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Abstract 
 

A set of rare earth orthosilicate and garnet scintillators were grown by the micro-

pulling down (μ-PD) and Czochralski methods. Ce-doped Lu2xGd2-2xSiO5 (LGSO:Ce) 

fibers were grown by the micro-pulling down (μ-PD) method for the first time. In order 

to determine the optimal activator concentration with regard to the best scintillating 

parameters, cerium concentration in the melt was varied within 0.01-1.5 at.%. A set of 

results on optical and scintillation characteristics of the grown fibers with the different 

activator content was determined and discussed. Distribution of Gd3+ and Ce3+ in 

LGSO:Ce structure was compared to the Czochralski grown crystals. Spatial 

distribution of cations across LGSO:Ce scintillation shaped crystals grown by the 

micro-pulling-down method is studied using wide-field microscopy under simultaneous 

excitation of both cerium-related centers and confocal microscopy under selective 

excitation of Ce3+ in CeO6 crystallographic sites.  

 Undoped fibers of Lu3Al5O12 (LuAG) and doped by Ce3+, Pr3+, mixed 

(Lu,Y)3Al5O12 (LuYAG) and Y3Al5O12 (YAG) both doped by Ce3+ were produced to 

evaluate a possibility of their potential use in the new dual-calorimeter planned to 

operate in the upgraded Large Hadron Collider in CERN. The choice of grown crystals 

was made to detect scintillation (activated materials) and Cherenkov radiation (LuAG). 

Growth conditions for the improvement of fibers quality were selected basing on 

measurements of attenuation length of the fibers. The activator segregation coefficient 

in LuAG:Ce and LuYAG:Ce fibers was evaluated by the cathodoluminescence 

measurements. The effect of annealing and radiation damage was studied. The good 

productivity of the grown fibers was verified on the test beam calorimeter.  

Structure and scintillation yield of Y3(Al1-xGax)5O12:Ce solid solution crystals are 

studied. Crystals are grown from melt by the Czochralski method. Distribution of host 

cations in crystal lattice is determined. The trend of light output at Al/Ga substitution in 

Y3(Al1-xGax)5O12:Ce is determined. Light output in mixed crystals reaches 130% 
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comparative to Ce-doped yttrium–aluminum garnet. The evolution of luminescence 

properties at Al/Ga substitution is studied.  

 

Keywords: μ-PD method, high energy physics, oxides, silicates, garnets, scintillation 

crystals, fibers, light yield, attenuation length. 

 

Résumé 

Des lots de terres rares d’orthosilicates et de grenats scintillateurs ont été 

cristallisés par les méthodes micro-pulling down (μ-PD) et Czochralski. Pour la 

première fois des fibres Lu2xGd2-2xSiO5 dopées Ce (LGSO:Ce) (x = 0.5) ont été tirées 

par la méthode micro-pulling down (μ-PD). Dans le but de déterminer la concentration 

optimale de l’ion activateur avec les meilleurs paramètres de scintillation, la 

concentration du cérium dans le liquide a été variée dans l’intervalle 0.01-1.5at%. En 

fonction de la concentration de l’ion activateur nous avons discuté les caractéristiques 

optiques et scintillatrices dans les fibres cristallisées. La distribution du Gd3+ et du Ce3+ 

dans la structure LGSO :Ce a été comparée à celle des cristaux tirés par la méthode 

Czochralski. La distribution  spatiale des cations le long des cristaux LGSO :Ce tirés par 

la méthode de la micro-pulling down a été étudiée par microscopie à champ proche et 

microscopie Confocale à travers l’excitation du Ce3+ sur les sites cristallographiques du 

CeO6. Des fibres de composition Lu3Al5O12 (LuAG) non dopées et dopées Ce3+ et Pr3+, 

des matrices mixtes (Lu,Y)3Al5O12 (LuYAG) et Y3Al5O12 (YAG) dopés Ce3+ ont été 

fabriqués pour evaluer les possibilités de développer un calorimètre dual-readout pour 

fonctionner dans le Grand collisionneur de hadrons du CERN. Les cristaux LuAG ont 

été choisis dans le but de détecter la scintillation (ion activateur) et les radiations 

Chernkov. Pour confirmer l’amélioration de la qualité des fibres cristallines à travers les 

conditions de croissance cristalline, nous avons réalisé des mesures d’atténuation le long 

des fibres. Le coefficient de ségrégation de l’ion activateur dans le LuAG :Ce et 

LuYAG:Ce a été évalué par des mesures de cathodoluminescence. L’effet du recuit et la 

résistance aux radiations ont été étudiés. La bonne reproductivité des fibres a été 

vérifiée par des tests faisceau en conditions de calorimètre. Nous avons étudié la 
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structure et la scintillations dans les cristaux appartenant à la solution solide Y3(Al1-

xGax)5O12:Ce. Les cristaux ont été tirés à partir de l’état liquide par la méthode 

Czochralski. La distribution des cations de la matrice a été étudiée. L’effet de la 

substitution du Al/Ga dans Y3(Al1-xGax)5O12:Ce sur le rendement de scintillation a été 

déterminé. Le rendement de scintillation a atteint 130% par rapport au grenat 

aluminium-yttrium dopé Ce. L’évolution des propriétés de luminescence en fonction de 

la substitution Al/Ga a été étudiée.  

 Mots clés : méthode μ-PD, Physique des hautes énergie, oxydes, silicates, grenats, 

cristaux scintillateurs, rendement de scintillation, longueur d’atténuation. 
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Introduction 
 

Single crystal materials are widely used as detectors of ionizing radiations. 

Scintillation materials emit light when undergo ionizing radiation. Improvement of 

trustworthy and acquisition speed of medical diagnostics devices, border control and 

security systems is a driving force of search for new scintillators with improved 

properties. In the last decades, application of crystalline materials in ionizing radiation 

detectors has played a crucial role in fundamental research and promoted continuous 

progress in the detecting technique leading to huge electromagnetic calorimeters such as 

the CMS-ECAL at LHC [1] or future projects such the PANDA-EMC at FAIR [2]. The 

high quality of the CMS electromagnetic calorimeter based on PbWO4 (PWO) and its 

good performance has allowed the discovery of the Higgs boson [3]. New concepts for 

next generation experiments include combined electromagnetic (EM) and hadron 

calorimeter based on dual readout by detecting the Cherenkov and scintillation light in 

different fiber materials [4]. The construction at FAIR, the announcement of the LHC 

upgrade (HL-LHC) and intensive developments of the ILC Program [5] will require 

cheap and radiation hard materials, capable for mass production. 

For the decades scientists try to improve the scintillation efficiency of materials 

and to find new practical applications for them. Taking in account the difference in 

requirements to scintillators for the range of applications, there is no ideal scintillator. 

High scintillation yield and density, low cost are the basic criteria of material choice for 

most of applications. Nowadays the design of scanning devices in high energy physics, 

medicine and introscopy is based on different single crystal materials. Inorganic single 

crystals are the most appropriate due to the high density and stopping power, and the 

high light yield. Aluminates and silicates which are studied in this work rank among the 

most popular compounds used in these applications. For instance, the improvement of 

energy resolution of hadrons and jets measurements in high energy physics could be 

achieved in Lu3Al5O12 (LuAG) fibers doped with Ce3+ [4, 6, 7]. Different inorganic 

scintillators are used in the positron emission tomography (PET) to identify 
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abnormalities in human and animal bodies [8, 9, 10]. High afterglow level in many 

oxide scintillators interferes their application in ranges where operation speed (computer 

tomography) or large signal-to-noise ratio (introscopy) are needed [11]. In this 

connection, Lu2xGd2-2xSiO5:Ce (LGSO:Ce) crystal can be considered as a promising 

scintillation material [11, 12, 13, 14]. 

LGSO is the one from the series of new efficient scintillators developed recently 

on the base of mixed crystals. Among the examples one can note solid solutions of 

oxide scintillators, such as Lu2xY2-2xSiO5:Ce (LYSO) [15], LuxY1-xAlO3:Ce (LuYAP) 

[16], LuxGdyY1-x-yAlO3:Tm [17] (LuxGd1-x)3(AlyGa1-y)5O12:Ce (LuGAGG) [18], based 

on isovalent substitution of host cations. In LYSO:Ce and LGSO:Ce crystals the Lu3+ 

substitution by Y3+, or Gd3+ improves energy resolution and suppresses afterglow [15, 

19]. Light yield in LuYAP at optimal Lu/Y ratio is by twice higher than that in YAP 

and 4 times higher than that in LuAP [16]. The reported light yield in LuGAGG is more 

than 40,000 phot/MeV, that is, by several times higher than in its constituents – LuAG 

or YAG [18]. These examples demonstrate a clear tendency to improvement of 

scintillation characteristics in (Lu1-xYx)3Al5O12:Ce (LuYAG) and Y3(Al1-xGax)5O12:Ce 

(YAGG) solid solutions.  

Difficulties in crystal growth of some compounds prevent the obtaining good 

quality boules. Besides the need for efficient scintillators some raw materials for their 

production are too expensive. Crystal growth methods are also should be verified 

regarding their economic efficiency. Search for new compounds with the reduced cost is 

always a “hot” topic. Considering the above factors production of crystals requires the 

use of different growth methods.  

There is an increasing demand for fiber-shaped scintillators used in detectors for 

high-energy physics and medicine. Micro pulling down (μ-PD) method is well known 

as a progressive and cheap crystal growth method. This growth approach is widely used 

for production of different shaped crystals. The inorganic scintillating fibers utilization 

arises with high detection granularity needs [20]. High stopping power can be obtained 

only with dense crystals (the density of organic fibers is too small). In addition, the 

scintillating fibers with the similar shape are convenient for application in medical 
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imaging (positron emission tomography) in a transverse configuration, which requires 

small pixels combined with depth of interaction as well as good stopping power [21]. 

This area of interest is a spin-off activity from high-energy detection research. From the 

beginning of the century a significant progress has been made to control the technology 

and to improve fiber quality and reproducibility in terms of optical performance. 

Future calorimeters require improvement of their performance while operating in 

intensive conditions. The recent progress in micro-pulling down method allows growing 

heavy scintillating crystals, like LuAG, directly into fiber geometry of variable lengths 

and diameters [6, 7]. Exploiting the granularity of the detector is a possible solution 

which would allow improving the overtaxing and tracking capabilities as well as the 

description of the shower development. Because of the flexibility of this geometry, 

combined with the high density and good radiation hardness of the material, such a 

technology represents a powerful potential for the development of future calorimeters 

[4, 22, 23].  

μ-PD method also attracts interest from the scientific point of view. Besides 

possibility to grow long and thin fibers it is a fast way to make a single crystal of 

enough size for examination of new compounds. It is a practicing method to obtain 

different shaped materials as well. On the other hand it differs a lot from the growing of 

bulk crystals. Therefore, it is reasonable to compare the outcome of different methods. 

Nevertheless, the growth of crystals which can be shaped specially for the application 

with minimal subsequent treatment is one more additional advantage of μ-PD. In this 

work the feasibility to grow shaped fibers for the use in high energy physics application 

is demonstrated.  

LGSO:Ce shaped crystals represent the example of complications which may 

arise during the micro-PD growth, in particular, in uniform distribution of the 

components across the crystal and cracking . These crystals were grown with the main 

purpose to find out the maximally beneficial activator concentration. In the case of 

garnet fibers growth the main target was to produce single crystal fibers with the 

required length for the new dual-readout calorimeter. Aluminates with the garnet 

structure – undoped LuAG and doped by Ce3+, Pr3+, Y3Al5O12:Ce (YAG:Ce) Ce3+ are 
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relatively easy-to-grow crystals compared to silicates. However, to achieve the required 

fiber shape and properties the growth technology has to be modified. Drawbacks of the 

μ-PD grown garnets include inuniformity of activator concentration both in axial and 

radial directions. This can be overcome by the transfer to mixed Lu3-xYxAl5O12:Ce 

(LuYAG) crystals with higher segregation coefficient of Ce3+. Besides this, the 

moderate light yield and density of garnets can be significantly improved by the 

Al3+/Ga3+ substitution in the host. Both these approaches are successfully implemented 

in the present work. Also, this work represents a status of the optical quality on recently 

obtained LuAG fibers and the test beam results obtained with a sampling calorimeter 

module constructed from 64 LuAG fibers embedded into a brass absorber. 

The manuscript thesis is presented as the follows: 

Chapter I introduces a literature review and monography about scintillator oxides 

crystal growth technology and the problem encountered during the growth process. The 

content also present a large information about GSO, LGSO, YAG, LuAG and rare earth 

activator dopants such Ce3+ and Pr3+. 

Chapter II is focused on the experimental part related to the growth and the 

characterization of the pulled crystals. 

Chapter III presents the results part related to the growth and the characterization 

of LGSO:Ce fibers. 

Chapter IV presents the results part related to the growth and the characterization 

of Ce-doped garnet fibers. 

Chapter V describes the results on bulk Y3Al5-xGaxO12:Ce mixed scintillation 

crystals as the promising garnet material with the improved light yield and increased 

density. 

The last part summarizes the main conclusions and the outlook for the future 

research work. 
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At present the crystal growers widely produce about two dozen types of inorganic 

crystalline scintillators. Many other inorganic compounds are considered as good 

scintillation candidates for scintillation application. In this chapter, we present an 

overview on silicate (GSO, LGSO) and garnet (YAG, LuAG) scintillating crystals. We 

have also discussed the achievements in growth of fiber-shaped crystals by micro-

pulling down (μ-PD) method.   

 

1.1. Choice of the growth method 
 

The most commonly used single crystal production approach is growth from the 

melt. Nowadays, depending on the crystal mechanical properties and sizes of the 

crystals, different methods of growth from the melt are used. In general, growth 

methods can be divided into two groups. The first group belongs to the growth without 

a crucible owing to the ability of the melt react with the crucible material, or higher 

melting temperature of the raw material compared to the crucible melting point. These 

methods are represented by the Verneuil method [24], Skull method [25], and the 

Floating Zone method [26].  

Crucible-free methods of growing single crystals are used for the industrial 

production of the crystals. For example, sapphire is grown by the Verneuil method for 

the jeweler industry and the growth of pure silicon for the electronics by the Floating 

Zone with high-frequency heating. In most cases, these methods are used for the rapid 

preparation of crystalline samples or seeds. The main disadvantages of the these 

methods are the limit of the grown crystal, as well as the relatively high stress in the 

crystals, resulting from the growth process, and often lead to the destruction of the 

crystal. 

Another group of methods correspond to the growth of crystals from crucible 

filled with the melt. The most popular growth methods from the melt are Czochralski 

[27], Kyropoulos [28], Bridgeman [29 - 31] and the variety of the floating zone methods 

[32]. These methods are commonly used for experimental and industrial growth of large 

bulk crystals. The comparative features of these methods are discussed in [32 - 39]. 
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Since LGSO and LuAG were reported as congruent melting materials (solid and 

liquid have the same composition), it is reasonable to grow them from the melt using 

Czochralski (Cz) method [40, 41]. LGSO:Ce crystals were grown in all the Lu/Gd 

substitution range (Figure I.1). 

 

 

 
 

Figure I.1. As-grown LuxGd1−xSiO5:Ce crystals with x = 0.2 (left), x = 0.6 (middle), 

and x = 0.75 (right) [43]. 
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The example of LuYAG crystals grown by the Czochralski method was presented 

in [42] (Figure I.2). 

 

 

 

 

Need for developing of the technology for large-size crystal production and 

material losses at cutting of crystals into piece makes Czochralski method relatively 

more expensive. Crystal growth by the μ-PD method posess a feasibility to obtain single 

crystals fibers, rods, plates directly after the growth process. Capability of the fast 

growth and the crystalyzation of 100 % of melt is additional advantage of the μ-PD 

method [44]. The samples can also be directly produced in a shape suitable for 

 
 

Figure I.2. Photograph of the as-grown Lu1.5Y1.5Al5O12 single crystal [42] 
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construction of detectors consisting of arrays of different crystals providing high 

detection granularity [45]. Fibers grown by μ-PD can be used in the development of a 

new generation of detectors for high-energy physics based on single-crystal fiber design 

[46]. 

There is a fertile history of the shaped crystal growth illustrated by numerous 

publications related to the different applications of plastic/organic scintillators. 

However, the low effective Z of the atomic components restricts their sensitivity to 

ionizing radiations. Due to the recent development of the micro pulling down method, 

fibers based on inorganic crystalline scintillator can be grown with statically improving 

quality. Relatively novel micro-pulling-down crystal growth method (μ-PD) is well 

recommended and promissing in production of crystal materials [47, 48]. The μ-PD 

growth method [49] substantially differs from the Cz method.The molten zone is 

situated at the bottom of the crucible on its capillary die surface. During the growth, 

melt flows down through capillary and there is no diffusion of impurities from 

crystallization interface back to the crucible basic, in contrast Czochralski growth 

procedure. Therefore, Dopants and, impurities are concnetrated in the molten zone. 

They are pushed by melt flow to the periphery of the meniscus and, then, are captured 

by the growing crystal. As the result, the distribution of the components along the fiber 

remains almost constant. Meanwhile, a substantial gradient of the Ce concentration 

might appear in the radial direction and have a negative impact on the fiber scintillation 

characteristics.  

