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Résumé

Le problème d'ordre linéaire (LOP) a reçu beaucoup d'attention dans différents domaines d'application, allant de l'archéologie à l'ordonnancement en passant par l'économie et même de la psychologie mathématique. Ce problème est aussi connu pour être parmi les problèmes NP-difficiles. Nous considérons dans cette thèse une variante de (LOP) sous contrainte de cardinalité. Nous cherchons donc un ordre linéaire d'un sous-ensemble de sommets du graphe de préférences de cardinalité fixée et de poids maximum. Ce problème, appelé (FCLOP) pour 'fixed-cardinality linear ordering problem', n'a pas été étudié en tant que tel dans la littérature scientifique même si plusieurs applications dans les domaines de macro-économie, de classification dominante ou de transport maritime existent concrètement. On retrouve en fait ses caractéristiques dans les modèles étendus de sous-graphes acycliques. Le problème d'ordre linéaire est déjà connu comme un problème NP-difficile et il a donné lieu à de nombreuses études, tant théoriques sur la structure polyèdrale de l'ensemble des solutions réalisables en variables 0-1 que numériques grâce à des techniques de relaxation et de séparation progressive. Cependant on voit qu'il existe de nombreux cas dans la littérature, dans lesquelles des solveurs de Programmation Linéaire en nombres entiers comme CPLEX peuvent en résoudre certaines instances en moins de 10 secondes, mais une fois que la cardinalité est limitée, ces mêmes instances deviennent très difficiles à résoudre. Sur les aspects polyèdraux, nous avons étudié le polytope de FCLOP, défini plusieurs classes d'inégalités valides et identifié la dimension ainsi que certaines inégalités qui définissent des facettes pour le polytope de FCLOP. Nous avons introduit un algorithme Relax-and-Cut basé sur ces résultats pour résoudre les instances du problème. Dans cette étude, nous nous sommes également concentrés sur la relaxation Lagrangienne pour résoudre ces cas difficiles. Nous avons étudié différentes stratégies de relaxation et nous avons comparé les bornes duales par rapport à la consolidation obtenue à partir de chaque stratégie de relâcher les contraintes afin de détecter le sous-ensemble des contraintes le plus approprié. Les résultats numériques montrent que nous pouvons trouver des bornes duales de très haute qualité. Nous avons également mis en place une méthode de décomposition Lagrangienne. Dans ce but, nous avons décomposé le modèle de FCLOP en trois sous-problèmes (au lieu de seulement deux) associés aux contraintes de 'tournoi', de 'graphes sans circuits' et de 'cardinalité'. Les résultats numériques montrent une amélioration significative de la qualité des bornes duales pour plusieurs cas. Nous avons aussi mis en oeuvre une méthode de plans sécants (cutting plane algorithm) basée sur la relaxation pure des contraintes de circuits. Dans cette méthode, on a relâché une partie des contraintes et on les a ajoutées au modèle au cas où il y a des de/des violations. Les résultats numériques montrent des performances prometteuses quant à la réduction du temps de calcul et à la résolution d'instances

Abstract

Linear Ordering Problem (LOP) has receive significant attention in different areas of application, ranging from transportation and scheduling to economics and even archeology and mathematical psychology. It is classified as a NP-hard problem. Assume a complete weighted directed graph on V n , |V n |= n. A permutation of the elements of this finite set of vertices is a linear order. Now let p be a given fixed integer number, 0 ≤ p ≤ n. The p-Fixed Cardinality Linear Ordering Problem (FCLOP) is looking for a subset of vertices containing p nodes and a linear order on the nodes in S. Graphically, there exists exactly one directed arc between every pair of vertices in an LOP feasible solution, which is also a complete cycle-free digraph and the objective is to maximize the sum of the weights of all the arcs in a feasible solution. In the FCLOP, we are looking for a subset S ⊆ V n such that |S|= p and an LOP on these S nodes. Hence the objective is to find the best subset of the nodes and an LOP over these p nodes that maximize the sum of the weights of all the arcs in the solution. Graphically, a feasible solution of the FCLOP is a complete cycle-free digraph on S plus a set of np vertices that are not connected to any of the other vertices. There are several studies available in the literature focused on polyhedral aspects of the linear ordering problem as well as various exact and heuristic solution methods. The fixed cardinality linear ordering problem is presented for the first time in this PhD study, so as far as we know, there is no other study in the literature that has studied this problem. The linear ordering problem is already known as a NP-hard problem. However one sees that there exist many instances in the literature that can be solved by CPLEX in less than 10 seconds (when p = n), but once the cardinality number is limited to p (p < n), the instance is not anymore solvable due to the memory issue. We have studied the polytope corresponding to the FCLOP for different cardinality values. We have identified dimension of the polytope, proposed several classes of valid inequalities and showed that among these sets of valid inequalities, some of them are defining facets for the FCLOP polytope for different cardinality values. We have then introduced a Relax-and-Cut algorithm based on these results to solve instances of the FCLOP. To solve the instances of the problem, in the beginning, we have applied the Lagrangian relaxation algorithm. We have studied different relaxation strategies and compared the dual bound obtained from each case to detect the most suitable subproblem. Numerical results show that some of the relaxation strategies result better dual bound and some other contribute more in reducing the computational time and provide a relatively good dual bound in a shorter time. We have also implemented a Lagrangian decomposition algorithm, decom-CHAPTER 1

Introduction

The Linear Ordering Problem(LOP) is a well known problem in combinatorial optimization which is classified as a NP-hard problem by [START_REF] Garey | Computers and intractability: A guide to the theory of np-completeness[END_REF]. The linear ordering problem has received many attention in various applications like economics, tournament theory, voting theory, archeology, scheduling, triangulation problem of input-output matrices and even in mathematical psychology. By definition, every permutation of the elements of a finite set is a linear order. The Linear Ordering Problem (LOP) consists in finding a linear order such that the sum of the preferences between each element and each 'follower' in the order is maximized. In this PhD study, we are presenting a new variation of the linear ordering problem for the case when the number of nodes which are appearing in a feasible solution is limited to p. The cardinality number p can vary between zero and n, so we have 0 ≤ p ≤ n. Hereafter, the new variation of linear ordering problem with fixed (limited) cardinality number will be referred by Fixed Cardinality Linear Ordering Problem (FCLOP).

To our present knowledge, it is the first investigation of this problem with respect to combinatorial optimization, polyhedral representation and algorithmic issues. In this PhD study, we introduce in detail the new extension of the linear ordering problem that will be refereed as the p-fixed cardinality linear ordering problem (FCLOP). Then an integer programming formulation for the FCLOP will be proposed and will be improved by introducing several valid inequalities for the polytope characterized by the FCLOP linear relaxation 12 CHAPTER 1. INTRODUCTION (introduced in chapter 2). We have defined the polytope corresponding to the FCLOP, characterized the dimension of the polytope for different p values and identified several facet defining inequalities for it. We have also introduced several exact solution algorithms to solve different instances of the problem. Since the FCLOP is introduced for the first time in this PhD thesis, there exist no study and therefore no results on it. As a consequence, we have used CPLEX [START_REF] Ilog | Inc. CPLEX 12.5 User Manual[END_REF] the widely used LP software, to validate our numerical experiments.

In this chapter, we review the state of the art on linear ordering problem, description of the problem and solution methods.

In chapter 2, we discuss applications and motivations of the study on p-fixed cardinality linear ordering problem. We also introduce an initial integer programming mathematical formulation for the FCLOP that will be improved later. In chapter 3, the polytope corresponding to the FCLOP model introduced formerly, is defined. Later, several classes of valid inequalities with respect to the defined polytope are proposed to improve the mathematical formulation of the problem and reduce the integrality gap. We also introduce an algorithm to find non-valid inequalities with respect to the known polytope, that remove feasible solutions having the same objective values.

Chapter 4 is dedicated to the polyhedral study, identifying first the dimension of the FCLOP polytope for different p values. We discuss then the facets of the FCLOP and identify some classes of facet defining inequalities.

Chapter 5 serves to introduce some solution algorithms to solve the FCLOP. In this chapter, we propose several relaxation strategies based on Lagrangian relaxation. We also propose a Lagrangian decomposition algorithms that decompose the problem into three subproblems. The advantage of such a decomposition is to have relatively easy subproblems comparing to the initial FCLOP and the Lagrangian relaxation algorithms as well. Numerical experiments concerning the proposed solution algorithms are presented at the end of the chapter 5.

In chapter 6, a relaxation algorithm enriched by a cut generator algorithm is proposed to solve the problem. In this chapter, we try to apply particular properties of the FCLOP to introduce an efficient exact solution algorithm. We will show that whenever p is smaller than n, from among the classical triangle-free inequalities there are a few of them active in a feasible solution. We propose a solution algorithm based on relaxing the set of classical triangle-free inequalities and apply a feasibility cut generation algorithm to 1.1. LITERATURE REVIEW -STATE OF THE ART OF THE LOP 13 generate violated cuts and add them to the model, if any. We will show that the algorithm will find the optimal solution in a finite number of iterations. We also introduce an extended relaxation base algorithm using the same idea. Numerical experiments reported at the end of the chapter 6 confirms the efficiency of these algorithms for the cases when p << n.

In chapter 7, a relax-and-cut algorithm is proposed inducing part of the valid inequalities proposed earlier in the model. A comparison between a direct Lagrangian relaxation algorithm and the proposed relax-and-cut algorithm is presented and is followed by the numerical results.

Chapter 8 is dedicated to summarize the work, conclude the results and propose some ideas on future researches.

Literature review -State of the art of the LOP

The literature review is organized as follows. The state-of-the-arts in Linear Ordering Problem (LOP), polyhedral studies and solution methods are reviewed in different subsections. As Fixed Cardinality Linear Ordering Problem (FCLOP) will be introduced in this thesis, therefore, no previous literature is available to report. The present review does not pretend to be exhaustive with respect to theory and application of the LOP, but we focus on the results and methods which may be of interest to extend to the p-fixed cardinality case (see [START_REF] Martí | The linear ordering problem: exact and heuristic methods in combinatorial optimization[END_REF] for a complete textbook on the LOP).

1.1.1 Linear ordering problem and applications [START_REF] Martí | The linear ordering problem: exact and heuristic methods in combinatorial optimization[END_REF] provides a comprehensive and categorized introduction to different variants, solution methods and polyhedral studies. The interested readers are referred to [START_REF] Martí | The linear ordering problem: exact and heuristic methods in combinatorial optimization[END_REF] for further details.

In economics, input-output models of a multisectorial economy have long been studied by economists to model the exchange flows (of cash, products or activities) between the different sectors of a market or a country. The analysis entails dividing up the economy into n sectors that produce goods and/or services, and determines the quantities that each sector must produce to meet both internal and external demands. These quantities are the coefficients of the so-called input-output matrix and can be supposed positive wlog. Triangulation of an input-output table is the process of determining a hierarchical ordering of the different industries of production such that the flow of monetary value between them is maximized. The optimal value is proportional to the so-called linearity factor of the economy. Since the sum CHAPTER 1. INTRODUCTION of all the entries of the matrix A less those elements on the main diagonal is always constant, the triangulation problem is reduced to finding a permutation of the rows and columns such that the sum of the elements above the main diagonal is maximum. Clearly, this is equivalent to the linear ordering problem. In practice, economists have observed that the linearity measure is not sensitive to the influence of many economic sectors, giving rise to the question of determining the subset of the most influent sectors and their respective order. Moreover, the input-output tables are rather sparse (rows or columns of zeroes are common) inducing many alternative optimal orders indeed difficult to detect (see [START_REF] Grötschel | Optimal triangulation of large real world input-output matrices[END_REF]). If the cardinality parameter p defining the (FCLOP) model is not a priori fixed in that situation, the analysis could have to compare different versions of the (FCLOP) applied to triangulation problem for input-output matrices with different values of p. The study of inter-compartmental models in ecology is another example where the identification of the most influent sectors is critical [START_REF] Lenzen | Structural path analysis of ecosystem networks[END_REF].

Another application of the linear ordering problem is in the voting theory. A classical question in voting theory is the search for a common order of candidates from a set of individual orders (binary or complete) given by the votant. Partial orders on a subset of p candidates will as well be of interest, but which subset of p candidates. The fixed-cardinality LOP can thus be viewed as a subproblem of a general ordering problem where one compares different groups of a limited number of candidates. An other important area of application for many network optimization problems is transportation and telecommunications network design. In some transportation and telecommunications applications, we have situations such that not only the distance/cost and the volume of flow exchange influence the choice of facility locations, but also the mutual attractiveness of locations between each other can play a very important role. Therefore the cost function would be a linear combination of 1) a minimization problem which minimizes the setup and flow transfer cost, and 2) a maximization problem which influences the choice of p facilities in such a way that the total attractiveness associated with the choice of pairs of locations is being maximized. In Telecommunications and in particular in Internet Service Providers industry, there are several agreements for different situations between every pair of ISPs. When an ISP wants to ensure Internet connectivity to its users, it needs to come to some agreements with others. To decide how many other ISPs should sign such an agreement (i.e. p) is a managerial decision which takes into account some political aspects (e.g. avoiding monopoly, some political compromise etc.). In the lower level decision making, the bandwidth of ij connection, the technology, compatibility, historical data and past experiences etc. are used to define p ij as the attractiveness of collaboration
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between ISP i and ISP j . In maritime transport, particularly in liner shipping, the large vessels call at some major ports based on a published itineraries. The set of port call sequence is known as 'string'. The containers on the vessels are discharged and then distributed to smaller ports around the called major port. Similarly, the concentrated container of smaller ports are loaded into the ship. The major ports are selected based on draft, average turn around times etc. It is well-known in maritime industry that the time a vessels spends at a port is the unprofitable part of service. Vessel owners try to 1) call minimum possible port along the string to avoid turnaround time, 2) minimize the total flow transport costs, 3) determine the sequence of calls.

In most of these examples, the cardinality and ordering constraints appear as embedded in a larger design model, quite amenable to decomposition techniques which will induce (FCLOP) subproblems. In [START_REF] Sirdey | Polyhedral combinatorics of a resourceconstrained ordering problem part i: on the partial linear ordering polytope[END_REF], Sirdey and Kerivin have addressed the Process Move Programming problem where a set of processes have to be assigned to a set of processors, a process move consisting of a suborder of states which must satisfy capacity constraints due to processors types. A partial ordering problems results from the modelling which can be interpreted as a (LOP) with no cardinality constraint at all, thus including all (FCLOP) formulations. [START_REF] Charon | A survey on the linear ordering problem for weighted or unweighted tournaments[END_REF] provides a survey on the LOP for weighted/ unweighted tournaments. This problem consists in finding a linear order which is at minimum distance from a (weighted or not) tournament. In general, a tournament T in a graph G = (V n , A n ) consists of arcs containing for every pair of nodes i and j either arc (i, j) or arc (j, i), but not both. [START_REF] Grötschel | A cutting plane algorithm for the linear ordering problem[END_REF], Grötschel et al. (1985a) and [START_REF] Grötschel | On the acyclic subgraph polytope[END_REF] explain the fact that a closely related problem to the LOP is the maximum acyclic subgraph problem. In fact the LOP represents a special case of the acyclic subgraph problem (Grötschel et al., 1985a) when the input matrix represents a complete weighted oriented graph. They also explain that the optimal solution of the linear ordering problem is optimal also for the acyclic subgraph problem. Moreover, they precise that the linear ordering polytope is a face of the maximum acyclic subgraph polytope (Grötschel et al., 1985a). Another version of the maximum acyclic subgraph problem is the minimum feedback arc set problem. A feedback arc set in a digraph D = (V n , A n ) with arc weights c ij for all i, j ∈ A n , is a set F ⊆ A n such that D \ F is acyclic. Therefore, the minimum feedback arc set problem looks for F such that the sum over all the cost of the arcs present in F is minimized [START_REF] Charbit | The minimum feedback arc set problem is np-hard for tournaments[END_REF], [START_REF] Eades | A fast and effective heuristic for the feedback arc set problem[END_REF], [START_REF] Grötschel | A cutting plane algorithm for the linear ordering problem[END_REF].

CHAPTER 1. INTRODUCTION Bertacco et al. (2008) introduced the so called Linear Ordering Problem with Cumulative Costs with practical application in wireless telecommunication systems. They studied a variant of the LOP for which the overall permutation cost can be expressed as the sum of terms α u associated with each item u, each defined as a linear combination of the values α v of all items v that follow u in the permutation. They prove that the problem is indeed NP-hard and propose an ad hoc enumerative algorithm as well as a dynamic-programming heuristic. [START_REF] Buchheim | Exact algorithms for the quadratic linear ordering problem[END_REF] studied the quadratic linear ordering problem and proposed a positive semi-definite relaxation to solve it. The quadratic linear ordering problem represents a generalization of various optimization problems, such as bipartite crossing minimization or the betweenness problem, which includes linear arrangement problem. [START_REF] Hungerländer | Semidefinite relaxations of ordering problems[END_REF] present a generic study on ordering problems, either linear or quadratic ordering problem. In this study, a new quadratic constraint formulation for the (linear or quadratic) ordering problem is introduced and the positive semi-definite relaxation technique applied solve the problem. It is reported in this study that the proposed positive semi-definite relaxation algorithm is also efficient on a variety of optimization problems i.e. bipartite crossing minimization problem, minimum linear arrangement problem, the single-row facility layout problem, Multi-level crossing minimization problem and weighted betweenness problem.

1.1.2 Polyhedral studies for the LOP Grötschel et al. (1985a) proved that among all the classes of facet defining inequalities of acyclic subgraph polytope that were proposed in [START_REF] Grötschel | On the acyclic subgraph polytope[END_REF], only some classes of valid inequalities such as triangle-free inequalities, simple k-fence and Möbius ladder inequalities are facet-defining. As an example, k-dicycle inequalities which are facet defining for the maximum acyclic subgraph polytope are the groups which are not defining facet for the linear ordering polytope. They also used those inequalities in a cutting plane method for the triangulation of the input-output matrices [START_REF] Grötschel | A cutting plane algorithm for the linear ordering problem[END_REF]. [START_REF] Reinelt | A note on small linear-ordering polytopes[END_REF] also studied the linear ordering polytope and proposed a list of facet defining inequalities for the linear ordering polytope when the number of vertices is smaller than or equal to 7. [START_REF] Reinelt | A note on small linear-ordering polytopes[END_REF] and Grötschel et al. (1985a) both showed that the linear ordering polytope of the problem with n nodes inherits all facets from the polytope of linear ordering polytope of n -1 nodes.
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Leung and Lee (1994) also proposed new facets by generalizing facets induced by subgraphs called fences which were introduced firstly by Grötschel et al. (1985a) and augmented fences which were introduced by McLennan [START_REF] Mclennan | Binary stochastic choice. Preferences, Uncertainty and Optimality[END_REF]. [START_REF] Bolotashvili | New facets of the linear ordering polytope[END_REF] presented a procedure called the rotation method to generate new facet defining inequalities by using the information of the facets which are already known. Applying the rotation method to the linear ordering polytope led them to generalize several facets i.e. facets induced by subgraphs called m-fences, M öbius ladders and Z m facets [START_REF] Reinelt | The linear ordering problem: algorithms and applications[END_REF], t-reinforced m-fences [START_REF] Leung | More facets from fences for linear ordering and acyclic subgraph polytopes[END_REF] and (m, k)fences [START_REF] Bolotashvili | On the facets of the permutation polytope, communic[END_REF].

Solution methods

Solution methods for the linear ordering problem have been early proposed and tested on many instances so that the problem is considered well solved by exact methods (up to 100 nodes). [START_REF] Hoogeveen | Stronger lagrangian bounds by use of slack variables: Applications to machine scheduling problems[END_REF] deals with a scheduling problem where the Lagrangian relaxation is used to solve the problem. The resulting Lagrangian relaxation sub-problem becomes a LOP which is polynomially solvable under certain conditions. [START_REF] Grötschel | A cutting plane algorithm for the linear ordering problem[END_REF] proposed a new cutting plane algorithm based on the results regarding the facet-defining inequalities of the LOP which they have proposed in their earlier study Grötschel et al. (1985a). [START_REF] Mitchell | Solving linear ordering problems with a combined interior point/simplex cutting plane algorithm[END_REF] proposed a cutting plane algorithm which uses a primal-dual interior point method as well as the simplex method to solve the linear ordering problem. They do a comparison between their own algorithm with one that uses only the simplex method and with one that uses only an interior point method. [START_REF] Belloni | Lagrangian heuristics for the linear ordering problem[END_REF] proposed two heuristics for the linear ordering problem embedded within a Lagrangian relaxation framework. They exploited dual information obtained from Lagrangian relaxation to construct feasible solution and then improved the solution using their heuristic. As the number of relaxed constraint becomes prohibitive, they also applied a relax-and-cut approach. Out of 79 instances, they proved optimality in 72 cases. [START_REF] Belloni | Lagrangian Heuristics to Linear Ordering[END_REF] proposed two heuristics. The first one is based on the so called position cost (modified costs) to sequentially build a linear ordering of the nodes. The second one directly used the LR solution. [START_REF] Schiavinotto | The linear ordering problem: Instances, search space analysis and algorithms[END_REF] presented a comprehensive search space analysis of the LOLIB library instance classes. They conclude that adaptive restart algorithms like iterated local search or memetic algorithms that iteratively generate new starting solutions for a local search based on previous search experience, are promising candidates for obtaining high performing algorithms. [START_REF] Campos | Scatter search for the linear ordering problem[END_REF] proposed a scatter search, that could find high quality solutions for the linear ordering problem. The scatter search algorithm proposed in this study, combines solutions in a linear order to create new solutions and maintain a balance between quality and diversification in the reference set. [START_REF] Laguna | Intensification and diversification with elite tabu search solutions for the linear ordering problem[END_REF] proposed a tabu search to solve the triangulation problem for input-output matrices in economy.

As well, [START_REF] Garcia | Variable neighborhood search for the linear ordering problem[END_REF] introduced a variable neighborhood search and a hybrid method to apply a short term tabu search combined with a principal algorithm based on variable neighborhood search.

Summary and conclusion

A literature review and the state of the art of the linear ordering problem is presented in this chapter. As mentioned earlier, the fixed cardinality linear ordering problem is a new combinatorial optimization problem that can be classified as an extension of the linear ordering problem and will be studied for the first time in this PhD thesis. Therefore, there exist no previous study available on this subject. However, there are several studies focused on combinatorial optimization problems with fixed cardinality constraints. [START_REF] Bruglieri | An annotated bibliography of combinatorial optimization problems with fixed cardinality constraints[END_REF] provide an annotated bibliography of the combinatorial optimization problems that have be considered with the cardinality constraints.

CHAPTER 2

Modeling the Fixed Cardinality Linear Ordering Problem An introduction on the fixed cardinality linear ordering problem is given in this chapter. It is then followed by introducing some applications and motivations of this study.

Given a ground set V n = {1, 2, ..., n}. We define G = (V n , A n ) to be the complete directed graph induced by the node set V n . Here,

A n = {(i, j) ∈ V n × V n , i = j}. For any function F : V n ∪ A n → R and T ⊆ V n ∪ A n , we define F (T ) = e∈T F (e).
A linear order π S on S ⊆ V n , is a bijection from {1, 2, ..., |S|} to S ⊆ V n . When each ordered pair (i, j) ∈ V n × V n is associated with a weight w ij , the weight of a given linear order π S is

w(π S ) = i∈S j∈S,j =i f ij w ij , (2.1)
where

f ij = 1 if π -1 S (i) < π -1 S (j)
, and f ij = 0 otherwise. When it is necessary and useful, we also denote π S = (a 1 , a 2 , ..., a p ) the linear order on S ⊆ V n with |S|= p. In this notation, π -1 S (a i ) = i and

w(π S ) = p i=1 i<j≤p w a i a j .
Given a subset S ⊆ V n , let Π S denotes the set of permutations of the elements of S. 

