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Résumé

Le problème d’ordre linéaire (LOP) a reçu beaucoup d’attention dans dif-
férents domaines d’application, allant de l’archéologie à l’ordonnancement
en passant par l’économie et même de la psychologie mathématique. Ce
problème est aussi connu pour être parmi les problèmes NP-difficiles. Nous
considérons dans cette thèse une variante de (LOP) sous contrainte de car-
dinalité. Nous cherchons donc un ordre linéaire d’un sous-ensemble de som-
mets du graphe de préférences de cardinalité fixée et de poids maximum. Ce
problème, appelé (FCLOP) pour ’fixed-cardinality linear ordering problem’,
n’a pas été étudié en tant que tel dans la littérature scientifique même si
plusieurs applications dans les domaines de macro-économie, de classification
dominante ou de transport maritime existent concrètement. On retrouve en
fait ses caractéristiques dans les modèles étendus de sous-graphes acycliques.
Le problème d’ordre linéaire est déjà connu comme un problème NP-difficile
et il a donné lieu à de nombreuses études, tant théoriques sur la struc-
ture polyèdrale de l’ensemble des solutions réalisables en variables 0-1 que
numériques grâce à des techniques de relaxation et de séparation progres-
sive. Cependant on voit qu’il existe de nombreux cas dans la littérature, dans
lesquelles des solveurs de Programmation Linéaire en nombres entiers comme
CPLEX peuvent en résoudre certaines instances en moins de 10 secondes,
mais une fois que la cardinalité est limitée, ces mêmes instances deviennent
très difficiles à résoudre. Sur les aspects polyèdraux, nous avons étudié le
polytope de FCLOP, défini plusieurs classes d’inégalités valides et identifié
la dimension ainsi que certaines inégalités qui définissent des facettes pour
le polytope de FCLOP. Nous avons introduit un algorithme Relax-and-Cut
basé sur ces résultats pour résoudre les instances du problème. Dans cette
étude, nous nous sommes également concentrés sur la relaxation Lagrangi-
enne pour résoudre ces cas difficiles. Nous avons étudié différentes stratégies
de relaxation et nous avons comparé les bornes duales par rapport à la con-
solidation obtenue à partir de chaque stratégie de relâcher les contraintes
afin de détecter le sous-ensemble des contraintes le plus approprié. Les ré-
sultats numériques montrent que nous pouvons trouver des bornes duales
de très haute qualité. Nous avons également mis en place une méthode de
décomposition Lagrangienne. Dans ce but, nous avons décomposé le modèle
de FCLOP en trois sous-problèmes (au lieu de seulement deux) associés aux
contraintes de ’tournoi’, de ’graphes sans circuits’ et de ’cardinalité’. Les
résultats numériques montrent une amélioration significative de la qualité
des bornes duales pour plusieurs cas. Nous avons aussi mis en oeuvre une
méthode de plans sécants (cutting plane algorithm) basée sur la relaxation
pure des contraintes de circuits. Dans cette méthode, on a relâché une partie
des contraintes et on les a ajoutées au modèle au cas où il y a des de/des
violations. Les résultats numériques montrent des performances promet-
teuses quant à la réduction du temps de calcul et à la résolution d’instances
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difficiles hors d’atteinte des solveurs classiques en PLNE.

mots-clefs

Optimisation, recherche opérationnelle, NP-difficile, programmation math-
ématiques, programmation nombres entiers, méthodes de résolution exacte,
polyèdres, dimension de polytope, facette, relaxation Lagrange, décomposi-
tion Lagrange, décomposition Benders, méthode de relax-and-cut, méthode
de plans sécants, méthode de Bundle, borne duale
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Abstract

Linear Ordering Problem (LOP) has receive significant attention in differ-
ent areas of application, ranging from transportation and scheduling to eco-
nomics and even archeology and mathematical psychology. It is classified
as a NP-hard problem. Assume a complete weighted directed graph on Vn,
|Vn|= n. A permutation of the elements of this finite set of vertices is a linear
order. Now let p be a given fixed integer number, 0 ≤ p ≤ n. The p-Fixed
Cardinality Linear Ordering Problem (FCLOP) is looking for a subset of
vertices containing p nodes and a linear order on the nodes in S.
Graphically, there exists exactly one directed arc between every pair of ver-
tices in an LOP feasible solution, which is also a complete cycle-free digraph
and the objective is to maximize the sum of the weights of all the arcs in a
feasible solution. In the FCLOP, we are looking for a subset S ⊆ Vn such
that |S|= p and an LOP on these S nodes. Hence the objective is to find
the best subset of the nodes and an LOP over these p nodes that maximize
the sum of the weights of all the arcs in the solution. Graphically, a feasible
solution of the FCLOP is a complete cycle-free digraph on S plus a set of
n− p vertices that are not connected to any of the other vertices.

There are several studies available in the literature focused on polyhedral
aspects of the linear ordering problem as well as various exact and heuristic
solution methods.
The fixed cardinality linear ordering problem is presented for the first time
in this PhD study, so as far as we know, there is no other study in the
literature that has studied this problem.

The linear ordering problem is already known as a NP-hard problem. How-
ever one sees that there exist many instances in the literature that can be
solved by CPLEX in less than 10 seconds (when p = n), but once the cardi-
nality number is limited to p (p < n), the instance is not anymore solvable
due to the memory issue.

We have studied the polytope corresponding to the FCLOP for different
cardinality values. We have identified dimension of the polytope, proposed
several classes of valid inequalities and showed that among these sets of
valid inequalities, some of them are defining facets for the FCLOP polytope
for different cardinality values. We have then introduced a Relax-and-Cut
algorithm based on these results to solve instances of the FCLOP.

To solve the instances of the problem, in the beginning, we have applied
the Lagrangian relaxation algorithm. We have studied different relaxation
strategies and compared the dual bound obtained from each case to detect
the most suitable subproblem. Numerical results show that some of the
relaxation strategies result better dual bound and some other contribute
more in reducing the computational time and provide a relatively good dual
bound in a shorter time.

We have also implemented a Lagrangian decomposition algorithm, decom-
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posing the FCLOP model to three subproblems (instead of only two sub-
problems). The interest of decomposing the FCLOP model to three sub-
problems comes mostly from the nature of the three subproblems, which
are relatively quite easier to solve compared to the initial FCLOP model.
Numerical results show a significant improvement in the quality of dual
bounds for several instances. We could also obtain relatively quite better
dual bounds in a shorter time comparing to the other relaxation strategies.
We have proposed a cutting plane algorithm based on the pure relaxation
strategy. In this algorithm, we firstly relax a subset of constraints that due
to the problem structure, a very few number of them are active. Then in
the course of the branch-and-bound tree we verify if there exist any violated
constraint among the relaxed constraints or. Then the characterized vio-
lated constraints will be globally added to the model. Consequently in the
worst case, the algorithm will end after a finite (and polynomial) number of
iterations. Numerical instances confirm the efficiency of this exact solution
algorithm.

Keywords

Optimization, Operations research, NP-hard, mathematical programming,
Integer programming, Exact solution method, polyhedral, polytope, dimen-
sion, facet defining inequalities, Lagrangian relaxation, Lagrangian decom-
position, Benders decomposition, relax-and-cut, cutting plane algorithm,
Bundle method, dual bound
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CHAPTER 1

Introduction

The Linear Ordering Problem(LOP) is a well known problem in combina-
torial optimization which is classified as a NP-hard problem by Garey and
Johnson (1979).

The linear ordering problem has received many attention in various applica-
tions like economics, tournament theory, voting theory, archeology, schedul-
ing, triangulation problem of input-output matrices and even in mathemat-
ical psychology.

By definition, every permutation of the elements of a finite set is a linear
order. The Linear Ordering Problem (LOP) consists in finding a linear or-
der such that the sum of the preferences between each element and each
’follower’ in the order is maximized. In this PhD study, we are presenting
a new variation of the linear ordering problem for the case when the num-
ber of nodes which are appearing in a feasible solution is limited to p. The
cardinality number p can vary between zero and n, so we have 0 ≤ p ≤ n.
Hereafter, the new variation of linear ordering problem with fixed (limited)
cardinality number will be referred by Fixed Cardinality Linear Ordering
Problem (FCLOP).

To our present knowledge, it is the first investigation of this problem with
respect to combinatorial optimization, polyhedral representation and algo-
rithmic issues.

In this PhD study, we introduce in detail the new extension of the linear
ordering problem that will be refereed as the p-fixed cardinality linear order-
ing problem (FCLOP). Then an integer programming formulation for the
FCLOP will be proposed and will be improved by introducing several valid
inequalities for the polytope characterized by the FCLOP linear relaxation

11



12 CHAPTER 1. INTRODUCTION

(introduced in chapter 2). We have defined the polytope corresponding to
the FCLOP, characterized the dimension of the polytope for different p val-
ues and identified several facet defining inequalities for it.
We have also introduced several exact solution algorithms to solve different
instances of the problem. Since the FCLOP is introduced for the first time
in this PhD thesis, there exist no study and therefore no results on it. As a
consequence, we have used CPLEX (ILOG, 2012) the widely used LP soft-
ware, to validate our numerical experiments.

In this chapter, we review the state of the art on linear ordering problem,
description of the problem and solution methods.

In chapter 2, we discuss applications and motivations of the study on p-fixed
cardinality linear ordering problem. We also introduce an initial integer pro-
gramming mathematical formulation for the FCLOP that will be improved
later.
In chapter 3, the polytope corresponding to the FCLOP model introduced
formerly, is defined. Later, several classes of valid inequalities with respect
to the defined polytope are proposed to improve the mathematical formula-
tion of the problem and reduce the integrality gap.
We also introduce an algorithm to find non-valid inequalities with respect
to the known polytope, that remove feasible solutions having the same ob-
jective values.

Chapter 4 is dedicated to the polyhedral study, identifying first the dimen-
sion of the FCLOP polytope for different p values. We discuss then the
facets of the FCLOP and identify some classes of facet defining inequalities.

Chapter 5 serves to introduce some solution algorithms to solve the FCLOP.
In this chapter, we propose several relaxation strategies based on Lagrangian
relaxation. We also propose a Lagrangian decomposition algorithms that
decompose the problem into three subproblems. The advantage of such a
decomposition is to have relatively easy subproblems comparing to the ini-
tial FCLOP and the Lagrangian relaxation algorithms as well. Numerical
experiments concerning the proposed solution algorithms are presented at
the end of the chapter 5.

In chapter 6, a relaxation algorithm enriched by a cut generator algorithm
is proposed to solve the problem. In this chapter, we try to apply particular
properties of the FCLOP to introduce an efficient exact solution algorithm.
We will show that whenever p is smaller than n, from among the classical
triangle-free inequalities there are a few of them active in a feasible solu-
tion. We propose a solution algorithm based on relaxing the set of classical
triangle-free inequalities and apply a feasibility cut generation algorithm to
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generate violated cuts and add them to the model, if any. We will show that
the algorithm will find the optimal solution in a finite number of iterations.
We also introduce an extended relaxation base algorithm using the same
idea. Numerical experiments reported at the end of the chapter 6 confirms
the efficiency of these algorithms for the cases when p << n.

In chapter 7, a relax-and-cut algorithm is proposed inducing part of the valid
inequalities proposed earlier in the model. A comparison between a direct
Lagrangian relaxation algorithm and the proposed relax-and-cut algorithm
is presented and is followed by the numerical results.

Chapter 8 is dedicated to summarize the work, conclude the results and
propose some ideas on future researches.

1.1 Literature review - State of the art of the LOP

The literature review is organized as follows. The state-of-the-arts in Lin-
ear Ordering Problem (LOP), polyhedral studies and solution methods are
reviewed in different subsections. As Fixed Cardinality Linear Ordering
Problem (FCLOP) will be introduced in this thesis, therefore, no previous
literature is available to report. The present review does not pretend to be
exhaustive with respect to theory and application of the LOP, but we focus
on the results and methods which may be of interest to extend to the p-fixed
cardinality case (see Martí and Reinelt (2011) for a complete textbook on
the LOP).

1.1.1 Linear ordering problem and applications

Martí and Reinelt (2011) provides a comprehensive and categorized intro-
duction to different variants, solution methods and polyhedral studies. The
interested readers are referred to Martí and Reinelt (2011) for further details.

In economics, input-output models of a multisectorial economy have long
been studied by economists to model the exchange flows (of cash, products
or activities) between the different sectors of a market or a country. The
analysis entails dividing up the economy into n sectors that produce goods
and/or services, and determines the quantities that each sector must pro-
duce to meet both internal and external demands. These quantities are
the coefficients of the so-called input-output matrix and can be supposed
positive wlog.
Triangulation of an input-output table is the process of determining a hi-
erarchical ordering of the different industries of production such that the
flow of monetary value between them is maximized. The optimal value is
proportional to the so-called linearity factor of the economy. Since the sum
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of all the entries of the matrix A less those elements on the main diagonal is
always constant, the triangulation problem is reduced to finding a permuta-
tion of the rows and columns such that the sum of the elements above the
main diagonal is maximum. Clearly, this is equivalent to the linear ordering
problem.
In practice, economists have observed that the linearity measure is not sen-
sitive to the influence of many economic sectors, giving rise to the question
of determining the subset of the most influent sectors and their respective
order. Moreover, the input-output tables are rather sparse (rows or columns
of zeroes are common) inducing many alternative optimal orders indeed dif-
ficult to detect (see Grötschel et al. (1983)). If the cardinality parameter
p defining the (FCLOP) model is not a priori fixed in that situation, the
analysis could have to compare different versions of the (FCLOP) applied
to triangulation problem for input-output matrices with different values of
p. The study of inter-compartmental models in ecology is another example
where the identification of the most influent sectors is critical (Lenzen, 2007).

Another application of the linear ordering problem is in the voting theory.
A classical question in voting theory is the search for a common order of
candidates from a set of individual orders (binary or complete) given by the
votant. Partial orders on a subset of p candidates will as well be of interest,
but which subset of p candidates. The fixed-cardinality LOP can thus be
viewed as a subproblem of a general ordering problem where one compares
different groups of a limited number of candidates.
An other important area of application for many network optimization prob-
lems is transportation and telecommunications network design. In some
transportation and telecommunications applications, we have situations such
that not only the distance/cost and the volume of flow exchange influence
the choice of facility locations, but also the mutual attractiveness of loca-
tions between each other can play a very important role. Therefore the
cost function would be a linear combination of 1) a minimization problem
which minimizes the setup and flow transfer cost, and 2) a maximization
problem which influences the choice of p facilities in such a way that the
total attractiveness associated with the choice of pairs of locations is being
maximized.
In Telecommunications and in particular in Internet Service Providers in-
dustry, there are several agreements for different situations between every
pair of ISPs. When an ISP wants to ensure Internet connectivity to its users,
it needs to come to some agreements with others. To decide how many other
ISPs should sign such an agreement (i.e. p) is a managerial decision which
takes into account some political aspects (e.g. avoiding monopoly, some po-
litical compromise etc.). In the lower level decision making, the bandwidth
of i − j connection, the technology, compatibility, historical data and past
experiences etc. are used to define pij as the attractiveness of collaboration
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between ISPi and ISPj.
In maritime transport, particularly in liner shipping, the large vessels call
at some major ports based on a published itineraries. The set of port call
sequence is known as ’string’. The containers on the vessels are discharged
and then distributed to smaller ports around the called major port. Simi-
larly, the concentrated container of smaller ports are loaded into the ship.
The major ports are selected based on draft, average turn around times etc.
It is well-known in maritime industry that the time a vessels spends at a
port is the unprofitable part of service. Vessel owners try to 1) call mini-
mum possible port along the string to avoid turnaround time, 2) minimize
the total flow transport costs, 3) determine the sequence of calls.

In most of these examples, the cardinality and ordering constraints appear
as embedded in a larger design model, quite amenable to decomposition
techniques which will induce (FCLOP) subproblems.
In Sirdey and Kerivin (2007), Sirdey and Kerivin have addressed the Process
Move Programming problem where a set of processes have to be assigned
to a set of processors, a process move consisting of a suborder of states
which must satisfy capacity constraints due to processors types. A partial
ordering problems results from the modelling which can be interpreted as
a (LOP) with no cardinality constraint at all, thus including all (FCLOP)
formulations.
Charon and Hudry (2007) provides a survey on the LOP for weighted/
unweighted tournaments. This problem consists in finding a linear order
which is at minimum distance from a (weighted or not) tournament.
In general, a tournament T in a graph G = (Vn, An) consists of arcs con-
taining for every pair of nodes i and j either arc (i, j) or arc (j, i), but not
both.

Grötschel et al. (1984), Grötschel et al. (1985a) and Grötschel et al. (1985b)
explain the fact that a closely related problem to the LOP is the maximum
acyclic subgraph problem. In fact the LOP represents a special case of the
acyclic subgraph problem (Grötschel et al., 1985a) when the input matrix
represents a complete weighted oriented graph. They also explain that the
optimal solution of the linear ordering problem is optimal also for the acyclic
subgraph problem. Moreover, they precise that the linear ordering polytope
is a face of the maximum acyclic subgraph polytope (Grötschel et al., 1985a).
Another version of the maximum acyclic subgraph problem is the minimum
feedback arc set problem. A feedback arc set in a digraph D = (Vn, An)
with arc weights cij for all i, j ∈ An, is a set F ⊆ An such that D \ F is
acyclic. Therefore, the minimum feedback arc set problem looks for F such
that the sum over all the cost of the arcs present in F is minimized Charbit
et al. (2007), Eades et al. (1993), Grötschel et al. (1984).
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Bertacco et al. (2008) introduced the so called Linear Ordering Problem
with Cumulative Costs with practical application in wireless telecommuni-
cation systems. They studied a variant of the LOP for which the overall
permutation cost can be expressed as the sum of terms αu associated with
each item u, each defined as a linear combination of the values αv of all
items v that follow u in the permutation. They prove that the problem is
indeed NP-hard and propose an ad hoc enumerative algorithm as well as a
dynamic-programming heuristic.

Buchheim et al. (2010) studied the quadratic linear ordering problem and
proposed a positive semi-definite relaxation to solve it. The quadratic linear
ordering problem represents a generalization of various optimization prob-
lems, such as bipartite crossing minimization or the betweenness problem,
which includes linear arrangement problem.

Hungerländer and Rendl (2011) present a generic study on ordering prob-
lems, either linear or quadratic ordering problem. In this study, a new
quadratic constraint formulation for the (linear or quadratic) ordering prob-
lem is introduced and the positive semi-definite relaxation technique applied
solve the problem. It is reported in this study that the proposed positive
semi-definite relaxation algorithm is also efficient on a variety of optimiza-
tion problems i.e. bipartite crossing minimization problem, minimum lin-
ear arrangement problem, the single-row facility layout problem, Multi-level
crossing minimization problem and weighted betweenness problem.

1.1.2 Polyhedral studies for the LOP

Grötschel et al. (1985a) proved that among all the classes of facet defining in-
equalities of acyclic subgraph polytope that were proposed in Grötschel et al.
(1985b), only some classes of valid inequalities such as triangle-free inequal-
ities, simple k-fence and Möbius ladder inequalities are facet-defining. As
an example, k-dicycle inequalities which are facet defining for the maximum
acyclic subgraph polytope are the groups which are not defining facet for
the linear ordering polytope. They also used those inequalities in a cutting
plane method for the triangulation of the input-output matrices (Grötschel
et al., 1984).

Reinelt (1993) also studied the linear ordering polytope and proposed a list
of facet defining inequalities for the linear ordering polytope when the num-
ber of vertices is smaller than or equal to 7.
Reinelt (1993) and Grötschel et al. (1985a) both showed that the linear or-
dering polytope of the problem with n nodes inherits all facets from the
polytope of linear ordering polytope of n− 1 nodes.
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Leung and Lee (1994) also proposed new facets by generalizing facets in-
duced by subgraphs called fences which were introduced firstly by Grötschel
et al. (1985a) and augmented fences which were introduced by McLennan
McLennan (1990).

Bolotashvili et al. (1999) presented a procedure called the rotation method
to generate new facet defining inequalities by using the information of the
facets which are already known. Applying the rotation method to the linear
ordering polytope led them to generalize several facets i.e. facets induced
by subgraphs called m-fences, Möbius ladders and Zm facets Reinelt (1985),
t-reinforced m-fences (Leung and Lee, 1994) and (m, k)fences Bolotashvili
(1986).

1.1.3 Solution methods

Solution methods for the linear ordering problem have been early proposed
and tested on many instances so that the problem is considered well solved
by exact methods (up to 100 nodes).

Hoogeveen and Velde (1995) deals with a scheduling problem where the La-
grangian relaxation is used to solve the problem. The resulting Lagrangian
relaxation sub-problem becomes a LOP which is polynomially solvable un-
der certain conditions.

Grötschel et al. (1984) proposed a new cutting plane algorithm based on the
results regarding the facet-defining inequalities of the LOP which they have
proposed in their earlier study Grötschel et al. (1985a).

Mitchell and Borchers (2000) proposed a cutting plane algorithm which uses
a primal-dual interior point method as well as the simplex method to solve
the linear ordering problem. They do a comparison between their own algo-
rithm with one that uses only the simplex method and with one that uses
only an interior point method.

Belloni and Lucena (2004) proposed two heuristics for the linear ordering
problem embedded within a Lagrangian relaxation framework. They ex-
ploited dual information obtained from Lagrangian relaxation to construct
feasible solution and then improved the solution using their heuristic. As
the number of relaxed constraint becomes prohibitive, they also applied a
relax-and-cut approach. Out of 79 instances, they proved optimality in 72
cases.
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Belloni (2001) proposed two heuristics. The first one is based on the so
called position cost (modified costs) to sequentially build a linear ordering
of the nodes. The second one directly used the LR solution.

Schiavinotto and Stützle (2004) presented a comprehensive search space
analysis of the LOLIB library instance classes. They conclude that adaptive
restart algorithms like iterated local search or memetic algorithms that iter-
atively generate new starting solutions for a local search based on previous
search experience, are promising candidates for obtaining high performing
algorithms.

Campos et al. (1999) proposed a scatter search, that could find high qual-
ity solutions for the linear ordering problem. The scatter search algorithm
proposed in this study, combines solutions in a linear order to create new
solutions and maintain a balance between quality and diversification in the
reference set.

Laguna et al. (1999) proposed a tabu search to solve the triangulation prob-
lem for input-output matrices in economy.

As well, Garcia et al. (2006) introduced a variable neighborhood search and a
hybrid method to apply a short term tabu search combined with a principal
algorithm based on variable neighborhood search.

1.2 Summary and conclusion

A literature review and the state of the art of the linear ordering problem
is presented in this chapter.
As mentioned earlier, the fixed cardinality linear ordering problem is a new
combinatorial optimization problem that can be classified as an extension of
the linear ordering problem and will be studied for the first time in this PhD
thesis. Therefore, there exist no previous study available on this subject.
However, there are several studies focused on combinatorial optimization
problems with fixed cardinality constraints. Bruglieri et al. (2006) provide
an annotated bibliography of the combinatorial optimization problems that
have be considered with the cardinality constraints.



CHAPTER 2

Modeling the Fixed Cardinality Linear Ordering Problem

An introduction on the fixed cardinality linear ordering problem is given
in this chapter. It is then followed by introducing some applications and
motivations of this study.

Given a ground set Vn = {1, 2, ..., n}. We define G = (Vn, An) to be the
complete directed graph induced by the node set Vn. Here, An = {(i, j) ∈
Vn × Vn, i 6= j}. For any function F : Vn ∪ An → R and T ⊆ Vn ∪ An, we
define

F (T ) =
∑

e∈T

F (e).

A linear order πS on S ⊆ Vn , is a bijection from {1, 2, ..., |S|} to S ⊆ Vn.
When each ordered pair (i, j) ∈ Vn×Vn is associated with a weight wij , the
weight of a given linear order πS is

w(πS) =
∑

i∈S

∑

j∈S,j 6=i

fijwij, (2.1)

where fij = 1 if π−1
S (i) < π−1

S (j), and fij = 0 otherwise.
When it is necessary and useful, we also denote πS = (a1, a2, ..., ap) the
linear order on S ⊆ Vn with |S|= p. In this notation, π−1

S (ai) = i and

w(πS) =
p∑

i=1

∑

i<j≤p

waiaj
.

Given a subset S ⊆ Vn, let ΠS denotes the set of permutations of the
elements of S.
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Given a scalar p, the Fixed Cardinality Linear Ordering Problem (FCLOP)
seeks a linear ordering π∗

S∗ where,

w(π∗
S∗) = maxS⊆V,|S|=p{w(π∗

S)}, (2.2)

and

w(π∗
S) = maxπS∈ΠS

{w(πS)}. (2.3)

2.1 Definitions and notations

Given a linear order πS , let GπS
= (S, A(πS)) be the graph having S as

the node set and A(πS) the set of arcs such that for all u, v ∈ S, we have
(u, v) ∈ A(πS) if and only if π−1

S (u) < π−1
S (v).

Let G[S] be the complete directed graph induced by S.
Among all the possible S ⊆ V , such that |S|= p, the FCLOP may be seen
as the problem of determining the set S and the maximum weighted acyclic
tournament (a LOP) in G[S].

1 2 3 4 5

w41

w45

w42

w21

w25

w15

Figure 2.1: An example of GπS
with S = {1, 2, 4, 5} and πS = (4, 2, 1, 5).

Given a linear order πS, its incidence vector (xπS , yπS ) is defined as follows:
xπS

ij = 1 if π−1
S (i) < π−1

S (j) and {i, j} ⊆ S; xπS
ij = 0 if π−1

S (i) > π−1
S (j) or

{i, j} 6⊆ S; yπS
i = 1 if i ∈ S and yπS

i = 0 if i 6∈ S. The Fixed cardinality
linear ordering polytope is the convex hull of the incidence vectors of the
linear order πS, ∀S ⊆ Vn, |S|= p.
That is

FCLOP (Gn, p) = conv{(xπS , yπS ) : S ⊂ Vn, |S|= p, πS ∈ ΠS}.

Given a linear order πS for an arbitrary S ⊆ Vn , we denote by δ+
πS

(i), ∀i ∈ S

the set of arcs (i, j) with π−1
S (i) < π−1

S (j).
A Cut is a set of edges when removed, or increases the number of connected
components of the underlying graph).
Let G = (V, A) be any directed graph. For i ∈ V , the set of arcs of G with
tail (head) i is represented by δ+

G(i) (δ−
G(i)), and let δG(i) = δ+

G(i) ∪ δ−
G(i).

As well, for a given subset W ⊂ V , δ+
G(W ) denotes the set of arcs (u, v) ∈ A,

with u ∈W and v ∈ V \W . Also we denote by δ−
G(W ) the set of arcs (u, v)
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with v ∈ W and u ∈ V \W . When there is no confusion about the graph,
we omit the subscript G.
If each arc a of G is associated with a weight w(a), then the weight of the
cut δ+(W ) is

w(δ+(W )) =
∑

a∈δ+(W )

w(a).

2.2 Motivation

Input-output models of a multisectorial economy have long been studied
by economists to model the exchange flows (of cash, products or activities)
between the different sectors of a market or a country. The analysis entails
dividing up the economy into n sectors that produce goods and/or services,
and determines the quantities that each sector must produce to meet both
internal and external demands. These quantities are the coefficients of the
so-called input-output matrix and can be supposed positive wlog.

Triangulation of an input-output table is the process of determining a hi-
erarchical ordering of the different industries of production such that the
flow of monetary value between them is maximized. The optimal value is
proportional to the so-called linearity factor of the economy. Since the sum
of all the entries of the matrix A less those elements on the main diagonal is
always constant, the triangulation problem is reduced to finding a permuta-
tion of the rows and columns such that the sum of the elements above the
main diagonal is maximum. Clearly, this is equivalent to the linear ordering
problem.

In practice, economists have observed that the linearity measure is not sen-
sitive to the influence of many economic sectors, giving rise to the question
of determining the subset of the most influent sectors and their respective
order. Moreover, the input-output tables are rather sparse (rows or columns
of zeroes are common) inducing many alternative optimal orders indeed diffi-
cult to detect (see Groetschel et al Grötschel et al. (1983)). If the cardinality
parameter p defining the FCLOP model is not a priori fixed in that situation,
the analysis could have to compare different versions of the FCLOP applied
to input-output matrice triangulation with different values of p. The study
of inter-comportamental models in ecology is another example where the
identification of the most influent sectors is critical (Lenzen Lenzen (2007)).

2.2.1 Voting theory and analysis of ordinal data

A classical question in voting theory is the search for a common order of
candidates from a set of individual orders (binary or complete) given by
the votant. Partial orders on a subset of p candidates will as well be of
interest, but which subset of p candidates. The FCLOP can thus be viewed



22 CHAPTER 2. MODELING THE FCLOP

as a subproblem of a general ordering problem where one compares different
groups of a limited number of candidates.

2.2.2 Transportation and communications network design

In some transportation and telecommunications applications, not only the
distance/cost and the volume of flow exchange influence the choice of facility
locations, but also the mutual attractiveness of locations between each other
can play a very important role. Therefore the cost function would be a
linear combination of 1) a minimization problem which minimizes the setup
and flow transfer cost, and 2) a maximization problem which influences the
choice of p facilities in such a way that the total attractiveness associated
with the choice of pairs of locations is being maximized.

In Telecommunications and in particular in Internet Service Providers in-
dustry, there are several agreements for different situations between every
pair of ISPs. When an ISP wants to ensure Internet connectivity to its users,
it needs to come to some agreements with others. To decide how many other
ISPs should sign such an agreement (i.e. p) is a managerial decision which
takes into account some political aspects (e.g. avoiding monopoly, some po-
litical compromise etc.). In the lower level decision making, the bandwidth
of i − j connection, the technology, compatibility, historical data and past
experiences etc. are used to define pij as the attractiveness of collaboration
between ISPi and ISPj.

In maritime transport, particularly in liner shipping, the large vessels call
at some major ports based on a published itineraries. The set of port call
sequence is known as ’string’. The containers on the vessels are discharged
and then distributed to smaller ports around the called major port. Simi-
larly, the concentrated container of smaller ports are loaded into the ship.
The major ports are selected based on draft, average turn around times etc.
It is well-known in maritime industry that the time a vessels spends at a
port is the unprofitable part of service. Vessel owners try to 1) call mini-
mum possible port along the string to avoid turnaround time, 2) minimize
the total flow transport costs, 3) determine the sequence of calls.

In most of these examples, the cardinality and ordering constraints appear
as embedded in a larger design model, quite amenable to decomposition
techniques which will induce FCLOP subproblems.

2.2.3 Resource-constrained scheduling problems

In Sirdey and Kerivin (2007), Sirdey and Kerivin have addressed the Process
Move Programming problem where a set of processes have to be assigned to
a set of processors, a process move consisting of a suborder of states which
must satisfy capacity constraints due to processors types. A partial ordering



2.3. MATHEMATICAL MODELING 23

problems results from the modelling which can be interpreted as a LOP with
no cardinality constraint at all, thus including all FCLOP formulations.

2.3 Mathematical modeling

In this section, we firstly recall the known mathematical formulation of
the linear ordering problem and continue by introducing an integer linear
programming formulation for the FCLOP. At the end of this chapter, we
also propose a quadratic programming formulation for the FCLOP.

2.3.1 Linear ordering problem

For a given linear order πS (when |S|= n), let the decision variables xij, ∀ i, j ∈
Vn, i 6= j be defined as follows:

xij =

{
1 if π−1

S (i) < π−1
S (j)

0 otherwise

An integer programming formulation of the linear ordering problem can be
proposed as follows:

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij (2.4)

s.t.

xij + xji = 1 ∀ i, j ∈ Vn, i 6= j (2.5)

xij + xjk + xki ≤ 2 ∀ i, j, k ∈ Vn, i 6= j 6= k (2.6)

xij ∈ {0, 1} ∀ i, j ∈ Vn, i 6= j (2.7)

In this formulation, constraints (2.5) ensure that i is ordered before j or(exclusive)
j is ordered before i in any feasible solution. Inequalities (2.6) when com-
bined with (2.5) avoid the existence of any directed cycle in a feasible solu-
tion.

