
0, Ktk (A, o), by Ky 1, and the Krylov subspace generated by A and 7o, Ky (A, o) by K.

Theorem 4.1.2. The Krylov subspace K, is a subset of the enlarged Krylov subspace X, (Ky, <
K ko).

Proof. Lety € K, where K, = span{rg, Arg, .., A¥"1ry}. Then

k=1 t

k—1 k—1
Yy = 2 ajAjro = Z CLjAjRO *]lt = Z Z ajAjﬂ(To) € fK:t’]g

j=0 j=0 7j=04i=1

since To = RQ *]lt = [Tl(r()) TQ(T’()) ,I;;(T’())] *]lt. L]

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 63

Krylov subspace methods search for an approximate solution x € xo + Kx. A corollary of
theorem 4.1.2 is that we can search for an approximate solution z; in x¢ + X, instead, since
ICk (@ Kt,k'

In theorem 4.1.3, we do not use the direct sum @ since it is not guaranteed that the intersection
of the two subspaces, K ;, and span{A*Ti(rq), A¥Ty(ro), ..., A¥T}(ro)}, is empty.

Theorem 4.1.3. By definition 4.1.1 of the enlarged Krylov subspace,
Kiksr = K + span{ ATy (r), A¥Ty(ro), ..., A¥Ti (1)}

If A¥T,(ro) € Koy for all 1 < v < t, then ATy (ry) € Ky y for some 1 < i < t and for some
q > 0.

Proof. We prove this by induction.

Base Case:
Given that A*T,, (ro) € K forall 1 < v < t, we show that A¥*T;(ry) € Ky 1, where 1 < i < ¢.
AFTi(rg) = Zﬁ (1] ooy Qo AT, (7"0) since A*T;(rq) € K. Then
k-1 t k-2 t
AMT(rg) = Z Z Qo AT, (1) = Z Z Q0 AT Ty (1) + Z Q1 UA T,(ro)
u=0v=1 u=0v=1 v=1
k-1 t
= ZO&UUAU-HT 70 +Zak 1UZZBuyAT ’I“O
u=0v= u=0y=1
k-1 t
= Z Z Vu,UAuTv (TO) € j<t,k:
u=0v=1

Assume true for q:

Assume that A*™9T;(rq) € Ky, where 1 < i < ¢, thatis A¥F9T;(rg) = Zﬁ;é L Quw AT, (rg)
Prove true for g+1:

Show that A1, (rg) € Ky,

k—1 t k—2 t
AR () = Z Qo AT, (1) = Z 2 Q0 AT, (7o) Z p_1,AFT, (ro)

u=0v=1 u=0v=1 v=1
k—2 t t k—1 t

= Z au,vAu+1Tv(T0) + Z Ak—1,0 Z Z uyA 1, (TO))
u=0v=1 v=1 u=0y=1
k—1 t

= 2 ’yu,vAuTv(T(:l) € j(t,k
u=0v=1

64 S. MOUFAWAD

Given that X, # X1, then a corollary of Theorem 4.1.3 is that X, = X, for all
q > 0, where k,,,, = k is the upper bound for which the dimension of the enlarged Krylov
subspace stops increasing. Assume that A*T,(rq) € K, forall 1 < v < t, then by Theorem 4.1.3
AFTTi(rg) € Kyp for all ¢ > 0 and for some 1 < i < ¢. Then for all 1 < i < ¢ and for all
q > 0, A¥"T;(ry) € K;x. Thus no new vector is added to the basis of K, for all ¢ > 0 and
Kir = Kt gtq- Moreover, since K, j, # Ky 1 then kp,q, = k.

Theorem 4.1.4. If A*T;(ry) € Ky + span{A*Ti(ro), ..., A¥T;_1(ro), A¥Tiy1(r0), ..., A¥Ti(r0)},
then

AFHaTi(ro) € Kipag + span{AFT9T (ro), ..., AFHIT, 1 (ro), A¥9T 11 (ro), ..., A¥YIT (1)} for all
1<i<tandq > 0.

Proof. 1t A*T;(ro) € Ky + span{A*T(ry), ..., A¥T;_1(ro), A¥T;y1(r0), ..., A¥Ty(ro)}, then
AR (1) = S0, L Quw AT, (1) + Doe1 gy ART, (). Thus,
VF#L

u=0
k-1 t t
AMIT (rg) = Z 2 Qo AT (1) + ozijkJ”qu(ro)
u=0v=1 v;l
VF1T

m

:Kt,k—&-q + span{Ak+qT1 (7“0), ceey Ak+qﬂ_1 (7“0), Ak+q7}+1(r0), ceey Ak+th(r0)}
O

A corollary of Theorem 4.1.4 is that if £ — i, vectors of the form AkTy(ro) withy =4, +1,...,1
belong to the subspace K, . + span{A*T;(ro), A*Ty(ro), ..., A¥T;, (r0)}, then the ¢ — i), vectors of
the form A**9T, (1) belong to the subspace K j1q+span{ A*+9T (ro), AFH 1Ty (ro), ..., AFTIT; (o)}

Theorem 4.1.5. Let k., be the smallest integer such that Xy, ... = Kip, ..+qforall g > 0.
Then, for all k < k4, the dimension of the enlarged Krylov subspaces X, j, and Xy j,11 is strictly
increasing by some number i, and ;.1 respectively, where 1 < 1,1 < 1 < 1.

Proof. By definition of k,,,., we have that for all ¢ > 0
j<t71 g g jct7kma:c_1 g g<t7kmaz = g<t7kmar+q'

Then for all k£ < k45, the dimension of the enlarged Krylov subspaces X ;, is strictly increasing
by some number i;, # 0 with respect to the dimension of K, j_;.

If the ¢ new vectors are linearly independent and none of them belongs to X, ;_;, then the
t vectors are added to the basis of K,y and dim(XK;x) = dim(K;x_1) + t, where i, = ¢ and
dim() is the dimension of a subspace . In case the ¢ new vectors are linearly dependent and none
of them belongs to X, ;_;, then only one vector is added to the basis of K, and dim(K,;) =
dim(X;—1) + 1 that is 4, = 1. There are many other cases where 1 < ¢ — i), < t of the ¢ vectors
belong to X ;_; or are linearly dependant on the other ¢; vectors and X, ;_;. Then 7; vectors are
added to the basis of K, and dim(K;) = (K1) + 7%, where 1 < i;, < .

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 65

In general, dim(K;x) = dim(Ki—1) + i, Where 1 < ¢ < t. Similarly, dim(K; 1) =
dim(XKix) + k41, where 1 < ixy < t. Moreover, in X;;’s basis we added i, new vectors
of the form A*~1T;(ry), while the other ¢ — i, either belong to X, or are linearly depen-
dant on the i, vectors and X, ,_;. In both cases, the ¢ — ¢ vectors of the form Ak_lTi(ro)
belong to the subspace K, 1 + span{A*'Ti(ry),..., A*"'T; (ro)}. Then by Theorem 4.1.4
and its corollary, the ¢t — 4, vectors of the form A*+4T;(ry) belong to the subspace Kikq +
span{A*Ty(ro), A¥T9Ty(ry), ..., ATT9T; (rq)} for ¢ > 0.Therefore, we have at least ¢ —ij, linearly
dependent vectors added to X, 1, hence 75,1 can never be greater than 7. O

Theorem 4.1.6. Let p,,.. and k.. be such that K
q > 0. Then kpur < Pras-

max

= ICpma.z“!‘q and j<“tykm,az = Ktykmam‘i‘q for

Proo‘f: Let ,C maz Kpmaz+q and Apmaw+q_1r0 € ’Cpmaz“rq Where q > O. Then Apmaa:"l'q_lro €
Koo With Cp,,.,, © Ko, implying that APmes+a=lpg = 30w 570 | a5 A7 T;(rg). Thus,
t Pmaz 1t
At 3 L) = 2 20554 (o)
i=1 7j=1 =1

Suppose that APme=t4-1T;(ry) ¢ K, . forall 1 < i < ¢. Then

Pmaz+q—1 t

t
APmaz+a-1 ETi(To) - Z ZQj}iAjilj—%(rO)'

i=1 Jj=1 =1

We may assume that there exists at least one av;; # 0 for j > py,q., then this leads to a contradic-
tion. This implies that APme=t4~1T;(rg) € Ky, . forall 1 < i < t.

Thus by definition of the 7'(.) operator and since K, is a subset of XK, ,, if K, .. = K\ 405
then Ky ,.... = Kip,uotq- However, if Ky = Ky . .. this does not imply that .= =
Khmaw+q- Since Ky is a much larger subspace than Ky, it is possible to reach stagnation earlier.
Therefore k02 < Prmac- O

Theorem 4.1.7. The solution of the system Ax = b belongs to the subspace xo + Kyy,,.., where
j<:t7kma1+q = j{t,kmaac’ for q > 0’
= span{ry, Arg, .., APme="1rg} and K =

Pmax

Proof. The solution x,, € 1o + K
Kopmaw+q for ¢ > 0. Since K
by Theorem 4.1.6.

Suppose that 7, € 2o + Ky p,,.00» DUt To1 & 29 + Ky 1,,,..- This implies that Ky - # Ky,
However, by definition of £,,,, and since ky,qp < Dimas, We have that Ky, = K, . Thisisa
contradiction. [l

pmas> Where K
C Kt pmas the solution x4, € xo + Ky

Pmazx

Pmax yPmaz?

66 S. MOUFAWAD

4.1.1 Krylov projection methods

The Krylov projection methods find a sequence of approximate solutions x; (k > 0) of the system
Ax = b from the subspace xy + K € R" (or £ C") by imposing the Petrov-Galerkin constraint on
the k' residual r, = b — Axy, that is ry, is orthogonal to some well-defined subspace of dimension
k.

We define our new enlarged Krylov projection methods based on CG by the subspace X, ; and
the following two conditions:

1. Subspace condition: xj € o + Ky,
2. Orthogonality condition: 7, L XK,

— (rp)'y =0, forall ye X,y

where X, ;, is a well-defined subspace of dimension k < z < tk.

4.1.2 The minimization property

The new enlarged CG methods find the new approximate solution by minimizing the function ¢(x)
over the subspace g + XKy .

Theorem 4.1.8. If r, L Ky, then ¢(x) = min{¢(z),Vx € xg + Ky 1}
Proof. By the Petrov-Galerkin condition we have that r;, 1 X,

= (r)'y = 0, Vye Ky
(b - Axk)ty = 0, Vye Ky
by — (z)' Ay = 0, Vye Kyp

Lety = o, — 20 € Ky,

= (z)"A(x), — 10) — V' (T}, — 70) = 0
= (z3)' Az — V'ay = (21) Azo — bl

1 1
— () = i(q;k)tAxk — by, = —§(xk)tAxk + (1) Ay — b
By showing that ¢(z) > ¢(xy), for all z € 2y + K, then we have proven that

() = min{p(z), Vo € o + Ki}. 4.1

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 67

QS(:C) - ¢(I‘k> = %xtAfL’ —blr — [—%(mk)tAxk + (xk)tA(L’O . btl’o]

1 1
= §$tA£L’ —blz+ §($k)tA£Ek — (1) Ao, wherez = x — zg € Ky

1 1

= éxtAa: — (zp) Az + §(xk)tAxk — (1) Ay, sinceb'z = (z1,) Az
1 1

= §xtAx — ()" Az + §(xk)tA:ck

1
= 5(35 —)" A(z —) = 0, since A is positive definite [

Theorem 4.1.9. ¢(z;,) = min{p(x), Vo € zo + Ky} if and only if ||x* — xi||a = min{||z* —
z||a,Vx € xg + Ky i}, where x* is the exact solution of (3.1).

Proof. f(z) = ||z* —x||a = (x*)' Ax* —2(2*) Az + 2' Ax = blo* — 20z + 2t Ax = bla* + 2¢(x).
The minimum of f(x) is given by f'(x) = y¢(z) = 0. O

4.1.3 Convergence analysis

The conjugate gradient method of Hestenes and Stiefel is known to converge in K iterations where
K < n, if the matrix A € R™" is SPD. Moreover, the k" error of CG &, = ||z* — T4|| <

k
2 <\/E 1) |[€0||a where k = || A||2||A7}||2 = 3ma= is the L2-condition number of the matrix A.

\/Ell)\min
Assuming that the k' residual of the new conjugate gradient methods 7, L X, then by
Theorem 4.1.8 and Theorem 4.1.9 we have that

llexlla = l|z* —xl||la = min{||z™ — x||a, V& € 2o + Ky} 4.2)
< min{||z* — T||a, VT € zo + K} since K < Ky (4.3)
< lex]]a- (4.4)

Therefore, our methods converge at least as fast as the Classical Conjugate Gradient method,
assuming that the Petrov Galerkin condition is respected (rj, L K). Hence, the enlarged Krylov
subspace CG methods will converge in K iterations, where K < K < n.

4.2 Multiple search direction with orthogonalization conjugate
gradient (MSDO-CG) method

The MSD-CG method (section 3.2.4.2) introduced by Gu et al [44], can be viewed as an en-
larged Krylov method where Py = [T(ro)], and at the k' iteration pf = Tj(rp_1) + Brpi™
for 1 = 1,2,...,t, Pk = [p]f,pg,....,pf], T = Tp—1 + PkOék and T, = Tgp—1 — AP]CO.% with

63 S. MOUFAWAD

ar = (PLAP,) ' Plry_y and By = [BF, B85, ..., 8F] = (Pl_APy_1)"'P._,Ary_,. However, the
Py’s are not A-orthogonal implying that 7, £ K, ;. Thus, MSD-CG is not a projection method.

The multiple search directions with orthogonalization CG (MSDO-CG) is an enlarged Krylov
projection method that solves the system Ax = b, by approximating the solution at the k*" iteration
with the vector x;, = z;,_1 + Py such that

o(zg) = min{p(z), Ve € Ky},

where Ppoy, € Ky, Py, is an n x t block vector containing the ¢ subdomain search directions, and
oy, 18 a vector of size t.

The minimum of ¢(x) is given by 7¢(x) = 0, which is equivalent to Az — b = 0. Thus, by
minimizing ¢(z), we are solving the system Ax = b. Note that since ¢(z;) = min{o(z),Vz €
xo + Ky}, then

d(xy) = d(ap_1 + Prag) = min{o(x,_1 + Pra),Va € R} 4.5)

Once z; has been chosen, either x is the desired solution of Az = b, or ¢ new domain search
direction vectors Py, and a new approximation zy,1 = xj + P10 are computed. Similarly
to MSD-CG, Py.,1 = [pF™ ph™t . pF™], where p! = T;(ro) and p*™ = T;(r) + BE1pk for i =
1,2, ..., t. But unlike MSD-CG, MSDO-CG is a projection method. Hence, we A-orthonormalize
all the search directions, Fj1, to ensure that 7,41 L X, ;41 as discussed in section 4.2.2. By
imposing the orthogonality condition, r;; L K, 41, it is guaranteed that MSDO-CG converges
at least as fast as CG as proven in section 4.1.3.

This procedure is repeated until convergence. Thus, we need to find the recursion relations of
Tk Pk9 O, and ﬁk‘ = [ﬁf? 557) 5tk:|t

4.2.1 The residual r;

By definition, the residual 7, = b — Axy,, where z;, € K .. Thus 7, € K ;41. As for the recursion
relation of 7, we simply replace xj, by its expression and obtain the following:

T = b— Axk
= b— A(ZL’k_l + PkOék)
= 141 — APy

Moreover, if the orthogonality condition, 75, L XK, x, is ensured, then (rp)tr; = 0, forall i < k.
Hence, the residuals form an orthogonal set.

Theorem 4.2.1. The orthogonality condition (ry.)'y = 0 for all y € K, 1, implies the A-orthogonality
of the block search directions P AP; = 0, for all i # j, and i, j < k.

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 69

Proof. By definition, P, € X,; and X;; < X, ,;+;. Thus P, € K;;;. for ¢ > 0. By the Petrov-
Galerkin condition 7, P, = 0fori < k — land r, P, = 0. Thus, 7, P, = r}_| P, — oL, PLAP, =0
for i < k — 1. This implies that PfAP; = 0 for i < k — 1 since ay, # 0 by definition. Therefore,
the A-orthogonality of the search directions. [

4.2.2 The domain search direction P,

By definition, the domain search direction is P, = [p¥ p& ... p¥] where p! = Ti(ro) and p} =
Ti(rk—1) + 6{“])?_1 fori =1,2,...,t. pF e Ky fori = 1,2, ..., t and Pray € Ky .
The recursion relation of P, is defined as follows

Pk = T(?“kfl) + Pk,ldiag(ﬁk), (46)

where diag(fy) is at x t matrix with the vector () on the diagonal.

The domain search directions defined in (4.6) are not A-orthogonal to each others. To ensure
that the orthogonality condition is valid, at each iteration % the block vector P}, is A-orthonormalized
against all the previous P;, where ¢ = 1,2,...k — 1. Then the column vectors of P are A-
orthonormalized against each others. Thus, the obtained search directions Py, satisfy (P;)'AP; = 0
for all © # k. Moreover, (JBk)tAf’k = [, where [is the identity matrix, assuming that the column
vectors of P are linearly independent with respect to each others and the previous directions, or al-
ternatively none of the column vectors of P is zero. Note that, once P, = T'(ry_1) + Pr_1diag(5k)
is defined, it is directly A-orthonormalized. Thus, in the sectigns that follow, we denote by P the
A-orthonormalized search directions and we do not use the P, notation to be consistent with the
initial definitions in the previous sections.

There are several A-orthonormalization methods. First, for A-orthonormalizing P}, against all
the previous P;, where ¢ = 1,2,.., k — 1, one can use classical Gram Schmidt (CGS), modified
Gram Schmidt (MGS), or classical Gram Schmidt with reorthogonalization (CGS2) where we
apply the CGS algorithm twice for numerical stability reasons. As for A-orthonormalizing P,
there are many methods that are discussed in [59, 64], but we will only refer to CGS, CGS2,
MGS, A-CholQR and Pre-CholeQR. We seek a combination of both A-orthonormalizations that is
stable and parallelizable with reduced communication. For that reason, in section 4.4 we test the
MSDO-CG method with the different combinations of the A-orthonormalization methods and we
conclude that the MSDO-CG is numerically most stable when we use MGS, CGS2+A-CholQR,
or CGS2+Pre-CholQR. In section 4.5.1 we discuss the parallelization of the MSDO-CG algorithm
with the stable A-orthonormalization methods.

Note that in section 2.4, we discuss the A-orthonormalization using modified Gram Schmidt
and classical Gram Schmidt. We also present versions of the algorithms that reduce communi-
cation along with their parallelizations. For example, Algorithm 13 is a block Gram Schmidt A-
orthonormalization based on classical Gram Schmidt that A-orthonormalizes P} against previous
vectors. And Algorithm 16 A-orthonormalizes P’s vectors against each others using a classical
Gram Schmidt.

70 S. MOUFAWAD

4.2.3 Finding the expression of ;1 and B, 1

At each iteration the step a1 is chosen such that
d(rpi1) = min{d(xy, + Pria),Va € R}

Let F(a) = ¢(zy, + Pry1cr) where ¢(z) = 32’ Az — z'b.

1
Then, F(a) = §(xk + Pyy1a) Az, + Pr) — (2 + Pr)'d
1
= ¢(xy) + 5[(xk)tAPk+1a + ' (Ppy1) Azp + o (Prg1) APpy1a] — o (Prgr)'d
1 1
= o(x) + §[<xk)tAPk+la — o' (Ppy1) Az] + §Oét(Pk+1)tAPk+1Oé — ' (Pyy1)'ry,

1
= o(xg) + éat(PkH)tAPkHa — " (Py1)'rg, since Ais SPD

The minimum of F'(«) is given by F’(a)) = 0.

g F’(a) = (PkJrl)tAPkHOé - (Pkﬂ)tT’k =0

Therefore, | a1 = (Pl APiy1) (Plare) |
As for (1, it should be chosen to ensure that Py ,; is A-orthogonal to Py. Py = T(ry) +
Prdiag(Bri1) and PfAP,.1 = PLAT(ry) + PiAP.diag(Br+1). Since Py is an A-orthonormal
matrix, PfAP, = I, diag(Bk+1) should be equal to —P}AT(ry). But nothing guarantees that
PIAT (ry,) is a diagonal matrix. So we choose | By 1 = (P{AP,) ' Pt Ary | which guarantees that

Pyy1 = 1, is A-orthogonal to Py, similarly to MSD-CG. Moreover, in case Pf AT (r,) is a diagonal
matrix, then our choice of ;1 implies that P, is A-orthogonal to P. If t = 1, then MSDO-CG
is reduced to the classical conjugate gradient.

Note that, since the vectors of Py, are A-orthonormalized (P,ét 1 APy = 1), then a4y and

Br+1 systems are reduced to | ag1 = PY, 7 |and | Sy = —PLATy |

4.2.4 The MSDO-CG algorithm

After deriving the recurrence relations of xy, rg, Py, ag, and S, we present the MSDO-CG al-
gorithm in Algorithm 35. We do not specify the A-orthonormalization methods, since this choice
will be based first on the numerical stability of the method (section 4.4), then on its parallelization
with the least communication possible (section 4.5.1).

Thus, we present the MSDO-CG algorithm (Algorithm 35) and the computed flops per itera-
tion except for the A-orthonormalizations. To reduce communication and computation in the A-
orthonormalizations, be it MGS (Algorithms 10 and 11), CGS (Algorithms 14 and 17), A-CholQR

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 71

(Algorithm 21), or Pre-CholQR (Algorithm 23), we replace Wy, 1 = AP, 1 by
W, = AP
Wk+1 = AT(T’k) + APkd@ag(B) V> 1
= AT(ry) + Widiag(p)

and update it accordingly in the A-orthonormalization algorithms, as discussed in section 2.4.

Algorithm 35 MSDO-CG algorithm Flops

Input: A, the n x n symmetric positive definite matrix

Input: b, the n x 1 right-hand side; x, the initial guess or iterate
Input: ¢, the stopping tolerance; k..., the maximum allowed iterations
Output: z;, the approximate solution of the system Az = b

Lr=b—Axg,p=|r|[3 k=1 2nnz + 2n — 1

2: Let P, = T(ro) and W, = AP, 2nnz — (t — 1)n
3: A-orthonormalize P, not included here
4: while (/p > €|[b||2 and k < kypo) do 2n

5: a = (PIWy) Y (Pir) = Plr (2n — 1)t

6: r =2+ P (2t—1)n+n

7: r=r— W 2t—1)n+n

8 p=Irl2 2n —1

9: B =—(PiW,)"Y(Wir) = —Wir (2n — 1)t
10: Pyiy =T(r) + Pidiag(B) 2nt
11: Wis1 = AT (ry) + Widiag(5) 2nnz—(t—1)n+2nt
12: A-orthonormalize Py against all P;’s for 7+ < k and update W ,; not included here
13: A-orthonormalize Py, and update Wy, not included here
14: k=k+1 1

15: end while

The total number of flops computed sequentially after k. iterations, except for the A-orthonormalizations,
is
Total Flops = 4nnz —nt +5n — 1+ k.[11nt — 2t +2n — 1 4+ 2nnz + n + 1]
= 4nnz —nt + 5n — 1 + k,[11nt 4+ 3n — 2t + 2nnz]
~ 4nnz + 5n + k.[11nt + 2nnz],

which is of the order of nnzk, + ntk. flops, where nnz is the number of nonzero entries in the
n x n matrix A and ¢ is the number of search directions computed at each iteration.

It must be noted that since the F,’s are A-orthonormal to each others, then the ¢ x ¢ matrix
PiW), = PLAP, is the identity matrix. Hence, solving for «y, and Sy is simply performing matrix
vector multiplication.

72 S. MOUFAWAD

4.3 Long recurrence enlarged conjugate gradient (LRE-CG)
method

In this section, we introduce the long recurrence enlarged conjugate gradient (LRE-CG) method
which is an enlarged Krylov projection method that solves the system Ax = b by approximating
the solution at the k'" iteration with the vector x5, = x,_1 + Qo € o + X+ such that

o(zg) = min{p(z), Vo € zo + Ki i},

where Qroy, € Ky, and (), is an n x tk matrix containing the orthonormal basis vectors of K,
and ¢(x) = %xtAx — 2'b. The LRE-CG method does not have short recurrences as MSDO-CG,
but it has similarities with GMRES in that the whole basis is used to define the new approximate
solution rather than ¢ search directions. As mentioned earlier, the minimum of ¢(x) is given by
vV ¢(z) = 0 which is equivalent to Ax — b = 0. Thus, by minimizing ¢(x) we are solving the
system Az = b. Since ¢(x) = min{p(z), Vo € o + K}, then

() = d(xp_y + Qrau) = min{d(xp_1 + Qra), Ya € R}, 4.7

Once z;, has been chosen, either x;, is the exact solution of Ax = b, or ¢ new basis vectors and
the new approximation ;.1 = x + Qry10r.1 are computed. This procedure is repeated until
convergence.

Thus, we need to find the recursion relations of 7, and ay. By definition, the residual 7, =
b — Az, where z;, € g + XK. Thus ry € K y1. The recursion relation of 74, can be simply
obtained by replacing z, by its expression as follows

T, = b— A[Ek
b — A((Ekfl + Qkak)
= 7Tp-1 — AQray.

At each iteration the step a1 is chosen such that

H(zpy1) = min{d(rp + Qry1), Vo € RY(k + 1)}.

Let F(a) = ¢(xx + Qrsr1c) where ¢(z) = sa' Az — 2'b. Then,

Fla) = %(xk + Q1) Ak + Q1) — (2 + Qrar)'d

= P(xy) + %[(»’Uk)tAQkHOé + Oét(QkH)tAka + Oét(QkH)tAQkHOé] - Oét(QkH)tb
= 0ln) + 1) AQu a0 — (@) Ani] + 50 (Qust) AQu 10 — (@)

1
= ¢(rp) + §at(Qk+1)tAQk+1Oé — o' (Qps1)'rr, since Ais SPD.

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 73
The minimum of F(«) is given by F'(«) = 0

= F'(a) = (Qr+1) AQps10 — (Qp41) ' = 0.

Therefore, | a1 = (Q4, 1 AQk+1) 1 (Qh 17%)
By minimizing ¢(x), the Petrov-Galerkin condition, r; L XK, is ensured (Theorem 4.3.1).
Therefore, (rk)tri = 0, for all © < k, and the residuals form an orthogonal set.

Theorem 4.3.1. The Petrov-Galerkin condition in LRE-CG, 1, L X, is equivalent to x;, being
the minimum of ¢(x) in xo + Ky .

Proof.