Definitions and notations

Given a linear order π S , let G π S = (S, A(π S )) be the graph having S as the node set and A(π S ) the set of arcs such that for all u, v ∈ S, we have

(u, v) ∈ A(π S ) if and only if π -1 S (u) < π -1 S (v).
Let G[S] be the complete directed graph induced by S. Among all the possible S ⊆ V , such that |S|= p, the FCLOP may be seen as the problem of determining the set S and the maximum weighted acyclic tournament (a LOP) in G[S]. Given a linear order π S , its incidence vector (x π S , y π S ) is defined as follows:

x π S ij = 1 if π -1 S (i) < π -1 S (j) and {i, j} ⊆ S; x π S ij = 0 if π -1 S (i) > π -1 S (j) or {i, j} ⊆ S; y π S i = 1 if i ∈ S and y π S i = 0 if i ∈ S.
The Fixed cardinality linear ordering polytope is the convex hull of the incidence vectors of the linear order π S , ∀S ⊆ V n , |S|= p. That is

F CLOP (G n , p) = conv{(x π S , y π S ) : S ⊂ V n , |S|= p, π S ∈ Π S }.
Given a linear order π S for an arbitrary S ⊆ V n , we denote by δ + π S (i), ∀i ∈ S the set of arcs (i, j) with π -1 S (i) < π -1 S (j). A Cut is a set of edges when removed, or increases the number of connected components of the underlying graph). Let G = (V, A) be any directed graph. For i ∈ V , the set of arcs of G with tail (head) i is represented by δ

+ G (i) (δ - G (i)), and let δ G (i) = δ + G (i) ∪ δ - G (i). As well, for a given subset W ⊂ V , δ + G (W ) denotes the set of arcs (u, v) ∈ A, with u ∈ W and v ∈ V \ W . Also we denote by δ - G (W ) the set of arcs (u, v) 2.2. MOTIVATION 21 with v ∈ W and u ∈ V \ W .
When there is no confusion about the graph, we omit the subscript G.

If each arc a of G is associated with a weight w(a), then the weight of the cut δ + (W ) is

w(δ + (W )) = a∈δ + (W )
w(a).

Motivation

Input-output models of a multisectorial economy have long been studied by economists to model the exchange flows (of cash, products or activities) between the different sectors of a market or a country. The analysis entails dividing up the economy into n sectors that produce goods and/or services, and determines the quantities that each sector must produce to meet both internal and external demands. These quantities are the coefficients of the so-called input-output matrix and can be supposed positive wlog.

Triangulation of an input-output table is the process of determining a hierarchical ordering of the different industries of production such that the flow of monetary value between them is maximized. The optimal value is proportional to the so-called linearity factor of the economy. Since the sum of all the entries of the matrix A less those elements on the main diagonal is always constant, the triangulation problem is reduced to finding a permutation of the rows and columns such that the sum of the elements above the main diagonal is maximum. Clearly, this is equivalent to the linear ordering problem.

In practice, economists have observed that the linearity measure is not sensitive to the influence of many economic sectors, giving rise to the question of determining the subset of the most influent sectors and their respective order. Moreover, the input-output tables are rather sparse (rows or columns of zeroes are common) inducing many alternative optimal orders indeed difficult to detect (see Groetschel et al [START_REF] Grötschel | Optimal triangulation of large real world input-output matrices[END_REF]). If the cardinality parameter p defining the FCLOP model is not a priori fixed in that situation, the analysis could have to compare different versions of the FCLOP applied to input-output matrice triangulation with different values of p. The study of inter-comportamental models in ecology is another example where the identification of the most influent sectors is critical [START_REF] Lenzen | Structural path analysis of ecosystem networks[END_REF]).

Voting theory and analysis of ordinal data

A classical question in voting theory is the search for a common order of candidates from a set of individual orders (binary or complete) given by the votant. Partial orders on a subset of p candidates will as well be of interest, but which subset of p candidates. The FCLOP can thus be viewed CHAPTER 2. MODELING THE FCLOP as a subproblem of a general ordering problem where one compares different groups of a limited number of candidates.

Transportation and communications network design

In some transportation and telecommunications applications, not only the distance/cost and the volume of flow exchange influence the choice of facility locations, but also the mutual attractiveness of locations between each other can play a very important role. Therefore the cost function would be a linear combination of 1) a minimization problem which minimizes the setup and flow transfer cost, and 2) a maximization problem which influences the choice of p facilities in such a way that the total attractiveness associated with the choice of pairs of locations is being maximized.

In Telecommunications and in particular in Internet Service Providers industry, there are several agreements for different situations between every pair of ISPs. When an ISP wants to ensure Internet connectivity to its users, it needs to come to some agreements with others. To decide how many other ISPs should sign such an agreement (i.e. p) is a managerial decision which takes into account some political aspects (e.g. avoiding monopoly, some political compromise etc.). In the lower level decision making, the bandwidth of ij connection, the technology, compatibility, historical data and past experiences etc. are used to define p ij as the attractiveness of collaboration between ISP i and ISP j .

In maritime transport, particularly in liner shipping, the large vessels call at some major ports based on a published itineraries. The set of port call sequence is known as 'string'. The containers on the vessels are discharged and then distributed to smaller ports around the called major port. Similarly, the concentrated container of smaller ports are loaded into the ship. The major ports are selected based on draft, average turn around times etc. It is well-known in maritime industry that the time a vessels spends at a port is the unprofitable part of service. Vessel owners try to 1) call minimum possible port along the string to avoid turnaround time, 2) minimize the total flow transport costs, 3) determine the sequence of calls.

In most of these examples, the cardinality and ordering constraints appear as embedded in a larger design model, quite amenable to decomposition techniques which will induce FCLOP subproblems.

Resource-constrained scheduling problems

In [START_REF] Sirdey | Polyhedral combinatorics of a resourceconstrained ordering problem part i: on the partial linear ordering polytope[END_REF], Sirdey and Kerivin have addressed the Process Move Programming problem where a set of processes have to be assigned to a set of processors, a process move consisting of a suborder of states which must satisfy capacity constraints due to processors types. A partial ordering

MATHEMATICAL MODELING

problems results from the modelling which can be interpreted as a LOP with no cardinality constraint at all, thus including all FCLOP formulations.

Mathematical modeling

In this section, we firstly recall the known mathematical formulation of the linear ordering problem and continue by introducing an integer linear programming formulation for the FCLOP. At the end of this chapter, we also propose a quadratic programming formulation for the FCLOP.

Linear ordering problem

For a given linear order π S (when |S|= n), let the decision variables x ij , ∀ i, j ∈ V n , i = j be defined as follows:

x ij = 1 if π -1 S (i) < π -1 S (j) 0 otherwise
An integer programming formulation of the linear ordering problem can be proposed as follows:

max i∈Vn j∈Vn,j =i w ij x ij (2.4) s.t. x ij + x ji = 1 ∀ i, j ∈ V n , i = j
(2.5)

x ij + x jk + x ki ≤ 2 ∀ i, j, k ∈ V n , i = j = k (2.6) x ij ∈ {0, 1} ∀ i, j ∈ V n , i = j (2.7)
In this formulation, constraints (2.5) ensure that i is ordered before j or(exclusive) j is ordered before i in any feasible solution. Inequalities (2.6) when combined with (2.5) avoid the existence of any directed cycle in a feasible solution.

Fixed cardinality linear ordering problem Integer programming formulation

For a given linear order π S , |S|= p, let the decision variables x ij and y i for all i, j ∈ V n , i = j be defined as follow: x ij + x ji ≤ y i ∀i, j ∈ V n , i < j (2.9)

x ij = 1 if π -1 S (i) < π -1 S (
x ij + x ji ≤ y j ∀i, j ∈ V n , i < j
(2.10)

x ij + x ji ≥ y i + y j -1 ∀i, j ∈ V n , i < j
(2.11)

x ij + x jk + x ki ≤ 2 ∀i, j, k ∈ V n : i = j = k (2.12) i∈Vn y i = p (2.13) x ij , y i ∈ {0, 1} ∀ i, j ∈ V n , i = j (2.14)
Inequalities (2.9) and (2.10) ensure that there exist at most one arc between every pair of nodes i and j, only if i and j both are selected in a linear order. Inequalities (2.11) ensure the existence of at least one arc between i and j, when both are in a linear order. In fact (2.11) together with (2.9) and (2.10) guarantee the existence of exactly one arc between every pair of vertices in S.

Inequalities(2.12) ensure that there exist no triangle in a graph corresponding to a feasible solution. Inequalities (2.12) are known as the classical triangle-free inequality [START_REF] Grötschel | On the acyclic subgraph polytope[END_REF] and are sufficient to eliminate all the potential directed cycles including more than three arcs in every feasible solution of the FCLOP.

In the next lemma, we will show that inequalities (2.12) together with (2.9) -(2.11) avoid directed cycles of size greater than three.

Remark 1 Inequalities (2.12) together with (2.9) -(2.11) are sufficient to avoid any directed cycle of size greater than three.

Summary and conclusion

In the second chapter, a brief definition of the fixed cardinality linear ordering problem and several applications and motivations for the study has been proposed. Finally an integer programming formulation of the FCLOP has been proposed that will be improved later in the following chapters.

CHAPTER 3

Integer Programming Formulation and Valid Inequalities for the FCLOP Polytope

Let G n , A n be the complete directed graph on n vertices. Each arc (i, j) ∈ A n is associated with a variable x ij and each node i ∈ V n is associated with a variable y i .

The following is a linear relaxation for the FCLOP:

max i∈Vn j∈Vn,j =i w ij x ij (3.1) s.t. x ij + x ji ≤ y i ∀i, j ∈ V n , i < j (3.2) x ij + x ji ≤ y j ∀i, j ∈ V n , i < j (3.3) x ij + x ji ≥ y i + y j -1 ∀i, j ∈ V n , i < j (3.4) x ij + x jk + x ki ≤ 2 ∀i, j, k ∈ V n : i = j = k (3.5) i∈Vn y i = p (3.6) 0 ≤ x ij ∀ i, j ∈ V n , i = j (3.7) y i ≤ 1 ∀ i ∈ V n (3.8)
Recall that F CLOP (G n , p) is the polytope associated with the FCLOP problem with n nodes and when the cardinality of the linear order is p. It may be seen as the convex hull of the 0 -1 solutions satisfying (3.2) -(3.8).

Our polytope F CLOP (G n , p) is closely related to the polytope studied by [START_REF] Sirdey | Polyhedral combinatorics of a resourceconstrained ordering problem part i: on the partial linear ordering polytope[END_REF]. In their study the constant p is not fixed and 25 they look for the convex hull of all the linear orders of any cardinality. That is the polytope they studied called the Partial Linear Ordering Polytope P n P LO is the convex hull of all the 0-1 vectors satisfying inequalities (3.2)-(3.5). Hence any valid inequality for P n P LO is also valid for F CLOP (G n , p). In this chapter, we introduce several classes of strengthening valid inequalities for the polytope defined by (3.2) -(3.8). We also introduce non valid inequalities that break symmetry. This symmetry breaking inequalities are not valid for the FCLOP polytope since they cut integer solutions to reduce the number of integer feasible solutions having the same objective value.. In the process of separating the symmetry breaking inequalities, the algorithm ensures the existence of at least one integer feasible solutions from any set of integer feasible solutions that have similar objective value. We report the impact of the new valid inequalities in separate tables on a selected set of instances of LOLIB 1 . These instances are chosen in such a way that instances from different classes of problems in the LOLIB are represented in our testbed. Note that the level of intractability changes significantly from one class of instance to another in LOLIB.

Category 1: The properties of underlying graph

Node-Degree constraints

These valid inequalities for F CLOP (G n , p) are obtained from the following facts: a) p = n -1. In each pair of nodes, at least one of the nodes belongs to a feasible solution (see Figure 3.1).

x ij + x ji = y i + y j -1 ∀ i, j ∈ V n , i = j.
(3.9)

v1 v2 v3 v4 v5 Figure 3.1: An example of G π S with n = 5, p = 4. b) p < n -1.
In the graph associated with the linear order π S , G π S , the number of outgoing and incoming arcs to a vertex i is equal to p -1 if i ∈ S. If i ∈ S, this number is zero (see Figure 3.2).

x(δ(i)) = (p -1)y i ∀i ∈ V n .

(3.10)

1 http://www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB/ Lemma 1 (Node-Degree) Constraints (3.9) and (3.10) are valid for the F CLOP (G n , p) polytope.

Proof In order to prove that (3.9) and (3.10) are valid for the F CLOP (G n , p) polytope, we need to consider two cases:

Case 1) p = n-1: In this case, in any feasible solution of the FCLOP, there exists at least one selected vertex between every pair of vertices i and j. Therefore 0 ≤ y i + y j -1 ≤ 1. The upper bound is met when both i and j are designated to be among the p vertices on the linear order. As well, the lower bound is met when between i and j, one of them is not selected to be present in the current feasible solution and actually, there exist no other situation since p = n -1.

Case 2) p < n -1: For an arbitrary vertex i, the total number of arcs arriving to i (|δ -(i)|) plus the total number of arcs leaving i (|δ + (i)|) are said to be the degree of i (say |δ(i)|).

It is well-known that any feasible solution of the LOP (as well as the FCLOP), represents a complete cycle-free digraph (sub-digraph for the FCLOP). Hence, the degree of every vertex appearing in a feasible linear order is equal to p-1. In the contrary, if an arbitrary vertex j is not designated among the selected p vertices, then y j = 0 and we have x(δ(j)) = 0.

Note 1 From now on, we distinguish between the two FCLOP cases, p = n -1 and p < n -1.

TotalX constraint

In a graph associated to a feasible solution of the FCLOP (e.g. Figure 3.1 and Figure 3.2), we always have i∈Vn j∈Vn,j =i The TotalX constraint is redundant in presence of (3.9) when p = n -1 for F CLOP (G n , n -1). It is also redundant in presence of (3.10) for F CLOP (G n , p) when 0 ≤ p < n -1. However, our extensive computational experiments revealed that, in fact, it often contributes significantly in reducing the computation time as reported in Table 3.5.

x ij = p(p -

Triangle-free inequalities

In the sequel, we are proposing three classes of inequalities to strengthen Triangle-Free (TF) inequalities (3.5).

TF -Class 1

The first class of triangle-free inequalities is a natural generalization of the classical triangle-free inequalities (3.5):

x ij + x jk + x ki ≤ y r + y s ∀ {r, s} ⊂ {i, j, k} ⊆ V n , i = j = k (3.12)
The number of these inequalities is equal to n(n -1)(n -2). Triangle-free inequalities ensure that there is no directed cycle composed of three arcs in any feasible solution to the FCLOP (see Figure 3.3). Lemma 3 Inequalities (3.12) are valid for F CLOP (G n , p), for all n ≥ 3 and

1 ≤ p ≤ n.
Proof It is clear that we might have

x ij + x jk + x ki = 2 only if i, j, k ∈ S, that means y i = y j = y k = 1. Since y i ≤ 1, ∀i ∈ V n ; consequently we always have x ij + x jk + x ki ≤ y r + y s , ∀ {r, s} ⊆ {i, j, k} ⊆ V n .
Hence by adding these inequalities to our linear relaxation (3.2) -(3.8), the inequalities (3.5) become redundant.
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TF -Class 2

The second class of triangle-free inequalities to eliminate every triangle in a feasible solution of the FCLOP is the following:

For an arbitrary set of vertices {i, j, k} in V n , if we have i before k and k before j, then:

(i) k must be among the p designated vertices and, (ii) there must exist an arc from i to j. The third set of proposed triangle-free inequalities are the following:

x ik + x kj -x ij -y k ≤ 0 ∀i, j, k ∈ V n , i = j = k (3.
x ij + x jk + x ki + i∈Vn\{i,j,k} y ≤ ⌊ 2p + (n -3) 3 ⌋ ∀ {i, j, k} ⊆ V n (3.22)
Lemma 5 Inequalities (3.22) are valid inequalities for F CLOP (G n , p).

Proof From (3.12) we have:

x ij + x jk + x ki -y i -y j ≤ 0, x ij + x jk + x ki -y i -y k ≤ 0, x ij + x jk + x ki -y j -y k ≤ 0.
Their sum give the following inequality

3(x ij + x jk + x ki ) -2(y i + y j + y k ) ≤ 0. (3.23)
We know that y i + y j + y k = py(V n \ {i, j, k}). By replacing this value of

y i + y j + y k in (3.23) we obtain 3(x ij + x jk + x ki ) + 2y(V n \ {i, j, k}) ≤ 2p. (3.24)
Combining this later inequalities with the trivial inequalities y i ≤ 1 for i ∈ V n \ {i, j, k} we get

3(x ij + x jk + x ki ) + 3y(V n \ {i, j, k}) ≤ 2p + (n -3). (3.25)
Now by dividing both sides of (3.26) by three and rounding down the right hand side we obtain the result.

x ij + x jk + x ki + y(V n \ {i, j, k}) ≤ ⌊ 2p + (n -3) 3 ⌋. (3.26)
In the sequel, some more classes of valid inequalities are presented:

Various valid inequalities For an arbitrary set of vertices {i, j, k} of distinct elements, if there exist arcs from i to both j and k and as well, from both j and k to i, then there must exist either (j, k) or (k, j) between k and j.

(e.g. Figure 3.5 and Figure 3.6)

3.2. CATEGORY 2: DYNAMIC SYMMETRY-BREAKING INEQUALITIES31 x ij + x ik -(x jk + x kj ) -y i ≤ 0 ∀i, j, k ∈ V n : i = j = k (3.27) x ki + x ji -(x jk + x kj ) -y i ≤ 0 ∀i, j, k ∈ V n : i = j = k (3.28) i j k Figure 3
.5: Constraints (3.27) ensure that exactly one of the two dashed arcs must be chosen. Inequalities (3.29) are also valid with respect to F CLOP (G n , p).

x ij + (x ik + x ki ) -(x kj + x jk ) -y i ≤ 0 ∀ i, j, k ∈ V n : i = j = k (3.29)

Category 2: Dynamic symmetry-breaking inequalities

Often computational efficiency is in a direct relationship with the size of the branch-and-bound tree and a good formulation can contribute significantly by providing a tighter bound, which requires minimal branching for proving optimality. However, even with a tight bound, still the combinatorial structure of problem can play a major role. More precisely, the existence of symmetry in the combinatorial structure can lead to situations where branching on a fractional variable would make another variable to take a similar fractional value with more or less the same objective function and the bound never improves. This would indeed hinder the convergence of the branch-and-bound process.

To break symmetry, the first idea coming to mind is to slightly perturb the input data in such a way that it does not affect the optimal solution. While such a technique can potentially eliminate part of the symmetry, however normally such a technique does not contribute a lot in improving the computational time or reducing the integrality gap [START_REF] Margot | Symmetry in integer linear programming[END_REF]. In fact, exploiting the information about the structure of symmetry is often ways superior alternative.

Our initial experiments on several instances of the FCLOP have revealed existence of several optimal solutions (different linear orders having the same optimal value) for a big part of the testbed.

Besides the fact that often symmetry is due to the input data, the modeling aspects such as definition of a feasible solution as a directed path may become also a source of severe symmetry in the model. The latter, can be eliminated or reduced by generating a kind of dynamic symmetry breaking inequalities. This type of inequalities cut some integer feasible solutions but they do not affect the optimal solution.

Here, we aim at eliminating such symmetric solutions by generating symmetrybreaking inequalities in a dynamic way as soon as an integer incumbent appears in the course of branch-and-bound process. Such cuts are not actually valid cuts for the FCLOP polytope because when added directly to the model (as static cuts) they certainly cut some parts of the polytop containing some integer feasible solutions, which might contain optimal solution. But, by adding them dynamically, one ensures that at least one of such solutions which represents the same objective value remains in the feasible space. This technique often has shown to contribute in reducing branch-and-bound tree size and accelerating convergence (see [START_REF] Margot | Symmetry in integer linear programming[END_REF]).

In the sequel, we propose an algorithm to dynamically generate certain type of symmetry breaking inequalities to eliminate some sorts of symmetry for the F CLOP (G n , p) polytope.

Given a set of nodes V n = {1, 2, ..., n}, and π s = (a 1 , a 2 , ..., a p ) any linear order on S when |S|= p.

Given 1 ≤ k ≤ n -1. Let S k and Sk be subsets of S defined as below:

S k = k t=1 {a t }, Sk = S \ S k
From π S = (a 1 , a 2 , ..., a p ), define the two sub-linear orders π S k and π Sk as follows:
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π S k = (a 1 , a 2 , ..., a k ), π Sk = (a k+1 , a k+2 , ..., a p ).

Now, we are ready to present the algorithm to generate the symmetrybreaking inequalities for any incumbent solution in the course of branchand-bound process.

Algorithm for finding symmetry-breaking inequalities

For k from 1 to p -1 do:

• If w(δ + G[S] (S k )) = w(δ - G[S] (S k ))
, add the following inequality to the model:

x(δ -(S k )) + a i ,a j ∈S k ,i<j x a i a j + a i ,a j ∈ Sk ,i<j x a i a j ≤ p(p -1) 2 -1 (3.30)
Remark 2 As mentioned earlier, constraints (3.30) do not represent valid inequalities with respect to F CLOP (G n , p). Yet, they can cut a feasible solution only if there exists other feasible solution(s) having the same objective value (an isomorphic optimal solution). Therefore, the optimal value does not change. 

Numerical results

A number of instances from the LOLIB2 have been chosen to form a testbed for conducting our numerical experiments. This set of instances has been constructed in such a way that every class of problem is represented by at least a few instances. The reason for constructing such a restricted list of problem instances is that The LOLIB itself contains a large number of instances and in the FCLOP, we also have a parameter p, which varies in certain range for every instance size. A combination of all values of parameter p and all the instances of LOLIB will produces an unnecessarily huge testbed.

In the following subsections we report numerical results where CPLEX is used to solve instances of the selected testbed. Table 3.1 through Table 3.6 are organized as follows:

The instance names are brought in the first column in the format NAME-n-p where NAME represents the instance name from LOLIB, n stands for the number of nodes and p indicates the cardinality.

We have set a time limit of 3 hours (equivalent to 10800 sec.) for CPLEX. However, it might happen that CPLEX is in the middle of solving an LP at certain node when the time limit has been reached. In this case CPLEX terminates as soon as that process terminates. Therefore, a minor deviation from this time limit might rarely appear in our reports.

The second column reports the best objective value reported by CPLEX.

The time elapsed to solve the instances is reported in the next column.

The following column reports the total number of processed nodes in the branch-and-bound tree.

The last column report the CPLEX termination status within the given time limit: 1) FailFeas indicates that the process exceeded the available memory, while there is at least one feasible solution that has been found during the solution process, 2) TimLim indicates that CPLEX terminated upon reaching the time limit, 3) Optimal and OptimalTol indicate that CPLEX terminates with the optimal solution within the time limit. Further explanation of CPLEX status can be found in the IBM ILOG Concert 12.5.1. It must be also noted that we have used a 32-bit version of ILOG Concert Technology.

Our testbed is composed of 51 instances from 7 different classes of input CHAPTER 3. VALID INEQUALITIES matrices with different appropriate values of p.

FCLOP

In Table 3.1, the initial FCLOP model before adding any new valid inequalities has been considered. For N-atp24, with n = 24, the value p varies in {5, 10, 15, 20, 23, 24}. One observes that all the instances can be solved in reasonable times. The maximum elapsed CPU time is about 58 seconds. Yet, two instances are solved to optimality at the root node (bearing in mind the preprocessing, reduction and cuts added by CPLEX at the root node).

For the input matrix N-atp48, with n = 48, when p varies in , 15, 20, 25, 30, 35, 40, 45, 47, 48} , one observes that as mush as the problem gets closer to the classical LOP (in the sense that p approaches n) the computational time reduces.

{10
While for smaller values of p the standard solvers run out of memory due to a prohibitive memory usage of the branch-and-bound tree, for moderate values of p solver terminates due to reaching the time limit without memory issues. For larger values of p, CPLEX terminates to optimality within the time limit. An interesting point here is that when p is very close to n, problems can be solved at the root node by CPLEX.

For N-be75eec with n = 50 and p varying in {20, 30, 40, 50}, all the instances are solved to optimality in about 15 seconds, at most. In N-econ36 with n = 36 and p varying in {15, 20, 25, 30, 35, 36}, again all the instances are solved to optimality within a few seconds.

For N-p50 with n = 50 and p varying in {10,15,20,25,30,35,40,45,49,50},while LOP instances are not yet solved to optimality, we observe that when k << N the prohibitive branch-and-bound tree size is an obstacle and the solver terminates due to the memory issue (out of memory status). However, as p approaches n the time limit is met before proving the optimality for all the instances.

In N-pal19 with n = 19 and p varying in {5, 10, 15, 18, 19}, all the instances are solved to optimality while the computational times are significantly higher compared to N-be75eec, N-econ36 and N-atp24. Moreover, optimality is met after a significant number of nodes being processed, mostly because we have a high level of symmetry causing degeneracy in the course of the branch-and-bound process.

In the same class of problems from LOLIB, i.e. N-pal43 and p varying in , 15, 20, 25, 30, 35, 40, 42, 43}, only one instance could reach the time limit and the rest of instances ran into memory problem. A surprising point is that the maximum number of branch-and-bound nodes upon which memory issue occurs never exceed 7013 nodes. This might be due to the high degree of degeneracy of LP at every (or certain) node.

{10
For N-be75eec and N-econ36, except for one instance, CPLEX was able to prove the optimality at the root node.

In general, in terms of number of nodes in branch-and-bound tree, the trees tend to become smaller as p approaches n in almost all the instances. The column #Nodes reports the number of nodes in the branch-and-bound tree. 

