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Abstract

This thesis deals with the characterization of Martensitic Transformations (MT) that
are first order phase transitions among different solid states with different crystalline
structures. These transitions are at the basis of the behavior of a class of smart materi-
als, called Shape Memory Alloys (SMA).
This work combines an experimental study of a mechanically-induced martensitic trans-
formation in a Cu-Al-Be single crystal and a macroscopic model for the reproduction
of permanent effects in cyclic temperature-induced and stress-induced transitions.
From the experimental point of view, the novelties are in the device that has been built
and used for the test and in the full-field measurement technique at the basis of the
data treatment. The especially designed gravity-based device allows for a uni-axial and
uni-directional tensile test with slow loading rates. Simultaneously, the full-field mea-
surement technique, known as grid method, provides high-resolution two-dimensional
strain maps during all the transformation.
With all the data collected during the test, we characterize for the first time the two-
dimensional strain intermittency in a number of ways, showing heavy-tailed distribu-
tions for the strain avalanching over almost six decades of magnitude.
In parallel, we develop a macroscopic mathematical model for the description of fa-
tigue and permanent effects in several kinds of martensitic transformations. We show
an easy way to calibrate the model parameters in the simple one-dimensional case.
Moreover, we compare the numerical results with experimental data for different tests
and specimens and obtain a good qualitative agreement.
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Summary

Martensitic Transformations (MT) are solid-to-solid first order phase transitions be-
tween different crystalline microstructures that characterize an interesting class of smart
materials called Shape Memory Alloys (SMAs). These metallic alloys were discovered
around 1930s for the first time and are particularly interesting since they combine two
peculiar effects: the Shape Memory Effect and the Pseudo-Elasticity. The Shape Mem-
ory Effect consists in storing the memory of a particular configuration and recover it
after thermal or mechanical cycles. Conversely, Pseudo-Elasticity is the capability to
reach high strain levels that are usually typical of rubbers and not of metals.
In this thesis we deal with the characterization of martensitic transformations by ana-
lyzing them from different points of view. The comprehension of how SMAs work is
fundamental for many industrial applications and is still a wide open field of analysis.

Chapter 1 provides an idea of the theoretical basis for mathematical models of shape
memory alloys. It starts with a short introduction on SMAs and on the basic ideas on
martensitic transformations. Then, two different theoretical approaches are shown. On
one hand, Crystallographic Theory of martensitic transformations is introduced. This
theory is the starting point for several mathematical models that are interested in the
microscopic scale of the material and some of the results of this theory will be used
in Chapter 3 for a more detailed data analysis. On the other hand, SMAs can also be
studied as macroscopic continua: this kind of approach is introduced at the end of the
first chapter by explaining the Rajagopal’s theory of dissipative processes.

In Chapter 2 we start dealing with the experimental part of the thesis. This chap-
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ter explains the experimental setting and the methods used during our test, carried out
at IFMA (Institut Français de Mécanique Avancée) laboratories in Clermont-Ferrand,
France. The basic idea was to perform an experiment with simple external loading
conditions and to obtain a significant amount of good resolution data. Indeed, our aim
was to go deep into the analysis of the transformation, by measuring the details of the
advancement of the transition, not only the macroscopic behavior. In order to do so,
we decided to perform a tensile uni-axial and uni-directional test with free rotation
allowed. We realized this goal by using an in-house designed device that guaranteed
a constant loading direction with the use of slow loading rates, thus reducing inertial
effects. Moreover, we employed a full-field measurement technique, known as grid
method, to obtain two-dimensional high-resolution strain maps during all the test.
As regards the specimen that we tested, we had a quite complete crystallographic de-
scription of the material. This knowledge allowed us to analyze it deeply and to com-
pare our results with previous tensile tests that had been carried out by using different
loading devices.

In Chapter 3 we started the analysis of the strain maps obtained during the test, by
looking at the overall behavior of the material. First of all, the comparison of our results
with previous tests on the same specimen allowed us to point out some features of our
testing device. Second, we can compare some experimental results with the theoretical
estimates obtained in the first chapter and make some observation on the microscopic
structure of the specimen during the test. Third, after a qualitative description of the
transformation and of its different phases, we can start deducing some characteristic
quantities, like the percentage of martensite or the vertical strain. These quantities are
the first example of signal that seem to be continuous on the macroscopic scale but
whose variation shows spikes and jumps.
This kind of behavior leads us to the main topic of this thesis, that is the presence of
intermittency in the martensitic transformation.

What do we mean by using the term intermittency? We consider a phenomenon as
intermittent when it takes place in a non-periodic or non-predictable way. In particular,
the kind of intermittency in which we are interested is the one that is present for many
different scales in the same phenomenon. This feature is called self-similarity. As it is
possible to imagine, a self-similar phenomenon is such that it is similar to itself but on
various scales. For example, this happens for earthquakes, from the biggest ones to the
small movements of the earth crust, for fractals, landscapes, neuronal networks, lung
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inflation and a really long list of phenomena in different fields and at different scales.
Self-similarity can be very useful. On one hand, within the same phenomenon it enables
us to focus on the overall behavior, instead of considering small and precise details that
become negligible at bigger scales. On the other hand, it allows some comparisons
among phenomena that are apparently very different but whose statistical behavior is
the same. In this sense, we can think about understanding the phenomenon of earth-
quakes, whose spatial and temporal scales are very big, by studying a simpler and faster
self-similar phenomenon.
Among all the phenomena which have been found to display intermittency and self-
similarity there are also martensitic transformations in shape memory alloys (together
with many other materials like superconductors, ferromagnets or porous media). This
feature is particularly interesting because martensitic transitions are usually described
as continuous phenomena while in practice it seems that, when looking at the details,
the transition is not continuous but obtained as a sum of several avalanches of different
dimension. The question is whether in our data there is this sort of intermittent behavior
or not and, in case of positive answer, if we are able to quantitatively analyze it.

In Chapter 4 we characterize the martensitic transformation in our sample from a
statistical viewpoint. We start by looking at the quantities that we introduced in the
previous chapter, that is the martensite phase fraction and the vertical strain. We then
continue by defining the concept of avalanches in two-dimensional strain maps and we
statistically analyze their properties. We thus prove that the transformation actual oc-
curs through intermittent events that span on several scales.
We provided a comparison between magnitude and size of the avalanches and a charac-
terization of their statistical behavior by using also the Maximum Likelihood method.
Moreover, we analyzed the non-stationarity of the transformation, by showing different
statistical behaviors for different parts of the transformation.

We concluded the thesis by dealing with another kind of analysis of the martensitic
transformation in SMAs. Instead of focusing on the intermittent behavior of the mate-
rial, we focused on the presence of fatigue and plastic effects in the MT. Actually, many
applications of shape memory alloys, like actuators or coronary stents, require a cycli-
cal behavior which remains stable for quite long times. Thus, we abandoned the mi-
croscopic scale and we looked at the material as a macroscopic continua, by exploiting
the theoretical background provided in the first chapter for Rajagopal’s theory. We thus
developed a model that is able to take into account for the arising of permanent effects
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during the transformation without going into detail of the microstructure. We tested
our numerical results, obtained by solving the model equations in the one-dimensional
approximation, by comparing them with experimental results for temperature-induced
and stress-induced transformations. Moreover, we showed the possibility to easily cal-
ibrate the model parameters for the different cases.
Thus, we provided a different kind of analysis of the martensitic transformation through
a different approach than the microscopic one used for the detection of intermittency.
All these different points of view can be used when dealing with martensitic transfor-
mations, in the attempt to enhance our knowledge in this field, that is exactly the aim
of this work.
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Résumé

Les Transformation Martensitiques (TM) sont des transitions du premier ordre entre
des phases cristallines qui caractérisent une classe intéressante de matériaux intelli-
gents, les Alliages à Mémoire de Forme (AMF). Ces alliages métalliques furent décou-
verts dans les année 1930 environ. Ils sont surtout intéressants car ils combinent deux
effets particuliers : l’effet de mémoire de forme et la pseudo-élasticité. L’effet mémoire
de forme consiste à mémoriser une configuration particulière et la retrouver après des
cycles thermiques ou mécaniques. La Pseudo-Elasticité consiste à rejoindre des niveaux
de déformation très grands qui sont, en général, plus typiques du caoutchouc que des
métaux.

Dans cette thèse, nous avons traité la caractérisation des transformations martensi-
tiques en analysant points de vue différents. La compréhension du fonctionnement des
AMFs est fondamentale pour plusieurs types d’applications industrielles. Elle constitue
encore un domaine de recherche très ouvert.

Le Chapitre 1 donne une idée des bases théoriques pour les modèles mathématiques
sous-jacents aux alliages à mémoire de forme. Il commence avec une brève introduc-
tion sur les AMFs, puis se poursuit sur les bases des transformations martensitiques.
Nous montrons ensuite deux études théoriques différentes. Nous présentons d‘abord
la théorie crystallographique des transformations martensitiques. Cette théorie est le
point de départ pour plusieurs modèles mathématiques qui sont intéressants à l’échelle
microscopique du matériau. Des résultats de cette théorie sont ensuite utilisés dans
le Chapitre 3 pour une analyse plus détaillée. Les AMFs peuvent aussi être étudiées
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comme des continuums macroscopiques : cette stratégie est ensuite expliquée dans la
partie finale du premier chapitre, avec la théorie de Rajagopal sur les processus avec
dissipation.

Dans le Chapitre 2 nous commençons à traiter la partie expérimentale de la thèse.
Ce chapitre explique divers réglages expérimentaux et les méthodes utilisées pendant
l’essai. Cette partie du travail a été réalisée à l’IFMA (Institut Français de Mécanique
Avancée) à Clermont-Ferrand, France. L’idée de base était de faire un essai avec des
conditions de chargement très simples et d’obtenir en même temps une quantité signi-
ficative de données avec une bonne résolution, tant spatiale, temporelle que de mesure.
En fait, notre objectif était d’aller en profondeur dans l’analyse de la transformation en
considérant les détails de la transition, et pas simplement d’analyser le comportement
macroscopique. Pour cette raison, nous avons décidé de réaliser un essai uni-axial, avec
un système de préhension de l’éprouvette qui assure un degré de liberté de rotation à
ses extrémités.
Nous avons élaboré pour cela une nouvelle machine qui garantit une direction de char-
gement constant, avec l’application de taux de chargement très bas qui réduisent les
effets inertiels. De plus, nous avons utilisé une technique de mesure de champs ciné-
matiques appelée méthode de la grille pour obtenir des cartes bi-dimensionnelles des
composantes planes du tenseurs des déformations pendant toute la transformation.
En ce qui concerne l’échantillon qui a été étudié, nous avions une description cristallo-
graphique presque complète du matériau. Cette connaissance nous a permis de réaliser
une analyse en profondeur des données et de comparer nos résultats avec d’autres es-
sais qui avaient été réalisés précédemment avec le même échantillon, mais avec des
machines d’essai différentes.

Dans le Chapitre 3 nous analysons les cartes de déformation obtenues pendant l’es-
sai, en nous concentrant sur le comportement global du matériau. La comparaison avec
les essais précédents nous a d’abord aidés à souligner les caractéristiques de la machine
utilisée. Nous avons ensuit pu comparer les résultats expérimentaux avec les estima-
tions théoriques obtenues dans le premier chapitre, et faire des considérations sur la
structure microscopique de l’échantillon pendant l’essai. Enfin, après une description
qualitative de la transformation et de ses phases différentes, nous avons commencé à
déduire des quantités caractéristiques comme le pourcentage de la phase martensitique
ou la déformation verticale. Ces quantités sont le premier example de signal qui semble
être continus à une échelle macroscopique, mais avec une variation qui montre des va-
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riations brusques.
Ce comportement nous a amenés vers le sujet principal de cette thèse, à savoir la pré-
sence d’une intermittence dans la transformation martensitique.

Que voulons nous dire avec le terme ´´intermittence” ? Nous disons qu’un phéno-
mène est intermittent s’il se produit d’une façon non-périodique et non-prévisible. En
particulier, le type d’intermittence qui nous intéresse est une intermittence qui est pré-
sente à plusieurs échelles pour le même phénomène. Cette caractéristique s’appelle
l’auto-similarité (self-similarity en anglais). Comme on peut l’imaginer, un phénomène
auto-similaire est similaire à lui-même, mais sur des échelles différentes. Par exemple,
c’est le cas des tremblements de terre, des plus grands au plus petits mouvements de la
croûte terrestre, de fractals, de réseaux neuronaux, du remplissage des poumons. Une
liste très longue de phénomènes peut être établie dans des domaines différents et avec
des échelles différentes.
L’auto-similarité peut être très utile. D’un côté, à l’intérieur du même phénomène cette
propriété nous permet de nous concentrer sur le comportement global plutôt que de
considérer des détails précis qui deviennent négligeables pour les échelles plus grandes.
Cela permet également la comparaison entre phénomènes qui sont apparemment diffé-
rents mais qui présentent le même comportement statistique. Il devient ainsi possible
de comprendre des phénomènes compliqués, par exemple les tremblements de terre qui
ont des échelles spatiales et temporelles très grandes, ceci en étudiant un phénomène
plus simple mais qui est auto-similaire.
Parmi les phénomènes qui montrent une intermittence et une auto-similarité, il y a
aussi les transformations martensitiques et on note aussi beaucoup de matériaux dif-
férents comme les super-conducteurs, les métaux ferromagnetiques et les matériaux
poreux. Cette caractéristique est particulièrement intéressante parce que les transfor-
mations martensitiques sont généralement décrites comme des phénomènes continus
même si, en regardant les détails, il y a des études qui montrent une séquence d’événe-
ments différents caractérisés par plusieurs dimensions.
La question est si dans notre cas et avec nos données, il y a ce comportement inter-
mittent ou pas et, dans le cas d’une réponse positive, si nous sommes capable de le
quantifier ou pas.

Dans le Chapitre 4 nous regardons la transformation martensitique d’un point de
vue statistique. Nous commençons en analysant les quantités qui nous avions présen-
tées dans le chapitre précédent, à savoir la fraction de phase martensitique et la défor-
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mation verticale. Ensuite, nous continuons en définissant la nition d’avalanche dans les
cartes bidimensionnelles des déformations, puis nous étudions leurs propriétés come
l’amplitude ou la dimension. Ainsi, nous démontrons que la transformation a lieu à tra-
vers des événements intermittents qui couvrent plusieurs échelles. Nous avons conduit
une comparaison entre magnitude et dimension des avalanches, ainsi qu’une une carac-
térisation de leur comportement statistique. Celle-ci a été réaliséeen utilisant aussi la
méthode du maximum de vraisemblance. Les deux quantités montrent clairement des
distributions en ligne avec l’hypothèse d’intermittence et d’auto-similarité. En outre,
nous avons analysé la non-stationnarité de la transformation en montrant des compor-
tements statistiques différents pour plusieurs parties de la transformation.

Nous concluons la thèse en traitant un autre type d’analyse des transformations mar-
tensitiques dans les AMF. Au lieu de nous concentrer sur le comportement intermittent,
nous avons regardé l’effetde fatigue ou d’effets plastiques dans la transformation mar-
tensitique. En fait, plusieurs applications des AMFs, comme les actuateurs ou les stents
coronaires, exigent un comportement cyclique qui doit rester stable pendant une longue
période. Pas conséquent, nous avons abandonné l’échelle microscopique et nous avons
regardé le matériau comme un continuum macroscopique, en utilisant la base théorique
donnée dans le premier chapitre avec la théorie de Rajagopal.
Nous avons développé un modèle qui considère la production d’effets permanents pen-
dant la transformation, ceci sans regarder la microstructure. Nous avons testé nos résul-
tats numériques obtenus en résolvant les équations du modèle dans une approximation
unidimensionnelle, ceci à travers une comparaison avec des résultats expérimentaux
pour des transformations contrôlées par la température ou par la contrainte. En outre,
nous avons montré la possibilité de calibrer les paramètres du modèle pour des cas
différents. De cette manière, nous avons fourni une analyse de la transformation mar-
tensitique avec une stratégie de l’approche microscopique différente de celle que nous
avions utilisée pour l’intermittence.

Tous ces points de vue différents peuvent être utilisés pour traiter les transformations
martensitiques, dans le but d’améliorer notre connaissance dans ce domaine, ce qui était
exactement notre objectif dans cette thèse.
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CHAPTER1
Theoretical Background on Shape Memory Alloys

In this chapter we provide the theoretical background that is necessary to under-
stand the rest of the thesis. We start by introducing Shape Memory Alloys (SMAs)
and their martensitic transformation. We then continue by focusing on crystallography
in martensitic materials, that is used in the analysis of data performed in Chapter 3.
Finally, we move towards the macroscopic scale and arrive to Rajagopal’s theory of
dissipative processes, that is the basis of the model of Chapter 5.

1.1 Shape Memory Alloys and Martensitic Transformations

Shape Memory Alloys (SMAs) are very interesting materials that are mainly char-
acterized by two properties: the Shape Memory Effect (SME) and the Pseudo-Elasticity
(PE). Their applications range from tools in Aeronautics and Aerospace to biomedical
devises and everyday objects (arms for glasses or smoke detectors). In this section we
explain the basic behavior of shape memory alloys and we introduce the main ingredi-
ents that are necessary to deal with them.
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Chapter 1. Theoretical Background on Shape Memory Alloys

1.1.1 Austenite and martensite

Shape Memory Alloys are crystalline solids whose interesting properties derive by
their undergoing a so-called Martensitic Transformation (MT). This transformation is a
solid-to-solid first order phase transition between two different microstructures: austen-
ite and martensite.
Let us distinguish between these two phases. Austenite is characterized by a highly
symmetric lattice and is stable for high temperatures. On the other hand, Martensite is
stable for lower temperatures and is less symmetric than austenite. This lack of symme-
try with respect to austenite provides the existence of different variants of martensite,
as will be better detailed in Section 1.2.2. Figure 1.1 shows a scheme of the kind of
relation existing between the two phases in a simple case.
During the martensitic transformation austenite and the various variants of martensite
can co-exist in different combinations.
There are basically two ways to obtain a martensitic transformation in SMAs: by

Figure 1.1: Simple example of different symmetry between austenite and martensite

applying a load or by varying the temperature. The variation of temperature simply
makes one phase favorite with respect to the other one while the application of stress
on an austenitic phase develops the so-called stress-induced martensite. This marten-
sitic transformation is the basis of the two particular functional properties of SMAs.

1.1.2 Shape Memory Effect and Pseudo-Elasticity

Let us briefly describe the different steps undergone by SMAs in the Shape Memory
Effect (SME) and in Pseudo-Elasticity (PE).
Figure 1.2 shows a schematic view of SME.

• Let us start with our specimen in a stress-free state at a high temperature, so that
it is completely austenitic (lower left part of the scheme);

2



1.1. Shape Memory Alloys and Martensitic Transformations

Figure 1.2: Scheme of the Shape Memory Effect.

• We cool the specimen until we reach a temperature that is low enough to guar-
antee stability for martensite. Since there is no external load, the specimen does
not deform on a macroscopic scale. From the microscopic point of view we are
moving from austenite to martensite (upper left part of the scheme);

• We keep a constant low temperature and we load the specimen, thus inducing a
macroscopic deformation. At a microscopic level, different variants of martensite
are differently re-orientered in order to satisfy the external conditions (lower right
part of the scheme);

• We remove the load without varying the temperature. Since martensite is stable
at the temperature, the specimen just stays in the current configuration, without
recovering the external deformation (lower right part of the scheme);

• We heat the specimen until an austenitic temperature: the specimen returns back
to its original shape (lower left part of the scheme, again).

The main cause of this behavior lies in the existence of many different variants of
martensite corresponding to a single kind of austenite. In this way, though the crystal-
lographic structure moves among different variants of martensite at low temperature, it
has one possible choice for the austenitic configuration, that corresponds to the shape
that is always remembered by the material.
As regards the PE, it is the phenomenon that we are going to investigate with our ex-
perimental test in Section 2.1.2 and can be described in the following way:

• Let us start with a stress-free specimen in the austenitic phase, that is at high
temperature;

3



Chapter 1. Theoretical Background on Shape Memory Alloys

• We start loading the specimen thus inducing an initial elastic deformation;

• By keeping on loading we obtain the appearance of stress-induced martensite vari-
ants that re-arrange to cope with the external load;

• Eventually, if we keep on loading we obtain a completely martensitic phase and
just some further elastic deformation.

• By unloading, we reverse the transformation so that we can go back to the initial
austenitic phase.

The consequence of this behavior is that SMAs are able to undergo deformations up to
8%�10% of strain, just like rubbers, while metals usually reach strains around 1%�2%.

1.1.3 Mathematical models for Shape Memory Alloys

From the mathematical point of view, the study of Shape Memory Alloys devel-
oped mainly around 1980s, together with a bigger interest from the experimental point
of view, though the discovery of the first alloys dated back to 1930s. Basically, Shape
Memory Alloys show some interesting macroscopic features directly due to a micro-
scopic phase change at the crystal scale. For this reason, mathematical models aiming at
reproducing their behavior can focus on different scales. Moreover, among martensitic
materials it is possible to distinguish between monocrystalline solids (or single-crystal
materials) and polycrystalline ones. In a monocrystalline solid the austenitic lattice is
uniform in all the specimen. Conversely, polycrystalline materials are composed by ag-
glomerates of crystals (or grains) whose austenite is the same from the lattice point of
view but differs in the orientation. Actually, single crystals are easier from the theoreti-
cal point of view but rarer to be found both in nature and in industry than polycrystals.
Thus, to distinguish among the different mathematical models, we can also consider
their adaptability to the monocrystal or polycrystal case.

A branch of mathematical models which can be easily used both for monocrys-
tals and polycrystals is the one of the microscopic models for martensitic transfor-
mations. By starting from Ericksen’s ideas [36–38], it was possible to combine non-
linear continuum mechanics with the crystallographic theory for martensitic materi-
als [19, 53, 54, 70, 75] (whose introduction is provided in the next section) and with
non-convex variational calculus [14, 18]. The basic idea is that each grain in the mate-
rial is in a particular phase, which is determined by combining minimization of energy
and interaction with neighboring grains. The application to the polycrystalline case is
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1.2. Crystallographic Theory of Martensitic Materials

straightforward since the model already considers the crystalline scale. The deduced
information is very detailed. For this reason, this class of models, like phase-fields
models [103] or automaton models [72, 82], seems to be convenient for the reproduc-
tion of intermittency in the transformation.
Though we are not going to use this kind of model in this thesis, in the following section
we shall provide the instruments to understand the martensitic phase transition from a
crystallographic point of view and we shall give some theoretical results, successively
used for the data analysis.

Together with microscopic models for SMAs there also exist mathematical models
that consider SMAs as macroscopic continua, according to continuum thermodynamics
theory [44]. Thus, their behavior can be modeled with the methods of nonlinear elastic-
ity theory by providing an expression for the free energy density. This group of models
includes works with different loading variables, like temperature [42] or stress [90],
together with works on the hysteretic behavior of SMAs [63, 64] and on theoretical
analysis applied to elasto-plastic systems [61]. All these studies pay attention to the
macroscopic behavior of the material without going into detail on the crystalline struc-
ture. By consequence, the deduced information is less detailed than for models that
take into account also for the microstructure. These models are particularly easy to
be used in the monocrystalline case while the case of polycrystalline materials could
become more complicated: the model should be solved for each grain of the mate-
rial and it would lack of the information on the relative rotations between neighboring
grains. On the other hand, since they catch some more general properties, these models
are particularly suitable for different cases, like stress-induced or temperature-induced
transformations, and when the interest is only on the macroscopic results.
This kind of model will be used in Chapter 5 to reproduce permanent effects during
the transformation. A macroscopic model seems to be particularly useful in this sense
since the final goal is to quantify the plastic deformation and compare it with some
experimental test, in which microscopical quantities are not measured. Moreover, since
the model is quite easy to be solved in different cases, it can be tested with experimental
data from different kinds of experiments.

