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Résumé

Au cours des dernières années, la cartographie urbaine 3D a suscité un intérêt croissant pour
répondre à la demande d’applications d’analyse des scènes urbaines tournées vers un large
public. Conjointement les techniques d’acquisition de données 3D progressaient. Les travaux
concernant la modélisation et la visualisation 3D des villes se sont donc intensifiés.

Des applications fournissent au plus grand nombre des visualisations efficaces de modèles
urbains à grande échelle sur la base de des imageries aérienne et satellitaire. Naturellement, la
demande s’est portée vers des représentations avec un point de vue terrestre pour offrir une
visualisation 3D plus détaillée et plus réaliste. Intégrées dans plusieurs navigateurs géogra-
phiques comme Google Street View, Microsoft Visual Earth ou Géoportail, ces modélisations
sont désormais accessibles et offrent une représentation réaliste du terrain, créée à partir des
numérisateurs mobiles terrestres.

Dans des environnements urbains, la qualité des données obtenues à partir de ces véhicules
terrestres hybrides est largement entravée par la présence d’objets temporairement statiques ou
dynamiques (piétons, voitures, etc.) dans la scène. La mise à jour de la cartographie urbaine via
la détection des modifications et le traitement des données bruitées dans les environnements
urbains complexes, l’appariement des nuages de points au cours de passages successifs, voire
la gestion des grandes variations d’aspect de la scène dues aux conditions environnementales
constituent d’autres problèmes délicats associés à cette thématique. Plus récemment, les tâches
de perception s’efforcent également demener une analyse sémantique de l’environnement urbain
pour renforcer les applications intégrant des cartes urbaines 3D.

Dans cette thèse, nous présentons un travail supportant le passage à l’échelle pour la car-
tographie 3D urbaine automatique incorporant la reconnaissance et l’intégration temporelle.
Nous présentons en détail les pratiques actuelles du domaine ainsi que les différentes méthodes,
les applications, les technologies récentes d’acquisition des données et de cartographie, ainsi
que les différents problèmes et les défis qui leur sont associés. Le travail présenté se confronte à
ces nombreux défis mais principalement à la classification des zones urbaines l’environnement,
à la détection automatique des changements, à la mise à jour efficace de la carte et l’analyse
sémantique de l’environnement urbain.

Dans la méthode proposée, nous effectuons d’abord la classification de l’environnement
urbain en éléments permanents et temporaires. Les objets classés comme temporaire sont ensuite
retirés du nuage de points 3D laissant une zone perforée dans le nuage de points 3D. Ces
zones perforées ainsi que d’autres imperfections sont ensuite analysées et progressivement
éliminées par une mise à jour incrémentale exploitant le concept de multiples passages. Nous
montrons que la méthode d’intégration temporelle proposée permet également d’améliorer
l’analyse sémantique de l’environnement urbain, notamment les façades des bâtiments. Les
résultats, évalués sur des données réelles en utilisant différentes métriques, démontrent non
seulement que la cartographie 3D résultante est précise et bien mise à jour, qu’elle ne contient
que les caractéristiques permanentes exactes et sans imperfections, mais aussi que la méthode est
également adaptée pour opérer sur des scènes urbaines de grande taille. La méthode est adaptée
pour des applications liées à la modélisation et la cartographie du paysage urbain nécessitant
une mise à jour fréquente de la base de données.

Mots-clés : cartographie urbaine, données LiDAR, nuages de points 3D, segmentation,
classification, multi-passages, détection des changements, mise à jour incrémentale, analyse
sémantique.
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Abstract

Over the years, 3D urban cartography has gained widespread interest and importance in
the scientific community due to an ever increasing demand for urban landscape analysis for
different popular applications, coupled with advances in 3D data acquisition technology. As a
result, in the last few years, work on the 3D modeling and visualization of cities has intensified.

Lately, applications have been very successful in delivering effective visualizations of large
scale models based on aerial and satellite imagery to a broad audience. This has created a
demand for ground based models as the next logical step to offer 3D visualizations of cities.
Integrated in several geographical navigators, like Google Street View, Microsoft Visual Earth
or Geoportail, several such models are accessible to large public who enthusiastically view the
real-like representation of the terrain, created by mobile terrestrial image acquisition techniques.

However, in urban environments, the quality of data acquired by these hybrid terrestrial
vehicles is widely hampered by the presence of temporary stationary and dynamic objects
(pedestrians, cars, etc.) in the scene. Other associated problems include efficient update of
the urban cartography, effective change detection in the urban environment and issues like
processing noisy data in the cluttered urban environment, matching / registration of point clouds
in successive passages, and wide variations in environmental conditions, etc. Another aspect
that has attracted a lot of attention recently is the semantic analysis of the urban environment
to enrich semantically 3D mapping of urban cities, necessary for various perception tasks and
modern applications.

In this thesis, we present a scalable framework for automatic 3D urban cartography which
incorporates recognition and temporal integration. We present in details the current practices in
the domain along with the different methods, applications, recent data acquisition and mapping
technologies as well as the different problems and challenges associated with them. The work
presented addresses many of these challenges mainly pertaining to classification of urban envi-
ronment, automatic change detection, efficient updating of 3D urban cartography and semantic
analysis of the urban environment.

In the proposed method, we first classify the urban environment into permanent and tem-
porary classes. The objects classified as temporary are then removed from the 3D point cloud
leaving behind a perforated 3D point cloud of the urban environment. These perforations along
with other imperfections are then analyzed and progressively removed by incremental updating
exploiting the concept of multiple passages. We also show that the proposed method of temporal
integration also helps in improved semantic analysis of the urban environment, specially building
façades. The proposed methods ensure that the resulting 3D cartography contains only the exact,
accurate and well updated permanent features of the urban environment. These methods are
validated on real data obtained from different sources in different environments. The results
not only demonstrate the efficiency, scalability and technical strength of the method but also
that it is ideally suited for applications pertaining to urban landscape modeling and cartography
requiring frequent database updating.

Keywords : urban cartography, LiDAR data, 3D point clouds, segmentation, classification,
multi-passages, change detection, incremental updating and semantic analysis.
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Résumé étendu : contexte et synthèse du
mémoire

Contexte

Mon travail doctoral a été réalisé au sein de l’équipe de recherche PerSyst (Perception Systems :
systèmes de perception) de l’Institut Pascal (UMR 6602 CNRS/UBP), une unité mixte de
recherche du CNRS (Centre National de la Recherche Scientifique), de l’Université Blaise Pascal
et de l’IFMA (Institut Français de Mécanique Avancée). PerSyst fait partie de l’axe ISPR (Image,
Systèmes de Perception, Robotique) dont les recherches sont centrées sur la perception artificielle,
la robotique et la vision par ordinateur. Plus particulièrement, PerSyst développe des approches
globales de perception exploitant plusieurs capteurs en vue de la compréhension de scène,
des approches de reconstructions 3D denses d’environnements complexes avec différentes
modalités (caméra, lidar, radar), des solutions de localisation 2D/3D et de guidage de robots
mobiles par approche mono et multisensorielle (caméra, lidar, proprioceptifs). Elles intégrent
éventuellement la cartographie de l’environnement à construire (SLAM) ou des informations de
type SIG (Système d’Information Géo-référencé). L’ensemble des activités est historiquement
fondé sur une très forte culture de projet mettant en oeuvre des systèmes de perception temps
réel sur des plates-formes réalistes et performantes.

Cette thèse a pu être menée grâce à l’aide d’une bourse octroyée par le « Conseil Général
de l’Allier ». Les travaux effectués s’inscrivent, en partie, au sein du projet iSpace&Time de
l’ANR (Agence Nationale de la Recherche) (ANR-10-CONT-23). L’objectif de ce projet est le
développement et la mise en place d’un portail, démonstrateur d’un Système d’Information
Géographique 4D (espace et temps) de la ville sur le web.

Les travaux de recherche sur la modélisation et la visualisation 3D de l’environnement urbain
se sont intensifiés ces dernières années compte tenu du succès rencontré par des applications
grand public. Ainsi, en mai 2007, Google a mis en ligne Google Street View qui permet de se
déplacer de manière immersive dans un ensemble de panoramiques acquis par des Google cars
qui sillonnent les grandes villes. Le projet ANR iTOWNS (déposé en février 2007 et coordonné par
l’Institut National de l’Information Géographique et Forestière (IGN)) a permis de développer
un navigateur équivalent à celui de Street-View (mais avec des images de meilleure qualité
géométrique et radiométrique) tout en y rajoutant un modeleur participatif de saisie 3D d’objets
destiné à la mise à jour des bases de données. La technologie proposée par la société Earthmine
propose également des solutions de relevés 3D par modeleur dédiés aux collectivités et aux
gestionnaires d’infrastructures pour saisir et/ou mettre à jour leurs bases de données 3D.

Un des difficiles défis à aborder en cartographie mobile urbaine concerne toujours la gestion
des occultations qui se produisent lors de la digitalisation 3D d’un site. Imaginons un véhicule
de numérisation terrestre hybride laser-image qui circule sur un site ouvert de type centre ville.
Des parties des infrastructures statiques du paysage urbain (façades des bâtiments, chaussées,
etc.) sont masquées par la présence d’objets mobiles sur les voies de circulation ou de certains
objets temporairement présents et figés lors du passage du véhicule instrumenté. Il en résulte
une dégradation de la qualité des relevés qui nuit à l’obtention d’un modèle 3D photo-réaliste.

Au cours des années, ce problème de la suppression des occultations a été intensément étudié,
notamment dans la communauté de la vision par ordinateur et des graphistes. La plupart des
approches reposent sur un détourage manuel.

Le travail qui va être décrit vise à apporter une solution par une approche multi-passages ou
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multi-sessions. Plusieurs relevés du même site, obtenus à des instants différents, seront exploités.
Chaque passage est traité pour en retirer les parties occultantes. La carte ainsi perforée est ensuite
mise à jour par les prochaines images elles-mêmes perforées. Les zones vides d’information
sont ainsi peu à peu comblées. La cartographie s’enrichit donc peu à peu de nouveaux détails,
correspondant à des entités permanentes.

Introduction

Cartographie (du grec χάρτης , khartēs, « carte » ; et γράϕειυ, graphein, « écrire ») est un terme
qui désigne l’étude et l’art de dresser des cartes de géographie [The14]. En complète synergie
avec leur époque, les travaux de cartographie combinent science, technique et esthétique afin de
démontrer que la réalité peut être modélisée pour restituer efficacement l’information spatiale.
Une définition moderne de la cartographie 3D est qu’elle met en oeuvre « un ensemble de
connaissances et d’activités scientifiques, techniques et artistiques, impliquées dans le cycle de
vie complet des cartes 3D, et notamment : la collecte de données, le processus de production et de
distribution, les indispensables technologies et algorithmes, ainsi que l’ensemble des utilisations
possibles » [Gór09].

La cartographie 3D urbaine suscite donc un grand intérêt dans la communauté scientifique
en raison de la demande croissante d’analyses et de modélisation de l’environnement urbain.
De façon concomitante, les progrès de la technologie d’acquisition des données ne sont pas
étrangers à cette évolution. Aussi, au cours des dernières années, les travaux sur la modélisation
et la visualisation 3D des villes se sont intensifiés. Dernièrement, des applications fournissent à
destination d’un large public des visualisations efficaces de modèles urbains à grande échelle
sur la base de l’imagerie aérienne et satellitaire. C’est très logiquement que la demande s’est
portée vers des représentations avec un point de vue terrestre et ainsi offrir une visualisation 3D,
plus détaillée et toujours plus réaliste, des villes urbaines. Intégrées dans plusieurs navigateurs
géographiques comme Google Streetmap Viewer, Microsoft Visual Earth ou Géoportail, ces
modélisations sont accessibles au grand public qui découvre avec enthousiasme la représentation
réaliste du terrain, créée à partir des techniques d’acquisition de données mobiles terrestres.

Outre les différentes applications possibles des données cartographiques 3D dans un contexte
urbain, le chapitre 2 du présent manuscrit dresse un rapide panorama des différents véhicules
de numérisation terrestre exploitant des procédés à base de technologie laser, image ou hybride.
La figure 1 donne une illustration de deux de ces véhicules. Ceux-ci ont la particularité d’être
à l’origine d’une partie des données que nous avons traitées au cours des travaux réalisés. Ce
chapitre présente également les différentes techniques nécessaires pour collecter les mesures et
les exprimer dans un référentiel commun, permettant ainsi une exploitation dans ce contexte
particulier.

Si ce type de véhicule constitue un progrès important dans le domaine de la cartographie 3D,
leur usage s’accompagne d’un certain nombre de limites ou de challenges qui sont également
évoqués dans ce même chapitre. Ainsi, dans des environnements urbains, la qualité des données
obtenues à partir de ces véhicules terrestres hybrides est largement entravée par la présence
d’objets temporairement statiques et dynamiques (piétons, voitures, etc.) dans la scène. En
conséquence, l’occultation de certaines zones reste toujours un problème (cf. figure 2). Les objets
dynamiques et certains objets temporairement stationnés cachent certaines zones de la scène
urbaine (parties de bâtiments, des routes, etc.).

Un autre problème auquel on est confronté avec ce type d’applications concerne la mise à
jour effective de la cartographie urbaine. Pour mettre à jour ces cartes ou des modèles 3D de
l’environnement, les mêmes zones doivent être cartographiées régulièrement. Par exemple, en
ce qui concerne Google Earth, une mise à jour est effectuée toutes les deux semaines. Pour ce qui
est de Google Street View, une réactualisation est opérée après seulement quelques mois, mais
uniquement pour quelques régions géographiques particulières (source Google inc.). La plupart
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(a) (b)

Figure 1 : Les véhicules numérisateurs terrestres (a) Stéréopolis II (source [Ste14]) et (b) Vis
center’s VizTruck.

Figure 2 : Différentes zones occultées apparaissant dans le nuage de points 3D.

des services de cartographie actuels s’appuient également sur les informations en provenance
des utilisateurs qui indiquent les zones modifiées, où une nouvelle acquisition est nécessaire.
On peut éventuellement alors optimiser et prioriser les calendriers de relevés terrain. Toutefois,
dans la pratique courante, comme aucune méthode de détection automatique de changement
n’est utilisée afin d’efficacement identifier et localiser la/les partie(s) modifiée(s), beaucoup de
ressources sont gaspillées. De plus, en raison de la procédure de mise à jour souvent inefficace,
une grande quantité de données inutiles sont accumulées avec le temps. Par exemple, Google
a déjà stocké plus de 20 péta-octets de données pour ses différents services de cartographie.
L’utilisation de ces données redondantes pour les différentes applications spécialisées demeure
un sujet difficile de la recherche.

Un autre aspect qui a attiré beaucoup l’attention récemment est l’analyse sémantique de
l’environnement urbain afin d’enrichir la cartographie 3D des villes. Aujourd’hui, cette tâche
apparaît de plus en plus nécessaire pour diverses applications de perception, telles que l’aide à
la conduite, la navigation autonome en environnement urbain, le rendu temps réel, le tourisme
virtuel et la planification des différentes missions urbaines.

Enfin, bien d’autres problèmes associés à cette thématique pourraient être listés comme,
par exemple, le traitement des données bruitées dans les environnements urbains complexes,
l’appariement des nuages de points au cours de passages successifs, voire la gestion des grandes
variations d’aspect de la scène dues aux conditions environnementales.

Dans cette thèse, nous traitons de ces problèmes et proposons une nouvelle méthode de
cartographie 3D urbaine incorporant la reconnaissance et l’intégration temporelle (en exploitant
le concept de passages multiples). La cartographie 3D finale que l’on cherche à obtenir ne devra
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contenir que les éléments permanents, exacts, précis et correctement mis à jour de l’environ-
nement urbain. Un survol des points détaillés dans les chapitres du manuscrit sont à présent
évoqués dans la section suivante.

Travaux menés

La qualité des données obtenues à partir de systèmes mobiles de cartographie dans les environ-
nements urbains est donc largement entravée par la présence d’objets temporairement statiques
et dynamiques (piétons, voitures, etc.) dans la scène. Une première étape pour la cartographie
urbaine 3D peut être alors de déterminer les entités permanentes de l’environnement urbain. A
cette fin, nous proposons d’effectuer une classification des éléments de l’environnement urbain
vers des classes d’entités dites permanentes ou temporaires (chapitre 3).

Les objets classés temporaires sont ensuite retirés du nuage de points 3D pour obtenir un
nuage de points 3D perforé de l’environnement urbain. Ces zones perforées ainsi que d’autres
imperfections sont ensuite analysées et éliminées progressivement à l’aide d’un procédé de mise
à jour incrémentale exploitant le concept de passages multiples (chapitre 4).

Nous montrons également que la méthode d’intégration temporelle proposée aide aussi à
l’amélioration de l’analyse sémantique de l’environnement urbain, spécialement pour ce qui est
des façades de bâtiments (chapitre 5).

Ce document comporte trois parties principales qui sont à présent résumées.

Segmentation et classification de nuage des points 3D : une approche par super-
voxels

Dans le chapitre 3, une méthode de classification de données 3D éparses obtenues à partir de
relevés laser terrestres en environnement urbain est présentée. Elle est fondée sur une technique
de segmentation manipulant des super-voxels. Le nuage de points 3D est tout d’abord divisé
en voxels caractérisés par plusieurs attributs. Ils deviennent ainsi des super-voxels qui sont liés
entre eux pour former des objets par une méthode de chainage plutôt que par une croissance
de régions classique. Ces objets sont ensuite classifiés à partir de modèles géométriques et de
descripteurs locaux en 5 classes différentes : bâtiment, route, voiture, poteau et arbre.

Outre la description de l’approche proposée, une étude bibliographique est menée. Elle est
scindée en deux parties relatives respectivement à la segmentation et à la classification. Les
approches au sein de celles-ci sont regroupées par tendances (descripteurs spécialisés et disconti-
nuités surfaciques, Graph clustering, primitives géométriques ou modèles pour la classification,
etc.). Dans le travail proposé, et dont le positionnement vis à vis de l’existant est discuté, nous
utilisons des modèles géométriques construits à partir des caractéristiques locales et des des-
cripteurs pour classer les différents objets segmentés d’une scène urbaine représentés par des
groupes de voxels. Le terrain est supposé plan et utilisé comme un séparateur d’objets.

Un échantillon des résultats est présenté figure 3. Ils sont évalués et comparés avec une autre
méthode de l’état de l’art en utilisant les différentes métriques d’estimation des performances
existantes ainsi qu’une nouvelle métrique qui caractérise à la fois les résultats de la segmentation
et de la classification.

L’influence sur les résultats de classification de la taille du voxel et de l’incorporation des
informations couleur RVB et intensité de réflectance dans le super-voxel est aussi analysée. Cette
étude montre que la précision de classification est accrue si la taille des voxels est diminuée
mais ceci au détriment d’un coût calculatoire supérieur. Une solution pour en déterminer une
valeur optimale est présentée. Cette analyse montre également l’importance d’utiliser des valeurs
d’intensité et de couleurs RVB dans la segmentation et la classification.
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(a) Nuage de points 3D.

(b) Voxelisation et segmentation.

(c) Classification.

Figure 3 : Illustrations de résultats de segmentation et de classification.
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(a) Nuage de points 3D : après le 1er passage

(b) Nuage de points 3D : après le 2e passage

(c) Nuage de points 3D : après le 4e passage

(d) Nuage de points 3D : après réinitialisation automatique

Figure 4 : (a) Nuage de points initial sans objets temporaires. (b) et (c) Mise à jour après détection
de changements. (d) Réinitialisation automatique après détection de changements.

Cartographie urbaine 3D incorporant une classification et une intégration temporelle

Cette nouvelle méthode de cartographie urbaine 3D effectuée de façon automatique incorpore à
la fois classification et intégration temporelle, en exploitant le concept de passages multiples.
Dans la méthode proposée, les nuages de points 3D sont d’abord classés en 3 grandes catégories
d’objets présents dans la scène : permanent, temporairement statique et mobile.

Les objets classés comme temporairement statiques et mobiles sont ensuite retirés des nuages
de points 3D pour obtenir un nuage de points 3D perforé de la scène urbaine. Ces nuages de
points 3D ainsi perforés, acquis lors de passages successifs en unmême lieu à des jours et horaires
différents sont ensuite combinés pour enrichir la cartographie. Les différentes modifications qui
se produisent dans le paysage urbain au cours de cette période sont détectées et analysées à l’aide
de fonctions cognitives de similarité. La cartographie 3D obtenue est progressivement modifiée
en conséquence comme l’illustre la figure 4. Différentes fonctions spécialisées sont également
introduites pour aider à éliminer les différentes imperfections dues à des occultations, des erreurs
de classification et les différents changements qui se produisent dans l’environnement au cours
du temps. Elles augmentent la robustesse de la méthode.

Les résultats, évalués sur des données réelles en utilisant différentes métriques, démontrent
non seulement que la cartographie 3D résultante est précise et bien mise à jour, qu’elle ne contient
que les caractéristiques permanentes exactes et sans imperfections, mais aussi que la méthode
est adaptée pour opérer sur des scènes urbaines de grande taille.
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Détection automatique et estimation des paramètres de fenêtres pour affiner l’ana-
lyse des façades des bâtiments

Cette partie du travail se concentre sur l’analyse sémantique des bâtiments de l’environnement
urbain et plus précisément sur la détection et l’estimation des paramètres des fenêtres des
façades. Comme expliqué dans la section précédente, en raison de la demande toujours plus
forte de modèles urbains 3D plus réalistes, possibles notamment grâce aux progrès récents des
technologies LiDAR terrestres, l’extraction d’informations sémantiques des façades de bâtiments,
tels que les fenêtres, présente un grand intérêt. Cependant, en raison par endroits de la densité
insuffisante des points dans les nuages des données LiDAR, il est très difficile de détecter et
d’estimer de manière fiable la géométrie des fenêtres sans interaction humaine. Aussi, dans cette
dernière partie des travaux effectués, décrits dans le chapitre 5, nous présentons une nouvelle
méthode qui détecte automatiquement des fenêtres de formes différentes, dans les nuages de
points 3D.

La méthode proposée effectue tout d’abord une segmentation du nuage de points 3D afin
d’isoler ceux appartenant aux façades des bâtiments. Les points ainsi isolés sont projetés sur
un plan 2D parallèle à la façade du bâtiment afin, ensuite, d’extraire l’ensemble des contours
fermés délimitant les fenêtres potentielles. Les caractéristiques géométriques des fenêtres sont
ensuite estimées en exploitant à la fois les fenêtres symétriquement correspondantes de la façade
et des fenêtres temporellement correspondantes détectées lors de passages successifs. Pour cela,
une technique d’analyse de variance (ANOVA) est mise en oeuvre. Cette solution originale
de fusion d’information permet non seulement de faire face à la disposition asymétrique des
fenêtres sur la façademais contribue également à compléter les éléments occultés manquants. Les
positions estimées des fenêtres sont ensuite exploitées pour affiner les régions correspondantes
des nuages de points 3D de la façade comme l’illustre la figure 5 ci-dessous. Les résultats, évalués
sur des données réelles en utilisant de nouveau différentes métriques, démontrent l’efficacité de
la méthode proposée.

Principales contributions

Les principaux objectifs de cette thèse étaient de répondre aux différents problèmes rencontrés
actuellement en cartographie 3D des villes urbaines en développant de nouvelles méthodes
utilisant des données LiDAR acquises à partir de véhicules de numérisation terrestres. Les travaux
menés dans ce cadre ont enrichi l’état de l’art en apportant plusieurs contributions qui sont
détaillées dans cette thèse.

� Une méthode de classification de l’environnement urbain fondée sur la segmentation des
nuages de points 3D en utilisant un approche par super-voxels, suivie par la caractérisation
des nuages de points 3D urbains en utilisant une nouvelle technique d’appariement de
points.

� Un procédé de gestion des occultations en exploitant le concept de passages multiples.

� Une nouvelle méthode pour la détection automatique de changements et la mise à jour
incrémentale de nuages de points 3D urbains en éliminant les différentes imperfections.

� La détection et l’estimation automatiques des paramètres des fenêtres pour affiner l’analyse
des façades des bâtiments en exploitant des correspondances symétriques et temporelles.

Les différents travaux menés au cours de cette thèse ont fait l’objet de publications dans 3 re-
vues internationales indexées, 2 chapitres d’ouvrage et 8 conférences internationales notamment.
Les détails des références de ces publications sont présentés dans l’ Appendix A.
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(a) (b)

Figure 5 : Illustration de la détection des fenêtres des façades des bâtiments. (a) nuage de
points 3D originel. (b) nuage de points 3D après la détection des fenêtres et affinage des zones
correspondantes.

Mots-clés : cartographie urbaine, données LiDAR, nuages de points 3D, segmentation,
classification, multi-passages, détection des changements, mise à jour incrémentale, analyse
sémantique

XIV



Contents

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 3D Urban Cartography 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Applications of 3D Urban Cartography . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Virtual Tourism and Preservation of Cultural Heritage Sites . . . . . . . . 9
2.2.3 Infrastructure Analysis and Management . . . . . . . . . . . . . . . . . . . 9
2.2.4 Road Asset Management and Driver Assistance . . . . . . . . . . . . . . . 10
2.2.5 Urban City Analysis and Planning . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Terrestrial Mobile Mapping Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Mobile Mapping Systems: Standard Technologies . . . . . . . . . . . . . . 12
2.3.2 Direct Geo-referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Existing Mobile Mapping Systems (MMS) . . . . . . . . . . . . . . . . . . . 18
2.3.5 Mobile Mapping Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Limitations and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Segmentation and Classification of 3D Urban Point Clouds 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.1 Segmentation of 3D Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Classification of 3D Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Voxel-based Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Voxelisation of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Transformation of Voxels into Super-Voxels . . . . . . . . . . . . . . . . . . 42
3.2.3 Clustering by Link-Chain Method . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Classification of Segmented Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 3D Datasets of Blaise Pascal University . . . . . . . . . . . . . . . . . . . . 47
3.5.2 3D Urban Data Challenge Dataset . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.3 Comparison of Results with Existing Evaluation Methods . . . . . . . . . 51
3.5.4 Performance Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . 55
3.5.5 Effect of Voxel Size on Classification Accuracy and Choice of Optimal Values 56
3.5.6 Influence of RGB Color and Reflectance Intensity . . . . . . . . . . . . . . 58
3.5.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Comparison with Existing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 59

XV



3.6.1 Comparison with Standard SVM based Classification Method . . . . . . . 59
3.6.2 Comparison with a State of the Art Method . . . . . . . . . . . . . . . . . . 60

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 3D Urban Cartography - Classification and Incremental Updating 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 3D Scan Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Classification of 3D Urban Environment . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Combining Multiple Views for Scene Completion . . . . . . . . . . . . . . . . . . 81
4.5 3D Cartography and Removal of Imperfections Exploiting Multiple Passages . . . 84

4.5.1 3D Evidence Grid Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.2 Similarity Map Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.3 Associated Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.4 Specialized Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.5 Automatic Checks and Balances . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Results, Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.6.1 Change Detection and Reset Function . . . . . . . . . . . . . . . . . . . . . 93
4.6.2 Evolution of Similarity Map Size . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6.3 Handling Misclassifications and Improvement in Classification Results . . 98
4.6.4 Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Detection and Feature Estimation of Windows for Refining Building Façades 103

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Segmentation of Building Façades and Road Surface from 3D Urban Point Clouds 108
5.3 Window Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.1 3D Point Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.2 Watertight Boundary Estimation . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.3 Point Inversion and Window Segmentation . . . . . . . . . . . . . . . . . . 111

5.4 Window Features Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.1 Exploiting Façade Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.2 Exploiting Multiple Passages . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.3 ANOVA-based Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Refining and Updating the Building Façades in the 3D Point Clouds . . . . . . . . 117
5.6 Automatic Checks and Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.7 Results, Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.7.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Conclusion and Future Work 127

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2 Directions for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix A 135

Appendix B 140

XVI



List of Figures

1 Exemples de véhicules numérisateurs terrestres . . . . . . . . . . . . . . . . . . . . IX
2 Différentes zones occultées apparaissant dans le nuage de points 3D. . . . . . . . IX
3 Illustrations de résultats de segmentation et de classification . . . . . . . . . . . . XI
4 Détection de changements et mise à jour incrémentale . . . . . . . . . . . . . . . . XII
5 Illustration de la détection des fenêtres des façades des bâtiments . . . . . . . . . XIV

1.1 Panoramic views acquired by Stéréopolis . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Crowd and traffic flow simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 3D data acquisition of Capitol Hill . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Use of the data for navigation purposes . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Use of the data for virtual tourism . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 3D point cloud data of Sydney Opera House . . . . . . . . . . . . . . . . . . . . . 10
2.5 Using the data for Infrastructure analysis . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Using the data for road asset management and Driver assistance . . . . . . . . . . 11
2.7 Using the data for Urban city analysis . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 The basic composition of terrestrial Mobile Mapping Systems . . . . . . . . . . . 12
2.9 The different sensors mounted on terrestrial Mobile Mapping Systems . . . . . . 13
2.10 The different laser scanners mounted on terrestrial Mobile Mapping Systems . . 14
2.11 Direct geo-referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.12 Principle of On-the-Fly mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.13 3D data acquired using On-the-Fly mode . . . . . . . . . . . . . . . . . . . . . . . 17
2.14 Principle of Stop-and-Go mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.15 3D data acquired using Stop-and-Go mode . . . . . . . . . . . . . . . . . . . . . . 18
2.16 Common Mobile Mapping Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.17 Hybrid Mobile Mapping Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.18 True color coded point cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.19 Comparison of some commercially available Mapping systems . . . . . . . . . . . 21
2.20 Topcon’s IPS2 mobile mapping system . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.21 Lynx Mobile Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.22 Tele Atlas fleet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.23 NAVTEQ mobile mapping vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.24 Google mobile mapping fleet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.25 Occluding objects in Mobile Mapping System data . . . . . . . . . . . . . . . . . . 26
2.26 Density variation in 3D MMS data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.27 Problem of not-so-regular updating . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.28 Problem of different updating schedules . . . . . . . . . . . . . . . . . . . . . . . 29
2.29 Misalignment errors when merging two 3D point clouds . . . . . . . . . . . . . . 29
2.30 An overview of the workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Illustration of segmentation methods based on surface discontinuities . . . . . . 35
3.2 Illustration of segmentation methods based on Graph-cuts . . . . . . . . . . . . . 36

