
HAL Id: tel-01166538
https://theses.hal.science/tel-01166538v1
Submitted on 23 Jun 2015 (v1), last revised 23 Jun 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic based cloud broker architecture optimizing
users satisfaction

Inès Fakhfakh

To cite this version:
Inès Fakhfakh. Semantic based cloud broker architecture optimizing users satisfaction. Other [cs.OH].
Institut National des Télécommunications, 2015. English. �NNT : 2015TELE0008�. �tel-01166538v1�

https://theses.hal.science/tel-01166538v1
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT CONJOINT TELECOM SUDPARIS et L’UNIVERSITE PIERRE ET MARIE CURIE

Thèse n° 2015TELE0008

Spécialité : Informatique et Réseaux

 Ecole doctorale : Informatique, Télécommunications et Electronique de Paris

Présentée par

Inès FAKHFAKH

Pour obtenir le grade de

DOCTEUR DE TELECOM SUDPARIS

UNE ARCHITECTURE DE CLOUD BROKER BASEE SUR LA SEMANTIQUE POUR

L'OPTIMISATION DE LA SATISFACTION DES UTILISATEURS

Soutenue le 07/05/2015

devant le jury composé de :

Mme. Lynda MOKDAD, Professeur à la Faculté des Sciences et Technologie, Université Paris 12, Val de Marne –

Rapporteur

M. Yacine GHAMRI DOUDANE, Professeur à l’Université de La Rochelle – Rapporteur

Mme Véronique VEQUE, Professeur à l’Université Paris-Sud – Examinateur

M. Pierre SENS, Professeur à l’Université Paris 6 – Examinateur

Mme. Amel BOUZEGHOUB, Professeur à Télécom SudParis – Examinateur

M. Djamal ZEGHLACHE, Professeur à Télécom SudParis – Directeur de thèse

I dedicate this thesis to my family for their constant support and

unconditional love.

Acknowledgements

I am very grateful to my reading committee members: Prof. Lynda MOK-

DAD and Prof.Yacine GHAMRI DOUDANE for accepting to judge this

work. Thank you for your time, your interest, and your helpful comments.

I would also like to thank the two other members of my oral defense com-

mittee Prof. Véronique VEQUE and Prof. Pierre SENS for their time and

insightful questions.

I owe my deepest gratitude to Prof. Amel BOUZEGHOUB for all her con-

tributions of time, ideas, and guidance, especially in the semantic part of

this thesis.

My special thanks go to Prof. Djamal ZEGHLACHE for offering me the

opportunity to work on this thesis at Telecom Suparis Institute and for all

the advice he provided to the work on this thesis.

I would like to thank my colleagues and friends, not only for being supportive

during the work on this thesis but also for the fun times we spent together.

Last but not the least, I would like to thank my family for supporting me

throughout my life.

Abstract

Cloud computing is a dynamic new technology that has huge potentials

in enterprises and markets. Its resources configuration changes significantly

depending on various internal modifications such as fail of some components

or external environment changes. The dynamicity and the increasing com-

plexity of cloud architectures involve several management challenges. In this

work, we are interested in the service level agreement (SLA) management.

Actually, there is no standard to express cloud SLA, so, providers describe

their SLAs in different manner and different languages, which leaves the user

puzzled about the choice of its cloud provider.

To overcome these problems, we introduce a cloud broker architecture man-

aging the service level agreements between providers and consumers. It

aims to assist users in establishing and negotiating SLA contracts and to

help them in finding the best provider that satisfies their service level ex-

pectations. Our broker SLA contracts are formalized as OWL ontologies as

they allow to hide the heterogeneity in the distributed cloud environment

and enable interoperability between cloud actors. Besides, by combining

our ontology with our proposed inference rules, we contribute to detect vi-

olations in the SLA contract assuring thereby the sustainability of the user

satisfaction. Based on the requirements specified in the SLA contract, our

cloud broker assists users in selecting the right provider using a multi at-

tribute utility theory method. This method is based on utility functions

representing the user satisfaction degree. To obtain accurate results, we

have modelled both functional and non functional attributes utilities. We

have used personalized utilities for each criterion under negotiation so that

our cloud broker satisfies the best consumer requirements from functional

and non functional point of view.

Résumé

Le cloud computing est un nouveau modèle économique hébergeant les ap-

plications de la technologie de l’information. Il répond aux besoins exponen-

tiellement croissants en ressources physiques et logicielles. Il permet d’appro-

visionner ces ressources et de les partager sous forme de ressources virtuelles

à travers le réseau internet. Le passage au cloud devient un enjeux impor-

tant des entreprises pour des raisons essentiellement économiques. En effet,

le cloud fournit des services à la demande ce qui permet aux utilisateurs

d’allouer les ressources virtuelles nécessaire pour leurs processus métier. Ils

n’ont plus donc besoin d’installer des infrastructures couteuses et d’assurer

leurs mis à jours ce qui permet de réduire les coûts de l’exploitation et de

l’entretien. En outre, le cloud assure la flexibilité, la scalabilité, la fiabilité

et la haute disponibilité.

Aujourd’hui il existe plusieurs fournisseurs de service cloud public, privé et

hybride.

Étant donné la diversité des fournisseurs et des services du cloud, l’utili-

sateur doit être capable de sélectionner celui qui répond au mieux à ses

besoins. Ce choix n’est pas évident car l’utilisateur doit être en mesure de

trouver le meilleurs compromis entre plusieurs paramètres de qualité de ser-

vice proposés par les différents fournisseurs de services. Il doit aussi prendre

en compte la dynamicité de l’infrastructure du cloud. En outre, l’hétérogé-

néité syntaxique et sémantique entre les fournisseurs du cloud rends ce choix

encore plus difficile. Cette hétérogénéité se manifeste en :

• différentes terminologies exprimant le même concept : par exemple, la

capacité de traitement d’une machine virtuelle peut être appelé CPU,

capacité, capacité de traitement . . . ;

• Différents formats ou différents langages exprimant la requête : certain

fournisseurs proposent des instances prédéfinies et c’est à l’utilisateur

de composer sa requête à partir de ces instances alors que d’autres

exigent que l’utilisateur fixe les caractéristiques techniques des res-

sources à allouer tel que sa capacité, sa mémoire son espace disque

. . .

• Différentes façons d’exprimer la qualité de service : dans certains cas

deux métriques différentes peuvent avoir la même appellation. Par

exemple, le mot "delay" peut faire référence à la latence d’un système

comme il peut exprimer le pourcentage des paquets perdu lors de la

transmission d’un service.

Afin de définir l’accord et la nomenclature utilisée entre le fournisseur et le

consommateur de service, on crée des contrats SLA (Service Level Agree-

ments). Le contrat SLA est un contrat formel entre les fournisseurs et

les consommateurs du cloud assurant la qualité de services négociée. Les

contrats SLA actuellement établis sont basés sur les modèles proposées par

les fournisseurs de service. A cause de la diversité des terminologies et des

langages, la création et la négociation de contrat SLA avec plusieurs four-

nisseurs devient une tâche assez difficile pour l’utilisateur. Ce dernier doit

s’adapter à chaque fois avec les terminologies et les langages de description

du SLA de chaque fournisseur ce qui rends la comparaisons des différents

offres une tache assez compliquée. Par conséquent, l’utilisateur peut facile-

ment se tromper dans son choix final du meilleur fournisseur. En outre, une

fois le contrat SLA établit, les fournisseurs du cloud ne proposent aucune

garantie de performance. En fait, c’est à l’utilisateur de détecter les viola-

tions dans le contrat SLA et de s’assurer que les pénalités imposées dans le

contrat en cas de violation soient exécutées.

L’objectif de cette thèse est de :

1. Assurer l’interopérabilité : prendre en compte la sémantique de la qua-

lité de service dans le processus de négociation de contrat SLA ;

2. Garantir une satisfaction optimale : trouver le meilleur compromis qui

répond au besoin de l’utilisateur ;

3. Garantir le respect de la satisfaction client dans le temps : fournir à

l’utilisateur des moyens lui permettant de surveiller le respect de ses

exigences.

Afin d’atteindre ces objectifs, nous allons :

1. Définir une ontologie spécifique au cloud décrivant le contrat SLA

2. Proposer une méthode multi-critère qui permet de sélectionner le four-

nisseur qui répond au mieux à la requête de l’utilisateur

3. Proposer une politique qui permet de détecter les violations dans le

contrat SLA en s’appuyant sur des règles et de l’inférence

Ces différentes contributions sont structurés dans une architecture globale

appelée "Cloud Broker Architecture". L’objectif de cette architecture est

d’aider les utilisateurs à trouver des services cloud répondant au mieux à

leur requête. Pour ceci, le broker utilise une méthode multicritère qui permet

de trouver le meilleur offre en prenant en compte plusieurs critères de choix.

Dans cette architecture, le contrat SLA est exprimé à l’aide d’une ontologie

assurant l’interopérabilité entre les différents acteurs du cloud. Ce contrat

est géré à l’aide de politiques, exprimé sous forme de règles permettant de

détecter les violations du contrat.

La structure de cette thèse est la suivante.

Le premier chapitre présente l’état de l’art en introduisant le concept de

cloud computing, ses caractéristiques, ses modèles de service, ses modèles de

déploiement et de ses principaux défis de gestion. Il introduit aussi quelques

outils de gestion sémantiques comme l’ontologie et les règles et présente des

travaux qui ont utilisés les ontologies pour la découverte de services. Dans

ce chapitre, nous présentons aussi des travaux qui ont proposé des métho-

dologies pour la sélection de services. Finalement, nous définissons la notion

de "cloud broker" et nous présentons quelques travaux qui ont proposé des

architectures de broker. Dans le chapitre 2, nous introduisons l’architecture

de broker que nous avons proposé, ses composantes et ses principales ca-

ractéristiques. Nous présentons également l’ontologie utilisée pour définir le

contrat SLA et nous expliquons les avantages de l’utilisation des règles de

gestion. Dans ce travail, nous avons utilisé une méthode multi-critère pour

sélectionner le meilleur fournisseur de service que nous expliquons dans le

chapitre 3. Ce chapitre introduit aussi les fonctions d’utilités que nous avons

utilisé pour calculer le degré de satisfaction des utilisateurs. Finalement, le

chapitre 4 explique l’avantage de l’utilisation des annotations sémantique

dans la découverte de services et nous évaluons les fonctions d’utilités que

nous avons proposé.

Dans la suite de ce résumé, nous présentons le travail réalisé dans les trois

chapitres suivants le chapitre état de l’art :

Une Architecture de Broker pour la Négociation de Contrats SLA

Afin de remédier aux problématiques mentionnées ci dessus, nous avons pro-

posé une architecture de Broker cloud. Ce broker joue le rôle d’intermédiaire

entre les fournisseurs et les consommateurs du cloud. C’est une interface de

gestion unique permettant de traiter les différentes requêtes des utilisateurs,

établir des contrats SLA entre les clients et les fournisseurs de service et

d’assurer le respect des contrats établit. Cette architecture est illustrée par

la figure 1.

Les différents modules de cette architecture sont :

• Broker Manager : c’est le module principale du broker qui assure l’or-

chestration des différentes opérations. Il englobe un module "Request

Parser" qui fournit au utilisateurs du broker un modèle de requête à

remplir puis parse la requête de l’utilisateur en ontologie. Il est aussi

muni d’un module "QoS Parser" qui interagit avec les fournisseurs de

services en leurs envoyant la requête de l’utilisateur et en recevant les

QoS qu’ils peuvent fournir.

• SLA Contract Ontology : décrit la structure du contrat SLA établit

entre les utilisateurs et les fournisseurs du cloud.

Figure 1: Architecture de Cloud Broker -

• Reasoner module : ce module assure la vérification de la cohérence de

la requête de l’utilisateur et la détection des violations dans le contrat

SLA.

• Consistency Checking Policies module : contient des règles utilisées

pour vérifier la cohérence des requêtes.

• Violation Detection Policies module : contient des règles utilisées pour

détecter les violations dans le contrat SLA et pour déterminer les pé-

nalités à imposer au fournisseur de service en cas de violation.

• Decision Making Module : ce module est chargé de trouver le four-

nisseur qui propose le meilleur offre pour la requête de l’utilisateur. Il

évalue les performances de chaque fournisseur en utilisant une méthode

multi-critère.

• Providers knowledge Base : il s’agit d’une base de donnée énumérant

les différents fournisseurs du cloud. Elle contient des informations sur

ces fournisseurs comme leur méthode de réplication, leur stratégie de

récupération et la localisation géographique de leurs données stockés.

• Monitoring module : afin de détecter les violations dans le contrat SLA,

nous avons prévu un module de monitoring qui permet de mesurer les

valeurs de la qualité de service en temps réel. Si ces valeurs n’honore

pas l’accord établit entre le consommateur et le fournisseur de service,

des pénalités sont imposés au fournisseur.

Cette architecture assure trois fonctions :

1. Établir un contrat SLA cohérent : les utilisateurs du broker ne sont

pas forcément des personnes expérimentées dans le domaine du cloud

capables de formuler des demandes cohérentes. Ainsi, nous avons prévu

de vérifier la cohérence sémantique de la requête de l’utilisateur avant

d’entamer le processus de sélection du meilleur offre pour cette re-

quête. Pour ce faire, le module "broker manager" parse la requête sous

forme d’ontologie puis demande au module "reasoner" de vérifier sa

consistance. Ce module vérifie si les règles exprimés dans le module

"Consistency Checking Policies" sont respectées par la requête. Dans

le cas contraire, le broker alerte l’utilisateur pour qu’il reformule sa

demande. Les règles stockées dans le module "Consistency Checking

Policies" sont prédéfinit par le gestionnaire du broker en adéquation

avec les concepts de l’ontologie utilisée pour exprimer le contrat SLA.

2. Sélectionnez le meilleur fournisseur pour la requête de l’utilisateur et

établir le contrat SLA : Le principal objectif du broker est de trouver

le meilleur offre du fournisseur de service qui correspond à la demande

de l’utilisateur et établir un contrat SLA entre le consommateur et le

fournisseur sélectionné. Ce processus passe par plusieurs étapes :

• le broker sélectionne les fournisseur de service susceptible de ré-

pondre à la requête de l’utilisateur en éliminant les fournisseurs

qui ne peuvent pas répondre aux contraintes dures de l’utilisateur

comme le type de réplication demandé et la localisation géogra-

phique des données stockées.

• en se basant sur les performances des fournisseurs de services consta-

tées en exécutant d’anciennes requêtes, le broker prédit les perfor-

mances de chaque fournisseur de service sélectionné pour la nou-

velle requête. Ensuite, il compare la qualité de service fourni par

les différents fournisseurs et sélectionne celui qui répond au mieux

à la requête de l’utilisateur.

• le broker contacte le fournisseur de service sélectionné et établit le

contrat SLA entre avec le consommateur.

3. Détecter les violations dans le contrat SLA : après avoir établit le

contrat SLA entre le consommateur et le fournisseur de service, le bro-

ker assure que les termes de ce contrat soient respectées. En effet, il

vérifie régulièrement que la qualité de service assurée par le fournisseur

en temps réel satisfait le consommateur. Pour ce faire, il fait encore une

fois appel au raisonneur qui compare les valeur des paramètre QoS au

seuils fixés par le contrat SLA. En cas de violation, il s’assure que des

pénalités soient imposées au fournisseur de service. Les pénalités sont

déterminées au préalable par le gestionnaire du broker sous forme de

règles et stockées dans le module "Violation Detection Policies".

Afin d’assurer ces différentes fonctionnalités, nous décrivons sémantique-

ment le contrat SLA entre l’utilisateur et le fournisseur du cloud sous forme

d’ontologie. Nous proposons une ontologie générique pour décrire un contrat

SLA dans le domaine du cloud. Ce contrat est établit entre un utilisateur qui

doit spécifier sa requête, ses contraintes et les critères de qualité de service

dont il a besoin, et un fournisseur de service qui spécifie les valeurs de QoS

qu’il s’engage à fournir pour cette requête. La durée de ce contrat est déter-

minée par l’attribut "Duration". La structure de l’ontologie représentant le

contrat SLA est illustrée par la figure 2.

Cette ontologie générique est spécifiée pour la couche infrastructure du

cloud. En effet, la requête de l’utilisateur de la couche infrastructure doit

être formulé sous forme de demande de ressources virtuelles. La formulation

de la requête que nous avons proposé est conforme au standard OCCI ce

qui permet d’assurer l’interopérabilité entre les différents acteurs du cloud

et facilite de faire la correspondance entre notre ontologie et les autres for-

malismes utilisés par les fournisseurs du cloud. De plus, nous définissons

dans cette ontologie les contraintes et les critères de la qualité de service

qui intéressent un utilisateur de la couche infrastructure du cloud comme

illustré par le figure 3.

Figure 2: Notre Ontology représentant le contrat SLA -

L’utilisateur de la couche IaaS du cloud peut donc s’adresser à notre bro-

ker afin de chercher un fournisseur de services cloud en utilisant le modèle

proposée par notre ontologie. Ainsi, il évite de confronter les différents four-

nisseurs du cloud qui utilisent des terminologies différentes. Toutefois, le

broker doit communiquer avec plusieurs fournisseur de service cloud afin

de négocier avec eux les contrats SLA. Ces fournisseurs utilisent différents

langages de description du contrat SLA. Afin de permettre au broker de

communiquer avec les fournisseurs de service, nous proposons de faire un

"mapping" entre les langages de description du contrat SLA utilisé par ces

fournisseur et notre ontologie. Vu que le langage WS-Agreement est un stan-

dard largement utilisé, nous proposons une méthode permettant de faire la

correspondance entre notre ontologie et ce langage. L’objectif de la spéci-

fication du WS-Agreement est de définir un langage générique permettant

de créer tout type d’accord quelque soit le domaine d’application, et il a

été utilisé dans le domaine du cloud. La structure du WS-Agreement est

illustrée par la figure 4. Elle est composée de :

• son nom

• le contexte décrivant les deux parties de l’accord et sa date d’expiration

• les termes de ce contrat comprenant la description du service et les ga-

ranties que le fournisseur s’engage à assurer pour ce service. Le service

Figure 3: Notre Ontologie représentant le contrat SLA pour la couche infra-
structure du cloud -

Figure 4: Structure du langage WS-Agreement -

est définit par un ensemble de propriétés qui correspondent au critères

à négocier. Les garanties intègrent à la fois les indicateurs de perfor-

mances que les fournisseur devra assurer et les pénalités à imposer au

fournisseur en cas de violation. Dans le cadre de notre ontologie, le ser-

vice négocié corresponds à la requête à satisfaire, et les propriétés de

cette requêtes sont les paramètres "SLO " de notre ontologie. Les va-

leurs numériques de ces paramètres représentent les performances que

le fournisseur est en mesure de garantir, et les pénalités sont introduite

dans les règles d’inférence qui permettent de détecter les violations.

• les contraintes à respecter lors de l’établissement du contrat SLA qui

décrivent les valeurs acceptables pour chaque critère négocié. Ces va-

leurs sont directement intégré dans l’ontologie lors de la définition de

chaque paramètre.

Nous montrons par ce "mapping" que l’ontologie proposée associé au règles

d’inférence contient tous les éléments d’un WS-Agreement. L’ontologie intro-

duit le contexte, la description de service et les critères négocié comme illus-

tré par la figure 5. Les règles d’inférence définissent les pénalités à imposer en

cas de violation. Notre système est encore plus riche qu’un WS-Agreement

puisque il garde la trace des préférences des utilisateurs et introduit une

méthode qui permet de détecter les violations du contrat.

Figure 5: Le mapping entre notre ontologie et le language WS-Agreement -

La Sélection du meilleur fournisseur de service cloud en se basant

sur une méthode multi-critère Le cloud computing est un nouveau

paradigme qui a attiré plusieurs clients cherchant à profiter de la haute dis-

ponibilité des ressources du cloud et de minimiser le coût d’exploitation des

services. Ces clients ont différents secteurs d’activité, par conséquent ils ont

des besoins et des attentes différentes des service offert par les fournisseurs

du cloud. Ils ont donc besoin de comparer soigneusement les services offert

par les différents fournisseurs et de trouver le meilleur compromis qui ré-

ponds à leur demande. Dans ce travail, nous avons proposé une architecture

de broker qui a pour objectif d’aider les utilisateur à choisir leur fournisseur.