1.2 Crystallographic Theory of Martensitic Materials

Crystallographic theory provides several relations between the austenitic phase and
the martensitic one at the crystal level. In particular, it relates compatibility between
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Chapter 1. Theoretical Background on Shape Memory Alloys

different micrustructures to the crystal properties of the material. Moreover, it provides
the theoretical formulas for the computation of the features of some microstructural
combinations, for example the austenite-martensite transformation interfaces.

1.2.1 Cristalline solids and Cauchy-Born hypothesis

Let us start by considering our solid from the crystallographic point of view.
In crystallography, one of the fundamental notions is the definition of Bravais lattice.
It is usually denoted by L(e

i

,o) and defined as follows

L(e
i

,o) = {x : x = ⌫ie
i

+ o, ⌫i 2 Z, i = 1, 2, 3}, (1.1)

where o is considered the origin of the lattice while {e
1

, e
2

, e
3

} are called lattice vec-
tors .
A lattice L(e

i

,o) can be deformed into another lattice L(f
i

,o) by applying a defor-
mation to the lattice vectors, that is by introducing a matrix F such that detF 6= 0

and
f
i

= Fe
i

, i = 1, 2, 3.

As a consequence of the symmetry of the lattice, it is possible to find deformations
that map the lattice back into itself. It has been proved that these deformations can be
simply characterized by using the following result [19].

Result 1.2.1. Two sets of lattice parameters {e
1

, e
2

, e
3

} and {f
1

,f
2

,f
3

} generate the
same lattice L(e

i

,o) = L(f
i

,o) if and only if

f
i

=

3

X

j=1

µj

i

e
j

for some matrix [µj

i

] 2 GL(3,Z), where GL(3,Z) is the group of all matrices with
integral elements (µj

i

2 Z) and unitary determinant (det[µj

i

] = ±1).

According to this result, a matrix H maps a lattice back to itself if and only if

He
i

=

3

X

j=1

µj

i

e
j

= µj

i

e
j

, i = 1, 2, 3, and [µj

i

] 2 GL(3,Z),

where the sum over the repeated index is introduced. This characterization allows us to
define the so-called symmetry group of the lattice

G(e
i

) =

�

H : He
i

= µj

i

e
j

for some [µj

i

] 2 GL(3,Z)
 

.

This set includes all the rotations and the shears that map the lattice into itself. Though,
there is a fundamental distinction between the shears and the rotations of the group.
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1.2. Crystallographic Theory of Martensitic Materials

While the rotations do not basically change the crystal, the shears are related to plas-
ticity. Actually, they map the lattice into itself when dealing with infinite lattices but
induce dislocations or border effects when involving real finite lattices, as can be un-
derstood by looking at Figure 1.3 for a two-dimensional lattice. In order to focus on the

e1

e2

f1

f2

Figure 1.3: The infinite two-dimensional lattices generated by the lattice parameters {e1, e2} and
{f1,f2} = {H e1,H e2} where H is a shear in G(e

i

) are equivalent. This equivalence is lost in
the case of the finite lattices shown above, since border effects arise.

mechanism of the martensitic transformation, let us assume to neglect plasticity at this
level of the theory thus considering only the rotations in G(e

i

). We thus define the point
group of the lattice

P(e
i

) = {R : R rotation in G(e
i

)}, (1.2)

that is the set of all the rotations that map the lattice into itself.
We now take a further step in order to link this crystallographic description of the

lattice with a continuum view of the solid. Let us assume to have a crystalline solid
in a region ⌦ 2 R3 such that at each point x 2 ⌦ its structure can be described
through a Bravais lattice with vectors {e0

i

(x)}. We then deform the solid according to
a deformation gradient F (x) = ry and we indicate the lattice vectors in the material
point x after the deformation with {e

i

(x)}.
The result that links the crystallographic level with the continuum one, which is known
as Cauchy-Born hypothesis, relates the two sets of lattice vectors as follows

e
i

(x) = F (x)e0

i

(x).

It means that the deformation we consider for the continuum is actually the same de-
formation that is undergone at the lattice level.
For simplicity, let us assume that the reference configuration is homogeneous, so that
there is no dependence on x in the lattice vectors {e0

i

}.
We now assume to describe the behaviour of the material through the introduction

of a certain energy density function. We start by characterizing this function on the
Bravais lattice and we pass to an energy density on the continuum through the use of
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Chapter 1. Theoretical Background on Shape Memory Alloys

the Cauchy-Born hypothesis.
Let us suppose that the energy density function on the Bravais lattice depends on the
lattice vectors and on temperature ✓ so that

'̂(e
i

, ✓).

We require the satisfaction of the following properties:

• Frame-indifference

'̂(Qe
i

, ✓) = '̂(e
i

, ✓) 8Q 2 Q,

where Q is the set of all three-dimensional rotations. It implies that if we rigidly
rotate the lattice vectors we do not affect the energy;

• Material symmetry

'̂(µj

i

e
j

, ✓) = '̂(e
i

, ✓) 8[µj

i

] 2 GL(3,Z),

that means that two sets of lattice vectors generating the same lattice (according
to the Result 1.2.1) also have to correspond to the same energy.

As already said, the Cauchy-Born hypothesis allows us to define the continuum free
energy density

'(F , ✓) = '̂(Fe0

i

, ✓),

where {e0

i

} are the lattice vectors in the chosen reference configuration that is deformed
with a deformation gradient equal to F , as above.
The frame-indifference requirement is now translated in claiming

'(QF , ✓) = '(F , ✓) 8Q 2 Q.

Analogously, the material symmetry condition, after some calculation, provides

'(FH , ✓) = '(F , ✓) 8H 2 P(e0

i

),

where we assume to neglect shears of the lattice vectors and thus use P(e0

i

) instead of
G(e0

i

).

Now, let us decompose the deformation gradient by using the polar decomposition
theorem and thus obtaining F = RU , where R 2 Q and U is a positive-definite
symmetric tensor. This last matrix is called Bain strain matrix or transformation strain
matrix and, as a consequence of the frame-indifferece, we obtain that the energy density
depends only on this part of the deformation gradient.
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1.2. Crystallographic Theory of Martensitic Materials

Finally, we define the total energy for our continuum related to a deformation with a
gradient F as

F =

Z

⌦

'(F , ✓) dx.

We define an equilibrium as stable when it is an absolute minimizer and metastable
when it is a relative minimizer, at a given temperature ✓. In the case of SMAs we will
deal with metastable equilibria since there will be many minima that are energetically
equivalent. The presence of metastable equilibria will also imply the hysteretic behavior
that characterizes SMAs. Actually, hysteresis is due to dissipation or production of
entropy, thus it is related to thermodynamical irreversible processes. This irreversibility
is the signal that the system is not in a stable equilibrium during the process, since it is
actually moving among different metastable minima [52].

1.2.2 The Austenite-Martensite transformation

In order to deal with the Austenite-Martensite transformation, let us indicate the
austenite lattice vectors with {ea

1

, ea

2

, ea

3

}. Analogously, let us suppose to have only one
variant of martensite and to use {em

1

, em

2

, em

3

} to indicate its lattice vectors. We also
introduce the martensite Bain matrix U

1

such that

em

i

= U
1

ea

i

.

As a consequence of the Cauchy-Born hypothesis, from the continuum point of view the
austenitic phase is represented by the identity matrix I while the martensite is related
to a deformation equal to U

1

.
We now focus for a moment on how the energy depends on the temperature ✓. We
know that austenite is stable for high temperatures while martensite is preferred for
low temperatures. Thus, the energy has the behaviour shown in Figure 1.4. There is a
particular temperature, ✓

0

, called transformation temperature, for which both phases are
equivalent. Above this temperature the energy has a minimum coinciding with austenite
while under ✓

0

the minimum is given by the martensite, that is

'(I, ✓)  '(F , ✓) ✓ > ✓
0

,

'(I, ✓) = '(U1, ✓)  '(F , ✓
0

) ✓ = ✓
0

,

'(U1, ✓)  '(F , ✓) ✓ < ✓
0

.

Finally, we have to take into account the existence of many variants of martensite, that
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Chapter 1. Theoretical Background on Shape Memory Alloys

Figure 1.4: Scheme of the dependence of the energy density function on the temperature.

is a consequence of the higher symmetry of the austenitic lattice with respect to the
martensitic one.
Let us denote the symmetry group of the austenitic lattice with Pa, according to the def-
inition (1.2). Let us apply a rotation R 2 Pa to the austenitic lattice and then trasform
it into martensite. The corresponding transformation matrix is RTU

1

R. As a conse-
quence of the assumption on the austenite being more symmetric than the martensite,
for certain rotations we shall have RTU

1

R = U
k

6= U
1

for some k 2 1, . . . , N where
N is the number of variants, detailed below. Thus, the set of the variants of martensite
is given by all the different matrices resulting in {Q 2 Pa

: QU
1

QT}. For some other
rotations the transfomation matrix will be RTU

1

R = U
1

, that is for the rotations that
belong to the point group of the martensite. We thus define the point group of martensite

Pm

= {Q 2 Pa

: QU
1

QT

= U
1

}

as a subset of the point group of austenite. We remark that the point group of the dif-
ferent variants is always the same since alla the variants show the same symmetry. The
number of the variants of martensite can thus be computed as

N =

number of elements in Pa

number of elements in Pm

.

The different symmetries in the austenitic phase and in the martensitic one provides
different kinds of transformations, like cubic to tetragonal, cubic to orthorombic or
cubic to monoclinic transformations, which will be thus associated to a precise number
of possible variants of martensite.
The possibility of having more variants of martensite that are energetically equivalent
is taken into account through the material symmetry requirement on the energy density,
since it implies

'(U
1

, ✓) = '(U
2

, ✓) = . . . = '(U
N

, ✓).
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1.2. Crystallographic Theory of Martensitic Materials

On the other hand, frame-indifference states the equivalence within lattices that are
obtained through rigid rotations. The consequence of this requirement is that energy is
minimized not only by I for austenite or by U

i

for martensite but by an entire orbit of
matrices, called energy well. In particular, let us define

A = {F : F = Q for some rotation Q},

M
1

= {F : F = QU1 for some rotation Q},
...

M
n

= {F : F = QUn for some rotation Q}.

The set A is called austenite well and frame-indifference implies'(F , ✓) = '(I, ✓), 8F 2
A. Analogously, M

i

is the energy well for the i�th variant of martensite and it is also
possible to introduce a further set M = [M

i

so that the energy has the same value for
all the matrices in M (by combining frame-indifference and material symmetry).
Thus, the energy density ends up having an infinite number of minima depending on
the temperature as follows:

'(G, ✓)  '(F , ✓) 8G 2 A, 8F , ✓ > ✓
0

,

'(G, ✓)  '(F , ✓
0

) 8G 2 A [ M, 8F , ✓ = ✓
0

,

'(G, ✓)  '(F , ✓) 8G 2 M, 8F , ✓ < ✓
0

.

According to this description, the study of the microstructure can be done by focusing
only on the austenite and martensite wells, or simply by considering a representative
deformation for each well up to suitable rotations.

1.2.3 Kinematic Compatibility conditions

In martensitic materials it often happens to see various combinations of different
crystallographic microstructures, like austenite together with martensite (one or more
variants). In particular, we can likely obtain deformations that are continuous but with
a discontinuous gradient, with coherent interfaces along the gradient jumps. A scheme
of this kind of deformation is shown in Figure 1.5.
Let us suppose that our continuum occupies a domain ⌦ 2 R3 that is partitioned in two
zones, ⌦

1

and ⌦

2

, in which the deformation gradients are different between each other
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Figure 1.5: Scheme of a continuous deformation with a gradient jumps along the interface.

(but constant within the ⌦

i

), that is

y =

8

<

:

Fx+ c x 2 ⌦

1

,

Gx+ d x 2 ⌦

2

.

Now, the values of F and G are not arbitrary if we want to assure continuity of the
deformation y, but they have to satisfy the so-called Hadamard compatibility condition
or kinematic compatibility equation [19]:

F �G = b⌦m, (1.3)

for some vectors b and m. Actually, m has also a physical meaning since it is going to
be the normal to the interface between ⌦

1

and ⌦

2

in the deformed configuration.
It can be shown that this condition is equivalent to claiming that the plane separating
⌦

1

and ⌦

2

has to deform in the same way both when viewed from ⌦

1

and from ⌦

2

.
This situation is called invariant plane condition. In order to show this equivalence, let
us consider a vector v along the interface between ⌦

1

and ⌦

2

. When the Hadamard
condition (1.3) holds, we have

Fv �Gv = (b⌦m)v = b(v ·m).

But v ·m = 0 since v lies on the interface (see Figure 1.5), thus we obtain Fv = Gv,
i.e. the effect of F and G is the same for each vector on the interface, as required by
the invariant plane condition.
The compatibility equation (1.3) plays a very important role in the crystallographic
theory of martensitic materials since it allows us to determine which combinations of
austenite and variants of martensite are compatible in different kinds of specimens.
In particular, we are going to analyze compatibility between austenite and a simple
variant of martensite.

12



1.2. Crystallographic Theory of Martensitic Materials

1.2.4 Austenite-Martensite interface

In order to study the features of the combination between austenite and a single vari-
ant of martensite, let us start with a more general result, known as twinning equation:

QU
I

�U
J

= a⌦ n̂. (1.4)

This equation is simply the Hadamard compatibility condition applied to the following
situation

ry =

8

>

<

>

:

Q1UI in ⌦

1

Q2UJ in ⌦

2

,

that is the deformation belongs to the I�th well in ⌦

1

and to the J�th well in ⌦

2

.
By writing equation (1.3) for this piecewise homogeneous deformation and by setting
Q = QT

2

Q
1

and a = QT

2

b, we thus obtain equation (1.4). The name of the equation as
twinning equation is due to the fact that it actually describes a martensite twin.

We now report an important result by Ball and James [14] which provides a proce-
dure for the solution of the twin equation.

Result 1.2.2. Given F and G matrices with positive determinant, the following method
provides a rotation Q and two vectors a 6= 0 and n̂ such that

QF �G = a⌦ n̂.

• Calculate the matrix C = G�TF TFG�1;

• If C = I , there is no solution;

• If C 6= I , calculate and order the eigenvalues of the matrix C: �
1

 �
2

 �
3

;

• The equation has a solution if and only if it holds

�
1

 1, �
2

= 1, �
3

� 1.

• If all these conditions are satisfied, there are exactly two solutions

a = ⇢

0

@

s

�
3

(1� �
1

)

�
3

� �
1

ê1 + 

s

�
1

(�
3

� 1)

�
3

� �
1

ê3

1

A , (1.5)

n̂ =

1

⇢

p
�
3

�
p
�
1p

�
3

� �
1

⇣

�
p

1� �
1

GT ê
1

+ 
p

�
3

� 1GT ê
3

⌘

, (1.6)

where  = ±1 distinguishes between the two solutions and ⇢ normalizes n̂.
Rotation Q is eventually determined after substituting a and n̂ in the initial equa-
tion.

13



Chapter 1. Theoretical Background on Shape Memory Alloys

Since we are interested in the compatibility between austenite and a single variant
of martensite (let us suppose to take the I�th variant), we can use this result by con-
sidering F = U

I

and G = I .
The first requirement to be satisfied in order to have a solution is C = G�TF TFG�1

=

IUT

I

U
I

I = U 2

I

6= I . This request is obviously satisfied since U 2

I

= I would corre-
spond to a constant deformation gradient equal to the identity in all the domain.
The second condition is on the eigenvalues of C = U 2

I

. Indeed, the condition can be
directly translated into the same requirement for the eigenvalues of U

I

:

�
1

(U
I

)  1, �
2

(U
I

) = 1, �
3

(U
I

) � 1. (1.7)

The condition on having an eigenvalue equal to one is particularly difficult to satisfy,
so that the combination of austenite and a single variant of martensite is not possible
in many martensitic materials. One of the solutions to this incompatibly is the creation
of a twinning of two variants of martensite. This is not the case for the material we
used in our work and that is described in Section 2.1.1, where austenite and single
variants of martensite are compatible. Moreover, we also used an experimental setting
which allowed for the appearance of a single variant of martensite against austenite, as
explained in Section 3.1.2. Thus, after making some consideration on the probability
of having a single variant of martensite, we shall use the expressions (1.5) and (1.6)
for the computation of the crystallographic structure in the case of our specimen and
compare these theoretical results with the experimental ones in Section 3.2.2.

1.3 Macroscopic Modeling of SMAs

We now take a further step in modeling SMAs by introducing the theory of irre-
versible processes by Rajagopal [79, 80]. We shall use it in Chapter 5 in order to build
a macroscopic model taking into account functional fatigue in martensitic transitions.

1.3.1 Elastic domain and natural configurations

Let us initially recall the link between initial configuration, deformation and stress
for elastic materials, in order to further move towards elasto-plasticity.
We denote the reference configuration with 

r

and the position of a particle in this
configuration with X . We further introduce the deformation �



r

between the reference
configuration and the current one, so that the position x of the particle that was initially
in X can be expressed by

x = �


r

(X, t).
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The constitutive requirement for elastic materials is that the Cauchy stress tensor is a
function only of the gradient of the deformation, that is

T = T̂r(Fr),

with F = r�


r

.
This first step can be used to build up a theory for more general elasto-plastic systems.
The idea is to decompose the response of these systems in two parts: an elastic part and
a change in the reference configuration. In order to do so, we need the concept of elastic
domain, that is a set of configurations in which the material can be considered elastic
with respect to the reference configuration. Thus, we consider an initial configuration

0

and an elastic domain related to this configuration. Once the material is deformed so
that its configuration is outside the elastic domain, anelastic effects appear, for example
microstructural changes, and they are translated in a new reference configuration 

1

and a new elastic domain referred to 
1

.
All the configurations that may be used as reference configurations for the elastic do-
mains are called natural configurations. Thus, we denote the reference configuration
with 

r

and we introduce a natural configuration 
p

and the deformation gradient etr

between 
r

and 
p

. It means that the natural configuration can be determined by know-
ing the starting point 

r

and the deformation gradient etr. By introducing F


p

as the
deformation gradient between the natural configuration 

p

and the current configura-
tion, we thus obtain that the total deformation from the initial reference configuration

r

to the current one is actually decomposed into F


p

and etr. The first one is an elas-
tic deformation while the second one, etr, takes into account the anelastic effects like
microscopic transformations. The link between the different components of the defor-
mation and the configurations involved is shown in Figure 1.6.

We now assume that the Cauchy stress keeps on depending only on the total defor-
mation gradient, so that in this case it holds

T = T̂ (F


p

, etr).

Furthermore, we can rewrite this relation by introducing the Cauchy-Green deformation
tensor E



r

= F T



r

F


r

and using the Piola-Kirchhoff tensor instead of the Cauchy tensor.
First of all, we have to notice that F



p

= F


r

e�1

tr . Moreover, objectivity claims that a
function of F



r

actually depends on E


r

. These facts imply that every function of etr

an F


p

is in fact a function of etr and E


r

so that we can write

S = Ŝ(E


r

, etr), (1.8)

where S = det(F


r

)F�


r

1T F�T



r

.
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Figure 1.6: Scheme of the relation between the reference configuration 
r

, the natural one 
p

and the
current one, together with the deformation gradients etr, Fp and F

r .

By consequence, we need a constitutive equation for the stress and another one for
the behavior of etr.
A first step in this direction consists in defining a quantity related to the rate of variation
of etr

L
p

:= ėtr e
�1

tr ,

which we assume to depend only on etr and E


r

, that is L
p

= L̂
p

(E


r

, etr). Moreover,
we suppose L

p

to be continuous is E


r

. This quantity will be fundamental in all the
rest of the theory and introduces here an implicit definition of the elastic domain.
Let us imagine to fix etr, and to stay within the elastic domain: since the natural config-
uration does not change in this domain, ėtr = 0 and so Lp is null, too. By consequence,
the elastic domain is determined by

L̂
p

(E


r

, etr) = 0. (1.9)

1.3.2 Dissipative evolution

In order to provide the constitutive equations necessary to complete the theory, Ra-
jagopal introduces two scalar functionals: the Helmholtz potential  and the rate of
dissipation function ⇠. The energy  has to depend on the total deformation, so that we
suppose

 =

ˆ (E


r

, etr).

As explained in Section 1.2.4, there is an issue of compatibility between different
phases that affects the material behavior. When there is no direct compatibility between
two phases the solution consists in creating refined combinations of phases so that an
average compatibility is obtained. Intuitively, finer combinations imply a better average
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1.3. Macroscopic Modeling of SMAs

compatibility, so that the best choice seems to have an infinitely fine structure. On the
other hand, an extremely fine structure is not energetically convenient. Thus, it becomes
necessary to balance these two aspects. From the mathematical point of view it is possi-
ble to introduce a mixing entropy, that fosters the refinement of the microstructure and
en interfacial energy that goes in the opposite direction, penalizing finer microstruc-
tures [32, 64]. In general, the energy for the continuum can take into account for the
features of the microstructure and be ad hoc for the material [96].
In our case, we do not consider the microscopic structure and we just use a measure
of the deformation that is a macroscopic mean of what happens at the micro structural
level. We suppose that the microstructure can become infinitely fine and we do not in-
troduce an interfacial energy term so that  does not depend on the spatial gradient of
the deformation.
As regards dissipation, it is not allowed in elastic materials, whose behavior is com-
pletely reversible. This means that it is actually related only to the anelastic part of the
deformation, so that we can suppose

⇠ = ˆ⇠(etr,Lp

).

The dissipation ⇠ is supposed to be always nonnegative because of its physical mean-
ing.
Tipically, we define the energy and the dissipation directly related through some dis-
sipation inequality, for example the Clausius-Duhem inequality under isothermal hy-
pothesis

S · Ė


r

� %
0

˙ =

ˆ⇠ � 0.

In this theory, we are introducing the Helmholtz free energy and the dissipation as two
indipendent functions. Thus, in order to be consistent with classical thermodinamycs,
we assume

S · Ė


r

� %
0

˙ =

ˆ⇠(etr, L̂p

(E


r

, etr)), (1.10)

for each fixed E


r

and etr, and any Ė


r

. We already separately asked for ⇠ to be positive
so that the Clausius-Duhem inequality is automatically satisfied.
Let us use the chain rule to write

˙ =

@ 

@E


r

· Ė


r

+

@ 

@etr
· ėtr

and combine this expansion with (1.10), thus obtaining

S = Ŝ(E


r

, etr) = %
0

@ ˆ 

@E


r

. (1.11)
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Chapter 1. Theoretical Background on Shape Memory Alloys

In words, the stress can be determined by using the Helmholtz potential as for elastic
materials, but in this case there is also a dependence on the changing reference config-
uration since  is a function also of etr.
Let us further introduce the so-called driving force function

X = X̂(E


r

, etr) := �%
0

@ ˆ 

@etr
eT

tr . (1.12)

The combination of this definition with (1.10) and (1.11) provides

X̂(E


r

, etr) ·Lp

=

ˆ⇠(etr,Lp

). (1.13)

The first consequence of this equation is that there is no dissipation in the elastic do-
main, since ˆ⇠(etr,0) = 0. Moreover, let us look separately to the left hand size term and
the right hand size one. On the left, we have the rate of energy release due to changes
in the natural configuration. On the right, there is the dissipation during the total defor-
mation. Equation (1.13) thus claims the balance between these two quantities for every
admissible process undergone by the material.
This is the first restriction on the choice of L

p

. Let us now take a further step in deter-
mining it.