Previously fiber-shaped materials with garnet structure were grown by the μ-PD 

[50, 51] method. The next step at the growth of garnets is enhancement of their growth 

procedure to minimize the distribution of activator across the fiber. In particular, the 

production of LuAG:Ce and LYSO:Ce, which are bright scintillators and possess high 

radiation hardness, and short radiation length, imposes additional complications due to 

their high melting point and the large difference in geometrical dimensions of the host 

and activator ions. For both materials, which are considered for a new generation of 

sampling calorimeters with dual read-out for hadron detection or pure electromagnetic 

calorimetry and additional applicability in PET-tomography, significant progress has 
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been achieved [6, 7, 52]. The improvement of growth conditions of LuAG and 

LuAG:Ce fibers was reported in [7]. Such important parameters like wetting of the melt 

(Figure I.3 a, I.3b), diameter control (Figure I.3c, I.3d) and pulling rate influence were 

discussed.  

 

 

 

Figure I.3. Undoped LuAG (b) grown with conical crucible (a) and LuAG:Ce fibers 

(d) obtained with crucible with modified cappillary die (c) [7]. 

 

In contrast to the Cz grown crystals, there is a radial gradient in activator 

concentration in fibers grown by μ-PD grown method (Figure I.4) [7]  
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Figure I.4. Transversal cut view of the 0.12 at.%  LuAG:Ce fibers excited under X-

rays (a) and electrons (b), presenting a distribution of Ce activator to the periphery of 

the fiber samples [7]. 

 

In comparison to fabrication of the pixelated detectors by cutting bulk crystals, 

micro-pulling down [53] is an efficient method for production of long single crystal 

fibers of variable cross-section. This method enables reaching the growth rate up to 

5 mm/min, which is beyond the limits of the majority of other melt crystal growth 

methods [54]. The μ-PD method has already been successfully applied for growing 

complex high-melting-point oxide scintillators: Lu2xY2-2xSiO5:Ce (LYSO:Ce) [52] rare 

earth garnets [6, 7], Bi4Ge3O12 [55], complex borates [56], etc. Moreover, the μ-PD 

growth process for mixed crystals is complicated, because the different ionic radii of 

both the activator Ce3+ and one of the host cations (Gd3+ or Y3+) are significantly larger 

than that of the Lu3+ host cation [57]. This discrepancy results in cracking of bulk 

LGSO:Ce crystals. Therefore, the axial and radial distributions of Ce3+ and Gd3+ in the 

LGSO:Ce fibers were in the focus of the present study. 
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1.2. General information about rare-earth silicates
 

Oxyorthosilicate phase exists in the system RE2O3-SiO2 (RE – rare-earth 

element). The oxyorthosilicate inorganic scintillating crystals comprise lutetium 

oxyorthosilicate (LSO) [58, 59], gadolinium oxyorthosilicate (GSO) [60], yttrium 

oxyorthosilicate (YSO) [61, 62], which correspond to the RE2SiO5 composition. With 

the increase of SiO2 percentage the structure changes to the oxyapatite with a general 

formulae RE9.33Si6O26 [63], pyrosilicates or diorthosilicates with the RE2Si2O7 formula 

[64, 65]. It is shown for the LSO case in Figure. I.5, that oxyorthosilicate phase exists in 

the composition range between the lines marked by the arrows 1, 2, 3. With a 

substitution of one RE1 by another RE2, it is possible to grow mixed crystals.  

 

 
 

Figure I.5. Lu2O3 – SiO2 phase diagram [73]. 

 

Such examples are represented by lutetium-yttrium oxyorthosilicate Lu2xY2-

2xSiO5 (LYSO) [66, 67], gadolinium-yttrium oxyorthosilicate Gd2xY-2xSiO5 (GYSO) 

[68, 69], and, finally, lutetium-gadolinium oxyorthosilicate Lu2xGd2-2xSiO5 (LGSO) [70, 
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71]. As a consequence, the nomenclature of crystals became wider [72, 73]. From the 

variety of scintillating crystals we choose the LGSO:Ce compound for the fiber 

technology development. 

Since LGSO is the mixture of GSO and LSO components, in the following 

subsections, the properties of these components are reviewed. 

 

 

1.2.1. General information on GSO 

  

The Gd2SiO5 (GSO) was discovered in 1983 [60]. Ce-doped GSO (GSO:Ce) 

properties exceed BGO single crystals by light yield and 5 times lower decay time. 

However, GSO:Ce light yield is by 3 times lower compared to LSO:Ce or YSO:Ce. 

Nevertheless it is applied in the high energy physics, and nuclear physics. GSO:Ce 

demonstrate good radiation hardness [74] and has relatively lower production cost due 

to cheaper raw material components and lower melting temperature. However, the 

monoclinic P21/c structure of GSO:Ce light yield is insufficient for use in modern PET 

scanners, and large GSO crystals are difficult to produce because of easy cleavage [75]. 

The typical excitation and emission spectra of GSO:Ce are shown in Figure. I.6. 

The maximum wavelength of the scintillator emission spectrum is at 430 nm. The 

excitation spectrum for the emission at 430 nm has the three peaks at 250 nm, 284 nm, 

and 340 nm. The excitation peaks at 340, 284, and 250 nm are attributed to the direct 

excitation of the 4f–5d transitions of Ce3+. The emission spectrum is assigned to 5d-4f 

transitions of Ce3+.  

The another advantage of GSO:Ce crystals is the low afterglow level. On the 

Figure I.7 one may compare the Ce-doped GSO, LSO, and Gd2Si2O7 (GPS) afterglow 

curves. Afterglow level for GSO:Ce is by several times lower comparing to LSO:Ce 

and GPS:Ce (Figure I.7). Phenomenon of afterglow in orthosilicates is usually attributed 

to the presence of deep oxygen vacancies on non-silicon bound oxygen atoms [77].  
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Figure I.6. Excitation and emission spectra of GSO:Ce crystal at the room 

temperature [76]. 

 

 
 

Figure I.7. Afterglow kinetics for LSO:Ce (1), GPS:Ce (2), and GSO:Ce (3) [78]. 
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1.2.2. General information about LSO 

 

Since 1990s, Lu2SiO5:Ce (LSO:Ce) is produced as one of the best scintillation 

detector material for PET [79, 80]. LSO with the monoclinic C2/c crystal structure, as a 

dense, bright and fast scintillation crystals doped by Ce was extensively studied during 

the recent two decades. The main disadvantage of this chemically stable and non-

hygroscopic material is the high afterglow level, which limits the application range of 

LSO:Ce. In addition, this material melts at 2150°C which is so high for the crucible 

container such as Iridium material. The LSO scintillation parameters can be optimized 

by the proper choice of activator content and host composition. The first way is 

comprised by the codoping with the divalent cations [81], for example, Ca2+. With Ca2+ 

codoping the higher light yield, lower afterglow, and faster scintillation decay in 

LSO:Ce crystals were achieved. Meanwhile, the Ca2+ co-doping brings some instability 

to the crystal growth process [82]. 

Another way is to modify the properties of LSO:Ce with the incorporation of 

another host cation. Following this possibility the new Lu2xGd2-2xSiO5:Ce (LGSO:Ce) 

[11-14] and Lu2xY2-2xSiO5:Ce (LYSO:Ce) [15] mixed crystals were introduced.  

The positions of the peaks on LSO:Ce excitation and emission spectra are similar 

to LYSO:Ce crystals (Figure I.8). The emission maximum at UV-excitation is peaked at 

402 nm, and 5 peaks corresponding to the 4f-5d transition in Ce3+ (only 3 peaks are 

shown in Figure I.8 in the selected wavelength range) with the main peak at 358 nm are 

observed on excitation spectrum. 
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Figure I.8. Optical properties are shown as a function of wavelength. The excitation 

and emission spectra correspond to the left vertical scale, and the transmittance 

spectra correspond to the right one [15]. 

 

LSO:Ce in contrast to GSO:Ce has the high light yield around 25000-30000 

phot/MeV [83, 84]. The highest light yield is observed with the 0.25 at. % activator 

content (Figure I.9) [15].  
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Figure I.9. The light output is shown as a function of the cerium concentration in LSO 

[15]. 

 

 

1.2.3. Structure of mixed LGSO:Ce crystals  

 

The main idea of LGSO:Ce synthesis is a combination of superior properties of 

GSO:Ce with low afterglow and LSO:Ce with high light yield. Accounting for the 

lower cost of Gd2O3 in comparison with Lu2O3 and lowering of crystallization 

temperature with Gd addition into the host, these crystals are good candidates for 

substitution of LSO/LYSO in PET or CT [85, 86, 87]. Since the first patent concerning 

LGSO:Ce growth is dated by 1993 [88] this material has been grown by different 

groups. According to the phase diagrams on the Figure I.5 and the Figure I.10, the 

oxyorthosilicate phase is formed at the 1:1 ratio in the RE2O3 – SiO2 system. The 

moderate atomic radii values difference makes it possible to substitute Lu by Gd. As Lu 

and Gd cations sizes differ, a lot of efforts were done for the investigation of this 

compound.  
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Figure I.10. Phase diagram for Gd2O3 – SiO2 system [89] 

 

The Gd ionic radius is 0,94 Å and the Lu one is 0,86 Å [68, 90]. This calls the 

lattice structure switch from the P21/c space group of GSO to the C2/c space group of 

LSO with the increase of Lu content [43, 91]. The lattice P21/c symmetry occurs until 

the x = 0.1 in Lu2xGd2-2xSiO5:Ce, and the C2/c symmetry forms starting from x = 0.2. 

For the growth of crystals with the GSO-type lattice the [010] oriented seeds were used, 

and the [210] seeds are used for the LSO-type lattice. In the x range from 0.1 to 0.2 the 

structure type of growing crystal depends on the seed orientation (Figure I.11). The 

crystals with such ‘intermediate’ compositions often contain cracks and inclusions. Note 

that LSO structure retains at up to 90% substitution of Lu by Gd.  

The change of the space group of symmetry has the impact on the unit cell 

volume (Figure I.12). In the GSO structure with the addition of up to 20% of Lu the 

decrease of unit cell volume is observed. The same is observed at 0.2<x< 1 where the 

unit cell volume decreases down to the parameters of LSO C2/c-type unit cell [91]. The 

jump of the unit cell volume at x=0.2 is called by the different quantity of atoms in the 

GSO [88] and LSO [92] elementary cells.  
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Figure I.11. Polymorphism in LGSO crystals [91]. 

 

 
 

Figure I.12. Unit cell volume for the LGSO crystals with different lattice types [91]. 
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In spite of the difference in the ionic radii of the substituted host components, 

their overall content in crystal is about the same as in melt (Figure I.13). The unit cell 

with the space group C2/c contains 64 ions. It contains eight lutetium polyhedra LuO7 

and eight lutetium polyhedra LuO6. The energy of the substitution of Lu in LuO7 for 

Ce3+ is equal to +6.90 eV, and the energy of the substitution Ce3+ Lu in LuO6 is +7.25 

eV [91]. In both cases, the substitution energy is positive because of the larger ionic 

radius of Ce3+ (1.01 Å). The different displacements of oxygen ions after the 

substitutions by Ce3+ in the LuO7 and LuO6 coordination polyhedra are responsible for 

different rate of Ce3+ incorporation into these sites. The number of Ce3+ ions replacing 

Lu ions in the different sites affects the light yield, the position of the luminescence 

maximum, and the scintillation decay time. The same relates to the distribution of Lu3+ 

and Gd3+ in the six- (LnO6) and sevenfold (LnO7) sites. It is illustrated by Figure I.14.  

 

 

 
 

Figure I.13. Lutetium concentration in the crystal as a function of the melt 

composition. 
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Figure I.14. Concentration of Lu3+ in crystals with the different space symmetries vs. 

Lu content in melt. Data on Lu3+ distribution between polyhedra are obtained by X-

ray analysis. These results are in good agreement with the values for common Lu 

content in these crystals determined by the ICP-AES method. 

 

The LGSO phase diagram was studied in [93]. It shows (Figure I.15) the melting 

temperature for LGSO compositions in the whole range of Lu/Gd substitution. The 

steep melting temperature fall with the Gd addition is observed within the Gd content 0-

84 at. %. This diagram helped to choose the optimal compositions at the fiber growth by 

micro-pulling down method in this work regarding the scintillation parameters and 

melting temperature. 
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Figure I.15. Schematic phase diagram for Gd2SiO5- Lu2SiO5 solid-solutions [93]. 

 

The LGSO x-ray diffraction patterns difference for the LGSO with the 15% and 

17% content of Lu [93] confirms the structure transition between the C2/c and P21/c 

structures around 16 at.% of Lu (Figure I.16).  
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Figure I.16. X-ray diffraction patterns of the (LuxGd1-xSm0.005)2SiO5 solid solution 

crystals with x = 0.15 and 0.17 in the melt [93]. 
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1.2.4. The improvement of scintillation properties in mixed LGSO:Ce crystals 

 

Three approaches were used to improve the light yield in LGSO-based crystals. 

The two of them are identical with the case of LSO - the optimization of Ce 

concentration, which generally should not exceed 0.5 at % [94], and codoping with the 

divalent ions [95]. In mixed crystal, such as LGSO, we also may optimize the host 

composition by isovalent substitution of the host cations [19, 96].  

The entire range of LGSO mixed crystals with different relation of lanthanides in 

the host was investigated first in 1997 [90]. No relationship between scintillation 

characteristics and crystal structure type was observed. The best scintillation 

characteristics were found in the C2/c structure range. Meanwhile, it was shown that 

basic scintillation parameters of LGSO:Ce are not deteriorated with the substitution of 

up to 80 % of Lu3+ in the host [19]. Substitution of Gd3+ and Lu3+ host cations in LGSO, 

as well as in LYSO:Ce crystals improves energy resolution and suppresses afterglow 

[19]. The substitution of cations in LGSO:Ce leads to the improvement of scintillation 

properties. Mixed crystals LGSO:Ce demonstrate the light yield of up to 29000 

phot/MeV (33700 Photons/MeV with Ca2+ codoping) and the 6,7 % (662 KeV, 137Cs) 

energy resolution [43]. The scintillation decay time decreases down to 30 ns. With the 

increase of Gd concentration in crystals the afterglow level decreases by 1-3 orders of 

magnitude in comparison to LSO:Ce [43]. The Ce segregation coefficient reaches 0.8 

certifying nearly homogeneous chemical composition and a good uniformity of 

scintillation parameters across the crystal. 

Ce concentration in LGSO also affects both the luminescence peak position, and 

scintillation parameters. It was shown that with the increase of the Ce content in the 

LGSO (60 % Lu) the luminescence peak shifts towards longer wavelengths and the 

intensity of luminescence in the 450–500 nm range rises (Figure I.17) [19]. It is caused 

by a redistribution of Ce into the LuO6 coordination polyhedra. The noticed [97] 

increase of long-wavelength luminescence intensity in LGSO was accompanied by the 

improvement of light yield and other scintillation parameters. On the contrary, the light 
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output decrease, increase in the slow decay component contribution, and worsening of 

the energy resolution was observed in [19] as CeO6 luminescence rises [19].  

 

 

 
 

Figure I.17. Red shift of Ce3+ emission on X-ray luminescence spectra for 

Lu1.2Gd0.8SiO5:Ce crystals illustrates the rise of impact from CeO6 centers as 

common Ce3+ concentration increases [19]. 

 

 

 

X-ray luminescence spectra in dependence on Lu/Gd ratio in the host demonstrate 

broadening of Ce3+ luminescence band toward longer wavelengths as Gd concentration 

increases (Figure .I.18). The difference spectra on the inset clearly demonstrate that this 

effect is called by the rise of 450–500 nm luminescence contribution linked to Ce in six-
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fold polyhedra. The cerium concentration in all the samples is kept in the range 0.2–0.6 

at.% [19]. 

 

 

 

Figure I.18. X-ray luminescence spectra for all solid-solution range of Lu/Gd 

substitution and their difference spectra on the inset [19]. 
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Figure I.19. Light yield (a), energy resolution (b) at 662 KeV, and afterglow (c) after 

5 ms in LGSO:Ce crystals with the C2/c structure vs. Lu concentration in host. The 

asterisk in the middle section corresponds to the best value of LSO:Ce energy 

resolution found in the literature. [43] 

 



37 
 

The maximal light yield was observed at around 60 % of Lu concentration in the 

crystals and at the same time comprised 130% of the LSO:Ce yield (Figures I.19, I.20) 

[43]. In the case of codoping by Ca2+ the highest light yield was 33700 phot/MeV in 

crystals with 83% Lu. However, Ca2+ does not influence the energy resolution (8.1% at 

662 KeV) and afterglow (0.46% after 5 ms) [43]. As the influence of Ca2+ incorporation 

was not verified for the compositions with the same Ce content, there is a room for 

further improvement of scintillation parameters in LGSO:Ce crystals. Comparative 

parameters of LGSO:Ce and its constituents are presented in the Table 1. 