Fname

FCLOP + TotalX

The numerical experiments of solving the problem after adding TotalX constraintto the FCLOP model is reported in Table 3.2. For the instance N-atp24, one observes that computational times as well as the maximum number of nodes in the branch-and-bound tree needed to prove the optimality, decrease significantly. The same as before, all the instances of N-atp24 are optimally solved in reasonable times and faster than before (see Table 3.1). The results concerning N-atp48 shows that after adding TotalX constraint to the model, all the instances except two of them (i.e. p = 20 and p = 25) have been solved to optimality. Table 3.1 and Table 3.2 show that the behavior of several instances like N-be75eec, N-econ36, N-pal19 and N-p50-20 for any p that we have examined, remain quite the same, before and after adding TotalX constraint. The comparison between computational times in each set of instances are available in Figure 5.6 through Figure 3.19. In the set of instances of N-pal43, we have again similarity between Table 3.1 and Table 3.2. However, there is a slight difference with regard to the number of nodes in branch-and-bound tree. One observes that in formulation with TotalX, CPLEX is usually able to process more nodes before running out of memory. 

Fname

FCLOP + Node-Degree

In Table 3.3, we examined simple FCLOPI after adding Node-Degree constraints. Compared to the earlier results, in some cases (e.g. N-atp48 with p = 15), the instance is not solvable anymore on the same machine. That means, the model becomes more intractable after adding a significant number of constraints Node-Degree to the model. Also regarding N-atp48 with p = 20 or p = 25, we are still not able to solve these instances to optimality. However, the new results in Table 3.3 show that the minimum number of branch-and-bound nodes needed now (in the FCLOP + Node-Degree) to prove optimality is less than what we needed earlier in Table 3.2. For instance the results concerning sets N-be75eec and N-econ36 show that for all the instances of these sets, the computational times increase, while the number of branch-and-bound nodes decrease to only 3 nodes for N-be75eec with p = 20 and do not change much for the rest of instances. An important point here is that we could solve N-atp48-48-15 to optimality after adding the constraint TotalX (see Table 3.2). However it ran out of memory when we applied the set of Node-Degree constraints. That is why we prefer to use TotalX instead of the Node-Degree inequalities henceforward (keeping in mind that TotalX is equal to the aggregation of all the constraints in Node-Degree and in fact they are redundant). For the set of instances N-p50-20 and N-pal43, we still did not succeed to solve any of them to optimality. 

Fname

FCLOP + TotalX + TF Class 1

The model FCLOP after adding TotalX constraints as well as the set of TF -Class 1 constraints is considered here. Table 3.4 reports the statistics on the computational experiments with this model. The CPU times required to solve instances of N-atp24, in general, increases compared to all other earlier results while this is not the case regarding the set of N-atp48 instances. Concerning the set of N-atp48 instances, the number of instances solved to optimality is decreased to only 5 instances.

The behavior of the set of N-be75eec and N-econ36 instances is almost the same as what we had in Table 3.3.

Concerning instances of N-p50-20, we are still unable to solve any of these instances. However, the number of nodes in branch-and-bound tree is quite less than what we observed in Table 3.3.

All the instances N-pal19 are again optimally solved while the number of nodes in branch-and-bound trees increased. Finally for the set of instances N-pal43, we see that except the last one, CPLEX has terminated upon reaching the time limit. 

FCLOP + Node-Degree + TF Class 1

Table 3.5 reports the experimental results of a model composed of FCLOP and those constraints TF Class 1 and Node-Degree.

One observes in Table 3.5 that the instances N-atp24 for k = 10 and 15, the computational times needed to prove optimality do not significantly change when compared to Table 3.4.

For the instance set N-atp48, we observe that the number of instances solved to optimality is the same as what we had in Table 3.4 while it has decreased compared to observations in Table 3.2 and Table 3.3. All the instances of sets N-be75eec and N-econ36 are optimally solved in reasonable times. Comparison of computational time required for any of the individual instances are available in Figure 5.6 through Figure 3.19. Table 3.5 shows that except for N-pal43-43-43, for all the instances of sets N-p50-20 and N-pal43, CPLEX has terminated upon reaching the time limit. 

FCLOP + TF Class 2

In Table 3.6, one observes that N-atp48 for p = 20 and p = 25 are two instances that have been solved to optimality for the first time. Moreover, the instance N-p50-20 for p = 10 also has been solved to optimality, which has not been solved to optimality before, for any p. Another interesting fact is that for 18 instances of N-p50-20 and N-pal43which their optimal solution are not known-we could significantly improve the upper bound as well as the lower bound. We have improved the gap from 2.94% to 1.58% for LOP model of N-p50-20. The best known upper and lower bounds available for N-p50-20 in the literature is [46779,48155] In the following, Figure 3.13 through Figure 3.19 correspond to 7 groups of instances N-atp24, N-atp48, N-be75eec, N-econ36 N-p50-20 N-pal19 and N-pal19 are presented, which compare the computational time required to solve every instances with different p values. From what we have observed so far, the behavior of different instances are highly different. Hence, we consider instances separately and report for different p values in each figure. Note that some of the instances are not solved in optimality and runs have been terminated by time limit or out of memory status. We have also considered these instances in these diagrams. Polyhedral Study for F CLOP (G n , p)

In chapter 3, we have proposed several sets of valid inequalities for the FCLOP polytope. In this chapter, our investigation on the polytopes of the FCLOP for different p values is presented. We have determined the dimension of the FCLOP polytope and characterized some classes of facet defining inequalities. Numerical results already proved the significant impact of adding these facet defining inequalities to the model. Later in Chapter chapter 6 a Relax-and-Cut algorithm will be presented to apply the results presented here. In the following we present an integer programming formulation for the FCLOP for the cases (i) p = n -1 and (ii) p ≤ n -2:

• (i) FCLOP n-1 : max n i=1 n j=1,j =i w ij x ij (4.1) s.t. x ij + x ji = y i + y j -1 ∀ i, j ∈ V n , i ≤ j, (4.2) n i=1 y i = n -1, (4.3) x ij + x jk -x ik -y j ≤ 0 ∀ {i, j, k} ⊆ V n , (4.4) 0 ≤ x ij ∀ i, j ∈ V n , i = j, (4.5) y i ≤ 1 ∀ i ∈ V n , (4.6) x ij , y i ∈ {0, 1} ∀ i, j ∈ V n . (4.7) • (ii) FCLOP p : max n i=1 n j=1,j =i w ij x ij (4.8) s.t. x(δ(i)) = (p -1)y i ∀ i, j ∈ V n , i ≤ j, (4.9) n i=1 y i = p, (4.10) x ij + x ji ≤ y i ∀ i, j ∈ V n , i ≤ j, (4.11) x ij + x ji ≤ y j ∀ i, j ∈ V n , i ≤ j, ( 4 
.12)

x ij + x ji ≥ y i + y j -1 ∀ i, j ∈ V n , i ≤ j, (4.13) x ij + x jk -x ik -y j ≤ 0 ∀ {i, j, k} ⊆ V n , (4.14) x ij + x jk + x ki + i∈Vn\{i,j,k} y ≤ ⌊ 2p + (n -3) 3 ⌋ ∀ {i, j, k} ⊆ V n , (4.15) 0 ≤ x ij ∀ i, j ∈ V n , i = j, (4.16
)

y i ≤ 1 ∀ i ∈ V n , (4.17) x ij , y i ∈ {0, 1} ∀ i, j ∈ V n . (4.18)
Some basic definitions related to polyhedra are followed. The set of solutions of a finite system of linear (in)equalities, is called a polyhedron. A polytope is a bounded polyhedron. An inequality γ T x ≤ γ 0 , is valid for the polytope

P if P ⊂ {x : γ T x ≤ γ 0 }. If γ T x ≤ γ 0 is a valid inequality for P , then the set F = {x ∈ P : γ T x = γ 0 } is called a face of P .
The dimension of a polytope P , denoted by dim(P ) is the maximum number of affinely independent points in P minus 1. A face of dimension 0 is called an extreme point and a face of dimension dim(P ) -1 is called a facet.

If there is no risk of confusion, we may simplify the notation by using

V instead of V n (A instead of A n ). 4.1. DIMENSION 55 4.1 Dimension Remark 3 If α T x + β T y = ρ is an hyperplan containing F CLOP (G n , p), then α ij = α ji for any i, j ∈ V n , i = j.
Theorem 1 Given G n = (V n , A n ) and p, with n ≥ 3 and p = n -1, then the system

x ij + x ji = y i + y j -1for all i, j ∈ V n , i < j, (4.19) i∈Vn y i = p, (4.20) is a minimal equation system for F CLOP (G n , p).
Proof It is easy to check that equations (4. 19) and (4.20) are valid for the F CLOP polytope and are linearly independent. Therefore to prove the theorem it suffices to show that any other equation

α T x + β T y = ρ, (4.21) with F CLOP (G n , p) ⊆ {(x, y) ∈ IR |n 2 | : α T x + β T y = ρ}, is a linear combination of equations (4.19)-(4.20). Let S i = V n \ {i}, for each i ∈ V n . Let π S 1 be any LO on S 1 . Let π S i , i = 1, be the LO defined from π S 1 as follows: π -1 S i (j) = π -1 S 1 (j) if j / ∈ {1, i} and π -1 S i (1) = π -1 S 1 (i). From (4.21), we have α T x π S 1 + β T y π S 1 = ρ, (4.22) α T x π i S i + β T y π i S i = ρ, for each i ∈ V n \ {1}. (4.23)
Now combining carefully (4.22) with (4.23) for each i ∈ V n \ {1} and with the fact that α ij = α ji for any i and j, we obtain

β 1 + 1 2 α(δ(1)) = β i + 1 2 α(δ(i)) for each i ∈ V n \ {1} (4.24)
Now multiply each equation (4.19) by α ij and do the sum over all i, j ∈ V n , i < j, then using the fact α ij = α ji we get

α T x = 1 2 α(δ(1))y 1 + i∈Vn\{1} 1 2 α(δ(i))y i - 1 2 α(A n ) (4.25)
For each i ∈ V n \ {1}, replace α(δ(i)) in (4.25) by its value in (4.24),

α T x + i∈Vn\{1} β i y i = 1 2 α(δ(1))y 1 + (β 1 + 1 2 α(δ(1))) i∈Vn\{1} y i - 1 2 α(A n ) (4.26)
But from (4.20) we know that i∈Vn\{1} y i = (n -1)y 1 and hence (4.26) may be rewritten as

α T x + β T y = (n -1)(β 1 + 1 2 α(δ(1))) - 1 2 α(A n )
Theorem 2 Given G n = (V n , A n ) and p, with n ≥ 4 and 2 ≤ p ≤ n -2, then the system 

x(δ(i)) = (p -1)y i for all i ∈ V n , ( 4 
α T x + β T y = ρ, (4.29) with F CLOP (G n , p) ⊆ {(x, y) ∈ IR |n 2 | : α T x + β T y = ρ}, is a linear combination of equations (4.27)-(4.28).
We have two cases to consider (i) p = n -2 and (ii) p ≤ n -3.

(i) p = n-2. Let us fix a node l ∈ V n and consider the FCLOP instance on

G l n-1 = (V l n-1 , A l n-1 ) with the constant p unchanged that is p = n -2, where V l n-1 = V n \ {l} and A l n-1 = {(i, j) ∈ V l n-1 × V l n-1 : i = j}.
Any linear ordering π S with respect to G l n-1 and p is also a linear ordering with respect to G n and p. Therefore

F CLOP (G l n-1 , p) ⊆ {(x, y) ∈ IR |(n-1) 2 | : i,j∈V l n-1 ,i =j α ij x ij + i∈V l n-1 β i y i = ρ}.
From Theorem 1, the equality

i,j∈V l n-1 ,i =j α ij x ij + i∈V l n-1 β i y i = ρ (4.30)
may be obtained as a linear combination of the following equalities 

x ij + x ji = y i + y j -1for all i, j ∈ V l n-
α ij x ij + i∈V l n-1 (σ l - 1 2 α(δ(i)) + α il )y i = σ l p - 1 2 α(A l n-1 ).
(4.33)

From (4.30) and (4.33) we have

ρ = σ l p - 1 2 α(A l n-1 ), (4.34 
)

β i = σ l - 1 2 α(δ(i)) + α il for each i ∈ V l n-1 . (4.35)
Notice that these equalities are true for any l ∈ V n . Hence let i ∈ V n \ {l, k} and write (4.35) with respect to i and k, we get

β i = σ k - 1 2 α(δ(i)) + α ik . (4.36)
The combination of (4.35) and (4.36) gives

α il -α ik = σ k -σ l . (4.37)
This is true for any i ∈ V n and k, l ∈ V n \ {i}, k = l. Thus we may write

α ij = λ i -σ j for any i, j ∈ V n and i = j,
where λ i for i ∈ V n is a fixed scalar.

Notice that for any i, j ∈ V n we have

α ij = λ i -σ j , α ji = λ j -σ i .
With Remark 3 we have that
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Finally we may assume that

α ij = µ i + µ j for any i, j ∈ V n , i = j, (4.38)
where

µ i = λ i -σ i 2 for any i ∈ V n .
The combination of (4.34) and (4.35) for some i ∈ V l n-1 gives

β i = ρ p + α(A l n-1 ) 2p - 1 2 α(δ(i)) + α il = ρ p + 2(n -2) j∈V l n-1 µ j 2(n -2) -(n -2)µ i - j∈V l n-1 µ j + µ i = ρ p -(n -2)µ i + µ i ,
and since p = n -2 we obtain the following, (ii) p ≤ n -3. This case will be proved by induction on the size of V n .

β i = ρ p -µ i (p -1). ( 4 
Notice that here we must have n ≥ 5. The basic case of the induction is obtained when p = n -2, which is true from the previous case (i).

By the induction hypothesis the theorem is true for any instance of the FCLOP,

G n ′ = (V n ′ , A n ′ ) with 2 ≤ p ≤ n -3 and p + 2 ≤ n ′ < n.
Therefore we may assume that the theorem is true for

G 1 n-1 = (V 1 n-1 , A 1 n-1 ) and p where p ≤ (n -1) -2. As before V 1 n-1 = {2, . . . , n} and A 1 n-1 = {(i, j) ∈ V 1 n-1 × V 1 n-1 : i = j}.
Notice that any LO π S with respect to the instance G 1 n-1 and p is also a LO with respect to the instance G n and p and hence

F CLOP (G 1 n-1 , p) ⊆ {(x, y) ∈ IR |(n-1) 2 | : n i=2 n j=2,i =j α ij x ij + n i=2 β i y i = ρ}.
Thus by the induction hypothesis, the equation 

n i=2 n j=2,i =j α ij x ij + n i=2 β i y i = ρ, ( 4 
α ij = λ i + λ j for i = 2, .
. . , n, j = 2, . . . , n, i = j, (4.43) 

β i = σ -λ i (p -1) for i = 2, . . . ,
α T x π S + β T y π S = ρ, α T x π S k + β T y π S k = ρ, for each k ∈ S.
Fix k and combine these last two equations with (4.43), then using Remark 3, we obtain

β 1 + j∈S\{k} α 1j = β k + (p -1)λ k + j∈S\{k} λ j
Replacing by the value of β k in (4.44), we finally obtain that

β 1 + j∈S\{k} α 1j = σ + j∈S\{k} λ j , for each S ⊆ V 1 n-1 , k ∈ S.
(4.45)

Take some element l ∈ S and write (4.45) with respect to S and l.

Then by combining it with (4.45) which is with respect to S and k, we get α 1lα 1k = λ lλ k . This hold for any two elements l and k in V 1 n-1 . Hence we may assume that there is a constant scalar, that we call λ 1 for convenience, such that

α 1j = λ 1 + λ j for each j = 2, . . . , n
and with Remark 3 we also have

α j1 = λ 1 + λ j for each j = 2, . . . , n
Thus replacing the values of α 1j in (4.45) we have

β 1 = σ -(p -1)λ 1 .
This complete the proof of case (ii) when p ≤ n -3.

It is well known from Grötschel et al. (1985a) that the dimension of the F CLOP polytope when p = n is 1 2 n(n -1). Also notice that when p = 1 this dimension is n -1. From Theorems 1 and 2 we have the following

Corollary 1 dim(F CLOP (G n , p)) = 1 2 n(n -1) + n -1, when 2 ≤ p = n -1, and dim(F CLOP (G n , p)) = n(n -1) -1, when 2 ≤ p ≤ n -2.

Facets

Trivial inequalities

In the following, we show that the two sets of trivial inequalities (4.5) and (4.6) are defining facets for F CLOP (G n , n -1). As well we show that (4.16) are defining facets for F CLOP (G n , p).

Theorem 3 The trivial inequalities x ij ≥ 0 define facets for the FCLOP(G n , p), for any n ≥ 3 and p ≤ n -1.

Proof For simplicity we will show that x 12 ≥ 0.

(4.46)

Let F = {(x, y) ∈ theF CLOP (G n , p) : x 12 = 0}. Let α T x + β T y ≤ ρ, (4.47)
be a valid inequality defining a facet for F CLOP (G n , p) such that

F ⊆ F ′ = {(x, y) ∈ theF CLOP (G n , p) : α T x + β T y = ρ}.
It is straightforward to check that α ij = α ji when {i, j} = {1, 2}. This will be used implicitly in the sequel. The proof is by induction. This why we will distinguish the cases (i

) p = n -1, (ii) p = n -2 and (iii) p ≤ n -3. Let G ′ = (V n , A ′ n )
be the graph obtained from G n by removing the arcs (1, 2) and (2, 1).

(i) p = n -1. We will show that (4.47) may be obtained as a linear combination of (4.2), (4.3) and (4.46).

Define S i = V n \ {i}. Let S k , for k ∈ V n \{1, 2} be any linear order such that π S k (1) = 2 and π S k (2) = 1.
Let π S 1 and π S 1 any linear orders on S 1 and S 2 , respectively. Notice that the incidence vectors of these linear orders belong to F ′ . Therefore the following hold:

β 1 + 1 2 α(δ G ′ (1)) = β 2 + 1 2 α(δ G ′ (2)), (4.48 
)

β 1 + 1 2 α(δ G ′ (1)) + α 21 = β k + 1 2 α(δ(k)) ∀k ∈ V n \ {1, 2}. (4.49)
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Consider the following linear combination:

α ij ×(x ij + x ji = y i + y j -1) ∀ i < j, j / ∈ {1, 2}, α 21 ×(x 12 + x 21 = y 1 + y 2 -1), α 21 -α 12 ×(-x 12 ≤ 0).
Their sum may be written as follows:

α T x - 1 2 α(δ(i))
i∈Vn\{1,2}

y i + (- 1 2 α(δ G ′ (1)) -α 21 )y 1 +(- 1 2 α(δ G ′ (2)) -α 21 )y 2 ≤ - 1 2 α(A ′ n ) -α 21
Now considering (4.49) we obtain

α T x + i∈Vn\{1,2} β i y i + (-β 1 - 1 2 α(δ G ′ (1)) -α 21 ) i∈Vn\{1,2} y i +(- 1 2 α(δ G ′ (1)) -α 21 )y 1 + (- 1 2 α(δ G ′ (2)) -α 21 )y 2 ≤ - 1 2 α(A ′ n ) -α 21
Recall that equality (4.3) implies that i∈Vn\{1,2}

y i = (n -1) -(y 1 + y 2 )
and if we replace in the above inequality we get

α T x + i∈Vn\{1,2} β i y i -(-β 1 - 1 2 α(δ G ′ (1)) -α 21 )(y 1 + y 2 ) +(- 1 2 α(δ G ′ (1)) -α 21 )y 1 + (- 1 2 α(δ G ′ (2)) -α 21 )y 2 ≤ - 1 2 α(A ′ n ) -α 21 + (n -1)(β 1 + 1 2 α(δ G ′ (1)) + α 21 )
Now using (4.48) and (4.49) it is easy to check that above inequality may be rewritten as below, for any i = 1, 2

α T x + β T y ≤- 1 2 α(A ′ n ) -α 21 + (n -2)(β 1 + 1 2 α(δ G ′ (1)) + α 21 ) +(β 1 + 1 2 α(δ G ′ (1)) + α 21 ) =- 1 2 α(A ′ n ) + i∈Vn\{1,2} (β i + 1 2 α(δ(i))) + (β 1 + 1 2 α(δ G ′ (1))) =- 1 2 α(A ′ n ) + i∈Vn\{1,2} β i + α(A ′ n ) - 1 2 α(δ G ′ (1)) - 1 2 α(δ G ′ (2)) + (β 1 + 1 2 α(δ G ′ (1))) = 1 2 α(A ′ n ) + i∈Vn\{1,2} β i + β 1 - 1 2 α(δ G ′ (2)).

Now let us show that

ρ = 1 2 α(A ′ n ) + i∈Vn\{1,2} β i + β 1 - 1 2 α(δ G ′ (2)).
We know that the incidence vector of the LO π S k for k / ∈ {1, 2}, as defined above, is in F ′ . Therefore

ρ = 1 2 α(A ′ n ) - 1 2 α(δ(k)) + α 21 + β 1 + β 2 -β k + i∈Vn\{1,2} β i
Recall that from (4.48) and (4.49) we have

β 2 + 1 2 α(δ G ′ (2)) + α 21 = β k + 1 2 α(δ(k))∀k ∈ V n \ {1, 2}.
It follows that ρ is exactly the desired value.

(ii) p = n-2. Let l ∈ V n and consider the FCLOP instance with the respect to the graph

G l n-1 = (V l n-1 , A l n-1 ) with the constant p unchanged that is p = n -2, where V l n-1 = V n \ {l} and A l n-1 = {(i, j) ∈ V l n-1 × V l n-1 : i = j}.
Any linear ordering π S with respect to G l n-1 and p is also a linear ordering with respect to G n and p. Hence (4.46) define a facet for F CLOP (G l n-1 , p), with any l / ∈ {1, 2}.

Also notice that any feasible solution of F CLOP (G l n-1 , p) that satisfies (4.46) with equality may be extended to a solution in F CLOP (G n , p) that also satisfies (4.46) as equation. This can be done by considering y l = 0 and x il = x li = 0. . Hence we have the following 

{(x, y) ∈ theF CLOP (G l n-1 , p) : x 12 = 0} ⊆ {(x, y) ∈ theF CLOP (G l n-1 , p) : i,j∈V l n-1 ,i =j α ij x ij + i∈V l n-1 β i y i = ρ}. Notice that (4.50) is valid for F CLOP (G l n-1 , p). i,j∈V l n-1 ,i =j α ij x ij + i∈V l n-1 β i y i ≤ ρ. ( 4 
α ij ×(x ij + x ji = y i + y j -1) ∀ i < j, j / ∈ {1, 2, l}, i = l, (4.51) α 21 ×(x 12 + x 21 = y 1 + y 2 -1), (4.52) ǫ l ×( i∈V l n y i = p), (4.53) (α 21 -α 12 )×(-x 12 ≤ 0), (4.54)
where ǫ l is a real scalar and σ is a positive scalar. The discussion above is true for any l ∈ V n \ {1, 2}. Thus the following hold for any l ∈ V n \ {1, 2} and i / ∈ {1, 2, l}.