2.3.2 Fixed cardinality linear ordering problem

Integer programming formulation

For a given linear order πS , |S|= p, let the decision variables xij and yi for
all i, j ∈ Vn, i 6= j be defined as follow:

xij =

{
1 if π−1

S (i) < π−1
S (j)

0 otherwise
and yi =

{
1 if i ∈ S

0 otherwise
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Then an integer programming formulation for the FCLOP can be proposed
as follow:

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij (2.8)

s.t.

xij + xji ≤ yi ∀i, j ∈ Vn, i < j (2.9)

xij + xji ≤ yj ∀i, j ∈ Vn, i < j (2.10)

xij + xji ≥ yi + yj − 1 ∀i, j ∈ Vn, i < j (2.11)

xij + xjk + xki ≤ 2 ∀i, j, k ∈ Vn : i 6= j 6= k (2.12)
∑

i∈Vn

yi = p (2.13)

xij , yi ∈ {0, 1} ∀ i, j ∈ Vn, i 6= j (2.14)

Inequalities (2.9) and (2.10) ensure that there exist at most one arc between
every pair of nodes i and j, only if i and j both are selected in a linear order.
Inequalities (2.11) ensure the existence of at least one arc between i and j,
when both are in a linear order. In fact (2.11) together with (2.9) and (2.10)
guarantee the existence of exactly one arc between every pair of vertices in
S.
Inequalities(2.12) ensure that there exist no triangle in a graph correspond-
ing to a feasible solution. Inequalities (2.12) are known as the classical
triangle-free inequality (Grötschel et al., 1985b) and are sufficient to elimi-
nate all the potential directed cycles including more than three arcs in every
feasible solution of the FCLOP.
In the next lemma, we will show that inequalities (2.12) together with (2.9)
- (2.11) avoid directed cycles of size greater than three.

Remark 1 Inequalities (2.12) together with (2.9) - (2.11) are sufficient to
avoid any directed cycle of size greater than three.

2.4 Summary and conclusion

In the second chapter, a brief definition of the fixed cardinality linear or-
dering problem and several applications and motivations for the study has
been proposed. Finally an integer programming formulation of the FCLOP
has been proposed that will be improved later in the following chapters.



CHAPTER 3

Integer Programming Formulation and Valid Inequalities for

the FCLOP Polytope

Let Gn, An be the complete directed graph on n vertices. Each arc (i, j) ∈ An

is associated with a variable xij and each node i ∈ Vn is associated with a
variable yi.

The following is a linear relaxation for the FCLOP:

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij (3.1)

s.t.

xij + xji ≤ yi ∀i, j ∈ Vn, i < j (3.2)

xij + xji ≤ yj ∀i, j ∈ Vn, i < j (3.3)

xij + xji ≥ yi + yj − 1 ∀i, j ∈ Vn, i < j (3.4)

xij + xjk + xki ≤ 2 ∀i, j, k ∈ Vn : i 6= j 6= k (3.5)
∑

i∈Vn

yi = p (3.6)

0 ≤ xij ∀ i, j ∈ Vn, i 6= j (3.7)

yi ≤ 1 ∀ i ∈ Vn (3.8)

Recall that FCLOP (Gn, p) is the polytope associated with the FCLOP
problem with n nodes and when the cardinality of the linear order is p. It
may be seen as the convex hull of the 0− 1 solutions satisfying (3.2) - (3.8).

Our polytope FCLOP (Gn, p) is closely related to the polytope studied by
Sirdey and Kerivin (2007). In their study the constant p is not fixed and
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they look for the convex hull of all the linear orders of any cardinality. That
is the polytope they studied called the Partial Linear Ordering Polytope
P n

P LO is the convex hull of all the 0-1 vectors satisfying inequalities (3.2)-
(3.5). Hence any valid inequality for P n

P LO is also valid for FCLOP (Gn, p).
In this chapter, we introduce several classes of strengthening valid inequal-
ities for the polytope defined by (3.2) - (3.8). We also introduce non valid
inequalities that break symmetry. This symmetry breaking inequalities are
not valid for the FCLOP polytope since they cut integer solutions to reduce
the number of integer feasible solutions having the same objective value.. In
the process of separating the symmetry breaking inequalities, the algorithm
ensures the existence of at least one integer feasible solutions from any set
of integer feasible solutions that have similar objective value.
We report the impact of the new valid inequalities in separate tables on
a selected set of instances of LOLIB1. These instances are chosen in such
a way that instances from different classes of problems in the LOLIB are
represented in our testbed. Note that the level of intractability changes
significantly from one class of instance to another in LOLIB.

3.1 Category 1: The properties of underlying graph

3.1.1 Node-Degree constraints

These valid inequalities for FCLOP (Gn, p) are obtained from the following
facts:

a) p = n − 1. In each pair of nodes, at least one of the nodes belongs to a
feasible solution (see Figure 3.1).

xij + xji = yi + yj − 1 ∀ i, j ∈ Vn, i 6= j. (3.9)

v1 v2 v3 v4 v5

Figure 3.1: An example of GπS
with n = 5, p = 4.

b) p < n − 1. In the graph associated with the linear order πS , GπS
, the

number of outgoing and incoming arcs to a vertex i is equal to p − 1 if
i ∈ S. If i 6∈ S, this number is zero (see Figure 3.2).

x(δ(i)) = (p− 1)yi ∀i ∈ Vn. (3.10)

1http://www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB/
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1

a1

2 3 4 5

Figure 3.2: An example of GπS
for p = 3, n = 5.

Lemma 1 (Node-Degree) Constraints (3.9) and (3.10) are valid for the FCLOP (Gn, p)
polytope.

Proof In order to prove that (3.9) and (3.10) are valid for the FCLOP (Gn, p)
polytope, we need to consider two cases:

Case 1) p = n−1: In this case, in any feasible solution of the FCLOP, there
exists at least one selected vertex between every pair of vertices i and
j. Therefore 0 ≤ yi + yj − 1 ≤ 1. The upper bound is met when
both i and j are designated to be among the p vertices on the linear
order. As well, the lower bound is met when between i and j, one
of them is not selected to be present in the current feasible solution
and actually, there exist no other situation since p = n− 1.

Case 2) p < n − 1: For an arbitrary vertex i, the total number of arcs
arriving to i (|δ−(i)|) plus the total number of arcs leaving i (|δ+(i)|)
are said to be the degree of i (say |δ(i)|).
It is well-known that any feasible solution of the LOP (as well as
the FCLOP), represents a complete cycle-free digraph (sub-digraph
for the FCLOP). Hence, the degree of every vertex appearing in a
feasible linear order is equal to p−1. In the contrary, if an arbitrary
vertex j is not designated among the selected p vertices, then yj = 0
and we have x(δ(j)) = 0. �

Note 1 From now on, we distinguish between the two FCLOP cases, p =
n− 1 and p < n− 1.

3.1.2 TotalX constraint

In a graph associated to a feasible solution of the FCLOP (e.g. Figure 3.1
and Figure 3.2), we always have

∑

i∈Vn

∑

j∈Vn,j 6=i

xij =
p(p− 1)

2
(3.11)

Lemma 2 (3.11) is valid with respect to the FCLOP (Gn, p) polytope for all
n and 0 ≤ p ≤ n.
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Proof The case p = n represents an LOP and is obvious. Given p = n− 1.
Then (3.11) is equal to the aggregation of all the (3.9) equalities over the i
index.
Now consider 0 ≤ p < n − 1. In this case, constraint (3.11) is equal to the
aggregation of all the (3.10) equalities over the i and j indices. �

The TotalX constraint is redundant in presence of (3.9) when p = n − 1
for FCLOP (Gn, n − 1). It is also redundant in presence of (3.10) for
FCLOP (Gn, p) when 0 ≤ p < n − 1. However, our extensive computa-
tional experiments revealed that, in fact, it often contributes significantly in
reducing the computation time as reported in Table 3.5.

3.1.3 Triangle-free inequalities

In the sequel, we are proposing three classes of inequalities to strengthen
Triangle-Free (TF) inequalities (3.5).

TF - Class 1

The first class of triangle-free inequalities is a natural generalization of the
classical triangle-free inequalities (3.5):

xij + xjk + xki ≤ yr + ys ∀ {r, s} ⊂ {i, j, k} ⊆ Vn, i 6= j 6= k (3.12)

The number of these inequalities is equal to n(n − 1)(n − 2). Triangle-free
inequalities ensure that there is no directed cycle composed of three arcs in
any feasible solution to the FCLOP (see Figure 3.3).

1 2 3 4 5

Figure 3.3: Example of an infeasible solution with two directed triangles
(dashed and dotted) which are removed by adding constraints (3.12).

Lemma 3 Inequalities (3.12) are valid for FCLOP (Gn, p), for all n ≥ 3 and
1 ≤ p ≤ n.

Proof It is clear that we might have xij + xjk + xki = 2 only if i, j, k ∈ S,
that means yi = yj = yk = 1. Since yi ≤ 1, ∀i ∈ Vn; consequently we always
have xij + xjk + xki ≤ yr + ys, ∀ {r, s} ⊆ {i, j, k} ⊆ Vn. �

Hence by adding these inequalities to our linear relaxation (3.2) - (3.8), the
inequalities (3.5) become redundant.
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TF - Class 2

The second class of triangle-free inequalities to eliminate every triangle in a
feasible solution of the FCLOP is the following:

For an arbitrary set of vertices {i, j, k} in Vn, if we have i before k and k
before j, then:

(i) k must be among the p designated vertices and,

(ii) there must exist an arc from i to j.

xik + xkj − xij − yk ≤ 0 ∀i, j, k ∈ Vn, i 6= j 6= k (3.13)

i k j

Figure 3.4: Constraints (3.13) ensures that if (i, k) and (k, j) co-exist, then
the arc (i, j) is enforced.

Lemma 4 Inequalities (3.12) are implied by (3.2) and (3.3).

Proof Without loss of generality, let us show that inequalities

x12 + x23 + x31 ≤ y1 + y2 (3.14)

x12 + x23 + x31 ≤ y2 + y3 (3.15)

x12 + x23 + x31 ≤ y1 + y3 (3.16)

are implied by (3.13), (3.2) and (3.3).

From (3.13) we have

x12 + x23 − x13 − y2 ≤ 0 (3.17)

x31 + x12 − x32 − y1 ≤ 0 (3.18)

and from (3.2) and (3.3) we have

x13 + x31 − y1 ≤ 0 (3.19)

x13 + x31 − y3 ≤ 0 (3.20)

x23 + x32 − y3 ≤ 0 (3.21)

Now, (3.14), (3.15) and (3.16) are obtained by combining (3.17) with (3.19),
(3.17) with (3.20) and (3.18) with (3.21) respectively. �
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TF - Class 3

The third set of proposed triangle-free inequalities are the following:

xij + xjk + xki +
∑

i∈Vn\{i,j,k}

y ≤ ⌊
2p + (n − 3)

3
⌋ ∀ {i, j, k} ⊆ Vn (3.22)

Lemma 5 Inequalities (3.22) are valid inequalities for FCLOP (Gn, p).

Proof From (3.12) we have:

xij + xjk + xki − yi − yj ≤ 0,

xij + xjk + xki − yi − yk ≤ 0,

xij + xjk + xki − yj − yk ≤ 0.

Their sum give the following inequality

3(xij + xjk + xki)− 2(yi + yj + yk) ≤ 0. (3.23)

We know that yi + yj + yk = p− y(Vn \ {i, j, k}). By replacing this value of
yi + yj + yk in (3.23) we obtain

3(xij + xjk + xki) + 2y(Vn \ {i, j, k}) ≤ 2p. (3.24)

Combining this later inequalities with the trivial inequalities yi ≤ 1 for i ∈
Vn \ {i, j, k} we get

3(xij + xjk + xki) + 3y(Vn \ {i, j, k}) ≤ 2p + (n− 3). (3.25)

Now by dividing both sides of (3.26) by three and rounding down the right
hand side we obtain the result.

xij + xjk + xki + y(Vn \ {i, j, k}) ≤ ⌊
2p + (n− 3)

3
⌋. (3.26)

�

In the sequel, some more classes of valid inequalities are presented:

Various valid inequalities For an arbitrary set of vertices {i, j, k} of distinct
elements, if there exist arcs from i to both j and k and as well, from both
j and k to i, then there must exist either (j, k) or (k, j) between k and j.
(e.g. Figure 3.5 and Figure 3.6)
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xij + xik − (xjk + xkj)− yi ≤ 0 ∀i, j, k ∈ Vn : i 6= j 6= k (3.27)

xki + xji − (xjk + xkj)− yi ≤ 0 ∀i, j, k ∈ Vn : i 6= j 6= k (3.28)

i

j

k

Figure 3.5: Constraints (3.27) ensure that exactly one of the two dashed
arcs must be chosen.

i

j

k

Figure 3.6: Constraints (3.28) ensure that exactly one of the two dashed
arcs must be chosen.

Inequalities (3.29) are also valid with respect to FCLOP (Gn, p).

xij + (xik + xki)− (xkj + xjk)− yi ≤ 0

∀ i, j, k ∈ Vn : i 6= j 6= k
(3.29)

3.2 Category 2: Dynamic symmetry-breaking inequali-

ties

Often computational efficiency is in a direct relationship with the size of the
branch-and-bound tree and a good formulation can contribute significantly
by providing a tighter bound, which requires minimal branching for prov-
ing optimality. However, even with a tight bound, still the combinatorial
structure of problem can play a major role. More precisely, the existence
of symmetry in the combinatorial structure can lead to situations where
branching on a fractional variable would make another variable to take a
similar fractional value with more or less the same objective function and
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the bound never improves. This would indeed hinder the convergence of the
branch-and-bound process.
To break symmetry, the first idea coming to mind is to slightly perturb
the input data in such a way that it does not affect the optimal solution.
While such a technique can potentially eliminate part of the symmetry,
however normally such a technique does not contribute a lot in improving
the computational time or reducing the integrality gap (Margot, 2010). In
fact, exploiting the information about the structure of symmetry is often
ways superior alternative.
Our initial experiments on several instances of the FCLOP have revealed ex-
istence of several optimal solutions (different linear orders having the same
optimal value) for a big part of the testbed.

Besides the fact that often symmetry is due to the input data, the model-
ing aspects such as definition of a feasible solution as a directed path may
become also a source of severe symmetry in the model. The latter, can be
eliminated or reduced by generating a kind of dynamic symmetry breaking
inequalities. This type of inequalities cut some integer feasible solutions but
they do not affect the optimal solution.
Here, we aim at eliminating such symmetric solutions by generating symmetry-
breaking inequalities in a dynamic way as soon as an integer incumbent
appears in the course of branch-and-bound process.
Such cuts are not actually valid cuts for the FCLOP polytope because when
added directly to the model (as static cuts) they certainly cut some parts
of the polytop containing some integer feasible solutions, which might con-
tain optimal solution. But, by adding them dynamically, one ensures that
at least one of such solutions which represents the same objective value re-
mains in the feasible space. This technique often has shown to contribute
in reducing branch-and-bound tree size and accelerating convergence (see
Margot (2010)).

In the sequel, we propose an algorithm to dynamically generate certain type
of symmetry breaking inequalities to eliminate some sorts of symmetry for
the FCLOP (Gn, p) polytope.

Given a set of nodes Vn = {1, 2, ..., n}, and πs = (a1, a2, ..., ap) any linear
order on S when |S|= p.

Given 1 ≤ k ≤ n− 1. Let Sk and S̄k be subsets of S defined as below:

Sk =
k⋃

t=1

{at}, S̄k = S \ Sk

From πS = (a1, a2, ..., ap), define the two sub-linear orders πSk
and πS̄k

as
follows:
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πSk
= (a1, a2, ..., ak), πS̄k

= (ak+1, ak+2, ..., ap).

Now, we are ready to present the algorithm to generate the symmetry-
breaking inequalities for any incumbent solution in the course of branch-
and-bound process.

3.2.1 Algorithm for finding symmetry-breaking inequalities

For k from 1 to p− 1 do:

• If w(δ+
G[S](Sk)) = w(δ−

G[S](Sk)), add the following inequality to the
model:

x(δ−(Sk)) +
∑

ai,aj∈Sk,i<j

xaiaj
+

∑

ai,aj∈S̄k ,i<j

xaiaj
≤

p(p− 1)

2
− 1

(3.30)

Remark 2 As mentioned earlier, constraints (3.30) do not represent valid
inequalities with respect to FCLOP (Gn, p). Yet, they can cut a feasible so-
lution only if there exists other feasible solution(s) having the same objective
value (an isomorphic optimal solution). Therefore, the optimal value does
not change.

Figures 3.7 - 3.9 represent an example of a LOP feasible solution with n = 5
and k = 2, while Figures 3.10 - 3.12 represent a FCLOP example when
n = 5, p = 3 and k = 2.
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a4
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a5

Figure 3.7: A feasible solution to the LOP, n = 5.
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Figure 3.8: A cut example, k = 2
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Figure 3.9: The set of arcs in δ−
G[S](Sk) when k = 2.

1

a1

2

a2

3

a3

4

a4

5

a5

Figure 3.10: An example of GπS
, when n = 5, p = 3.
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Figure 3.11: The set of arcs δ+
G[S](Sk) when n = 5, p = 3 and k = 2.
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Figure 3.12: The set of arcs in δ−
G[S](Sk) when n = 5, p = 3 and k = 2.
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3.3 Numerical results

A number of instances from the LOLIB2 have been chosen to form a testbed
for conducting our numerical experiments. This set of instances has been
constructed in such a way that every class of problem is represented by
at least a few instances. The reason for constructing such a restricted list
of problem instances is that The LOLIB itself contains a large number of
instances and in the FCLOP, we also have a parameter p, which varies in
certain range for every instance size. A combination of all values of param-
eter p and all the instances of LOLIB will produces an unnecessarily huge
testbed.

In the following subsections we report numerical results where CPLEX is
used to solve instances of the selected testbed. Table 3.1 through Table 3.6
are organized as follows:

The instance names are brought in the first column in the format NAME-n-p

where NAME represents the instance name from LOLIB, n stands for the
number of nodes and p indicates the cardinality.

We have set a time limit of 3 hours (equivalent to 10800 sec.) for CPLEX.
However, it might happen that CPLEX is in the middle of solving an LP
at certain node when the time limit has been reached. In this case CPLEX
terminates as soon as that process terminates. Therefore, a minor deviation
from this time limit might rarely appear in our reports.

The second column reports the best objective value reported by CPLEX.
The time elapsed to solve the instances is reported in the next column.

The following column reports the total number of processed nodes in the
branch-and-bound tree.

The last column report the CPLEX termination status within the given time
limit: 1) FailFeas indicates that the process exceeded the available memory,
while there is at least one feasible solution that has been found during the so-
lution process, 2) TimLim indicates that CPLEX terminated upon reaching
the time limit, 3) Optimal and OptimalTol indicate that CPLEX termi-
nates with the optimal solution within the time limit. Further explanation
of CPLEX status can be found in the IBM ILOG Concert 12.5.1. It must be
also noted that we have used a 32-bit version of ILOG Concert Technology.

Our testbed is composed of 51 instances from 7 different classes of input

2http://www.optsicom.es/lolib/
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matrices with different appropriate values of p.

3.3.1 FCLOP

In Table 3.1, the initial FCLOP model before adding any new valid inequal-
ities has been considered. For N-atp24, with n = 24, the value p varies in
{5, 10, 15, 20, 23, 24}. One observes that all the instances can be solved in
reasonable times. The maximum elapsed CPU time is about 58 seconds.
Yet, two instances are solved to optimality at the root node (bearing in
mind the preprocessing, reduction and cuts added by CPLEX at the root
node).

For the input matrix N-atp48, with n = 48, when p varies in

{10, 15, 20, 25, 30, 35, 40, 45, 47, 48} ,

one observes that as mush as the problem gets closer to the classical LOP
(in the sense that p approaches n) the computational time reduces.
While for smaller values of p the standard solvers run out of memory due
to a prohibitive memory usage of the branch-and-bound tree, for moderate
values of p solver terminates due to reaching the time limit without memory
issues. For larger values of p, CPLEX terminates to optimality within the
time limit. An interesting point here is that when p is very close to n,
problems can be solved at the root node by CPLEX.

For N-be75eec with n = 50 and p varying in {20, 30, 40, 50}, all the instances
are solved to optimality in about 15 seconds, at most.

In N-econ36 with n = 36 and p varying in {15, 20, 25, 30, 35, 36}, again all
the instances are solved to optimality within a few seconds.

For N-p50 with n = 50 and p varying in {10, 15, 20, 25, 30, 35, 40, 45, 49, 50},
while LOP instances are not yet solved to optimality, we observe that when
k << N the prohibitive branch-and-bound tree size is an obstacle and the
solver terminates due to the memory issue (out of memory status). However,
as p approaches n the time limit is met before proving the optimality for all
the instances.

In N-pal19 with n = 19 and p varying in {5, 10, 15, 18, 19}, all the instances
are solved to optimality while the computational times are significantly
higher compared to N-be75eec, N-econ36 and N-atp24. Moreover, optimality
is met after a significant number of nodes being processed, mostly because
we have a high level of symmetry causing degeneracy in the course of the
branch-and-bound process.

In the same class of problems from LOLIB, i.e. N-pal43 and p varying in
{10, 15, 20, 25, 30, 35, 40, 42, 43}, only one instance could reach the time limit
and the rest of instances ran into memory problem. A surprising point is
that the maximum number of branch-and-bound nodes upon which memory
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issue occurs never exceed 7013 nodes. This might be due to the high degree
of degeneracy of LP at every (or certain) node.
For N-be75eec and N-econ36, except for one instance, CPLEX was able to
prove the optimality at the root node.
In general, in terms of number of nodes in branch-and-bound tree, the trees
tend to become smaller as p approaches n in almost all the instances.
The column #Nodes reports the number of nodes in the branch-and-bound
tree.

Fname Obj.Val. Time (sec.) #Nodes Status

N-atp24-24-5 18 7.5 389 Optimal
N-atp24-24-10 53 58.46 847 Optimal
N-atp24-24-15 94 16.51 268 Optimal
N-atp24-24-20 140 9.65 54 Optimal
N-atp24-24-23 165 1.37 0 Optimal
N-atp24-24-24 172 0.76 0 Optimal

N-atp48-48-10 45 2883.39 5620 FailFeas
N-atp48-48-15 91 6469.86 4487 FailFeas
N-atp48-48-20 144 9262.23 5146 FailFeas
N-atp48-48-25 202 15816.2 5419 FailFeas
N-atp48-48-30 264 40152.1 3704 TimeLimit
N-atp48-48-35 321 38817.3 2232 TimeLimit
N-atp48-48-40 386 38385.5 1917 TimeLimit
N-atp48-48-45 447 12870.1 649 Optimal
N-atp48-48-47 472 223.98 0 Optimal
N-atp48-48-48 483 5.87 0 Optimal

N-be75eec-50-20 130506 14.67 12 Optimal
N-be75eec-50-30 191061 6.87 0 Optimal
N-be75eec-50-40 223672 10.68 0 Optimal
N-be75eec-50-50 236464 3.73 0 Optimal

N-econ36-36-15 400547 4.26 0 Optimal
N-econ36-36-20 469584 5.15 0 Optimal
N-econ36-36-25 506268 7.56 0 Optimal
N-econ36-36-30 534406 6.37 0 Optimal
N-econ36-36-35 547542 11.45 0 Optimal
N-econ36-36-36 548574 2.29 0 Optimal

N-p50-20-50-10 2653 9813.16 3926 FailFeas
N-p50-20-50-15 5948 15935.1 4777 FailFeas
N-p50-20-50-20 9908 17895.9 4133 FailFeas
N-p50-20-50-25 12394 10811.4 3468 FailFeas
N-p50-20-50-30 18654 28182.8 4372 FailFeas
N-p50-20-50-35 25565 38952.4 2888 TimeLimit
N-p50-20-50-40 31457 37498.2 1611 TimeLimit
N-p50-20-50-45 38416 36687.8 1468 TimeLimit
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N-p50-20-50-49 45280 37315.3 2005 TimeLimit
N-p50-20-50-50 46694 39038.3 1578 TimeLimit

N-pal19-19-10 36 383.03 50002 Optimal
N-pal19-19-15 72 2297.2 127463 Optimal
N-pal19-19-18 98 1072.09 67993 Optimal
N-pal19-19-19 107 396.17 25624 Optimal
N-pal19-19-5 10 77.59 9829 Optimal

N-pal43-43-10 40 40918.2 17248 TimeLimit
N-pal43-43-15 81 12174.1 6308 FailFeas
N-pal43-43-20 138 19752.7 6839 FailFeas
N-pal43-43-25 204 22625.9 7013 FailFeas
N-pal43-43-30 280 32759.6 6341 FailFeas
N-pal43-43-35 372 38437.9 5490 FailFeas
N-pal43-43-40 466 38360.5 5371 FailFeas
N-pal43-43-42 509 26864.6 4987 FailFeas
N-pal43-43-43 535 20711 5396 FailFeas

Table 3.1: Numerical results of solving FCLOP

3.3.2 FCLOP + TotalX

The numerical experiments of solving the problem after adding TotalX con-
straintto the FCLOP model is reported in Table 3.2. For the instance N-

atp24, one observes that computational times as well as the maximum num-
ber of nodes in the branch-and-bound tree needed to prove the optimality,
decrease significantly. The same as before, all the instances of N-atp24 are
optimally solved in reasonable times and faster than before (see Table 3.1).
The results concerning N-atp48 shows that after adding TotalX constraint
to the model, all the instances except two of them (i.e. p = 20 and p = 25)
have been solved to optimality.
Table 3.1 and Table 3.2 show that the behavior of several instances like N-

be75eec, N-econ36, N-pal19 and N-p50-20 for any p that we have examined,
remain quite the same, before and after adding TotalX constraint.
The comparison between computational times in each set of instances are
available in Figure 5.6 through Figure 3.19.
In the set of instances of N-pal43, we have again similarity between Table 3.1
and Table 3.2. However, there is a slight difference with regard to the number
of nodes in branch-and-bound tree. One observes that in formulation with
TotalX, CPLEX is usually able to process more nodes before running out of
memory.

Fname Obj.Val. Time (sec.) #Nodes Status

N-atp24-24-5 18 1.41 5 Optimal
N-atp24-24-10 53 11.81 11 Optimal
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N-atp24-24-15 94 15.96 11 Optimal
N-atp24-24-20 140 5.42 0 Optimal
N-atp24-24-23 165 1.5 0 Optimal
N-atp24-24-24 172 1 0 Optimal

N-atp48-48-10 53 1238.52 1193 Optimal
N-atp48-48-15 97 14217.3 8422 Optimal
N-atp48-48-20 144 25700.7 7196 FailFeas
N-atp48-48-25 205 40980 8846 FailFeas
N-atp48-48-30 264 33676 5645 Optimal
N-atp48-48-35 324 33302.2 4320 Optimal
N-atp48-48-40 387 5203.27 257 Optimal
N-atp48-48-45 447 1025.41 3 Optimal
N-atp48-48-47 472 261.51 0 Optimal
N-atp48-48-48 483 5.34 0 Optimal

N-be75eec-50-20 130506 15.29 8 Optimal
N-be75eec-50-30 191061 12.93 0 Optimal
N-be75eec-50-40 223672 10.56 0 Optimal
N-be75eec-50-50 236464 5.31 0 Optimal

N-econ36-36-15 400547 3.76 0 Optimal
N-econ36-36-20 469584 5.56 0 Optimal
N-econ36-36-25 506268 8.64 0 Optimal
N-econ36-36-30 534406 7.7 0 Optimal
N-econ36-36-35 547542 9.85 0 Optimal
N-econ36-36-36 548574 3.5 0 Optimal

N-p50-20-50-10 3134 3420.38 4447 FailFeas
N-p50-20-50-15 5685 5443.19 3775 FailFeas
N-p50-20-50-20 8935 11790.4 4314 FailFeas
N-p50-20-50-25 14354 27010.3 4217 FailFeas
N-p50-20-50-30 19670 28743.3 3705 FailFeas
N-p50-20-50-35 25886 37099 2088 TimeLimit
N-p50-20-50-40 32348 37414.7 2074 TimeLimit
N-p50-20-50-45 39302 34785.2 1279 TimeLimit
N-p50-20-50-49 45417 36139.6 1642 TimeLimit
N-p50-20-50-50 46597 38924.8 1639 TimeLimit

N-pal19-19-10 36 307.59 24533 Optimal
N-pal19-19-15 72 3652.47 147459 Optimal
N-pal19-19-18 98 996.75 65365 Optimal
N-pal19-19-19 107 431.93 36187 Optimal
N-pal19-19-5 10 0.53 0 Optimal

N-pal43-43-10 40 41427.8 310771 TimeLimit
N-pal43-43-15 82 13358.3 31817 FailFeas
N-pal43-43-20 137 12558.6 9908 FailFeas
N-pal43-43-25 203 17064.8 5713 FailFeas
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N-pal43-43-30 282 37034.3 5794 FailFeas
N-pal43-43-35 369 37061.4 5099 FailFeas
N-pal43-43-40 468 31281.4 4987 FailFeas
N-pal43-43-42 511 24258.6 4587 FailFeas
N-pal43-43-43 533 26369.6 5143 FailFeas

Table 3.2: Numerical results for FCLOP+TotalX

3.3.3 FCLOP + Node-Degree

In Table 3.3, we examined simple FCLOPI after adding Node-Degree con-
straints. Compared to the earlier results, in some cases (e.g. N-atp48 with
p = 15), the instance is not solvable anymore on the same machine. That
means, the model becomes more intractable after adding a significant num-
ber of constraints Node-Degree to the model. Also regarding N-atp48 with
p = 20 or p = 25, we are still not able to solve these instances to optimality.
However, the new results in Table 3.3 show that the minimum number of
branch-and-bound nodes needed now (in the FCLOP + Node-Degree) to
prove optimality is less than what we needed earlier in Table 3.2. For in-
stance the results concerning sets N-be75eec and N-econ36 show that for
all the instances of these sets, the computational times increase, while the
number of branch-and-bound nodes decrease to only 3 nodes for N-be75eec

with p = 20 and do not change much for the rest of instances.
An important point here is that we could solve N-atp48-48-15 to optimality
after adding the constraint TotalX (see Table 3.2). However it ran out of
memory when we applied the set of Node-Degree constraints. That is why we
prefer to use TotalX instead of the Node-Degree inequalities henceforward
(keeping in mind that TotalX is equal to the aggregation of all the constraints
in Node-Degree and in fact they are redundant). For the set of instances
N-p50-20 and N-pal43, we still did not succeed to solve any of them to
optimality.

Fname Obj.Val. Time (sec.) #Nodes Status

N-atp24-24-10 53 12.12 48 Optimal
N-atp24-24-15 94 14.07 11 Optimal
N-atp24-24-20 140 6.76 0 Optimal
N-atp24-24-23 165 1.45 0 Optimal
N-atp24-24-24 172 0.95 0 Optimal
N-atp24-24-5 18 2.09 3 Optimal

N-atp48-48-10 53 836.57 487 Optimal
N-atp48-48-15 94 29603.7 11222 FailFeas
N-atp48-48-20 147 39260.2 6893 TimeLimit
N-atp48-48-25 204 38755.9 5276 TimeLimit
N-atp48-48-30 264 32398.3 5225 Optimal
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N-atp48-48-35 324 28352.3 4494 Optimal
N-atp48-48-40 387 3543.59 155 Optimal
N-atp48-48-45 447 800.96 5 Optimal
N-atp48-48-47 472 264.62 0 Optimal
N-atp48-48-48 483 5.32 0 Optimal

N-be75eec-50-20 130506 20.79 3 Optimal
N-be75eec-50-30 191061 25.54 0 Optimal
N-be75eec-50-40 223672 35.84 0 Optimal
N-be75eec-50-50 236464 4.85 0 Optimal

N-econ36-36-15 400547 7.78 0 Optimal
N-econ36-36-20 469584 9.03 0 Optimal
N-econ36-36-25 506268 10.04 0 Optimal
N-econ36-36-30 534406 9.65 0 Optimal
N-econ36-36-35 547542 10.75 0 Optimal
N-econ36-36-36 548574 3.65 0 Optimal

N-p50-20-50-10 3025 9190.95 5615 FailFeas
N-p50-20-50-15 6035 15110.5 5645 FailFeas
N-p50-20-50-20 9639 22155.6 4462 FailFeas
N-p50-20-50-25 14370 37007.6 3748 TimeLimit
N-p50-20-50-30 19597 36197.2 2412 TimeLimit
N-p50-20-50-35 25615 34824.3 1421 TimeLimit
N-p50-20-50-40 31806 34811.8 1179 TimeLimit
N-p50-20-50-45 38775 33620.4 538 TimeLimit
N-p50-20-50-49 45194 35836 1597 TimeLimit
N-p50-20-50-50 46597 38458.2 1645 TimeLimit

N-pal19-19-10 36 418.17 19210 Optimal
N-pal19-19-15 72 3163.77 98493 Optimal
N-pal19-19-18 98 991.43 81540 Optimal
N-pal19-19-19 107 431.2 36187 Optimal
N-pal19-19-5 10 0.43 0 Optimal

N-pal43-43-10 40 3765.72 7015 FailFeas
N-pal43-43-15 81 3411.11 6004 FailFeas
N-pal43-43-20 136 7625.92 5883 FailFeas
N-pal43-43-25 204 30248.8 6498 FailFeas
N-pal43-43-30 280 37178 4148 TimeLimit
N-pal43-43-35 372 34785.1 1939 TimeLimit
N-pal43-43-40 471 36472.4 3895 TimeLimit
N-pal43-43-42 515 18870 4939 FailFeas
N-pal43-43-43 533 25873.4 5148 FailFeas

Table 3.3: Numerical results for the FCLOP + Node-Degree



42 CHAPTER 3. VALID INEQUALITIES

3.3.4 FCLOP + TotalX + TF Class 1

The model FCLOP after adding TotalX constraints as well as the set of TF

- Class 1 constraints is considered here.