XVII



3.3 Illustration of modified FH algorithm with surface normals and color differences 37
3.4 Segmentation results with ellipsoids as geometric primitives . . . . . . . . . . . . 38
3.5 Segmentation of 3D point clouds based on morphological modeling . . . . . . . . 39
3.6 Conditional Random Fields based classification of 3D outdoor terrestrial laser

scanned data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 Rule based classification of 3D outdoor mobile terrestrial laser data . . . . . . . . 40
3.8 Voxelisation of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.9 Clustering of s-voxels using a link-chain method . . . . . . . . . . . . . . . . . . . 43
3.10 Segmented objects in a scene with prior ground removal . . . . . . . . . . . . . . 44
3.11 surface normals of building and road surface s-voxels . . . . . . . . . . . . . . . . 45
3.12 Bounding boxes for buildings, trees, cars, pedestrians and poles . . . . . . . . . . 45
3.13 Segmentation and classification results for dataset 1 . . . . . . . . . . . . . . . . . 48
3.14 Segmentation and classification results for dataset 2 . . . . . . . . . . . . . . . . . 49
3.15 Segmentation and classification results for dataset 3 . . . . . . . . . . . . . . . . . 50
3.16 Segmentation and classification results for scene-A . . . . . . . . . . . . . . . . . . 52
3.17 Segmentation and classification results for scene-B . . . . . . . . . . . . . . . . . . 53
3.18 Segmentation and classification results for scene-C . . . . . . . . . . . . . . . . . . 54
3.19 Effects of maximum voxel size variation . . . . . . . . . . . . . . . . . . . . . . . . 57
3.20 Limitations due to partial occlusions . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.21 Limitations due to different appearance . . . . . . . . . . . . . . . . . . . . . . . . 60
3.22 Google map photo of Rue Madame in Paris, France . . . . . . . . . . . . . . . . . 61
3.23 Detection results for both voxel-based and morphological transformation based

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.24 Comparison of segmentation and classification results . . . . . . . . . . . . . . . . 64
3.25 Misclassification of some 3D points at boundary regions of road surface . . . . . 65
3.26 Misclassification of some 3D points belonging to a sign post with two traffic signs 66
3.27 Overall segmentation quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.28 Segmentation error due to variation in color and intensity values . . . . . . . . . 68
3.29 Segmentation error due to disjoint building . . . . . . . . . . . . . . . . . . . . . . 68
3.30 Comparison of motorcycle segmentation results . . . . . . . . . . . . . . . . . . . 69
3.31 Comparison of car segmentation results . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Occlusion removal using object-specific detectors . . . . . . . . . . . . . . . . . . . 72
4.2 Combining multiple images to remove occlusions . . . . . . . . . . . . . . . . . . 73
4.3 Occlusion removal by foreground and background segmentation . . . . . . . . . 74
4.4 Occlusion removal by point-to-point comparison . . . . . . . . . . . . . . . . . . . 75
4.5 Occlusion removal method based on scanning origin and geometry . . . . . . . . 76
4.6 The Vis Center’s LiDAR truck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7 Voxel-based segmentation and classification . . . . . . . . . . . . . . . . . . . . . . 79
4.8 Data representation in x-plane configuration . . . . . . . . . . . . . . . . . . . . . 81
4.9 Characterization of classified objects . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.10 Extraction of occluding objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.11 Combining multiple views to complete occluded regions . . . . . . . . . . . . . . 83
4.12 Formulation of 3D evidence grids and similarity map . . . . . . . . . . . . . . . . 85
4.13 Tversky’s model of similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.14 Uncertainty distribution map of a busy neighborhood . . . . . . . . . . . . . . . . 88
4.15 Registration of 3D point clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.16 Change detection results (qualitative) . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.17 The uncertainty variation of changing cells . . . . . . . . . . . . . . . . . . . . . . 92
4.18 3D urban cartography (Results) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.19 3D urban cartography (Results) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.20 3D urban cartography (Results) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

XVIII



4.21 3D urban cartography (Results) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.22 Evaluation of change detection method . . . . . . . . . . . . . . . . . . . . . . . . 98
4.23 The progressive reduction of the size of similarity map . . . . . . . . . . . . . . . 99
4.24 3D model of building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.25 Evaluation of accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1 Representation of a building using LoD0 - LoD4 . . . . . . . . . . . . . . . . . . . 104
5.2 3D point cloud containing building façades in the urban environment . . . . . . 105
5.3 Detection of windows as blobs in a color image . . . . . . . . . . . . . . . . . . . . 106
5.4 Local lattice fitting and voting scheme . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5 Problem of window detection at façade interface . . . . . . . . . . . . . . . . . . . 107
5.6 Segmentation of windows from 3D points belonging to building façades . . . . . 110
5.7 3D point cloud of the building façade showing varying resolution . . . . . . . . . 112
5.8 Window segmentation exploiting façade symmetry . . . . . . . . . . . . . . . . . 114
5.9 Finding Temporal correspondences in multiple passages . . . . . . . . . . . . . . 115
5.10 Finding common profile points for temporal correspondences . . . . . . . . . . . 117
5.11 Partial and completely shut/closed windows on the building façade . . . . . . . 118
5.12 Window detection results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.13 Qualitative results of window detection and refinement of different building façades121
5.14 Qualitative results of window detection and refinement of repeated window

structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.15 Successful detection and estimation of window parameters . . . . . . . . . . . . . 123
5.16 Evolution of window detection performance . . . . . . . . . . . . . . . . . . . . . 124

6.1 Mapping adjoining alleys and narrow streets . . . . . . . . . . . . . . . . . . . . . 130
6.2 Semantic and thermal mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3 Sensor equipped public transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4 Crowd and traffic flow simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

XIX



XX



List of Tables

3.1 Segmentation results of 3D datasets of Blaise Pascal University. . . . . . . . . . . 47
3.2 Classification results of Blaise Pascal University dataset 1 with the new evaluation

metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Classification results of Blaise Pascal University dataset 2 with the new evaluation

metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Classification results of Blaise Pascal University dataset 3 with the new evaluation

metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Classification results of 3D Urban Data Challenge dataset (scene-A) with the new

evaluation metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Classification results of 3D Urban Data Challenge dataset (scene-B) with the new

evaluation metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7 Classification results of 3D Urban Data Challenge dataset (scene-C) with the new

evaluation metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.8 Classification results evaluated using different metrics . . . . . . . . . . . . . . . . 58
3.9 Overall segmentation and classification accuracies when using RGB-Color and

reflectance intensity values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.10 Parameters/Features description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.11 Comparison results for classification methods. . . . . . . . . . . . . . . . . . . . . 60
3.12 Comparison of classification results. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Object classification chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Type of changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Change detection evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4 Classification results for Permanently Static objects (F1-Score). . . . . . . . . . . . 99

5.1 Choice of weights for estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Comparison of detection result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3 Window detection evaluation using metrics defined in [Vih12]. . . . . . . . . . . 123

XXI



XXII



Chapter

11

IntroductionIntroduction

This chapter introduces the context of the work
presented in this thesis. It first describes in detail
the background of the project framework in which
this work is realized and then explains the problem
statement. Whereas, the overall aim of the project
is to develop and make available to the wide public
a web based 4D Geographical Information System

(GIS) for cities, the work presented in this thesis
contributes in the development of automatic, efficient
and effective 3D urban cartography in this regard.
The main aims along with the major contributions
presented in the thesis are then briefly explained.
Finally, the organization of the manuscript along
with a brief summary of the chapters contained in
this document is presented.
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1.1 Context

This PhD thesis is funded by the "Conseil Général de l’Allier" and is realized in the framework of
ANR (French National Research Agency) project iSpace&Time (ANR-10-CONT-23). The aim of
this project is to develop and make available to the wide public a web based 4D Geographical
Information System (GIS) for cities.

As part of its mission and its activities on digitization and modeling of cities and territories,
IGN (Institut National de l’Information Géographique et Forestière) provides among other
services, management, development, administrative assistance and Support to "Géoportail".
The “Géoportail” is a public access portal of Geographical Information System of the French
territory with high resolution aerial and satellite images. In the last two years, an infrastructure
similar to Géoportail THD (terrestrial) was developed under the project ANR iTowns [iTo14]
(ANR MDCO 2007 certified by CapDigital pole) which is managed by IGN. This infrastructure
enables general public to explore (view, navigate and search) cities from the ground level through
a tool for immersive web browsing in a database of panoramic images, acquired by a mobile
terrestrial mapping system called Stéréopolis as shown in Fig. 1.1. The technology used in
iTowns information system allows one to move in a street view like manner in a panoramic
topological graph but jumping discretely from one image to another (hot-spot jumping) and also
to query a search engine whose database is enriched via automatic annotation of images.

Figure 1.1: Panoramic views of Paris area from iTowns acquired by a mobile terrestrial mapping
system called Stéréopolis (source [iTo14]).

The limitation of such systems like that of iTowns is that it does not take into account the
dimension of time, evolutionary infrastructure and variable phenomenon in the city. The idea of
having a GIS based on the concept of a "living city" obliges the regular update of information
like traffic flows (cars, pedestrians, boats) and weather conditions etc. in the database. iTowns
does not allow the integration of knowledge from other external (e.g. Wikipedia) or existing
databases, to not only enrich the research information but also make the interaction with users
more fruitful.

So, in this project it is proposed to use all this data to browse and query the GIS in present time
(the real flow of traffic, the real weather conditions etc.) and retrospectively the evolution of these
conditions over time. Also, it will allow to simulate different moving objects (like pedestrians,
cars, etc.) in the scenes (as shown in Fig. 1.2) and also predict the impact of changing conditions
like traffic flows etc., thus, paving way for a real like representation andmanagement of a realistic
4D GIS for cities. The objective of the project iSpace&Time, a logical continuation of project
iTowns, is to fill these gaps and thus develop such a portal integrating different technologies like:
web2.0, virtual and augmented reality, animation and simulation.

2
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(a) Pedestrian representation. (b) Car representation.

Figure 1.2: (a) & (b) present crowd [YMP+09] and traffic flow information [Bré13] respectively in
the GIS using simulated representations of pedestrians and cars.

1.2 Main Contributions

The main aims of this PhD thesis is to address the different problems currently faced in 3D urban
cartography by developing new methods of 3D cartography using 3D LiDAR data acquired from
terrestrial mobile mapping systems.

The work conducted in this framework not only advanced the state of the art but also made
several important contributions which are discussed in this thesis:

� A segmentation based method for classification of 3D urban point clouds using a super-
voxel based approach followed by the characterization of 3D urban point clouds using a
new point matching technique.

� A method of occlusion management exploiting the concept of multiple passages.

� A novel method for automatic change detection, imperfection removal and incremental
updating of 3D urban cartography.

� Automatic detection and parameter estimation of windows for refining building façades
exploiting symmetrical and temporal correspondences.

This work has, so far, produced 15 publications including 3 international journal papers and
2 book chapters. Details of these publications are presented in Appendix A.

1.3 Organization of the Document

This document contains 6 chapters which are summarized as follows:
Chapter 2, entitled 3D Urban Cartography, introduces the domain of 3D urban cartography

which has gained widespread interest and importance in the scientific community due to an
increasing demand for urban landscape analysis in different popular applications, coupled
with advances in 3D data acquisition technology. As a result, it is observed that in the last few
years, work on the 3D modeling and visualization of cities has intensified. Integrated in several
geographical navigators like Google Street View, Microsoft Visual Earth or Géoportail, these
models are accessible to a wide public who enthusiastically view the real-like representation of
the terrain, created by mobile terrestrial mapping systems. In this chapter we also discuss the
different methods, applications, recent data acquisition and mapping technologies as well as the
different problems and challenges associated with this technology. A general workflow of our
proposed methodology is then presented at the end of this chapter.

3
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In Chapter 3, entitled Segmentation and Classification of 3D Urban Point Clouds, after
shedding light on the existing state of the art techniques for segmentation and classification of
urban environment, a method to classify urban scenes based on a super-voxel segmentation of
sparse 3D data obtained from LiDAR sensors is presented. The 3D point cloud is first segmented
into voxelswhich are then characterized by several attributes transforming them into super-voxels.
These are joined together by using a link-chain method rather than the usual region growing
algorithm to create objects. These objects are then classified using geometrical models and local
descriptors. In order to evaluate the results, a new metric is presented which combines both
segmentation and classification results simultaneously. The effects of voxel size and incorporation
of RGB color and laser reflectance intensity on the classification results are also discussed. The
method is evaluated on standard datasets using different evaluation metrics to demonstrate its
efficacy.

Chapter 4 on 3D Urban Cartography - Classification and Incremental Updating first gives
a detailed overview of the different state of the art techniques for 3D urban cartography and
then presents a new method of automatic 3D urban cartography incorporating classification and
incremental updating, exploiting the concept of multiple passages. In the proposed method, the
3D point clouds are first classified into 3 main object classes: Permanently Static, Temporarily
Static and Mobile using a point matching technique. The Temporarily Static and Mobile objects
are then removed from the 3D point clouds leaving behind a perforated 3D point cloud of the
urban scene. These perforated 3D point clouds obtained from successive passages (in the same
place) on different days and at different times are then matched together to complete the 3D
urban landscape. The changes occurring in the urban landscape over this period of time are
detected and analyzed using cognitive functions of similarity and the resulting 3D cartography is
progressively modified accordingly. Different specialized functions are also introduced, to help
remove the different imperfections due to occlusions, misclassifications and different changes
occurring in the environment over time, thus increasing the robustness of the method. The
results, evaluated on real data, demonstrate that not only is the resulting 3D cartography accurate,
containing only the exact permanent features free from imperfections, but the method is also
suitable for handling large urban scenes.

Chapter 5, entitled Detection and Feature Estimation of Windows for Refining Building
Façades, discusses our work on automatic detection and parameter estimation of windows for
refining building façades. The chapter discusses the different state of the art practices in this
domain and explains that due to the ever-increasing demand for more realistic 3D urban models
coupled with recent advancements in ground based LiDAR technologies, recovering details
of building façade structures, such as windows, has gained considerable attention. However,
insufficient raw laser information available makes it very difficult to detect and recover reliable
geometry of windows without human interaction. So, in this chapter we present a new method
that automatically detects windows of different shapes in 3D LiDAR point clouds obtained from
mobile terrestrial data acquisition systems in the urban environment. The proposed method first
segments out 3D points belonging to the building façade from the 3D urban point cloud and
then projects them onto a 2D plane parallel to the building façade. After point inversion within
a watertight boundary, windows are segmented out based on geometrical information. The
window features/parameters are then estimated exploiting both symmetrically corresponding
windows in the façade as well as temporally corresponding windows in successive passages,
based on ANOVA measurements. This unique fusion of information not only accommodates
for lack of symmetry but also helps complete missing features due to occlusions. The estimated
windows are then used to refine the 3D point cloud of the building façade. The results, evaluated
on real data using different standard evaluation metrics, not only demonstrate the efficacy but
also the technical edge of the proposed method.

Finally the conclusions and perspectives are presented in Chapter 6.
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3D Urban Cartography3D Urban Cartography

3D urban cartography has gained widespread interest
and importance in the scientific community due to
an increasing demand for urban landscape analysis in
different popular applications, coupled with advances
in 3D data acquisition technology. As a result, in the
last few years, work on the 3D modeling and visual-
ization of cities has intensified. Integrated in several
geographical navigators like Google Street View, Mi-

crosoft Visual Earth or Géoportail, these models are
accessible to a wide public who enthusiastically view
the real-like representation of the terrain, created
by mobile terrestrial image acquisition techniques.
In this chapter, we give a brief introduction of 3D
urban cartography; discussing the different methods,
applications, recent data acquisition and mapping
technologies as well as the different problems and
challenges associated.
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2.1 Introduction

Cartography (from Greek χάρτης , khartēs, "map"; and γράϕειυ graphein, "write") is the study
and art of making maps [The14]. Evolving over time, it combines science, aesthetics, and
technique, to build on the premise that reality can be modeled in ways that communicate spatial
information effectively. A modern definition of 3D cartography is that: "it is the totality of
scientific, technical and artistic knowledge and activities, concerning the complete lifecycle of
3D maps, including: the collection of data, the process of production and distribution, the
underlying technologies and algorithms, as well as the forms of use and applications" [Gór09].

Over the years, 3D urban cartography have gained widespread interest and importance in
the scientific community due to an ever increasing demand for urban landscape analysis for
different popular applications, coupled with advances in 3D data acquisition technology. As a
result, in the last few years, work on the 3D modeling and visualization of cities has intensified.

The type of cartographic data depends upon the application forwhich it is acquired. Figure 2.1
is a simple example of cartographic data of Capitol Hill in Washington, USA acquired to create
3D city models.

Figure 2.1: 3D data acquisition of the Capitol Hill area in Washington USA using a terrestrial
scanner (source [3D 14]).

In this chapter, wewill first present different applications of the cartographic data in the urban
environment and then discuss the most recent data acquisition technologies, mainly terrestrial
Mobile Mapping Systems (MMS).

2.2 Applications of 3D Urban Cartography

The nature of the cartographic data depends upon the different applications envisaged. In this
section, we present some of the more recent and popular applications of 3D urban cartography.

2.2.1 Navigation

One of the most common and widely used applications of 3D urban cartography is geographical
navigation. The different 3D models of the environment, registered with existing road maps
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allow precise localization with the help of GNSS (Global Navigation Satellite System) and hence
allow easy navigation of both vehicles and pedestrian in the urban environment. Figure 2.2
shows some examples of this type of applications.

(a) (b)

Figure 2.2: (a) & (b) show the use of the data for navigation purposes (source [Ter14]).

2.2.2 Virtual Tourism and Preservation of Cultural Heritage Sites

The recent advancements in 3D cartography of different urban areas and specific locations have
improved the quality, usability and accessibility of virtual tours considerably (Google Street
View [GBR+08]). With a single click, such realistic 3D models allow the viewer to view these
sites with great detail at the comfort of his own home. Figure 2.3 shows the use of cartographic
data of Arc de Triomphe and Rue Soufflot in Paris for virtual tours.

(a) (b)

Figure 2.3: (a) & (b) using the data for virtual tourism (source [Urb14]).

Similarly, more and more cultural heritage sites are also acquired not only to provide virtual
tours but also to conserve a digital model of the site in actual condition for analysis, studies,
research and for future references. In Fig. 2.4, you can see the rendered 3D point cloud data of
the famous Sydney Opera House (a UNESCOWorld Heritage site) in Australia, acquired using a
Faro scanning system for CyArk in 2013 (source [CyA14]).

2.2.3 Infrastructure Analysis and Management

3D urban cartography is also used effectively for the analysis and management of different city
infrastructures such as carriageways sidewalks, retaining walls, bridges, tunnels, road drainage
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Figure 2.4: 3D point cloud data of Sydney Opera house (source [CyA14]).

structures, etc. [RH06]. Another application is in case of transportation of oversize cargo, where
accurate and rapid mapping of route clearance (bridge height, road width) can be performed
for the entire route [HCK06]. Figure 2.5(a) shows the data being used for analyzing power lines
in the area, which can be used for low wire identification, vegetation encroachment and sag
measurement while Figure 2.5(b) shows the data being used to study bridges.

(a) (b)

Figure 2.5: Using the data for Infrastructure analysis (source [3Dl14]).

2.2.4 Road Asset Management and Driver Assistance

The 3D urban cartography can be effectively used to collect accurate road and highway data.
Several government transportation agencies are increasingly expected to document and monitor
every asset on their roads to meet federal mandates, increase road efficiency and improve safety.
This could also be used to conduct surveys without disruption to traffic which can help improve
maintenance and asset management of road surfaces [LC05] and street/railway furniture e.g.
signs, markings, etc. [RH06]. The benefits range from protecting the environment to saving lives.
Driver assistance technologies are also being developed by researchers to also improve road
safety by providing computer assistance with braking, steering, parking, collision avoidance
and other things. With access to very accurate road and sign data, among other things, the car’s
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computer could also sense if the car was leaving the road or alert the driver if exceeding the
speed limit. An example is shown in Fig. 2.6.

(a) (b)

Figure 2.6: Using the data for road asset management and driver assistance (source web Google
X).

2.2.5 Urban City Analysis and Planning

In recent times, 3D urban cartography data is also used for urbanism. The data is used for analy-
zing, planning and simulating different aspects related to urban growth, population distribution
and management of natural resources, etc. Figure 2.7 shows one such example in which the
acquired data is used for city modeling.

Figure 2.7: Using the data for Urban city analysis (source [Ter14]).

Other applications include 3D modeling for simulations of urban disaster or terrorism sce-
narios, increasing immersive experience in video games and other multimedia applications such
as films and animations, etc.
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2.3 Terrestrial Mobile Mapping Systems

The increasing demand of acquiring detailed 3D data of large urban environment for different
cartography applications in both limited time and budget has led to the rapid advancements in
the 3D data acquisition technologies.

The aerial data acquisition systems allows rapid acquisition of large areas. However, the
acquired data does not contain sufficient details. On the other hand, the static terrestrial data
acquisition systems provide high level of details but are impractical to acquire large mapping
areas like entire streets, neighborhoods or cities, etc. Hence, the terrestrial mobile mapping
systems are a best compromise of these two systems.

A definition of the Mobile Mapping Systems (MMS) according to Ellum and El-Sheimy
[EES02] is: "MMS integrate navigation sensors and algorithms together with sensors that can be
used to determine the positions of points remotely. All the sensors are rigidly mounted together
on a platform; the former sensors determine the position and orientation of the platform, and
the later sensors determine the position of the points external to the platform".

As also indicated in the above mentioned definition, Mobile Mapping Systems collect geospa-
tial data using a mobile platform typically equipped with a range of photographic, radar, LiDAR
or other remote sensors. Such sensors are also coupledwith time synchronized navigation sensors
and the primary output from such systems includes GIS data, digital maps, and geo-referenced
images, videos and 3D point clouds. As shown in Fig. 2.8, the system is mainly composed of
three parts; 1) Perception system, 2) Localization system and 3) Mobile Platform. The perception
system consists of different data acquisition sensors like cameras and LiDAR scanners while
the localization system consists of different sensors like GPS, Inertial Measurement Unit (IMU),
odometer, etc. The Mobile Platform consists of not only the vehicle itself, but also the sensor
mounts, the main control unit and other accessories.

(a) (b)

Figure 2.8: (a) The basic composition of terrestrial Mobile Mapping Systems. (b) TOPCON IP-S2
system equipped with different components.

2.3.1 Mobile Mapping Systems: Standard Technologies

In general, the most common configuration of a mobile mapping system integrates digital
frame cameras, laser scanner, GPS receiver and antenna, Inertial Navigation System (INS) for
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acceleration and orientation measurements of the moving platform and, in most cases, a wheel-
mounted Distance Measuring Indicator (DMI), that provides accurate vehicle velocity updates.

The positioning sensors, namely GPS, INS and DMI, are vehicle-oriented. They are used
to determine the absolute locations of the mobile mapping platform with respect to a global
coordinate system, e.g., WGS-84. The mapping sensors (laser scanners, video or digital cameras,
etc.) are feature-oriented. They provide the positional information of objects (features) relative
to the vehicle in a local coordinate system. In addition, attributes of features can be obtained
from the mapping sensors. The use of multiple camera arrays to provide 360◦ panoramic images
in the horizontal plane is very common (Fig. 2.9(a)), however frequently fully integrated multiple
cameras are used (e.g. Ladybug unit used in the IP-S2 system, Fig. 2.9(b)).

(a) (b)

Figure 2.9: (a) TVMX-250-CS6 Camera System supporting up to six digital color cameras. (b) La-
dybugwith a set of six Sony CCD cameras arranged in a similar circular five-camera configuration
plus a single vertical camera (source [Poi14]).

A basic laser scanner measures its surroundings using LiDAR for measurements of range
and angle. Currently, range measurements for mobile laser scanning systems are divided mainly
into two techniques: time-of-flight and phase shift. A Time-Of-Flight (TOF) scanner sends a
short laser pulse to the target; the time that elapses between emitted pulse and received pulse
correlates to the range. Examples of laser scanners using this principle include: Riegl (2011)
(Fig. 2.10(a)), Leica (2011), Trimble (2011), Optech (2011), 3rdTech (2011) and Sick (2011). Phase
based laser scanners, Zoller+Fröhlich (2011) and Faro (2011) (Fig. 2.10(b)), infer the range by
measuring the phase difference between the emitted and received backscattered signal of an
Amplitude Modulated Continuous Wave (AM CW).

Phase shift laser scanners have better accuracy, although the measurement range is lower.
Highly accurate xyz-coordinates of the ground points for each laser pulse can be calculated
by combining the laser range, scan angle, laser position from GPS and orientation of the laser
platform from INS.

The laser pulse repetition rate (PRR) in combination with scanning mirror deflecting pattern
determines LiDAR data collection rate. In the most advanced commercially available LiDAR
systems, the data measurement rate is typically 50 kHz to 500 kHz, which allows the user to
collect highly accurate data of required ground point density within a very short period of time.

Inertial navigation provides real-time indication of position and velocity of a moving vehicle
using IMU sensors that react on the basis of Newton’s laws of motion. Two primary types of
IMUs are accelerometers, which sense linear acceleration in the inertial frame, and gyroscopes,
which sense the inertial rotational motion (angular rates, angular increments or total angular
displacements from an initial known orientation relative to inertial space). Considering an
accelerometer, the first integration of acceleration gives the velocity and the second integration
the position or rather, change of position along the accelerometer’s axis.
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(a) (b)

Figure 2.10: (a) 2 Laser scanners VQ-250 mounted on the VMX-250 system supplied by Riegl. (b)
Faro PHOTON 120 mounted on ROAD-SCANNER system.

The three types of IMUs that are most commonly used in mobile mapping systems are:
(i) MEMS (Micro Electro-Mechanical Systems) Gyros, that utilize tiny quartz tuning forks as
sensors integrated on to silicon chips. They are widespread used in the imaging systems that
are employed on less demanding applications. Not much used in laser scanners. (ii) Fibre
Optic Gyros (FOG) are much more expensive than MEMS gyros but gives a very acceptable
performance that satisfies many laser scanning applications. Much used nowadays. (iii) Ring
Laser Gyros (RLG) are the most accurate type but there are the most expensive to produce, which
limits their use to high-end imaging systems and laser scanners and to only the most demanding
applications in terms of accuracy.

In principle, the only external information the INS requires is initial calibration (initialization
and alignment), which includes the externally provided 3D initial position, velocity and attitude.
The sensor errors grow with time; therefore INS must be re-calibrated periodically to maintain
reliable navigation quality. In stand-alone mode, the INS navigation results are primarily affected
by initial sensor misorientation, accelerometer biases and gyro drifts that cause time-dependant
positioning errors.

Precise calibration is required to geometrically align the positioning sensors and mapping
sensors together. A sophisticated software unit controls these components and accurately syn-
chronizes the measurements recorded through a time stamp.

Ground based navigation solution, integrated with the laser scanner, is a critical component
for any mobile LiDAR system as it is used to obtain geo-referenced coordinates of the collected
LiDAR data (discussed in the next section).

2.3.2 Direct Geo-referencing

Direct geo-referencing is defined as the process of determining the time-variable spatial position
of a point (or points) scanned by a mobile mapping sensor with reference to a global coordinate
system. For accurate geo-referencing of the scanned point, it is essential to determine the 3D
instantaneous coordinates of the center of mass of the LiDAR sensor with reference to the
mapping frame (i.e. the local or a global coordinate system). The 3D coordinates of the sensor’s
center of mass is a time varying function that depends on the observed measurements of the
sensor’s position and orientation. At present, the key component responsible for taking the
position and orientation measurements in both terrestrial and airborne LiDAR mapping sensors
is the integrated GPS/IMU system. Presuming that the GPS/IMU systems are able to determine
the orientation of the integration platform at any moment, then the reference frame from the
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GPS/IMU to the laser can be transferred, if firstly the laser data is synchronized with the
GPS/IMU observations and secondly the spatial transformation between the GPS/IMU frame
and the laser frame is known, i.e. determined in a calibration process.

The laser labels the beginning of each line with a precise internal clock. The synchronization
is performed by relating the laser time system to the GPS time system. The laser internal clock
can be reset by an external TTL signal. By employing this possibility, a modified pulse per second
signal can be pseudo-randomly sent to the laser.

Once the GPS time at the start of each line is known, the corresponding GPS time of every
subsequent laser point can be computed by simply adding the laser repetition period to the time
of the previous laser point.

Figure 2.11: The direct geo-referencing of a 3D point P acquired by the laser scanner into the
mapping frame of reference.

Hence, after every laser point is time labeled in GPS time, the transformation between the
laser reference frame (Xl, Yl, Zl in Equation (2.1)) and the mapping reference frame (WGS84) can
be done according to Equation (2.1) in two steps: a) transformation from the laser to the IMU
reference frame and b) transformation from the IMU to the mapping reference frame (Xm, Ym,
Zm in Equation (2.1)). The first step consists in determining the offset between the laser and the
IMU reference frames (Vi

l in Equation (2.1)) and the misalignment matrix between the laser and
the IMU reference frames (Mi

l in Equation (2.1)). The offset and the misalignment matrix (Vi
l

andMi
l) remain constant as long as both systems (IMU and laser) are rigidly mounted on the

integration platform and the platform does not suffer from any distortion due to stress. These
constant values are determined in a calibration process. In the second step, the rotation matrix
(Mm

i in Equation (2.1)) and the translation vector (XGPS/IMU , YGPS/IMU , ZGPS/IMU in Equation
(2.1)) are determined using the integration of the GPS/IMU observations. It should be noted
that the rotation and translation matrices applied in the second step are not constant and keep
varying during the scanning process. Therefore, for each laser point a different translation and
rotation matrix will be derived from the computed trajectory. The frame transformations are
presented in Fig. 2.11.
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The advantage of using integrated GPS/IMU data to directly orient laser data is that the
transformation between the local laser reference frame and the mapping reference frame is
known at any given moment (as long as the laser is synchronized), independently if the laser is
collecting data in a static mode or in kinematic mode. Thus, the laser can be used as a push-broom
sensor sweeping the scene with profiles while fixing the scan angles as the vehicle moves. The
different modes of operation are discussed in the next section.

2.3.3 Modes of Operation

There are typically two operation modes for a mobile mapping system, depending upon the
combination of perception and localization information [VM10]: "On-the-Fly" and "Stop-and-Go"
mode. These modes are explained below.

2.3.3.1 On-the-Fly Mode

In On-the-Fly mode, the Mobile Mapping System (MMS) acquires data while in motion i.e.
the sensors mounted on the mobile platform continue to function as the platform displaces.
Figure 2.12 shows the principal of this mode. The large arrow represents the direction of motion
of the vehicle while the small arrows represent the direction of data acquisition of the sensor, for
example a 2D laser scanner. As the vehicle moves the acquisition of the sensor is in helical form.
The sensor is used as a push-broom sensor, sweeping the scene with profiles while fixing the
scan angles as the vehicle moves.