φ 1 = β 1 + 1 2 α(δ G ′ (1)) = -α 21 + α 1l + ǫ l , (4.55) φ 2 = β 2 + 1 2 α(δ G ′ (2)) = -α 21 + α 2l + ǫ l , ( 4.56) 
φ i = β i + 1 2 α(δ(i)) = α il + ǫ l . (4.57)
It results that

α il -α ik = ǫ k -ǫ l ∀i ∈ V n and k, l ∈ V n \ {1, 2}.
This implies that

α ij = λ i -ǫ j ∀i ∈ V n and j ∈ V n \ {1, 2}, (4.58)
where λ i is a real scalar. Finally we may conclude that

α ij = µ i + µ j ∀ i, j with {i, j} = {1, 2}, (4.59) 
where

µ i = λ i -ǫ i 2 ∀ i ∈ V n \ {1, 2}, (4.60 
)

µ i = λ i - λ l + ǫ l 2 i ∈ {1, 2}, (4.61)
Let us show that µ 1 + µ 2 = α 21 . From (4.57) we have

φ k = α kl + ǫ l for any k ∈ V n \ {1, 2, l}. But α kl = α lk and α lk = λ l -ǫ k , so λ l = φ k + ǫ k -ǫ l ,
and since ǫ kǫ l = α ilα ik for any i ∈ V n we may write

λ l = φ k + α il -α ik , ∀ i ∈ V n and l, k ∈ V n \ {1, 2}. (4.62)
Notice that from (4.58), (4.61) and (4.62) we have

µ 1 + µ 2 = α 1l + α 2l + ǫ l -λ l = α 2l + α 1k + ǫ l -φ k . (4.63) Let S ′ = V n \ {1, 2}. Let π S ′ be any LO on S ′ . Let S ′′ = V n \ {1, k}, with k = 2
, and let π S ′′ be any LO on S ′′ . Obviously both incidence vectors of π S ′ and π S ′′ are in F and hence in F ′ too. This imply that

φ k -α 1k = φ 2 . Recall that φ 2 = -α 21 + α 2l + ǫ l . Therefore ǫ l = φ k -α 1k -α 2l + α 21 .
If we replace in (4.63) we obtain

µ 1 + µ 2 = α 21 . (4.64)
Since (4.50) is the sum of the equalities (4.51)-(4.54) we have that

ρ = - 1 2 α(A ′ n ) + 1 2 α(δ(l)) + ǫ l p -α 21 . (4.65)
From (4.57) we have

ǫ l = β i + 1 2 α(δ(i)) -α il .
A careful combination by replacing this value of ǫ l in (4.65) and using (4.59) and (4.64) gives

β i = -(p -1)µ i + ρ p (4.66)
Using exactly the same combinations by considering the value of ǫ l in with respect to (4.55) and (4.56) we obtain

β 1 = -(p -1)µ 1 + ρ p , (4.67) β 2 = -(p -1)µ 2 + ρ p . (4.68)
Now using (4.66)-(4.68) it is easy to check that (4.47) is obtained as the sum of the following constraints

µ i × (x(δ(i)) = (p -1)y i ) ∀ i ∈ V n , ρ p × ( i∈Vn y i = p), (α 21 -α 12 ) × (-x 12 ≤ 0).
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(iii) p ≤ n -3. This case will be proved by induction on the size of V n .

Notice that here we must have n ≥ 5. The basic case of the induction is obtained when p = n -2, which is true from the previous case (i).

By the induction hypothesis the theorem is true for any instance of the FCLOP,

G n ′ = (V n ′ , A n ′ ) with 2 ≤ p ≤ n -3 and p + 2 ≤ n ′ < n.
Therefore we may assume that the theorem is true for

G l n-1 = (V l n-1 , A l n-1
) and p with l / ∈ {1, 2}. Here p ≤ (n -1) -2. As before

V l n-1 = V n \ {l} and A l n-1 = {(i, j) ∈ V 1 n-1 × V l n-1 : i = j}. Any feasible solution of F CLOP (G l
n-1 , p) that satisfies (4.46) with equality may be extended to a solution in F CLOP (G n , p) that also satisfies (4.46) as equation. This can be done by considering y l = 0 and x il = x li = 0. Hence we have the following

{(x, y) ∈ theF CLOP (G l n-1 , p) : x 12 = 0} ⊆ {(x, y) ∈ theF CLOP (G l n-1 , p) : i,j∈V l n-1 ,i =j α ij x ij + i∈V l n-1 β i y i = ρ}. Notice that (4.69) is valid for F CLOP (G l n-1 , p). i,j∈V l n-1 ,i =j α ij x ij + i∈V l n-1 β i y i ≤ ρ. (4.69)
By the induction hypothesis the trivial inequality (4.46) define a facet for F CLOP (G l n-1 , p). Therefore inequality (4.69) may be obtained by the sum of the following constraints:

µ i ×(x(δ(i)) = (p -1)y i ) for all i ∈ V n \ {l}, ǫ l ×( i∈Vn\{l} y i = p), σ×(-x 12 ≤ 0).

These imply the following

µ i + µ j = α ij ∀i, j ∈ V n \ {l}, {i, j} = {1, 2}, (4.70 
)

µ 1 + µ 2 = α 21 , (4.71) µ 1 + µ 2 -σ = α 12 , ( 4 
.72)

β i = -(p -1)µ i + ǫ l ∀i ∈ V n \ {l}, (4.73) ρ = ǫ l p. (4.74)
Let S ⊆ V n \{l}, with |S|= p. Let π S be any linear order with

(x π S , y π S ) in F ⊆ F ′ . If S∩{1, 2} = {1}, then set π -1 S (1) = |S|; and if S∩{1, 2} = {2}, then set π -1 S (2) = 1. Let S ′ = (S \ {k}) ∪ {l}.
From π S define the following linear order π ′ S : π -1 S ′ (l) = π -1 S (k) and π -1 S ′ (j) = π -1 S (j) for each j ∈ S \ {k}. Notice that from the choice of π S , we have that (x π S ′ , y π S ′ ) ∈ F ′ for any k ∈ S. Notice that for any k = l, there are two sets S and S ′ as defined above. When we replace (x π S , y π S ) and (x π S ′ , y π S ′ ) in F ′ for any k and we combine the two resulting equations we obtain:

β k + α(δ + G(S) (k)) + α(δ - G(S) (k)) = β l + j∈S\{k} α lj . (4.75)
We have

β k +α(δ + G(S) (k))+α(δ - G(S) (k)) = β k +(p-1)µ k + j∈S\{k} µ j .
If we replace β k by its value in (4.73) and we combine with (4.75), we get

ǫ l + j∈S µ j -µ k = β l + j∈S α lj -α lk .
(4.76)

If we write (4.76) with respect to another element k ′ ∈ S, k = k ′ , and we combine the resulting equality with (4.76) we get

α lk -α lk ′ = µ k -µ k ′ ∀k, k ′ ∈ S \ {l}.
Notice that such k ′ exists always by the definition of π S and π S ′ and since p ≥ 2. Also for any pair of nodes k and k ′ different from l, we can build a subset S, S ′ and the linear orderings π S and π S ′ as defined above. Therefore

α lk -α lk ′ = µ k -µ k ′ ∀k, k ′ ∈ V n \ {l}.
From this last equation and the fact that α lj = α jl we may assume that

α lj = µ l + µ j for any j ∈ V n \ {l}, α jl = µ l + µ j for any j ∈ V n \ {l}.
If we replace with the value of α lj in (4.76), we obtain

β l = -(p -1)µ l + ǫ l
Now it is straightforward to see that (4.47) is obtained by the sum of the following constraints:

µ i ×(x(δ(i)) = (p -1)y i ) for all i ∈ V n , ǫ l ×( i∈Vn\{l} y i = p), σ×(-x 12 ≤ 0).
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Theorem 4 The trivial inequalities y i ≤ 1, ∀i ∈ V n are defining facets for F CLOP (G n , n -1).

Proof For simplicity we will show that

y 1 ≤ 1. (4.77) define a facet for F CLOP (G n , n -1). Let F = {(x, y) ∈ F CLOP (G n , p) : y 1 = 1}. Let α T x + β T y ≤ ρ, (4.78) be a valid inequality defining a facet for F CLOP (G n , p) such that F ⊆ F ′ = {(x, y) ∈ F CLOP (G n , p) : α T x + β T y = ρ}.
It is straightforward to check that α ij = α ji for all i, j ∈ V n . This will be used implicitly in the sequel.

Let p = n -1. We will show that (4.78) may be obtained as a linear combination of (4.2), (4.3) and (4.77). Define S i = V n \ {i}. Notice that the incidence vector of the linear order π S i belongs to F ′ if i = 1. Therefore the following hold:

β 2 + 1 2 α(δ(2)) = β k + 1 2 α(δ(k)), ∀k ∈ V n \ {1}. (4.79)
Let us define φ k and φ 1 as follows:

φ k = β k + 1 2 α(δ(k)), ∀k ∈ V n \ {1}, φ 1 = β k + 1 2 α(δ(1)).
Then we have 1)) Consider the following linear combination:

φ i = φ j ∀i, j ∈ V n \ {1}. Let σ = β 2 + 1 2 α(δ(2)) and σ 1 = β 1 + 1 2 α(δ(
α ij × (x ij + x ji = y i + y j -1) ∀ i, j ∈ V n , (4.80) σ × ( i∈Vn y i = (n -1)), (4.81) (σ 1 -σ) × (y 1 ≤ 1). (4.82)
Their sum may be written as follows:

α T x - i∈Vn\{1} 1 2 α(δ(i))y i - 1 2 α(δ(1))y 1 + σ i∈Vn\{1} y i + σy 1 + σ 1 y 1 -σy 1 ≤ - 1 2 α(A n ) + σ(n -1) + σ 1 -σ
Now considering (4.79) we obtain

α T x + β T y ≤ - 1 2 α(A n ) + (n -2)σ + β 1 + 1 2 α(δ(1)) Now let us show that ρ = - 1 2 α(A n ) + (n -2)σ + σ 1 . (4.83)
We know that the incidence vector of the linear order π S k for k / ∈ {1}, as defined above, is in F ′ . Therefore

ρ = 1 2 α(A n ) - 1 2 α(δ(k)) -β k + i∈Vn β i (4.84)
Recall that from (4.79) we have

σ = β k + 1 2 α(δ(k)) ∀k ∈ V n \ {1}.
Therefor we may write

(n -2)σ = i∈Vn\{1,k} (β i + 1 2 α(δ(i)) ∀ k ∈ V n \ {1} (4.85)
We also know that

α(A n ) = 1 2 α(δ(k)) + 1 2 i∈Vn\{k} α(δ(i))
Therefor, we may write Proof When p = n, F CLOP (G n , p) is the linear ordering polytope and inequalities (4.15) are exactly the triangle-free inequalities and the result follows from Grötschel et al. (1985a). Without loss of generality, we may assume that inequality (4.15) is considered with respect to the arcs (1, 2), (2, 3) and (3, 1) and hence is written as follows

1 2 α(A n ) - 1 2 α(δ(k)) = - 1 2 α(A n ) + 1 2 i∈Vn\{k} α(δ(i)) (4.
x 12 + x 23 + x 31 + y(V n \ {1, 2, 3}) ≤ ⌊ 2p + (n -3) 3 ⌋. (4.87)
Let F be the face of F CLOP (G n , p) defined by (4.87), that is

F = {(x, y) ∈ theF CLOP (G n , p) : x 12 + x 23 + x 31 + y(V n \ {1, 2, 3}) = ⌊ 2p + (n -3) 3 ⌋}. Let α T x + β T y ≤ ρ, (4.88) be a facet of F CLOP (G n , p) and let F ′ = {(x, y) ∈ theF CLOP (G n , p) : α T x+ β T y = ρ}. Assume that F ⊆ F ′ .
To complete the proof we need to show that (4.88) is a linear combination of (4.87), (4.2) and (4.3) in case where p = n -1. When p ≤ n -2, we need to show that (4.88) is a linear combination of (4.87), (4.9) and (4.10).

We will consider three cases (i) p = n -1 and (ii) p = n -2. Let us before state an important property with some notation useful for the three cases.

Notice that if we take any LO having its incidence vector in F ⊆ F ′ , then if we switch the order of two any elements i and j, i, j ∈ {1, 2, 3}, then the resulting LO still in F ′ consequently we have α ij = α ji . The same is true if we consider that exactly one of the two elements i and j is in {1, 2, 3}. There is always a linear ordering satisfying (4.87) as equation and if we switch an element i / ∈ {1, 2, 3} with an element j ∈ {1, 2, 3}, the resulting LO satisfies again (4.87) with equality. We summarize this discussion in the following remark.

Remark 5 We have α ij = α ji for any i, j ∈ V n with {i, j} ⊂ {1, 2, 3}.

For each i ∈ {1, 2, 3}, denote by G i the graph obtained by removing the arcs (i, j), (j, i) for each j ∈ {1, 2, 3} \ {i}.

Let A ′ n = A n \ {(1, 2),
(2, 1), (2, 3), (3, 2), (1, 3), (3, 1)}.

(i) p = n -1. Notice that the right hand side of (4.87) is equal to n -2 in this case. Let S i = V n \ {i}. Assume that i ∈ {1, 2, 3}, and let π 1 S i be any LO on S i such that π 1 S i (j) = j, for j ∈ {1, 2, 3}. Now define the LO π 1 S 1 which is the same as π 1 S i except that π 1 S 1 (1) = i. It is a simple matter to check that the incidence vectors of both π 1 S i and π 1 S i belong to F and thus to F ′ . Consequently

α T x π 1 S i + β T y π 1 S i = ρ, α T x π 1 S 1 + β T y π 1 S 1 = ρ.
The combination of these equalities implies that

β i + 1 2 α(δ(i)) = β 1 + 1 2 α(δ G 1 (1)) + α 12 + α 13 , (4.89)
Apply the same procedure to the LO π 2 S i and π 2 S 1 , where π 2 S i is any LO on S i such that π 2 S i (1) = 2, π 2 S i (2) = 3 and π 2 S i (3) = 1 and π 2 S 1 is the same as π 2 S i except that π 2 S i (3) = i, we get

β i + 1 2 α(δ(i)) = β 1 + 1 2 α(δ G 1 (1)) + α 21 + α 31 . (4.90)
Using the same reasoning as above with respect to some appropriate LO we get the following

β i + 1 2 α(δ(i)) = β 2 + 1 2 α(δ G 2 (2)) + α 23 + α 21 , ( 4 
.91)

β i + 1 2 α(δ(i)) = β 2 + 1 2 α(δ G 2 (2)) + α 32 + α 12 , ( 4 
.92)

β i + 1 2 α(δ(i)) = β 3 + 1 2 α(δ G 3 (3)) + α 31 + α 32 , ( 4 
.93)

β i + 1 2 α(δ(i)) = β 3 + 1 2 α(δ G 3 (3)) + α 13 + α 23 , (4.94)
The combination of (4.89) and (4.94) gives

α 21 -α 12 = α 13 -α 31 = σ, α 13 -α 31 = α 32 -α 23 = σ,
Therefore we may assume that there exists scalars λ 12 , λ 13 and λ 23 such that, 

α 21 = λ 12 + σ, ( 4 
β i + 1 2 α(δ(i)) = φ = β 1 + 1 2 α(δ G 1 (1)) + α 12 + α 13 (4.101) = β 2 + 1 2 α(δ G 2 (2)) + α 23 + α 21 , (4.102) = β 3 + 1 2 α(δ G 3 (3)) + α 31 + α 32 , (4.103) Let us show that σ ≤ 0. Recall that π 1 S i is a LO on S i for i ∈ {1, 2, 3}, where π 1 S i (j) = j, for j ∈ {1, 2, 3}. Let π S i the same as π 1 S i , except that π S i (1) = 3 π S i (2) = 2 π S i (3) = 1.
It is easy to check that the incidence vector of π 1 S i belongs to F ′ whereas the incidence vector of π S i does not but it must satisfy (4.88) since this is a valid inequality. Consequently,

α T x π 1 S i + β T y π 1 S i = α 12 + α 23 + α 13 + ξ = ρ, α T x π S i + β T y π S i = α 31 + α 32 + α 21 + ξ ≤ ρ.

The combination of the two constraints above implies that

α 32 -α 23 + α 31 -α 13 + α 21 -α 12 = σ -σ + σ ≤ 0.
Consider the following linear combination:

α ij × (x ij + x ji = y i + y j -1)
∀ i < j, {i, j} ⊂ {1, 2, 3}, (4.104)

(λ 12 + σ) × (x 12 + x 21 = y 1 + y 2 -1), (4.105) 
(λ 13 + σ) × (x 13 + x 31 = y 1 + y 3 -1), (4.106)

(λ 23 + σ) × (x 23 + x 32 = y 2 + y 3 -1), (4.107) (σ + φ) × ( i∈Vn y i = n -1), (4.108) -σ × (x 12 + x 23 + x 31 + i∈Vn\{1,2,3} y i ≤ n -2). (4.109)
The sum of (4.104)-(4.109) is the following

α T x + (- 1 2 α(δ(i)) + φ) + i∈Vn\{1,2,3} y i + (-λ 12 -λ 13 -σ + φ - 1 2 α(δ G 1 (1)))y 1 +(-λ 12 -λ 23 -σ + φ - 1 2 α(δ G 2 (2)))y 2 + (-λ 13 -λ 23 -σ + φ - 1 2 α(δ G 3 (3)))y 3 ≤ - 1 2 α(A ′ n ) -λ 12 -λ 13 -λ 23 -3σ + (σ + φ)(n -1) -σ(n -2),
By choosing the appropriate value of φ using (4.101)-(4.103) and replacing in the above inequality, we get

α T x + i∈Vn\{1,2,3} β i y i + (-λ 12 -λ 13 -σ + β 1 + α 12 + α 13 )y 1 +(-λ 12 -λ 23 -σ + β 2 + α 23 + α 21 )y 2 +(-λ 13 -λ 23 -σ + β 3 + α 31 + α 32 )y 3 ≤ - 1 2 α(A ′ n ) -λ 12 -λ 13 -λ 23 -3σ + (σ + φ)(n -1) -σ(n -2)
Finally by considering (4.95)-(4.100) we get

α T x + β T y ≤ - 1 2 α(A ′ n ) -σ -α 12 -α 23 -α 13 + φ(n -1). (4.110)
The last step is to show that the right hand side of (4.110) is ρ.

Consider the LO π 1 S i as defined above, its incidence vector belong to

F ′ . Hence ρ = 1 2 α(A ′ n ) - 1 2 α(δ(i)) + α 12 + α 23 + α 13 + n j=1,j =i β j ,
Replace 1 2 α(δ(i)) by its value in (4.55), we get

ρ = 1 2 α(A ′ n ) + α 12 + α 23 + α 13 -φ + n j=1 β j ,
Replace all the β i for i = 1, . . . , n, by their values in (4.101)-(4.103), we then obtain

ρ = 1 2 α(A ′ n ) + α 12 + α 23 + α 13 -φ + φn - 1 2 i∈Vn\{1,2,3} α(δ(i)) - 1 2 α(δ G 1 (1)) - 1 2 α(δ G 2 (2)) - 1 2 α(δ G 3 (3)) -α 12 -α 13 -α 23 -α 21 -α 31 -α 32
A careful sum with the relationships (4.95)-(4.100) imply

ρ = 1 2 α(A ′ n ) + α 12 + α 23 + α 13 + φ(n -1) -α(A ′ n ) -2(α 12 + α 23 + α 13 ) -σ, = - 1 2 α(A ′ n ) -σ -α 12 -α 23 -α 13 + φ(n -1).
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(ii) p = n -2. Notice that the right hand side is equal to n -3. Let l ∈ V n and consider the FCLOP instance with respect to the graph

G l n-1 = (V l n-1 , A l n-1 ) with the constant p unchanged that is p = n -2. Here V l n-1 = V n \ {l} and A l n-1 = {(i, j) ∈ V l n-1 × V l n-1 : i = j}.
Any linear ordering π S with respect to G l n-1 and p is also a linear ordering with respect to G n and p. The following inequality obtained from (4.87) is a facet of F CLOP (G l n-1 , p), this is the result of the previous case

x 12 + x 23 + x 31 + y(V n \ {1, 2, 3, l}) ≤ ⌊ 2p + ((n -1) -3) 3 ⌋ = n -3. (4.111)
Also notice that any feasible solution of F CLOP (G l n-1 , p) that satisfies (4.111) with equality may be extended to a solution in F CLOP (G n , p) by considering y l = 0 and x il = x li = 0. This solution belongs to F and thus it belongs to F ′ too. Hence we have the following

{(x, y) ∈ theF CLOP (G l n-1 , p) : x 12 +x 23 +x 31 +y(V n \{1, 2, 3, l}) = n-3} ⊆ {(x, y) ∈ theF CLOP (G l n-1 , p) : i,j∈V l n-1 ,i =j α ij x ij + i∈V l n-1 β i y i = ρ}.
It is easy to see that the inequality i,j∈V l n-1 ,i =j

α ij x ij + i∈V l n-1 β i y i ≤ ρ, (4.112)
is valid for F CLOP (G l n-1 , p). Since from case (i), inequality (4.111) define a facet of F CLOP (G l n-1 , p), then inequality (4.112) define the same facet and may be obtained as a linear combination of equalities (4.2), (4.3) and inequality (4.111), all with respect to G l n-1 and p. Recall that when i and j do not belong at the same time to {1, 2, 3}, we have α ij = α ji . Consequently (4.112) is obtained as the sum of the following equalities and inequality: 

α ij × (x ij + x ji = y i + y j -1) ∀ i < j, j / ∈ {1,
y i ≤ n -3), (4.118)
Where ǫ l is a real scalar and σ is a positive scalar. The discussion above is true for any l ∈ V n \ {1, 2, 3}.

Thus the following hold for any l ∈ V n \ {1, 2, 3}.

α 12α 21 = α 31α 13 = α 23α 32 = σ, (4.119)

β i + 1 2 α(δ(i)) = φ i = α il + ǫ l + σ ∀ i ∈ V n \ {1, 2, 3, l},
(4.120)

β 1 + 1 2 α(δ G 1 (1)) = φ 1 = α 1l -α 21 -α 13 + ǫ l , (4.121) β 2 + 1 2 α(δ G 2 (2)) = φ 2 = α 2l -α 21 -α 32 + ǫ l , ( 4 
.122)

β 3 + 1 2 α(δ G 3 (3)) = φ 3 = α 3l -α 13 -α 32 + ǫ l . (4.123)
If we combine each of the equalities (4.120)-(4.123) with respect to l and k and both l and k are not in {1, 2, 3} we get

α il -α ik = ǫ k -ǫ l ∀ i ∈ V n and k, l ∈ V n \ {1, 2, 3}. (4.124)
Following the above equality we may assume that

α ij = λ i -ǫ j ∀ i ∈ V n and j ∈ V n \ {1, 2, 3}, (4.125)
where λ i is a real scalar.

Following the same lines as in (4.37)-(4.38) we may assume that

α ij = µ i + µ j ∀ i, j with {i, j} ⊂ {1, 2, 3}, (4.126) with µ i = λ i -ǫ i 2 ∀ i ∈ V n \ {1, 2, 3}, (4.127) µ i = λ i - λ l + ǫ l 2 ∀ i ∈ {1, 2, 3}, (4.128)
where l is any element among V n \ {1, 2, 3} this is coherent since λ i + ǫ i = λ j + ǫ j for any i, j ∈ V n \ {1, 2, 3}. This come from (4.125) and the fact that in this case α ij = α ji .

Let us show that µ 1 + µ 3 = α 13 , µ 1 + µ 2 = α 21 and µ 2 + µ 3 = α 32 . Before we began the proof for each case let us state some facts.
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If we consider (4.120) with respect to some k ∈ V n \ {1, 2, 3, l} instead of the element i we get φ k = α kl + ǫ l + σ. But since α kl = α lk and by (4.125) α lk = λ lǫ k we get

λ l = φ k + ǫ k -ǫ l -σ,
and since ǫ kǫ l = α ilα ik for any i ∈ V n we may write

λ l = φ k + α il -α ik -σ, ∀ i ∈ V n and l, k ∈ V n \ {1, 2, 3}. (4.129)
Notice that from (4.125), (4.128) and (4.129) we have 

µ 1 + µ 3 = α 1l + α 3l + ǫ l -λ l = α 3l + α 1k + σ + ǫ l -φ k , (4.130) µ 1 + µ 2 = α 1l + α 2l + ǫ l -λ l = α 2l + α 1k + σ + ǫ l -φ k , (4.131) µ 2 + µ 3 = α 2l + α 3l + ǫ l -λ l = α 3l + α 2k + σ + ǫ l -φ k . (4.132) • Let S ′ = V n \{1,
ρ = - 1 2 α(A ′ n ) + 1 2 α(δ(l)) + ǫ l p -α 21 -α 13 -α 32 + σ(n -3).
(4.136)

Recall that from (4.120) we have

ǫ l = β i + 1 2 α(δ(i)) -α il -σ, for i / ∈ {1, 2, 3}.
Replacing by this value of ǫ l in (4.136) and using the fact that α ij = µ i + µ j for {i, j} ⊆ {1, 2, 3}, we obtain

β i = -(p -1)µ i + ρ -σ(n -3) p + σ. (4.137)
Using exactly the same combinations with respect to the value of ǫ l in (4.121)-(4.123) and the fact that α 21 = µ 1 + µ 2 , α 13 = µ 1 + µ 3 and α 32 = µ 2 + µ 3 we obtain

β 1 = -(p -1)µ 1 + ρ -σ(n -3) p , (4.138) β 2 = -(p -1)µ 2 + ρ -σ(n -3) p , ( 4 
.139) 

β 3 = -(p -1)µ 3 + ρ -σ(n -3) p . ( 4 
µ i × (x(δ(i)) = (p -1)y i ) ∀ i ∈ V n , ( ρ -σ(n -3) p ) × ( i∈Vn y i = p), σ ×(x 12 + x 23 + x 31 + i∈Vn\{1,2,3} y i ≤ n -3).
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Related studies

In the section we will discuss the cases where the valid inequalities introduced in the previous section are not defining facets for the FCLOP polytope. Let us first discuss the case of the triangle-free inequalities (4.14) and (4.15). The following Lemmas establish the relation between these two set of valid inequalities.