 

 

Figure I.20. Pulse height spectra of some LGSO:Ce and LGSO:Ce,Ca crystals in 

comparison with BGO and LSO:Ce [43]. 
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Table 1.Scintillation parameters of GSO:Ce, LSO:Ce, and LGSO:Ce [43, 96] 

Crystal GSO:Ce LSO:Ce LGSO:Ce 

γ – radiation 
137Cs, 662 KeV 

Light yield, 

Phot/MeV 
8000 

25000-

30000 
up to 29000  

Energy 

resolution, % 
9-11 7.3-9.7 6.9-7.3 

Decay time, ns 56, slow 40 31 

Afterglow level, after 3 ms, % 0.02 5 0.02-0.1 

 

 

1.3. General information on garnets scintillators. LuAG, LuAG:Ce, YAG:Ce and 
LuAG :Pr crystals 

 

The A3B5O12 compounds (where A are rare-earth elements and B are Al3+, Cr3+, 

Fe3+, Ga3+, In3+, Sc3+) complement the diversity of oxide crystals. The most popular 

scintillation materials in this category are Lu3Al5O12 (LuAG) and lighter Y3Al5O12 

(YAG) cubic garnets with the first references since 1928 [98, 99]. The isostructural 

LuAG- and YAG-based crystals are used for laser and scintillator applications and has a 

large knowledge base associated with their growth conditions, crystal structure 

characterization, optical and scintillation properties. Cubic LuAG and other rare earth 

aluminum garnets were shown to crystallize with the space group symmetry Ia3d. The 

phase diagram of mixing the Lu2O3 and Al2O3 is shown in Figure I.21 [100]. YAG 

crystals are formed from Y2O3 and Al2O3 oxides and their phase diagram is also well 

known (Figure I.22) [101]. The garnet phase is the most stable phase in these binary 

systems. It can be easily obtained as a single phase via solid-state reaction. Its cubic 

eight-coordination is favorable for obtaining of transparent ceramics [102]. 
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Figure I.21. Phase diagram of the Lu2O3-Al2O3 system. [100] 

 

 
Figure I.22. Y2O3-Al2O3 phase diagram [101] 
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Over the past decade, Ce3+-doped rare earth aluminate crystals, such as 

Lu3Al5O12:Ce [103, 104, 105], attracted much interest in radiation detection. Ce-doped 

LuAG and YAG crystals are highly demanded scintillators due to their high hardness, 

good mechanical and chemical stability, high light yield, variable density from 6.7 g cm-

3 in lutetium garnet down to 4.56 cm-3 in yttrium garnet, and relatively short decay time 

of 60 ns and 90 ns, respectively [103-106]. 

The luminescence band corresponding to 5d1–4f radiative transitions in Ce3+ 

garnets is peaked at 500-550 nm, which is in a good match with Si photodiodes spectral 

sensitivity [107]. The luminescence decay time in the case of Pr-doping is reduced by 

twice [106], but the luminescence band is located in the deep UV band.  

LuAG and LuAG:Ce crystals were previously grown by the different methods, 

and their properties were presented in connection with the different applications [108, 

109, 110]. Y3Al5O12:Ce crystals were thoroughly studied side by side to lutetium 

garnets [111, 112, 113]. Ce-doped YAG scintillator possesses moderate density (4.55 

g/cm3) and light yield (16,000 phot/MeV) [114]. 

A detailed study of the LuAG and LuAG:Ce fibers growth process was made 

with a purpose of further usage in high energy physics. The special attention was paid to 

the improvement of propagation of the scintillating signal along the fibers [7]. The 

criterion to characterize the transparency of fibers was their attenuation length, that is, 

the distance where the emission signal weakens by e times [104]. Following the Figure 

I.23, the authors noticed [7] that with the increase of distance between the falling beam 

place and the photodetector on the end of the fiber the self-absorption in crystal and 

reflection losses reduced the propagation of the signal. As the issue, the intensity of 

luminescence decreased and the emission bands shifted to the longer wavelengths. 

With optimization of growth conditions the investigated crystals had shown the 

promising results on optical attenuation of scintillation light within the fibers (Figure 

I.24).  
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Figure I.23. Comparison of the normalized emission spectra for 1, 5, 15 and 20 cm 

distance between the falling beam and the end of the fiber [7]. 

 

 
Figure I.24. Attenuation curves for plastic fiber and Ce (<1 at.%)-doped LuAG fibers 

as a function of pulling rate [7]. 

 

The LuAG:Pr crystals possess a good scintillation properties with the light yield 

of 17000 phot/MeV, and the 20 ns decay time [106]. 
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The antisite defects (Y or Lu ions substituting Al at the octahedral site) are the 

basic type of intrinsic defects in aluminum garnets [115]. Similarity of 

thermoluminescence glow curves in the case of Ce-doped and Pr-doped LuAG host, 

Figure I.25, supports their relation to shallow electron traps, which give rise to 

thermoluminescence glow peaks within 120–200 K [116]. Both the Ce3+ and Pr3+ ions 

play the role of recombination centers, which was proved by the characteristic TSL 

emission spectra (inset of Figure I.25), while TSL glow curves are determined by the 

similar electron traps in both systems. Light yield of Czochralski-grown Pr-doped 

LuAG approaches 200% of BGO at the optimized Pr concentration of about 0.2–0.3 

mol% [117]. Pr-doped aluminum garnets scintillation characteristics are closely similar 

for both the μ-PD and Cz methods. Therefore, LuAG:Pr is a very promising fast and 

efficient scintillator.  

 

 
Figure I.25. Thermoluminescence glow curves of Pr- and Ce-doped LuAG single 

crystal after X-ray irradiation at 10 K. In the inset, the TSL spectra taken within 120–

160 K are displayed featuring characteristic Pr3+ and Ce3+ emission, respectively 

[117]. 
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1.3.1. LuYAG:Ce mixed crystal 

 

There is few information on the Lu3(Al1-xGax)5O12:Ce properties in the literature. 

It is known that undoped bulk crystals were grown by Czochralski method, and their 

structure was determined and discussed versus LuAG and YAG crystals [92]. The 

LuYAG:Ce density varies within 4.5 – 6.7 g/cm3 depending on Lu/Y ratio. Variation of 

the lattice parameters of LuYAG solid solution as a function of x was presented (Figure 

I.26). The decrease of effective segregation coefficient was observed with increasing of 

Lu content in the crystals (Figure I.27). The solidification temperature of LuYAG 

crystals changed almost linearly from 1930°C (YAG) to 2010°C (LuAG) in the solid 

solution range.  

 

 
Figure I.26. Lattice parameter of (LuxY1-x)3Al5O12 solid solution. The open circles are 

those with calibrated compositions based on the Vegard’s law, and the crosses are 

those without corrections [92]. 
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Figure I.27. Effective segregation coefficients keff for Y atoms of (LuxY1-x)3Al5O12 

crystals, with a dashed curve fitted by a quadric function passing through the point keff 

= 1 at YAG composition for viewing convenience [92]. 

 

 

Mixed Ce3+- or Pr3+-doped LuxY1-xAG (x=0.9-1) crystals show the light yield and 

energy resolution similar to those in doped LuAG, but the contribution of the slow 

components into scintillation yield was reduced [118] .  

In [107] it was shown that two bands (339 nm and 454 nm) on the LuYAG 

absorption spectra corresponding to 4f-5d transitions are blue-shifted (Figure I.28) 

relatively to the annealing atmosphere. The emission band appears at 524 nm at the 468 

nm excitation. On the X-ray excited fluorescence spectra the peaks related both to host 

(302 and 360 nm) and Ce3+ emission at 524 nm were observed (Figure I.29). Authors 

noticed that Lu ions incorporation into YAG can reduce the population of antisite 

defects. 
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Figure I.28. Absorption spectra of the LuYAG:Ce crystals [107]. 

 

 
Figure I.29. X-ray excited fluorescence spectra of the as-grown LuYAG:Ce crystal. 

The figure on the inset is the comparison of X-ray excited fluorescence spectra of the 

LuYAG:Ce and YAG:Ce crystals [107]. 
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Basically, the reported light yield in LuAG:Pr does not exceed 17000 phot/MeV 

[106]. However, surprisingly high light yield of 33000 phot/MeV for LuYAG doped 

with Pr3+ was reported recently [119]. Taking into account the energy resolution of 

4.4% (at 662 keV) [119], and the density of 6.2 g/cm3, LuYAG:Pr is a good example of 

improvement of scintillation parameters in mixed crystals. 

1.3.2. YAGG:Ce mixed crystals 

Growth of mixed crystals is justified also from the economical point. Substitution 

of Lu3+ by Y3+ or Gd3+ lowers the production cost due to decrease of raw material cost 

and decreases the crystallization temperature. Consequently, YAG:Ce or mixed crystals 

are good alternatives to LuAG and LuAGG-based scintillators. 

Y3(Al1-xGax)5O12:Ce (YAGG:Ce) scintillator was studied in the present work. 

Some structure and luminescence properties of YAGG based materials were reported 

previously in [120]. Solid solution crystals with garnet structure became popular hosts 

for laser and optical applications, see for example [121]. However, their application as 

scintillation host was limited due to low-to-moderate light yield and low density and 

effective atomic number compared to perovskite- or orthosilicate-based scintillators. For 

example, Ce-doped YAG scintillator possesses moderate density (4.55 g/cm3) and light 

yield (16,000 phot/MeV) [114]. Full substitution of Al3+ with Ga3+ leads to the increase 

the scintillator density up to 5.80 g/cm3 [122]. It was reported [120] that light output 

efficiency decreases at Al/Ga substitution, however recent results on Lu3(Al1-

xGax)5O12:Ce LuAGG [18] pushed us to more detailed study of yttrium mixed garnets. 

 

Summary 

In this chapter, we review the development of inorganic scintillating oxides 

crystals and the growth technology to get scintillating crystals with the improved 

performance. Single crystals such Ce doped GSO, LGSO, LSO, LuAG and YAG 

remain a strategic materials for scintillation and detection applications. The scintillation 

performances are strongly connected to the crystal composition and the growth 

technology.  
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Chapter II: Growth and characterization methods 
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In this chapter the various experimental methods to grow fiber-shapes and bulk 

single crystals, and the methods of their optical and scintillation parameters 

determination are reported in this section.  

2.1. Raw materials preparation 
 

At growth of LGSO:Ce fibers the initial growth runs by μ-PD method were 

accomplished using the broken crystal chunks of LGSO:Ce with x= 0.2 and 0.5 and 0.01 

at.% Ce grown by the Czochralski method. At the next research stage, powders of 

Lu2O3, Gd2O3, CeO2, and SiO2 with purity not worse than 99.99% mixed at 

stoichiometric ratios were utilized as raw materials for the rest of fibers. SiO2 powder 

was preliminary calcined at 300 ºC to remove moisture. The synthesis of undoped 

LGSO by solid state reaction was carried out according to the following chemical 

reaction: 

 x Lu2O3 + (1-x) Gd2O3 + SiO2 → Lu2xGd2-2xSiO5.             (2.1) 

As CeO2 is added to the melt, the reaction transforms to: 

x Lu2O3 + (1-x-y) Gd2O3 + y Ce2O3 + SiO2 → Lu2xGd2-2x-2yCe2ySiO5    (2.2) 

The Ce+3 activator concentration in the raw material was in the range 0.01 - 

1.5 at.%. After the mixing, the second annealing was accomplished at 1200ºC.  

At growth of LuAG-based and YAG fibers the chunks of LuAG and YAG 

crystals previously grown by the Czochralski and micro-PD methods were used as 

starting raw material, correspondingly. Preliminary calcined powders of yttrium, cerium 

and praseodymium oxides with the purity not worse than 99.99 % were added to raw 

materials in the cases of crystal doping. The concentrations of Ce and Pr in melt did not 

exceed 0.15 at.% in fibers. 
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2.2. Growth of LGSO crystal by the μ-PD method 
 

Lu2xGd2-2xSiO5:Ce fibers with x = 0.2, and x = 0.5 were chosen for fiber growth in 

view of the optimal combination of scintillation properties [19] and relatively low 

melting temperatures [93]. The raw materials were loaded into the iridium crucible of 

16 mm in diameter with the square capillary die of 2x2 mm2 in cross-section with the 

hole of 1 mm in diameter (Figure II.1). The crucible was mounted on the cylindrical 

iridium afterheater of 16 mm in diameter.  

 

 
 

Figure II.1. Ir crucible and afterheater 

 

 

The crucible and the afterheater were surrounded by the thermal insulation made 

of alumina ceramics (Figure II.2). The raw materials were heated and melted inside the 

crucible by RF heating. To protect the iridium crucible and the afterheater from 

oxidation, the growth was performed under argon gas flow. The melted raw material 

flowed out from the capillary die through the opening hole at the bottom of the crucible 

and crystallized on the seed touching the melt meniscus (Figure II.2, II.3b, II.3c). 
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Figure II.2. Schematical view of the growth chamber equipment in μ-PD growth 

method 

 

This growth chamber was placed inside a quartz tube (Figure II.3a). The 

afterheater has the hole on the side surface for monitoring the crystallization zone with a 

CCD camera. During the growth process the seed was pulled down at the rates from 200 

to 1000 μm/min. The visual control of the meniscus and the crystal was provided by a 

CCD camera coupled to a personal computer (PC). LGSO:Ce and LYSO:Ce rods with 

the 2x2 mm2 cross section and oriented along the [210] direction were used as seeds. 

After the growth, the temperature of the fibers was ramped down to room temperature 

during 3 - 26 hours. 
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a 

b 

 
c 

Figure II.3. The view of the LGSO:Ce fiber-shaped crystal growth facility (1 – 

thermal insulating ceramics, 2 – quartz tube, 3 – RF heating coils, 4 – hot zone, 5 – 

seed mounted on the motorized shaft, 6 – CCD camera) (a); CCD camera view of 

the crystallization zone in the moment of seeding (7 – capillary at the Ir crucible 

bottom, 8 – molten zone, 9 – seed) (b); CCD camera view of crystallization zone 

during the fiber growth (10 – growing crystal). 
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2.3. LGSO:Ce characterization methods 

2.3.1. Determination of crystal structure and composition 

 

The X-ray study of LGSO samples was carried out using a single crystal 

diffractometer "Xcalibur-3" by Oxford Diffraction (MoK α-radiation, λ = 0.71073 A˚, 

graphite monochromator, a Sapphire-3 CCD-detector, ω/θ scanning in the range of 2θ ≤ 

901, corrections due to absorption by equivalent reflections were taken into account). 

The structure calculations were carried out using a SHELX-97 and WinGX software. 

The elementary cell parameters were refined by the Rietveld method using the 

diffractogram obtained by studying the powders of the same crystalline samples using a 

Siemens D500 powder diffractometer. The results obtained by applying the single 

crystalline method were taken as the initial data for refinement. The XRD-spectra were 

obtained by another Siemens D500 setup. The elementary cell parameters were 

calculated according to the 2-theta peak positions. Elemental concentrations were 

evaluated using an iCAP 6300 (Thermo Scientific) inductively-coupled plasma (ICP) 

atomic emission spectrometer, using the following wavelengths: 404.076 nm and 

456.236 nm for determination of the Ce content, and 335.047 nm and 336.223 nm for 

determination of Gd content. Two different calibration methods were used: i) the 

external aqueous calibration for the determination of the Gd content, and ii) the standard 

addition calibration for the determination of Ce. The reference solutions for the 

determination of the gadolinium content were prepared on the basis of the stock solution 

of Gd. The final acidity of the reference solutions was maintained constant for the 

samples to be analyzed.  

All the used reagents were of analytical grade. The single element stock solutions 

of Gd(III) and Ce(IV) at a concentration of 1 g/L were prepared by dissolving the 

appropriate amount of Gd2O3 or CeO2 in nitric acid and diluting the solution to the 

desired volume with ultrapure water. The samples taken from the top of the fiber (2-3 

mm beyond the place of seeding) were crushed in pieces and finely ground in an agate 
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mortar. The amount of 20 mg of the crystal material was transferred into a 50-ml 

beaker, where 5 ml of orthophosphoric acid were added. The beaker was heated on a hot 

plate until the sample dissolution. After cooling, the resulting solution was transferred 

to a 50 ml graduated flask and was brought up to the necessary volume with ultrapure 

water.  

 

2.3.2. Optical and scintillation measurements 

 

The distribution of Ce dopant across the crystals can be evaluated using the 

spatial distribution of luminescence under different types of excitations. The 

luminescence spectrum of Ce3+ in orthosilicates with monoclinic C2/c structure consists 

of two bands [30]. The first band peaks at ~420 nm and is caused by emission of Ce3+ in 

CeO7 polyhedra. The second one is peaked at ~510 nm and occurs as a result of the 

emission of Ce3+ in CeO6 polyhedra. Both centers have specific excitation and 

luminescence spectra [123]. It is reported that the luminescence intensity due to 

emission of Ce3+ in CeO6 sites correlates well with the gadolinium content in LGSO:Ce 

crystal [19]. Therefore, the intensity of luminescence related to Ce3+ at CeO6 sites can 

serve as an indication of Gd content. We showed that the microscale uniformity of 

Lu/Gd ratio in bulk LGSO:Ce scintillation crystals can be revealed by the spatial 

distribution of photoluminescence parameters.  

The samples for photoluminescence study were cut from the crack-free parts of 

the crystal and polished for the measurements of their optical and scintillation 

properties. 

The light yield of the samples was evaluated at under 661.7 keV γ-ray-irradiation. 