1. zy is the minimum of ¢(z) in x + Ky implies ry L Ky
The minimum of F'(a) = ¢(xy) = ¢(xk—1 + Qra) is given by
F'(a) = (Qr)"AQra — (Q)'rk—1 = 0. Since xj is the minimum, then & = ¢ and
F/<Oé) = —Q};Tk = 0. Thus Tk 1 Jct,k:-

2. rp L K, implies xy is the minimum of ¢(z) in xy + K, (Proof by contradiction)
Assume that r,, L K, and xy is not the minimum of ¢(z) in zy + K;x. Then F'(ay) # 0.
Hence Q% # 0 and ry, is not orthogonal to X+ . This contradicts our assumption. Thus xy,
is the minimum of ¢(x).

4.3.1 The LRE-CG algorithm

After deriving the expressions and the recursion relations of

Tp = Tp—1 + Qrou,
Ty = kal_AQkOékv

ap = (QLAQK) (Qhri-1),

we present in Algorithm (36) the LRE-CG algorithm and the performed flops, except for the or-
thonormalization. We refer to the cost of solving the ¢k x tk linear system from step 5 in Algorithm
36 as Solve, (tk).

74 S. MOUFAWAD

Algorithm 36 The LRE-CG algorithm Flops

Input: A, the n x n symmetric positive definite matrix

Input: b, the n x 1 right-hand side; x, the initial guess or iterate
Input: ¢, the stopping tolerance; k4., the maximum allowed iterations
Output: z,, the approximate solution of the system Az = b

1: 7o = b— Az, po = ||10]|3 . k=1 2nnz + 2n — 1

2: Let W = T'(ry), normalize its vectors and then let Q = W 3n

3: while (\/pr_1 > €|[b][2 and k < Kypa0) do 2n

4: G = (Q'AQ) (2nnz — n)tk + (2n —
1)t2k?

55 a=GYQ) (2n — 1)tk + Solve, (tk)

6: r=x+ Qu 2tkn

7: r=r—AQu 2tkn

& o= Irl3 on 1

9: Let W = AW (2nnz — n)t

10: Orthonormalize the vectors of W against the vectors of () not included in here

11: Orthonormalize the vectors of W and let Q = [Q W] not included in here

12: k=k+1 1

13: end while

The cost of the LRE-CG, using Algorithm 36, except for the orthonormalization in steps 10
and 11, is

Total Flops = 2nnz + 7n — 1 + k.[(2nnz + 5n — 1)t5H + 2n + 2nnzt — nt]
+ 370 Solve, (tk) + (2n — 1)%(/% +1)(2k. + 1)
= 2nnz + 7n — 1+ k.[(2nnz + 5n — 1)t5tl 4 2n 4 2nnzt — nt] + Se | Solve,(tk)
+(2n — 1)2(2k2 + 3k, + 1)
= 2mz+Tn—1+ (2n— 1)% + kc[(20nz + 5n — 1)tk 4+ 2n + 2nnzt — nt
+(2n — 1) 5 (2k, + 3)] + 3=, Solve (tk)
nnztk? + nt?k2 + S5 | Solve, (tk),

2

where the first term nnztk? corresponds to the multiplication AQ and the second term nt?k? cor-
responds to the orthonormalization with respect to previous vectors. As for the memory require-
ments, we have to store the matrix A and tk. + 2 vectors of size n x 1. And there should be enough
memory for the tk, x tk, matrix Q' AQ.

However, the multiplication Q% AQ). can be reduced since Qy = [Qr_1Wy]. Let Z, = AW,
then Dy = AQy, = [AQ)_1Zk]. Atiteration k — 1, D)1 = AQ}._1 is computed. Thus at iteration

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 75

k, only Z,, = AW}, is computed. As for G, = Q) AQy, it is equal to

Q2_1Dk71 Q2_1Zlc)

Gr_ t . Z G. .+ F
Gk:QZAQkZQZDk=(WiDe. Wize)~ k-1 Qe_1Zk k-1 L)7

- < ZiQk Wiz):(F{ B

where Gj_; is computed at iteration k — 1, F, = Q% ,7Z;, and E;, = W}Z, . Thus computing
G = Qi AQy, can be reduced to computing Fj, and Ej.

Algorithm 37 The LRE-CG Algorithm Flops

Input: A, the n x n symmetric positive definite matrix

Input: b, the n x 1 right-hand side; x, the initial guess or iterate
Input: ¢, the stopping tolerance; k4., the maximum allowed iterations
Output: z,, the approximate solution of the system Az = b

1: 7o = b— Az, po = ||10]|3 . k=1 2nnz + 2n — 1

2: Let W = T'(r), normalize its vectors and then let Q = W 3n

3: while (/pr_1 > €[|b[|2 and k < ko,) do 2n

4: Z =AW (2nnz — n)t

55 E=W'Z (2n — 1)t?

6: if £ == 1 then

7: D=ZadG=F

8: else

9: F=Q(1:tk-1)~Z (2n — 1)t*(k — 1)
10: Gz(G F)andD:[DZ]

F' E

11: end if
12: a=GHQ) (2n — 1)tk + Solve, (tk)
13: r =12+ Qo 2tkn
14: r=r— Da 2tkn

1. pr =73 2n —1
16: LetW =27
17: Orthonormalize the columns of W against those of () not included in here
18: Orthonormalize the vectors of W and let Q = [Q W] not included in here
19: k =k+1 1

20: end while

Then, the cost of k. iterations of LRE-CG using Algorithm 37, except for the orthonormaliza-

76 S. MOUFAWAD

tion, 1s

Total Flops 2nnz + Tn — 1 + k[2nnzt — nt + (6n — 1)tk + (2n — 1)¢2 5t 4 o]

+ 37 | Solve, (tk)

= 2nnz+ 7n— 1+ k[(2nnz + 2n — $)t + (n —)2 + (6n — 1)tk + (2n — 1)12%
+2n] 4+ S8 | Solve, (tk)

~ 3ntk? + nt2k2 + nt?k, + Y Solvey (tk)

Note that tk. should be much smaller than n, or otherwise the cost of Algorithm 37 would be
O(n® 4+ Solve,(n)), and n vectors of size n have to be stored in addition to the n x n system
Q4 AQx.

One remedy to this problem, that we do not address in this thesis, is to restart LRE-CG after
some iterations. But this restart might have an effect on convergence as in restarted GMRES.
Another alternative is to choose a linearly independent subset of the ¢ computed vectors at each
iteration 7. This reduces the size of the system solved at each iteration. A third alternative is to
compute at each iteration ¢, ¢; vectors and then choose a linearly independent set of cardinality
z?i, where tg = ¢, t; < t, z?l < t;, and tAZ = t;11. This reduces not only the size of the system
solved at each iteration, but also the memory requirements and the number of computed vectors
per iteration. In exact precision, the second and third alternatives are equivalent by Theorem
4.1.4, since if a vector Tj(ro) is linearly dependent on {7’ (ry), .., Tj_1(r0), Tj+1(70); ..., Tt(r0)}
then AT} (ro) is linearly dependent on { AT (1), .., AT;_1(r0), ALj+1(r0), ..., ATi(1ro) }. However,
this has to be tested in finite precision. Note that there is an additional cost for choosing a linearly
independent subset of the ¢ or ¢; vectors.

The tk x tk « system can be solved using iterative methods like Jacobi method or Krylov
subspace methods. Moreover, the s-step or communication avoiding Krylov subspace methods
can be used to reduce communication. We use matlab’s backslash to solve the a systems in the
convergence tests that follow.

4.4 Convergence results

After introducing the new CG methods, MSDO-CG and LRE-CG, we compare their convergence
behavior with respect to different A-orthonormalization and orthonormalization schemes respec-
tively, on several matrices for different number of partitions (2, 4, 8, 16, 32 and 64 partitions). Then
we compare the convergence behavior of both methods with repect to CG, Coop-CG, and MSD-
CG. Recall that coop-CG (section 3.2.4.1) solves the system Az = b ¢ times in parallel by starting
with ¢ distinct initial guesses. The matrices are first reordered using Metis’s k-way partitioning
[49] that defines the subdomains d;. Then z is chosen randomly using matlab’s rand function and
b = A = x, except for the ELASTICITY3Dmatrix where A and b are available. In tables 4.1, 4.2, and

4.3, “Iter” is the number of iterations k. needed for convergence, “Err” is the relative error %

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 77

at convergence, and Pa is the number of partitions for all the methods except for coop-CG where
it refers to the number of initial guesses.

Table 4.1: Comparison of the convergence of MSDO-CG with different A-orthonormalization schemes,
with respect to number of partitions (Pa) with x¢ = 0.

MSDO-CG with different A-Orthonormalization Methods

MGS ||CGS+A-CholQR || CGS+Pre-CholQR || CGS2+A-CholQR || CGS2+Pre-CholQR

Pa|| Iter | Err | Iter Err Iter Err Iter Err Iter Err

2 || 200 |[4E-5|1204 3E-5 204 3E-5 204 3E-5 204 3E-5

4| 167 |2E-5| /167 2E-5 167 2E-5 167 2E-5 167 2E-5
Poi1ssoN2D| 8 || 139 |1E-5{[139 1E-5 139 1E-5 139 1E-5 139 1E-5
tol = 1075 [16] 121 |SE-6]|121 5E-6 121 5E-6 121 5E-6 121 5E-6
32(94 |2E-6| 94 2E-6 94 2E-6 94 2E-6 94 2E-6

64| 69 |2E-6| 69 2E-6 69 2E-6 69 2E-6 69 2E-6

2 || 256 |1E-7|256 1E-7 256 1E-7 256 1E-7 256 1E-7

41 208 [1E-7|[208 1E-7 208 1E-7 208 1E-7 208 1E-7

NH2D 8 || 169 |8E-8|/169 8E-8 169 8E-8 169 8E-8 169 8E-8
tol = 1078 [16]| 138 |6E-8[[138 6E-8 138 6E-8 138 6E-8 138 6E-8
321 107 |2E-8|107 2E-8 107 2E-8 107 2E-8 107 2E-8

64| 77 |1E-8| 77 1E-8 77 1E-8 77 1E-8 77 1E-8

2 [|[1559|8E-4| - - - - 1562 8E-4 1559 9E-4

41917 |[4E-4| - - - - 917 4E-4 917 4E-4

SKY2D1 |8 532 [3E-4| - - - - 531 2E-4 534 2E-4
tol = 1078 [16]] 307 [1E-4| — - - - 307 1E-4 307 1E-4
32|l 178 |6E-5| — - - - 178 6E-5 178 6E-5

64| 126 |3E-6| - - - - 124 2E-6 124 2E-6

21 610 |[4E-5||611 4E-5 611 4E-5 611 4E-5 638 1E-5

4| 420 |2E-5| — - - - 424 1E-5 418 2E-5

SKY3D1 |8 | 228 |1E-5| - - - - 230 1E-5 228 2E-5
tol = 1078 [16]] 134 |1E-5| — - - - 134 1E-5 134 1E-5
32| 87 |1E-6| — - - - 83 1E-5 83 1E-5

64| 53 |6E-6| - - - - 51 1E-5 51 1E-5

2 || 893 |6e-5||893 6e-5 893 6e-5 893 6e-5 893 6e-5

4| 749 | 8e-5|/749 8e-5 749 8e-5 749 8e-5 749 8e-5

ANI3D 8 || 498 |8e-5|506 9e-5 511 8e-5 498 7e-5 503 7e-5
tol = 1078 [16] 328 [le-4| - - - - 326 le-4 326 le-4
321 192 |2e-4| - - - - 192 le-4 192 le-4

64 122 |5e-5| - - - — 122%* 4e-5 122%* 4e-5

In table 4.1 we compare the convergence behvior of the MSDO-CG method (Algorithm 35)
with different A-orthonormalization schemes for A-orthonormalizing P against previous F;’s

78 S. MOUFAWAD

(MGS, CGS, CGS2) and then A-orthonormalizing P, against itself (MGS, CGS, CGS2, A-CholQR,
Pre-CholQR) and for different number of partitions ¢ = 2,4, 8,16, 32, 64 that correspond to the
maximum number of vectors added at each iteration to the enlarged Krylov subspace, X, ;. We
have tested different combinations of A-orthonormalization, but we only show MGS (MGS+MGS),
CGS+A-CholQR, CGS+Pre-CholQR, CGS2+A-CholQR, and CGS2+Pre-CholQR. Note that MSDO-
CG with CGS A-orthonormalization (CGS+CGS) did not converge neither with CGS2 A-orthonormalization
(CGS2+CGS2) nor with CGS2+CGS or CGS+CGS2 A-orthonormalization. The reason is that the
search directions are not A-orthogonal to satisfactory precision. And by Theorem 4.2.1, this im-
plies that 7, £ X, ;. Thus, nothing guarantees convergence since we have shown in section 4.1.3
that MSDO-CG converges faster than CG if r, L K, ;. Moreover, we did not test combinations of
MGS and QR factorizations since MGS is expensive in terms of communication compared to the
other methods (section 4.5.1). But we tested MSDO-CG with MGS for comparison purposes since
MGS is known for its numerical stability.

As shown in table 4.1, MSDO-CG with MGS A-orthonormalization converges for all the tested
matrices and as we increase ¢, the number of iterations needed for convergence decreases. As we
mentioned earlier, MSDO-CG with CGS A-orthonormalization did not converge. Therefore, we
replaced CGS with CGS+A-CholQR and with CGS+Pre-CholQR A-orthonormalization. We no-
tice that MSDO-CG with CGS+A-CholQR A-orthonormalization and MSDO-CG with CGS+Pre-
CholQR A-orthonormalization have the same convergence behavior. For the matrices PoissoN2Dand
NH2D, both methods converge with the same number of iterations as MSDO-CG with MGS A-
orthonormalization. However, for the matrix SKY2D1, both methods did not converge. As for the
matrices SKy3Dland ANI3D, both methods converged only for ¢ = 2 partitions, and t = 2,4, 8
partitions respectively. The reason for this difference in behavior for different matrices is the con-
dition number (conds = ||A||2||A7Y]2). The condition number of the matrices PoissoN2Dand
NH2Dis 6 x 103, whereas that of the matrices SKY3D1, AN13Dand Sky2Dlis 1 x 10%, 2 x 106,
and 3 x 107 respetively. Although it was shown in [59] that Pre-CholQR A-orthonormalization
is more stable than A-CholQR, however MSDO-CG with CGS+A-CholQR A-orthonormalization
and MSDO-CG with CGS+Pre-CholQR A-orthonormalization are both numerically unstable.

Thus, we replace CGS with CGS2 where the A-orthonormalization is performed twice for nu-
merical stability. Then, the MSDO-CG with CGS2+A-CholQR A-orthonormalization and MSDO-
CG with CGS2+4Pre-CholQR A-orthonormalization converge as fast as MSDO-CG with MGS A-
orthonormalization for all ¢ and all the tested matrices. Hence, we concude that MGS, CGS2+A-
CholQR, and CGS2+Pre-CholQR A-orthonormalizations are stable enough to be used in the MSDO-
CG method (Algorithm 35).

In table 4.2, we compare the convergence behavior of the LRE-CG method (Algorithm 37) with
different orthonormalization schemes for orthonormalizing W against the n x tk matrix @) (MGS,
CGS) and then orthonormalizing W against itself (MGS, CGS, TSQR) and for different number
of partitions t = 2,4,8,16, 32,64 that correspond to the maximum number of vectors added at
each iteration to the enlarged Krylov subspace, KX, ;. We start by testing the convergence of LRE-
CG with MGS (MGS+MGS) orthonormalization. It converges for all the tested matrices since it is

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS

Table 4.2:

schemes, with respect to number of partitions Pa, with ¢ = 0.

LRE-CG with different
Orthonormalization Methods

MGS+MGS

CGS+CGS

CGS+TSQR

Pa

Iter | Err

Iter | Err

Iter | Err

PoissoN2D
tol = 1076

193 | 2E-5

193 |2E-5

193 | 2E-5

153 | 1E-5

153 |1E-5

153 | 1E-5

123 | 8E-6

123 |8E-6

123 | 8E-6

16

95 | 4E-6

95 |4E-6

95 | 4E-6

32

70 | 2E-6

70 |2E-6

70 | 2E-6

64

52 | 1E-6

52 |1E-6

52 | 1E-6

NH2D
tol = 1078

245 | 1E-7

245 |1E-7

245 | 1E-7

188 | 1E-7

188 |1E-7

188 | 1E-7

149 | 5E-8

149 |5E-8

149 | 5E-8

16

112 | 3E-8

112 |3E-8

112 | 3E-8

32

82 | 2E-8

82 |2E-8

82 | 2E-8

64

60 | 1E-8

60 |1E-8

60 | 1E-8

SKY2D1
tol = 1078

1415|5E-04

1415 |8E-4

1415| 5E-04

757 | 1E-4

(140)| -

754 | 1E-4

398 | 1E-4

(112) =

398 | 1IE4

16

220 | 9E-5

(70) | -

220 | 1E-4

32

126 | 5E-5

G| -

126 | SE-5

64

75 | 3E-5

29| -

75 | 4E-5

SKY3D1
tol = 1078

557 | 2E-5

570 (1E-5

563 | 1E-5

373 | 2E-5

(140)| -

377 | 1E-5

211 | 1E-5

(54| -

211 | 1E-5

16

119 | 9E-6

G| -

119 | 9E-6

32

69 | 9E-6

a8 | -

69 | 9E-6

64

43 | 4E-6

as)| -

42 | 1E-5

ANI3D
tol = 1078

875 | Te-5

875 | Te-5

673 | 8e-5

875 |7TE-5
(185)] —

673 | 8e-5

449 | Ted

(116)| -

449 | le-d

16

253 | 2e-4

(16) | -

253 | 2e-4

32

148 | 2e-4

® | -

148 | 2e-4

64

92 | le-4

(13)| -

92 | le-4

79

Comparison of the convergence of the LRE-CG method with different orthonormalization

80 S. MOUFAWAD

numerically stable, and the number of iterations needed for convergence decreases when increasing
the number of partitions ¢. However, as mentioned in section 4.5.1, MGS is expensive in terms
of communication (O(tklog(t)) messages per iteration, where ¢ processors A-orthonormalized ¢
vectors against tk vectors). Thus, we tested the LRE-CG method with Classical Gram Schmidt
(CGS) orthogonalization which requires sending O(tlog(t)) messages per iteration. The LRE-CG
with CGS converges in the same number of iterations as LRE-CG with MGS for the matrices
Poisson2Dand NH2D. However, for the other matrices, it does not converge for the given stopping
criteria except for ¢ = 2 as shown in table 4.2. The reason is that the the matrix C' = Q'AQ
is becoming close to singular, with rank(C') < tk, as the iterations proceed due to the loss of
orthogonality in the CGS orthogonalization. The number of iterations in parentheses in table 4.2
is not the number of iterations for convergence but it denotes the iteration at which the C' matrix
becomes close to singular.

In CA-GMRES [60], the authors use a parallelizable tall and skinny QR (TSQR) factorization
[21] for orthonormalizing the n x ¢ tall and skinny matrix instead of CGS. They have shown that
the combination of CGS for orthonormalizing W against () and TSQR for orthonormalizing W
is stable. We have tested LRE-CG with CGS and TSQR (CGS+TSQR) orthonormalization, and
it has the same convergence behavior as LRE-CG with MGS (MGS+MGS) orthonormalization
(table 4.2). Thus, we conclude that MGS, and CGS+TSQR orthonormalizations are stable enough
to be used in the LRE-CG method from Algorithm 37.

In tables 4.3 and 4.4, we compare the convergence behavior of MSDO-CG with MGS A-
orthonormalization, LRE-CG with MGS orthonormalization, Coop-CG and MSD-CG with re-
spect to CG for several matrices with different number of partitions ¢ = 2,4, 8,16, 32,64 . The
MSDO-CG, COOP-CG and LRE-CG have better convergence than CG, and LRE-CG has the best
convergence. The MSD-CG converges, but requires more iterations than CG, three times more
iterations for the matrices SKY2D1, SKY3D1, ANI3D, and Electricity3D. As for Coop-CG, which
starts with ¢ different initial guesses and solves two systems of fixed size ¢ x ¢, its convergence is
slightly better than MSDO-CG for the matrices PoissoN2D, NH2D, and Electricity3D. But it re-
quires much more iterations than both MSDO-CG and LRE-CG for the other matrices (SKY2D1,
SKY3D1, ANI3D). Moreover, the results may vary depending on the ¢ initial guesses that are used
for the different matrices.

For the tested matrices, LRE-CG has slightly better convergence than MSDO-CG, since it uses
the whole basis to define the new approximate solution rather than ¢ search directions. For the
matrices PoissoN2Dand NH2D, LRE-CG and MSDO-CG have almost the same convergence as
CG for t = 2, and then as ¢ is doubled the iterations needed for convergence is decreased by
20% to 30%. For t = 2, LRE-CG requires 35% and 40% less iterations than CG for the matrices
ErLasTicITY3Dand SKY3Dlrespectively. And as ¢ is doubled the number of iterations needed for
convergence is decreased by 25% to 30%, and 32% to 45% respectively. For ¢t = 2, LRE-CG
requires 60% and 80% less iterations than CG for the matrices SKy2D1and ANI13Drespectively.
And as ¢ is doubled, the number of iterations needed for convergence is decreased by 45% to 50%
and 25% to 40% respectively.

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 81

Table 4.3: Comparison between the convergence of the different CG versions with respect to number of
partitions or initial guesses for Coop-CG with x¢ = 0.

CG Coop-CG MSD-CG |[MSDO-CG| LRE-CG
Pa|| Iter | Err || Iter | Err Iter | Err || Iter | Err || Iter | Err
2| 195 [2E-5] 206 | 2E-7 | 235 |3E-1| 200 |4E-5| 193 | 2E-5
41195 |2E-5| 171 | 1E-7 | 252 |7E-1| 167 |2E-5| 153 | 1E-5
poisson(100,100) | 8 || 195 |2E-5|| 137 | 1E-7 | 245 |7E-1|| 139 | 1E-5| 123 | 8E-6

tol =107 16| 195 [2E-5] 106 | 3E-8 | 249 |7E-1| 121 | 5E-6| 95 | 4E-6
321 195 [2E-5] 80 | 1E-8 | 240 |7E-1| 94 |2E-6| 70 | 2E-6
64| 195 [2E-5|| 59 | 1E-8 | 253 |7E-1| 69 |2E-6| 52 | 1E-6

2 || 259 |4E-7|| 206 | 2E-7 | 363 |3E-1| 256 | 1E-7|| 245 | 1E-7
4| 259 |4E-7| 179 | 1E-7 || 343 |7E-1| 208 | 1E-7 || 188 | 1E-7
matvi2dnh100100| 8 || 259 |4E-7|| 157 |2.02E-5| 372 |7E-1|| 169 | 8E-8 | 149 | 5E-8

tol = 1078 16| 259 |4E-7| 107 | 2E-8 | 373 |7E-1| 138 |6E-8 || 112 | 3E-8
32| 259 |4E-7| 81 | 2E-8 | 324 |7E-1|| 107 | 2E-8| 82 | 2E-8
64| 259 [4E-7| 59 | 1E-8 | 457 |7E-1| 77 |1E-8| 60 | 1E-8

2 ||5951|4E-4(|4893| 2E-4 |17907|3E-1{1559|8E-4 ||1415|5E-04
4 |15951|4E-4||3737| 9E-5 ||66979|7E-1| 917 |4E-4 || 757 | 1E-4
sky100100 8 5951 |4E-4||3391| 1E-5 |25298|7E-1|| 532 |3E-4| 398 | 1E-4
tol = 1078 16|(5951|4E-4|12437| 9E-6 |23486|7E-1|| 307 | 1E-4 | 220 | 9E-5
32||5951|4E-4|/1406| 4E-6 |15448|7E-1|| 178 | 6E-5| 126 | 5E-5
64||5951|4E-4| 802 | 2E-6 |23981|7E-1| 126 |3E-6| 75 | 3E-5

4.5 Parallel model and expected performance

In this section we describe the parallelization of the MSDO-CG method (section 4.5.1) and the
LRE-CG method (section 4.5.2) with computed flops, number of messages and words sent and the
estimated parallel runtime.

For simplicity, we assume that the algorithms are executed on a distributed memory machine
formed by ¢ processors, where ¢ corresponds to the number of vectors computed at each iteration.
Recall that on a distributed-memory architecture, the estimated runtime of an algorithm with a total
of z computed flops and s sent messages each of size k is 7.2 + a.s + (., where 7, is the inverse
floating-point rate (seconds per floating-point operation), c.. is the latency (with units of seconds)
and [3, is the inverse bandwidth (seconds per word).

We partition the graph of A into ¢ subdomains using k-way partitioning or another graph par-
titioning. We denote by 9;, for i = 1,2, .., ¢ the subsets of indices obtained from the partitioning.
Thatis 6; N 0, = ¢ forall i # h, Uj_,0, = {1,2,3,...,n}, and |0;| ~ %. Then each processor i
is assigned the % x n rowwise part of the matrix A (A(;,:) = A(:,d;) since A is SPD), the & x 1

82 S. MOUFAWAD

Table 4.4: Comparison between the convergence of the different CG versions with respect to number of
partitions or initial guesses for Coop-CG with x¢ = 0.

CG Coop-CG || MSD-CG |MSDO-CG|| LRE-CG
]Pa Iter\ Err Iter\ Err || Iter \Err Iter\ Err Iter\ Err

211902 [1E-5 || 795 | 8E-6 || 3070 |2E-1|610| 4E-5 |557| 2E-5
41902 | 1E-5 || 627 | 1E-5 | 11572|6E-1|420| 2E-5 ||373| 2E-5
sky202020 | 8 || 902 | 1E-5 || 542 | 4E-6 || 3207 |7E-1|228| 1E-5 ||211| 1E-5
tol = 107% |16/ 902 | 1E-5 || 414 | 3E-6 || 4225 [7E-1||134| 1E-5 ||[119|9E-6
321902 | 1E-5| 290 | 1E-6 || 3149 |7E-1|| 87 | 1E-6 || 69 | 9E-6
64| 902 | 1E-5 || 183 | 8E-7 || 2719 |7E-1| 53 | 6E-6 | 43 | 4E-6

2 ||4187| 4e-5 ||3584| S5e-5 ||12404|2e-1893| 6e-5 |875| 7e-5
4 114146| 4e-5 ||3371| 4e-5 ||[17311|6e-1||749| 8e-5 |673| 8e-5
ANI202020 | 8 ||4146| 4e-5 |2865| 4e-5 ||22339|7e-1|498| 8e-5 ||449| le-4
tol = 1078 [16[/4146] 4e-5 |[2314] 3e-5 [[21989|7e-1([328] le-4 [253] 2¢-4
32|4146| 4e-5 || 1615] 2e-5 ||[17042|7e-1|/192| 2e-4 |148| 2e-4
64||4146| 4e-5 | 1002| 1e-5 |[19257|1e-4|122| Se-5 | 92 | le-4

2 || 987 |4e-12| 718 |3e-12{| 3065 |8e-1|764| 3e-12 ||634|4e-12
41 987 |4e-12|| 534 |8e-12|| 3497 |8e-1(/622| 4e-12 ||480|2e-12
ELASTICITY3D| 8 || 987 |4e-12| 425 |6e-11|| 3101 |8e-1{/472| le-12 ||334|1e-12

tol = 1078 [16] 987 |4e-12| 348 [6e-11| 4239 [1e-0([343] 1e-12 [235]1e-12
32| 987 |4e-12| 294 |9e-12| - — 1234 1e-12 |[170|1e-12
64| 987 |4e-12| 235 |le-11]] - - 117|7e-13

rowwise part of the vector b (b(6;)), and the vector x((;), where 6; = Adjacent(G(A), ;) is the
adjacent of §; in the graph of A. Processor i computes x(d;).