1.3.3 The Maximum Rate of Dissipation criterion

In [80], Rajagopal and Srinivasa provide a criterion for the characterization of the
rate L

p

.

Proposition 1.3.1. The maximum rate of dissipation criterion

Given the function L̂
p

and the values E


r

and etr, let L
p0 := L̂

p

(E


r

, etr) and ⇠
0

=

ˆ⇠(etr,Lp0) be the actual values of L
p

and of the rate of dissipation.
If L

p

6= L
p0 is any other value of the rate of variation of the natural configuration such

that
ˆ⇠(etr,Lp

) � ˆ⇠(etr,Lp0)

then
X̂(E



r

, etr) ·Lp

< ˆ⇠(etr,Lp

).

Let us understand the main consequence of this proposition. Once the function L̂
p

is given and for each fixed E


r

and etr, it is possible to choose an actual value for L
p

among all the possible ones satisfying (1.10) and it corresponds to maximizing the rate
of dissipation.
The maximum rate of dissipation criterion provides also a characterization of the elastic
domain, through the two following results (we refer to [80] for their proofs).
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1.3. Macroscopic Modeling of SMAs

Result 1.3.2.

ˆ⇠(etr,Lp

) > 0 whenever L̂
p

(E


r

, etr) 6= 0.

This means that whenever there is a change in the natural configuration there is
dissipation, complementing the consequence of (1.13) according to which there is no
dissipation within the elastic domain.
Moreover, the second result relates the elastic domain to the driving force X as follows

Result 1.3.3.

If E


r

is such that X̂(E


r

, etr) = 0 then L̂
p

(E


r

, etr) = 0.

The consequence of this result is that when the driving force is null there is no dis-
sipation. In other words, the elastic domain includes all the configurations with driving
force equal to zero.
We can further link the elastic domain to the driving force by defining two other quan-
tities: the driving force magnitude and the threshold function. The driving force magni-
tude is defined as

d(E


r

, etr;⇧) := X̂(E


r

, etr) ·⇧,

where ⇧ is a given unit in the symmetric tensor linear space. It can be interpreted as the
potential related to changes in the configurations in the direction ⇧. It can be computed
both when the natural configuration changes but also in the elastic domain.
Let us indicate with � the norm of the strain rate L

p

. Result 1.3.2 claims that for � > 0

the dissipation is non null. We thus introduce another quantity, called threshold func-
tion, as follows

T (etr,⇧) := inf

�>0

ˆ⇠(etr, �⇧)

�
� 0,

for each etr and ⇧ fixed. The name of the quantity is due to its meaning, since it repre-
sents the threshold that the driving force has to cross in order to obtain dissipation, as
stated by the following result.

Result 1.3.4. For each fixed etr, necessary and sufficient condition for E


r

to be in the
elastic domain is

d(E


r

, etr;⇧) < T (etr,⇧),

for all admissible values of ⇧.

In this manner we have a description of the elastic domain; however, we do not have
a practical characterization of the rate L

p

yet. Actually, we still need two other theo-
rems to obtain a more efficient picture (as above, we refer to [80] for the proofs).
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Chapter 1. Theoretical Background on Shape Memory Alloys

Let us indicate with X the range of the function X̂ for etr fixed. This is a subset of
a nine-dimensional Euclidean space, called X-space. The following theorem provides
an equivalent formulation of the maximum rate of dissipation criterion by working in
the range X .

Theorem 1.3.5. Let us give the Helmholtz potential ˆ (E


r

, etr) such that the driving
force X̂ related to it is an open map. Then there exist functions L̂

p

(E


r

, etr) = L
p

and ˆ⇠(etr,Lp

) � 0 satisfying (1.13) if and only if it is possible to construct functions
˜L
p

(X, etr) and f(X, etr) � 0 defined on X such that, for fixed etr:

1. L
p

=

˜L
p

(X̂(E


r

, etr), etr) = L̂
p

(E


r

, etr),

⇠ = f(X(E


r

, etr), etr) = ˆ⇠(etr, L̂p

(E


r

, etr)),

2. X · ˜L
p

(X, etr) = f(X, etr) 8X 2 X ,

3. For fixed ↵ > 0, given two tensors X 6= X
0

2 X such that

f(X, etr) = ↵, f(X
0

, etr)  ↵,

indicating L
p

:=

˜L
p

(X, etr) and L
p0 :=

˜L
p

(X
0

, etr), then

(X �X
0

) ·L
p

8

<

:

> 0 if L
p

6= L
p0 ,

= 0 if L
p

= L
p0 .

We thus obtain that the dependence of L
p

and ⇠ on E


r

can be expressed simply
be a dependence on X , this result will be recalled in Section 5.1 for the description of
our model. The second and the third points of the result correspond to (1.13) and to the
maximum rate of dissipation criterion, respectively.

Finally, let us move to the last theorem for a full characterization of L
p

.

Theorem 1.3.6. Consider a function f(X, etr) defined on all the X-space (that is the
range of X̂ , varying  ) such that

1. f(X, etr) � 0, f(0, etr) = 0,

2. the sets L(↵, etr) := {X | f(X, etr)  ↵}, that is the level sets of f(X, etr), are
convex for each ↵ > 0,

3. at every point where f(X, etr) is strictly positive, it is differentiable with respect
to X and to etr, and @f/@X is non-zero,

4. �f(X, etr) > f(�X, etr) for 0 < � < 1, if f(X, etr) > 0.
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1.3. Macroscopic Modeling of SMAs

If, for any choice of ˆ twice differentiable with respect to E


r

and etr, f is restricted to
X (the range of X related to the choice of  through the definition of the driving force)
and, for each X 2 X , we define

˜L
p

(X, etr) :=

8

<

:

0 if f(X, etr) = 0

f(X,etr)

X·@f/@X
@f

@X if f(X, etr) > 0

then L
p

=

˜L
p

(E


r

, etr) and ⇠ = ˆ⇠(etr,Lp

) satisfy equation (1.13).

This last results complete Rajagopal’s theory providing the ingredients to model the
material behavior by the use of the Helmholtz potential  and of the rate of dissipation
f . While the first one is related to the stress by (1.11), the second one easily gives
us the flow rule for the natural configuration. It is important to underline that these
two functions are linked through the maximum rate of dissipation criterion but can be
chosen separately.
All this theory will be used in building up the model of Chapter 5, by introducing
two main assumptions: quasi-staticity of the process and small strain regime. These
hypothesis lead to easier expressions for the driving force X and the strain rate L

p

as
explained below.

1.3.4 Quasi-static processes

In order to understand the kind of hypothesis that we want to do and its conse-
quences, let us try to understand what happens to the system described by Rajagopal’s
theory from the dynamical point of view. Let us suppose to deform our material in
a configuration that is outside the current elastic domain. This deformation causes a
change in the natural configuration: intuitively, this change is going to be fast at the
beginning and slower when the new elastic domain approaches the current configura-
tion until including it. In particular, let us consider a constant E



r

outside the initial
elastic domain. The rate L

p

should have a non-zero value and approach 0 as the natural
configuration etr induces an elastic domain that is closer to include E



r

. In this way, L
p

creates a trajectory in the X-space that goes towards the border of the elastic domain
from outside. We call relaxation time the characteristic time of this process, determined
by the time constants associated to the constitutive equations.
In this sense, the process is considered quasi-static when this relaxation time is much
smaller than the characteristic time of the macroscopical evolution.
The consequence of this assumption is that the trajectory created by L

p

approaching
0 in the X-space actually lies on the boundary of the elastic domain. It becomes quite

21



Chapter 1. Theoretical Background on Shape Memory Alloys

interesting to notice that we obtain kind of a contradiction. On one hand, since L
p

is continuous in E


r

it should be null along all the boundary of the elastic domain,
thus implying that on this same boundary there is a constant etr. On the other hand,
the trajectory that rapidly approaches the boundary allows us to find different values
of etr along all the boundary, as sketched in Figure 1.7. Thus, all the evolution can be
supposed to happen along the boundary of the elastic domain.

Figure 1.7: Scheme of the trajectory in the X-space in the case of quasi-static evolution, leading to
different values of etr along the boundary of the elastic domain.

1.3.5 Linearization

In this section we introduce an assumption that will be used both in the model of
Chapter 5 and in the treatment of the experimental data in Chapter 2. We suppose that
the natural configuration is very close to the original reference configuration, that is

etr = I + e
1

, (1.14)

where ||e
1

|| = " ⌧ 1. We can now rewrite some of the equations in Section 1.3.2 by
neglecting the terms that are o(").
As for starters, the driving force X defined by (1.12) can be re-written as follows

X = �% @
ˆ 

@etr
,

where we neglected the term �% @

ˆ

 

@etr
eT

1

= o(").
Anagously, we can simplify the expression of L

p

as

L
p

= ėtre
�1

tr = ėtr.
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1.3. Macroscopic Modeling of SMAs

We can also expand the dissipation function as

f(X, etr) = f(0, etr) +
@f

@X
·X =

@f

@X
·X,

where we used f(0, etr) = 0. Eventually, this leads to an expression of the natural
configuration variation, that is

ėtr =

8

<

:

0 in the elastic domain,

↵@f(X,etr)

@X outside the elastic domain.
(1.15)

In closing, we can also simplify the total strain E


r

by using the linear version " =

sym(F


r

� I).
All these relations are recalled in Chapter 5 when detailing our model.
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CHAPTER2
Experimental Setting and Grid Method

In this chapter we detail the test we performed ad IFMA (Institut Français de Mé-
canique Avancée) laboratories in Clermont-Ferrand. We combined a device that guar-
antees uniaxiality of a slow-rate load and a full-field measurement technique for the
data treatment, as described in the following sections.

2.1 Materials and methods

In this section we describe the characteristics of our main experiment. We start by
introducing the super-elastic SMA specimen that we used and we continue by detailing
the experimental setting for our mechanical traction test and the novelties that charac-
terize it.

2.1.1 Specimen composition and crystallographic properties

Our experiment was performed on a Cu Al
11.4

Be
0.5

(wt.%) single crystal with a
martensite-start temperature equal to �2

�C, whose geometry is shown in Figure 2.1.
In order to avoid damage or sliding of the specimen during the uniaxial tensile test,
aluminum tabs were bonded at its ends. The external conditions, first of all the gripping
device can strongly affect the transformation in several ways. From the mathematical
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Figure 2.1: Geometry and dimensions of the Cu Al Be specimen.

point of view it is possible to show the influence of the grips on the specimen by taking
into account long-range interactions [78]. In parallel, it is possible to experimentally
show that the transformation can change from one region to the other one of the spec-
imen because of the different external conditions, like presence of grips or external
means that could affect thermal diffusion [86]. In our case, the tabs have been prece-
dently glued on the specimen with a special stiff glue that avoids slides. Their influence
has not been treated in this thesis but some analysis can be found in [31] for the same
specimen. Without considering the aluminum tabs, our specimen has dimensions equal
to 17.78⇥ 38⇥ 0.94 mm3 along x- y- and z-directions, respectively.

The test was performed at a room temperature equal to Tamb = 26.8�C. As Tamb

is higher than the martensite-start temperature, the specimen is in the austenitic state
as zero stress. The austenitic phase is cubic, with axes ([1, 0, 0], [0, 1, 0], [0, 0, 1]). The
rotation matrix from the austenitic axes to the specimen axes (x, y, z) indicated in Fig-
ure 2.1 was determined by X-ray diffraction in a previous work in which the same
specimen was employed [31]:

R =
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2.1. Materials and methods

The alloy undergoes a cubic to M18R-monoclinic transformation, thus involving twelve
variants of martensite [19]. The number of variants involved in the transformation de-
rives from the relation between the crystal symmetry in austenite and the one in the
martensitic phase, as already explained in Section 1.2.2. The indication M18R refers
to the kind of monoclinic crystal structure, that comes from a suitable combination of
18 atomic planes, as detailed in [12]. In our case, the Bain matrices of the martensite
variants, as defined in section 1.2.2, are the following ones
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where � = 0.9044, ⇢ = 1.0062, ⌧ = 1.0832 and � = 0.0227 are the so-called stretch
parameters [31]. The structure of the Bain matrices is derived in [53, 75] while the
values of the stretch parameteres have been deduced in [31] exactly for this specimen.
Moreover, the single variants of martensite are individually compatible with austenite,
according to the definitions given in 1.2.3, and it is possible to compute the habit planes
corresponding to each austenite-martensite variant combination.

2.1.2 Experimental setup and loading conditions

Both strain- and stress-controlled tests on SMAs are usually performed by using
retro-active controlled devices. These devices allow a good degree of automatism in
the experiment and permit to focus on the data acquisition. On the other hand, this kind
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Figure 2.2: Picture and scheme of the experimental setting described in Section 2.1.2

of devices becomes useless when the focus of the test is to find out the presence of in-
termittency in the transformation. The usual testing machines are based on sensors and
actuators, both with their own properties, in terms of resolution and response, integrated
in a PID (Proportional-Integral-Derivative) controller. This kind of control makes the
loading variable fluctuate around the required values for each step of the test. The prob-
lem is that these oscillations are not predictable so that it is impossible to distinguish
this experimental bias from the microscopical transformation intermittency.
In order to avoid this drawback, a non-classical experimental setup has been designed.
A schematic view of this setting is shown in Figure 2.2.
The top of the specimen was connected to the top of the structure through a spheri-
cal joint, so that rotation around the vertical axis was allowed. At the other end of the
specimen there was a suspended can, which was slowly filled by water during all the
experiment. We thus obtain a stress-controlled test with two very important features:

• both the spherical joint on the top of the specimen and the joint to the can at the
bottom allow rotations. This enables us to apply a perfect uni-axial tensile loading,
that is not possible in classical tensile machines;

• the use of gravity guarantees monotonicity and uni-axiality of the loading but
above all it allows for uni-directionality. In this way, we avoid the fluctuations in
the results that could be due to variations in the loading direction.
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2.1. Materials and methods

The flux of water was controlled and held constant by electronic pumps and it was pos-
sible to reverse it, thus obtaining both loading and unloading of the specimen. More-
over, the velocity of the loading was easily verifiable. It was possible to choose a slow
loading rate and assume a quasi-static transformation, according to the definition of
quasi-staticity given in Section 1.3.4. Some further remark on the satisfaction of this
hypothesis is detailed in Section 3.1.3.

As already said, the test was performed at a constant room temperature Tamb =

26.8�C. At this temperature the specimen was purely austenitic as we are far from
the transition temperature (since Ms = �2

�C as in section 2.1.1). We induced the
martensitic transformation by loading, and successively reversed it by unloading. It is
important to underline that the transformation stress strongly depends on temperature.
This dependence implies that the stability of temperature has to be insured during the
whole test, since slight modifications of this external factor would definitely affect the
results. Moreover, the very slow loading rate insures that local temperature changes due
to phase transformation (this phenomenon is accompanied by latent heat [84]) remain
negligible, and thus do not influence the observed phenomena, which is not the case
with usual loading rates applied with tensile machines.

Super-elastic shape memory alloys usually show the following behavior when loaded:
a first elastic part in the austenitic phase, followed by a transformation plateau when
the martensitic transition starts. During this transformation plateau, small changes in
the stress will induce strain jumps related to the appearance of martensite. By keep-
ing in mind this behavior, the loading conditions we applied during the test are the
following ones.

• Before the test, we applied a preliminary fast load-unload cycle to optimize the
position of the camera that we used to record the data;

• We pre-loaded the specimen by filling the can with an initial quantity of water,
in order to skip the first elastic deformation part and reduce the duration of the
test. We performed some preliminary tests to estimate the starting point of the
transformation and avoid to overload the specimen with this initial load. Actually,
it is important to slowly reach the plateau in order not to lose any information
about the phase transition. By taking into account these difficulties, we chose to
apply a pre-load equal to 34.37MPa;

• We loaded the specimen at a constant rate equal to 1.055MPa/h until we reached
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a final load of 57.29MPa, that enables a complete transformation to martensite.
The duration of this loading phase was thus about 22 hours;

• The unloading was slightly slower, with a rate of �0.915MPa/h down to 35.95MPa.
This value was reached after more or less 23 hours and 15 minutes.

During the test it was necessary to stop loading each 97 minutes in order to save the
data recorded by the camera and clear its memory. During this phase we paid particular
attention to not to touch or perturb the whole system, though some effects on the data
seem to be unavoidable, as explained in Section 3.1.2.
It is worth noticing that usual testing machines are not intended to be used with such
a low loading rate and they are not designed for that. In our case, much slower rates
(say at least hundred times slower) could even be reached: we chose our rates in order
to obtain a good compromise between the duration of the test and the need for quasi-
static conditions.
The same kind of procedure has also been used in [23] but with a faster water flux
compared to ours (around 37.55MPa/h in the gauge zone of the specimen, which is
about 35 times faster than in our study).

2.2 Grid method

Here we describe the features of the method we used for the determination of the
strain maps, the grid method. We describe the ideas behind this method and we rapidly
compare it to other similar techniques. Moreover, we provide an estimate for the strain
resolution. Afterwards, we detail the phases of the preparation of the specimen and of
the image acquisition and processing.

2.2.1 Theoretical basis of the method

The grid method is one of the full-field measurement techniques which are currently
available. These techniques have recently spread within the Experimental Mechanics
community. They are indeed very attractive since they provide fields of measurements,
which clearly represent a breakthrough compared to more classic measurement means
such as displacement sensors or strain gauges. The most used and known methods of
this genre, in addition to the grid method, are digital image correlation (DIC), moiré
interferometry and speckle interferometry. All these techniques have the possibility to
provide displacement fields (and thus strain fields after derivation, within certain limits
due to noise) on a spatial region of the specimen under test. The size of this region
depends on various parameters, the main one being the number of pixels of the camera
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sensors, but current cameras enable us to investigate specimen featuring dimensions of
the order of some squared centimeters.
Interference methods, like interferometric moiré or speckle interferometry, rely on the
interference produced by two coherent laser beams on the specimen. These interfer-
ence methods are characterized by their high sensitivity. The consequence is that they
are also very perceptive to parasite vibrations, so that their use in industry is limited in
practice.
Conversely, the grid method and the DIC method belong to the class of white light mea-
surement methods. All these methods relate the displacement to the spatial variation of
the light intensity. The DIC technique is quite immediate to use since the preparation of
the surface specimen is very simple. On the other hand, the displacement is the solution
of an implicit equation which is solved iteratively.

Concerning the grid method, the drawback with respect to DIC is that the prepa-
ration of the specimen (detailed in Section 2.2.3) needs more effort since a regular
marking has to be deposited or printed on the surface of the specimen. Even if recent
attempts show that out-of-plane displacements can be measured by diffracting the ob-
served grid [69], only 2D displacement and strain components can be easily measured.
The positive aspect is that the determination of the displacement from the measure-
ments is straightforward, so no iterative algorithm is necessary.
The post-processing of the images is consequently fast enough to calculate the dis-
placement components with the same procedure at any pixel of the images, without any
interpolation. This feature makes the method particularly suitable for our analysis since
we are interested in measuring very local strain changes and we are going to work with
a big amount of data, as later explained. Moreover, we are studying only one specimen
so that the preparation of the surface has to be done only once. Note finally that we per-
form the same of calculation at any pixel, but the measurement provided at any pixel
is not independent from the ones given at the surrounding pixels because of the data
treatment described below. The so-called spatial resolution is therefore not equal to one
pixel, but to a greater quantity (see below).

The idea at the basis of the grid method is simply geometrical: by analyzing the
deformation of a grid suitably deposited on the specimen, we can deduce some infor-
mation on the specimen itself. As will be explained in section 2.2.3, a grid is deposited
on a surface of the specimen. Pictures of this surface are then taken during the whole
test. The first fundamental assumption of the technique is that the grid deforms exactly
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like the specimen on which it is transferred using a thin layer of glue. Moreover,it is
plausible to suppose that the stiffness of the glue layer is negligible compared to the
stiffness of the metallic specimen, in order to consider the method as non-intrusive.

Initially, the grid is a spatial carrier whose lines are periodically distributed with a
given distance between each other. This distance is denoted by p and called the grid
pitch. We can thus characterize each grid by introducing a frequency vector f = f n =

n/p, where n is the unity vector perpendicular to the grid lines. In the undeformed
configuration, we can express the light intensity as

S(R) = A[1 + �frgn(2⇡f ·R)], (2.1)

where R = (X, Y ) is a point in the reference configuration, A is the amplitude, � the
contrast, and frgn a 2⇡-periodic function [11]. Let us indicate by U (R) the displace-
ment field, so that the material point R occupies the position r = R + U (R) after
deformation. We can also reverse this relation by introducing the displacement field on
the deformed configuration u(r) such that R = r + u(r).
Since we are focusing on a material point, the light intensity in r = (x, y) and R has
to be the same, that is

s(r) = S(R) = S(r + u(r)).

By consequence, we can write

s(r) = A[1 + �frgn(2⇡f · r + �(u))],

where �(u) is the total phase modulation of the grid. There are actually two phases: one
along each direction. They are denoted by �

x

and �
y

for the x- and y-axis, respectively.
Thus, by using the Cartesian coordinates, we can express the x- and y-components of
the displacement with respect to the reference configuration as
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(2.2)

where ��
i

, i = x, y represent the phase changes between current and reference grid
images. Therefore, the unknown that has to be provided by the algorithm is the phase
distribution for each grid image, while it is not necessary to measure the mean inten-
sity A and the contrast � for the problem at hand. Also the frgn function is not really
known but it is periodic and Fourier analysis can therefore be employed to study it, in
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particular to extract its phase, as discussed below.

There are different methods for the calculation of the phase. On one hand, it is
possible to use a global Fourier transform and isolate it in a suitable neighborhood
of the frequency of the reference configuration f , thus obtaining an estimate of the
quantity 2⇡f · r + �(u). This method does not require the knowledge of the other
quantities (A and �) and it is quite fast, but provides results with a certain amount of
uncertainty that can be reduced by using a local method. The method we used is the
Windowed-Fourier Transform (WFT) algorithm which enables us to retrieve a localized
information. The WFT is written as follows :

�(x, y,✓ ) =

Z

+1

�1

Z

+1

�1
s(⇠,⌘ )g(⇠�x,⌘ �y) exp{�i2⇡ f(⇠ cos(✓)+⌘ sin(✓))} d⇠d ⌘,

(2.3)
where g(x, y) is a suitable window discussed briefly below and ✓ an angle which is
equal to 0 (resp. ⇡/2) when investigating the x� (resp. y�) direction. Since only the
phase of each of the two superimposed line patterns has to be found (it is not necessary
to determine A and � in the problem at hand), this quantity is directly given by the
phase of the WFT calculated at any pixel. Indeed, the phase of the WFT and the sought
phase are generally considered as being equal within a constant angle which disappears
when calculating the difference in phase between current and reference images ( [91]).
However, it has been shown recently that the phase of the WFT is equal, as a first
approximation, to the sought phase convolved by the window of the WFT, plus the
same preceding constant angle [93]. This means that the phase maps, and thus the
phase derivative, displacement and strain maps, are blurred, the blurring intensity being
merely driven by the width of the window. It also means that the actual values for these
quantities can theoretically be retrieved by deconvolution [45] but this question is a
problem as such which has not been addressed during this thesis.