Table 3.4 reports the statistics on the computational experiments with this
model. The CPU times required to solve instances of N-atp24, in general, in-
creases compared to all other earlier results while this is not the case regard-
ing the set of N-atp48 instances. Concerning the set of N-atp48 instances,
the number of instances solved to optimality is decreased to only 5 instances.

The behavior of the set of N-be75eec and N-econ36 instances is almost the
same as what we had in Table 3.3.

Concerning instances of N-p50-20, we are still unable to solve any of these
instances. However, the number of nodes in branch-and-bound tree is quite
less than what we observed in Table 3.3.

All the instances N-pal19 are again optimally solved while the number of
nodes in branch-and-bound trees increased. Finally for the set of instances
N-pal43, we see that except the last one, CPLEX has terminated upon reach-
ing the time limit.

Fname Obj.Val. Time #Nodes Status

N-atp24-24-10 53 120.09 10 Optimal
N-atp24-24-15 94 57.64 0 Optimal
N-atp24-24-20 140 6.14 0 Optimal
N-atp24-24-23 165 1.82 0 Optimal
N-atp24-24-24 172 1.26 0 Optimal
N-atp24-24-5 18 7.82 0 Optimal

N-atp48-48-10 53 25361.1 963 Optimal
N-atp48-48-15 94 35598.2 453 TimeLimit
N-atp48-48-20 134 21579.6 0 TimeLimit
N-atp48-48-25 195 21581.3 0 TimeLimit
N-atp48-48-30 258 25597.6 26 TimeLimit
N-atp48-48-35 324 31556.5 143 TimeLimit
N-atp48-48-40 387 19407.5 47 Optimal
N-atp48-48-45 447 688.1 0 Optimal
N-atp48-48-47 472 60.06 0 Optimal
N-atp48-48-48 483 8.84 0 Optimal

N-be75eec-50-20 130506 56.29 0 Optimal
N-be75eec-50-30 191061 25.26 0 Optimal
N-be75eec-50-40 223672 31.67 0 Optimal
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N-be75eec-50-50 236464 7.71 0 Optimal

N-econ36-36-15 400547 8.75 0 Optimal
N-econ36-36-20 469584 4.82 0 Optimal
N-econ36-36-25 506268 7.12 0 Optimal
N-econ36-36-30 534406 6.45 0 Optimal
N-econ36-36-35 547542 12.21 0 Optimal
N-econ36-36-36 548574 4.82 0 Optimal

N-p50-20-50-10 3170 31818.1 528 TimeLimit
N-p50-20-50-15 5625 27025.9 56 TimeLimit
N-p50-20-50-20 9366 21577.4 0 TimeLimit
N-p50-20-50-25 14511 21579.2 0 TimeLimit
N-p50-20-50-30 19023 21580 0 TimeLimit
N-p50-20-50-35 25201 21596.9 0 TimeLimit
N-p50-20-50-40 31731 21581.8 0 TimeLimit
N-p50-20-50-45 38363 22907.7 11 TimeLimit
N-p50-20-50-49 42351 30239.1 65 TimeLimit
N-p50-20-50-50 46615 38730.2 1317 TimeLimit

N-pal19-19-10 36 443.71 6201 Optimal
N-pal19-19-15 72 4182.84 54933 Optimal
N-pal19-19-18 98 3182.83 71069 Optimal
N-pal19-19-19 107 546.17 45416 Optimal
N-pal19-19-5 10 1.23 0 Optimal

N-pal43-43-10 40 36271 603 TimeLimit
N-pal43-43-15 81 35185.6 596 TimeLimit
N-pal43-43-20 135 33396.2 592 TimeLimit
N-pal43-43-25 204 34969.3 416 TimeLimit
N-pal43-43-30 279 21070.4 2 TimeLimit
N-pal43-43-35 370 35437 558 TimeLimit
N-pal43-43-40 472 32510.5 526 TimeLimit
N-pal43-43-42 510 34393.1 731 TimeLimit
N-pal43-43-43 534 25559 4111 FailFeas

Table 3.4: Numerical results of solving FCLOP + TotalX +
TF Class 1

3.3.5 FCLOP + Node-Degree + TF Class 1

Table 3.5 reports the experimental results of a model composed of FCLOP
and those constraints TF Class 1 and Node-Degree.

One observes in Table 3.5 that the instances N-atp24 for k = 10 and 15, the
computational times needed to prove optimality do not significantly change
when compared to Table 3.4.



44 CHAPTER 3. VALID INEQUALITIES

For the instance set N-atp48, we observe that the number of instances solved
to optimality is the same as what we had in Table 3.4 while it has decreased
compared to observations in Table 3.2 and Table 3.3.
All the instances of sets N-be75eec and N-econ36 are optimally solved in
reasonable times.
Comparison of computational time required for any of the individual in-
stances are available in Figure 5.6 through Figure 3.19.
Table 3.5 shows that except for N-pal43-43-43, for all the instances of sets N-

p50-20 and N-pal43, CPLEX has terminated upon reaching the time limit.

Fname Obj.Val. Time (sec.) #Nodes Status

N-atp24-24-10 53 53.75 11 Optimal
N-atp24-24-15 94 50.09 0 Optimal
N-atp24-24-20 140 2.18 0 Optimal
N-atp24-24-23 165 1.75 0 Optimal
N-atp24-24-24 172 1.28 0 Optimal
N-atp24-24-5 18 8.53 0 Optimal

N-atp48-48-10 53 19893.3 318 Optimal
N-atp48-48-15 86 27475.7 71 TimeLimit
N-atp48-48-20 113 21594.5 0 TimeLimit
N-atp48-48-25 196 21594.2 0 TimeLimit
N-atp48-48-30 238 20913.2 2 TimeLimit
N-atp48-48-35 295 27986.6 46 TimeLimit
N-atp48-48-40 387 2470.77 5 Optimal
N-atp48-48-45 447 87.65 0 Optimal
N-atp48-48-47 472 58.65 0 Optimal
N-atp48-48-48 483 8.6 0 Optimal

N-be75eec-50-20 130506 34.03 0 Optimal
N-be75eec-50-30 191061 44.18 0 Optimal
N-be75eec-50-40 223672 50.95 0 Optimal
N-be75eec-50-50 236464 7.4 0 Optimal

N-econ36-36-15 400547 6.76 0 Optimal
N-econ36-36-20 469584 9.32 0 Optimal
N-econ36-36-25 506268 13.1 0 Optimal
N-econ36-36-30 534406 11.5 0 Optimal
N-econ36-36-35 547542 12.28 0 Optimal
N-econ36-36-36 548574 4.65 0 Optimal

N-p50-20-50-10 3342 34457.4 397 TimeLimit
N-p50-20-50-15 5616 23004.5 16 TimeLimit
N-p50-20-50-20 9131 21617.1 0 TimeLimit
N-p50-20-50-25 13981 21594.7 0 TimeLimit
N-p50-20-50-30 17337 21594.3 0 TimeLimit
N-p50-20-50-35 23905 21594.6 0 TimeLimit
N-p50-20-50-40 30859 21596.9 0 TimeLimit
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N-p50-20-50-45 37338 25485.7 24 TimeLimit
N-p50-20-50-49 44419 26888.6 42 TimeLimit
N-p50-20-50-50 46615 39237.4 1415 TimeLimit

N-pal19-19-10 36 412.85 4030 Optimal
N-pal19-19-15 72 4997.97 45018 Optimal
N-pal19-19-18 98 3624.03 84875 Optimal
N-pal19-19-19 107 542.34 45416 Optimal
N-pal19-19-5 10 1.61 0 Optimal

N-pal43-43-10 39 33032.2 175 TimeLimit
N-pal43-43-15 83 35462.6 391 TimeLimit
N-pal43-43-20 137 36134.1 337 TimeLimit
N-pal43-43-25 200 33440.2 301 TimeLimit
N-pal43-43-30 278 21596.5 0 TimeLimit
N-pal43-43-35 357 30175.8 49 TimeLimit
N-pal43-43-40 471 35009.3 376 TimeLimit
N-pal43-43-42 512 35876.3 836 TimeLimit
N-pal43-43-43 534 25691.2 4153 FailFeas

Table 3.5: Numerical results of solving FCLOP + Node-
Degree + TF Class 1

3.3.6 FCLOP + TF Class 2

In Table 3.6, one observes that N-atp48 for p = 20 and p = 25 are two
instances that have been solved to optimality for the first time. Moreover,
the instance N-p50-20 for p = 10 also has been solved to optimality, which
has not been solved to optimality before, for any p.
Another interesting fact is that for 18 instances of N-p50-20 and N-pal43 –
which their optimal solution are not known– we could significantly improve
the upper bound as well as the lower bound.
We have improved the gap from 2.94% to 1.58% for LOP model of N-p50-20.
The best known upper and lower bounds available for N-p50-20 in the lit-
erature is [46779,48155] and the new upper bound we have obtained is 47518.

Fname Obj.Val. Time #Nodes LP bound Optimal* Status

N-atp24-24-5 18 1.23 3 41.04 18 Optimal
N-atp24-24-10 53 18.01 3 82.08 53 Optimal
N-atp24-24-15 94 11.65 0 123.12 94 Optimal
N-atp24-24-20 140 2.31 0 153.16 140 Optimal
N-atp24-24-23 165 0.90 0 168.25 165 Optimal
N-atp24-24-24 172 0.57 0 172 172 Optimal

N-atp48-48-10 53 8727.7 42 118.54 53 Optimal
N-atp48-48-15 97 24993.7 87 177.81 97 Optimal
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N-atp48-48-20 148 46292.3 133 237.08 148 Optimal
N-atp48-48-25 205 35265.6 37 296.35 205 Optimal
N-atp48-48-30 264 5863.47 0 355.62 264 Optimal
N-atp48-48-35 324 22453.3 33 400.65 324 Optimal
N-atp48-48-40 387 78.5 0 436.16 387 Optimal
N-atp48-48-45 447 71.65 0 466.62 447 Optimal
N-atp48-48-47 472 49.51 0 477.7 472 Optimal
N-atp48-48-48 483 8.40 0 483 483 Optimal

N-be75eec-50-20 130506 24.09 0 132966 130506 Optimal
N-be75eec-50-30 191061 13 0 191168 191061 Optimal
N-be75eec-50-40 223672 14.23 0 224006 223672 Optimal
N-be75eec-50-50 236464 5.57 0 236464 236464 Optimal

N-econ36-36-15 400547 8.06 0 403222 400547 Optimal
N-econ36-36-20 469584 3.04 0 470033 469584 Optimal
N-econ36-36-25 506268 5.42 0 507568 506232 Optimal
N-econ36-36-30 534406 3.81 0 535017 534406 Optimal
N-econ36-36-35 547542 6.18 0 547984 547501 Optimal
N-econ36-36-36 548574 3.34 0 548588 548574 OptimalTol

N-p50-20-50-10 3342 173259 1530 13282.6 2311* Optimal
N-p50-20-50-15 6296 401847 1045 19923.9 5106* FailFeas
N-p50-20-50-20 10049 381111 659 26565.2 7397* TimeLimit
N-p50-20-50-25 14746 374291 580 33206.5 13697* TimeLimit
N-p50-20-50-30 20144 345978 395 39847.8 17052* TimeLimit
N-p50-20-50-35 25706 368863 525 44672.5 23298* TimeLimit
N-p50-20-50-40 32584 374226 585 45864.2 31337* TimeLimit
N-p50-20-50-45 39147 334478 913 47055.8 38099* FailFeas
N-p50-20-50-49 44932 138277 986 47985.7 42450* FailFeas
N-p50-20-50-50 47518 104270 6380 48155.7 46779* FailFeas

N-pal19-19-5 10 0.62 0 45 10 Optimal
N-pal19-19-10 36 203.73 1612 90 36 Optimal
N-pal19-19-15 72 5685.59 64098 114 72 Optimal
N-pal19-19-18 98 2244.66 52019 114 98 Optimal
N-pal19-19-19 107 398.20 35861 114 107 Optimal

N-pal43-43-10 40 95272 2041 210 40∗ FailFeas
N-pal43-43-15 82 111463 2119 315 80∗ FailFeas
N-pal43-43-20 137 148396 1719 420 139∗ FailFeas
N-pal43-43-25 207 296861 2605 525 199∗ FailFeas
N-pal43-43-30 281 220975 2590 602 276∗ FailFeas
N-pal43-43-35 371 248244 2546 602 361∗ FailFeas
N-pal43-43-40 473 181788 2629 602 459∗ FailFeas
N-pal43-43-42 511 90379.1 2693 602 500∗ FailFeas
N-pal43-43-43 535 14477 6371 602 535∗ FailFeas
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Table 3.6: Numerical results of solving FCLOP + TotalX +
TF Class 2

3.3.7 Bound quality comparison

In Table 3.7, the first column is the instance name as before, the second
column (FCLOP) represent the LP bound of the basic FCLOP model. The
next columns TF1, TF2 and TF1 represent the LP bound after adding the
inequalities TF Class 1 (TF1), TF Class 2 (TF2) and TF Class 3 (TF3) to
the model, respectively. The next column, TF2 + TF3, reports the bound
obtained by the LP relaxation of the FCLOP model after adding the two
sets of inequalities TF2 and TF3. The reason for reporting this column is to
compare the quality of linear relaxation of the model with the two previous
cases that we only add TF2 (or TF3) to the basic FCLOP model. The next
column, TF2+Var reports the LP bound obtained after adding the set of
inequalities TF2, (3.27) and (3.28) to the FCLOP model.

One observes that triangle-free inequalities TF2 are producing tighter bound
compared to the TF1 and TF3. When we add the inequalities TF2 together
with (3.27) and (3.28) we improve the LP bound for some difficult instances
e.g. N-p50-20_50 with various p values.

Fname FCLOP TF1 TF2 TF3 TF2+TF3 TF2+Var

N-atp24_24_5 41.04 21.08 19.17 21.26 19.17 18.11
N-atp24_24_10 82.08 65.79 53.93 68.1 53.93 53
N-atp24_24_15 123.12 101.36 94.43 107.65 94.43 94
N-atp24_24_20 153.16 140 140 157 140 140
N-atp24_24_22 161.1 157 157 157 157 157
N-atp24_24_23 168.25 165 165 165 165 165
N-atp24_24_24 172 172 172 172 172 172

N-atp48_48_10 118.54 71.26 58.20 72.2 58.2 54.9
N-atp48_48_15 177.81 137.81 104.36 142.33 104.36 99.65
N-atp48_48_20 237.08 201.57 155.21 222.17 155.21 150.43
N-atp48_48_25 296.35 253.41 209.3 288.24 209.3 205.55
N-atp48_48_30 355.62 299.82 265.86 334.28 265.86 264
N-atp48_48_35 400.65 344.62 324.64 382.09 324.64 324
N-atp48_48_40 436.16 391.34 387 449 387 387
N-atp48_48_45 466.62 447 447 525 447 447
N-atp48_48_46 471 459 459 459 459 459
N-atp48_48_47 477.7 472 472 472 472 472
N-atp48_48_48 483 483 483 483 483 483

N-be75eec_50_20 132966 130506 130506 132979 130506 130506
N-be75eec_50_30 191168 191061 191061 195826 191061 191061
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N-be75eec_50_40 224006 223672 223672 230885 223672 223672
N-be75eec_50_48 236464 236345 236345 236345 236345 236345
N-be75eec_50_49 236464 236464 236464 236464 236464 236464
N-be75eec_50_50 236464 236464 236464 236464 236464 236464

N-econ36_36_15 403222 400547 400547 401589 400547 400547
N-econ36_36_20 470033 469584 469584 473682 469584 469584
N-econ36_36_25 507568 506268 506268 514152 506268 506268
N-econ36_36_30 535017 534406 534406 544978 534406 534406
N-econ36_36_34 546766 545576 545576 545576 545576 545576
N-econ36_36_35 547984 547556 547556 547556 547556 547556
N-econ36_36_36 548588 548588 548588 548588 548588 548588

N-p50-20_50_10 13282.6 4451.88 4001.91 4491.63 4001.91 3961.62
N-p50-20_50_15 19923.9 9487.72 8083.14 9750.19 8083.14 8053.35
N-p50-20_50_20 26565.2 15428.6 12542.3 16498.8 12542.3 12501.8
N-p50-20_50_25 33206.5 21645.4 17370.7 24303.5 17370.7 17149.7
N-p50-20_50_30 39847.8 26990.6 22619.6 29889.6 22619.6 22374.5
N-p50-20_50_35 44672.5 32557.2 28370.7 36807.3 28370.7 28192.1
N-p50-20_50_40 45864.2 37747.7 34634 45330.9 34634 34558.5
N-p50-20_50_45 47055.8 42673.6 41379.4 55601 41379.4 41376.8
N-p50-20_50_48 47771.1 45820.5 45518 45518 45518 45518
N-p50-20_50_49 47985.7 46959.7 46856.3 46856.3 46856.3 46856.3
N-p50-20_50_50 48155.7 48155.7 48155.7 48155.7 48155.7 48155.7

N-pal19_19_5 45 10 10 10 10 10
N-pal19_19_10 90 45 45 45 45 45
N-pal19_19_15 114 90 80 105 80 80
N-pal19_19_17 114 102 96.33 96 96 96.33
N-pal19_19_18 114 108 105 105 105 105
N-pal19_19_19 114 114 114 114 114 114

N-pal43_43_10 210 45 45 45 45 45
N-pal43_43_15 315 105 105 105 105 105
N-pal43_43_20 420 190 190 190 190 190
N-pal43_43_25 525 300 275 300 275 275
N-pal43_43_30 602 420 355 435 355 355
N-pal43_43_35 602 490 443.33 595 443.333 443.33
N-pal43_43_40 602 560 540 780 540 540
N-pal43_43_41 602 574 560.33 560 560 560.33
N-pal43_43_42 602 588 581 581 581 581
N-pal43_43_43 602 602 602 602 602 602

Table 3.7: numerical experiment-Integrality gap comparison.
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In the following, Figure 3.13 through Figure 3.19 correspond to 7 groups
of instances N-atp24, N-atp48, N-be75eec, N-econ36 N-p50-20 N-pal19 and
N-pal19 are presented, which compare the computational time required to
solve every instances with different p values. From what we have observed
so far, the behavior of different instances are highly different. Hence, we
consider instances separately and report for different p values in each figure.
Note that some of the instances are not solved in optimality and runs have
been terminated by time limit or out of memory status. We have also
considered these instances in these diagrams.
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CHAPTER 4

Polyhedral Study for FCLOP (Gn, p)

In chapter 3, we have proposed several sets of valid inequalities for the
FCLOP polytope. In this chapter, our investigation on the polytopes of
the FCLOP for different p values is presented. We have determined the
dimension of the FCLOP polytope and characterized some classes of facet
defining inequalities.
Numerical results already proved the significant impact of adding these facet
defining inequalities to the model. Later in Chapter chapter 6 a Relax-and-
Cut algorithm will be presented to apply the results presented here. In the
following we present an integer programming formulation for the FCLOP
for the cases (i) p = n− 1 and (ii) p ≤ n− 2:

• (i) FCLOPn−1:

max
n∑

i=1

n∑

j=1,j 6=i

wijxij (4.1)

s.t.

xij + xji = yi + yj − 1 ∀ i, j ∈ Vn, i ≤ j, (4.2)
n∑

i=1

yi = n− 1, (4.3)

xij + xjk − xik − yj ≤ 0 ∀ {i, j, k} ⊆ Vn, (4.4)

0 ≤ xij ∀ i, j ∈ Vn, i 6= j, (4.5)

yi ≤ 1 ∀ i ∈ Vn, (4.6)

xij , yi ∈ {0, 1} ∀ i, j ∈ Vn. (4.7)

53
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• (ii) FCLOPp:

max
n∑

i=1

n∑

j=1,j 6=i

wijxij (4.8)

s.t.

x(δ(i)) = (p− 1)yi ∀ i, j ∈ Vn, i ≤ j,
(4.9)

n∑

i=1

yi = p, (4.10)

xij + xji ≤ yi ∀ i, j ∈ Vn, i ≤ j,
(4.11)

xij + xji ≤ yj ∀ i, j ∈ Vn, i ≤ j,
(4.12)

xij + xji ≥ yi + yj − 1 ∀ i, j ∈ Vn, i ≤ j,
(4.13)

xij + xjk − xik − yj ≤ 0 ∀ {i, j, k} ⊆ Vn,
(4.14)

xij + xjk + xki +
∑

i∈Vn\{i,j,k}

y ≤ ⌊
2p + (n− 3)

3
⌋ ∀ {i, j, k} ⊆ Vn,

(4.15)

0 ≤ xij ∀ i, j ∈ Vn, i 6= j,
(4.16)

yi ≤ 1 ∀ i ∈ Vn,
(4.17)

xij , yi ∈ {0, 1} ∀ i, j ∈ Vn.
(4.18)

Some basic definitions related to polyhedra are followed.
The set of solutions of a finite system of linear (in)equalities, is called a
polyhedron. A polytope is a bounded polyhedron. An inequality γT x ≤ γ0,
is valid for the polytope P if P ⊂ {x : γT x ≤ γ0}. If γT x ≤ γ0 is a valid
inequality for P , then the set F = {x ∈ P : γT x = γ0} is called a face of
P . The dimension of a polytope P , denoted by dim(P ) is the maximum
number of affinely independent points in P minus 1. A face of dimension 0
is called an extreme point and a face of dimension dim(P ) − 1 is called a
facet.
If there is no risk of confusion, we may simplify the notation by using V
instead of Vn (A instead of An).
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4.1 Dimension

Remark 3 If αT x + βT y = ρ is an hyperplan containing FCLOP (Gn, p),
then αij = αji for any i, j ∈ Vn, i 6= j.

Theorem 1 Given Gn = (Vn, An) and p, with n ≥ 3 and p = n− 1, then the
system

xij + xji = yi + yj − 1for all i, j ∈ Vn, i < j, (4.19)
∑

i∈Vn

yi = p, (4.20)

is a minimal equation system for FCLOP (Gn, p).

Proof It is easy to check that equations (4.19) and (4.20) are valid for the
FCLOP polytope and are linearly independent. Therefore to prove the the-
orem it suffices to show that any other equation

αT x + βT y = ρ, (4.21)

with FCLOP (Gn, p) ⊆ {(x, y) ∈ IR|n2| : αT x + βT y = ρ}, is a linear
combination of equations (4.19)-(4.20).
Let Si = Vn \ {i}, for each i ∈ Vn. Let πS1

be any LO on S1. Let πSi
, i 6= 1,

be the LO defined from πS1
as follows: π−1

Si
(j) = π−1

S1
(j) if j /∈ {1, i} and

π−1
Si

(1) = π−1
S1

(i). From (4.21), we have

αT xπS1 + βT yπS1 = ρ, (4.22)

αT x
πi

Si + βT y
πi

Si = ρ, for each i ∈ Vn \ {1}. (4.23)

Now combining carefully (4.22) with (4.23) for each i ∈ Vn \ {1} and with
the fact that αij = αji for any i and j, we obtain

β1 +
1

2
α(δ(1)) = βi +

1

2
α(δ(i)) for each i ∈ Vn \ {1} (4.24)

Now multiply each equation (4.19) by αij and do the sum over all i, j ∈ Vn,
i < j, then using the fact αij = αji we get

αT x =
1

2
α(δ(1))y1 +

∑

i∈Vn\{1}

1

2
α(δ(i))yi −

1

2
α(An) (4.25)

For each i ∈ Vn \ {1}, replace α(δ(i)) in (4.25) by its value in (4.24),

αT x +
∑

i∈Vn\{1}

βiyi =
1

2
α(δ(1))y1 + (β1 +

1

2
α(δ(1)))

∑

i∈Vn\{1}

yi −
1

2
α(An)

(4.26)
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But from (4.20) we know that
∑

i∈Vn\{1} yi = (n− 1)− y1 and hence (4.26)
may be rewritten as

αT x + βT y = (n− 1)(β1 +
1

2
α(δ(1))) −

1

2
α(An)

�

Theorem 2 Given Gn = (Vn, An) and p, with n ≥ 4 and 2 ≤ p ≤ n−2, then
the system

x(δ(i)) = (p− 1)yifor all i ∈ Vn, (4.27)
∑

i∈Vn

yi = p, (4.28)

is a minimal equation system for FCLOP (Gn, p).

Proof As in Theorem 1 it easy to see that (4.27)-(4.28) are valid for the
FCLOP polytope and that are linearly independent. It suffices to show that
any equation

αT x + βT y = ρ, (4.29)

with FCLOP (Gn, p) ⊆ {(x, y) ∈ IR|n2| : αT x + βT y = ρ}, is a linear
combination of equations (4.27)-(4.28).
We have two cases to consider (i) p = n− 2 and (ii) p ≤ n− 3.

(i) p = n−2. Let us fix a node l ∈ Vn and consider the FCLOP instance on
Gl

n−1 = (V l
n−1, Al

n−1) with the constant p unchanged that is p = n− 2,
where V l

n−1 = Vn \ {l} and Al
n−1 = {(i, j) ∈ V l

n−1×V l
n−1 : i 6= j}. Any

linear ordering πS with respect to Gl
n−1 and p is also a linear ordering

with respect to Gn and p. Therefore

FCLOP (Gl
n−1, p)

⊆

{(x, y) ∈ IR|(n−1)2| :
∑

i,j∈V l
n−1

,i6=j

αijxij +
∑

i∈V l
n−1

βiyi = ρ}.

From Theorem 1, the equality

∑

i,j∈V l
n−1

,i6=j

αijxij +
∑

i∈V l
n−1

βiyi = ρ (4.30)

may be obtained as a linear combination of the following equalities

xij + xji = yi + yj − 1for all i, j ∈ V l
n−1 and i < j, (4.31)
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∑

i∈V l
n−1

yi = p, (4.32)

Define such a linear combination as follows: multiply each equality
(4.31) by the corresponding scalar αij and multiply equality (4.32) by
a scalar σl. The sum of the resulting equations gives

∑

i,j∈V l
n−1

,i6=j

αijxij +
∑

i∈V l
n−1

(σl −
1

2
α(δ(i)) + αil)yi = σlp−

1

2
α(Al

n−1).

(4.33)

From (4.30) and (4.33) we have

ρ = σlp−
1

2
α(Al

n−1), (4.34)

βi = σl −
1

2
α(δ(i)) + αil for each i ∈ V l

n−1. (4.35)

Notice that these equalities are true for any l ∈ Vn.
Hence let i ∈ Vn \ {l, k} and write (4.35) with respect to i and k, we
get

βi = σk −
1

2
α(δ(i)) + αik. (4.36)

The combination of (4.35) and (4.36) gives

αil − αik = σk − σl. (4.37)

This is true for any i ∈ Vn and k, l ∈ Vn \ {i}, k 6= l. Thus we may
write

αij = λi − σj for any i, j ∈ Vn and i 6= j,

where λi for i ∈ Vn is a fixed scalar.

Notice that for any i, j ∈ Vn we have

αij = λi − σj,

αji = λj − σi.

With Remark 3 we have that

αij =
λi − σi

2
+

λj − σj

2



58 CHAPTER 4. POLYHEDRAL STUDY

Finally we may assume that

αij = µi + µj for any i, j ∈ Vn, i 6= j, (4.38)

where µi =
λi − σi

2
for any i ∈ Vn.

The combination of (4.34) and (4.35) for some i ∈ V l
n−1 gives

βi =
ρ

p
+

α(Al
n−1)

2p
−

1

2
α(δ(i)) + αil

=
ρ

p
+

2(n − 2)
∑

j∈V l
n−1

µj

2(n − 2)
− (n− 2)µi −

∑

j∈V l
n−1

µj + µi

=
ρ

p
− (n− 2)µi + µi,

and since p = n− 2 we obtain the following,

βi =
ρ

p
− µi(p − 1). (4.39)

Now it is straightforward to check, by using (4.38) and (4.39), that
equality (4.29) is obtained as a linear combination of (4.27) and (4.28),
where each equality (4.27) with respect to i is multiplied by µi and

equality (4.28) is multiplied by
ρ

p
.

(ii) p ≤ n − 3. This case will be proved by induction on the size of Vn.
Notice that here we must have n ≥ 5. The basic case of the induction
is obtained when p = n− 2, which is true from the previous case (i).

By the induction hypothesis the theorem is true for any instance of
the FCLOP, Gn′ = (Vn′ , An′) with 2 ≤ p ≤ n − 3 and p + 2 ≤ n′ <
n. Therefore we may assume that the theorem is true for G1

n−1 =
(V 1

n−1, A1
n−1) and p where p ≤ (n−1)−2. As before V 1

n−1 = {2, . . . , n}
and A1

n−1 = {(i, j) ∈ V 1
n−1 × V 1

n−1 : i 6= j}.

Notice that any LO πS with respect to the instance G1
n−1 and p is also

a LO with respect to the instance Gn and p and hence

FCLOP (G1
n−1, p)

⊆

{(x, y) ∈ IR|(n−1)2| :
n∑

i=2

n∑

j=2,i6=j

αijxij +
n∑

i=2

βiyi = ρ}.

Thus by the induction hypothesis, the equation

n∑

i=2

n∑

j=2,i6=j

αijxij +
n∑

i=2

βiyi = ρ, (4.40)
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may be obtained as a linear combination of the following equations

n∑

j=2,i6=j

xij + xji = (p − 1)yi for all i = 2, . . . , n, (4.41)

n∑

i=2

yi = p. (4.42)

Thus if we sum the equations (4.41) with respect to i = 2, . . . , n pre-
viously multiplied by a scalar λi with the equation (4.42) multiplied by
the scalar σ, and we combine with (4.40), we get the following:

αij = λi + λj for i = 2, . . . , n, j = 2, . . . , n, i 6= j, (4.43)

βi = σ − λi(p − 1) for i = 2, . . . , n. (4.44)

Now let S be any subset of V 1
n−1 with |S|= p. Let πS be any LO on S.

Consider the subset Sk = (S \ {k}) ∪ {1} and let πk be any LO on Sk.
From (4.29), we get

αT xπS + βT yπS = ρ,

αT xπSk + βT yπSk = ρ, for each k ∈ S.

Fix k and combine these last two equations with (4.43), then using
Remark 3, we obtain

β1 +
∑

j∈S\{k}

α1j = βk + (p− 1)λk +
∑

j∈S\{k}

λj

Replacing by the value of βk in (4.44), we finally obtain that

β1 +
∑

j∈S\{k}

α1j = σ +
∑

j∈S\{k}

λj , for each S ⊆ V 1
n−1, k ∈ S.

(4.45)

Take some element l ∈ S and write (4.45) with respect to S and l.
Then by combining it with (4.45) which is with respect to S and k, we
get α1l − α1k = λl − λk. This hold for any two elements l and k in
V 1

n−1. Hence we may assume that there is a constant scalar, that we
call λ1 for convenience, such that

α1j = λ1 + λj for each j = 2, . . . , n

and with Remark 3 we also have

αj1 = λ1 + λj for each j = 2, . . . , n

Thus replacing the values of α1j in (4.45) we have β1 = σ− (p− 1)λ1.
This complete the proof of case (ii) when p ≤ n− 3. �
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It is well known from Grötschel et al. (1985a) that the dimension of the
FCLOP polytope when p = n is 1

2n(n − 1). Also notice that when p = 1
this dimension is n− 1. From Theorems 1 and 2 we have the following

Corollary 1 dim(FCLOP (Gn, p)) = 1
2n(n−1)+ n−1, when 2 ≤ p = n−1,

and dim(FCLOP (Gn, p)) = n(n− 1)− 1, when 2 ≤ p ≤ n− 2. �

4.2 Facets

4.2.1 Trivial inequalities

In the following, we show that the two sets of trivial inequalities (4.5) and
(4.6) are defining facets for FCLOP (Gn, n−1). As well we show that (4.16)
are defining facets for FCLOP (Gn, p).

Theorem 3 The trivial inequalities xij ≥ 0 define facets for the FCLOP(Gn, p),
for any n ≥ 3 and p ≤ n− 1.

Proof For simplicity we will show that

x12 ≥ 0. (4.46)

Let F = {(x, y) ∈ theFCLOP (Gn, p) : x12 = 0}. Let

αT x + βT y ≤ ρ, (4.47)

be a valid inequality defining a facet for FCLOP (Gn, p) such that

F ⊆ F ′ = {(x, y) ∈ theFCLOP (Gn, p) : αT x + βT y = ρ}.