Il utilise une méthode multi-critère qui choisit le meilleur fournisseur en se

basant sur les critères définit par l’utilisateur et sur ces préférences. Cette

méthode est appelé MAUT (Multi-Attribute Utility Theory). Cette méthode

considère chaque critère comme une fonction d’utilité à intégrer dans une

super-fonction d’utilité. Il existe trois formes différentes pour appliquer la

méthode MAUT : multi-linéaire, additive et multiplicative. Selon Keeney et

Raiffa (1), les formes additive et multiplicatives sont plus appropriés que

la forme mutli-linéaire si on considère plus que quatre critères. De plus, la

forme additive est adoptée lorsque l’interaction entre les attributs n’est pas

importante. Dans le contexte du cloud, plusieurs paramètres présentant une

forte interaction sont mis en jeu dans le choix du meilleur service. En se ba-

sant sur la forme multiplicative de la méthode MAUT, nous avons proposé

un algorithme qui permet de sélectionner le meilleur service proposé par un

fournisseur cloud. Cet algorithme est présenté ci dessous :

La requête de l’utilisateur est représentée par le vecteur R :

R = [r1, r2, · · · , rn]

n : nombre de parametres dans la requete
(1)

L’ensemble des fournisseurs de services capables de répondre à cette requête

est représenté par le vecteur P :

P = [p1, p2, · · · , pm]

m : nombre de fournisseurs de services
(2)

Les critères négocié sont représentés par le vecteur C :

C = [c1, c2, · · · , ck]

k : nombrede criteres
(3)

Le degré d’importance de chaque critère pour l’utilisateur est spécifié sous

forme de poids. Les poids relatives aux critères négociés sont représentés par

un vecteur W.

W = [w1, w2, · · · , wk] (4)

L’utilité de chaque fournisseur est calculée par l’équation suivante :

∀i ∈ [1,m], U(pi) =
1

w
[

k∏
j=1

(1 + wwjfj(cj))− 1)]

where (1 + w) =

k∏
j=1

(1 + wwj)

(5)

l’utilité globale de chaque fournisseur est calculée à partir des utilités uni-

taire des différents critères de la qualité de service et des poids attribués

par l’utilisateur à ces critères. Ainsi, notre broker peut sélectionner le four-

nisseur qui propose le meilleur service en se basant sur les préférences des

utilisateurs. Ce service est celui qui obtient la meilleur utilité globale U(pi).

Le choix du meilleur fournisseur de service est basé essentiellement sur les

fonctions d’utilité permettant de représenter le degré de satisfaction client vis

à vis à chaque critère de la qualité de service. Plusieurs travaux ont adopté

cette méthode pour résoudre des problématique de choix multi-critère. Néan-

moins, ils utilisent la même forme de courbe (courbes exponentielles, loga-

rithmiques, linéaire, hyperbolique . . .) pour représenter tout les critères de

choix. Dans ce travail, nous proposons d’illustrer chaque fonction d’utilité

par une courbe spécifique à lui représentant bien le critère de choix. Nous

essayons de cerner la plupart des critères qui contribuent dans le choix du

meilleurs service et de les classer en critères fonctionnels et critères non

fonctionnels. Dans ce chapitre, nous modélisons les fonctions d’utilités de

ces différents critères.

Expérimentations et résultats Dans ce travail, nous avons proposé une

architecture de broker aidant les utilisateurs à trouver le meilleur fournisseur

satisfaisant leur demande, en fonction de leur préférences. Afin d’atteindre

cet objectif, le broker assure une meilleure compréhension et une interopé-

rabilité entre les différents acteurs du cloud en adoptant les annotations

sémantiques. En fait, il utilise l’ontologie et les règles d’inférences pour dé-

finir le contrat SLA entre les consommateurs et les fournisseurs de services

cloud et pour détecter les éventuelles violations de ce contrat. Afin d’aider les

utilisateurs à choisir le meilleur fournisseur de service avec lequel ils peuvent

établir des contrats SLA, le broker utilise une méthode multi-critère appe-

lée la méthode MAUT qui est basée sur les fonctions d’utilités. Nous avons

modélisé les fonctions d’utilité des critère fonctionnels et non fonctionnels

négocié dans le contrat SLA. Ces fonctions permettent d’évaluer le degré de

satisfaction de l’utilisateur par rapport à chaque critère négocié.

Afin d’évaluer notre solution, nous avons implémenté notre architecture de

boker en langage java. Nous avons utilisé le logiciel Protégé et la bibliothèque

Jena pour créer notre ontologie représentant le contrat SLA et pour définir

les règles d’inférence. Ensuite, nous avons réalisé trois expériences :

Évaluation des annotations sémantiques Afin d’évaluer l’avantage

des annotations sémantiques, nous avons réalisée l’expérience illustrée par

la figure 6. Cette expérience consiste à trouver le service qui répond à la

requête de l’utilisateur parmis trois services proposés par trois fournisseurs

utilisant des terminologies différentes. De plus chaque fournisseur utilise une

unité différente pour mesurer la capacité du processeur. Par exemple, le pre-

mier fournisseur adopte les instances Amazon ECU (1 ECU = 1.0-1.2 GHz)

alors que le deuxième fournisseur utilise des processeurs Intel Xeon E5520

qui ont une capacité équivalente à 4.52 GHz.

Figure 6: Le scénario de l’évaluation sémantique -

Dans un premier temps, nous avons effectué une recherche syntaxique qui

compare les critères de la requête de l’utilisateur à ceux proposés par les

fournisseurs de services. Les résultats sont illustrés par la figure 7. Nous

remarquons que seuls le "CPU" et le "Delay" ont été découvert car on re-

trouve ces mêmes termes dans la requête et les propositions des fournisseurs.

De plus l’utilité attribué à la capacité du processeur n’est pas fiable car elle

ne tient pas en compte les différences entre les unités. On remarque aussi

que le terme "Delay" n’a pas la même signification pour l’utilisateur et le

fournisseur. Ce qui fait qu’on obtient le résultat suivant : Utility(P3) >

Utility(P1) > Utility(P2). Dans un deuxième temps, nous avons introduit

les annotations sémantiques qui permettent de découvrir tout les critères et

de masquer les hétérogénéité syntaxiques et sémantiques. Dans ce cas, nous

obtenons le résultat suivant : Utility(P2) > Utility(P1) > Utility(P3) (fi-

gure 8) ce qui prouve que l’absence d’annotations sémantique peut conduire

à choisir un fournisseur qui ne peut pas satisfaire la requête de l’utilisateur.

Figure 7: Les résultats de la recherche syntaxique -

Évaluation des fonctions d’utilité fonctionnelles Les fonctions d’uti-

lité peuvent avoir plusieurs formes : exponentielle, logarithmique, linéaire,

hyperbolique etc. Dans ce travail, nous avons choisi de modéliser chaque

critère par une fonction d’utilité propre à lui. Afin d’évaluer notre méthode,

nous avons pris l’exemple d’une requête composée de trois critères : temps

de réponse, latence et bande passante et de dix offres de fournisseur de ser-

Figure 8: Les résultats de la recherche sémantique -

vice qui peuvent répondre à cette requête. Nous avons modélisé les fonctions

d’utilité des trois critère négocié avec la forme linéaire, la forme exponen-

tielle et les formes que nous avons proposé dans le chapitre précédant. Puis,

nous avons calculé l’utilité globale attribuée à chaque fournisseur en utili-

sant les différentes formes. Nous remarquons que l’utilité globale attribuée à

chaque fournisseur diffère selon la forme utilisée. Ainsi, le choix du meilleur

fournisseur diffère selon la méthode utilisée. En utilisant les forme exponen-

tielle et linéaire, le choix porte sur un fournisseur qui a une bonne bande

passante mais qui ne satisfait pas les attentes de l’utilisateur en terme de

temps de réponse. La compensation entre les utilités de ces deux critères

entraine un mauvais choix de fournisseur. En utilisant les utilités que nous

avons proposés, nous choisissons le fournisseur qui satisfait tout les critères

négociés. Ainsi, nous satisfaisons les attentes des utilisateurs.

Évaluation des fonctions d’utilité non fonctionnelles Les critères

non fonctionnels sont des critères non mesurable qui ne peuvent pas être

directement représentés par des fonctions d’utilité. Par conséquent, des cri-

tères non fonctionnels comme la fiabilité et la réputation des fournisseurs ne

sont pas pris en compte dans le choix du meilleur fournisseur. Ces critères

sont très important et doivent être inclus dans le processus de prise de déci-

sion et dans le choix du fournisseur de services. Afin de prendre en compte

des critère non fonctionnels, nous proposons dans ce travail des méthodes

pour calculer l’utilité de ces critère. Dans ce paragraphe, nous proposons

des exemples numériques qui permettent de calculer les fonctions d’utilité

du critère "disaster recovery" représentant le plan de reprise après un si-

nistre et du critère "Trust" représentant la réputation d’un fournisseur de

service.

xxii

Contents

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Context . 1

1.2 Problem statement . 2

1.3 Contributions . 3

1.4 Thesis structure . 4

2 State of the art on cloud management frameworks 5

2.1 Cloud Computing Overview . 5

2.1.1 Cloud Computing Characteristics 6

2.1.2 Cloud Computing Service Models 7

2.1.3 Cloud Computing Deployment Models 8

2.2 Cloud Computing Management Challenges 10

2.2.1 Data Management . 11

2.2.2 Virtual Machine Management . 11

2.2.3 Load Balancing . 12

2.2.4 Security . 12

2.2.5 Service Level Agreement . 13

2.3 Service Discovery and Selection . 16

2.3.1 Semantic based management tools 16

2.3.1.1 Semantic Web architectures 16

2.3.1.2 Ontology . 17

2.3.1.3 Declarative programming 18

i

CONTENTS

2.3.2 Combining ontologies with rules 19

2.3.3 Cloud services discovery ontologies 23

2.3.4 Cloud Service Selection . 24

2.4 Cloud Broker architecture . 27

2.4.1 Cloud Broker Definition . 27

2.4.2 Cloud Broker related work . 28

3 Cloud Broker Architecture for negotiating semantic SLA contracts 35

3.1 Problem Statement . 36

3.2 CBA: A Cloud Broker Architecture . 39

3.3 Management Policies Implementation . 47

3.3.1 Consistency Checking Policies . 48

3.3.2 Violation Detection Policies . 49

3.4 Cloud SLA Contract specification . 50

3.4.1 IaaS Cloud SLA Contract specification 52

3.5 Ontology Mapping to WS-Agreement . 55

4 Service provider’s selection based on the multi-criteria method 65

4.1 Motivation . 65

4.2 Multi-criteria algorithm for service provider’s selection 66

4.2.1 Service selection algorithm . 67

4.2.2 Functional QoS Utility functions 70

4.2.2.1 Compute Utility functions 70

4.2.2.2 Network Utility functions 71

4.2.2.3 Storage Utility functions 73

4.2.2.4 Cost Utility function . 73

4.2.3 Non Functional QoS Utility functions 75

4.2.3.1 Reliability Utility functions 75

4.2.3.2 Trust Utility function 82

5 Experimentations and results 87

5.1 Validation of semantic annotations contribution 88

5.2 Evaluation of the proposed utility functions 90

5.2.1 Evaluation of functional utility functions 90

ii

CONTENTS

5.2.1.1 Utility functions Configuration 92

5.2.1.2 Results . 97

5.2.2 Evaluation of non functional utility functions 99

5.2.2.1 Disaster recovery Example 100

5.2.2.2 Trust example . 100

5.3 Conclusion . 102

6 Conclusions and Future Work 103

6.1 Conclusions . 103

6.2 Future Research Directions . 104

References 107

iii

CONTENTS

iv

List of Figures

1 Architecture de Cloud Broker . ix

2 Notre Ontology représentant le contrat SLA xii

3 Notre Ontologie représentant le contrat SLA pour la couche infrastruc-

ture du cloud . xiii

4 Structure du langage WS-Agreement . xiv

5 Le mapping entre notre ontologie et le language WS-Agreement xv

6 Le scénario de l’évaluation sémantique xviii

7 Les résultats de la recherche syntaxique xix

8 Les résultats de la recherche sémantique xx

1.1 The cloud computing environment . 2

2.1 Cloud Computing Service Models . 7

2.2 Cloud Computing Deployment Models 9

2.3 Cloud challenges as introduced by Booz and Company 10

2.4 WSLA Services and their interactions (32) 14

2.5 Semantic Web Architectures (35) . 17

2.6 High-level approach to translating OWL, SWRL, and RuleML to Prolog

(40) . 20

2.7 Architecture of the Semantic Environment for Enterprise Reasoning (SEER)

(40) . 21

2.8 Application of OWL+SWRL and OWL-S to describe MIB and PIB (41) 22

2.9 Multi criteria decision making (MCDM) Tree 26

2.10 An SLA based service brokering in intercloud environment (56) 29

3.1 Terminology heterogeneity . 36

v

LIST OF FIGURES

3.2 Request formulation heterogeneity . 37

3.3 Trade-off between QoS parameters . 39

3.4 Cloud Broker Architecture . 40

3.5 Coherent SLA Establishment . 43

3.6 SLA Negotiation Process . 45

3.7 SLA Violation Detection Process . 46

3.8 Management interface to create policies 48

3.9 Consistency Checking Policies Example 49

3.10 Response Time Violation Detection Policies Example 1 50

3.11 Response Time Violation Detection Policies Example 2 50

3.12 Cloud SLA Contract Ontology . 52

3.13 IaaS SLA Contract Ontology . 54

3.14 SLA interoperability via the broker . 56

3.15 Structure of WS-Agreement template . 57

3.16 IaaS Request . 58

3.17 IAAS SLOs . 59

3.18 Penalty example written in WS-Agreement 60

3.19 Penalty example as Rule . 61

3.20 Creation constraint example written in WS-Agreement 61

3.21 Creation constraints example created by Protégé 62

3.22 The mapping summary . 63

4.1 Response Time utility function . 70

4.2 Latency utility function . 72

4.3 Bandwidth utility function . 72

4.4 Scalability utility function . 76

4.5 Peak-Load-provisioning scenario . 77

4.6 Under-provisioning scenario . 78

4.7 Over-provisioning scenario . 78

4.8 OnDemand-provisioning scenario . 79

4.9 Dedicated recovery model scenario . 81

4.10 Shared recovery model scenario . 82

4.11 CertainLogic operator’s definition . 84

vi

LIST OF FIGURES

5.1 Semantic evaluation scenario . 88

5.2 Syntactic search evaluation . 89

5.3 Semantic search evaluation . 90

5.4 Response Time Utility functions . 94

5.5 Latency Utility functions . 96

5.6 Bandwidth Utility functions . 98

5.7 Steps to calculate the trust score . 102

vii

LIST OF FIGURES

viii

List of Tables

3.1 Negotiated SLA criteria classification. 55

3.2 Mapping Notation. 57

4.1 Disaster recovery models. 80

5.1 Functional SLA criteria parameters. 91

5.2 User request example. 91

5.3 Provider’s offers. 92

5.4 Provider’s global Utilities. 99

5.5 Provider’s classification . 99

5.6 Factors involved in the trust score measure. 101

ix

LIST OF TABLES

x

1

Introduction

1.1 Context

Cloud Computing is one of the hottest topics in IT as it fundamentally changes the ways

institutions and companies are managing their computing needs. Cloud Computing has

sprung as a new paradigm, for both enterprises and scientific applications development,

managing and delivering services over the internet. So, what is cloud computing? Is it

a technology recently invented?

The general idea behind this technology trace its roots back to the 1950s when

large-scale mainframes were made available to schools and corporations. Because of the

cost of buying and maintaining mainframes, it wasn’t possible to purvey a mainframe

to each user. So, multiple users were enabled to access the same mainframe via "dumb

terminals". From here emerges the idea of sharing access to the same data storage

layer and CPU power from any station. Later, around 1970, emerges the concept of

virtual machines (VMs). VM is a tightly isolated software container with an operating

system and application inside. It enables different operating systems to run in the same

computer at the same time. The VM operating system took the 1950s shared access

mainframe to the next level, permitting multiple distinct computing environments to

reside on one physical environment.

In the 1990s, telecommunications companies were able to provide users with shared

access to the same physical infrastructure. Hence, they started offering virtualized

private network connections.

In 1999, the arrival of Salesforce.com pioneered the concept of delivering enterprise

1

1. INTRODUCTION

applications via a simple website. Then the idea of delivering applications over the

internet was reproduced by multiple providers like Amazon Web Services in 2002 and

Elastic Compute cloud (EC2) in 2006.

Nowadays, cloud computing is the solution to the problem of how the Internet can

help improve business technology. It emerges as a new computing paradigm which

provides a large scale service provisioning. It is a framework delivering virtualized

infrastructure resources as a service through a public network which is internet. It offers

various key advantages such as cost effectiveness, information access from anywhere,

quick deployment, almost unlimited Storage, backup and recovery capabilities, and

flexibility to scale up and down, and it assures several benefits such as scalability,

elasticity, reliability and data management as illustrated by figure 1.1.

Figure 1.1: The cloud computing environment -

Cloud computing proved its usefulness for enterprises and markets which encourage

a multitude of providers to offer real business solutions based on the cloud concept.

With the rapid proliferation of cloud services, it is now difficult to know which ones are

a good fit for a company’s needs.

1.2 Problem statement

The growing popularity and adoption of Cloud computing solutions has attracted many

customers from different natures. But face to the diversity and the heterogeneity of

cloud service providers, the customers find a difficulty when selecting their best fitting

Cloud provider. Indeed, the first problem faced by customers is the heterogeneity

problem which consists in the diversity of existing ways for describing services. Actually,

each provider establishes the definitions and parameters for its cloud offers. Hence, many

2

1.3 Contributions

providers may use the same term to define completely different services (hybrid cloud

is one example), making it difficult to compare offers (2).

Face to this heterogeneous cloud environment, customers may choose to contact only

the providers using the same vocabulary. This could help them in avoiding ambiguity

and misunderstanding, but, it ties them to particular providers which don’t offer neces-

sary the best solution for them. To avoid to choose unsuitable providers, customers have

to work on understanding, analysing and summarising the different provider’s proposal

to be able to compare them which is a hard and time consuming task for them.

Moreover, to choose the right cloud provider, customers need also to compare the

provider’s quality of service parameters e.g., response time, bandwidth, reputation in

the market, reliability Given the large number and variations of variables involved,

it is hard to find a provider that offers good performance for all criteria. Therefore, we

have to select the provider that proposes the best trade-off. This could be a difficult

task especially involving not only functional criteria but also non functional criteria.

Selecting the right cloud service provider is a difficult process, but it is not the

latest difficulty faced by the consumers. Indeed, after negotiating an agreement, cloud

service providers don’t offer any performance guaranty and leave the burden of detecting

violations to the customers (3). Hence, throughout the execution of the service on

the provider’s resources, customers have to wary about the eventual violations of the

agreement and impose the necessary penalties to the provider.

1.3 Contributions

To address the issues cited previously, an effective management of the relationship

between providers and consumers is required for the delivery of cloud computing. In

this work, we propose a third party entity that negotiates the relationships between

cloud providers and cloud consumers called cloud broker. Our proposed cloud broker

assists users in finding the right cloud provider, establishing a service level agreement

and verifying that the provider honours the agreement terms. It aims to ensure:

1. the interoperability between cloud providers and cloud consumers by introducing

semantic annotations in the negotiation process;

3

1. INTRODUCTION

2. an optimum user satisfaction by finding him the best trade-off between QoS pa-

rameters based on his own preferences;

3. the sustainability of user satisfaction by providing him tools to supervise easily

the compliance of the provided services with his requirements.

1.4 Thesis structure

Chapter 1 begins by introducing the concept of cloud computing, its characteristics,

its service models, its deployment models and its main management challenges. It

continues with introducing semantic based management tools and their utilization for

network management automation in general which could be an interesting solution

for the automation of the cloud management process. Finally, it defines cloud broker

concept which is a third-party entity managing the relationship between the cloud actors

and negotiating service level agreements in the cloud. In Chapter 2, we present the cloud

broker architecture we proposed, its components and its main features. We explained

how we used ontologies and rules for managing the SLA contract between providers

and consumers, and how semantic annotations could ensure interoperability between

the different cloud actors. The use of a multi-attribute utility theory method to find

the best cloud provider is presented in Chapter 3. In this chapter, we introduced also

our proposed utility functions for calculating the user satisfaction degree. Finally, we

evaluate in Chapter 4 the usefulness of the introduction of semantic annotations in

discovering more cloud services and in providing more accurate results. We evaluate

also the advantages of using the utility functions that we proposed in the best provider

selection.

4

Chapter 2

State of the art on cloud
management frameworks

2.1 Cloud Computing Overview

Cloud computing is the on-demand delivery of computing services over the internet or a

company network, or both. cloud services allow individuals and businesses to provision

computational, network and storage resources from any device connected to Internet.

Provisioned resources are scattered at remote locations all over the world which gives

users a wide range of choice. Used technology in cloud computing allows customers to

use applications without installation and to access their personal files simply by con-

necting at any computer with internet access. Cloud services are also designed to work

equally well with Linux, Mac, and Windows platforms. This technology, based on virtu-

alization concepts, aims to guaranty high availability, scalability and reliability. In this

report, we adopt the definition developed by the U.S. National Institute of Standards

and Technology (NIST) (4) : " Cloud computing is a model for enabling convenient,

on-demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction." The main

features of a cloud environment include a reduced cost, an improved efficiency and a

rapid deployment of services. Cloud computing can result in reduction in capital and

operating expenses. It allows deployed systems to run on the latest platform and it

enables changes since it allows people to try new tools. This cloud model promotes

5

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

availability, scalability and federation and is composed of five essential characteristics,

three service models, and four deployment models.