The nature of the window g(x, y) influences the quality of the results. It is pro-
posed in [91] to employ a triangular function for g(x, y). The advantage is to have a
width which can be very small (twice the pitch value as a minimum), thus assuring a
very good spatial resolution (defined here as the minimum distance between two lo-
calized measurements). The drawback is that the measurement resolution (defined as
the smallest measurement that emerges from the noise floor) is impaired in proportion.
In addition, it can be shown that, since the frng function is generally not a pure sine
function in practice, harmonics may potentially affect the strain field if the width of the
triangle is not an integer value multiple of the grid pitch. A Gaussian function has been

33



Chapter 2. Experimental Setting and Grid Method

proposed and employed in [10, 11]. It is defined by

g(x, y) =
1

2⇡�2

exp

✓

�x2

+ y2

2�2

◆

,

where � is the standard deviation of the distribution characterized by this envelop. The
drawback of this choice is that the minimum value for � is the pitch p of the grid [93].
This affects the minimum width of the envelope which, according to the three-sigma
rule, is equal to six times the pitch (three times the minimum value obtained with the
triangular window). However, the main advantages are of two kinds. First of all, the
problem mentioned above concerning the harmonics is theoretically avoided. Second,
it can be shown that we obtain an excellent compromise between resolution and spatial
resolution for the order of magnitude of the strain we have in our problem.
We decided to use this type of window in this study. Since in our case the grid pitch
employed is equal to 0.2 mm, this gives a spatial resolution equal to 1.2 mm. The strain
resolution is discussed below in Section 2.2.2.

Once the displacement is known by using Equation 2.2, the strain can be merely ob-
tained by differentiation if noise is sufficiently filtered by a relevant choice of the kernel
width, like in our case. However, the problem is that slight grid defects, such as pitch
fluctuations, affect the phase, and by consequence displacement and above all strain
distributions. These fluctuations are due to the grid printing. The consequence of these
fluctuations is generally not visible to the naked eye when looking at the displacement
maps, but it is severely amplified by differentiation when calculating the strain com-
ponents. A compensation technique has been proposed in [10, 11] to significantly limit
this effect. It consists in mapping the phase derivative maps in the reference coordinate
system prior to subtracting current and reference phase derivative maps. This technique
has been employed in the current work, since significant parasitic fringes due to grid
defects have been detected in the phase derivative maps.

Another point is the fact that phase maps (and thus potentially displacement maps)
are affected by phase (or displacement) jumps in some cases. This phenomenon occurs
when the displacement over a given image is greater than the grid pitch and it is due
to the discontinuity in the arctan function. As we said, we work under a small strain
assumption that does not imply also small displacements, so that we actually obtain
phase jumps in our case. The problem was solved by using a so-called unwrapping
algorithm which re-establishes the continuity of the phase distributions when necessary.
On the other hand, the small strain assumption allows us to calculate the linearized
strain components. Actually, the grid method also provides the possibility to deal with
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large strains and in that case the analysis would probably be more precise but would
also require longer post-processing times.

2.2.2 Strain resolution

In this section we aim at assessing the strain resolution of our measurement tech-
nique. This point is crucial in order to determine a threshold value to distinguish actual
events from noise in strain maps. Specific studies have been carried out in [46, 92, 93]
in order to estimate the strain resolution of the method by taking into account the prop-
agation of the noise due to the camera sensor. The estimation starts from the images
taken by the camera, without any kind of treatment. If a Gaussian envelope is use in
the WFT, the noise level in displacement and strain maps due to camera sensor noise
propagation is given by the following expression [46, 93]:
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where p = 5 pixels is the grid pitch, �
x

⇥�

y

represents the pixel size (and since we are
measuring everything in pixels, �

x

= �

y

= 1), d
"

is the spatial resolution estimated
at the end of section 2.2.1, so d

"

= 6 ⇥ �, �image is the standard deviation of the noise
in the grid images and K the modulus of the WFT : K(x, y) = |�(x, y)|. To obtain
this result, it is assumed in [94] that the noise is Gaussian and homoscedastic, that is
�image is constant throughout each image. However, it has recently been shown in [46]
that this assumption is too rough to precisely assess the noise level. Actual noise is
Poisson-Gaussian and heteroscedastic in images, as classically observed and admitted
in the image processing community [35].
The noise variance for each point of the picture is thus shown to be linearly related to
the light intensity of the pixel under consideration [92]:

v(x, y) = Var (s(x, y)) = a s(x, y) + b, (2.5)

where the parameters a and b depend on the camera. In our case, the two parameters
have been estimated in [92]: a = 8.4547 and b = �5378.1. In [46], it is proposed
to employ the so-called Generalized Anscombe Tranform to change the nature of the
noise in grid images from a Poisson-Gaussian heteroscedastic noise to a Gaussian ho-
moscedastic one [2,65] and to employ a specific image processing to limit the effect of
micro-movements which occur when taking the images. These procedures are neces-
sary for a precise and pixelwise estimation of the noise level. In this thesis, since we are
interested in a global value, we use a simplified approch which consists in the following
steps:

35



Chapter 2. Experimental Setting and Grid Method

• taking a grid image and estimate the variance distribution by using Equation 2.5;

• deducing a global equivalent value throughout each image which is defined as
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where N is the number of pixels in the image;

• using Equation 2.4 in order to predict the global noise level in a strain map.

Finally, the grid images were averaged over N = 128 frames to reduce the noise level.
This procedure takes quite a long time for each image (slightly more than one minute),
which means that micro-movements between camera and specimen that are observed
to occur during this type of experiment influence the grid image resulting from this
averaging procedure. Indeed, it has been shown recently that the mean image is a bi-
ased estimator of the noise-free image because of these micro-movements, but that the
resulting phases which are then extracted from this mean image (and thus the result-
ing displacement and strain maps) remain unaffected in practice for the amplitude of
the micro-movements observed in the laboratory [94]. Consequently, the estimation in
Equation 2.4 can be reasonably divided by

p
N to account for this procedure on the

final standard deviation. By applying this procedure, we eventually obtain an estimate
for the strain resolution equal to � = 5.2 · 10�5.

2.2.3 Preparation of the specimen

The preparation of the specimen takes some day and is a fundamental part of the
method since slight imperfections in depositing the grid can strongly affect the re-
sults. In our case, the grid is printed on a polymeric substrate with a high definition
printing machine (12000 dots per inch (dpi) resolution) by specialized laboratories. It
is important to underline that the grid can deform without cracking or breaking until
a strain about 18%. This property becomes particularly important when dealing with
super-elastic materials like SMAs. In our case, the maximum strain that we reached
was about 9%, thus assuring no breaking for the grid.
The surface of the specimen was initially degreased and cleaned. The grid was then
glued on the clean surface by using a suitable white adhesive. In particular, we used an
E504 glue provided by Epotechny, France. The choice of the white color for the glue
is done in order to maximize the contrast between this substrate and the black lines of
the grid since, as shown in Section 2.2.2, a higher contrast implies better results. Dur-
ing the gluing phase, it is particularly important to pay attention to the orientation of
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the grid lines. The best result consists in having the grid lines parallel to the axes of
the coordinate system in which we want to obtain the components of displacement and
strain. In our case, we referred to the axes which are parallel to the borders of the gauge
section of the specimen.

In general, the gluing phase is one of the most difficult parts of the preparation. First
of all, the glue layer has to be very thin (generally some tenth of millimeters [74]) in
order to satisfy the assumption of having the grid deformed in the same way as the
specimen, as required in section 2.2.1. Moreover, it is necessary to avoid air bubbles
in the glue while putting it on the specimen, since they would create defects in the
visualization of the outcome.
This first part is followed by a curing phase, which lasts about 40 hours, at a temperature
equal to 37

�C. At the end of this phase, it is possible to peel off the polymeric substrate
on which the grid was printed, so that the grid lines remain glued on the specimen
surface.

2.2.4 Image acquisition and processing

The data we recorded during the experiment are pictures of the surface of the spec-
imen on which the grid is deposited. We used a Sensicam QE camera with a 12-
bit/1040 ⇥ 1376 pixel sensor and a 105 mm Sigma lens. We chose this kind of camera
because a suitable magnification of the lens was sufficient to distinguish the grid lines
though the grid pitch was very small (5 pixels, that is more or less 0.2 mm). The camera
was positioned on an adjusting stage. In this way, it was easy to set the camera in order
to have the pixels of the sensor parallel to the grid lines.
It is important to have a certain uniformity in the lighting of the grid. In particular, the
grid has to be uniformly enlightened on an area equal to the kernel of the WFT [93]. In
order to satisfy this requirement, it is not necessary to keep brightness constant but it is
sufficient to ensure smoothness in the brightness variations. We fulfill this condition by
using three flexible and movable light guides fed by a KL 2500 LCD cold light source.
Moreover, the cold light improves the contrast, thus allowing a better strain resolution,
as explained in Section 2.2.2.

Eventually, we collected about 20.000 images during the whole test (one image ev-
ery 8.6 seconds more or less). These data required a post-processing phase which took
about one month. The treatment was done according to the method detailed in 2.2.1. In
particular, we chose the first image (corresponding to the pre-loaded specimen) as the
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reference configuration. By comparing each image to the reference one, it was possi-
ble to deduce the phase � as described in section 2.2.1. The final output data were the
in-plane linearized strain component fields "

xx

, "
yy

and "
xy

and the rotation angle field
about the z-direction, !.

2.3 Conclusions

In this chapter we described the test that we performed and the kind of data that we
collected. There are many features that make this test interesting.

• The specimen dimensions are such that most of the transformation is likely going
to take place on the surface, that is the part on which we are collecting our infor-
mation. Actually, the scaling between the behaviour of the transformation within
the specimen and on its surface is not known, but we can suppose to approximate
our three-dimensional specimen with a two-dimensional plate without losing too
much information. Moreover, we have a quite complete description of the speci-
men from the crystallographic point of view and we are going to use it in order to
better understand our data;

• The device that we used does not apply strong boundary conditions on the speci-
men when compared to classical tensile test devices, so that we tried to minimize
the influence of boundaries on the transformation outcome;

• The device guarantees a constant loading direction. Since we are going to ana-
lyze the presence of intermittency in the martensitic transition, variations in the
direction of the load would affect the results;

• The grid method allowed us to treat a very big amount of images in a quite short
period. Moreover, it provided strain maps with a resolution in the range 10

�5 �
10

�4. This implies that we have many high-resolution two-dimensional maps to
be used for our analysis.

Eventually, the combination of our mechanical experimental device and of the image
treatment method provided a collection of suitable data for a characterization of the
martensitic transformation from several points of view, as we shall do in the following
chapters.
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CHAPTER3
Description of the Martensitic Transformation

In this chapter we show some of the results that it is possible to obtain with our data.
We start with a comparison with previous experiments on the same specimen in order to
underline some features of our experimental device. Then, we describe the martensitic
transformation and we deduce some quantities, like the percentage of martensite or the
vertical strain. These quantities will show a continuos behavior from the macroscopic
point of view but spikes and jumps will appear when looking at their variations.

3.1 Qualitative analysis of the transformation

In this section we provide an overall description of the martensitic transformation
undergone by our specimen. First of all, we qualitatively analyze the different strain
components and we describe their evolution during the phase transition.
Afterwards, we look at the stress vs strain curve and compare it with previous results
on the same specimen, though under different testing conditions.
In conclusion, we compare loading phase and unloading one and we spend some words
on the beginning of the transformation before the plateau.
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3.1.1 Strain components

!

Figure 3.1: Linear strain components "
yy

, "
xx

and "
xy

and in-plane rotation angle ! for "
yy

= 0.057,
that is around the middle of the transformation.

Figure 3.1 shows the maps of the linear strain components obtained with the grid
method for a given instant during the transformation, corresponding to "

yy

= 0.057.
As expected, since we are pulling in the vertical direction, "

yy

is positive since the
specimen is stretching in that direction while "

xx

is negative. Moreover, as it is easy
to guess, it is exactly the longitudinal vertical component "

yy

that shows the biggest
values among the strain components. As it is shown in the first map in Figure 3.1, the
martensitic zone corresponds to a quite homogeneous zone with strain equal to 0.0914

(by averaging over the red zone) while the austenite is represented by the zero strain
level, that is the blue zone.
As regards "

xy

, it shows small values and seems to keep a constant sign everywhere
except for a small zone in the upper right part of the specimen.
The rotation angle represented in the fourth panel of Figure 3.1 is computed as the skew
part of the strain, that is as 1/2(u

x,y

�u
y,x

). It confirms the existence of relative rotations
between different zones of the specimen. In particular, we can distinguish abrupt jumps
between +0.03 radians and �0.03 radiants corresponding with the interfaces between
austenite and martensite. These values are in agreement with the values that can be
theoretically predicted (see Section 1.2.4 and 3.2.2 for these estimates).
As the vertical component "

yy

shows larger variations during the transformation, in
the rest of the thesis we focus only on this map when dealing with the macroscopic
description of the transformation (for intermittency, we shall use the information of all
the components).
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Figure 3.2: Plot of the stress versus strain curve together with the maps of the vertical strain "
yy

along
the hysteresis loop.
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3.1.2 Macroscopic stress versus strain plot

Let us continue our analysis by focusing on the stress vs strain curve corresponding
to the experiment. This kind of result is usually provided for the experiments on shape
memory alloys, so it enables us to start comparing our test with the rest of the experi-
mental literature.
Figure 3.2 shows the stress-strain curve obtained for our experiment. The plotted stress
is computed by considering a constant section (equal to the initial one) since we know
the weight carried by the specimen. In this computation we obviously use the perfect
uni-axiality of our load due to the rotations allowed at the two ends of the specimen
(that is a main difference with tests presented in the literature). The strain is the mean
of the vertical strain component "

yy

over the gauge surface, that is the part of the spec-
imen not covered by the grips at the extremities.
As expected, the specimen exhibits a hysteresis loop in the stress-strain plane. The hys-
teretic behavior is a consequence of the metastability of the minima for the material, as
described in [52], where a link between metastability and the pseudo-elastic hysteresis
is provided, and as explained at the end of Section 1.2.1. The maps of the vertical strain
that surround the loop can help us understand what is happening in the different parts
of the hysteresis.

• At the beginning, there is only elastic deformation, so that the curve shows linear-
ity between stress and strain and no martensite appears in the specimen;

• As the plateau begins, the maps start showing traces of martensite (in red against
the blue of austenite) and small increments in stress provide big jumps in the
average strain. Actually, during the transition, parts of the specimen switch from
austenite (zero strain) to martensite (more or less 9% of strain) so that the average
strain is strongly affected by the transition of even small parts of the specimen;

• At the end of the plateau, the most of the specimen is in the martensitic phase
except for small zones close to the grips. These zones seem to hardly transform
into martensite. The possible reasons for the presence of residual austenite are
better detailed in Section 3.2.4.
Since previous tests assured the resistance of the material only until a load around
58 MPa, we decided not to insist on pulling and we started the unloading.

A more detailed comparison between loading and unloading is done in Secton 3.1.5,
but for the moment it is worth to notice that martensite disappears along the plateau of
the reverse transformation until a quite complete return to the zero strain state.
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Figure 3.2 also shows some missing data during the plateau, for example around a
strain equal to 0.026 during loading. It is important to underline that these jumps are
not related to the effective transformation events. They are actually due to the pauses
we had to take every 97 minutes in order to clear the camera memory, as described in
Section 2.1.2. We do not have any information about what happens to the specimen
during those breaks but we can assume a combination of noise and small perturbations
of the device so that the martensitic transition can likely take place in some small re-
gions. Moreover, the slow loading rate should make the process satisfy the hypothesis
of quasi-staticity but it is also possible to have some events still going on when we stop
loading for the pause. A wider analysis of the satisfaction of the quasi-staticity assump-
tion can be found in Section 3.1.3. In general, for the rest of the analysis we are going
to neglect these strain jumps (they are more or less 4 during the loading plateau and as
many for the unloading one) since they cannot be clearly analyzed.

The stress-strain curve in Figure 3.2 is also shown in Figure 5.10 in Section 5.4.2,
where it is fitted with the numerical results of the Souza-Auricchio modified model. In
addition to the features we shall use for the parameter calibration in section 5.4.2, let
us consider some characteristic quantities that can be used to compare our curve with
other tests:

• S
50%

, the stress corresponding to the middle of the plateau during the loading
phase;

• mload and munload, slopes of the plateau during loading and unloading respectively;

• �S
50%

, hysteresis width, i.e. the difference between loading and unloading stresses
corresponding to the middle of the plateau.

The most effective comparison can probably be done with the results shown in
[30, 31] where exactly the same specimen had been tested, though under different test
conditions. For simplicity, let us indicate the test in [30] as Test 1 and the test in [31] as
Test 2. While our test is detailed in section 2.1.2, let us recall for a moment the features
of Test 1 and Test 2.

• A hydraulic testing MTS machine was used in both Test 1 and Test 2, instead of
our device.

• The ambient temperature was held constant but around a value equal to 22

�C,
against 26.8 �C for our test.

• Rotation was not allowed in those tests, since the specimen was strongly con-
strained by a tensile machine (in our case, a spherical joint permitted rotation). A
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scheme of the differences in the boundary conditions is shown in Figure 3.3.

• The test was completely strain-controlled in Test 1 while it was strain-controlled
for the loading and stress-controlled for the unloading in Test 2.

• The loading and unloading rates were different from the ones in our test, as shown
in table 3.1 through the information on the duration of the plateaus.

Note that the strain obtained in Test 1 and Test 2 is the Hencky strain instead of the
linearized strain of our test, but this difference should not affect the main features of
the stress versus strain curve.

Table 3.1: Results on the same specimen for the macroscopic stress-strain curve in three different tests:
our test and the ones described in [30, 31] and indicated by Test 1 and Test 2, respectively.

Test T
amb

S50% mload munload �S50% Duration of

(in MPa) (in MPa/%) (in MPa/%) (in MPa) the plateau

Present test 26.8 �C 50.34 0.338 -0.353 10.15 load: 5 h

unload: 6h

Test 1 22

�C ⇡ 34 ⇡ 0 non linear ⇡ 10 load: 50 min

unload: 50 min

Test 2 22

�C ⇡ 50 ⇡ 0.5 ⇡ 3 ⇡ 22 load: 1.5 min

unload: 0.5 min

By keeping in mind these differences, let us compare the features of the loops.

• Height of the plateau S
50%

— It has already been proven that this feature depends
on two factors: the room temperature [70] and the loading rate [73]. In particular,
when the room temperature increases it implies a higher value of S

50%

. Analo-
gously, the higher the loading rate, the higher the plateau. This second relation
actually depends on the first one since, by increasing the loading rate, the temper-
ature changes and affects the value of S

50%

.
From the comparison between the two slowest tests (present test and Test 1), it
can be noticed that the first dependence is verified, since higher temperature cor-
responds to higher plateau. By comparing our test with Test 2, we can observe that
the combination of a higher room temperature and a smaller loading rate leads to
a nearly similar value of S

50%

. Moreover, we do not have any information on how
the boundary conditions influence the height of the plateau, but they likely play an
important role in determining the value of S

50%

.

44



3.1. Qualitative analysis of the transformation

• Slope of the plateau mload and munload — Usually, stress-strain curves obtained for
strain-controlled transformations show very flat plateaus. This feature can be ex-
plained in two ways. First of all, a strain-controlled test allows a non-monotonicity
in the stress, that can increase or decrease, so that it is possible to obtain very
small average stress variations. Second, strain-controlled tests are often slower
than stress-controlled ones. This implies also less temperature changes that would
affect the transformation stress.
For stress-controlled transformations it is obviously more difficult to provide a flat
plateau, since the stress is monotonically increasing and the increasing rate will
affect the slope of the plateau. This difference can be observed by comparing mload

and munload for Test 2 in Table 3.1: the first one is obtained from a strain-controlled
test and it is clearly smaller than the second one, due to the stress-controlled un-
load. In this context, it is interesting to observe that the plateau we have obtained
by using our stress-controlled device is as flat as the ones obtained for strain-
controlled transformations on the same material. This is due to the quasi-static
conditions we tried to guarantee during the test (whose effect can be also noticed
in the smoothness of the experimental curve) and in general to the slow loading
rate.

• Hysteresis width �S
50%

— The width of the hysteresis loop has been related to
many features of the transformation and of the material. In general, we can say
that the width of the loop is an indication of the dissipated energy [63] (both in the
temperature-controlled case described in section 5.3 and in the stress- or strain-
controlled transformation).
This gives a hint on the relation between the loading rate and the hysteresis width:
when the loading rate is small there is less dissipation so that the hysteresis loop is
smaller and viceversa in the case of fast loading. This is confirmed by our results:
the present test and Test 1 maintain a small hysteresis; on the contrary, Test 2,
which is faster, provides a bigger hysteresis. Moreover, the change in the kind of
loading for Test 2 implies also a non-constant hysteresis width.

Test 2 can be used for a further comparison. Figure 3.3 shows the maps of the ver-
tical strain "

yy

almost at the end of the transformation for both the present test and
Test 2. Before starting the comparison it is important to specify that the slightly hori-
zontal lines that are present in the map for Test 2 are not physical but are due to the data
treatment. In particular, the problem derives from slightly pitch variations that were not
erased by the motion compensation technique we used in the present test (as said at the
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Figure 3.3: Comparison between the present test and Test 2 in terms of longitudinal strain field "
yy

when
the phase transformation has nearly finished (top). Scheme of the boundary conditions in the two cases
(bottom).

end of section 2.2.1). On the other hand, the small dots that can be seen in both images
are due to local grid defects. In this case, the compensation technique helps in limiting
the effect of their presence on the results but cannot erase them.
In both cases, we can notice the presence of residual austenite (blue region in the maps
of Figure 3.3). The main difference between the two experiments can be noted in the
martensitic region. As we already stated in Section 3.1.1, in our case we have a ba-
sically homogeneous vertical strain. This homogeneity cannot be found in the map
corresponding to Test 2, where two different levels of strain are present. On a crystallo-
graphic level, this difference is due to two different martensitic rearrangements. In our
test it is reasonable to suppose the appearance of a single variant of martensite while in
Test 2 we are obtaining a martensite twinning.
The main difference in the two tests that is responsible for this diversity in the results
is in the external constraints. As explained at the beginning of this section, no rotation
was allowed for the specimen in Test 2. On the contrary, the ball joint used in our exper-
iment permits rotations of the specimen. In particular, in the current test it is possible
to obtain a displacement along the horizontal axis at the extremities of the specimen.
To understand how this constrain is related to the appearance of twins or of single vari-
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ables, it is necessary to recall Section 1.2. The phase transition from austenite to any
variant of martensite corresponds to a large shear strain, whose angle is analytically
deducible through the lattice parameters ((1.6)). This implies that having only a variant
of martensite is necessarily related to a rotation of the specimen. In cases for which this
rotation is not possible, as in Test 2, the appearance of another variant of martensite
(for example forming twins) can help restoring uniaxiality.

3.1.3 Time scales and quasi-staticity

After the results shown in the previous section it is possible to make some observa-
tion on the satisfaction of the quasi-staticity assumption.
First of all, there are many time scales that have to be considered when analyzing the
test results:

• time scale of the microscopic events, for which there are some experimental esti-
mates between 10 and 100 µs [71];

• relaxation time, that is the time that the system needs to reach the (metastable)
equilibrium, as introduced in Section 1.3.4. This is the time scale on which we do
not have any information;

• image acquisition time, in our case equal to 8.6 seconds;

• time scale of the loading, as determined by the loading rate detailed in Sec-
tion 2.1.2.

The image acquisition time and the loading rate have been empirically chosen in order
to balance the duration of the experiment and the number of images recorded for the
treatment. The real unknown is the relaxation time: we can only imagine it to be longer
that the time scale of the microscopic events. The quantity that matters for the quasi-
static assumption is the ratio between this microscopic time scale and the loading time
scale, thus unknown.
We can consider several clues both pro and con the satisfaction of the quasi-staticity
assumption.
First of all, we have to consider the big strain jumps that are recorded after the breaks
we needed to save the data, as explained at the beginning of Section 3.1.2. In practice,
we stop the loading for some minute and we record some data before and after this
break: we notice strain jumps with bigger orders of magnitude than for the rest of the
test at the constant loading rate. This jumps can be caused by the combination of several
effects:
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• significant external perturbations could affect the whole experimental device, like
accidentally touching the hanging can or the water pipes and so on;

• creeping of the material [58];

• the loading rate is not slow enough to make the material reach its (metastable)
equilibrium, so that the transformation keeps on progressing with further loading.