Let us consider the two inequalities below corresponding to (4.14) and (4.15) with respect to i = 1, j = 2, k = 3. Proof Without loss of generality, we will show that (4.142) and (4.141) define the same facet for F CLOP (G n , n -1). In fact, we will prove that

x 12 + x 23 + x 31 + i∈Vn\{1,2,3} y i ≤ ⌊ 2p + (n -3) 3 ⌋, ( 4 
F 1 = F 2 .
Let S ⊆ V n with |S|= n -1 and π S a linear order on S. It is easy to check that the incidence vector of π S is in F 1 (resp. F 2 ) if and only if one of the following statements holds:

(i) {1, 2, 3} ⊆ S and π -1 (1) < π -1 (2) < π -1 (3), (ii) {1, 2, 3} ⊆ S and π -1 (2) < π -1 (3) < π -1 (1), (iii) {1, 2, 3} ⊆ S and π -1 (3) < π -1 (1) < π -1 (2), (iv) 3 / ∈ S and π -1 (1) < π -1 (2), (v) 2 / ∈ S and π -1 (3) < π -1 (1), (vi) 1 / ∈ S and π -1 (2) < π -1 (3).
It is also easy to check that the incidence vector of any linear order satisfying (i)-(vi) is in F 2 (resp. F 1 ). And since any vector in F 1 (resp. F 2 ) may be obtained as a convex combination of the 0-1 vectors in F 1 (resp. F 2 ) we conclude that F 1 = F 2 .

Lemma 7 Inequalities (4.15) do not define facets for F CLOP (G n , n -2).

Proof Here we have p = n -2. We will prove that F 2 ⊂ F 1 . Let us list all the linear orders π S having their incidence vectors in F 2 .

(i) {1, 2, 3} ⊆ S and π -1 (1) < π -1 (2) < π -1 (3),

(ii) {1, 2, 3} ⊆ S and π -1 (2) < π -1 (3) < π -1 (1), (iii) {1, 2, 3} ⊆ S and π -1 (3) < π -1 (1) < π -1 (2), (iv) 2 / ∈ S, {1, 3} ⊆ S and π -1 (3) < π -1 (1), (v) 2 / ∈ S and 1 / ∈ S, (vi) 2 / ∈ S and 3 / ∈ S, (vii) 3 / ∈ S, {1, 2} ⊆ S and π -1 (1) < π -1 (2), (viii) 1 / ∈ S, {2, 3} ⊆ S and π -1 (2) < π -1 (3).

The incidence vector of any linear order satisfying (i)-(viii) is in

F 1 . Con- sequently, F 2 ⊆ F 1 . Now consider S = V \ {1, 3}.
Then the incidence vector of any linear order π S is in

F 1 but not in F 2 .
The next lemma shows that (4.15) triangle-free inequalities define facet only for F CLOP (G n , n -1) and for F CLOP (G n , n -2).

Lemma 8 Inequalities (4.15) are not defining facets for F CLOP (G n , p) when p ≤ n -3. Moreover, the following hold

(i) dim(F 1 ) = (n -p)(n -(p + 1)) 2 , when n -5 ≤ p ≤ n -3, and (ii) F 1 = ∅, when p ≤ n -6 .
Proof We will show statements (i)-(ii). Then any one of these statements implies that inequalities (4.15) are not facet defining for F CLOP (G n , p) when p ≤ n -3.

(i) n-5 ≤ p ≤ n-3. Observe that the right hand side of inequality (4.142) in this case is np. Notice that for any linear order π S having its incidence vector in F 1 , we must have S ∩ {1, 2, 3} = ∅. In fact, when 1 ≤ | § ∩ {1, 2, 3}|≤ 3 then the left hand side of inequality (4.142) is at modt n -(p + 1). Hence the unique linear orders lying on the face F 1 are those with S ∩ {1, 2, 3} = ∅, these are exactly the linear orders on np elements. From Grötschel et al. (1985a) we know that we have at most

(n -p)(n -(p + 1)) 2
+1 such a linear orders that are affinely independent.

(ii) p ≤ n -6. Let p = nj. Notice that in any case the left hand side of inequality (4.142) is at most nj. now to evaluate the right hand side we will distinguish the three cases below with k ≥ 2.

1. j = 3k. The right hand side is equal to n -(2k + 1), 2. j = 3k + 1. The right hand side is equal to n -(2k + 2), 3. j = 3k + 2. The right hand side is equal to n -(2k + 3).

In all the three cases we have F 1 = ∅.

Observe from the lemma above the only cases where F 1 is not empty is when S ∩ {1, 2, 3} = set. But in this case the incidence vector of any linear order belongs to F 2 . One car easy construct linear orders in F 2 but not in F 1 .

Hence

F 1 ⊂ F 2 .
From the discussion above, one may expect that inequalities (4.141) define facet for F CLOP (G n , p) when p ≤ n -3. Unfortunately this is not the case and we have shown it by a numerical calculation.

To do so, we create a matrix B that contains all the active feasible solutions (the feasible solutions that hold as equality) as the columns (or rows) and then calculate the rank of B matrix. The fact that rank(B) ≤ dim(F CLOP (G n , p) -1 with p ≤ n -3 confirms that these inequalities are not defining facet for the F CLOP (G n < p) with p ≤ n -3. As an example, we are going to show that the inequality y i ≤ 1 with p = n -2 is not defining facet for the FCLOP polytope. the examples corresponding to other inequalities mostly need a huge B matrix. That is the reason why we show the method of calculation on a relatively small matrix and a simple inequality instance.

Example 1 Consider n = 5 and p = 3. In this case, regarding the corollary 1, we have Dim(F CLOP (G 5 , 3)) = 19. Without lose of generality, we set i = 1 and show that the inequality y 1 ≤ 1 is not defining facet for the F CLOP (G 5 , 3) polytope. The set y 1 ≤ 1 hold as equality for 36 feasible solutions that are reported in (Table 4.1). The number of affinely independent solutions that are reported in Table 4.1 is equal to rank of the B matrix that is equal to 16.

Since rank(B) = Dim(F CLOP (G 5 , 3)) -1, consequently, y 1 ≤ 1 does not define a facet for the F CLOP (G 5 , 3), and in the same way, y i ≤ 1.

x 12 x 13 x 14 x 15 x 21 x 23 x 24 x 25 x 31 x 32 x 34 x 35 x 41 x 42 x 43 x 45 x 51 x 52 x 53 x 54 y 1 y 2 y 3 y 4 y 5 In the following, we will discuss the set of valid inequalities that are introduced earlier in this chapter and show that they are not defining facets for the FCLOP polytope by calculation rank of the B matrix as it is explained earlier. • Const. 1:

1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 2 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 3 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 4 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 5 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 6 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 7 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 8 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 9 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 10 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 11 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 12 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 13 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 14 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 15 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 16 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 17 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 18 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 19 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 20 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 21 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 22 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 23 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 24 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 25 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 26 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 27 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 28 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 29 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 30 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 31 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 32 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 33 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 34 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 35 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 36 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1
x ij + (x ik + x ki ) -(x kj + x jk ) -y i ≤ 0 ∀ i, j, k ∈ V n : i = j = k • Const. 2: x ij + x ji ≤ y i ∀ i, j ∈ V n , i = j, p < n -1
• Const. 3: 

x ij + x ji -y i -y j + 1 ≥ 0 ∀ i, j ∈ V n , i < j, p < n -1 #Nodes #

Conclusion

In this chapter we discussed the inequalities that define facets for F CLOP (G n , p).

In particular, we show that in some cases we may have inequalities that define the same facets. This means that we may remove one of these sets of inequalities only when a complete description for F CLOP (G n , p) is known. Since we do not know this description, all the inequalities may be useful for our linear relaxation even when they define the same facets or when the faces defined by some inequalities are included in the faces defined by other set of inequalities.

CHAPTER 5

Lagrangian Relaxation

Lagrangian relaxation is mainly based on identifying the set of complicating constraints. That is, one identifies a set of constraints without which the problem can be solved more efficiently. Such constraints are relaxed in the Lagrangian fashion using Lagrange (dual) multipliers and penalize objective function upon violation of the relaxed constraints (Held andKarp, 1970, 1971;[START_REF] Geoffrion | Lagrangean relaxation for integer programming[END_REF].

In this chapter we propose different Lagrangian relaxations for the FCLOP problem and compare the quality of obtained dual bound.

Introduction

Relaxation is a classical strategy in constrained optimization (see [START_REF] Geoffrion | Lagrangean relaxation for integer programming[END_REF] or [START_REF] Lemaréchal | Lagrangian relaxation[END_REF] for basic results). When solving a MIP, continuous relaxation relaxation is a practical tool as a direct bound can be completed by a performant LP solver.

Different kind of relaxations have been reported in the LOP literature including binary relaxation, semi-definite relaxation, linear relaxation, Lagrangian relaxation etc. Very often it is assumed that the better is the quality of resulting bound from such relaxation, the more likely that branch-and-boundlike methods would perform in converging to optimality.

CHAPTER 5. LAGRANGIAN RELAXATION

Lagrangian Relaxation

When dealing with optimization problems which are not convex such as (M)IPs, Lagrangian relaxation is a method to find a dual bound on such optimization problems.

Given a (mixed integer) linear programming problem:

(P ) : max f (x) g(x) ≤ 0 x ∈ X
where g(x) represents the set of complicating constraints. In this notation, X may contain constraints as well as the sign restrictions. It may also contain real, binary or general integer variables. The constraints g(x) ≤ 0 are assumed to be the complicating constraints, in the sense that problem (P) without them could be solved much easier (e.g. it possess particular structure for which very sophisticated solution approach exists).

Definition 1 (The Lagrangian Relaxation of (P) relative to g(x) ≤ 0) The Lagrangian Relaxation of (P) relative to the complicating constraints g(x) ≤ 0 with nonnegative multipliers λ (dual variables) is defined below: Lagrangian function:

L(x, λ) =(f (x) -λ • g(x)) x ∈ X, λ ≥ 0 (5.1)
Lagrangian relaxation:

LR λ : v(λ) = sup x∈X L(x, λ) (5.2)
The constraints g(x) ≤ 0 are said to be dualized in Lagrangian form.

The dual multipliers λ are interpreted here as the prices to pay to force the relaxed constraints.

Due to the weak duality theorem, we have: Observation Let x(λ) denote optimal solution to the (LR λ ) for some λ ≥ 0.

∀x ∈ X, ∀λ ≥ 0 s.t. g(x) ≤ 0 : f (x) ≤ v(λ) (5.
If g(x(λ)) ≤ 0, then it is optimal for (P) if λ • g(x(λ)) = 0. In this case, f (x(λ)) = v λ (due to the strong duality theorem).

Clearly, problem (LR λ ) is a relaxation of (P ) and the set of feasible solutions of the primal problem (P), FS(P), is a subset of those of (LR λ ), FS(LR λ ).

F S(P ) ⊆ F S(LR λ )

Moreover, if we call v LP the optimal value of linear programming relaxation of P , and v LR the optimal dual value of the Lagrangian relaxation problem of P and v * P the optimal value of P , then for a maximization problem we always have, v * P ≤ v LR ≤ v LP In addition, whenever the sub-problem has integrality property, then we always have v LR λ = v LP [START_REF] Lemaréchal | Lagrangian relaxation[END_REF]).

Yet, the key step in Lagrangian relaxation is the identification of complicating constraints.

Lagrangian decomposition

In many optimization problems such as network design, routing etc., often relaxing a set of linking constraints in a Lagrangian fashion leads to a decomposable structure when the problem is block separable. In such cases we can have less difficulties to find the optimal of each subproblem. Another way is to decompose the problem by splitting the variables. [START_REF] Guignard | Lagrangean decomposition: A model yielding stronger lagrangean bounds[END_REF] provides some tips and tricks such as duplicating variables and constraints in Lagrangian fashion facilitate decomposing the problem into smaller subproblems for each of which (or perhaps some of them), efficient solution methods may exist.

It is shown that, under certain circumstances, the bound resulted from the Lagrangian decomposition can be even better than the bound generated by the corresponding Lagrangian relaxation [START_REF] Guignard | Lagrangean decomposition: A model yielding stronger lagrangean bounds[END_REF].

Lagrangian Decomposition -two sub-problems

Given a (mixed integer) linear programming problem:

(P ) : max c • x x ∈ S 1 ∩ S 2 ← (complicating constraints) x ∈ X
where X may contain constraints as well as the sign restrictions that may also contain real, binary or general integer variables.

By introducing copy variables y ∈ X when y = x, we may have

(P ′ ) : max f 1 (x) + f 2 (y) x ∈ S 1 y ∈ S 2
xy = 0

x, y ∈ X By dualizing the copy constraints we will have:

(LD u ) : max c • x + u(y -x), x ∈ S 1 y ∈ S 2 x, y ∈ X.
Now, it is straightforward to decompose the LD u as in the following:

(LD u (x)) : max c • x -ux, x ∈ S 1 x ∈ X.

and

(LD u (y)) : max uy, y ∈ S 2 .

Figure 5.1 sheds more light on it [START_REF] Guignard | Lagrangean decomposition: A model yielding stronger lagrangean bounds[END_REF].

As it is shown in Figure 5.1, if one of the sub-problems has integrality property, then the quality of dual bound obtained by lagrangian decomposition method can not be better that the lagrangian relaxation dual bound. In other word, if none of the sub-problems has integrality property, then the LD dual bound can be even tighter than LR dual bound.

Another interest of applying this method is to have several but easier to solve sub-problems.

Furthermore, we may split the set of variables to three groups and introduce a lagrangian decomposition to three sub-problems. This helps to have still more easier to solve sub-problems and may helps to improve the quality of dual bound as it is confirmed by the numerical results presented at the end of the chapter.
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Figure 5.1: Lagrangian decomposition, two sub-problems [START_REF] Guignard | Lagrangean decomposition: A model yielding stronger lagrangean bounds[END_REF].

Lagrangian Decomposition -three sub-problems

Given a (mixed integer) linear programming problem:

(P ) : max f 1 (x) + f 2 (x) + f 3 (x) x ∈ X = X A ∩ X B ∩ X C
X contains a set of constraints as well as the bound restrictions. The optimization problem is assumed easy to solve if we had any of the f 1 (x), f 2 (x) or f 3 (x) as the objective function (or there exist efficient tools to solve them) but it becomes difficult to solve by having all the parts at the same time.

Let us introduce two different sets of copy variables y and z.

(P ′ ) : max f 1 (x) + f 2 (y) + f 3 (z) x -y = 0 x -z = 0 x ∈ X A , y ∈ X B , z ∈ X C
After relaxing the two copy constraints we have:

(P ′ ) : max f 1 (x) + f 2 (y) + f 3 (z) -λ(x -y) -µ(x -z) x ∈ X A , y ∈ X B , z ∈ X C
Then by decomposing P ′ we will have the following three sub-problems: [START_REF] Guignard | Lagrangean decomposition: A model yielding stronger lagrangean bounds[END_REF].

(P A ) max f 1 (x) -λx -µx 88 CHAPTER 5. LAGRANGIAN RELAXATION x ∈ X A (P B ) max f 2 (y) + λy y ∈ X B (P C ) max f 3 (z) + µz z ∈ X C
In Figure 5.2, after decomposing the initial IP model to three sub-problems, the dual bound obtained is improved. Also there are situations, as shown in Figure 5.3, that decomposing the model to three sub-problems does not contribute in improving the dual bound as much as decomposing the model to two sub-problems. [START_REF] Guignard | Lagrangean decomposition: A model yielding stronger lagrangean bounds[END_REF].

Algorithms to solve the Lagrangian dual problem

Lagrangian dual problem LR λ is a piecewise linear function, and in general it is a non-differential optimization problem. A very successful, simple and well-known method to solve the Lagrangian dual problems is Subgradient method [START_REF] Polyak | Minimization of unsmooth functionals[END_REF].

Subgradient method was originally proposed in the 60s in the former Soviet Union. Very similar method has also been proposed in [START_REF] Held | The traveling-salesman problem and minimum spanning trees: Part II[END_REF] for solving traveling salesman problem. Later, [START_REF] Lemarechal | An extension of Davidon methods to non differentiable problems[END_REF] proposed the well-known Bundle methods as an extension of subgradient. The volume algorithm was proposed in [START_REF] Barahona | The volume algorithm: producing primal solutions with a subgradient method[END_REF] as an algorithm which simultaneously produces a primal feasible solution for the problem as well as a dual bound. The definition of step size λ in subgradient method is of crucial importance, the speed of convergence depends heavily on it. There are several studies in the literature on proposing different step-size update scheme to speed up the convergence of the algorithm. A very commonly used step size for the subgradient method is proposed in [START_REF] Held | Validation of subgradient optimization[END_REF].

The bundle method is based on the idea of storing information < v(λ), g(x(λ t )) > (v(λ) is the dual objective and g(x(λ t )) is subgradient at iteration t) about previous iterations in a set β, the bundle, in order to exploit such information to chose a good decent direction (when minimizing dual problem). The new point are then chosen along this decent direction. As in contrast to the so called simple subgradient method, within which only the information about the present iterations is used to guide the search, the bundle is in fact exploiting the current and past memory to guide the search towards optimal values [START_REF] Lemarechal | Nonsmooth optimization and descent methods[END_REF].

The major difference between different bundle methods lies in the size of the bundle and the memory.

For the FCLOP problem, we propose different relaxation schemes based on the idea of relaxing complicating constraints. We have studied different relaxations strategies and different sub-problems to identify the best constraints to relax and compared the quality of obtained dual bound.

We have also studied several Lagrangian decomposition schemes, which result notably high quality dual bounds.

To solve all these variants of the Lagrangian dual problems for the FCLOP, we have applied Bundle method and proposed a comparison between different relaxation strategies.

Complicating constraints for the FCLOP

Linear Ordering Problem is already known as a NP-hard problem and the computational effort needed for solving even moderate size instances increase dramatically. Yet, it is an easier problem comparing to the FCLOP. There are several cases where an easy-to-solve instance of the LOP (which is solved in a few seconds) is not efficiently solvable for some cardinality number p < n.

The mathematical formulations corresponding to the FCLOP with 0 ≤ p ≤ n -1 follows:

FCLOP(G n , p) : max i∈Vn j∈Vn,j =i w ij x ij (5.5) s.t. x ij + x ji ≤ y i ∀i, j ∈ V n , i < j (5.6) x ij + x ji ≤ y j ∀i, j ∈ V n , i < j
(5.7)

x ij + x ji ≥ y i + y j -1 ∀i, j ∈ V n , i < j
(5.8)

x ij + x jk + x ki ≤ 2 ∀i, j, k ∈ V n i = j = k (5.9) i∈Vn y i = p (5.10) x ij , y i ∈ {0, 1} ∀ i, j ∈ V n , i = j (5.11)
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As numerical results show in Tables (3.2), (3.7) and (3.6), we can strengthen the formulation by adding some valid equalities and inequalities. This includes:

x ij + x ji -y i -y j = -1 ∀i, j ∈ V n , i < j
(5.12) when p = n -1, and j∈Vn,j =i

(x ij + x ji ) = (p -1)y i ∀i ∈ V n (5.13)
for the cases when 2 ≤ p ≤ n -2. It is shown in numerical results that we can significantly improve the formulation and reduce integrality gap as well as the computational time required to solve the instances by adding (5.12) and (5.13) to the model (see Table 3.3).

In chapter 4, we have shown that (5.10) together with (5.12) for the case p = n -1 and (5.10) together with (5.13) for the case p ≤ n -2 are defining the minimal equation system for the corresponding polytope. However comparing the numerical results presented in Tables 3.2 and 3.3 indicates that it is always advantageous if we add i∈Vn j∈Vn,j<i

(x ij + x ji ) = p(p -1)/2. (5.14) 
Numerical experiments have shown that we can improve the integrality gap and reduce the computational time by adding only one equation (5.14) for all the cardinality numbers 0 ≤ p ≤ n, instead of adding a large number of equations (5.12) for the case of p = n -1 and (5.13) for the cases with p ≤ n -1. The integrality gap remains the same since (5.14) is in fact equal to the aggregation of the equations (5.13) over the index i (also, it is equal to the sum of the (5.12) over all the indices i and j, i = j).

Let us introduce following notations to facilitate referring to the constraint sets:

A T ournament :      x ij + x ji ≤ y i ∀i, j ∈ V n , i < j x ij + x ji ≤ y j ∀i, j ∈ V n , i < j x ij + x ji ≥ y i + y j -1 ∀i, j ∈ V n , i < j B Cycle-f ree : x ij + x jk + x ki ≤ 2 ∀i, j, k ∈ V n i = j = k C Cardinality : i∈Vn y i = p i∈Vn j∈Vn, j =i x ij = p(p -1)
/2 Now, we are ready to introduce different Lagrangian dual problems corresponding to the above subsets of constraints. By applying the Lagrangean relaxation for a maximization problem, one obtains the lowest upper bound when dualizing a given subset of constraints. That upper bound is known to be at least as good as the continuous relaxation of the integer program (see [START_REF] Fisher | The lagrangian relaxation method for solving integer programming problems[END_REF]). For example, if subset A is chosen to be relaxed, the dual bound will be equal to the maximal value of the objective function on the intersection of the polyhedron defining the continuous relaxation of A with Conv(Ω B ) Conv(Ω C ) where Conv(S) is the convex hull of a set S. Let us resume the three options that arise when relaxing each subset of constraints A, B or C :

1. Relaxing the triangle-free inequalities : this induces a p-cardinality tournament (subtournament) subproblem which is NP-hard; the number of dual variables is huge, one for each possible triangle-free. Preliminary results showed that the reduction of the LP gap is substantial and improves when p gets smaller.

Observe that the dual iterations will lead to a solution in

(P A P C ) Conv(Ω B )
and the upper bound v B can be better than the continuous relaxation bound v LP .

2. Relaxing the tournament constraints : it will induce a decomposition between x and y variables where the cardinality subproblem is trivially solved and integral (see below); on the other hand, the cycle-free subproblem is NP-hard. Preliminary results showed that the corresponding bound and performance are subsumed by the former relaxation.

3. Relaxing the cardinality constraints : the subproblem looks like a LOP but it is not, as the dual multiplier can be negative forcing some y i to be zero. Even if that option does not yield the best upper bound, it is worth analyzing the dual function to identify the favourable cases. Indeed, the dual function is a piecewise affine convex function. We can restrict the study to the case of a non negative multiplier as the cardinality constraint can be relaxed to i y i ≤ p without altering the optimality conditions. The dual function is defined by :

φ(u) = p.u + sup{ i,j c ij x ij -u i y i | s.t. A and B}
Obviously, φ(0) = v n , the optimal value of LOP for the n nodes. When u increases slightly, the solution will not change and the dual function behaves like the affine function v n + (pn)u. At the opposite, if u is very large, no node will be selected and the solution will be x = 0 with corresponding value v 0 = 0, so that the corresponding piece will be linear with slope p. Now, let v j be the optimal value of (j-FCLOP)
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Then, the dual function can be written as a piecewise affine convex function :

φ(u) = max{v j + (p -j)u, j = 0, . . . , n}
Observe that the affine piece corresponding to j = p is horizontal, but it is not necessarily active in the sense that φ(u) > v p , ∀u which implies the existence of a duality gap (see Figures 5.4 and 5.4). The first Lagrangian relaxation model is proposed in the following.

FCLOP-LR-A (relaxing the Tournament inequalities)

max i∈Vn j∈Vn,j =i

w ij x ij + i∈Vn j∈Vn,j =i u ij (y i -x ij -x ji ) 94 CHAPTER 5. LAGRANGIAN RELAXATION + i∈Vn j∈Vn,j<i v ij (-y i -y j + 1 + x ij + x ji ) s.t. (x, y) ∈ B ∩ C x ij , y i ∈ {0, 1} ∀i, j ∈ V n
In the FCLOP-LR-A model we relax all the constraints that link the variables x ij and y i for all i, j ∈ V n .

The sub-problem in this case, contains triangle-free inequalities (B) and cardinality constraints (C). In this sub-problem we have considered the two equations to limit the number of nodes and also the number of arcs in any feasible solution.

The sub-problem in this case becomes automatically decomposable to two blocks based on the the two sets of variables x and y.

Bundle method has been applied to solve the dual problem and the numerical results is reported in Table 5.1.

The second lagrangian relaxation of the FCLOP model that we studied is presented in the following.

FCLOP-LR-B (relaxing triangle-free inequalities)

max i∈Vn j∈Vn,j =i w ij x ij - k∈Vn j∈Vn,j =k i∈Vn,i<j,i<k v ijk (x ij + x jk + x ki -2) s.t. (x, y) ∈ A ∩ C x ij , y n ∈ {0, 1} ∀i, j ∈ V n
In this model, we relax B and add the inequalities to the objective function multiplied by the Lagrangian multipliers v ijk .