However, for performance reasons and due to the multicore nature of most architectures, it is
possible to use a number of processors greater than ¢, preferably a multiple of ¢. In this case, we
start by partitioning the graph of A into ¢ subdomains using k-way partitioning or another graph
partitioning, where §; for ¢ = 1,2, .., are the subsets of indices obtained from the partitioning.
This partitioning is used to define the 7'(.) operator and eventually the enlarged Krylov subspace.
Assuming that we have ct processors, then every ¢ processors are assigned an % x n rowwise part

of the matrix A, A(d;,:), T x 1 rowwise part of the vector b (b(J;)) and the vector x4(;), and
should output xy(d;). In other words, we partition each of our ¢ subdomains into ¢ non-overlapping
subdomains to obtain a total of ct subdomains with set of indices ¢; j, where ¢ = 1,2,..,t, j =
1,2,..,¢c,and 6; = US_,d; ;. Then, in Algorithms 38 and 39, log(t) is replaced by log(ct), and 7 is

replaced by ~.

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 83

4.5.1 MSDO-CG

In this section we describe the parallelization of the MSDO-CG algorithm and we estimate its run-
time in terms of flops, number of messages, and words sent. As mentioned in section 4.4, MGS,
CGS2+A-CholQR, and CGS2+Pre-CholQR A-orthonormalizations are numerically the most sta-
ble and allow the convergence of MSDO-CG for the matrices in our test set. As discussed in section
2.4, the most parallelizable versions of MGS, Algorithms 10 and 11, require sending (tk + 1)log(t)
and 2(t — 1)log(t) messages respectively. Whereas CGS2, Algorithm 18, requires sending 4log(t)
messages. On the other hand, Algorithm 21 of A-CholQR requires sending log(t) messages,
and Pre-CholQR Algorithm 23 requires sending 3log(t) messages. The CGS2+A-CholQR and
CGS2+4Pre-CholQR A-orthonormalizations can be called communication avoiding since they re-
quire sending 5log(t) and 7log(t) messages respectively, unlike the MGS A-orthonormalization.
Since both methods are stable and CGS2+A-CholQR requires less communication, we present the
Parallel MSDO-CG with CGS2+A-CholQR A-orthonormalization in Algorithm 38.

In Algorithm 38 we have two types of communication. The first is an “all reduce” communica-
tion that requires synchronization between all the processors and is equivalent to log(t) messages,
each of the same size (refer to [74]). For example, in line 10 of Algorithm 38, the “all reduce” is
equivalent to log(t) messages each of size ¢t words, since [is a vector of size t.

The second type of communication is a point-to-point communication between each proces-
sor ¢ and its m; neighboring processors for computing a matrix - block of vectors multiplication,
specifically A[T(r)]. We denote by myp = max{m;| ¢ = 1,2,..,t} the largest number of
neighboring processors where m; < myp < (t — 1) for all i. Note that processor ¢ has to com-
pute A(8;,6;)[T(r)](6i,:), where 6; = Adjacent(G(A), ;). Then, the neighboring processors of
a given processor ¢ are defined as all the processors j from which processor ¢ needs some rows of
[T'(r)] to compute its part of A[T'(r)]. In other words, neighboring processors are all the proces-
sors j for which §; N §; # ¢. Moreover, [T(r)](8;, :) is all zeros except for the i*" column which
is equal to r(d;). Thus, processor i sends r(d;) of size 7 x 1 to its neighboring processors once
r(d;) is computed at step 8. Since 7(;) is used in the computation at step 12, this communication
is overlapped with the computations from step 9 to 11. Simultaneously, processor i receives 7(J;)
from all its neighboring processors j for j = 1,2, .., m;. Then it computes A(;, ;)[T(r)](5;) by
performing approximately znn# flops.

The scheduling of the communications and computations in Algorithm 38 can be done as fol-
lows:

1. Processor i computes (¢;) and sends it to its neighboring processors.

2. Processor i overlaps the computation of 7(;)"r(;) with the reception of (d;) from all neigh-
boring processors j

b (13

3. Processor ¢ overlaps the computation of W7 (¢;) with p’s “all reduce”

4. Call algorithm 11 to A-orthonormalize P,

84

S. MOUFAWAD

Algorithm 38 Parallel MSDO-CG with CGS2+A-CholQR A-orthonormalization | Estimated Time

1:
2:
3:

AN

10:

11:
12:

13:
14:

15:
16:
17:
18:

Input: §;, the set of indices assigned to processor i

Input: A(J;,:), the % x n row part of A

Input: b(J;), the % x 1 row part of b; 20(d;), the |9;| ~ % + ¢; row part of g
Input: ¢, the stopping tolerance; k4, the maximum allowed iterations
Output: 4 (0;), the row part of the approximate solution of Az = b

for each processor ¢ = 1 : ¢ in parallel do

Processor i computes 7(8;) = b(8;)—A(d;, 0;)x0(8;) andlet k = 1 v(2102)
Processor i computes 7(8;)!r(d;) and receives the full p = ||r||3 Ye(2%)
via an all reduce (overlapped with the next computation) +(ae + Be)log(t)
Processor ¢ sends Py (d;,:) = [T(r)](d:,:) = [0, ..,0,7(5),0, .., 0] to its ve(210Z)
m s B neighboring processors and receives from them the corresponding +a.muyB
blocks to obtain P (8;,:). Then it computes W1 (6;) = A(8;, 0;)P1(6;,:) +B.Ema
Call A-CholQR algorithm 21 to A-orthonormalize P; Yednt + (ae + Bet?)log(t)
while (\/p > €||b|[2 and k < ke) do
Processor i computes P (d;,:)!7(5;) and receives the full Ye(2%F — 1)t
a = Plr via an all reduce + (e +tBe)log(t)
Processor i computes x(9;) = x(d;) + Pr(d;,) 4y Bt
and 7(9;) = r(8;) — W(ds,)
Processor i computes 7 (6;)!r(d;) and receives p = ||r||3 V(2% = 1)
via an all reduce (overlapped with the next communication) +(ae + Be)log(t)
Processor i computes — W}, (d;, :)!r(5;) and receives the full Ye(2%F — 1)t
B = —W}r via an all reduce + (e +1tpBe)log(t)
Processor i computes Py11(d;,:) = [T(r)](ds,:) + Pr(0,:)diag(B) 2. %
Processor i sends [T'(r)](;, :) to its mpsp neighboring processors 7(2112)
and receives from them the corresponding blocks to obtain +a.myB
[T(7)](d;,:). Then it computes Z(8;) = A(8;,8;)[T(r)] (8, :) +BcFmuB
Processor i computes Wy 1(0;,:) = Z(0i,:) + Wi (s, :)diag(5) 273t
Call CGS2 Algorithm 18 to A-orthonormalize Py, 1 against P; 12v.ntk
foralli < k +2(2a.+ Bet?k)log(t)
Call A-CholQR Algorithm 21 to A-orthonormalize Py 1 Yednt + (ae + Bet?)log(t)
kE=k+1
end while
end for

Then at each iteration:
5. Processor ¢ computes P (d;, :)'r(;) and receives the full « = P}r via an all reduce
6. Processor ¢ computes r(d;) and send it to its neighboring processors.

7. Processor i overlaps the computation of x(d;) , 7(d;)'r(8;), and —Wy(6;, :)'r(d;) with the the

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 85

reception of r(J;) from all neighboring processors j

8. Processor i overlaps the computation of Z(&;) = A(6;,6;)[T(r)](d;, :) and the reception p =
||r||2 and 8 = —W}r via the same “all reduce” that costs log(t) messages and (¢ + 1) = log(t)
words

9. Processor i computes Py 1(d;,:) = [T'(7)](ds,) + Pi(ds, :)diag(5) and W1 (6;,:) = Z(0;,:
)+ Wi(d;, :)diag(B)

10. Call algorithm 18 to A-orthonormalize P against all P;’s fori < k
11. Call algorithm 21 to A-orthonormalize P,

In summary, without the A-orthogonalization at steps 14 and 15, the estimated time of k.
iterations of Algorithm 38, where we ignore lower order terms, is

nnz
Ye(11ln + QnT)

ke + ac(2log(t) + mup)ke + ﬁc(%mMB + 2tlog(t))ke.

At iteration k, the CGS2+A-CholQR A-orthonormalization requires sending 5log(t) messages
with (¢t + 2tk + 2)tlog(t) words and performing approximately 12ntk + 4nt + 6n flops. Af-
ter k. iterations the estimated time for the A-orthonormalization is v.(12ntk. + 16nt + 6n)k. +
a.(blog(t))ke+ Be(t+ 2tw +2)tlog(t)k.. Thus, the estimated time of k. iterations of algorithm
381is

Time yspoco(ke) & 7e(2nBR2 + 12ntk. + 10nt + 17n)k. + a.(Tlog(t) + marp)k.
+B(Emap + tPkclog(t)) k.

4.5.2 LRE-CG

In this section we describe the parallelization of the LRE-CG algorithm and we estimate its runtime
in terms of flops, number of messages, and words sent. As mentioned in section 4.4, MGS and
the CGS+TSQR orthonormalizations are numerically the most stable and allow the convergence of
LRE-CG for the matrices in our test set. The parallel version of MGS orthonormalization, Algo-
rithms 4 and 5, is similar to that of the A-orthonormalization discussed in section 2.4, and requires
sending (tk + 1)log(t) and 2(t — 1)log(t) messages respectively. Whereas the CGS orthonor-
malization, Algorithm 2, can be parallelized in a block format like Algorithm 14, and requires
sending 2/og(t) messages. On the other hand, the TSQR orthonormalization (section 2.4.2.2) us-
ing binary trees as discussed in [21] requires sending log(t) messages. The combination of BCGS
and TSQR was discussed in [60] and it requires sending only 3log(t) messages as compared to
the (tk + 2t — 1)log(t) messages of MGS. We present the Parallel LRE-CG with BCGS+TSQR
orthonormalization in Algorithm 39.

86 S. MOUFAWAD

Algorithm 39 Parallel LRE-CG with BCGS+TSQR Algorithm Estimated time

Input: §;, the set of indices assigned to processor i; A(d;,:), the % x n row part of A
Input: b(J;), the % x 1 row part of b; 20(;), the |9;] x 1 row part of rq
Input: ¢, the stopping tolerance; k44, the maximum allowed iterations
Output: z(0;), the row part of the approximate solution of Az = b
1: for each processor ¢ = 1 : ¢ in parallel do

2: Processor i computes r(&;) = b(d;) — A(8;,0:)x0(5;) Ve (210Z)
3: Processor i computes 7(6;)!r(d;) and receives the full p = ||r||3 Ye(2% — 1)
via an all reduce (overlapped with the next computation) +(ae + Be)log(t)
4: Let Q(d;,:) = W(d;,:) = [T'(r)](d;, :), and normalize its vectors Ye(2%t)
5: Processor i sends W (d;,:) = [T'(r)](0;, :) to its m; neighboring +acmyp
processors and receives from them the corresponding blocks +BeFmyB
to obtain W (d;,:). Let k = 1
6: while (\/pr—1 > €||b||2 and k < Kpnaz) do
7: Processor i computes Z(d;,:) = A(3;,0;)W (8;,:) 2. 2¢
8: Processor i computes W (8;,:)tZ(9;,:) and receives Ve2%12
E = W'Z via an “all reduce” +(ae + t28.)log(t)
9: if £ == 1 then
10: D=ZadG=F
11: else
12: Processor i computes Q(d;,1 : t(k — 1))t Z(d;,:) and Ve22t%k
receives F' = Q(:,1: t(k — 1))'Z via an “all reduce” +aclog(t)
13: G = < gt g > and D = [D Z] +B.t2(k — 1)log(t)
14: end if
15: Processor i computes Q(J;, :)!7(d;) and receives Q'r via an Y22tk
“all reduce” +(ae + tkBc)log(t)
16: a=GHQr) Time, (tk)
17: Processor i computes x(d;) = z(d;) + Q(d;,:)a Ye(2tk%)
18: Processor i computes 7(d;) = r(0;) — D(d;,:)« Ye(2tkT)
19: Processor i computes 7(6;)!r(d;) and receives py, = ||r||3 Ye(2% = 1)
via an “all reduce” (overlapped with the next computation) +(ae + Be)log(t)
20: Let W = Z and orthogonalize the columns of W against Yedntk + 2aclog(t)
those of () using BCGS Algorithm 2 +t2kB.log(t)
21: Orthonormalize the vectors of W using TSQR Ye(2%4% + %t3log(t))
(section 2.3.3) and let Q = [Q W] +(ac + Beg)log(t)
22: Processor i sends W (4, :) to its m; neighboring processors +acmyp
and receives from them the corresponding blocks to obtain W(gi,) + Bc%tm MB
23: k=k+1
24: end while

25: end for

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 87

In Algorithm 39 there are two types of communication, similarly to Algorithm 38. The first
type of communication is a point-to-point communication between each processor ¢ and its m;
neighboring processors for computing the matrix - block of vectors multiplication Z = AW in line
7. We denote by my g = max{m;| i = 1,2,..,t} the largest number of neighboring processors,
where myp < (t — 1) for all 7. Note that processor i has to compute A(d;, 6;)W (8;, :), where
0; = Adjacent(G(A), ;). Then, the neighboring processors of a given processor i are defined as
all the processors j from which processor ¢ needs some rows of W to compute its part of AW.
In other words, neighboring processors are all the processors j for which §; N d; # ¢. Note that
for the first iteration, W (d;,:) = [T'(r)](d;, :) is all zeros except for the i’ column which is equal
to r(6;). Thus, processor i sends 7(d;) of size 7 x 1 to its neighboring processors once r(¢;) is
computed. However, for the next iteration the W is no longer sparse, therefore W (J;,:) of size
7 X t1is sent.

The second type of communication is an “all reduce” that requires synchronization between all
the processors, and it is equivalent to log(t) messages each of the same size (refer to [74]). For
example, in lines 3 and 19 of Algorithm 39, the “all reduce” is equivalent to log(t) messages each
of size 1 word. As mentioned, this communication can be overlapped with the next computation.
The reception of £ = W'Z, F = Q(:,1 : t(k — 1))'Z and Q'r via an “all reduce” in lines 8, 12
and 15 of Algorithm 39 is equivalent to log(t) messages each of size t* words, log(t) messages
each of size t>(k — 1) words, and log(t) messages each of size tk words respectively. However,
the three computations are independent. Thus, each processor can compute its part of the three
aforementioned computations and then receive the full matrices and vectors via log(t) messages
each of size kt(t+1) words, assuming that it is possible to send t?k words in one message. Another
alternative is to compute Q(0;, 1 : t(k—1))*Z(J;, :) in several steps and overlap the communication
with the next computation. The number of steps depends on the machine’s architecture and on the
values of ¢ and k.

The scheduling of the communications and computations in Algorithm 39 can be done as fol-
lows:

1. Processor i computes r(¢;) and sends it to its m; neighboring processors.

2. Processor i overlaps the computation of (;)"r(¢;) with the reception of (d;) from all neigh-
boring processors j

b (13

3. Processor ¢ overlaps the normalization of 1V (4;, :) with p’s “all reduce”

Then at each iteration:

4. Processor i computes Z(0;,:) = A(8;, 6:)W (85, :), W (0;,) Z(8:,:) , Q(05,1 : t(k—1))tZ (5, :
), and Q(0;, :)'r(0;). Then it receives E = W'Z, F = Q(:,1 : t(k — 1))*Z and Q"r via an
“all reduce” that costs log(t) messages and kt(t + 1) = log(t) words. Then update G and D

5. Solve o = G~1(Q'r) where each processor i receives the full vector o

88 S. MOUFAWAD

6. Processor i computes z(6;) , r(d;), and r(8;)'7(d;). Then overlaps the reception p = ||r||3
with the next computation.

7. Orthogonalize the columns of W against those of () using BCGS
8. Orthonormalize the vectors of W using TSQR

In Algorithm 39, we show the estimated time for each computation and communication, where
Time,(tk) is the estimated time for solving the tk x tk o system in line 16. At the k" iteration
of Algorithm 39 the total flops, except for the « system, is 2nnz + (6nt — 2t> + 6n — t)k + 2nt +
2t310g(t) + 2n + 2% — 1. And 4log(t) + msp messages are sent with ((2t* +)k + % +t)log(t) +
nm g words.

Then, by ignoring the lower order terms the estimated time of k. iterations of Algorithm 39,
wheret > 1, k. > 1, 1s

Timerecs(ke) =~ 7e(2nnz + 3ntk. + 2t3log(t))ke + ae(4log(t) + map)ke
+B:[t2kclog(t) + 2t2log(t) + marpnlke + Y4, Time,(tk)

4.6 Preconditioned enlarged Krylov subspace methods

After introducing the enlarged Krylov subspace methods and proving, theoretically and numeri-
cally, that these methods converge, we describe the preconditioned enlarged Krylov methods. A
system Ax = b can be left, right, or split preconditioned. In the case of conjugate gradient methods,
the matrix A is symmetric positive definite (SPD). Hence, the preconditioned matrix should also
be SPD. For left and right preconditioning, it is not easy to find some matrix M such that M/ ~1A
or AM~! is SPD. But assuming that M/ = LL!, then the split preconditioned matrix L= *AL~" is
SPD with L=% = (L!)~L.

Given an n x n SPD matrix A, n x 1 vector b and some preconditioner M = LL!, then the split
preconditioned enlarged Krylov subspace corresponding to the system L 'AL 'y = L~'b with
y = L'z and M = LL!,is defined by

Kiw(LPALT o) = span{T(ro), L*AL™T(ro), (LT AL™)2T(r0), ..., (LT AL 1T (1)}
= Spcm{T1 <T0>7 T2(r0)7) ﬂ(r(])a LilALitTl (7’0), LilALitTQ(r()%)
L7YALT,(ro), ... (LY ALY 1T (1), ..., (LT AL 1T ()},

where g = L1 (b — AL 'yy) = LY (b — Awy), yo = L'z, and xy is the initial guess.
Consequently, the split preconditioned enlarged conjugate gradient methods are defined by
the orthogonality condition and the subspace condition associated with preconditioned enlarged
Krylov subspace. For example, given a split preconditioned system L™ 'AL~ty = L~'b with
y = L'z and M = LL', the enlarged CG Krylov projection methods are defined by y; €
Yo + Kix(L TAL™" rg) (the subspace condition), and r, L XK;x(L 'AL™" ry) (orthogonality

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 89

condition), where r, = L=1(b — AL~ty;,) = L=(b — Axy,). Assuming A = LAL~ | b = L~1b,
and T = y, then all the theorems and properties discussed in section 4.1 are valid for the system
Az =b.

Algorithm 40 Split preconditioned MSDO-CG with CGSZ+/A1—CholQR A-orthonormalization

Input: A, the n x n symmetric positive definite matrix; L, n x n split preconditioner
Input: b, the n x 1 right-hand side; x, the initial guess or iterate
Input: ¢, the stopping tolerance; k4., the maximum allowed iterations
Output: z, the approximate solution of Az = b by solving for L~'AL™'y = L~'b and
y= L'z
1y = L'zg,r =L Yb— Axg), p = ||r||3, nb = ||L71D||2, k =1
2: Let P, = T(r) and L~'AL"-orthonormalize it using Algorithm 22 which outputs W; =
LYAL7'P
while (,/p > €(nb) and k < k4,) do
a = (PIWy) Y (Pir) = Plr
y=y+ Praandr =r — Wi«
p=|rl3
B = —(PLW,) " (Wir) = ~Wir
Ppy1 =T(r) + Prdiag(B)
L='AL~t-orthonormalize P, against all P;’s for ¢ < k using CGS2 Algorithm 19
10: L~'AL™!-orthonormalize Py, using A- CholQR Algorithm 22 which outputs
Wit = LT'AL ™ Py
11: kE=Fk+1
12: end while
13: Solve L'z =y

D A A

Given an SPD matrix M, then the Cholesky factorization M = LL' can be used for split pre-
conditioning the system Ax = b, where the matrix L~' AL~ is SPD. As the Cholesky factorization
of an n x n matrix can be expensive, another alternative is to use block Jacobi preconditioner (sec-
tion 3.3.2) with Cholesky factorization of the diagonal blocks.

We present in Algorithm 40 the split preconditioned MSDO-CG with CGS2+A- CholQR A-
orthonormalization of the system A7 = b, where A = L~YAL™ , b = L~'b, = y, and
y = L'z. We omit the W recursion due to numerical errors since W AP = L7YAL7'P
consists of performing backward and forward substitution in addition to the matrix vector multipli-
cation. Thus we use a version of the CGS2 A- orthonormahzatlon (Algorithm 19) that computes
W = AP = L~'AL~*P and outputs it. As for the A- CholQR, by assuming that W = AP =
L~YAL'P is computed, then we can use Algorithm 22 with input W = AP. The additional
cost of preconditioning is computing at each iteration k, four times W, = L~'AL™'P;,, which
is equivalent to a backward and forward substitution with ¢ right hand sides and a matrix vector

90 S. MOUFAWAD

Algorithm 41 Split preconditioned LRE-CG with BCGS+TSQR orthonormalization Algorithm

Input: A, the n x n symmetric positive definite matrix; L, n x n split preconditioner
Input: b, the n x 1 right-hand side; x, the initial guess or iterate
Input: ¢, the stopping tolerance; k4., the maximum allowed iterations
Output: z, the approximate solution of Az = b by solving for L~'AL7'y = L~'b and
y= L'z
y = L'zg, v = L7 (b— Axp), po = ||r][3, nb = ||L7b||2.k =1
Let W = T'(ry), normalize its vectors and then let) = W
while (/pr_1 > €(nb) and k < k4,) do
o = (Q'LTALTQ) Qi)
y=y+Qa
r=r—L'AL7'Qa and p; = ||r||3
Let W = L 'AL~'W
Orthonormalize the vectors of 11/ against the vectors of () using BCGS Algorithm 2
Orthonormalize the vectors of W using TSQR (section 2.3.3) and let) = [@Q W] and
k: =k+1
10: end while
11: Solve L'z =y

N A S o S e

multiplication. The difference between the preconditioned and unpreconditioned MSDO-CG is in
the A-orthonormalization, the computation of W, ang the backward substitution L'z = y. Note
that the split preconditioned MSDO-CG with MGS A-orthonormalization did not converge. This
might be due to numerical errors in solving the ¢k backward and forward substitutions in the MGS
A-orthonormalization. However, the MSDO-CG with CGS2+A-CholQR A-orthonormalization
converges very well as shown in section 4.6.1.

In Algorithm 41, we present the split preconditioned LRE-CG algorlthm with BCGS+TSQR
orthonormalization of the system A7 = b, where A = L~YAL~* b= L~'b,% = y, and y = L'z.
At first glance, it might appear to the reader that the additional cost at iteration & in Algorithm 41 is
solving a forward and backward substitution with ¢k right hand sides (L~'AL~!(Q) and a forward
and backward substitution with ¢ right hand sides (L= AL~'WW). However, by taking a quick look
at Algorithm 42, it is clear that the additional cost of preconditioning at iteration £ is solving only
a forward and backward substitution with ¢ right hand sides (L' AL~'W). And this is the only
difference with the unpreconditioned version in addition to the backward substitution L'z = y at
the end.

4.6.1 Convergence

We compare the convergence of split preconditioned MSDO-CG with CGS2+CholQR A-orthonormalization
and split preconditioned LRE-CG with CGS+TSQR orthonormalization to CG and split precon-

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 91

Algorithm 42 Split preconditioned LRE-CG with BCGS+TSQR orthonormalization Pseudo Code

Input: A, the n x n symmetric positive definite matrix; b, the n x 1 right-hand side
Input: z, the initial guess; ¢, the stopping tolerance; k..., the maximum allowed iterations
Output: x;, the approximate solution of the system Az = b

1: y= Ltzg,r = L7 Yb— Axg), po = ||7||5,nb = ||L7 ||,k =1

2: Let W = T'(ry), normalize its vectors and then let) = W

3: while (/pr_1 > €(nb) and k < kyq,) do

4: Z=L1"AL7'"W,E =W'Z

5: if £ == 1 then

6: D=ZadG=F

7: else

8: D=[D Z,F=Q(,1:t(k—1))'Z,and G = ¢ F
: , L1 , iy

9: end if

10: a =G Q)

11: y =1+ Qo

122 r=r—Daand p, = ||r|[>

13: LetW =27

14: Orthonormalize the columns of W against those of () using BCGS Algorithm 2

15: Orthonormalize the vectors of 1 using TSQR (section 2.3.3) and let) = [Q) W] and
E=Fk+1

16: end while

17: Solve L'z =y

ditioned CG (PCG). We use Block Jacobi with Cholesky factorization of the block diagonals as a
preconditioner.

In table 4.5, we use a different Block Jacobi preconditioner for the different partitions. First,
the graph of A is partitioned into ¢ parts that define the enlarged Krylov subspace using Metis’s
k-way edge separator where ¢t = 2,4,8,16,32,64 . Then the Block Jacobi preconditioner M is
defined as the ¢ diagonal blocks of the permuted matrix A. Each of the ¢ blocks is factorized us-
ing Cholesky decomposition to obtain a block L. The preconditioned LRE-CG converges faster
than the preconditioned MSDO-CG and PCG for the different configurations. As the number of
partitions or the maximum basis vectors added at each iteration is doubled, the Block Jacobi pre-
conditioned CG needs more iterations to converge. However, for the matrices PoissoN2D, NH2D1,
and SKY2D, the number of iteration of the preconditioned LRE-CG and MSDO-CG decreases. As
for the matrices SKY3D and ANI3D, the number of iterations of LRE-CG increases then decreases
back to the same number of iterations for ¢ = 2, unlike preconditioned MSDO-CG.