The last point would be a clear hint of lack of quasi-staticity, but we obviously do not
have any clear information on what really happens.
On the other hand, the comparison between our test and Test 1 and Test 2 as described
in Section 3.1.2 provides hints in favour of the quasi-staticity of the process. Actually,
the width of the hysteresis seems to be the same as for a faster test, Test 1, though we
should consider further differences in the testing conditions (boundary conditions and
room temperature). Furthermore, the plateau is shown to be very flat when compared
even to strain-controlled tests.
At this level, we do not have enough information to prove that the process is quasi-
static and further experimental tests should be performed. As an example, it would be
interesting to test the specimen in the same conditions and varying only the loading
rates until convergence of the hysteresis loop.
It is interesting to underline that an intermittent behavior on the microscopic scale can
be easily related to a quasi-static and rate-indipendent behavior on the macroscopic
scale, as explained in [77]. Basically, in an intermittent process the overall dissipation
of the system is due to the microscopic bursts that characterize the advancement of the
process. A suitable scaling of the number of these events allows the rate-indipendency
and the quasi-staticity of the whole final process.

3.1.4 Temporal analysis along longitudinal profiles

In order to start analyzing the big amount of data we have, let us start decomposing
the spatial information and focusing on the evolution of three profiles. In particular, let
us indicate by P1, P2 and P3 the vertical sections shown in Figure 3.4 on the vertical
strain component map. For each profile, it is possible to show the evolution in time of
the strain.
In Figure 3.5 there is the three-dimensional plot of this evolution during only the load-
ing phase for section P2 (on one axis there is time, on the other one the vertical com-
ponent and the height of the plot indicates the strain). By looking at this plot, it is
immediately clear that the transformation occurs on a time lapse which is quite small
when compared to the whole duration of the loading phase. In particular, the plateau

48



3.1. Qualitative analysis of the transformation

P1 P2 P3

Figure 3.4: Position of the profiles P1, P2 and P3 used for Figures 3.5 and 3.6.

starts at about 14 hours from the beginning of the experiment and ends more or less 5
hours later (less than the 24% of the overall 21-hour load). Moreover, the transformation
does not take place homogeneously, neither in space or in time, as it is made clear by
figures 3.6 and in agreement with other experimental results [87]. As will be explained
in Section 5.4.2, this is one of the reasons why the numerical curve in Figure 5.10 will
not exactly fit the experimental stress-strain curve, since the homogeneity condition of
the model is clearly unsatisfied by the transformation.
Figure 3.6 shows the two-dimensional view of the strain profile in Figure 3.5 together

with the plot for the sections P1 and P3 and strain profiles corresponding to some fixed
times. These plots provide a qualitative idea of how the transformation happens. Firstly,
martensite appears along inclined lines (visible in the maps of Figure 3.2), whose trace
in the profiles is a localized appearance of strain and that we call needles of martensite.
They can both appear on one side of the specimen or abruptly cross the whole width
(see profiles for t = 15h). These needles enlarge and merge, creating larger bands of
martensite, while other small needles keep on appearing in other zones of the specimen
(t = 16.5h). At the end of the loading phase the martensite has quite completely filled
the whole specimen (t = 18.5h).
As for the spatial information, the transformation seems to start at the middle of the
specimen, then moving towards the bottom and from left to right (from P1 to P3). Af-
terwards, it starts proceeding towards the top and from right to left. The part of material
close to the fixed grip is the last one to transform. Moreover, there is an entire zone,
just under the constrained end of the specimen, that remains austenitic, as already said

49



Chapter 3. Description of the Martensitic Transformation

"yy

Figure 3.5: Three-dimensional plot of the vertical profiles corresponding to section P2 in figure 3.4
versus time.

in Section 3.1.2.

3.1.5 Loading versus unloading and beginning of the transformation

Let us focus now on the differences and analogies between the loading phase and
the unloading one.
We already detailed the stress rates for loading and unloading, the durations of these
two phases and of the corresponding plateaus in table 3.1 of Section 3.1.2. It is clear
that from the experimental point of view the two parts of the experiment are actually
akin. On the other hand, figure 3.7 shows the evolution of the strain profiles for section
P2 (see Figure 3.4). The results are evidently asymmetric, though it is interesting to
notice that the first part of the specimen that goes back to austenite is actually the last
part that transformed into martensite (and viceversa).

In the same figure there is a focus on the first part of the evolution of "
yy

. Though
the actual transformation is really fast with respect to the whole experiment, as pointed
out by figure 3.5, it is interesting to notice that very small events occur already at the
beginning of the experiment. The observation of the scales at which these events arise
([0, 10�2

] versus [0, 10�1

] for the plateau), justifies the decision to focus only on the
plateau for the rest of the analysis. At the same time, it is a good evidence of the reso-
lution that the grid method can provide.
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Figure 3.6: Two-dimensional view of figure 3.5 and sample strain profiles at fixed times.
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Figure 3.7: Longitudinal strain profile versus time for the total transformation, both loading and unload-
ing phase, corresponding to section P2 in Figure 3.4, together with profile samples for unloading and
loading. At the upper left corner there is same evolution in the time interval between the beginning and
the 14th hour of experiment with a different strain scale, in order to show the first transformation events.
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3.2 Characterization of the Transformation

In this section we try to deduce the kind of microstructure appearing during the
transformation through the macroscopic information that are provided by our data. We
start by checking whether one or more variants of martensite appear and we continue by
isolating some favorite variants among the possible twelve choices for the monoclinic
transformation.
Afterwards, we analyze some quantities that can be computed from our data: the num-
ber of martensite stripes and their average width, the percentage of martensite and its
variation, and the variation of longitudinal vertical strain for a pixel.

3.2.1 Number of martensite variants

The first thing that we can try to determine is whether there are different variants
of martensite or not. A simple way to answer this question consists in looking at the
different values of strain that appear during the transformation.
Figure 3.8 shows the distribution in time of the number of pixels in "

xx

and "
yy

. At
the very beginning of the plateau (map 1) all the pixels have ("

xx

, "
yy

) = (0, 0) since
the specimen is in the austenitic phase. The initial elastic deformation undergone by
the specimen is such that the pixels are distributed in a left neighborhood of (0, 0)

(map 2). By proceeding with the transformation, some of the pixels start showing non-
zero strains. At the end, all the pixels end around a unique non-zero value of the couple
("

xx

, "
yy

) (maps 7, 8 and 9). The eventual concentration of all the pixels in a point of the
map indicates the presence of a single variant of martensite, since it means that all the
transformed pixels have the same strain. Conversely, in case of more than one variant
we would see more different attractors for the pixels in the ("

xx

, "
yy

) maps.

3.2.2 Selection of the martensite variant

In Section 3.2.1 we stated that in our test it is reasonable to suppose the appearance
of a single variant of martensite. We thus try to identify this variant, or at least to reduce
the choice among the twelve possibilities of the cubic to monoclinic transformation.
The different Bain matrices for the twelve variants of martensite are listed at the be-
ginning of Section 2.1.1. It is straightforward to check that the compatibility condition
(1.7) in Section 1.2.4 is satisfied by each variant, since it is �
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) for i = 1, . . . , 12 (we recall that �
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) is the j-th ordered eigenvalue of the
i-th variant of martensite). Thus, it is possible to use the result 1.2.2 to compute a
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and Q
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with  = ±1 characterizing the combination of austenite with each martensitic
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Figure 3.8: Strain clustering in the sample during the forward transformation from austenite to martensite.
Snapshots for selected growing values of the average strain "

yy

are shown. The color bar indicates the
percentage of pixels with the given strain values, with a grid pitch on the ("

xx

, "
yy

) strain plane equal to
(0.005, 0.0073).
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variant (we recall that there are two possible solutions for each variant). In particular,
the main information is in the vector n̂

i

that is related to the interface between austenite
and martensite.
We can also compute a theoretical estimate of the strain components. Let us notice
that, though we have two different deformation gradients F 

i

= Q

i

U
i

for each variant,
there is no dependence on the rotation Q

i

when computing the strain, because of the
product F TF . Actually, during our test we are dealing with linearized strains that
a-priori depend on Q

i

but it can be shown that this dependence is negligible on a first
order approximation. For simplicity, we thus consider a unique solution for the strain,
for example by using Q

i

= Q+1

i

and by computing F
i

= Q
i

U
i

and its linear strain
"
i

= 1/2(F T

+ F )� I .
Moreover, we can also provide some information about the interface between the
austenitic zone and the martensitic one. Actually, as explained in Section 1.2.3, vector
n̂

i

corresponds to the normal direction to the habit plane, that is the undeformed plane
that divides austenite and martensite.
It is important to underline that all the theoretical results we have obtained from the
resolution of the twinning equation are referred to the cubic austenitic lattice vectors.
In order to compare our results with the experimental ones we have to refer everything
to the specimen axes. We gave in Section 2.1.1 the rotation matrix R that relates the
crystal axes with the specimen ones, as
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are the austenite lattice vectors. Thus we can write
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j

=

P

i

R
ji

n̂
i

, so that ñ

= Rn̂ is the normal to the habit plane referred to
the specimen axes.
Analogously, we can transform the strain matrix and obtain

"̃
i

= R"
i

RT .

Eventually, since the interface we can experimentally see is a line in the (x.y) plane
because we have two-dimensional maps, we have to project the habit plane. Its equation
becomes

ñ
2

x+ ñ
3

y = C.
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This means that the angles between the horizontal axis x and the interface can be com-
puted as

✓ = � arctan

✓

ñ
2

ñ
3

◆

+ n⇡, n 2 Z.

All of these theoretical information can be compared with the same experimental quan-
tities. In Figure 3.9 we show two vertical strain maps showing the two angles formed
by the interfaces between austenite and martensite. The map on the left corresponds
to the loading phase while the map on the right corresponds to the unloading phase.
During the loading phase we can detect only one angle since all the interfaces have
the same slope, while during the unloading a second angle appears. By linearly fitting
the interfaces in Figure 3.9, we obtain the experimental estimates for the two angles
✓+1

exp = �25 degrees and ✓�1

exp = 30 degrees more or less. Moreover, we can estimate
a value for the linear strain components in the martensitic regions by averaging over a
zone that is already transformed.
Table 3.2 shows the estimates for the strain components and the angle ✓ for each choice
of the variant, together with the experimental estimates of the same quantities. By com-
paring the different quantities we are able to select at least four variants that seem to
be likely to appear but it is seems not possible to guess which variant is favorite among
these four.

Figure 3.9: Interfaces between martensite and austenite for two fixed times, t = 15.6 h (left) and t = 40.6

h (right).

3.2.3 Number of martensite stripes

After the crystallographic guess of the previous section, it is possible to proceed
with a deeper analysis of the appearance and development of martensite.
Let us focus on the central vertical section P2 in Figure 3.4. Figure 3.10 shows the
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Table 3.2: Strain component and interface slope estimates for the twelve variants of the cubic-to-
monoclinic transformation. On top, the experimental estimates for the same quantities. In bold, the four
variants of martensite that appear to be closer to the experimental values.

"
yy

"
xx

"
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✓+1 ✓�1

Experimental 0.0913 -0.0387 -0.0126 �25

�
30

�

Var. 1 0,003 -0,006 -0,010 83

�
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�

Var. 2 0,010 -0,010 0,019 �75
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Var. 3 0,074 -0,034 -0,027 �22� 44�

Var.4 0,082 -0,044 0,005 �38� 28�
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�
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Var. 10 0,076 -0,047 -0,033 �25� 48�

Var. 11 0,006 -0,015 0,009 33
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Var. 12 0,004 -0,011 -0,022 �13

�
83
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evolution of the number of stripes of martensite and their average width in correspon-
dence to this section. In order to compute this number, we firstly put a threshold on the
strain value and consider as martensitic all the pixels that are above the threshold and
as austenitic the under threshold ones. We chose a threshold ⌧ = 0.05, i.e. the middle
value between austenite and martensite. This is the same kind of procedure that we used
for the computation of the percentage of martensite in the next section, where we also
detail the influence of the choice of the threshold on the results.
Once we distinguish between austenitic zones and martensitic ones, we just count how
many martensite bands we find along the vertical section P2. We focus on the plateau,
so on the time interval between the thirteenth and the eighteenth hour of experiment. At
the beginning of the plateau, no stripe is counted. There is actually some microscopical
phase change but it cannot be detected as an actual stripe of martensite (see section
3.1.5 referring to the beginning of the transformation).
Afterwards, the transformation proceeds through both the creation of new needles and
the enlargement of previously existing martensitic stripes. From the snapshot corre-
sponding to t = 14.60 h on top of Figure 3.10 we observe the presence of many small
needles. The evolution of these needles proceeds by enlarging and merging while other
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Figure 3.10: Number of stripes (top) and average width of the stripes (bottom, in pixels) versus time.
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needles appear on the sides of the specimen. For t = 15.35 h just two big stripes
are counted. Similarly, further merging and needle appearances lead to the map for
t = 16.25 h: many stripes are counted, some of them are small needles just appeared
next to a big one that keeps on enlarging. At the end of the transformation, just a unique
big zone of martensite is present.

At the bottom of Figure 3.10 we show the average width of the martensitic stripes.
The width of each martensite stripe is computed by using the information about the
direction of the interfaces between austenite and martensite during loading (when it
is practically constant and characterized by ✓+1). We easily compute the width of the
stripe along the vertical direction, thus it is necessary to multiply by cos(✓+1

) to find
the actual width of the stripe.

Just like the subplot that shows the number of stripes, the plot of the average width
shows vertical jumps in both directions, upwards and downwards. The sudden rises
correspond to the merging of two or more stripes in bigger ones, so they are related
to downward jumps in the number of stripes. On the other hand, a drop in the average
width can be explained by the appearance of new small needles of martensite, whose
small dimension lowers the mean value. It is the case of point A and B. Immediately
before point A, there is only a big stripe of martensite. Point A corresponds to the ap-
pearance of a small needle of martensite, so that the number of stripes increases while
the average width decreases. The two zones merge in correspondance to point B, so
that we obtain the unique big final stripe.

3.2.4 Percentage of martensite

An interesting quantity that can be easily computed is the volume fraction of marten-
site, denoted by ⌫. Like in the previous section, we fix a threshold ⌧ and for each image
we detect the number of pixels that are above this threshold. The ratio between this
number and the total number of pixels provides the martensitic volume fraction for that
image.
Figure 3.11 shows the behavior of the percentage of martensite during the loading phase
for different choices of the threshold, from ⌧ = 0.01 to ⌧ = 0.9 (we recall the mean
value in the martensitic zone is 0.0914). As expected, we have slightly different be-
haviors when the threshold is particularly high or low, since we are considering not
enough or too much martensite, but we have a qualitatively equal behavior for thresh-
olds ⌧ 2 [0.3, 0.7]. Thus, we chose ⌧ = 0.05, which is about half of the maximum
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Figure 3.11: Martensite volume fraction ⌫ versus time during loading for different values of the threshold
⌧ .

local strain, assuming that it allows us to cut out the elastic deformations both in the
austenitic phase and in martensitic one.

A further check on the choice of ⌧ can be done by considering an estimate the error
made during the computation of ⌫. As explained in Section 2.2.2, the grid method has a
certain resolution that we have to take into account. Since the resolution for each strain
map is computed to be 5.2 ⇥ 10

�5 and by using the usual three-� rule, we compute
the percentage of pixels in the range [⌧ � 1.6⇥ 10

�4, ⌧ + 1.6⇥ 10

�4

] for each image.
The mean of this percentage provides a (pessimistic) estimate of the error on ⌫ due to
the strain resolution. Figure 3.12 shows the behavior of this estimate during the loading
phase for different choices of ⌧ . It is straightforward to notice that the absolute error can
be consider constant for ⌧ 2 [0.03, 0.07]. This plot actually proves that the percentage
of points around the threshold is determined only by the strain resolution and not by
elastic movements around the austenitic well or the martensitic one.
Figure 3.13 shows the behavior of ⌫ during the plateaus of the loading and unloading
phases for ⌧ = 0.05. It is particularly interesting to notice that the maximum value of
⌫ is around 0.9 (and does not reach 1 for all the thresholds under 0.8). The fact that the
martensite does not cover the total volume, as we clearly see also in Figure 3.2 and 3.3,
has different causes.
On one hand, there are the reasons that are related to the features of the test. First, the
presence of the grips constrains the material in such a way that it is likely inconvenient
to transform all the volume. Second, the specimen has already been used for other tests.
This implies that there can be defects or freezed austenite nuclei that foster the residual
austenite instead of the appearance of martensite. The effect of pre-existing nuclei on
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error

⌧

Figure 3.12: Error on the estimate of ⌫ during loading for different values of ⌧ .

⌫

stress (MPa)

unloading

loading

Figure 3.13: Hysteresis in the martensite volume fraction ⌫ versus stress during loading and unloading
for ⌧ = 0.05.
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�⌫

stress (MPa)

Figure 3.14: Variation of the martensitic volume fraction between consecutive images �⌫ versus stress
during loading (red), and unloading (black).

the transformation is already been studied [39] and has to be taken into account above
all when dealing with cyclical transformations [95].
On the other hand, there are causes that are associated to the treatment of our data.
Actually, all the strain maps are built by difference with a reference configuration and
it is possible to have some zones in this reference configuration that are not completely
austenitic. The presence of martensite can be due both to the residual defects or nu-
clei in the specimen due to previous tests and to the pre-load of 34.37MPa applied to
skip part of the elastic initial deformation, as explained in Section 2.1.2. Obviously, we
selected a suitable pre-load in order to avoid this problem, but we cannot completely
exclude it. The consequence of all this reasoning is that there exist zones where the
strain is equal to zero but in which the specimen is in the martensitic phase. This is due
to a subtraction with something that was already martensitic in the reference configu-
ration.
The other feature that is interesting to underline in Figure 3.13 is that the overall behav-
ior of the volume fraction seems to be continuous at the time-scale of the test. Actually,
we can find a first indication of intermittent behavior in the transformation by looking
at the variation �⌫ of the martensite percentage, shown in Figure 3.14. It is important
to underline that �⌫ is not the derivative of the percentage ⌫ but its variation between
consecutive images. We immediately notice that it shows a spiky behavior despite the
monotonicity of the loading and of ⌫. A statistical analysis of this signal is discussed in
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Section 4.1.1.
Moreover, �⌫ shows again the asymmetry between the loading phase and the unload-
ing one as introduced in Section 3.1.5. It is possible to observe that the appearance of
martensite is concentrated above all in the first part of the plateau during the loading
while its nucleation rate is slower when proceeding along the plateau. Conversely, the
unloading phase shows lower transformation rates at the beginning and at the end of the
plateau while the main part of the martensite disappearance corresponds to the center
of the plateau.

3.2.5 Longitudinal strain variation

The martensitic volume fraction ⌫ and its variation are a global kind of information.
Actually, we have further and more detailed data on the transformation since we have
two-dimensional data for each instant, not only a global value for each map.
In Figure 3.15 we show the variation of the vertical longitudinal strain increment �"

yy

(computed between consecutive images) corresponding to the central section of the
specimen indicated by P2 in Figure 3.4. In the central panel there is the overall strain
variation while under it there are two panels showing the profiles of �"

yy

for two pixels
p1 and p2, always corresponding to the mid-section P2. The biggest events in the main
panel have an order of magnitude equal to 2⇥ 10

�3 but the scale in all panels is limited
to 5⇥ 10

�4 in order to provide a better idea of the bursty evolution.
It is interesting to notice that the span of the vertical strain variation is more of less of
one order of magnitude but above all the maximum variation is smaller than the value
of the strain in the martensite with respect to the austenite. In theory, the crystal should
transform locally from austenite to martensite so the allowed values should be just zero
or the one corresponding to the martensite variant. In practice, we have to deal with
the spatial resolution of the method so that the strain value for each pixel is an average
of the strain of the microstructure underneath. The consequence is that we do not see
abrupt jumps from zero to more or less 0.9 but a wide range of small variations.

This figure gives us an idea of the possible presence of intermittency in the transfor-
mation and of the kind of data that we have to analyze it. Indeed, the evolution shown in
Figure 3.15 examines a single vertical section of the specimen while we actually have
to take into account for the whole width, as we shall do in the following chapter when
dealing with the statistical analysis.
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Chapter 3. Description of the Martensitic Transformation

Figure 3.15: (Color online) Variation in time of the increments �"
yy

evaluated at each subsequent image
at two pixels p1 and p2 in the mid-section of the sample. The time interval is [13 h; 18 h], where most of
the phase transformation occurred during loading.
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3.3 Conclusions

In this chapter we show some of the analysis that it is possible to perform on our
strain maps. We are able to obtain some classical results for SMAs, like the stress vs
strain curve, that allow us to compare our device with classical testing machines.
Moreover, we can deduce some information on the quantity of martensite variants ap-
pearing during our transformation and compare the experimental data with some the-
oretical estimates in order to select some favorite variants. In this context, it would be
useful to have a microscopical mathematical model that would provide further infor-
mation on the preferred variant.
The richness of our data also allows us to analyze different aspects of the martensitic
transformation. We can compare the loading phase and the unloading one, we can es-
timate the number of martensite stripes appearing during the transformation but above
all we can deduce some signals like the variation of the martensite percentage or of the
vertical strain. These signals provide the first hints of the presence of intermittency in
our transformation and are the starting point for the analysis in the following chapter.
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CHAPTER4
Intermittency

In this chapter we characterize the martensitic transformation in our sample from
a statistical viewpoint. We first analyze some aspects of intermittency in the collected
data, as in the evolution of the martensite phase fraction and of the vertical strain. We
then determine the strain avalanches in our two-dimensional strain maps and analyze
some of their statistical properties.

We will see that the progress of the phase change is characterized by heavy-tailed
probability distributions for a number of relevant quantities, i.e. distributions whose
decay is not exponentially bounded. An important example of the latter is the power-
law distribution,

P (X) = X�↵. (4.1)

As such a law cannot hold for all X , a typical power-law behavior in the data is char-
acterized by the exponent ↵ but also by the logarithmic width of the interval in which
it describes the phenomenon of interest (that is the number of orders of magnitude for
which equation (4.1) describes reasonably well the data collected for the variable X).
Among the heavy tailed distributions, power laws are especially remarkable because a
change of scale in X just implies a multiplication by a factor while the exponent re-

67



Chapter 4. Intermittency

mains the same. Furthermore, power law behavior is thus often associated to the prox-
imity of the given system to a critical point.
We follow the usual practice and plot heavy-tailed distributions in a logarithmic scale
on both axes, so that power laws are described by straight log-log plots whose slope
corresponds to the exponent ↵.
Martensitic transformations exhibit a classical hysteresis loop such as the one in Fig-
ure 3.2. However, they have also been found to display intermittency and self-similarity
in their acoustic emission [16, 24, 43, 66–68, 100–102]. Previous attempts to deduce
some spatial information on the progress of the martensitic transformation has also
been based on acoustic emission techniques, for example by coupling more than one
sensor [102]. Other techniques, such as optical observations [49,68] or calorimetry [16],
have also given partial information on the spatial distribution of the intermittency. The
present experiment not only confirms the macroscopic results for the hysteretic stress-
strain relation in SMAs, but also highlights how the transition progresses through in-
termittent strain events under the monotonic stress-driven loading, which we analyze
quantitatively here for the first time.