The full absorption peak position was evaluated at the excitation by a 137Cs radioactive 

source. The pulse height spectra were measured with a XP2020Q photomultiplier 

connected to a Lecroy LT 372 oscilloscope. The emission decay was measured by the 

oscilloscope and the signal was time-integrated.  
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The X-ray-excited luminescence spectra were studied using a LOMO KSVU-23 

spectrometer and an X-ray emitter (U = 40 kV, Ia = 25 mA, Cu anode) as an excitation 

source. The afterglow after the X-ray irradiation with the dose of 5 R was measured 

using the special measurement setup consisting of a RAPAN-200 pulsed X-ray emitter 

(Ex = 100–160 keV), a S8594 photodiode, a current–to–voltage converter, a multiplexer, 

a controller, an A/D converter, a PC, oscilloscope, and a control unit for the X-ray 

emitter.  

 

2.3.3. Microscopy measurements 

 

The cathodoluminescence (CL) was excited with an electron gun EMG4212 from 

Kimbal Physics. The samples were attached to a metal sample holder and placed into a 

vacuum chamber with the electron gun. The cathode-to-anode voltage of 10 kV was 

used, while the electron current was varied between 5 and 20 μA. The emission spectra 

under the cathode beam excitation were measured at 300 K using an ANDOR Shamrock 

163 CCD spectrometer. The sample surface was monitored by a CCD digital camera 

with and without electron beam irradiation. 

The spatial distribution of the PL parameters under the selective excitation of the 

Ce3+ at CeO6 centers was investigated using confocal microscopy. The PL was 

measured by employing the WITec microscopy system Alpha 300 coupled with the 

spectrometer UHTS 300 equipped with a thermoelectrically cooled CCD camera. A CW 

laser diode emitting at 405 nm was used for excitation. Both samples were measured at 

the same excitation power density. The objective with NA = 0.55 ensured the spatial 

resolution of 400 nm in the X-Y plane and 1600 nm in the Z direction perpendicular to 

the crystal surface.  

PL intensity of both CeO7 and CeO6 centers was investigated using a wide-field 

fluorescence microscope Olympus BX51. The spectral range between 320 nm and 

400 nm of a halogen lamp emission was used for excitation. A long-pass filter with cut-



55 
 

off wavelength of 420 nm was used to pass the spectrally-integrated PL to a CCD 

camera. All the PL measurements were performed at room temperature. 

For detection of inhomogeneous distribution of Gd across the grown LGSO:Ce 

we applied the method of Gd sensitization in LGSO:Ce developed on the base of Cz 

grown crystals developed by us. The two sub-bands observed in the LGSO:Ce 

luminescence spectra at ~ 420 and ~ 520 nm (Figure II.4) can be attributed to 5d-4f 

transitions of Ce3+ at Ce1 (CeO7) and Ce2 (CeO6) polyhedra. In LSO:Ce, approximately 

90-95% of Ce3+ is situated at Ce1 sites, since a bigger cation (1.03 Å vs. 0.86 Å in Lu3+) 

tends to occupy a bigger site [124, 125]. The averaged distances between the lanthanide 

and the surrounding oxygen atoms here are in Ce1 and in Ce2 site [19]. The addition of 

gadolinium leads to loosening of the crystal lattice, and the cerium distribution between 

the sites becomes more homogeneous. This can be evaluated from the relative intensity 

of the Ce1 and Ce2 bands in the luminescence spectrum as it is shown in Figure II.4. 

Accordingly, there is a direct correlation between the Gd content and the ratio of the 

Ce1/Ce2 band intensity (Figure II.4). This plot also shows that the relative intensities of 

Ce1 and Ce2 bands linearly change with Lu content despite the possible fluctuations in 

Ce concentration within 0.2 to 0.9 at.% in different samples under study. Therefore, the 

local Lu/Gd ratio can be evaluated using the features of luminescence spectra. 
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Figure II.4. Contributions of Ce1 (CeO7) and Ce2 (CeO6) luminescence bands into 

the overall luminescence as a function of LGSO:Ce composition. Inset: typical 

spectra of LSO:Ce and LGSO:Ce X-ray luminescence. Ce concentration is 

maintained within the range of 0.2–0.85 at. %. 

 

The excitation and emission spectra of Ce1 and Ce2 luminescence in LSO and 

LGSO presented in Figure II.5 show that the excitation bands of Ce1 and Ce2 strongly 

overlap, and contributions of both components in the luminescence spectrum are 

difficult to distinguish. Meanwhile, excitation at 405 nm (marked by arrows in Figure. 

II.5) used in confocal microscopy experiments should provide selective excitation of 

Ce2 centers. 

Using the confocal microscopy, the spatial distributions of spectrally-integrated 

photoluminescence (PL) intensity, full width at half maximum (FWHM), and PL 



57 
 

spectral center-of-mass were determined in LSO:Ce and LGSO:Ce samples. The X-Y 

scan along the sample surface was not informative, because the surface scratches left by 

polishing impose substantial distortions of photoluminescence spectra shape. 

 

 

Figure II.5. Excitation and emission spectra of LSO:Ce and Lu0.5Gd1.5SiO5:Ce 

 

To separate the contribution of the surface phenomena, the spatial distribution of 

the photoluminescence parameters were also measured in the direction perpendicular to 

the sample surface. 

The spatial distributions of all the parameters were nearly homogeneous, except 

the center-of-mass distribution (Figure II.6). The spatial distributions in LSO:Ce and 

LGSO:Ce crystals are qualitatively different. In LSO:Ce the PL band gradually shifts to 

longer wavelength with increasing distance from the surface. This behavior can be 

explained by reabsorption due to fluctuations in Ce overall concentration in the regions 
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under study. Meanwhile, this feature is less pronounced in LGSO:Ce, probably, due to 

better homogeneity in overall Ce distribution. This assumption is supported by higher 

segregation coefficient (up to 0.8) in Lu0.5Gd1.5SiO5:Ce [43] compared to LSO:Ce (0.22) 

[83]. 

 

 
 

Figure II.6. Spatial distribution of PL band center-of-mass position in LGSO:Ce 

(left), LSO:Ce (right). 
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Basically, inhomogeneity in Ce distribution in LSO:Ce is a well-known 

phenomenon [126]. Meanwhile, in LGSO:Ce was observed spatial inhomogeneities of 

the order of 1 –3 μm in diameter chaotically distributed in the crystal volume. To reveal 

the nature of these inhomogeneities the spectra taken from them were compared. The 

luminescence spectra of both LSO:Ce and LGSO:Ce under 405 nm excitation are 

peaked near 500 nm with no remarkable short-wavelength component. The differential 

spectra for LSO:Ce measured at different distances from the surface exhibit a “zigzag” 

at 400-600 nm, which is obviously linked to the redshift of the PL spectrum due to 

reabsorption phenomena. 

Meanwhile, the shapes of the differential spectra in LGSO:Ce are more complex. 

Besides the “zigzag”, a spectral component peaked in the vicinity of 500-700 nm is 

observed only in LGSO:Ce (Figure II.7). 

Three possible interpretations of the origin of the observed long-wavelength 

component can be considered: 1) impurity luminescence, 2) increase in the intensity of 

Ce2 luminescence in the long wavelength part of the emission band, and 3) existence of 

structural defect areas (domains) in crystal. Significant impurity-related luminescence 

seems to be not feasible, since to the best of knowledge, only Dy3+ among the trivalent 

ions has luminescence bands in similar host (Gd2SiO5) at 450-500 nm and 550-700 nm 

[127]. However, the shape of these bands is different, and, in contrast to the 

GSO:Ce,Dy, the luminescence bands in LGSO:Ce (Figure II.6) do not contain any fine 

structure. Moreover, the band position varies in different subtracted spectra. This is an 

indication that optical transitions at Dy3+ can be excluded as the origin of this spectral 

component.  

The second and third interpretations, in fact, do not contradict to each other, 

because defects are more probable to occur on the boundaries between domains with 

different composition and lattice parameters. Herein, the band position evidences in 

favor of defect related luminescence. Anyway, the content of both Ce2 and defects is 

determined by introduction of Gd, since the corresponding spectral features are not 

observed in LSO:Ce. Consequently, the intensity of the 500-700 nm band clearly 

corresponds to Gd concentration. Thus, our results evidence the inhomogeneity in Gd 
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distribution in the crystal (see Figure II.4). Qualitatively the same difference spectrum, 

just with absolute intensities several times larger, see Figure II.6, are obtained when 

comparing the areas in LGSO:Ce and LSO:Ce situated at approximately the same 

distance from the surface. This is additional evidence that the intensity of 550-600 nm 

band depends on Gd concentration. 

Therefore, according to the data presented in Figure II.6, we evaluate that, a part 

of the region 4 located near the surface, the Gd concentration in the studied areas 

decreases in the sequence from area 2 to area 3 to area 1. 

 

 
 

Figure II.7. Differential PL spectra in LGSO:Ce samples at different locations. The 

PL spectra were normalized before subtraction. Difference spectrum between area 

in LGSO:Ce and area in LSO:Ce is added for comparison. 
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To directly confirm the existence of the domains enriched with one of the cations 

and to reveal the origin of these domains, a detailed structural analysis (e.g., using 

EXAFS method) is necessary. 

The comparison of the spatial distributions of PL parameters in LSO:Ce and 

LGSO:Ce crystals reveals the presence of spectral component in LGSO:Ce at > 500 nm. 

Though the origin of this component is not completely clear, its intensity obviously 

reflects fluctuations in Gd concentration across the crystal, i.e., reveals the existence of 

areas enriched with Gd or Lu atoms.  

 

2.4. Growth of LuAG, LuAG:Ce, LuAG:Pr, YAG:Ce and LuYAG:Ce  by the μ-PD method 
 

The LuAG fibers were grown from the melt by the micro-pulling down method. 

All the experiments were done in inert Ar atmosphere. All LuAG-based and LuYAG:Ce 

fibers were grown using the Ir crucible with a round 2 mm diameter shaper (die) and 

afterheater, YAG:Ce fibers using the conical crucible (Figure II.8). A conical crucible 

die formed 1 mm round shaped fibers of YAG:Ce. 

 

Figure II.8. Ir crucible and afterheater used for LuAG-based fibers (left) and a 

crucible used for YAG:Ce growth. 

 

 

The details of the method were described in [7]. To find the optimum balance 

between pulling rate and crystal quality, the fibers were grown with the rates 300, 350, 
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and 500 μm/min. In order to estimate the seed orientation effect the fibers were obtained 

with the seed orientations [111] and [100]. LuAG:Pr fibers were grown with the pulling 

rate 300 μm/min, with [111] and [100] seed, YAG:Ce fibers were grown only with the 

[111] orientation and 300 μm/min pulling rate. The seeds used (Figure II.9) were doped 

and undoped fibers previously grown by the μ-PD, or fibers cut from bulk crystals.  

 

 
Figure II.9. LuAG:Ce seed [111] made of previously grown fiber (upper) and the seed 

of undoped LuAG [100] cut from the bulk crystal (lower). 

 

 

2.5. Garnet crystals characterization methods 
 

2.5.1. Attenuation length measurements 

 

Attenuation length (i.e., the fiber length where which the intensity of LED-

excited light falls by e times) was taken as the indicator of fiber optical quality. This 

parameter was measured by the three methods described below: 

 

LED bench 

The most of attenuation length measurements were carried out using the custom 

made setup in CERN PH-CMX under excitation with blue light (475 nm) for undoped 
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and Ce-doped fibers (Figure II.10). A fast LED driver (SP5601 from CAEN) was used; 

the light was transported with a clear fiber to the sample. For LuAG:Pr, 250 nm 

excitation was used ultrafast pulsed UV-LED driver from CAEN. Both extremities of 

the LuAG and YAG fibers were coupled to MPPCs, also called SiPMs, (Model S10931-

050P from Hamamatsu). The output of these MPPCs were amplified with a dedicated 

instrumental amplifier (gain of 180) operated in a differential mode. Signals (of both left 

and right photodetectors) were then acquired with a digitizer (Model DT5720 from 

CAEN). The fibers were moved with a translating stage (Model M-413.32S from PI). 

 

 
Figure II.9. Setup for the measurement of light attenuation of the fibers. 

 

 

Xe lamp bench 

Preliminary results on attenuation length of some LuAG:Ce fibers were obtained 

using the custom made setup in ILM with Xe lamp excitation at 350 nm. The beam 

from the source was focused on the side of the fiber. Scintillation light propagated 

through the fiber was registered on its end face. The signal was transferred by the 
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optical fiber to the monochromator (Triax series 320) and a CCD camera. In comparison 

to the LED experiment the bench with the fiber was moved manually with 1 cm 

increment perpendicularly to excitation beam carrying out the attenuation mapping 

measurements. 

 

 

2.5.2. Cathodoluminescence 

 

The distribution of CL intensity across the fibers was measured by the AVT Pike 

F-100B CCD camera, with a magnification 3.95X. LuAG:Ce and LuYAG:Ce samples 

were cut perpendicularly to the growth axis. Before the installation on the holder the 

side not exposed to the electron beam was covered in black paint in order to avoid 

presence of reflected light (Figure II.11). The beam from the electron gun EMG-4212 

Kimball Physics was left unfocussed in order to have a uniform electron flux on the 

entire sample surface. 

 

Figure II.11. Samples of LuAG:Ce prepared for cathodoluminescence measurements. 

 

 

2.6. YAGG:Ce growth by the Czochralski method 
 

Y3(Al1-xGax)5O12:Ce (YAGG) crystals with the 30–35 mm diameter and 100 mm 

length were grown along [111] direction by the Czochralski method using Ir crucibles 

with the 60 mm diameter and 60 mm height. The raw material was loaded into the 
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crucible and was inductively heated (Figure II.12). The seed situated at the seed support 

was moved towards the melted compound surface. Since the connection was made the 

seed was pulled upwards with rotation and, the melt was crystallized on it. Additional 

heater was used for the thermal gradient stabilization along the as-grown crystal. Heat 

insulation of the growth chamber was provided with ZrO2 and Al2O3 hear insulating 

theramics.Corresponding mixture of Y2O3, Al2O3, Ga2O3, and CeO2 powders with 

99.99% purity were used as starting raw materials. YAG:Ce crystals were obtained from 

stoichiometric melt, and in case of Ga-containing crystals, the 1% Ga2O3 excess was 

introduced into the melt to compensate ignition loss. Growth atmosphere was Ar + 1% 

O2. Oxygen was added to atmosphere to inhibit melt evaporation. CeO2 concentration in 

melt was maintained at 1 mol.% level.  
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Figure II.12.Schematical view of the Czochralski bulk crystal growth process. 

 

2.7. YAGG:Ce characterization methods 
 

Lattice parameters and host cation composition were detected by X-ray studies of 

the crystalline samples were carried out using a single crystal diffractometer ‘‘Xcalibur-

3’’ by Oxford Diffraction (Mo Kα-radiation, l = 0.71073 A˚, graphite monochromator, a 

Sapphire-3 CCD-detector, v/θ scanning in the range 2θ ≤ 90°, accounting for absorption 

by equivalent reflections). Structure calculations were carried out using a SHELX-97 

and WinGX software. Elementary cell parameters were refined by the Rietveld method, 

from diffractogram obtained on powders of the same crystalline samples using a 

Siemens D500 powder diffractometer. Results obtained by the single crystalline method 

were taken as initial data for refinement.  

The Ce concentration and Al/Ga content in samples were determined by the ICP-

AES method by the analogy to LGSO:Ce crystals.  

Samples with the dimensions 10 mm x 10 mm x 2 mm with polished 10 x 10 

faces were fabricated from crack-free parts of crystals for study of scintillation and 

luminescence properties.  

Measurements of light output in the ‘‘current mode’’ were carried out using an 

IRI X-ray source (U = 100 kV, Ia = 1 mA, W anode). Block of registration consists on 

platform for mounting of studied scintillator and FD-288 PMT connected to V7-35 

voltmeter. Setup for light output determination was described in detail in [128]. 

Excitation and emission spectra in the 230–800 nm range, as well as decay curves 

at photo excitation were determined using combined fluorescent lifetime and steady-

state spectrometer FLS 920 (Edinburgh Instruments) equipped with Xe lamp. 
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Summary  

In this chapter we have presented the raw materials preparation procedure and the 

crystal growth technology used in the frame of this PhD thesis to grow undoped and Ce 

-doped LGSO shaped crystals and Ce and Pr-doped garnet fibers. The grown crystals 

were microscopically and macroscopically characterized. In addition, we have described 

the methods we have used to determine the scintillation and optical properties of the 

crystals.  
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Chapter III: Results & Discussion: Growth and characterization of LGSO:Ce 
fibers 
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A set of LGSO:Ce fibers with the different Ce concentrations have been grown 

by the micro-PD method with aim to determine the optimal composition regarding the 

growth conditions and scintillation parameters. The causes of fibers cracking are 

discussed using the analysis of cation distribution in crystals.  

 

3.1. LGSO:Ce fiber growth by the micro-PD method 
 

As the first step, a series of Lu2xGd2-2xSiO5:Ce fibers were grown with x= 0.2 and 

0.5 in the melt. Due to proximity to the polymorph phase transition at x = 0.17, the 

grown crystals with x = 0.2 contained more cracks than those grown with x = 0.5. 

Several approaches were used to avoid cracks. Decreasing the pulling rate to 

200 μm/min and the optimization of the heating regime provided significant 

improvement. The fiber with 0.01 at.% Ce was completely transparent. Meanwhile, for 

the fibers with the Ce concentrations of 0.3, 0.5, and 1 at.%, only the parts with the 1 – 

3 cm length were without cracks (Figure III.1). Based on the input power to the heater, 

the LGSO:Ce melting point was evaluated as being in the range from 1900 to 1950°С. 