In table 4.6, we use a fixed Block Jacobi preconditioner for all the partitions to compare the

92 S. MOUFAWAD

Table 4.5: Comparison of the convergence of the split preconditioned CG, MSDO-CG with CGS2+CholQR
A-orthonormalization, and LRE-CG with CGS+TSQR orthonormalization method with varying Block Ja-
cobi preconditioners, with respect to number of partitions Pa, with xg = 0.

Split Preconditioned Methods

CG PCG |MSDO-CG|LRE-CG

Pa| Iter | Err | Iter| Err ||Iter| Err |Iter| Err

2 35 |1E-5| 30| 2E-6 || 30 |2E-6

4 40 [1E-5| 28 | 4E-6 || 28 |2E-6
PoissoN2D| 8 || 195 |2E-5|| 48 |2E-5| 30| 6E-6 | 27 |2E-6
tol =107 |16 50 [1E-5| 28 | 1E-6 | 25 [1E-6
32 57 |2E-5| 26 | 8E-7 || 23 |SE-7

64 66 |2E-5| 23 | 1E-6 || 20 |3E-7

2 47 |3E-8| 37 | 6E-9 | 37 |6E-9

4 55 |7E-8| 34| 2E-8 || 34 |1E-8

NH2D1 | 8 || 259 |4E-7|| 65 |1E-7| 36| 1E-8 || 33 |1E-8
tol = 107816 71 |3E-7| 33| 1E-8 | 30 |8E-9
32 83 |1E-7| 29| 1E-8 |27 |4E-9

64 88 |5E-7| 26 | 5E-9 |23 |4E-9

2 74 |3E-7| 40| 4E-7 || 40 |4E-7

4 80 |2E-6| 43| 1E-7 | 36 |5E-7

SKY2D | 8 ||5855|4E-4|144|2E-5| 48 | 3E-7 | 31 |3E-7
tol = 107816 162|1E-4| 46 | 1E-7 || 27 |2E-7
32 210|3E-4| 39| 1E-7 | 23 |2E-7

64 260|2E-7| 31| 8E-8 || 20 |2E-7

2 37 |2E-6|| 24 | 2E-7 || 24 |2E-7

4 113[2E-5| 54 | 1E-7 | 43 |1E-7

SKY3D |8 | 902 [2E-5(|120|8E-6|| 54 | 7E-8 || 33 [9E-8
tol = 107816 154|1E-5|49 | 1E-7 || 28 |SE-8
32 208|1E-5| 60| 2E-8 | 30 |4E-8

64 213|1E-5| 46| 1E-8 || 22 |3E-8

2 26 |1E-5| 31| 3E-7 | 31|3e-7

4 43 |[4E-6| 39 | Se-7 | 39 |6E-7

ANI3D | 8 ||4184|4e-5| 47 |5E-7| 39| 6E-7 | 39 |5E-7
tol = 107816 54 |7TE-7| 43 | 1E-6 | 41 |6E-7
32 61 |2E-7| 47| 4e-7 | 41 |1E-6

64 66 |8E-7| 46 | 2E-7 || 38 |4E-7

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 93

Table 4.6: Comparison of the convergence of the split preconditioned CG, MSDO-CG with CGS2+CholQR
A-orthonormalization, and LRE-CG with CGS+TSQR orthonormalization method with a fixed Block Jacobi
preconditioner , with respect to number of partitions Pa, with zg = 0.

Split Preconditioned Methods

CG PCG |MSDO-CG|LRE-CG

Pa| Iter | Err |Iter| Err ||Iter| Err | Iter| Err

2 62 | 2E-5 || 61 |7E-6

4 54 | 9E-6 || 50 |8E-6
PoissoN2D| 8 || 195 | 2E-5 || 66 |2E-5|| 47 | 4E-6 || 41 |4E-6
tol =107 [16 39 | 3E-6 || 33 |1E-6
32 31| 2E-6 || 25 |8E-7

64 25| 8E-7 || 20 |3E-7

2 82| 1E-7 || 76 |7TE-8

4 67 | SE-8 || 63 |S5E-8

NH2D1 | 8 || 259 | 4E-7 || 88 |5E-7| 57 | 3E-8 || 57 |1E-8
tol = 107816 46 | 1E-8 | 39 |2E-8
32 36 | 2E-8 || 36 |4E-9

64 28 | 7E-9 || 23 |4E-9

2 223| 2E-5 | 184|6E-7

4 152| 4E-7 || 99 |5E-7

SKY2D | 8 ||5773|5E-04(261|2E-4|109| 2E-7 || 66 |4E-7
tol = 107816 72 | 1E-7 || 44 |4E-7
32 52 | 5E-8 || 29 |1E-7

64 34 | 7TE-8 || 20 |2E-7

2 191| 3E-6 ||181|5E-6

4 163| 6E-6 ||135|1E-6

SKY3D |8 (902 | 2E-5 [|225|4E-6|126| 2E-6 || 78 |1E-7
tol = 107816 94 | 8E-8 || 48 |9E-8
32 61 | 7E-8 || 28 |1E-7

64 47 | 3E-8 || 21 |1E-7

2 68 | 8E-7 || 66 |7e-7

4 66 | 4e-7 || 63 |[4E-7

ANI3D | 8 ||[4184| 4E-5 || 69 |8E-7| 61 | 4E-7 || 57 |3E-7
tol = 107816 58 | 5SE-7 || 52 |6E-7
32 53| 6e-7 || 46 |1E-6

64 45 | 3E-7 || 37 |8E-7

94 S. MOUFAWAD

convergence of the methods with respect to the doubling of the number of partitions ¢. First, the
graph of A is partitioned into 64 parts using Metis’s k-way edge separator. Then the Block Jacobi
preconditioner M is defined as the 64 block diagonals of the permuted matrix A. Each of the 64
blocks is factorized using Cholesky decomposition to obtain a block L. Then the matrix A is par-
titioned once again using k-way into t = 2,4, 8,16, 32 or 64 parts that define the enlarged Krylov
subspace. The preconditioner is permuted accordingly. The preconditioned LRE-CG converges
faster than the preconditioned MSDO-CG and PCG. As the number of partitions or the maximum
basis vectors added at each iteration is doubled, the preconditioned LRE-CG and MSDO-CG con-
verge faster. However, for some matrices, like POiSSON2D, NH2D1, and ANI3D, as the number
of partitions is doubled, the number of iterations till convergence decreases by only 10% — 20%.
Thus, it is efficent to use a maximum of ¢ = 4 partitions which correspond to adding at most ¢
vectors to the basis of the enlarged Krylov subspace. For the matrices SKY2D and SKY3D, the
number of iterations decreases by 33% — 45% and 25% — 45% respectively. Hence it is possible
to use a maximum of ¢ = 8 partitions or at most ¢ = 16.

4.7 Summary

In this chapter we introduced two new iterative methods, MSDO-CG and LRE-CG, which are
based on the enlarged Krylov subspace. We defined the properties of the enlarged Krylov subspace,
derived the new methods in the context of projection CG versions, provided parallel versions that
reduce communication, and shown that the methods converge at least as fast as Classical CG in
exact precision arithmetic. The convergence results show that they also converge faster than CG
in finite precision arithmetic. We have also presented the preconditioned versions and tested their
convergence with block Jacobi preconditioner.

MSDO-CG is a variation of the MSD-CG version, where we A-orthonormalize the ¢ search
directions against previous directions and against each others. Due to the A-orthonormalization,
we lose the short recurrence property of CG and we are obliged to save all the ¢k, search directions,
where k. is the number of iterations till convergence. In LRE-CG we start by building an orthonor-
mal basis for the enlarged Krylov subspace, then we use the whole basis to update the solution.
The main difference between both methods in terms of performance, is that at each iteration of
MSDO-CG, we use t search directions to update the new approximate solution. Whereas in LRE-
CG, at each iteration 7, we use the entire basis formed by t:i vectors, to update the approximate
soltion and we solve a ¢ x ti system. However, this use of the whole basis leads to a relatively
faster convergence than MSDO-CG. One way to limit this increasing cost is by restarting LRE-CG
after some iterations. Another alternative is to choose at each iteration ¢, a linearly independent
subset of the ¢ computed vectors. This adds an extra cost, but reduces the size of the system that
has to be solved at each iteration. A thlrd alternative is to compute ¢; vectors at each iteration 52
where ty = t, and ¢; < t. Then choose t linearly independant vectors where tz <t,andt;q = t

Although each iteration of the MSDO-CG and LRE-CG methods is at least ¢ times more ex-

CHAPTER 4. ENLARGED KRYLOV SUBSPACE METHODS 95

pensive than the CG iteration in terms of flops, as shown in section 4.5, both methods use less
communication, and Blas2 and Blas3 operations that can be parallelized in a more efficient way
than the dot products in CG. Moreover, the MSDO-CG and LRE-CG methods converge faster than
CG in terms of iterations as shown in section 4.4.

96

S. MOUFAWAD

Chapter 5

Communication Avoiding Incomplete LU(0)
Preconditioner

In this chapter, we introduce a communication avoiding version of the ILU(0) preconditioner that
can be used with preconditioned communication avoiding Krylov methods, preconditioned s-step
Krylov methods, preconditioned classical Krylov methods, and any method that uses a precondi-
tioned version of the matrix powers kernel (Algorithm 25). Recall that the matrix powers kernel,
introduced in section 2.5, computes s vectors of the Krylov subspace of the form y; = Ay, for
t = 1,..., s in parallel without any communication, by ghosting some data and performing redun-
dant flops. This chapter is based on some parts of a revised version of the technical report [40],
and on the article [39], which was submitted to SIAM journal on scientific computing (SISC) and
1S in revision.

Our goal is to design communication avoiding preconditioners that are efficient in accelerating
the iterative methods and also minimize communication. In other words, given a preconditioner
M, the preconditioned system with its communication avoiding version M_' Az = M_'b should
have the same order of convergence as the original preconditioned system M ~!Ax = M~'b, and
also reduce communication. This is a challenging problem, since applying a preconditioner on
its own may, and in general will, require extra communication. Thus we restrict our work to
ILU(O) preconditioner. Since the construction of M = LU represents typically an important part
of the overall runtime of the linear solver, we focus on both minimizing communication during
the construction of M (i.e, the ILU(0) factorization), and during its application to a vector (z =
M~y = (LU)'y)) at each iteration of the linear solver.

We introduce CA-ILUO, a communication avoiding ILU(0) preconditioner for left precondi-
tioned systems. With a few modifications discussed in section 5.3, CA-ILUO preconditioner can
be applied to right and split preconditioned systems. We start by adapting the matrix powers kernel
(Algorithm 25) to the ILU preconditioned system to obtain the ILU matrix powers kernel in sec-
tion 5.1. Each vector of this kernel is obtained by computing ((LU)~! Ay), that is in addition to the
matrix-vector multiplication Ay, it uses a forward and a backward substitution. The ILU matrix

97

98 S. MOUFAWAD

powers kernel, which is designed for any given LU decomposition, does not allow to avoid com-
munication by itself. That is, if we want to compute s vectors of this kernel with no communication
through ghosting some of the data, there are cases when one processor performs an important part
of the entire computation. We restrain then our attention to the ILUO factorization, which has the
property that the I and U factors have the same sparsity pattern as the lower triangular part of A
and the upper triangular part of A respectively. To obtain a communication avoiding ILUO pre-
conditioner, we introduce in section 5.2 a reordering, alternating min-max layers AMML(s), of the
input matrix A, which is reflected in the L and U matrices. First, the graph of A is partitioned using
some known graph partitioning technique that minimize the size of edge separators like k-way, or
vertices separators like nested dissection (section 2.2). Then each of the obtained subdomains is
further reordered. We present two versions of AMML(s), the first based on nested dissection and
the second on k-way. Note that it is possible to adapt the AMML(s) reordering to any other graph
or hypergraph partitioning technique.

The AMML(1) reordering allows avoiding communication when computing s = 1 matrix vector
multiplication (LU) ™! Az. In other words, the matrix vector multiplication Az, and the backward
and forward substitution are parallelized with only one communication before starting the whole
computation.Thus, the CA-ILUO preconditioner can be used with classical preconditioned Krylov
methods like GMRES to reduce communication. Moreover, it can be used with preconditioned
block Krylov methods and preconditioned enlarged Krylov subspace methods.

In general, the AMML(s) reordering allows to avoid communication for s-steps of the matrix
vector multiplication ((LU)~!Ax). In other words, s backward and forward solves corresponding
to a submatrix of A can be performed when s > 1, without needing any data from other subma-
trices. Thus with our reordering it is sufficient to communicate once at the beginning of the first
multiplication. This is possible since the CA-ILUO (L)™' and (U)~! factors are sparse, unlike
those of ILU(0), as shown in Figures 5.4 and 5.7 . Thus, the CA-ILUO preconditioner can also be
used with s-step Krylov methods like s-step GMRES and CA-GMRES to reduce communication.
In section 5.4.2, we discuss the reduction in communication introduced by our method for s > 1.

In this chapter we portray our CA-ILUO preconditioner (section 5.3) and its performance (sec-
tion 5.4) using GMRES, but it can be used with other Krylov subspace methods as well. Although
we focus on structured matrices arising from the discretization of partial differential equations on
regular grids, it must be noted that the method also works for sparse unstructured matrices whose
graphs can be well partitioned (small edge or vertex separators). The AMML(s) reordering can
be used to avoid communication not only in parallel computations (between processors, shared-
memory cores, or between CPU and GPU) but also in sequential computations (between different
levels of the memory hierarchy). Thus in this chapter we will use the term processor to indicate the
component performing the computation and fefch to indicate the movement of data (read, copy, or
receive message) as discussed in section 2.1.1. In section 5.4 we show that our reordering does not
affect the convergence of ILUO preconditioned GMRES, and we model the expected performance
of our preconditioner based on the needed memory and the redundant flops introduced to reduce
communication.

CHAPTER 5. CA-ILU(0) PRECONDITIONER 99

5.1 ILU matrix powers kernel

The algorithm for solving a left-preconditioned system by using Krylov subspace methods is the
same as a non-preconditioned system, with the exception of the matrix vector multiplications.
For example GMRES requires computing y = Az, while the preconditioned version computes
y = M~'Ax, where M is a preconditioner. Similarly, a preconditioned CA-GMRES relies on a
preconditioned matrix powers kernel. And constructing a communication avoiding preconditioner
is equivalent to building a preconditioned matrix powers kernel which computes the set of s basis
vectors { M~ Ay, (M1 A)?yo, ..., (ML A)* 1y, (M~ A)%y,} while minimizing communication,
where g, is a starting vector and s > 1. In this section we first define the partitioning problem
(section 5.1.1) associated with computing s vectors of the preconditioned matrix powers kernel.
Then we identify dependencies involved in the computation of the preconditioned matrix powers
kernel (section 5.1.2).

In this section we focus on the incomplete LU preconditioner M = LU (section 3.3.1), which
consists of finding a lower triangular matrix L and an upper triangular matrix U that approximate
the input matrix A up to some error, i.e. A = LU + R, where R is the residual matrix.

5.1.1 The partitioning problem

In the following, we consider that the matrix A and the factors L and U of the preconditioner are
distributed block row-wise over P processors. A communication avoiding preconditioner can be
obtained if we are able to ghost some data and perform some redundant computation such that
s basis vectors {M ! Ayy, (M1 A)%yq, ..., (M~TA)5 1y, (M1 A)*yo} can be computed with no
communication. To obtain an efficient preconditioner, ideally we would like to minimize the size
of the ghost data while balancing the load among processors.

We are interested in ILU preconditioners where M = LU is obtained from the ILU factor-
ization of A. In practice, (LU) 'A is never computed explicitly. In fact, determining y; =
(LU)'Ay;_, during the computation of the preconditioned matrix powers kernel is equivalent
to performing the three steps:

1. Compute f = Ay; 1

Solve LUy; = f i.e.
2. Solve Lz = f by forward substitution
3. Solve Uy; = z by backward substitution

Thus, we use a heuristic which starts by partitioning the graph of A using either the vertex
separator, nested dissection (section 2.2.2), or the edge separator, k-way (section 2.2.3) provided
in Metis’s library [49]. Then, the same partition, that satisfies the balance criterion (2.1) and
minimize the cutsize (2.2), is applied for L and U. Then, we introduce heuristics to reduce the

100 S. MOUFAWAD

redundant data and computation needed to perform the forward and backward substitution by each
processor without communication.

Note that other graph partitioning techniques and even hypergraph partitioning techniques can
be used to partition A. But for simplicity we base our work on graphs.

5.1.2 ILU preconditioned matrix powers kernel

Our ILU matrix powers kernel is based on the matrix powers kernel, with the exception that
A is replaced by (LU) 'A, since we have a preconditioned system. Given a partition 7 =
{Q,Q9,..,9,_1,9Q,}, that partitions the graph of (LU)~' A into p subgraphs, where p is the num-
ber of processors. Let aéj) = V'(€2;) be the set of vertices assigned to processor j, where processor

7 must compute {y1 (o), yo(a), ..., ys_1(a$), ys (@S} with y; = (LU)'Ay,_;. However,
since (LU) ™' A is not available explicitly, the ILU matrix powers kernel is different than the ma-
trix powers kernel in structure.

In the following we describe an algorithm that allows a processor j to perform s steps with no
communication, by ghosting parts of A, L, U, and y, on processor j before starting the s iterations.
Consider that at some step ¢, processor j needs to compute y;(«). The last operation that leads to
the computation of y;(«) is the backward substitution Uy;(«) = z. Due to the dependencies in
the backward substitution, the equations « are not sufficient for computing y;(«). Gilbert and
Peierls showed in [35] that the set of equations that need to be solved in addition to « is the set of
reachable vertices form « in the graph of U. Thus, the equations § = R(G(U), «) are necessary
and sufficient for solving the equations «.. In other words, if the processor j has in its memory
U(S,) and z(f3), then it can solve with no communication the reduced system U (5, 3)y;(3) =
z(P). This is because by definition of reachable sets, there are no edges between the vertices
in the set 3 and other vertices. Thus all the columns in U(/3,:), except the S columns, are zero
columns. To solve the reduced system U (3, B)y;(8) = z(f3), processor j needs to have in his
memory z(3) beforehand. And this is equivalent to solving the set of equations v = R(G(L), 5)
of Lz = f. Similarly, processor j solves the reduced system L(v,~)z;(y) = f(v), where f(7)
must be available. Computing f(7) is equivalent to computing A(~,:)y;_1. However, it must
be noted that the entire vector y;_; is not used, since for computing this subset of matrix vector
multiplication, processor j only needs y;_1(d), where § = Adj(G(A),~). Therefore, it computes
A(,6)yi-1(0).

Hence to compute the first step, y; = (LU)~! Ayq, processor j fetches yo(617)), A(’y1) 600,
L(fyf)’%) and U (ﬁfj)). To perform another step, we simply let a&j) = 51j and do the
same analysis. This procedure is summarized in Algorithm 43, where the superscript (j), re-

ferring to processor j, is dropped for better readability. Thus to compute s steps of yl(aé)) =
[(LU) ' Ay;_1](a¥)) processor j fetches yo(6)), Ay, 69, L(y,4$), and U(BY, 9.
Note that 0%()1 c 6 (J) < (5(] c a(D fori = 1 until s. After fetching all the data needed,
processor j computes its part using Algorrthm 44. Thus Algorithm 43 has to output all the subsets

CHAPTER 5. CA-ILU(0) PRECONDITIONER 101

Algorithm 43 s-step Dependencies

Input: G(A), G(L), G(U); s, number of steps; «p, subset of unknowns assigned to processor j
Output: Sets 3;,7; and §; for all i = 1 till s
l: fori=1tos

2 Find 3; = R(G(U), a;—1)
3: Findv; = R(G(L), 3)

4: Find (51 = Ad](G(),’}/Z'
5 Set o; = 6;

6: end for

Algorithm 44 ILU Matrix Powers Kernel (A (75, ds), L(7Vs,Vs), U(Bss Bs), S, o)

Input: A(vs,0s), L(7ys,7s)s U(Bs, Bs), s: number of steps, cg: subset of unknowns assigned to proces-
sor j
Output: y;(ap), where 1 <i < s
fori=stol
Compute f(v:) = A(7i, 6:)y;-s(di)
Solve L(7i,vi)zi—s+1(vi) = f(7i)
Solve U (8;, Bi)yi—s+1(Bi) = z(5i)

Save y;—s+1(p), which is the part that processor j has to compute
end for

SANR AN ey

Bi(j), %(j) and §i(j) for 1 < i < s which will be used in Algorithm 44. Note that although processor

J needs to compute only yi(a(()j)), where 1 < 7 < s, it computes some redundant flops in order to
avoid communication.

The ILU matrix powers kernel presented in here is general and works for any matrices L and
U. However, it is not sufficient to reduce or avoid communication, since the reachable sets [5}“)
and 7»(j) might be much larger than ozgf)l and ﬁi(j) respectively. A communication avoiding method
is efficient if there is a good trade-off between the number of redundant flops and the amount of
communication which was reduced. This reflects in the runtime of the algorithm. In other words, if
performing three or four steps of a CA-ILU preconditioned iterative solver, each processor ends up
needing all the data and computing almost entirely the vectors y;, then either we are not exploiting
the parallelism of our problem efficiently or the problem is not fit for communication avoiding
techniques. This is indeed the case if Algorithm 44 is applied to the 2D 5 point stencil matrix whose
graph, presented in figure 5.5(a), is partitioned into 4 subdomains by using k-way partitioning. To
perform only one step of an iterative solver preconditioned by CA-ILU with no communication,
processor 1 (which computes Domain 1 in the figure) ends up computing the entire vector y; and
fetching all the matrices A, L, and U where the L and U matrices are obtained from the ILUO
factorization. This cancels any possible effect of the parallelization of the problem, and shows
that what works for the matrix powers kernel of the form y; = Ay; 1 does not work for the

102

S. MOUFAWAD

12 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
7172 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

235 236 237 238 239 240 241

245 246 247 248 249 250 251
255 256 257 258 259 260 261

265 266 267 268 269 270 271

4 275 276 277 278 279 280 281

282 283 284 285 286 287 288 289 290 291
292 293 294 295 296 297 298 299 300 301
302 303 304 305 306 307 308 309 310 311
312 313 314 315 316 317 318 319 320 321
322 323 324 325 326 327 328 329 330 331

(211 212 213 214 215 216 217 218 219 220

106 107 108 109 110 111 112 113 114 115

116 117 118 119 120 121 122 123 124 125

126 127 128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143 144 145
146 147 148 149 150 151 152 153 154 155

221 222 223 224 225 226 227 228 229 230 231

156 157 158 159 160 161 162 163 164 165
166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185
186 187 188 189 190 191 192 193 194 195
196 197 198 199 200 201 202 203 204 205

=

445 446 447 448 449 450 451

453454455456457458459460461462]

340 341 342 343 344 345 346

349 350 351 352 353 354 355 356

360 361 362 363 364 365 366
370 371 372 373 374 375 376

'9 380 381 382 383 384 385 386

387 388 389 390 391 392 393 394 395 396
397 398 399 400 401 402 403 404 405 406
407 408 409 410 411 412 413 414 415 416
417 418 419 420 421 422 423 424 425 426
427 428 429 430 431 432 433 434 435 436

Domain & ghost equations
for backward substitution

Domain & ghost equations
for forward substitution

Ghost data from
current solution vector

‘ Domain 1

Figure 5.1: An 11 by 43 5-point stencil, partitioned into 8 subdomains using 7 separators. The data needed to
compute one y; = (LU)_lAyi_l on Domain 1 is shown, where L and U matrices are obtained from ILU(0).
The bidirectional edges connecting each vertex to its north, south, east and west neighboring vertices are
omitted in this figure.

same kernel where the multiplication is y; = (LU) 'Ay;_;. Nested dissection might look like a
better solution since it splits the domain into independent subdomains that interact only with the
separators. However it is not sufficient either to obtain a communication avoiding preconditioner.
This can be seen in figure 5.1. To compute one matrix-vector multiplication of the form y; =
(LU)flAyi_l, processor 1 has to fetch half of matrix A, half of matrix L, half of the vector y;_1,
almost the quarter of matrix U, and perform the associated computation.

This shows that partitioning the graph of the input matrix A by using techniques as nested dis-
section or k-way is not sufficient to reduce communication in the preconditioned matrix powers
kernel. This is because both the matrix vector multiplication and the forward/backward substitu-
tions need to be performed in a communication avoiding manner. In the next section, we introduce
a new reordering that reduces the communication. Note that in Metis library [49], the subdomains
with number of vertices greater than 200 do not have a natural ordering as shown in Figure 5.1, but
they are partitioned recursively using nested dissection into smaller subdomains and separators.
And this tends to reduce communication and the computed redundant flops, as we will detail later
in the experimental section 5.4.

5.2 Alternating min-max layers (amv.(s)) reordering for ILU(0)
matrix powers kernel

In this section we describe a reordering that allows to compute and apply an ILU(0O) preconditioner
in parallel in a preconditioned Krylov subspace method with no communication. This precondi-

CHAPTER 5. CA-ILU(0) PRECONDITIONER 103

tioner produces L and U matrices that have the same sparsity pattern as A. Hence the graphs of L
and U are known before the numerical values of the factors L and U are computed, and this allows
to reorder these graphs in order to avoid communication during the computation of the factors.
This is not the case in drop-tolerance ILU, where the graphs of L and U are not known before the
numerical computation of the factors, and hence avoiding communication is a more complex task.
Let A be a matrix whose graph is partitioned into P subgraphs or subdomains 7 = {€2, €, ..., Qp}
using nested dissection (overlapping subdomains) or k-way graph partitioning (nonoverlapping
subdomains). To compute and apply in parallel the preconditioner, each processor j is assigned one
subdomain 2; over which it should compute the s multiplications y; (a(()j)) = ((LU) ' Ay;) (oz(()j)),
where 0 <7 < s—1, aéj) = V(€;), L and U are obtained from the ILU(0) factorization of A. The

goal of our reordering algorithm is to renumber the vertices of each subdomain, a(()j) = V(,),
such that processor j can compute its assigned part of the s multiplications without any commu-
nication. As explained in the previous section, k-way partitioning and nested dissection alone are
not sufficient to reduce data movement and redundant flops in the ILU(0) matrix powers kernel.
However our new reordering, which is applied locally on the vertices of the subdomains €2;, for
j =1,2,.., P, obtained after a graph partitioning, reduces the ghost zones in Figures 5.1 and 5.5(a)
not only for performing 1 step, but also for performing 2, 3, .., s steps of the ILU(0) matrix powers
kernel. In this section we focus on the reordering after applying k-way graph partitioning, we refer
to this reordering as alternating min-max layers (AMML(s)) reordering (section 5.2.2). However,
we first introduce AMML(s) reordering based on nested dissection (section 5.2.1), which might
seem as a better choice due to the reduction of dependencies as shown in Figure 5.1.