Figure 2.12: Principle of On-the-Fly mode.

The main advantage of this mode lies in the fast acquisition rate (as the acquisition time is
equal to the displacement time of the vehicle). On the other hand, the data should be correctly
synchronized in order to obtain coherent information. Most of the recent Mobile Mapping
Systems [PGJMS+13; GCM+12] operate in this mode. In Fig. 2.13, the 3D data acquired by a
Riegl MMS VMX-450 using On-the-Fly mode is shown.

2.3.3.2 Stop-and-Go Mode

The second type of operation mode is the Stop-and-Go mode. In this mode, as the name
suggests, the mobile platform or vehicle stops intermittently during its displacement to scan
the environment. Hence, the position and orientation of the platform remain static during
acquisition. The MMS hence moves, stops and acquires data and then moves again. This process
is repeated until all the area is scanned.
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Figure 2.13: 3D data acquired by Riegl MMS VMX-450 using On-the-Fly mode (source [Rie14]).

Figure 2.14 shows the principle of the Stop-and-Go mode. The red circles/points represent
the scanning (stopping) positions of the vehicle while the big arrow represents the direction
of displacement of the mobile plat form/vehicle. During the acquisition the vehicle remains
stationary and the scanners scan in 2D. Once the scanning is complete, the vehicle moves to the
next position.

Figure 2.14: Principle of Stop-and-Go mode (Top View).

This operation mode is used by few Mobile Mapping Systems like CityGRID [Har07] or the
system of NAIST Institute [AKY05]. Figure 2.15 shows the data (both image and LiDAR) acquired
by the MMS of NAIST Institute. The advantage of this mode of operation is that synchronization
between the perception and localization data is no longer necessary. Hence, the acquired data is
much more precise than in case of On-the-Fly mode. However, as we need to stop every time for
acquisition, the acquisition time is quite long which makes it less practical for scanning large
areas.

In our work, as explained in this thesis, we mainly use the data acquired from different
Mobile Mapping Systems employing On-the-Fly mode.
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Figure 2.15: 3D data acquired by NAIST System using Stop-and-Go mode (source [AKY05])

2.3.4 Existing Mobile Mapping Systems (MMS)

The development of Mobile Mapping Systems (MMS) began in the late 1980s and early 1990s,
when the first usable land-based MMS was developed by the Centre for Mapping at Ohio State
University. Their system, called GPSVan™, integrated a code-only Global Navigation Satellite
System (GNSS) receiver, two digital CCD cameras, two color video cameras and several dead-
reckoning sensors (two gyroscopes and a distance measurement unit on each of the front wheels),
all of whichweremounted on a van [Goa91] and [Nov91]. MobileMapping Systems have evolved
ever since. There are two main types of MMS; one that relies only on photogrammetry to acquire
data of the urban environment for example "Google Car" of Google Inc. as shown in Fig. 2.16(a)
and secondly those which use lasergrammetry to acquire data for instance StreetMapper-1
(version-2009) as seen in Fig. 2.16(b). Google car has a collection of nine cameras that acquire
image data used in applications like "Street View" of Google Maps (source Web Google Maps).
Whereas, the StreetMapper-1 is equipped with 4 Riegl LMS-Q120i scanners (source [3Dl14]) that
acquires data in the form of point clouds.

Compared to these systems, most of the recent MMS are equipped with both cameras and
LiDARs and acquire both images and 3D point clouds of the environment, for example the
Stéréopolis II system [PPC+12] (Fig. 2.17(a)) and VizTruck [Vis11] (Fig. 2.17(b)). Some of these
systems like RIEGL VMX-450 [Rie14] (Fig. 2.17(d)) and Lynx SG1 [Opt14] (Fig. 2.17(c)) combines
both camera and LiDAR information to obtain colored 3D point clouds [SBV+11], [CZ13] and
[PME11] as shown in Fig. 2.18.

Commercial suppliers of MMS not only include several large companies such as TRIMBLE
and TOPCON as well as some medium size companies like RIEGL, OPTECH, MDL or SITECO
which are already well-established as suppliers of surveying instrumentation and laser scanning
systems for mapping industry. Details of some of these systems are provided below whereas a
comparison of few of these commercially available systems is presented in Fig. 2.19.

2.3.4.1 StreetMapper System

The StreetMapper system is specifically designed by the 3D Laser Mapping company for mobile
mapping use when mounted on a suitable vehicle (Fig. 2.16(b)). The company has developed this
system in close collaboration with the German systems supplier, IGI. For use in the StreetMapper,
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(a)

(b)

Figure 2.16: (a) Google car with panoramic camera. (b) StreetMapper system of 3DLM with 4
LiDARs (source [3Dl14]).

IGI supplies its TERRAcontrol DGPS/IMU system with different laser scanning and digital
imaging systems. The dual-frequency GPS receiver can come from any one of several suppliers.

3D LaserMapping supplies the hardware and software solutions that are used for the mission
planning, the control of the laser scanners and the data storage within a StreetMapper system.
The control unit and its computer are housed in a cabinet that is mounted inside the mapping
vehicle. Until now, the multiple laser scanners that have been used on StreetMapper systems
have been supplied by Riegl Inc. On most existing StreetMapper systems, between two and
four of the older LMS-Q120 scanner units (with their 150 m range) have been fitted on a roof
rack, together with the IMU and the GPS antenna. However the latest StreetMapper 360 systems
utilize the newer Riegl VQ-180 or VQ-250 units, the former having a 100 degree FOV and a range
of up to 150 m; the latter giving a full circle (360o) scan and ranges up to 300 m. A choice of
video or digital still frame cameras from different manufacturers can be supplied in order to
generate the higher quality images that will be needed to supplement the laser scanned data. On
the software side, IGI also contributes its TERRAoffice software for the processing of the IMU
data, while the differential GPS data is processed using the Graf-Nav package that is supplied
by the Waypoint division of NovAtel, Canada. The TerraScan/TerraModeler/TerraMatch suite
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(a) (b)

(c) (d)

Figure 2.17: (a) Stéréopolis II system of (source [Ste14]). (b) Vis center’s VizTruck. (c) Lynx SG1
mapping system (source [Opt14]). (d) Riegl VMX-450 mapping system (source [Rie14]).

Figure 2.18: True color coded point cloud acquired by Riegl VMX-450 mapping system (source
[Rie14]).



2.3. Terrestrial Mobile Mapping Systems 21

Figure 2.19: Comparison of some commercially available Mapping systems (source [PGJMS+13]).

of programs from Terrasolid in Finland is then utilized for the processing of the laser scan data
and its transformation into the final 3D elevation model data.

The StreetMapper systemhas been supplied to a number of international customers, including
Geomaat (Netherlands), Transport and Road Research Institute (Lithuania), Geokosmos (Russia);
Tecdawn (China) and Terrametrixand GeoDigital (USA). A StreetMapper system has also been
used extensively by Halcrow, a large engineering consultancy company, to carry out corridor
surveys along roads for highway asset management and to capture street level data in city centres
in the United Kingdom.

2.3.4.2 Integrated Positioning System (IP-S2)

The IP-S2 has been introduced by Topcon Positioning Systems (as shown in Fig. 2.20) in 2009.
There are more than 400 units of this system currently in use world-wide. One of its main users
is Google Inc. The IP-S2 system includes a Topcon dual-frequency 40-channel GNSS receiver
operating at 20 Hz, which is coupled to a Honeywell HG1700 tactical-grade IMU based on a
ring laser gyro (RLG) that is operating at 100 Hz. The resulting DGPS/IMU positional data
is supplemented by that generated by a wheel-mounted odometer with an angular encoder
operating at 30Hz to complete the overall positioning capability for the IP-S2 system. Besides
these positioning devices, the imaging and laser scanning capabilities of the IP-S2 are based
on well-known units that are available off-the-shelf. They include the Ladybug multi-camera
unit from Point Grey Research that carries out the 360 degree panoramic imaging with framing
rates of up to 15 frames per second. The laser scanning that is carried out using the standard
configuration of the IP-S2 is provided by three Sick LMS 291 scanners operating at 75 Hz. One
of these laser scanners is pointing directly forwards (or backwards) towards the road in front of
(or behind) the vehicle, while the other two scanners point to each side to provide a continuous
series of range or elevation profiles within the vertical plane. All of these imaging and scanning
devices send their data to a central control box which then passes it via a high speed FireWire-B
(IEEE1394-B) link to the PC that is mounted in the vehicle for the recording and processing
of the data. An LCD display screen allows the vehicle’s crew to monitor the connectivity and
operation of all the various positioning, laser scanning and frame imaging devices. In the version
of the system that is used in the Google Street View vehicles, the Ladybug multiple camera has
been replaced by Google’s own multiple camera system (Fig. 2.16(a)), which is based on the use
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of Elphel digital frame cameras. The IP-S2 system is also used by the Geodis surveying and
mapping company based in Brno in the Czech Republic.

(a) (b)

Figure 2.20: Topcon’s IPS2 mobile mapping system (source [Top14]).

2.3.4.3 Lynx Mobile Mapper

The Lynx Mobile Mapper (Fig. 2.21) was introduced by Optech Inc., which is based near Toronto
in Canada towards the end of 2007. The system includes a purpose built spinning laser profiling
system that is designed specifically for attachment to standard vehicle roof racks with mounts for
two of these laser scanners and two calibrated digital frame cameras in its standard configuration.
The Lynx system also includes an Applanix POS LV sub-system, complete with its IMU; a
dual frequency GPS receiver and antenna; and a Distance Measuring Instrument (DMI), for
coordinate positioning purposes. The laser scanners that are used in the Lynx system are built
in-house by Optech and utilize a Class I laser as the basis for their laser rangefinders. They have
a maximum range of 200 m; a full circle 360 degree angular coverage; a pulse measuring rate
of upto 200 kHz; and a scan rate of about 200 Hz. The system control unit with its embedded
positioning and navigation solution that is based on the Applanix POS LV 420 DGPS/IMU
sub-system can control up to four laser scanners simultaneously using the laptop computer that
is attached to the unit. The Applanix POSPAC MMS (Mobile Mapping Suite) software is used to
process the POS LV DGPS/IMU data, while Optech supplies its own LynxSurvey and DASHMap
software for the final post-processing of the measured data. At the time of its introduction,
Optech announced that Lynx systems had already been supplied to two European companies i.e.
the Infoterramapping company based in the United Kingdom and the Sineco company in Italy.
Since then, further systems have been sold to TopScan in Germany and Teccon in Belgium. Still
more systems have been supplied to various North American users, e.g. to Aerial Data Service,
Michael Baker, WH Pacific, Sanborn, Surveying and Mapping (SAM) Inc. and McKim and Creed
in the USA Highway and railway infrastructure surveys and urban modeling surveys appear to
be the main applications that have been undertaken by these mapping companies using their
Lynx systems.

2.3.5 Mobile Mapping Services

There are several companies in the world that operate individual mobile mapping vehicles,
offering their services especially to those agencies that are concerned with providing navigation
solutions, online maps, highway management and maintenance, etc. by carrying out street-level
imaging and mapping operations on a regional, national and international scale [Per10]. Some
of the main service providers are presented below.
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(a) (b)

Figure 2.21: Lynx Mobile Mapper along with system configuration (source [Opt14]).

2.3.5.1 Tele Atlas

Tele Atlas is a Dutch-owned mapping company that is based in the town of ´ s-Hertogenbosch in
the Netherlands. Originally an independent company, in July 2008, it was bought by and became
a subsidiary of the TomTom company, which is a major Dutch supplier of car navigation systems.
In practice, Tele Atlas still supplies digital map data to a wide spectrum of users besides TomTom.
These have included Google, which, in October 2009, decided to stop using Tele Atlas map data
for the USA i.e. which it now generates from its ownmobile mapping activities. However Google
still continues to use Tele Atlas map data in other countries. The processing and analysis of
the data that has been acquired by its fleets of mobile mapping vehicles is carried out partly in
Poland and partly in Noida, a suburb of the Indian capital, New Delhi.

Each of the Tele Atlas vans is equipped with either 4 or 6 digital video cameras in various
configurations depending on the area being surveyed. The frame images that are generated
by these cameras have a format size of 1, 200× 960 pixels and are acquired at the rate of three
frames per second when travelling at normal speeds on the roads. The forward-pointing cameras
can generate overlapping 3D stereo-images, which allows them to be used as photogrammetric
source material. For precise positioning, each van is equipped with a GPS unit operating at
5 Hz, which makes use of Fugro’s OmniSTAR wide-area differential GPS service employing
satellite broadcast techniques. For use in tunnels and urban canyons, where the GPS signals are
either lost or are much restricted, the vans are equipped with a single-axis gyroscope recording
at 100Hz that provides directional (heading) data and an odometer attached to one of the rear
wheels of the vehicle. The image and positional data are continuously recorded on the PCs
that are mounted in the back of the van. This data is also displayed continuously on monitor
display screens for the crew to check their operation. A similar fleet of smaller Toyota vehicles
was then developed and brought into service in North America. Besides a set of digital video
frame cameras, similar to those being used in Europe, most of these vehicles are equipped with
twin 2D laser scanners from SICK that generate a continuous series of range profiles across
the surrounding landscape at right angles to the vehicle’s direction of travel. Some of these
survey vans are also equipped with full-blown inertial measuring units (IMUs) rather than
the single-axis gyroscopes mentioned above. Besides the two large fleets of vans that are in
operation in Europe and North America, an additional but much smaller number of vans have
been deployed in south-eastern Asia; in Taiwan, Singapore and Thailand. More than 50 mobile
mapping vans are currently being operated by Tele Atlas world wide as shown in Fig. 2.22.
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(a) (b)

Figure 2.22: (a) Tele Atlas van. (b) Smaller Toyota vehicles deployed in America (source Web Tele
Atlas).

2.3.5.2 NAVTEQ

NAVTEQ is a large American mapping company with its headquarters in Chicago. In December
2007, the company was purchased by the Finnish Nokia organisation, which is a major supplier
of telecom networks and cell phones on a world-wide scale. Nokia also provides its Ovi Maps
product (previously called Nokia Maps), which can be downloaded free by those customers
who have purchased the company’s smart phones that are equipped with a suitable processor,
display screen and operating system.

(a) (b)

Figure 2.23: (a) NAVTEQ mobile mapping vehicle is equipped with roof-mounted cameras and
a GPS antenna. (b) A close-up picture of the array of multiple cameras housed in a transparent
perspex cover on the roof of a NAVTEQ mobile mapping vehicle (source [Nav14]).

However, besides supplying digital map data to Nokia for incorporation in these products,
NAVTEQ appears to operate in a fairly independent manner. Like Tele Atlas, NAVTEQ still
provides digital map databases for the navigation systems that are being installed in the cars that
are being built by several different manufacturers. Besides which, the company also supplies
digital map data for use in portable GPS sets and in the Internet-based map applications that are
provided by Microsoft (Bing Maps) and Yahoo (Yahoo Live Maps). NAVTEQ has a large map
data production centre located in Fargo, North Dakota, that is supplemented and supported by
a network of smaller national and regional offices world-wide. Each of the vehicles (comprising
cars and SUVs) in the NAVTEQ fleet is equipped with an array of six or eight digital video
cameras (Fig. 2.23). These are placed on a specially designed tray that is mounted on the roof



2.3. Terrestrial Mobile Mapping Systems 25

of the vehicle and they are enclosed in a transparent Perspex cover. Each of the six (or eight)
cameras acquires its images every 5 metres; in total, they provide a 270 (or 360) degree coverage
of the road and its surroundings as seen from the mapping vehicle at each successive position
where the images are being acquired. The new vehicles are also equipped with an Applanix
POS LV IMU and a TrimbleGPS receiver, which utilizes a differential GPS service. The resulting
measured image and positional data are recorded on a powerful PC.

2.3.5.3 Google

Google’s Street View is a special feature of the well-known Google Maps and Google Earth
services that can be accessed via the Internet. The Street View software gives access to the
panoramic images that have been acquired at intervals of 10 to 20 m along the streets of many
cities of the world. The numbers and types of mobile mapping cars that have been used to acquire
Street View imagery in different countries has varied considerably from country to country. In
the USA, Australasia and Japan, the cars were at first equipped with Ladybug multiple cameras.
However, since then, these have been replaced by the now standard nine-camera systemmounted
on a sturdy mast that is itself attached to a roof rack that is fitted to the roof of the car (Fig. 2.24).
The mast and camera system can be folded down on to the roof rack when not in use.

As discussed previously, the nine digital cameras from Elphel that make up the Google
multiple camera system comprise eight that, in total, provide a 360 degree panorama in the
horizontal plane, while the ninth camera points vertically upwards to record the undersides of
bridges and overpasses and the top surfaces of tunnels. Each car is equipped with a combined
DGPS/IMU system that has been supplied by Topcon, together with a wheel-mounted odometer
that, in conjunction with the IMU, can help establish position wherever GPS coverage is poor or
has been lost in tunnels or within high-rise urban areas.

Figure 2.24: Google mobile mapping fleet consisting of mapping vehicles, trikes, snow mobiles
and portable backpacks vehicle (source [Goo14]).

The Google Street View cars also feature a pair of SICK LMS 291 laser scanners that con-
tinuously measure a series of range or elevation profiles on either side of the mapping vehicle.
A third SICK scanner measures the road surface in front of the vehicle. Besides the car-based
mobile mapping systems, Google has also introduced a number of pedal-powered tricycles
(trikes), snow mobile and portable back packs that are equipped with a similar set of cameras,
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(a) (b)

(c)

Figure 2.25: (a) & (b) show different occluding objects in the urban scene in image data (source
Web Google Maps). (c) shows different occluding objects in the 3D LiDAR point clouds of the
urban environment acquired from Vis Centre’s Viztruck.

laser scanners and positioning equipment (Fig. 2.24). These are being used for data collection in
areas such as pedestrian precincts and public parks and along cycle tracks where cars cannot be
operated or mountain ranges, etc.

2.4 Limitations and Challenges

Although the use of terrestrial MMS for urban cartography has several advantages such as fast
acquisition speed, highly accurate and dense data and the ability of map large areas easily (even
multiple times), but there are also some limitations. In urban environments, the quality of the
data obtained from these hybrid terrestrial vehicles is widely hampered due to the presence
of temporarily static and dynamic objects (pedestrians, cars, etc.) in the scene. As a result, the
occlusion of some features remains a problem. Moving objects or certain temporarily stationed
objects (parked cars, traffic, pedestrian, etc.) present in the area hide certain features of the urban
landscape (parts of buildings, road sides, etc.) as shown in Fig. 2.25.

Similarly, the fast acquisition of such a large amount of data (modern acquisition platforms
facilitate data collection rates of over two billion points per hour) not only requires large storage
space but also makes it practically impossible to process this data in real time for any higher
level applications.

Also, due to the fact that that the vehicle carrying the mapping system moves mainly on
streets and roads, there are sometimes accessibility issues and only limited viewing angles are
available compared to static scanners which can be moved around a certain building or area to
acquire data from multiple views.

In static scans, points are collected radially outward with the point density dropping off
sharply with distance. In MMS, the points only drop in density perpendicular to the line of
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travel whereas along the line of travel the density varies with the speed of the vehicle as shown
in Fig. 2.26(b). Moreover, the density also depends upon the spatial orientation of surfaces and
their distance for each acquired frame (heterogeneous density). For example, in the ground
plane, the points acquired close to the vehicle have a high density whereas the far-off points have
a more low density as shown in Fig. 2.26(a).

(a) (b)

Figure 2.26: Density variation in 3D MMS data. (a) & (b) show the point density dropping
perpendicular to the line of travel of the data acquiring vehicle. In (b) we can clearly see that the
point density decreases from left to right due to the varying speed of the vehicle.

In case of image data not only the effects of illumination and weather conditions play an
important role but also different post processing techniques such as automatic face detection
and blurring, etc. is also required for privacy.

Another common problem currently faced is the effective update of the urban cartography
as shown in Fig. 2.27 and Fig. 2.28. In order to update these maps or resulting 3D models, the
same areas are mapped repeatedly and regularly for example for Google Earth after every two
weeks and Google Street View up to few months in several areas (source Google inc.).

Apart from scheduled mapping of different areas, most mapping services also rely on user
feedback to manually indicate changed areas where new mapping is required. This also helps
optimize and prioritize mapping schedules. However, as in common practice, no automatic
change detection methods are used that could efficiently identify and pinpoint only the changed
portion, a lot of unnecessary computational power and time are wasted. Similarly, inefficient
updating methodology also results in just piling of large amount of data over time, for example
Google had already stocked over 20 petabytes of data for its different mapping services. Further
use of this redundant data for different higher level applications still remains a challenging topic
of research.

Another difficulty that arises when attempting to detect effective changes occurring in the
urban environment is to differentiate the changes caused by the presence of transient objects i.e.
frequently pedestrians and vehicles in the scene with the actual structural changes occurring in
the cartography due to addition, removal or modification of certain parts of the environment.

Sometimes, the scanning system itself offers several issues to consider when dealing with
the detection of changes. When employing LiDAR scanners, for instance, problems such as no-
reflectance regions, range limits, and noisy ranges need to be resolved. Regions of no-reflectance
refer to areas towards which pulses have been transmitted, but due to absorption or specularity,
not enough energy (if any) is returned to trigger a range measurement (some common examples
include objects like, windows, and low reflectance surfaces). At times when data from the other
scan exists in these "hole" regions they will be considered as changes while not being so. Similarly
with ranging limits, the different scanning positions will leave areas seen in one scan uncovered
by the other. This relatively trivial fact suggest that the lack of information cannot be attributed
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(a) (b)

(c) (d)

Figure 2.27: Problem of not-so-regular updating can result in incorrect urban features in the
visualization and cartography of the environment. (a) shows the original Street View screenshot
of a house in Dauphine Street, New Orleans taken at 15-07-2012 while the actual photo taken
on the same date is presented in (c). (b) shows the original Street View screenshot of K-doe’s
mother in law lounge in New Orleans taken on 21-06-2012 while the actual photo of the place
taken on the same date is presented in (d).

only to actual changes (or geometric constraints that the scene imposes) in the region. Therefore,
the consideration of the range limits should be handled appropriately. Also, important is the
noise which usually accompanies laser data, especially around object edges and corners. Unless
treated properly, noise can also be interpreted as changes in the scene.

Another important issue related to multiple scanning and mapping of the same areas for
updating is the misalignment of the acquired 3D points in case of LiDAR data. Although, usually
the acquired 3D points are directly geo-referenced as explained in Section 2.3.2, there are still
some misalignment errors when merging these 3D point clouds due to different inherent errors
of the acquisition and positioning sensors as shown in Fig. 2.29. Different applications and
precise analysis necessitate a more accurate/fine registration of these point clouds.
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Figure 2.28: Problem of different updating schedules. The figure clearly shows that both the
Google Map and Street view were not updated at the same time. As the Google map suggests to
the user to drive through Wood house lane, Manchester, while the Street View image shows it is
blocked (year 2012).

Figure 2.29: Misalignment errorswhenmerging two 3Dpoint clouds (in red and blue respectively)
of the same urban scene (source [GS10]).

In this thesis, we effectively address these problems and propose a new method of 3D urban
cartography incorporating recognition and temporal integration. The resulting 3D cartography
contains only the exact, accurate andwell-updated, permanent features of the urban environment.
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2.5 Proposed Methodology

As we discussed in the last section that in urban environments the quality of the data obtained
from Mobile Mapping Systems (MMS) are widely hampered due to the presence of temporarily
static and dynamic objects (pedestrians, cars, etc.) in the scene as shown in Fig. 2.25. So the
first step for 3D urban cartography is to obtain the permanent part of the urban environment.
So, in order to obtain the permanent part of the urban environment, we first classify the ur-
ban environment into permanent and temporary classes (Chapter 3). The objects classified as
temporary are then removed from the 3D point cloud leaving behind a perforated 3D point
cloud of the urban environment. These perforations along with other imperfections are then
analyzed and progressively removed by incremental updating exploiting the concept of multiple
passages (Chapter 4). We also show that the proposed method of temporal integration also helps
in improved semantic analysis of the urban environment, specially building façades (Chapter 5).

These methods ensure that the resulting 3D cartography contains only the exact, accurate
and well-updated, permanent features of the urban environment. An overview of the workflow
is provided in Fig. 2.30.
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Figure 2.30: An overview of the workflow.
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Segmentation and Classification

of 3D Urban Point Clouds

Segmentation and Classification

of 3D Urban Point Clouds

Segmentation and classification of urban range data
into different object classes offer several challenges
due to certain properties of the data such as density
variation, inconsistencies due to missing data and the
large data size which require heavy computation and
large memory. In this chapter, after shedding light
on the existing state of the art techniques for seg-
mentation and classification of urban environment,
a method to classify urban scenes based on a super-
voxel segmentation of sparse 3D data obtained from
LiDAR sensors is presented. The 3D point cloud is
first segmented into voxels which are then charac-

terized by several attributes transforming them into
super-voxels. These are joined together by using a
link-chain method rather than the usual region grow-
ing algorithm to create objects. These objects are
then classified using geometrical models and local
descriptors. In order to evaluate the results, a new
metric is presented which combines both segmenta-
tion and classification results simultaneously. The
effects of voxel size and incorporation of RGB color
and laser reflectance intensity on the classification
results are also discussed. The method is evalu-
ated on standard datasets using different metrics to
demonstrate its efficacy.
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3.1 Introduction

The automatic segmentation and classification of 3D urban data have gained widespread interest
and importance in the scientific community due to the increasing demand of urban landscape
analysis and cartography for different popular applications, coupled with the advances in 3D
data acquisition technology. The automatic extraction (or partially supervised) of important
urban scene structures such as roads, vegetation, lamp posts, and buildings from 3D data has
been found to be an attractive approach to urban scene analysis because it can tremendously
reduce the resources required for analyzing the data for subsequent use in 3D city modeling and
other algorithms.

3.1.1 Segmentation of 3D Data

In order to fully exploit 3D point clouds, for scene understanding and object classification,
effective segmentation has proved to be a necessary and critical pre-processing step in a number
of autonomous perception tasks. For instance, Malisiewicz and Efros [ME07] show that prior
segmentation improves classification in computer vision applications.

3.1.1.1 Specialized Features and Surface Discontinuities

Earlier works, including [RDHV06] and [SV03], employed the use of small sets of specialized
features, such as local point density or height from the ground, to discriminate only few object
categories in outdoor scenes, or to separate foreground from background. In literature survey,
we also find some segmentation methods based on surface discontinuities as described by
Moosmann, Pink, and Stiller [MPS09] who used surface convexity in a terrain mesh as a separator
between objects as shown in Fig. 3.1.

Figure 3.1: Illustration of the method: (top-left) 3D point cloud, blueness decodes height above
ground. Street is in vertical direction with parked cars and a wall on the right and tree trunks on
the left. (top-right) Neighborhood Graph. (bottom-left) Normal vectors, direction is indicated
both by color and a small line. (bottom-right) Segmentation result (source [MPS09]]).

3.1.1.2 Graph Clustering

Lately, segmentation has been commonly formulated as graph clustering. Instances of such
approaches are Graph-Cuts including Normalized-Cuts and Min-Cuts. Golovinskiy and
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Funkhouser [GF09] extended Graph-Cuts segmentation to 3D point clouds by using k-Nearest
Neighbors (k-NN) to build a 3D graph. In this work, edge weights based on exponential decay
in length were used. But the limitation of this method is that it requires prior knowledge of the
location of the objects to be segmented. An illustration of the method is presented in Fig. 3.2.

(a) (b)

(c) (d)

Figure 3.2: (a) The method takes as input a point cloud near an object location (in this case, a
short post). (b) A k-nearest neighbors graph is constructed. (c) A foreground point is chosen as
a hard constraint (in the interactive mode, the user chooses hard foreground and background
constraints). (d)The resulting segmentation is created via a min-cut (source [GF09]).

Another segmentation algorithm for natural images, introduced by Felzenszwalb and Hut-
tenlocher [FH04] (FH algorithm), has gained popularity for several robotic applications due to its
efficiency. This algorithm makes simple greedy decisions, and yet produces segmentations that
satisfy the global properties by using a particular region comparison function which measures
the evidence for a boundary between pairs of regions. Zhu et al. [ZZL+10] presented a method
in which a 3D graph is built with k-NN while assuming the ground to be flat for removal during
pre-processing. 3D partitioning is then obtained with the FH algorithm. We also used the same
assumption in our proposed method.

Triebel, Shin, and Siegwart [TSS10] modified the FH algorithm for range images to propose
an unsupervised probabilistic segmentation technique. In this approach, the 3D data is first over-
segmented during pre-processing. Schoenberg, Nathan, and Campbell [SNC10] have applied
the FH algorithm to colored 3D data obtained from a co-registered camera laser pair. The
edge weights are computed as a weighted combination of Euclidean distances, pixel intensity
differences and angles between surface normals estimated at each 3D point. The FH algorithm is
then run on the image graph to provide the final 3D partitioning. The evaluation of the algorithm
is done on road segments only.

Strom, Richardson, and Olson [SRO10] proposed a similar approach but modified the FH
algorithm to incorporate angle differences between surface normals in addition to the differences
in color values. The improvement in results are shown in Fig. 3.3. However, the segmentation
evaluation was done visually without ground truth data. Our approach differs from the above



3.1. Introduction 37

mentioned methods as, instead of using the properties of each point for segmentation resulting
in over segmentation, we have grouped the 3D points based on Euclidian distance into voxels
and then assigned normalized properties to these voxels transforming them into super-voxels.
This not only prevents over segmentation but in fact reduces the dataset by many fold thus
reducing post-processing time.

(a) (b)

(c) (d)

Figure 3.3: (a) The camera image for the scene of which the color coded 3D points were acquired.
(b) Graph segments with only color difference as a cluster criterion. (c) Graph segments with
only surface normals as a cluster criterion. (d) Graph segments with both color difference and
surface normals as a cluster criterion. The white rings mark the errors observed in each case
(source [SRO10]).

3.1.1.3 Geometrical Primitives

A spanning tree approach to the segmentation of 3D point clouds was proposed by Pauling,
Bosse, and Zlot [PBZ09]. Graph nodes represent Gaussian ellipsoids as geometric primitives.
These ellipsoids are then merged using a tree growing algorithm. The resulting segmentation
(as shown in Fig. 3.4) is similar to a super-voxel type of partitioning with voxels of ellipsoidal
shapes and various sizes. Unlike this method, our approach uses cuboids of different shapes
and sizes as geometric primitives and a link-chain method to group them together.