2.1.1 Cloud Computing Characteristics

Cloud computing is a relatively new business model in the computing world. Under-

standing the characteristics of cloud computing will help highlighting its key advantages

and understanding its utility. There are myriad variations on the definition of the cloud,

but, we will consider the characteristics identified by NIST in their definition. Here, are

the five main characteristics that cloud computing offers businesses today.

• On-demand self-service: Computer services such as email, applications, net-

work or server service are provisioned automatically without requiring human

interaction from a cloud host provider. Typically, consumers are billed with a

monthly subscription or a pay-for-what-you-use scenario. Terms of subscriptions

and payments will vary with each software provider.

• Broad network access: Cloud capabilities are available over the network and

accessed through a simple online access point such as mobile phones, tablets,

laptops, and workstations.

• Resource pooling: The providers computing resources are pooled to serve mul-

tiple consumers using a multi-tenant model, with different physical and virtual

resources dynamically assigned and reassigned according to consumer demand.

There is a sense of location independence in that the customer generally has no

control or knowledge over the exact location of the provided resources but may

be able to specify location at a higher level of abstraction (e.g., country, state,

or datacenter). Examples of resources include storage, processing, memory, and

network bandwidth.

• Rapid elasticity: Cloud services can be rapidly and elastically provisioned, in

some cases automatically, to quickly scale out and rapidly released to quickly scale

in. To the consumer, the capabilities available for provisioning often appear to be

unlimited and can be purchased in any quantity at any time.

6

2.1 Cloud Computing Overview

• Measurable service - payment pay-per-use: Going back to the affordable

nature of the cloud, you only pay for what you use. Cloud computing resource

usage can be measured, controlled, and reported providing transparency for both

the provider and consumer of the utilised service. Cloud computing services use

a metering capability which enables to control and optimise resource use. This

implies that just like air time, electricity or municipality water IT services are

charged per usage metrics pay per use. The more you utilise the higher the

bill. Just as utility companies sell power to subscribers, and telephone companies

sell voice and data services, IT services such as network security management,

data center hosting or even departmental billing can now be easily delivered as a

contractual service.

2.1.2 Cloud Computing Service Models

There are three basic kinds of cloud service models. Each share similarities but have

their own distinct differences as well. These service models are Software-as-a-Service,

Platform-as-a-Service and Infrastructure-as-a-Service. It helps to think of these services

in layers as depisted by figure 2.1.

Figure 2.1: Cloud Computing Service Models -

Cloud computing services can be categorized into:

• Software-as-a-Service (SaaS): also known as a software on demand. SaaS is

a software distribution model in which applications are hosted by a vendor or

service provider and made it available to users over the Internet. SaaS offers

7

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

already created applications running on a cloud infrastructure. Such applications

are exploited is different domains like business domain, financial services, human

resources, management etc. This model is the highest level at which cloud can be

used by the customers, it eliminates the need to install hardware on the customers

local computers and it applies updates without customer intervention. Examples

of SaaS providers are: Freshdesk (5), NetSuite(6), Zoho (7), Bloomfire (8) and

GHG Corporation (9), among others.

• Platform-as-a-Service (PaaS):provides computing platforms which typically

includes operating system, programming language execution environment, database,

web server etc. Platform as a Service (PaaS) offers the possibility to exploit clouds

in a different manner than using the virtualized infrastructure. It provides a de-

velopment platform as a service for developers where applications are developed

using a set of programming languages and tools. These services may include de-

velopment, integration, testing or resources storage to complete the life-cycle of

services. Examples of PaaS providers are: Google App Engine (10), AWS Elastic

Beanstalk (11), cloudmapreduce (12) and Force.com (13), among others.

• Infrastructure-as-a-Service (IaaS): IaaS (14) allows managing a large set of

computing resources and provides its customers with physical or virtual computing

infrastructure, including storage, hardware, servers and networking components.

Resources like virtual-machine disk image library, block and file-based storage,

firewalls, load balancers, IP addresses, virtual local area networks are rent from

IaaS providers, then reconfigured to install IaaS customers applications on them.

Scale up is assured by requesting more servers and reconfiguring the load balancer

without purchasing more hardware and scale down is possible at any time by

reconfiguring the infrastructure. Examples of IaaS providers are: Amazon E2C

(15), GoGrid (16), Rackspace (17) and Windows Azure(18), among others.

2.1.3 Cloud Computing Deployment Models

Cloud services can be deployed in different ways, depending on the organizational struc-

ture and the provisioning location. Tree deployment models are usually distinguished,

namely public, private and hybrid cloud service usage as illustrated in Figure 2.2.

8

2.1 Cloud Computing Overview

Figure 2.2: Cloud Computing Deployment Models -

• Public cloud refers to a set of computer and network resources characterized

by a public availability of service offering and a public network that is used to

communicate with the cloud service. Application and data are stored in the

providers data center. Windows Azure Platform by Microsoft, AWS by Amazon,

AppEngine and Gmail by Google, etc. are all examples of public cloud services.

Public clouds are perfect for organizations looking to expand their testing or

development environment. However, Customers who possess sensitive data and

application normally do not feel comfortable using public cloud due to privacy,

policy, and security concerns.

• Private cloud is dedicated to a single organisation provided with great control

and privacy. The chief advantage of these systems is that hardware is locally

managed, so, hosting organisation retains full control over corporate data, secu-

rity guidelines, and system performance. In contrast, private cloud offerings are

usually not as large-scale as public cloud offerings resulting in worse economies of

scale.

• Hybrid cloud The idea behind hybrid clouds is that businesses can use them to

9

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

take advantage of the scalability and cost-effectiveness offered by the public cloud

computing environment without exposing mission-critical applications and data

to the vulnerabilities associated with the public cloud option. The deployment

of an hybrid cloud computing system requires two or more clouds (private or

public)that remain unique entities but are bound together by standardized or

proprietary technology. With the benefits derived from both deployment models,

the hybrid model solution has become more popular nowadays.

2.2 Cloud Computing Management Challenges

Cloud computing will play a major role in the future Internet of Services by offering

on-demand access to shared resources and services. However, it must address several

technology challenges (19, 20) to accomplish its business objectives. In order to better

coordinate and accelerate standardisation in the field of cloud computing at the national

and the European levels, the Federal Ministry of Economics and Technology has engaged

Booz and Company to conduct a study defining cloud computing challenges (21). Nine

especially relevant challenges have been identified which cover both the perspectives of

providers and users and overarching interests. At a second level, they are subdivided

again into 19 further subcategories. Defined cloud challenges are depicted by figure

2.3. A key challenge IaaS providers face when building a cloud infrastructure is

Figure 2.3: Cloud challenges as introduced by Booz and Company -

managing physical and virtual resources, namely servers, storage, and networks. The

10

2.2 Cloud Computing Management Challenges

orchestration of resources must be performed in a way to rapidly and dynamically

provision resources to applications. In the next section, we discuss the most common

management challenges that emerge in the cloud computing domain.

2.2.1 Data Management

Cloud storage is a model of networked online storage where data is placed on multiple

virtual servers, generally hosted by third parties; rather than being hosted on dedicated

servers. Hosting companies operate large data centers. The data center operators, in

the background, virtualize the resources according to the requirements of the customer

and expose them as storage pools, which the customers can themselves use to store files

or data objects. This way, the resource may be span physically across multiple servers.

Clouds have a single point of access for all computing requests so consumers will have

access to data from any point, on demand. From the business point of view, Cloud

infrastructures aim to provide robustness and availability at any time. Scalable and

consistent data management is a challenge that has confronted the database research

community for more than two decades (22, 23). Moreover, there are limitations on

the size of the objects that can be stored, which can create some complications in

the development process. The fine-grain access is another issue since IaaS provides just

simple mechanisms like get and put for managing the data, and these operations cannot

access just small parts.

2.2.2 Virtual Machine Management

The use of virtualisation technologies enable service providers to optimise the use of

resources. Indeed, until recently, operating systems managed the allocation of physical

resources, such as CPU time, main memory, disk space and network bandwidth to

applications. Virtualisation infrastructures, such as Xen and VMWare. are changing

this by introducing a layer of abstraction known as a hypervisor. Dynamic management

of virtualized application environments has become an active area of research in the

cloud computing paradigm, especially with recent virtualization capabilities that allow

live sessions to be moved transparently between servers (24, 25). Cost of resources varies

significantly depending on configuration for using them. Hence efficient management of

resources is of prime interest to both cloud providers and cloud users. Performances of

virtual machines depends also on the resources usage of other virtual machines using

11

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

the same physical resources. Thus, the need of a scheduler orchestrating the virtual

machine placement within the cloud. The scheduling algorithms are divided into static

scheduling and dynamic scheduling. Static approaches are based on the prediction of

the process behaviour then they guaranty response times. Dynamic scheduling are more

flexible since virtual machines are automatically turned on or off based on demand and

threshold policies. The architecture of schedulers could be categorised into centralized

approaches and decentralized ones. There are several virtual machines schedulers such

as Snooze, Entropy, open Nebula scheduler and Haizea (26).

2.2.3 Load Balancing

Load Balancing (27) is used to distribute workload across one or multiple servers, net-

work interfaces, hard drives, or other computing resources. This method is used to

optimize resource usage by avoiding overload of any one of the resources, minimize re-

sponse times and maximize throughput. Load balancers are typically used within data

centers as part of the overall application delivery controllers. They represent a traffic

management solution that functions at the DNS layer. They are introduced to overcome

some of the significant networking challenges associated with providing fully elastic and

scalable self-service capabilities when delivering application services in service provider

environments. Load balancing is especially useful for networks where it is difficult to

predict the number of requests that will be issued to a server. It can be implemented

with dedicated hardware or software, or a combination of both. Using multiple compo-

nents with load balancing instead of a single component may increase reliability through

redundancy. Typically, load balancing is the main reason for computer server clustering.

Load balancing has become a challenging research area for efficient operations in a cloud

environment. Diverse static and dynamic algorithms are proposed to resolve the issue

of load balancing and task scheduling presenting many advantages and disadvantages.

2.2.4 Security

Cloud computing opens up a new world of opportunities for businesses, but mixed in

with these opportunities are numerous security challenges that need to be considered

and addressed prior to committing to a cloud computing strategy. Because of the

cloud service models employed, cloud computing presents more risks than other IT

environments. Security (28, 29) and privacy are still cited by many organisms as the

12

2.2 Cloud Computing Management Challenges

top inhibitors of cloud services adoption. The cloud, especially public clouds, highlights

new and significant security concerns for companies that are accustomed to hosting their

data and applications within their own servers. Cloud computing security challenges

fall into three broad categories:

• Data Protection: Securing your data both at rest and in transit

• User Authentication: Limiting access to data and monitoring who accesses the

data

• Disaster and Data Breach Contingency Planning

2.2.5 Service Level Agreement

Service Level Agreements (SLAs) (30) has been used since 1980s in a variety of fields,

so, most of the available definitions are contextual. In the area of cloud computing,

SLAs are agreements between a service provider and another party such as a service

consumer, a broker agent or a monitoring agent. It is a formal contract used to guaranty

that consumer’s service quality expectation can be achieved and it provides a unique

combination of business-driven application scenarios and advanced research in the area

of service-level agreements for clouds and service-oriented infrastructures. SLAs are

offered by IaaS providers to express their commitment to delivery of a certain QoS. An

SLA usually include availability and performance guarantees. Additionally, SLA metrics

could be classified by different categories which are compute SLAs, Network SLAs and

Storage SLAs. metrics must be agreed upon by all parties as well as penalties for

violating these expectations. Most IaaS providers focus their SLA terms on availability

guarantees, specifying the minimum percentage of time the system will be available

during a certain period.

Actually, there is no standard to express cloud SLA. Each provider describes its

service level agreements in its own way. Thus, several languages for specifying SLA

have been proposed:

The Web Service Level Agreement (WSLA) The Web Service Level Agreement

(WSLA) (31) provides a framework for defining and monitoring service level agreement

(SLA) for Web services. It could be used also in other domains such as business process

13

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

and service management, or the management of networks, systems and applications in

general. It consists of a formal and extensible language, designed to specify SLAs in

a flexible and individualized way. It is XML-based used by both service providers and

consumers. Since SLA specification is determined, the WSLA monitoring services are

automatically configured to enforce the SLA. However, The WSLA specifications don’t

foresee creation and form of a WSLA template. Though a WSLA document without

specified parties may potentially be used as a template, the specifications don’t support

ranges of values for obligations. An implementation of the WSLA framework, termed

SLA Compliance Monitor, is publicly available as part of the IBM Web Services Toolkit.

Figure 2.4 shows a short recap of WSLA.

Figure 2.4: WSLA Services and their interactions (32) -

SLAng SLAng (33) is a language for concrete service-level agreements currently pro-

viding support for ASP SLAs. It provides a format for the description of QoS proper-

ties using an EMOF metamodel, with embedded OCL constraints and natural-language

documentation in English. SLAng defines QoS targets including reliability, timeliness,

14

2.2 Cloud Computing Management Challenges

availability, data currency, data recovery. The application of these constraints can be

varied according to the level of abstraction at which the system is described. SLAng

is designed so that all SLAs expressed in the language are monitorable. This makes it

extremely precise as well as being understandable. It also includes semantics for admin-

istration, which is the process whereby the parties to the SLA agree what penalties are

to be paid. It expresses constraints on the accuracy of reports used in administration

that are approximately monitorable. However, it is not enough expressive to represent

the QoS parameters included in SLA. SLAng defines seven different types of SLA. They

regulate the possible agreements between the different types of parties identified in the

SLAng model which are Application, Web Service, Component, Container, Storage and

Network. Vertical and Horizontal SLAs can be contracted between pairs of them. The

Vertical SLAs are:

• Application: between applications/web-services and components.

• Hosting: between container and component providers.

• Persistence: between a container provider and an SSP.

• Communication: between container and network providers.

The Horizontal SLAs are:

• Service: between component and web service providers

• Container: between container providers

• Networking: between network providers

WS-Agreement The Web Services Agreement (34) specification constitutes a nor-

mative language to formulate Service Level Agreements and a basic protocol to expose

service-level descriptions, validate service-level requests, and come to an agreement.

This Java framework, proposed by the OGF WS-Agreement standard, defines a tool to

create and manage service level agreements in distributed systems. The WS-Agreement

specification defines two separate schemata, the agreement schema and the agreement

state schema. The agreement schema that defines the WS-Agreement core data types

and the agreement state schema that includes the data types for the dynamic agreement

15

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

monitoring, namely the agreement states, service term states and guarantee term states.

WS-Agreement allows a service provider and a service consumer to decide whether to

accept or reject a service offer. Although this approach is sufficient for a number of use

cases, others exist with requirements for multi-step negotiation or the adaptation of an

existing agreement.

Generally, each provider decide about the SLA language used to communicate with

the consumers. Starting from the selected language, he can define an SLA template in

which he specifies for example the quality of service parameters. The definition of the

QoS parameters may differ from one provider to another i.e., two different providers

may refer to different concepts by the same QoS parameter. This can lead to a misun-

derstanding between providers and consumers resulting in a bad discovery and selection

services regarding the consumer’s requirements.

Next section targets works dealing with service discovery and selection in the cloud.

2.3 Service Discovery and Selection

In order to reduce the heterogeneity between various equivalent services, several works

have proposed to use ontologies and semantic annotations. In the following, we will

introduce semantic based management tools such as ontologies and declarative pro-

gramming and we will present relevant works that used ontologies for cloud service

discovery.

2.3.1 Semantic based management tools

2.3.1.1 Semantic Web architectures

Semantic Web architecture (35) is the next generation in information architecture. Se-

mantic Web enables data to be presented in an efficient way to be understood and

used by machines without human intervention. The most well-known versions of the

layered architecture that exist within literature have been introduced by BernersLee

(36). Berners-Lee proposed four versions of Semantic Web architecture as depicted by

figure 2.5. The fist one in 2000, the second in 2003 as part of a presentation at the

SIIA Summit, the third and fourth versions in 2005 and 2006 respectively. The main

difference between those versions consists in the positioning and interaction between

16

2.3 Service Discovery and Selection

ontology and rules layers. In fact, Semantic technologies represent meaning using on-

tologies and provide reasoning through the relationships, rules, logic, and conditions

represented in those ontologies.

Figure 2.5: Semantic Web Architectures (35) -

2.3.1.2 Ontology

The use of ontologies (37) has shown its benefits in many domains especially artificial

intelligence, knowledge representation and inductive reasoning. Some generic ontologies

have been designed to provide a framework for building service level agreements. They

contribute essentially to identify concepts in the SLA domain. Moreover, the combina-

tion of ontologies with rule-based knowledges (38) is recommended for many interesting

semantic web tasks.

Ontology can be defined as a formal, explicit specification of the terms of a shared

conceptualization and relations among them. It is not a simple hierarchical structure

of items but a logical description of concepts, relations among them and individual in-

sertion. It has been introduced for explicating semantics of formal languages used in

17

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

knowledge sharing. One of the main advantages of employing ontologies expressed in

logic-based formalism such as OWL is being able to check the logical consistency of

our model using reasoners. Standard reasoner services are: consistency checking, sub-

sumption checking, equivalence checking and instantiation checking. Such mechanisms

facilitate automation, especially consistency checking mechanism, avoiding the creation

of classes that doesn’t really make sense. Reasoners help also inferring ontologies by

deriving further expressions and relations that are not explicitly contained within the

ontology.

Web Ontology language (OWL) is a knowledge language constructed over the RDF

layer in the semantic web architecture, specified by the W3C consortium. OWL be-

came the most used language for ontology description. OWL as a language has three

sub languages: OWL-full, OWL-DL and OWL-lite. OWL-Full, as its name indicates,

is a full version of OWL language. It allows a maximum expressiveness but may be

undecidable and hence difficult to reason over. OWL-DL defines a decidable OWL lan-

guage corresponding to the logic description SHOIN(D). OWL-Lite is a simple version

of OWL corresponding to the logic description SHIF. It is decidable too. OWL-Lite is

only useful for customers requiring a hierarchical classification of concepts supported

by some simple constraints. This version of OWL can not be adopted for Service Level

agreement specification requiring more expressiveness. OWL-Full can’t be retained too

because of its undecidability, while SLA specification is harnessed in automated systems

so its ontology needs to be reasoned over. Ultimately, OWL-DL seems to be the best

OWL version for SLA description due to its richness and its decidability.

2.3.1.3 Declarative programming

In contrast to conventional imperative programming languages such as Java or C++

specifying a series of instructions to be executed, declarative rule languages based on

logic programming (LP) states what computer should do rather than how it should do

it (39). It declares a set of rules about what outputs should result from which input.

Declarative programming adduces a high level of flexibility. In fact, rule languages

develop flexible applications on a high abstraction level. They are seen as self-contained

knowledge units that involves some form of reasoning. Rules are classified as three types

depending on their purpose:

18

2.3 Service Discovery and Selection

• Deductive rules or derivation rules: used to derive implicit facts by reasoning on

existing knowledge. Deductive rules inference conditions to get conclusions.

• Normative rules or integrity rules or structural rules in the business rule com-

munity: express integrity constraints ensuring consistency of data or knowledge

bases, so they should be fulfilled throughout the systems life cycle.

• Reactive rules or active rules or dynamic rules or reaction rules: describe the

reactive behavior of a system. This type of rules is used to update databases.

There are subdivides into kinds of reaction rules:

– Productive rules: rules of the form if Condition then Action, used in logical

applications especially to manage the state of web nodes.

– Event-Condition-Action rules (ECA rules): rules of the form on Event if

Condition then Action, used to manage distributed systems relying on event

based communication. Many ECA rule languages have been implemented

such as Xchange, Drools flow, Alfresco, Plone and Sitecore CMS and others.

Many real-life problems cannot be represented only using ontologies and cannot be

solved using barely ontological reasoning. Besides, the logic programming provides a

very expressive formal language, however it requires domain knowledge to be encoded

as a part of logic programs. Several works have focused on the capabilities of combining

ontologies, based on description logics and rules, based on logic programming to enhance

management automation.

2.3.2 Combining ontologies with rules

A combination of description logics and horn rules could be imagined as a possible

approach for enhancing management. In the following, we will present some existing

proposals using reasoning with rules and ontologies for management automation.

Stoutenburg et al (40) proposed SWORIER system acronym for Semantic Web On-

tologies and Rules for Interoperability for Efficient Reasoning. The system’s objective

is to semantically enhance its ability to react quickly to unexpected changes. They pro-

posed ontology and rules design and a framework gathering OWL, ruleML and SWRL

technologies. This framework translates all the knowledge base, via an XSLT translator,

to Prolog language that can be queried by users as depicted by figure 2.6

19

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

Figure 2.6: High-level approach to translating OWL, SWRL, and RuleML to
Prolog (40) -

Authors proposed a military use case that alerts when detecting stationed enemy

snipers. Ontologies and rules are used to model this use case and how they supported

rapid, enterprise integration. Ontologies were applied in an overall framework for situ-

ational awareness. Conditions, alerts and recommendations are generated through the

application of rules. Rules operated over the ontologies as part of an integrated knowl-

edge base that could be queried dynamically. The proposed architecture is implemented

using different components including a google earth client, a prolog reasoner, a knowl-

edge base, a situational awareness service, an event mediation services, some Adaptors

and a message simulator. To integrate those different components, authors use an

Enterprise Service Bus (ESB). The ESB provides an abstraction layer over disparate

messaging technologies, allowing interaction between components with minimal code

development. Mule ESB has been selected to integrate sources for satellite information

and other events by creating a Mule endpoint. It provides support for transport and

transformation of publisher/subscriber pairs, applying the XSLTs of the Adaptors when

appropriate. The architecture of the proposed system and the ESB role are illustrated

by figure 2.7.