4.0.1 Intermittency and the energy landscape

The presence of intermittency is strictly linked to the shape of the energy land-
scape. Shape Memory Alloys are characterized by a non-convex energy, so that the
free energy density functions built in the mathematical models are non-convex in the
strain variables and the analytical tools usually used derive from non-convex analysis
( [14, 61, 62]). Models that take into account the interesting energetic landscape for
shape-memory alloys have already been built, like phase-field models [25,34,103,105]
or automaton models [40, 76, 78]. As suggested in the conclusions, this is the kind of
model that could reproduce intermittency in the process, exactly because it recreates
the complex energy landscape.
For simplicity, let us suppose to be at the transition temperature for which austenite and
martensite are energetically equivalent. Locally, the energy is as sketched in the mid-
dle of Figure 1.4 in Section 1.2.2: it is a non-convex energy with a number of minima
equal to N + 1, where N is the number of martensite variants. On the global level,
it is necessary to introduce the idea of Ericksen-Pitteri neighbors [29, 75]. Shortly, an
Ericksen-Pitteri neighbor includes lattices that are identical to the original lattice but
that have been obtained through a certain number of slips. As explained in Section 1.2
with Figure 1.3, a slip in the lattice, and thus the jump to an Ericksen-Pitteri neighbor,
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implies the appearance of dislocations in the finite crystal. The final result is that the
energy landscape is composed by an infinite number of wells, obtained by periodically
repeating the local structure with N + 1 minima. This kind of description keeps on
holding when the temperature is higher or lower than the transition temperature, since
it is only the number of minima in the local structure that changes.
Thus, the main features for the SMA energy are non-convexity and the presence of
many metastable minima (see Section 1.2.1 for the definition of metastability), that are
separated by different energy barriers. Moreover, the whole energetic landscape can be
easily modified by varying the external load or the temperature: this kind of changes
can affect the number of minima, the stability of the configurations and the height of the
barriers between the minima. The consequence of this kind of structure is that the evo-
lution of the system can be non-continuous: the system remains pinned in a minimum
until there is enough energy to jump to another energy well (from austenite to marten-
site or viceversa or among different Ericksen-Pitteri neighbors). By consequence, an
intermittent behavior can arise since a single point of the system stays still in a well,
while it stores the energy to overcome the barriers between the minima or until the
energy landscape is modified by a change in load or temperature, and then suddenly
jumps. The jump of one point can cause the jumps of other points of the system to-
wards other minima, thus producing a so-called avalanche.

4.1 Some Intermittent Behaviors in the Experimental Results

In this section we analyze the probability distribution function of the martensite
variation and of the vertical strain variation that we introduced in Sections 3.2.4 and
3.2.5.

4.1.1 Variation of the percentage of martensite

We have already seen in Section 3.2.4 that the percentage of martensite is a good
example of quantity that seems to be quite smooth and continuous when macroscopi-
cally observed but shows a spiky behavior in its variation. Thus, it can be interesting to
study the variation �⌫ from a statistical point of view.
Figure 4.1 shows the empirical probability distribution function of the absolute value
of the martensite variation, |�⌫|, in a logarithmic scale: on the horizontal axis there is
a logarithmic binning of the martensite variation values while on the vertical axis there
is the frequency of each of these bins.
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P (�⌫)

�⌫ �⌫

Figure 4.1: Log-log plots of the pdf of the absolute value of the martensite variation during loading (left)
and unloading (right).

Both plots show how the martensite variation |�⌫| spans over a range of about two
decades, giving heavy-tailed distributions which are not power laws.

The same kind of analysis can be done on a quantity that is basically the same as
the martensite percentage, that is the average vertical strain "

yy

. Its behavior in time
is already shown in the stress-strain curve in Figure 3.2, since stress and time are pro-
portional, while its variation is plotted in Figure 4.2. The spiky behavior suggests the
presence of intermittency that is translated in a heavy-tailed distribution, shown in Fig-
ure 4.3, that is anyway far from being a power-law.
Moreover, both the variation of the martensite percentage �⌫ and of the average vertical
strain �"

yy

are clearly different in different parts of the transformation. This behavior
is a hint of the non-stationarity of the process, that we will analyze in Section 4.3.4.

4.1.2 Variation of the longitudinal strain

As for the martensite percentage, the average strain "
yy

merges many events into a
global information, so that it is not suitable for a good statistical analysis.
On the other hand, another quantity that we showed in the previous chapter, in Sec-
tion 3.2.4, is the variation of the vertical strain, �"

yy

.
We previously showed the behavior in time of �"

yy

for only two pixels, but we obvi-
ously have this information for many more pixels (around 3⇥10

5 pixels for each image).
By focusing only on the plateaus, that is more than 4000 images between loading and
unloading, we thus have a good amount of points to consider for some statistics. Actu-
ally, of all these values of �"

yy

we select the ones above a threshold equal to 4⇥ 10

�4

in order to cut out the experimental noise. The necessity of a threshold and the choice
of its value is better detailed later in Section 4.2.2.
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Figure 4.2: Evolution of the average vertical strain variation between consecutive images �"
yy

during
loading (left), and unloading (right).

P (�"
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)

�"
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�"
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Figure 4.3: Log-log plots of the probability distribution function of the average vertical strain variation
�"

yy

during loading (left) and unloading (right).
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Figure 4.4 shows the logarithmic plot of the probability distribution function of �"
yy

for all the pixels in which it is bigger than the threshold and along both the loading and
unloading plateaus.

P (�✏yy)

Figure 4.4: Log-log plot of the probability distribution function of the vertical strain variation �"
yy

during loading (squares) and the unloading (crosses).

We see that the values of the vertical strain variations �"
yy

span about an order
of magnitude both on loading and unloading, with the biggest events below the usual
deformation value of the martensite, as explained in Section 3.2.5. The corresponding
probability distributions are heavy-tailed, but we are looking at a measure of the strain
events that is in a sense too localized, as here we are considering the strain variation
at the level of single pixels with no interaction among them. We conjecture this is the
reason for the severe cutoff that we observe in these strain data. A better analysis of
the strain events must properly take into account the full extent of such events, i.e. of
the strain avalanches that mark the progress of the transformation. From the analyzed
behavior of �"

yy

and �"
yy

we expect such avalanches to span several orders of mag-
nitude in size, with, possibly, a distribution which is rather close to a power law, as
indicated by the acoustic emission data.

4.2 Avalanche Detection

In this section we define the strain avalanches and describe how we detect them in
our data.
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4.2.1 Detection algorithm

In order to take into account all the strain components, we consider the norm of the
strain variation between consecutive images, that is

||�"|| =
q

�"2
yy

+�"2
xx

+ 2�"2
xy

.

This gives a scalar value for each pixel and time, for which we consider a threshold ⌘
that cuts out the noise, whose choice is detailed below in Section 4.2.2. For each fixed
time, we then define an avalanche as a connected set of pixels whose value ||�"|| is
above threshold.
The detection of each avalanche thus requires the following steps:

1. we select the point P in the map where ||�"|| is maximum;

2. if ||�"(P )|| < ⌘, we stop. Otherwise

• we create a list of the pixels that are involved in this avalanche and we put
P in it, while setting ||�"(P )|| = 0 to avoid multiple counting of the same
pixel;

• we check each neighbor of each point on the list and if its ||�"|| is bigger
than ⌘ we put it in the list and we nullify its ||�"||;

• we continue this check until there are no points in the list (all the points
involved in the avalanche have been recorded, without double counting);

3. we return to number 1.

As the time scale of our image collection (8.6 seconds) is much larger than the known
time of avalanche evolution in SMAs, we do not consider the possible evolution in time
of the strain avalanches detected as described above.

Figure 4.5 provides a visual evidence of the intermittent behavior of the transfor-
mation, with avalanches of different sizes. On the left there are two maps of ||�"||
corresponding to two different times (quite close, 14 hours and 49 minutes on top and
14 hours and 51 minutes below): they are blurred because of the noise and it is not
easy to distinguish the avalanches, though it is possible to notice that the events have
different intensities. On the right we put the threshold ⌘ on the ||�"|| maps: the blue
pixels are the ones with ||�"|| < ⌘ while for the red ones we have ||�"|| > ⌘. Such
noise thresholding highlights the strain events in a much clearer and sharper way.

4.2.2 Choice of the threshold

In Section 2.2.2 we provided an estimate for the experimental noise in our data, with
a final value for the noise standard deviation � = 5.2 · 10�5.
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Figure 4.5: Examples of maps of the strain variation norm (left) and the same maps after putting a
threshold ⌘ = 4⇥ 10

�4 (right).
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In order to correctly cut out the noise, we have to pay attention to the quantity that
we are considering. First of all, � is simply the standard deviation, so it has to be
multiplied by three if we want to be quite confident in avoiding the noise (by using
the usual three-� rule). Thus, the value 3� would be the minimum noise threshold to
choose when dealing with only a component of the strain.
In our case, the use of ||�"|| implies firstly a difference between two maps and then
a function of three different components. Thus, it is necessary to make the following
considerations for an estimate of the noise for the norm of the strain variation.

• Noise in the strain variation maps. Usually, when making the difference between
quantities q

1

and q
2

with errors e
1

and e
2

, the result is affected by a bigger error
obtained as the sum e

1

+ e
2

. This relation holds when q
1

and q
2

are independent
between each other, that is not true in our case. Indeed, each strain map is already
obtained through a difference with respect to the same reference configuration,
according to equation (2.2). The noise standard deviation � that we compute for
each map thus includes the noise of the reference configuration and the own er-
ror of the current strain. When we make the difference between the maps at two
consecutive times, let us say t and t + 1, the part of the noise corresponding to
the reference configuration is compensated. Thus, we can assume to estimate the
noise for the strain variation simply with the noise of the strain map, without any
amplification.

• Noise of the different components. We can assume "
xx

and "
yy

to have the same
noise, since obtained in the same way, while there is some change when deal-
ing with the shear component "

xy

. The reason of this difference comes from the
definition of "

xy

= 1/2(u
x,y

+ u
y,x

), where u
x,y

and u
y,x

are the mixed partial
derivatives of the displacement.
Actually, the computation of the camera sensor noise propagation through Equa-
tion (2.4) provides an estimate that is sensibly the same for the four derivatives
u
x,x

, u
y,y

, u
x,y

and u
y,x

. Since we are adding two of these derivatives, the variance
of the sum is equal to the sum of the single variances. By consequence, the stan-
dard deviation of (u

x,y

+ u
y,x

), that is the square root of the variance, is computed
as

p
2�. Finally, the definition of the shear strain component requires a division

by 2, so that the standard deviation for "
xy

is equal to �
xy

= 1/2
p
2� = �/

p
2.

• Noise of the square variation. In order to estimate the standard deviation for the
square variation of the strain, we use the following result, known as delta method.
In general, given a quantity X with standard deviation �

X

and another quantity
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Z = f(X), it is possible to compute the standard deviation of Z as

�
Z

= f 0
(X)�

X

,

where X is the mean of X . In our case we would have for example Z = ( �"
yy

)

2

and X = �"
yy

, so that the standard deviation for the square variation is �
yy

2
=

2�"
yy

�.
This estimate depends both on time, since we a-priori have a different �"

yy

for
each image, and on which component of the strain we are considering.
Since we are already working with approximations and estimates, we can solve
the problem of the dependance on time by considering only the mean order of
magnitude of �"

yy

, neglecting particular values that would not have a real im-
portance in this context. In this way, we have �

yy

2
= �

xx

2
= 2 ⇥ 10

�4� and
�
xy

2
=

p
2⇥ 10

�5�.

• Noise of the norm. Eventually, we sum the three square variations, so that we have
to sum the single standard deviations that we have just computed. We thus obtain
�sum ' 4⇥ 10

�4.
At this point, we should apply the just described delta method in order to consider
the square root of the sum. This time it is Z = f(X) =

p
X , thus providing

�
f

=

1

2

p
X
�sum.

Also in this case we have to compute the mean of (�"
yy

)

2

+ (�"
xx

)

2

+ 2(�"2
xy

).
Since it is going to be different for each image as well, we compute its order
of magnitude, that is 10

�8. By doing so, we eventually obtain an estimate of the
standard deviation of the noise on the norm as �

f

= 2� ' 10

�4.

Finally, by applying the usual three-� rule, we obtain a lower bound for our noise
threshold ⌘min = 3�

f

= 3⇥ 10

�4.
All the steps we described actually imply approximations, so that the value we obtained
for �

f

has to be checked by looking at our experimental data. Figure 4.6 shows the map
of the strain variation norm and the corresponding maps with two different values of
the threshold ⌘. It is straightforward to notice that for a ⌘ slightly lower than ⌘min we
obtain more events but the image is blurred, so that we are not able to distinguish real
events from experimental error. On the contrary, for a threshold just above ⌘min we lose
part of the information on the event but the noise disappears.
After these considerations, we eventually chose a threshold ⌘ = 4 ⇥ 10

�4, so that we
are above ⌘min in order to cut out the noise but we are close enough to the limit in order
to catch the most of the information we have on events.
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Figure 4.6: Comparison of the effect of different choices of the threshold ⌘ on the noise. The first image
is the map of the strain variation norm ||�"|| around t = 14.8 h. The second and third map correspond
to ⌘ = 2⇥ 10

�4 and ⌘ = 4⇥ 10

�4, respectively.

4.2.3 Magnitude, size and epicenter

At this point we have recorded which point belongs to which avalanche so that
we can deduce some information on the events. Thus, we define some characteristic
quantities.
First of all, we can introduce the size S , that is the number of pixels involved in each
avalanche V , to be computed as

S =

X

(i,j)2V

1.

Furthermore, we can define a magnitude M of V , by considering

M =

X

(i,j)2V

||�"
(i,j)

||.

Finally, we can try to keep some spatial information by detecting the epicenter of an
avalanche V , defined as

(e
x

, e
y

) s.t. ||�"
(e

x

,e

y

)

|| = max

(i,j)2V
||�"

(i,j)

||,

that is the point of maximum for each event.
Before proceeding with a statical characterization of these avalanches, let us simply

look at the patterns of the signals we obtained.
Figure 4.7 shows the number of avalanches for each image during the transformation
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Figure 4.7: Number of avalanches for each image (black) and total number of avalanches versus time
(red) for loading, on the left, and unloading, on the right.

M

time (h) time (h)

Figure 4.8: Magnitude M versus time during loading (left) and unloading (right).
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S

time (h) time (h)

Figure 4.9: Size S versus time during loading (left) and unloading (right).

M S

avalanches avalanches

Figure 4.10: Magnitude M (left) and size S (right) for each avalanche V during the loading phase.

Figure 4.11: Epicenters of the avalanches during loading (left) and unloading (right).
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(black) and its cumulative sum, that is the total number of avalanches in time. We find
around 7700 avalanches during the loading phase and 5900 for the unloading phase, for
a total amount around 13600. We immediately notice the jerky behavior of the signal
as already found for the other quantities, like ⌫, �"

yy

and �"
yy

. Exactly like for those
quantities, we have another hint of the non-stationarity with which we shall deal in
Section 4.3.4.
Figure 4.8 shows the magnitude of the avalanches of each figure for both loading and
unloading, while Figure 4.9 shows the behavior of the avalanche size in time. These are
the kinds of signals that can be obtained by using acoustic emission or by measuring
the total latent heat, since we consider a unique information for each image. Actually,
we have the underlying information on the single different avalanches. The signals we
statistically analyze are thus represented in Figure 4.10 (only for loading), in which we
do not consider the temporal information.
We also have some spatial information. For example, Figure 4.11 shows the position
in the specimen of all the epicenters for loading (left) and unloading (right). We find
again the characteristic slopes on which we focused in Section 3.2.2 for the selection
of the martensite variant. This result is quite reassuring on the good detection of the
avalanches, since it is related to the martensite needles proceeding across the specimen
along their favorite direction. Moreover, there are no epicenters in the upper part of the
specimen where no martensite appears during all the test.

4.3 Statistical Characterization of the Avalanche

In this section we try to characterize the behavior of our system from a statistical
point of view. First of all, we analyze the relationship between size and magnitude of
avalanches. After that, we provide an estimate of the exponent through the Maximum
Likelihood method. Eventually, we analyze the non-stationarity of our signals.

4.3.1 Conditional distribution of magnitude and size

In one-dimensional measurements we usually do not have the information regarding
both the size of an avalanche and its magnitude, or its energy. Thus, in our case it
becomes interesting to look at the relation between M and S . Figure 4.12 shows the
ratio between magnitude and size, M/S , of an avalanche and the logarithm of its size.
This figure leads to two observations.
First, the points are all distributed above a straight line with positive slope in the semi-
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M
S

S

Figure 4.12: Semi-log plot of the ratio M/S of each avalanche V versus the size S (logarithmic scale
on the horizontal axis), during the loading phase.

log plot. This means that we have a relation of the following type

M
S / ⇢ logS ) M

S / logS⇢, ⇢ >1.

By consequence the only think that we can say is that MS⇢+1 with ⇢ > 0, but we do
not have the possibility to deduce some further information.
Second, the points are vertically spread for certain values of the size. This is due to
the different contribution that each pixel in the avalanche can give to M or S . The
contribution to the size is always equal to 1. Conversely, as regards the magnitude, each
pixel can have a different ||�"|| that can vary within an order of magnitude (as it is
possible to notice from Figure 4.4 for the �"

yy

, which is the main strain component
in our case). This implies that the contribution of each pixel to M is in a range whose
width is around one decade. By consequence, M and S can basically be considered
almost equivalent in our case but they can be substantially different in cases in which
||�"|| has the possibility to vary in wider intervals.

4.3.2 Estimate of the exponent

The quantity that characterizes a power law is obviously the exponent ↵ in the prob-
ability density function introduced in Section ??.
The estimate of this exponent is not so straightforward when dealing with empirical
data, so that we followed the method used in [15, 24, 43, 66, 67] and introduced by
Clauset in [27].
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In general, we analyze a signal that we suppose to be distributed according to

p(x)dx = Cx�↵dx,

where C is a normalization constant. Since this law diverges for x ! 0, we introduce a
lower bound xmin to the power-law. By consequence, we also obtain the expression of
the normalizing constant

C =

↵� 1

x1�↵
min

.

In [27] Clauset provides an expression for the estimate of the exponent ↵ through the
method of maximum likelihood, as follows

↵̂ = 1 + n

"

n

X

i=1

ln

✓

x
i

xmin

◆

#�1

,

where the hat indicates that it is an estimate and x
i

, i = 1, . . . , n are the values of x
bigger than the lower bound xmin. Moreover, there is also an expression for the standard
error on this estimate

�
↵

=

↵̂� 1p
n

.

Since we do not have the information about xmin in our data, the kind of analysis that
is usually performed consists in choosing a set of values for xmin throughout all x and
estimate the exponent for all the values x � xmin. By plotting the behavior of ↵̂ versus
xmin we should find a range of stability for the estimate ↵̂.

4.3.3 Probability distribution of magnitude and size

We can now look at the statistical behavior of the quantities plotted in Figure 4.10,
that is the magnitude and the size of the different avalanches.
Figure 4.13 shows the log-log plot of the probability distribution function of the mag-
nitude M during the transformation (both loading and unloading). We obtain a heavy-
tailed distribution spanning more or less four decades. According to what explained in
Section 4.3.2, let us suppose to have a law of the kind p(M) = M�µ for the magni-
tude and let us compute the estimates µ̂ for different values of Mmin, that we show in
Figure 4.14. Small values of Mmin usually consider also some noise in the distribution,
so that the exponent is slightly smaller than the real one, while for big values of Mmin

the statistic is based on a number of points too small to be reliable. In a certain range of
more than two decades for Mmin,there is a quite constant value of µ that ranges between
1.5 and 1.8. This kind of behavior is not enough to claim the presence of a power-law
distribution but indicates a certain stability of behavior for many scales.
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P (M)

M

Figure 4.13: Log-log plot of the probability distribution function of M for all the avalanches of the
transformation.

µ̂

Mmin

Figure 4.14: Behavior of the estimate µ̂ versus Mmin .
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Analogously, we make the same analysis for the size S , for which we assume the law
p(S) = S��. Thus, Figure 4.15 shows the log-log plot of the probability distribution
function of the size while Figure 4.16 shows the behavior of the exponent estimate ˆ�

versus the lower value Smin. As expected, we can see the same kind of behavior for S

P (S)

S

Figure 4.15: Log-log plot of the probability distribution function of S for all the avalanches of the trans-
formation.

as for the magnitude M, since we stated in Section 4.3.1 that the two quantities can
be considered as equivalent. At the same time, it is possible to notice that the num-
ber of decades in S is slightly smaller than in M where we clearly see four decades.
This is the consequence of ||�"|| spanning over a decade, as explained in Section 4.3.1.

It would be interesting to compare our distributions with the already known ex-
perimental results in shape memory alloys, for example the ones obtained by acoustic
emission measurements. Unluckily, there are two issues that make this comparison dif-
ficult to be made. The first one is that we are analyzing the distribution of magnitude
and size for all the avalanches while in acoustic emission we have a temporal informa-
tion and we do not distinguish among the events taking place in different parts of the
specimen. This issue is easily solvable since it is sufficient to analyze the signals shown
in Figures 4.8 and 4.9, by considering only the dependence on time. The second issue
is that acoustic emission takes into account all the events in the specimen, both within
it and on its surface while we only have the information on the surface. At the moment,
there are no results on the scaling between three-dimensional and two-dimensional in-
termittency, so we cannot compare the different statistical distributions.
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�̂

Smin

Figure 4.16: Behavior of the estimate ˆ� versus Smin .

4.3.4 Non-stationarity

The richness of data allows us to analyze also the non-stationarity of the transfor-
mation that we are testing. An intermittent process is said to be in a stationary state
if its statistical features do not depend on time. It is important to underline that a
non-stationary state is not an indication of non-equilibrium, since the system can be
in equilibrium but still show different features in different moments, thus being non-
stationary. It has been shown, for example in [33] in the case of magnetic intermittency,
that whether there is stationarity or not actually influences the scaling of the avalanche
distributions and provides different exponents.

By looking at the martensite variation or at the strain variation in all the previous
sections, we can already notice that the signals are not uniformly distributed along the
plateau, so that we can easily guess to be in a non-stationary state. The most immediate
way to check if the system is in a stationarity state or not is to analyze the transforma-
tion in small time intervals. Different behaviors in different parts of the transformation
will indicate the lack of stationarity. In order to do this kind of analysis, we divide the
loading and unloading plateaus in three parts each, for a total of six blocks. Figure 4.17
shows the distribution of the avalanche magnitude for the different parts. The different
curves do not collapse on the same heavy-tailed distribution but create a thick overall
distribution. This suggests that each block is actually providing a different kind of con-
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Figure 4.17: Log-log plot of the distributions of the avalanche magnitude M for six different time inter-
vals in the transformation plateaus corresponding to loading (top) and unloading (bottom).

tribution to the final distribution in Figure 4.13.

The non-stationarity of the process is even clearer when comparing the estimates of
the exponents for the distributions. Figure 4.18 shows the behavior of these estimates
for different values of the lower bound Mmin. The differences among the various parts
of the transformation are very easy to see: while for some intervals there is some stabil-
ity in the estimate, for some others there are less decades and a more unstable behavior.