This is in a good agreement with the reported phase diagram at the Lu/Gd ratio of 1/1 

[93]. Meanwhile, the growth of LGSO:Ce with 1.5 at.% Ce was successful only at the 

melt overheating by ~ 5 – 10°С.  

However, such overheating leads to the increase of the melt meniscus thickness. 

We had to increase the pulling rate up to 1000 μm/min to maintain the constant volume 

and shape of the molten zone. Without the pulling rate increase the melt drop was 

formed at the capillary die and diameter control became difficult to control. 

Evidently, the increase of meniscus thickness with overheating ensures better 

melt mixing in the molten zone and suppresses the dopant segregation to the periphery. 

We suppose that the melt convective flow in this zone is reinforced due to higher 

thermal gradients calling an enhancement of Marangoni flow. Smaller admixture 

gradient might result in reduction of cracks in the fiber. The distribution of cations 

across the fibers is discussed in detail in Section 3.4. 
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Figure III.1. As-grown Lu2xGd2-2xSiO5 fibers with x = 0.2 (a), x = 0.5 made of Cz-

grown crystals fragments 0.01 at.% of Ce3+ (b - d); made of powder: 0.3 (e), 0.5 

(f), 1at.% of activator (g); 1,5 at.% of activator (h); i) – capillary die of the Ir 

crucible. 

 

3.2. Structure and cation distribution coefficients in LGSO:Ce 
 

According to room temperature XRD data, the LGSO crystals with the Lu/Gd 

ratio around 1:1 had monoclinic C2/c structure (Figure III.2). No foreign phases were 

observed for any Ce concentration in the initial melt. The elementary cell volumes for 

the crystals with 1 and 1.5 at.% of Ce were measured to be 857.20(5) Å3 and 852.90(4) 

Å3, respectively. The substantial difference is evidently caused by fluctuations of Ce 
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and Gd content in the μ-PD-grown crystals. According to the data of Cz-grown 

LGSO:Ce crystals [19], these cell volumes corresponds to the Gd content of 51 and 44 

at.%, respectively. 
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Figure III.2. XRD peaks of LGSO:Ce. The curves represent the fibers with the 

concentrations 1 and 1.5 at. %. 

 

The distribution coefficients for Gd and Ce dopants determined by ICP are 

presented in Table 2. The corresponding data calculated using the phenomenological 

formula suggested by Brandle et al [129] are also presented for comparison there. Since 

the samples used for measurements were taken from the beginning of the crystal, the 

effective distribution coefficient can be evaluated as CS/C1, where CS is the 

concentration measured in the crystal and C1 is the element concentration in the raw 

material. The data on k0(Ce) are basically consistent with the values of 0.4 and 0.6 

obtained in Cz–grown (Lu,Gd)2SiO5:Ce [43] with the similar Lu/Gd ratio. The 
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significant difference between the experimental values and the phenomenological 

prediction based on Cz–grown crystals [129] is, evidently, caused by different 

crystallization conditions in Cz and μ-PD methods. 

 

Table 2. Concentrations and distribution coefficients of Gd and Ce dopants in LGSO:Ce 
fibers 

Initial raw material 

composition 

Concentratio

n in samples, 

at. % 

k0 

Theoretical k0 

in accordance with 

[129] 

Gd Ce Gd Ce Gd Ce 

LuGd0.99Ce0.01SiO5 32 0.19 0.65 0.38 

0.77 0.11 LuGd0.98Ce0.02SiO5 30 0.35 0.61 0.35 

LuGd0.97Ce0.03SiO5 33 0.62 0.68 0.41 

 

It was shown that Gd3+ and Ce3+ with the bigger ionic radii in Cz-grown 

LGSO:Ce crystals tend to occupy sevenfold coordination polyhedra with larger 

distances from the ligand to oxygen environment [19]. It was demonstrated that 

increasing concentration of Ce3+ in CeO6 polyhedron sites basically causes light yield 

decrease, enhancement of slow decay components, and a red shift of the luminescence 

band [19]. Despite the different crystallization conditions in Cz and μ-PD, XRD 

analysis made in the present work shows no substantial difference in Lu3+ distribution 

between the polyhedral of different type. In LGSO:Ce with 51 at.% of Lu, lutetium 

occupies 70% of CeO6 sites and 32 % of CeO7 sites. 

 
 

 

3.3. Optical and scintillation properties 
 

Distribution of Ce3+ between the crystallographic sites can be evaluated by 

studying X-ray luminescence spectra (Figure III.3). In addition to the basic 
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luminescence band, which is caused by CeO7 centers and is peaked at 420 nm, long-

wavelength shoulder rises with increasing Ce3+ concentration. This emission is 

associated with CeO6 polyhedra and evidences the partial redistribution of Ce3+ from 

CeO7 to CeO6 polyhedra in Ce3+-rich samples.  

The optimal concentration of Ce3+ in the melt for growing orthosilicates by 

Czochralski method was reported to be 0.25 at.% in LSO:Ce [15] and 1 at.% in 

Lu0.4Gd1.5SiO5:Ce [130]. 

 

 
Figure III.3. Normalized X-ray luminescence spectra of LGSO:Ce at different Ce 

concentrations (indicated). 

 

The light yield of LGSO:Ce crystals increases with Ce concentration in the range 

from 0.01 to 1 at.% (Figure III.4). The light yield decreases at 1.5 % Ce, possibly, 

because we have not found the right conditions for stable growth at this Ce3+ 
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concentration. The 1.5 at.% Ce crystal has too many cracks to make a valid light output 

measurements and compare it with other samples. Therefore, we assume that 1 at. % in 

melt is the optimal Ce concentration among the successfully grown fibers. 

 

 
 
 

Figure III.4. Pulse height spectra of LGSO:Ce crystals grown by μ-PD with 

different Ce concentrations (indicated). 

 

The afterglow in Cz–grown Lu2-2xGd2xSiO5:Ce at x = 0.5 is 0.07 - 0.10 % after 5 

ms [19]. In μ-PD–grown fibers the afterglow decreases with the increase of Ce3+ 

concentration (Figure III.5). As the result, the crystals grown by μ-PD demonstrate even 

lower afterglow down to 0.02 % at 0.5 at.% Ce. This can be attributed by a larger 

concentration of activator compared to Cz–samples, thus, increasing the probability for 

direct capture of electrons by Ce4+ without intermediate capture on deep traps related to 

oxygen vacancies. 
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Figure III.5. Relative light output (squares) and afterglow level (circles) after 5 ms 

in LGSO:Ce fibers as a function of Ce concentration in the host. 

 

 

3.4. Confocal and wide-field microscopy measurements 
 

3.4.1. Selection of samples 

 

The LGSO crystalline fiber with 1.5 at.% of Ce selected for microscopy 

measurements contained a visually transparent single crystalline section of 40 mm in 

length (Figure III.6a). The rest of the crystal contained inclusions and cracks. 

Transverse and longitudinal samples were cut from the transparent part of the crystal 

(Figure III.6b and III.6c, respectively) with an inner blade saw. The samples were 

polished. The diameter of the transversely cut sample (sample TC) was 4 mm and the 
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thickness was 2 mm. The dimensions of the longitudinally cut sample (sample LC) were 

2×2×5 mm3. The large faces of the samples were studied by confocal and wide-field 

microscopy.  

 

 
Figure III.6. Lu2xGd2-2xSiO5:Ce crystal grown by μ-PD method. The TC (transversely 

cut) and LC (longitudinally cut) samples were cut as indicated in (a) and are 

schematically depicted in (b) and (c), respectively. 

 

3.4.2. Electron beam excitation 

 

Typical photos of both samples under electron beam excitation are presented in 

Figures III.5a and III.5c. The cathodoluminescence (CL) image of TC sample (Figure 

III.7) shows inhomogeneous emission intensity on the sample surface. These features 

are more pronounced in the periphery of sample TC. The bright lines in the periphery of 

sample LC probably correspond to cracks reflecting the emitted light. They are 

predominantly accumulated in the periphery. Nevertheless, there is no observable 

gradient in the CL brightness from the center to the periphery, in contrast to that 

previously observed, e.g., in LuAG:Ce [6] studied under similar conditions. This is an 
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indication that Ce3+ distribution in LGSO is more uniform than in scintillation crystals 

of the garnet group. On the other hand, many small bright spots can be observed in 

Figures III.7b and III.7c. These spots might be caused by gas bubbles or inclusions of 

dopant forming scattering centers in the crystal. However, it is feasible that a part of 

these spots are just glares from the sample holder surface, because many of them are 

also seen in Figure III.7c under illumination with external light source without electron 

beam excitation.  

 

 
Figure III.7. Cathodoluminescence image of sample TC (a) and sample LC (b) and 

a photo in reflected light of sample LC (c). The areas selected for microscopic 

study are indicated and labeled. 
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3.4.3. Photoexcitation 

 

A significant radial gradient of dopant concentration is inherent in the μ-PD 

method [44]. To elucidate the cation distribution in crystals grown by μ-PD in more 

detail, we utilized the confocal microscopy with a high spatial resolution under selective 

laser excitation of CeO6 centers and wide-field microscopy under excitation of the both 

Ce centers (using a halogen lamp).  

The wide-field microscopy images of the samples under halogen lamp excitation 

are shown in Figure III.8. The areas TC1, TC2, LC1, and LC2 are selected, as indicated 

in Figure III.7, at the center and periphery of the corresponding samples, respectively. 

The wide-field microscopy measurements do not show any significant change of PL 

intensity from the center to the periphery in sample TC or along the crystal in sample 

LC. The bright lines marked by the arrows in Figure III.7b are cracks. They are also 

seen on the image in reflected light (Figure III.7c). In addition, there are many stripes of 

inclusions oriented along the rod axis. As we can see from the image of TC1 in Figure 

III.8, the crystal contains a core of about 1 mm in diameter with the low density of 

cracks, and periphery with a considerably higher density of bright inclusions and cracks. 

This might be caused by faceted growth at constitutional supercooling in conditions of 

low thermal gradient and high content of Gd, Ce, and admixtures in the melt meniscus 

periphery. The images of the areas TC2, LC1, and LC2 show that the inclusions have 

the shape of distorted lines or plates oriented along the rod axis. The thickness of these 

lines or planes is 1-3 μm, and the length is up to several millimeters. Higher PL 

intensity in the vicinity of the inclusions might be caused by both an increase of local 

Ce concentration and light scattering. 

To get a better insight into the spatial distribution of the cations, smaller 

(60×60 μm2) areas of the samples were selected and studied using confocal microscopy 

under selective excitation of the CeO6 center. Spatially integrated PL spectra from the 

center and periphery areas of the TC sample are shown in Figure III.9. It was found that 

the PL peak intensity was by a factor of 5.4 larger in the peripheral areas (TC2) of the 

sample than in the central area (TC1). This is an indication of higher Ce concentration 
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in the areas closer to the sample edge. Moreover, the PL spectrum of TC2 is red-shifted 

by 14 nm relatively to that of TC1, and its long wavelength shoulder is more 

pronounced. This might be an indication of an increase in Gd concentration in the 

direction from the center to the periphery of the fiber [19].  

 

 

 
 

Figure III.8. Spatial distribution of PL intensity under halogen lamp excitation in the 

areas of samples TC and LC in locations indicated in Fig. III.7. 
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Figure III.9. Normalized spatially integrated PL spectra collected from center 

(TC1) and periphery (TC2) areas of 60×60 μm2 in size. PL was excited with laser 

diode emitting at 405 nm. 

 

 

To characterize the spatial homogeneity of PL intensity, the PL intensity variation 

(the standard deviation divided by the mean value) was calculated from the PL intensity 

mapping images (Figure III.10). The intensity variation equals 0.14 at the center of the 

sample and increases up to 0.27 at the periphery. High-resolution image (Figure III.10a) 

demonstrates that the brightest areas are concentrated along the crack that are visible as 

thin (~0.5 μm) stripes of lower PL intensity (marked by the arrows). The PL spectra 

(Figure III.10b) collected from the vicinity of the crack (area 1 in Figure III.10a) were 

compared with the spectra from the areas of a lower PL intensity (area 2 in Figure 

III.10a). The difference spectrum in Figure III.10c clearly reveals two spectral 

components peaked at 470 nm and 560 – 590 nm.  
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Figure III.10. Spatial distribution of PL intensity in the periphery of TC sample under 

405 nm excitation (a); PL spectra from the vicinity of the crack (area 1) and from area 

of lower PL intensity (area 2) (b); the difference between normalized PL spectra from 

area 1 and area 2 (c). 

 

The obtained results show that LGSO:Ce fibers consist of the central part of 

1 mm in diameter without cracks, and the periphery with a lot of inclusions and some 

cracks. The diameter of the central part nearly coincides with the inner diameter of the 

μ-PD crucible capillary die (1 mm). There is no notable difference in the brightness 

between the different parts of the crystal when both Ce centers are excited (Figures III.7 

and III.8). However, under selective excitation, the intensity of the CeO6 luminescence 

band increases from the center to the periphery of the fiber–shaped crystal (Figure 

III.9). This behavior might evidence a larger Ce concentration in the periphery of the 

crystal or can be caused by light scattering. However, by the analogy with the Cz–
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grown LGSO:Ce the presence of the characteristic “zigzag” at 420 – 500 nm and the 

560 – 590 nm band at selective excitation of CeO6 luminescence (Figure III.10c) in the 

inclusion area clearly indicates accumulation of both Gd and Ce in the vicinity of 

cracks. Therefore, the radial distribution of Gd and Ce outside the central part of the μ-

PD crystal is nonuniform, with higher concentrations in the areas of cracks and 

inclusions. The inclusions form scattering centers and lead to a decrease in optical 

transparency and, as a consequence, to a decrease in the light output with increasing Ce 

concentration. Since the ionic radii of Ce and Gd are larger than that of Lu [57], their 

accumulation causes grain formation and crystal cracking. Therefore, the large 

difference in ionic radii of the competing Lu3+, Gd3+, and Ce3+ ions in the host impedes 

obtaining crack-free crystal by the μ-PD method in the specified conditions. The main 

impact to cracking is assumed to be due to Gd, the concentration of which is by two 

orders of magnitude larger than that of Ce. Cracking is expected to be minimized at 

lower Gd concentration. However, at the same time, it leads to the increase of melting 

temperature [93] up to too high values for use with iridium crucible destruction. 

Therefore, a reasonable balance between Gd and Ce content and technological 

conditions of the fiber–shaped crystal grown by μ-PD should be maintained. 

 

Summary  

LGSO:Ce fiber-shaped crystals with different Lu/Gd ratios and different Ce 

activator concentrations were grown  for the first time by the μ-PD technique. Though 

all the crystals contain single monoclinic C2/c phase, only the first parts (1-4 cm in 

length) of them are transparent and contain no visible cracks and few inclusions.  

The distribution coefficients of Gd and Ce dopant are within 0.61–0.68 and 0.35–

0.41, respectively. As in the Cz-grown crystals, Gd3+ and Ce3+ tend to occupy the larger 

sevenfold coordinated positions in the lattice. Ce3+concentration of 1 at.% in melt 

provides the best light yield and the lowest afterglow among the samples grown in this 
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study. The afterglow in LGSO:Ce crystals grown by μ-PD is 0.02 % after 5 ms, which 

is by a factor of 4 better than that in Cz–grown crystals with a similar Lu/Gd ratio. 

The analysis of the spatial distribution of Ce3+ luminescence in LGSO:Ce crystals 

grown by μ-PD technique evidences accumulation of Gd3+ and Ce3+ in the inclusions 

situated in the periphery of the fiber. These inclusions form a network of distorted 

planes, which are mainly directed along the crystals axis (along the growth direction). 

Excessive accumulation of Gd3+ and Ce3+ results in crack formation. 
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Chapter IV: Results & Discussions: Growth and characterization of garnet 
fibers 
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Undoped LuAG and LuYAG, Ce-doped LuAG, Pr-doped LuAG and Ce-doped 

YAG single crystals fibers were grown from the melt by the micro-pulling down 

technique under stationary stable regime. A detailed description of the different 

phenomenon involved in the crucible through simulation and modeling have been 

discussed. The grown fibers have been optically characterized through the light 

transmission (attenuation) and defects analysis.  

 

4.1. Numerical study and analysis limits of the micro-pulling down technique for 
LuAG fiber crystal growth 
 

Simulation is conducted to analyze the induction heated μ-PD technique for 

LuAG fiber crystal growth. The melt, gas flows and heat transfer around the crucible 

and the furnace are studied. Experimental observation are presented to verify the 

simulation and modeling results. A schematic diagram of the different part of the μ-PD 

machine which was been investigated during this study is given in figure IV.1.The 

modeling was carried out by the analogy to the optimization of sapphire growth process 

with a COMSOL Multiphysics software [131, 132, 133]. A computational domain much 

larger than the furnace is chosen for the accurate calculation of the electromagnetic 

field. However, to relieve computational load, the computational domain for fluid flow 

is only set to the furnace region. The thermal properties of the furnace elements are 

assumed constant. For calculation of the electromagnetic field, a solid copper coil is 

modeled, and the self -inductance of the coil is neglected. Axisymmetry of the furnace 

is further assumed. Our aim is to present a comprehensive analysis of the heat transfer 

including detailed computation of our furnace performance.  
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Figure IV.1. The description of the μ-PD growth setup dimensions. 