It is straightforward to check that αij = αji when {i, j} 6= {1, 2}. This will
be used implicitly in the sequel. The proof is by induction. This why we will
distinguish the cases (i) p = n − 1, (ii) p = n − 2 and (iii) p ≤ n − 3. Let
G′ = (Vn, A′

n) be the graph obtained from Gn by removing the arcs (1, 2) and
(2, 1).

(i) p = n− 1. We will show that (4.47) may be obtained as a linear com-
bination of (4.2), (4.3) and (4.46). Define Si = Vn \ {i}. Let Sk, for
k ∈ Vn\{1, 2} be any linear order such that πSk

(1) = 2 and πSk
(2) = 1.

Let πS1
and πS1

any linear orders on S1 and S2, respectively. Notice
that the incidence vectors of these linear orders belong to F ′. Therefore
the following hold:

β1 +
1

2
α(δG′(1)) = β2 +

1

2
α(δG′(2)), (4.48)

β1 +
1

2
α(δG′(1)) + α21 = βk +

1

2
α(δ(k)) ∀k ∈ Vn \ {1, 2}. (4.49)
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Consider the following linear combination:

αij ×(xij + xji = yi + yj − 1) ∀ i < j, j /∈ {1, 2},

α21 ×(x12 + x21 = y1 + y2 − 1),

α21 − α12 ×(−x12 ≤ 0).

Their sum may be written as follows:

αT x−
1

2
α(δ(i))

∑

i∈Vn\{1,2}

yi + (−
1

2
α(δG′(1)) − α21)y1

+(−
1

2
α(δG′(2)) − α21)y2 ≤ −

1

2
α(A′

n)− α21

Now considering (4.49) we obtain

αT x +
∑

i∈Vn\{1,2}

βiyi + (−β1 −
1

2
α(δG′(1)) − α21)

∑

i∈Vn\{1,2}

yi

+(−
1

2
α(δG′(1)) − α21)y1 + (−

1

2
α(δG′(2))− α21)y2

≤ −
1

2
α(A′

n)− α21

Recall that equality (4.3) implies that

∑

i∈Vn\{1,2}

yi = (n− 1)− (y1 + y2)

and if we replace in the above inequality we get

αT x +
∑

i∈Vn\{1,2}

βiyi − (−β1 −
1

2
α(δG′(1)) − α21)(y1 + y2)

+(−
1

2
α(δG′(1))− α21)y1 + (−

1

2
α(δG′(2))− α21)y2

≤ −
1

2
α(A′

n)− α21 + (n − 1)(β1 +
1

2
α(δG′(1)) + α21)

Now using (4.48) and (4.49) it is easy to check that above inequality
may be rewritten as below, for any i 6= 1, 2

αT x + βT y ≤−
1

2
α(A′

n)− α21 + (n− 2)(β1 +
1

2
α(δG′(1)) + α21)

+(β1 +
1

2
α(δG′(1)) + α21)

=−
1

2
α(A′

n) +
∑

i∈Vn\{1,2}

(βi +
1

2
α(δ(i))) + (β1 +

1

2
α(δG′(1)))
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=−
1

2
α(A′

n) +
∑

i∈Vn\{1,2}

βi + α(A′
n)−

1

2
α(δG′(1))

−
1

2
α(δG′(2)) + (β1 +

1

2
α(δG′(1)))

=
1

2
α(A′

n) +
∑

i∈Vn\{1,2}

βi + β1 −
1

2
α(δG′(2)).

Now let us show that

ρ =
1

2
α(A′

n) +
∑

i∈Vn\{1,2}

βi + β1 −
1

2
α(δG′(2)).

We know that the incidence vector of the LO πSk
for k /∈ {1, 2}, as

defined above, is in F ′. Therefore

ρ =
1

2
α(A′

n)−
1

2
α(δ(k)) + α21 + β1 + β2 − βk +

∑

i∈Vn\{1,2}

βi

Recall that from (4.48) and (4.49) we have

β2 +
1

2
α(δG′(2)) + α21 = βk +

1

2
α(δ(k))∀k ∈ Vn \ {1, 2}.

It follows that ρ is exactly the desired value.

(ii) p = n−2. Let l ∈ Vn and consider the FCLOP instance with the respect
to the graph Gl

n−1 = (V l
n−1, Al

n−1) with the constant p unchanged that
is p = n−2, where V l

n−1 = Vn \{l} and Al
n−1 = {(i, j) ∈ V l

n−1×V l
n−1 :

i 6= j}. Any linear ordering πS with respect to Gl
n−1 and p is also a

linear ordering with respect to Gn and p. Hence (4.46) define a facet
for FCLOP (Gl

n−1, p), with any l /∈ {1, 2}.

Also notice that any feasible solution of FCLOP (Gl
n−1, p) that satisfies

(4.46) with equality may be extended to a solution in FCLOP (Gn, p)
that also satisfies (4.46) as equation. This can be done by considering
yl = 0 and xil = xli = 0. . Hence we have the following

{(x, y) ∈ theFCLOP (Gl
n−1, p) : x12 = 0}

⊆

{(x, y) ∈ theFCLOP (Gl
n−1, p) :

∑

i,j∈V l
n−1

,i6=j

αijxij +
∑

i∈V l
n−1

βiyi = ρ}.

Notice that (4.50) is valid for FCLOP (Gl
n−1, p).

∑

i,j∈V l
n−1

,i6=j

αijxij +
∑

i∈V l
n−1

βiyi ≤ ρ. (4.50)
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Since from case (i) inequality (4.46) define a facet for FCLOP (Gl
n−1, p),

then inequality (4.50) may be obtained as a linear combination of equal-
ities (4.2), (4.3) and (4.46), all with respect to Gl

n−1 and p. Conse-
quently (4.50) is obtained as the sum of the following equalities and
inequality:

αij×(xij + xji = yi + yj − 1) ∀ i < j, j /∈ {1, 2, l}, i 6= l,

(4.51)

α21×(x12 + x21 = y1 + y2 − 1), (4.52)

ǫl×(
∑

i∈V l
n

yi = p), (4.53)

(α21 − α12)×(−x12 ≤ 0), (4.54)

where ǫl is a real scalar and σ is a positive scalar. The discussion
above is true for any l ∈ Vn \ {1, 2}. Thus the following hold for any
l ∈ Vn \ {1, 2} and i /∈ {1, 2, l}.

φ1 = β1 +
1

2
α(δG′(1)) = −α21 + α1l + ǫl, (4.55)

φ2 = β2 +
1

2
α(δG′(2)) = −α21 + α2l + ǫl, (4.56)

φi = βi +
1

2
α(δ(i)) = αil + ǫl. (4.57)

It results that

αil − αik = ǫk − ǫl ∀i ∈ Vn and k, l ∈ Vn \ {1, 2}.

This implies that

αij = λi − ǫj ∀i ∈ Vn and j ∈ Vn \ {1, 2}, (4.58)

where λi is a real scalar. Finally we may conclude that

αij = µi + µj ∀ i, j with {i, j} 6= {1, 2}, (4.59)

where

µi =
λi − ǫi

2
∀ i ∈ Vn \ {1, 2}, (4.60)

µi = λi −
λl + ǫl

2
i ∈ {1, 2}, (4.61)

Let us show that µ1 + µ2 = α21. From (4.57) we have φk = αkl + ǫl

for any k ∈ Vn \ {1, 2, l}. But αkl = αlk and αlk = λl − ǫk, so

λl = φk + ǫk − ǫl,
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and since ǫk − ǫl = αil − αik for any i ∈ Vn we may write

λl = φk + αil − αik, ∀ i ∈ Vn and l, k ∈ Vn \ {1, 2}. (4.62)

Notice that from (4.58), (4.61) and (4.62) we have

µ1 + µ2 = α1l + α2l + ǫl − λl = α2l + α1k + ǫl − φk. (4.63)

Let S′ = Vn \ {1, 2}. Let πS′ be any LO on S′. Let S′′ = Vn \ {1, k},
with k 6= 2, and let πS′′ be any LO on S′′. Obviously both incidence
vectors of πS′ and πS′′ are in F and hence in F ′ too. This imply that

φk − α1k = φ2.

Recall that φ2 = −α21 + α2l + ǫl. Therefore ǫl = φk − α1k −α2l + α21.
If we replace in (4.63) we obtain

µ1 + µ2 = α21. (4.64)

Since (4.50) is the sum of the equalities (4.51)-(4.54) we have that

ρ = −
1

2
α(A′

n) +
1

2
α(δ(l)) + ǫlp− α21. (4.65)

From (4.57) we have ǫl = βi + 1
2α(δ(i))−αil. A careful combination by

replacing this value of ǫl in (4.65) and using (4.59) and (4.64) gives

βi = −(p− 1)µi +
ρ

p
(4.66)

Using exactly the same combinations by considering the value of ǫl in
with respect to (4.55) and (4.56) we obtain

β1 = −(p− 1)µ1 +
ρ

p
, (4.67)

β2 = −(p− 1)µ2 +
ρ

p
. (4.68)

Now using (4.66)-(4.68) it is easy to check that (4.47) is obtained as
the sum of the following constraints

µi × (x(δ(i)) = (p− 1)yi) ∀ i ∈ Vn,
ρ

p
× (

∑

i∈Vn

yi = p),

(α21 − α12)× (−x12 ≤ 0).
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(iii) p ≤ n − 3. This case will be proved by induction on the size of Vn.
Notice that here we must have n ≥ 5. The basic case of the induction
is obtained when p = n − 2, which is true from the previous case (i).
By the induction hypothesis the theorem is true for any instance of
the FCLOP, Gn′ = (Vn′ , An′) with 2 ≤ p ≤ n − 3 and p + 2 ≤ n′ <
n. Therefore we may assume that the theorem is true for Gl

n−1 =
(V l

n−1, Al
n−1) and p with l /∈ {1, 2}. Here p ≤ (n − 1) − 2. As before

V l
n−1 = Vn \ {l} and Al

n−1 = {(i, j) ∈ V 1
n−1 × V l

n−1 : i 6= j}.

Any feasible solution of FCLOP (Gl
n−1, p) that satisfies (4.46) with

equality may be extended to a solution in FCLOP (Gn, p) that also
satisfies (4.46) as equation. This can be done by considering yl = 0
and xil = xli = 0. Hence we have the following

{(x, y) ∈ theFCLOP (Gl
n−1, p) : x12 = 0}

⊆

{(x, y) ∈ theFCLOP (Gl
n−1, p) :

∑

i,j∈V l
n−1

,i6=j

αijxij +
∑

i∈V l
n−1

βiyi = ρ}.

Notice that (4.69) is valid for FCLOP (Gl
n−1, p).

∑

i,j∈V l
n−1

,i6=j

αijxij +
∑

i∈V l
n−1

βiyi ≤ ρ. (4.69)

By the induction hypothesis the trivial inequality (4.46) define a facet
for FCLOP (Gl

n−1, p). Therefore inequality (4.69) may be obtained by
the sum of the following constraints:

µi×(x(δ(i)) = (p− 1)yi) for all i ∈ Vn \ {l},

ǫl×(
∑

i∈Vn\{l}

yi = p),

σ×(−x12 ≤ 0).

These imply the following

µi + µj = αij ∀i, j ∈ Vn \ {l}, {i, j} 6= {1, 2}, (4.70)

µ1 + µ2 = α21, (4.71)

µ1 + µ2 − σ = α12, (4.72)

βi = −(p− 1)µi + ǫl ∀i ∈ Vn \ {l}, (4.73)

ρ = ǫlp. (4.74)

Let S ⊆ Vn\{l}, with |S|= p. Let πS be any linear order with (xπS , yπS )
in F ⊆ F ′. If S∩{1, 2} = {1}, then set π−1

S (1) = |S|; and if S∩{1, 2} =
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{2}, then set π−1
S (2) = 1. Let S′ = (S \ {k}) ∪ {l}. From πS define

the following linear order π′
S: π−1

S′ (l) = π−1
S (k) and π−1

S′ (j) = π−1
S (j)

for each j ∈ S \ {k}. Notice that from the choice of πS, we have that
(xπS′ , yπS′ ) ∈ F ′ for any k ∈ S. Notice that for any k 6= l, there are
two sets S and S′ as defined above. When we replace (xπS , yπS ) and
(xπS′ , yπS′ ) in F ′ for any k and we combine the two resulting equations
we obtain:

βk + α(δ+
G(S)(k)) + α(δ−

G(S)(k)) = βl +
∑

j∈S\{k}

αlj . (4.75)

We have βk +α(δ+
G(S)(k))+α(δ−

G(S)(k)) = βk +(p−1)µk +
∑

j∈S\{k} µj.

If we replace βk by its value in (4.73) and we combine with (4.75), we
get

ǫl +
∑

j∈S

µj − µk = βl +
∑

j∈S

αlj − αlk. (4.76)

If we write (4.76) with respect to another element k′ ∈ S, k 6= k′, and
we combine the resulting equality with (4.76) we get

αlk − αlk′ = µk − µk′ ∀k, k′ ∈ S \ {l}.

Notice that such k′ exists always by the definition of πS and πS′ and
since p ≥ 2. Also for any pair of nodes k and k′ different from l, we
can build a subset S, S′ and the linear orderings πS and πS′ as defined
above. Therefore

αlk − αlk′ = µk − µk′ ∀k, k′ ∈ Vn \ {l}.

From this last equation and the fact that αlj = αjl we may assume
that

αlj = µl + µj for any j ∈ Vn \ {l},

αjl = µl + µj for any j ∈ Vn \ {l}.

If we replace with the value of αlj in (4.76), we obtain

βl = −(p− 1)µl + ǫl

Now it is straightforward to see that (4.47) is obtained by the sum of
the following constraints:

µi×(x(δ(i)) = (p− 1)yi) for all i ∈ Vn,

ǫl×(
∑

i∈Vn\{l}

yi = p),

σ×(−x12 ≤ 0).

�
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Theorem 4 The trivial inequalities yi ≤ 1, ∀i ∈ Vn are defining facets for
FCLOP (Gn, n− 1).

Proof For simplicity we will show that

y1 ≤ 1. (4.77)

define a facet for FCLOP (Gn, n− 1).
Let F = {(x, y) ∈ FCLOP (Gn, p) : y1 = 1}. Let

αT x + βT y ≤ ρ, (4.78)

be a valid inequality defining a facet for FCLOP (Gn, p) such that F ⊆ F ′ =
{(x, y) ∈ FCLOP (Gn, p) : αT x + βT y = ρ}.
It is straightforward to check that αij = αji for all i, j ∈ Vn. This will be
used implicitly in the sequel.

Let p = n − 1. We will show that (4.78) may be obtained as a linear com-
bination of (4.2), (4.3) and (4.77). Define Si = Vn \ {i}. Notice that the
incidence vector of the linear order πSi

belongs to F ′ if i 6= 1. Therefore the
following hold:

β2 +
1

2
α(δ(2)) = βk +

1

2
α(δ(k)), ∀k ∈ Vn \ {1}. (4.79)

Let us define φk and φ1 as follows:

φk = βk +
1

2
α(δ(k)), ∀k ∈ Vn \ {1},

φ1 = βk +
1

2
α(δ(1)).

Then we have φi = φj ∀i, j ∈ Vn \ {1}. Let σ = β2 + 1
2α(δ(2)) and

σ1 = β1 + 1
2α(δ(1)) Consider the following linear combination:

αij × (xij + xji = yi + yj − 1) ∀ i, j ∈ Vn, (4.80)

σ × (
∑

i∈Vn

yi = (n− 1)), (4.81)

(σ1 − σ)× (y1 ≤ 1). (4.82)

Their sum may be written as follows:

αT x−
∑

i∈Vn\{1}

1

2
α(δ(i))yi −

1

2
α(δ(1))y1 + σ

∑

i∈Vn\{1}

yi

+ σy1 + σ1y1 − σy1 ≤ −
1

2
α(An) + σ(n− 1) + σ1 − σ
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Now considering (4.79) we obtain

αT x + βT y ≤

[
−

1

2
α(An) + (n− 2)σ + β1 +

1

2
α(δ(1))

]

Now let us show that

ρ = −
1

2
α(An) + (n− 2)σ + σ1. (4.83)

We know that the incidence vector of the linear order πSk
for k /∈ {1}, as

defined above, is in F ′. Therefore

ρ =
1

2
α(An)−

1

2
α(δ(k)) − βk +

∑

i∈Vn

βi (4.84)

Recall that from (4.79) we have

σ = βk +
1

2
α(δ(k)) ∀k ∈ Vn \ {1}.

Therefor we may write

(n− 2)σ =
∑

i∈Vn\{1,k}

(βi +
1

2
α(δ(i)) ∀ k ∈ Vn \ {1} (4.85)

We also know that

α(An) =
1

2
α(δ(k)) +

1

2

∑

i∈Vn\{k}

α(δ(i))

Therefor, we may write

1

2
α(An)−

1

2
α(δ(k)) = −

1

2
α(An) +

1

2

∑

i∈Vn\{k}

α(δ(i)) (4.86)

By substituting (4.86) in (4.84) and combining the resulting equation in
(4.85) we obtain (4.84). �

Remark 4 The inequality y1 ≤ 1 does not define facet for the FCLOP (Gn, p)
with p ≤ n − 2 since it is implied by x12 + x21 ≤ y1, x12 + x21 ≤ y2

and x12 + x21 ≥ y1 + y2 − 1and that the face define by y1 = 1 is com-
pletely contained in the face defined by x12 + x21 ≤ y1. As a consequence,
yi ≤ 1, ∀i ∈ Vn is not defining facets for the FCLOP polytope when p ≤ n−2.
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4.2.2 Triangle-free inequalities

Theorem 5 Inequalities (4.15) define facets for the FCLOP(Gn, p), for p =
n− 1 and p = n− 2 with p ≥ 3.

Proof When p = n, FCLOP (Gn, p) is the linear ordering polytope and
inequalities (4.15) are exactly the triangle-free inequalities and the result
follows from Grötschel et al. (1985a). Without loss of generality, we may
assume that inequality (4.15) is considered with respect to the arcs (1, 2),
(2, 3) and (3, 1) and hence is written as follows

x12 + x23 + x31 + y(Vn \ {1, 2, 3}) ≤ ⌊
2p + (n − 3)

3
⌋. (4.87)

Let F be the face of FCLOP (Gn, p) defined by (4.87), that is F = {(x, y) ∈

theFCLOP (Gn, p) : x12 + x23 + x31 + y(Vn \ {1, 2, 3}) = ⌊
2p + (n− 3)

3
⌋}.

Let

αT x + βT y ≤ ρ, (4.88)

be a facet of FCLOP (Gn, p) and let F ′ = {(x, y) ∈ theFCLOP (Gn, p) : αT x+
βT y = ρ}. Assume that F ⊆ F ′. To complete the proof we need to show
that (4.88) is a linear combination of (4.87), (4.2) and (4.3) in case where
p = n − 1. When p ≤ n − 2, we need to show that (4.88) is a linear combi-
nation of (4.87), (4.9) and (4.10).

We will consider three cases (i) p = n− 1 and (ii) p = n− 2. Let us before
state an important property with some notation useful for the three cases.
Notice that if we take any LO having its incidence vector in F ⊆ F ′, then
if we switch the order of two any elements i and j, i, j 6∈ {1, 2, 3}, then the
resulting LO still in F ′ consequently we have αij = αji. The same is true if
we consider that exactly one of the two elements i and j is in {1, 2, 3}. There
is always a linear ordering satisfying (4.87) as equation and if we switch an
element i /∈ {1, 2, 3} with an element j ∈ {1, 2, 3}, the resulting LO satisfies
again (4.87) with equality. We summarize this discussion in the following
remark.

Remark 5 We have αij = αji for any i, j ∈ Vn with {i, j} 6⊂ {1, 2, 3}.

For each i ∈ {1, 2, 3}, denote by Gi the graph obtained by removing the arcs
(i, j), (j, i) for each j ∈ {1, 2, 3} \ {i}.
Let A′

n = An \ {(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)}.

(i) p = n − 1. Notice that the right hand side of (4.87) is equal to n − 2
in this case. Let Si = Vn \ {i}. Assume that i 6∈ {1, 2, 3}, and let π1

Si

be any LO on Si such that π1
Si

(j) = j, for j ∈ {1, 2, 3}. Now define
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the LO π1
S1

which is the same as π1
Si

except that π1
S1

(1) = i. It is a
simple matter to check that the incidence vectors of both π1

Si
and π1

Si

belong to F and thus to F ′. Consequently

αT x
π1

Si + βT y
π1

Si = ρ,

αT x
π1

S1 + βT y
π1

S1 = ρ.

The combination of these equalities implies that

βi +
1

2
α(δ(i)) = β1 +

1

2
α(δG1(1)) + α12 + α13, (4.89)

Apply the same procedure to the LO π2
Si

and π2
S1

, where π2
Si

is any LO
on Si such that π2

Si
(1) = 2, π2

Si
(2) = 3 and π2

Si
(3) = 1 and π2

S1
is the

same as π2
Si

except that π2
Si

(3) = i, we get

βi +
1

2
α(δ(i)) = β1 +

1

2
α(δG1(1)) + α21 + α31. (4.90)

Using the same reasoning as above with respect to some appropriate
LO we get the following

βi +
1

2
α(δ(i)) = β2 +

1

2
α(δG2(2)) + α23 + α21, (4.91)

βi +
1

2
α(δ(i)) = β2 +

1

2
α(δG2(2)) + α32 + α12, (4.92)

βi +
1

2
α(δ(i)) = β3 +

1

2
α(δG3(3)) + α31 + α32, (4.93)

βi +
1

2
α(δ(i)) = β3 +

1

2
α(δG3(3)) + α13 + α23, (4.94)

The combination of (4.89) and (4.94) gives

α21 − α12 = α13 − α31 = σ,

α13 − α31 = α32 − α23 = σ,

Therefore we may assume that there exists scalars λ12, λ13 and λ23

such that,

α21 = λ12 + σ, (4.95)

α12 = λ12, (4.96)

α13 = λ13 + σ, (4.97)

α31 = λ13, (4.98)

α32 = λ23 + σ, (4.99)
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α23 = λ23. (4.100)

From (4.89)-(4.94) we may write

βi +
1

2
α(δ(i)) = φ = β1 +

1

2
α(δG1(1)) + α12 + α13 (4.101)

= β2 +
1

2
α(δG2(2)) + α23 + α21, (4.102)

= β3 +
1

2
α(δG3(3)) + α31 + α32, (4.103)

Let us show that σ ≤ 0. Recall that π1
Si

is a LO on Si for i 6∈ {1, 2, 3},
where π1

Si
(j) = j, for j ∈ {1, 2, 3}. Let πSi

the same as π1
Si

, except
that πSi

(1) = 3 πSi
(2) = 2 πSi

(3) = 1. It is easy to check that the
incidence vector of π1

Si
belongs to F ′ whereas the incidence vector of

πSi
does not but it must satisfy (4.88) since this is a valid inequality.

Consequently,

αT x
π1

Si + βT y
π1

Si = α12 + α23 + α13 + ξ = ρ,

αT xπSi + βT yπSi = α31 + α32 + α21 + ξ ≤ ρ.

The combination of the two constraints above implies that

α32 − α23 + α31 − α13 + α21 − α12 = σ − σ + σ ≤ 0.

Consider the following linear combination:

αij × (xij + xji = yi + yj − 1) ∀ i < j, {i, j} 6⊂ {1, 2, 3},

(4.104)

(λ12 + σ)× (x12 + x21 = y1 + y2 − 1), (4.105)

(λ13 + σ)× (x13 + x31 = y1 + y3 − 1), (4.106)

(λ23 + σ)× (x23 + x32 = y2 + y3 − 1), (4.107)

(σ + φ)× (
∑

i∈Vn

yi = n− 1), (4.108)

−σ × (x12 + x23 + x31 +
∑

i∈Vn\{1,2,3}

yi ≤ n− 2). (4.109)

The sum of (4.104)-(4.109) is the following

αT x + (−
1

2
α(δ(i)) + φ) +

∑

i∈Vn\{1,2,3}

yi + (−λ12 − λ13 − σ + φ−
1

2
α(δG1(1)))y1

+(−λ12 − λ23 − σ + φ−
1

2
α(δG2(2)))y2 + (−λ13 − λ23 − σ + φ−

1

2
α(δG3(3)))y3
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≤ −
1

2
α(A′

n)− λ12 − λ13 − λ23 − 3σ + (σ + φ)(n− 1)− σ(n − 2),

By choosing the appropriate value of φ using (4.101)-(4.103) and re-
placing in the above inequality, we get

αT x +
∑

i∈Vn\{1,2,3}

βiyi + (−λ12 − λ13 − σ + β1 + α12 + α13)y1

+(−λ12 − λ23 − σ + β2 + α23 + α21)y2

+(−λ13 − λ23 − σ + β3 + α31 + α32)y3

≤ −
1

2
α(A′

n)− λ12 − λ13 − λ23 − 3σ + (σ + φ)(n − 1)− σ(n− 2)

Finally by considering (4.95)-(4.100) we get

αT x + βT y ≤ −
1

2
α(A′

n)− σ − α12 − α23 − α13 + φ(n− 1). (4.110)

The last step is to show that the right hand side of (4.110) is ρ.

Consider the LO π1
Si

as defined above, its incidence vector belong to
F ′. Hence

ρ =
1

2
α(A′

n)−
1

2
α(δ(i)) + α12 + α23 + α13 +

n∑

j=1,j 6=i

βj ,

Replace 1
2α(δ(i)) by its value in (4.55), we get

ρ =
1

2
α(A′

n) + α12 + α23 + α13 − φ +
n∑

j=1

βj ,

Replace all the βi for i = 1, . . . , n, by their values in (4.101)-(4.103),
we then obtain

ρ =
1

2
α(A′

n) + α12 + α23 + α13 − φ + φn−
1

2

∑

i∈Vn\{1,2,3}

α(δ(i))

−
1

2
α(δG1(1)) −

1

2
α(δG2(2)) −

1

2
α(δG3(3))

− α12 − α13 − α23 − α21 − α31 − α32

A careful sum with the relationships (4.95)-(4.100) imply

ρ =
1

2
α(A′

n) + α12 + α23 + α13 + φ(n − 1)− α(A′
n)

− 2(α12 + α23 + α13)− σ,

=−
1

2
α(A′

n)− σ − α12 − α23 − α13 + φ(n− 1).
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(ii) p = n − 2. Notice that the right hand side is equal to n − 3. Let
l ∈ Vn and consider the FCLOP instance with respect to the graph
Gl

n−1 = (V l
n−1, Al

n−1) with the constant p unchanged that is p = n− 2.
Here V l

n−1 = Vn \ {l} and Al
n−1 = {(i, j) ∈ V l

n−1 × V l
n−1 : i 6= j}. Any

linear ordering πS with respect to Gl
n−1 and p is also a linear ordering

with respect to Gn and p. The following inequality obtained from (4.87)
is a facet of FCLOP (Gl

n−1, p), this is the result of the previous case

x12 + x23 + x31 + y(Vn \ {1, 2, 3, l}) ≤ ⌊
2p + ((n− 1)− 3)

3
⌋ = n− 3.

(4.111)

Also notice that any feasible solution of FCLOP (Gl
n−1, p) that satisfies

(4.111) with equality may be extended to a solution in FCLOP (Gn, p)
by considering yl = 0 and xil = xli = 0. This solution belongs to F
and thus it belongs to F ′ too. Hence we have the following

{(x, y) ∈ theFCLOP (Gl
n−1, p) : x12+x23+x31+y(Vn\{1, 2, 3, l}) = n−3}

⊆

{(x, y) ∈ theFCLOP (Gl
n−1, p) :

∑

i,j∈V l
n−1

,i6=j

αijxij +
∑

i∈V l
n−1

βiyi = ρ}.

It is easy to see that the inequality

∑

i,j∈V l
n−1

,i6=j

αijxij +
∑

i∈V l
n−1

βiyi ≤ ρ, (4.112)

is valid for FCLOP (Gl
n−1, p). Since from case (i), inequality (4.111)

define a facet of FCLOP (Gl
n−1, p), then inequality (4.112) define the

same facet and may be obtained as a linear combination of equalities
(4.2), (4.3) and inequality (4.111), all with respect to Gl

n−1 and p.
Recall that when i and j do not belong at the same time to {1, 2, 3},
we have αij = αji. Consequently (4.112) is obtained as the sum of the
following equalities and inequality:

αij × (xij + xji = yi + yj − 1) ∀ i < j, j /∈ {1, 2, 3, l}, i 6= l,

(4.113)

α21 × (x12 + x21 = y1 + y2 − 1), (4.114)

α13 × (x13 + x31 = y1 + y3 − 1), (4.115)

α32 × (x23 + x32 = y2 + y3 − 1), (4.116)

ǫl × (
∑

i∈Vn\{l}

yi = p), (4.117)
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σ × (x12 + x23 + x31 +
∑

i∈Vn\{1,2,3,l}

yi ≤ n− 3), (4.118)

Where ǫl is a real scalar and σ is a positive scalar. The discussion
above is true for any l ∈ Vn \ {1, 2, 3}.
Thus the following hold for any l ∈ Vn \ {1, 2, 3}.

α12 − α21 = α31 − α13 = α23 − α32 = σ, (4.119)

βi +
1

2
α(δ(i)) = φi = αil + ǫl + σ ∀ i ∈ Vn \ {1, 2, 3, l},

(4.120)

β1 +
1

2
α(δG1(1)) = φ1 = α1l − α21 − α13 + ǫl, (4.121)

β2 +
1

2
α(δG2(2)) = φ2 = α2l − α21 − α32 + ǫl, (4.122)

β3 +
1

2
α(δG3(3)) = φ3 = α3l − α13 − α32 + ǫl. (4.123)

If we combine each of the equalities (4.120)-(4.123) with respect to l
and k and both l and k are not in {1, 2, 3} we get

αil − αik = ǫk − ǫl ∀ i ∈ Vn and k, l ∈ Vn \ {1, 2, 3}. (4.124)

Following the above equality we may assume that

αij = λi − ǫj ∀ i ∈ Vn and j ∈ Vn \ {1, 2, 3}, (4.125)

where λi is a real scalar.

Following the same lines as in (4.37)-(4.38) we may assume that

αij = µi + µj ∀ i, j with {i, j} 6⊂ {1, 2, 3}, (4.126)

with

µi =
λi − ǫi

2
∀ i ∈ Vn \ {1, 2, 3}, (4.127)

µi = λi −
λl + ǫl

2
∀ i ∈ {1, 2, 3}, (4.128)

where l is any element among Vn \ {1, 2, 3} this is coherent since λi +
ǫi = λj + ǫj for any i, j ∈ Vn \ {1, 2, 3}. This come from (4.125) and
the fact that in this case αij = αji.

Let us show that µ1 + µ3 = α13, µ1 + µ2 = α21 and µ2 + µ3 = α32.
Before we began the proof for each case let us state some facts.
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If we consider (4.120) with respect to some k ∈ Vn \ {1, 2, 3, l} instead
of the element i we get φk = αkl + ǫl + σ. But since αkl = αlk and by
(4.125) αlk = λl − ǫk we get

λl = φk + ǫk − ǫl − σ,

and since ǫk − ǫl = αil − αik for any i ∈ Vn we may write

λl = φk + αil − αik − σ, ∀ i ∈ Vn and l, k ∈ Vn \ {1, 2, 3}. (4.129)

Notice that from (4.125), (4.128) and (4.129) we have

µ1 + µ3 = α1l + α3l + ǫl − λl = α3l + α1k + σ + ǫl − φk, (4.130)

µ1 + µ2 = α1l + α2l + ǫl − λl = α2l + α1k + σ + ǫl − φk, (4.131)

µ2 + µ3 = α2l + α3l + ǫl − λl = α3l + α2k + σ + ǫl − φk. (4.132)

• Let S′ = Vn\{1, 3}. Let πS′ be any LO on S′. Let S′′ = Vn\{1, k}
and πS′′ be any LO on S′′ with πS′′(1) = 2 and πS′′(2) = 3. It is
easy to check that both incidence vectors of πS′ and πS′′ are in F
and hence in F ′ too. This imply that

φk − α1k = φ3 + α23

Recall from (4.123) that φ3 = α3l − α13 − α32 + ǫl. Therefore
ǫl = φk −α1k −α23−α3l + α13 + α32. If we replace in (4.130) we
obtain µ1 + µ3 = σ + α32−α23 + α13. But recall from (4.119) we
have α23 − α32 = σ, consequently

µ1 + µ3 = α13. (4.133)

• Define S′ = Vn \ {1, 2}. Let πS′ be any LO on S′. Let S′′ = Vn \
{1, k} and πS′′ be any LO on S′′ with πS′′(1) = 2 and πS′′(2) = 3.
It is easy to check that both incidence vectors of πS′ and πS′′ are
in F and hence in F ′ too. This imply that

φk − α1k = φ2 + α23.