3.1.1.4 Markov Random Fields

In the literature review, we also find some techniques, such as [ATC+05] and [LS07], that segment
and label 3D points by employing Markov Random Fields to model their relationship in the
local vicinity. These techniques proved to outperform classifiers based only on local features but
at a cost of computational time. Different methods such as [MVH09] have been introduced to
increase the efficiency.
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(a) (b)

Figure 3.4: (a) The 3D points of an urban scene. (b) Segmentation results with ellipsoids as
geometric primitives (source [PBZ09]).

3.1.1.5 Mathematical Morphology

Amethod for segmenting 3D urban point cloud based on mathematical morphology is presented
by Serna and Marcotegui [SM14]. In this method, first, input point cloud is mapped to a range
image. Second, the image is interpolated in order to avoid connectivity problems and the k-flat
zones algorithm is used to segment the ground (road and sidewalk). Third, façades and objects
are extracted using morphological transformations. The methods rely on façades being the
highest vertical structures in the scene and objects are represented as bumps on the ground on
the range image as shown in Fig. 3.5. Although the method is relatively fast, it fails to correctly
segment out closely positioned or overlapping objects. Compared to this method, our proposed
method is more efficient in segmenting out such objects as along with other information, the
values of reflectance intensity and RGB color (if available) are also incorporated.

3.1.2 Classification of 3D Data

In the past, research related to 3D urban scene classification and analysis had been mostly
performed using either 3D data collected by airborne LiDAR for extracting bare-earth and
building structures [LOL09] [VKG05] or 3D data collected from static terrestrial laser scanners
for extraction of building features such as walls and windows [PV09]. Recently, classification of
urban environment using data obtained from mobile terrestrial platforms (such as [HS10]) has
gained much interest in the scientific community due to the ever-increasing demand of realistic
3D models for different popular applications coupled with the recent advancements in the 3D
data acquisition technology.

3.1.2.1 Discriminate Models and Model Fitting

In [LS08] a method of multi-scale Conditional Random Fields is proposed to classify 3D outdoor
terrestrial laser scanned data by introducing regional edge potentials in addition to the local
edge and node potentials in the multi-scale Conditional Random Fields. This is followed by
fitting plane patches onto the labeled objects such as building terrain and floor data using the
RANSAC algorithm as a post-processing step to geometrically model the scene as shown in
Fig. 3.6. In [LKM+10] the authors extracted roads and objects just around the roads like road
signs. They used a least squares fit plane and RANSAC method to first extract a plane from the
points followed by a Kalman filter to extract roads in an urban environment. Douillard, Brooks,
and Ramos [DBR09] presented a method in which 3D points are projected onto the image to
find regions of interest for classification. Object classification is implemented using a rule based
system to combine binary deterministic and probabilistic features. Figure 3.7 shows some of the
results.
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(a) (b)

(c) (d)

Figure 3.5: (a) Segmentation of 3D point clouds based on morphological modeling. Objects are
segmented out as bumps on the ground. (b) Input point cloud. (c) Range image. (d) Segmentation
results (source [SM14]).

3.1.2.2 Features based

The use of different characteristic features for discriminating and classifying objects is an effective
technique. A method of classification based on global features is presented in [HHB+10] in
which a single global spin image for every object is used to detect cars in the scene while in
[RBT+10] a Fast Point Feature Histogram (FPFH) local feature is modified into global feature for
simultaneous object identification and view-point detection. Classification using local features
and descriptors such as Spin Image [Joh97], Spherical Harmonic Descriptors [KFR03], Heat
Kernel Signatures [SOG09], Shape Distributions [OFC+02], 3D SURF feature [KPG10] is also
found in the literature survey. In [PMD08], the authors use both local and global features in a
combination of bottom-up and top-down processes. In this approach, spin images are used as
local descriptors to classify cars in the scene in the bottom-up stage while Extended Gaussian
Images are used as global descriptors for verification in the top-down stage. The work shows that
the combination local and global descriptors provides a good trade-off between efficiency and
accuracy. There is also a third type of classification based on Bag Of Features (BOF) as discussed
in [LZQ06].

In our method, we use geometrical models based on local features and descriptors to success-
fully classify different segmented objects represented by groups of voxels in the urban scene.
Ground is assumed to be flat and is used as an object separator. Our segmentation technique is
discussed in Section 3.2. Section 3.3 deals with the classification of these segmented objects. In
Section 3.4, a new evaluation metric is introduced to evaluate both segmentation and classifica-
tion together while, in Section 3.5, we present the results of our work. Finally, we conclude in
Section 3.7.
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(a) (b)

(c) (d)

Figure 3.6: (a) 3D points of an urban scene shown in laser direct intensity. (b) Classification results
with CRFs. (c) Classification results with mCRFs (Man-made objects in yellow), Vegetation in red,
Tree trunks in blue, Terrain in green and Pathways in blue). (d) RANSAC fitted plane patches
(source [LS08]).

(a) (b)

Figure 3.7: (a) 3D view of the inferred class labels. The blue triangle indicates the vehicle’s
position. (b) displays the inferred labels/classes as well as the ROIs and the projected laser
returns. The color of each ROI matches the color of the associated object in the 3D plot (source
[DBR09]).

3.2 Voxel-based Segmentation

The proposed voxel based segmentation method consists of three main parts which are the
voxelisation of data, the transformation of voxels into super-voxels and the clustering by link-
chain method.
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3.2.1 Voxelisation of Data

When dealing with large 3D datasets, the computational cost of processing all the individual
points is very high, making it impractical for real time applications. It is therefore sought to
reduce these points by grouping together or removing redundant or un-useful points. Similarly,
in our work the individual 3D points are clustered together to form a higher level representation
or voxel as shown in Fig. 3.8.

Figure 3.8: A number of points is grouped together to form cubical voxels of maximum size 2r.
The actual voxel sizes vary according to the maximum and minimum values of the neighboring
points found along each axis to ensure the profile of the structure.

For p data points, a number of s voxels, where s << p, is computed based on r-NN (r-Nearest
Neighbors), where r is the radius of ellipsoid. The maximum size of the voxel 2r depends
upon the density of the 3D point cloud (the choice of this maximum voxel size is discussed in
Section 3.5.5). In order to create the voxels, first a 3D point is selected as centre and using an
r-NN with a fixed diameter (equal to maximum voxel size), all the 3D points in the vicinity are
selected. All these 3D points now belong to this first voxel. Then, based on the maximum and
minimum values of the 3D points contained in this voxel, the actual voxel size is determined.
The same step is then repeated for other 3D points which are not part of the earlier voxel until all
3D points are considered (see Algorithm 1). In [LS08] color values are also added in this step
but it is observed that for relatively smaller voxel sizes, the variation in properties such as color
is not profound and just increases computational cost. For these reasons, we have only used
distance as a parameter in this step. The other properties are used in the next step of clustering
the voxels to form objects. Also we have ensured that each 3D point which belongs to a voxel
is not considered for further voxelisation. This not only prevents over segmentation but also
reduces processing time.

For the voxels we use a cuboid because of its symmetry, as it avoids fitting problems while
grouping and also minimizes the effect of voxel shape during feature extraction. Although the
maximum voxel size is predefined, the actual voxel sizes vary according to the maximum and
minimum values of the neighboring points found along each axis to ensure the profile of the
structure.
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3.2.2 Transformation of Voxels into Super-Voxels

A voxel is transformed into a super-voxel when properties based on its constituting points are
assigned to it. These properties include:

� VX,Y,Z : geometrical center of the voxel;

� VR,G,B : mean R, G, & B value of constituting 3D points;

� V ar(R,G,B): maximum of the variance of R, G & B values;

� VI : mean laser reflectance intensity value of constituting 3D points;

� V ar(I): variance of laser reflectance intensity values;

� sX,Y,Z is the voxel size along each axis X , Y & Z;

� Surface normals: A surface normal is calculated using PCA (Principal ComponentAnalysis).
The PCA method has been proved to perform better than the area averaging method
[KAW+09] to estimate the surface normal. Given a point cloud dataset D = {xi}ni=1, the
PCA surface normal approximation for a given data point p ∈ D is typically computed by
first determining the k-Nearest Neighbors of the points contained inside the voxel, xk ∈ D,
of p. Given the K neighbors, the approximate surface normal is then the eigenvector
associated with the smallest eigenvalue of the symmetric positive semi-definite matrix

P =
K∑
k=1

(xk − p)T (xk − p) (3.1)

where p is the local data centroid: p = 1
K

K∑
j=1

xj .

The estimated surface normal is ambiguous in terms of sign (specially if the location of the
sensor is unknown); to account for this ambiguity it is homogenized using the dot product.
Yet for us the sign of the normal vector is not important as we are more interested in the
orientation. A surface normal is estimated for all the points belonging to a voxel and is
then associated with that particular voxel which then also defines its 3D orientation.

With the assignment of all these properties, a voxel is transformed into a super-voxel. All
these properties would then be used in grouping these super-voxels (from now onwards referred
to as s-voxels) into objects and then during the classification of these objects.

Instead of using thousands of points in the dataset, the advantage of this approach is that we
can now use the reduced number of s-voxels to obtain similar results for classification and other
algorithms.

3.2.3 Clustering by Link-Chain Method

When the 3D data is converted into s-voxels, the next step is to group these s-voxels to segment
into distinct objects. Usually for such tasks, a region growing algorithm [VS05] is used in which
the properties of the whole growing region may influence the boundary or edge conditions. This
may sometimes lead to erroneous segmentation. Also common in such type of methods is a
node based approach [MPS09] in which at every node, boundary conditions have to be checked
in all 5 different possible directions. In our work, we have proposed a link-chain method instead
to group these s-voxels together into segmented objects.

In this method each s-voxel is considered as a link of a chain. Unlike the classical region
growing algorithm, where a region is progressively grown from a seed (carefully selected start
point), in the proposedmethod any s-voxel can be taken as a principal link and all secondary links
attached to this principal link are found. The same is repeated for all s-voxels untill all s-voxels
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(a) (b) (c)

(d)

Figure 3.9: Clustering of s-voxels using a link-chain method is demonstrated. (a) shows s-voxel
1 taken as principal link in red and all secondary links attached to it in blue. (b) and (c) show
the same for s-voxel 2 and 3 taken as principal links. (d) shows the linking of principal links
(s-voxels 1, 2 & 3) to form a chain removing redundant secondary links.

are taken into account (see Algorithm 1 for details). Thus there is no need of a specific start
point, no preference for choice of principal link nor any directional constraint, etc. In the final
step, all the principal links are linked together to form a continuous chain removing redundant
secondary links in the process as shown in Fig. 3.9. These clusters of s-voxels represent the
segmented objects.

LetVP be a principal link andVn be the nth secondary link. EachVn is linked toVP if and
only if the following three conditions are fulfilled:

∣∣VPX,Y,Z
−VnX,Y,Z

∣∣ ≤ (wD + cD) (3.2)

∣∣VPR,G,B
−VnR,G,B

∣∣ ≤ 3
√
wC (3.3)

|VPI
−VnI | ≤ 3

√
wI (3.4)

where, for the principal and secondary link s-voxels respectively:

� VPX,Y,Z
,VnX,Y,Z are the geometrical centers;

� VPR,G,B
,VnR,G,B are the mean R, G & B values;

� VPI
,VnI are the mean laser reflectance intensity values;

� wC is the color weight equal to the maximum value of the two variances V ar(R,G,B), i.e.
max(VPV ar(R,G,B)

,VnV ar(R,G,B)
);

� wI is the intensity weight equal to the maximum value of the two variances V ar(I).

wD is the distance weight given as

(
VPsX,Y,Z

+VnsX,Y,Z

)

2 . cD is the inter-distance constant
(along the three dimensions) added depending upon the density of points and also to overcome
measurement errors, holes and occlusions, etc. The value of cD needs to be carefully selected
depending upon the data (see Section 3.5.5 for more details on the selection of this value). The
orientation of normals is not considered in this stage to allow the segmentation of complete 3D
objects as one entity instead of just planar faces.

This segmentationmethod ensures that only the adjacent boundary conditions are considered
for segmentation with no influence of a distant neighbor’s properties. This may prove to be more
adapted to sharp structural changes in the urban environment. An overview of the segmentation
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method is presented in Algorithm 1. The proposed method does not put any constraint on the
selection of voxels for segmentation as long as all the voxels are taken into account. They can
even be taken randomly. However, in order to optimize the program code a certain selection
process can be adopted. The programming structure adopted for implementation is based on
standard graph-based algorithms [Wan08].

Algorithm 1 Segmentation

1: repeat

2: Select a 3D point for voxelisation
3: Find all neighboring points to be included in the voxel using r-NN within the specified

maximum voxel length
4: Transform voxel into s-voxel by first finding and then assigning all the properties including

surface normal, found by using PCA, to it.
5: until all 3D points are used in a voxel
6: repeat

7: Specify s-voxel as a principal link
8: Find all secondary links attached to the principal link
9: until all s-voxels are used
10: Link all principal links to form a chain removing redundant links in the process

With this method 18, 541, 6, 928 and 7, 924 s-voxels obtained from processing 3 different
datasets were successfully segmented into 237, 75 and 41 distinct objects respectively.

3.3 Classification of Segmented Objects

In order to classify these segmented objects, we assume the ground to be flat and use it as
separator between objects. For this purpose we first classify and segment out the ground from
the scene and then the rest of the objects. This step leaves the remaining objects as if suspended
in space, i.e. distinct and well-separated, making them easier to be classified as shown in Fig. 3.10.
In order to classify these segmented objects a method is used which compares the geometrical
models and local descriptors of these already segmented objectswith a set of standard, predefined
thresholds. As the object types are so distinctly different that a simple choice of values for these
differentiating thresholds is sufficient.

Figure 3.10: Segmented objects in a scene with prior ground removal.

The ground or roads followed by these objects are classified using geometrical and local
descriptors based on the constituting super-voxels. These mainly include:
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a. Surface normals: The orientation of the surface normals is found essential for classification
of ground and building faces. For ground object the surface normals are predominantly
(threshold values greater than 80%) along Z-axis (height axis) whereas for building faces
the surface normals are predominantly (threshold values greater than 80%) parallel to the
X-Y axis (ground plane), see Fig. 3.11.

b. Geometrical center and barycenter: The height difference between the geometrical center
and the barycenter along with other properties is very useful in distinguishing objects like
trees and vegetation, etc., where h(barycenter− geometrical center) > 0, with h being the
height function.

c. Color and intensity: Intensity and color are also an important discriminating factor for several
objects.

d. Geometrical shape: Along with the above mentioned descriptors, geometrical shape plays
an important role in classifying objects. In 3D space, where pedestrians and poles are
represented as long and thin with poles being longer, cars and vegetation are broad and
short. Similarly, as roads represent a low flat plane, the buildings are represented as large
(both in width and height) vertical blocks (as shown in Fig. 3.12). The values for these
comparison threshold on the shape and size for each of the object types are set accordingly.

(a) Normals of building. (b) Normals of road.

Figure 3.11: (a) shows surface normals of building s-voxels which are parallel to the ground plane.
In (b) it can be clearly seen that the surface normals of road surface s-voxels are perpendicular to
the ground plane.

Figure 3.12: Bounding boxes for buildings, trees, cars, pedestrians and poles.

Using these descriptors we successfully classify urban scenes into 5 different classes (mostly
present in our scenes) i.e. buildings, roads, cars, poles and trees. The object types chosen
for classification are so distinctly different that if they are correctly segmented out, a simple
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classification method like the one proposed may be sufficient. The classification results and a
new evaluation metric are discussed in the following sections.

3.4 Evaluation Metrics

Over the years as new segmentation and classification methods have been introduced, different
evaluation metrics have been proposed to evaluate their performances. In previous works,
different evaluation metrics are introduced for both segmentation results and classifiers in-
dependently. Thus in our work we present a new evaluation metric which incorporates both
segmentation and classification together.

The evaluation method is based on comparing the total percentage of s-voxels successfully
classified as a particular object. Let Ti, i ∈ {1, · · · , N}, be the total number of s-voxels distributed
into objects belonging to N number of different classes, i.e. this serves as the ground truth, and
let tji , i ∈ {1, · · · , N}, be the total number of s-voxels classified as a particular class of type-j and
distributed into objects belonging to N different classes (for example a s-voxel classified as part
of the building class may actually belong to a tree) then the ratio Sjk (j is the class type as well
as the row number of the matrix and k ∈ {1, · · · , N}) is given as:

Sjk =
tjk
Tk

These values of Sjk are calculated for each type of class and are used to fill up each element
of the confusion matrix, row by row (refer to Table 3.2 for instance). Each row of the matrix
represents a particular class.

Thus, for a class of type-1 (i.e. first row of the matrix) the values of:

� True Positive rate TP = S11 (i.e. the diagonal of the matrix represents the TPs)

� False Positive rate FP =
N∑

m=2
S1m

� True Negative rate TN = (1− FP)

� False Negative rate FN = (1−TP)

The diagonal of this matrix or TPs gives the Segmentation ACCuracy (SACC), similar to
the voxel scores recently introduced by Douillard et al. [DUK+11]. The effects of unclassified
s-voxels are automatically incorporated in the segmentation accuracy. Using the above values,
the Classification ACCuracy (CACC) is given as:

CACC =
TP+TN

TP+TN+ FP+ FN
(3.5)

This value of CACC is calculated for all N types of classes of objects present in the scene.
Overall Classification ACCuracy (OCACC) can then be calculated as

OCACC =
1

N

N∑
i=1

CACCi (3.6)

where N is the total number of object classes present in the scene. Similarly, the Overall Seg-
mentation ACCuracy (OSACC) can also be calculated. The values of Ti and tji used above
are laboriously evaluated by hand matching the voxelised data output and the final classified
s-voxels and points. In case no voxels are available, the 3D points can be used to calculate the
evaluation metrics.

Evaluating classification results is a common task as presented in [MVH09] that employs a
standard confusion matrix using the number of classification results of an object type in different
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classeswhich are used to calculate the precision and recall. These values are then used to calculate
classification accuracy (which indeed is a standard feature in object classification). Whereas,
the proposed method differs from the standard approach as it uses a new metric: Sjk to fill in
each element of the matrix. This method is more suitable for work similar to ours as it provides
more insight in segmentation results and directly gives the segmentation accuracy similar to
Douillard et al. [DUK+11]. Also as compared to standard precision and recall evaluation, the
use of this metric in the proposed method, also accommodates for the unclassified voxels in the
results giving a more accurate result without incorporating the unclassified-objects as a class
in the confusion matrix. Hence these make this approach unique. Although, the evaluation
method is envisaged for voxel type representations, however, if voxels are not available then the
corresponding 3D points can be used instead for calculating the evaluation metrics in the same
manner.

3.5 Results

In order to test our algorithm two different datasets were used:

1. 3D datasets of Blaise Pascal University;

2. 3D Urban Data Challenge dataset [FS11].

The 3D Urban Data challenge dataset is not only one of the most recent dataset but it also con-
tains the corresponding RGB and reflectance intensity values necessary to validate the proposed
method. The proposed method is also suitable and well-adapted for directly geo-referenced 3D
point clouds obtained from mobile data acquisition and mapping techniques [BMSV08].

3.5.1 3D Datasets of Blaise Pascal University

These datasets consist of 3D data acquired from different urban scenes on the Campus of Blaise
Pascal University in Clermont-Ferrand, France, using a LEICA HDS-3000 3D laser scanner. The
results of three such datasets are discussed here. The datasets consist of 27, 396, 53, 676 and
110, 392 3D points respectively. These 3D points were coupled with corresponding RGB and
reflectance intensity values. The results are summarized in Table 3.1 and shown in Fig. 3.13,
3.14 and 3.15 respectively. The evaluation results using the new evaluation metrics for the three
datasets are presented in Tables 3.2, 3.3 and 3.4 respectively. These results are evaluated using a
value of maximum voxel size equal to 0.3m and cD = 0.25m.

Table 3.1: Segmentation results of 3D datasets of Blaise Pascal University.

Dataset Number of Number of Number of

# 3D data points segmented s-voxels segmented objects

# 1 27, 396 7, 924 41

# 2 53, 676 6, 928 75

# 3 110, 392 18, 541 237

3.5.2 3D Urban Data Challenge Dataset

The algorithm was further tested on the dataset of the recently concluded 3D Urban Data
Challenge 2011, acquired and used by Friedman and Stamos [FS11]. This dataset contains a
rich collection of 3D urban scenes of New York city mainly focusing on building façades and
structures. These 3D points are coupled with corresponding RGB and reflectance intensity
values. A value of maximum voxel size equal to 0.5m and cD = 0.15mwere used for this dataset.
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(a) 3D data points.

(b) Voxelisation and segmentation into objects.

(c) Labeled points.

Figure 3.13: (a) shows 3D data points of dataset 1. (b) shows s-voxel segmentation of 3D points
(along with orientation of normals). (c) shows classification results (labeled 3D points).
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(a) 3D data points.

(b) Voxelisation and segmentation into objects.

(c) Labeled points.

Figure 3.14: (a) shows 3D data points of dataset 2. (b) shows s-voxel segmentation of 3D points
(along with orientation of normals). (c) shows classification results (labeled 3D points).
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(a) 3D data points.

(b) Voxelisation and segmentation into objects.

(c) Labeled points.

Figure 3.15: (a) shows 3D data points of dataset 3. (b) shows s-voxel segmentation of 3D points
(along with orientation of normals). (c) shows classification results (labeled 3D points).
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Table 3.2: Classification results of Blaise Pascal University dataset 1 with the new evaluation
metrics.

Building Road Tree Pole Car CACC

Building 0.943 0.073 0 0 0 0.935

Road 0.007 0.858 0.015 0.008 0 0.914

Tree 0 0.025 0.984 0 0 0.979

Pole 0 0.049 0 0.937 0 0.944

Car – – – – – –

Overall segmentation accuracy: OSACC 0.930

Overall classification accuracy: OCACC 0.943

Table 3.3: Classification results of Blaise Pascal University dataset 2 with the new evaluation
metrics.

Building Road Tree Pole Car CACC

Building 0.996 0.007 0 0 0 0.995

Road 0 0.906 0.028 0.023 0.012 0.921

Tree 0 0.045 0.922 0 0 0.938

Pole 0 0.012 0 0.964 0 0.976

Car 0 0.012 0 0 0.907 0.947

Overall segmentation accuracy: OSACC 0.939

Overall classification accuracy: OCACC 0.955

Results of different scenes from this dataset are shown in Fig. 3.16, 3.17, 3.18, Tables 3.5, 3.6 and
3.7.

3.5.3 Comparison of Results with Existing Evaluation Methods

The classification results were also evaluated using already existing methods along with the
proposed evaluation metrics for comparison purpose. Firstly, one of the more frequently used
metrics: F-Measure which is based on the calculation of Recall and Precision as described in
[FWE03] is used. Secondly, a conditional entropy based metrics: V-Measure which is based on
the calculation of Homogeneity and Completeness as presented in [RH07] is used. The latter
method overcomes the problem of matching suffered by the former and evaluates a solution
independent of the algorithm, size of the dataset, number of classes and number of clusters as
explained in [RH07]. Another advantage of using these two metrics is that just like the proposed
metrics they have the same bounded score. For all three metrics the score varies from 0 to 1 and
higher score signifies better classification results and vice versa. The results are summarized in
Table 3.8.

From Table 3.8 it can be seen that the results evaluated by all the three evaluation metrics
are consistent with dataset 2 receiving the highest scores and dataset 3 the lowest. The results
not only validate the proposed metrics but also indicate that it can be used as an alternative
evaluation method. The results evaluated using these standard existing evaluation methods also
permit to compare the performance of the proposed algorithm with other published techniques
evaluated using them.
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(a) 3D data points.

(b) Voxelisation and segmentation into objects.

(c) Labeled points.

Figure 3.16: Segmentation and classification results for a particular scene-A of scenes from
3D Urban Data Challenge 2011, image # ParkAvenue_SW12_piece07 [FS11]. (a) shows 3D data
points of scene-A. (b) shows s-voxel segmentation of 3D points (alongwith orientation of normals).
(c) shows classification results (labeled 3D points).
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(a) 3D data points.

(b) Voxelisation and segmentation into objects.

(c) Labeled points.

Figure 3.17: Segmentation and classification results for a particular scene-B of scenes from
3D Urban Data Challenge 2011, image # ParkAvenue_SW12_piece00 [FS11]. (a) shows 3D data
points of scene-B. (b) shows s-voxel segmentation of 3D points (alongwith orientation of normals).
(c) shows classification results (labeled 3D points).



54 Chapter 3. Segmentation and Classification of 3D Urban Point Clouds

(a) 3D data points.

(b) Voxelisation and segmentation into objects.

(c) Labeled points.

Figure 3.18: Segmentation and classification results for a particular scene-C of scenes from
3D Urban Data Challenge 2011, image # ParkAvenue_SW14_piece00 [FS11]. (a) shows 3D data
points of scene-C. (b) shows s-voxel segmentation of 3D points (alongwith orientation of normals).
(c) shows classification results (labeled 3D points).
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Table 3.4: Classification results of Blaise Pascal University dataset 3 with the new evaluation
metrics.

Building Road Tree Pole Car CACC

Building 0.901 0.005 0.148 0 0 0.874

Road 0.003 0.887 0.011 0.016 0.026 0.916

Tree 0.042 0.005 0.780 0 0 0.867

Pole 0 0.002 0 0.966 0 0.982

Car 0 0.016 0.12 0 0.862 0.863

Overall segmentation accuracy: OSACC 0.879

Overall classification accuracy: OCACC 0.901

Table 3.5: Classification results of 3D Urban Data Challenge dataset (scene-A) with the new
evaluation metrics.

Building Road Tree Pole Car CACC

Building 0.980 0.002 0 0 0 0.989

Road 0.002 0.950 0.002 0 0.080 0.933

Tree 0 0.040 0.890 0 0.080 0.885

Pole 0 0 0 0 0 -

Car 0.040 0.020 0.030 0 0.900 0.905

Overall segmentation accuracy: OSACC 0.930

Overall classification accuracy: OCACC 0.928

3.5.4 Performance Evaluation and Discussion

The proposed method gives good (in terms of scores) segmentation and classification results in
all three evaluation methods. In general, the classification accuracy (OCACC) was found to be
slightly better than the segmentation accuracy (OSACC). Not taking anything away from the
segmentation method, one of the main reasons for this being the fact that the 5 types of objects
chosen for classification are distinctly different and that if the segmentation is good, classification
becomes easier and a simple method like the one proposed is sufficient.

As compared toV-Measure, the proposedmethod of evaluation can providemore information
regarding individual segmentation and classification results (SACC andCACC). These results
show that in most of the cases, the buildings, roads and poles have been classified the best
with a consistent scores of SACC and CACC higher than 90% except in the case of dataset
3 in which the building classification accuracy CACC is slightly deteriorated due to a large
overlapping tree which is wrongly classified as a building rather than a tree. This is also reflected
in the low Homogeneity value of 0.670 obtained when calculating V-Measure for this dataset.
The classification of cars is generally good and the results are consistent but they are slightly
hampered due to occlusions in some scenes (dataset 3: CACC 86.3%, Scene B: CACC 89.5%).
In case of trees, the SACC andCACC are found to vary the most. This is mainly due to the fact
that the proposed classification method is based on local descriptors and geometrical features
which in the case of trees are very difficult to define (due to large variation of shapes, sizes and
types). Thus, where the proposed algorithm succeeded in classifying smaller trees of more
classical shapes with a higher SACC and CACC scores, it produced a low SACC and CACC
score of 68% and 79.4% respectively for Scene B. The Recall and Precision scores obtained
during the calculation of F-Measure for the tree class of this scene were similarly found low as
well (0.682 and 0.614 respectively).
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Table 3.6: Classification results of 3D Urban Data Challenge dataset (scene-B) with the new
evaluation metrics.

Building Road Tree Pole Car CACC

Building 0.985 0.002 0 0 0 0.991

Road 0.002 0.950 0.002 0 0.080 0.933

Tree 0 0.012 0.680 0.080 0 0.794

Pole 0 0.006 0 0.860 0.016 0.919

Car 0.060 0.050 0.020 0.050 0.970 0.895

Overall segmentation accuracy: OSACC 0.889

Overall classification accuracy: OCACC 0.906

Table 3.7: Classification results of 3D Urban Data Challenge dataset (scene-C) with the new
evaluation metrics.

Building Road Tree Pole Car CACC

Building 0.955 0.002 0.005 0.001 0 0.976

Road 0.002 0.950 0 0 0.007 0.970

Tree 0 0 0. 800 0.035 0 0.882

Pole 0 0 0 0.950 0 0.950

Car 0 0.003 0 0 0.900 0.948

Overall segmentation accuracy: OSACC 0.911

Overall classification accuracy: OCACC 0.945

3.5.5 Effect of Voxel Size on Classification Accuracy and Choice of Optimal Values

As the properties of s-voxels are constant mainly over the whole voxel length and these properties
are then used for segmentation and then classification, thus their size impacts the classification
process. However as the voxel size changes, the inter-distance constant cD also needs to be
adjusted accordingly.

The effect of voxel size on the classification result was studied. The maximum voxel size and
the value of cD were varied from 0.1 m to 1.0 m on dataset 1 and corresponding classification
accuracy was calculated. The results are shown in Fig. 3.19(a). Then for the same variation of
maximum voxel size and cD, the variation in processing time was studied as shown in Fig. 3.19(b).

An arbitrary value of time Ta is chosen for comparison purposes (along Z-axis time varies
from 0 to 200Ta). This makes the comparison results less dependent on the processor used, even
though the same computer was used for all computations.

The results show that with smaller voxel size the segmentation and classification results are
improved (with a suitable value of cD) but the computational cost increases. It is also evident that
variation in value of cD has no significant impact on time t. It is also observed that after a certain
reduction in voxel size the classification result does not improve much but the computational
cost continues to increase manyfold. As bothOCACC and time (both plotted along Z-axis) are
independent, thus using and combining the results of the two 3D plots in Fig. 3.19, we can find
the optimal value (in terms ofOCACC and time t) of maximum voxel size and cD depending
upon the final application requirements. For our work we have chosen a maximum voxel size of
0.3m and cD = 0.25m.
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(a) Influence of voxel size on OCACC.

(b) Influence of voxel size on processing time.

Figure 3.19: (a) is a 3D plot in which the effect of maximum voxel size and variation on OCACC is
shown. In (b) the effect of maximum voxel size and variation on processing time is shown. Using
the two plots we can easily find the optimal value for maximum voxel size and inter-distance
constant cD.



58 Chapter 3. Segmentation and Classification of 3D Urban Point Clouds

Table 3.8: Classification results evaluated using three different metrics. For the calculation of
V-Measure the value β = 1 is used.