 

Thus, with aim to concentrate on LuAG growth, the physical properties and system 

parameters including the used conditions are: 

 Physical Model: Inductive heating , conduction, radiation, natural/forced 

convection 

 RF heaters : Frequency=34.1 (kHz) 

 Seed length/Crystal length : 0.15 (m)  

 Crystal diameter : 2 (mm) 

 Total charge of raw material : 12 (g)  

 Pulling rate : 0.5 (mm/min) 

 Meniscus height : 0.3 (mm) 

 Argon inlet flow rate : 0.2 slm, Pressure : 1 bar 

 Quartz tube is opaque 
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The grid are refined to ensure that the calculation results are not dependent on the 

mesh size. The simulation domain and grid system are shown in figure IV.2. The 

calculation mesh consisted of 59010 triangular elements, 4972 edge elements and 170 

vertes elements. The recirculating flow in the melt is caused by a combination of several 

basic modes of convection: natural convection due to buoyancy forces, Marangoni 

convection due to the variation of surface tension, and forced convection due to crystal 

pulling and drop-down of the melt level. The effect of melt change on the molten zone 

is negligible during a quasi-steady simulation. Figure IV.3 shows the 2D and 3D 

distributions of the temperature and stream function distribution in the entire furnace. 

The temperature distribution in the crucible shows fluctuations in the range 2000-

2380K. One can find a hot spot at the top part of the crucible where the temperature is 

2380K: 147 K higher than the melting point of LuAG. It is relatively easy to melt an 

iridium crucible during the growth of high melting temperature materials. Localized 

melting cause cracking on subsequent cooling, and the failure of the crucible occurs 

catastrophically. So the hot spot, therefore is dangerous for the growth of LuAG.  The 

melt in the crucible is driven from the hot to cold region, from the crucible wall to the 

centerline of the furnace. Two center rotating convection rolls emerge in the melt. The 

surface-tension related roll (Marangoni convection) is counter-clock wise and stronger 

than the buoyancy one that is close to the centerline of the furnace.  It is important and 

interesting to point out that at the top of the furnace, gas convection is strong due to the 

large temperature difference. Weaker convection is observed for alumina thermal 

isolation support, where the thermal conditions, which is cold at the bottom and hot on 

the top, does not favor buoyancy driven flow even though there exists a large 

temperature difference. To surmount crucible overheating and stress in the fiber, it is 

very important to have more uniform temperature distribution around the crucible and 

less induction power applied to melt LuAG. We have also registered that the 

temperature distribution in the after heater is not symmetrical when only one 

observation window is applied. As the Solid/liquid interface located in the afterheater 
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affects the growth kinetics it is important to achieve more stable fiber crystal growth 

conditions by the control of temperature field in the molten zone.  

 

  
 

Figure IV.2. Calculation mesh for simulation of LuAG crystal growth. 
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Figure IV.3. Thermal field model in 2D (left) and 3D (right) view of the μ-PD growth 

setup. The lines are isotherms in K. 

 

In this research program, numerical modeling provided a set of data on 

temperature distribution at different elements of the crystallizer. The dependence of 

temperature along the fiber is of particular interest (Figure IV.4). Usually, it takes 5-7 
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hours (depending on the pulling rate) to grow 10 cm LuAG fiber. If the temperature of 

the initial part of growing fiber is high rather long time during the growth (Figure IV.4), 

one may suggest that initial part of the fiber will be situated longer time at the 

temperature range of crystal plasticity 0.7 Tm < T < Tm (1500 - 2320 K for LuAG), thus, 

to be better annealed in the growth atmosphere (Ar) simply during the growth in 

comparison to the end of the fiber. After the end of growth and disconnection of the 

fiber from the crucible the fiber is cooled due to the heating power supply decrease to 

the crucible. At that moment the first part of the fiber is already 22-30 cm away from 

the crucible outside the hot zone. This means that different parts of the fiber are 

subjected to different thermal gradients during cooling down. Consequently, thermal 

stresses and quantity of defects may differ along the fibers due to different regimes of 

annealing. 

 
 

 
Figure IV.4. Temperature along the fiber. 
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Melt convention pattern in the crucible was examined (Figure IV.5). The maximal 

flow rate along the melt free surface was Vmax = 0.13 mm/s and 4.37 mm/s accounting 

for buoyancy without and with Marangoni convection, respectively. Due to the natural 

convention the flow is directed upwards near the crucible walls and downwards in the 

crucible center, thus the system is stable.  

 

Figure IV.5. Velocity field in melt with buoyancy flow (left) and with buoyancy plus 

Marangoni flow (right) 

 

Temperature along the melt free surface from the center to the periphery increases 

from 2356 K to 2381 K (Figure IV.6), which is the reason for the Marangoni 

convection. This distribution is similar to that obtained for sapphire growth process 

[134]. 
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Figure IV.6. Temperature along the melt free surface inside the crucible. 

 

Evolution of gas convention in the growth chamber at the different boundary 

conditions was also studied. This is an important factor, because the size of the growth 

chamber increases by 2-3 times during fiber growth due to elongation of the corrugated 

pipe mounted on the seed support. The complication is that the segments of this pipe 

open abruptly calling stepwise increase of the chamber volume. This, in turn, calls the 

drop of gas pressure and, in turn, a strengthening of the cold gas inflow into the 

chamber. To simulate the evolution of gas convection in the chamber after a pipe 

segment opening the cases with the different gas flow rates from 8.9 * 10-4 up to 1 m/s 

through the hole (marked in Figure IV.7) between the hot zone and the pipe were 

considered. The gas convection intensity strongly reinforces as the flow rate through the 

hole increases. In particular, maximal gas local rate increases by the 3 orders of 

magnitude up to 28 m/s. 
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 The convection in the hot zone of the chamber is also affected by the chamber 

volume variations. This is illustrated by the 2 cases (Figure IV.8) corresponding to the 

most left and most right figures in Figure IV.7:  

a) very weak gas inflow/outflow assumed to be in steady state conditions;  

b) strong inflow/outflow assumed to correspond to the moments of opening the pipe 

segments.  

In the second case the gas convection is much more intensive comparing to the case 

a. Such strong gas convection can cause the fiber vibration. At the same time, injection 

of cold gas decreases temperature in the whole growth chamber. At the end of the 

growth the gas convection in the chamber becomes steadier as the cold incoming gas is 

mixed in the chamber with bigger volume. For this reason the gas pressure in the 

growth setup should not exceed ~1 bar. Meanwhile, the gas pressure below the 

atmospheric pressure may lead to atmosphere air leakage into the chamber and 

oxidation of the crucible. 

From the simulation and modeling results the following remarks can be addressed: 

1- Changes of the temperature distribution around the crucible and the capillary die 

violate the steady state growth conditions and lead to the instability of liquid/solid 

interface. 

2- The gas flow effect is significant for thermal conditions in the growth chamber. 

Including the crystallization zone. It may lead to the formation of inclusions in 

fibers and affect their optical quality   

3- The axial temperature gradient along the melt free surface inside the crucible 

increases with the melt level drop and can strongly affect the heat transfer at the 

vicinity of the capillary die. 

4- The dominant convection mode in the melt is the Marangoni convection, 

although buoyancy convection could be observed in the melt near the centerline 

of the furnace.  
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5- Since iridium crucible is heated very inuniformly, it is very important to be 

careful during LuAG fiber crystal growth. Otherwise the crucible will be 

damaged. 

 

 
 

Figure IV.7. The upper part of the growth chamber. The gas convection vs. the gas 

flow. Red color corresponds to the gas flow direction upwards, blue – downwards. The 

Vin values represent the gas glow rate in the gas inlet hole (see Figure IV.1). The Vmax 

values represent the highest flow rates obtained in this part of the chamber. 
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                                        a                                                                   b 

 

Figure IV.8. The gas convection rate in the growth chamber. Red color corresponds to 

the gas flow direction upwards, blue – downwards. 
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4.2. Growth of undoped LuAG fibers 
 

The growth of aluminate garnets was provided in crucibles of different design. 

Due to the high wettability of LuAG melt the standart conical crucible not provided the 

constant diameter growth (Figure IV.9a). The melt wetted the outer surface of the die in 

the case of standard crucible design. As a consequence, regulation of the fiber diameter 

was impossible and caused cracking of the crystals. In contrast, stable diameter growth 

was possible using a modified crucible with elongated capillary die, where the melt 

wetted the capillary shaper perimeter (Figure IV.9b). Meniscus was formed by the 

contact of a LuAG <111> seed of 10 – 20 cm length with the capillary die. The height 

of molten zone (h) was controlled by adjusting RF heating power and fiber pulling rate 

(Figure IV.10). Experimentally, in the case of LuAG grown under steady-state 

conditions the ratio of molten zone height fiber diameter was determined to be 1: 5-10 

depending on the growth parameters, capillary design (die shape) and the starting 

composition. Visible inclusions of iridium in the grown fibers were not observed.  

 

Figure IV 9. A sketch of LuAG fiber steady-state growth with different crucible 

designs: standart conical crucible (a) and modified crucible (b). 

Capillary die
Stable growth

a

b

Conical capillary
die

Strong LuAG
wetting



97 
 

 

Figure IV 10. View of the meniscus via CCD camera. 

 

In all cases and whatever the composition (undoped or Ce and Pr doped LuAG), 

the seeding stage at LuAG, LuAG:Ce LuYAG:Ce, LuAG:Pr growth is illustrated by the 

Figure IV 11. After the seed was connected to the crucible die the meniscus was formed 

under the capillary (Figures IV.11a, IV.11b). The melt meniscus length did not exceed 

0.05 mm (Figure IV.11). The meniscus length decrease was observed with the reaching 

of required pulling rate and stabilization of the thermal gradients when the grown fiber 

achieved the 1 cm length (Figures IV.11c, IV.11d). After the growth, the first 1 cm of 

the fiber was cut off from the rest of the fiber as its surface was wavy due to melt 

fluidity at relatively long meniscus (Figure IV.11c).  

 

 

Figure IV.11. Photos of seeding stage at LuAG-based fiber growth obtained 

using the CCD camera: a) seed moving to the capillary, b) connected to the capillary 

seed caused formation of meniscus, c) growing fiber with wavy surface due to starched 

meniscus, d) thinning of the meniscus during the growth 

Molten
zone

h

fiber

Meniscus
length
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21 undoped LuAG (Lu3Al5O12) fibers were grown (Figure IV.12). The crystals 

fibers were grown at a pulling down rate belonging to the range [0.3-0.5mm/min] and 

were 2.2mm in diameter, close to the diameter of the crucible opening. The typical 

length of the molten zone corresponding to the stationary state was about 170μm and 

the crystallization interface was flat and stable. The length of the crystals was up to 250 

mm, and 100% of the liquid was crystallized into the fibers.   

All the fibers were cut after the growth to the length of 22 cm. The best results 

have been achieved for fibers grown with the pulling rate of 300 μm/min. It should be 

noticed that the power applied to the RF heater should be increased during the growth of 

a constant diameter fiber. Such effect is caused by the increase of heat sink from the 

meniscus with the elongation of the fiber.  

 
Figure IV.12. Undoped LuAG fibers with the length over 22 cm. 

 

Often, due to the size and material the seed or seed holder have smaller heat 

conductivity comparing to the as-grown fiber. During the growth and elongation of the 

fiber the seed moves away from the crucible. Thus, the heat sink from the molten zone 
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increases (Figure IV.13). The delayed compensation of increased heat sink by 

increasing the power results in overcooling of meniscus, and appearance of fiber 

diameter oscillations (Figure IV.13). Temperature in the meniscus is higher closer to the 

edge of the capillary die (Figure IV.14). With the decrease of meniscus temperature the 

crystallization isotherm became convex towards the crucible and the melt inside the 

capillary die is partially or completely crystallized, thus, blocking the melt supply to the 

meniscus (Figure II.14b). As the issue, the melt does not wet the entire capillary die 

surface, and the diameters of the meniscus and the fiber decrease. However, quite often, 

the diameter restores without additional heating. With the decrease of the diameter the 

heat sink through the fiber reduces and the melt supply restores. With the increase of the 

power applied to the RF heater we avoid such complication and stabilize the diameter. 

Empirically we was found that, in the case of LuAG fiber, to compensate the heat sink 

increase, the power should be increased by ~0.12 % from the beginning (at the step of 

connection) till the end of the growth of 22-25 cm long fiber. 

a 

 
 
 
b 
Fiber diameter oscillations 

 
 
c 
End of the fiber                                                                       Diameter oscillations 

 
Figure IV.13. Parts of an as-grown LuAG: a) start of diameter oscillations in the 

beginning of growth; b) fibers with the diameter oscillations; c) end of the fiber with 
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the improved diameter control. 

  

  
                           a                                                                           b 

 

Figure IV.14. The molten zone region: a) the case of stable growth, b) the case of 

reduced temperature of the molten zone. The green line corresponds to the melting point 

isotherm. 

 

The additional negative factor influencing the fiber shape is the abrupt change of 

crystallographic orientation due to decrease of meniscus temperature. Such effect was 

mentioned in [135] but was not explained. After a large number of growths we found 

that there is a recrystallization of Ir on the surface of the capillary die, thus the surface 

of the die is rough. As the melting point isotherm is very close to the capillary die, there 
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is a chance of spontaneous seeding between the surfaces of the grown crystal and the 

surface of the die causing nucleation with low angle shifting from the (111) growth 

direction. The crystallographic orientation change is manifested as the shift and miso-

orientation of fiber growth direction (Fig. IV.15). More often it happens when the time-

worn crucible is used. 

 

 
 

Figure IV.15 Part of an as-grown LuAG:Ce fiber with shifted direction from the initial 

(111) seed . 

 

The opposite situation is also described [135]. With the increase of molten zone 

temperature above the acceptable range for the stationary stable regime, the diameters 

of the meniscus and the fiber exceed the diameter of the capillary die. In such case it is 

possible to obtain a drop of melt on the capillary die with higher diameter causing 

instability of the molten zone and uncontrolled increasing of the fiber diameter. 

The grown fibers of undoped LuAG can be divided into 2 groups (Figure IV.16): 

1) with the attenuation lengths <22cm 

2) with the attenuation lengths >22cm. 

The requirement of 22 cm length was elaborated basing on the length of current 

PbWO4 crystals installed in the CMS experiment at CERN. The choice of 2 mm 

diameter fibers was a compromise between the granularity (smaller diameter means 

better spatial resolution) and number of fibers in the calorimeter (smaller fiber diameter 
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means more fibers to handle to fill the given volume and also the higher number of 

photodetector channels).  
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Figure IV.16. Luminescence signal intensity vs. the distance from the excited area to the 

photodetector in the LuAG fibers at 475 nm excitation. The attenuation lengths are 

quoted in the legend. Fibers grown with the following pulling rates: 350 μm/min – 

“quadrates”, 300 μm/min – “stars”, 500 μm/min – “triangles”, 500 μm/min grown with 

[100] seed – “rhombs”. 

 

The improvement of the attenuation length at decreasing the pulling rate down to 

300 μm/min can be seen on the histogram (Figure IV.17). The averaged results give the 

8.7 cm attenuation length for fibers grown at 500 μm/min and 27.6 mm grown at 300 

μm/min. The largest attenuation length of 38 cm was obtained with the v31 fiber grown 

at 300 μm/min along the [111] direction. For an unknown reason the fiber v06 didn’t 

get to the second group though it was grown with the 300 μm/min pulling rate. Probable 
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reason can be that v06 was one of the first LuAG fibers grown from the beginning of 

experiments. The crucible was filled before with another material and contained some 

admixtures remained from the previous growth runs. The impurity may reduce the 

attenuation length of the fiber. The attenuation length of the fiber v09 with [100] 

orientation doesn’t differ from the other fibers grown with the 500 μm/min rate. 
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Figure IV.17. Histogram of the attenuation length of the LuAG fibers vs. growth rate. 
 

 

4.3. Growth of Ce- and Pr doped LuAG fibers 
 

In any compositions with the Ce3+ and Pr3+ doping we had not seen any 

composition evolution resulting in a second-phase formation. Disconnection of the fiber 

growing from the molten zone was never observed even in the case of changing growth 

parameters such as the pulling rate. High Ce concentration (Ce>0.1 at.%) cases an 
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increase the melt wetting, the interface becomes convex (Figure IV.18) and the diameter 

increases up to 2.5 mm. Figure IV.19a illustrates undoped LuAG fibers, and Figure 

IV.19b shows 0.06 at. % Ce-doped LuAG fibers. The transparent LuAG fibers have 

smooth surface (Figure IV.19a). The undoped LuAG is colorless, and Ce-activated 

fibers have different tints of green depending on the cerium concentration (Figure 

IV.19b, c, d). The coloration is caused by a broadening of Ce3+ absorption bands with 

increasing of dopant concentration. LuAG:Ce transverse slices were cut from the fibers 

and analyzed by optical microscopy (Figure IV.20). Strong Ce radial segregation in 

samples with high Ce (>0.1 at.%) concentration was observed. Difference of the Ce3+ 

(103.4 pm) atomic radii, which is larger than that of Lu3+ (86.1 pm) is a basic reason of 

activator segregation in fibers.  