Combining this equality with the value of φ2 in (4.122) we obtain

ǫl = φk − α1k − α23 − α2l + α21 + α32.

Now if we replace ǫl in (4.131) by its value in the above equality
we obtain

µ1 + µ2 = α21. (4.134)
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• Define S′ = Vn \ {2, 3}. Let πS′ be any LO on S′. Let S′′ = Vn \
{2, k} and πS′′ be any LO on S′′ with πS′′(1) = 3 and πS′′(2) = 1.
It is easy to check that both incidence vectors of πS′ and πS′′ are
in F and hence in F ′ too. This imply that

φk − α2k = φ3 + α31

Combining this equality with the value of φ3 in (4.123) we obtain

ǫl = φk − α2k − α31 − α3l + α13 + α32.

Now if we replace ǫl in (4.132) by its value in the above equality
we obtain

µ2 + µ3 = α32. (4.135)

Since (4.112) is the sum of the equalities (4.113)-(4.118) with a careful
counting one may see that

ρ = −
1

2
α(A′

n) +
1

2
α(δ(l)) + ǫlp− α21 − α13 − α32 + σ(n− 3).

(4.136)

Recall that from (4.120) we have ǫl = βi + 1
2α(δ(i)) − αil − σ, for

i /∈ {1, 2, 3}. Replacing by this value of ǫl in (4.136) and using the fact
that αij = µi + µj for {i, j} 6⊆ {1, 2, 3}, we obtain

βi = −(p− 1)µi +
ρ− σ(n− 3)

p
+ σ. (4.137)

Using exactly the same combinations with respect to the value of ǫl in
(4.121)-(4.123) and the fact that α21 = µ1 + µ2, α13 = µ1 + µ3 and
α32 = µ2 + µ3 we obtain

β1 = −(p− 1)µ1 +
ρ− σ(n− 3)

p
, (4.138)

β2 = −(p− 1)µ2 +
ρ− σ(n− 3)

p
, (4.139)

β3 = −(p− 1)µ3 +
ρ− σ(n− 3)

p
. (4.140)

Now using (4.119), (4.133), (4.134) , (4.135) and (4.137)-(4.140) it is
easy to check that (4.88) is obtained by the sum of the following linear
constraints:

µi × (x(δ(i)) = (p− 1)yi) ∀ i ∈ Vn,

(
ρ− σ(n− 3)

p
) × (

∑

i∈Vn

yi = p),

σ ×(x12 + x23 + x31 +
∑

i∈Vn\{1,2,3}

yi ≤ n− 3).
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4.3 Related studies

In the section we will discuss the cases where the valid inequalities intro-
duced in the previous section are not defining facets for the FCLOP poly-
tope. Let us first discuss the case of the triangle-free inequalities (4.14) and
(4.15). The following Lemmas establish the relation between these two set
of valid inequalities.

Let us consider the two inequalities below corresponding to (4.14) and (4.15)
with respect to i = 1, j = 2, k = 3.

x12 + x23 + x31 +
∑

i∈Vn\{1,2,3}

yi ≤ ⌊
2p + (n− 3)

3
⌋, (4.141)

x12 + x23 − x13 − y2 ≤ 0. (4.142)

Let F1 and F2 be the faces of FCLOP (Gn, p) defined by inequalities (4.141)
and (4.142), respectively.

Lemma 6 Inequalities (4.14) and (4.15) are defining the same facets for
FCLOP (Gn, n− 1).

Proof Without loss of generality, we will show that (4.142) and (4.141)
define the same facet for FCLOP (Gn, n − 1). In fact, we will prove that
F1 = F2.

Let S ⊆ Vn with |S|= n− 1 and πS a linear order on S. It is easy to check
that the incidence vector of πS is in F1 (resp. F2) if and only if one of the
following statements holds:

(i) {1, 2, 3} ⊆ S and π−1(1) < π−1(2) < π−1(3),

(ii) {1, 2, 3} ⊆ S and π−1(2) < π−1(3) < π−1(1),

(iii) {1, 2, 3} ⊆ S and π−1(3) < π−1(1) < π−1(2),

(iv) 3 /∈ S and π−1(1) < π−1(2),

(v) 2 /∈ S and π−1(3) < π−1(1),

(vi) 1 /∈ S and π−1(2) < π−1(3).

It is also easy to check that the incidence vector of any linear order satisfying
(i)-(vi) is in F2 (resp. F1). And since any vector in F1 (resp. F2) may be
obtained as a convex combination of the 0-1 vectors in F1 (resp. F2) we
conclude that F1 = F2. �

Lemma 7 Inequalities (4.15) do not define facets for FCLOP (Gn, n− 2).
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Proof Here we have p = n − 2. We will prove that F2 ⊂ F1. Let us list all
the linear orders πS having their incidence vectors in F2.

(i) {1, 2, 3} ⊆ S and π−1(1) < π−1(2) < π−1(3),

(ii) {1, 2, 3} ⊆ S and π−1(2) < π−1(3) < π−1(1),

(iii) {1, 2, 3} ⊆ S and π−1(3) < π−1(1) < π−1(2),

(iv) 2 /∈ S, {1, 3} ⊆ S and π−1(3) < π−1(1),

(v) 2 /∈ S and 1 /∈ S,

(vi) 2 /∈ S and 3 /∈ S,

(vii) 3 /∈ S, {1, 2} ⊆ S and π−1(1) < π−1(2),

(viii) 1 /∈ S, {2, 3} ⊆ S and π−1(2) < π−1(3).

The incidence vector of any linear order satisfying (i)-(viii) is in F1. Con-
sequently, F2 ⊆ F1. Now consider S = V \{1, 3}. Then the incidence vector
of any linear order πS is in F1 but not in F2. �

The next lemma shows that (4.15) triangle-free inequalities define facet only
for FCLOP (Gn, n − 1) and for FCLOP (Gn, n− 2).

Lemma 8 Inequalities (4.15) are not defining facets for FCLOP (Gn, p) when
p ≤ n− 3. Moreover, the following hold

(i) dim(F1) =
(n− p)(n− (p + 1))

2
, when n− 5 ≤ p ≤ n− 3, and

(ii) F1 = ∅, when p ≤ n− 6 .

Proof We will show statements (i)-(ii). Then any one of these statements
implies that inequalities (4.15) are not facet defining for FCLOP (Gn, p)
when p ≤ n− 3.

(i) n−5 ≤ p ≤ n−3. Observe that the right hand side of inequality (4.142)
in this case is n − p. Notice that for any linear order πS having its
incidence vector in F1, we must have S ∩ {1, 2, 3} = ∅. In fact, when
1 ≤ |§ ∩ {1, 2, 3}|≤ 3 then the left hand side of inequality (4.142) is at
modt n− (p + 1). Hence the unique linear orders lying on the face F1

are those with S ∩ {1, 2, 3} = ∅, these are exactly the linear orders on
n − p elements. From Grötschel et al. (1985a) we know that we have

at most
(n− p)(n− (p + 1))

2
+1 such a linear orders that are affinely

independent.
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(ii) p ≤ n − 6. Let p = n − j. Notice that in any case the left hand side
of inequality (4.142) is at most n− j. now to evaluate the right hand
side we will distinguish the three cases below with k ≥ 2.

1. j = 3k. The right hand side is equal to n− (2k + 1),

2. j = 3k + 1. The right hand side is equal to n− (2k + 2),

3. j = 3k + 2. The right hand side is equal to n− (2k + 3).

In all the three cases we have F1 = ∅. �

Observe from the lemma above the only cases where F1 is not empty is when
S ∩ {1, 2, 3} = set. But in this case the incidence vector of any linear order
belongs to F2. One car easy construct linear orders in F2 but not in F1.
Hence F1 ⊂ F2.
From the discussion above, one may expect that inequalities (4.141) define
facet for FCLOP (Gn, p) when p ≤ n− 3. Unfortunately this is not the case
and we have shown it by a numerical calculation.
To do so, we create a matrix B that contains all the active feasible so-
lutions (the feasible solutions that hold as equality) as the columns (or
rows) and then calculate the rank of B matrix. The fact that rank(B) ≤
dim(FCLOP (Gn, p) − 1 with p ≤ n − 3 confirms that these inequalities
are not defining facet for the FCLOP (Gn < p) with p ≤ n − 3. As an
example, we are going to show that the inequality yi ≤ 1 with p = n − 2 is
not defining facet for the FCLOP polytope. the examples corresponding to
other inequalities mostly need a huge B matrix. That is the reason why we
show the method of calculation on a relatively small matrix and a simple
inequality instance.

Example 1 Consider n = 5 and p = 3. In this case, regarding the corollary
1, we have Dim(FCLOP (G5, 3)) = 19. Without lose of generality, we set
i = 1 and show that the inequality y1 ≤ 1 is not defining facet for the
FCLOP (G5, 3) polytope.
The set y1 ≤ 1 hold as equality for 36 feasible solutions that are reported in
(Table 4.1). The number of affinely independent solutions that are reported
in Table 4.1 is equal to rank of the B matrix that is equal to 16.
Since rank(B) 6= Dim(FCLOP (G5, 3)) − 1, consequently, y1 ≤ 1 does not
define a facet for the FCLOP (G5, 3), and in the same way, yi ≤ 1.
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x12 x13 x14 x15 x21 x23 x24 x25 x31 x32 x34 x35 x41 x42 x43 x45 x51 x52 x53 x54 y1 y2 y3 y4 y5

1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
2 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
3 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
4 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
5 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0
6 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1
7 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0
8 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0
9 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1
10 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1
11 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
12 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
13 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
14 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
15 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
16 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
17 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0
18 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1
19 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
20 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0
21 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1
22 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
23 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0
24 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1
25 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0
26 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0
27 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1
28 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0
29 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0
30 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
31 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1
32 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1
33 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1
34 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1
35 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1
36 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1

Table 4.1: Matrix B contains the feasible solutions such that y1 = 1 for all of them
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By doing the same, we have shown for some other valid inequalities that they
are not defining facet for the FCLOP polytope. Table 4.2 reports the numer-
ical results to show that some of the proposed classes of valid inequalities are
not defining facets for the FCLOP polytope.

In the following, we will discuss the set of valid inequalities that are intro-
duced earlier in this chapter and show that they are not defining facets for
the FCLOP polytope by calculation rank of the B matrix as it is explained
earlier.

Table (4.2) reports rank of obtained B matrices for different n and p values
for different inequalities. tested in the same manner. The list of valid
inequalities that have been tested are in the following:

• Const. 1:

xij + (xik + xki)− (xkj + xjk)− yi ≤ 0

∀ i, j, k ∈ Vn : i 6= j 6= k

• Const. 2:

xij + xji ≤ yi ∀ i, j ∈ Vn, i 6= j, p < n− 1

• Const. 3:

xij + xji − yi − yj + 1 ≥ 0 ∀ i, j ∈ Vn, i < j, p < n− 1

#Nodes #Cardinality dimension rank(B)

Const. 1
5 4 14 9
6 4 29 23

Const. 2 5 3 19 17

Const. 3 5 3 19 17

Table 4.2: Rank of B matrices for different inequalities and different p values

In Table 4.2, the first column refers to the set of inequalities. Second column,
#Node reports n, the number of nodes, and the third column refers to p,
the cardinality number. The column dimension reports dimension of the
FCLOP polytope corresponds to the aforementioned n and p (see Corollary
1). Finally the last column, rank(B), reports rank of the priory defined B
matrix.
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4.4 Conclusion

In this chapter we discussed the inequalities that define facets for FCLOP (Gn, p).
In particular, we show that in some cases we may have inequalities that de-
fine the same facets. This means that we may remove one of these sets of
inequalities only when a complete description for FCLOP (Gn, p) is known.
Since we do not know this description, all the inequalities may be useful
for our linear relaxation even when they define the same facets or when the
faces defined by some inequalities are included in the faces defined by other
set of inequalities.



CHAPTER 5

Lagrangian Relaxation

Lagrangian relaxation is mainly based on identifying the set of complicating
constraints. That is, one identifies a set of constraints without which the
problem can be solved more efficiently. Such constraints are relaxed in the
Lagrangian fashion using Lagrange (dual) multipliers and penalize objective
function upon violation of the relaxed constraints (Held and Karp, 1970,
1971; Geoffrion, 1974).

In this chapter we propose different Lagrangian relaxations for the FCLOP
problem and compare the quality of obtained dual bound.

5.1 Introduction

Relaxation is a classical strategy in constrained optimization (see Geoffrion
(1974) or Lemaréchal (2001) for basic results).
When solving a MIP, continuous relaxation relaxation is a practical tool as
a direct bound can be completed by a performant LP solver.

Different kind of relaxations have been reported in the LOP literature includ-
ing binary relaxation, semi-definite relaxation, linear relaxation, Lagrangian
relaxation etc. Very often it is assumed that the better is the quality of re-
sulting bound from such relaxation, the more likely that branch-and-bound-
like methods would perform in converging to optimality.

83
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Lagrangian Relaxation

When dealing with optimization problems which are not convex such as
(M)IPs, Lagrangian relaxation is a method to find a dual bound on such
optimization problems.

Given a (mixed integer) linear programming problem:

(P ) : max f(x)

g(x) ≤ 0

x ∈ X

where g(x) represents the set of complicating constraints. In this notation,
X may contain constraints as well as the sign restrictions. It may also con-
tain real, binary or general integer variables.
The constraints g(x) ≤ 0 are assumed to be the complicating constraints,
in the sense that problem (P) without them could be solved much easier
(e.g. it possess particular structure for which very sophisticated solution
approach exists).

Definition 1 (The Lagrangian Relaxation of (P) relative to g(x) ≤ 0) The La-
grangian Relaxation of (P) relative to the complicating constraints g(x) ≤ 0
with nonnegative multipliers λ (dual variables) is defined below:
Lagrangian function:

L(x, λ) =(f(x)− λ · g(x)) x ∈ X, λ ≥ 0 (5.1)

Lagrangian relaxation:

LRλ : v(λ) = sup
x∈X

L(x, λ) (5.2)

The constraints g(x) ≤ 0 are said to be dualized in Lagrangian form.
The dual multipliers λ are interpreted here as the prices to pay to force the
relaxed constraints.

Due to the weak duality theorem, we have:

∀x ∈ X, ∀λ ≥ 0 s.t. g(x) ≤ 0 : f(x) ≤ v(λ) (5.3)

Definition 2 (Lagrangian dual problem) The problem of finding the tightest
Lagrangian dual bound on v(λ) is known as the Lagrangian dual problem.

Dual problem (least upper bound):

inf
λ≥0

(vλ) = inf
λ≥0

(sup
x∈X

L(x, λ)) (5.4)
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Observation Let x(λ) denote optimal solution to the (LRλ) for some λ ≥ 0.
If g(x(λ)) ≤ 0, then it is optimal for (P) if λ · g(x(λ)) = 0. In this case,
f(x(λ)) = vλ (due to the strong duality theorem).

Clearly, problem (LRλ) is a relaxation of (P ) and the set of feasible solutions
of the primal problem (P), FS(P), is a subset of those of (LRλ), FS(LRλ).

FS(P ) ⊆ FS(LRλ)

Moreover, if we call vLP the optimal value of linear programming relaxation
of P , and vLR the optimal dual value of the Lagrangian relaxation problem
of P and v∗

P the optimal value of P , then for a maximization problem we
always have,

v∗
P ≤ vLR ≤ vLP

In addition, whenever the sub-problem has integrality property, then we al-
ways have vLRλ

= vLP (Lemaréchal, 2001).

Yet, the key step in Lagrangian relaxation is the identification of complicat-
ing constraints.

Lagrangian decomposition

In many optimization problems such as network design, routing etc., often
relaxing a set of linking constraints in a Lagrangian fashion leads to a de-
composable structure when the problem is block separable. In such cases we
can have less difficulties to find the optimal of each subproblem. Another
way is to decompose the problem by splitting the variables. Guignard and
Kim (1987) provides some tips and tricks such as duplicating variables and
constraints in Lagrangian fashion facilitate decomposing the problem into
smaller subproblems for each of which (or perhaps some of them), efficient
solution methods may exist.

It is shown that, under certain circumstances, the bound resulted from the
Lagrangian decomposition can be even better than the bound generated by
the corresponding Lagrangian relaxation (Guignard and Kim, 1987).

Lagrangian Decomposition - two sub-problems

Given a (mixed integer) linear programming problem:

(P ) : max c · x

x ∈ S1 ∩ S2 ← (complicating constraints)

x ∈ X
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where X may contain constraints as well as the sign restrictions that may
also contain real, binary or general integer variables.

By introducing copy variables y ∈ X when y = x, we may have

(P ′) : max f1(x) + f2(y)

x ∈ S1

y ∈ S2

x− y = 0

x, y ∈ X

By dualizing the copy constraints we will have:

(LDu) : max c · x + u(y − x),

x ∈ S1

y ∈ S2

x, y ∈ X.

Now, it is straightforward to decompose the LDu as in the following:

(LDu(x)) : max c · x− ux,

x ∈ S1 x ∈ X.

and

(LDu(y)) : max uy,

y ∈ S2.

Figure 5.1 sheds more light on it (Guignard and Kim, 1987).

As it is shown in Figure 5.1, if one of the sub-problems has integrality prop-
erty, then the quality of dual bound obtained by lagrangian decomposition
method can not be better that the lagrangian relaxation dual bound. In
other word, if none of the sub-problems has integrality property, then the
LD dual bound can be even tighter than LR dual bound.
Another interest of applying this method is to have several but easier to
solve sub-problems.

Furthermore, we may split the set of variables to three groups and introduce
a lagrangian decomposition to three sub-problems. This helps to have still
more easier to solve sub-problems and may helps to improve the quality of
dual bound as it is confirmed by the numerical results presented at the end
of the chapter.



5.1. INTRODUCTION 87

Figure 5.1: Lagrangian decomposition, two sub-problems (Guignard and Kim, 1987).

Lagrangian Decomposition - three sub-problems

Given a (mixed integer) linear programming problem:

(P ) : max f1(x) + f2(x) + f3(x)

x ∈ X = XA ∩XB ∩XC

X contains a set of constraints as well as the bound restrictions. The opti-
mization problem is assumed easy to solve if we had any of the f1(x), f2(x)
or f3(x) as the objective function (or there exist efficient tools to solve them)
but it becomes difficult to solve by having all the parts at the same time.

Let us introduce two different sets of copy variables y and z.

(P ′) : max f1(x) + f2(y) + f3(z)

x− y = 0

x− z = 0

x ∈ XA, y ∈ XB , z ∈ XC

After relaxing the two copy constraints we have:

(P ′) : max f1(x) + f2(y) + f3(z)− λ(x− y)− µ(x− z)

x ∈ XA, y ∈ XB , z ∈ XC

Then by decomposing P ′ we will have the following three sub-problems:
(P

A
)

max f1(x)− λx− µx
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x ∈ XA

(P
B

)

max f2(y) + λy

y ∈ XB

(P
C

)

max f3(z) + µz

z ∈ XC

Figures 5.2 and 5.3 shed more lights on this concept.

Figure 5.2: Lagrangian decomposition, with three sub-problems, where decomposing
the model to three subproblems may improve the LP bound (Guignard and Kim, 1987).

In Figure 5.2, after decomposing the initial IP model to three sub-problems,
the dual bound obtained is improved.
Also there are situations, as shown in Figure 5.3, that decomposing the
model to three sub-problems does not contribute in improving the dual
bound as much as decomposing the model to two sub-problems.
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Figure 5.3: Lagrangian decomposition, with three sub-problems where depending on the
subproblems properties and the objective function, Lagrangian decomposition technique
may not improve the LP bound. It can still improve the computational time (Guignard
and Kim, 1987).

Algorithms to solve the Lagrangian dual problem

Lagrangian dual problem LRλ is a piecewise linear function, and in general
it is a non-differential optimization problem. A very successful, simple and
well-known method to solve the Lagrangian dual problems is Subgradient
method (Polyak, 1969).
Subgradient method was originally proposed in the 60s in the former Soviet
Union. Very similar method has also been proposed in Held and Karp (1971)
for solving traveling salesman problem. Later, Lemarechal (1975) proposed
the well-known Bundle methods as an extension of subgradient. The volume
algorithm was proposed in Barahona and Anbil (2000) as an algorithm which
simultaneously produces a primal feasible solution for the problem as well
as a dual bound.

The definition of step size λ in subgradient method is of crucial importance,
the speed of convergence depends heavily on it. There are several studies
in the literature on proposing different step-size update scheme to speed up
the convergence of the algorithm. A very commonly used step size for the
subgradient method is proposed in Held et al. (1974).

The bundle method is based on the idea of storing information < v(λ), g(x(λt)) >
(v(λ) is the dual objective and g(x(λt)) is subgradient at iteration t) about
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previous iterations in a set β, the bundle, in order to exploit such informa-
tion to chose a good decent direction (when minimizing dual problem). The
new point are then chosen along this decent direction. As in contrast to
the so called simple subgradient method, within which only the information
about the present iterations is used to guide the search, the bundle is in fact
exploiting the current and past memory to guide the search towards optimal
values (Lemarechal, 1978).
The major difference between different bundle methods lies in the size of the
bundle and the memory.

For the FCLOP problem, we propose different relaxation schemes based on
the idea of relaxing complicating constraints. We have studied different
relaxations strategies and different sub-problems to identify the best con-
straints to relax and compared the quality of obtained dual bound.
We have also studied several Lagrangian decomposition schemes, which re-
sult notably high quality dual bounds.
To solve all these variants of the Lagrangian dual problems for the FCLOP,
we have applied Bundle method and proposed a comparison between differ-
ent relaxation strategies.

5.2 Complicating constraints for the FCLOP

Linear Ordering Problem is already known as a NP-hard problem and the
computational effort needed for solving even moderate size instances increase
dramatically. Yet, it is an easier problem comparing to the FCLOP. There
are several cases where an easy-to-solve instance of the LOP (which is solved
in a few seconds) is not efficiently solvable for some cardinality number
p < n.
The mathematical formulations corresponding to the FCLOP with 0 ≤ p ≤
n− 1 follows:

FCLOP(Gn, p) :

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij (5.5)

s.t.

xij + xji ≤ yi ∀i, j ∈ Vn, i < j (5.6)

xij + xji ≤ yj ∀i, j ∈ Vn, i < j (5.7)

xij + xji ≥ yi + yj − 1 ∀i, j ∈ Vn, i < j (5.8)

xij + xjk + xki ≤ 2 ∀i, j, k ∈ Vn i 6= j 6= k (5.9)
∑

i∈Vn

yi = p (5.10)

xij , yi ∈ {0, 1} ∀ i, j ∈ Vn, i 6= j (5.11)
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As numerical results show in Tables (3.2), (3.7) and (3.6), we can strengthen
the formulation by adding some valid equalities and inequalities. This in-
cludes:

xij + xji − yi − yj = −1 ∀i, j ∈ Vn, i < j (5.12)

when p = n− 1, and
∑

j∈Vn,j 6=i

(xij + xji) = (p− 1)yi ∀i ∈ Vn (5.13)

for the cases when 2 ≤ p ≤ n− 2.
It is shown in numerical results that we can significantly improve the formu-
lation and reduce integrality gap as well as the computational time required
to solve the instances by adding (5.12) and (5.13) to the model (see Ta-
ble 3.3).
In chapter 4, we have shown that (5.10) together with (5.12) for the case
p = n − 1 and (5.10) together with (5.13) for the case p ≤ n − 2 are defin-
ing the minimal equation system for the corresponding polytope. However
comparing the numerical results presented in Tables 3.2 and 3.3 indicates
that it is always advantageous if we add

∑

i∈Vn

∑

j∈Vn,j<i

(xij + xji) = p(p− 1)/2. (5.14)

Numerical experiments have shown that we can improve the integrality gap
and reduce the computational time by adding only one equation (5.14) for
all the cardinality numbers 0 ≤ p ≤ n, instead of adding a large number
of equations (5.12) for the case of p = n − 1 and (5.13) for the cases with
p ≤ n− 1. The integrality gap remains the same since (5.14) is in fact equal
to the aggregation of the equations (5.13) over the index i (also, it is equal
to the sum of the (5.12) over all the indices i and j, i 6= j).

Let us introduce following notations to facilitate referring to the constraint
sets:

AT ournament :





xij + xji ≤ yi ∀i, j ∈ Vn, i < j
xij + xji ≤ yj ∀i, j ∈ Vn, i < j
xij + xji ≥ yi + yj − 1 ∀i, j ∈ Vn, i < j

BCycle−free :
{

xij + xjk + xki ≤ 2 ∀i, j, k ∈ Vn i 6= j 6= k

CCardinality :

{ ∑
i∈Vn

yi = p∑
i∈Vn

∑
j∈Vn, j 6=i xij = p(p− 1)/2

Now, we are ready to introduce different Lagrangian dual problems corre-
sponding to the above subsets of constraints. By applying the Lagrangean
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relaxation for a maximization problem, one obtains the lowest upper bound
when dualizing a given subset of constraints. That upper bound is known to
be at least as good as the continuous relaxation of the integer program (see
Fisher (1981)). For example, if subset A is chosen to be relaxed, the dual
bound will be equal to the maximal value of the objective function on the
intersection of the polyhedron defining the continuous relaxation of A with
Conv(ΩB)

⋂
Conv(ΩC) where Conv(S) is the convex hull of a set S. Let us

resume the three options that arise when relaxing each subset of constraints
A, B or C :

1. Relaxing the triangle-free inequalities : this induces a p-cardinality
tournament (subtournament) subproblem which is NP-hard; the num-
ber of dual variables is huge, one for each possible triangle-free. Pre-
liminary results showed that the reduction of the LP gap is substantial
and improves when p gets smaller.

Observe that the dual iterations will lead to a solution in

(PA

⋂
PC)

⋂
Conv(ΩB)

and the upper bound vB can be better than the continuous relaxation
bound vLP .

2. Relaxing the tournament constraints : it will induce a decomposition
between x and y variables where the cardinality subproblem is trivially
solved and integral (see below); on the other hand, the cycle-free sub-
problem is NP-hard. Preliminary results showed that the correspond-
ing bound and performance are subsumed by the former relaxation.

3. Relaxing the cardinality constraints : the subproblem looks like a LOP
but it is not, as the dual multiplier can be negative forcing some yi to
be zero. Even if that option does not yield the best upper bound, it
is worth analyzing the dual function to identify the favourable cases.
Indeed, the dual function is a piecewise affine convex function. We
can restrict the study to the case of a non negative multiplier as the
cardinality constraint can be relaxed to

∑
i yi ≤ p without altering the

optimality conditions. The dual function is defined by :

φ(u) = p.u + sup{
∑

i,j

cijxij − u
∑

i

yi | s.t. A and B}

Obviously, φ(0) = vn, the optimal value of LOP for the n nodes. When
u increases slightly, the solution will not change and the dual function
behaves like the affine function vn + (p − n)u. At the opposite, if u
is very large, no node will be selected and the solution will be x = 0
with corresponding value v0 = 0, so that the corresponding piece will
be linear with slope p. Now, let vj be the optimal value of (j-FCLOP)
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(then vn ≥ vn−1 ≥ · · · ≥ vj ≥ · · · ≥ v1 = v0 = 0). Then, the dual
function can be written as a piecewise affine convex function :

φ(u) = max{vj + (p− j)u, j = 0, . . . , n}

Observe that the affine piece corresponding to j = p is horizontal,
but it is not necessarily active in the sense that φ(u) > vp,∀u which
implies the existence of a duality gap (see Figures 5.4 and 5.4).

p

φ(u)

vn

vp

Figure 5.4: A sample of φ(u), that has an active piece with j = p. There is
no duality gap in such a case.

p

φ(u)

vn

vp

Figure 5.5: A sample of φ(u), that has no active piece with j = p. In such
a case, the duality gap is not zero.

The first Lagrangian relaxation model is proposed in the following.

5.2.1 FCLOP-LR-A (relaxing the Tournament inequalities)

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij +
∑

i∈Vn

∑

j∈Vn,j 6=i

uij(yi − xij − xji)
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+
∑

i∈Vn

∑

j∈Vn,j<i

vij(−yi − yj + 1 + xij + xji)

s.t.

(x, y) ∈ B ∩ C

xij, yi ∈ {0, 1} ∀i, j ∈ Vn

In the FCLOP-LR-A model we relax all the constraints that link the vari-
ables xij and yi for all i, j ∈ Vn.
The sub-problem in this case, contains triangle-free inequalities (B) and
cardinality constraints (C). In this sub-problem we have considered the two
equations to limit the number of nodes and also the number of arcs in any
feasible solution.
The sub-problem in this case becomes automatically decomposable to two
blocks based on the the two sets of variables x and y.
Bundle method has been applied to solve the dual problem and the numer-
ical results is reported in Table 5.1.

The second lagrangian relaxation of the FCLOP model that we studied is
presented in the following.

5.2.2 FCLOP-LR-B (relaxing triangle-free inequalities)

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij −
∑

k∈Vn

∑

j∈Vn,j 6=k

∑

i∈Vn,i<j,i<k

vijk(xij + xjk + xki − 2)

s.t.

(x, y) ∈ A ∩ C

xij, yn ∈ {0, 1} ∀i, j ∈ Vn

In this model, we relax B and add the inequalities to the objective function
multiplied by the Lagrangian multipliers vijk.
The sub-problem in this model represents a p-tournament problem Moon
(1966) in graph theory which, consists of cardinality constraints (C) and
tournament problem (A) as well as bound constraints. Tournament prob-
lem in graph theory is looking for a digraph by assigning an orientation
to all the edges of an undirected complete graph. A feasible solution in
tournament problem in graph theory is a digraph which contains a directed
arc between every pair of its vertices. Moreover, a feasible solution in the
p-tournament problem consists of a digraph that contains p nodes (p ≤ n)
such that there exists one directed arc between every pair of them.

We have tested "FCLOP-LR-B" relaxation model and applied Bundle method
to solve it. Numerical results are presented in Table 5.2.
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The third Lagrangian relaxation of the FCLOP model that we studied is
presented in the following.

5.2.3 FCLOP-LR-C relaxing cardinality constraints

The second combination of constraints that have been relaxed are the group
C of constraints concerning the restrictions on number of nodes and arcs in
any feasible solution.

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij + u[p −
∑

i∈Vn

yi]

s.t.

(x, y) ∈ A ∩B

xij, yi ∈ {0, 1} ∀i, j ∈ Vn

Bundle method is applied to solve this Lagrangian relaxation dual problem
and the numerical results are presented in Table 5.3.

5.2.4 FCLOP-LD1 —Two sub-problems

In the sequel, a Lagrangian decomposition model is proposed. In this La-
grangian decomposition model, a set of copy constraints

tij − xij = 0

has been proposed to decouple the x variables to two sets of x and t vari-
ables.In this decomposition strategy, the objective is to decompose the set
of triangle-free inequalities in a block of constraints and keep all the rest
(the groups A and C) in the second block.

FCLOP-LD1

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij

s.t.

A :





xij + xji ≤ yi ∀i, j ∈ Vn, i < j
xij + xji ≤ yj ∀i, j ∈ Vn, i < j
xij + xji ≥ yi + yj − 1 ∀i, j ∈ Vn, i < j

B :
{

tij + tjk + tki ≤ 2 ∀i, j, k ∈ Vn i 6= j 6= k

C :

{ ∑
i∈Vn

yi = p∑
i,j, i6=j xij = p(p− 1)/2
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xij − tij = 0 ∀ i, j ∈ Vn, i 6= j

tij , xij , yi ∈ {0, 1} ∀ i, j ∈ Vn, i 6= j

Consider the sub-problem LDu(x, y) and LDu(t) as follows:

LD_u(x,y):

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij −
∑

i∈Vn

∑

j∈Vn

uijxij

s.t.

(x, y) ∈ A ∩ C

xij , yi ∈ {0, 1} ∀i, j ∈ Vn

and

LD_u(t):

max
∑

i∈Vn

∑

j∈Vn,j 6=i

uijtij

s.t.

(t) ∈ B

tij ∈ {0, 1} ∀ i, j ∈ Vn.

In the FCLOP-LD1 formulation, by applying a set of copy variables tij, we
have decomposed the FCLOP to two sub-problems LD_u(t) and LD_u(x,y).
One observes that the block LD_u(x,y) is quit similar to the FCLOP-LR-B.
The main difference between FCLOP-LD1 and FCLOP-LR-B is in the objec-
tive function of the dual problem corresponding to each of them.
Since we obtain relatively high quality dual bound by applying the FCLOP-

LR-B relaxation strategy, the objective in implementing this Lagrangian de-
composition strategy was to see whether this decomposition strategy pro-
duce better dual bound or it becomes more difficult.
Bundle method has been applied to solve the model and the numerical exper-
iments that are reported in Table 5.4 confirm that the Lagrangian relaxation
strategy FCLOP-LR-B is still more interesting than FCLOP-LD1 in terms of
the quality of obtained dual bound.