Dataset # OCACC F-Measure V-Measure

# 1 0.943 0.922 0.745

# 2 0.955 0.942 0.826

# 3 0.901 0.831 0.733

# A 0.928 0.917 0.741

# B 0.906 0.860 0.734

Table 3.9: Overall segmentation and classification accuracies when using RGB-Color and re-
flectance intensity values.

Dataset #
Only RGB-Color Intensity value with RGB-Color

OSACC OCACC OSACC OCACC

# 1 0.660 0.772 0.930 0.943

# 2 0.701 0.830 0.939 0.955

# 3 0.658 0.766 0.879 0.901

3.5.6 Influence of RGB Color and Reflectance Intensity

The effect of incorporating RGB Color and reflectance intensity values on the segmentation and
classification was also studied. The results are presented in Table 3.9.

It is observed that incorporating RGB color alone is not sufficient in an urban environment
due to the fact that it is heavily affected by illumination variation (part of an object may be under
shade or reflect bright sunlight) even in the same scene. This deteriorates the segmentation
process and hence the classification. This is perhaps responsible for the lower classification
accuracy as seen in first part of Table 3.9. It is the reason why intensity values are incorporated as
they aremore illumination invariant and found to bemore consistent. The improved classification
results are presented in second part of Table 3.9.

3.5.7 Limitations

The evaluated results of the proposed method on real datasets show great promise. However, the
method has two obvious limitations (which aremore or less common to all classificationmethods).
Firstly, it classifies the urban environment into 5 basic object classes, where as sometimes in the
urban environnent there could be other object types present as well. Secondly, as the proposed
method relies on geometrical models and local descriptors to classify segmented objects, it could
be possible that an object observed by the sensor is different from its normal appearance for
example due to partial occlusion as shown in Fig. 3.20 (in which a car is partially occluded by
another car) or due to limited viewing angle of the 3D lidar sensor as shown in Fig. 3.21 (for this
dataset the LiDAR sensor on the IGN Stéréopolis II mapping system was mounted at such an
angle that it acquired only a small part of the building façade and that too was hampered due to
occlusions at ground level). As a result these objects either remain unclassified or are wrongly
classified as part of another class.

Unlike other classification methods, we further study such objects in an attempt to better
classify them using the notion of multiple passages (discussed in Chapter 4). Hence, for both
these cases we place such unclassified objects under a special label/class called "unclassified"
which will be further treated.
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(a) (b)

Figure 3.20: The figure shows the effects partial occlusion. A car partially occluded by another
car remains unclassified.

3.6 Comparison with Existing Techniques

The performance of the proposedmethodwas comparedwith existing techniques at two different
levels: first, the proposed classification method with a standard classification technique, and
then the whole segmentation-classification pipeline (i.e. the complete method) with another
state of the art method.

3.6.1 Comparison with Standard SVM based Classification Method

The proposed classificationmethodwas comparedwith a classic SVMbased classificationmethod.
The parameters used in the SVM classifier were the same as those used for the feature based
method. They are summarized in Table 3.10. The classifier was trained using manually corrected
ground truth pertaining to the different dataset used in the evaluation process. The ground
was segmented out first and the remaining objects were then subjected to the two methods.
The results for comparison are evaluated on two carefully selected datasets pertaining to two
different urban scenes. The results for the two methods are presented in Table 3.11.

Table 3.10: Parameters/Features description.

Symbol Description

Hmin minimum height

Hmax maximum height

dx width

dy breadth

dz height

dc barycenter - geometrical center

nx normal component (average) in x direction

ny normal component (average) in y direction

nz normal component (average) in z direction

The results show that the performance of the two methods is comparable. Although the
classification results for the SVMmethod is slightly better, there is a stronger interaction between
different classes as compared to the feature based method. In the feature based method, most of
the objects that are not correctly classified are added to the list of unclassified objects that are
then analyzed in successive passages to improve classification results as explained in the next
chapter.
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(a)

(b)

Figure 3.21: The figure shows the effects of strong variation in appearance. The building façade
which is partially acquired, and is also incomplete due to occluding objects at ground level,
remains unclassified.

Table 3.11: Comparison results for classification methods.

Test Dataset 1 (CACC) Test Dataset 2 (CACC)

Proposed Method SVM Proposed Method SVM

Building 0.935 1.00 0.944 0.975

Car 0.825 0.860 0.865 0.900

Pole 0.800 0.860 0.880 0.895

Tree 0.750 0.790 0.795 0.840

OCACC 0.827 0.877 0.871 0.903

On the other hand, this also shows that depending upon the application and according to
the requirements, feature based classification method can be easily replaced by other classical
classification techniques like SVM using same/similar parameters after the super-voxel based
segmentation to improve results.

3.6.2 Comparison with a State of the Art Method

The performance of the proposed method was also compared with that of another state of the
art method [SM14] presented in Section 3.1.1.5. Although this method is relatively faster than
the super-voxel based approach, both methods employs data reduction approaches (elevation
images and voxels respectively) to improve efficiency in terms of result quality and computational
time. Similarly, both methods use geometrical features for classification, however, mathematical
morphology method also incorporates contextual features in its SVM (Support Vector Machine)
based classifier while the super-voxel based approach uses local descriptors to classify the
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segmented objects. These local descriptors including reflectance intensity and RGB color give
the latter slight edge in segmenting very close or near-joint objects.

In order to compare the two approaches, we evaluated the two methods using the "Paris-
Rue-Madame" dataset as presented in [SMG+14]. This database, used for benchmarking urban
detection-segmentation-classification methods, consists of annotated 3D point clouds acquired
by mobile terrestrial data acquisition system [GNA+06] of "Rue Madame" in the 6th Parisian
district (France) as shown in Fig. 3.22.

Figure 3.22: Google map photo of Rue Madame in Paris, France.

The evaluation was conducted for five common classes: {Building, Road, Pole, Tree, Car}.
The detailed assessment carried out for each of the detection, segmentation and classification
phase respectively are presented below.

3.6.2.1 Detection Evaluation

The detection evaluation is done to measure the capacity of the method to detect the objects
present in the scene. This necessitates the choice of a criterion to decide if an object from the
ground truth is detected or not. In order to ensure that this criterion does not bias the evaluation,
the results are evaluated for a varying thresholdm on the minimum object overlap as presented
in [BVS+14]. In this analysis, an object OBJ is defined by the subset of points with the same
object identifier i.e. SGT and SAR are the ground truth and the evaluated algorithm result subsets

respectively. For any object j, Sj
AR is only validated as a correct detection of Sj

GT (a match) if the
following condition is satisfied:

OBJJ(detected)
iff−→

( |SGT |
|SGT ∪ SAR| > m

)∧( |SAR|
|SGT ∪ SAR| > m

)
(3.7)

where | . | is the cardinal (number of objects) of a set. The standard Precision Pr and
Recall Re are then calculated as functions ofm:

Pr(m) =
number_of_detected_objects_matched

total_number_of_detected_objects
(3.8)
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Re(m) =
number_of_detected_objects_matched

total_number_of_ground_truth_objects
(3.9)

These values of Pr and Re are then combined together to calculate the F-Measure as a function
ofm as expressed in Equation (3.10).

F (m) = (1 + β2)
Pr(m)× Re(m)

β2Pr(m) + Re(m)
(3.10)

Figure 3.23 shows the values of F-Measure with the variation of m for the different object
types using both methods. The value of β was taken as 1 to obtain the harmonic mean. The value
of F-Measure decreases with the increasing value ofm and this decay indicates the performance
quality of the detection (good performance implies slower decay).

Although the voxel-based method does not classify motorcycles, they were detected and
classified manually to analyze their segmentation quality (discussed in the next section).

The results show that the building and ground aremuch better detected by themorphological
transformation method while the detection quality performance for cars, poles, and other road
furniture is much more superior for the voxel-based method.

3.6.2.2 Classification Evaluation

The evaluation was conducted for five common classes: {Building, Road, Pole, Tree, Car} and also
the motorcycle class (only segmentation results). The segmentation and classification results for
both the methods are shown in Fig. 3.24 while the quantitative results are presented in Table 3.12
using the same evaluation metrics described in Section 3.4. As trees were not present in the
dataset they were not considered for analysis.

Table 3.12: Comparison of classification results.

Building Road Pole Car CACC

Building 0.914 (0.986) 0.013 (0.045) 0.000 (0.000) 0.000 (0.010) 0.950 (0.970)

Road 0.02 (0.002) 0.901 (0.940) 0.005 (0.000) 0.010 (0.002) 0.933 (0.968)

Pole 0.000 (0.000) 0.001 (0.001) 0 .71 (0) 0 (0.01) 0.850 (0.495)

Car 0.000 (0.010) 0.005 (0.195) 0.000 (0.000) 0.900 (0.950) 0.950 (0.870)

Overall segmentation accuracy: OSACC 0.856 (0.720)

Overall classification accuracy: OCACC 0.920 (0.825)

The Table 3.12 shows the results for both super-voxel based method and morphological
transformation method (values inside braces). It can be seen that for the voxel-based method,
some of the 3D points belonging to different object classes are found in the road class and vice
versa. This was found evident at boundary regions of objects belonging to two different classes,
as shown in Fig. 3.25, as sometimes in the voxelisation process, some of the 3D points belonging
to adjacent objects are incorporated in the same voxel if they have similar color and reflectance
intensity values.

Also, it was found that, for this method, one of the traffic sign post was wrongly classified as
a tree resulting in a low SACC and CACC of 0.71 and 0.85 respectively. This was due to the
fact that the particular sign post contained two traffic signs on the same post giving it a small tree
like appearance (in 3D point cloud at least) as shown in Fig. 3.26. Compared to this method, the
morphological transformation method failed to classify any of the poles correctly (as depicted in
the table), confusing most of them with trees.
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(a)

(b) (c)

(d) (e)

Figure 3.23: Detection results for both voxel-based and morphological transformation based
methods are presented for 5 different classes in (a)-(e) respectively.
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(a) (b)

(c) (d)

Figure 3.24: (a) & (b) show the segmentation and classification results for voxel-based while (c)
& (d) show the segmentation and classification results for morphological transformation based
method respectively. In (a) & (c) every segmented object is represented by a separate color (some
colors are repeated) while in (b) & (d) each class is represented by a separate color.
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(a)

(b)

Figure 3.25: (a) & (b) show the misclassification of some 3D points at boundary regions of road
surface with building and car respectively in the voxel-based method.
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(a) (b)

Figure 3.26: (a) Google Street View photo of the sign post with two traffic signs on Rue Madame.
(b) Corresponding 3D points.

Also evident from the table, the interaction between classes is much more significant in the
case of the morphological transformation method while on the other hand in the super-voxel
based method the segmented objects belonging to a particular class instead of being distributed
in other classes rather remain unclassified.

3.6.2.3 Segmentation Evaluation

In order to further asses the quality of segmentation, the ratio “f” of the total number of objects
segmented by the applied method and the total number of segmented objects in the ground
truth was plotted for each of the object class (see Fig. 3.27). A value of 1 represents overall
best segmentation where as a value greater than 1 denotes overall over-segmentation while a
value less than 1 denotes overall under-segmentation. A value of 0 shows failure to detect or no
detection.

The morphological transformation method seems to outperform the voxel-based method
in terms of segmenting building and road surface. In the voxel-based segmentation method
the road was over-segmented in 4 parts as they were found disconnected and also one of the
building was over-segmented due to strong variation in color and reflectance intensity values (as
shown in Fig. 3.28) while in case of another building small part found disjoint from the main
building was segmented as a separate object (shown in Fig. 3.29).

However, compared to the morphological transformation method, the voxel-based method
segments out cars and other road furniture better as apart from the adjacency of the 3D points it
also uses color and reflectance intensity values in the segmentation phase. Figure 3.30 shows the
segmentation results, for both methods, of some of the motorcycles parked in the scene.

For the voxel based method, we also find in one instance that two cars parked very close
together having similar color and reflectance intensity values are segmented out as one single
car.

The morphological transformation method, constrained by the generated profile, also fails
to segment out 3D ground points directly under the motorcycles and car as shown in Fig. 3.31.
These ground points are hence considered as part of the car (also expressed in the Table 3.12 i.e.
value of 0.195). This is not an issue for the voxel-based method relying on local descriptors i.e.
color, reflectance intensity and surface normals.
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Figure 3.27: Overall segmentation quality of the two methods for different object classes is
presented here. “f”, on the vertical axis, is the ratio of the total number of objects segmented by
the applied method and the total number of segmented objects in the ground truth.

3.7 Conclusion

In this chapter, after discussing in detail the different existing techniques for segmenting and
classifying urban environment, we have presented a super-voxel based segmentation and clas-
sification method for 3D urban scenes. For segmentation, a link-chain method is proposed. It
is followed by the classification of objects using local descriptors and geometrical models. In
order to evaluate our work, we have introduced a new evaluation metric which incorporates
both segmentation and classification results. The results show an overall segmentation accuracy
(OSACC) of 87% and an overall classification accuracy (OCACC) of about 90%. The results
indicate that with good segmentation, a simplified classification method like the one proposed
is sufficient.

Our study shows that the classification accuracy improves by reducing voxel size (with an
appropriate value of cD) but at the cost of processing time. Thus a choice of an optimal value,
as discussed, is recommended. The study also demonstrates the importance of using laser
reflectance intensity values along with RGB colors in the segmentation and classification of urban
environment as they are more illumination invariant and more consistent. The method was also
compared with other state-of-the-art-methods using different evaluation metrics to demonstrate
its suitablility and efficacy.

Segmentation and classification of the urban environment play an important role in effective
3D urban cartography. Whereas the proposed method can also be used as an add-on boost
for other classification algorithms, the implication of this method for 3D urban cartography is
discussed in the next chapter.
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(a)

(b)

Figure 3.28: (a) Google Street View photo of the building on Rue Madame with a strong variation
of paint color. (b) Segmentation results of the voxel-based method.

(a) (b)

Figure 3.29: (a) & (b) show the segmentation results of a particular building in Rue Madame for
voxel-based method and morphological transformation method respectively. In (a) it can be seen
that part of the building that was disjoint was segmented as a separate object.
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(a) Morphological transformation-based

(b) Voxel-based

Figure 3.30: (a) & (b) show the segmentation results of some motorcycles parked in the street for
morphological transformation and voxel-based method respectively.
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(a) Morphological transformation-based

(b) Voxel-based

Figure 3.31: (a) & (b) show the segmentation results of some cars in the street for both mor-
phological transformation and voxel-based method respectively. (a) shows some ground point
directly underneath the cars, segmented as part of the cars.
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In this chapter, we first give a detailed overview
of the different state of the art techniques for 3D
urban cartography. This is then follwed by the pre-
sentation of a new method of automatic 3D urban
cartography incorporating classification and incre-
mental updating, exploiting the concept of multiple
passages. In the proposed method, the 3D point
clouds are first classified into 3 main object classes:
Permanently Static, Temporarily Static and Mobile
using a point matching technique. The Temporarily
Static and Mobile objects are then removed from
the 3D point clouds leaving behind a perforated 3D
point cloud of the urban scene. These perforated 3D
point clouds obtained from successive passages (in
the same place) on different days and at different

times are then matched together to complete the
3D urban landscape. The changes occurring in the
urban landscape over this period of time are detected
and analyzed using cognitive functions of similarity
and the resulting 3D cartography is progressively
modified accordingly. Different specialized functions
are also introduced, to help remove the different im-
perfections due to occlusions, misclassifications and
different changes occurring in the environment over
time, thus increasing the robustness of the method.
The results, evaluated on real data, demonstrate that
not only is the resulting 3D cartography accurate,
containing only the exact permanent features free
from imperfections, but the method is also suitable
for handling large urban scenes.
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4.1 Introduction

Automatic 3D urban cartography and modeling have become an issue of major interest in recent
years, motivated by ambitious applications that aim to build realistic models, maps and digital
representation of real cities and urban environment from data acquired by mobile terrestrial data
acquisition techniques (as explained in Chapter 2). However, in urban environments, this task
consisting in automatically generating accurate and reliable 3D cartography and models, without
imperfections, using the data obtained from these hybrid terrestrial vehicles still remains a
challenge. These imperfectionsmainly includemissing features/regions due to occlusions caused
by the presence of temporarily stationary and dynamic objects (pedestrians, cars, etc.) in the
scenes [WTT+07], false features resulting frommisclassifications of objects in the scene [VS04] and
failure to effectively incorporate different changes occurring in the environment over time [CE09].
In this chapter, we present a new method for automatic 3D urban cartography that progressively
removes these imperfections in an effective manner.

The work on handling such imperfections in automatic 3D urban cartography is heavily
biased towards occlusion detection and management. Criminisi, Pérez, and Toyama [CPT04]
present a technique of inpainting based on the patch exemplar-based method for completing
occluded regions in images. Wang et al. [WJY+08] extended this approach to also infer depth
from stereo pairs. Engels et al. [ETV+11] used a similar method for 3D data, but occlusions
were found automatically using object-specific detectors, making it more suitable for larger
datasets (see Fig. 4.1 for results). Several works have suggested that manual workload can be
greatly reduced by using interactive methods that allow a user to quickly mark foreground and
background areas, while exact segmentations are determined using graph cuts.

(a) (b)

(c) (d)

Figure 4.1: (a) Original point cloud. (b) The geometric occlusions have been removed by using
object-specific detectors. (c) & (d) show reconstructed façade before and after occlusion removal
respectively (source [ETV+11]).

In [BSF+09], the authors present a Patch-Match algorithm that allows for interactive rates
for inpainting and reshuffling via simple user-defined constraints and efficient nearest neighbor
search. In the context of building façades and urban reconstruction, increased contextual knowl-
edge is available by assuming the planarity of the structure and the repetition of features, such
as floors, windows, etc. Building models are reconstructed by detecting floors and estimating
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building height in [KV07]. Occlusions are removed by cloning upper floors and propagating
them downward. In [RKU05], multiple views and median fusion are used to remove most
occlusions, requiring inpainting only for smaller regions. A method relying on LiDAR point
cloud to find and remove occlusions by combining image fusion and inpainting is presented by
Bénitez, Denis, and Baillard [BDB10]. Xiao et al. [XFZ+09] semantically segmented street-side
scenes into several classes, including vegetation and vehicles, but did not actively fill in missing
data. Instead, they relied on the missing information being available from other views. In [OR05;
Böh04], two methods for occlusion-free texture generation are presented, but a minimum of
three overlapping images is necessary, which requires a high acquisition rate or a very slow
driving speed in narrow streets. Some results are presented in Fig. 4.2.

(a)

(b) (c) (d)

Figure 4.2: (a) Four images from a fixed viewpoint of a façade imaged from across a busy street.
Traffic and pedestrians partially occlude the lower portion of the façade. (b) shows the combined
pixels of all the images, containing all the occlusions. (c) pixels for which no unique decision
could be made are marked white. (d) shows the final results after occlusion removal (source
[Böh04]).

A method is discussed in [CPS10], which consists in aligning multiple scans from various
viewpoints to ensure the 3D scene model completeness for complex and unstructured under-
ground environments. A technique for extracting features from urban buildings by fusing camera
and LiDAR data is discussed in [BH07a], but it does not specifically address this problem and
relies on their simple geometrical modeling to complete partially occluded features. Frueh,
Sammon, and Zakhor [FSZ04] propose a method in which the point cloud is used to generate a
3D mesh that is then classified as foreground or background. Large holes in the background
layer, caused by occlusions from foreground layer objects, are then filled by planar or horizontal
interpolation as shown in Fig. 4.3. However, such an approach may result in false features in
case of insufficient repetitions or lack of symmetry [LZS+11]. In our work, we aim to resolve this
problem by using a multi-sessional approach in which multiple scans of the same environment
obtained on different days and at different times of the day are matched and used to complete
the occluded regions.

Automatic detection of changes in urban environment for updating cartography and maps
has lately gained some interest in the scientific community. Most of the proposed techniques de-
tect changes in the urban environment from airborne data using Digital Surface Models (DSM),
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(a) (b)

(c) (d)

Figure 4.3: (a) Initial depth image. (b) shows the background layer segmentation after removing
invalid scan points. (c) Foreground layer segmentation. (d) shows the results after filling holes
due to occlusions (source [FSZ04]).

such as [MHK04; VMY04]. Vögtle and Steinle [VS04] propose a methodology for detecting
changes in urban areas following disastrous events. Instead of solely computing the difference
between the laser-based DSM, a region growing segmentation procedure is used to separate the
objects and detect the buildings; only then, an object-based comparison is applied. However, this
method remains susceptible to misclassifications. Bouziani, Goïta, and He [BGH10] presented a
knowledge-based change detection method for the detection of demolished and new buildings
from very high resolution satellite images. Different object properties, including possible transi-
tions and contextual relationships between object classes, were taken into account. Map data
were used to determine processing parameters and to learn object properties. Matikainen et
al. [MHA+10] also present a change detection method to update building maps, which com-
pares buildings detected by a classification tree method with an existing building map. Some
additional rules relying on existing map data are added to handle some likely misclassifications.
Unlike these methods, in our work, we handle the 3D point cloud at the 3D grid level for change
detection, instead of the object level, making it more robust against misclassifications.

Most of the work using terrestrial laser scans focuses on deformation analysis for designated
objects. Change is detected by subtraction of a resampled set of the data [SWK+04] or adjustment
to surface models, like planes [LP05] and cylinders [VGLP06]. In order to detect changes in large
scenes, Hsiao et al. [HLY+04] combine terrestrial laser scanning and conventional surveying
devices to acquire and register topographic data. The dataset is then transformed into a 2D grid
and is compared with information obtained by the digitization of these existing topographic
maps.

In [GMRM+05], changes are detected in the 3D Cartesian world, and the possibilities of
scan comparison in point-to-point, point-to-model or model-to-model manners are discussed.
The authors then use point-to-point comparison with some adaptations and make use of an
octree as a data structure for accessing the 3D point cloud. Comparison is then carried out by
using the Hausdorff distance as a measure for changes. Hyyppä et al. [HJH+09] also use the
method of point-to-point matching for detecting changes in 3D urban scenes. However, due
to bad point registration, incorrect corresponding point pairs are likely to cause false change
detection. Our method is more robust to such situations, as it not only analyzes the point cloud
at the point level, but also at the grid level for this task. Zeibak and Filin [ZF07] extend this
method by further characterizing the changes caused by occlusions as shown in Fig. 4.4. Kang
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and Lu [KL11] not only detect changes in buildings in the urban environment, but also quantify
the changed regions using a series of point cloud epochs over time and rebuilt building models.
However, this work only focuses on disappearing changes. In our work, we not only detect,
but also analyze both appearing and disappearing changes in the 3D urban scene by using 3D
evidence grid and cognitive similarity functions.

To the best of our knowledge, no prior work has ever been presented that first effectively
detects, then analyzes the changes by point-to-point comparison occurring in the 3D urban scene,
in this manner, using terrestrial data and, eventually, updates the 3D cartography accordingly.

(a)

(b)

(c)

Figure 4.4: Occlusion removal by point-to-point comparison (a) shows the reference scan. (b)
shows the analyzed scan in its original local frame. (c) presents the changes detected in the
analyzed scan when compared to the reference one (source [ZF07]).

Another approach to detecting changes using mobile terrestrial LiDAR data is presented in
[XVP13]. The method is based upon the physical scanning mechanism (scanning origin and
geometry). The scan rays are reconstructed by the origin and the point and then the occupancy
of space is derived from these rays. The Weighted Dempster-Shafer theory is used to combine
the evidence from different rays and meanwhile minimizes the contradiction of evidence. The
consistency between different scans is obtained by comparing the occupancy at points from
reference scan with the fused occupancy of neighboring rays from the other scan. Although
compared to other conventionalmethods, it helps to distinguish real changes from occlusions, etc.,
but the prerequisite of knowing the origin of each scanned point limits its use and applicability
on different data sets. Some results are presented in Fig. 4.5.
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(a)

(b)

(c)

Figure 4.5: (a) & (b) show two scans of test sites (coloured by height). In scan one, there was a
van and a man changing the poster on the billboard (lower right, site 1). None of these were
present in scan two. On another site in scan one (upper left, site 2), there was a car coming out of
the garage. In scan two, a van parked beside the pavement which was not there in scan one. (c)
presents the changes detected in the two scan. Green color represents the points found consistent
in the two scans while red represents the real changes. Blue colored points represent the changes
due to other reasons such as occlusion, shadows, etc. (source [XVP13]).

Recently, the increasing demand for updated 3D maps and models for different popular
applications has prompted frequent scanning of the same urban environment (i.e. multiple
passages) using mobile terrestrial data acquisition vehicles. Although these applications utilize
the recently acquired scans/data to simply refresh/update the resulting maps and models, they
fail to exploit the redundant data available for further use, such as occlusion handling and
accurate change detection and updating. Hence, our method successfully takes advantage of
the already available redundant data, not only to detect, analyze and update changes in the
urban environment, but also to complete occluded regions, so as to ensure that the resulting 3D
cartography contains only the exact, actual and permanent features free from imperfections.

Another difficulty that arises when attempting to detect effective changes occurring in the
urban environment is to differentiate the changes caused by the presence of transient objects i.e.
frequently pedestrians and vehicles in the scene with the actual structural changes occurring in
the cartography due to addition, removal or modification of certain parts of the environment.
We note that this problem can also be mitigated via an application of change detection using
different scales. Change detection involving the comparison of scans taken with large timescale
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differences, and differences over a certain size can be classified as meaningful, structural changes.
However, if we compare scans taken with a short time difference –i.e. a few days, or even a few
hours– we can instead look for smaller changes, which can be interpreted as the presence or
absence of transient objects. This method alone is not sufficient as it may not always be practical
due to larger number of scans (i.e. both at smaller and longer intervals) required to converge
towards the required results and also not very accurate (larger number of false positives and false
negatives). This is why our method adopts a more pragmatic approach in which not only relying
on this, we also use a classification method in each passage to extract these transient objects
more effectively from the scene in order to not only obtain the desired results more quickly (in
less number of passages) but also with higher accuracy.

The proposed method solves the above mentioned problems by handling the point cloud at
three different levels using special dedicated functions: (1) the point level to accurately complete
occluded regions; (2) the grid level to analyze and handle different changes occurring in the urban
environment; and (3) the object level to accommodate for misclassifications and other unclassified
objects. In this method, the 3D urban data obtained from mobile terrestrial LiDARs in each
passage is directly geo-referenced. These geo-referenced 3D point clouds are segmented and,
then, classified into three main object classes: Permanently Static, Temporarily Static and Mobile.
The Temporarily Static and Mobile objects are then removed from the 3D point clouds, which
are then merged together, leaving behind a perforated 3D point cloud of the urban scene. These
perforated 3D point clouds obtained from different passages (in the same place) on different days
and at different times are then matched together to complete the 3D urban landscape. Different
changes occurring in the urban landscape over this period of time are studied using cognitive
functions of similarity, and the resulting 3D cartography is progressively modified accordingly.
An overview of the method is presented in Algorithm 2 and explained in the later sections.

4.2 3D Scan Registration

Different features and robust landmarks extracted from 3D images as points of interest and
as references for image mapping and scan registration have commonly been used for different
multi-sessional SLAM (Simultaneous Localization And Mapping) algorithms [MKC+12]. This
approach works well in simple repetitive paths. However, some more complex situations can
be found in urban environments, where the selected features/regions can be occluded. When
the data-acquiring vehicle enters from different directions, then the path is not repetitive. As a
result, the selected features/regions may not be readily visible. Thus, in order to cater to this
problem, the method of direct geo-referencing of 3D LiDAR points is found most suitable in
our case as discussed and explained in Section 2.3.2. The method uses integrated GPS/IMU
data to directly orient laser data from its local reference frame to the mapping reference frame
(WGS84). The advantage of using this method is that the transformation between the local laser
reference frame and the mapping reference frame is known at any given moment (as long as
the laser is synchronized), independently, if the laser is collecting data in a static mode or in
kinematic mode. Thus, the laser can be used as a push-broom sensor sweeping the scene with
profiles, while fixing the scan angles as the vehicle moves.

The data that we have used to evaluate our work are the dynamic data set of the 3D Urban
Data Challenge 2011, which contains dynamic scenes from downtown Lexington, Kentucky, USA,
obtained from the Vis Center’s (University of Kentucky) LiDAR Truck containing two Optech
LiDAR sensor heads (high scan frequency up to 200Hz), a GPS, an inertial measurement unit
and a spherical digital camera, as shown in Fig. 4.6.
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Algorithm 2 Automatic 3D Urban Cartography

Input: 3D urban point clouds for passage number, np

1: Classify 3D urban point cloud obtained from each of the two sensors into six groups: {Road,
Building, Car, Pole, Tree, Unclassified}

2: Compare the classified objects from the two point clouds to further classify them as: {Perma-
nently Static, Temporarily Static, Mobile} and merge the two point clouds

3: Separate out Temporarily Static and Mobile objects, leaving behind a perforated 3D point
cloud, P(np)

4: Store Temporarily Static objects in a register,R(np)
Sequential update function: {

5: Match and compare P(np) with P(np − 1) to fill in holes and complete 3D cartography }

6: Formulate 3D evidence grids for P(np) and P(np − 1) and compute 3D cell scores, CS , for
both

7: Calculate similarity scores, Sym and ASyms, and uncertainty measures for the 3D cells
8: Update similarity map, SMap

Automatic reset function: {

9: Compare the Sym, ASyms and the uncertainty measures of the 3D cells in the SMap after
nreset number of passages

10: If there is low Sym and uncertainty measure, then reset those 3D cell(s) in P(np) with those
in the recently acquired point cloud (perforated) }

Object update function: {

11: Compare Temporarily Static objects inR(np) withR(np − 1)
12: Upgrade Temporarily Static objects inR(np) if they are repeated innupdate number of passages

as permanently static and add in P(np) }

13: Delete 3D evidence grids for P(np) and P(np − 1)
14: Store SMap

15: Update and storeR(np)
16: Store P(np)
17: R(np − 1)← R(np) and P(np − 1)← P(np)
18: return P(np)

4.3 Classification of 3D Urban Environment

In urban environments, the quality of the data acquired by different mobile terrestrial data
acquisition systems is widely hampered by the presence of temporary static and dynamic objects
(pedestrians, cars, etc.) in the scene. As a result, there is a problemof occlusion of regions. Moving
objects or certain temporary stationed objects (parked cars, traffic, pedestrian, etc.) present in
the area hide certain zones of the urban landscape (buildings, road sides, etc.). Therefore, the
first step for 3D urban cartography is to obtain the permanent cartography. This is achieved by
removing/extracting the temporarily static and dynamic objects from the scene/point cloud,
leaving behind only the permanent features.