Figure IV.21a and IV.21b demonstrate a cross section view of LuAG:Ce with 

0.12 at.% of activator concentration in raw material. The color contrast relates to the 

luminescence intensity difference of crystal areas. A visible concentration gradient is 

observed in the transversal cut of the fiber. The sample periphery had higher 

luminescence intensity than the middle part, which confirms higher Ce concentration in 

the periphery of the fiber. A constant concentration of activator along the fiber axis 

following the composition analysis was observed. Stable activator concentration is 

caused by the peculiarirties of melt convection and diffusion transport in the capillary 

die. At relatively high pulling rates and absence of the mixing of the melt from 

meniscus with the melt in the crucible the diffusion length Ɩ=D/v (v-growth rate, D - 

diffusion speed) is smaller than the inner length of the crucible capillary (2.5 mm). 

Therefore, variation of Ce concentration along the grown fiber was not observed. Often 

we observed gas bubbles in fibers, which appear at some critical supersaturation of the 

melt with a gas. The tendency to increase of gas bubbles quantity with the starting Ce 

concentration in the melt was observed. 
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Figure IV.18. The view of LuAG:Ce (0.12 at.% of activator concnetration) growth. 

Convex molten zone towards the fiber and strong wetting on the periphery of the 

capillary die is shown. 

 
 

 

 
 

Figure IV.19. Color evolution as a function of Ce dopant concentration in undoped 

LuAG (a), LuAG:Ce: 0.03at.% (b) , 0.06at.% (c) , 0.12 at.%. 
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Figure IV.20. LuAG:Ce tranverse cut samples optically polished for microscopy 

analysis. 

. 
 

 
Figure IV.21. Thransverse cut of LuAG:Ce sample (0.11 at.% Ce ) under x-ray 

excitation (a) and optical microscopy (b) illustating a conentration gradient of Ce. 

 

The segregation of the bubbles occurs during the liquid-solid transition leading to 

an increase in the bubble size and their subsequent diffusion towards the top driven by 

the buoyancy effect. In garnet materials, the relationship between gas bubbles and 

dopant distribution is not clear. In undoped LuAG crystals grown with the 0.3 mm/min 

pulling rate no bubbles were observed (Figure IV.22a). LuAG:Ce fibers with high 

dopant concentration contained bubbles along the growth axis (Figure IV.22b, IV.22c).  
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Figure IV.22. View of bubbles on the lateral periphery of undoped LuAG (a) and LuAG 

fibers with 0.06 at.% (b) and 0.12 at.%(c) of Ce concentration. 

 

By analogy to [7] most bubbles had a spherical shape and some of them were 

elongated along the growth direction. An analogous situation has been observed in 

sapphire fibers at growth with similarly designed crucible [136, 137]. The bubbles were 

a 

b 

c 
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well aligned along the fiber axis following optical microscopy pictures (Figure IV.23). 

At the growth with growth speed 0.3 mm/min<V<0.5 mm/min and Ce concentration in 

the melt <0.1 at.%, the crystallization interface is flat with only one lateral layer of 

bubbles. The distance from the lateral surface of the fiber to the bubble layer is ~93 μm 

along the whole fiber (Figure IV.24). The rest of the crystal is bubble-free. Bubbles 

formation is minimized in the regions with smaller component of the melt velocity 

above crystallization interface. In the case of faster growth, constitutional undercooling 

supports bubbles distribution. LuAG:Ce grown with low rate had stable diameter and 

smooth surface due to flat solid/liquid interface. For bubble-free growth it is significant 

to control the growth conditions. Following the obtained results, lowering of growth 

rate down to v≤300 μm/min is a way to get LuAG fiber with low bubbles concentration 

and reasonable quality. 

 

 

Figure IV.23. Bubbles oriented in fiber along the growth axis. 
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Figure IV.24. Transverse cut of Ce-doped LuAG, undoped LuAG, pulling rate = 

0.3 mm/min (a), Ce = 0.06 at.%, pulling rate = 0.3 mm/min (b). 

 

So, to continue our program, 19 LuAG:Ce and 2 LuAG:Pr fibers were grown 

with the pulling rate of 300 μm/min (Figure IV.25). After the growth process, all the 

fibers were cut to the length of 22 cm. The growth conditions for these fibers were 

modified compared to the undoped LuAG fibers. During the growth of doped LuAG 

fibers the power increase was by 3 times larger than in the case of undoped fibers 

growth (~0.35 % of power increase relatively to the seeding stage). Obviously, this 

significant difference was the issue of the larger attenuation length of Ce-doped fibers 

and, as the issue, stronger radiative heat sink through the fibers. The best results had 

been achieved for the fibers with the 0.1 at.% Ce concentration grown with the pulling 

rate 300 μm/min. Higher Ce segregation to the surface of fibers at higher Ce 

concentration could affect the transmission. Even bubbles in the volume of fibers did 

not influence the attenuation length so much.  



110 
 

 

 

 
 
Figure IV.25. LuAG:Ce (upper)and LuAG:Pr (lower) fibers with the length over 22 cm. 

 

With the activated fibers we faced the problem of periodical inclusions along the 

fibers (this was observed in some undoped fibers as well). These places could be 

visually observed in the transmitted light. These regions are clearly manifested on the 

plots of signal intensity vs. the distance between the irradiated place and photodetector 

(Figure IV.26). Comparing the plots of vc02 (reference) fiber with no visible inclusions, 

and those of vc09 and vc10 fibers containing inclusions, one can see the uniform decay 

of light intensity on the distance for vc02, and the splashes in the rest of plots 

corresponding to the places of inclusions (denoted by the arrows). We attribute these 

inclusions to the instability of thermal field inside the chamber calling the periodical 

capture of admixtures by the crystal. Meanwhile, the presence of inclusions not always 
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means the reduced attenuation length. For instance, vc10 fiber with strongly 

inhomogeneous dependence shows the higher overall intensity at the distances > 5 cm 

than the vc09 fiber without visible inclusions.  

 
Figure IV.26. Luminescence signal intensity vs. the distance from the excited area to the 

photodetector in the LuAG:Ce vc02, vc09, vc010, vc16, vc21 fibers at 350 nm 

excitation. The intensity slope corresponds to the visible inclusion on the photo. 

 

The fibers vc16 and vc21 grown in optimized thermal conditions have smoother 

attenuation curve at 350 nm excitation. Meanwhile, fiber vc10 do not have such obvious 

drop of intensity at 5 cm length at 475 nm excitation in contrast to a 350 nm excitation 

(Figure IV.26, IV.27). Fiber vc02 at the LED bench shows the moderate 16.7 cm, but 
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the vc09 and vc10 possess the 30.5 cm and 24.2 cm attenuation lengths. The fiber vc10 

had the larger visible inclusion than those in vc09 and vc10.  
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Figure IV.27. Luminescence signal intensity vs. the distance from the excited area to the 

photodetector in the LuAG fibers at 475 nm excitation. The attenuation lengths are 

quoted in the legend. 

 

There is the tendency to improvement of the attenuation length during the course 

of thermal conditions optimization. The attenuation length improvement from 10 - 15 to 

30 - 40 cm was achieved. As the example, Figure IV.28 represents the attenuation 

results for 4 typical fibers grown before (vc1, vc2) and after (vc16, vc21) optimization 

(the fibers are sequentially numbered starting from the beginning of the experiments). 

We suppose the difference is due to the better heat insulation of the crystallization zone 
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ensuring the improved stability of the thermal gradient in the growth chamber. To some 

extent this is the issue of gas convection control during the growth process. As it was 

shown by the modeling of the gas convection inside the chamber in the section 4.1, it 

may influence the growing conditions, especially in the beginning of growth. As a 

consequence, the fibers at the beginning of the growth contain periodical light scattering 

inclusions. For example, the splashes are obviously seen at 2 cm, 3 cm and 7 cm on the 

attenuation graph of fiber v09 (Figure IV.26). Such imperfections are absent in the vc16 

and vc21 fibers grown under the optimized gas convection. Weak splashes seen at 10 

cm and 12 cm in the most of fibers are experimental artifacts and not relate to fiber 

quality. 

Pr-doped fibers attenuation lengths are significantly worse than those in 

LuAG:Ce (Figure IV.28). LuAG:Pr were grown under the same optimized conditions. 

Fibers vp01 and vp03 has [111] and [100] orientation, correspondingly.  

 

 
 

Figure IV.28. Luminescence signal intensity vs. the distance from the excited area to the 
photodetector in the LuAG:Ce at 475 nm excitation and LuAG:Pr fibers at 250 nm 

excitation. 
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4.4. Effect of thermal annealing on LuAG and LuAG:Ce attenuation lengths 
 

To investigate the effect of annealing on the attenuation length, 8 fibers (4 

undoped LuAG and 4 LuAG:Ce) grown with different pulling rates and crystallographic 

orientations were selected. All the samples were annealed during 12 hours in air 

atmosphere at 1200°C (Table 3). The effect of the annealing on attenuation length is the 

opposite in LuAG and LuAG:Ce. LuAG attenuation length not changes significantly or 

deteriorates. The attenuation length of LuAG:Ce is significantly improved, especially 

for fibers grown with the 300 μm/min rate. The biggest attenuation length of more than 

1 meter is achieved in LuAG:Ce grown along [100] direction (Figure IV.29). Therefore, 

the annealing in air significantly improves the attenuation length of Ce-doped LuAG 

fibers. Meanwhile, another annealing regime should be found for undoped LuAG fibers. 

 

Table 3. Annealing effect on the attenuation length. 

Crystal LuAG LuAG:Ce 

Growth rate, μm/min 300 500 300 500 

Growth orientation [100] [111] [100] [111] [100] [111] [100] [111] 

Attenuation 
length, cm 

Before 15 21 9,5 29 13 17 13 18 

After 14 11 7 24 104 50 14 23 
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Figure IV.29. Effect of annealing on attenuation of the LuAG and LuAG:Ce fibers at 

475 nm excitation. The attenuation lengths are indicated. 

 

 

 

 

4.5. Growth of YAG:Ce fibers 
 

Ce-doped YAG single crystal fibers were grown under stationary stable regime.  

The seeding stage was different from the case of LuAG-based fibers growth due to the 

smaller size of the crucible die. The melt meniscus thickness did not exceed 0.05 mm 

(Figure IV.30). The fibers of YAG:Ce grown with the length of 45-60 cm are presented 

in Figure IV.31. 
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Figure IV.30. The photos of seeding stages at YAG:Ce growth obtained using the 

CCD camera: seed moving towards the capillary (a), connection of the seed to the 

capillary L = 0 cm (b); pulling of the fiber at L = 0.5 mm (c), L = 1.5 mm (d), L = 2 mm 

(e). 

 

 
 

Figure IV.31. YAG:Ce fibers ( 45- 60 cm length). 
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For the attenuation measurements the fibers were cut (into 2-3 parts) to fit the 

LED bench dimensions. The measured attenuation lengths are accumulated in the 

Table 4. YAG:Ce fibers showed smaller attenuation lengths compared to LuAG:Ce 

fibers, however, the results are acceptable taking into account the smaller diameter of 1 

mm of YAG:Ce fibers (Figure IV.32). Note the good reproducibility of the results from 

fiber to fiber. 
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Figure IV.32. Luminescence signal intensity vs. the distance from the excited area to the 

photodetector in the YAG:Ce fibers at 475 nm excitation. The physical length of the 

fibers is quoted in the legend. 
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Table 4. Attenuation lengths of YAG:Ce fibers at 475 nm excitation. 

yvc Part of the fiber  Length of the 
sample, cm 

Attenuation 
length, cm 

5 A beggining 22 9.2 
5 B end 22 9.6 
6 A beginning 22 9.1 
6 B end 22 9.7 
11 A beginning 22 9.9 
11 B end 20 10.3 
14 A beginning 20 11.8 
14 B middle 20 13.9 
14 C end 20 14.5 
16 A beginning 22 11.3 
16 B end 20 11.3 

 

 

4.6. Homogeneity plots 
 

Homogeneity plots were obtained with the LED setup. These curves are taken 

from the two bottoms of the fiber by two oppositely settled PMT at the same time and 

averaged by analogy to [6]. Thus, it is possible to evaluate the intensity of luminescence 

along the fiber.  

From the homogeneity plots of undoped LuAG we can see the fibers with better 

attenuation lengths (b12, v19, v28, v30, v31) demonstrate more flat dependences due to 

the good transmittance of the fiber, while the fibers with bad transparency the signal 

from the middle of the fiber is 3-5 times weaker than the signal registered from the fiber 

ends (Figure IV.33). In the case of LuAG:Ce the luminescence intensity plot is more 

smooth than that in undoped LuAG, which coincides with the better transparency of the 

Ce-doped fibers (Figure IV.34.). The reason of the low intensity of some points at the 

distance 10-15 cm is measurement artifacts not related to the fiber quality. 
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Figure IV.33. The homogeneity plot for LuAG fibers at 475 nm excitation. 

 

 
Figure IV.34. The homogeneity plot for LuAG:Ce fibers at 475 nm excitation. 
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In the case of LuAG:Pr the situation is similar to the undoped LuAG, the 

transmission of the signal from the middle part of the fiber to its ends is shown in Figure 

IV.35. The vp01 attenuation length was 22 cm and the one for fiber vp03 was 25 cm 

(the latter fiber was not cut to 22 cm). The non-symmetrical shape of the attenuation 

curves reflects the inhomogeneity distribution of Pr3+ dopant along the fibers. In other 

words, the registered luminescence intensity is higher in the ends of the fiber with 

higher Pr3+ concentration.  
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Figure IV.35. The homogeneity plot for LuAG:Pr fibers at 250 nm excitation 
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In the YAG:Ce the homogeneity differs from sample to sample (Figure IV.36), 

but the shapes of attenuation curves are more similar, if to compare them with the 

spread of the curves for the LuAG:Ce fibers (Figure IV.34). This can be an issue of 

higher activator distribution coefficient in YAG:Ce. It can be also related to using the 

standard conical crucible, where the diameter of fibers could be changed with lowering 

of melt level in crucible during the growth. While the melt column height drops the 

wetting of the meniscus decreases as well. As a consequence, the molten zone height  

changes. However, the attenuation length results taken from one side of the fiber 

demonstrated not significant difference between the samples as it was shown above. 
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Figure IV.36. The homogeneity plot for YAG:Ce fibers at 475 nm excitation. 
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4.7. Activator distribution in the LuAG:Ce and LuYAG:Ce fibers. 
 

Low Ce3+ distribution coefficient in crystals is a serious negative factor for LuAG 

and other rare earth garnet hosts. Meanwhile, in the micro-PD method, a substantial 

gradient of the Ce concentration might appear also in the radial direction [68] and have 

a negative impact on the scintillation characteristics. Cathodoluminescence microscopic 

imaging of the fiber cross section is the easiest method to evaluate the activator 

distribution in the fibers (if to presume the proportionality between the activator 

concentration and the emission intensity).  

For the cathode luminescence experiments we used samples from LuAG:Ce 

fibers grown at the different rates. For reference we used Lu3-xYxAl5O12:Ce 

(LuYAG:Ce) sample with the Y content 85 at.% and Ce concentration 0,15 at % grown 

under the same conditions. All the regions, from which the samples were cut, are ~1 cm 

distant from the beginning of the fibers. Regarding the brightness distribution at the 

shots the most of activator is concentrated at the fiber periphery (Table 5.).  

Meanwhile, the periphery-to-center difference in the cathodoluminescence 

intensity is ~ 3 times independently on the growth rate. As one would expect, quite 

another picture is observed with the LuYAG:Ce grown with 300 μm/min growth rate. 

The intensity variation along the radii does not exceed 2 times just like in the LuAG:Ce 

fiber grown with 500 μm/min,. Accounting that in LuAG:Ce grown with lower pulling 

rates luminescence attenuation length is larger, the smoother distribution of activator 

across the diameter of the fiber is reguired. With decrease of pulling rate below 350 

μm/min at growth of mixed LuYAG:Ce one may achieve more smooth Ce radial 

distribution.. Therefore, transfer to mixed crystals, such as LuYAG:Ce, is a relevant 

way to improve the scintillation parameters of μ-PD grown fibers by controlling Ce 

segregation behavior and can be a good way as future work. 
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Table 5. Photos and radial distributions of cathodoluminescence intensity in some 

fibers.  