The sub-problem in this model represents a p-tournament problem [START_REF] Moon | On subtournaments of a tournament[END_REF] in graph theory which, consists of cardinality constraints (C) and tournament problem (A) as well as bound constraints. Tournament problem in graph theory is looking for a digraph by assigning an orientation to all the edges of an undirected complete graph. A feasible solution in tournament problem in graph theory is a digraph which contains a directed arc between every pair of its vertices. Moreover, a feasible solution in the p-tournament problem consists of a digraph that contains p nodes (p ≤ n) such that there exists one directed arc between every pair of them.

We have tested "FCLOP-LR-B" relaxation model and applied Bundle method to solve it. Numerical results are presented in Table 5.2.

The third Lagrangian relaxation of the FCLOP model that we studied is presented in the following.

FCLOP-LR-C relaxing cardinality constraints

The second combination of constraints that have been relaxed are the group C of constraints concerning the restrictions on number of nodes and arcs in any feasible solution.

max i∈Vn j∈Vn,j =i

w ij x ij + u[p - i∈Vn y i ] s.t. (x, y) ∈ A ∩ B x ij , y i ∈ {0, 1} ∀i, j ∈ V n
Bundle method is applied to solve this Lagrangian relaxation dual problem and the numerical results are presented in Table 5.3.

FCLOP-LD1 -Two sub-problems

In the sequel, a Lagrangian decomposition model is proposed. In this Lagrangian decomposition model, a set of copy constraints

t ij -x ij = 0
has been proposed to decouple the x variables to two sets of x and t variables.In this decomposition strategy, the objective is to decompose the set of triangle-free inequalities in a block of constraints and keep all the rest (the groups A and C) in the second block.

FCLOP-LD1

max i∈Vn j∈Vn,j =i

w ij x ij s.t. A :      x ij + x ji ≤ y i ∀i, j ∈ V n , i < j x ij + x ji ≤ y j ∀i, j ∈ V n , i < j x ij + x ji ≥ y i + y j -1 ∀i, j ∈ V n , i < j B : t ij + t jk + t ki ≤ 2 ∀i, j, k ∈ V n i = j = k C : i∈Vn y i = p i,j, i =j x ij = p(p -1)/2 96 CHAPTER 5. LAGRANGIAN RELAXATION x ij -t ij = 0 ∀ i, j ∈ V n , i = j t ij , x ij , y i ∈ {0, 1} ∀ i, j ∈ V n , i = j
Consider the sub-problem LD u (x, y) and LD u (t) as follows:

LD_u(x,y):

max i∈Vn j∈Vn,j =i w ij x ij - i∈Vn j∈Vn u ij x ij s.t. (x, y) ∈ A ∩ C x ij , y i ∈ {0, 1} ∀i, j ∈ V n
and LD_u(t):

max i∈Vn j∈Vn,j =i u ij t ij s.t. (t) ∈ B t ij ∈ {0, 1} ∀ i, j ∈ V n .
In the FCLOP-LD1 formulation, by applying a set of copy variables t ij , we have decomposed the FCLOP to two sub-problems LD_u(t) and LD_u(x,y).

One observes that the block LD_u(x,y) is quit similar to the FCLOP-LR-B.

The main difference between FCLOP-LD1 and FCLOP-LR-B is in the objective function of the dual problem corresponding to each of them.

Since we obtain relatively high quality dual bound by applying the FCLOP-LR-B relaxation strategy, the objective in implementing this Lagrangian decomposition strategy was to see whether this decomposition strategy produce better dual bound or it becomes more difficult. Bundle method has been applied to solve the model and the numerical experiments that are reported in Table 5.4 confirm that the Lagrangian relaxation strategy FCLOP-LR-B is still more interesting than FCLOP-LD1 in terms of the quality of obtained dual bound.

FCLOP-LD2 -Three sub-problems

As mentioned above, the objective in lagrangian decomposition is to decouple the constraints in separated blocks and dualize the set of copy constraints somehow to decompose the subproblem to two or more easier sub-problems.

We have applied the idea to decompose the model into three blocks to find the sub-problems that are even easier to solve. In this section, a Lagrangian decomposition model which decomposes the dual problem into three subproblems LD A , LD B and LD C is proposed. This is accomplished by introducing the following copy constraints:

x ij -t ij = 0 ∀ i, j ∈ V n y i -w i = 0 ∀ i ∈ V n
By substituting the copy variables t ij instead of x ij in triangle-free inequalities and w i instead of y i in cardinality constraint we obtain the LD 2 -FCLOP formulation as follows:

FCLOP-LD-2 max i∈Vn j∈Vn,j =i w ij x ij - i∈Vn j∈Vn,j =i λ ij (x ij -t ij ) - i∈Vn µ i (y i -w i ) A :          x ij + x ji ≤ y i ∀i, j ∈ V n , i < j x ij + x ji ≤ y j ∀i, j ∈ V n , i < j x ij + x ji ≥ y i + y j -1 ∀i, j ∈ V n , i < j i∈Vn j∈Vn,j =i x ij = p(p -1)/2 B : t ij + t jk + t ki ≤ 2 ∀i, j, k ∈ V n i = j = k C : i∈Vn w i = p x ij , y i , t ij , w i ∈ {0, 1} ∀i, j ∈ V n , i = j = k
Now it is straightforward to decompose the FCLOP-LD-2 formulation to the following three sub-problems:

Sub-problem A max i∈Vn j∈Vn,j =i w ij x ij - i∈Vn j∈Vn,j =i λ ij x ij - i∈Vn µ i y i s.t. x ij + x ji ≤ y i ∀i, j ∈ V n , i < j x ij + x ji ≤ y j ∀i, j ∈ V n , i < j x ij + x ji ≥ y i + y j -1 ∀i, j ∈ V n , i < j i∈Vn j∈Vn,j =i x ij = p(p -1) 2 x ij , y i ∈ {0, 1} ∀ i, j ∈ V n , i = j 98 CHAPTER 5. LAGRANGIAN RELAXATION Sub-problem B max i∈Vn j∈Vn,j =i λ ij t ij s.t. t ij + t jk + t ki ≤ 2 ∀i, j, k ∈ V n , i = j = k t ij ∈ {0, 1} ∀ i, j ∈ V n Sub-problem C max i∈Vn µ i w i s.t. i∈Vn w i = p w i ∈ {0, 1} ∀ i ∈ V n
Sub-problem A contains both sets of decision variables x and y, since the group A refers to the Tournament constraints.

Sub-problem B, contains only the t variables which are substituted by x variables in triangle-free inequalities (B). In fact the sub-problem B represents a maximum acyclic subgraph problem when the input matrix corresponds to a complete weighted oriented graph and the objective aims to maximize the sum of the weights of all the arcs present in a feasible solution. There is no other constraint than triangle-free inequalities in this sub-problem. Consequently as a feasible solution, we might have a linear order containing all the n vertices only if 1) w ij ≥ 0 for all i, j ∈ V n and 2) for any pair of vertices i and j, we have w ij + c ji > 0. In fact two vertices i and j will never be connected directly if w ij = c ji = 0.

In Sub-problem C, all what remains is cardinality constraint that restricts the number of vertices in any feasible solution. This sub-problem represents a knapsack problem, while the weights of all the variables are equal to +1.

Therefor it becomes trivial and we only need to sort the coefficients of the objective function in decreasing order and choose the first p variables to be equal to one.

One observes that all the sub-problems A, B and C are quite easier to solve compared to the basic FCLOP model.

Numerical results of applying Bundle method to solve the lagrangian decomposition model LD 2 -FCLOP are reported in Table 5.5.

Numerical results

This section is devoted to report the numerical results of applying the Bundle method to solve different Lagrangian dual problems that are presented previously.

The set of instances are the same as what we have considered in chapter 3.

We have used Bundle code developed by Frangioni and presented in (Frangioni, 2000) to solve dual problems. Three different termination conditions have been considered: 1) the maximum number of iteration (100 iterations at most) 2) 10800 seconds as the time limit and 3) the average violation that is to certify the convergence. The bundle size has been considered up to 100 solutions.

The first column of each table indicates name of the instances in the format 'Name-p' where name is the instance name from LOLIB and p indicates the cardinality number. The second column 'elapsed time' reports the time (in second) elapsed in solving the instance. The third column reports the best obtained dual bound.

The following column reports the number of iterations that have been carried out before the termination of the procedure. the next column reports the LP bound corresponding to each instance. The next column 'Optimal*' reports value of the optimal solution for the instances of which their optimal solution is known. There are also instances of which are not solved yet to optimality. In such cases, the best known primal bound has been reported superscripted by a * .

Finally, the last column reports the termination status. AvgViol indicates that the run has been terminated after being sufficiently converged to the optimal solution. MaxIter means thet the run has been terminated after 100 iterations. TimLim indicates that the run procedure has been terminated by the time limit termination condition. There are instances of which are terminated by TimLim termination condition, however the elapsed time is slightly different from 10800 seconds. The small deviation from the time limit is due to the fact that the time limit is reached while CPLEX has been in the middle of solving an LP node and does not terminate before the LP is resolved.

Finally the term O.M. refers to an unusual termination status that happens due to the memory issue (out of memory).

Note 2 It may happen in some instances (e.g. N-atp24-23, N-atp24-24, N-atp48-40, N-atp48-45,...) that the LR dual bound obtained from the subgradient optimization is greater that its LP bound which is not normal. In fact, in all these instances, the termination mode is either time limit or the number of iterations. Such an incorrect dual bound means that the rate of 100 CHAPTER 5. LAGRANGIAN RELAXATION convergence was slow enough to avoid the algorithm finding a better bound in a reasonable time or in other words, the only very few iterations have been completed within the time limit.

FCLOP-LR-A

Table 5.1 contains the numerical results concerning the model "FCLOP-LR-A".

As explained earlier, in this relaxation strategy, the group A of inequalities that represent the tournament problem, is dualized. Numerical results in Table 5.1 show that in a very few instances of which we have examined, the Lagrangian relaxation model could improve the LP bound. In fact among all the dual problems that we have examined, the "FCLOP-LR-A" had the less impact to improve the dual bound. Also as it is mentioned in Note 2, in some instances that the procedure has been terminated by MaxIter or TimLim, there are instances (e.g. N-atp24, N-atp48, N-be75eec and N-econ36) of which for some cardinality, the LP bound is slightly better than the dual bound.

Concerning the difficult instances (e.g. N-p50-20 and N-pal43), the procedure has ran out of memory for all the cases. In general one may say that FCLOP-LR-A does not produce sufficiently good dual bounds and relaxing the tournament inequalities may not be the best choice even if the resulting subproblem becomes decomposable and easier to solve. Comparing to the Table 5.1, the results seem much more promising. As an example, we reach the optimal solution for several instances such as N-atp24 when cardinality number is equal to 5 or 10, also N-atp48 when the cardinality number is equal to 10 and N-pal19 when p is equal to 5. Also we have the optimal solution of N-atp24, N-atp48 and N-be75eec, when p is equal to n (the LOP).

Another interesting fact is that we often get a better bound comparing to the LP bound when the cardinality is far smaller than the number of nodes.

As soon as p increases, the LR dual bound significantly tends to the LP bound.

FCLOP-LR-C

Table 5.3 presents the numerical results concerning the "FCLOP-LR-C" model solved by Bundle code of Frangioni. In this relaxation strategy, the two constraints (5.10) and (5.14) that restrict the number of non-zero y variables and the number of non-zero x variables in any feasible solution are relaxed. Table Table 5.3 shows that for all the instances that was not ran out of memory, the algorithm could find a very high quality dual bound. However there are many instances that have been terminated due to the memory issue.

In general, this model gives us the best result (regarding the relative gap) comparing with the other relaxations we have tried for easier instances while the FCLOP-LR-C provide better dual bound for the instances that are more difficult e.g. N-atp48 with different cardinality values.

FCLOP-LD1

Table 5.4 reports the computational results of applying Bundle method to solve the FCLOP-LD1 model when we decompose the FCLOP to two subproblems LD_u(x,y) and LD_u(t).

Regarding the numerical results, FCLOP-LD1 produces relatively very hicgh quality dual bounds. One may observe that, as an example, for the instance N-pal43, for the first time the algorithm terminates after finishing 100 iterations without facing with a memory issue. It is quite promising that we could improve dual bound of some difficult instances. However, it may not be the best choice to deal with easier instances since one sees that even very easy instances (e.g. N-atp24, N_be75eec and N_econ36 ) had difficulties to be terminated after being sufficiently converged.

FCLOP-LD2

Table 5.5 reports the computational results of applying Bundle method to solve FCLOP-LD2.

One observes that here for the first time we could improved the LP bound for some of the very difficult instances (e.g. N-p50-20 ).

As it is reported in Table 5.5, the decomposition scheme FCLOP-LD2 works relatively better for easy instances as well as very difficult instances. Relatively short elapsed time for solving each iteration is another advantage of this decomposition scheme, and particularly short CPU time for instances that terminated by MaxIter termination condition confirms it.

In general, one may say that FCLOP-LD2 is an efficient decomposition scheme to deal with highly difficult instances regarding the three critical items; the dual bound quality, the number of iterations and the CPU time. 
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In the following, several diagrams are presented to analyse the behavior of different lagrangian relaxations on instances of our test-bed.

Every figure contains two bar charts corresponding to 1) the number of iterations per instance and 2) percentage of the relative gap resulted by the corresponding relaxation model.

The Figure 5.6 confirms that N-atp24 for any cardinality number, is relatively an easy instance. The diagram concerning the number of iterations show that all the instances are terminated before the time limit reached.

The second part of the Figure 5.6 concerns the relative dual gap and shows that except for the LR-FCLOP-A relaxation, all the other relaxation strategies produce relatively high quality dual bound that result zero or very small deviation from the optimal solution. Among all the 5 relaxations that we have applied, the LR-FCLOP-A relaxation strategy reached to the optimal solution for different p values in a small number of iterations.

In general one may conclude that N-atp24 is relatively an easy to solve instance for different p values.

It is interesting to note that even in such an easy instance, we still have a larger deviation from the optimal solution whenever the cardinality number p is an median value (is far from n and far from zero).

In Figure 5.7 there are some dashed bars (e.g. in FCLOP-LR-A when p is in {40, 45, 47, 48}), which precise that the procedure for these instances has been terminated by the TimLime stopping criteria(1800 seconds). There are also instances having no bar associated to them (e.g. The FCLOP-LR-C when p is in {10, 20, 25, 30, 35, 47}). Figure 5.7 shows that in contrary to the instance N-atp24, the FCLOP-LR-C relaxation strategy is not sufficiently strong to solve the N-atp48. Table (5.3) confirms that from among 10 different p values, FCLOP-LR-C could solve only four instances.

Another point to address in Figure 5.7 is that the instance N-atp48 is more difficult comparing to the N-atp24 since in almost all the cases, the algorithm terminated either by the time limit termination condition, or after reaching the maximum number of iterations or because of the memory issue. The cases when 15 ≤ p ≤ 40, are quite difficult and the runs were mostly terminated in an unusual way. However we still were able to reach very high quality dual bounds by applying FCLOP-LR-B relaxation strategy and FCLOP-LD2 Lagrangian decomposition.

CHAPTER 5. LAGRANGIAN RELAXATION As an other relatively easy to solve instance, the FCLOP-LR-C is able to reached to the optimal solution, for different p values.

By analysing the Figure 5.9 together with Table 5.3, one observes that the FCLOP-LR-C relaxation strategy produce very high quality dual bounds for the FCLOP problem. Considering all the three criteria, number of iterations, dual gap quality and the CPU time, emphasize that the lagrangian decomposition scheme with three subproblems is the most qualified algorithm to solve this instance. In analysing this figure, it is important to keep in mind that the N-econ36 is categorized as a relatively easy instance and as it is mentioned earlier, for easier instances, FCLOP-LR-C is a good choice.

CHAPTER 5. LAGRANGIAN RELAXATION Figure 5.9: N-econ36 FCLOP instances when p varies From Figure 5.10 together with the Tables Table 5.1 -Table 5.5, one observes that only solution algorithms, FCLOP-LR-B and FCLOP-LD2 were able to deal with these instances and all the other relaxation strategies were facing with the memory issue. Figure 5.10 confirms that several instances are terminated by TimLim termination status (after 10800 seconds). N-p50-20 is one of the very difficult instances that its optimal value (in the case of the LOP) is not known in the literature.
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The two instances N-pal19 and N-pal43 have more or less the same structure. The main difference between N-pal19 and N-pal43 is in their size (total number of nodes). The instances in this class become quickly very difficult as soon as the number of nodes increase due to the high level of symmetry inherent in them. As an example, N-pal19 is a median instance containing 19 nodes while N-pal43 is a very difficult instance containing 43 nodes.

Comparing Figure 5.11 and Figure 5.12 reveals that for these difficult instances, one may prefer to apply the Lagrangian decomposition with three subproblems to obtain a good quality dual bound in a relatively short CPU time.

CHAPTER 5. LAGRANGIAN RELAXATION 

Relaxation Based Exact Solution Method

In this chapter, we present a kind of cutting plane algorithm to reduce the number of constraints in the FCLOP integer programming formulation. Grötschel et al. (1985a) shows that triangle-free inequalities are defining facets for the LOP polytope. However, our studies show that this is not the case for the FCLOP polytope. We have shown that even after strengthening the triangle-free inequalities, the resulted inequalities,

x ij + x jk + x ki ≤ y s + y t ∀ {s, t} ⊂ {i, j, k}, {i, j, k} ⊆ V n do not define facets for the FCLOP polytope.

Numerical experiments show that this set of inequalities are very heavy (O(n 3 )) and negatively impact performance of general-purpose solvers. On the other hand, as p reduces, there is a huge number of these inequalities that will never become binding. In fact, they become redundant whenever at least one (or more) of the three vertices i, j and k is (are) not selected to be in the order -which is likely to happen when the gap between n and p is large enough. The idea in here is to relax the set of triangle-free inequalities and add them to the model in the case of necessity. To do so we need to fix the p active vertices and then find the eventual violations and add the corresponding cuts to the relaxed model to eliminate the violations. For doing so, we have applied the idea of Combinatorial Benders Cuts to create the cuts in an iterative algorithm.

Benders decomposition [START_REF] Benders | Partitioning procedures for solving mixed-variables programming problems[END_REF][START_REF] Benders | Partitioning procedures for solving mixed-variables programming problems[END_REF] is a variable partitioning method known as an efficient decomposition method in MIPs and also in scenariobased stochastic programming (see e.g. [START_REF] Mulvey | A new scenario decomposition method for large-scale stochastic optimization[END_REF]; 126 CHAPTER 6. RELAXATION BASED ALGORITHM [START_REF] Birge | Decomposition and partitioning methods for multistage stochastic linear programs[END_REF]; [START_REF] Birge | A multicut algorithm for two-stage stochastic linear programs[END_REF]; [START_REF] Pereira | Multi-stage stochastic optimization applied to energy planning[END_REF]).

Benders decomposition was originally proposed for the mixed integer programming models aiming at partitioning the variables into two parts with respect to the types of variables and relaxing the set of complicating variables. Often, in MIPs the set of complicating variables are integer variables and the remaining ones are assumed as easy-to-handle ones (mainly because today's LP solvers are very efficient).

In the classical Benders decomposition method, the convexity of the subproblem plays a very crucial role. The primal-dual relationship, which is exploited for generating Benders cuts (to be added to the Master Problem in an iterative matter) is resulted from the convexity of the sub-problem.

Later on, perhaps the stochastic programming community were the first place where the convexity of sub-problem was challenged -see [START_REF] Carøe | L-shaped decomposition of two-stage stochastic programs with integer recourse[END_REF]; van der Vlerk (1995); [START_REF] Schultz | Solving stochastic programs with integer recourse by enumeration: A framework using gröbner basis[END_REF]; [START_REF] Ahmed | The sample average approximation method for stochastic programs with integer recourse[END_REF]; [START_REF] Louveaux | Stochastic programming with simple integer recourse[END_REF]. There were situations as in the case of integer recourse where the sub-problem was integer and no primal-dual relationship was available. Some authors has generic view at such problems while others often develop some algorithms tailored for certain applications. As an example of generic method, one can refer to [START_REF] Sherali | A modification of benders' decomposition algorithm for discrete sub-problems: An approach for stochastic programs with integer recourse[END_REF].

In most of the aforementioned contributions, the particular interest in using Benders decomposition method was that either the sub-problem can be decomposed for every scenario or there was an efficient algorithm to solve the sub-problem while it was difficult to solve the whole at once. However, there were certain cases where the sub-problem was not necessarily decomposable, no particular efficient algorithm (other than standard MIP solvers) is available or the original model was a Big-M model for a combinatorial optimization problem, which caused numerical instability during resolution.

The Combinatorial Benders Cuts first appeared in [START_REF] Codato | Combinatorial benders' cuts for mixedinteger linear programming[END_REF] for a Big-M model of Asymmetric Traveling Salesman Problem and very promising results were reported. In this approach the sub-problem was a feasibility problem rather than an optimization problem. The problem after removing some of the constraints was called the Master Problem while the sub-problem was composed of a set of constraints, which could be violated for the solutions produced by the master problem. The algorithm then seeks a minimal infeasible subsystem (more precisely Irreducible Infeasible Subsystem) to be used in generating cover-like constraints added to the master problem in order to cut off the current solution of the master problem. The method is later on extended to accommodate MIPs as well. Interested readers are referred to [START_REF] Codato | Combinatorial benders' cuts for mixedinteger linear programming[END_REF] for the relevant details.

Later [START_REF] Bai | Combinatorial benders cuts for the minimum tollbooth problem[END_REF] proposed a combinatorial Benders cuts for the minimum tollbooth problem and [START_REF] Cao | The integrated yard truck and yard crane scheduling problem: Benders decomposition-based methods[END_REF] for an integrated yard truck and yard crane scheduling problem. This method is particularly proposed to solve the Big-M models. However, it led us to separate a part of constraints (particularly triangle-free inequalities) and solve the relaxed model, which becomes significantly easier.

In our algorithm we have relaxed the set of triangle-free inequalities. Then to avoid having the solutions which are infeasible for the initial problem, we control all the feasible solutions of the relaxed problem which are going to be installed as an incumbent in the Branch-and-Bound tree. If any triangle become recognized, then the corresponding triangle-free inequality(ies) will be added to the relaxed model to make the solution(s), infeasible. These separated cuts are adding globally and permanently and it ensures the algorithm to be finite in a polynomial time of iterations. It must be noted that in contrast with the classical branch-and-cut approaches where usually we emphasize on separating cuts at the root node and also for fractional solutions, we only separate such cuts when an incumbent is going to be installed.

In this chapter, after introducing the general concept, we will propose some algorithm for dealing with certain formulation of the FCLOP. A hybridized technique will be also presented that combines the Lagrangian relaxation method (solved by Bundle method [START_REF] Frangioni | Generalized Bundle Methods[END_REF]) whit the relaxation based algorithm that we are presenting here. Computational results are presented at the end of each algorithm.

Benders decomposition

Let problem P be given as follows: (P)

min c ′ 1 x + c ′ 2 y (6.1) s.t. Ax ≥ a (6.2) By ≥ b (6.3) Dx + Ey ≥ d (6.4) x ∈ Z m (6.5) y ∈ R n (6.6)
where x ∈ Z m are assumed to be the complicating variables. Benders decomposition method tries to decompose the problem as a Master Problem (MP) and a sub-problem dual (SPD) as follows:

(MP)

min c ′ 1 x + η (6.7) s.t. Ax ≥ a (6.8) η ≥ ub + v(d -Dx)
∀ extreme points (6.9)

0 ≥ ub + v(d -Dx) ∀ extreme rays (6.10) x ∈ Z m , η ≥ 0 (6.11) (SPD) max ub + v(d -Dx) (6.12) s.t. uB + vE = c 2 (6.13) u i , v i ∈ R + (6.14)
In the first iteration, the set of optimality cuts (6.9) and feasibility cuts (6.10) are empty. A solution of MP is given to the SPD (note that the feasible region of SPD is independent of x). If for such a given x, SPD solves to optimality, then an optimality cut of form (6.9) and if otherwise a feasibility cut of form (6.10) will be added to the MP.

A solution to the MP is always a lower bound on the optimal solution of (P) (an upper bound in the case of maximization). Also, if for a given x, SPD solves to optimality, then an upper bound for the whole problem also becomes known.

The classical implementation of method exploits the decomposable structure of problems, identifies a set of complicating variables (or the constraints involving those variables) to put in a Master Problem (MP) and a Sub-problem (SP) which, is convex (often a linear program) such that the primal/dual relationship holds. The algorithm iterates between solving the master problem to optimality followed by solving the sub-problem where the complicating variables became parameters. The method makes use of exchange of information in terms of cuts between these two smaller problems to attain optimality of the original model.