5.2.5 FCLOP-LD2 —Three sub-problems

As mentioned above, the objective in lagrangian decomposition is to decou-
ple the constraints in separated blocks and dualize the set of copy constraints
somehow to decompose the subproblem to two or more easier sub-problems.
We have applied the idea to decompose the model into three blocks to find
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the sub-problems that are even easier to solve. In this section, a Lagrangian
decomposition model which decomposes the dual problem into three sub-
problems LDA, LDB and LDC is proposed.
This is accomplished by introducing the following copy constraints:

xij − tij = 0 ∀ i, j ∈ Vn

yi − wi = 0 ∀ i ∈ Vn

By substituting the copy variables tij instead of xij in triangle-free inequali-
ties and wi instead of yi in cardinality constraint we obtain the LD2-FCLOP
formulation as follows:

FCLOP-LD-2

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij −
∑

i∈Vn

∑

j∈Vn,j 6=i

λij(xij − tij)−
∑

i∈Vn

µi(yi − wi)

A :





xij + xji ≤ yi ∀i, j ∈ Vn, i < j
xij + xji ≤ yj ∀i, j ∈ Vn, i < j
xij + xji ≥ yi + yj − 1 ∀i, j ∈ Vn, i < j∑

i∈Vn

∑
j∈Vn,j 6=i xij = p(p− 1)/2

B :
{

tij + tjk + tki ≤ 2 ∀i, j, k ∈ Vn i 6= j 6= k

C :
{ ∑

i∈Vn
wi = p

xij, yi, tij , wi ∈ {0, 1} ∀i, j ∈ Vn, i 6= j 6= k

Now it is straightforward to decompose the FCLOP-LD-2 formulation to
the following three sub-problems:

Sub-problem A

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij −
∑

i∈Vn

∑

j∈Vn,j 6=i

λijxij −
∑

i∈Vn

µiyi

s.t.

xij + xji ≤ yi ∀i, j ∈ Vn, i < j

xij + xji ≤ yj ∀i, j ∈ Vn, i < j

xij + xji ≥ yi + yj − 1 ∀i, j ∈ Vn, i < j

∑

i∈Vn

∑

j∈Vn,j 6=i

xij =
p(p− 1)

2

xij , yi ∈ {0, 1} ∀ i, j ∈ Vn, i 6= j



98 CHAPTER 5. LAGRANGIAN RELAXATION

Sub-problem B

max
∑

i∈Vn

∑

j∈Vn,j 6=i

λijtij

s.t.

tij + tjk + tki ≤ 2 ∀i, j, k ∈ Vn, i 6= j 6= k

tij ∈ {0, 1} ∀ i, j ∈ Vn

Sub-problem C

max
∑

i∈Vn

µiwi

s.t.
∑

i∈Vn

wi = p

wi ∈ {0, 1} ∀ i ∈ Vn

Sub-problem A contains both sets of decision variables x and y, since the
group A refers to the Tournament constraints.

Sub-problem B, contains only the t variables which are substituted by x vari-
ables in triangle-free inequalities (B). In fact the sub-problem B represents
a maximum acyclic subgraph problem when the input matrix corresponds
to a complete weighted oriented graph and the objective aims to maximize
the sum of the weights of all the arcs present in a feasible solution. There
is no other constraint than triangle-free inequalities in this sub-problem.
Consequently as a feasible solution, we might have a linear order containing
all the n vertices only if 1) wij ≥ 0 for all i, j ∈ Vn and 2) for any pair of
vertices i and j, we have wij + cji > 0. In fact two vertices i and j will never
be connected directly if wij = cji = 0.

In Sub-problem C, all what remains is cardinality constraint that restricts
the number of vertices in any feasible solution. This sub-problem represents
a knapsack problem, while the weights of all the variables are equal to +1.
Therefor it becomes trivial and we only need to sort the coefficients of the
objective function in decreasing order and choose the first p variables to be
equal to one.

One observes that all the sub-problems A, B and C are quite easier to solve
compared to the basic FCLOP model.

Numerical results of applying Bundle method to solve the lagrangian de-
composition model LD2-FCLOP are reported in Table 5.5.
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5.3 Numerical results

This section is devoted to report the numerical results of applying the Bun-
dle method to solve different Lagrangian dual problems that are presented
previously.
The set of instances are the same as what we have considered in chapter 3.
We have used Bundle code developed by Frangioni and presented in (Fran-
gioni, 2000) to solve dual problems. Three different termination conditions
have been considered: 1) the maximum number of iteration (100 iterations
at most) 2) 10800 seconds as the time limit and 3) the average violation
that is to certify the convergence. The bundle size has been considered up
to 100 solutions.

The first column of each table indicates name of the instances in the format
’Name-p’ where name is the instance name from LOLIB and p indicates the
cardinality number.
The second column ’elapsed time’ reports the time (in second) elapsed in
solving the instance.
The third column reports the best obtained dual bound.
The following column reports the number of iterations that have been car-
ried out before the termination of the procedure.
the next column reports the LP bound corresponding to each instance. The
next column ’Optimal*’ reports value of the optimal solution for the in-
stances of which their optimal solution is known. There are also instances
of which are not solved yet to optimality. In such cases, the best known
primal bound has been reported superscripted by a ∗.
Finally, the last column reports the termination status. AvgViol indicates
that the run has been terminated after being sufficiently converged to the
optimal solution. MaxIter means thet the run has been terminated after 100
iterations. TimLim indicates that the run procedure has been terminated
by the time limit termination condition.
There are instances of which are terminated by TimLim termination condi-
tion, however the elapsed time is slightly different from 10800 seconds. The
small deviation from the time limit is due to the fact that the time limit is
reached while CPLEX has been in the middle of solving an LP node and
does not terminate before the LP is resolved.
Finally the term O.M. refers to an unusual termination status that happens
due to the memory issue (out of memory).

Note 2 It may happen in some instances (e.g. N-atp24-23, N-atp24-24, N-
atp48-40, N-atp48-45,...) that the LR dual bound obtained from the sub-
gradient optimization is greater that its LP bound which is not normal. In
fact, in all these instances, the termination mode is either time limit or the
number of iterations. Such an incorrect dual bound means that the rate of
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convergence was slow enough to avoid the algorithm finding a better bound
in a reasonable time or in other words, the only very few iterations have
been completed within the time limit.
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5.3.1 FCLOP-LR-A

Table 5.1 contains the numerical results concerning the model "FCLOP-LR-
A".
As explained earlier, in this relaxation strategy, the group A of inequalities
that represent the tournament problem, is dualized. Numerical results in
Table 5.1 show that in a very few instances of which we have examined, the
Lagrangian relaxation model could improve the LP bound. In fact among
all the dual problems that we have examined, the "FCLOP-LR-A" had the
less impact to improve the dual bound.
Also as it is mentioned in Note 2, in some instances that the procedure has
been terminated by MaxIter or TimLim, there are instances (e.g. N-atp24,
N-atp48, N-be75eec and N-econ36) of which for some cardinality, the LP
bound is slightly better than the dual bound.
Concerning the difficult instances (e.g. N-p50-20 and N-pal43), the proce-
dure has ran out of memory for all the cases.
In general one may say that FCLOP-LR-A does not produce sufficiently
good dual bounds and relaxing the tournament inequalities may not be the
best choice even if the resulting subproblem becomes decomposable and
easier to solve.
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elapsed bestDual LP Relative
Fname Time Bound nrIteration bound Optimal* Gap(%) BundleStatus
N-atp24-5 40 41.04 90 41.04 18 128 AvgViol
N-atp24-10 52 82.08 85 82.08 53 54.86 AvgViol
N-atp24-15 70 123.12 100 123.12 94 30.97 MaxIter
N-atp24-20 123 153.54 100 153.16 140 9.67 MaxIter
N-atp24-23 145 169.16 100 168.25 165 2.52 MaxIter
N-atp24-24 36 172 57 172 172 0 AvgViol
N-atp48-10 572 118.54 100 118.54 53 123.66 MaxIter
N-atp48-15 718 177.81 100 177.81 97 83.30 MaxIter
N-atp48-20 878 237.08 100 237.08 148 60.18 MaxIter
N-atp48-25 781 296.36 100 296.35 205 44.56 MaxIter
N-atp48-30 1350 357.3 100 355.62 264 35.34 MaxIter
N-atp48-35 4382 401.62 100 400.65 324 23.95 MaxIter
N-atp48-40 11590 451.65 35 436.16 387 16.70 TimLim
N-atp48-45 11140 478.86 53 466.62 447 7.12 TimLim
N-atp48-47 13703 489.8 6 477.7 472 3.77 TimLim
N-atp48-48 15170 485.7 9 483 483 0.55 TimLim
N-be75eec-20 1233 151295 100 132966 130506 15.92 MaxIter
N-be75eec-30 1321 205996 100 191168 191061 7.81 MaxIter
N-be75eec-40 1401 230870 100 224006 223672 3.21 MaxIter
N-be75eec-50 1628 236464 100 236464 236464 0 MaxIter
N-econ36-15 367 450166 100 403222 400547 12.38 MaxIter
N-econ36-20 409 503684 100 470033 469584 7.26 MaxIter
N-econ36-25 480 530660 100 507568 506232 4.82 MaxIter
N-econ36-30 677 548190 100 535017 534406 2.57 MaxIter
N-econ36-35 1152 549164 100 547984 547501 0.30 MaxIter
N-econ36-36 1033 548581 100 548588 548574 0.001 MaxIter
N-p50-20-10 - - - 13282.6 2311* - O.M.
N-p50-20-15 - - - 19923.9 5106* - O.M.
N-p50-20-20 - - - 26565.2 7397* - O.M.
N-p50-20-25 - - - 33206.5 13697* - O.M.
N-p50-20-30 - - - 39847.8 17052* - O.M.
N-p50-20-35 - - - 44672.5 23298* - O.M.
N-p50-20-40 - - - 45864.2 31337* - O.M.
N-p50-20-45 - - - 47055.8 38099* - O.M.
N-p50-20-49 - - - 47985.7 42450* - O.M.
N-p50-20-50 - - - 48155.7 45560* - O.M.
N-pal19-5 329 45 90 45 10 350 AvgViol
N-pal19-10 4804 90 93 90 36 150 AvgViol
N-pal19-15 6183 107 13 114 72 48.61 AvgViol
N-pal19-18 - - - 114 98 - O.M.
N-pal19-19 - - - 114 107 - O.M.
N-pal43-10 - - - 210 40* - O.M.
N-pal43-15 - - - 315 80* - O.M.
N-pal43-20 - - - 420 139* - O.M.
N-pal43-25 - - - 525 199* - O.M.
N-pal43-30 - - - 602 276* - O.M.
N-pal43-35 - - - 602 361* - O.M.
N-pal43-40 - - - 602 459* - O.M.
N-pal43-42 - - - 602 500* - O.M.
N-pal43-43 - - - 602 535* - O.M.

Table 5.1: numerical experiment - "FCLOP-LR-A" - Bundle method
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5.3.2 FCLOP-LR-B

Table 5.2 reports the numerical results of solving "FCLOP-LR-B". The same
as before, bundle code of Frangioni is used to solve the dual problem. In
"FCLOP-LR-B", the set of triangle-free inequalities are relaxed and added
to the objective function multiplied by Lagrangian multipliers to penalize
the objective function in the case of violation.
Comparing to the Table 5.1, the results seem much more promising. As an
example, we reach the optimal solution for several instances such as N-atp24

when cardinality number is equal to 5 or 10, also N-atp48 when the cardi-
nality number is equal to 10 and N-pal19 when p is equal to 5. Also we have
the optimal solution of N-atp24, N-atp48 and N-be75eec, when p is equal to
n (the LOP).
Another interesting fact is that we often get a better bound comparing to
the LP bound when the cardinality is far smaller than the number of nodes.
As soon as p increases, the LR dual bound significantly tends to the LP
bound.
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elapsed bestDual LP Relative
Fname Time Bound nrIteration bound Optimal* Gap(%) BundleStatus
N-atp24-5 1 18 2 41.04 18 0 AvgViol
N-atp24-10 6 53 3 82.08 53 0 AvgViol
N-atp24-15 71 98.57 32 123.12 94 4.86 AvgViol
N-atp24-20 85 146.33 100 153.16 140 4.52 MaxIter
N-atp24-23 12 168.1 100 168.25 165 1.87 MaxIter
N-atp24-24 4 172.37 100 172 172 0.21 MaxIter
N-atp48-10 44 53 4 118.54 53 0 AvgViol
N-atp48-15 883 101.66 19 177.81 97 4.80 AvgViol
N-atp48-20 11400 158.87 36 237.08 148 7.34 TimLim
N-atp48-25 11551 220.75 27 296.35 205 7.68 TimLim
N-atp48-30 10873 285.49 25 355.62 264 8.14 TimLim
N-atp48-35 10819 349.07 59 400.65 324 7.73 TimLim
N-atp48-40 2499 411.85 100 436.16 387 6.42 MaxIter
N-atp48-45 283 462.79 100 466.62 447 3.53 MaxIter
N-atp48-47 42 478.19 100 477.7 472 1.31 MaxIter
N-atp48-48 18 484.17 100 483 483 0.24 MaxIter
N-be75eec-20 119 130977 56 132966 130506 0.36 AvgViol
N-be75eec-30 24 191165 45 191168 191061 0.05 AvgViol
N-be75eec-40 97 223996 100 224006 223672 0.14 MaxIter
N-be75eec-50 19 236607 100 236464 236464 0.06 MaxIter
N-econ36-15 20 400722 55 403222 400547 0.043 AvgViol
N-econ36-20 33 469709 100 470033 469584 0.02 MaxIter
N-econ36-25 47 508110 100 507568 506232 0.37 MaxIter
N-econ36-30 29 537581 100 535017 534406 0.59 MaxIter
N-econ36-35 26 552096 100 547984 547501 0.83 MaxIter
N-econ36-36 11 552257 100 548588 548574 0.67 MaxIter
N-p50-20-10 449 3680 13 13282.6 2311* 59.23 AvgViol
N-p50-20-15 10177 7606.29 15 19923.9 5106* 48.96 TimLim
N-p50-20-20 13210 12860.9 8 26565.2 7397* 73.86 TimLim
N-p50-20-25 13728 19155.8 9 33206.5 13697* 39.85 TimLim
N-p50-20-30 11601 26532.1 13 39847.8 17052* 55.59 TimLim
N-p50-20-35 11355 34745.4 21 44672.5 23298* 49.13 TimLim
N-p50-20-40 10829 43426.3 64 45864.2 31337* 38.57 TimLim
N-p50-20-45 602 47187.7 100 47055.8 38099* 23.85 MaxIter
N-p50-20-49 46 48115.1 100 47985.7 42450* 13.34 MaxIter
N-p50-20-50 19 48318.4 100 48155.7 45560* 6.05 MaxIter
N-pal19-5 0 10 3 45 10 0 AvgViol
N-pal19-10 0 45 3 90 36 25 AvgViol
N-pal19-15 3 105 13 114 72 45.83 AvgViol
N-pal19-18 8 114 74 114 98 16.32 AvgViol
N-pal19-19 0 114 4 114 107 6.54 AvgViol
N-pal43-10 1 45 3 210 40* 12.5 AvgViol
N-pal43-15 2 105 3 315 80* 31.25 AvgViol
N-pal43-20 1 190 3 420 139* 36.69 AvgViol
N-pal43-25 24 300 4 525 199* 50.75 AvgViol
N-pal43-30 76 435 100 602 276* 57.60 MaxIter
N-pal43-35 79 595.03 100 602 361* 64.82 MaxIter
N-pal43-40 40 602 100 602 459* 31.15 MaxIter
N-pal43-42 31 602 93 602 500* 20.4 AvgViol
N-pal43-43 0 602 4 602 535* 12.52 AvgViol

Table 5.2: numerical experiment for "FCLOP-LR-B"
(* Optimal or the best known feasible solution in the case if the optimum value is not known)
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5.3.3 FCLOP-LR-C

Table 5.3 presents the numerical results concerning the "FCLOP-LR-C"
model solved by Bundle code of Frangioni. In this relaxation strategy, the
two constraints (5.10) and (5.14) that restrict the number of non-zero y
variables and the number of non-zero x variables in any feasible solution are
relaxed.
Table Table 5.3 shows that for all the instances that was not ran out of
memory, the algorithm could find a very high quality dual bound. However
there are many instances that have been terminated due to the memory
issue.
In general, this model gives us the best result (regarding the relative gap)
comparing with the other relaxations we have tried for easier instances while
the FCLOP-LR-C provide better dual bound for the instances that are more
difficult e.g. N-atp48 with different cardinality values.
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elapsed bestDual Relative
Fname Time Bound nrIteration Optimal* Gap(%) BundleStatus
N-atp24-5 45 18 12 18 0 AvgViol
N-atp24-10 27 53 9 53 0 AvgViol
N-atp24-15 71 94 13 94 0 AvgViol
N-atp24-20 20 140 7 140 0 AvgViol
N-atp24-23 12 165 6 165 0 AvgViol
N-atp24-24 0 172 2 172 0 AvgViol
N-atp48-10 - - - 53 - O.M.
N-atp48-15 11903 124.53 4 97 28.38 AvgViol
N-atp48-20 - - - 148 - O.M.
N-atp48-25 - - - 205 - O.M.
N-atp48-30 - - - 264 - O.M.
N-atp48-35 - - - 324 - O.M.
N-atp48-40 12882 415.51 4 387 7.36 AvgViol
N-atp48-45 11101 482.17 4 447 7.86 AvgViol
N-atp48-47 - - - 472 - O.M.
N-atp48-48 60 483 2 483 0 AvgViol
N-be75eec-20 24 130506 6 130506 0 AvgViol
N-be75eec-30 5 191061 4 191061 0 AvgViol
N-be75eec-40 13 223672 8 223672 0 AvgViol
N-be75eec-50 2 236464 2 236464 0 AvgViol
N-econ36-15 21 401383 11 400547 0.2 AvgViol
N-econ36-20 16 469584 4 469584 0 AvgViol
N-econ36-25 22 506268 7 506232 0.007 AvgViol
N-econ36-30 23 534406 7 534406 0 AvgViol
N-econ36-35 19 547542 4 547501 0.007 AvgViol
N-econ36-36 11 548574 2 548574 0 AvgViol
N-p50-20-10 - - - 2311* - O.M.
N-p50-20-15 - - - 5106* - O.M.
N-p50-20-20 - - - 7397* - O.M.
N-p50-20-25 - - - 13697* - O.M.
N-p50-20-30 - - - 17052* - O.M.
N-p50-20-35 - - - 23298* - O.M.
N-p50-20-40 - - - 31337* - O.M.
N-p50-20-45 - - - 38099* - O.M.
N-p50-20-49 - - - 42450* - O.M.
N-p50-20-50 - - - 45560* - O.M.
N-pal19-5 2349 10 5 10 0 AvgViol
N-pal19-10 2580 36 4 36 0 AvgViol
N-pal19-15 10947 72.19 8 72 0.26 AvgViol
N-pal19-18 7040 98 6 98 0 AvgViol
N-pal19-19 680 107 2 107 0 AvgViol
N-pal43-10 - - - 40* - O.M.
N-pal43-15 - - - 80* - O.M.
N-pal43-20 - - - 139* - O.M.
N-pal43-25 - - - 199* - O.M.
N-pal43-30 - - - 276* - O.M.
N-pal43-35 - - - 361* - O.M.
N-pal43-40 - - - 459* - O.M.
N-pal43-42 - - - 500* - O.M.
N-pal43-43 - - - 535* - O.M.

Table 5.3: numerical experiment for "FCLOP-LR-C"
(* Optimal or the best known feasible solution in the case if the optimum value is not known)
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5.3.4 FCLOP-LD1

Table 5.4 reports the computational results of applying Bundle method to
solve the FCLOP-LD1 model when we decompose the FCLOP to two sub-
problems LD_u(x,y) and LD_u(t).
Regarding the numerical results, FCLOP-LD1 produces relatively very hicgh
quality dual bounds. One may observe that, as an example, for the instance
N-pal43, for the first time the algorithm terminates after finishing 100 iter-
ations without facing with a memory issue. It is quite promising that we
could improve dual bound of some difficult instances. However, it may not
be the best choice to deal with easier instances since one sees that even very
easy instances (e.g. N-atp24, N_be75eec and N_econ36 ) had difficulties to
be terminated after being sufficiently converged.
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elapsed bestDual LP Relative
Fname Time Bound nrIteration bound Optimal* Gap(%) BundleStatus
N_atp24_5 1 18 3 41.04 18 0 AvgViol
N_atp24_10 84 53 100 82.08 53 0 MaxIter
N_atp24_15 108 98.84 100 123.12 94 5.14 MaxIter
N_atp24_20 49 147.31 100 153.16 140 5.22 MaxIter
N_atp24_23 32 168.42 100 168.25 165 2.07 MaxIter
N_atp24_24 29 172.37 100 172 172 0.21 MaxIter
N_atp48_10 821 53 68 118.54 53 0 AvgViol
N_atp48_15 5880 101.83 100 177.81 97 4.97 MaxIter
N_atp48_20 10848 159.99 49 237.08 148 8.10 TimLim
N_atp48_25 11197 224.87 30 296.35 205 9.69 TimLim
N_atp48_30 11430 291.03 36 355.62 264 10.23 TimLim
N_atp48_35 10903 352.28 64 400.65 324 8.72 TimLim
N_atp48_40 3796 414.21 100 436.16 387 7.03 MaxIter
N_atp48_45 2480 464.23 100 466.62 447 3.85 MaxIter
N_atp48_47 3136 481.46 100 477.7 472 2.04 MaxIter
N_atp48_48 3081 486.63 100 483 483 0.75 MaxIter
N_be75eec_20 111 131020 100 132966 130506 0.39 MaxIter
N_be75eec_30 147 191208 100 191168 191061 0.07 MaxIter
N_be75eec_40 704 224659 100 224006 223672 0.44 MaxIter
N_be75eec_50 1753 237698 100 236464 236464 0.52 MaxIter
N_econ36_15 28 401011 100 403222 400547 0.11 MaxIter
N_econ36_20 30 471739 100 470033 469584 0.45 MaxIter
N_econ36_25 65 512272 100 507568 506232 1.19 MaxIter
N_econ36_30 150 539958 100 535017 534406 1.03 MaxIter
N_econ36_35 237 554836 100 547984 547501 1.33 MaxIter
N_econ36_36 243 556363 100 548588 548574 1.41 MaxIter
N-p50-20_10 - - - 13282.6 2311* - O.M.
N-p50-20_15 - - - 19923.9 5106* - O.M.
N-p50-20_20 - - - 26565.2 7397* - O.M.
N-p50-20_25 - - - 33206.5 13697* - O.M.
N-p50-20_30 - - - 39847.8 17052* - O.M.
N-p50-20_35 - - - 44672.5 23298* - O.M.
N-p50-20_40 - - - 45864.2 31337* - O.M.
N-p50-20_45 - - - 47055.8 38099* - O.M.
N-p50-20_49 - - - 47985.7 42450* - O.M.
N-p50-20_50 - - - 48155.7 45560* - O.M.
N_pal19_5 10 10 100 45 10 0 MaxIter
N_pal19_10 11 45 100 90 36 25 MaxIter
N_pal19_15 14 105 100 114 72 45.83 MaxIter
N_pal19_18 29 114.29 100 114 98 16.62 MaxIter
N_pal19_19 11 114 100 114 107 6.54 MaxIter
N_pal43_10 39 45 100 210 40* 12.5 MaxIter
N_pal43_15 68 105.01 100 315 80* 31.26 MaxIter
N_pal43_20 181 190 100 420 139* 36.69 MaxIter
N_pal43_25 108 300.02 100 525 199* 50.76 MaxIter
N_pal43_30 163 435.01 100 602 276* 57.61 MaxIter
N_pal43_35 1390 595.01 100 602 361* 64.82 MaxIter
N_pal43_40 6000 604.15 100 602 459* 31.62 MaxIter
N_pal43_42 8081 603.94 100 602 500* 20.78 MaxIter
N_pal43_43 8001 602.14 100 602 535* 12.54 MaxIter

Table 5.4: Numerical results of lagrangian decomposition model - FCLOP−
LD1
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5.3.5 FCLOP-LD2

Table 5.5 reports the computational results of applying Bundle method to
solve FCLOP-LD2.
One observes that here for the first time we could improved the LP bound
for some of the very difficult instances (e.g. N-p50-20 ).
As it is reported in Table 5.5, the decomposition scheme FCLOP-LD2 works
relatively better for easy instances as well as very difficult instances. Rela-
tively short elapsed time for solving each iteration is another advantage of
this decomposition scheme, and particularly short CPU time for instances
that terminated by MaxIter termination condition confirms it.
In general, one may say that FCLOP-LD2 is an efficient decomposition
scheme to deal with highly difficult instances regarding the three critical
items; the dual bound quality, the number of iterations and the CPU time.
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elapsed bestDual LP Relative
Fname Time Bound nrIteration bound Optimal* Gap(%) BundleStatus
N-atp24-5 19 18 22 41.04 18 0 AvgViol
N-atp24-10 52 53 51 82.08 53 0 AvgViol
N-atp24-15 299 98.91 100 123.12 94 5.22 MaxIter
N-atp24-20 115 147.17 100 153.16 140 5.12 MaxIter
N-atp24-23 52 168.79 100 168.25 165 2.29 MaxIter
N-atp24-24 31 172.54 100 172 172 0.31 MaxIter
N-atp48-10 578 53 36 118.54 53 0 AvgViol
N-atp48-15 10842 101.89 94 177.81 97 5.04 TimLim
N-atp48-20 10923 160.25 39 237.08 148 8.27 TimLim
N-atp48-25 11208 225.21 35 296.35 205 9.85 TimLim
N-atp48-30 11055 290.08 37 355.62 264 9.87 TimLim
N-atp48-35 10904 353.61 62 400.65 324 9.13 TimLim
N-atp48-40 8508 414.41 100 436.16 387 7.08 MaxIter
N-atp48-45 5253 468.04 100 466.62 447 4.70 MaxIter
N-atp48-47 5970 481.34 100 477.7 472 1.97 MaxIter
N-atp48-48 7533 490.05 100 483 483 1.45 MaxIter
N-be75eec-20 10 132655 6 132966 130506 1.64 AvgViol
N-be75eec-30 133 191138 67 191168 191061 0.04 AvgViol
N-be75eec-40 1119 224079 77 224006 223672 0.18 AvgViol
N-be75eec-50 2567 238646 100 236464 236464 0.92 MaxIter
N-econ36-15 1 401589 3 403222 400547 0.26 AvgViol
N-econ36-20 1 470082 3 470033 469584 0.10 AvgViol
N-econ36-25 1 514151 3 507568 506232 1.56 AvgViol
N-econ36-30 2 544975 4 535017 534406 1.97 AvgViol
N-econ36-35 6 560517 5 547984 547501 2.37 AvgViol
N-econ36-36 7 561570 5 548588 548574 2.36 AvgViol
N-p50-20-10 2750 3683.25 45 13282.6 2311* 59.37 AvgViol
N-p50-20-15 10878 7667.97 26 19923.9 5106* 50.17 TimLim
N-p50-20-20 11406 12927 8 26565.2 7397* 74.76 TimLim
N-p50-20-25 10872 19294.5 8 33206.5 13697* 40.86 TimLim
N-p50-20-30 11321 26651.7 18 39847.8 17052* 56.29 TimLim
N-p50-20-35 11565 34895.7 30 44672.5 23298* 49.77 TimLim
N-p50-20_40 15748 45161.3 4 45864.2 31337* 44.11 TimLim
N-p50-20_45 18510 55571.6 2 47055.8 38099* 45.86 TimLim
N-p50-20_49 18640 64218.4 2 47985.7 42450* 51.28 TimLim
N-p50-20_50 11555 66378 2 48155.7 45560* 45.69 TimLim
N-pal19-5 1 10 11 45 10 0 AvgViol
N-pal19-10 3 45 16 90 36 25 AvgViol
N-pal19-15 7 105 45 114 72 45.83 AvgViol
N-pal19-18 39 114.17 100 114 98 16.5 MaxIter
N-pal19-19 11 114.11 58 114 107 6.64 AvgViol
N-pal43-10 5 45 15 210 40* 12.5 AvgViol
N-pal43-15 11 105 18 315 80* 31.25 AvgViol
N-pal43-20 591 190 17 420 139* 36.69 AvgViol
N-pal43-25 150 300 19 525 199* 50.75 AvgViol
N-pal43-30 150 435.01 100 602 276* 57.61 MaxIter
N-pal43-35 1343 595.03 100 602 361* 64.82 MaxIter
N-pal43-40 8744 604.7 100 602 459* 31.74 MaxIter
N-pal43-42 10872 610.31 88 602 500* 22.06 TimLim
N-pal43-43 8103 602.55 63 602 535* 12.62 AvgViol

Table 5.5: Numerical results of solving lagrangian decomposition model
FCLOP-LD2
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In the following, several diagrams are presented to analyse the behavior of
different lagrangian relaxations on instances of our test-bed.
Every figure contains two bar charts corresponding to 1) the number of it-
erations per instance and 2) percentage of the relative gap resulted by the
corresponding relaxation model.

The Figure 5.6 confirms that N-atp24 for any cardinality number, is rela-
tively an easy instance. The diagram concerning the number of iterations
show that all the instances are terminated before the time limit reached.
The second part of the Figure 5.6 concerns the relative dual gap and shows
that except for the LR-FCLOP-A relaxation, all the other relaxation strate-
gies produce relatively high quality dual bound that result zero or very small
deviation from the optimal solution. Among all the 5 relaxations that we
have applied, the LR-FCLOP-A relaxation strategy reached to the optimal
solution for different p values in a small number of iterations.
In general one may conclude that N-atp24 is relatively an easy to solve in-
stance for different p values.
It is interesting to note that even in such an easy instance, we still have a
larger deviation from the optimal solution whenever the cardinality number
p is an median value (is far from n and far from zero).
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Figure 5.6: N-atp24 FCLOP instances when p varies
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In Figure 5.7 there are some dashed bars (e.g. in FCLOP-LR-A when p is
in {40, 45, 47, 48}), which precise that the procedure for these instances has
been terminated by the TimLime stopping criteria(1800 seconds).
There are also instances having no bar associated to them (e.g. The FCLOP-
LR-C when p is in {10, 20, 25, 30, 35, 47}).
Figure 5.7 shows that in contrary to the instance N-atp24, the FCLOP-LR-
C relaxation strategy is not sufficiently strong to solve the N-atp48. Table
(5.3) confirms that from among 10 different p values, FCLOP-LR-C could
solve only four instances.
Another point to address in Figure 5.7 is that the instance N-atp48 is more
difficult comparing to the N-atp24 since in almost all the cases, the algo-
rithm terminated either by the time limit termination condition, or after
reaching the maximum number of iterations or because of the memory is-
sue. The cases when 15 ≤ p ≤ 40, are quite difficult and the runs were
mostly terminated in an unusual way. However we still were able to reach
very high quality dual bounds by applying FCLOP-LR-B relaxation strategy
and FCLOP-LD2 Lagrangian decomposition.
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Figure 5.7: N-atp48 FCLOP instances when p varies
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Figure 5.8 reminds that the instance N-be75eec is relatively easier to solve
compared to the N-atp48. We have 50 vertices in this instance and cardinal-
ity number takes the following values: {20, 30, 40, 50}. The FCLOP-LR-A
and FCLOP-LD1 relaxation strategies have been always terminated by the
MaxIter termination criteria. In fact, none of the instances has been termi-
nated neither by the TimLim stopping criteria (10800 seconds) nor because
of the memory issue.
As an other relatively easy to solve instance, the FCLOP-LR-C is able to
reached to the optimal solution, for different p values.
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Figure 5.8: N-be75eec FCLOP instances when p varies



5.3. NUMERICAL RESULTS 117

By analysing the Figure 5.9 together with Table 5.3, one observes that the
FCLOP-LR-C relaxation strategy produce very high quality dual bounds
for the FCLOP problem. Considering all the three criteria, number of iter-
ations, dual gap quality and the CPU time, emphasize that the lagrangian
decomposition scheme with three subproblems is the most qualified algo-
rithm to solve this instance. In analysing this figure, it is important to keep
in mind that the N-econ36 is categorized as a relatively easy instance and as
it is mentioned earlier, for easier instances, FCLOP-LR-C is a good choice.
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Figure 5.9: N-econ36 FCLOP instances when p varies
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From Figure 5.10 together with the Tables Table 5.1 - Table 5.5, one observes
that only solution algorithms, FCLOP-LR-B and FCLOP-LD2 were able to
deal with these instances and all the other relaxation strategies were facing
with the memory issue. Figure 5.10 confirms that several instances are
terminated by TimLim termination status (after 10800 seconds). N-p50-20
is one of the very difficult instances that its optimal value (in the case of the
LOP) is not known in the literature.
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Figure 5.10: N-p50-20 FCLOP instances when p varies
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The two instances N-pal19 and N-pal43 have more or less the same struc-
ture. The main difference between N-pal19 and N-pal43 is in their size (total
number of nodes). The instances in this class become quickly very difficult
as soon as the number of nodes increase due to the high level of symmetry
inherent in them. As an example, N-pal19 is a median instance contain-
ing 19 nodes while N-pal43 is a very difficult instance containing 43 nodes.
Comparing Figure 5.11 and Figure 5.12 reveals that for these difficult in-
stances, one may prefer to apply the Lagrangian decomposition with three
subproblems to obtain a good quality dual bound in a relatively short CPU
time.
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Figure 5.11: N-pal19 FCLOP instances when p varies
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CHAPTER 6

Relaxation Based Exact Solution Method

In this chapter, we present a kind of cutting plane algorithm to reduce
the number of constraints in the FCLOP integer programming formulation.
Grötschel et al. (1985a) shows that triangle-free inequalities are defining
facets for the LOP polytope. However, our studies show that this is not the
case for the FCLOP polytope. We have shown that even after strengthening
the triangle-free inequalities, the resulted inequalities,

xij + xjk + xki ≤ ys + yt ∀ {s, t} ⊂ {i, j, k}, {i, j, k} ⊆ Vn

do not define facets for the FCLOP polytope.