The k-way partitioning assigns to the vertices of every subdomain a set of consecutive distinct
indices or numbers, num. The AMML(s) reordering does not change the set of indices assigned
to every subdomain, but it changes the order of the vertices within each subdomain. Similarly for
nested dissection, where the order of the vertices in the subdomains and separators is altered by
AMML(s) reordering.

5.2.1 Nested dissection + AMML(s) reordering of the matrix A

The graph of A is partitioned using nested dissection (section 2.2.2) to obtain P subdomains and
P — 1 separators. We denote the P subdomains’ subgraphs by €2;; where ¢ = log(P) levels are
performed and [< P. We denote the separators subgraphs introduced at level ¢ of the nested
dissection by X; ; where j < 2!, and i < t. We also denote the vertices of the separators and the
final subdomains by S;; = V(3;;) and D; = V() respectively.

Our ND + AMML(s) reordering consists of two algorithms. The first rearranges the vertices of
subdomains D; (I = 1,2, ..., P) obtained in the last level (" level) of Nested Dissection (Algo-
rithm 45). The second rearranges the vertices of the separators S} ,,, where j is the level of nested
dissection and m is the separator’s order within this level of nested dissection (m = 1,2, ...,2/71)
(Algorithm 46). In this manner, even the reordering can be performed in parallel, where each pro-

104 S. MOUFAWAD

cessor reorders its subdomain and then each can reorder a separator. Note that we do not change
neither the order of the domains and separators nor the set of indices assigned to each (refer to Ap-
pendix D). For example, in nested dissection, the indices 1 till 50 are assigned to the first domain
(Figure 5.1). In ND+AMML(s) reordering, the indices 1 till 50 are still assigned to the first domain,
however their ordering is changed (Figures 5.2(a) and 5.2(b)).

15 16 17 18 19 20 21 22 23 2 (i02) 52697071727374757665’@ 25 26 27 28 29 30 31 16 39 3 103 53887083848586779766%\
24 25 26 27 28 29 30 31 32 3 103 53| 77|78 79 80 81 82 83 84 66 466 32 33 34 35 36 37 38 17 40 4 104| 5418971 79 80 81 82 78 98 67 467
33 34 35 36 37 38 39 40 41 4 104)|| 54|85|86 87 83 89 90 91 92 67 | 467 18 19 20 21 22 23 24 15 41 2 102||| 52|87|69 73 74 75 76 72 96 65 | 465
42 43 44 45 46 47 48 49 50 5 105| 55/93|194 95 96 97 98 99 100 68 468 43 44 45 46 47 48 49 42 50 5 105 55(100)90 92 93 94 95 91 99 68 468
6 7 8 9 10 11 12 13 14 1 \10y|] 51163|57 58 59 60 61 62 64 56 | 463 7 8 9 1011 12 13 6 14 1 \10y || 51163|57 59 60 61 62 58 64 56 | 463
[214 215216 217 218 219 220 221 222 212 | 231 1 4 225 226 227 228 229 230 211] 473 215 216 217 218 219 220 221 214 222 212 | 231 1 (225 226 227 228 224 229 211] 473
111112 113114 115116 117 118 119 106 (206) 156/168|162 163 164 165 166 167 169 161 | 464 112113114115 116 117 118 111 119 106 (206) 156/168|162 163 164 165 167 166 169 161 | 464
120121 122 123 124 125 126 127 128 110 [210] 160|174 175 176 177 178 179 180 181 173 | 469 134 135 136 137 138 139 140 133 141 110 [210] 160§205 196 198 199 200 201 195 204 173 | 472
129130 131 132 133 134 135 136 137 107 [207| 157 182 183 184 185 186 187 188 189 170 | 470 123124 125 126 127 128 129 120 130 107 [207| 157 192 174 178 179 180 181 177 197 170 | 469
138 139 140 141 142 143 144 145 146 108 (209| 158 190 191 192 193 194 195 196 197 171 | 471 142 143 144 145 146 147 148 121 131 108 (209| 158 193 175 184 185 186 187 182 202 171 | 470
147 148 149 150 151 152 153 154 155 109 \ZEI; 159 198 199 200 201 202 203 204 205 172 | 472 151 152 153 154 155 156 157 122 132 109 @; 159 194 176 188 189 190 191 183 203 172 | 471

Domain & ghost zones
for backward substitution

Domain & ghost zones
for backward substitution

‘ Domain 1 ‘ ‘ _— ‘ Domain 1 ‘

Domain & ghost zones Ghost data from
for forward substitution current sol ution vector

Domain & ghost zones Ghost data from
for forward substitution current sol ution vector

(a) The graph of the ND+AMML(1) rearranged matrix A with (b) The graph of the ND+ A MMUL(2) rearranged matrix A with
the data needed to compute one matrix-vector multiplication on do- the data needed to compute one matrix-vector multiplication on do-

mainl mainl

Figure 5.2: Half of an 11-by-43 5-point stencil grid, partitioned into 8 subdomains using 7 separators.

In a classic computation based on nested dissection, the computation on the subdomains is
done in parallel, followed by the computation associated with the separators. This requires log(P)
messages to be exchanged during the forward and the backward solves performed at each itera-
tion of a Krylov subspace method. To be able to avoid communication, we first merge the com-
putation of the separators to the subdomains. Therefore, each processor computes a set a(()j) =
Adj(G(A), Dj) n (uy;Sjm) = Adj(G(A), D;). Without going into details, the algorithm ensures
that all the vertices of the separators belong to some oz(()j). For example in Figure 5.2(a), nodes 231

and 473 are added to some o).

The reordering is designed to isolate as much as possible the sets of vertices a(()j), for all 7, in
the graphs of L and U. In other words, the goal is to minimize the number of vertices in the sets
59) = R(G(U), agj)) andy; = R(G(L), %j)). For the U matrix, this means that the set 59’ should
be equal to the set ozéj v hy j1, where hy 1 = opAdj(G(U), oz((]j)). The data ghosted represents at

most one layer of vertices around a(()]). For this, the set hyr ;1 1s numbered with the largest possible
numbers. By doing so, in 2D 5-point stencil and 9-point stencil grids, Ay, ;1 contains at most 4
vertices. For 3D 7-point stencil and 27-point stencil grids, Ay is at most 12 x (n/P)Y? + 8
vertices, where we assume in the first case that the subdomain is a cube containing n/P vertices

and in the second case that a(()j)is a cube containing n/P vertices. Similarly, for the L matrix, the

CHAPTER 5. CA-ILU(0) PRECONDITIONER 105

goal is to have the set 'yfj) to be as close as possible to the set ﬁfj YUh 1,51 (if possible equal), where

hy ;1 = opAdj(G(L), 69)). Thus, the set hy, ;1 is numbered with the smallest numbers possible.
Hence one layer of ghosted data is added around 3;. By generating all these conditions for all

oz((]j) with j =1,2,...,p = 2" and by taking into consideration the structure of a nested dissection
graph, the reordering for the subdomains and the separators is presented in Algorithms 45 and 46
respectively, where the parameter s is set to 1. As it can be seen in Figure 5.2(a), this alternating
reordering reduces the ghost zones as compared to Figure 5.1. Thus to compute one matrix-vector
multiplication of the form y; = (LU)‘1Ayi,1 on 8 processors, processor 1 has to fetch one eighth
of matrix U, a bit more than one eighth of matrices L and A and of the vector y;_;.

Algorithm 45 ND+AMML(s) Subdomain (D, S, ., Vj, s, evenodd, num)

Input: Dy, the set of vertices to be reordered; G(A), the graph of A

Input: S, V(j,m), the vertices of separators

Input: s, the number of multiplications to be performed without communication

Input: evenodd, a tag that can be either even or odd; num, the set of numbers/indices assigned to the

vertices D;
Output: the reordered set of indices assigned to the vertices D,
1: if s == 0 then
2: Number D; in any order, preferably in the natural order.
3: else
4. for j = 1tot do Find the vertices bv; = D; n Adja(S;m)
5: forj=1totand? = 1tot, i # j do Find the vertices cor;; = bv; N bu;, if they exist.
6: forj =1tot,doletcorners; = Uy, cor;;
7. forj=1totdo
8: if evenodd = odd then Assign to the unnumbered vertices of bvj, the smallest numbers in num,
NUMpy;
9: else Assign to the unnumbered vertices of bvj, the largest numbers in num, numy,,
10: end if
11: Remove the numbers numy,; from num (num = num — numsp,,)
12: if cornersj = ¢ then Number the unnumbered vertices of bv; with the indices numy,,, in any
order.
13: else Call ND+AMML(s) Subdomain (bv;, Sep; ., Vi # j, s, evenodd, numy, j)
14: end if
15: end for

16: Let D; = D; — Uvjbvj

17: if evenodd = even then Call ND+AMML(s) Subdomain (D;, bv; Vj, s, odd, num)
18: else Call ND+AMML(s) Subdomain (D, bv; Vj,s — 1, even, num)

19: endif

20: end if

To perform s — step of the multiplication y; = (LU) 'Ay;_; in a communication-avoiding

106 S. MOUFAWAD

i%g‘ T u L B
1000 &a,‘ .) E 000l T . 4
2000~ M 4 zoooi " 4
3000} I\tx’! : E| a000- e |
"I] ; :
My B ‘ v .
% : ;o
40001 ’Ktiﬁ; - 4000 . B
5000(- 5000 o o o : f
6000 6000 i ¢ i B
7000} 70001 R B
8000~ 8000 PR, ,
9000 9000 ‘ E’
10000 L 1 L L Li il R 1000012 | I | iy | LN T
) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
nz = 49600 nz = 49600
(a) Nested Dissection reordering of A (b) ND+AMML(1) reordering of A
T N g - ’\L
1o00f F Lo B 1000- G 1

2000 1\: P 1 2000/ Ry q
%y Ry
AN N
3000~ ; i 7 3000 A b
4000 : TRy T T 4000} Wy 4

§\§ 5000 \
6000 R . 7 6000 M
70001 semeann 1 70001 \\ B
N5 N
. S
8000 SN, : T 8000
90001 s R o 9000}
R
10000 L L L L i . T L 10000 | L | % | T S |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
nz = 49600 nz = 49600
(¢) ND+AMML(5) reordering of A (d) ND+AMML(10) reordering of A

Figure 5.3: Comparison of the sparsity patterns of the ND, ND+AMML(1), ND+AMML(5) and
ND+AMML(10) reordered matrix NH2D of size 10 x 10* with P=4

manner, our goal is to minimize the number of vertices in the sets 3% = R(G(U), o)) and
9 = RG(L),BY), fori = 1,2,..,s, j = 1,..,2" where oY) = Adj(G(A), D;) and for i >
0, agj) = Adj (G(A),fyi(j)). We perform the same analysis as for the case of s = 1, but for
s — steps. The set hy j; = opAdj(G(A), O‘z@l) is numbered with the largest possible numbers, and

CHAPTER 5. CA-ILU(0) PRECONDITIONER 107

Algorithm 46 ND+AMML(s) Separator (S; .y, Sjm (7, m),s,num)

Input: S; ,,, the set of vertices to be reordered; G(A), the graph of A
Input: D, Vo, the vertices of the subdomains; S ,, V(j,m) # (i, m), the vertices of separators
Input: s, the number of multiplications to be performed without communication
Input: evenodd, a tag that can be either even or odd; num, the set of numbers/indices assigned to the
vertices S; m
Output: the reordered set of indices assigned to the vertices S; ,,

1: Find all the interacting separators of S; ,,, ©.S; where j = 1,2, ..., s.
iS; is the set of all boundary separators of D,, bS, ; = Adj(G(A), D,) N Sjm, where there is at least
one vertex, vert € bS, ;, such that vert € Adja(S;m).

iS; = {bS,,; Vo, s.t.Jvert € bS, j and vert € Adjs(S;(m))}

Si(m) nopAdja(iS;) if iS; < Si(m)

3: Number the set first = {int(i,m,7);V j < i} with the smallest numbers in num, num, and let
num = num — num;

4 forj=i,i+1,..,s

2: for j = 1 to s, Find the set of vertices int(i,m,j) = {

5: If for some k < i, comm = int(i,m,j) n int(i,m,k) # ¢ then Let lastl = lastl U
{opAdja(comm),Ycomm # ¢}

6: endif

7: Number last1 with the largest numbers in num, numi,s1 and let num = num — numyqs

8: end for

9: Find the set last2 = {v € int(i,m,7),V] > i & v ¢ int(i,m,j),Vj < i} and number it with the

largest numbers in num, nuMiqst2

10: Number the set of vertices near = S;(m) N opAdja(lastl U last2) with the smallest numbers in
num, nums and let num = num — nums — NUM st

11: Let bSep = {near v last2 U lastl U first}

12: Let Block = S;(m) — bSep

13: Call ND+AMML(s) Subdomain (Block, bSep, s — 1, odd, num,)

hy ;i = opAdj(G(A), B;,) is numbered with the smallest possible numbers, for ¢ = 1 till s. This
leads to 2s — 1 alternating layers reordering from the separators as shown in Figure 5.2(b), where
s = 2. Figure 5.3 shows the sparsity pattern of the matrix NH2D when reordered using ND, ND
+ AMML(1), ND + AMML(5), and ND + AMML(10) with P = 4. The reason AMML(s) reordering
avoids communication in the ILU matrix powers kernel is that it reduces the Bi(j) and %»(j) sets. In
matrix format, this is equivalent to reducing the fill-ins in the U~! and L~! matrices, specifically
the off-block-diagonal entries, as shown in Figure 5.4 where NH2D is a symmetric matrix.
Algorithm 45 takes as input the graph of A, the vertices of the subdomain to be rearranged,
the vertices of the separators. Note that to reorder a given subdomain D, the algorithm needs

one separator from each level of nested dissection, specifically the separator which was part of a

108

1000+

20001

30001

40001

5000

6000

70001

80001

90001

10000!

1000

2000

3000

4000

soo0o

G000

7000

=liln)

000

10000

L L L L L L L L L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nz = 49600

(a) 2D matrix A of size 10* x 10*

nz = 25502500

(¢) L~ matrix from the ILU(0) factorization of A

S. MOUFAWAD

o - T

10001 ey . g
2000} R, R
3000 Vot o q

4000 |- ; e T i

5000 o ' - % -

6000 - I q

7000~ Sy R
et .

8000 |- i 4

9000 TR A

10000 . I . " . ¥

0 1000 2000 3000 4000 5000 6000 7000 80O 9000 10000
nz = 49600

(b) Aca,ND + AMML(Z) reordering of A

0
s
N
1000t My
.
b
s
ey
2000« hes
K N
™,
>,
3000} iThy
i N,
N
4000+ i N
e
B,
. s
5000+ =
6000
7000}
e
8000 Ay
: ",
hy
kb‘
9000 : N
BN
| B
P 4
10000 . L e . x . I S | N
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nz = 35604

(d) L;al matrix from the ILU(O) factorization of A

Figure 5.4: Comparison of the fill-ins in the L~! obtained from the ILU(0) factorization of the matrix
A =NH2D and its ND+AMML(2) reordered version A.,, where U = L*

parent subdomain. The algorithm also takes as input s, the number of steps to be performed, and
evenodd which defines in which order we want to number our nodes “first, last, first,.. ” (odd) or
“last, first, last, first, ...” (even). Note that the first call to the algorithm to reorder a subdomain,
the initial parameters are set to evenodd = odd and num to be the set of indices assigned to the
subdomain by nested dissection. Algorithm 45 is a recursive algorithm that starts by looping over
the separators 5 ,,, and finding their adjacent sets in D;, bv;. The aim is to number the bv;’s first

CHAPTER 5. CA-ILU(0) PRECONDITIONER 109

(smallest indices) or last (largest indices) depending on the evenodd tag which specifies if we are
reducing 3;; or v, (k = 1,..,5). In case some other separator S;,, depends on some vertices
of bv; (corners; # ¢) then we treat bv; as a block, its separators being .S; ,,, where ¢ # j. Then
Algorithm 45 is called recursively to limit the size of 3; ; or ; . In case there is no separator that
depends on bv;, then we number it in any order. Finally, Algorithm 45 is called recursively on the
remaining part of the subdomain D; — Uy;bv; with the separators being bv;, the appropriate value
of evenodd and s.

Algorithm 46 takes as input, the graph of A, the vertices of the separator to be rearranged S, ,,,,.
the vertices of other separators .S} ,,, and s. The aim is to find the vertices of S, ,,, that belong to
hy o and by, for all o. Then the algorithm numbers hy,, 1 last, opAdj(G(A), hy,q) first, and
hr.o. first. This is done by looping over the separators from the same level j, .S; that interact
with S; ,, rather than the subdomains ozéo). And we find int(i, m, j), where Uy int(i,m,j) =
Uvo(hto1 U hr o). After finding the vertices int (i, m, j) and numbering them accordingly with
opAdj(G(A),lastl U last2) numbered last. In this way the vertices have been numbered for
performing 1 step with no communication. Then Algorithm 45 is called to rearrange the remaining
vertices of \5; ,,,, alternatively.

5.2.2 K-way + AmmL(S) reordering of the matrix A

The graph of A is partitioned using k-way graph partitioning (section 2.2.3), to obtain P non-
overlapping subdomains §2; for ¢ = 1,2, ..., P. Then, we introduce in this section the AMML(s)
reordering based on k-way, which differs slightly than the ND+AMML(s) reordering presented in
section 5.2.1.

We present two versions of k-way+AMML(s) reordering, Algorithms 47 and 48. Both algo-
rithms take as input the graph of A, the vertices of the subdomain to be reordered @) = Eéj) =
V(€);), D the set of d neighboring subdomains @™ that depend on @) (there exists at least one
directed edge connecting a vertex in @”) to a vertex in @) in the graph of A) , the number of
steps s to be performed, the set of indices num assigned to @), and evenodd which defines in
which order we want to number our nodes “first, last, first,.. ” (odd) or “last, first, last, first, ...”
(even). During the first call to the algorithm to reorder a subdomain, the initial parameters are set to
evenodd = even and num to the set of indices assigned to the subdomain by k-way partitioning.

Note that, in this section we use the term aé to denote V/(£2;) rather than a(() 7) which is used in

section 5.1. The reason is that after reorderlng some vertices of o b) a

at) <

the remammg vertices oy
areasubset ofa ‘ (agj) c..C
b) (ao c a() ... C agj)).
We explain first the reordering for applying the ILU(0) preconditioner during one iteration of
a Krylov subspace solver (s = 1), where the goal is to reduce the number of vertices in the sets
ﬁfi) = R(G(U),aff)) and %i) = R(G(L), ﬁfi)) for each subdomain €2;, where a((f) = V(Q;). In
the following, the figures 5.5(c) and 5.5(b) are used to explain the alternating reordering for one

) Whereas in section 5.1, ozl = 5 is a superset of

110 S. MOUFAWAD

1 2 3 45 6 7 8 9 10|51 52 53 54 55 56 57 58 59 60 13 14 15 16 17 18 19 20 1 47|97|51|63|64 65 66 67 68 69 70
11 12 1371415 16 17 18 19 20|61 62 63 64 65 66 67 68 69 70 21 22 23 24 25 26 27 28 2 48|98|52|71|72 73 74 75 76 77 78
21 22 23 24 25 26 27 28 29 30|71 72 73 74 75 76 7778 79 80 29 30 31 32 33 34 35 36 3 49|99|53|79 80 81 82 83 84 85 86
31 32 33 34 35 36 37 38 39 40|81 82 83 84 85 86 87 8 89 N 5 6 7 8 9 10 11 12 4 50/100/54 55 56 57 58 59 60 61 62
41 42 43 44 45 46 47 48 49 50|91 92 93 94 95 96 97 98 99 100 37 33 39 40 41 42 43 44 45 46|87 88 89 90 91 92 93 94 95 96
101 102 103 104 105 106 107 108 109 110|151 152 153 154 155 156 157 158 159 160] 137 138 139 140 141 142 143 144 145 146|187 188 189 190 191 192 193 194 195 196|
111112 113 114 115 116 117 118 119 120|161 162 163 164 165 166 167 168 169 170| 105 106 107 108 109 110 111 112 104{147(197|154 155 156 157 158 159 160 161 162|
121 122 123 124 125 126 127 128 129 130|171 172 173 174 175 176 177 178 179 180| 113 114 115 116 117 118 119 120{103148(198|153|163 164 165 166 167 168 169 170|
131 132 133 134 135 136 137 138 139 140|181 182 183 184 185 186 187 188 189 190 121 122 123 124 125 126 127|128|102|149|199|152|171|172 173 174 175 176 177 178
141 142 143 144 145 146 147 148 149 150|191 192 193 194 195 196 197 198 199 200| 129 130 131 132 133 134 135/136[101|150(200{151|179|180 181 182 183 184 185 186

Domain & ghost zone
for backward substitution

‘ Domain & ghost zone ‘ ‘

Domain 1
for forward substitution ‘ ‘

Domain 1 ‘ ‘ —

Domain & ghost zone
for forward substitution

Domain & ghost zone Ghost data from
for forward substitution current solution vector

Ghost Data from
current solution vector

(a) Natural reordering (b) Numbering the va(U) and bva) with the
largest and smallest indices, without any spe-
cial reordering within each

13 14 15 16 17 18 19 20 2 47|97|52|63|64 65 66 67 68 69 70 21 22 23 24 25 26 14 35 3 48|98|53|78|64|71|72 73 74 75 76
21 22 23 24 25 26 27 28 3 48|98|53|71|72 73 74 75 76 77 78 15 16 17 18 19 20 13 34 2 47|97|52|77|63|65|66 67 68 69 70
29 30 31 32 33 34 35 36 4 49|99(54|79|80 81 82 83 84 8 86 28 29 30 31 32 33 27 36 4 49|99|54|86|79|80|81 82 83 84 85
5 6 7 8 9 10 11 12 1 46|9|51|55|56 57 58 59 60 61 62 6 7 8 9 10 11 5 12 1 46|95|51|62|55|56|57 58 59 60 61
38 39 40 41 42 43 44 45 37 50(100]87|88|89 90 91 92 93 94 95 39 40 41 42 43 44 38 45 37 50100187]95|88|89|90 91 92 93 94
138 139 140 141 142 143 144 145 137 150|200{187[188|189 190 191 192 193 194 195| 139 140 141 142 143 144 138 145 137 150|200{187[195] 188189190 191 192 193 194
105 106 107 108 109 110 111 112 101 146(196 151{155|156 157 158 159 160 161 162| 106 107 108 109 110 111 105 112 101 146{196 151{162|155[156|157 158 159 160 161
113 114 115 116 117 118 119 120 102 147|197 152|163 164 165 166 167 168 169 170| 128 129 130 131 132 133 127 136 104 149|199 154]186|179| 185|184 183 182 181 180
121 122 123 124 125 126 127 128 103 148|198 153 171 172 173 174 175 176 177 178| 115 116 117 118 119 120 113 134 102 147|197 152 177 163]165|166 167 168 169 170|
129 130 131 132 133 134 135 136 104 149|199 154 179 180 181 182 183 184 185 186| 121 122 123 124 125 126 114 135 103 148{198 153 178 164|171 172 173 174 175 176|

Domain & ghost zone
for backward substitution

Domain & ghost zone
for backward substitution

Domain 1 ‘ ‘ Domain 1 ‘ ‘

Domain & ghost zone
for forward substitution

Domain & ghost zone

current solution vector for forward substitution current sol ution vector

‘ Ghost Data from ‘

‘ Ghost Datafrom ‘

(¢) AMML(1) reordering (d) AMML(2) reordering

Figure 5.5: Data needed to compute y; = (LU) ! Ay;_1 on Domain 1 using ILU Matrix Powers Kernel for
different reorderings where ¢ = 1 in figures (a), (b) and (¢) and ¢+ = 1, 2 in figure (d).

step (s = 1), while figure 5.5(d) is used to display the reordering for two steps (s = 2). To reduce
globally the number of reachable vertices of interest in the graphs of L and U, the alternating
reordering renumbers the vertices of each subdomain 2;, such that locally on this subdomain the
set of reachable vertices BY) N agj) and %i) N @éj) from all the other subdomains €2, is reduced. To
do so, Algorithms 47 and 48 identify first the boundary vertices of each neighboring subdomain
€2; in subdomain £, vaéj’i) = af)j)~ Adj (G(A),ag)) and assign to the sets vaéj’i) = a(()j) A
Adj(G(A), aﬁf)) the largest possible numbers in num. Then the algorithms identify the adjacent
vertices of vaéj) in the graph of A, vaéj M = a(()j) A opAdj (G(A), vaéj ’i)), and assign to these

CHAPTER 5. CA-ILU(0) PRECONDITIONER 111

sets the smallest numbers possible in num. Figure 5. S(b) displays the reordered graph obtained
after this reorderlng, where the vertices of the sets vaOJ) and va(]) are kept in their natural
ordering. The set 61 is the set of vertices bounded by the red polygon and the set % 1s the set of
vertices bounded by the blue polygon for : = 1. In the worst case, the reachable set 51 is equal to
the union of the set aé“ with all the sets vaéj *) for i j and j # k. Similarly, the reachable set

fyfi) is equal to 6@ and all the va(()j *) That is,

P P
g cal | Ui and 417 < 8 O | ooy

i1 i1
j#i Ji
where boU = OF_ bwUY™ and boL{’ = UE_ buLY™ . However, for each subdomain €2, the
k] K

reachable sets can be further reduced by reordering the vertices within the sets vaéj) and va(()j),

for all the neighboring subdomains €2;. Algorithms 47 and 48 differ only in the approach used for
reordering the vertices within the sets vaéj) and va(()j 4,

The remaining numbers in num are assigned to the remaining vertices a§) a va
bv U0 , where the a(]) vertices are kept in their natural ordering, the bv Uéj) vertices are the vertices
in subdomain €2 that all the other subdomains i # j depend on and va(()j) = Adj (G(A), vaéj)) .

Then we get,
B0« Adj(G(4).af) o ¢ and 4 < Adi(G(A). B) U ¢*

where 8" = R(G(U), @), 1" = R(G(L), "), |¢] « |Adj(G(A),al")| and |¢*] « |Adj(G(A), 8.
The sets ¢ and (* represent additional vertices that belong to the reachable set in addition to
the adjacent set. For exarnple in figure 5.5(c), the vertices 200 and 151 belong to the sets
ﬁfl) = R(G(U),@él)) and 71 = R(G(L), Bfl)) respectively. However, these vertices do not
belong to the sets Adj(G(A), (())) and Adj(G(A), 59). Note that for matrices arising from 1D
3-point stencil, 2D 9-point stencil, and 3D 27-point stencil discretizations, we have (= (* = ¢.