However, when dealing with pure a integer programming sub-problem, i.e. not a convex one, the primal-dual relationship cannot be exploited to generate cuts in the sub-problem LP and add them to the master problem to improve the outer approximation. Rather, at every iteration, solution to the master problem is used to either finding the minimal infeasible subsystem or a set of constraints generated on the fly, to add to the MP in order to cut off the proposed infeasible solution (see Combinatorial Benders (CB) in [START_REF] Fischetti | Minimal infeasible subsystems and benders cuts[END_REF]).

This gave us the idea to generate an algorithm to separate useful relaxed cuts after relaxing the FCLOP model.

The separation algorithm can be described as in the sequel.

Separation algorithm

Let P be the following problem:

(P)

min c ′ 1 x (6.15) s.t.
Ax ≥ a (6.16)

Bx ≥ b (6.17)

x ∈ Z m (6.18)

Definition 3 (Irreducible Infeasible Subsystem (IIS)) A subsystem of inequalities and equations such that the subsystem is inconsistent (infeasible) and every proper subsystem is consistent (feasible).

We form a master problem (MP) as follows:

(MP) 6.1 Relaxation Based Exact Algorithm for the FCLOP Our extensive computational experiments with the instances of the FCLOP have shown that the prohibitive number of classical triangle-free inequalities,

x ij + x jk + x ki ≤ 2, ∀i, j, k ∈ V n , i = j = k (6.25)
are a major bottleneck in solving instances of the FCLOP.

In fact, we have observed that only a very small fraction (often below 1 percent) of the whole set of inequalities in (6.25) are binding at the optimal solution (in general for any feasible solution). Consequently, their existence in the set of constraints negatively affect the performance of general-purpose solvers mainly due to the degeneracy (cause by having too many similar rows in the simplex tableau) in addition to the symmetry in the structure of the FCLOP.

Let us recall the FCLOP model here: x ij + x ji ≤ y i ∀i, j ∈ V n , i < j (6.27)

x ij + x ji ≤ y j ∀i, j ∈ V n , i < j (6.28)

x ij + x ji ≥ y i + y j -1 ∀i, j ∈ V n , i < j (6.29)

x ij + x jk + x ki ≤ 2 ∀ i, j, k ∈ V n (6.30) i∈Vn y i = p (6.31) y i , x ij ∈ {0, 1} ∀ i, j ∈ V n , i = j (6.32)
Theorem 9 The total number of effective constraints in the constraints set (6.30) in a FCLOP model is independent of n. In fact, it only depends on the cardinality, p, and is calculated as follows: 2 p 3 while the total number of the set of (6.30) constraints is equal to 2 3 n 3 .

Figure 6.1 depicts the ratio of the effective constraints to the number of (6.30) constraints.

Example 2 For n = 35, we have:

1. when p = 5 only 0.15 percent of constraints (6.30) are effective, 2. for p = 10 it was 1.88 percent, and, 3. for p = 25 only 35.14 percent of the whole constraints are necessary.

Example 3 For n = 75, we have:

1. when p = 10 only 0.17 percent are effective, 2. for p = 20, 6.01 percent, and, 3. for p = 60 only 50.67 percent of the whole constraints are necessary.

Remark 6 Obviously, when p = n, all the constraints are necessary as is the case in the LOP.

For strengthening the formulation, yet we propose to replace the classical triangle-free inequalities(6.30) with:

x ij + x jk + x ki ≤ y s + y t ∀ {s, t} ⊂ {i, j, k} ⊆ V n (6.33)
It is shown in Table 3.4 reported in chapter 3 that replacing (6.33) with the classical triangle-free inequalities (6.30) will slightly improve the LP bound. However increasing the number of inequalities in (6.33) comparing to (6.30) had negative impact on the calculation time.

Thats why we have chosen to relax (6.33) and add them upon need in this relaxation based solution algorithm. Figure 6.1: The percentage of efficient constraints of (6.30).

Algorithm

In the view of the aforementioned properties, a trivial decomposition for the FCLOP would be to decompose the problem where the master problem contains all the constraints of the FCLOP except (6.33). The relaxed cuts are then separated and added to the master problem upon violation.

Let B s ⊂ B be the set of active triangle-free inequalities at iteration s. The separation of triangle-free inequalities can be done in polynomial time as shown in [START_REF] Grötschel | On the acyclic subgraph polytope[END_REF]. Let (x, ŷ) be the current solution given by the relaxed Master. Of course i ŷi = p and we denote V (ŷ) the set of active nodes. Now, if we let w = 1x, a feasible acyclic solution will satisfy w(C) ≥ 1 for any dicycle C on V (ŷ). So the separation subproblem will be to find a dicycle Ĉ on V (ŷ) with minimal w(C). If w( Ĉ) < 1, the minimal dicycle violates the corresponding dicycle inequality i.e. x( Ĉ) ≤| Ĉ | -1, which must be added in the Master to the set B s+1 .

PR Relaxed Master

max i∈V j∈V,j =i c ij x ij s.t. x ij + x ji ≤ y i ∀i, j ∈ V, i < j x ij + x ji ≤ y j ∀i, j ∈ V, i < j x ij + x ji ≥ y i + y j -1 ∀i, j ∈ V, i < j (6.34) x ij + x jk + x ki ≤ 2 ∀C = (ijk) ∈ B s (6.35) i∈V y i = p 6.1. RELAXATION BASED EXACT ALGORITHM FOR THE FCLOP 133 y i , x ij ∈ {0, 1} ∀ i, j ∈ V, i = j PR Subproblem min w(C) s.t.
C is a triangle-free in V (ŷ)

Observe that we can restrict the separation to triangle-frees and that we can generate as many cuts as there are dicycles with w(C) < 1. The process is guaranteed to be finite as the total number of violated inequalities is bounded.

In practice, [START_REF] Grötschel | On the acyclic subgraph polytope[END_REF] suggested to adapt a shortest-path algorithm (like Dijkstra) to find a shortest dicycle in the graph. Another strategy is that for a given set of nodes in an order (in a solution to the relaxed MP), we solve the system of triangle-free inequalities with fixed RHS. If infeasible, we can determine a set of Irreducible Infeasible Subsystem which correspond to those cuts that must be added. In CPLEX, this can be carried out within a Cut/LazyConstraint callbacks and the identified cuts, if any, can be directly added: min 0 (6.36) s.t.

x ij + x jk + x ki ≤ 2/3(y i + y j + y k ) ∀i, j, k ∈ V n , i = j = k (6.37)

x ij = x ij , ∀i, j = i, (6.38) y i = y i , ∀i, (6.39)

y i ∈ {0, 1} ∀ i ∈ V n (6.40)
where (x, y) is the current solution of the master program.

We have implemented this algorithm within a modern branch-and-bound framework where the cuts are added in the course of branch-and-bound and do not need to iterate between solving a master problem to optimality and then separating cuts by invoking separation routing.

In the course of branch-and-bound algorithm as soon as an integer solution to the MP is found and before it is installed as an incumbent, we examine the feasibility of the solution. If the solution is infeasible we try to find an IIS of the set (6.37)-(6.40), which represent the minimal number of required cuts to eliminate the integer solution and avoid installing it as an incumbent if infeasible.

Remark 7 CPLEX is in charge of identifying Irreducible Infeasible Subsystem (IIS). Finding IIS is NP-hard and here in this algorithm we use the concept of Inclusion-wise Minimum Infeasible Subsystem, instead.

Upon finding violated constraints from the set of constraints in (6.33), the set is updated to not include those constrains which have been already added to the model.

The process is guaranteed to be finished in polynomial number of separation. Moreover, the total number of violated inequalities is bounded.

In addition to the IIS results, the following cover constraints are generated which is of the same class of combinatorial cuts as in the original version of the combinatorial benders decomposition cuts [START_REF] Fischetti | Minimal infeasible subsystems and benders cuts[END_REF].

Let I be the set of indexes of variables appearing in the set of constraints in IIS. The following cut eliminates the current solution proposed by the master problem.

{i,j}∈I (x ij -1) ≤ -1 (6.41) (6.41) ensures that at least one of the variables x ij which is '1' in the current solution will cannot be there. This constraint does not include y variables because the variables x are mainly the cause of infeasibility.

The following algorithm is called at every node of branch-and-bound tree with integer solution:

Algorithm 2: Separation process. Input: y i : i ∈ V n Output: subset of constraints (6.37) 1 fix y i : i ∈ V n in all constraints (6.37); 2 determine set of violated constraints in (6.37); 3 C=find IIS of (6.37)-(6.40); 4 add C to relaxed FCLOP as global cuts; 5 eliminate C from (6.37) permanently. Numerical results are presented in Table 6.1.

Extended pure relaxation algorithm

In Extended Pure Relaxation Algorithm (EPRA), we relax (totally remove) the set of constraints that ensures the existence of an edge between any pair of active vertices. Relaxing these constraints will cause removal of all the edges having zero cost in any feasible (or optimal) solution (i.e. if there exist i, j of which w ij = c ji = 0, then either x ij or x ji will never appear in any solution). The idea behind it is to make an equilibrium between all the symmetric solutions 6.1. RELAXATION BASED EXACT ALGORITHM FOR THE FCLOP 135 of which are made by inverting the zero cost value edges.

The relaxed model then is as follows:

Relaxed-FCLOP max i∈Vn j∈Vn,j =i w ij x ij s.t. x ij + x ji ≤ y i ∀ i, j ∈ V n , j < i x ij + x ji ≤ y j ∀ i, j ∈ V n , j < i i∈Vn y i = p x ij , y i ∈ {0, 1}, ∀ i, j ∈ V n , j = i
In this model, the set of

x ij + x ji ≥ y i + y i -1 ∀ i, j ∈ V n , i < j i∈Vn j∈Vn,j =i x ij = p(p -1)/2
constraints are relaxed. By relaxing them we only consider the edges that have non-zero cost value. This helps us to reduce the symmetry inherently exists in the FCLOP, depending on the input matrix. For example before relaxing these constraints, if there exists an active pair i immediately followed by j in a feasible linear order such that w ij = c ji = 0, then we will have the same objective value by inverting the edge existed from i to j. We gain nothing by having both of these solutions in the branch-and-bound tree. However after relaxing these constraints we will never have any edges with zero cost value appearing in any feasible solution. It means that we set a unique value to a set of several feasible linear order that are having the same objective value.

After all, we apply the cut separation algorithm to separate the violated triangle-free inequalities, if any, and solve the model.

It is shown in Table 6.2 that comparing to the Table 6.1, we can solve the problem in a very reduced elapsed time. Since the relaxed constraint was to ensure the existence of an arc between any pair of selected vertices and the resulted feasible solution expected to have all the non-zero arcs active in the solution as well as the real optimal solution, one may expect to exploit the optimal solution after a simple post-processing procedure by adding a zero weight arc (x ij orx ji between any pair of active i and j. Unfortunately this is not the case. The issue, which cause to have non-zero gap is that after removing the zero-wight arcs, we might have cycles made by more that 3 directed arcs. It is known in the literature that all the k-dicycle inequalities define facets for the "Acyclic Subgraph polytope" [START_REF] Grötschel | On the acyclic subgraph polytope[END_REF], but the trianglefree inequalities are the only ones of this class that define facets for "Linear Ordering polytope" (Grötschel et al., 1985a).

The main difference between these two models comes from the fact that we are dealing with a complete graph in linear ordering problem (a complete subgraph in the FCLOP). Consequently, after removing the constraints ensuring the existence of an edge between any active pair of vertices we probably have an incomplete subgraph (made on a set of p active vertices). Then in this case the cycles of which containing 4 edges or more, might appear. Note that this behavior is highly dependant on the structure of input data. That is the reason of having zero duality gap for some instances, i.e. for N-pal19 when cardinality is equal to 5, 10 15 18 or 19, also for N-atp48 when the cardinality is 10 and 15 and also N-atp24 when the cardinality is equal to 5 and 10. The most interesting point in this observation is the value of relative gap that is quite small. Remind that to find the relative gap, we calculate the difference between estimated value (upper bound U ) and optimal value O if it is known or the best known feasible solution when the optimal value is not known (the absolute gap) and divide it by the optimal value (or the best known feasible solution).

relative gap = U pperBound -Optimal * Optimal * × 100

Numerical results reported in Table 6.2 confirm that such situations happen rarely (depending on the cost matrix) and we always have very tight upper bound even for difficult instances e.g. N-atp45-20, N-atp45-25, N-atp45-30 and N-atp45-35.

Relaxation Based Algorithm hybrid with Lagrangian Relaxation

As another idea, we have examined the relaxation based algorithm hybrid with Lagrangian relaxation algorithm. In this algorithm, we first relaxed the triangle-free inequalities as it is explained above, then ask CPLEX to identify the IIS. In the sequel, if the IIS is not empty, the separated cuts will be multiplied by lagrangian dual multipliers and added to the objective function of the master problem. The dual problem then is solved applying Bundle method. Numerical results are reported in Table 6.3. Table 6.4 is dedicated to report the comparison between the calculation time of the three algorithms, Relaxation based exact solution algorithm, Extended relaxation base algorithm and Relaxation based algorithm hybrid with Lagrangian relaxation, and the dual bound obtained from any of them.

Numerical results

The same testbed as before is used to test the new algorithms. CPLEX 12.5.1 has been used as a modern branch-and-bound framework in the sense that user can interfere the standard operation by implementing callbacks.

All the instances are solved using the same machine as before but only two threads of CPU.

We let CPLEX solve the master problem and in the course of the branchand-bound algorithm we examine the incumbents before being accepted by CPLEX as a feasible solution. If at certain integer node -where the incumbent is proposed-the IIS is not empty, then we add two kind of constraints: 1) constraints obtained from the IIS, 2) the cover inequality (also known as the combinatorial Benders (6.41)). This will let CPLEX continue without accepting that incumbent. In the case IIS is empty then the optimality has been obtained.

In this framework, the user is not obliged to create and examine all the cuts in any iteration to prevent the memory issues. The solver provides the possibility to generate the cuts on the fly, examined them and keep them only in the case of necessity.

In general, numerical results show that for different instances having small cardinality number, we managed to significantly improve the computational time.

The term O.M. in last column of the tables indicate that the solver (CPLEX) terminates by out of memory status.

It is interesting to note that unless in the cases when the machine ran out of memory, we always have optimal solution once CPLEX terminates normally.

Pure Relaxation Based Cutting Plane algorithm

Table 6.1 shows the numerical results concerning the relaxation based cutting plane algorithm. One observes that when p << n, most of the instances are solved in optimality after reasonable time. The column %Eff.Cuts shows the ratio of number of user cuts over the total number of triangle-free inequalities existed in the 146 CHAPTER 7. FACETS AND NUMERICAL EFFICIENCY

x ij + x ji ≤ y i ∀ i, j ∈ V n , i < j (7.2)

x ij + x ji ≤ y j ∀ i, j ∈ V n , i < j (7.3)

x ij + x jiy iy j + 1 ≥ 0 ∀ i, j ∈ V n i < j (7.4)

x ij + x jkx iky j ≤ 0 ∀ i, j, k ∈ V n , i = j = k (7.5) i∈Vn y i = p (7.6) i∈Vn j∈Vn,j =i

x ij = p(p -1)/2 (7.7)

x ij , y i ∈ {0, 1} ∀ i, j ∈ V n , i = j (7.8)

The following two Lagrangian relaxations has been examined.

LR1

max i∈Vn j∈Vn,j =i w ij x ij -k∈Vn j∈Vn,j =k i∈Vn,i =j =k v ijk (x ij + x jkx iky j ) (7.9) s.t.

x ij + x ji ≤ y i ∀ i, j ∈ V n , i < j (7.10)

x ij + x ji ≤ y j ∀ i, j ∈ V n , i < j (7.11)

x ij + x jiy iy j + 1 ≥ 0 ∀ i, j ∈ V n i < j (7.12) i∈Vn y i = p (7.13) i∈Vn j∈Vn,j =i

x ij = p(p -1)/2 (7.14)

x ij , y i ∈ {0, 1} ∀ i, j ∈ V n , i = j (7.15) LR2 max i∈Vn j∈Vn,j =i w ij x ij -j∈Vn i∈Vn,i =j u ij (-x ijx ji + y i + y j -1) (7.16) s.t.

x ij + x ji ≤ y i ∀ i, j ∈ V n , i < j (7.17)
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x ij + x ji ≤ y j ∀ i, j ∈ V n , i < j (7.18)

x ij + x jkx iky j ≤ 0 ∀ i, j, k ∈ V n i = j = k (7.19) i∈Vn y i = p (7.20)

i∈Vn j∈Vn,j =i

x ij = p(p -1)/2 (7.21)

x ij , y i ∈ {0, 1} ∀ i, j ∈ V n , i = j (7.22)

Numerical results

Subgradient method and bundle algorithm have been used to solve the two Lagrangian relaxation LR1 and LR2. Numerical results are presented in two following Tables 7.1 and 7.2.

LR1

Table 7.1 reports the numerical results of applying bundle method and the code implemented by Antonio Frangioni Frangioni (2000) to solve LR1 Lagrangian dual problem. In this model, we have dualized new triangle-free inequalities. Numerical results show that for the instances which are usually very difficult to solve, i.e. N-atp48 and N-p50-20, we were able to dramatically improve the dual bound. On the other side, it seems that this Lagrangian dual problem is not the best model to find a good upper bound for easier instances when CPLEX itself can solve the instances easily. As mentioned earlier, computational results of different solution method for the FCLOP are always highly depending on the input instances. Moreover, our experiments show that different instances have different behavior facing with different solution methods that we have examined.

For example, here we could not solve N-atp24 for three cases when p = 20, p = 23 and p = 24 while these instances were of the easiest ones so far. However we had relatively good dual bounds for N-atp48 when p gets medium values (e.g. p = 20) which were quite challenging for almost all the solution methods we have applied so far.

A very interesting point in Table 7.1 is the presence of very high quality dual bound for some of the very difficult instances of which are found for the first time, e.g. N-p50-20 for various p values and N-pal43 as well.

LR2

Table 7.2 shows numerical results applying Bundle algorithm to solve Lagrangian dual problem LR2. In this model, the set of (7.4) inequalities are dualized. Numerical experiments show that except only two instances N-econ36 when p = 25 and the second one when p = 35, the other instances of which were not running out of memory, all are solved in optimality in a 7.2 Relax-and-Cut Algorithm

Introduction

The more the cardinality of set of dualized constraints, the more time is spent on evaluation of subgradient. If the cardinality is exponential in the size of instance, then evaluation of subgradient becomes a bottleneck. Moreover, often a very small fraction of all the cuts are actually violated. However, those that are actually satisfied still contribute in calculation of g = b -Ax in the denumerator of step-size calculation formula. In other words, the number of strictly positive subgradients tends to be huge and therefore the calculated step size will be extremely small, leaving Lagrangian multiplier values virtually unchanged from iteration to iteration. This would hinder the convergence and deteriorates the efficiency of subgradient method. [START_REF] Beasley | Lagrangean heuristics for location problems[END_REF] suggested that g i = 0 for strictly positive subgradient i. However, still the issue of exponential number of relaxed constraints persists. Relax-and-Cut (first mentioned in [START_REF] Escudero | A lagrangian relaxand-cut approach for the sequential ordering problem with precedence relationships[END_REF]) tried to iteratively add or dualize the violated constraints. [START_REF] Gavish | Augmented lagrangean based algorithms for centralized network design[END_REF] proposed Augmented Lagrangian Approach where the cuts are added after (5.4) has been solved (Delayed Relax-and-Cut). [START_REF] Balas | A restricted lagrangean approach to the traveling salesman problem[END_REF] proposed the so called Restricted Lagrangian Approach for Traveling Salesman Problem. [START_REF] Lucena | Steiner problem in graphs: Lagrangean relaxation and cutting planes[END_REF][START_REF] Lucena | Steiner problem in graphs: Lagrangean relaxation and cutting planes[END_REF] proposed a new class of relax-and-cut, called Non-Delayed Relax-and-Cut, where the additional constraints to be dualized are identified after every iteration of subgradient and not only after the convergence of subgradient. [START_REF] Guignard | Efficient cuts in lagrangean relax-and-cut schemes[END_REF] characterized the kind of valid inequalities which can be efficient in the relax-and-cut process.

Algorithm

In this section, a relax-and-cut algorithm is proposed to solve the FCLOP. This algorithm is based on the results concerning polyhedral study and facet defining inequalities presented in chapter two. [START_REF] Fischetti | A relax-and-cut framework for gomory mixed-integer cuts[END_REF] proposed a relax-and-cut framework for efficiently using gomory mixed-integer cuts. They relax the new generated gomory mixed-integer cuts and add them to the objective function multiplied by the Lagrangian multipliers. [START_REF] Belloni | Lagrangian heuristics for the linear ordering problem[END_REF] x ij + x ji ≤ y j ∀i, j ∈ V n , i < j (7.25)

x ij + x ji ≥ y i + y j -1 ∀i, j ∈ V n , i < j (7.26)

x ij + x jk + x ki ≤ 2 ∀i, j, k ∈ V n i = j = k (7.27) i∈Vn y i = p (7.28)

x ij , y i ∈ {0, 1} ∀ i, j ∈ V n (7.29)

It is shown in chapter 2 that the set of following strengthening valid inequalities are facet-defining for the FCLOP polytope:

x ij + x jk -x ik -y j ≤ 0 ∀ i, j, k ∈ V n , i = j = k (7.30)
The idea is to solve the LP relaxation of the FCLOP. Once we find the solution, we check whether there exist any violated facet defining inequality of (7.30) type or not. If there is any, then we add them to the model and directly relax them in a Lagrangian fashion. Indeed, if in an iteration an inequality which is already added to the model is found as a violated inequality, then we need to increase its Lagrangian multiplier to augment the penalty to avoid violating an inequality.

156CHAPTER 8. SUMMARY, CONCLUSIONS AND OUTLOOK TO FUTURE WORK results proved the intractability of the model and the impact of symmetry on the performance of genera-purpose MIP solvers such as CPLEX. We have used standard instances from different categories of instances from LOLIB.

The computational experiments revealed that the quality of relaxation and several iterations of non-improving bounds during the branch-and-bound(and-cut) process in CPLEX demands for better polyhedral studies of the IP formulation and tightening LP polytope.

We have proposed several equivalent IP formulation and several classes of valid inequalities. Those valid inequalities came from different sources including some optimization over the first Chvátal-Gomory closure. Some classes of valid inequalities have shown to contribute a lot in the performance of general-purpose solvers by tightening the LP relaxation polytope.

An effort has been made to also show that some of the proposed valid inequalities were also facet-defining ones.

After studying the formulation of the problem, we have proposed several Lagrangian (decomposition) based relaxations making use of the tighter formulations and the improving inequalities which could also be used in a relax-and-cut fashion. We also proposed a simple method for dynamically generating symmetry-breaking inequalities in the course of branchand-bound upon emergence of every incumbent.

In addition to the Lagrangian-based dual decomposition approaches, a primal decomposition algorithm which relied on the idea of Combinatorial Benders cuts has been developed which proven to be very efficient and obtain optimal/feasible solution for instances which has not been solved until then.

We can conclude that polyhedral analysis and the improving inequalities led to very promising results. That means, even a black-box general-purpose solver such as CPLEX, not even a tailored algorithm, could show a better performance. In terms of bound, Lagrangian relaxation and in particular, Lagrangian decomposition shown very promising and is a better alternative to the LP relaxation bound as the sub-problems do not show any integrality property.

We strongly believe that the idea of pure relaxation accompanying with a cut separation algorithm which came from Benders decomposition shown to be very promising for some classes of instances. However, still the issues related to a non-convex sub-problem hinders a successful application of the method.

However, still the quality of bound used in the branch-and-bound algorithm as well as symmetry play very important roles.
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Future work

The efficiency of resolution of the FCLOP is very negatively impacted by the number of triangle-free constraints rather than the number of variables. Such a huge number of constraint with very similar and sparse non-zero rows in the matrix is also a serious source of degeneracy and numerical instabilities. Often the solvers are interrupted with exception while solving the root node, even before starting to branch on variables.

In such a situation, a trivial way of handling such problems is to apply cut generation methods such as branch-and-cut and relax-and-cut which generates the necessary cuts on the fly instead of adding them directly to the model. We believe that, branch-and-cut methods deserve more attention. At the same time, an efficient cut generation method also owes to the quality of cuts which in turn relies on the solid knowledge of the polyhedral structure.

Even though the intractability of the model mostly owes to the number of rows in the model, yet perhaps a Dantzig-Wolfe reformulation of the problem could significantly reduce the existing symmetry issue in the model provided that the pricing sub-problem is efficiently solvable (perhaps by some kind of branch-and-cut or a variant of Benders). A possible bin packing-like modeling would also deserve attention as often such models are known for being quite tight.