Numerical experiments show that this set of inequalities are very heavy
(O(n3)) and negatively impact performance of general-purpose solvers. On
the other hand, as p reduces, there is a huge number of these inequalities
that will never become binding. In fact, they become redundant whenever
at least one (or more) of the three vertices i, j and k is (are) not selected to
be in the order —which is likely to happen when the gap between n and p
is large enough.
The idea in here is to relax the set of triangle-free inequalities and add them
to the model in the case of necessity. To do so we need to fix the p active
vertices and then find the eventual violations and add the corresponding
cuts to the relaxed model to eliminate the violations. For doing so, we have
applied the idea of Combinatorial Benders Cuts to create the cuts in an
iterative algorithm.

Benders decomposition (Benders, 1962, 2005) is a variable partitioning method
known as an efficient decomposition method in MIPs and also in scenario-
based stochastic programming (see e.g. Mulvey and Ruszczyński (1995);
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Birge (1985); Birge and Louveaux (1988); Pereira and Pinto (1991)).

Benders decomposition was originally proposed for the mixed integer pro-
gramming models aiming at partitioning the variables into two parts with
respect to the types of variables and relaxing the set of complicating vari-
ables. Often, in MIPs the set of complicating variables are integer variables
and the remaining ones are assumed as easy-to-handle ones (mainly because
today’s LP solvers are very efficient).

In the classical Benders decomposition method, the convexity of the sub-
problem plays a very crucial role. The primal-dual relationship, which is
exploited for generating Benders cuts (to be added to the Master Problem
in an iterative matter) is resulted from the convexity of the sub-problem.

Later on, perhaps the stochastic programming community were the first
place where the convexity of sub-problem was challenged — see Carøe and
Tind (1998); van der Vlerk (1995); Schultz et al. (1998); Ahmed et al. (2002);
Louveaux and van der Vlerk (1993). There were situations as in the case
of integer recourse where the sub-problem was integer and no primal-dual
relationship was available. Some authors has generic view at such problems
while others often develop some algorithms tailored for certain applications.
As an example of generic method, one can refer to Sherali and Fraticelli
(2002).

In most of the aforementioned contributions, the particular interest in us-
ing Benders decomposition method was that either the sub-problem can be
decomposed for every scenario or there was an efficient algorithm to solve
the sub-problem while it was difficult to solve the whole at once.
However, there were certain cases where the sub-problem was not necessarily
decomposable, no particular efficient algorithm (other than standard MIP
solvers) is available or the original model was a Big-M model for a com-
binatorial optimization problem, which caused numerical instability during
resolution.

The Combinatorial Benders Cuts first appeared in Codato and Fischetti
(2006) for a Big-M model of Asymmetric Traveling Salesman Problem and
very promising results were reported. In this approach the sub-problem was
a feasibility problem rather than an optimization problem. The problem
after removing some of the constraints was called the Master Problem while
the sub-problem was composed of a set of constraints, which could be vi-
olated for the solutions produced by the master problem. The algorithm
then seeks a minimal infeasible subsystem (more precisely Irreducible Infea-
sible Subsystem) to be used in generating cover-like constraints added to
the master problem in order to cut off the current solution of the master
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problem.
The method is later on extended to accommodate MIPs as well. Interested
readers are referred to Codato and Fischetti (2006) for the relevant details.

Later Bai and Rubin (2009) proposed a combinatorial Benders cuts for the
minimum tollbooth problem and Cao et al. (2010) for an integrated yard
truck and yard crane scheduling problem.
This method is particularly proposed to solve the Big-M models. However,
it led us to separate a part of constraints (particularly triangle-free inequal-
ities) and solve the relaxed model, which becomes significantly easier.

In our algorithm we have relaxed the set of triangle-free inequalities. Then
to avoid having the solutions which are infeasible for the initial problem, we
control all the feasible solutions of the relaxed problem which are going to
be installed as an incumbent in the Branch-and-Bound tree. If any triangle
become recognized, then the corresponding triangle-free inequality(ies) will
be added to the relaxed model to make the solution(s), infeasible. These
separated cuts are adding globally and permanently and it ensures the algo-
rithm to be finite in a polynomial time of iterations. It must be noted that
in contrast with the classical branch-and-cut approaches where usually we
emphasize on separating cuts at the root node and also for fractional solu-
tions, we only separate such cuts when an incumbent is going to be installed.

In this chapter, after introducing the general concept, we will propose some
algorithm for dealing with certain formulation of the FCLOP. A hybridized
technique will be also presented that combines the Lagrangian relaxation
method (solved by Bundle method Frangioni (2000)) whit the relaxation
based algorithm that we are presenting here. Computational results are
presented at the end of each algorithm.

Benders decomposition

Let problem P be given as follows:

(P)

min c′
1x + c′

2y (6.1)

s.t.

Ax ≥ a (6.2)

By ≥ b (6.3)

Dx + Ey ≥ d (6.4)

x ∈ Z
m (6.5)

y ∈ R
n (6.6)
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where x ∈ Z
m are assumed to be the complicating variables. Benders de-

composition method tries to decompose the problem as a Master Problem
(MP) and a sub-problem dual (SPD) as follows:

(MP)

min c′
1x + η (6.7)

s.t.

Ax ≥ a (6.8)

η ≥ ub + v(d−Dx) ∀ extreme points (6.9)

0 ≥ ub + v(d−Dx) ∀ extreme rays (6.10)

x ∈ Z
m, η ≥ 0 (6.11)

(SPD)

max ub + v(d−Dx) (6.12)

s.t.

uB + vE = c2 (6.13)

ui, vi ∈ R
+ (6.14)

In the first iteration, the set of optimality cuts (6.9) and feasibility cuts
(6.10) are empty. A solution of MP is given to the SPD (note that the feasi-
ble region of SPD is independent of x). If for such a given x, SPD solves to
optimality, then an optimality cut of form (6.9) and if otherwise a feasibility
cut of form (6.10) will be added to the MP.

A solution to the MP is always a lower bound on the optimal solution of
(P) (an upper bound in the case of maximization). Also, if for a given x,
SPD solves to optimality, then an upper bound for the whole problem also
becomes known.

The classical implementation of method exploits the decomposable structure
of problems, identifies a set of complicating variables (or the constraints in-
volving those variables) to put in a Master Problem (MP) and a Sub-problem
(SP) which, is convex (often a linear program) such that the primal/dual re-
lationship holds. The algorithm iterates between solving the master problem
to optimality followed by solving the sub-problem where the complicating
variables became parameters. The method makes use of exchange of in-
formation in terms of cuts between these two smaller problems to attain
optimality of the original model.
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However, when dealing with pure a integer programming sub-problem, i.e.
not a convex one, the primal-dual relationship cannot be exploited to gen-
erate cuts in the sub-problem LP and add them to the master problem to
improve the outer approximation. Rather, at every iteration, solution to the
master problem is used to either finding the minimal infeasible subsystem
or a set of constraints generated on the fly, to add to the MP in order to
cut off the proposed infeasible solution (see Combinatorial Benders (CB) in
Fischetti et al. (2009)).

This gave us the idea to generate an algorithm to separate useful relaxed
cuts after relaxing the FCLOP model.

The separation algorithm can be described as in the sequel.

Separation algorithm

Let P be the following problem:

(P)

min c′
1x (6.15)

s.t.

Ax ≥ a (6.16)

Bx ≥ b (6.17)

x ∈ Z
m (6.18)

Definition 3 (Irreducible Infeasible Subsystem (IIS)) A subsystem of inequal-
ities and equations such that the subsystem is inconsistent (infeasible) and
every proper subsystem is consistent (feasible).

We form a master problem (MP) as follows:
(MP)

min c′
1x (6.19)

s.t.

Ax ≥ a (6.20)

x ∈ Z
m (6.21)

The sub-problem is defined as:
(SP)

min 0 (6.22)

s.t.

Bx ≥ b (6.23)
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x ∈ Z
m (6.24)

which is a feasibility problem as the objective is void.
The separation algorithm is described in algorithm 1.

Algorithm 1: Separation algorithm.

1 MP’=MP;
2 optim :=false;
3 repeat
4 x̂ := solve (MP’);
5 status := solve (SP(x̂)) ;
6 if status = infeasible then
7 IISconst := IIS(SP(x̂));
8 add IISconst to MP’;

9 else
10 x∗ := x̂;
11 optim := true;

12 end

13 until optim=true;

6.1 Relaxation Based Exact Algorithm for the FCLOP

Our extensive computational experiments with the instances of the FCLOP
have shown that the prohibitive number of classical triangle-free inequalities,

xij + xjk + xki ≤ 2, ∀i, j, k ∈ Vn, i 6= j 6= k (6.25)

are a major bottleneck in solving instances of the FCLOP.

In fact, we have observed that only a very small fraction (often below 1
percent) of the whole set of inequalities in (6.25) are binding at the optimal
solution (in general for any feasible solution). Consequently, their existence
in the set of constraints negatively affect the performance of general-purpose
solvers mainly due to the degeneracy (cause by having too many similar rows
in the simplex tableau) in addition to the symmetry in the structure of the
FCLOP.

Let us recall the FCLOP model here:

FCLOP

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij (6.26)
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s.t.

xij + xji ≤ yi ∀i, j ∈ Vn, i < j (6.27)

xij + xji ≤ yj ∀i, j ∈ Vn, i < j (6.28)

xij + xji ≥ yi + yj − 1 ∀i, j ∈ Vn, i < j (6.29)

xij + xjk + xki ≤ 2 ∀ i, j, k ∈ Vn (6.30)
∑

i∈Vn

yi = p (6.31)

yi, xij ∈ {0, 1} ∀ i, j ∈ Vn, i 6= j (6.32)

Theorem 9 The total number of effective constraints in the constraints set
(6.30) in a FCLOP model is independent of n. In fact, it only depends on the

cardinality, p, and is calculated as follows: 2

(
p
3

)
while the total number

of the set of (6.30) constraints is equal to 2
3

(
n
3

)
.

Figure 6.1 depicts the ratio of the effective constraints to the number of
(6.30) constraints.

Example 2 For n = 35, we have:

1. when p = 5 only 0.15 percent of constraints (6.30) are effective,

2. for p = 10 it was 1.88 percent, and,

3. for p = 25 only 35.14 percent of the whole constraints are necessary.

Example 3 For n = 75, we have:

1. when p = 10 only 0.17 percent are effective,

2. for p = 20, 6.01 percent, and,

3. for p = 60 only 50.67 percent of the whole constraints are necessary.

Remark 6 Obviously, when p = n, all the constraints are necessary as is the
case in the LOP.

For strengthening the formulation, yet we propose to replace the classical
triangle-free inequalities(6.30) with:

xij + xjk + xki ≤ ys + yt ∀ {s, t} ⊂ {i, j, k} ⊆ Vn (6.33)

It is shown in Table 3.4 reported in chapter 3 that replacing (6.33) with the
classical triangle-free inequalities (6.30) will slightly improve the LP bound.
However increasing the number of inequalities in (6.33) comparing to (6.30)
had negative impact on the calculation time.
Thats why we have chosen to relax (6.33) and add them upon need in this
relaxation based solution algorithm.
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Figure 6.1: The percentage of efficient constraints of (6.30).

6.1.1 Algorithm

In the view of the aforementioned properties, a trivial decomposition for
the FCLOP would be to decompose the problem where the master problem
contains all the constraints of the FCLOP except (6.33). The relaxed cuts
are then separated and added to the master problem upon violation.

Let Bs ⊂ B be the set of active triangle-free inequalities at iteration s. The
separation of triangle-free inequalities can be done in polynomial time as
shown in Grötschel et al. (1985b). Let (x̂, ŷ) be the current solution given
by the relaxed Master. Of course

∑
i ŷi = p and we denote V (ŷ) the set of

active nodes. Now, if we let w = 1− x̂, a feasible acyclic solution will satisfy
w(C) ≥ 1 for any dicycle C on V (ŷ). So the separation subproblem will be
to find a dicycle Ĉ on V (ŷ) with minimal w(C). If w(Ĉ) < 1, the minimal
dicycle violates the corresponding dicycle inequality i.e. x(Ĉ) ≤| Ĉ | −1,
which must be added in the Master to the set Bs+1.

PR Relaxed Master

max
∑

i∈V

∑

j∈V,j 6=i

cijxij

s.t.

xij + xji ≤ yi ∀i, j ∈ V, i < j

xij + xji ≤ yj ∀i, j ∈ V, i < j

xij + xji ≥ yi + yj − 1 ∀i, j ∈ V, i < j (6.34)

xij + xjk + xki ≤ 2 ∀C = (ijk) ∈ Bs (6.35)
∑

i∈V

yi = p
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yi, xij ∈ {0, 1} ∀ i, j ∈ V, i 6= j

PR Subproblem

min w(C)

s.t.

C is a triangle-free in V (ŷ)

Observe that we can restrict the separation to triangle-frees and that we can
generate as many cuts as there are dicycles with w(C) < 1. The process
is guaranteed to be finite as the total number of violated inequalities is
bounded.
In practice, Grötschel et al. (1985b) suggested to adapt a shortest-path
algorithm (like Dijkstra) to find a shortest dicycle in the graph. Another
strategy is that for a given set of nodes in an order (in a solution to the
relaxed MP), we solve the system of triangle-free inequalities with fixed
RHS. If infeasible, we can determine a set of Irreducible Infeasible Subsystem
which correspond to those cuts that must be added. In CPLEX, this can be
carried out within a Cut/LazyConstraint callbacks and the identified cuts,
if any, can be directly added:

min 0 (6.36)

s.t.

xij + xjk + xki ≤ 2/3(yi + yj + yk) ∀i, j, k ∈ Vn, i 6= j 6= k (6.37)

xij = xij , ∀i, j 6= i, (6.38)

yi = yi, ∀i, (6.39)

yi ∈ {0, 1} ∀ i ∈ Vn (6.40)

where (x, y) is the current solution of the master program.

We have implemented this algorithm within a modern branch-and-bound
framework where the cuts are added in the course of branch-and-bound and
do not need to iterate between solving a master problem to optimality and
then separating cuts by invoking separation routing.
In the course of branch-and-bound algorithm as soon as an integer solution
to the MP is found and before it is installed as an incumbent, we examine
the feasibility of the solution. If the solution is infeasible we try to find an
IIS of the set (6.37)-(6.40), which represent the minimal number of required
cuts to eliminate the integer solution and avoid installing it as an incumbent
if infeasible.

Remark 7 CPLEX is in charge of identifying Irreducible Infeasible Subsys-
tem (IIS). Finding IIS is NP-hard and here in this algorithm we use the
concept of Inclusion-wise Minimum Infeasible Subsystem, instead.
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Upon finding violated constraints from the set of constraints in (6.33), the
set is updated to not include those constrains which have been already added
to the model.

The process is guaranteed to be finished in polynomial number of separa-
tion. Moreover, the total number of violated inequalities is bounded.

In addition to the IIS results, the following cover constraints are generated
which is of the same class of combinatorial cuts as in the original version of
the combinatorial benders decomposition cuts (Fischetti et al., 2009).

Let I be the set of indexes of variables appearing in the set of constraints
in IIS. The following cut eliminates the current solution proposed by the
master problem.

∑

{i,j}∈I

(xij − 1) ≤ −1 (6.41)

(6.41) ensures that at least one of the variables xij which is ’1’ in the current
solution will cannot be there. This constraint does not include y variables
because the variables x are mainly the cause of infeasibility.

The following algorithm is called at every node of branch-and-bound tree
with integer solution:

Algorithm 2: Separation process.

Input: yi : i ∈ Vn

Output: subset of constraints (6.37)
1 fix yi : i ∈ Vn in all constraints (6.37);
2 determine set of violated constraints in (6.37);
3 C=find IIS of (6.37)-(6.40);
4 add C to relaxed FCLOP as global cuts;
5 eliminate C from (6.37) permanently.

Numerical results are presented in Table 6.1.

6.1.2 Extended pure relaxation algorithm

In Extended Pure Relaxation Algorithm (EPRA), we relax (totally remove)
the set of constraints that ensures the existence of an edge between any pair
of active vertices.
Relaxing these constraints will cause removal of all the edges having zero
cost in any feasible (or optimal) solution (i.e. if there exist i, j of which
wij = cji = 0, then either xij or xji will never appear in any solution). The
idea behind it is to make an equilibrium between all the symmetric solutions
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of which are made by inverting the zero cost value edges.

The relaxed model then is as follows:

Relaxed-FCLOP

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij

s.t.

xij + xji ≤ yi ∀ i, j ∈ Vn, j < i

xij + xji ≤ yj ∀ i, j ∈ Vn, j < i
∑

i∈Vn

yi = p

xij, yi ∈ {0, 1}, ∀ i, j ∈ Vn, j 6= i

In this model, the set of

xij + xji ≥ yi + yi − 1 ∀ i, j ∈ Vn, i < j
∑

i∈Vn

∑

j∈Vn,j 6=i

xij = p(p− 1)/2

constraints are relaxed. By relaxing them we only consider the edges that
have non-zero cost value. This helps us to reduce the symmetry inherently
exists in the FCLOP, depending on the input matrix. For example before
relaxing these constraints, if there exists an active pair i immediately fol-
lowed by j in a feasible linear order such that wij = cji = 0, then we will
have the same objective value by inverting the edge existed from i to j.
We gain nothing by having both of these solutions in the branch-and-bound
tree. However after relaxing these constraints we will never have any edges
with zero cost value appearing in any feasible solution. It means that we set
a unique value to a set of several feasible linear order that are having the
same objective value.

After all, we apply the cut separation algorithm to separate the violated
triangle-free inequalities, if any, and solve the model.

It is shown in Table 6.2 that comparing to the Table 6.1, we can solve the
problem in a very reduced elapsed time. Since the relaxed constraint was to
ensure the existence of an arc between any pair of selected vertices and the
resulted feasible solution expected to have all the non-zero arcs active in the
solution as well as the real optimal solution, one may expect to exploit the
optimal solution after a simple post-processing procedure by adding a zero
weight arc (xijorxjibetween any pair of active i and j.
Unfortunately this is not the case. The issue, which cause to have non-zero



136 CHAPTER 6. RELAXATION BASED ALGORITHM

gap is that after removing the zero-wight arcs, we might have cycles made
by more that 3 directed arcs.
It is known in the literature that all the k-dicycle inequalities define facets for
the "Acyclic Subgraph polytope" (Grötschel et al., 1985b), but the triangle-
free inequalities are the only ones of this class that define facets for "Linear
Ordering polytope" (Grötschel et al., 1985a).
The main difference between these two models comes from the fact that we
are dealing with a complete graph in linear ordering problem (a complete
subgraph in the FCLOP).
Consequently, after removing the constraints ensuring the existence of an
edge between any active pair of vertices we probably have an incomplete
subgraph (made on a set of p active vertices). Then in this case the cycles
of which containing 4 edges or more, might appear.
Note that this behavior is highly dependant on the structure of input data.
That is the reason of having zero duality gap for some instances, i.e. for
N-pal19 when cardinality is equal to 5, 10 15 18 or 19, also for N-atp48 when
the cardinality is 10 and 15 and also N-atp24 when the cardinality is equal
to 5 and 10.
The most interesting point in this observation is the value of relative gap
that is quite small.
Remind that to find the relative gap, we calculate the difference between
estimated value (upper bound U ) and optimal value O if it is known or
the best known feasible solution when the optimal value is not known (the
absolute gap) and divide it by the optimal value (or the best known feasible
solution).

relative gap =
UpperBound−Optimal∗

Optimal∗
× 100

Numerical results reported in Table 6.2 confirm that such situations happen
rarely (depending on the cost matrix) and we always have very tight upper
bound even for difficult instances e.g. N-atp45-20, N-atp45-25, N-atp45-30

and N-atp45-35.

6.1.3 Relaxation Based Algorithm hybrid with Lagrangian Relax-
ation

As another idea, we have examined the relaxation based algorithm hybrid
with Lagrangian relaxation algorithm. In this algorithm, we first relaxed
the triangle-free inequalities as it is explained above, then ask CPLEX to
identify the IIS. In the sequel, if the IIS is not empty, the separated cuts
will be multiplied by lagrangian dual multipliers and added to the objective
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function of the master problem. The dual problem then is solved applying
Bundle method. Numerical results are reported in Table 6.3.

Table 6.4 is dedicated to report the comparison between the calculation
time of the three algorithms, Relaxation based exact solution algorithm,
Extended relaxation base algorithm and Relaxation based algorithm hybrid
with Lagrangian relaxation, and the dual bound obtained from any of them.

6.2 Numerical results

The same testbed as before is used to test the new algorithms. CPLEX
12.5.1 has been used as a modern branch-and-bound framework in the sense
that user can interfere the standard operation by implementing callbacks.
All the instances are solved using the same machine as before but only two
threads of CPU.

We let CPLEX solve the master problem and in the course of the branch-
and-bound algorithm we examine the incumbents before being accepted by
CPLEX as a feasible solution. If at certain integer node –where the incum-
bent is proposed– the IIS is not empty, then we add two kind of constraints:
1) constraints obtained from the IIS, 2) the cover inequality (also known as
the combinatorial Benders (6.41)). This will let CPLEX continue without
accepting that incumbent. In the case IIS is empty then the optimality has
been obtained.

In this framework, the user is not obliged to create and examine all the
cuts in any iteration to prevent the memory issues. The solver provides the
possibility to generate the cuts on the fly, examined them and keep them
only in the case of necessity.

In general, numerical results show that for different instances having small
cardinality number, we managed to significantly improve the computational
time.
The term O.M. in last column of the tables indicate that the solver (CPLEX)
terminates by out of memory status.
It is interesting to note that unless in the cases when the machine ran out of
memory, we always have optimal solution once CPLEX terminates normally.

6.2.1 Pure Relaxation Based Cutting Plane algorithm

Table 6.1 shows the numerical results concerning the relaxation based cut-
ting plane algorithm.
One observes that when p << n, most of the instances are solved in optimal-
ity after reasonable time. The column %Eff.Cuts shows the ratio of number
of user cuts over the total number of triangle-free inequalities existed in the
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FCLOP model. N-atp48-48-25 is an instance that we have never solved it
before in optimality, which is solved to optimality for the first time.

Fname Obj.Val. Time #U.Cuts Eff.Cuts(%) #Nodes Status
N-atp24-5 18 0.71 0 0 0 Optimal
N-atp24-10 53 20.93 83 2.05 130 Optimal
N-atp24-15 94 117.06 388 9.58 734 Optimal
N-atp24-20 140 212.82 563 13.90 243 Optimal
N-atp24-23 165 314.60 753 18.60 156 Optimal
N-atp24-24 172 294.31 616 15.21 31 Optimal
N-atp48-10 53 4622.58 393 1.13 3855 Optimal
N-atp48-15 97 11895.9 930 2.68 20414 Optimal
N-atp48-20 - - - - - O.M.
N-atp48-25 205 36645.7 2536 7.33 54094 Optimal
N-atp48-30 264 48681.6 3464 10.01 35790 Optimal
N-atp48-35 324 76206.5 4933 14.26 60224 Optimal
N-atp48-40 387 65660.2 5069 14.65 12003 Optimal
N-atp48-45 - - - - - O.M.
N-atp48-47 - - - - - O.M.
N-atp48-48 - - - - - O.M.
N-be75eec-20 130506 3898.72 232 0.59 412 Optimal
N-be75eec-30 191061 3505.25 242 0.61 3 Optimal
N-be75eec-40 223672 17249.6 826 2.10 46 Optimal
N-be75eec-50 236464 21468.7 1036 2.64 7 Optimal
N-econ36-15 400547 185.60 85 0.59 7 Optimal
N-econ36-20 469584 333.18 128 0.89 0 Optimal
N-econ36-25 506232 1624.58 478 3.34 40 Optimal
N-econ36-30 534406 2608.97 794 5.56 12 Optimal
N-econ36-35 547501 2594.73 1131 7.92 20 Optimal
N-econ36-36 548574 4177.09 1220 8.54 17 Optimal
N-p50-20-10 - - - - - O.M.
N-p50-20-15 - - - - - O.M.
N-p50-20-20 - - - - - O.M.
N-p50-20-25 - - - - - O.M.
N-p50-20-30 - - - - - O.M.
N-p50-20-35 - - - - - O.M.
N-p50-20-40 - - - - - O.M.
N-p50-20-45 - - - - - O.M.
N-p50-20-49 - - - - - O.M.
N-p50-20-50 - - - - - O.M.
N-pal19-5 10 0.73 12 0.61 0 Optimal
N-pal19-10 36 299.78 450 23.21 89420 Optimal
N-pal19-15 72 1763.73 562 28.99 157997 Optimal
N-pal19-18 98 3216.31 647 33.38 966470 Optimal
N-pal19-19 107 210.89 598 30.85 72960 Optimal
N-pal43-10 - - - - - O.M.
N-pal43-15 - - - - - O.M.
N-pal43-20 - - - - - O.M.
N-pal43-25 - - - - - O.M.



6.2. NUMERICAL RESULTS 139

N-pal43-30 - - - - - O.M.
N-pal43-35 - - - - - O.M.
N-pal43-40 - - - - - O.M.
N-pal43-42 - - - - - O.M.
N-pal43-43 - - - - - O.M.

Table 6.1: Numerical experiment for the pure relaxation based
cutting plane algorithm

6.2.2 Extended pure Relaxation Based Cutting Plane Algorithm

Table 6.2 shows the numerical results concerning Relaxed Cutting Plane
algorithm. The first column Bound reports the best upper bound that al-
gorithm has found for the instance. In several instances i.e. N-atp48-10,
N-atp48-15, N-atp48-20 and ..., the upper bound reported in this column is
equal to the optimal solution value. In such cases, the gap reported in the
second column Gap(%) is equal to zero. in other cases, the second column
reports percentage of the relative gap. One observes that unless the two
sets of instances N-p50-20 and N-pal43 that the solution procedure has been
terminated due to the memory issue, in all the other cases, the relative gap
is quite promising (less than or equal to 0.02%).

The next column, Time, reports the computational time required to solve
the model. One observes that comparing to the computational time required
for solving the cutting plane algorithm (reported in Table 6.1) in almost all
the cases, solver needs relatively less time to solve the problem.

The column U.Cuts(#) reports the number of cuts that are generated and
added to the model in the course of cutting plane algorithm.

The column %Eff.Cuts shows the ratio of number of user cuts over the num-
ber of all the cuts available in the FCLOP model.

Finally, the last column B-B Nodes reports the number of Branch-and-
Bound tree nodes that have been checked until proving the optimality.

Remind that unless for two sets of instances N-p50-20 and N-pal43 that the
solver has ran out of memory, in all the other instances the solution process
has been terminated in optimality (Best dual bound reported in this table
is the optimal solution of the relaxed problem).

Best Gap Time U.Cuts Eff.Cuts B-B
Fname Bound (%) (Sec.) (#) (%) Nodes
N-atp24-5 18 0 5.65 3 0.07 539
N-atp24-10 53 0 11.25 21 0.51 579
N-atp24-15 95 0.01 13.84 29 0.71 402
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N-atp24-20 142 0.01 16.25 38 0.93 164
N-atp24-23 167 0.01 19.71 39 0.96 17
N-atp24-24 175 0.01 9.84 36 0.88 0
N-atp48-10 53 0 2309.81 50 0.14 81369
N-atp48-15 97 0 2915.95 70 0.2 163056
N-atp48-20 148 0 2374.17 84 0.24 117803
N-atp48-25 208 0.01 2568.31 113 0.32 49887
N-atp48-30 267 0.01 2792.83 139 0.4 27050
N-atp48-35 329 0.01 3124.75 162 0.46 10953
N-atp48-40 393 0.01 2553.77 152 0.43 950
N-atp48-45 454 0.01 3306.56 164 0.47 339
N-atp48-47 480 0.01 2554.61 158 0.45 46
N-atp48-48 493 0.02 877.59 143 0.41 0
N-be75eec-20 130532 0.0001 969.37 42 0.1 14
N-be75eec-30 191160 0.0005 1373.13 104 0.26 0
N-be75eec-40 224642 0.004 2824.3 201 0.51 0
N-be75eec-50 237588 0.004 3091.73 269 0.68 0
N-econ36-15 400602 0.0001 105.9 38 0.26 5
N-econ36-20 470184 0.001 190.03 61 0.42 0
N-econ36-25 507301 0.002 498.59 132 0.92 19
N-econ36-30 536588 0.004 535.48 215 1.5 0
N-econ36-35 551347 0.007 540.37 311 2.17 0
N-econ36-36 552379 0.006 536.79 336 2.35 0
N-p50-20-10 - - - - - -
N-p50-20-15 - - - - - -
N-p50-20-20 - - - - - -
N-p50-20-25 - - - - - -
N-p50-20-30 - - - - - -
N-p50-20-35 - - - - - -
N-p50-20-40 - - - - - -
N-p50-20-45 - - - - - -
N-p50-20-49 - - - - - -
N-p50-20-50 - - - - - -
N-pal19-5 10 0 11.95 22 1.13 14303
N-pal19-10 36 0 120.17 257 13.26 63236
N-pal19-15 72 0 161.53 285 14.7 48844
N-pal19-18 98 0 4543.44 281 14.49 1173336
N-pal19-19 107 0 449.9 283 14.6 234469
N-pal43-10 - - - - - -
N-pal43-15 - - - - - -
N-pal43-20 - - - - - -
N-pal43-25 - - - - - -
N-pal43-30 - - - - - -
N-pal43-35 - - - - - -
N-pal43-40 - - - - - -
N-pal43-42 - - - - - -
N-pal43-43 - - - - - -

Table 6.2: Numerical results for extended pure relaxation algorithm
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6.2.3 Cutting Plane Algorithm Hybrid with Lagrangian Relaxation

Table 6.3 reports the numerical results concerning the cutting plane algo-
rithm hybrid with Lagrangian relaxation method.
In this model, the cutting plane algorithm will call CPLEX to identify the ir-
reducible infeasible subsystem (IIS) of the violated triangle-free inequalities.
Once the IIS is known, the violated cuts in it will be added to the objective
function of the master problem in a lagrangian form. Bundle method is
applied to solve the dual subproblem.
In this algorithm, we have two levels of iterations: First is the cutting plane
algorithm that is to identify the violate cuts. Second level is the iterations
to solve the sub-gradient problem that is placed inside each iteration of the
cutting plane algorithm.
As always, the first column in Table 6.3 contains name of the examined in-
stances. The second column elapsed Time reports the computational time
required to solve the instance.
The third column Rel.Gap(%) reports the relative gap of the solution founded
in this algorithm. The next column nr. Iter. reports the number of itera-
tions to solve the sub-gradient algorithm in the last iteration of the cutting
plane algorithm right before pruning the optimality (finding an empty IIS
set).
The next column, LP Rel. Gap(%) reports the LP relative gap to make it
easy to be compared with the relative gap resulted by this algorithm and
the last column reports the termination condition of the solution process.