Since we have more than one distribution to compare, we can also provide an in-
dicator of the goodness-of-fit for our empirical data. One of the most known tests in
this sense is the Kolmogorov-Smirnoff test. In general, this test requires an empirical
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Figure 4.18: Estimates of the exponents for the avalanche magnitude M for the different time intervals
during loading (top) and unloading (bottom).
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Figure 4.19: Kolmogorov-Smirnoff statistics for the avalanche magnitude M for the different time inter-
vals during loading (top) and unloading (bottom).
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Given a theoretical cumulative distribution function F (x) = Pr(X  x), the Kolmogorov-
Smirnoff (KS) statistic is defined as

D
n

= sup

x

|F
n

(x)� F (x)|.

This statistic is very useful since it uses the cumulative distribution function so that the
result does not depend on the kind of binning (logarithmic or linear) or on the amplitude
of the bins.
The KS statistic thus provides a distance between the empirical distribution and the
theoretical one. For non-parametrical tests, it is sufficient to compare this statistic with
the quantiles of the Kolmogorov distribution to have a goodness-of-fit indicator. This is
not possible when there is an estimated parameter in the theoretical distribution, like in
our case. The only thing that we can do consists in comparing the KS statistics of the
different parts of the plateaus among them. Figure 4.19 shows exactly the behavior of
the KS statistics when varying Mmin. The distance seems to be comparable for most
of the time intervals, except for the same two blocks (during the unloading) whose
estimated exponent was unstable.

4.4 Conclusions

The global results in Chapter 3 supported the idea of an overall continuous behavior
of the martensitic transformation. In this Chapter, thanks to the quantity and quality of
our data, we managed to go into detail and see how this continuity is actually fictitious:
the transformation occurs through intermittent events at different scales.
The two-dimensionality of the data allowed us to well characterize these events. Thus,
we showed the relation between the magnitude and the size of avalanches. The two
quantities are apparently equivalent since the possible jumps for each pixel of the
avalanche can span for at maximum a decade. More freedom in the strain jumps, for
example in case of plasticity, would provide a bigger difference between magnitude and
size.
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Moreover, we showed that both these quantities follow a heavy-tailed distribution that
can be approximated by a power-law for a good number of decades. An estimate with
the Maximum Likelihood method also shows a quite stable exponent for both the laws.
Finally, we also proved the non-stationarity of our process, by obtaining different prob-
ability distributions for events in different parts of the transformation plateaus.

In conclusion, the combination of a suitable experimental device with a high-resolution
full-field measurement technique allowed us to analyze various aspects (also some
poorly investigated ones) of intermittency in a martensitic transformation.
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CHAPTER5
Macroscopic Modeling of Functional Fatigue

Until this moment, we focused on martensitic transformations without taking into
account that this kind of materials usually shows fatigue and plastic effects. Micro-
scopic models that satisfactorily explain this aspect are not available, yet. For this rea-
son, in this chapter we present a macroscopic theory that focuses on the heart of the
matter of permanent effects in SMAs.

5.1 Souza-Auricchio model

In this section we describe the Souza-Auricchio macroscopic model for SMAs [7,
90], with the plasticity description introduced in [9].

The first assumption of the Souza-Auricchio SMA model is the small-strain (though
not necessarily small displacement) approximation [7, 56]. This conjecture allows for
the use of a linear elastic approximation for the stored energy function. Moreover, we
focus on a quasi-static regime for the microscopic evolution, in the sense of [80, §VI]
as explained in Section 1.3.4. In words, we suppose that the time-scales of the macro-
scopic processes are much slower than the microscopic relaxation times. Moreover, we
suppose the temperature to be homogeneous in the specimen, so that we do not need
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Chapter 5. Macroscopic Modeling of Functional Fatigue

a diffusion equation to be considered in the model. Some further modification to the
model can be done in order to take into account for thermal diffusion [4, 7].

The thermo-mechanical model combines two different levels of evolution. On the
macroscopic level, we consider the strain E, defined in terms of the deformation gra-
dient F as E =

1

2

(F TF � I), where I is the identity tensor. We further take into
account the spherical and deviatoric parts of E by considering E = e +

1

3

E I , with
E = trE. Analogously, we use the Piola-Kirchhoff stress tensor S and its decomposi-
tion S = s+

1

3

S I , with S = trS

On the microscopic level, we introduce the transformation strain tensor etr and the func-
tional fatigue tensor q.
As regards the transformation strain tensor, it describes the martensitic microstructural
transformation. In particular, its zero-value corresponds to complete austenitic phase,
while a non-zero value indicates the presence of martensite. This martensite can be the
combination of different variants, since we are not introducing any kind of information
on its microstructural features. The aim is to model a multi-grain material, such that
in every point it is possible to have several small grains with martensite variants that
can be different among them. This approximation we introduced is not necessary in the
original model, that can also be used to study non-homogeneity by considering a field
of microscopic variables etr and q.
Moreover, we assume the homogeneity of the material, i.e. we focus on a non-zero nat-
ural strain induced by the micro structural transformation, without taking into account
for a spatial information within the specimen. In this sense, the transformation strain
can be considered as equivalent to the volume fraction of martensite, that is a classical
internal variable for this kind of models, like in the State-Kinetic coupling theory from
Lemaitre and Marquis [57].
Furthermore, several experimental results exhibit small or negligible volume variations
in most martensitic transitions [18]. In our case, to focus on isochoric microscopical
transformations means to consider etr to be traceless. In order to understand this rela-
tion, let us introduce Ftr such that etr =

1

2

(F T

tr Ftr � I). Now, let us suppose to have a
small etr, that is Ftr = I + V where |V | = ✏ ⌧ 1, and let us consider an isochoric
deformation such that det(Ftr) = 1. The first assumption implies

etr =
1

2

(V T

+ V + o(✏)) ) tr(etr) = trV .

As a consequence of the Jacobi’s formula for the derivation of the determinant of a
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5.1. Souza-Auricchio model

matrix, it holds

det(A+X)� det(A) = det(A)tr(A�1X) + o(").

If we substitute A = I and X = ✏V in the previous approximation, we obtain

det(F T

tr Ftr) = 1 = 1 + V + o(") ) tr(V ) = o("),

thus relating the absence of volume change with a null trace for etr (on a first order ap-
proximation). In any case, an adaptation to non-isochoric transformation can be easily
obtained if the transformation dilation coefficient is provided.
As regards the functional fatigue q, it can be seen as a measure of the microscopical
plasticity induced by both macro and micro stresses.

These constitutive elements, together with the absolute temperature T , are related
through the following expression of the Helmholtz potential density

 (E, etr, q;T ) =
1

2

KE2 � 3KE↵(T � T
0

) +G |e� etr|2

+ � hT �Mfi |etr � q|+ 1

2

h |etr � q|2 + 1

2

H |q|2 + IEtr(etr),
(5.1)

where ↵ (not explicitly included in [9], but present in [7]) is the thermal expansion
coefficient, while K and G are respectively the bulk and shear modulus.

Let us analyze the different terms in the energy density, by keeping in mind that the
equilibrium state of our continuum has to minimize it.

• 1

2

KE2 is proportional to the trace of the macroscopic strain. This implies that it
penalizes any macroscopic volume change since its contribute is small for small
E;

• �3KE↵(T � T
0

) is proportional to E as above but it is negative, so that it allows
for volumes changes due to thermal expansion. Actually, ↵ is usually very small,
so that this term can be easily neglected with respect to the others;

• G |e � etr|2 is the elastic energy obtained by considering etr as relaxed strain.
The idea is that we can decompose the total deformation in a part due to the
macroscopic transformation, etr, plus an elastic deformation whose zero-energy
state corresponds to etr itself;

• � hT�Mfi |etr�q| where h · i := max{ · , 0}. This term is active for high tempera-
tures, above Mf, that is when austenite starts being preferred instead of martensite.
Let us imagine to have q = 0 and T > Mf, then this term pushes the microscopic
strain etr towards the null value, that is towards austenite. When q 6= 0, etr is
pushed exactly towards q, that is its reference value when fatigue arises;
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• 1

2

h |etr � q|2. As the previous one, this term pushes etr towards the functional
fatigue q. But the two terms are obviously different. First of all, this h-term does
not show any dependence on temperature. Moreover, the �-term dependence on
etr is linear while the h-term exhibits a quadratic dependence. This implies that,
when T > Mf, a driving force is induced by the �-term even for small residual
transformation strains;

• 1

2

H |q|2 models the plastic hardening of the material, i.e. it penalizes an excessive
growth of the functional fatigue;

• The indicator function

IEtr(etr) =

8

<

:

0 if (etr) 2 Etr

1 if (etr) /2 Etr

introduces a constrain on the microscopic deformation through the definition of a
microscopic transformation domain Etr.

We already said that we are considering a multi-grain material in which each grain can
transform into a different variant of martensite. Now, etr can be seen to represent the
total strain by linearly combining the local strains of the different grains.
Obviously, there is an upper bound for etr and we denote it by "L. The value of "L can
be interpreted as the total maximum strain when all the local grains are oriented in the
same direction. It is related to the size of the Bain matrices associated to the underlying
austenite-martensite transition (see Section 1.2.2).

For simplicity, we assume the microscopic domain to be a ball of constant radius "L

Etr =

n

etr : etr = eT

tr , tr etr = 0, |etr|  "L

o

. (5.2)

Some changes in this domain will be introduced and detailed in Section 5.2.2.
We further introduce the velocity fields associated to the microscopic variables

Ltr = ėtr and Lq = q̇, (5.3)

together with the driving forces, obtained by derivation of the Helmholtz potential [9,
80]

X = � @ 

@etr
and Q = �@ 

@q
. (5.4)

In order to complete the model, we need a rate of dissipation density as required in the
Rajagopal theory introduced in Section 1.3.2. This density should depend on the inter-
nal variables etr and q and on their velocities Ltr and Lq. Though, the maximum rate
of dissipation criterion (according to theorem 1.3.5 in Section 1.3.3), the dissipation
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5.2. Functional fatigue in the Souza-Auricchio model

actually depends on (Ltr,Lq) through the driving forces (X,Q) [80]. This implies that
our last ingredient is a dissipation density function of the form

⇠(etr, q,X,Q) = ⇠(X,Q). (5.5)

The possible choices for this function and its interpretation are detailed in Section 5.2.3.

According to the Rajagopal theory, the quasi-static evolution assumption implies
that the macroscopic evolution occurs only when the rate of dissipation is non-positive
(see Section 1.3.4). In this sense, the rate of dissipation function defines an elastic
domain as explained in Section 1.3.1. This domain depends on X and Q and shows the
following features:

• the macroscopic evolution is forced to take place within this domain or at most on
its boundary;

• the microscopic order parameters evolve only in correspondence to the border of
the elastic domain.

Moreover, one of the main consequences of the maximum rate of dissipation criterion is
that the pair of the velocity fields (Ltr,Lq) is parallel to the outward unit normal to the
boundary of the elastic domain defined by ⇠(X,Q)  0. Accordingly to this criterion, it
is possible to introduce the flow rules for the microscopic variables according to (1.15)
as follows

ėtr = �
@⇠

@X
, q̇ = �

@⇠

@Q
. (5.6)

These equations have to be coupled with the condition on the rate of dissipation density,
in order to stay on the boundary of the elastic domain. Thus, we introduce the following
Karush-Kuhn-Tucker conditions

� � 0, ⇠  0, �⇠ = 0, (5.7)

so that the multiplier � is null within the elastic domain (⇠ < 0) and can be different
from zero only for ⇠ = 0, that is on the boundary of the elastic domain where the
evolution of the interval variables is allowed.

5.2 Functional fatigue in the Souza-Auricchio model

The model that we described in the previous section is our starting point for the intro-
duction of new features in order to better predict the appearance of functional fatigue.
In this section, we present the novelties we included with the purpose of improving
the Souza-Auricchio model. We start by inserting a macroscopic-plasticity term in the
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Helmholtz potential, then we detail the evolution for the microscopic domain and we
compare different choices for the dissipation function.

5.2.1 Macroscopic plasticity

Let us decompose the deformation gradient by taking into account the different parts
of the total process

F = Fel Ftr Fpl.

Actually, we can interpret our total deformation as a previous plastic deformation from
a reference configuration, followed by a further deformation due to the microscopic
transformation and concluded by an elastic deformation with respect to this last de-
formed state, as represented in Figure 5.1.

F

F
pl

F
tr

F
el

Figure 5.1: Decomposition of the macroscopic strain F in its elastic, transformation and plastic compo-
nent.

The small deformation hypothesis under which we work allows us to suppose the
following form for the different factors, as explained in [47]

Fpl = I +Hpl, Ftr = I +Htr, Fel = I +Hel,

where |Hpl|, |Htr| and |Hel| are of order " ⌧ 1. We can thus compute the strain ten-
sor E =

1

2

(F TF � I) by taking into account the decomposition of F and the small
deformation hypothesis and obtain

E =

1

2

(HT

el +Hel)+
1

2

(HT

tr +Htr)+
1

2

(HT

pl +Hpl)+ o(") = Eel +Etr +Epl + o(").

By focusing only on the traceless parts of the deformation tensors, we can write

e = eel + epl + etr,
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where eel = Eel � 1

3

tr(Eel)I and eel = Epl � 1

3

tr(Epl)I .
Thus, we modify the shear elastic term in the Helmholtz potential as
G |e� etr � epl|2.
At this point, it is necessary to settle an expression for epl. For simplicity, we assume a
linear proportionality between the plastic macroscopic strain and the functional fatigue
tensor q, by prescribing epl = a q.
This modification implies a further adjustment as regards the rate of dissipation func-
tion, and by consequence the evolution of the functional fatigue, as explained in section
5.2.3

5.2.2 Evolving microscopic domain

We already described the interpretation of the microscopic domain Etr in Section 5.1.
Until this moment, the internal variable q was not involved in the definition of Etr or in
the choice of "L. Here, we modify the microscopic domain in order to take into account
the influence of the functional fatigue q on this constrain.
As already said, the functional fatigue is a measure of the microscopic plasticity, that
is the part of the non-recoverable transformation strain. An increase of q can be seen
as freezing the orientation of some of the mentioned grains. This fact implies that,
whenever q̇ 6= 0, the material loses the possibility to reach previously available config-
urations.
In order to provide an evolution law for the microscopic domain we start by supposing
a spherical domain in the space of symmetrical traceless tensors centered in q, so that
Etr(etr, q, t) is actually a Etr(r, t) where r = etr � q. Moreover, the domain has the pos-
sibility to shrink but cannot expand because the transformation loses freedom without
gaining new possible configurations. This means that, given t

2

� t
1

we require that
Etr(r, t2) ✓ Etr(r, t1). At the same time, we do not want the shrinking to be excessive
thus we select the largest ball among those which satisfy our criteria.

This kind of evolution is described by the following proposition.

Proposition 5.2.1. The radius "L of the transformation domain evolves along solutions
of the differential equation

"̇L(r, t) =

8

<

:

�|q̇(r, t)| if "L(r, t) > 0

0 if "L(r, t) = 0,
with "L(r, t0) = "L0. (5.8)

Proof. Let q(r, t) denote the value of the functional fatigue tensor at the material point
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r at time t (see Figure 5.2 for reference). The transformation domain will then be

Etr(r, t) =
n

etr : etr = eT

tr , tr etr = 0, |etr � q(r, t)|  "L(r, t)
o

. (5.9)

When q evolves (say, from qold to qnew as illustrated in Figure 5.2), we need to identify
the largest ball, among those centered in qnew, which is completely within Eold

tr . The ra-
dius of such ball is clearly to be decreased (with respect to "old

L ) exactly by the amount
|qnew � qold|. When passing to differential evolution, equation (5.8)

1

is thus easily re-
covered. Evolution of the transformation domain ends when the domain itself is turned
to a point ("L = 0).

It is important to notice that the sign of the variation of the functional fatigue does
not affect the evolution of "L: not only the increasing but also the decreasing of q, even
to the initial null value, entails irreversibility.

Figure 5.2: Representation of the evolving transformation domain. Any change in the functional fatigue
tensor automatically turns into a reduction of the radius of the transformation domain.

5.2.3 Dissipation functional

A further modification arises from the necessity of taking into account plastic effects
that are not related to microscopic transformations. Actually, the causes of plasticity in
shape memory alloys can be of two kinds: repeated microscopic phase transitions, but
also the enforcement of a macroscopic strain beyond a certain threshold [50]. At the
same time, it is possible to have a microscopic transformation without any creation of
plasticity. Indeed, it is possible to experimentally prove that after a limited number of
thermal cycles (training of the sample [6,60]), no more macroscopic plasticity emerges
for up to thousands of cycles, though the microstructure keeps on changing [51, 99].
Since in section 5.2.1 we related the macroscopic plasticity to the functional fatigue
q, it becomes necessary to modify the original dissipation rate function (5.5) in order
to obtain a greater independence between microscopic strain and plasticity. As already
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stated, the evolution of the internal variables occurs only when the driving forces X

and Q reach the boundary of the elastic domain defined by the 0-level state of the
dissipation rate function. As explained in Section 5.1 and specified by (5.6), the shape
of the elastic domain affects also the direction of the evolution, since the pair (ėtr, q̇)

is parallel to the normal vector on the boundary. This means that a slight change in the
definition of the dissipation rate can deeply modify the kind of evolution.

Let us define the norm k · k
,p

on (X,Q) such that

k(X,Q)k
,p

=

8

<

:

(|X|p + p|Q|p)1/p p < 1,

max{|X|,|Q|} p = 1.

By using this definition, we can rewrite the rate of dissipation density that is introduced
in [7, 9] in the following way:

⇠
1

= max{k(X,Q)k
,1

�R, 0} (weighted `
1

or taxicab norm). (5.10)

The parameter  settles a scaling between the transformation effect related to X and
the fatigue related to Q. The parameter R can be interpreted as the radius of the elastic
domain introduced in Section 5.1 and defined by the general condition ⇠  0.
In addition to this expression for the dissipation density function, we propose and ana-
lyze two further possible choices:

⇠
2

= max

n

k(X,Q)k
,2

�R, 0
o

, (weighted `
2

or Euclidean norm) (5.11)

⇠1 = max

n

k(X,Q)k
,1 �R, 0

o

. (weighted `1 or supremum norm) (5.12)

Figure 5.3 shows the different shapes of the elastic domains induced by the different
choices for the dissipation function, together with the unit normals to the boundary.

• Weighted taxicab norm. The main limit of this choice for the dissipation rate
function lies in the too strong dependence between the evolution of ėtr and q̇.
Indeed, the unit normal determines an angle with the |X| axis which is constant
and equal to � = arctan. In this case, equation (5.6) has the following form

ėtr = �
X

|X| , q̇ = �
Q

|Q|
so that the evolution of the internal variables is strongly coupled as

|q̇| = |ėtr| = tan� |ėtr|.

This kind of interaction implies that every microscopic transformation creates
plasticity. At the same time, the creation of plasticity is possible only when caused
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Figure 5.3: Different elastic domains induced by different rate of dissipation functions. In all plots, the
scaling modulus  has been set equal to 1

2 .

by a microscopic transformation. This behaviour is not in agreement with the ex-
perimental evidence cited at the beginning of this section.

• Weighted Euclidean norm. In this case, the angle � between the horizontal axis
and the unit normal varies along the boundary. In particular, the two limit be-
haviors that cannot be described by the choice of the taxicab norm are now re-
producible by considering the points (R, 0) and (0, R/) in the domain in the
middle of Figure 5.3. In the first case, it is possible to model the effect of mi-
croscopic transformations with negligible plasticity creation. By approaching the
point (R, 0) we move towards having |ėtr| � |q̇|, as for the experimental cycles
after the training phase.
The (0, R/) configuration is almost the opposite. Let us suppose to pull the spec-
imen in order to reach the complete martensitic phase. In this case, the constrain
induced by the indicator function IEtr impedes the evolution of etr, by forcing
X within the elastic domain. By keeping on stretching the specimen, we ob-
tain an increasing in Q eventually touching the boundary of the elastic domain
in a neighborhood of the point (0, R/). Thus, this is the case of development of
macroscopic plasticity without evolution in the microscopic strain.

• Weighted supremum norm. This case shows the same modeling abilities as the
choice of the Euclidean norm but with even more freedom. The two microscopic
variables can now evolve completely independently, by reaching two different
thresholds (R for |X| and R/ for Q). Thus, three outcomes are possible: evolv-
ing microscopic strain with negligible plasticity (vertical boundary, ėtr 6= 0 and
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q̇ = 0), plasticity without phase transformation (horizontal boundary, ėtr = 0 and
q̇ 6= 0) and microscopic strain with plasticity, i.e. the evolution of both the in-
ternal variables (upper-right corner of the domain in Figure 5.3). This freedom is
due to the use of two different Lagrange multipliers for the evolution of the two
variables, since equations (5.6)-(5.7) take the following form

ėtr =

8

<

:

�X if |X| � R (� � 0),

0 otherwise
(5.13)

q̇ =

8

<

:

µQ if |Q| � R (µ � 0),

0 otherwise.
(5.14)

5.3 Thermally-induced transformation

In this section we focus on a thermally-induced experiment, usually important in
many SMA applications (for example as actuators). In particular, we describe the main
numerical experiment that has been done in order to test the model. Afterwards, we
detail a possibility of parameter calibration and we analyze the effects of functional
fatigue.

5.3.1 Description of the numerical experiment

We study the quasi-static evolution of a specimen under constant uniaxial stress,
both traction and compression, applied to both the extremities. While the stress is held
constant, we uniformly vary the temperature, by performing cycles from high to low
temperatures and viceversa and thus inducing the microscopic transformation. We as-
sume uniaxial symmetry and homogeneity for all the induced deformations.
The momentum balance equation

divS = 0 (5.15)

is automatically satisfied because of the homogeneity of the deformations, so that the
stress tensor is determined by the boundary conditions. The use of a static equilibrium
equation is justified by the assumption of quasi-static evolution, since the variation of
the control parameters (temperature and stress) is assumed to be much slower than the
microscopic relaxation times. Thus, we need the flow rules (5.6)-(5.7) for the internal
variables while we fix the external loading. The Piola-Kirchhoff stress tensor that has
to be used in (5.15) is related to the variables through the Helmholtz potential (5.1) as

S =

@ 

@E
, s =

@ 

@e
. (5.16)
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The origin of this expression is detailed in Section 1.3.2 where equation (1.11) is ob-
tained.

The results will be characterized by the presence of an hysteresis loop in the evolu-
tion of the strain with respect to the temperature. The existence of this loop is due to the
non uniqueness of the solution to our problem in correspondence of the same external
load. The physical equilibrium is chosen at each step in order to respect continuity.

Let us detail the experiment. We start at a temperature corresponding to stable
austenitic phase and we move towards low temperatures. By lowering the tempera-
ture, we make X reach the border of the elastic domain, thus initiating the microscopic
transformation. The constant load stops the transformation before the martensite final
temperature, that is for T

1

> Mf. Once the temperature variation is reversed, austenite
starts re-appearing at a temperature T

2

> T
1

, since the point on the boundary of the
elastic domain in which X ends up is different than for the forward transformation.
The temperature interval [T

1

, T
2

], that characterizes the hysteresis loop, corresponds to
a high probability of developing plasticity, since q evolves towards a high value of etr.
This is also in agreement with the general idea of linking plasticity to the width of the
hysteresis loop (measured as T

2

�T
1

for thermal experiments) [107].Eventually, a non-
zero value of the functional fatigue at the end of the loop may influence the following
cycles, according with its interpretation as microscopic plasticity.

The test is performed under symmetry assumptions which simplify the equations
introduced in section 5.1. Let us define the following tensor i = e

z

⌦ e
z

� 1

3

I , to
which all the other traceless, axially symmetric tensors are proportional, so that we can
write

s = s i, e = e i, etr = etr i, q = q i, X = X i and Q = Q i.