20

2.3 Service Discovery and Selection

Figure 2.7: Architecture of the Semantic Environment for Enterprise Reason-
ing (SEER) (40) -

An integration of Ontology-based and policy-based Network management for au-

tomation is a second idea presented by Xiao and all (41). Its principal is to combine

network management information and network management policies in the same model

by the use of ontologies. Since ontologies are not enough rich to express restrictions

of network policies, authors expresses Management Information Base (MIP) and Pol-

icy Information Base (PIB) using OWL standard language for ontologies together with

SWRL rule language. Corresponding actions, invoked by those policies, can then be

defined in the form of network management services described by OWL-S. So:

• OWL: define network management information,

• SWRL: define behavior definitions. SWRL provides a way to express those implicit

restrictions on network management information in a formal explicit way

• OWL-S: define service definitions, OWL-S defines services corresponding to net-

work management actions, which are invoked if the given condition defined in

SWRL occurs.

The application of OWL, SWRL and OWL-S to describe MIP and PIB are illustrated

by figure 2.8.

21

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

Figure 2.8: Application of OWL+SWRL and OWL-S to describe MIB and PIB
(41) -

Authors have defined three steps to implement the integrated network management

for automation:

• Step 1: Use an ontology tool, such as Protégé-OWL editor, to convert PIB and

MIB to OWL+SWRL network management ontology manually, semi automati-

cally or automatically, depending on the function level of the chosen tool.

• Step 2: According to the behaviours defined by SWRL for both network man-

agement information and policies, corresponding actions can then be defined in

the form of network management services described by OWL-S, still with an on-

tology tool. Once the behaviour defined in this unified ontology is invoked, a

corresponding action is performed according to the OWL-S definition.

• Step 3: Put all the polices contained in the unified network management ontology

to the policy repository, which is used to store the policies generated by network

management tool, so that they can be used by the IETF PBNM architecture.

With the proliferation of cloud computing solutions, many cloud providers emerges

to propose different cloud services. We notice a huge semantic heterogeneity in the

proposed services witch incited many research to use ontologies. Ontologies have been

used to solve four main issues in the cloud: cloud resources and services description,

cloud security, cloud interoperability and cloud services discovery and selection (42). In

the following, we will focus on cloud services discovery and selection related work.

22

2.3 Service Discovery and Selection

2.3.3 Cloud services discovery ontologies

Several works defined ontologies to discover cloud services among which we can cite the

work proposed by

Han et al (43) presenting a cloud service discovery system (CSDS) that helps cloud

users in finding cloud services over the Internet. To enhance the performance of the

CSDS, they introduce a cloud ontology representing the taxonomy of concepts of dif-

ferent cloud services. This ontology enables the CSDS to reason about the relation

between and among cloud service concepts to determine the similarity between two

services. Three kinds of reasoning methods are used: similarity reasoning, equivalent

reasoning and numerical reasoning. With the use of cloud ontology, the CSDS is more

efficient since it is more successful in locating cloud services and more likely to discover

cloud services that meet consumers’ requirements.

Zhang et al (44) argue that comparing manually the service configurations of differ-

ent cloud providers is not easy because they use non standardized naming conventions,

various formats and heterogeneous types and features of cloud services. To overcome

this problem, they propose to formally capture the domain knowledge of services using

semantic Web languages like the Resource Description Framework (RDF) and the Web

Ontology Language (OWL). They defined an ontology that Identifies the most impor-

tant concepts and relations of functional and non-functional configuration parameters of

infrastructure services. This ontology facilitates the description of cloud infrastructure

services; and through mappings from provider descriptions, facilitates the discovery of

infrastructure services based on their functionality and Quality of Service (QoS) param-

eters.

Ma et al (45) aim to dynamically allocate cloud resources suitable for cloud user

requirements. For this purpose, they designed an architecture for ontology-based re-

source management system for cloud computing. The proposed ontology is built based

on cloud resource information and agreed SLAs. It is used to define concepts underly-

ing the proposed system for cloud computing and describe their relations, and inference

rules are defined to give semantic meanings to all cloud computing object information.

The experimental results of this work have showed that the ontology-based resource

management system improves the efficiency of resource management for cloud Comput-

ing when compared to the existing resource management algorithms.

23

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

Several efforts have been conducted to enhance cloud services discovery and selec-

tion. They have verified that the use of ontologies improves the discovery of more

services suitable for the user request. However, the construction of the proposed on-

tologies does not comply with or take into account any standardization efforts proposed

such as OCCI standard that defines how cloud service providers can provision their re-

sources and services to end users which. This makes hard the mapping to the provider’s

format.

On the other hand, the existence of several equivalent services let arising the prob-

lematic of choosing the best one.

2.3.4 Cloud Service Selection

In order to select the best service, consumers have to define criteria that discriminate

the different services. However, consumers may define a large set of criteria that should

be satisfied in the choice of the best service. The resolution of this problem is handled

by the decision making area.

"Decision making is the study of identifying and choosing alternatives based on the

values and preferences of the decision maker. Making a decision implies that there are

alternative choices to be considered, and in such a case we want not only to identify as

many of these alternatives as possible but to choose the one that best fits with our goals,

objectives, desires, values, and so on." (46)

Hereafter, we present decision-making techniques and tools tending to support users

in making decisions in the cloud domain.

Decision making protocol An interesting work to manage decision-making is pro-

posed by Waters et al. It consists on suggesting a Decision-Acquisition System Based

on a Common Decision-Exchange Protocol (47). Common Decision Exchange Proto-

col (CDEP) is an information model that contains the possibly interesting information

about a decision scenario. It considers everything as resource and uses the Hyper-Text

Transfer Protocol (HTTP) language to present all resources. This way, information is

better shared to support better and faster decision making. CDEP Protocol could lead

to semi-automation of certain decision-making processes. This protocol could be ap-

plied in different domain such as military domain, health care, emergency management

. . .

24

2.3 Service Discovery and Selection

Semantic tags Kodeswaran et al (48) proposed a multi-tier system for managing

multi-tier networks using semantic tags. They define a policy based network model that

eases network management and automates network configuration. In this architecture,

policies are classified as enterprise wide. They are distributed to various autonomous

domains that are responsible for enforcement of those policies within that domain and

all combined sub-domains. Authors proposed, among others, two interesting entities:

The Policy Decision Point (PDP) acting as the decision making entity and the Policy

Enforcement Point (PEP) responsible for enforcing the policies at the device level.

PDP is the entity that is responsible for reasoning over the network traffic utilizing the

content metadata, network state and other contextual information available to it and

determining the policies that need to be enforced. It is responsible for reasoning over

the policies (using its Configuration Reasoner). PEP executes commands received from

PDP. PEP’s main responsibilities and actions are:

• Request and store its configuration from the local-PDP that is responsible for this

device.

• Delegate any policy decisions to the local-PDP by extracting content metadata

from data packets and adding to this description, any additional information that

may be useful to the local-PDP

• Report errors and status updates to the local-PDP

This protocol is tested using the NS2 simulator. The PDP was implemented as a Java

process that received OWL streams from a client PEP (a network router within NS2),

invoke the reasoner and send back the Tcl commands depending on the actions that

needed to be invoked. The PEP , in this case is the NS2 simulator, would then execute

the commands received from the PDP.

Heuristics Wu et al (49) proposed an automated SLA negotiation framework for

cloud computing. This framework includes decision making heuristics to negotiate the

SLA contract between cloud parties. Its main components are: Customer Agent (CA),

Broker Coordinator Agent (BCA), Provider Agent (PA), IaaS Provider, SLA Generator,

Directory, Policy Database (PD), and Knowledge Base (KB). The broker coordinator

agent includes a decision making system which includes heuristics , considering factors

25

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

such as time, market constraints and trade-offs to satisfy the different objectives of

cloud actors. It minimizes price and guaranteed QoS for consumers, maximizes the

profit of the cloud provides by receiving as many requests as possible and maximize the

profit of the broker from the margin between the customer’s budget and the provider’s

negotiated price.

Multi-criteria Decision Making Since the main advantage of adopting a cloud

technology is economic, most of utilized methods for taking decisions in a cloud context,

limits the decision making to the relative cost of cloud resource leasing. Therefore, they

might neglect crucial key factors influencing the Quality of the Service and the client

satisfaction. To address this shortcoming, some works propose to employ a multi cri-

teria decision making method which is a qualitative comparison approach to evaluate

alternatives against dissimilar criteria. Multi-Criteria Decision-Making (MCDM) (50)

(51) (52) is a sub-discipline of operations research that explicitly considers multiple

criteria in decision-making environments. It is an alternative to classical optimization

methods based on the definition of a single function, often expressed in economic term

(monetary) and reflects the consideration of several criteria, often immeasurable. The

interest of multi-criteria methods is to consider a set of criteria of different kind (ex-

pressed in different units) and its ability to judge accordingly different alternatives as

illustrated by figure 2.9.

Figure 2.9: Multi criteria decision making (MCDM) Tree -

MCDM methods are gaining importance as potential tools for analysing complex

real problems due to their inherent ability to judge a multitude of alternatives on dif-

ferent criteria for possible selection of the best suitable alternative(s). They interested

some researchers in the field of cloud computing as a tool helping them to select the

26

2.4 Cloud Broker architecture

best cloud service. For example, Menze et al (53) introduce a generic multi-criteria-

based decision framework and an application for cloud computing, the Multi-Criteria

Comparison Method for Cloud Computing (MC2)2. The framework and method al-

low organizations to determine what infrastructure best suits their needs by evaluating

and ranking infrastructure alternatives using multiple criteria. Therefore, ((MC2)2)

offers a way to differentiate infrastructures not only by costs, but also in terms of ben-

efits, opportunities and risks. ((MC2)2) can be adapted to facilitate a wide array of

decision-making scenarios within the domain of information technology infrastructures,

depending on the criteria selected to support the framework. Ur-Rehman and all (54)

introduced a methodology for selecting cloud services based on multiple criteria. They

propose a formulation of the service selection problem into a generalized and abstract

mathematical form. Then, they build a service selection method based on a comparison

between the user requirement criteria vector and all service descriptor vectors. This

method leads to the selection of the service having the corresponding descriptor vector

that best matches the user requirement vector.

The over mentioned issues concentrate on multi criteria decision making but do not

explain how those criteria under negotiation could be formulated in an SLA contract.

Besides, they do not propose guarantees to ensure that the best choice founded by the

multi-criteria method still satisfies the cloud consumer throughout the duration of the

deployed service execution.

In order to overcome those difficulties, some works have proposed cloud broker architec-

tures to provide cloud-users a unified and enhanced management interface to multiple

cloud-providers. This will be the subject of the following section.

2.4 Cloud Broker architecture

2.4.1 Cloud Broker Definition

A cloud broker is a third-party individual or business negotiating relationships between

providers selling services and consumers purchasing cloud computing services. The

National Institute of Standards and Technology (NIST) defines the broker as (55) : "an

entity that manages the use, performance and delivery of cloud services and negotiates

relationships between cloud providers and cloud consumers".

Significant enhancement will be achieved in the future of cloud computing due to the

27

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

cloud broker notion since it provides an abstraction layer between providers and users.

It guaranties an accurate negotiation contract leading to compute and storage services

provisioning. NIST attributes three categories of services to the cloud broker: service

intermediation, service aggregation and service arbitrage. Indeed, the cloud broker

provides the following capabilities:

• Helping users determine the best framework for each individual need, based on a

number of factors. This includes discovering suitable data sources for a given anal-

ysis scenario, selecting suitable computational resources and optimally mapping

analysis jobs to compute resources.

• Providing a single interface for interaction with multiple clouds, hiding the com-

plexity inherent in working with multiple providers.

• Monitoring and controlling clouds in a flexible way. The broker negotiates techni-

cal contracts, access data from local or remote data source, detects cloud failures

and reacts in some appropriate way.

• Saving money and being more efficient: the cloud broker provides a cost-effective

resource utilization.

• Reducing security risks: taking care of authentication, authorization and access

control.

2.4.2 Cloud Broker related work

Jrad et al (56) proposed an SLA based service brokering in intercloud environment.

They designed a high-level generic architecture by integrating several state of the art

technologies and standards, illustrated by figure 2.10.

The main components of this architecture are:

• SLA Manager: responsible for SLA negotiation and provisioning.

• Monitoring and Discovery Manager: responsible for monitoring SLA metrics.

• Match Maker: responsible for selecting the best cloud providers using different

matching algorithms.

• Deployment Manager: responsible for deploying the service on the selected provider.

28

2.4 Cloud Broker architecture

Figure 2.10: An SLA based service brokering in intercloud environment (56) -

29

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

• Identity Manager: responsible for user authentication, IDs and roles enforcements.

• Persistence: responsible for storeing broker specific data (e.g. monitoring, SLA

templates and resources data).

• Abstract Cloud API: responsible for managing cloud resources on different cloud

providers.

• Intercloud Gateway: responsible for the interaction through the standard cloud

API with the broker.

• Vendor Cloud Platform: is the native cloud platform hosted by the cloud provider.

Pawluk et al (57) designed a cloud broker service they named STRATOS. It repre-

sents an initial step toward the automated cross-cloud resource provisioning and inter-

cloud platform. This solution is responsible for solving the Resource Acquisition De-

cision (RAD) problem. It automates the decision at runtime rather than deployment

time. It selects a set of configurations satisfying user objectives that are optimized using

a multi criteria optimization formulation. In a first step, the cloud manager contacts

the broker to instantiate the topology. It provides the broker with a topology document

specifying the topology to be deployed on the cloud. It includes structural concerns

(e.g., numbers of tiers in the application, numbers of nodes in each tier, etc.), monitor-

ing directives (e.g., which metrics to monitor and how often), management directives

(e.g., a set of models to control the elasticity policy of the application server tier at run-

time), and the deployer’s objectives. Afterword, the broker performs the initial RAD

calculation, namely the most efficient allocation of resources across providers. The RAD

problem is formulated as a multi-criteria optimisation problem. The broker requires two

pieces of information from the deployer to solve any particular RAD problem: desired

configuration and a set of objectives. A configuration is described by a list of properties

where each property is a triple (name; value; unit). An objective represents a utility

function calculated for a topology, with a configuration being a variable, e.g., cost of

the topology can be viewed as an objective to be minimized.

To solve this problem, several research projects proposed brokering architectures.

We could mention for example the

SLA@SOI (58) European project addresses the issues surrounding the implementa-

tion of automated SLA management solutions on Service Oriented Infrastructures (SOI)

30

2.4 Cloud Broker architecture

and evaluates their effectiveness. In particular, the SLA@SOI framework has the re-

sponsibility of acting as a broker. Its SLA management layer supplies the user requests

in the form of infrastructure SLA (iSLA) requests, then, selects the most appropriate

provider based on the iSLA terms . This architecture aims essentially to offer a generic

solution for SLA management that can: (1) support SLA management across multiple

layers of a service-oriented infrastructure; (2) cover the complete SLA and service life

cycle; and (3) be used in various industrial domains and use cases as mentioned in (59).

Optimis project (60) proposes a broker model involving the brokering of a federation

of providers to propose an SLA-based tiered pricing model to the customers of the

broker. This broker (61) aims to negotiate SLAs between consumers and providers

and effectively match the requirements of cloud consumer with the provider’s service.

It aims also to maintain performance check on these SLAs and take actions against

SLA violation. The Optimis broker uses the WS-agreement standard to negotiate SLA

contracts and to perform a match between the requirements of the service provider and

the functionalities provided by the various infrastructure providers.

The Contrail project (62) aims to design, implement, evaluate, and promote an open

source system for cloud federations. It aims to provide the federation users the view of

a single cloud. For this purpose, it propose a cloud broker solution that selects the best

or most suitable public cloud. This selection is based on the cheapest or most security

conscious or in a specific location i.e., whatever their specific needs are for that piece of

work.

The Open Source API and platform for multiple clouds (mOSAIC) project (63) aims

at creating an open source API and a platform to allow using multiple cloud services at

once. It offers also a brokerage system to support the decision of cloud service provider

selection at the deployment stage. There is a cloud agency module that plays the role

of broker in the mOSAIC’s architecture. Its basic services are (1) the negotiation of

SLAs, (2) the deployment of cloud services, and (3) the discovery and brokering of cloud

services. To fulfil these goals, the mOSAIC project defined an ontology able to describe

services and their (wrapped) interfaces (64). The defined ontology describes services at

the three delivery models of cloud computing (i.e., IaaS, PaaS and SaaS) and enables

intelligent selection of services, with automation of different tasks, including service

discovery, mediation, invocation, or composition.

31

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

The Open Source Cloud Broker "CompatibleOne" (65, 66) provides interoperable

middleware for the description and federation of heterogeneous clouds and resources

provisioned by different cloud providers. It assists cloud end users in their providers

choice and it allows them to avoid vendor lock in, enforce SLAs and reduce costs.

The CompatibleOne broker is based on open standards, mainly CDMI and OCCI, and

uses new defined object-based description models such as the compatibleOne resource

description system .

These over-mentioned solutions still present some deficiencies and hence many re-

searchers continue to focus on the obstacles and opportunities that cloud brokering

presents today. Indeed, several works like the STRATOS broker and the work pre-

sented by (56) do not define a common description model or template to use for SLA

specification. This shortcoming makes the communication between the different cloud

actors difficult and consequently it could lead the proposed solutions to miss their initial

target. To overcome this problem, other works like SLA@SOI, Contrail and Optimis

try to offer frameworks that can be integrated in cloud providers, but are usually heavy

to maintain and hard to customize (67). For example, the SLA@SOI project propose

an automated SLA management solution that could be integrated in many existing so-

lutions. However, this solution can not be fully adopted in an infrastructure composed

of unreliable resources such as the ones targeted by the C@H project presented in (67).

Moreover, the Contrail project imposes strong constraints to providers by forcing them

to integrate brokering mechanisms which hinders their adoption (66)

Besides the SLA management and negotiation issues, the brokers focused also on the

service selection. They proposed decision making methods to select the most suitable

service provider based on the users SLA requirements. However, some works such as

Optimis and Contrail focused on specific parameters for taking their decisions which

may not cover all users expectations. This lack could lead to a wrong choice of the

service provider. Moreover, most brokers considers the performance criteria in their

selection and neglect non functional criteria like data integrity , trust and security.

Those criteria are essential in the provider’s selection and they need to be formalised

to be taken into account in the selection process.

We should also note that several brokers are based on a federation, such as mOSAIC

and OPTIMIS. Therefore, they implement a brokering system that gather resources

from different cloud providers and offers them in a custom way to their users (67).

32

2.4 Cloud Broker architecture

However, the federation is not yet widely adopted by actual cloud providers especially

public clouds, so it is hard to use proposed architecture in this context.

33

2. STATE OF THE ART ON CLOUD MANAGEMENT FRAMEWORKS

34

Chapter 3

Cloud Broker Architecture for
negotiating semantic SLA contracts

35

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

3.1 Problem Statement

Cloud Computing has become a popular paradigm for IT services delivery allowing scal-

ability and elasticity. However, due to the existence of various infrastructure providers

(private, public and hybrid providers), the choice of the best provider’s offering that fits

user requirements is a complicated task. Indeed, cloud customers face the problem of

heterogeneity of services and offers. This heterogeneity appears in:

• Different terminologies to express the same offer or requirement. For instance,

the processing capacity of a cloud virtual machine could be called CPU, capacity,

processing capacity . . . as illustrated by figure 3.1. So, customers might miss the

best service or even do not find the service that fits their requirements. Moreover,

providers are likely to miss customers because of differences in terminology and

negatively affect their benefits.

Figure 3.1: Terminology heterogeneity -

• Different formats or even different languages to express the request. Indeed, some

providers like Amazon (68) and Windows Azure (69) propose predefined bundles

and expect users to formulate requests as a set of required bundles. Whereas, some

private clouds just ask users to fix the technical characteristics needed within the

36

3.1 Problem Statement

allocated resources such as RAM, storage and data transfer rates.

This means that whenever the user requests a provider, he should comply with

the provider’s nomenclature which creates a dependence between customers and

providers. Besides, in case of federated services when the customer needs to ask

several services from various providers, he should adapt his request to provider’s

templates and formats which generates additional cost and delay. This problem

is illustrated by figure 3.2.