Our experiments on optimizing over the first Chvátal-Gomory closure showed very promising. Investigating the other closures (knapsack, elementary, MIR and/or disjunctive closures etc.) also deserves attention. As the number of variables remains still manageable, the concept of lift-and-project and extended formulation combined with the column generation would also be another research direction.

Symmetry is also another issues in the model which deserves attention. Our investigation in this area shows that there is no symmetry group for the FCLOP when p ≥ 3, however a possible research avenue would be to investigate the advanced concepts in symmetry groups of polyhedra. Again such kind of symmetry-breaking inequalities must be generated on the fly rather than being directly added to the model.

Our emphasis in this thesis was on the polyhedral studies and exact solution methods. However, in most cases, for a real-life size instance of problem, the decision makers ask for a good quality solution, which can be obtained in a moderate computational time. In such cases, heuristics procedures -in particular those exploiting e.g. the information about the dual -such as
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 2 Figure 2.1: An example of G π S with S = {1, 2, 4, 5} and π S = (4, 2, 1, 5).
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 32 Figure 3.2: An example of G π S for p = 3, n = 5.
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 33 Figure 3.3: Example of an infeasible solution with two directed triangles (dashed and dotted) which are removed by adding constraints (3.12).
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 3 Figure 3.6: Constraints (3.28) ensure that exactly one of the two dashed arcs must be chosen.
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 3339333 Figures 3.7 -3.9 represent an example of a LOP feasible solution with n = 5 and k = 2, while Figures 3.10 -3.12 represent a FCLOP example when n = 5, p = 3 and k = 2.

  Figure 3.13: N-atp24
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 3 Definition 2 (Lagrangian dual problem) The problem of finding the tightest Lagrangian dual bound on v(λ) is known as the Lagrangian dual problem. Dual problem (least upper bound):
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 5 Figures 5.2 and 5.3 shed more lights on this concept.
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 52 Figure 5.2: Lagrangian decomposition, with three sub-problems, where decomposing the model to three subproblems may improve the LP bound[START_REF] Guignard | Lagrangean decomposition: A model yielding stronger lagrangean bounds[END_REF].

  Figure 5.3: Lagrangian decomposition, with three sub-problems where depending on the subproblems properties and the objective function, Lagrangian decomposition technique may not improve the LP bound. It can still improve the computational time[START_REF] Guignard | Lagrangean decomposition: A model yielding stronger lagrangean bounds[END_REF].
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 5 Figure 5.4: A sample of φ(u), that has an active piece with j = p. There is no duality gap in such a case.
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 5 Figure5.5: A sample of φ(u), that has no active piece with j = p. In such a case, the duality gap is not zero.
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 5 Figure 5.7: N-atp48 FCLOP instances when p varies
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 5 Figure 5.10: N-p50-20 FCLOP instances when p varies
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  Figure 5.11: N-pal19 FCLOP instances when p varies

  

  

  

  

  and the new upper bound we have obtained is 47518.In Table3.7, the first column is the instance name as before, the second column (FCLOP) represent the LP bound of the basic FCLOP model. The next columns TF1, TF2 and TF1 represent the LP bound after adding the inequalities TF Class 1 (TF1), TF Class 2 (TF2) and TF Class 3 (TF3) to the model, respectively. The next column, TF2 + TF3, reports the bound obtained by the LP relaxation of the FCLOP model after adding the two sets of inequalities TF2 and TF3. The reason for reporting this column is to compare the quality of linear relaxation of the model with the two previous cases that we only add TF2 (or TF3) to the basic FCLOP model. The next column, TF2+Var reports the LP bound obtained after adding the set of inequalities TF2, (3.27) and (3.28) to the FCLOP model.

		48		CHAPTER 3. VALID INEQUALITIES CHAPTER 3. VALID INEQUALITIES
		N-atp48-48-20 N-atp48-48-25 N-atp48-48-30 N-be75eec_50_40 224006 223672 223672 230885 148 46292.3 133 237.08 205 35265.6 37 296.35 264 5863.47 0 355.62 Table 3.6: Numerical results of solving FCLOP + TotalX + 223672 148 205 264 N-be75eec_50_48 236464 236345 236345 236345 236345 TF Class 2 N-be75eec_50_49 236464 236464 236464 236464 236464	Optimal Optimal Optimal 223672 236345 236464
		N-atp48-48-35 N-be75eec_50_50 236464 236464 236464 236464 324 22453.3 33 400.65	324 236464	Optimal 236464
	N-atp48-48-40 N-atp48-48-45 N-econ36_36_15 3.3.7 Bound quality comparison 387 447 403222 400547 400547 401589 78.5 0 436.16 71.65 0 466.62 N-econ36_36_20 470033 469584 469584 473682	387 447 400547 469584	Optimal Optimal 400547 469584
		N-atp48-48-47 N-econ36_36_25	472 507568 506268 506268 514152 49.51 0 477.7	472 506268	Optimal 506268
		N-atp48-48-48 N-econ36_36_30	483 535017 534406 534406 544978 8.40 0 483	483 534406	Optimal 534406
		N-be75eec-50-20 130506 N-econ36_36_34 546766 545576 545576 545576 24.09 0 132966	130506 545576	Optimal 545576
		N-be75eec-50-30 191061 N-econ36_36_35 547984 547556 547556 547556 13 0 191168	191061 547556	Optimal 547556
		N-be75eec-50-40 223672 N-econ36_36_36 548588 548588 548588 548588 14.23 0 224006	223672 548588	Optimal 548588
		N-be75eec-50-50 236464 N-p50-20_50_10 13282.6 4451.88 4001.91 4491.63 5.57 0 236464	236464 4001.91	Optimal 3961.62
		N-econ36-36-15 N-p50-20_50_15	400547 19923.9 9487.72 8083.14 9750.19 8.06 0 403222	400547 8083.14	Optimal 8053.35
		N-econ36-36-20 N-p50-20_50_20	469584 26565.2 15428.6 12542.3 16498.8 3.04 0 470033	469584 12542.3	Optimal 12501.8
		N-econ36-36-25 N-p50-20_50_25	506268 33206.5 21645.4 17370.7 24303.5 5.42 0 507568	506232 17370.7	Optimal 17149.7
		N-econ36-36-30 N-p50-20_50_30	534406 39847.8 26990.6 22619.6 29889.6 3.81 0 535017	534406 22619.6	Optimal 22374.5
		N-econ36-36-35 N-p50-20_50_35	547542 44672.5 32557.2 28370.7 36807.3 6.18 0 547984	547501 28370.7	Optimal 28192.1
		N-econ36-36-36 N-p50-20_50_40	548574 45864.2 37747.7 3.34	0 34634	548588 45330.9	548574 34634	OptimalTol 34558.5
		N-p50-20-50-10 N-p50-20_50_45	3342 47055.8 42673.6 41379.4 173259 1530	13282.6 55601	2311* 41379.4	Optimal 41376.8
		N-p50-20-50-15 N-p50-20_50_48	6296 47771.1 45820.5 401847	1045 45518	19923.9 45518	5106* 45518	FailFeas 45518
		N-p50-20-50-20 N-p50-20_50_49	10049 47985.7 46959.7 46856.3 46856.3 381111 659 26565.2	7397* 46856.3	TimeLimit 46856.3
		N-p50-20-50-25 N-p50-20_50_50	14746 48155.7 48155.7 48155.7 48155.7 374291 580 33206.5	13697* 48155.7	TimeLimit 48155.7
		N-p50-20-50-30 N-pal19_19_5	20144 45	345978 10	395 10	39847.8 10	17052* 10	TimeLimit 10
	Fname	N-p50-20-50-35 FCLOP N-pal19_19_10	25706 TF1 90	368863 TF2 45	525 TF3 45	44672.5 TF2+TF3 TF2+Var 23298* 45 45	TimeLimit 45
	N-p50-20-50-40 N-atp24_24_5 41.04 N-pal19_19_15	32584 21.08 114	374226 19.17 90	585 21.26 80	45864.2 19.17 105	31337* 18.11 80	TimeLimit 80
	N-p50-20-50-45 N-atp24_24_10 82.08 N-pal19_19_17	39147 65.79 114	334478 53.93 102	913 68.1 96.33	47055.8 53.93 96	38099* 53 96	FailFeas 96.33
	N-p50-20-50-49 N-atp24_24_15 123.12 N-pal19_19_18	44932 101.36 114	138277 94.43 108	986 107.65 105	47985.7 94.43 105	42450* 94 105	FailFeas 105
	N-p50-20-50-50 N-atp24_24_20 153.16 N-pal19_19_19	47518 140 114	104270 140 114	6380 157 114	48155.7 140 114	46779* 140 114	FailFeas 114
	N-pal19-19-5 N-atp24_24_22 161.1 N-pal43_43_10	10 157 210	0.62 157 45	0 157 45	45 157 45	10 157 45	Optimal 45
	N-pal19-19-10 N-atp24_24_23 168.25 N-pal43_43_15	36 165 315	203.73 165 105	1612 165 105	90 165 105	36 165 105	Optimal 105
	N-pal19-19-15 N-atp24_24_24 172 172 N-pal43_43_20	72 172 420	5685.59 172 190	64098 172 190	114 172 190	72 190	Optimal 190
	N-pal19-19-18 N-atp48_48_10 118.54 N-pal43_43_25	98 71.26 525	2244.66 58.20 300	52019 72.2 275	114 58.2 300	98 54.9 275	Optimal 275
	N-pal19-19-19 N-atp48_48_15 177.81 N-pal43_43_30	107 137.81 602	398.20 104.36 420	35861 142.33 355	114 104.36 435	107 99.65 355	Optimal 355
	N-pal43-43-10 N-atp48_48_20 237.08 N-pal43_43_35	40 201.57 602	95272 155.21 490	2041 222.17 443.33	210 155.21 595	40 * 150.43 443.333	FailFeas 443.33
	Fname N-atp48_48_25 N-pal43-43-15 Obj.Val. 296.35 N-pal43_43_40 N-atp24-24-5 18 N-pal43-43-20 N-atp48_48_30 355.62 N-pal43_43_41 N-atp24-24-10 53 N-pal43-43-25 N-atp48_48_35 400.65 N-pal43_43_42 N-atp24-24-15 94 N-pal43-43-30 N-atp48_48_40 436.16 N-pal43_43_43 N-atp24-24-20 140 N-atp24-24-23 165 N-atp24-24-24 172 N-atp48-48-10 53 N-atp48-48-15 97 N-be75eec_50_30 191168 191061 191061 195826 Time #Nodes LP bound Optimal* 82 111463 2119 315 253.41 209.3 288.24 209.3 602 560 540 780 1.23 3 41.04 18 137 148396 1719 420 299.82 265.86 334.28 265.86 602 574 560.33 560 18.01 3 82.08 53 207 296861 2605 525 344.62 324.64 382.09 324.64 602 588 581 581 11.65 0 123.12 94 281 220975 2590 602 391.34 387 449 387 602 602 602 602 2.31 0 153.16 140 0.90 0 168.25 165 0.57 0 172 172 8727.7 42 118.54 53 24993.7 87 177.81 97 191061 N-be75eec_50_20 132966 130506 130506 132979 130506 N-pal43-43-43 535 14477 6371 602 N-atp48_48_48 483 483 483 483 483 N-pal43-43-42 511 90379.1 2693 602 N-atp48_48_47 477.7 472 472 472 472 N-pal43-43-40 473 181788 2629 602 N-atp48_48_46 471 459 459 459 459 N-pal43-43-35 371 248244 2546 602 N-atp48_48_45 466.62 447 447 525 447 Table 3.7: numerical experiment-Integrality gap comparison. 80 * 205.55 540 Status 139 * 264 560 Optimal 199 * 324 581 Optimal 276 * 387 602 Optimal 191061 Optimal 130506 Optimal 535 * 483 Optimal 500 * 472 Optimal 459 * 459 Optimal 361 * 447	FailFeas 540 FailFeas 560.33 FailFeas 581 FailFeas 602 FailFeas FailFeas FailFeas FailFeas

One observes that triangle-free inequalities TF2 are producing tighter bound compared to the TF1 and TF3. When we add the inequalities TF2 together with (3.27) and (3.28) we improve the LP bound for some difficult instances e.g. N-p50-20_50 with various p values.

  .27)

	y i = p,	(4.28)
	i∈Vn	
	is a minimal equation system for F CLOP (G n , p).	

Proof As in Theorem 1 it easy to see that (4.27)-(4.28) are valid for the F CLOP polytope and that are linearly independent. It suffices to show that any equation

  Consider the subset S k = (S \ {k}) ∪ {1} and let π k be any LO on S k .

	From (4.29), we get

n. (4.44) Now let S be any subset of V 1 n-1 with |S|= p. Let π S be any LO on S.

  Since from case (i) inequality (4.46) define a facet for F CLOP (G l n-1 , p), then inequality (4.50) may be obtained as a linear combination of equalities (4.2), (4.3) and (4.46), all with respect to G l n-1 and p. Consequently (4.50) is obtained as the sum of the following equalities and inequality:
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		.50)

  The inequality y 1 ≤ 1 does not define facet for the F CLOP (G n , p) with p ≤ n -2 since it is implied by x 12 + x 21 ≤ y 1 , x 12 + x 21 ≤ y 2 and x 12 + x 21 ≥ y 1 + y 2 -1and that the face define by y 1 = 1 is completely contained in the face defined by x 12 + x 21 ≤ y 1 . As a consequence, y i ≤ 1, ∀i ∈ V n is not defining facets for the FCLOP polytope when p ≤ n-2.

	86) By substituting (4.86) in (4.84) and combining the resulting equation in (4.85) we obtain (4.84). 69 Remark 4 4.2. FACETS 4.2.2 Triangle-free inequalities

Theorem 5 Inequalities (4.15) define facets for the FCLOP(G n , p), for p = n -1 and p = n -2 with p ≥ 3.

  Combining this equality with the value of φ 2 in (4.122) we obtainǫ l = φ kα 1kα 23α 2l + α 21 + α 32 . Define S ′ = V n \ {2, 3}. Let π S ′ be any LO on S ′ . Let S ′′ = V n \{2, k} and π S ′′ be any LO on S ′′ with π S ′′ (1) = 3 and π S ′′ (2) = 1.It is easy to check that both incidence vectors of π S ′ and π S ′′ are in F and hence in F ′ too. This imply thatφ kα 2k = φ 3 + α 31Combining this equality with the value of φ 3 in (4.123) we obtain ǫ l = φ kα 2kα 31α 3l + α 13 + α 32 .

	• Now if we replace ǫ l in (4.132) by its value in the above equality
	we obtain	
	µ 2 + µ 3 = α 32 .	(4.135)
	Since (4.112) is the sum of the equalities (4.113)-(4.118) with a careful
	counting one may see that	
	Now if we replace ǫ l in (4.131) by its value in the above equality
	we obtain	
	µ 1 + µ 2 = α 21 .	(4.134)

3}. Let π S ′ be any LO on S ′ . Let S ′′ = V n \{1, k} and π S ′′ be any LO on S ′′ with π S ′′ (1) = 2 and π S ′′ (2) = 3. It is easy to check that both incidence vectors of π S ′ and π S ′′ are in F and hence in F ′ too. This imply that

φ kα 1k = φ 3 + α 23 Recall from (4.123) that φ 3 = α 3lα 13α 32 + ǫ l . Therefore ǫ l = φ kα 1kα 23α 3l + α 13 + α 32 . If

we replace in (4.130) we obtain µ 1 + µ 3 = σ + α 32α 23 + α 13 . But recall from (4.119) we have α 23α 32 = σ, consequently µ 1 + µ 3 = α 13 .

(4.133)

• Define S ′ = V n \ {1, 2}. Let π S ′ be any LO on S ′ . Let S ′′ = V n \ {1,

k} and π S ′′ be any LO on S ′′ with π S ′′ (1) = 2 and π S ′′ (2) = 3. It is easy to check that both incidence vectors of π S ′ and π S ′′ are in F and hence in F ′ too. This imply that φ kα 1k = φ 2 + α 23 .

Table 4

 4 By doing the same, we have shown for some other valid inequalities that they are not defining facet for the FCLOP polytope. Table4.2 reports the numerical results to show that some of the proposed classes of valid inequalities are not defining facets for the FCLOP polytope.

.1: Matrix B contains the feasible solutions such that y 1 = 1 for all of them 4.3. RELATED STUDIES 81

Table ( 4

 ( .2) reports rank of obtained B matrices for different n and p values for different inequalities. tested in the same manner. The list of valid inequalities that have been tested are in the following:

Table 4 .

 4 2: Rank of B matrices for different inequalities and different p valuesIn Table4.2, the first column refers to the set of inequalities. Second column, #N ode reports n, the number of nodes, and the third column refers to p, the cardinality number. The column dimension reports dimension of the FCLOP polytope corresponds to the aforementioned n and p (see Corollary 1). Finally the last column, rank(B), reports rank of the priory defined B matrix.

			Cardinality dimension rank(B)
	Const. 1	5 6	4 4	14 29	9 23
	Const. 2	5	3	19	17
	Const. 3	5	3	19	17

Table 5

 5 Table5.2 reports the numerical results of solving "FCLOP-LR-B". The same as before, bundle code of Frangioni is used to solve the dual problem. In "FCLOP-LR-B", the set of triangle-free inequalities are relaxed and added to the objective function multiplied by Lagrangian multipliers to penalize the objective function in the case of violation.

	.1: numerical experiment -"FCLOP-LR-A" -Bundle method

  also presents a relax-and-cut algorithm to solve linear ordering problem.

	Given the FCLOP as follows:	
	max	w ij x ij	(7.23)
	i∈Vn j∈Vn,j =i		

s.t. x ij + x ji ≤ y i ∀i, j ∈ V n , i < j (7.
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M. Table 6.1: Numerical experiment for the pure relaxation based cutting plane algorithm 6.2.2 Extended pure Relaxation Based Cutting Plane Algorithm Table 6.2 shows the numerical results concerning Relaxed Cutting Plane algorithm. The first column Bound reports the best upper bound that algorithm has found for the instance. In several instances i.e. N-atp48-10, N-atp48-15, N-atp48-20 and ..., the upper bound reported in this column is equal to the optimal solution value. In such cases, the gap reported in the second column Gap(%) is equal to zero. in other cases, the second column reports percentage of the relative gap. One observes that unless the two sets of instances N-p50-20 and N-pal43 that the solution procedure has been terminated due to the memory issue, in all the other cases, the relative gap is quite promising (less than or equal to 0.02%).

The next column, Time, reports the computational time required to solve the model. One observes that comparing to the computational time required for solving the cutting plane algorithm (reported in Table 6.1) in almost all the cases, solver needs relatively less time to solve the problem.

The column U.Cuts(#) reports the number of cuts that are generated and added to the model in the course of cutting plane algorithm.

The column %Eff.Cuts shows the ratio of number of user cuts over the number of all the cuts available in the FCLOP model.

Finally, the last column B-B Nodes reports the number of Branch-and-Bound tree nodes that have been checked until proving the optimality.

Remind that unless for two sets of instances N-p50-20 and N-pal43 that the solver has ran out of memory, in all the other instances the solution process has been terminated in optimality (Best dual bound reported in this table is the optimal solution of the relaxed problem). In this model, the cutting plane algorithm will call CPLEX to identify the irreducible infeasible subsystem (IIS) of the violated triangle-free inequalities. Once the IIS is known, the violated cuts in it will be added to the objective function of the master problem in a lagrangian form. Bundle method is applied to solve the dual subproblem. In this algorithm, we have two levels of iterations: First is the cutting plane algorithm that is to identify the violate cuts. Second level is the iterations to solve the sub-gradient problem that is placed inside each iteration of the cutting plane algorithm. As always, the first column in Table 6.3 contains name of the examined instances. The second column elapsed Time reports the computational time required to solve the instance. The third column Rel.Gap(%) reports the relative gap of the solution founded in this algorithm. The next column nr. Iter. reports the number of iterations to solve the sub-gradient algorithm in the last iteration of the cutting plane algorithm right before pruning the optimality (finding an empty IIS set). The next column, LP Rel. Gap(%) reports the LP relative gap to make it easy to be compared with the relative gap resulted by this algorithm and the last column reports the termination condition of the solution process.

One observes that in several very difficult instances e.g. N-p50-20 and N-pal43 for different cardinality number, cutting plane algorithm hybrid with lagrangian relaxation has provided a relatively high quality dual bound. Time limit to solve the bundle algorithm is 10800 seconds. 

Comparing the three algorithms

Table Table 6.4 is served to compare the numerical results of relaxation based cutting plane algorithm, extended relaxation based cutting plane algorithm and the relaxation based cutting plane algorithm hybrid with the Lagrangian relaxation algorithm.

The first column as always contains the name of instances. The second column RBA Time reports the calculation time that pure re-
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143 laxation based algorithm(RBA) required for solving the instances of the FCLOP. The third column ERBA Bound reports the best bound provided by the extended pure relaxation based algorithm (ERBA) while the next column contains the LP bound of the instances for making it easy to compar the bounds. The next column RBA+LR Time reports the calculation time required for the relaxation based algorithm hybrid with Lagrangian relaxation algorithm and the last column RBA+LR Relative Gap(%) shows the percentage of the relative gap of solutions resulted from the relaxation based algorithm hybrid with Lagrangian relaxation algorithm.

One observes that relaxation based separation algorithm is valuable mostly whenever the cardinality number is far from the number of node. The separation algorithm becomes heavy as soon as the cardinality number get close in to the number of nodes (e.g. N-atp48 and N-p50-20-50 ). 

Facets and Numerical Efficiency

Our investigation in polyhedral studies presented in chapter 3, shows that the inequalities

are defining facets for the cases when p = n and p = n -1. We have also shown that in all the other cases, they improve the LP bound. The set of (??) facet defining valid inequalities are new and can be replaced with the classical triangle-free inequalities. Adding these new facet defining valid inequalities to the FCLOP model dramatically improve the integrality gap. Numerical results of comparing the LP relaxation of the instances before and after adding (??) to the model are presented in Table 3.7.

In chapter 7, we are proposing two Lagrangian relaxations as well as a relaxand-cut algorithm to improve the dual bound and compare the results with the old tables presented before, in chapter 3.

Lagrangian relaxation

Consider the FCLOP model as follows: Another very interesting result show that for the instance N-p50-20 when p = n = 50 we could again improve the best dual bound known in the literature to 47504. This LOP problem is one of the very difficult instances available in the literature which its optimal solution is not known yet. The best known dual bound in the literature for this problem is 48155. In Table 7.2, despite difficulties to tackle very hard to solve instances e.g. N-p50-20 and N-pal43, still we had very good success to solve almost all the other of the testbed in only 2 iterations. Moreover, except only 2 instances N-econ-36 when p = 25 and also when p = 30, in all the other instances we have zero duality gap. 
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Numerical results

Numerical experiments in Table 7.3 shows that the behavior of our relaxand-cut algorithm is highly depending on input data. In Table 7.3, we have compared the numerical experiences of relax-and cut algorithm with LR1. In LR1, all the facet defining triangle-free inequalities are directly dualized and then the dual problem is solved using bundle algorithm. As it was expected, we did not change the best bound obtained in relax and bound method comparing the LR1, they are all similar. However the elapsed computational time in these two experiments are not similar for all the instances, i.e. the elapsed computational time of relax-and-cut algorithm for N-atp48 when p = 10 is less than LR1, when p = 15 they are not too much deferent and for the case when p = 20, it is a little bit greater than LR1. CHAPTER 8

RELAX-AND-CUT ALGORITHM

Summary, conclusions and outlook to future work

Summary and conclusions

In this thesis we introduced a new variant of the classical Linear Ordering Problem (LOP) where the set of nodes to be linearly ordered are exogenously fixed to p. We referred to this new variant as Fixed Cardinality Linear Ordering Problem(FCLOP). A particular case of the FCLOP where p = n becomes LOP and it is well-known that LOP belongs to the class of NP-Hard problems in combinatorial optimization problems (COP).

The problem itself generalizes the LOP and of course would share the same application that are imagined for the LOP. Yet, as also explained in the introduction section, the FCLOP (perhaps with some minor side constraints) is an inherent part of many network location problems (in particular those p-center and p-median problems) in transportation and telecommunications. When developing primal decomposition algorithms, such as Benders decomposition, for such kind of network design problems, often the master problem is composed of the constraints of the FCLOP (perhaps plus some other side constraints) while the flow transfer part moves to the sub-problem.

As the major concern in such primal decomposition algorithms -Benders in this case-is the efficiency of MP resolution, characterizing polyhedral structure and developing efficient solution methods -exploiting such polyhedral information-for the FCLOP becomes even more important.

In this thesis we have started by introducing the problem and proposing an integer programming formulation for the problem at hand. The numerical