We recall that, after the modifications introduced in the previous sections, the Helmholtz
free energy of equation (5.1) now has the following expression:

 (E, etr, q;T ) =
1

2

KE2 � 3KE↵(T � T
0

) +G |e� etr � aq|2

+ � hT �Mfi |etr � q|+ 1

2

h |etr � q|2 + 1

2

H |q|2 + IEtr(etr � q).

(5.17)

By using this expression and the relation (5.16), we obtain the following equations:

E =

S

K
+ 3↵(T � T

0

), s = 2G(e� etr � aq).

Analogously, we can obtain the expressions for X and Q by differentiation of the
Helmholtz free energy and by recalling that for a generic tensor in the direction d,
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5.3. Thermally-induced transformation

T = Td, it holds
@|T |
@T

= sgnT.

This relation helps in dealing with the last two terms of the Helmholtz free energy so
that for the �-term we have

@

@etr
� hT �Mfi|etr � q| = � hT �Mfi

@|etr � q|
@(etr � q)

@(etr � q)

@etr

= � hT �Mfi sgn(etr � q). (5.18)

Moreover, we denote by � the following derivative:

� =

@IEtr(etr � q)

@|etr � q| ,

so that

� = 0 if |etr � q| 2 Etr \ @Etr

� � 0 if |etr � q| 2 @Etr

(5.19)

and
@IEtr(etr � q)

@etr
= � sgn(etr � q).

Under our assumptions on symmetry, we thus obtain

X = s+ h(q � etr) +

⇣

� + � hT �Mfi
⌘

sgn(q � etr), (5.20)

Q = as+ h(etr � q)�Hq + � hT �Mfi sgn(etr � q), (5.21)

together with the flow rules (5.6)-(5.7) for the internal variables, whose actual expres-
sion depends on the choice of the dissipation function ⇠.

5.3.2 Parameter calibration

We now use the experiment that has been introduced in the previous section to cal-
ibrate the value of the relevant parameters in the model. Figure 5.4 shows the results
of a thermal cycle performed by choosing the rate of dissipation function ⇠1, though
qualitatively similar results could be obtained with the Euclidean choice ⇠

2

. Figure 5.5a
shows the position of points B, C, E and F of Figure 5.5 in the elastic domain in-
duced by the choice of ⇠1, together with the direction of the evolution of the internal
variables. Moreover, Figure 5.5b describes the evolution of the microscopic domain Etr

during the same cycle. Since the test is performed under the symmetry conditions in-
troduced in the previous section, both etr and q will evolve along the same direction
i = e

z

⌦ e
z

� 1

3

I , so that we can represent our spherical domain as a line.
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Chapter 5. Macroscopic Modeling of Functional Fatigue

Figure 5.4: Evolution of a specimen subject to a thermal cycle across the martensite finish temperature
Mf, under a constant uniaxial load s = 150MPa. The bold line displays the macroscopic strain e, the
thin line indicates the transformation strain etr (both in the left scale), while the dashed plot reports the
behavior of the functional fatigue q (in a different scale, illustrated on the right). The value of the con-
stitutive parameters have been set equal to the following realistic values: K = 34.3GPa, G = 13.2GPa,
↵ = 10

�5/�K, � = 6.71MPa/�K, h = 2GPa, H = 4GPa, "L = 6.12⇥ 10

�2, R = 75.1MPa,  = 0.14,
a = 0.9, Mf = 330

�K.
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(a) Positions in the elastic domain corresponding to
points B, C, E and F of Figure 5.5 and direction of
the microscopic evolution.
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(b) Evolution of the microscopic domain during the cycle of Fig-
ure 5.4.

Figure 5.5: Scheme of the evolution of elastic and microscopic domain during the thermal cycle shown
in Figure 5.4
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5.3. Thermally-induced transformation

We start from point A in the figure, corresponding to a stable austenitic configura-
tion, and we apply a constant load s while we start lowering the temperature. Let us also
suppose to work with a new material without any trace of fatigue, so that etr = q = 0.
From (5.20) we can write the initial expression for X as

X = s� � (T �Mf).

The specimen stays in complete austenite until the beginning of the transformation,
at temperature T

B

. The evolution of etr starts when we reach the border of the elastic
domain determined by ⇠1 as displayed in Figure 5.5a. In particular, it corresponds to
reaching X = R, so that we can determine T

B

as follows:

X = s� � (T
B

�Mf) = R ) T
B

= Mf +
s�R

�
. (5.22)

This expression can be used for the experimental determination of the parameter �:
since T

B

is linear with respect to s, it is sufficient to measure T
B

while varying s and
look at the slope of the T

B

vs s line.
After the beginning of the evolution for etr, the two driving forces assume the following
form

X = s� hetr � � (T �Mf),

Q = as+ hetr + � (T �Mf).
(5.23)

The microscopic transformation etr keeps on evolving until it reaches the maximum
value "L (we recall that the general constrain is |etr �q|  "L, but q is null at the begin-
ning of the transformation and it is not yet activated). The corresponding temperature
T
C

can be obtained by substituting etr = "L in X = R

s� h"L � �(T
C

�Mf) = R ) T
C

= Mf +
s�R

�
� h"L

�
= T

B

� h"L

�
. (5.24)

A measure of the maximum strain "L can be experimentally obtained by looking at the
macroscopic strain that is reached so that, together with the previous estimate on �,
the difference T

C

� T
B

provides information on h. Point D can be used to measure
the thermal expansion coefficient ↵ since the only effect between points C and D is
the volume change due to the variation of temperature (considerably smaller than both
microscopic and macroscopic deformation).
The reverse transformation gives an idea of the parameters related to plasticity. A nu-
merical information that we can obtain corresponds to the beginning of the evolution
of q (point E), that is when Q reaches the boundary of the elastic domain as shown in
Figure 5.5a, that is

Q = as+h"L+� (TE

�Mf) =
R


) T

E

= T
C

+

(1 + )R� (1 + a)s

�
. (5.25)
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Chapter 5. Macroscopic Modeling of Functional Fatigue

It is important to underline that this information can be deduced only by the numerical
results while we do not have any experimental estimate of T

E

. Actually, T
E

is related
only to the evolution of the internal variable q, whose behavior we do not see on the
macroscopical level provided by the experimental data.
As regards the beginning of the reverse transformation, a simple way to compute the
corresponding temperatures consists in neglecting q under the assumption of q ⌧ "L,
thus easily obtaining the temperatures corresponding to point F and G. Point F in-
dicates the moment in which the microscopic strain etr starts decreasing. This hap-
pens when the corresponding driving force X reaches the border of the elastic do-
main whose normal has a negative horizontal component (see Figure 5.5a), that is
|X| = R ) X = �R. Since when etr starts decreasing we are at the maximum
etr = "L and we are neglecting q, we obtain

X = s� h"L � � (T
C

�Mf) = �R ) T
F

= T
C

+

2R

�
. (5.26)

As regards G, it indicates to the complete return of etr to its referece value. Since we
now have some fatigue, this ending point corresponds to the condition etr = q 6== 0.
The corresponding temperature T

G

is thus provided by

X = s� � (T
G

�Mf) = �R ) T
G

= T
B

+

2R

�
. (5.27)

We thus relate the width of the hysteresis loop T
G

�T
B

(namely, T
2

�T
1

in the previous
section) to the quantity 2R/�, thus giving a measure of the radius of the elastic domain
R.
It is interesting to notice that the hypothesis q ⌧ "L implies T

G

� T
F

= T
B

� T
C

, that
is an identical width for the forward and the reverse transformation. The estimation of
the parameters is completed by obtaining Mf through the use of the expression for T

B

(known, like R, � and s).
Obviously, the values that we obtain through this process are only a first estimate of the
actual values to be used. It is possible to start from these estimates for an optimization
of the fitting and find even more suitable values for the model parameters.

5.3.3 Permanent effects

In section 5.2.1 we introduced the macroscopic plasticity as epl = a q. This implies
that after every thermal cycle that creates functional fatigue an increased macroscopic
deformation e is induced. On the other hand, there are two factors that hinder this ef-
fect: first of all the evolution of the microscopic domain that introduces a stronger con-
straint on etr; second, the plastic hardening introduced through the parameter H . The
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5.3. Thermally-induced transformation

Figure 5.6: Plastic deformation as a function of the constitutive parameter a, for different values of .
The remaining constitutive parameters are as in Figure 5.4.

consequence of this juxtaposition is that after a certain number of cycles the material
approaches a balanced limit cycle (training effect [6, 60]).

There are two important parameters to be taken into account: a and . The for-
mer represents how much the microscopic plasticity induces a macroscopic one. The
second corresponds to the ratio between the driving force that is necessary to induce
microscopic fatigue and the one needed to obtain a microscopic transformation. Since
it is easier to start the microscopic transformation evolution than to create plasticity, the
value of  is requested to be less than one in order to be physically acceptable.

The dependance of the plastic-induced deformation on these two parameters, a and
, is shown in Figure 5.6. In particular, on the y-axis there is the difference �✏ between
the uniaxial strain after the training, that is corresponding to a stationary regime, and the
uniaxial strain in the first cycle. It is possible to notice that a good linear approximation
seems to hold in the relation between �✏ and the couple (a, ) but only after a threshold
value under which there is no plastic effect. This suggests the existence of a bound for
a and , that can be obtained by looking at the linear regression on the plot. Indeed, we
have plastic effects only for ↵

1

a + ↵
2

 + ↵
3

� 0, that in our case implies a � athr,
with athr() = 1.9�7.7. The values thus obtained may obviously depend on the other
parameters so that athr should be computed for each case.

Analytically, it is possible to give some theoretical bounds for these plastic param-
eters. First of all, in section 5.3.2 we indicated by T

E

the temperature at which the
functional fatigue starts evolving and by T

G

the temperature of the completed reverse
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Chapter 5. Macroscopic Modeling of Functional Fatigue

transformation. It is easy to understand that in the case T
E

> T
G

it is impossible to ac-
tivate the microscopic plasticity. Thus, it is crucial to require T

E

 T
G

, which implies
the following necessary condition on a and 

(1 + a)s � (1� )R� h"L. (5.28)

At the same time, a sufficient condition for plasticity to occur can be provided by the
request T

E

 T
F

, where T
F

is the starting temperature of the reverse transformation.
We thus obtain

(1 + a)s � (1� )R. (5.29)

The value we found for athr satisfies both conditions (by using the parameters listed in
Figure 5.4).

The other important point in the introduction of permanent effects is represented
by the irreversible evolution of the microscopic domain. In order to understand the in-
fluence of this part of the model, let us consider a slightly different experiment. We
perform a first cycle with a constant positive load (as above) and afterwards an analo-
gous cycle but with an identical and opposite load. We repeat this whole double-cycle
twice.
The importance of this experiment is that at the end of such a double-cycle the func-
tional fatigue q can simply return to the initial zero value. Indeed, the pushing process
completely cancel the previous pulling one. In the case of a constant microscopic do-
main, this implies that the second double-cycle has no memory of the first one, since
at its beginning every variable is back to the initial value. By varying the microscopic
domain, though at the end of the first cycle all the variables are back to the initial con-
dition, there still is a memory of the previous transformation in the contracted domain.
In order to notice this effect, let us look at Figure 5.7. On the horizontal axis there is
a linear combination of  and of the applied load s. On the vertical axis there is the
difference between the maximum uniaxial strain during the first cycle and during the
second one.
First of all, it is possible to notice that the variation in the strain between the second
complete cycle and the first one is always negative, that is the maximum strain that
we are able to reach in the second case is lower. This is due to the shrinking of the
microscopic domain. As already explained, the maximum strain that we can obtain
corresponds to the parameters "L and, actually, the only effect we retain after the first
load-unload cycle is a decreasing in "L. This explains why during the second cycle we
cannot obtain higher maximum strain values. The quantity of lost strain from one cycle
to the other one is then related to the decreasing in "L that we assumed to be directly
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5.4. Comparison with experimental data

Figure 5.7: Lost strain deformation as a function of the constitutive parameter  and the load s, for
a = 0.76. The remaining constitutive parameters are as in Figure 5.4.

correlated to the (negative and positive) variations of the fatigue functional q in Sec-
tion 5.2.2. Bigger variations q̇ correspond to bigger values for the parameter  (the
derivative @⇠/@Q is always proportional to  for all the proposed choices of ⇠) and the
load s (higher s means higher Q and @⇠/@Q is proportional to Q when closing ⇠

2

and
⇠1.) Since the variation of strain has the same behavior for both  and q, we obtain
the same sign for the coefficients of the linear regression ↵

1

and ↵
2

. Moreover, bigger
negative values of the strain variation correspond to bigger positive values of  and s

and this explains the negative sign for both the coefficients.

5.4 Comparison with experimental data

Here we test our numerical predictions by comparing them with some experimental
results: a thermal-induced transformation and a stress-induced one.

5.4.1 Thermally-induced hysteresis

The data of the thermally-induced experiment were collected in the SAES Getters
Laboratories by testing a Ti

51

Ni
49

SMA wire with a diameter of 75µm. A linear motor
controlled in close loop by a load cell applies a constant uniaxial stress of 360 MPa at
the extremities of the wire [97]. The cycle starts from high temperature corresponding
to complete austenite. The experiment is performed as described in section 5.3.1, by
cooling and then heating again the wire. The temperature is varied through an electric
current induced in the wire and controlled by using a thermographic camera.
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Chapter 5. Macroscopic Modeling of Functional Fatigue

Figure 5.8: Experimental results for a TiNi micro-wire, subject to a thermal cycle under a constant
uniaxial load, as specified in the text.

Figure 5.8 shows the hysteresis loop obtained by plotting experimental strain versus
temperature. It is possible to notice the increasing of the maximum strain correspond-
ing to repeated cycles and the saturation of this quantity after a certain number of trans-
formations. This behavior proves the importance of the plastic deformation aq in the
Helmholtz potential. On the other hand, it is not possible to see the effects of the evo-
lution of the microscopical transformation domain since its influence on the outcomes
is evident above all when a double-loading cycle is performed, as explained in section
5.3.3.

We calibrated the parameters of the model in order to reproduce the first loop in
Figure 5.8. We fix the uniaxial external load and we already know the material pa-
rameters for bulk and shear moduli, together with an estimate of the martensite finish
temperature Mf. This estimate allows the further use of (5.22) for the determination of
R and � since we have measures only for a value of the external load and we cannot
use the technique suggested in 5.3.2 that requires a T

B

vs s curve. The calibration can
thus be done in the following way: "L and the main temperatures T

B

, T
C

and T
F

can
be estimated from the plot of the experimentally obtained hysteresis loop. By using the
expressions for these quantities as shown in 5.3.2, it is possible to estimate R, � and h.
Finally, a,  and H can be obtained by fitting the experimental data, paying attention
to the necessary condition (5.28). The result of this process and the different nature of
the estimate of the parameters is shown in Table 5.1.

In Figure 5.9 the comparison between the numerical and the experimental curve is
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5.4. Comparison with experimental data

Parameter Value Method

K 60.7 GPa Known

G 23.3 GPa Known

Mf 296�K Known

"L 0.0595 Estimated

R 60.6 MPa Computed

� 3.03 MPa/�K Computed

h 510 MPa Computed

a 0.20 Fitted

 0.25 Fitted

H 3.7 GPa Fitted

Table 5.1: Values of the constitutive parameters used in Figure 5.9.

shown. We can notice a good qualitative agreement but at the same time it seems not
possible to obtain a complete match between the two loops.
We can also try to estimate a goodness-of-fit indicator: we interpolate both the exper-
imental data and the numerical ones on a set of N points thus obtaining respectively
yexp and yfit. We complete by computing

g = 1� 1

N

N

X

i=1

|yexp
i

� yfit
i

|
yexp
i

. (5.30)

A good fit corresponds to values of g close to one while the closer we are to zero the
worse the fit has to be considered. For Figure 5.9 we obtain g = 0.895, thus quantifying
a good qualitative fit though we do not have a perfect match. This problem is obviously
due to the assumptions on which the model is based, in particular the homogeneity
hypothesis. Actually, not only the wire is not homogeneous because of the presence of
defects and different grain structure, but also the microscopical transformation does not
occur in a homogeneous way. It is likely going to take place through domain creation
and growth, thus not at the same time in all the wire.
The experimental non-homogeneity that concerns the microscopical transformation etr

also affects q. Indeed, experimental evidence suggests that plasticity usually starts close
to fixed boundary conditions were the specimen is particularly constrained.
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Chapter 5. Macroscopic Modeling of Functional Fatigue

Figure 5.9: Comparison of experimental (points) and theoretical (line) results for the first cycle of the
TiNi microwire illustrated in Figure 5.8, with the constitutive parameters described in the text.

s
A

s
B

s
C

Figure 5.10: Comparison of experimental (red) and theoretical (black) results for the stress-controlled test
detailed in section 2.1.2. The constitutive parameters are obtained as described in the text: K = 1.53GPa,
G = 1.5GPa, ↵ = 10

�5/�K, � = 2.71MPa/�K, h = 62MPa, H = h, "L = 9.5 ⇥ 10

�2, R = 5MPa,
 = 0.001, a = 0.9, Mf = 330

�K.
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5.4. Comparison with experimental data

5.4.2 Stress-induced hysteresis

The same kind of reasoning as in section 5.4.1 can be done for another kind of
experiment, for example in the case of a stress-induced transformation instead of the
temperature-induced one. In this section, we describe how to choose the parameters of
the model to reproduce the outcome of the experiment detailed in section 2.1.2. The
hysteresis loop that we want to numerically obtain is shown in Figure 3.2 in section
3.1.2. In a few words, the experiment consists in loading the specimen with an increas-
ing uniaxial stress at a constant temperature, thus inducing the austenite-martensite
transition. Afterwards, the specimen is unloaded again and returns to the initial state.

Since in this case there is no interest in the development of plasticity, let us suppose
to have a functional fatigue q which is negligible with respect to the transformation
strain etr. This assumption corresponds to choosing a small value for the parameter
 which defines the scaling between the transformation and the fatigue. Moreover, it
implies that we can assume "L to be constant. We also assume T > Mf since the test
is performed at room temperature, at which the specimen is austenitic. The quantity
�hT �Mfi is actually constant and does not play an important role in this kind of ex-
periment.
We initially know T , Mf, K and G. Let us choose the dissipation function ⇠

1

in section
5.2.3 (the computation is easily doable for the other choices of the dissipation func-
tion). Since in this case the varying variable is stress instead of temperature, we use
the estimate of stresses corresponding to characteristic points in the experimental plot
to infer the relations between the parameters. The same symmetry as in section 5.3.1
holds so that we can use 5.20 and 5.21 to write down the form of the elastic domain

|(1 +  a) s� (1� )h (etr � q)�H q + �(T �Mf)|  R. (5.31)

At the beginning of the loading phase the deformation is only elastic, with etr = q =

0 until we reach point A
s

in Figure 5.10 and the microscopic transformation begins.
This means that we have reached the boundary of the elastic domain (i.e. equality holds
in 5.31) and we obtain

s
A

=

R + (1� )�(T �Mf)

1 + a
. (5.32)

As stated in section 5.2.3, the choice of ⇠
1

implies a coupled evolution for the two
internal variables of the kind

q = etr,

so that the evolution of both is determined by satisfying

(1 +  a) s� [(1� )2 h+ 2 H] etr � (1� )�(T �Mf) = R. (5.33)
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The plateau ends (point B
s

in Figure 5.10) when the transformation reaches its maxi-
mum, that is "L. The corresponding stress s

B

is thus obtained by imposing etr = "L in
5.33.
The following interesting point corresponds to the beginning of the reverse transforma-
tion (point s

C

). At this point, the microscopic strain is equal to "L and the opposite side
of the elastic domain is reached, that is

(1 +  a) s
C

� [(1� )2 h+ 2 H] "L � (1� )�(T �Mf) = �R. (5.34)

By subtracting 5.34 to 5.33 we obtain a relation to compute R, that is

s
B

� s
C

=

2R

1 +  a
.

The knowledge of R allows for the computation of � by using 5.32. At the same time,
by subtracting 5.32 to 5.33 we obtain

s
B

� s
A

=

((1� )2h+ 2H)"L

1 +  a
,

depending only on h and H . Let us assume to have H = h (having required small
values for  and being h and H of the same order we could also neglect the H-term).
The difference between the stress at the end and at the beginning of the plateau thus
provides an estimate for h.
As in the temperature-driven case in section 5.4.1, it is possible to estimate the good-
ness of the numerical fit by using (5.30) and obtaining g = 0.97. Also in this case,
the homogeneity assumption makes the numerical curve slightly different from the ex-
perimental one, though in qualitative agreement. Actually, the results shown in Sec-
tion 3.1.2 prove that the trasformation is definitely non homogenous. Moreover, we
are approximating a basically two-dimensional object (the experimental specimen de-
scribed in section 2.1.1) with a one-dimensional geometry, thus obviously inducing a
further difference between experimental and numerical results.

5.5 Conclusions

In the last chapter we showed a macroscopic theory that establishes a further step in
describing functional fatigue in Shape Memory Alloys.
The hypothesis at the basis of our model are the presence of small strains and the homo-
geneity of the material. Though these hypothesis are quite strong, the model is able to
reproduce the overall behavior of the material. This is proven by comparing the model
results with some experimental data, both for temperature-induced transformations and
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for stress-induced ones. The numerical results have been obtained by solving the es-
sentially three-dimensional model in a one-dimensional approximation. In this case,
the simplicity of the model equations allows for a calibration of the parameters through
some analytical consideration.
Thus, the model is able to catch the features of the martensitic transition from a macro-
scopic point of view when varying the material composition and the loading conditions.
In this sense, this theory adds a further knowledge of the martensitic transformations to
the experimental and statistical descriptions of the previous chapters.
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Conclusions and Future Work

In this thesis we provided an analysis of martensitic transformations from different
points of view.
We combined an experimental device with a technique for the treatment of data that
gave us different kinds of information: from classical macroscopical results to the proof
of the presence of intermittency in our transformation. Alongside this experimental
study, we put a macroscopic mathematical model for the investigation of arising of
fatigue in shape memory alloys.

All these results are tiles in the knowledge of martensitic transformations and shape
memory alloys. By consequence, there are several possible developments to take into
account.
For starters, it would be interesting to have a microscopic mathematical model to nu-
merically reproduce our test. This would provide further information on some aspects
of the transformation, like the favorite martensite variant or the detection of avalanches
within the specimen, not only on the surface.
We are currently working on a microscopic model for the description of intermittent
behavior. The basic idea consists in combining the crystallographic theory introduced
in Section 1.2 and the literature on automaton-type models [71,72,82]. In order to pro-
vide some information on intermittency, the model has to work at the spatial scale of
the crystal and at a temporal scale slower than the loading. The idea behind automaton
models is that a certain variable, for example the transformation gradient, in a certain
point can have only a finite number of values (in our case, the identity for the austenite
and the Bain matrices of the martensite variants). The means of crystallographic theory
can be used to choose the actual value of the variable for each point, for example by
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minimizing a suitable energy density for a fixed external load. By iterating this step, the
model takes into account for consecutive changes due to the influence of the neighbor-
ing points, thus providing the evolution of the strain events.
From the experimental point of view, within the same experimental setting there still
are many other tests that can and should be done in order to improve the results. A more
specific tuning of the loading rates should be done to check the actual quasi-staticity
of the process, together with a study on the image acquisition rates. Moreover, shorter
loading-unloading cycles could be performed to test the rate-indipendency.
Finally, the mathematical model could be combined with a wider experimental analysis
by using our experimental techniques together with other methods that have already
been used for SMAs, like acoustic emission or calorimetry and thermography for the
measurement of local heat sources. In this way, we could conciliate the acoustic, the
spatial and the energetic descriptions of the transformation, thus obtaining an even more
accurate characterization.
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