When computing s > 1 multiplications of the form y; = (LU) ' Ay;_, fori = 1,2,. s the

goal of the alternating reordermg is to reduce the number of vertices not only in the sets 61 and

75), but also in the sets 6 and 7(D fori = 1,2, .., s. Thus we perform the same analysis as for

the case of s = 1. We obtaln a recursive reordering on the given set of vertices a(()j) such that the
two layers boU” = af) ~ Adj(G(A),a”) and oL = & ~ opAdj(G(A), boU™) for all
1 # j are assigned with the largest and smallest numbers respectively. The remaining numbers are

assigned to the unnumbered vertices agj) = agj) vaéj) vaéj). But unlike the case of s = 1, the
vertices agj) are reordered recursively, to minimize the cardinality of the sets BZ-(]) and 'yi(]), for: =
2.3...s. First U7 = &' A opAdj (G(A), buL{™) and boL{” = &l ~ op Adj(G(A), boUT?)

for all ¢« # j, are assigned with the largest and smallest numbers respectively. Then if s = 2, the

112

1000+

2000+

3000~

4000+

5000 -

6000 -

7000 -

8000+

9000 +

10000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

-

e
e
|

0
nz = 49600

(a) k-way reordering of A

I I I I I I I I I
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nz = 49600

(¢) k-way+AMML(5) reordering of A

! I I ! ! I I £ ! "
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1000+
2000+
3000
4000+
5000 -
6000 -
7000+
8000+
9000 +

10000 =
0

1000

2000k

3000

4000

5000

6000

7000

8000

9000

10000

S. MOUFAWAD

L L - I I Il L L i I I i
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
nz = 49600

(b) k-way+AMML(1) reordering of A

5

0

I I I I L I L 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
nz = 49600

(d) k-way+AMML(10) reordering of A

Figure 5.6: Comparison of the sparsity patterns of the k-way, k-way+AMML(1), k-way+AMML(S) and k-
way+AMML(10) reordered matrix NH2D of size 10* x 10* with P=4

remaining numbers are assigned to Oééj)
) ; (4)

as’ 1s unchanged. If s > 2 then as
cardinality of the sets ﬂi(]) and v

()

)

= agj) val(j) _ vagj), where the order of the vertices
is also reordered recursively for s — 2 to minimize the

for i = 3,4, ..,s. The reordering is performed in s recursive

steps. At each step, two layers (vat(j) = uf:lvat(j’i) and vaEj) = uﬁ;va?’“) are reordered,

i#]

i#]

CHAPTER 5. CA-ILU(0) PRECONDITIONER 113

Algorithm 47 K-way+AMML(s) Subdomain (&'¥), D, s, evenodd, G(A), num)

Input: al), the set of vertices of the subdomain to be reordered; G(A), the graph of A

Input: D = {@®|Adj(G(A),a®) nal) # ¢,i =1: P,i # j}, set of d neighboring subdomains; s,
the number of steps to be performed in the ILU matrix powers kernel

Input: evenodd, a tag that can be ‘even’ or ‘odd’; num, set of indices assigned to al)

Let d = | D| be the cardinality of the set D
if s == 0 then Number @%) in any order
else

for i = 1 to d do Find the vertices bv; = a¥) n Adj(G(A),a®) end for
for i = 1 to d do let corners; = uzzl (bv; m buy) end for
fori=1toddo
if evenodd = odd then Assign to the unnumbered vertices of bv;, the smallest numbers in num,
numpyy,
: else Assign to the unnumbered vertices of bv;, the largest numbers in num, numy,,
0: end if

A il s

10: Remove the numbers numy,, from num (num = num — numy,,)

11: if corners; = ¢ then Number the unnumbered vertices of bv; with the indices numy,,, in any
order

12: else Call K-way+AMML(s) Subdomain (bv;, D, s, evenodd, G(A)nump.y,;)

13: end if

14: end for

15: Leta) =al) — v by,

16: if evenodd = even then Call K-way+AMML(s) Subdomain (a'¥), {bv; | =+ = 1

d}, s, odd, G(A)num)
17: else Call K-way+AMML(s) Subdomain (@9, {bv; | i = 1 : d},s — 1, even, G(A), num)
18: endif
19: end if

and this produces an alternating min-max 2s layers reordering. In figure 5.5(d) where the graph
is reordered for performing two multiplications, there are four alternating layers starting from the
boundary vertices in every subdomain. Note that, similarly to the case of s = 1, the vertices of
vat(j) and vat(j D fort = 0,1, ..., s—1 have to be reordered to reduce the addition of unnecessary
vertices to the reachable sets.

At each recursive call in the Algorithms 47 and 48, either vat(j D or vaij ’i), denoted by bv;,
is reordered. The tag evenodd is used to decide which one to reorder. If evenodd = even, then
the largest available numbers in the set num are assigned to vat(j 4, Otherwise, the smallest
numbers in the set num are assigned to vaEj) In algorithm 47, the vat(j) and the b’ung) are
reordered by calling the algorithm recursively to ensure an alternating reordering within each. In
case the vertices of vat(j) (vaij ’i)) do not belong to any other vat(j) (va? ’k)) where k£ # 1,
i.e. corners; = ¢, then the vertices of vat(j R (vaEj ’i)) are kept in their natural ordering. The

114 S. MOUFAWAD

reordering for one and two steps is shown in ﬁgures 5.5(c) and 5. S(d) The only difference in

algorithm 48 is that we let boUY = O boUY" and bwLY = UF boLP", denoted by bv;,
275 z;é
and then reorder each using nested dlssectlon Since nested dissectlon assigns to the vertices

of the separators larger numbers than the two subdomains, and then continues partltlonmg each
till the final subdomains are very small, then the obtained reordering of the va and va 7
very similar to an alternating reordering. If s > 1, the remaining vertices of a(7) are reordered
recursively as shown in Algorithms 47 and 48.

Algorithm 48 K-way + AMML(s) Subdomain V2 (@), D, s, evenodd, G(A), num)

Input: 6(9), the set of vertices of the subdomain to be reordered; G(A), the graph of A

Input: D = {@®|Adj(G(A),a®) nal) # ¢,i =1: P,i # j}, set of d neighboring subdomains; s,
the number of steps to be performed in the ILU matrix powers kernel

Input: evenodd, a tag that can be ‘even’ or ‘odd’; num, set of indices assigned to &)

1: Let d = |D| be the cardinality of the set D
2: if s == 0 then Number @) in any order
3: else
4: fori=1to d do Find the vertices bv; = @) n Adj(G(A),a?)
5. Letbv; = Ul by
6: if evenodd = odd then Assign to the vertices of bv;, the smallest numbers in num, NUMpy;
7: else Assign to the vertices of buj, the largest numbers in num, nump,,
8: endif
9: Remove the numbers NUMpy; from num (num = num — nUMpy;)
10: Reorder bv; using Nested Dissection to obtain an alternating reordering
11: Leta()—a()—bvj
12: if evenodd = even then Call K-way+AMML(s) Subdomain V2 (e , bvj, s, odd, G(A), num)
13: else Call K-way+AMML(s) Subdomain V2 (¥ ,bvj,s — 1, even, G(A), num)

14: endif
15: end if

Figure 5.6 shows the sparsity pattern of the k-way, k-way+AMML(1), k-way+AMML(S), and
k-way+AMML(10) reordered A. Similarly to ND+AMML(s) reordering, the reason that the k-
way+AMML(s) reordering reduces communication is that it reduces the reachable sets in the L and
U matrices. In matrix format, this is equivalent to reducing the fill-ins in the L~ and U ~! matrices.
As shown in Figure 5.7, the L_.! has an almost block diagonal format. The difference between the
L;al obtained from the ND+AMML(s) reordered A (Figure 5.4) and that from the k-way+AMML(S)
reordered A is that the first further reduces the fill-ins, specifically in the block diagonals. This is
due to the fact that Metis’s nested dissection performed much more than ¢ = 2 levels of Nested
Dissection. Thus it would be a good to reorder the vertices @; in line 2 of Algorithms 47 and
48 using nested dissection or some other reordering that reduced the fill-ins of the block diagonal
entries in L~! and U~'. However, in our tests we keep the same ordering as obtained from k-way

CHAPTER 5. CA-ILU(0) PRECONDITIONER

1000 =

2000+ =

3000+ =

4000

5000+

6000

7000+

8000+

9000} AN

10000
0

nz = 49600

(a) Ay

1000

2000

3000

4000

s000

G000

Too00

000

9000

10000

4000
nz= 20025803

GO0

) L;!

I I I I I I I I I
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

10001

2000+

3000+

4000+

5000+

6000+

7000+

8000+

9000+

115

10000
0

i

%,

~

L L - Il Il i I I = L "
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
nz = 49600

(b) Aca

1000

2000

30001

4000

5000k

G000 |

Toon

a000

anno

1noon

L 1
4000 G000
nz=4539963

T
2000

(@ L}

10000

Figure 5.7: The fill-ins in the inverse of L obtained from the ILU(0Q) factorization of a k-way reordered
matrix A and its AMML(2) reordered version A, where U~ = (L71)!

partitioning.

5.2.3 Complexity of AmmL(s) Reordering

We define the complexity of our Alternating Min-Max Layers (AMML(s)) reordering as being the
number of times the vertices and the edges of the graph of A are visited in order to perform

116 S. MOUFAWAD

the reordering. In section 5.2.3.1 and 5.2.3.2 we show that ND+AMML(s) and k-way+AMML(s)
reordering are both of linear complexity.

5.2.3.1 ND+AMML(S)

Recall that nested dissection partitions the graph of A into P subgraphs {€2;, s, ...,Qp}and P —1
separators 3; ,,. Let D; = V() and S;,,, = V (i, m).

We start by finding the complexity of rearranging the vertices D; for s — steps. To define the
alternating layers from the separators, we will have to read a maximum of). |R(G(A), bv;, 25 —
2) n Dy vertices and their edges where bv; = Adj(G(A), Sim) N D;. Thus, at most D; vertices
and their corresponding F'(€);) edges are visited.

In case corners; # ¢, we will have to read the bv; vertices and its edges again. So we will have
to read some fraction of | Uy; R(G(A), bu;, 2s — 2)| nodes and its edges. In the worst case, we may
assume that corners(i) # ¢, Vi. Thus, we might read up to >, |R(G(A), bv;, 2s — 2)| nodes and
their edges.

So in D; we will read at most 2|D;| << 2|D,,..| vertices and their edges, where D, =
V(Qnaz)s | Dmaz| > | Dy, forall l = 1,2, .., P and E(Qa.) > E(€Y), for all [.

But before that, we need to read the separators’ vertices S ,,,, Vi and find bvi = Adj(G(A), S;)n
D;. In other words, we will visit the vertices S, ,,, Vi and their edges. Each subdomain will read
log(P) = t separators where each separator is from a different level of nested dissection and
P = 2! is the total number of subdomains.

So in total, S; ,,, will be read P times, S, ,,, will be read g times,..., S;(m) will be read 21%
times (Zfﬁ:l 2% D v | Sim -

Let Spar = V(Zmaz) Where |Spaz| > |57, m| for all (i,m) and | E(X,,42)| > |E(X;,,)| for all
(z,m). Then

LoP
> 575 2 Sl < tPIShmae]
vYm

Vi=1

Thus to rearrange all the P subdomains 2; we will need to visit/read at most 2P|D,,..| +
t P|Spax| vertices and 2P| E(Qnaz)| + tPIE(Xma.)| edges.

As for the complexity of rearranging 5; ,,,, we have to read the interacting separators vertices
iSep(j),Vj # i and their edges. Based on the nested dissection structure, S; ,, can interact at
most with one separator from each level. Then, we have to read the separator itself to rearrange
it for s — steps. So in total, to rearrange S;,, we have to read log(P) = t separators where each
separator is from a different level of nested dissection and P — 1 = 2! — 1 is the total number of
separators.

Thus, for rearranging all the P — 1 separators, .S ,, will be read p — 1 times, S5 ,,, will be read
P2 4 1 times,..., S;,», will be read % + (1 —1) = 55 + (i — 2) times.

CHAPTER 5. CA-ILU(0) PRECONDITIONER 117

The total number of vertices to be read for rearranging all the separators’ vertices can be ex-
pressed as:

A

¢ p t P ‘
Z (2i_1 i 2) 2 |Si,m‘ Z (F +1 - 2>21_1|Smaz,mmam|
vYm

Vi=1 Vi=1

t
< |Smas(tP + > (1 = 2)27)
Vi=1
< |Smaz|(tP + 3+ (t — 3)2")
< |Smaz|(tP + 3+ (t — 3)P)
< |Smazl(2tP + 3 —3P))

where | E(X,,4.)|(etp — 3p + 3) edges are read.

In total, for rearranging the matrix A we will have to read/visit at most 2P| D4, | + (3t P—3P+
3)|Smaz| vertices and 2P| E(Qaz)| + (3tP — 3P + 3)| E(X 42)| edges. Since the ND+AMML(s)
reordering is done in parallel on P processors, then this complexity is divided by P.

The parallel complexity of the ND+AMML(s) rearrangement is less than 2|D,,..| + (3t —
2)|Simaz| + 2| E(Qnaz)| + (3t —2)| E(Xn42) | which is of linear complexity with respect to | D, o, | +
|Sma:r‘ + |E(Qmam>’ + |E<Zmaz)|

5.2.3.2 K-way+AMML(S)

The complexity of Algorithms 47 and 48 for reordering the vertices of a subdomain €2; for s —
steps is equivalent to the complexity of finding the alternating layers from vertices @ of each
neighboring subdomain €2;, and then reordering each of these layers, where @ = V/(Q;)

Both algorithms take as input all the sets of vertices of the d neighboring subdomains @® that
depend on the vertices @) and find bv; = Adj(G(A), @) na) wherei = 1,2, .., d. This means
that for finding the sets bv; for each neighboring subdomain €;, all the vertices and edges of the
subdomain (; are visited. In other words, for each subdomain €2;, d x |V(€,,4,)| vertices and
d % |E(Qmaz)| edges have to be visited, where [a| < [V (Qnae)| and |E(Q:)| < |E(Qnaz)| for
t # J, and d is the number of neighboring subdomains. However, this is not necessary. We can
perform a preprocessing step where each processor €2; finds its subdomain’s boundary vertices, .S;,
that depend on some other vertex in @) where i # j. Then the algorithms can use S; instead
of @, where |S;| « |[@”)|. But to keep the presentation of the algorithms simple, @) was used
instead. To find S; for each subdomain €2;, [@¥)| vertices and |E(;)| edges are visited.

For each subdomain 2, finding the alternating layers from S; for each neighboring subdomain
() requires visiting at most 3.7 |R(G(A), S;, 2s)| vertices and their associated edges. In algo-
rithm 47, in case corners; # ¢, the vertices of the set bv; and associated edges need to be visited
again. So some fraction of | U?_, (R(G(A), S;,2s) na)| vertices and their associated edges are
visited in this case. In the worst case, where corners(i) # ¢, for all the d neighboring subdomains

118 S. MOUFAWAD

i =1:d,i # j, the algorithm visits at most | U?_, (R(G(A), S;, 25) n@¥)] vertices and associated
edges. Hence reordering the vertices of a subdomain €2, al) requires visiting at most

d d d
2) |R(G(A), S;,25) naP| + YIS « 2[a?| + > €a?| « (2 + d&)[V (Unao)|
=1

i=1 i=1

vertices and (2 4 d€)|E(Qnq.)| edges. Note that | S;| = £[a¥|, where 0 < & « 1 is the ratio of the
cardinality of the boundary vertices with respect to the cardinality of the subdomain’s vertices. The
quantity £ should be very small since the number of boundary vertices in a subdomain is at most
equal to the edge-cuts of that subdomain, and k-way partitioning aims at minimizing the edge-cuts.

Thus, in total to reorder @), at most (3 + d€)|V (Qumaz)| vertices and (3 + d€)|E(Qmaz)|
edges are visited. Since the AMML(s) reordering is done in parallel on P processors, its parallel
complexity is upper bounded by (3 + d&)(|V(Qmaz)| + | F(Qmaz)|). Hence our algorithm is of
linear complexity with respect to (|V(Qnaz)| + |E(Qmaz)|)- In case the AMML(S) reordering is
done sequentially, one processor loops over the vertices of the subdomains and reorders them, then
the complexity is upper bounded by (3 + d&) P(|V (Qmaz)| + | E(Qmaz)|) where P is the number
of subdomains.

5.3 CA-ILUO preconditioner

In this section we summarize the different steps required for constructing the CA-ILUO precondi-
tioner, presented in Algorithm 49. The algorithm first reorders the input matrix by using a graph
partitioning technique, and in this thesis we consider the usage of ND and k-way partitioning. The
obtained matrix is further reordered using AMML(s) reordering. Note that the permutations applied
to the matrix A are also applied to the vector b. Then, the redundant data needed by each processor
is identified using Algorithm 43. The final step is to compute the ILU(0) factorization of the re-
ordered matrix to obtain the L and U matrices for preconditioning the system Ax = b. The ILU(0)
factorization can be done sequentially on one processor, where the needed parts of the L and U
matrices have to be fetched by the processors before starting the computations in Krylov subspace
solver, or it can be done in parallel where each processor performs the ILU(0) factorization of the
augmented part of A to obtain the needed parts of L and U.

The ILU(0) factorization of A(fygj), 1) can be performed in parallel without any communication
for the following reasons. Performing the ILU(0) factorization of A(p, :) requires computing the
factorization of A(w, :) beforehand, where w = R(G(L), p). And by definition of reachable sets,
we have that R(G(L),7{) = ~¥. Hence, processor j has all the needed rows of A to perform
the ILUO factorization in parallel without any synchronization or communication, at the expense
of doing some redundant computation.

All the steps of the CA-ILUO preconditioner construction are done in parallel. In addition,
steps 2 and 6 in Algorithm 49 can be done in parallel without communication. Note that, after

CHAPTER 5. CA-ILU(0) PRECONDITIONER 119

Algorithm 49 Construction of CA-ILUO preconditioner

1: Partition the graph of A into P subdomains by using neste dissection or k-way graph parti-
tioning

2: Find a permutation using ND+AMML(s) reordering (Algorithms 45 and 46) or k-
way+AMML(s) reordering (Algorithm 47 or 48)

3: Apply the permutation to matrix A

4: Find the redundant/ghost data that each processor needs using Algorithm 43

5. Each processor i fetches its corresponding A(ygi),)

6: Each processor ¢ performs the CA-ILU(0) factorization of A(vgi), 1) to obtain the correspond-

ing L(%@, ;) and U (%(i), :) matrices

fetching the matrix A(fyéj), 1) and yo(égj)) , each processor can compute its part of the L and U
factors of the preconditioner and the first s multiplication without any communication with other
processors.

The CA-ILUO preconditioner can be used with a classic Krylov subspace solver, in which
case it allows to apply the left-preconditioner without any communication. In this case AMML(s)
reordering has the parameter s set to 1.

On the other hand, the CA-ILUO preconditioner can be used for ILUO right-preconditioned sys-
tems by slightly modifying the order of the operations in ILU matrix powers kernel where AMML(s)
reordering is unchanged. As for the split preconditioned system of the form L= AU 'y = L~b
with z = U~'y, CA-ILUO preconditioner can also be used by slightly modifying the ILU matrix
powers kernel and AMML(s) reordering. In this case, when the tag evenodd = even, we assign to
the layer at hand the smallest indices in num and the largest indices otherwise. This produces 2s
alternating layers starting from small indices.

5.4 Expected numerical efficiency and performance of CA-ILU0
preconditioner

The numerical efficiency and performance of CA-ILUO preconditioner depends on the effect of
AMML(s) reordering on the convergence of GMRES for the CA-ILUO preconditioned system, on
the complexity of AMML(s) reordering of the input matrix A, and on the additional memory re-
quirements and redundant flops of the ILU(0) matrix powers kernel. We discuss the convergence
of the CA-ILUO preconditioned system using GMRES in section 5.4.1, the memory requirements
and redundant flops in section 5.4.2. While we do not present here results of a parallel implemen-
tation of CA-ILUO, the results presented in this section show that CA-ILUO can be expected to be
faster in practice than implementations of the classic ILUO based on different reordering strategies.

We use in our experiments METIS [49] for graph partitioning purposes. METIS provides two

120 S. MOUFAWAD

versions of multilevel k-way partitioning. We use PartGraphKway version that minimizes edge-
cuts that is referred to as Kway in the plots of iterations, redundant flops, and memory. In addition,
METIS provides a multilevel nested dissection version called NodeNDP. The Kway version has
the fastest convergence but requires more memory and redundant flops than nested dissection ver-
sions. Hence the Kway version is a good candidate for our CA-ILUO preconditioner if we choose
appropriately the number of partitions and number of steps to obtain a good trade-off between the
amount of communication reduced and the amount of redundant computation. For this reason,
in sections 5.4.1 and 5.4.2 the plots correspond to the CA-ILUO preconditioner based on Kway
partitioning.

Finally, we compare our CA-ILUO preconditioner with block Jacobi preconditioner in section
54.3.

5.4.1 Convergence

It is known that the convergence of ILUO preconditioned systems depends on the ordering of the
input matrix. The best convergence is often observed when the matrix is ordered using reverse
Cuthill-McKee (RCM) or natural ordering (NO), while the usage of k-way partitioning or nested
dissection tends to lead to a slower convergence (see for example [24]). Hence, we first discuss the
effect of our reordering on the convergence of ILU(0) preconditioned system. Ideally, we would
like our ND+AmmLand k-way+AMML(s) reordering to have a negligible effect on the convergence
of ILU(0) preconditioner with respect to the most efficient orderings (RCM or NO). Our goal is to
compare the convergence of the CA-ILUO preconditioner. Since s-step GMRES can lead by itself
to a slower convergence with respect to a classic GMRES method, we use in our experiments the
classic GMRES method. For a brief description of the used test matrices and the nature of the
problems they arise from refer to section 2.6.

Table 5.1 compares the convergence behavior the ILUO preconditioned restarted GMRES on
ND, and ND+AMML(s) reordered matrix NH2D with respect to the natural ordering of NH2D,
where s = 1,5,10 and P = 16, 32,64. The effect of the ND+AMML(s) reordering with respect
to nested dissection reordering on the convergence of ILU(0) preconditioned GMRES is negli-
gible for the matrix NH2D (few iterations). However, the effect of nested dissection reordering
on the convergence of ILU(0) preconditioned GMRES with respect to natural ordering, is almost
doubling the iterations (82 iterations versus 146). The more iterations are performed, the more
communication is needed. Thus, nested dissection might not be the optimal partitioning technique
to be used for the CA-ILUO preconditioner.

We compare the convergence of GMRES for the ILUO preconditioned system where the matrix
A is reordered using k-way + AMML(s) versionl reordering (Algorithm 47), k-way + AMML(S)
version2 reordering (Algorithm 48), k-way and the natural ordering of A for different number of
partitions and for s = 1,2, 5, 10. We set the GMRES tolerance to 10~® and the maximum number
of iterations to 500. Figure 5.8 shows the convergence behavior for the matrices NH2D 1, UTM3060,
Bol, Bo2, SKY2D, and SKY3D.

CHAPTER 5. CA-ILU(0) PRECONDITIONER 121

Table 5.1: Convergence of the ILUO preconditioned restarted GMRES on NO, ND, ND+AMML(s) reordered
matrix NH2D. tol = 108, maximum iterations = 200, number of restarts = 2

Ordering Real error Relative residual | Number of
norﬁi’;‘z;je)‘pp) nor’:(()?;ﬁ;app) iterations
NO 1.09 x 1077 9.80 x 1079 82
ND 16 8.19 x 107 9.30 x 1079 148
ND 32 1.13 x 1076 8.80 x 1079 146
ND 64 1.45 x 1076 9.50 x 1079 142
ND+AMML(1) 16 8.14 x 1077 9.50 x 1079 148
ND+AMML(1) 32 1.31 x 106 9.30 x 1079 147
ND+AMML(1) 64 1.87 x 1076 9.70 x 1079 144
ND+AMML(5) 16 1.43 x 1076 9.90 x 1079 147
ND+AMML(5) 32 2.35 x 1076 9.10 x 107? 152
ND+AMML(5) 64 2.47 x 1076 9.70 x 1079 149
ND+AMML(10) 16 | 9.46 x 10~ 9.40 x 1079 146
ND+AMML(10)32 | 2.44 x 1076 9.50 x 107° 152
ND+AMML(10) 64 | 2.48 x 1076 9.70 x 1079 149

As expected, the ILUO preconditioned system with the natural ordering of A converges faster
than when A is reordered using k-way and the two versions of AMML(s). The convergence of
the RCM ILUO preconditioned system is not shown in the plots, but for the symmetric matrices
NH2DI1, Bol, Bo2, BcssTk18 and SKY2D it has the same convergence as natural ordering, while
for UTM3060 it converges with 2 iterations less than natural ordering. For the matrix NH2D1, when
A is reordered using k-way and k-way plus AMML(1), the preconditioned GMRES has the same
rate of convergence. But as s increases and the more we reorder the matrix, the more iterations are
needed for convergence. We notice the same behavior for the matrices UTM3060, Bol and Bo2
(Figures 5.8(b), 5.8(c), and 5.8(d)). But for the matrix BcssTk18, GMRES converges in a maxi-
mum of 9 iterations for the different reorderings of A as shown in figure 5.8(e). It must be noted
that without preconditioning, the BCcssTK18 system does not converge for the given tolerance,
while for tol = 107° it converges in 909 iterations.

For the matrices Bol and B0o2, k-way plus AMML(s) versionl (Algorithm 3) has a better con-
vergence than version 2 (Algorithm 4). However for the matrices NH2D1 and UTM3060 there is no
clear winner. But for s = 1, versionl converges slightly better, since in version2 nested dissection
reorders two layers of vertices.

Table A.1 in Appendix B, shows the convergence behavior of ILU(0) preconditioned GMRES
with the different reorderings for WATT2 and the other seven matrices. We observe similar conver-
gence behaviors with respect to number of partitions, steps s, and the two versions of AMML(S).
Thus s has to be chosen such that the total reduced communication in the ILU(0) matrix pow-
ers kernel is much greater than time needed to compute the extra iterations resulting from the
k-way+AMML(s) reordering with respect to natural ordering.