Figure 3.2: Request formulation heterogeneity -

• Different ways to express the quality of services provided. QoS parameters can

be different depending on the type of the service (70) i.e. the same QoS param-

eters may have different meanings. For example, the QoS parameter "Delivery"

expresses the percentage of service delivered without packet loss. It represents

the packet delay. This parameter could be called "Loss" or "Delay" depending on

the provider’s choice. The latency parameter defines the waiting time per service

transaction. It usually includes the transport time and querying delay. Latency

could be called also "Delay". So, the QoS parameter "Delay" definition varies

depending on the utilization context. Therefore, there is a risk of making the

wrong choice because of a misunderstanding of the QoS parameter. This conflict

is due to the absence of standard defining the quality of services which causes

an ambiguity and misunderstanding between providers and consumers leading to

customers not satisfied.

37

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

Previous work tried to tackle some of these issues using Service Level Agreement

(SLA) contracts. An SLA contract is a formal contract used to guarantee that the

service quality expected by the user will be provided. Up to now, the SLA definition is

not yet standardized. Hence, cloud actors use standards like WS-Agreement (34) and

WSLA (31) to express cloud SLA contracts. These formalisms are general xml-based

languages largely used for SLA contracts. They are not intended to be specific to any

type of market which makes them difficult to use for computing services (71). Moreover,

their xml syntax offers only syntactic interoperability which is poor and not extensible

(72) and can not solve the heterogeneity problem.

In addition, SLA contracts established are based on definitions proposed by providers

without enabling customers with sufficient negotiation opportunity (73). It was em-

phasised in the technical report of the Cloud Standards Customer Council that SLA

contracts offered by cloud providers are immature (74). Current SLA contracts express

only application-specific performance and do not contain provisioning restrictions, for

example which location to use for data storage (75). They do not offer neither perfor-

mance guarantees for cloud services and leave SLA violation detection to the customer

(3). Unfortunately, the customer inconvenience is not limited to the SLA contract es-

tablishment. Actually, the availability of a multitude of cloud services from various

providers is a great opportunity that causes nevertheless difficulty to end users in se-

lecting services and providers. Customers should be able to trade-off multiple QoS

parameters to select the provider that best fits the desired QoS requirements as illus-

trated by figure 3.3. This is not an obvious practice due to the changes in end-users

requirements, the dynamic fluctuations of infrastructure properties and the problem of

heterogeneity mentioned above.

In this work, we are interested in ensuring:

1. Interoperability: by introducing semantic annotations in the QoS negotiation pro-

cess

2. Optimum user satisfaction: find him the best trade-off between QoS parameters

based on his own preferences.

3. Sustainability of user satisfaction: by providing him tools to supervise easily the

compliance with his SLA requirements.

38

3.2 CBA: A Cloud Broker Architecture

Figure 3.3: Trade-off between QoS parameters -

To achieve the stated objectives we:

1. Define a cloud specific ontology describing the semantic cloud SLA contract;

2. Propose a multi-criteria method to select the provider’s offer, meeting best the

user requirements and expected quality of service;

3. Propose policy to express inference rules and detect violations in the SLA contract.

These different contributions are structured in a global architecture called cloud

broker architecture helping users to find adequate resources and services. Within this

architecture, the SLA contract is expressed using an ontology and managed using poli-

cies and rules. With the use of ontology, an SLA contract can be richly and semantically

formulated. Rules express policies governing SLA contract automation.

3.2 CBA: A Cloud Broker Architecture

Cloud computing is a new paradigm that plays a major role in the future Internet of

Services by offering on-demand access to shared resources and services. But, it still

faces certain terminological ambiguity. Grozev et al (75) proposed a taxonomy and a

classification of inter-cloud application brokering mechanisms. In this work, we propose

39

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

an SLA-based brokering approach defined by (75) as follows : "application developers

specify the brokering requirements in an SLA in the form of constraints and objectives.

The cloud provider or the Inter-Cloud service acting on behalf of the client decides on

brokering approach honouring the specified SLA."

We introduce an SLA-based cloud broker to assist cloud consumers in managing the

provisioning of cloud services. This single interface is designed to treat different requests

with different requirements depending on the user preferences. Indeed, some users

favour allocating resource having minimal cost, others, prefer high access to data storage

resources whereas some resource demanding applications require the provisioning of

scalable and elastic resources. To handle the diversity of requests, the broker analyses

the demand, addresses providers to find resources and services satisfying the QoS needed

and selects the best proposal. It helps also detect failures in cloud infrastructure and

it alerts users of SLA contract violations. Our proposed solution is easily used by

individual users. It is also time and energy saving for enterprises. It could be adopted

also by providers to control their own infrastructure and manage federations. Figure

3.4 illustrates the architecture of our cloud broker.

Figure 3.4: Cloud Broker Architecture -

The modules of the CBA architecture are:

40

3.2 CBA: A Cloud Broker Architecture

• Broker Manager: It is the main module of the broker architecture that orchestrates

the broker operation. It is equipped with:

– a Request Parser Module that provides the users with a template to integrate

their requests, then parses users requests to ontology;

– and a QoS Parser Module allowing to interact with providers. It provides

them with received user requests and parses the QoS parameters proposed

by the providers, to answer the user requests, to ontology.

The broker manager receives information about the user request and its prefer-

ences, find the best-fit provider by interacting with the broker’s decision making

module and establish an ontological contract with the selected provider. To en-

sure that this SLA contract is respected, the broker manager interacts with the

reasoner module to detect violations, then it reacts by imposing penalties and

migrating user applications to another provider if necessary.

• SLA Contract Ontology: describes parameters to be introduced by both customers

and providers to establish and negotiate a coherent cloud SLA contract. It is a

semantic module ensuring interoperability between heterogeneous cloud actors.

• Reasoner module: is a program used to derive new facts from the existing ontolo-

gies. It is invoked to:

– verify the consistency of the consumer’s request based on the consistency

checking rules provided by the Consistency Checking Policies Module.

– detect violations: it checks that the real-time monitored QoS parameters

do not violate the agreed SLA contract based on the Violation Detection

Policies. Otherwise, it alerts the broker manager of the occurred violations.

• Consistency Checking Policies module: contains rules to verify the consistency of

a request.

• Violation Detection Policies module: contains rules to check if an SLA parameter

is violated and determine subsequent penalties.

41

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

• Decision Making Module: this module evaluates provider’s performances against

the heterogeneous SLA criteria defined in the cloud ontology by assigning utilities

of each provider. It adopts a multi-criteria decision making method for providers

ranking associated with utility function descriptions to determine user satisfaction

degree.

• Providers knowledge Base: Contains information about collaborative providers

such as the geographic locations of their data center, their replication method or

their recovery strategy.

• Monitoring module: SLA contracts negotiated by the broker includes quality of

service requirements and penalties in case of QoS violations. However, to detect

that the QoS requirement are not met any-more, services hosted by the providers

must be monitored. This module measures in real time the QoS parameters

of these services. The monitored parameters allow to detect the violated QoS

performance agreed by the consumer and the provider. Several techniques could be

used for monitoring, such as traditional server monitoring services that can be used

to likewise monitor cloud services, vendor specific monitoring services like Hyperic

(76), CloudHarmony (77), Monitis (78), Nimsoft (79), Amazon CloudWatch (80)

. . . or even third party independent cloud monitoring services like Cloudstatus (81)

and cloudkick (82). We suppose that this module holds a database of monitored

QoS that helps the Decision Making Module to select a provider for the user

requests.

This architecture ensures three main features:

1. Establish a coherent SLA contract:

The life-cycle of an SLA contract starts when the broker receives a new request.

Right away, it creates a new SLA Ontology Contract based on a generic contract

model already stored, and provides the user with a clear template to express

his requirements and preferences. The broker asks the user about his resource

needs as well as his service level objectives. However, broker’s customers are

not necessarily experimented people able to formulate coherent requests. So, the

broker is equipped with a Consistency checking Policies module enumerating good

practices to formulate coherent requests more likely to be answered. To verify the

42

3.2 CBA: A Cloud Broker Architecture

consistency of the user request, the broker manager solicits the Reasoner module

that is able to understand consistency rules to detect eventual aberrations. In

that case, the broker manager alerts the customer about the detected aberration

and asks him to reformulate his request if he wants. This feature is illustrated by

the sequence diagram 3.5.

Figure 3.5: Coherent SLA Establishment -

2. Select the best provider and establish the agreement between the cus-

tomer and the provider:

The broker’s main goal is to find the best provider to the user request and es-

tablish an SLA contract between the consumer and the selected provider. This

process goes through several steps:

(a) the broker considers the user constraints: it examines its knowledge base to

select the providers capable of satisfying the user constraints.

(b) the broker’s decision making module finds the best suited provider: first of all

the decision Making Module predicts the QoS that the provider can supply

based on the database monitoring information. This database holds the QoS

43

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

values measured by the monitoring module responsible for tracking the user

requests and measuring real time QoS values. Based on the predicted QoS

values, the DMM calculates the utility of each provider. Then, it sorts the

providers utilities and determines the best provider to the user request.

(c) Finally, the broker manager contacts this provider and establish the SLA

contract between the consumer and the provider.

Those steps are illustrated by figure 3.6

44

3.2 CBA: A Cloud Broker Architecture

F
ig
u
re

3.
6:

S
L
A

N
eg
ot
ia
ti
on

P
ro
ce
ss

-

45

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

3. Detect violations in the SLA contract:

The broker’s role is not limited to the establishment of the SLA contracts between

providers and consumers. It also ensures that this contract is respected. Indeed,

it periodically checks the compliance of the provided quality of service with the

service level objectives (SLOs) agreed between the provider and the consumer.

The violation detection scenario is illustrated by the sequence diagram in figure

3.7.

The broker manager receives periodically the QoS values from the monitoring

module. It communicates this information to the Reasoner that detects the vio-

lated SLOs and alerts the broker manager of the penalties agreed. So, this latter

looks after imposing those penalties to the provider. Moreover, if the provider

does not satisfy any-more the user request, the broker resorts again to the DMM

to select another provider and migrate user applications to the new provider.

Figure 3.7: SLA Violation Detection Process -

In our proposed architecture, the feature of establishment of a coherent SLA contract

as well as the detection of violations is assured thanks to the policies defined by the

broker manager and interpreted by the reasoner. In the next section, we will detail how

the broker implements these policies.

46

3.3 Management Policies Implementation

3.3 Management Policies Implementation

The increasing complexity of cloud architectures has made manual management not

adequate. Infrastructures need to be provided with exceptional capabilities to enable it

automatically. In this work, we propose to define policies to automate the management

of the SLA contract. The cloud Broker architecture proposed in the previous section

allows the establishment of SLA contracts between consumers and IaaS, PaaS and SaaS

providers. For each type of contract, adequate policies should be specified to handle the

coherence of the user request and to define sensible penalties to manage violations. This

could be done based on the specific domain ontology administrating the negotiation of

the SLA contract. In fact, ontologies are responsible for defining the decisional domain

taxonomy, i.e., the concepts and the relations between them. They also provide a unified

way of message exchange between different contributors of the decisions. Hence, by the

use of ontologies, we can define a shared referential to communicate between different

entities interacting in the contract establishment. According to the concepts defined in

the ontology, we can define management policies namely the request consistency policies

and violations detection policies. All management policies should be in accordance with

the ontological concepts. To configure our broker architecture, the proposed architecture

is provided with an interface to help a management agent to write management policies.

This interface is illustrated in Figure 3.8.

For manipulating ontologies and expressing policies, we used the Jena API (83). It

is a Java based API for handling OWL (84, 85) and RDFS (86, 87) ontologies and it

provides a rule-based inference engine for reasoning over RDF (86) and OWL (84, 85).

Our interface supports the broker managers in expressing policies as Jena rules. This

flexibility facilitates and encourages stakeholders and providers to adopt our brokering

solution since there is no need to learn a new policy language. Managers need only load

the domain ontology they are going to use. The system charges automatically subjects,

predicates and objects separately to help them to create triple patterns. Managers could

easily include Jena built-ins in forward or backward chaining rule depending on the rule

reasoned configuration. Built-ins express conditions to be fulfilled in the antecedent part

of a policy as well as relations between concepts to be considered as post-conditions once

the policy is executed. In this way, managers establish swiftly consistency checking rules

and violation detection rules based simply on a domain ontology.

47

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

Figure 3.8: Management interface to create policies -

3.3.1 Consistency Checking Policies

Consistency checking policies are expressed as normative rules. Their main objective is

to warranty that user requests are semantically coherent. We use integrity constraints

to ensure consistency and coherence of the knowledge bases provided by customers.

Indeed, the domain ontology gives a template to be followed while specifying requests

or expressing SLA criteria but does not necessarily emphasize coherence conditions to be

fulfilled throughout the system’s life cycle. Therefore, the consistency checking policies

prevent users in formulating irrational queries so queries are more likely to be answered.

For example, if the user needs IaaS virtual machines with high CPU capacity and rapid

memory, he is not allowed to fix a very low cost threshold. Otherwise, the request can

not be fulfilled. In order to avoid such aberrations, the broker manager includes the

following policy:

if (Compute-cores> x and Compute-memory > y and cost < z)

then AlertUser ("The requested resources should be more expensive than the fixed cost

threshold")

This policy could be formulated as illustrated by figure 3.9.

This module includes also functional dependencies between QoS metrics. For ex-

ample, the storage and the network QoS metrics are strongly coupled. Then, when

48

3.3 Management Policies Implementation

Figure 3.9: Consistency Checking Policies Example -

querying for a rapid access to storage space, we can not ask for a very small read time

and write time all over with a minimum bandwidth capacity. The policies of this mod-

ule are adjusted by the broker manager in accordance with its environment and context

knowledge.

3.3.2 Violation Detection Policies

Periodically, the broker manager receives the monitored QoS measures that it commu-

nicates to the reasoner to verify if the QoS variations measured could lead to violations

in the SLA contract. To detect violations, the reasoner infers the policies stored in the

Violation Detection Policies engine. In our architecture, the definition of penalties are

dissociated from the SLA contract establishment. The broker manager negotiates in

advance the penalties to be imposed in case of violation with the providers. Then, the

broker manager introduces the violation detection policies as rules in the violation detec-

tion file. Since the broker holds the user preferences as well as the proposed agreement

by the provider, two types of treatments are possible after detection a violation:

• If the violation affects the SLA contract but still satisfies user needs, only penalties

are imposed to the provider.

• If the violation exceeds or falls below the thresholds fixed by the consumers, the

broker concludes that the provider does not satisfy anymore the user request. It

imposes penalties to the provider and treats the user request again to find another

provider that can meet the request requirements.

49

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

An example of detection of response time violations is illustrated by figures 3.19

and 3.11. The first figure illustrates the detection of violations that do not affect the

user requirements whereas the second illustrates the detection of severe violations that

require the decision making module intervention.

Figure 3.10: Response Time Violation Detection Policies Example 1 -

Figure 3.11: Response Time Violation Detection Policies Example 2 -

Our cloud broker is now well configured and ready to start the negotiation of the

SLA agreements. In the following, we will discuss the cloud SLA contract specification.

3.4 Cloud SLA Contract specification

There are a multitude of specifications and formalisms for defining SLA contracts.

However, they are generic models, widely used in various domains, not necessarily

50

3.4 Cloud SLA Contract specification

adapted to the cloud. Nowadays, there is no standardized manner to establish cloud

SLA contracts. Cloud actors usually use xml standards like WS-Agreement and Web

Service Level Agreement, which are hardly adapted to the cloud. Moreover, the lack

of a standard taxonomy for the cloud domain causes many heterogeneity problems. To

handle this kind of issues, we introduce semantic annotations in the cloud SLA con-

tracts. Ontology is a flexible semantic tool, not exploited for SLA specification so far.

In this work, we build an ontology for cloud SLA specification formalizing the SLA con-

tract between consumers and providers. The main concepts of this ontology are the two

parties of an agreement which are the consumer and the service provider as illustrated

by Figure 3.12:

• Consumer: authenticated and secured via a login and a password. It is the service

requester which could be a human person or an external entity such as the cloud

platform layer or a cloud provider requesting resources from other clouds. To

notice user’s faithfulness, we define an incremental attribute in the ontological

contract to calculate the number of SLA contracts endorsed by each user through

the broker;

• Provider: the provider represents the second partner in the SLA contract. It is

associated to the service type it provides. It is essential to specify the provided

service type especially in a federation scenario to be able to determine which

provider supplies which service. To have an idea about the provider performance,

we calculate the number of SLA contracts it established;

• Duration: It represents the engagement duration. Each SLA contract has a start

date and an end date.

The consumer initiates the negotiation of the SLA contract by introducing his re-

quirements gathering his request, his specific constraints if he has any, the QoS he needs

and his engagement duration as illustrated by figure 3.12. To answer this request, the

provider checks his available resources at the specified duration and provide the cus-

tomer with the QoS he is able to guarantee.

51

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

Figure 3.12: Cloud SLA Contract Ontology -

To hide the heterogeneity between different concepts and relations, we introduce

semantic annotations in the proposed ontology. For instance we use "same as" relation

to identify that two individuals are the same (SLO=Service Level Objectives) and the

"equivalent property" relation to indicate that two properties are equivalent (compute-

core=CPU).

The proposed ontological contract is implemented and tested for IaaS SLA contracts.

3.4.1 IaaS Cloud SLA Contract specification

The cloud SLA contract is specified for IaaS requests as illustrated by figure 3.13. IaaS

consumer’s requirements includes:

• Consumer request: to request for Infrastructure As A Service (IaaS) resources, the

user should specify his/her requirements in terms of virtual resources. Our request

is conform to the IaaS OCCI specification (88). It can include three types of

resources: Network, Compute and Storage. The attributes of each type of resource

is defined by the OCCI specification. In order to create entities like virtual data

centres or virtual clusters, we should define links between the different resources.

Those links are defined as instances of the class Link. There are two types of

links: the storage link connecting a compute resource to a storage resource and

the Network Interfaces connecting the compute resources to Network resources;

52

3.4 Cloud SLA Contract specification

• Constraints: Sometimes, consumers have crucial constraints affecting the provider’s

choice but that can not be expressed in the request to the provider. The geographic

location of the stored date, for instance, is not explicitly determined in the storage

resource request, so the provider is free to store resources worldwide. Thanks to

the constraints field of our ontology, IaaS consumers can introduce their prefer-

ences regarding the geographic location of their stored resources, their recovery

strategy (dedicated or shares recovery) and the replication type they need (static

or dynamic replication).

• User QoS Accepted Thresholds: SLA criteria specifies the service level objectives

of the SLA agreement. SLA metrics can be classified by different categories. Ta-

ble 3.1 enumerates negotiated SLA categories and the metrics measured in each

one. Negotiated SLA criteria are classified in two main categories: functional

properties and non functional properties. Functional properties define properties

that directly influence quality of service. They are classified in four categories:

compute SLA, Network SLA, Storage SLA and cost. However, non functional

properties are rarely explicitly described in a user request but can be used as

indicators of quality. We grouped scalability, elasticity and disaster recovery in

a reliability family defining the ability of the system to react to emergency situ-

ations. Moreover, we considered trust as an important non functional evaluation

criterion since it defines the trustworthiness of a service provider. User QoS Ac-

cepted Thresholds indicate accepted thresholds for the user for the mentioned

criteria.

When receiving the customer’s request, the provider introduces his proposed SLA

criteria. The values proposed by the provider must satisfy the user request and they

represent the service level objectives (SLO) that it must maintain.

For cloud SLA specification, we build an ontology enabling semantic interoperability.

Based on this ontology, the broker builds clear and complete templates that it commu-

nicates to the consumers for expressing their requests and their preferences. Then, the

broker has the responsibility of finding them the best provider. Thereby, consumers get

rid of the burden of communicating with heterogeneous providers to select the best one.

However, how could the broker communicate with different providers utilizing heteroge-

neous SLA languages? Should they imperatively adopt the ontological concepts? The

53

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

Figure 3.13: IaaS SLA Contract Ontology -

54

3.5 Ontology Mapping to WS-Agreement

Table 3.1: Negotiated SLA criteria classification.

Category Measurable Metrics

Functional
Properties

Compute SLA
Response Time
Availability

Network SLA
Latency

Bandwidth

Storage SLA Performance
Read throughput
Write throughput

Recovery(restoreTime)
Cost

Non
Func-
tional
Properties

Reliability
Scalability
Elasticity

Disaster Recovery
Trust

cloud SLA specification is not yet standardized. There are several xml-based languages

like WSLA and WS-Agreement to make SLA agreements. To allow providers to com-

municate with the broker their SLA formalisms should be mapped to ontology. Since

WS-Agreement is widely used by cloud SLA actors, we will explain in the next section

how WS-Agreement could be mapped to ontology.

3.5 Ontology Mapping to WS-Agreement

For cloud SLA specification we build an ontology enabling semantic interoperability.

This ontology introduces a specification of cloud SLA negotiation. It contains all el-

ements of an SLA Agreement. Thus a cloud SLA negotiation contract expressed in

another language could be easily mapped to ontology and vice versa. To hide the

heterogeneity and ensure interoperability in the cloud, the broker resorts to mapping

techniques as illustrated by figure 3.14.

This figure shows that providers using WSLA for instance can communicate with

providers using another SLA language like WS-Agreement by mapping WSLA to on-

tology, then mapping ontology to WS-Agreement. Thereby, our ontology is enriched by

the concepts of other SLA languages.