In order to achieve this, we classify the urban environment into three main categories: Per-
manently Static objects, Temporarily Static objects and Mobile objects. In order to achieve this
goal, the 3D point cloud is first segmented into objects, which are then classified into basic object
classes using the method explained and presented in Chapter 3. Once classified into these basic
classes, they are then grouped under one of the three mentioned categories. Themethod presents
a super-voxel-based approach in which the 3D urban point cloud is first segmented into voxels
and then converted into super-voxels by assigning properties to them based on the constituting
3D points. These are then clustered together using an efficient link-chain method to form objects.
Using local descriptors and geometrical features, these objects are then classified into six main
classes: {Road, Building, Car, Pole, Tree, Unclassified}, as discussed earlier (see Chapter 3). The
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(a)

(b)

(c)

Figure 4.6: (a) The Vis Center’s LiDAR truck; (b) Optech LiDAR/GPS system along with IMU
mounted on a rigid frame; (c) the different viewing angles of the mounted LiDAR systems.

salient features of this method which makes it suitable for this work are data reduction, efficiency
and the simplicity of the approach. Some results of this method are again shown in Fig. 4.7.

The 3D point cloud obtained in a single passage from each of the two mounted LiDAR
sensors is divided into the six object classes using this method. This step may be sufficient for
characterizing static objects, but not for dynamic ones. In order to separate out moving objects
from these classified objects, the two 3D point clouds obtained in the same passage are matched
and merged together. This not only helps in distinguishing mobile objects, but also completes
the 3D cartography (building façades, etc.) due to the different viewing angles of the two sensors
(from now on referred to as S− 01 and S− 02), as shown in Fig. 4.6(b). This configuration of
LiDAR is very common for this type of sensor and is used for acquiring detailed 3D data along
both sides of the road. In addition to this, we exploit this difference in viewing angle to identify

(a)

(b)

Figure 4.7: (a) Voxel-based segmentation of a particular scene; (b) classified 3D points.
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mobile objects. Due to this difference in viewing angle, these sensors see the same point in the
3D scene with a slight time difference. We use this time difference to infer whether an object
is static or moving by comparing the position of these classified objects at these two different
times corresponding to the two different point clouds. Those objects are considered static if
the constituting 3D points of the objects have the same position in the two point clouds, while
those with different positions are considered mobile (see Fig. 4.8). As this time difference is
very small, object/point association or matching in the two point clouds is not an issue. Simple
matching based on the constituting points, color and intensity of all the objects in the two point
clouds is sufficient. Let P and Q be the two point clouds obtained from sensor, S− 01 and S− 02,
respectively, then an object, n, denoted by Objn in the two point clouds is given as PObjn and
QObjn . This Objn is considered static if and only if the following three conditions are satisfied:

Card(PQObjn)

Card(min[PObjn , QObjn ])
× 100 ≥ wp (4.1)

∣∣∣PObjnR,G,B
− QObjnR,G,B

∣∣∣ ≤ 3
√
wc (4.2)

∣∣PObjnI
− QObjnI

∣∣ ≤ 3
√
wI (4.3)

where PQObjn = PObjnX,Y,Z
∩ QObjnX,Y,Z

. PQObjn is the set containing the matched points obtained
by point-wise intersection of the 3D points in the two sets if and only if the difference in the
distance along the x-, y- and z-axes between two points in the PObjnX,Y,Z

and QObjnX,Y,Z
is≤ 2×Pe.

Here, Pe is taken as the measurement accuracy of the LiDAR sensor (the value can be obtained
from the data sheet) and Card is the cardinal function. PObjnX,Y,Z

and QObjnX,Y,Z
are the sets of the

3D coordinates of the points of the object, while PObjnR,G,B
and QObjnR,G,B

are the mean R, G and
B values of the object in P and Q point clouds, respectively. PObjnI

and QObjnI
are the mean laser

reflectance intensity values in P and Q point clouds, respectively. wp is the matching weight
equal to the allowable percentage of the object points whose position matches the two point
clouds. wc is the color weight equal to the maximum variance of R, G and B values for PObjn and
QObjn . wI is the intensity weight equal to the maximum variance of intensity values for PObjn and
QObjn . It should be noted here that based on the basic characteristics of the classified objects (like
roads, buildings, trees and poles that cannot move), we only compare (using Equations (4.1)–
(4.3)) the objects classified as cars and unclassified to determine which of them are temporarily
static and which ones are mobile. Here, it is observed that Equations (4.2) and (4.3) along with
Equation (4.1) help to increase the robustness of themethod in different precarious situations that
often arise in urban environments; for example, two different vehicles coming from the opposite
direction in the neighboring lane could be detected at the same place, i.e. Equation (4.1) would
suggest it is just one static object, whereas Equations (4.2) and (4.3) would then differentiate the
two objects (classifying them as two dynamic objects) based on their different appearance i.e.
RGB color and laser reflectance values). Moreover, any apparition or disappearance of an object
belonging to one of these two classes in any of the two point clouds is automatically considered
mobile (i.e. a moving car detected by one of the sensors, which moves out of the field of view
of the second sensor in the short time delay, or a moving car, which has just entered the scene
after the first sensor has already scanned). Similarly, extending this basic reasoning, we infer
the objects, classified as buildings, roads, trees and poles, as Permanently Static, whereas cars
and pedestrians can be either Temporarily Static or Mobile. The classification chart as per our
inference is presented in Table 4.1, whereas some of the results of this method are shown in
Fig. 4.9.

Once the objects present in the urban scene are classified into these three main classes, in
each passage, the objects classified as Temporarily Static and Mobile are extracted out from the
scene, leaving behind a perforated point cloud for each passage, as shown in Fig. 4.10. This
perforation is due to occlusions caused by the Temporarily Static and Mobile objects in the scene.
These perforated 3D images/point clouds of the same place obtained via a single passage on
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Figure 4.8: 3D points of moving vehicles in the urban scene. In red, the 3D points acquired from
S− 01, and in white, the 3D points acquired from S− 02.

Object Type Permanently Static Temporarily Static Mobile

Road x
Building x
Tree x
Pole x
Car x x

Pedestrian x x
Unclassified x x

Table 4.1: Object classification chart.

different days and at different times are then combined together to complete the 3D cartography,
as discussed in the following section.

The unclassified objects found to be static are considered Temporarily Static by default,
because all the objects classified as Temporarily Static are compared in the update phase. If the
same objects belonging to this class are found in repeated passages, they are then upgraded as
Permanently Static objects in the object update phase discussed in Section 4.5.4 and are considered
part of the 3D cartography.

4.4 Combining Multiple Views for Scene Completion

In an attempt to fill some of the perforations and complete some of the occluded regions the
two 3D point clouds obtained in the same passage from the two LiDAR sensors are matched
and merged together. The different viewing angle of the two sensors S− 01 and S− 02) helps
completes the 3D cartography (building façades, etc.) but also fill some of the holes (caused due
to extraction of occluding objects) due to static objects present in the scene (see Fig. 4.11) but
also those caused by the mobile objects as due to this difference in viewing angle these sensors
see the same point in the 3D scene with a slight time difference. This time difference allows a
moving object to move such that the occluded portion of the cartography due to this object in
S− 01 becomes evident in S− 02 while the occluded portion in S− 02 was evident in S− 01.
Thus, combining the two 3D point clouds help fill up such holes in an attempt to eliminate the
effect of the moving object in the scene as shown in Fig. 4.11.

The two 3D point clouds are matched and merged together using the new matching method
introduced in Section 4.5.4 to form a unified perforated 3D point cloud.

This method of fusing multiple view data to fill in holes may be effective in simple cases but
in more complex scenarios offered in the urban environment relying on multiple views alone
does not entirely solve the problem of occlusions and a number of holes remain due to several
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(a)

(b)

(c)

Figure 4.9: Characterization of the classified objects into three main classes. Raw LiDAR data
obtained from S− 01 and S− 02 are presented in Top left and right while characterization results
at the bottom figure respectively for each (a), (b) & (c).
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Figure 4.10: The objects classified as Temporarily Static and Mobile are extracted out from the
scene, leaving behind a perforated point cloud for each passage.

blind spots as shown in Fig. 4.11.
In Fig. 4.11(c) (classic case of occlusion caused by a temporary static object, i.e. a parked car,

present in the scene) it can be seen that even after combining the data from multiple views, some
regions of the cartography remain occluded such as parts of shop’s wall, lamp post, tree and
road side.

Similarly for a temporary dynamic object, i.e. a moving car present in the urban scene,
combining the data from multiple views does not fully complete all the occluded regions as seen
in Fig. 4.11(f) (some parts of shop’s wall and road side remain occluded). So, this technique of
combining multiple views is helpful for completion of certain occluded regions but does not
solve the problem completely.

Thus, in order to remove these imperfections and complete the remaining exact and actual
occluded regions, we use a new method of 3D urban cartography exploiting the concept of
multiple passages described in the next section.

(a) 3D points from S 01 (b) 3D points from S 02 (c) Combined 3D point clouds

(d) 3D points from S 01 (e) 3D points from S 01 (f) Combined 3D point clouds

Figure 4.11: In (a), (b) & (c) the filling of holes due to the presence of a temporarily static (parked)
car by multiple view combination is presented. In (d), (e) & (f) the filling of holes due to the
presence of a temporary (dynamic) car by combining multiple views, is presented. It can be seen
in (c) & (f) that even after combining data from multiple views, some holes/missing regions still
remain due to blind spots.
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4.5 3D Cartography and Removal of Imperfections Exploiting Multi-

ple Passages

The perforated 3D point clouds obtained in subsequent passages of any particular place (on
different days and/or at different times) are combined together to fill in the occluded regions
and complete the 3D urban cartography. The perforated point cloud is first mapped onto a 3D
evidence grid, and the corresponding 3D cell scores are calculated. A similarity map is generated
in subsequent passages. Based on this similarity map and the associated uncertainty, different
changes occurring in the urban environment are analyzed and appropriate actions are taken to
cater for these changes. The details are provided below.

4.5.1 3D Evidence Grid Formulation

As the 3D point cloud is directly geo-referenced, the use of an occupancy grid for comparison in
subsequent passages, as compared to the elaborate graph theory, is more logical and practical.
The perforated 3D point cloud obtained in each passage is mapped onto a 3D evidence grid,
as shown in Fig. 4.12. Each 3D cell or voxel of this grid occupies a volume, L3, and is assigned
a cell score, CS , based on certain attributes of the constituting 3D points using Equation (4.4).
These attributes include the ratio of occupied volume VOcc, surface normal components along x-,
y- and z-axes, NX,Y,Z , mean laser reflectance intensity and mean RGB color values i.e. RI , Rc

(c ∈ {R̄, Ḡ, B̄}), respectively, and the number of the current passage, np. The number of current
passage is added in calculation of the cell score to allow the comparison of/with empty 3D cells
(when using the Minkowski distance is the Tversky’s function as explained later on). However,
it has no effect on the cell score as it just contributes a very small constant biais which helps
make the method a bit more conservative. The normalized values of these attributes are used to
compute the cell score which, as a result, is unitless:

Cj
S =

wOccV
j
Occ + wNN j

X,Y,Z + wRIR
j
I + wRcR

j
c + wnpnp

wOcc + wN + wRI + wRc + wnp
(4.4)

where j is the number of cells. wOcc = 1 and wN = 0.5 are occupation weight and normal weight,
while wRI = 0.25 and wRc = 0.125 are intensity and color weight, respectively. wnp = 0.0625
is the passage number weight. The values of these weights are chosen to bias the score more
towards occupancy (magnitude and orientation) and less towards representation (intensity and
color), as the former is more invariant in the urban environment and also keeps our approach
closer to the classical occupancy grid method [SG12]. These 3D evidence grids are constructed
in each passage for both the previous (P(np − 1)) and latest perforated 3D point cloud acquired
and are used to formulate and update the similarity map along with the associated uncertainty.
They are then deleted at the end of the process in each passage (Algorithm 2). This makes this
approach most suitable for analyzing large mapping areas.
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Figure 4.12: Formulation of 3D evidence grids and similarity map. (a) & (b) show the 3D point
clouds (P(np) and P(np − 1)) mapped onto an evidence grid of cell size, L3, respectively. In (c),
the similarity map obtained from the two evidence grids.

4.5.2 Similarity Map Construction

The 3D evidence grid in successive passages is compared to obtain a similarity map in each
passage. Instead of finding the overall graph/grid similarity, we are more interested in mea-
suring the similarity of each cell, as this indicates exactly which part of the 3D cartography has
changed. Currently, many distances have been developed to compare two objects (in this case,
cell) according to the type of attributes, such as χ2 or Mahalanobis. However, when working
with real values, the most widely used (and simplest) metric is the Minkowski measure, dp:

dp(x, y) =
[ k∑
i=1

Wi

∣∣xi − yi
∣∣p] 1

p
with p > 0 (4.5)

In this measure, xi and yi are the values of the ith attribute describing the individuals, x and y.
Wi is the numerical weight correlated with this attribute. k is the total number of attributes. In
order to transform Minkowski distance Equation (4.5) into a similarity measure, sp, a value, Di,
is introduced, which corresponds to the difference between the upper and the lower bounds of
the range of the ith attribute:

sp(x, y) =
[ k∑
i=1

Wi
Di −

∣∣xi − yi
∣∣p

Di

] 1
p

with p > 0 (4.6)

This similarity function may provide a measure indicating the amount of changes occurring in
a 3D grid cell in subsequent passages, but it remains silent on the type of change taking place.
Now, this information could be useful when deciding how to handle these changes in the 3D
cartography. Thus, in order to get more insight into the type of changes, we incorporate the
notion of distance between individuals or objects studied in the cognitive sciences. For this
purpose, we use the method proposed by Tversky [Tve77] to evaluate the degree of similarity,
Sx,y, between two individuals, x and y, respectively, described by a set of attributes, A and B, by
combining the four terms, A ∪ B, A ∩ B, A − B and B − A, into the formula (as explained in
Fig. 4.13):

Sx,y =
f(A ∩B)

f(A ∪B) + αf(A−B) + βf(B −A)
(4.7)

As we want to compare a pair of individuals (in this case, cells in successive passages)
described by a set of numerical attributes, we combine the definitions proposed by Tversky and



86 Chapter 4. 3D Urban Cartography - Classification and Incremental Updating

Figure 4.13: Representation of two objects that each contains its own unique features and also
contains common features. An important aspect of Tversky’s model is that similarity depends not
only on the proportion of features common to the two objects but also on their unique features.

Minkowski. In these measures, we use Tversky’s model to compare the two sets of attributes
describing the individuals; the function, f , of this model is theMinkowski’s formula, as rewritten
in Equation (4.6). The parameter, p, of this formula equals one, since in Tversky’s model, the
function, f , corresponds to a linear combination of the features. Now, depending upon the way
the parameters, α and β, are instantiated, different kinds of cognitive models of similarity can be
expressed. By instantiating α = β = 0, we obtain the symmetric similarity measure, Sym, while
by instantiating α = 0 and β = −1, we obtain the asymmetric similarity measure, ASym. Now,
we use these values to fill up similarity map, SMap, as shown in Fig. 4.12; the values of ASym
allow us to evaluate the degree of inclusion between the first cell (reference) into the second cell
(target). Hence, with the attributes (along with their corresponding weights) assigned to these
cells (discussed in Section 4.5.1), the value of ASym can be used to assume the type of changes
occurring in the 3D grid cell, as summarized in Table 4.2, where x and y are the same 3D grid
cell in different passages. These values of Sym and ASyms help in ascertaining the most suitable
function required for that particular 3D grid cell. Condition 1 is automatically handled by the
default sequential update function, whereas for Condition 2 and 3, the automatic reset function
is called into action.

Table 4.2: Type of changes.

# Condition Possible Assumption

1 ASymx,y < ASymy,x Addition of structure
(could be new construction)

2 ASymx,y > ASymy,x Removal of structure
(could be demolition)

3 ASymx,y = ASymy,x Modification of structure
(depending on the value of Sym)

The similaritymap, SMap, is updated in each passage, and only the different cells (withSym <
Similaritythreshold) along with their associated uncertainty values are kept in the map, whereas
the remaining cells considered as identical cells (with a high level of similarity) are deleted
from the map. Hence, this not only reduces the size of the map progressively in subsequent
passages, but also avoids possible storage memory issues for large point clouds in the case of
large mapping areas. See Section 4.6.2 (Fig. 4.23) for more details.
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4.5.3 Associated Uncertainty

Let the cell scores of a particular cell, j, in n number of passages, Cj
S1, C

j
S2, . . ., C

j
Sn, be an i.i.d.

(independent and identically distributed) sequence of random variables; then the nth sample

variance sjn
2
is given as:

sjn
2
=

∑n
k=1

(
Cj
Sk
− C̄j

Sn

)2
n− 1

then, by adding and subtracting C̄j
Sn−1

:

sjn
2
=

1

n− 1

[ n∑
k=1

(
Cj
Sk − C̄j

Sn−1
+ C̄j

Sn−1
− C̄j

Sn

)2]

expanding and solving this to get:

sjn
2
=

1

n− 1

[
(n− 2)sj

2

n−1 + (n− 1)(C̄j
Sn−1

− C̄j
Sn
)2

+ 2
n−1∑
k=1

[
(Cj

Sk
− C̄j

Sn−1
)(C̄j

Sn−1
− C̄j

Sn
)
]
+
(
Cj
Sn
− C̄j

Sn

)2] (4.8)

Using the standard mean, (
∑n−1

k=1 C
j
Sk

= (n− 1)C̄j
Sn−1

), the sum-term simplifies to zero as shown
below:

2
n−1∑
k=1

[
(Cj
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− C̄j
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)(C̄j
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− C̄j
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)
]
= 2
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Sk
C̄j
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]

Further simplification yields:

2
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[
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− C̄j
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)(C̄j
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)
]
= 2(

n−1∑
k=1

Cj
Sk
C̄j
Sn−1

−
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Substituting
∑n−1

k=1 C
j
Sk

= (n− 1)C̄j
Sn−1

and solving:

2
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Further simplification yields:

2
n−1∑
k=1

[
(Cj

Sk
− C̄j

Sn−1
)(C̄j

Sn−1
− C̄j
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)
]
= 2(0) = 0

Substituting the sum-term equals to zero in Equation (4.8) we get:

sjn
2
=

[
(n− 2)sj

2

n−1 + (n− 1)(C̄Sj,n−1 − C̄j
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)2 + (Cj
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]
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Further simplification yields:

sjn
2
=

[((n− 2)

(n− 1)

)
sj

2

n−1 +
(Cj

Sn
− C̄j

Sn−1
)2

n

]

The uncertainty associated with each cell in the map, uj , is, hence, estimated and updated in
each passage (n > 1) using the following relations:

ujn =
[((n− 2)

(n− 1)

)
(ujn−1)

2 +
(Cj

Sn
− C̄j

Sn−1
)2

n

] 1
2 (4.9)

where C̄j
Sn

is the moving or running average given as:

C̄j
Sn

=
(Cj

Sn
+ (n− 1)C̄j

Sn−1

n

)
(4.10)

There is no need to initialize Equations (4.9) and (4.10), as for n = 2, the first term in Equation

(4.9) equals zero and in Equation (4.10), C̄j
S1

= Cj
S1
. This uncertainty measure, updated using

Equations (4.9) and (4.10), for each cell, in each passage, sheds light on the reliability of the state
of the mapped cells as high uncertainty value means that the contents of the 3D cell are changing
quite frequently; that could suggest high traffic circulation and other movements in the urban
area. On the other hand, low uncertainty means that the contents of the 3D cell are fairly stable,
indicating an established change (for example, permanent modifications in buildings or any
other part of the cartography). This measure can also be added as a criterion for selecting the
different specialized functions for the changing 3D cells; see Section 4.5.4 for more details. The
uncertainty distribution of neighborhood-1 can be seen in Fig. 4.14. The figure clearly shows
a high level of uncertainty in the bottom part of the environment (close to the ground), due to
different temporarily static and mobile objects present in the scene.

Figure 4.14: Uncertainty distribution map of the busy neighborhood-1 presented in the form of a
color-coded heat map (with yellow being the lowest and red the highest level of uncertainty).
The map clearly shows that the bottom part of the environment (close to the ground) is highly
uncertain, whereas the top part is generally stable.
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4.5.4 Specialized Functions

There are three specialized functions that are introduced in the method to make it more robust
to different changes occurring in the urban environment and to remove different imperfections
in the resulting cartography. These functions are described below.

4.5.4.1 Sequential Update Function

This is the default function (see Algorithm 2). It has two main purposes. Firstly, it offers a fine
registration of the various 3D point clouds in subsequent passages. Secondly, it not only enriches
the 3D point cloud by carefully adding 3D points in subsequent passages and, hence, completing
the occluded regions in the process, but also automatically caters to the first type of change
(Table 4.2) occurring in the urban environment.

Each subsequent 3D point cloud is registered with the former point cloud by using the ICP
(Iterative Closest Point) method [BM92]. This method is most suitable for this task, as the 3D
point clouds are already geo-referenced, hence lying in close proximity. It is observed that the
major part of the 3D urban point clouds is composed of building points, which are also found to
be most consistent. Thus, instead of applying the ICP method to complete 3D point clouds, only
the building points are taken into account (see Algorithm 3). First, the profile/envelope of the
buildings is extracted, and then, the ICP method is applied, matching these boundaries to obtain
the transformation matrix. The outlines/envelopes of the buildings are extracted using a sweep
scan method. As the bottom part of the building outline close to the ground is often occluded
and, hence, inconsistent, due to the presence of different objects in the scene (see Fig. 4.14), only
the boundary of the top half of the building outline is subjected to ICP, as shown in Fig. 4.15.

Algorithm 3 Extraction of outlines of buildings

Input: 3D points of building objects
1: for minimum x and y values of 3D points to maximum x and y values of 3D points do

2: Scan building points in the x− y plane
3: Find the maximum and minimum value in the z-axis
4: end for

5: for minimum z values of 3D points to maximum z values of 3D points do

6: Scan building points in the z-axis
7: Find maximum and minimum value in the x− y plane
8: end for

9: return envelope/profile of building objects

Once the transformation matrix (rotation matrixRm and translation matrixTm) is found, the
whole 3D point cloud, P(np), is transformed into P′(np) and, then, registered with the former
P(np − 1) using (4.11).

P′(np) = Rm(P(np)) +Tm (4.11)

In order to avoid redundant points, a union of 3D points belonging to the two registered images is
performed. Each 3D point of the first point cloud is matched with that of the second, if Equation
(4.12) is satisfied:

pOa − pOb ≤ 3
√
etol (4.12)

Where pOa and pOb (3 × 1 matrix) are point positions in two point clouds along the x-, y- and
z-axes. etol (3× 1matrix) is equal to the inverse of the maximum number of 3D points per cubic
meter that is desired in the 3D cartographic point cloud/image. The matched 3D points are
considered as one point, i.e. the earlier point is retained, whereas the latter point is ignored. This
ensures that only the missing points are added completing the perforated 3D point cloud/image.
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Figure 4.15: In red and blue, the building outline obtained from the first passage. In green and
black, the outline obtained from the second passage. Only the top half of the two outlines in
blue and black, respectively, is subjected to Iterative Closest Point (ICP).

Now, this specialized function also ensures that even if there is some new construction or
addition of certain 3D points in the scene in subsequent passages, they are automatically added,
hence catering for the first type of change (Table 4.2).

4.5.4.2 Automatic Reset Function

The main purpose of this function is to detect and analyze different changes occurring in the
urban environment, over a number of passages, before incorporating them in the resulting 3D
cartography. The function analyzes the similarity map, SMap, and compares the Sym, ASyms
and the uncertainty measures, u, of the 3D cells after every nreset number of passages. Those

3D cells, Cj
n, which satisfy Conditions 2 and 3 (Table 4.2) along with a low value of uncertainty

measure, u, Equation (4.13) are reset with those in the recently acquired image/point cloud
(perforated), i.e. their contents are replaced by the contents of the same 3D cells in the recently
acquired point cloud/image. This ensures that any changes that occur in the urban environment
are automatically incorporated in the resulting 3D cartography in a very smooth manner without
affecting the remaining part of the 3D cartography.

Reset(Cj
n)

if−→ ∀m
(
ASym(Cj

m−1, C
j
m) ≥ ASym(Cj

m, Cj
m−1)

)∧(
ujn < uthreshold

)
(4.13)

where m = {(n − nreset) · · ·n}, with n > nreset. The proposed reset method was verified by
synthetically modifying and demolishing different parts of the urban environment, including
parts of buildings, roads and poles, in the datasets (for details, see Fig. 4.16).
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(a)
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Figure 4.16: The different changes detected in one of the urban scenes are presented in red. These
changes were due to a demolished building wall, larger poles cut in half and trimming/cutting
of bushes/trees in the scene.

Now, Equation (4.13) ensures that a detected change is incorporated in the resulting cartogra-
phy, only if we are reasonably certain about it. If the change is well-established, the uncertainty
value of changing cells will progressively decrease, and when it falls below the uthreshold, these
changes are incorporated in the 3D cartography via the reset function (as shown in Fig. 4.17(a)).
On the contrary, detected change with increasing or high uncertainty indicates the occurrence of
rapid continuing changes, which could be either due to ongoing construction/reconstruction or
rapid traffic movement in the scene (as shown in Fig. 4.17(b)). In such situations, the detected
changes are not incorporated at once, but in fact, we wait for the u to progressively decrease
below uthreshold as the number of passages, np, increases. This ensures the reliability and accuracy
of our method.
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(a)

(b)

Figure 4.17: The uncertainty, u, variation of a group of three adjacent cells in which change was
detected. (a) represents the case of established changes, while (b) represents the case of rapid or
continuing changes.

4.5.4.3 Object Update Function

This function caters to different misclassifications and other unclassified objects. With every
new passage, once the urban cartography is completed, the objects classified in each passage as
Temporarily Static are also analyzed using Equations (4.1)–(4.3). If the same objects belonging to
this class are found at the same place in repeated passages, they are then upgraded as Permanently
Static objects and are considered part of the 3D cartography (Algorithm 2). They are then added
to the 3D cartography. Otherwise, non-repetitive objects are deleted from the update register,
R(np). This number of allowable repetitions, nupdate, can be fixed, based upon the frequency of
repetition, time of repetition, etc. This not only allows gradual update of the 3D cartography,
but also accommodates for the unclassified objects in the scene; for example, certain parts of
building walls in neighborhood-1 (Fig. 4.18(e)) and a few roadside trashcans in neighborhood-2
(Fig. 4.19(e)), which were unclassified, were added to the cartography, after repetition in the
successive passages, during the update phase.
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4.5.5 Automatic Checks and Balances

If certain 3D points or objects are wrongly added in the 3D cartography, due to either misclassifi-
cation or certain repetitions in the object update function, these are then detected in subsequent
passages as changes and, after analysis, are progressively removed by the automatic reset func-
tion. Hence, this ensures that the resulting 3D cartography contains only the exact, actual and
permanent features.

4.6 Results, Evaluation and Discussion

In order to validate our method, the dynamic dataset of the 3D Urban Data Challenge 2011
[Cha11] was used. This dataset contains four sets of the same dynamic scenes of downtown
Lexington, Kentucky, USA, obtained on different days and at different times. The dataset consists
of 3D points coupled with corresponding laser reflectance intensity values. As the corresponding
RGB values are not readily available, Equation (4.2) was not used. This did not have much impact
on the results, as laser reflectance values are found to be more consistent than RGB values in an
urban environment, which is more illumination invariant (see Section 3.5.6). The results for two
different neighborhoods are discussed in this paper. In Fig. 4.18–4.20, the detailed results for
neighborhood-1, neighborhood-2 and neighborhood-1(modified) are presented, respectively. The
figures clearly show how different imperfections are progressively removed using the specialized
functions, while the different changes occurring in the urban scene are updated after successful
detection and analysis. Figure 4.21 shows the successful completion of occluded features along
with the imperfection removal of a particular street corner using this method.

4.6.1 Change Detection and Reset Function

Now, in order to evaluate the reset function, we assessed the ability of the proposed method to
successfully detect changes occurring in the urban environment before they can be updated in
the cartography. We first constructed an ROC (Receiver Operating Characteristic) curve. The
value of Similaritythreshold (used as a discriminatory threshold) was varied from zero to one,
and corresponding true positive rates (TPR) and false positive rates (FPR) were calculated for
neighborhood-1 (modified). The variation of this ROC curve with respect to uthreshold (varying
from zero to 0.5) is presented by a 3D ROC curve (surface, in this case) in Fig. 4.22. From the
figure, it could be observed that the best/optimal results (A in the figure) can be obtained from
Similaritythreshold = 66% and uthreshold = 0.15. This analysis was conducted at the 3D cell level.
Figures 4.16 and 4.20(f) show some of these detected changes in the urban scene.

These values of Similaritythreshold and uthreshold along with L = 2 m, etol =
(0.000125 0.000125 0.000125)T (inm3) and nreset = 3 (the maximum number of passages possible
in our case is four) were then used to evaluate the performance of our method for all three
neighborhoods.
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(a)

(b)

(c)

(d)

(e)

Figure 4.18: (a) Shows the initial point cloud related to urban cartography full of imperfections.
In (b), (c) & (d), completion of occluded and missing features in the urban cartography, by
incremental updating, using the default sequential update function as a change of type-1 is
detected. (e) shows the point cloud after the object update function; certain parts of the roadside
and building walls are added to the 3D cartography after repetition in subsequent passages.
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(a)

(b)

(c)

(d)

(e)

Figure 4.19: (a) shows the initial point cloud related to urban cartography full of imperfections.
In (b), (c) & (d), completion of occluded and missing features in the urban cartography, by
incremental updating, using the default sequential update function as a change of type-1 is
detected. (e) shows the point cloud after the object update function; certain parts of the roadside
and building walls along are added to the 3D cartography after repetition in subsequent passages.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.20: (a) shows the initial point cloud related to urban cartography full of imperfections.
In (b), (c) & (d), completion of occluded and missing features in the urban cartography, by
incremental updating, using the default sequential update function as a change of type-1 is
detected. In (e), the automatic reset function came into action after changes of type 2&3 were
detected, to update the modifications in the 3D cartography. (f) shows the point cloud after
the object update function; certain parts of the roadside and building walls are added to the
3D cartography after repetition in subsequent passages. On (f) are also marked the changes
successfully detected and updated after four passages. These include: 1—building wall/roof
added, due to initial misclassification; 2—part of building demolished; 4, 5 and 6—trimmed or
cut trees/bushes; 3, 7 and 8—longer poles cut in half.
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(a)

(b)

Figure 4.21: Different missing features and imperfections belonging to shop windows, walls, pole
and road in (a) are successfully completed and removed in (b), respectively, using this method
for neighborhood-1. (a) 3D point cloud, P(np), after first passage; (b) 3D point cloud, P(np),
after fourth passage.