One observes that in several very difficult instances e.g. N-p50-20 and N-
pal43 for different cardinality number, cutting plane algorithm hybrid with
lagrangian relaxation has provided a relatively high quality dual bound.
Time limit to solve the bundle algorithm is 10800 seconds.

elapsed best nr. LP CPLEX
Fname Time Bound Rel.Gap(%) Iter. Rel.Gap(%) Status
N-atp24-5 1 18 0 2 128 Optimal
N-atp24-10 7 53 0 3 54.86 Optimal
N-atp24-15 55 98.61 4.90 25 30.97 Optimal
N-atp24-20 77 146.37 4.55 85 9.4 Optimal
N-atp24-23 - - - - 1.96 O.M.
N-atp24-24 - - - - 0 O.M.
N-atp48-10 45 53 0 4 123.66 Optimal
N-atp48-15 742 101.67 4.81 16 83.30 Optimal
N-atp48-20 11277 158.87 7.34 36 60.18 TimeLimit
N-atp48-25 11398 220.75 7.68 27 44.56 TimeLimit
N-atp48-30 11270 285.48 8.13 26 34.70 TimeLimit
N-atp48-35 11077 349.03 7.72 60 23.65 TimeLimit
N-atp48-40 - - - - 12.70 O.M.
N-atp48-45 - - - - 4.38 O.M.
N-atp48-47 - - - - 1.20 O.M.
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N-atp48-48 - - - - 0 O.M.
N-be75eec-20 15 131910 1.07 12 1.88 Optimal
N-be75eec-30 22 191201 0.07 27 0.05 Optimal
N-be75eec-40 86 224351 0.30 41 0.14 Optimal
N-be75eec-50 282 237081 0.26 57 0 Optimal
N-econ36-15 3 401546 0.24 6 0.66 Optimal
N-econ36-20 4 472666 0.65 12 0.09 Optimal
N-econ36-25 6 512316 1.20 17 0.26 Optimal
N-econ36-30 15 540244 1.09 27 0.11 Optimal
N-econ36-35 31 554661 1.30 37 0.08 Optimal
N-econ36-36 30 555394 1.24 37 0.002 Optimal
N-p50-20-10 421 3680 59.23 13 474.75 Optimal
N-p50-20-15 8142 7607.44 48.99 13 290.20 Optimal
N-p50-20-20 13226 12860.9 73.86 8 259.13 TimeLimit
N-p50-20-25 13736 19155.8 39.85 9 142.43 TimeLimit
N-p50-20-30 11580 26532.1 55.59 13 133.68 TimeLimit
N-p50-20-35 11373 34745.4 49.13 21 91.74 TimeLimit
N-p50-20-40 10876 43426.3 38.57 64 46.35 TimeLimit
N-p50-20-45 - - - - 23.50 O.M.
N-p50-20-40 - - - - 13.04 O.M.
N-p50-20-40 - - - - 5.69 O.M.
N-pal19-5 1 10 0 3 350 Optimal
N-pal19-10 0 45 25 3 150 Optimal
N-pal19-15 3 105 45.83 11 58.33 Optimal
N-pal19-18 7 114.09 16.41 42 16.32 Optimal
N-pal19-19 0 114 6.54 4 6.54 Optimal
N-pal43-10 2 45 12.5 3 425 Optimal
N-pal43-15 1 105 31.25 3 293.75 Optimal
N-pal43-20 1 190 36.69 3 202.15 Optimal
N-pal43-25 25 300 50.75 4 163.81 Optimal
N-pal43-30 39 435 57.60 10 118.11 Optimal
N-pal43-35 - - - - 66.75 O.M.
N-pal43-40 86 602 31.15 51 31.15 Optimal
N-pal43-42 95 602 20.4 47 20.4 Optimal
N-pal43-43 8 602 12.52 4 12.52 Optimal

Table 6.3: Numerical experiment of relaxation based algorithm
hybrid with Lagrangian relaxation

6.2.4 Comparing the three algorithms

Table Table 6.4 is served to compare the numerical results of relaxation
based cutting plane algorithm, extended relaxation based cutting plane al-
gorithm and the relaxation based cutting plane algorithm hybrid with the
Lagrangian relaxation algorithm.

The first column as always contains the name of instances.
The second column RBA Time reports the calculation time that pure re-



6.2. NUMERICAL RESULTS 143

laxation based algorithm(RBA) required for solving the instances of the
FCLOP.
The third column ERBA Bound reports the best bound provided by the
extended pure relaxation based algorithm (ERBA) while the next column
contains the LP bound of the instances for making it easy to compar the
bounds.
The next column RBA+LR Time reports the calculation time required for
the relaxation based algorithm hybrid with Lagrangian relaxation algorithm
and the last column RBA+LR Relative Gap(%) shows the percentage of the
relative gap of solutions resulted from the relaxation based algorithm hybrid
with Lagrangian relaxation algorithm.

One observes that relaxation based separation algorithm is valuable mostly
whenever the cardinality number is far from the number of node. The sepa-
ration algorithm becomes heavy as soon as the cardinality number get close
in to the number of nodes (e.g. N-atp48 and N-p50-20-50 ).

RBA ERBA ERBA RBA+LR RBA+LR LP
Fname Time Time Rel.Gap(%) Time Rel.Gap(%) Rel.Gap(%)
N-atp24-24-5 0.71 5.65 0 1 0 128
N-atp24-24-10 20.93 11.25 0 7 0 54.86
N-atp24-24-15 117.06 13.84 0.01 55 4.90 30.97
N-atp24-24-20 212.82 16.25 0.01 77 4.55 9.4
N-atp24-24-23 314.6 19.71 0.01 - - 1.96
N-atp24-24-24 294.31 9.84 0.01 - - 0
N-atp48-48-10 4622.58 2309.81 0 45 0 123.66
N-atp48-48-15 11895.9 2915.95 0 742 4.81 83.30
N-atp48-48-20 - 2374.17 0 11277 7.34 60.18
N-atp48-48-25 36645.7 2568.31 0.01 11398 7.68 44.56
N-atp48-48-30 48681.6 2792.83 0.01 11270 8.13 34.70
N-atp48-48-35 76206.5 3124.75 0.01 11077 7.72 23.65
N-atp48-48-40 65660.2 2553.77 0.01 - - 12.70
N-atp48-48-45 - 3306.56 0.01 - - 4.38
N-atp48-48-47 - 2554.61 0.01 - - 1.20
N-atp48-48-48 - 877.59 0.02 - - 0
N-be75eec-50-20 3898.72 969.37 0.0001 15 1.07 1.88
N-be75eec-50-30 3505.25 1373.13 0.0005 22 0.07 0.05
N-be75eec-50-40 17249.6 2824.3 0.004 86 0.30 0.14
N-be75eec-50-50 21468.7 3091.73 0.004 282 0.26 0
N-econ36-36-15 185.6 105.9 0.0001 3 0.24 0.66
N-econ36-36-20 333.18 190.03 0.001 4 0.65 0.09
N-econ36-36-25 1624.58 498.59 0.002 6 1.20 0.26
N-econ36-36-30 2608.97 535.48 0.004 15 1.09 0.11
N-econ36-36-35 2594.73 540.37 0.007 31 1.30 0.08
N-econ36-36-36 4177.09 536.79 0.006 30 1.24 0.002
N-p50-20-50-10 - - - 421 59.23 474.75
N-p50-20-50-15 - - - 8142 48.99 290.20
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N-p50-20-50-20 - - - 13226 73.86 259.13
N-p50-20-50-25 - - - 13736 39.85 142.43
N-p50-20-50-30 - - - 11580 55.59 133.68
N-p50-20-50-35 - - - 11373 49.13 91.74
N-p50-20-50-40 - - - 10876 38.57 46.35
N-p50-20-50-45 - - - - - 23.50
N-p50-20-50-49 - - - - - 13.04
N-p50-20-50-50 - - - - - 5.69
N-pal19-19-5 0.73 11.95 0 1 0 350
N-pal19-19-10 299.78 120.17 0 0 25 150
N-pal19-19-15 1763.73 161.53 0 3 45.83 58.33
N-pal19-19-18 3216.31 4543.44 0 7 16.41 16.32
N-pal19-19-19 210.89 449.9 0 0 6.54 6.54
N-pal43-43-10 - - - 2 12.5 425
N-pal43-43-15 - - - 1 31.25 293.75
N-pal43-43-20 - - - 1 36.69 202.15
N-pal43-43-25 - - - 25 50.75 163.81
N-pal43-43-30 - - - 39 57.60 118.11
N-pal43-43-35 - - - - - 66.75
N-pal43-43-40 - - - 86 31.23 31.15
N-pal43-43-42 - - - 95 20.492 20.4
N-pal43-43-43 - - - 8 12.52 12.52

Table 6.4: Comparison table



CHAPTER 7

Facets and Numerical Efficiency

Our investigation in polyhedral studies presented in chapter 3, shows that
the inequalities

xij + xjk − xik − yj ≤ 0, ∀i, j ∈ Vn, i 6= j

are defining facets for the cases when p = n and p = n − 1. We have also
shown that in all the other cases, they improve the LP bound.
The set of (??) facet defining valid inequalities are new and can be replaced
with the classical triangle-free inequalities. Adding these new facet defining
valid inequalities to the FCLOP model dramatically improve the integrality
gap. Numerical results of comparing the LP relaxation of the instances be-
fore and after adding (??) to the model are presented in Table 3.7.

In chapter 7, we are proposing two Lagrangian relaxations as well as a relax-
and-cut algorithm to improve the dual bound and compare the results with
the old tables presented before, in chapter 3.

7.1 Lagrangian relaxation

Consider the FCLOP model as follows:

FCLOP

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij (7.1)

s.t.

145
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xij + xji ≤ yi ∀ i, j ∈ Vn, i < j (7.2)

xij + xji ≤ yj ∀ i, j ∈ Vn, i < j (7.3)

xij + xji − yi − yj + 1 ≥ 0 ∀ i, j ∈ Vn i < j (7.4)

xij + xjk − xik − yj ≤ 0 ∀ i, j, k ∈ Vn, i 6= j 6= k (7.5)
∑

i∈Vn

yi = p (7.6)

∑

i∈Vn

∑

j∈Vn,j 6=i

xij = p(p− 1)/2 (7.7)

xij , yi ∈ {0, 1} ∀ i, j ∈ Vn, i 6= j (7.8)

The following two Lagrangian relaxations has been examined.

LR1

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij

−
∑

k∈Vn

∑

j∈Vn,j 6=k

∑

i∈Vn,i6=j 6=k

vijk(xij + xjk − xik − yj) (7.9)

s.t.

xij + xji ≤ yi ∀ i, j ∈ Vn, i < j (7.10)

xij + xji ≤ yj ∀ i, j ∈ Vn, i < j (7.11)

xij + xji − yi − yj + 1 ≥ 0 ∀ i, j ∈ Vn i < j (7.12)
∑

i∈Vn

yi = p (7.13)

∑

i∈Vn

∑

j∈Vn,j 6=i

xij = p(p− 1)/2 (7.14)

xij, yi ∈ {0, 1} ∀ i, j ∈ Vn, i 6= j (7.15)

LR2

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij

−
∑

j∈Vn

∑

i∈Vn,i6=j

uij(−xij − xji + yi + yj − 1) (7.16)

s.t.

xij + xji ≤ yi ∀ i, j ∈ Vn, i < j (7.17)
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xij + xji ≤ yj ∀ i, j ∈ Vn, i < j (7.18)

xij + xjk − xik − yj ≤ 0 ∀ i, j, k ∈ Vn i 6= j 6= k (7.19)
∑

i∈Vn

yi = p (7.20)

∑

i∈Vn

∑

j∈Vn,j 6=i

xij = p(p− 1)/2 (7.21)

xij , yi ∈ {0, 1} ∀ i, j ∈ Vn, i 6= j (7.22)

7.1.1 Numerical results

Subgradient method and bundle algorithm have been used to solve the two
Lagrangian relaxation LR1 and LR2. Numerical results are presented in two
following Tables 7.1 and 7.2.

LR1

Table 7.1 reports the numerical results of applying bundle method and the
code implemented by Antonio Frangioni Frangioni (2000) to solve LR1 La-
grangian dual problem. In this model, we have dualized new triangle-free
inequalities. Numerical results show that for the instances which are usu-
ally very difficult to solve, i.e. N-atp48 and N-p50-20, we were able to dra-
matically improve the dual bound. On the other side, it seems that this
Lagrangian dual problem is not the best model to find a good upper bound
for easier instances when CPLEX itself can solve the instances easily. As
mentioned earlier, computational results of different solution method for the
FCLOP are always highly depending on the input instances. Moreover, our
experiments show that different instances have different behavior facing with
different solution methods that we have examined.
For example, here we could not solve N-atp24 for three cases when p =
20, p = 23 and p = 24 while these instances were of the easiest ones so
far. However we had relatively good dual bounds for N-atp48 when p gets
medium values (e.g. p = 20) which were quite challenging for almost all the
solution methods we have applied so far.
A very interesting point in Table 7.1 is the presence of very high quality
dual bound for some of the very difficult instances of which are found for
the first time, e.g. N-p50-20 for various p values and N-pal43 as well.

LR2

Table 7.2 shows numerical results applying Bundle algorithm to solve La-
grangian dual problem LR2. In this model, the set of (7.4) inequalities are
dualized. Numerical experiments show that except only two instances N-

econ36 when p = 25 and the second one when p = 35, the other instances
of which were not running out of memory, all are solved in optimality in a
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Fname elapsedTime bestBound nrIteration LP bound Optimal* BundleStatus
N-atp24-5 1 18 2 41.04 18 Optimal
N-atp24-10 11 53 5 82.08 53 Optimal
N-atp24-15 189 94.67 73 123.12 94 Optimal
N-atp24-20 - - - 153.16 140 O.M.
N-atp24-23 - - - 168.25 165 O.M.
N-atp24-24 - - - 172 172 O.M.
N-atp48-10 226 53 12 118.54 53 Optimal
N-atp48-15 10915 98.14 80 177.81 97 TimeLimit
N-atp48-20 11064 152.73 24 237.08 148 TimeLimit
N-atp48-25 11180 211.35 20 296.35 205 TimeLimit
N-atp48-30 10927 269.13 28 355.62 264 TimeLimit
N-atp48-35 10873 325.60 69 400.65 324 TimeLimit
N-atp48-40 - - - 436.16 387 O.M.
N-atp48-45 - - - 466.62 447 O.M.
N-atp48-47 - - - 477.7 472 O.M.
N-atp48-48 - - - 483 483 O.M.
N-be75eec-20 23 130904 18 132966 130506 Optimal
N-be75eec-30 15 191115 27 191168 191061 Optimal
N-be75eec-40 36 223988 45 224006 223672 Optimal
N-be75eec-50 9 237081 57 236464 236464 Optimal
N-econ36-15 3 401531 6 403222 400547 Optimal
N-econ36-20 2 472666 12 470033 469584 Optimal
N-econ36-25 4 512039 18 507568 506232 Optimal
N-econ36-30 7 539997 29 535017 534406 Optimal
N-econ36-35 7 554661 37 547984 547501 Optimal
N-econ36-36 2 555394 37 548588 548574 Optimal
N-p50-20-10 10887 3528.09 45 13282.6 2311* TimeLimit
N-p50-20-15 12056 7528.93 12 19923.9 5106* TimeLimit
N-p50-20-20 15816 12690.7 6 26565.2 7397* TimeLimit
N-p50-20-25 21686 18738.7 6 33206.5 13697* TimeLimit
N-p50-20-30 13645 25314.4 8 39847.8 17052* TimeLimit
N-p50-20-35 11642 30719.8 16 44672.5 23298* TimeLimit
N-p50-20-40 - - - 45864.2 31337* O.M.
N-p50-20-40 10986 35431.7 68 47055.8 38099* TimeLimit
N-p50-20-49 37 46974.7 94 47985.7 42450* Optimal
N-p50-20-50 - - - 48155.7 45560* O.M.
N-pal19-5 0 10 6 45 10 Optimal
N-pal19-10 9 45 40 90 36 Optimal
N-pal19-15 - - - 114 72 O.M.
N-pal19-18 1 105.08 26 114 98 Optimal
N-pal19-19 1 114 4 114 107 Optimal
N-pal43-10 44 45 16 210 40* Optimal
N-pal43-15 252 105 42 315 80* Optimal
N-pal43-20 858 190 64 420 139* Optimal
N-pal43-25 12365 299.98 34 525 199* TimeLimit
N-pal43-30 11362 377.21 40 602 276* TimeLimit
N-pal43-30 - - - 602 361* O.M.
N-pal43-30 - - - 602 459* O.M.
N-pal43-42 53 581.36 39 602 500* Optimal
N-pal43-43 1 602 4 602 535* Optimal

Table 7.1: numerical experiment-Lagrangian relaxation-LR1-Bundle
method
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very reasonable time and after only two iterations.
Another very interesting result show that for the instance N-p50-20 when
p = n = 50 we could again improve the best dual bound known in the lit-
erature to 47504. This LOP problem is one of the very difficult instances
available in the literature which its optimal solution is not known yet. The
best known dual bound in the literature for this problem is 48155.
In Table 7.2, despite difficulties to tackle very hard to solve instances e.g.
N-p50-20 and N-pal43, still we had very good success to solve almost all the
other of the testbed in only 2 iterations. Moreover, except only 2 instances
N-econ-36 when p = 25 and also when p = 30, in all the other instances we
have zero duality gap.
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Fname elapsedTime bestBound nrIteration LP bound Optimal* BundleStatus
N-atp24-5 4 18 2 41.04 18 Optimal
N-atp24-10 16 53 2 82.08 53 Optimal
N-atp24-15 17 94 2 123.12 94 Optimal
N-atp24-20 3 140 2 153.16 140 Optimal
N-atp24-23 1 165 2 168.25 165 Optimal
N-atp24-24 1 172 2 172 172 Optimal
N-atp48-10 2041 53 2 118.54 53 Optimal
N-atp48-15 8363 97 2 177.81 97 Optimal
N-atp48-20 12971 148 2 237.08 148 Optimal
N-atp48-25 10443 205 2 296.35 205 Optimal
N-atp48-30 2864 264 2 355.62 264 Optimal
N-atp48-35 3761 324 2 400.65 324 Optimal
N-atp48-40 68 387 2 436.16 387 Optimal
N-atp48-45 85 447 2 466.62 447 Optimal
N-atp48-47 55 472 2 477.7 472 Optimal
N-atp48-48 9 483 2 483 483 Optimal
N-be75eec-20 22 130506 2 132966 130506 Optimal
N-be75eec-30 16 191061 2 191168 191061 Optimal
N-be75eec-40 49 223672 2 224006 223672 Optimal
N-be75eec-50 5 236464 2 236464 236464 Optimal
N-econ36-15 12 400547 2 403222 400547 Optimal
N-econ36-20 4 469584 2 470033 469584 Optimal
N-econ36-25 7 506268 2 507568 506232 Optimal
N-econ36-30 10 534406 2 535017 534406 Optimal
N-econ36-35 9 547542 2 547984 547501 Optimal
N-econ36-36 3 548574 2 548588 548574 Optimal
N-p50-20-10 - - - 13282.6 2311* O.M.
N-p50-20-15 - - - 19923.9 5106* O.M.
N-p50-20-20 - - - 26565.2 7397* O.M.
N-p50-20-25 - - - 33206.5 13697* O.M.
N-p50-20-30 - - - 39847.8 17052* O.M.
N-p50-20-35 - - - 44672.5 23298* O.M.
N-p50-20-40 - - - 45864.2 31337* O.M.
N-p50-20-45 - - - 47055.8 38099* O.M.
N-p50-20-49 - - - 47985.7 42450* O.M.
N-p50-20-50 - - - 48155.7 45560* O.M.
N-pal19-5 1 10 2 45 10 Optimal
N-pal19-10 132 36 2 90 36 Optimal
N-pal19-15 3330 72 2 114 72 Optimal
N-pal19-18 1200 98 2 114 98 Optimal
N-pal19-19 254 107 2 114 107 Optimal
N-pal43-10 - - - 210 40* O.M.
N-pal43-15 - - - 315 80* O.M.
N-pal43-20 - - - 420 139* O.M.
N-pal43-25 - - - 525 199* O.M.
N-pal43-30 - - - 602 276* O.M.
N-pal43-35 - - - 602 361* O.M.
N-pal43-40 - - - 602 459* O.M.
N-pal43-42 - - - 602 500* O.M.
N-pal43-43 - - - 602 535* O.M.

Table 7.2: numerical experiment-lagrangian relaxation-LR2-Bundle method
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7.2 Relax-and-Cut Algorithm

7.2.1 Introduction

The more the cardinality of set of dualized constraints, the more time is spent
on evaluation of subgradient. If the cardinality is exponential in the size of
instance, then evaluation of subgradient becomes a bottleneck. Moreover,
often a very small fraction of all the cuts are actually violated. However,
those that are actually satisfied still contribute in calculation of g = b−Ax
in the denumerator of step-size calculation formula. In other words, the
number of strictly positive subgradients tends to be huge and therefore the
calculated step size will be extremely small, leaving Lagrangian multiplier
values virtually unchanged from iteration to iteration. This would hinder
the convergence and deteriorates the efficiency of subgradient method.
Beasley (1993) suggested that gi = 0 for strictly positive subgradient i. How-
ever, still the issue of exponential number of relaxed constraints persists.
Relax-and-Cut (first mentioned in Escudero et al. (1994)) tried to iteratively
add or dualize the violated constraints. Gavish (1985) proposed Augmented
Lagrangian Approach where the cuts are added after (5.4) has been solved
(Delayed Relax-and-Cut). Balas and Christofides (1981) proposed the so
called Restricted Lagrangian Approach for Traveling Salesman Problem. Lu-
cena (1992, 1993) proposed a new class of relax-and-cut, called Non-Delayed
Relax-and-Cut, where the additional constraints to be dualized are identi-
fied after every iteration of subgradient and not only after the convergence
of subgradient.
Guignard (1998) characterized the kind of valid inequalities which can be
efficient in the relax-and-cut process.

7.2.2 Algorithm

In this section, a relax-and-cut algorithm is proposed to solve the FCLOP.
This algorithm is based on the results concerning polyhedral study and facet
defining inequalities presented in chapter two.
Fischetti and Salvagnin (2011) proposed a relax-and-cut framework for ef-
ficiently using gomory mixed-integer cuts. They relax the new generated
gomory mixed-integer cuts and add them to the objective function multi-
plied by the Lagrangian multipliers. Belloni and Lucena (2004) also presents
a relax-and-cut algorithm to solve linear ordering problem.

Given the FCLOP as follows:

max
∑

i∈Vn

∑

j∈Vn,j 6=i

wijxij (7.23)

s.t. xij + xji ≤ yi ∀i, j ∈ Vn, i < j (7.24)
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xij + xji ≤ yj ∀i, j ∈ Vn, i < j (7.25)

xij + xji ≥ yi + yj − 1 ∀i, j ∈ Vn, i < j (7.26)

xij + xjk + xki ≤ 2 ∀i, j, k ∈ Vn i 6= j 6= k (7.27)
∑

i∈Vn

yi = p (7.28)

xij , yi ∈ {0, 1} ∀ i, j ∈ Vn (7.29)

It is shown in chapter 2 that the set of following strengthening valid inequal-
ities are facet-defining for the FCLOP polytope:

xij + xjk − xik − yj ≤ 0 ∀ i, j, k ∈ Vn, i 6= j 6= k (7.30)

The idea is to solve the LP relaxation of the FCLOP. Once we find the
solution, we check whether there exist any violated facet defining inequality
of (7.30) type or not. If there is any, then we add them to the model
and directly relax them in a Lagrangian fashion. Indeed, if in an iteration
an inequality which is already added to the model is found as a violated
inequality, then we need to increase its Lagrangian multiplier to augment
the penalty to avoid violating an inequality.

Algorithm 3: Separation process of the relax-and-cut algorithm.

Input: xij , yi : i, j ∈ Vn

Output: subset of constraints (7.30)
1 fix xij , yi : i, j ∈ Vn in all constraints (7.30);
2 determine set of violated constraints in (7.30);
3 C=find minimum infeasible subsystem of (7.30);
4 add C to FCLOP as relaxed constraints to the objective function;

Numerical experiments are presented in Table 7.3.

7.2.3 Numerical results

Numerical experiments in Table 7.3 shows that the behavior of our relax-
and-cut algorithm is highly depending on input data. In Table 7.3, we have
compared the numerical experiences of relax-and cut algorithm with LR1.
In LR1, all the facet defining triangle-free inequalities are directly dualized
and then the dual problem is solved using bundle algorithm. As it was
expected, we did not change the best bound obtained in relax and bound
method comparing the LR1, they are all similar. However the elapsed com-
putational time in these two experiments are not similar for all the instances,
i.e. the elapsed computational time of relax-and-cut algorithm for N-atp48

when p = 10 is less than LR1, when p = 15 they are not too much deferent
and for the case when p = 20, it is a little bit greater than LR1.
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Relax-and-Cut LR1
Fname elapsedTime bestBound nrIteration elapsedTime BundleStatus
N-atp24-5 1.28 18 2 0.49 Optimal
N-atp24-10 12.01 53 5 14.59 Optimal
N-atp24-15 189.81 94.67 73 156.3 Optimal
N-atp24-20 - - - - O.M.
N-atp24-23 - - - - O.M.
N-atp24-24 - - - - O.M.
N-atp48-10 226.24 53 12 383.42 Optimal
N-atp48-15 10915.22 98.14 80 10910.02 Optimal
N-atp48-20 11064.69 152.73 24 10401.11 Optimal
N-atp48-25 11181.01 211.35 20 19120.48 Optimal
N-atp48-30 10928.01 269.13 28 7977.48 Optimal
N-atp48-35 10873.08 325.6 69 16419.51 Optimal
N-atp48-40 - - - - O.M.
N-atp48-45 - - - - O.M.
N-atp48-47 - - - - O.M.
N-atp48-48 - - - - O.M.
N-be75eec-20 23.27 130904 18 29.31 Optimal
N-be75eec-30 15.51 191115 27 13.53 Optimal
N-be75eec-40 36.8 223988 45 48.99 Optimal
N-be75eec-50 9.29 237081 57 15.98 Optimal
N-econ36-15 3.65 401531 6 4.53 Optimal
N-econ36-20 2.82 472666 12 6.18 Optimal
N-econ36-25 4.02 512039 18 1.13 Optimal
N-econ36-30 7.9 539997 29 10.71 Optimal
N-econ36-35 7.69 554661 37 15.17 Optimal
N-econ36-36 2.03 555394 37 0.24 Optimal
N-p50-20-10 10887.88 3528.09 45 5553.01 TimeLimit
N-p50-20-15 12056.42 7528.93 12 21461.74 TimeLimit
N-p50-20-20 15816.3 12690.7 6 15816.39 TimeLimit
N-p50-20-25 12686.07 18738.7 6 2602.37 TimeLimit
N-p50-20-30 13645.56 25314.4 8 23062.31 TimeLimit
N-p50-20-35 11642.65 30719.8 16 116.43 TimeLimit
N-p50-20-40 10986.18 35431.7 68 18566.93 TimeLimit
N-p50-20-49 37.28 48749.7 100 4.12 MaxIter
N-p50-20-50 - - - - O.M.
N-pal19-5 0.62 10 6 0.8 Optimal
N-pal19-10 9.27 4519 40 9.3 Optimal
N-pal19-15 - - - - Optimal
N-pal19-18 1.89 105.08 26 2.48 Optimal
N-pal19-19 1.94 114 4 3.8 Optimal
N-pal43-10 44.9 45 16 54.84 Optimal
N-pal43-15 252.55 1056 42 235.5 Optimal
N-pal43-20 858.53 1909 64 17.17 Optimal
N-pal43-25 12365.92 299.98 34 14963.77 Optimal
N-pal43-30 11362.09 377.21 40 13635.25 Optimal
N-pal43-35 - - - - O.M.
N-pal43-40 - - - - O.M.
N-pal43-42 53.55 581.36 39 90.63 Optimal
N-pal43-43 1.98 602 4 0.6 Optimal

Table 7.3: numerical experiment of Relax-and-Cut algorithm comparing to
LR1
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CHAPTER 8

Summary, conclusions and outlook to future work

8.1 Summary and conclusions

In this thesis we introduced a new variant of the classical Linear Ordering
Problem (LOP) where the set of nodes to be linearly ordered are exoge-
nously fixed to p. We referred to this new variant as Fixed Cardinality
Linear Ordering Problem(FCLOP). A particular case of the FCLOP where
p = n becomes LOP and it is well-known that LOP belongs to the class of
NP-Hard problems in combinatorial optimization problems (COP).

The problem itself generalizes the LOP and of course would share the same
application that are imagined for the LOP. Yet, as also explained in the in-
troduction section, the FCLOP (perhaps with some minor side constraints)
is an inherent part of many network location problems (in particular those
p-center and p-median problems) in transportation and telecommunications.
When developing primal decomposition algorithms, such as Benders decom-
position, for such kind of network design problems, often the master problem
is composed of the constraints of the FCLOP (perhaps plus some other side
constraints) while the flow transfer part moves to the sub-problem.

As the major concern in such primal decomposition algorithms —Benders
in this case— is the efficiency of MP resolution, characterizing polyhedral
structure and developing efficient solution methods —exploiting such poly-
hedral information— for the FCLOP becomes even more important.

In this thesis we have started by introducing the problem and proposing an
integer programming formulation for the problem at hand. The numerical
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results proved the intractability of the model and the impact of symmetry
on the performance of genera-purpose MIP solvers such as CPLEX. We have
used standard instances from different categories of instances from LOLIB.
The computational experiments revealed that the quality of relaxation and
several iterations of non-improving bounds during the branch-and-bound(-
and-cut) process in CPLEX demands for better polyhedral studies of the IP
formulation and tightening LP polytope.

We have proposed several equivalent IP formulation and several classes of
valid inequalities. Those valid inequalities came from different sources in-
cluding some optimization over the first Chvátal-Gomory closure. Some
classes of valid inequalities have shown to contribute a lot in the perfor-
mance of general-purpose solvers by tightening the LP relaxation polytope.
An effort has been made to also show that some of the proposed valid in-
equalities were also facet-defining ones.

After studying the formulation of the problem, we have proposed several
Lagrangian (decomposition) based relaxations making use of the tighter
formulations and the improving inequalities which could also be used in
a relax-and-cut fashion. We also proposed a simple method for dynam-
ically generating symmetry-breaking inequalities in the course of branch-
and-bound upon emergence of every incumbent.

In addition to the Lagrangian-based dual decomposition approaches, a pri-
mal decomposition algorithm which relied on the idea of Combinatorial Ben-
ders cuts has been developed which proven to be very efficient and obtain
optimal/feasible solution for instances which has not been solved until then.

We can conclude that polyhedral analysis and the improving inequalities led
to very promising results. That means, even a black-box general-purpose
solver such as CPLEX, not even a tailored algorithm, could show a better
performance. In terms of bound, Lagrangian relaxation and in particular,
Lagrangian decomposition shown very promising and is a better alternative
to the LP relaxation bound as the sub-problems do not show any integrality
property.

We strongly believe that the idea of pure relaxation accompanying with a
cut separation algorithm which came from Benders decomposition shown to
be very promising for some classes of instances. However, still the issues
related to a non-convex sub-problem hinders a successful application of the
method.

However, still the quality of bound used in the branch-and-bound algorithm
as well as symmetry play very important roles.



8.2. FUTURE WORK 157

8.2 Future work

The efficiency of resolution of the FCLOP is very negatively impacted by
the number of triangle-free constraints rather than the number of variables.
Such a huge number of constraint with very similar and sparse non-zero rows
in the matrix is also a serious source of degeneracy and numerical instabili-
ties. Often the solvers are interrupted with exception while solving the root
node, even before starting to branch on variables.

In such a situation, a trivial way of handling such problems is to apply cut
generation methods such as branch-and-cut and relax-and-cut which gen-
erates the necessary cuts on the fly instead of adding them directly to the
model. We believe that, branch-and-cut methods deserve more attention.
At the same time, an efficient cut generation method also owes to the quality
of cuts which in turn relies on the solid knowledge of the polyhedral struc-
ture.

Even though the intractability of the model mostly owes to the number of
rows in the model, yet perhaps a Dantzig-Wolfe reformulation of the problem
could significantly reduce the existing symmetry issue in the model provided
that the pricing sub-problem is efficiently solvable (perhaps by some kind of
branch-and-cut or a variant of Benders). A possible bin packing-like mod-
eling would also deserve attention as often such models are known for being
quite tight.

Our experiments on optimizing over the first Chvátal-Gomory closure showed
very promising. Investigating the other closures (knapsack, elementary, MIR
and/or disjunctive closures etc.) also deserves attention. As the number
of variables remains still manageable, the concept of lift-and-project and
extended formulation combined with the column generation would also be
another research direction.

Symmetry is also another issues in the model which deserves attention. Our
investigation in this area shows that there is no symmetry group for the
FCLOP when p ≥ 3, however a possible research avenue would be to inves-
tigate the advanced concepts in symmetry groups of polyhedra. Again such
kind of symmetry-breaking inequalities must be generated on the fly rather
than being directly added to the model.

Our emphasis in this thesis was on the polyhedral studies and exact solution
methods. However, in most cases, for a real-life size instance of problem,
the decision makers ask for a good quality solution, which can be obtained
in a moderate computational time. In such cases, heuristics procedures —in
particular those exploiting e.g. the information about the dual – such as
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Lagrangian-based heuristics deserve attention.
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