122

THE NUMBER OF ITERATIONS NEEDED TILL CONVERGENCE THE NUMBER OF ITERATIONS NEEDED TILL CONVERGENCE

THE NUMBER OF ITERATIONS NEEDED TILL CONVERGENCE

Figure 5.8: The number of iterations needed for convergence for 6 matrices as a function of the number
of partitions and steps s. The matrices are either in natural ordering or reorderd using k-way partitioning
(Kway), k-way partitioning followed by AMML(s) based on Algorithm 3 (Version 1) or Algorithm 4 (Version
2). The number of partitions vary from 4, 8, 16, 32, 64, 128 to 256 depending on the size of the matrix. The

240

2301

220

210

200

190+

180

170+

160

150+

140

60

—+— Kway + AMML(s) Versionl

=+= Kway + AMML(s) Version2 | |
* Kway

~ * ~ Natural ordering

128
NUMBER OF PARTITIONS

(a) Matrix NH2D1

581

56

541

521

50

a8F

46

a4t

420

40

—+— Kway + AMML(s) Versionl
—+= Kway + AMML(s) Version2
* - Kway

~ * ~ Natural ordering

10

NUMBER OF PARTITIONS

(¢) Matrix Bo1

—+— Kway + AMML(s) Versionl

=+= Kway + AMML(s) Version2
* Kway

~ * ~ Natural ordering

8
NUMBER OF PARTITIONS

(e) Matrix BCSSTK18

IS
@
=)

THE NUMBER OF ITERATIONS NEEDED TILL CONVERGENCE

S. MOUFAWAD

IS
S
S}

©
a
=}

@
S
S}

N
a
=}

N
=3
3

—+— Kway + AMML(s) Versionl | -

— Kway + AMML(s) Version2
* - Kway

150 4.]
....... .
100F g o oo - e e e 2 -
S0 — 3 15
NUMBER OF PARTITIONS
(b) Matrix UTM3060
170

=
@
S

.
a
=}

,_.
@
S

THE NUMBER OF ITERATIONS NEEDED Till CONVERGENCE
IS I
S S

110

—+— Kway + AMML(s) Versionl

—+ - Kway + AMML(s) Version2
* - Kway

~ %= Natural ordering -1

550

32
NUMBER OF PROCESSORS

(d) Matrix Bo2

500+

450

400

350

THE NUMBER OF ITERATIONS NEEDED TILL CONVERGENCE

300

—+— Kway + AMML(s) Versionl

—+- Kway + AMML(s) Version2
* - Kway

~ * ~ Natural ordering

L L L
4 8 16 32 64 128 256
NUMBER OF PARTITIONS

(f) Matrix SKY2D

number of steps s is either 1 (red), 2 (blue), 5 (green) and 10 (magenta).

CHAPTER 5. CA-ILU(0) PRECONDITIONER 123

We can conclude that our CA-ILUO preconditioned system where the matrix A is reordered
using k-way and AMML(s) has a very similar convergence behavior to the ILU(0) preconditioned
system where the matrix A is only reordered using k-way graph partitioning technique. Thus,
our additional AMML(s) reordering of the matrix does not affect much its convergence, while it
enhances its communication avoiding parallelizability.

5.4.2 Avoided communication versus memory requirements and redundant
flops of the ILUO matrix powers kernel

The ILU(0) matrix powers kernel avoids communication by performing redundant flops and stor-
ing more vectors and data. Table 5.2 compares the needed memory and performed flops for s
matrix vector multiplications on one subdomain/processor when using the non-preconditioned
CA-GMRES (Ax, A%z, .., A*r) and the CA-ILUO preconditioned CA-GMRES ((LU) 'Az, ...
,((LU)"'A)*x) on 2D 9-point stencils and 3D 27-point stencils. We assume that each proces-
sor j has to compute the part &éj) = V(€2;) of the s matrix vector multiplication, where A is an
a(()j)| ~ n/P = w, d = 2 for 2D matrices and 3 for 3D matrices, and w = (n/P)a

is the width of the square or cube subdomain. For simplicity, we refer to oz((f) as a in table 5.2.

n X n matrix,

Table 5.2: Memory and computational cost required for performing s matrix vector multiplication on one
subdomain «, for the non-preconditioned CA-GMRES and for the CA-ILUO preconditioned CA-GMRES.

CA-GMRES CA-ILUO0 CA-GMRES
Stencil | Memory Flops Memory Flops
2D 9- | (s + 10)|a| + | 17s|a|—34s*+ | (s + 21)|a] + | 35s|q +
pt 258 + 3857 — | (4% +25) + | 057 + 32857 — | M3 120857+
s+ 36 + | 34(s2—s)|alz | s+ 24 + | LEs+4s(35s+
2(s> + 19s — 4(s* + 4ls — | 26)|a|z
18)|al3 4)|a)2
3D 27- | (s + 28)|a| + | 53s|a] + | (s + 57)|a] + | 107s|c| +
pt 25t + 22083 — | 106s* + | 1654 + | 1064s> -
6465 + 648s — | 106(—2s> + | 8s[4525> — | 2560s® +
216 + 3(s* + | s%) +159(s* — | 154s + | 6s[107s +
555 —54)|al3 + | s)al3 +[90] — 88 +|80]lal3 +
[45% + 330s% — | 106[2s® — | (6s* 4+ 678s — | 25[8565> +
6465 +324]|al5 | 352 + s]|als | 78)|al3 +]960s o+
4[4 +678s% — | 266]|als -
1545 + 45]|als | 1712s*

CA-GMRES requires storing s vectors of size | R(G(A), a((]j), i) ~ |(w+20)94], i =1,2,..,s,

124 S. MOUFAWAD
one vector of size \a[()j)| and the corresponding |R(G(A), a(()j) s — 1)| rows of the matrix A. Then,
it performs >, ((w + 2(i — 1))%)(2 x nnz — 1) flops where nnz is the number of nonzeros
per row (9 and 27). CA-ILUO preconditioned CA-GMRES requires storing s vectors of size
IR(G(A), o, 2(i—1))| ~ [(w+4(i— 1)), i = 1,2, ..., s, one vector of size | R(G(A), al’, 25+
1)|, one vector of size |R(G(A), a(()j), 25s)|, the corresponding |R(G/(A), a(()j), 2s)| rows of the ma-
trices A and L, and the |R(G(A), a(()j) 25 — 1)| rows of the matrix U. Then it performs > ;_, (2 x
nnz—1)((w+4i)?) flops to compute Az. Solving the s lower triangular systems (Lz = f) requires
Sl 4+ 2 x (nnz — 1)/2]((w + 4i)?) flops. Similarly, solving the s upper triangular systems
requires > ;_,[1 + 2 x (nnz — 1)/2]((w + 4i — 2)?) flops. Note that the memory and flops of
CA-GMRES and CA-ILUO preconditioned CA-GMRES are governed by the same big O function.

Figure 5.9 plots the ratio of the total redundant flops in the ILU(0) matrix powers kernel for
s = 1,2,5,10 with respect to the needed flops for computing s matrix vector multiplication in
the sequential ILUO preconditioned GMRES for six matrices in our set that are reordered using
k-way, k-way+AMML(s) Versionl and k-way+AMML(s) Version2. Figures 5.10 plots the ratio of
the ghost data that has to be saved in memory in the ILUO matrix powers kernel for s = 1,2,5,10
with respect to the needed memory in the matrix vector multiplication of the sequential ILUO
preconditioned GMRES for six matrices in our set that are reordered using k-way, k-way+AMML(s)
Versionl and k-way+AMML(s) Version2. In figures 5.9(a) and 5.10(a) we do not show the ratio of
redundant flops with respect to needed flops for the k-way reordered matrix NH2D1, since it is at
least 10 times more than that of AMML(s) reordering. Hence the AMML(s) reordering leads to at
least 90% less redundant flops and ghost memory in the ILUO matrix powers kernel than METIS’s
k-way partitioning. This leads to a reduction of the volume of the communicated data at the end of
the s steps.

In figures 5.9(b) and 5.9(e), AMML(s) reordering performs from 10 to 50% less redundant flops
than k-way partitioning in the ILUO matrix powers kernel. On the other hand, in figures 5.10(b)
and 5.10(e), AMML(s) reordering needs 50% and 25% less ghost memory for s = 1 and s = 2
respectively. Whereas for s = 5 and 10, AMML(s) reordering and k-way partitioning ratios are
equal to P — 1, where P is the number of processors or partitions. This means that each processor
ends up needing all the matrices A, L, U and computing almost everything for a number of steps.
Hence for matrices UTM3060 and BcSSTK18, s has to be less than 5.

We compare the ratio of redundant flops and ghost data of the two versions of AMML(s) reorder-
ing for the above three matrices. For matrix NH2D1, figures 5.9(a) and 5.10(a), version2 performs
less redundant flops. For matrix UTmM3060, figures 5.9(b) and 5.10(b), version] has a slightly better
performance for s > 1. As for the matrix BcssTk 18, figures 5.9(e) and 5.10(e), the two versions
have almost the same performance.

It is clear that as s or the number of partitions increase, the redundant flops and ghost memory
increase. Thus, one has to choose the appropriate number of partitions and steps s with respect
to the problem at hand, to obtain the best performance. In other words, one has to find a balance
between the redundant flops and communication (number of messages) while taking into consid-

CHAPTER 5. CA-ILU(0) PRECONDITIONER 125

N
S

-

5

—+— Kway CA-ILUO(s) Version1 s =10

s=10 ~*t= Kway CA-ILUO(s) Version2
* - Kway

—+— Kway + AMML(s) Version1
—+~ Kway + AMML(s) Version2

.
@

B e B =
® 1)) i 1)

)
(REDUNDANT FLOPS) / (s * NEEDED FLOPS)

(REDUNDANT FLOPS) /(s * NEEDED FLOPS)

IS

~

o

64 128 8
NUMBER OF PARTITIONS NUMBER OF PARTITIONS

(a) Matrix NH2D1 (b) Matrix UTM3060

120

—+— Kway + AMML(s) Versionl —+— Kway + AMML(s) Versionl
—+= Kway + AMML(s) Version2 IEI * —+='Kway + AMML(s) Version2
S0r * Kway 1 100 * Kway q

IS
S

80 q

w
S

601

40+

(REDUNDANT FLOPS) / (s * NEEDED FLOPS)
(REDUNDANT FLOPS) /(s * NEEDED FLOPS)

T
gz s -7
0 = ! ' 0

4 8 16 32 64

NUMBER OF PARTITIONS NUMBER OF PARTITIONS
(c) Matrix Bo1 (d) Matrix Bo2
14 10
; s=10 :
e Kway + AMML(s) Versionl oL :. —— Kway + AMML(s) Version1 |
12 ¥ Kway + AMML(s) Version2 B L4 ~*= Kway + AMML(s) Version2
Kway ; * - Kway

(REDUNDANT FLOPS) / (s * NEEDED FLOPS)
(REDUNDANT FLOPS)/ (s * NEEDED FLOPS)

o . , . 0
8 7
NUMBER OF PARTITIONS NUMBER OF PARTITIONS

(e) Matrix BCSSTK 18 (f) Matrix SKY2D

Figure 5.9: The ratio of redundant flops w.r.t needed flops in the ILUO matrix powers kernel as a function of
the number of partitions and steps s. The matrices are either reordered using k-way partitioning (Kway), or
k-way partitioning followed by AMML(s) based on Algorithm 3 (Version 1) or Algorithm 4 (Version 2). The
number of partitions vary from 4,8,16,32,64,128 to 256 depending on the size of the matrix. The number of
steps s is either 1 (red), 2 (blue), 5 (green) and 10 (magenta).

126 S. MOUFAWAD

@
=}

15

i —— Kway + AMML(s) Versionl SIS0 .
4[|+ Kway + AMML(s) Version1 = 1 —+= Kway + AMML(s) Version2
~*+= Kway + AMML(s) Version2 51240 * Kway [s=5]

IS
S

w
&

10

W
S

N N
@ =)

(REDUNDANT MEMORY) / (NEEDED MEMORY)
= N
S &

L
(REDUNDANT MEMORY) / (NEEDED MEMORY)

@

)

8
NUMBER OF PARTITIONS NUMBER OF PARTITIONS

(a) Matrix NH2D1 (b) Matrix UTM3060

70

E /

120 b
—+— Kway + AMML(s) Versionl
B —+='Kway + AMML(s) Version2
* Kway

—+— Kway + AMML(s) Versionl
60 —+- Kway + AMML(s) Version2
* Kway

1001
501

80
40F

601
301

40t
20+

(REDUNDANT MEMORY) / (NEEDED MEMORY)
(REDUNDANT MEMORY) / (NEEDED MEMORY)

100 201

16 32 8 16 32
NUMBER OF PARTITIONS NUMBER OF PARTITIONS

(¢) Matrix Bo1 (d) Matrix Bo2

15 T T 15

—+— Kway + AMML(s) Version1l
E —+- Kway + AMML(s) Version2
- * ' Kway

—+— Kway + AMML(s) Versionl

—+= Kway + AMML(s) Version2 E

* Kway

[s=5]

10} 10t ,

(REDUNDANT MEMORY) / (NEEDED MEMORY)
(REDUNDANT MEMORY) / (NEEDED MEMORY)

o . . . 0
8
NUMBER OF PARTITIONS NUMBER OF PARTITIONS

(e) Matrix BCSSTK18 (f) Matrix SKY2D

Figure 5.10: The ratio of redundant data w.r.t needed data in the ILUO matrix powers kernel as a function of
the number of partitions and steps s. The matrices are either reordered using k-way partitioning (Kway), or
k-way partitioning followed by AMML(s) based on Algorithm 3 (Version 1) or Algorithm 4 (Version 2). The
number of partitions vary from 4,8,16,32,64,128 to 256 depending on the size of the matrix. The number of
steps s is either 1 (red), 2 (blue), 5 (green) and 10 (magenta).

CHAPTER 5. CA-ILU(0) PRECONDITIONER 127

eration the available memory. The choice of the number of partitions P is related to the concept
of surface-to-volume ratio discussed in [48] which is an indicator of data dependencies. In other
words, the ratio of a subdomain’s vertices with edge-cuts with respect to those without edge-cuts
should be relatively small. On the other hand, values of s should be chosen so that the processor
communicate at most with his neighbors and some factor of his neighbor’s neighbors. And the
smaller the subdomains are (large P) the smaller s should be and vice versa.

For example, for matrix NH2D 1of size 40, 000 x 40, 000, which corresponds to a graph of size
200 x 200, for p = 256 with subdomain of size 12 x 13 the surface-to-volume ratio is around 0.3,
which is not very small. Thus for s = 1 or s = 2 the redundant flops computed are 1 or 2 times the
flops needed to perform the multiplication sequentially, which is reasonable (Figure 5.9(a)). But
for s = 5 or s = 10 it is prohibitive (6 and 18 times). Similarly, for s = 10 with p = 16 (50 x 50
subdomains), p = 32 (35 x 36 subdomains), and p = 64 (25 x 25 subdomains) the redundant
flops are 1, 2, and 4 times the sequential version, which is reasonable. Note that an increase in
the computed redundant flops is equivalent to an increase in the needed memory and the volume
of communicated data after computing s basis vectors. Thus, small values of s might be used in
practice.

Table 5.3: Messages and number of words received for performing s = 1 multiplication per iteration, on
one subdomain «; of a 2D 5-point stencil matrix, for GMRES and CA-ILUO preconditioned GMRES.

GMRES CA-ILUO0 GMRES
y = Ax y=(LU) 1Az
Each receives one message from each of its | receives one message from each of its

processor | 4 neighbors of size w = (%)% words | 4 neighbors of size w = (%)% words

J receives one message from 4 other

processors each of size 4 words

In the case of s = 1, the CA-ILUO preconditioner can be used with the classical precondi-
tioned GMRES where the parallelized multiplication of the form y; = (LU) ! Ay, is replaced by
the s = 1 version of the ILUO matrix powers kernel. At the beginning of the first iteration, each
processor fetches its corresponding parts of A and y, and then factorizes its part of A and com-
putes its part of y;. Then, before every iteration of GMRES, one communication phase is needed
when y is fetched . Table 5.3 shows the messages and number of words received by processor
j on domain «; of a 2D 5-point stencil, for computing y = Az in GMRES and y = (LU) 'Ax
in CA-ILUO preconditioned GMRES, where the communication pattern in both is similar. We
did not compare CA-ILUO preconditioned GMRES to ILUO preconditioned GMRES since paral-
lelizing the backward and forward substitution can be implemented by using different approaches.
Consider, for example, that the implementation uses Nested Dissection. For each of the log(P)
levels of nested dissection, there is need for one communication phase between processors, in both
forward and backward substitution. Thus, at least log(P) messages are sent of different sizes. In

128 S. MOUFAWAD

summary, the communication cost of parallelizing the y = (LU) Az in ILUO preconditioned
GMRES is at least 2log(p) + 4 messages in 2log(P) + 1 communication phases. Whereas in CA-
ILUO GMRES, it is of the order of 8 messages in 1 communication phase before the computations.
Thus the communication is reduced by a factor of O(2log(P)). In general, for s > 1, the CA-ILUO
preconditioner reduces communication by at least a factor of O(2slog(P) + s).

5.4.3 Comparison between CA-ILUO preconditioner and block Jacobi pre-
conditioner

The block Jacobi preconditioner is one of the simplest parallel preconditioners which avoids com-
munication when performing one multiplication of the form y = M ~! Az where

Al,l 0 0 L171U171 0 0
o |0 A 00 | 0 Laalhs 0 0 .
0 0 App 0 w0 LppUpp

is constructed from the diagonal blocks of A. The block Jacobi preconditioner starts by partitioning
the graph of A into P well balanced partitions 7 = {;,s,...,Q2p}. Then each processor i is
assigned the set of vertices a((f) = V(Q;) and has to compute y(a(()i)). Processor ¢ fetches A(oz((f),)
and x(éy)) where 5@ = Adj(G(A), a(()i)). Then, processor 7 factorizes A, ; = A(a(()i), oz(()i)) into L;
and U, ; matrices by using complete or incomplete LU factorization. Since the diagonal blocks of
M are independent, it is possible to perform the LU factorization, and the backward and forward
solves in parallel without communication. Thus our CA-ILUO preconditioner is very similar to
block Jacobi in the communication pattern for s = 1 only. But for s > 1, the block Jacobi
preconditioner can’t be used with the ILU matrix powers kernel since the reachable sets BJ@ =
R(G(U), ag-ill), % — R(G(L), 6]@), and 5]@ = Adj(G(A), 7]@) can grow in size rapidly where

J
1 <j<s. . . . :
e compare the convergence behavior of the block Jacobi preconditioner, with k-way reorder-

ing and LU or ILUO block diagonal factorization, to the CA-ILUO preconditioner, where the input
matrix A is reordered using k-way plus AMML(1) reordering. Table 5.4 shows the ratio of the
norm of the error (Err) between the real solution and the approximate solution obtained by the
different preconditioned GMRES versions for tol = 107® (norm(x — x,,,)/norm(z)), the num-
ber of iterations (Iter) needed till convergence, the correctness(LUErr) of the different factoriza-
tions (norm(A — LU)/norm(A)), and the introduced fill-in ratio (Fill) of the block Jacobi-LU
((nnz(L) + nnz(U))/nnz(A), nnz is the number of nonzero entries). The input matrix is parti-
tioned into 16,32, 128,256, 512, 1024 or 2048 parts (Pa) using k-way.

For all the matrices CA-ILUO preconditioner has better convergence than block Jacobi-ILUO.
However, block Jacobi-LU preconditioner has the best convergence when the number of partitions
is relatively small, since it is then very similar to a complete LU preconditioner. But when the

CHAPTER 5. CA-ILU(0) PRECONDITIONER 129

Table 5.4: Comparison between the convergence of CA-ILUO preconditioner with k-way+AMMLreordering
and block Jacobi preconditioner.

CA-ILUO Block Jacobi-ILUO Block Jacobi-LU

Pa |(|Iter| Err |LUErr|/Iter| Err | LUErr ||Iter| Err |LUErr| Fill
16 || 51 |2E-8|7E-10|| 62 |7E-8| 1E-9 | 49 | 5E-8 | 1E-9 | 6.0
32 || 52 |4E-8|7E-10|| 67 |8E-8| 1E-9 | 57 | SE-8 | 1E-9 | 3.6
32 ||144|6E-7|8E-10||151|4E-7| 7E-10 ||110|13E-7|6E-10|15.1
Bo2 | 128 ||156|4E-7| 1E-9 |[170|5E-7| 4E-9 |144|4E-7 | 4E-9 | 5.7
256 ||154|8E-7| 1E-9 |[197|1E-6| 4E-9 |176| 6E-7 | 4E-9 | 3.4
32 ||173|8E-7| 9E-6 ||193|1E-6| 1E-5 |/116|4E-7 | 1E-5 |14.1
128 ||179|1E-6| 8E-6 ||196|1E-6| 1E-5 |/139| 6E-7 | 1E-5 | 7.0

Bol

NH2DI 512 ||184|1E-6| 1E-5 ||221|1E-6| 1E-5 |181|9E-7 | 1E-5 | 3.6
1024|/191|1E-6| 1E-5 ||236|2E-6| 1E-5 ||217| 1E-6 | 1E-5 | 2.5
32 ||301|5E-6| 2E-6 ||322|3E-6| 2E-6 |154| 1E-6 | 2E-6 |29.3
128 ||308|5E-6| 2E-6 ||339|6E-6| 2E-6 |201|9E-7 | 2E-6 |13.7
NH2D2

1024][314|8E-6| 2E-6 ||369|8E-6] 2E-6 |292| 2E-6 | 2E-6 | 5.0
2048322[4E-6| 2E-6 |[372[5E-6] 2E-6 |315| 3E-6 | 2E-6 | 3.6
128 [[594[9E-5] 1E-3 [[643[1E-4] 1E-3 |[526] 1IE-4 | IE-3 [15.5
256 ||576|1E-4| 1E-3 ||674|2E-4| 1E-3 |569| 1IE-4 | 1IE-3 | 9.5
512 ||563[8E-5| 1E-3 |[723[3E-4| 1B-3 ||627| IE-4 | IE-3 | 5.9
1024]|597[9E-5| 1E-3 || 775|2E-4| 1E-3 ||729|3B-4 | 1E-3 | 3.7

SKY3D

fill-in ratio decreases as the number of partitions increases, the convergence behavior of CA-ILUO
and Block Jacobi-LU preconditioner become very similar. For example, the CA-ILUO precondi-
tioner converges faster for the Bolmatrix with 32 partitions, the Bo2matrix with 256 partitions,
NH2D Imatrix with 1024 partitions, and SKY3Dwith 512 and 1024 partitions.

5.5 Summary

In this chapter, we have introduced CA-ILUOQ, a communication avoiding IL.UQ left-preconditioner.
First, we have adapted the matrix powers kernel to the ILU preconditioned system to obtain the
ILU matrix powers kernel. Then we have introduced AMML, a reordering of the matrix A which
is applied once the input matrix was partitioned using k-way graph partitioning with edge sepa-
rators or nested dissection with vertex separator. AMML reorders the matrix A such that s-steps
of a Krylov subspace solver based on multiplications of the form y; = (LU)~*Ay; ; can be per-
formed with no communication. The difference between the k-way+AMML(s) and ND+AMML(s)
reordering is in the subdomain’s local reordering. When using nested dissection to partition the
graph of A, the obtained subdomains are reordered with AMML(s) reordering that produces 2s — 1

130 S. MOUFAWAD

layers by setting the tag evenodd = odd in the algorithm, since the separators are numbered larger
than the subdomains. Whereas, when using k-way graph partitioning, the obtained subdomains are
reordered with AMML(s) reordering that produces 2s layers by setting the tag evenodd = even in
the algorithm.

We have shown that the reordering does not affect much the convergence of the ILUO pre-
conditioned GMRES, once the matrix A was reordered using k-way partitioning. Then, we have
shown that the complexity of the CA-ILUO(s) reordering is linear with respect to the number of
vertices of largest subdomain. We have also shown that the memory requirements and redundant
flops are limited by the same big O function in both CA-GMRES and CA-ILUO preconditioned
GMRES. For all these reasons, we expect that our parallel CA-ILUO preconditioner will be faster
in practice than implementations of ILUO preconditioners based on other reordering strategies. It
will be faster than block Jacobi preconditioner for relatively small partitions where the dropped
data in the block Jacobi preconditoner is no longer negligible.

The AMML(s) reordering allows to both compute and apply the preconditioner in parallel with
no communication, once some ghost data was stored redundantly on each processor. CA-ILUO
can be used with a classic Krylov subspace solver, in which case applying the left preconditioner
at each iteration can be done in parallel with no communication. It can also be used with s-step
methods, where the ILUO matrix powers kernel allows to avoid communication during s iterations
of the Krylov subspace solver. In addition, CA-ILUO preconditioner can be used for ILUO right
preconditioned and split preconditioned systems by slightly modifying the ILU Matrix Powers
Kernel and the AMML(s) reordering.

Chapter 6

Conclusion and Future work

The work presented in this thesis focused on introducing communication avoiding methods in nu-
merical linear algebra, specifically for solving sparse systems of linear equations. First, we briefly
discussed Krylov subspace methods, block methods, s-step methods, communication avoiding
methods, and preconditioners that are related to our work. Then, we introduced a new class of
Krylov subspace methods, the enlarged Krylov subspace methods. We defined the new enlarged
Krylov subspace, described its properties, and gave a general framework for the enlarged Krylov
projection methods. The idea is to enlarge the subspace by replacing ry by ¢ vectors, obtained from
the projection of r on ¢ distinct subdomains, where the sum of these ¢ vectors is . Then, rather
than computing one basis vector by multiplying ry by the powers of A, we compute ¢ vectors by
multiplying {71 (r), T>(r0), ..., Tt(ro)} by the same power of A. This guarantees that the Krylov
subspace is a subset of the enlarged Krylov subspace. Moreover, the enlarged Krylov subspace
methods converge faster than the classical methods in exact precision, and are better parallelizable
while reducing communication.

In this thesis we have introduced two enlarged conjugate gradient methods, multiple search
direction with orthonormalization CG (MSDO-CG) and long recurrence enlarged CG (LRE-CG).
We have shown that in finite precision both methods converge faster than CG. The main difference
between both methods in terms of performance, is that at each iteration of MSDO-CG, we use ¢
search directions to update the new approximate solution. Whereas in LRE-CG, at each iteration
1, we use the entire basis formed by t: vectors, to update the approximate solution and we solve
a tr x ti system. The use of the whole basis leads to a relatively faster convergence than MSDO-
CG. However, this comes at the cost of performing more flops as the iterations proceed. One way
to limit this increasing cost is by restarting LRE-CG after some iterations. Another alternative is
to choose at each iteration ¢, a linearly independent subset of the ¢ computed vectors. This adds
an extra cost, but reduces the size of the system that has to be solved at each iteration. A third
alternative is to compute ¢; vectors at each iteration ¢, where ¢ty = ¢, and ¢; < ¢. Then choose tAZ
linearly independent vectors where tAZ <t,andt;;q = tAZ

Although each iteration of the MSDO-CG and LRE-CG methods is at least ¢ times more ex-

131

132 S. MOUFAWAD

pensive than the CG iteration in terms of flops, as shown in section 4.5, both methods use less
communication, and Blas2 and Blas3 operations that can be parallelized in a more efficient way
than the dot products in CG, as shown in section 4.5. Moreover, the MSDO-CG and LRE-CG
methods can be preconditioned with the classical preconditioners, since we have a matrix-block of
vectors multiplication at each iteration, and not s matrix powers as in s-step methods.