Change detection for the automatic reset function was evaluated using different standard
evaluation metrics, as described in [Vih12] (see Table 4.3). Although all these metrics are com-
monly used to evaluate such algorithms,MCC (Matthews Correlation Coefficient) is regarded
as the most balanced measure, as it is insensitive to different class sizes (as is the case with our
application, the number of changed cells (changes) is generally quite inferior as compared to
unchanged cells in the urban environment). TheMCC, like the other measures, is calculated
based on the count of the true positives (i.e. correct detection of changed 3D cells), false positives,
true negatives and false negatives. A coefficient of +1 represents a perfect prediction, zero is
no better than random prediction and 1 indicates total disagreement. The detailed results,
including the overall accuracy,ACC, andMCC greater than 85% and +0.6, respectively, clearly
demonstrate the efficacy of the proposed method.

Table 4.3: Change detection evaluation.

Neighborhood Neighborhood Neighborhood

1 (modified) 1 2

ACC Accuracy 0.864 0.891 0.903
PPV Positive Predictive Value 0.842 0.850 0.900
NPV Negative Predictive Value 0.864 0.902 0.901
FDR False Discovery Rate 0.158 0.150 0.100
F1 F1 measure 0.695 0.650 0.782

MCC Matthews Correlation Coefficient +0.624 +0.692 +0.729
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Figure 4.22: True positive rate (TPR) is plotted against false positive rate (FPR) to obtain a 3D
Receiver Operating Characteristic (ROC) curve for neighborhood-1 (modified). Point A on the
surface represents the optimal/best results.

4.6.2 Evolution of Similarity Map Size

Figure 4.23 shows the progressive reduction of the size of the similarity map in subsequent
passages. This is due to the fact that in subsequent passages, as occluded regions are completed,
the number of low similarities caused by the missing occluded features decreases, and also, the
different changes occurring in the cartography are catered to by means of the automatic reset
function. In the case of neighborhood-1 (modified), Fig. 4.23, the large size of SMap is due to
large parts of the building, poles, trees, etc., being demolished in neighborhood-1 (see Fig. 4.16),
whereas a sharp decrease in size occurs at np = 4, due to the automatic reset function (nreset = 3).
We see that some non-repeating cells or those with high associated uncertainty remain even
after the automatic reset. This number of cells in the SMap should ideally reduce to zero as the
number of np increases.

4.6.3 Handling Misclassifications and Improvement in Classification Results

To assess the removal of imperfections due to misclassification, the improvement in classification
results by the proposed method as compared to single passage classification (standard practice)
was evaluated using standard F-Measure as described in [Vih12; HR05]:

Fβ = (1 + β2)
p.r

(β2.p+ r)
(4.14)

where p and r are the precision and recall, respectively, and β is the weight constant. Table 4.4
shows that the proposed method improves the classification results (Permanently Static objects
are analyzed here, as they constitute the permanent cartography, and, hence, are of most interest
to us). The value of β = 1was used to obtain a balanced F1-Score. The classified objects were
considered as a percentage of their constituting points in the 3D scene. This improvement is due
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Figure 4.23: The progressive reduction of the size of similarity map, SMap.

to different misclassifications being progressively corrected, hence reducing the imperfections
caused by them in the resulting 3D cartography.

Table 4.4: Classification results for Permanently Static objects (F1-Score).

Passage Passage Passage Passage Proposed
1 2 3 4 Method

Neighbor-1 0.943 0.977 0.958 0.959 0.981
Neighbor-2 0.979 0.975 0.981 0.984 0.992

4.6.4 Accuracy Evaluation

In order to evaluate the accuracy of the completed permanent features/regions and, hence, the
effectiveness of the imperfection removal, we selected a corner building in neighborhood-1. As
no ground truth was readily available, we generated the ground truth by creating a simplified 3D
model of the building using standard CAD software, as shown in Fig. 4.24. The 3D points from
the initial acquisition were used for this purpose, while the missing features were completed by
horizontal and vertical interpolations, exploiting the symmetry of the building design; these
features were confirmed/matchedwith the images of the building, from different viewing angles,
acquired by the digital spherical camera mounted on the vehicle (see Fig. 4.24). A number of
features, including the occluded ones, were selected for comparison. The dimensions of these
selected features extracted in the 3D image obtained at each passage, using our method, were
then compared with their corresponding dimensions in the ground truth.

The average absolute errors in x, y and z-axes (height) of the available dimensions obtained in
each passage are presented in Fig. 4.25. These error values include both registration and sensor
measurement errors. Low average absolute error values obtained for passage-1 are due to the
fact that part of these 3D points was used for ground truth generation. These generally low and
fairly constant error values make this method suitable for most applications.
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(a) (b)

Figure 4.24: (a) shows the generated 3D model of the buildings according to dimensions; In (b),
one of the camera images of the building is presented.

Figure 4.25: Average absolute errors in x, y and z (height) directions.

4.7 Conclusion

In this chapter, after discussing in detail the different existing techniques of handling imper-
fections in 3D urban cartography, we have presented a new method for automatic 3D urban
cartography that progressively removes different imperfections caused by occlusions, misclas-
sifications of objects in the scene and ineffective incorporation of changes occurring in the
environment over time, by taking advantage of incremental updating using specialized functions.
Different changes occurring in the urban landscape are automatically detected and analyzed
using cognitive functions of similarity, and the resulting 3D cartography is modified accordingly.
The proposed method ensures that the resulting 3D point cloud of the cartography is quite
reliable, and it contains only the exact and actual permanent features, free from imperfections.

The results evaluated on real data using different evaluation metrics demonstrate the techni-
cal prowess of the method. The thorough analysis exhibits accurate change detection (including
values of overall accuracy,ACC, and a Matthew’s Correlation Coefficient,MCC, greater than
85% and +0.6, respectively), improved classification results (with a standard F1-Score > 0.98)
and high accuracy of the completed permanent features/regions of the urban cartography. The
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results also show that the method is well scalable and that it can both be easily integrated and
ideally suited for removing various imperfections for different commercial or non-commercial ap-
plications pertaining to urban landscape modeling and cartography requiring frequent database
updating.

In the next chapter, we show that the proposed method of temporal integration also helps in
improved semantic analysis of the urban environment, specially building façades.
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Due to the ever increasing demand for more realistic
3D urban models coupled with recent advancements
in ground based LiDAR technologies, recovering de-
tails of building façade structures, such as windows,
has gained considerable attention. However, fewer
laser points are usually available for windows as win-
dow frames occupy only small parts of the building
façades while the window glass also offers limited
reflectivity. This insufficient raw laser information
makes it very difficult to detect and recover reliable
geometry of windows without human interaction. So,
in this chapter, we discuss the different state of the
art practices in this domain and then present a new
method that automatically detects windows of dif-
ferent shapes in 3D LiDAR point clouds obtained
from mobile terrestrial data acquisition systems in the
urban environment. The proposed method first seg-

ments out 3D points belonging to the building façade
from the 3D urban point cloud and then projects
them onto a 2D plane parallel to the building façade.
After point inversion within a watertight boundary,
windows are segmented out based on geometrical
information. The window features/parameters are
then estimated exploiting both symmetrically corres-
ponding windows in the façade as well as temporally
corresponding windows in successive passages, based
on ANOVA (ANalysis Of VAriance) measurements.
This unique fusion of information not only accommo-
dates for lack of symmetry but also helps complete
missing features due to occlusions. The estimated
windows are then used to refine the 3D point cloud
of the building façade. The results, evaluated on real
data using different standard evaluation metrics, not
only demonstrate the efficacy but also the technical
strength of the proposed method.
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5.1 Introduction

Recently, analysis of building façades for 3D building reconstruction and realistic geometrical
modeling of the urban environment has gained some interest in the scientific community. Such
realistic models play a pivotal role in several applications pertaining to different perception tasks
such as driving assistance, autonomous navigation through the urban environment, fly-through
rendering, virtual tourism and urban mission planning, etc. Driven by an increasing demand
to improve the quality of such applications, some work has been done lately, focusing on the
semantic analysis of building façades including detecting and modeling geometric structures
like windows and doors to provide higher Level of Details (LoD) as presented in [LBG+13] and
shown in Fig. 5.1. Semantically enriched by features like windows, along with geometrically
accurate outer dimensions, this LoD 3 information further increases the number of applications
for example analysis of access ways to buildings for evacuation scenarios or police operations,
sampling of windows for coefficient of heat transmission (thermal analysis) and area estimation
for restructuring requirements, etc. This, in the context of the thesis, being a logical continuation
of our work, not only helps to refine the quality but also increases the semantic richness of the
resulting 3D urban cartography extending its suitability for broader range of applications (as
mentioned above).

Figure 5.1: Representation of a building using LoD0 - LoD4 [LBG+13].

Usually, such applications mostly rely on data acquired from mobile terrestrial data ac-
quisition systems as discussed in Chapter 2 and shown in Fig. 5.2. These ground-based or
vehicle-borne laser scanning techniques help acquire highly accurate geo-referenced 3D points
with sufficient details due to their close-range data collection. In addition, the capability of cap-
turing millions of 3D points directly in a short time offers a great potential for a fast generation
of detailed 3D models and maps. However, this task is made significantly harder by complex
representations in such a highly cluttered urban environment (cars, poles, trees, vegetation, etc.),
variability of appearances (e.g. open/closed windows and doors, etc.) and missing data due
to physical properties (for instance window glass does not provide any measurements). The
problem is further complicated by the fact that some data are missing due to occlusions caused
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by different temporarily static objects (like cars, pedestrians etc.), self-occlusion of the façade due
to an oblique viewing angle (i.e. protruding balconies or indented windows casting shadows
along the direction of measurement, etc.) and variability in data resolution (farther objects are
scanned in lower resolution than closer ones). So, in this chapter we present a new method that
automatically detects and estimates windows on building façades while successfully addressing
all these challenges. We apply our method on real data from large urban scenes.

(a) (b) (c)

Figure 5.2: (a) The Vis Center’s LiDAR Truck. (b) & (c) shows 3D point cloud (in color-coded
intensity) acquired by the truck, containing building façades in the urban environment.

The problem of detecting windows on building façades has lately received considerable
attention. Several previous works have attempted to tackle this problem of detecting window
structures using 2D images [MZW+07; MR07; ASJ+07; LN04]. These methods either use explicit
window models [LN04] along with horizontal and vertical analysis of images to discover repeti-
tive patterns, or use an implicit window model and a learning approach to recognize windows
[MR07; ASJ+07]. The works [LN04; MZW+07] assume rectilinear window patterns with features
relying on RGB data; however, these methods could not work for multiple structures. General
approaches [JP09] detect windows as blobs in a color image but do not exploit the underlying
structure as shown in Fig. 5.3.

Grammar-based methods, first proposed in the field of architecture [SG72], have been suc-
cessfully used in [WWS+03]. The generation of shape grammar from façade images can be
automated by image similarity detection. Typical intensity-based similarity measures include
cross-correlation [LN04] and mutual information [SWK07; RTR+04]. The common assumption
in these methods is that windows are a rectangular structure, which is fair for most buildings,
although there are always some exceptions. In addition to this fact, in an image of a building,
there often exist too many edges, luminance, color and texture variations, etc., which makes
image-based window detection a challenging task.

Compared to detection in 2D images, lesser work has been done on detecting windows
from LiDAR data. One reason for this may be due to the generally noisy and sparse nature
of the LiDAR data which make the small structures like windows hard to differentiate. In
addition, windows usually do not return any signals, however sometimes signals are returned
from the interior of the buildings, which makes the task even more complicated. In [PMW+08],
regularities of substructures are derived from a 3D model or range scan of a scene. This general
approach may be used for extracting regularities but it is sensitive in the calculation of curvatures.
In [AAP08], a method is presented that converts LiDAR data into distance images, and then
employs image processing techniques like morphological operations and contour analysis to
segment windows. This 3D-to-2D conversion causes information loss. A Markov Network
approach that requires training is used to label points as windows in [TKB06]. In [ZSW+10], 3D
repetitive elements are manually selected and automatically consolidated. In [SHF+11], façades
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(a) (b)

(c) (d)

Figure 5.3: [JP09] shows the detection of windows as blobs in a color image. The main steps are:
(a) Binarisation of image. (b) Filled contours. (c) Blob extraction. (d) Bounding boxes around all
the blobs extracted.

are adaptively partitioned in horizontal and vertical planes based on the boundary features of
the planar regions. However, the method works for data with uniform resolution, which is not
always possible. Hence, it can be adversely affected by the variation in the resolution as well
as the window appearance, which can both exist inside a single scan. On the other hand, our
method remains unaffected by the variation in the resolution of the acquired data. This problem
of varying resolution is also addressed in [MS12] in which the 3D points are first projected
onto a 2D binary orthographic point occupancy map, followed by the extraction and iterative
refinement of the 2D window centers using a local lattice fitting and lattice voting scheme as
explained in Fig. 5.4.

(a) (b) (c)

Figure 5.4: Illustration of lattice voting as presented in [MS12]. (a) & (b) are different extracted
lattices overlaid on projected image and (c) is the resulting histogram. The darker discs accumu-
late votes from both lattices. Also seen is the automatic symmetrical reconstruction of the lower
left corner.

These 2D centers are then projected back to 3D. This method, like most of the others, assumes
regular symmetrical window patterns on the façade. However, these methods are less effective
in case of lack of symmetry or large variations in symmetrical patterns. This is very common
in case of interface of different façades joined together (as shown in Fig. 5.5) as discussed by
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Mesolongitis and Stamos [MS12] in the results of the paper. In contrast to these methods, our
method does not make any assumptions about the symmetry of the façade but in fact it also
combines information from multiple successive passages to not only accommodate for lack of
symmetry but also help to complete missing features due to occlusions. The proposed method
uses the property of windows not returning any signal and hence these windows are represented
by holes on the 3D façade. A hole-based extraction method is also presented in [PV07]. The
method searches edges along the Triangular Irregular Network (TIN) of the façade to identify
holes which are then fitted to rectangles. However, this bottom-up triangular meshing-based
method suffers from noisy LiDAR data and as it does not detect regular groups it is more prone
to occlusions.

The proposed method first segments out 3D points belonging to the building façade B(np)
from the 3D urban point cloud. These 3D points are then projected onto a 2D plane parallel to the
building façade. After point inversion within the watertight boundary, windows are segmented
out. The parameters/features of these segmented windows are then estimated exploiting sym-
metrically corresponding windows in the façade as well as temporally corresponding windows
in successive passages, based on ANOVA (ANalysis Of VAriance) measurements.

Figure 5.5: This figure is taken from the results of [MS12]. It shows the detected windows
represented by green-filled circles. The method gives wrong detections at the interface of the
two façades (i.e. 5th column from the left).

According to the best of our knowledge no previous work has ever been presented that
fuses information from both symmetrical and temporal correspondences to detect and estimate
windows. The estimated windows are then used to refine the 3D point cloud of the building
façade via a reference table.
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5.2 Segmentation of Building Façades and Road Surface from 3D Ur-

ban Point Clouds

In order to segment out the building façades for window detection, we first classify the 3D urban
point clouds into basic object types using themethod explained and presented inChapter 3. These
object types including roads and buildings are: {Road, Building, Car, Pole, Tree, Un-classified}.

The occluded regions in each passage due to temporarily static and dynamic objects in the
scene are completed with the help of similar 3D point clouds obtained from successive passages
in the same place on different days and at different times of the day as explained and presented in
Chapter 4. In this method, the 3D point clouds in each successive passage are first registered with
the former and the missing regions are completed using a point-to-point matching technique.
The proposed work uses this framework of automatic 3D urban cartography. Using the same
3D urban point clouds as input, the integration of our method in this framework enables its
output/results to be directly employed in 3D urban cartography and modeling applications.
This not only helps in the validation but also in the better evaluation of the method.

After classification, the 3D points pertaining to the segmented buildings as well as the road
surface are then projected onto a plane, parallel to the building façade in order to detect and
segment windows in the building façades as explained in the following section. An overview of
the proposed method is presented in Algorithm 4 and explained in the later sections.

5.3 Window Segmentation

In the 3D LiDAR point clouds of the building façades, windows are usually represented by holes
due to limited reflectivity [MS12]. They may, sometimes, also contain few 3D points with low
intensity values due to reflections from objects inside [TS11]. Our method for automatic detection
of windows in such 3D façade point clouds is based on this property. The 3D points pertaining
to the building façade and road surface are first projected onto an arbitrary plane parallel to the
building façade. A watertight boundary of this projected 2D façade is then determined. Point
inversion is done within this boundary and windows are then segmented. The details of this
method are as follows.

5.3.1 3D Point Projection

As a mobile street mapper, mentioned in Section 5.7, is used for data acquisition, the building
class consists of 3D points predominantly belonging to building façades due to the particular
viewing angle. These 3D points belonging to the building façade are then projected onto a known
arbitrary plane parallel to the building façade in every passage np, as shown in Fig. 5.6(b) to
obtain Proj(B(np)). The projection plane is determined by calculating the best-fit plane through
the 3D points of the building façade using planar regression of data as presented in [Fer05]. A
best-fit plane can be defined with the equation:

(xi − x) = B(yi − y) + C(zi − z) (5.1)

where x, y, and z are the respective mean values of X , Y , and Z coordinates of all points. To
find the equation of the best-fit plane for a given set of points, Press et al. [PFT+07] present the
following equations that have to be solved for B and C:

∑
((xi − x)(yi − y)) = B

∑
(yi − y)2 + C

∑
((yi − y)(zi − z)) (5.2)

∑
((xi − x)(zi − z)) = B

∑
((yi − y)(zi − z)) + C

∑
(zi − z)2 (5.3)

The result of the regression is a plane that passes through a point with coordinates (x, y, z)
and is returned in the form of a vector normal to the best-fit plane.The equations in [PFT+07]
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Algorithm 4 Automatic window detection and façade refinement.

Input: 3D urban point clouds P (np) for passage number np

1: Segmentation-based classification of P (np) to obtain building façades and road surfaces
2: Register, match and compare point cloud P (np)with P (np − 1) to try to complete missing

features on the building façade due to occlusions
3: Project the 3D points pertaining to building façades and road surfaces in P (np) onto an

arbitrary plane parallel to the building façade to obtain Proj(B(np)) and reference table
Tproj

4: Extract a watertight boundary of the projected building façade in Proj(B(np))
5: Conduct point inversion within the watertight boundary to segment out holes to obtain an

inverted projection Proj(B(np))INV

6: Cluster 2D points pertaining to holes in Proj(B(np))INV using a Nearest Neighbor Search
(NNS)

7: Classify these segmented clusters as windows based on geometrical features and assign
feature space {Height, Width, Profile, Geometrical center}

8: for all detected windows in the building façade do

9: Find symmetrically corresponding windows in rows and columns on the façade
10: Find temporally corresponding windows for the same façade from the previous passages

inWc(np − 1)
11: Estimate window features using these correspondences
12: end for

13: Update the window features along with temporal correspondences inWc(np)
14: if np = nreset then

15: ResetWc
16: end if

17: Correct Proj(B(np)) for estimated windows inWc(np)
18: Refine and update 3D point cloud P (np) using corrected Proj(B(np)) and Tproj

19: Delete Tproj

20: Delete Proj(B(np)) and Proj(B(np))INV

21: StoreWc(np)
22: Wc(np − 1)←Wc(np)
23: Store P (np)
24: P (np − 1)← P (np)
25: return P (np)

need to be corrected to deal with traces/residue, by replacing Equation (5.1) with the following
definition:

(yi − y) = A(xi − x) + C(zi − z) (5.4)

and modifying Equations (5.2) and (5.3) accordingly.

Although these 3D points are projected in 2D, a simple reference table Tproj is also gene-
rated that stores the index of the 3D points corresponding to the 2D points in the projection
Proj(B(np)). This table Tproj only helps to correct and update the actual 3D point cloud once
final processing is done (see Section 5.5 for details). It is finally deleted.

5.3.2 Watertight Boundary Estimation

Now, in order to obtain a watertight boundary of the projected building façades, we first extract
the outline/envelope of the façade using a sweep scan method summarized in Algorithm 5.
As the bottom part of the building outline close to the ground is often occluded and hence
inconsistent due to the presence of different temporarily static or dynamic objects such as cars
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(a)

(b)

(c)

(d)

Figure 5.6: (a) 3D points belonging to building (in blue) and road surfaces (in black). (b) 2D
projection of the 3D points on an arbitrary plane. (c)Watertight boundary. In red building outline
closed by road projection (black) from below. (d) After point inversion within the watertight
boundary.
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or pedestrians in the scene (see Chapter 4, Section 4.5.3), we use the 2D projection of the road
surface to close the watertight boundary from below as shown in Fig. 5.6(c).

Algorithm 5 Extraction of outlines.

Input: 3D points of object
1: for minimum x and y values of 3D points to maximum x and y values of 3D points do

2: Scan building points in x− y plane
3: Find maximum and minimum values in z axis at small interval
4: end for

5: for minimum z values of 3D points to maximum z values of 3D points do

6: Scan building points in z axis
7: Find maximum and minimum value in x− y plane at small interval
8: end for

9: return envelope/profile of object (set of all the minimum and maximum points)

The 3D road points are projected onto the same arbitrary plane along with the building
façade points as explained in Section 5.3.1. However, no reference table is generated. Now, once
the watertight boundary is extracted/obtained, we then perform a point inversion inside this
boundary.

5.3.3 Point Inversion and Window Segmentation

As we are more interested in analyzing the holes in the building façade, we perform a point
inversion within the watertight boundary as summarized in Algorithm 6. As a result of this
point inversion, all holes including window holes surface out (a part of the segmentation process)
as shown in Fig. 5.6(d) and we obtain an inverted projection Proj(B(np))INV .

The 3D points belonging to each of these holes are then grouped together by means of a
standard agglomerative clustering algorithm using a distance based Nearest Neighbor Search
(NNS) to obtain segmented clusters. This distance S is taken as 2×Di, where Di is the size of
the small regular interval used in the point inversion stage. The value of Di depends upon the
resolution of the acquired data. A variation is usually detected in the density of data acquired by
mobile terrestrial data acquisition systems (as shown in Fig. 5.7) first due to the varying speed
of the LiDAR carrying vehicle itself as it sweeps the urban environment; and second due to
farther objects (mainly in our case higher objects) that are scanned in lower resolution than the
closer ones at/near ground level. Thus, in order to select an appropriate value of Di, the points
of the watertight boundary are analysed. In order to determine the variation along the height
axis Dz , we analyse the points belonging to the two vertical edges of the boundary as shown
in Fig. 5.6(c) while concerning the variation in the horizontal axis Dx, we consider the points
belonging to the top horizontal edge of the boundary. The bottom edge is not used as it belongs
to the road surface and not to the building façade. The values of Dz and Dx are found using the

relations: Dz =
3
2

√
δ2dz and Dx = 3

2

√
δ2dx . Here, dx and dz are the sets of values of the difference

between two successive points (only height for Dz and width for Dx) in the selected vertical and
horizontal edges respectively while δ2 is the standard variance. The difference values in both sets
are first sorted in increasing order before being used in the relations. The value of Di is taken as
Dz andDx for vertical and horizontal axes respectively for point inversion (see Algorithm 6) and
the calculation of S. The choice of using the watertight boundary compared to the whole façade
to determine an appropriate value of S not only reduces computational burden but also gives a
fairly good estimation due to the absence of window holes that could heavily bias the value.

The segmented clusters are then classified as windows based on the geometrical sizes. Very
small clusters (max width and height less than 0.5 m × 0.5 m respectively) corresponding to
small holes due to acquisition errors and imperfections are automatically removed. Similarly
very large clusters (max width and height greater than 5m× 5m respectively) corresponding to
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Figure 5.7: 3D point cloud of the building façade showing varying resolution. The point
resolution decreases from left to right and from bottom to top.

holes mainly due to occlusions, are also removed. The remaining clusters are then considered as
windows as shown in Fig. 5.8(c). Each detected window is then defined by a feature space: WF ∈
{H,W,P,GC}. Here H andW are the maximum height and width of the cluster respectively
while GC is the geometrical center. P is a set of points that define the outline/profile of the
window. These sets of points are calculated by using the same sweep scan algorithm (now in 2D)
presented in Algorithm 5 on each window.

This step of point inversion not only reduces significantly the data size for analysis (few points
corresponding to holes rather than those of the whole façade) but also allows easy segmentation
of windows. Also, in case of any reflected points from within the window region, represented
by small empty spaces between the window points after point inversion, they are also catered
for as the whole region is merged to form a window cluster.

Algorithm 6 Point inversion.

Input: 2D projected points of building façade, watertight boundary
1: for minimum x values tomaximum x values of 2D points defined by the watertight boundary

do

2: Scan at small regular intervals Dx in horizontal x axis
3: for minimum z values to maximum z values of 2D points defined by the watertight

boundary do

4: Scan at small regular intervals Dz in vertical z axis
5: if 2D point found then

6: Delete 2D point
7: else

8: Add a 2D point at the center of the interval
9: end if

10: end for

11: end for

12: return inverted point projection
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5.4 Window Features Estimation

The windows detected in each passage are prone to different errors due to measurement errors,
occlusions, etc. Hence, in order to estimatemore accurately the detectedwindows alongwith their
features/parameters, we then try to exploit both façade symmetry as well as multiple passages.
In order to achieve this, we apply the ANOVA method and try to estimate the window features
using both symmetrical windows in the façade in each passage as well as the corresponding
windows in the same façade in successive passages.

If no symmetrical correspondences (similar windows in symmetrical pattern) are found for
a window in the façade, then its features are only estimated by the corresponding window in
successive passages. In this way, we are able to detect and estimate windows and their features
even for non-symmetric building façades.

5.4.1 Exploiting Façade Symmetry

It is observed that usually building façades exhibit a structured arrangement consisting of
repetitive patterns and self similarities. However, this is not always true due to rich architectural
variations depending upon the type of buildings, countries and cultures.

In order to exploit the symmetrical properties of the façade (if possible), in each passage, we
try to find symmetric correspondences (similarwindows) on the building façade for each detected
window. Symmetrical windows are found by simply analyzing the position of the windows on
the façades by comparing the distance between their centers in both row and column. Windows
at equidistant intervals in both row and column are considered symmetrical correspondences (at
least 3 windows) and are grouped together as shown in Fig. 5.8(c). Symmetrical correspondences
are determined for each window on the façade. In case of more than one type of symmetrical
correspondences found for a particular window on the façade, the symmetrical correspondences
with the smallest interval distances are considered.

Although symmetrically situated on the façade, their degree of similarity and how much
these correspondences should contribute to estimate the features/parameters of a particular
window are only ascertained after the ANOVA analysis.

5.4.2 Exploiting Multiple Passages

Once symmetrical correspondences for each window in the same façade are found in each
passage, we then find corresponding windows in successive passages. As a result, we are able to
estimate the window features more accurately, especially in case if we are not able to find any
symmetrical correspondence due to either non-symmetry or occlusions. Similarly, the redundant
data obtained via several passages are also used to complete occluded regions of the façade
(including windows) as explained in Chapter 4. These passages (in the same place) could be on
different days and at different hours of the day.

As the acquired 3D points are directly geo-referenced and then further co-registered in
successive passages by applying Iterative Closest Point (ICP) method on the skylines of the
building as presented in Section 4.5.4, there is no problem of finding corresponding windows
for the same façade in successive passages. Windows found in the same position on the façade
in successive scans are considered as temporal correspondences and are grouped together as
shown in Fig. 5.9. Temporal correspondences are determined for each window on the façade.

Although these temporal correspondences usually represent the same window, only after the
ANOVA analyses we are able to ascertain how much these correspondences should contribute to
estimate the features/parameters of a particular window.
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(a) (b)

(c)

Figure 5.8: (a) 3D points of building façade. (b) Potential window candidates after point inversion
and window segmentation. (c) Symmetrical correspondences in both row and column for first
and second window respectively. Same colors (of the bounding box) represent similar windows.

5.4.3 ANOVA-based Estimation

In order to determine which correspondences should be used to estimate features/parameters for
any particular detected window, we conduct a one-way ANOVA analysis [TF06] after adapting it
to our requirements.

The statistic used in ANOVA partitions the variance into two components: 1) the between
treatment variability, 2) the within treatment variability. Adapting them to our requirements,
the within treatment variability SSW is used for symmetrical correspondences while between
treatment variability SSB is used for temporal correspondences. The term “SS” in SSW and
SSB is derived from the Sum of Squares method used in their calculation. It may be noted here
that symmetrical correspondences are only considered for the current passage.

If nw is the total number of detected windows (including both symmetric and temporal
correspondences) in the total number of passages so far, G is the total number of passages so far,
Yip is the value of Y th feature for the ith window in passage p, nwp is the number of windows
(only symmetrical correspondences) in passage p, Y p is the mean of the feature values for all
the windows (only symmetrical correspondences) in passage p, s2p is the sample variance of the

feature values for all the windows (only symmetrical correspondences) in passage p, and Y is
the average of the feature values for all the windows (including both symmetric and temporal
correspondences) in the total number of passages so far, then the total variabilities for the Y th
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Figure 5.9: Finding Temporal correspondences for each window in multiple passages.

feature of the ith window in passage p are given as:

SSWip =
G∑

p=1

nwp∑
i=1

(Yip − Y p)
2 =

G∑
p=1

(nwp − 1)s2p (5.5)

Similarly,

SSBip =
G∑

p=1

nwp∑
i=1

(Y p − Y )2 =

G∑
p=1

nwp(Y p − Y )2 =

G∑
p=1

nwpY
2
p −

(
∑G

p=1

∑nwp

i=1 Yip)
2

nw

Further simplification yields:

SSBip =

G∑
p=1

nwpY
2
p − nwY

2
(5.6)

Using Equations (5.5) and (5.6), we calculate the average amount of variability within each
passageMSW and the average amount of variability between successive passagesMSB as:

MSWip =
SSWip

dfwithin
(5.7)

MSBip =
SSBip

dftotal
(5.8)

where dfwithin and dftotal are the degrees of freedom given as (n−G) and (G−1) respectively.
The F-statistic [TF06] is then calculated by computing the ratio ofMSW andMSB:

Fip =
MSBip

MSWip
(5.9)
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These values of Fip are calculated independently for both width and height features of each
detected window in each passage. The maximum value of Fip, among the values obtained for
both features, are then used for this analysis.