55

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

Figure 3.14: SLA interoperability via the broker -

WS-Agreement is an SLA language widely used for cloud SLA specifications. It is

a normative language to formulate Service Level Agreements and a basic protocol to

expose service-level descriptions, validate service-level requests, and come to an agree-

ment. This Java framework, proposed by the OGF WS-Agreement standard, defines a

tool to create and manage service level agreements in distributed systems. The structure

of an agreement template is summarized by the figure 3.15.

The objective of the WS-Agreement specification is to define a general language for

creating agreements based on templates. However, since WS-Agreement is not intended

to be specific to any type of market, it is very difficult to be used for computing services

(71).

In the following, we will define the mapping term by term of WS-Agreement to

ontology. The mapping notation used is inspired from (89) and defined by table 3.2.

The first part of the agreement template is the context containing information about

the agreement initiator, the agreement responder and the expiration time. The mapping

of context information to ontology is defined as follows.

mp1=(Consumer, /Template/Context/AgreementInitiator)

56

3.5 Ontology Mapping to WS-Agreement

Figure 3.15: Structure of WS-Agreement template -

Table 3.2: Mapping Notation.

Mappings Notation
Class (OWL Class URI, XPath expression)
Datatype Property (OWL Datatype Property URI, Domain Class Mapping,

XPath Expression)
Object Property (OWL Object Property URI, Domain Class Mapping, Range

Class Mapping)
Datatype Property of class In-
stance

(OWL Datatype Property URI, RDFType:Instanceof Do-
main Class Mapping, XPath Expression)

Object Value of Datatype
Property of class Instance

(OWL Datatype Property URI, RDFType:Instanceof Do-
main Class Mapping, Object Range, XPath Expression)

mp2=(Provider, /Template/Context/AgreementResponder)
mp3=(hasEndDate, Duration, /Template/Context/ExpirationTime)

The agreement initiator is mapped to the concept "Consumer" since the brokering pro-

cess starts by a consumer’s request which could be a provider, the agreement responder

is mapped to the concept "Provider " which is the cloud service responder and the ex-

piration time is mapped to the the datatype property "hasEndDuration" of the concept

"Duration".

In the "terms" section WS-Agreement defines the service terms and the guarantee

terms. Service Terms define services that are traded. In the cloud context, this section

describes user request:

57

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

mp4=(Request, /Template/Terms/ServiceDescriptionTerm)

Requests are about an IaaS, PaaS or SaaS service. In case of IaaS SLA contract,

the request represents the tree presented by figure 3.16.

Figure 3.16: IaaS Request -

The WS-Agreement service property attribute defines properties related to each

service. Each property is defined by its name, the service name it is applied to and a

set of variables. Variables are defined by their name, their metric and their location

which is a reference giving a scope to the concept represented by the variable. In the

cloud context, SLA parameters such as response time and availability should be defined

in this section. Properties are defined as instances of the classes Functional-SLO or

Non-Functional-SLO. For each class, it is associated datatype properties representing

the variables. For IaaS SLA requests, the SLOs representing the properties of IaaS

services are defined by the figure 3.17.

For example, to map the response time variable of the property Functional-SLO ,

we apply the following operations:

mp5=(Functional-SLO, /Template/Terms/ServiceProperties@Name)
mp6=(SLArt, mp5,/Template/Terms/ServiceProperties/Variables

58

3.5 Ontology Mapping to WS-Agreement

Figure 3.17: IAAS SLOs -

/Variable@Name)
mp7=(SLArt-Metric,mp5, /Template/Terms/ServiceProperties/Variables
/Variable@Metric)

"Guarantee terms" describe assurance on the service quality the provider will have

to guarantee. They consist of the ServiceScope, the QualifyingCondition, the Ser-

viceLevelObjective and the businessValueList sections. The serviceScope determines

the service the guarantee are applied to. In our ontology, the guarantees are directly

related to the user request. The QualifyingCondition defines the preconditions to be

satisfied before the guarantee starts to apply. In the cloud Context, SLA have to be

satisfied periodically throughout the service life-cycle. ServiceLevelObjectives define

the key performance indicators to be respected for the service scope. They are final

SLA parameters agreed by both consumer and provider. They are proposed by the

provider to respond to user request and agreed by the consumer. In the SLA contract

ontology, they represent the object part of the triple (S,P,O) of the instances of the vari-

ables defined in the SLO part. An example of mapping the response time agreement of

the property Functional-SLO defined previously to ServiceLevelObjectives is defined as

follows:

mp8=(SLA-rt, RDFType:Instanceof mp5, /Template/Terms/GuaranteeTerms
/ServiceLevelObjective/KPITarget/KPIName)
mp9=(SLA-rt, RDFType:Instanceof mp5,5, /Template/Terms/GuaranteeTerms
/ServiceLevelObjective/KPITarget/Target)

The KPIName of this service level objective is the response time of the instance of

the class Functional-SLO created in this SLA contract. The target explaining the con-

59

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

dition of client satisfaction is represented by the range value attributed to the datatype

property instantiated.

"BusinessValueList" section describes business objectives associated to service ob-

jectives. It defines essentially penalties and rewards. Business objectives are defined as

rules extending OWL ontology. Indeed, OWL standards allow reasoning over ontologies.

Meta-reasoning rules are used for facilitating meta-reasoning on ontology in controling

and knowledge engineering tasks. In cloud context, we express violation detection poli-

cies as rules to detect prospective violation and to define subsequent penalties. In

WS-Agreement, ServiceLevelObjectives defines conditions to be respected and Penalty

attributes express penalties to be imposed for violations of Service Level Objectives.

In addition, the jena rules we used to express penalties have the following form: [ru-

lename:(tripleto match)->(triple to add to model)]. Hence, before executing penalties,

conditions to be verified are written in triple to match part and penalties are expressed

by additional triples to adhere to our model. Consequently, the following example

illustrating a penalty expressed in WS-Agreement

Figure 3.18: Penalty example written in WS-Agreement -

could be expressed as rules.

Finally, agreement creation constraints support agreement initiator and agreement

responder to define acceptable values for service descriptions. So, each offer Item has

to comply with Item Constraint element and the WS-Agreement contract is not vali-

60

3.5 Ontology Mapping to WS-Agreement

Figure 3.19: Penalty example as Rule -

dated until each item conforms creation constraints. Such constraints could be directly

introduced in our ontology due to its semantic aspect. Indeed, quantifier restrictions,

cardinality restrictions and hasValue restrictions are directly introduced in our ontol-

ogy. For example, to define acceptable values for response time metric, WS-Agreement

creates the constraints illustrated by figure 3.20

Figure 3.20: Creation constraint example written in WS-Agreement -

These restrictions could be introduced directly in the ontology by creating a func-

tional property allowed to have only some acceptable values as illustrated by figure

3.21

In conclusion, the proposed ontology contains all elements of a WS-Agreement as

61

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

Figure 3.21: Creation constraints example created by Protégé -

illustrated by figure 3.22. Penalties are introduced separately in a rule file to enable vio-

lations detection. Moreover, the ontology is richer than xml-based SLA languages since

it includes the customer’s preferences (User QoS Accepted Thresholds) and introduces

semantic annotations to hide heterogeneity in the cloud domain.

62

3.5 Ontology Mapping to WS-Agreement

Figure 3.22: The mapping summary -

63

3. CLOUD BROKER ARCHITECTURE FOR NEGOTIATING
SEMANTIC SLA CONTRACTS

64

Chapter 4

Service provider’s selection based
on the multi-criteria method

4.1 Motivation

The emergence of Cloud computing solutions has attracted many potential customers

from different natures looking for a way to reduce the costs associated with supporting

their business processes. A multitude of cloud providers offer raw resources to cloud con-

sumers enabling them to provision processing, storage, networks and other fundamental

computing resources. On allocated resources, they deploy and run software including

operating systems and applications.

The availability of a multitude of cloud services from various providers is a great

opportunity that causes nevertheless some difficulty to end users in selecting services

and providers for infrastructure, platform and software services meeting best their re-

quirements and expected quality of service. Indeed, the adoption of cloud computing

requires a detailed comparison of infrastructure alternatives, taking several QoS param-

eters into careful consideration. So, how could end users choose the provider’s service

proposing the best trade-off between multiple QoS parameters?

One possible approach, adopted in this work, is to rely on cloud broker architectures

to conduct the needed services selection, optimization and management. The decision

making module of the broker architecture is responsible for the provider’s selection. To

achieve the best trade-off between the multiple QoS parameters specified in the SLA

contract, the decision making module uses a multi-criteria method.

65

4. SERVICE PROVIDER’S SELECTION BASED ON THE
MULTI-CRITERIA METHOD

4.2 Multi-criteria algorithm for service provider’s selection

Since the main advantage of adopting a cloud technology is economic, the majority of

utilized methods for making decisions in a brokering context, limits the decision making

to the relative cost of leased cloud resources. They do not take into account crucial key

factors influencing the Quality of the Service and the client satisfaction. To address this

shortcoming, we employ a multi criteria decision making method which is a qualitative

comparison approach that evaluates several alternatives to find the best solution based

on different conflicting criteria.

Several methods have been proposed to solve MCDM problems, and applied to

different applications. Between the variety of solutions, which methods should inspire

and integrate our brokering architecture? The widely used MCDM methods described

in literature are:

• The Outranking approaches: examine if an alternative outperforms another

alternative and they retain the alternative with maximum advantage and least

conflict relative to diverse criteria. The most used outranking approaches are

ELECTRE (90) (91) and PROMETHEE (92). For example, ELECTRE method

enables to select the best choice with maximum advantage and minimum conflict

in the function of the various criteria. It basically performs a pairwise comparison

between the alternatives and builds an outranking relationship between them.

This relationship is then used to identify and eliminate the alternatives that are

dominated by other alternatives to yield a smaller set of alternatives (called the

kernel).

• Pairwise comparisons: AHP (Analytical Hierarchy Process) (93) is one the

most popular and widely used pairwise comparison methods especially in the

cloud domain (94). It includes pair wise comparison of different alternatives for

different criteria. It decomposes a decision problem into its constituent parts in

the form of hierarchy or a set of graduated levels. Generally the hierarchy has

tree levels which are the goal the criteria and the alternatives (95).

• Multi-criteria value functions or multi-attribute utility theory (MAUT):

MAUT (96) (97) is an utility theory solving the problems of multi-objective de-

cision making. It provides a logical mean to make trade-offs between conflicting

66

4.2 Multi-criteria algorithm for service provider’s selection

objectives. It assigns an utility to each criteria influencing the final decision and

calculates the best global utility.

Generally, we resort to outranking models when the aggregation of criteria metrics is

not easy and measurement units are different and incomparable. However, these meth-

ods are not appropriate for our problem since, in some cases, they do not propose an

optimum solution (98). AHP is a flexible and intuitive methods (51), however, it could

present some irregularities in ranking (51) (99). Indeed, defending the MAUT method,

Luce and Raiffa (100) introduced a particular situation in which MAUT provides ac-

curate results whereas AHP gives reversal ranking. Robert (99) explains further this

situation by the following example:

"For example, when buying a car, you first consider and rank three different ones

(A,B,C) and find that A has the highest rank. You add a fourth, say an exact copy of

C, and for the new problem, a ranking of the four cars now causes B to have the highest

rank. MAUT proponents use this type of problem in their attack on the AHP because

rank reversal can occur under AHP but not under MAUT."

In this work, we propose a decision making module to find the best suited service

to a user demand based on the MAUT method. The main advantage of relying on this

method is that the optimization problem is formalized as a single objective function, so,

the best compromise solution is quickly derived as the the solution having the higher

utility. Besides, this method is chosen thanks to its ability to take uncertainty into

account. Indeed, our brokering solution is predicting the best service provider thanks

to its monitoring module.

It predicts the utility associated to each provider’s criteria based on the history of

the already deployed services in the provider and monitored by the monitoring module.

Since the infrastructure environment is dynamically changing, these predicted utilities

remain uncertain.

4.2.1 Service selection algorithm

Multi-Attribute Utility Theory (MAUT)is a structured methodology designed to han-

dle the trade-offs among multiple requirements. It is widely used for achieving rational

decisions that reflect as closely as possible the preferences of a decision maker. The

objective function of the MAUT method is formed by a set of attributes. Preferences

67

4. SERVICE PROVIDER’S SELECTION BASED ON THE
MULTI-CRITERIA METHOD

are determined by the utility for each attribute. Three functional forms are available:

additive, multiplicative and multilinear .

As a practical guide, Keeney and Raiffa suggest that for four or more attributes the

reasonable models to consider are the additive and the multiplicative (1). Since our

problem concerns more than four attributes, we restrict our attention to these two

forms. The additive MAUT model is appropriate only if the interaction in preferences

among attributes is not considered important (101), which is not the case in the cloud

context. Therefore, MAUT multiplicative form is used as a basis to built our decision

making algorithm of the cloud broker.

Based on the multi-criteria method, we built an algorithm dealing with the evalua-

tion of the different provider’s offers against SLA criteria as detailed below. The cloud

consumer requirements are defined by vector R:

R = [r1, r2, · · · , rn]

n : number of parameter in the request
(4.1)

The set of providers able to respond to the user demand are represented by the vector

P:
P = [p1, p2, · · · , pm]

m : number of providers
(4.2)

The criteria under negotiation are given by C:

C = [c1, c2, · · · , ck]

k : number of criteria
(4.3)

The user preferences are specified as weights in a vector W assigned to the criteria

vector C. The weight assigned to each criterion reflects its relative importance in the

customer’s request:

W = [w1, w2, · · · , wk] (4.4)

Once the decision parameters are initialized, the broker architecture applies the multi-

plicative form of the MAUT method:

∀i ∈ [1,m], U(pi) =
1

w
[

k∏
j=1

(1 + wwjfj(cj))− 1)]

where (1 + w) =
k∏

j=1

(1 + wwj)

(4.5)

68

4.2 Multi-criteria algorithm for service provider’s selection

The system calculates the global utility function of each alternative pi and deter-

mines the optimal mixture that best fits the user request.

The proposed algorithm deals with choosing among a set of alternatives which are

described in terms of their attributes. To provide accurate results, it requires informa-

tion about:

• the user preference among the values of a given attribute expressed as utility;

• the user preference across attributes expressed as weights.

The evaluation of the weights of attributes is a question handled by several works

using different MCDM methods (102) (103). In this work, we suppose that the weights

are directly introduced by consumers in numeric form and we will focus principally on

the utility function evaluation. Indeed, it is easier for the consumers to express their

preferences toward various criteria rather than expressing their satisfaction degree rela-

tive to the offer proposed by a provider which requires technical and economical market

knowledge. Using utility functions to convert numerical attribute scales to utility unit

scales allows direct comparison of diverse measures.

The construction of consumers’ utility functions allows to model and represent digi-

tally their preferences. It is used in different fields especially in economics, nevertheless,

there is not a common way to define it. Utility function has many forms, such as expo-

nential curve, logarithmic curve, linear curve, hyperbolic curve etc. However, using the

same curve to all criteria may not fully capture the preferences of the user.

In this work, we use utility functions to represent the degree of client satisfaction

about the provider’s performance of each QoS parameter, in a dimensionless scale (val-

ues from 0 to 1). Each QoS parameter is specified by a mathematical expression that

determines the shape of the client satisfaction curve.

In the following, we define utility functions representing QoS metrics to compare

accordingly the cloud provider’s performance.

69

4. SERVICE PROVIDER’S SELECTION BASED ON THE
MULTI-CRITERIA METHOD

4.2.2 Functional QoS Utility functions

The SLA contract established between providers and consumers classifies the QoS ne-

gotiated metrics into different categories as illustrated by table 3.1. In the following,

we will specify the utility functions related to each metric.

4.2.2.1 Compute Utility functions

Response Time Utility function The response time measures the SLA on CPU

utilization so; the efficiency of a service can be quantified in terms of response time. Its

utility is defined by a decreasing function as the response time increases (104, 105):

Urt =
exp−SLArt+R

1 + exp−SLArt+R

SLArt ≥ 0, R ≥ 0

(4.6)

SLArt is the average response time of the cloud broker and R is the inflection point of

the utility curve. The function decreases fast after the response time exceeds this value.

Figure 4.1 represents an example for R = 5s

Figure 4.1: Response Time utility function -

Availability Utility function Despite the use of redundancy of crucial components

and multiple deployments in different clouds, services could be inaccessible in a period

70

4.2 Multi-criteria algorithm for service provider’s selection

of time. Availability measures the uptime of a service in specific time interval (106).

Availability =
MTBF

MTBF +MTTR
MTBF : MeanTimeBetweenFailure

MTTR : MeanTimeToRepair

(4.7)

The availability utility function curve is similar to Figure 4.1.

4.2.2.2 Network Utility functions

Latency Utility function The utility of a content delivery network depends on the

waiting time. Latency defines an SLA of the waiting time per service transaction. The

network latency could be modelled as a solution of a differential equation of the form:

A exp−kt. This type of function is largely used in physical domain to represent the

radioactive activity of a source, the discharge of a capacitor in the RC circuit, current

annulations in a RL circuit . . . Thus, the latency utility function is (107):

Ul = c exp−kSLAl

c ∈ [0, 1], k ≥ 0
(4.8)

SLAl is the average latency time and c is a coefficient of correlation indicating the

best utility that could be achieved. The closer c is to 1; the best the utility function

represents user satisfaction. Figure 4.2 shows an example of latency utility function for

c = 0.95 and k = 0.3 .

Bandwidth Utility function Bandwidth has several related meanings. In this work,

it refers to data transfer rate. It is defined as the amount of data that can flow through

a network at a given period of time. It is usually measured in bits (of data) per second

(bps). Bandwidth utility function is monotonically non-decreasing (108); in other words,

more bandwidth allocation should not lead to degraded application performance.

Ubw = 1− exp−
αbwSLAbw
bwmax

αbw ≥ 0, bwmax ≥ 0
(4.9)

For bwmax = 20Mbit/s and αbw = 3.5, we obtain the curve of Figure 4.3

71

4. SERVICE PROVIDER’S SELECTION BASED ON THE
MULTI-CRITERIA METHOD

Figure 4.2: Latency utility function -

Figure 4.3: Bandwidth utility function -

72

4.2 Multi-criteria algorithm for service provider’s selection

4.2.2.3 Storage Utility functions

Performance Utility function Providing performance guarantees for shared stor-

age resources is an ambiguous challenge that remains an area of active research (109).

Indeed, storage performance relies on internal network performances covering latency

between compute and storage. So, to evaluate the storage performance, our cloud broker

focuses on the network Input/Output performance deducted from the read and write

throughput. To calculate data transfer speeds, we use the equations:

ReadT ime =
DataSize

Troughputread
(4.10)

and

WriteT ime =
DataSize

Troughputwrite
(4.11)

Therefore the utility function evaluating throughput Ubw can be used for storage perfor-

mance evaluation. The utility function Urt for response time is also useful if the broker

receives directly information about the read and write times.

Recovery Utility function Cloud based storage is cheaper and more scalable than

installing huge databases, but recovering data after an unplanned outage, disaster or

system failure can be a challenge as data is geographically distributed. Thence, to

ensure uninterrupted availability of data, data fast recovery is an important SLA factor.

Restore time measures the duration of time within which the database is recovered. Its

utility function has the same curve as figure 4.1.

4.2.2.4 Cost Utility function

The billing systems of different cloud providers are not transparent and clear enough to

compare easily prices. In deed, there is a large variations in pricing. We notice:

• Different units: for a given resource, providers may have different units of measure.

For instance, CPU capacity is generally calculated in GHz however, some providers

use the Xeon unit.

73

4. SERVICE PROVIDER’S SELECTION BASED ON THE
MULTI-CRITERIA METHOD

• Bundling/Unbundling: every provider has its own way of billing. Some ask users

to fix technical characteristics like RAM, storage and data transfer rates. This

billing model is used by providers like GoGrid and RackSpace. Others propose

predefined bundles. This is used by a multitude of providers like Amazon EC2,

Windows Azure, Google Apps and VPS.net.

• Different bundles: there is no standard for bundles. They are defined by IaaS

providers differently. For example, an instance small for Amazon EC2 is equivalent

to 1,7 GO of memory and 1 EC2 compute unit. However, for Windows Azure, it

is 1,75 GO of memory and 1,6 GHz.

• Variations in pricing: generally, cloud providers take care that prices are con-

vincing. Nevertheless prices of the same resources may fluctuate according to

the way we allocate it. For instance, in some cases, 2 ∗ price(smallBundle) 6=
price(mediumBundle)

In practice, there are two ways for cloud providers to answer the user request: as a

set of cloud resource characteristics or as a set of bundles. Therefore, the cloud broker

calculates the total price of the cloud service using a generic pricing model:

Cp =
∑
i∈Ip

(xipi)NBLp +
∑
j∈Jp

(yjbpj)BLp

p : provider

Ip : provider′s resources

xi : required number of units of each resource

pi : unit price of resource

Jp : provider′s bundles

yj : required number of units of each bundle

bpj : unit price of the bundle

BLp, NBLp : dummy variables

(if bundling BLp = 1 elseNBLp = 1)

(4.12)

For the same request, the broker calculates the service prices. To determine the utility

of each one, we compare them:

74

4.2 Multi-criteria algorithm for service provider’s selection

• If provider’s price is the lowest: {
Up = 1
Pref = Cp

where Pref is the reference price on which we will build our comparison and

determine the utility of the other cloud prices.