LuAG:Ce C35 350 
μm/min LuAG:Ce C19 500 μm/min LuYAG:Ce C6 350 μm/min 

 

-0,8 -0,4 0,0 0,4 0,8
0,0

0,2

0,4

0,6

0,8

1,0

 

 

N
or

m
al

iz
ed

 in
te

ns
ity

Diameter, cm

 

-0,8 -0,4 0,0 0,4 0,8
0,0

0,2

0,4

0,6

0,8

1,0

 

 

N
or

m
al

iz
ed

 in
te

ns
ity

Diameter, cm

 

-0,8 -0,4 0,0 0,4 0,8
0,0

0,2

0,4

0,6

0,8

1,0

 

 

N
or

m
al

iz
ed

 in
te

ns
ity

Diameter, cm

 
 

 

4.8. Results of LuAG and LuAG:Ce fibers testing for calorimetry applications. 
 

4.8.1. Construction of the test beam setup 

In order to test the grown undoped and Ce-doped LuAG fibers, 64 samples of 22 

cm length and 2 mm diameter were embedded into a brass absorber (25 x 17 x 7 cm3) 

[4]. Eight undoped LuAG fibers and part of the 56 LuAG:Ce fibers tested were taken 

from the fibers pulled from the melt in the frame of this Phd thesis work (Figure IV.37) 

and the rest of Ce-doped fibers were grown by Fibercryst. One end of fibers was 

optically coupled to a Ketek SiPM using standard optical grease whereas a LED-based 

light injection system was used to flash a reference signal into the opposite end of each 
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fiber, providing a system to monitor the channel response. The signals from the 8 x 8 

array of SiPMs were readout with two PADE boards of 32 channels, allowing for an on-

line data monitoring using a standard PC. An additional module made of a 3 x 3 matrix 

of BaF2 crystals was positioned on the back of the fiber module to provide information 

on shower leakage. The whole module was installed in the T-1041 beam line at the 

Fermilab Test Beam Facility in Chicago (USA) and the performance of the module has 

been tested using electrons and pions in the 2-32 GeV energy range.  

 

 

   

 
 

Figure IV.37. Picture of the calorimetric module, the fourth layer from the right contains 

the undoped LuAG fibers. 
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4.8.2. Cherenkov and scintillating fiber response. 

The pulses obtained from all the channels were averaged and compared. The 

undoped fibers registering the Cherenkov signal had shown faster and narrower pulse 

shape comparing to the Ce-doped fibers registering the scintillation signal (Figure 

IV.38).  

The response of the fibers on electrons and pions of energy between 2 – 32 GeV was 

linear in the range 2 – 8 GeV. At the higher energy range there was no significant 

deviation due to increasing of shower leakage (Figure IV.39).  

 

 
Figure IV.38 Average normalized pulse shapes of undoped LuAG (blue) and Cedoped 

LuAG (green) fibers. 
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Figure IV.39. Position of electron peak reconstructed by summing up the signal of all 

the fibers as a function of beam energy. Deviation from linearity at high energies is due 

to the higher longitudinal shower leakage. 
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Summary 

We have demonstrated that by the optimization of the pulling rate and Ce 

concentration of the LuAG single crystal fiber grown by μ-PD, significant improvement 

of the optical quality of the fibers can be achieved. Low Ce concentration (≤0.1at%) and 

low pulling rate (≤0.32mm/min) were identified as a good compromise to get a good 

surface quality and light propagation. Moreover high pulling rate (>0.3 mm/min) and 

high Ce concentration (>0.1at%) strongly affect the surface quality and increase the 

attenuation through the fiber. We have also grown Pr-doped LuAG and Ce-doped 

LuAG, Ce-doped YAG and mixed Ce-doped LuYAG fibers single crystal. The grown 

fibers are transparent without visible macroscopic defects such cracks. The optical 

attenuation of the scintillation light within the fiber is a critical parameter, since the 

scintillating signal has to propagate along all the fiber. The optical attenuation is 

connected to the crystal quality and surface roughness. The defects also strongly affect  

the fiber quality.  
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Chapter V: Results & Discussion: 
Growth and characterization of Y3Al5-xGaxO12:Ce mixed scintillation crystals. 
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The promising results regarding the improvement of activator distribution in 

fibers were shown in the previous section. Y3(Al1-xGax)5O12:Ce crystals are the another 

example of mixed crystal formed by isovalent cation substitution. A series of crystals 

were grown in the whole Al/Ga substitution range. Some of crystals contain significant 

number of cracks, as one can see in Figure V.1. All the crystals were exposed to post 

growth annealing in O2-containing atmosphere at 1500 ºC. Coloration weakened after 

this procedure, certifying, probably, the compensation of oxygen vacancies which was 

formed at crystal growth in inert atmosphere. 

 

5.1. Structure and composition of Y3Al5-xGaxO12:Ce solid solutions 
 

Y3(Al1-xGax)5O12:Ce system demonstrates a continuous series of solid solutions 

(Figure V.2). The lattice parameter smoothly increases with Ga content (Figure V.3). 

No visible deviation from Vegard’s law was observed for YAG and YAGG, contrary to 

the results in [138]. Accordingly to XRD data, Ga fraction in crystals is 15.4, 36.6, and 

66.2% at growth from melt with the Ga fractions 20, 40, 60%, correspondingly. 

Therefore, Al and Ga distribution coefficients are around 1. Besides this, Y3+ or 

trivalent lanthanide cation may occupy Al3+ or Ga3+ sites in garnet lattice (‘‘antisite 

defects’’) [122,139].  
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Figure V.1. As-grown YAG:Ce (A), YAGG:Ce (B,C), YGG:Ce (D) crystals. 
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Figure V.2. XRD patterns of the crystals. 
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Basically, formation of antisite defects in rare-earth garnets is considered as a 

negative factor leading to deterioration of light yield and increase of slow component 

contribution in scintillation decay [140, 116]. Probability of this substitution increases at 

reduction of the difference between ionic radii of Al3+ (Ga3+) on the one hand, and Y3+ 

or lanthanide on the other hand. It was shown [122] that in YGG, Y excess in crystal is 

formed due to Ga3+ substitution with Y3+ in octahedral positions. That is, real 

composition of crystal should be determined by the formulae Y3(YxGa2-x)Ga3O12 

[122,139]. 

 

 

Figure V.3. Dependence of lattice constant vs. Ga fraction in  

Y3(Al1-xGax)5O12:Ce crystals. Filled symbols correspond to experimental values, 

hollow symbol corresponds to the data taken from [122]. 

 

Lattice constant of stoichiometric YGG is 12.274 A˚, and it increases with x in 

case of Y3(YxGa2-x)Ga3O12 substitution [122]. In accordance with these data, the 12.295 
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A˚ lattice constant value in the YGG crystal grown in the present work corresponds to x 

around 0.1, that is, 5% of Ga3+ in octahedral sites is substituted with Y3+. However, this 

is a rough estimation, because the data in [122] were obtained on powders or crystals 

grown from solution. Additionally, in our case, crystals also contain large Ce3+ cations, 

which may increase the lattice constant. As a sequence, one can see the deviation of the 

experimental point for YGG from the Vegard’s law in Figure V.2. Since no such 

deviation is observed in mixed crystals, it is reasonable to conclude that there is no 

noticeable quantity of antisite defects in YAG and YAGG. 

ICP-AES data give the detailed picture of cation distribution in solid solutions. 

The ICP-AES and XRD data on Ga/Al + Ga ratio coincide within ~1% (see the Ga/Al + 

Ga columns in Table 6). Some increase in Y/(Al + Ga) ratio is observed with Ga content 

(Table 6). The Y/Y + Al + Ga ratio clearly increases from YAG to YGG confirming the 

increase of antisite defect quantity. However, only ~1% Y excess above the theoretical 

value (3/8 = 0.375) is obtained by ICP-AES in YGG.  

Measurements of Al and Ga concentrations in different parts of crystals show 

fairly small deviations of Al/Ga ratio along the crystals indicating good homogeneity of 

the grown crystals. Ce segregation coefficient increases with Ga addition into the host. 

The obtained values indicate non-monotonous dependence of keff (Ce) vs. Ga content, 

however, much more experimental points is needed to make an unambiguous 

conclusion.  

 

 

 

 

 

 

 

 

 

 



135 
 

 

Table 6.Fractions of the host atoms in the YAGG:Ce crystals. 

Melt 

composition 

Measured concentrations (at.%) Ga/(Al + Ga) Y/(Y + 

Al + Ga) 

keff 

(Ce) Y Al Ga ICP-AES XRD 

Y3Al5O12:Ce 

Top 13.11 22.59 – 0 0 0.367 0.075 

Bottom 13.52 23.47    0.365  

Y3(Al0.8Ga0.2)5O12:Ce 

Top 13.13 18.73 4.03 0.1771 0.154 0.366 0.074 

Bottom 13.37 19.25 4.06 0.1742  0.364  

Y3(Al0.6Ga0.4)5O12:Ce 

Top 13.40 14.96 8.24 0.3550 0.366 0.368 0.095 

Bottom 13.58 15.23 8.37 0.3546  0.367  

Y3(Al0.4Ga0.6)5O12:Ce 

Top 13.92 8.24 15.43 0.6519 0.662 0.370 0.133 

Bottom 14.05 8.27 15.48 0.6518  0.372  

Y3Ga5O12:Ce 

Top 14.74 – 23.48 1 1 0.386 0.166 

Middle 14.82  23.79   0.384  

Bottom 14.87  23.74   0.385  

 

 

5.2. Scintillation and luminescence properties 
 

Light yield of mixed crystals reaches 130% of the YAG:Ce value (Figure V.4) 

contrary to [122] where decrease of light output efficiency with Ga addition was 

observed. No yield is registered in YGG:Ce, the same result was reported for Ce-doped 

lutetium– and gadolinium–gallium garnets [18]. In addition, the trend of light yield vs. 

Ga fraction fairly coincides with the results on Lu3(Al1-xGax)5O12:Ce presented in the 
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same publication – in both cases the maximal values are observed at x = 0.4. Increase of 

light yield magnitude in mixed crystals is an important practical result opening a room 

for further improvement of scintillation characteristics by optimization of host 

composition, activator concentration, and choice of other activators (e.g., Pr3+) (Figure 

V.5). 

 

 

Figure V.4. Light yield in Y3(Al1-xGax)5O12:Ce vs. Ga fraction 

 

Mechanisms of the observed light yield improvement are evidently similar to 

those proposed for Al–Ga mixed Lu garnet crystals [141]. It was claimed there that light 

yield may increase with Ga3+ fraction due to the bandgap change (‘‘bandgap 

engineering’’), such that energy levels of shallow defects is no longer in the forbidden 

gap where electrons can be trapped. The principles of ‘‘bandgap engineering’’ may be 

valid for yttrium garnets with similar electronic structure. By the analogy, further Ga3+ 

addition leads to the situation when Ce3+ 5d levels are buried inside the conductance 

band that results in absence of Ce3+ luminescence in both Lu3Ga5O12:Ce and 
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Y3Ga5O12:Ce. Considering the behavior of light yield in solid solutions, it’s worth to 

note also the work [142] where the increase in light yield in LuYAP crystals at Y/Y + 

Lu = 0.3–0.7 was attributed to creation of atomic clusters enriched by one of the 

components of mixed crystal. As a sequence, modulation of crystal potential by the 

boundaries of such clusters may decrease the diffusion length of secondary electrons 

and holes and promote the energy transfer efficiency from the crystal lattice to activator 

ions. Deeper study of short-range ordering in crystals and luminescence mechanisms in 

them should check the eligibility of the latter mechanism in Al/Ga substituted garnets 

and other mixed scintillators. 

X-ray luminescence spectra of some crystals are presented in Figure V.5. The 

curves are obtained in the same conditions, and one may compare relative intensities of 

the peaks. Luminescence band shifts by ~50 nm at addition of 66% of Ga into YAG:Ce 

is in agreement with [74, 120]. At the same time, only host weak luminescence is 

observed in YGG:Ce. 

 

 
 

Figure V.5. X-ray excited luminescence spectra of Ce-doped YAG, YGG, and YAGG 

crystals. 
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Summary 

A continuous series of solid solutions is formed in Y3(Al1-xGax)O12 system. 

Lattice constant monotonously increases with Ga fraction in crystals. Deviation of 

lattice constant value from Vegard’s’ law, and increase of the measured Y/Y + Al + Ga 

ratio evidences existence of ~1% of antisite defects in YGG formed by substitution of 

Ga3+ by Y3+ in octahedral positions. At the same time, for the rest of crystals this ratio 

does not exceed the theoretical value of 3/8 = 0.375. Light output of mixed crystals 

reaches 130% of the YAG:Ce value at x = 0.4. Ce3+ luminescence band is blue-shifted 

by ~50 mm at introduction of 66% of Ga3+ into YAG:Ce, and only host weak 

luminescence is observed in YGG:Ce. 
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Conclusion and future works 

 

In this PhD thesis manuscript, the background, motivation, theory, methodology, 

and results of this research have been presented and discussed. There is no end in 

pursuing high quality performed scintillating materials and the development of new 

detection application based on material design. Up to now, four directions can be 

forward: 

Elaboration (invention) of new host materials, including new chemical composition  

1) Improvement of the quality and the performance of the existent materials 

especially the oxides family 

2)  Development of the growth process allowing the obtainment of high quality 

single crystals  

3) Development of the numerical simulation of the relevant phenomena, not 

currently available in any industrial software. In our case, this concerns the 

participating (semi-transparency) of garnet scintillating crystals, dopant and 

impurity chemical segregation (leading to bubbles and interface instability). A 

special research effort will be on the simulation of dopant segregation (here Ce), 

which is a completely new field in crystal growth numerical modelling. 

In the frame of this thesis, we have grown scintillators crystals under steady state 

conditions and Ce3+ dopant was used as activator element. In addition, micro-pulling 

down technique (μ-PD) was used to grow undoped and Ce and Pr doped scintillator 

crystal fibers to develop new dual-readout calorimeter design based on fiber-shaped 

detectors.  

By micro-pulling down technique we have successfully grown LGSO mixed crystal 

for the first time. My studies were the first to systematically show the effect of Ce 

concentration and the Lu/Gd ratio on the structure stability and scintillating 

performance on LGSO shaped mixed crystal grown by μ-PD technique. A choice of 



140 
 

host composition and activator concentration in LGSO:Ce crystals has to be aimed at 

minimization of Ce3+ content in CeO6 polyhedra and energy transfer between Ce1 and 

Ce2 luminescent centers. The Gd atoms preferably occupy sevenfold site in LGSO with 

C2/c symmetry. In spite of the low melting temperature, in comparison to YAG and 

LuAG fibers, it was quite difficult to stabilize the growth and obtain long LGSO:Ce 

(length =40 cm) long  fibers. Though all the crystals contain single monoclinic C2/c 

phase, only the first parts (1-4 cm in length) of them are transparent and contain no 

visible cracks and few inclusions. The difficulties related to the control of the growth 

process can be related to the non congruent melt behavior of the LGSO solid solution, 

possible melt decomposition because of SiO2 volatility and also to the strong 

segregation of Ce3+ dopant. So it compromises the chance to develop calorimeter based 

on LGSO single crystal fibers design. But the scintillation performance (light yield) and 

the afterglow in LGSO:Ce shaped crystals grown in the frame of thesis are better than 

the bulk crystal grown by Czochralski technique which is encouraging for future work. 

We have demonstrated that by the optimization of the pulling rate and Ce 

concentration of the LuAG single crystal fiber grown by μ-PD, significant improvement 

of the optical quality of the fibers can be achieved. Low Ce concentration (≤0.1 at.%) 

and low pulling rate (≤0.3mm/min) were identified as a good compromise to get a good 

surface quality and light propagation. Moreover high pulling rate (>03mm/min) and 

high Ce concentration (>0.1 at.%) strongly affect the surface quality and increase the 

attenuation through the fiber. Photoluminescence and scintillation experiments showed 

effective attenuation lengths in different LuAG fibers. Surface diffusion and bubbles are 

favoring the light escape through lateral faces. So, growing Ce-doped LuAG fibers with 

low pulling rate is essential to pull good optical quality fibers and good light 

propagation. The results concerning Pr-LuAG are unsatisfactory. Even the Pr-grown 

fibers present a good qualitative visible quality, but the attenuation results are not good 

compared to the Ce-doped LuAG. YAG:Ce is mechanically very stable, inexpensive, 

and easy to grow, we succeeded to pull transparent single crystal fibers to look for the 

best composition to develop the concept of an inorganic scintillating fiber and SiPM  
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based particle tracking calorimeter. The obtained attenuation results are encouraging 

and it can be also a good way to use Ce-doped YAG fiber for calorimeter. The research 

is still under progress and more complementary experimental data are needed. The test 

beam results obtained on a sampling calorimetric module made of brass filled with 

undoped and Ce-doped LuAG crystal fibers has been done in the frame of collaboration 

with CERN and Fermi lab in USA. We have shown the first proof of fiber concept for 

the implementation of this technology in real calorimeters and address the different 

challenges related to high energy physics.We did a great effort to improve the light 

propagation in undoped and Ce-doped LuAG fiber, the next step will be the study of the 

radiation hardness of garnet crystal fibers such the degradation of their optical 

properties which is limited to about 10% after an integrated exposure of 1 MGy. 

This work was also focused at two Ce-doped mixed systems with the garnet 

structure – (Lu1-xYx)3Al5O12 and Y3(Al1-xGax)O12. Following the cathodoluminescence 

data achieved in (Lu1-xYx)3Al5O12 fibers samples this compound should be grownwith 

lower then 350 μm/min pulling rate to obtain smoother Ce radial distribution. The study 

of Y3(Al1-xGax)O12 system as a function of aluminum substitution by gallium confirms 

the existence of continuous solid solution range between YAG and YGG. The set of 

crystals were grown from the melt by Czochralski technique, and their qualities depend 

on the starting Ga concentration in the melt (initial charge). Light output of mixed 

crystal reaches 130% of the YAG:Ce value at x=0.4. The obtained results increase the 

attraction of mixed garnets for scintillator applications and promote deeper study of 

scintillating crystals based on solid solutions. 
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