Now using dfwithin and dftotal for each window, we determine the critical value Fc from the
standard F-tables (see Appendix B) using α = 0.05. Now using standard F-statistics, analyzing
Fip value of each window and comparing it with the corresponding Fc value help us to infer
different weights to be used for the two types of correspondences (ws and wt for symmetrical and
temporal correspondences, respectively) for window feature estimation. The choices of these
weights are summarized in Table 5.1.

As the null hypothesis being tested here is that windows in the symmetrical and temporal
correspondences are similar, case 1 validates this hypothesis and hence both Symmetrical &
Temporal correspondences are used to estimate the window features. In this table, case 2 suggests
that the symmetrical correspondences do not contain a lot of similar windows (due to occlusions
or lack of symmetry in façade). Thus, in such a case, temporal correspondences are given more
preference (higher weights) over symmetrical correspondences to estimate window features.
Case 3 suggests that there are strong inconsistencies in the windows detected in successive
passages. As a result, the variability of features of the detected window is much higher in
successive passages as compared to the symmetrical correspondences found on the façade. This
could be due to false detections, occlusions in certain passages or even changes occurring in
the building façade (see Chapter 4). Hence in this case, symmetrical correspondences are given
more preference (higher weights) over temporal correspondences.

Table 5.1: Choice of weights for estimation.

Case Fip Weights
1 1 ≤ Fip ≤ Fc ws = wt = 1

2 Fip < 1 wt > ws

3 Fip > Fc ws > wt

Now in order to determine the weights associated with each correspondence for case 2
and case 3, we calculate the effect size measure ω2 for ANOVA calculations. This measure, as
expressed in Equations (5.10) and (5.11), gives us the contribution of each of the two correspon-
dences in the total variability observed.

ω2
tip =

SSBip − (G− 1)MSWip

SSBip + SSWip +MSWip
(5.10)

ω2
sip = 1− ω2

tip (5.11)

Here ω2
tip and ω2

sip are the contribution of the temporal and symmetrical correspondences,
respectively.

Once the weights for both correspondences are determined, the window feature value Yip
(i.e. the Y th feature for the ith window in passage p) is estimated as Ŷip:

Ŷip =
nsω

2
sip(

∑nt
j=1 Ytj ) + ntω

2
tip(

∑ns
j=1 Ysj )

(nsnt)(ω2
sip + ω2

tip
)

(5.12)

Here Yt and Ys are the values of the feature of the windows in temporal and symmetrical
correspondences and nt and ns are the total number of windows considered as temporal and
symmetrical correspondences respectively. Now using Equation (5.12), both width and height
features of each detected window in each passage are estimated independently.

Now, in order to estimate the profile P of the window in the feature space, we first find a
set of common profile points for each of the two correspondences by sampling both height and
width dimensions at small regular intervals as shown in Fig. 5.10.
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(a) (b)

Figure 5.10: (a) shows the profile points (connected with straight lines) of temporal correspon-
dences for window “A” marked on façade in (b). In (a) red, blue and green color represent the
profiles obtained in 1st, 2nd and 3rd passage respectively. An andBn are the set of common profile
points (along the two axis) obtained for the 3 profiles at nth regular interval (grid cell space).
These points are then stored in ptt, as these correspond to profiles of temporal correspondences.

It should be noted that for symmetrical correspondences we first align the windows by
shifting their centers.

Each point in the set of common profile points is then estimated by using Equation (5.13) to
obtain P̂ip ∈ {p̂tip1 . . . p̂tipk} such that:

p̂tipk =
nsω

2
sip(

∑nt
j=1 pttkj

) + ntω
2
tip(

∑ns
j=1 ptskj

)

(nsnt)(ω2
sip + ω2

tip
)

(5.13)

where ptt and pts are the sets of common profile points corresponding to temporal and symme-
trical correspondences and k is the total number of points in P̂ip, i.e. the estimated profile of the
ith window in passage p.

Now using Equations (5.12) and (5.13), the features of the window are estimated and then
updated for that window along with the list of temporal correspondences inWc as described in
Algorithm 4.

It must be noted here that in order to avoid initialization issues, for the first passage only sym-
metrical correspondences are considered whereas for all successive passages both symmetrical
as well as temporal correspondences were considered in the equations for estimation.

5.5 Refining and Updating the Building Façades in the 3D Point

Clouds

Once the feature space of the detected windows is estimated and updated inWc, the next step
is to correct, refine and update the 3D façade in the actual 3D point cloud. In order to do this,
we first correct the 2D projection Proj(B(np)) by using the estimated profile of all the windows.
These estimated profiles define the window space and hence all points within these profiles are
considered as window points.

In many cases, the 3D point clouds obtained using LiDARs mounted on mobile terrestrial
vehicles offer limited viewing angles and relatively sparse 3D points for distant windows. As a



118 Chapter 5. Detection and Feature Estimation of Windows for Refining Building Façades

(a) (b)

Figure 5.11: (a) & (b) show partial and completely shut/closed windows on the façade in one of
the passages respectively.

result, fine details pertaining to window panes, etc., within the window regions remain missing
(see Fig. 5.10(b)). Hence, we prefer to delete the within window points to obtain well-defined
window holes in the 3D façades. On the other hand, if co-registered camera images are also
available, then a 2D image of the window can be added to the window region (defined by
the estimated profile boundary) to provide a more realistic/detailed view [BH07b]. However,
for most applications pertaining to accurate 3D urban modeling, geographical navigators, etc.,
well-defined window-hole features on the building façade are more than sufficient.

Once the 2D points within the window region defined by the estimated window profile are
deleted in Proj(B(np)), corresponding 3D points in the actual point cloud are also deleted using
the reference table Tproj as shown in the results in Section 5.7. This processing ensures that the
resulting building façade in the 3D urban point clouds contains accurate, well-defined window
regions.

5.6 Automatic Checks and Balances

In case of any false detection, normally no symmetrical correspondences should be found on the
building façade. However, in order to confirm whether this really is a false detection and not a
non-symmetric feature of the façade, we also check the temporal correspondences. In case no
temporal correspondences are found, this detection is deleted from the list of windowsWc and is
no longer used for refining the building façade. On the other hand if a certain detected window
was found missing in any of the passages due to temporary occlusion, etc., it is still considered,
as correspondences from other passages are used to estimate the window parameters and hence
it remains inWc and is also used for refining the building façades.

Similarly, we see that although effects of occlusions (both complete or partial) are greatly
reduced due to the exploitation of multiple passages as explained in Section 5.2, sometimes
certain window features remain partially or fully obscured due to window shutters or curtains,
etc., in some passages, as shown in Fig. 5.11. This may result in an inaccurate estimation of
window parameters. However in our method, the increase in the variability of any of the
correspondences, in such cases, results in its lower weighting in the parameter estimation of
that window according to Equations (5.12) and (5.13). This makes our method more robust and
ensures a more accurate estimation of window parameters.

These checks and balances ensure that with the number of passages, window detection
accuracy improves and the final building façade only contains the exact and accurate window
features.
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5.7 Results, Evaluation and Discussion

In order to validate our method, we used two different datasets:

1. New York City dataset Mesolongitis and Stamos [MS12]: to evaluate and compare our
window detection method with a state of the art method.

2. 3D Urban Data Challenge 2011 dataset [Cha11]: to fully evaluate the performance of our
method.

5.7.1 Evaluation

We first evaluated the window detection part of the proposed method using the New York
City dataset presented and used by Mesolongitis and Stamos [MS12]. The dataset contains
a rich collection of 3D façades from the New York City area obtained from a single passage.
Several building façades were used to evaluate our method. Some of the results are shown in
Fig. 5.12. The results obtained (overall Precision Pr and Recall Re values) are comparable to
the state of the art method [MS12] evaluated on the façades of the same dataset as presented
in Table 5.2. Our method received lower Re scores compared to the state of the art method
on façades with occlusions (as shown in Fig. 5.12(a)-(c)) given the fact that the latter predicts
windows in the occluded regions based on the symmetry of the façade. As for our method, it
exploits multiple passages (which were not available in this data set) to manage occlusions. Our
own scores improve considerably with multiple passages, exploiting temporal correspondences
as discussed later on for the second dataset. Besides, contrary to our method, the state of the art
method generated some false positives on certain façades with varying symmetry or in cases of
interfacing façades as shown in Fig. 5.5. On the other hand, the relatively fewer false positives
generated by our method are easily corrected exploiting temporal correspondences.

Table 5.2: Comparison of detection result.
Method Pr Re

Mesolongitis and Stamos [MS12] 0.894 0.810

Proposed Method 0.92 0.73

In order to fully evaluate our method, the dynamic dataset of the 3D Urban Data Challenge
2011 was used. This dataset contains 4 sets of the same dynamic scenes in downtown Lexington,
Kentucky, USA obtained on different days and at different times. The data was acquired by the
Vis Center’s (University of Kentucky) LiDAR Truck [Vis11] containing two Optech LiDAR sensor
heads (high scan frequency up to 200 Hz), a GPS, inertial measurement unit and a spherical
digital camera.

Figures 5.13, 5.14 and 5.15 show some qualitative results of window detection and refinement
of different building façades in this dataset. The method successfully detects and estimates
windows of different types and sizes. Figure 5.13 illustrates how themethod is able to successfully
estimate window parameters in case of heavy occlusions (especially shop windows at ground
level), where most other methods would probably fail [LN04]. Similarly the method works
equally well in case of windows high above the ground (represented by sparser 3D points) as
well as repeated window features (see Fig. 5.14). Figure 5.15 demonstrates that the proposed
method successfully detects and estimates windows parameters pertaining to building façades
with different non-symmetric windowpatterns. As themethod is non-parametric (no assumption
on window shapes) and does not rely solely on façade symmetry, it is able to estimate window
parameters more accurately than conventional methods relying on façade symmetry only.

For quantitative analysis, we evaluated the accuracy of the window detection. The nreset

value was fixed at 4 as the maximum available number of passages in the dataset was 4. However,
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(a) (b)

(c) (d)

Figure 5.12: Window detection results are shown for some façades in the New York City dataset
Mesolongitis and Stamos [MS12]. In (a), (b) & (c) we can see a number of false negatives due
to occlusions. In (c) & (d) we also find some false negatives due to closed windows because of
window shutters or curtains.
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(a) (b)

(c)

(d)

Figure 5.13: (a) & (c) show raw 3Dpoints (color coded intensity) of different building façades from
the dataset containing windows of different types and sizes in the 3D Urban Data Challenge 2011
dataset [Cha11] while (b) & (d) are the corresponding 3D point clouds after window detection
and refinement. The results clearly demonstrate the efficacy of the method in case of heavy
occlusions especially at ground level shop windows.
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(a) (b)

Figure 5.14: (a) show raw 3D points (color coded intensity) of building façade of a long multi-
story building containing windows of different types and sizes in the 3D Urban Data Challenge
2011 dataset [Cha11] while (b) is the corresponding 3D point clouds after window detection and
refinement. The results clearly shows that the method works equally well for repeated window
structures.
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(a) (b)

Figure 5.15: Successful detection and estimation of window parameters pertaining to non-
symmetric building façades with different non-symmetric window patterns. (a) shows the raw
3D points of a building façade with different non-symmetric window patterns. In (b) the same
façade after successful window detection and refinement can be seen. The red ellipse marks a
permanently occluded region discussed in § 5.7.2.

where this reset can be done by human intervention, or manually set (as in our case) it could
also be done automatically as presented in Section 4.5.4. The reset function only helps to avoid
unnecessarymemory storage issues, once the desired results are obtained. The window detection
method was evaluated using different standard evaluation metrics as described in [Vih12] (see
Table 5.3). Ground truth was obtained by visual inspection of both raw 3D point clouds as well
as the available 2D camera images of the building façades. The results clearly demonstrate the
efficacy of the proposed method.

Table 5.3: Window detection evaluation using metrics defined in [Vih12].
Evaluation Metrics Results

Accuracy ACC 0.917
Positive Predictive Value PPV 0.971
Negative Predictive Value NPV 0.908

False Discovery Rate FDR 0.029
F1 measure F1 0.912

Figure 5.16 shows the evolution of window detection performance expressed in terms of
the different evaluation metrics, mentioned above, with the increasing number of passages.
For analysis, one particular street was selected (about 1000 meters long with over 200 distinct
windows of different shapes and sizes). All windows including occluded ones were taken
into consideration. For the first passage only, symmetrical correspondences were considered
whereas for all successive passages both symmetrical as well as temporal correspondences were
considered. The initial low scores and high FDR (False Discovery Rate) value are due to the
large amount of occluded windows, especially the shop windows at ground level as shown in
Fig. 5.13(a) and 5.13(c). With every new passage, different occluded regions were completed and
hence the window parameters were better estimated, resulting in an improvement in the window
detection performance. Also contributing to the low score in the first passage were some unique
or non-symmetric windows present on some façades. These were only added to the detected
window listWc, after their temporal correspondences were found in the successive passages.

It is also observed that the PPV (Positive Predictive Value) is generally found higher than
NPV (Negative Predictive Value), which suggests that the method is more conservative and is
more likely to detect and estimate windows once highly certain, otherwise it does not. Hence,
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false positives usually occur less often than false negatives (also evident in Fig. 5.12).

Figure 5.16: Evolution of window detection performance expressed in terms of the different
evaluation metrics with the increasing number of passages.

5.7.2 Limitations

Although the method successfully detects windows of different shapes and sizes, and esti-
mates their parameters even in difficult circumstances such as temporary occlusions and non-
symmetrical façade structures, it has some limitations in case of permanent occlusions resulting
in permanently missing 3D points, for example part of the building façade (zone marked in
red) in Fig. 5.15(b). This permanently occluded region, due to the limited viewing angle of the
data acquisition vehicle, results in large, deformed and interconnected window segments after
point inversion and hence are not considered as a window nor estimated. Sometimes smaller
permanent occlusions could also result in false positives. In such conditions, contrary to our
algorithm, a classical symmetry-based window detection algorithm can assume/predict (which
may be wrong) windows in the region based on the overall symmetry of the façade.

5.8 Conclusion

In this chapter a new method has been presented that automatically detects windows and
estimates their parameters in 3D LiDAR point clouds obtained from mobile terrestrial data
acquisition systems in the urban environment. Themain feature of thismethod is that it combines
information from both symmetrical and temporal correspondences using ANOVAmeasurements.
This unique fusion of information not only accommodates for lack of symmetry but also helps
complete missing features due to occlusions. This not only increases its robustness but also
ensures a more accurate estimation of window parameters. These estimated windows are then
used to refine 3D building façades for different applications pertaining to accurate 3D urban
modeling or geographical navigators that frequently update their database. The described
method also ensures that window detection and estimation accuracy improve with a growing
number of passages and the final building façade contains only the exact and accurate window
features.



5.8. Conclusion 125

The method applied to real data represents a significant advance in the state of the art and
proves its effectiveness in case of non-symmetrical façades and temporary occlusions in the
urban environment. The results evaluated using different standard evaluation metrics clearly
demonstrate the efficacy (with values such as Accuracy ACC and F1 measure F1 greater than
90%) as well as the technical asset of the method.

This approach is also an essential step towards the creation of façade descriptors which can
be used in 3D registration, reconstruction, compression and scene understanding.
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This thesis presents a scalable framework for au-
tomatic 3D urban cartography which incorporates
recognition and temporal integration. It first dis-
cusses in detail the current practices in the domain
of 3D urban cartography along with the different
methods, applications, recent data acquisition and
mapping technologies as well as the different pro-
blems and challenges associated with them. The
work presented addresses many of these challenges
mainly pertaining to classification of urban environ-
ment, automatic change detection, efficient updating

of 3D urban cartography and semantic analysis of the
urban environment, etc. In this chapter we conclude
the thesis. The chapter reiterates the basic motiva-
tion of the work presented along with its context. It
is divided into two main sections. In the first sec-
tion, we summarize all our main contributions while
in the second section we give some directions for
future research. These perspectives include several
research tracks that could not only be investigated
for the extension of these works but also open doors
to different important applications and prospective
research projects.
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In this thesis, we have presented a scalable framework for automatic 3D urban cartography
which incorporates recognition and temporal integration. We have first discussed in detail
the current practices in the domain 3D urban cartography along with the different methods,
applications, recent data acquisition and mapping technologies as well as the different problems
and challenges associated with them. The work presented addresses many of these challenges
mainly pertaining to classification of urban environment, automatic change detection, efficient
updating of 3D urban cartography and semantic analysis of the urban environment, etc. The
proposed methods ensure that the resulting 3D cartography contains only the exact, accurate and
well-updated, permanent features of the urban environment. These methods are validated on
real data obtained from different sources in different environments. After extensive evaluation at
different stages, the results not only demonstrate the efficiency, scalability and technical prowess
of the method that can both be easily integrated and ideally suited for different commercial or
non-commercial applications pertaining to urban landscape modeling and cartography requiring
frequent database updating.

To conclude, we summarize our main contributions and give directions for future research
work.

6.1 Summary

The main aim of this PhD thesis is to address the different problems currently faced in 3D urban
cartography by developing new methods of 3D cartography using 3D LiDAR data acquired
from terrestrial mobile mapping systems. As discussed in this thesis, in the urban environments
the quality of the data obtained from Mobile Mapping Systems (MMS) are widely hampered
due to the presence of temporarily static and dynamic objects (pedestrians, cars, etc.) in the
scene. So, the first step for 3D urban cartography is to obtain the permanent part of the urban
environment. Thus, our firstmain contribution is a newmethod to classify the urban environment
into permanent and temporary object classes. The proposed method first uses a super-voxel
based segmentation employing a new link-chain method followed by classification of these
segmented objects into basic object types using local descriptors and geometrical models. To
help evaluate such methods a new evaluation metric is also introduced which incorporates
both segmentation and classification results together. The results show an overall segmentation
accuracy (OSACC) of 87% and overall classification accuracy (OCACC) about 90%. Themethod
is not only extensively evaluated but also compared with existing state of the art methods. The
results indicate that with good segmentation, a simplified classification method like the one
proposed is sufficient. Our study shows that the classification accuracy improves by reducing
voxel size but at the cost of processing time. Thus, a choice of an optimal value, as discussed, is
recommended. The study also demonstrates the importance of using laser reflectance intensity
values along with RGB colors in the segmentation and classification of urban environment as
they are more illumination invariant and more consistent.

Once classified into these basic object types, these objects are then further characterized
into permanent and temporary based on their basic characteristics and using a point matching
technique. The objects classified as temporary are then removed from the 3D point cloud
leaving behind a perforated 3D point cloud of the urban environment. These perforations along
with other imperfections are then analyzed and progressively removed by incremental updating
exploiting the concept ofmultiple passages, which is our secondmain contribution. The proposed
method for automatic 3D urban cartography progressively removes different imperfections
caused by occlusions, misclassifications of objects in the scene and ineffective incorporation of
changes occurring in the environment over time, by taking advantage of incremental updating
using specialized functions. Different changes occurring in the urban landscape are automatically
detected and analyzed using cognitive functions of similarity, and the resulting 3D cartography
is modified accordingly. The proposed method ensures that the resulting 3D point cloud of the
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cartography is quite reliable, and it contains only the exact and actual permanent features, free
from imperfections. The results evaluated on a real dataset using different evaluation metrics
demonstrate the technical prowess of themethod. The thorough analysis exhibits accurate change
detection (including values of overall accuracy,ACC, and a Matthew’s Correlation Coefficient,
MCC, greater than 85% and+0.6, respectively), improved classification results (with a standard
F1-Score > 0.98) and high accuracy of the completed permanent features/regions of the urban
cartography. The results also show that the method is scalable and that it can both be easily
integrated and ideally suited for removing various imperfections for different commercial or
non-commercial applications pertaining to urban landscape modeling and cartography requiring
frequent database updating.

Our third main contribution is that the proposed method of temporal integration also helps
in improved semantic analysis of the urban environment, especially building façades. This,
in the context of the thesis, being a logical continuation of our work, not only helps to refine
the quality but also increases the semantic richness of the resulting 3D urban cartography
extending its suitability for broader range of applications. The proposed method automatically
detects windows and estimates their parameters in 3D LiDAR point clouds obtained frommobile
terrestrial data acquisition systems in the urban environment. The main feature of this method
is that it combines information from both symmetrical and temporal correspondences using
ANOVA measurements. This unique fusion of information not only accommodates for lack of
symmetry but also helps complete missing features due to occlusions. This not only increases its
robustness but also ensures a more accurate estimation of window parameters. These estimated
windows are then used to refine 3D building façades for different applications pertaining to
accurate 3D urban modeling or geographical navigators that frequently update their database.
The described method also ensures that window detection and estimation accuracy improve
with a growing number of passages and the final building façade contains only the exact and
accurate window features. The results evaluated using different standard evaluation metrics
clearly demonstrate the efficacy as well as the technical asset of the method. The results also
prove the methods effectiveness in case of non-symmetrical façades and temporary occlusions in
the urban environment.

6.2 Directions for Future Research

In this thesis, we have presented a variety of methods to overcome different problems of the
current state of the art in automatic 3D urban cartography. However, the challenging task
of generating and updating 3D maps and models with increased effectiveness and improved
efficiency is by far not solved yet. In the following paragraphs, we thus conclude our work with
suggestions for future research directions.

The proposed method of super-voxel based segmentation helps in intelligent data reduction,
which is an effective step for handling large 3D point clouds. However, at the moment, the
method is implemented in sequential manner whereas it has the potential to be implemented as
parallel processes, especially the link-chain step which can further reduce the processing time.

Another interesting aspect that needs to be explored is the effect of incorporating different
intelligent data reduction/subsampling methods as presented by Puttonen et al. [PLK+13] in the
voxelization process. This might help to not only further reduce the effective data size along with
the over-segmentation but also help to better estimate the features of each voxel for super-voxel
transformation. This could allow the use of smaller voxel sizes to increase the segmentation
and classification accuracy without significantly increasing the processing/computational cost.
In the proposed method, the values of certain parameters used such as maximum voxel size
and inter-distance constant are determined using a semi-supervised approach. The choice of
these parameters can be automatically optimized using metaheuristic algorithms as presented
by Madic, Markovic, and Radovanovic [MMR13] and Lee and El-Sharkawi [LES08]. Further-
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more, for the classification of segmented objects, contextual features/information could also be
added in addition to the geometrical features and local descriptors to further improve upon the
classification results.

The common practice of using terrestrial mobile mapping systems for 3D urban cartography
allows the efficient and effective construction of 3D city maps and realistic models. However,
due to the limited access of such vehicle-borne mobile mapping systems certain areas of the
urban environment remain un-scanned such as adjoining alleys, small streets, stepped or narrow
passages as shown in Fig. 6.1. One way to tackle this problem could be to use smaller portable
mapping systems [BZF12; Lei14] to scan such areas and then merge the 3D point clouds together
to complete the cartography. The problem associated with this is that most of such areas are
GPS devoid and hence we would have to rely on fairly robust and accurate SLAM (Simultaneous
Localisation and Mapping) techniques.

(a) (b) (c)

Figure 6.1: (a), (b) & (c) show examples of adjoining alleys, small streets, stepped or narrow
passages that are difficult for vehicle-borne mobile mapping systems to access.

The change detection method for the urban environment should be tested and adapted to
also detect changes due to climatic and seasonal changes. This is very important for long-term
processing as one needs to reliably differentiate between structural changes from the climatic
and seasonal changes for effective update of 3D maps and models. One aspect that would be
useful in this regard is to incorporate image information with the 3D point cloud to obtain a
more detailed feature space.

Beyond the purpose of the updating, the change itself is also of much interest. The presented
method can thus also be adapted for not only monitoring of visible damage to public infrastruc-
tures such as bus stops, street benches, dustbins, light and electricity poles, but also to determine
whether any of these has malfunctioned and needs to be repaired as essentially required by
different public facility departments for maintaining large urban sites [LTA14]. In this case, the
3D model or point clouds can be built right after these infrastructures are installed and then
change detection is performed periodically to monitor these infrastructures.

Similarly, the proposed method can also be extended to indoor environment. The cognitive
models of similarity employed can provide insight on the type of changes taking place. If tailored
properly, this could be quite useful for different applications pertaining to surveillance of airports,
offices and factory floors, etc. With the rapid success of handheld 3D mapping systems like
Zebedee [BZF12], this seems increasingly viable nowadays. The automatic window detection and
feature estimation method successfully handles non symmetric façades and partial occlusions
very well. However, there are two aspects that still need to be addressed: i.e. limitation due to
permanent occlusions and realistic rendering of window regions. One practical solution for the
first issue is to incorporate predictions based on symmetrical patterns [FS13] along with the
ANOVA-based fusion. Another option is to use co-registered images to obtain insight into these
regions. This would be more than useful, especially in regions with relatively sparse 3D points.
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This would also help in completing/determining the missing finer details of the window panes,
etc., within the window regions (which are usually not possible with only LiDAR data) or a 2D
image of window can be directly added to the window region (defined by the estimated profile
boundary) to provide a more realistic/detailed view [BH07b].

The proposed method can also be adapted to indoor environment. This could be essential for
3D indoor semantic mapping that can not only be used for different SLAM applications but also
for construction of building plans with different access points (including doors and windows)
and escape plans to help people with reduced mobility.

Incorporating information from thermal camera into the proposed method can help obtain a
detailed thermal analysis of building structures to analyze heat losses, etc. On the other hand,
the thermal patterns can also be used to better estimate the window detections and dimensions
(windows allow more heat loss as compared to wall structures, etc., as shown in Fig. 6.2).

(a) (b)

Figure 6.2: (a) shows semantic mapping of the interior of a building. Different access points
including doors (in white) and windows (in green) are also shown. (b) presents the thermal
image of a building (from outside). It can be clearly seen that there is maximum heat loss from
the window regions.

As we have discussed in the thesis, the idea of multiple passages is essential for effective
updating of databases for different geographic navigators and other urban analysis andmodeling
applications. We have also shown that this not only improves the quality of the cartography
but also helps in the semantic analysis of the urban environment. However, the process of
multiple passages can be made more efficient if the data acquisition sensors are mounted on
top of public transport like buses, tramways, etc., as shown in Fig. 6.3. This would allow easy
repetitive data acquisition of the different urban city environments as, usually, such modes
of public transport move (both directions) on the same prescribed routes, on very frequent
basis. This would eliminate the need for planning and executing special missions to acquire the
requisite data. This could not only facilitate the process but also make it more cost effective.

The idea of using sensor-borne public transport to update databases of different geographic
navigators and city models in near real-time, both 3D and 4D (as in the case of Project iS-
pace&Time), is a new idea and being a logical continuation of Project iSpace&Time (see Chapter 1)
merits serious consideration. Such models would be made accessible to a wide public who can
not only enthusiastically view the evolving real-like representation of the city centers but also use
different associated information (as presented in Fig. 6.4) such as traffic flow, available parking
spaces and pedestrian movements to plan their different daily tasks.

Thework presented in this thesis also lays the foundation/basis of the concept of collaborative
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(a) (b)

Figure 6.3: (a) & (b) show different sensors mounted on a bus and tramway respectively. These
sensors usually include GPS, IMU, cameras and LiDAR sensors.

3D urban cartography. The concept of collaborative mapping has recently gained some interest
in the scientific community. The applications like OpenStreetMap (OSM) and Google Map
Maker allow the grand public to propose the creation, edition and updating of maps which after
verification, are updated in the map database. This offers relatively less technical difficulties as
the maps are in 2D, with lesser associated accuracies and limited allowable input data formats.
Recently, with the advancements in Structure-from-Motion (SfM) technique, some work is being
done by using large number of camera images to reconstruct large urban scenes andmore realistic
representations of the cities [USM+13]. The amount of images required to reconstruct a whole
city and not only its landmark buildings necessitate collaborative data acquisition. In case of 2D
images, this task is facilitated by thewidespread adoption ofmodern smartphones equippedwith
high quality cameras and GPS sensor. Similarly, Google also uses its specialized cars equipped
with panoramic cameras in a similar manner to generate and update their Google street view
application as presented in Chapter 2. The concept of using 3D sensors for collaborative 3D urban
cartography is new and according to the best of our knowledge no work on this is presented

(a) (b) (c)

Figure 6.4: (a) shows real-like representation of a city center while (b) & (c) present the traffic flow
and pedestrian movement information respectively for given time of the day. Such information
would be updated on regular basis throughout the day.
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so far. With the recent advancements in 3D data acquisition technologies, the performance is
steadily improving whereas the manufacturing costs are decreasing. This balance between the
cost and high level performance capabilities (higher level of detail with easy and large range
coverage), that are now imperative for many modern day applications, would soon make the
use of these sensors more and more widespread. In this thesis, we have used the data obtained
from the same sensors mounted on the same vehicles. However the proposed methods can be
adapted and easily extended to configurations of different vehicles with similar sensors. Main
challenges associated, and also addressed in this thesis, include variation in sensor parameters,
3D point resolution, calibration errors, etc., along with rapid transfer of data. The use of ordinary
household vehicles equipped with these sensors would replace the need of multiple passages
by the same specialized vehicle, passing through an area again and again, with the use of
collaborative means; i.e. any such vehicle, whenever it passes through an area, helps in enriching
and improving the 3D urban cartography as presented in this thesis. This approach would
not only allow more frequent updating of the centralized database but also make it more cost
effective.

The next step would then be to explore the possibility of using the configuration of different
vehicles and different sensors for collaborative 3D urban cartography. These sensors could be
either 2D cameras or 3D range sensors commonly mounted (only one or both) on different
vehicles for diverse perception tasks. Apart from the earlier mentioned problems, the biggest
challenge in this case would be to fuse information from different types of sensors (for e.g.
information from a geo-referenced smart-phone image or a camera mounted on a vehicle with
that of a LiDAR mounted on another vehicle) to improve the 3D urban cartography. A suitable
approach in this case would be to decompose the urban scenes into common semantic features
that could then be easily fused together to enrich and update the 3D cartography.

Another problem that we came across during this thesis was the availability of relevant
datasets. Although we were extremely lucky to have obtained different datasets from our
collaborators, i.e. IGN (Institut Géographique National), Universities of New York and Kentucky
during the thesis, we felt that the availability of such type of datasets was very difficult. While
there is a large amount of data sets and benchmarks available for 2D sensors due to a large
community working in this domain, the number of datasets with ground truths and benchmarks
pertaining to 3D sensors and specially multi-passages is quite limited and not easily accessible.
It is therefore requested that different groups working in this field should make available their
datasets and results on a common website/platform easy accessible to everyone. International
societies, like ISPRS (International Society of Photogrammetry and Remote Sensing), can use
their influence and play an important role in the development of such platforms for the collection
and diffusion of data.
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