• Otherwise: Up =
Pref
Cp

4.2.3 Non Functional QoS Utility functions

Non-functional properties are usually too abstract and considered as evaluation pa-

rameters after a development or deployment process. They are not addressed when

requesting a cloud provider even if they are fundamental for client satisfaction. To

ascertain that users needs and goals are met successfully, the cloud broker considers

several non-functional properties in decision making such as reliability and trust.

4.2.3.1 Reliability Utility functions

Scalability Utility function We consider a cloud system scalable not only if it is

able to easily scale under stress but also if the additional cost generated by the increased

user’s demand is not excessive. Accordingly, we define the proportional performance

loss as follow:

scalability = αsc ∗
RTy −RTx

RTx
βsc ∗

costy − costx
costx

αsc, βsc : the importance weights of response time and cost respectively

RTy : Response T ime of new cluster Y (Y > X)

RTx : Response T ime of cluster X

costy : Cost of the cluster Y

costx : Cost of the cluster X

(4.13)

A perfectly scalable system would have a scalability score equal to 0. Thus, utility

is maximum when the proportional performance loss is null. In this case, the average

response time of the new cluster did not change and there is no additional cost. However,

when the proportional performance loss exceeds a certain threshold scref , the system

is no more scalable. Scalability utility function is linear as illustrated by figure 4.4.

75

4. SERVICE PROVIDER’S SELECTION BASED ON THE
MULTI-CRITERIA METHOD

Figure 4.4: Scalability utility function -

Elasticity Utility function Elasticity is the characterization of how a cluster reacts

when new nodes are added or removed under load.

Elasticity= Upscaling+Downscaling

Properties influencing elasticity are:

• Time needed for a cluster to stabilize

• Impacts on performances

Therefore, we define the elasticity’s utility as follow:

UElast =
αelast ∗ Urts + βelast ∗ UPerf

αelast + βelast

Urts : utility related to time to stabilize

UPerf : utility related to performance

αelast, βelast : importance weights

(4.14)

Urts represents the time to stabilize so it could be represented by a decreasing

function with an inflection point as illustrated in figure 4.1.

UPerf represents the capacity of the cloud provider to quickly provision or de-

provision resources as needed. Indeed, resources allocated to an application in a pe-

riod of time are seldom just equal to the demand. To illustrate the trade-off between

76

4.2 Multi-criteria algorithm for service provider’s selection

user’s demand and provider’s allocated capacity, four possible scenarios arise. The first

scenario is peak-load provisioning, illustrated by figure 4.5. Cloud provider allocate re-

sources requested by its customers without predicting any additional ones for eventual

increasing needs. In this case, cloud provider can hardly scale up, but just satisfies

user’s requests.

Figure 4.5: Peak-Load-provisioning scenario -

The second scenario illustrated by figure 4.6 is under-provisioning . Cloud provider

fails to satisfy user’s requests in peak demand. This kind of provider should be avoided

because of their poor utility.

The third scenario is over-provisioning, when the provider allocates more resources

than requested to overcome potential increased needs to easily scale up. In this case,

the utility is good as illustrated by figure 4.7.

The fourth scenario is on-demand-provisioning (figure 4.8). Provider adapts per-

fectly user demand changes. It ensures perfect elasticity and it can save time and

money to its customers. Its utility is high.

Weinman (110) proposed an elasticity measurement model. It represents a real de-

mand capacity and its corresponding resource allocation both fluctuating over the time.

He defines the perfect capacity strategy and calculates the loss function associated with

the cost of unused or unserved resources. This model is improved by Islam and all (111).

To evaluate the performances of a cloud provider, we are interested in different tech-

niques employed by providers to best fit their allocated resources to the user demand.

77

4. SERVICE PROVIDER’S SELECTION BASED ON THE
MULTI-CRITERIA METHOD

Figure 4.6: Under-provisioning scenario -

Figure 4.7: Over-provisioning scenario -

78

4.2 Multi-criteria algorithm for service provider’s selection

Figure 4.8: OnDemand-provisioning scenario -

Existing elasticity control strategies are either reactive or pro-active. Reactive policies

are employed to regulate the amount of allocated resources after detecting an over or

under provisioning. Pro-active policies, like history based predictive policies or expert

knowledge based predictive policies, are likely to prevent demand fluctuation and to act

consequently. We define the elasticity control performance as follow:

UPerf =
γEreact + δEproact

γ + δ

Ereact : efficiency of reactive elasticity control policies used by the provider

Eproact : efficiency of proactive elasticity control policies used by the provider

γ, δ : importance weights

γ ≤ δ
(4.15)

Disaster recovery Utility function The shared nature of cloud computing envi-

ronments makes them an ideal model for disaster recovery. Over time, two distinct

approaches to disaster recovery models emerged:

• Dedicated model: a backup infrastructure is dedicated to a single user. Its hard-

ware and software are preconfigured so it is ready to run as soon as it receives

the backup data image. Thence, this model is recommended for a rapid recovery

79

4. SERVICE PROVIDER’S SELECTION BASED ON THE
MULTI-CRITERIA METHOD

time nevertheless it is costly because the hardware sits idle when not being used

for disaster recovery.

• Shared model: a backup infrastructure is shared among multiple users. This

second alternative is favorable for a reduced cost but its recovery time is slower.

Table 4.1: Disaster recovery models.

Cost Speed to recovery
Dedicated Model ↗ ↗
Shared Model ↘ ↘

Cloud-based business resilience provides an attractive alternative to traditional dis-

aster recovery, offering both the shorter downtime associated with a dedicated infras-

tructure and the reduced capital expenses that are consistent with a shared recovery

model. To evaluate the effectiveness of a disaster recovery approach in a cloud context,

two recovery objectives are measured:

• Recovery time objective (RTO): How long to recover? The amount of time needed

to start the restoration process.

• Recovery point objective (RPO): How much data is lost? Minimizing data loss is

an important objective of a successful disaster recovery solution. So, we calculate

the amount of data lost during outage.

Based on factors mentioned above, we measure the recovery performance as follow:

Recovperf = α ∗RTO + β ∗RPO

Recovperf = α ∗ TF
TS + TF

+ β ∗ DL

DS +DL

TF : duration of failure

TS : data loss

DS : data stored

(4.16)

80

4.2 Multi-criteria algorithm for service provider’s selection

Additional cost generated by an outage is an important factor to evaluate a disaster

recovery strategy. We measure recovery cost as follow:

Recovcost =
CostF

CostS + CostF
CostF : additional cost of failure

CostS : cost of cloud services

(4.17)

Therefore, disaster recovery utility is:

Urecov =
α ∗ UrecovPerf + β ∗ UrecovCost

α+ β

UrecovPerf : linear utility of recovery performances

UrecovCost : linear utility of recovery cost

α, β : importance weights

(4.18)

To be better adapted to user needs, the cloud broker distinguishes between dedicated

model and shared model scenarios. In dedicated model, users devote more budgets to

recovery but achieve rapid and efficient data recovery as illustrated by figure 4.9.

Figure 4.9: Dedicated recovery model scenario -

However, in shared scenario (figure 4.10), users need to spend minimum cost for

recovery and tolerate some degradation in performance. In this case, performance re-

covery utility and cost recovery utility would be different from the dedicated scenario

as thresholds of performance and cost measures are different.

81

4. SERVICE PROVIDER’S SELECTION BASED ON THE
MULTI-CRITERIA METHOD

Figure 4.10: Shared recovery model scenario -

4.2.3.2 Trust Utility function

Trust and reputation systems are successfully used in numerous application scenarios

to support users identifying the reliable and trustworthy providers. Our designed cloud

broker is supporting customers to select the appropriate cloud provider. We argue that

trust should be taken into consideration for service provider selection.

Cloud model (112) (113) is an exchange model of qualitative and quantitative, uni-

formly describing randomness, fuzziness and their relationship. It mainly reflects the

two uncertainties in the event of universe or concepts in human knowledge: fuzziness

and randomness. The general concept of cloud model can be expressed by its three

numerical characteristics (Ex,En,He):

• Expectation (Ex): the point that can best represent a qualitative concept in the

domain space. Ex represents the expectation of trust by quantifying the concept

in a representative sample points.

• Entropy (En): it reflects the uncertainty of qualitative concept and represents

its granularity (the ambiguity). It is a randomness measure of the quantitative

concept.

• Hyper Entropy (He): measure of uncertainty of entropy (the entropy of entropy).

It is a measure of the dispersion on the cloud Droplets.

82

4.2 Multi-criteria algorithm for service provider’s selection

Obviously, entities with higher trust and lower uncertainty are more trustworthy,

while those with lower trust value and higher uncertainty are not trustworthy. The

most important algorithms (114) in cloud model are:

• Normal Cloud Generator Algorithm:

– Input: (Ex,En,He)

– Output: Cloud Droplets

Used to generate the required number of Cloud Droplets when knowing three

characteristics figures (Ex,En,He). But what is a cloud droplet?

Cloud is composed by many cloud droplets, each one is a point characterizing

cloud in the domain space. We consider U: a quantitative domain with numerical

representation if x ∈ U then uA(x) ∈ [0, 1] u : U → [0, 1] x 7→ uA(x) x is called a

Cloud Droplet and the distribution of x in the domain of U is called Cloud.

• Backward Generator Algorithm

– Input: N Cloud Droplets xi (1 ≤ i ≤ N)

– Output: Ex,En and He of the N cloud Droplets

Obtains tree positive characteristics figures (Ex,En,He) of the Normal Cloud Gen-

erator from a set of given Cloud Droplets. Sample to achieve qualitative evaluation

of sample data.

The cloud trust model is complex and could be hardly introduced in our utility

model to evaluate providers trustworthiness. Thus, we are interested in a novel model

for the evaluation of trustworthiness of complex systems called CertainLogic (115). This

model has been already tested in the context of cloud computing (116). CertainTrust

(CT) is designed as a representation for evidence-based trust, but may also serve as

a representation for uncertain probabilities. Systems can be illustrated by graphs and

their trustworthiness is evaluated based on standard operators of propositional logic

introduced by the authors. CT introduces a novel way for modeling probabilities and

uncertainties:

For a proposition A, CT define oA the opinion about its truth. Each opinion is

modelled as a triple of values, oA = (t, c, f) ∈ [0, 1]x[0, 1]x[0, 1] where

83

4. SERVICE PROVIDER’S SELECTION BASED ON THE
MULTI-CRITERIA METHOD

• t denotes the average rating: the degree to which past observations support the

truth of the proposition.

• c denotes the certainty associated with the average rating: the degree to which the

average rating is assumed to be representative to the future. In case of complete

uncertainty (c=0), the expectation value depends only on f.

• f denotes the initial expectation assigned to the truth of the statement: the as-

sumption about the truth of a proposition in absence of evidence.

Taking into account all those factors, the truth of a proposition A is defined as:

E(t, c, f) = t ∗ c+ (1− c) ∗ f
CL defines logical operators (OR, AND and NOT) to evaluate the trustworthiness

of a system from the trust values of its atomic components. Figure 4.11 shows the

definition of logical operators as introduced by (115).

Figure 4.11: CertainLogic operator’s definition -

In this work, we will focus on the evaluation of trusted cloud providers in order to

help customers select trustworthy ones. The trustworthiness of a cloud provider depends

on the expected behavior of the services and underlying systems with respect to specific

attributes:

• Security: It is still a matter of great concern for a cloud user to trust security of

cloud services. All the security techniques are built on confidentiality, integrity

and availability.

84

4.2 Multi-criteria algorithm for service provider’s selection

– Confidentiality: is achieved through encryption. The primary purpose of

cryptography is information management. If the data is confidential, it can-

not be read or understood by anyone other than the intended recipient or

recipients. Use encryption to protect sensitive data that is contained in a

message. Unencrypted data, which is known as plaintext, is converted to

encrypted data, which is known as ciphertext. Data is encrypted with an

algorithm and a cryptographic key. Ciphertext is then converted back to

plaintext at its destination.

– Integrity: means that data cannot be modified undetectably. Only autho-

rized users can access or modify information. So, Integrity is violated when

a message is actively modified in transit. Measures are taken to ensure in-

tegrity includes controlling the physical environment of networked terminals

and servers, restricting access to data, and maintaining rigorous authentica-

tion practices. Authentication is the verification of the identity of a person

or process. It verifies that messages really come from their stated source, like

the signature on a (paper) letter. The most common form of authentication

is typing a user name (which may be widely known or easily guessable) and a

corresponding password that is presumed to be known only to the individual

being authenticated.

• Availability: is the degree to which system or component is operational and ac-

cessible when required for use (see paragraph 4.2.2.1). Uptime and downtime are

characteristics measuring availability. For instance, a cloud provider warranting

seven nines uptime availability, have almost 0.3 second of downtime per year.

• Scalability:

– Vertical scaling (scale up): is adding more resources to the same computing

pool. For example, to scale up an application running on a virtual machine,

cloud providers add more processors and storage to that machine or simply

move the application to a new one, more powerful. Vertical scaling is a quick

and easy way to achieve scalability and it is the best solution for applications

that can only run on a single machine, however, it is expensive.

85

4. SERVICE PROVIDER’S SELECTION BASED ON THE
MULTI-CRITERIA METHOD

– Horizontal scaling (scale out): is the addition of more machines or devices

to the computing platform. Generally, it is easier to achieve good horizontal

scalability than good vertical scalability and it is largely cheaper. Horizontal

scaling is dedicated to multi-tier applications and can add complexity to the

system. However, it ensures more flexibility because it enables managers to

grow servers and storage separately.

• Latency (see paragraph 4.2.2.2)

• Breaches: the architecture of the designed cloud broker include a rule engine mod-

ule receiving customer and infrastructure feedback. We are using that information

to determine the most trustworthy cloud providers.

86

Chapter 5

Experimentations and results

In this work, we proposed a cloud broker architecture able to find the best provider

satisfying a user request based on its preferences. To ensure a better understanding

between the different actors of the cloud, the broker uses semantic annotations. It uses

ontology and Rule Language to define policies governing infrastructure behavior (Chap-

ter 3). Design question of intelligent autonomous cloud broker are answered by using

multi criteria decision making. We used the MCDM method MAUT (Multi Attributes

Utility theory method) to determine the best agreement (Chapter 4). We modelled

utility functions to evaluate user’s satisfaction degree regarding functional (see Section

4.2.2) and non functional (see Section 4.2.3) criteria under negotiation.

For the evaluation of our solution, we have implemented it using java framework for

cloud broker encoding and jena libraries for semantic representations. We used Protégé

for creating the SLA contract ontology which is the basic semantic model for informa-

tion exchange in the proposed solution.

To confirm the advantage of the proposed architecture, three experiments have been

carried out: (1) the validation of the semantic annotations contributions (2) the evalu-

ation of the proposed functional utility functions benefits comparing to other forms of

utilities and (3) the estimation of the non functional utilities attributes to be integrated

in the decision making algorithm. This chapter demonstrates and discusses these results.

87

5. EXPERIMENTATIONS AND RESULTS

5.1 Validation of semantic annotations contribution

The scenario chosen for demonstration is illustrated by figure 5.1. There, a cloud cus-

tomer tries to find the best IaaS virtual resources offer satisfying his request. To answer

to user request, providers use different terminologies to define their cloud resource char-

acteristics which makes the comparison between them difficult. For example, the first

provider uses a french language for its resources description. To describe its cloud

servers, it uses Amazon ECU instances (EC2 Compute Units). One ECU is equivalent

to 1.0-1.2 GHz. The second provider can respond to the user request but uses a taxon-

omy that is different from the user request. Its infrastructure resources is composed by

E5520 Intel Xeon processors which means that 1 CPU-core proposed by this provider

is almost equivalent to 4.52 GHz. Finally, the third provider propose Intel Pentium 4

Processors with a capacity of 1.6 GHz.

Figure 5.1: Semantic evaluation scenario -

To evaluate the impact of the introduced semantic annotations, we have conducted

two experimentations to calculate the utility of each parameter involved in the SLA

contract negotiation. In the first one we have performed a syntactic search to compare

88

5.1 Validation of semantic annotations contribution

the needed characteristics to the provider’s offers. The obtained results are illustrated

by figure 5.2. The evaluation of the different providers is principally based on the

CPU parameter since it is the only common parameter between the request and all

the providers. However, the evaluation of this parameter is not necessary convinc-

ing. Indeed, it assigns the same CPU utility to Provider 2 and Provider 3 because

they both offer two CPU cores. However, it ignores that the proposed cores do not

have the same speed. Besides, we remark that provider 3 has the best final score

since we detected a second parameter satisfied namely the delay. Unfortunately, this

parameter corresponds to the delivery packet loss not to the latency needed by the

user, which leads the consumer to choose a provider not meeting his requirements. In-

deed, applying syntactic evaluation, we find that the providers are classified as follow

Utility(P3) > Utility(P1) > Utility(P2). However, taking into account the semantics

of the attributes, we find that Utility(P2) > Utility(P1) > Utility(P3) as illustrated

by figure 5.3.

Figure 5.2: Syntactic search evaluation -

The introduction of semantic annotations enables hiding syntactic heterogeneity and

allow cloud customers to discover the different provided service offers. Hence, thanks to

semantic annotations, customers are not limited any-more to providers using the same

taxonomy and they can avoid choosing bad proposals because of a misunderstanding of

an offer. However, semantics does not help users to select the best trade off satisfying

89

5. EXPERIMENTATIONS AND RESULTS

Figure 5.3: Semantic search evaluation -

their requirements and can not take their preferences into account. To meet this need,

the decision making module of the cloud broker uses a multi criteria method which is

the multi attribute utility theory. To better use of this method, we have customized

the utility functions for the cloud. The proposed utility functions are evaluated in the

next section.

5.2 Evaluation of the proposed utility functions

To evaluate provider’s performance against heterogeneous criteria, we adopted the

multi-criteria decision making method for selecting the best provider associated with

utility function descriptions to determine the degree of user satisfaction. We modelled

a large number of functional and non functional criteria.

5.2.1 Evaluation of functional utility functions

Utility function has many forms, such as exponential curve, logarithmic curve, linear

curve, hyperbolic curve etc. In this work , we personalized utility functions curves to

closely represent user satisfaction degree of each criteria. In the previous chapter, we

have presented utility functions predefined by broker to determine user satisfaction. The

described utilities have to be adjusted to the user needs whenever the broker treats a

90

5.2 Evaluation of the proposed utility functions

new request. Indeed, the broker utilizes the user SLA criteria to determine the variables

responsible for defining the shapes of the utility functions curves. This way, the broker

determines precisely the utility of each provider SLA criteria. Table 5.1 summarizes

functional SLA criteria and related parameters provided by each entity.

Table 5.1: Functional SLA criteria parameters.

Consumer Broker Provider
Response Time maxResponseTime R SLArt

Availability minAvailability R MTBF, MTTR
Latency maxLatency c,k SLAl

Bandwidth minBandwidth α SLAbw

bwmax

Read Performances minReadTime α Thread

minDiskCapacity bwmax

Write Performances minWriteTime α Thwrite

minDiskCapacity bwmax

Recovery maxRestoreTime R SLArestore

We simulated a scenario in which the cloud broker receives a user request with

response time, latency and bandwidth requirements depicted by Table 5.2.

Table 5.2: User request example.

SLA Criteria Value
Response Time 2 seconds

Latency 3 seconds
Bandwidth 10 Mbit/s

This request could be answered by ten different providers as illustrated by table 5.3.

As can be seen, it is difficult and time consuming to choose manually the best offer

since proposed values are very close to each other. Besides, providers proposing the

best values of one criteria are not necessarily as good for the other ones. For example,

provider 9 suggests 1.5 seconds of response time which is the best offer for this request.

However, its proposed bandwidth (9 Mbit/s) is the worse. So, how could users select

the best offer?

91

5. EXPERIMENTATIONS AND RESULTS

Table 5.3: Provider’s offers.

Response Time Latency Bandwidth
Provider 1 1.9 2.9 11
Provider 2 2.5 3 12
Provider 3 2.2 2.8 12
Provider 4 1.6 2.6 9
Provider 5 2.2 3.2 10
Provider 6 2.0 3.1 11
Provider 7 1.9 2.8 10
Provider 8 2.1 2.9 12
Provider 9 1.5 2.7 9
Provider 10 1.8 2.6 10

To select the best offer, our cloud broker uses the multiplicative form of a multi-attribute

utility theory method defined by the equation below:

∀i ∈ [1,m], U(pi) =
1

w
[

k∏
j=1

(1 + wwjfj(cj))− 1)]

where (1 + w) =

k∏
j=1

(1 + wwj)

(5.1)

We suppose that the user have not particular preferences, then the weight attributed

to each criteria is equal to 0.5. For w1=w2=w3=0.5, W= -0.76. In this section, we

will compare the results obtained by using the MAUT method with three forms of

utility functions: our proposed utilities, the linear form and the exponential form. The

first step the broker uses to answer the user request is to configure its decision making

module to adjust every utility function to consumer’s preferences. In the following, we

will explain how the utilities are configured for each negotiated criterion.