In the second part of the thesis we have introduced a communication avoiding ILU(0O) precon-
ditioner that allows the computation of s multiplications of the form y; = (LU)™' Ay;_; without
any communication at the expense of performing redundant computations, for z = 1, .., s. In other
words, it is possible to perform s backward solves, s forward solves, and s matrix vector multipli-
cations without communication. The CA-ILUO preconditioner can be used with communication
avoiding methods, s-step methods, block methods (s = 1), classical Krylov methods (s = 1), en-
larged Krylov subspace methods s = 1, and any other methods that use the preconditioned matrix
powers kernel. The building blocks of the CA-ILUO preconditioner are the ILU matrix powers
kernel and the Alternating Min-Max Layers AMML(s) reordering. The ILU matrix powers ker-
nel is an adaptation of the matrix powers kernel to the case of ILU preconditioned systems. The
AMML(s) reordering reduces the data dependencies needed for solving the s upper and lower trian-
gular systems, and for performing the ILU(0) factorization in parallel. We assume that we have P
subdomains, obtained by nested dissection, kway graph partitioning, or any other graph or hyper-
graph partitioning. Then, the subdomains are reordered to obtain alternating layers. We presented
the ND+AMML(s) reordering and the k-way+AMML(s) reordering. We have tested the effect of
the ND+AMML(s) and k-way+AMML(s) reordering on the convergence of ILU(0) preconditioned
GMRES, and shown that the more we reorder the domains, i.e. as s and P increase, slightly more
iterations are needed for convergence. It is possible to modify the presented algorithms in section
5.2 to obtain an AMML(s) reordering based on other partitioning techniques, if needed.

Moreover, we modeled the expected performance of the CA-ILUO preconditioner based on
the complexity of the AMML(s) reordering, on the effect of the AMML(s) reordering, and on the
redundant computations and memory requirements needed to avoid communication. Thus, the
number of partitions or processors P and s should be chosen wisely to obtain the best performance.
In other words, the avoided communication should be much more expensive than the redundant
flops and the additional iterations introduced by the AMML(s) reordering. This would lead to a
CA-ILUO preconditioner that is faster than ILU(0) preconditioner in a parallel environment.

In this thesis, all the algorithms were implemented and tested in matlab. Currently, Sebastien
Cayrols, a PhD student of Laura Grigori, is implementing CA-ILUO preconditioner on distributed-
memory architectures for s = 1 with k-way+AMML(s) reordering, and comparing it to Petsc’s
ILU(0) implementation, block Jacobi preconditioner, and RAS preconditioner.

Our future work on CA-ILUO preconditioner will focus on implementing it for s > 1 in a par-
allel environment to evaluate the improvements with respect to existing implementations of ILU(0)
with s-step methods. We will also extend the method to more general incomplete LU factorizations.
An interesting idea would be to test the convergence of a modified version of CA-ILUO where the
same procedure is applied as in Algorithm 49, except that the ILU(0) factorization is replaced with

a more accurate incomplete factorization such as ILU(1) factorization. We would also like to derive
communication avoiding versions of ILU(k) and ILU(drop tolerance) preconditioners, similarly to
the CA-ILUO preconditioner. As for the enlarged Krylov subspace methods, our future work will
focus on testing the LRE-CG versions discussed above, that are less expensive in terms of flops
and memory requirements than LRE-CG, like restarted LRE-CG or LRE-CG with selected basis
vectors. Then, the most stable version will be implemented in a parallel environment. We will also
test LRE-CG on other real applications’ matrices, and with different preconditioners. Moreover,
we would also like to compare the runtime of the LRE-CG version with the MSDO-CG method on
a parallel environment. We will also derive and test other enlarged Krylov methods, like enlarged
GMRES which has been derived but not tested yet.

133

134 S. MOUFAWAD

Bibliography

[1] P. Amestoy, J.Y. L’Excellent, F.H. Rouet, and M. Sid-Lakhdar. Modeling 1D distributed-
memory dense kernels for an asynchronous multifrontal sparse solver (regular paper). In and,
editor, High-Performance Computing for Computational Science, VECPAR 2014, Eugene,
Oregon, USA, 30/06/2014-03/07/2014, http://www.laas.fr, 2014. LAAS.

[2] O. Axelsson and P. S. Vassilevski. Algebraic multilevel preconditioning methods, II. SIAM
Journal on Numerical Analysis, 27(6):1569-1590, 1990.

[3] C. Aykanat, B. B. Cambazoglu, and B. Ucar. Multi-level direct k-way hypergraph partitioning
with multiple constraints and fixed vertices. J. Parallel Distrib. Comput., 68(5):609-625, May
2008.

[4] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication in linear
algebra. CoRR, abs/0905.2485, 2009.

[5] M. Benzi. Preconditioning techniques for large linear systems: A survey. Journal of Compu-
tational Physics, 182(2):418 — 477, 2002.

[6] M. Benzi, D. Szyld, and A. van Duin. Orderings for incomplete factorization preconditioning
of nonsymmetric problems. SIAM Journal on Scientific Computing, 20(5):1652—-1670, 1999.

[7] M. Benzi and M. Tima. A comparative study of sparse approximate inverse preconditioners.
Appl. Numer. Math., 30(2-3):305-340, June 1999.

[8] A. Bhaya, P. Bliman, G. Niedu, and F. Pazos. A cooperative conjugate gradient method for
linear systems permitting multithread implementation of low complexity. In Decision and
Control (CDC), 2012 IEEE 51st Annual Conference on, pages 638—643, Dec 2012.

[9] M. Bollhofer, M. Grote, and O. Schenk. Algebraic multilevel preconditioner for the
Helmholtz equation in heterogeneous media. SIAM Journal on Scientific Computing,
31(5):3781-3805, 2009.

[10] X. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM Journal on Scientific Computing, 21(2):792-797, 1999.

135

136 S. MOUFAWAD

[11] E. Carson, J. Demmel, and N. Knight. Hypergraph partitioning for computing matrix powers,
2010.

[12] E. Carson, N. Knight, and J. Demmel. Avoiding communication in two-sided Krylov sub-
space methods. Technical Report UCB/EECS-2011-93, EECS Department, University of
California, Berkeley, Aug 2011.

[13] U. V. Catalyurek and C. Aykanat. Hypergraph-partitioning based decomposition for parallel
sparse-matrix vector multiplication. IEEE Trans. on Parallel and Distributed Computing,
10:673-693, 1999.

[14] A. Chapman and Y. Saad. Deflated and augmented Krylov subspace techniques. Numer.
Linear Algebra Appl, 4:43-66, 1996.

[15] E. Chow. A priori sparsity patterns for parallel sparse approximate inverse preconditioners.
SIAM Journal on Scientific Computing, 21(5):1804-1822, 2000.

[16] E. Chow. Parallel implementation and practical use of sparse approximate inverse precondi-
tioners with a priori sparsity patterns. Int. J. High Perf. Comput. Appl, 15:56-74, 2001.

[17] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro, and U. M. Yang. 0. A Survey of Paral-
lelization Techniques for Multigrid Solvers, chapter 10, pages 179-201.

[18] E. Chow and A. Patel. Fine-grained parallel incomplete LU factorization. 2014.

[19] A. T. Chronopoulos and C. W. Gear. s-step iterative methods for symmetric linear systems.
Journal of Computational and Applied Mathematics, 25(2):153 — 168, 1989.

[20] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Trans. Math.
Softw., 38(1):1:1-1:25, December 2011.

[21] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communication-optimal parallel and
sequential QR and LU factorizations. SIAM J. Sci. Comput., 34(1):206-239, February 2012.

[22] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding communication in
sparse matrix computations. In In Proceedings of International Parallel and Distributed
Processing Symposium, 2008.

[23] J. W. Demmel, M. T. Heath, and H. A. van der Vorst. Parallel numerical linear algebra.
Technical Report UCB/CSD-92-703, EECS Department, University of California, Berkeley,
Oct 1992.

[24] S. Doi and T. Washio. Ordering strategies and related techniques to overcome the trade-
off between parallelism and convergence in incomplete factorizations. Parallel Computing,
25(1314):1995 — 2014, 1999.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

137

H. C. Elman. Relaxed and stabilized incomplete factorizations for non-self-adjoint linear
systems. BIT Numerical Mathematics, 29(4):890-915, 1989.

J. Erhel. A parallel GMRES version for general sparse matrices. Electronic Transactions on
Numerical Analysis, 3:160-176, 1995.

J. Erhel, K. Burrage, and B. Pohl. Restarted GMRES preconditioned by deflation. Journal of
Computational and Applied Mathematics, 69(2):303 — 318, 1996.

J. Erhel and F. Guyomarc’h. An augmented conjugate gradient method for solving con-
secutive symmetric positive definite linear systems. SIAM Journal on Matrix Analysis and
Applications, 21(4):1279-1299, 2000.

Y. Erlangga and R. Nabben. Deflation and balancing preconditioners for Krylov subspace
methods applied to nonsymmetric matrices. SIAM Journal on Matrix Analysis and Applica-
tions, 30(2):684-699, 2008.

R. Fletcher. Conjugate gradient methods for indefinite systems. In G.Alistair Watson, editor,
Numerical Analysis, volume 506 of Lecture Notes in Mathematics, pages 73—-89. Springer
Berlin Heidelberg, 1976.

J. Frank and C. Vuik. On the construction of deflation-based preconditioners. SIAM J. Sci.
Comput., 23(2):442—-462, February 2001.

A. Gaul, M. Gutknecht, J. Liesen, and R. Nabben. A framework for deflated and augmented
Krylov subspace methods. SIAM Journal on Matrix Analysis and Applications, 34(2):495—
518, 2013.

A. George. Nested dissection of a regular finite element mesh. SIAM Journal on Numerical
Analysis, 10(2):345-363, 1973.

P. Ghysels, T. Ashby, K. Meerbergen, and W. Vanroose. Hiding global communication la-
tency in the GMRES algorithm on massively parallel machines. SIAM Journal on Scientific
Computing, 35(1):C48-C71, 2013.

J. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to arithmetic operations.
SIAM Journal on Scientific and Statistical Computing, 9(5):862-874, 1988.

L. Giraud, J. Langou, and M. Rozloznik. The loss of orthogonality in the Gram Schmidt
orthogonalization process. Computers & Mathematics with Applications, 50(7):1069 — 1075,
2005. Numerical Methods and Computational Mechanics.

138 S. MOUFAWAD

[37] S. L. Graham, M. Snir, and C. A. Patterson, Editors, Committee on the Future of Supercom-
puting, National Research Council. Getting Up to Speed: The Future of Supercomputing.
The National Academies Press, 2004.

[38] L. Grigori, J. W. Demmel, and H. Xiang. CALU: A Communication Optimal LU Factoriza-
tion Algorithm. SIAM J. Matrix Anal. Appl., 32(4):1317-1350, November 2011.

[39] L. Grigori and S. Moufawad. Communication Avoiding ILUO Preconditioner. Submitted to
SIAM Journal on Scientific Computing.

[40] L. Grigori and S. Moufawad. Communication Avoiding ILUO Preconditioner. Research
Report RR-8266, INRIA, March 2013.

[41] L. Grigori, S. Moufawad, and F. Nataf. Enlarged Krylov Subspace Conjugate Gradient meth-
ods for Reducing Communication. In preparation for submission.

[42] L. Grigori, F. Nataf, and S. Yousef. Robust algebraic Schur complement preconditioners
based on low rank corrections. Rapport de recherche RR-8557, INRIA, July 2014.

[43] W. Gropp. Update on libraries for blue waters.
http://jointlab.ncsa.illinoisedu/events/workshop3/pdf/presentations/Gropp-Update-on-
Libraries.pdf.

[44] T. Gu, X. Liu, Z. Mo, and X. Chi. Multiple search direction conjugate gradient method I:
methods and their propositions. Int. J. Comput. Math., 81(9):1133-1143, 2004.

[45] M. H. Gutknecht. Block krylov space methods for linear systems with multiple right-hand
sides: an introduction. 2006.

[46] F. Hecht. New development in FreeFem++. J. Numer. Math., 20(3-4):251-265, 2012.

[47] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Systems.
Journal of Research of the National Bureau of Standards, 49(6):409-436, December 1952.

[48] M. Hoemmen. Communication-Avoiding Krylov Subspace Methods. PhD thesis, EECS De-
partment, University of California, Berkeley, 2010.

[49] G. Karypis and V. Kumar. MeTis: Unstructured Graph Partitioning and Sparse Matrix Order-
ing System, Version 4.0. http://www.cs.umn.edu/ metis, 2009.

[50] C. T. Kelley. [Iterative Methods for Linear and Nonlinear Equations. Society for Industrial
and Applied Mathematics, 1995.

[51] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell
System Technical Journal, 49(2):291-307, 1970.

139

[52] M. S. Khaira, G. L. Miller, and T. J. Sheffler. Nested dissection: A survey and comparison of
various nested dissection algorithms. Technical report, 1992.

[53] S. A. Kharchenko and A. Yu. Yeremin. Eigenvalue translation based preconditioners for the
GMRES(k) method. Numer. Linear Algebra Appl., 2:51-77, 1995.

[54] L.Yu Kolotilina. Twofold deflation preconditioning of linear algebraic systems. I. Theory.
Journal of Mathematical Sciences, 89(6):1652—-1689, 1998.

[55] A. Kuzmin, M. Luisier, and O. Schenk. Fast methods for computing selected elements of the
greens function in massively parallel nanoelectronic device simulations. In F. Wolf, B. Mohr,
and D. an Mey, editors, Euro-Par 2013 Parallel Processing, volume 8097 of Lecture Notes in
Computer Science, pages 533—544. Springer Berlin Heidelberg, 2013.

[56] C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Natl.
Bur. Stand, 49:33-53, 1952.

[57] Xiaoye S. Li. An overview of SuperLU: Algorithms, implementation, and user interface.
toms, 31(3):302-325, September 2005.

[58] X.S. Li, J .W. Demmel, J.R. Gilbert, L. Grigori, M. Shao, and I. Yamazaki. SuperLU Users’
Guide. Technical Report LBNL-44289, Lawrence Berkeley National Laboratory, September
1999. url:http://crd.Ibl.gov/ xiaoye/SuperLU/. Last update: August 2011.

[59] B. R. Lowery and J. Langou. Stability Analysis of QR factorization in an Oblique Inner
Product. ArXiv e-prints, January 2014.

[60] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. Minimizing communication in
sparse matrix solvers. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC °09, pages 36:1-36:12, New York, NY, USA, 2009.
ACM.

[61] R. Morgan. A restarted GMRES method augmented with eigenvectors. SIAM Journal on
Matrix Analysis and Applications, 16(4):1154-1171, 1995.

[62] R.Nicolaides. Deflation of conjugate gradients with applications to boundary value problems.
SIAM Journal on Numerical Analysis, 24(2):355-365, 1987.

[63] D. P. O’Leary. The block conjugate gradient algorithm and related methods. Linear Al-
gebra and its Applications, 29(0):293 — 322, 1980. Special Volume Dedicated to Alson S.
Householder.

140 S. MOUFAWAD

[64] M. Rozloznik, M. Tuma, A. Smoktunowicz, and J. Kopal. Numerical stability of orthogonal-
ization methods with a non-standard inner product. BIT Numerical Mathematics, 52(4):1035—
1058, 2012.

[65] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, second edition, 2003.

[66] Y. Saad and M. Schultz. Gmres: A generalized minimal residual algorithm for solving non-
symmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856—
869, 1986.

[67] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h. A deflated version of the conjugate gradient
algorithm. SIAM J. Sci. Comput., 21(5):1909-1926, December 1999.

[68] Y. Saad and Jun Zhang. A multi-level preconditioner with applications to the numerical
simulation of coating problems. In Iterative Methods in Scientific Computing 11, pages 437—
449. IMACS, 1998.

[69] O. Schenk and K. Gartner. Solving unsymmetric sparse systems of linear equations with
PARDISO. Journal of Future Generation Computer Systems, 20:475-487, 2004.

[70] J. Scott and M. Tma. On positive semidefinite modification schemes for incomplete Cholesky
factorization. SIAM Journal on Scientific Computing, 36(2):A609-A633, 2014.

[71] A. Smoktunowicz, J. L.. Barlow, and J. Langou. A note on the error analysis of classical
Gram Schmidt. Numerische Mathematik, 105(2):299-313, 2006.

[72] A. Stathopoulos and K. Wu. A block orthogonalization procedure with constant synchroniza-
tion requirements. SIAM Journal on Scientific Computing, 23(6):2165-2182, 2002.

[73] J.M. Tang, R. Nabben, C. Vuik, and Y.A. Erlangga. Comparison of two-level preconditioners
derived from deflation, domain decomposition and multigrid methods. Journal of Scientific
Computing, 39(3):340-370, 2009.

[74] R. Thakur. Improving the performance of collective operations in mpich. In Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface. Number 2840 in LNCS,
Springer Verlag (2003) 257267 10th European PVM/MPI Users Group Meeting, pages 257—
267. Springer Verlag, 2003.

[75] H. Van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for
the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical
Computing, 13(2):631-644, 1992.

141

[76] H. Van der Vorst and C. Vuik. The superlinear convergence behaviour of GMRES. Journal
of Computational and Applied Mathematics, 48(3):327 — 341, 1993.

[77]1 J. van Rosendale. Minimizing inner product data dependence in conjugate gradient iteration.
In IEEFE International Conference on Parallel Processing, 1983.

[78] B. Vital. Etude de quelques méthodes de résolution de problémes linéaires de grande taille
sur multiprocesseur. PhD thesis, Université de Rennes, 1990.

[79] H. F. Walker. Implementation of the GMRES method using Householder transformations.
SIAM J. Sci. Stat. Comput., 9(1):152-163, January 1988.

[80] U. M. Yang. Parallel algebraic multigrid methods high performance preconditioners. In
A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equations on
Parallel Computers, volume 51 of Lecture Notes in Computational Science and Engineering,
pages 209-236. Springer Berlin Heidelberg, 2006.

142 S. MOUFAWAD

Appendix A

ILU(0) preconditioned GMRES
convergence for different reorderings

We compare the convergence of the ILU(0) preconditioned GMRES where the matrix A is re-
ordered using nested dissection, kway, kway+AMML(1)V1, kway+AMML(5)V1, kway+AMML(1)V2,
kway+AMML(5)V2, to the case where A is reordered using RCM or in natural ordering for the ma-
trices .

143

144 S. MOUFAWAD

Table A.1: ILU(0) preconditioned GMRES convergence for different reorderings with respect to number of
partitions for the initial guess zo = 0 and tol = 1075.

NO RCM ND Kway [[AMML(I)VI[[AMML(5)VI[[AMML(1)V2[[AMML(5)V2
Pal||Iter| Err ||Iter| Err ||Iter| Err ||Iter| Err ||Iter Err Iter Err Iter Err Iter Err
2 64 [2E-7| 50 [4E-8|[51| 3E-8 [[52] 1E-7 [[50| 3E-8 [54| 1E-7
4] 64 |7E-8|/ 50 [3E-8|[52| 3E-8 |[53| 3E-8 | 53| 5E-8 | 58| 6E-8
WATT2 | 8] 50 |3E-8|| 47 |3E-8|| 65 [4E-8] 50 [2E-8|| 51 | 8E-8 | 54| 1E-7 [[56| 2E-8 [|57| 8E-8
16 65 |1E-7|/ 51 [3E-8|[54 | 3E-8 |[54| 1E-8 |/ 57| 8E-8 | 58| 8E-8
132]] 65 [1E-7|| 51 |3E-8|| 52| 1E-7 | 52| 1E-7 |[56]| 1E-7 |[56| 1E-7
164]| 63 |5E-8|| 54 [1E-7||53| 9E-8 | 52| 3E-7 |[57| 1E-7 |[57| 1E-7
2 94 [1E-7] 539 [3E-8][60 | 4E-8 [[83] 4E-8 [[60] 4E-8 [[83] SE-8
4| 95 |9E-8]| 60 [2E-8][65| 4E-8 [[85| 1E-7 | 67| 3E-8 |89 IE-7
CD20P1 8] 59 |2E-8]| 62 |4E-8|| 91 [1E-7][59 [3E-8]| 72| 9E-8 [97| 1E-7 [[73]| BE-8 [|98] 1E-7
16 94 [1E-7|| 64 |[7E-8|| 76| 9E-8 |[[92| 1E-7 |[76| 4E-8 | 92| 9E-8
132]] 91 [1E-7| 63 |6GE-8|| 83| 6E-8 |[[89| I1E-7 |[85| S5E-8 [93| 1E-7
64| 89 [5E-8|| 63 |4E-8|| 87| 5E-8 |[[90| S5E-8 |[90| S5E-8 [[92] 5E-8
2 96 [1E-7]| 64 [2E-8[[66] 5E-8 [[79] 1E-7 [[67] 3E-8 [[79] 7E-8
4] 98 |7E-8| 64 [5E-8||69| 5E-8 |[79| 1E-7 |[71| 4E-8 | 83| 1E-7
CD50p1 | 8] 64 |4E-8| 66 |1E-7|| 96 [IE-7] 64 [3E-8]| 71| 7E-8 [94| 8E-8 [[77| 1E-7 [|98] 1E-7
16 94 |9E-8]| 71 [2E-8][81| 5E-8 |[98| 1E-7 | 83| 8E-8 |[[97| 7E-8
132]] 96 [1E-7|| 72 |[4E-8][87| 7E-8 || 98| 1E-7 [[92| 5E-8 || 94| 1E-7
64| 93 [7E-8|| 71 [5E-8]| 87| 1E-7 ||95| 1E-7 [[94| 1E-7 ||95| 1E-7
2 102[1E-7[[70 [1E-7][68 | 8E-8 |78 1E-7 [[69] 7E-8 [80] 1E-7
4] 97 [2E-7|| 71 [8E-8|| 75| 1E-7 |[96]| 1E-7 |[74| 1E-7 | 96| 1E-7
Cpl OOP]E: 69 |8E-8| 71 |3E-8|[100[1E-7|| 71 |8E-8|[81| 1E-7 |[107| 2E-7 |[82| 1E-7 |[101] 1E-7
16 105[1E-7|| 77 |7E-8|[89| 6E-8 |[110] 1E-7 || 89| 8E-8 |[105] 1E-7
132]] 97 [1E-7|| 73 |[4E-8][92| 5E-8 |[106] 1E-7 [[94| 9E-8 |[105| 1E-7
64| 96 |7E-8]| 76 |6E-8][96 | 7E-8 [/ 98| 1E-7 97| 7E-8 [[103] 1E-7
2 186[4E-7[[93 [1E-7[[94 | 1E-7 [[98] 1E-7 [[94] 1E-7 [[99] 1E-7
4] 176|7E-7|[93 |[1E-7|[98 | 1E-7 |[113] 2E-7 |/ 98| 2E-7 |[119] 2E-7
CDSOOP]E: 92 [1E-7||118|1E-7|[174|7E-7|| 93 [1E-7|[102] 1E-7 |[117| 1BE-7 ||105] 1E-7 |[115] 2E-7
16 184|2E-7|[94 [1E-7|[107| 1E-7 ||167| 1E-7 |[108] 1E-7 |[180] 1E-7
132]| 190|6E-7][99 [1E-7|[139| 1E-7 |[188] 1E-7 |144] 1E-7 |[[190] 1E-7
64| 198[1E-7|[102|1E-7|[167| 2E-7 |[177| 1B-7 |[161| 1E-7 |[178] 1E-7
2 162[3E-7[[147[2E-7[[151] 2E-7 [[158] 2E-7 [[151] 2E-7 [[154] 3E-7
14| 163|3E-7||143|2E-7][147] 2E-7 |[156] 2E-7 [[147| 2E-7 |[153] 3E-7
CD20P2 | 8|146|1E-7||155|2E-7|[160[3E-7|[142|2E-7||148] 2E-7 |[167| 3E-7 [[148] 2E-7 [[161] 2E-7
16 158|3E-7|[150|2E-7([158| 2E-7 |[170] 3E-7 |[154] 2E-7 |[151] 2E-7
132]| 161[3E-7|[150|3E-7|[156] 2E-7 |[164| 3E-7 |[152] 2E-7 |[154] 3E-7
64| 162(3E-7|[149|2E-7|[163] 2E-7 |[169] 2E-7 |[156] 3E-7 |[159] 3E-7
2 177[2E-7[[158]2E-7[[159] 2E-7 [[159] 2E-7 [[159] 3E-7 [[160] 3E-7
4| 177|2E-7|[152|2E-7||155| 1E-7 [[155] 1E-7 |[159] 3E-7 [[154] 3E-7
CD100P2E:157 2E-7|/170|3E-7|[183|2E-7|[156|2E-7|[164| 4E-7 |[178] 2E-7 ||163| 2E-7 |162] 3E-7
16 1754E-7|[153|3E-7|[165] 3E-7 |[171| 2B-7 |[163| 3E-7 |[163] 3E-7
132]| 167(3E-7|[155|3E-7|[164] 2E-7 |[182| 2E-7 |[158] 3E-7 |[162] 2E-7
64| 178(3E-7|[162|3E-7|[176] 3E-7 |[184| 3E-7 |[176] 3E-7 |[169] 2E-7
2 369[2E-7[[2774E-7][278] 4E-7 [[276] 4E-7 [278] 4E-7 [[280] 4E-7
14| 339[3E-7|278|5E-7|279] 5E-7 |[302] 3E-7 ||280] 4E-7 |[282| 5E-7
CDA00P2 | 8][278|4E-7|(244|2E-7|[354|3E-7[[275|4E-7([300] 5E-7 [305] 2E-7 [301] 5E-7 [304] 5E-7
16 391|2E-7|[280[4E-7|[308] 4E-7 |[313| 2E-7 |313| 3E-7 |[293] 2E-7
132]] 353|2E-7||2874E-7|[317| 4E-7 |[327| 3E-7 ||312] 5E-7 |363] 4E-7
64| 335[3E-7||279|2E-7|[316] 3E-7 |[314| 5E-7 |[289] 4E-7 |330] 3E-7