5.2.1.1 Utility functions Configuration

Response Time Utility function According to the user request, certain points are

defined to configure the utility functions curves. Table 5.2 shows that the consumer

needs a response time less than 2 seconds. So, we assign to this value an utility equal

92

5.2 Evaluation of the proposed utility functions

to 0.8 since 2 seconds is a measure satisfying the user request but it could be better.

The best measure for the response time is 0 second ie the user receives instantly the

provider response and we suppose that the worst measure is 12 seconds.

In award,


f(0) = 1
f(2) = 0.8
f(12) = 0

These values enable the setting of the linear, the exponential and our proposed

utilities for the cloud broker architecture (CBA utilities).

• Linear Utilities

Response time is a decreasing curve of the form f(x) = x−−x
x−−x+ where x− is the

worse response time value and x+ is the best value. In our case f(x) = 12−x
12

• Exponential Utilities

The exponential curve is the most widely used form for utility function. In this

work, we will compare our utilities to exponential utilities represented by (102) as

follows: f(x) = a− b ∗ exp(−cx) To determine the shape of the exponential curve

of response time utilities, we need to resolve the following system of equations:
f(0) = 1⇐⇒ a− b ∗ exp(−c ∗ 0) = 1
f(2) = 0.8⇐⇒ a− b ∗ exp(−c ∗ 2) = 0.8
f(12) = 0⇐⇒ a− b ∗ exp(−c ∗ 12) = 0

We obtain:


a = −1.7218
b = −2.7218
c = 0.038

So, f(x) = −1.7218 + 2.7218 ∗ exp(−0.038 ∗ x)

• CBA Utilities

In the previous chapter, we have defined the response time utility function as fol-

lows: Urt = exp−SLArt+R

1+exp−SLArt+R
where SLArt is the response time criteria proposed by

the provider and R is an inflexion point precising the shape of utility function. To

adjust response time utility function to user requirement, we have to determine

R such as f(maxResponseT ime) = Umin, where maxResponseT ime is the min-

imum response time accepted by the user and Umin is its corresponding utility.

We obtain:

R = maxResponseT ime+ log
Umin

1− Umin
(5.2)

93

5. EXPERIMENTATIONS AND RESULTS

Proof : Find R/Urt = Umin

For SLArt = maxResponseT ime⇒ Urt = Umin

Urt = Umin

⇒ exp−maxResponseTime+R

1+exp−maxResponseTime+R
= Umin

⇒ exp−maxResponseT ime+R = Umin + Umin exp−maxResponseT ime+R

⇒ (1− Umin) exp−maxResponseT ime+R = Umin

⇒ exp−maxResponseT ime+R = Umin
1−Umin

⇒ −maxResponseT ime+R = log(Umin
1−Umin)

⇒ R = maxResponseT ime+ log(Umin
1−Umin)

For our example, we obtain R = 3.39, hence f(x) = exp(−x+3.39)/(1+exp(−x+

3.39)).

The different representations of response time utility are illustrated by figure 5.4.

Figure 5.4: Response Time Utility functions -

In our representation of response time, we suppose that the maximum response

time tolerated by the user represents a hard constraints. Indeed, we note that for CBA

representation the utility drops significantly when the response time exceeds the two

seconds fixed by the user request. However the linear and exponential curves represent

a smooth decreasing shape which does not reflect the user constraint.

94

5.2 Evaluation of the proposed utility functions

Latency Utility function For latency, to configure our utilities, we have the follow-

ing points:


f(0) = 1
f(3) = 0.8
f(60) = 0

• Linear Utilities

Latency is also a decreasing curve of the form f(x) = x−−x
x−−x+ where x− is the

worse response time value and x+ is the best value. So, f(x) = 60−x
60

• Exponential Utilities To determine the shape of the exponential curve of latency

utilities, we have to resolve the following system of equations:
f(0) = 1⇐⇒ a− b ∗ exp(−c ∗ 0) = 1
f(3) = 0.8⇐⇒ a− b ∗ exp(−c ∗ 3) = 0.8
f(60) = 0⇐⇒ a− b ∗ exp(−c ∗ 60) = 0

We obtain:


a = −0.0124
b = −1.0124
c = 0.0733

So, f(x) = −0.0124 + 1.0124 ∗ exp(−0.0733 ∗ x)

• CBA Utilities

Latency utility function is Ul = c exp−kSLAl where SLAl is the latency SLA

criterion given by cloud provider and c and k are constants to be adjusted by

the broker. c is the coefficient of correlation representing the maximum utility

when the latency time is null ie for SLAl = 0, Ul = c. Therefore, c = Ulmax . k

is responsible for defining the curvature. To determine k, we solve the equation

Ul = Umin for SLAl = MaxLatency:

Ul = Umin

⇒ c exp−kSLAl = Umin

⇒ exp−kMaxLatency = Umin
c

⇒ −kMaxLatency = logUmin
c

⇒ k = − log
Umin
c

MaxLatency

⇒ k =
log c

Umin
MaxLatency

For MaxLatency=3 seconds, Utility=0.8. Thus, k=0.07. We suppose that c=0.99,

we obtain finally f(x) = 0.99 ∗ exp(−0.07 ∗ x)

95

5. EXPERIMENTATIONS AND RESULTS

Figure 5.5: Latency Utility functions -

Figure 5.5 summarizes the tree forms of latency utility functions.

We perceive that the linear form does not represent well the latency performance.

It gives higher utilities than exponential and CBA utilities which can alter the final

results. However, CBA and exponential utilities are very similar especially for values

close to 3 seconds requested by the user.

Bandwidth Utility function To configure bandwidth utilities, we rely on user pref-

erences and we obtain the following system of points:


f(0) = 0
f(10) = 0.8
f(20) = 1

We assign the

utility of 0.8 to the measure of 10 Mbit/s since it is the value requested by the user. We

assume that 20 Mbit/s is the maximum bandwidth that could be achieved and evidently

the utility is null for 0 bandwidth received.

• Linear Utilities

Bandwidth is a rising characteristic curve of the form f(x) = x−x−

x+−x− where x− is

the worse value and x+ is the best. , f(x) = x
20

• Exponential Utilities

Three equations are needed to calculate a,b and c and determine consequently the

shape of the exponential curve of bandwidth utilities. Based on the values picked

96

5.2 Evaluation of the proposed utility functions

previously, we have:


f(0) = 0⇐⇒ a− b ∗ exp(−c ∗ 0) = 0
f(10) = 0.8⇐⇒ a− b ∗ exp(−c ∗ 10) = 0.8
f(20) = 1⇐⇒ a− b ∗ exp(−c ∗ 20) = 1

We obtain:


a = 1.0666
b = 1.0666
c = 0.138

So, f(x) = 1.0666− 1.0666 ∗ exp(−0.138 ∗ x)

• CBA Utilities

The proposed bandwidth utility function equation is: Ubw = 1 − exp−
αbwSLAbw
bwmax .

The broker defines the maximum bandwidth rate enabled by technology bwmax.

The second constant that the broker has to fix is α. By formulating his request, the

cloud customer provides the broker with the minimum bandwidth rate satisfying

his request"minBandwidth". The broker uses this value to solve the equation

Ubw = Umin and find α as follow:

ForSLAbw = minBandwidth, Ubw = Umin

Ubw = Umin

⇒ 1− exp−
αbwminBandwidth

bwmax = Umin

⇒ exp−
αbwminBandwidth

bwmax = 1− Umin

⇒ αbw
minBandwidth

bwmax
= −log(1− Umin)

⇒ αbw = bwmax
minBandwidth log(1

1−Umin)

In this example, Umin = 0.8 and αbw = 3.2188. Consequently, f(x) = 1 −
exp(−3.2188 ∗ x/20).

Figure 5.6 summarizes the three forms of bandwidth utility functions.

We observe again that the linear form is not as good as other forms to represent

bandwidth criteria. On the other hand, CBA and exponential representations provide

similar utilities for values smaller than 10 MBit/s requested by the user. However, CBA

utility attributes lower values to offers exceeding the user demand. This moderation is

intended to avoid the compensation between attributes that influences the global utility.

5.2.1.2 Results

To find the best provider satisfying the user request defined in table 5.2, we run the

decision making module of our cloud broker which executes the multiplicative form of

97

5. EXPERIMENTATIONS AND RESULTS

Figure 5.6: Bandwidth Utility functions -

the multi-attribute utility theory method. We compare the global utility obtained by

each provider (providers are defined in table 5.3) using linear, exponential and CBA

utilities. Results are illustrated by table 5.4.

We notice that the global utility attributed to each provider is different depending

on the elementary utility curves used. Hence, each form of utility leads to a different

classification of cloud providers as shown in table 5.5

In this experimentation, we focus on selecting the best provider when the choice is

not obvious. Indeed, the provider’s values chosen are very close to the user request.

Hence, all providers have a good global utility as all providers obtained a global score

more than 0.8 which is an acceptable value for the user. But there is no single provider

that stands out due to its excellent performance. Which provider should be privileged

in this case?

By using CBA utilities, the broker chooses the provider 10 while linear and exponential

utilities privilege provider 8. This provider proposes the worst response time and latency

values compensated by a good bandwidth offer. Moreover, we notice that the response

time of provider 8 exceeds a little bit the threshold fixed by the user which could affect

the user application performances. The second choice of our broker is provider 1 versus

provider 3 for linear and exponential based brokers. Here, we notice that provider 3

has better bandwidth and latency performance but does not respect the threshold fixed

98

5.2 Evaluation of the proposed utility functions

Table 5.4: Provider’s global Utilities.

Our Linear Exponential
Provider 1 0.8844 0.8638 0.8840
Provider 2 0.8639 0.8619 0.8765
Provider 3 0.8802 0.8690 0.8860
Provider 4 0.8831 0.8501 0.8777
Provider 5 0.8611 0.8451 0.8644
Provider 6 0.8780 0.8608 0.8789
Provider 7 0.8786 0.8534 0.8771
Provider 8 0.8829 0.8706 0.8868
Provider 9 0.8683 0.8519 0.8787
Provider 10 O.8849 0.8565 0.8824

Table 5.5: Provider’s classification

CBA P10 P1 P4 P8 P3 P7 P6 P9 P2 P5
Linear P8 P3 P1 P2 P6 P10 P7 P9 P4 P5

Exponential P8 P3 P1 P10 P6 P9 P4 P7 P2 P5

by the user for response time. In conclusion, this experimentation reveals that using

specific utility curves for each criteria represents better the user request than using a

generalized form such as linear and exponential forms.

5.2.2 Evaluation of non functional utility functions

Non functional properties could not be directly represented by utility functions since

they are not measurable variables. Therefore, parameters such as reliability and trust

are not considered when selecting a cloud provider although they are important factors

that could influence the user choice (117). In this work, we present a method to quantify

those parameters in order to calculate their utility for the user and integrate them

subsequently in the MAUT formulas to be considered when selecting a cloud provider.

In order to assessing the feasibility of our method, we will introduce some examples of

non functional utilities. In the following, we will explain how to calculate the utility

function of disaster recovery and trust.

99

5. EXPERIMENTATIONS AND RESULTS

5.2.2.1 Disaster recovery Example

We define disaster recovery utility by the following formulas:

Urecov =
α ∗ UrecovPerf + β ∗ UrecovCost

α+ β

UrecovPerf : linear utility of recovery performances

UrecovCost : linear utility of recovery cost

α, β : importance weights

(5.3)

To calculate the recovery performance and recovery cost utilities of a cloud provider,

we have to fix thresholds of worst performance. According to the study of Alhazmi et al

(118) to evaluate disaster recovery plans using the cloud, the worst recovery time noted

is RTO = 7 days. Besides, historically, the maximum value of data loss, calculated

as the duration between two successive backups, has been RP0 = 24 hours (118).

Supposing that the recovery time and the recovery data loss have the same importance,

RecovPerfref = 0.5 ∗ 7 ∗ 24 + 0.5 ∗ 24 = 96 hours = 4 days. To evaluate the recovery

cost utility, we suppose that the maximum recovery cost is generated by the recovery

of a DataWarehouse application. Wood et al (119) estimate it to 2832$ per year. The

estimations are based on a "High-Memory Extra Large Instance" from EC2 which costs

3066$ per year. So, RecovCostref = 2832
3066+2832 = 0.48

Once RecovPerfref and RecovCostref are calculated, we can draw the curve of

disaster recovery utility as illustrated by figure 4.9.

Let’s now calculate the recovery utility of a provider proposing an RTO = 60 min

and an RP0 = 5 min for a service that costs 2000$ per year and its recovery costs

500$ per year. Using equations 4.17 and 4.18 ,this provider obtains a performance

utility RecovRerfUtility = 0.9895 and a cost utility RecovCostUtility = 0.5833. We

assume that we are in the case of a dedicated model recovery, we attribute then more

importance to the provider’s performances. For α = 0.7 and β = 0.3, this providers

obtains the good utility Urecov = 0.8677.

5.2.2.2 Trust example

To determine the trustworthiness of a cloud provider, we use the CertainLogic model

(115)(116) which calculates the trustworthiness of a complex system from the trustwor-

thiness score attributed to multiple attributes characterising it. The trustworthiness of

100

5.2 Evaluation of the proposed utility functions

the system is derived from the elementary scores using operators defined in figure 4.11.

In this example, we suppose that the trustworthiness of a cloud provider depends on its

ability to guaranty three essential attributes: security, availability and scalability. To

combine an opinion on the security, we calculate the trust score of the security based on

the confidentiality and the integrity scores. Since the security techniques are essentially

built on confidentiality and integrity, the security score is calculated by applying an

AND operator. Availability score is deducted directly from the score assigned to the

uptime. Finally the scalability score results from applying an OR operation between

provider’s score attributed to vertical scaling and provider’s score attributed to hori-

zontal scaling. The total score assigned to a provider can be carried out by evaluating

the following propositional logic term:

(confidentiality AND integrity) AND

(availability) AND

(horizontal scaling OR vertical scaling)

So, the trust score obtained by a provider having the capabilities illustrated by table

5.6 is Utrust = 0.1861.

Table 5.6: Factors involved in the trust score measure.

t c f
Confidentiality 0.4 0.9 0.5

Integrity 0.6 0.9 0.5
Uptime 0.8 0.9 0.99

Horizontal Scaling 0.7 0.9 0.8
Vertical Scaling 0.8 0.9 0.9

The steps required to achieve this result are shown in figure 5.7.

Finally, by calculating the utility functions of non functional attributes, they may

be integrated in the decision making algorithm illustrated by equation 5.1. This way,

criteria such as reliability and trust could be considered in the final choice of the cloud

provider.

101

5. EXPERIMENTATIONS AND RESULTS

Figure 5.7: Steps to calculate the trust score -

5.3 Conclusion

This chapter evaluates the usefulness of our brokering system. It explains the efficiency

of semantic annotations in hiding syntactic and semantic heterogeneity between the dif-

ferent actors of the cloud mainly the IaaS cloud actors. Unlike syntactic SLA languages

such as WS-Agreement, our ontology enables cloud users to discover more services since

it assures interoperability between providers and consumers (Section 5.1). This chapter

provides also a quantitative evaluation of utility functions. It compares the functional

utilities used by the broker architecture with other forms of utility representations such

as linear and exponential forms. We show that the utilization of our defined utilities

selects the closest provider to the user request (Section 5.2.1). We present also some

examples of non functional utility measurement to explain further how non functional

utilities could be estimated and integrated in the decision making algorithm (Section

5.2.2).

102

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Today, the cloud service provider market is very diverse. Customers can find all kind

of providers, from small private clouds to large enterprises. Each of these cloud service

providers might have their own set of services, business model and client base. It is then

difficult for customers to know which one is a good fit for their needs. In particularly,

in this work, we are interested in tree main issues encountered by cloud consumers:

• the syntactic and semantic heterogeneity of cloud services: depending on their

background, the understanding of Service Level Agreements (SLAs) and what

they could mean for providers and consumers is completely different. Hence,

cloud actors could miss fruitful collaboration opportunities;

• the large number and the diversity of criteria involved in the choice of a cloud

service provider: finding the best trade-off is not evident for customers;

• the lack of performance guarantees: customers need to supervise their application

performances hosted in the provider’s virtual machines and claim penalties in case

of SLA contract violation.

To overcome these problems, we proposed in Chapter 3 an SLA-based brokering

approach assisting cloud consumers in managing the provisioning of cloud services and

selecting the best provider’s offer. Our solution is based on semantic annotations in

order to hide the heterogeneity between the different cloud actors. Indeed, by the use of

ontologies, we defines a common vocabulary for cloud actors who need to share service

103

6. CONCLUSIONS AND FUTURE WORK

level agreement understanding in the cloud. OWL ontologies adopted help to add

meaning and semantics to the data. For example, we can add a "same as" relationship

between concepts having the same meaning but expressed differently by providers and

consumers. We have shown that this allows to hide heterogeneity and enables cloud

customers to discover more services likely to meet their requirements. Moreover, we

highlighted that the use of ontology allows to automate the detection of violations in

the SLA contract. This is realised by building rules that compare the real time values of

the quality of service monitored with the service level objectives agreement. Thus, the

reasoner executing these rules can detect violations in the SLA contract and determine

the penalties to be imposed to the provider. Our cloud broker has the advantage that

it can be adopted by all cloud actors using any SLA language. This is assured by the

mapping between our ontology and the target SLA language. In this thesis, we have

presented the example of WS-agreement language (see Section 3.5) but this task could

be reproduced for any other language. This ensures interoperability between cloud

actors; providers as well as consumers.

To select the best provider, which is our second problematic, we proposed the use of

the decision making module in our cloud broker. We have shown in Chapter 4 how using

a multi-attribute utility theory method allows us to satisfy better consumer’s require-

ments as it enables him to find the best service provider from a multitude of providers

proposals. Moreover, we think that the result of our cloud broker selection provider is

more accurate compared with related works as our proposed utility functions represents

better consumer preferences (better than linear equations for example as demonstrated

in Section 5.2.1). Besides, in our work, we take into account both functional and non

functional criteria. For these reasons, we judge that our cloud broker satisfies the best

consumer requirements from functional and non functional point of view, which was

never be done in the literature.

6.2 Future Research Directions

Regarding possible future works, there are some interesting activities that can be carried

on.

104

6.2 Future Research Directions

Experimenting the cloud broker In this work, we have proposed a brokering archi-

tecture for automating the negotiation of service level agreements and the allocations of

provider’s resources. We have implemented and tested it using java language. We have

supposed that the real time QoS values are provided by the monitoring module of our

architecture. In the future, we plan to integrate our framework into a real testbed. For

this purpose, we need to go over the monitoring module and propose a suitable imple-

mentation. As an example, we can use one of the several techniques used for monitoring,

such as traditional server monitoring services, vendor specific monitoring services like

Hyperic (76), CloudHarmony (77), Monitis (78), Nimsoft (79), Amazon CloudWatch

(80) or even third party independent cloud monitoring services like Cloudstatus (81)

and cloudkick (82).

On the other hand, we plan to experience the reliability of our system in a federation

context. Federation is the interconnection and the collaboration of cloud providers in

order to ensure load balancing. It is a relevant context to evaluate our architecture

since providers face the problem of heterogeneity mentioned above and need to find the

best choice allowing them to further reduce their costs.

A cross-layer cloud broker In this thesis, we have presented a generic SLA cloud

ontology that we specialized to the IaaS layer (see Section 3.4). This proposed IaaS SLA

ontology is conform to IaaS OCCI specification (88) as we adopted the same procedure

and we used its main concepts. As a perspective to this contribution, we aim to extend

our generic ontology to the other layers of the cloud i.e., PaaS and SaaS layers (see figure

2.1). To this end, we can rely on related works that try to extend OCCI specification

to the PaaS and SaaS layers (120) (121). In this manner, our cloud broker can look for

any service provider, whatever the involved layer. This will help users to have a sole

and same entity to look for any kind of service they need.

Weight determination We have seen that a consumer may have several criteria

(Quality of Service parameters) that should be satisfied in the choice of the service

provider. The importance of these criteria may vary from one consumer to another and

the choice of the best service provider depend on this importance (expressed by the

weights in the multicriteria method we used). In other words, the result given by the

broker could not be same if we change the importance of the criteria (i.e., the values

105

6. CONCLUSIONS AND FUTURE WORK

of the weights). So we should have weights that are precise enough to represent the

importance of the criteria as felt by the consumer. In our work, we assumed that the

weights in the multi utility attribute theory are provided by the user. In reality, it is a

hard task to give these weights, especially when we have several criteria. To overcome

this problematic and in order to have accurate weights, we can explore multicriteria

methods that allow to determine user quality of service weights. More precisely, there

is multecriteria methods that take user preferences as input to determine the weights.

As an example of such methods, we can cite Analytic Hiearchy Process (AHP) (122) and

Measuring Attractiveness by a Categorical Based Evaluation Technique (MACBETH)

(123, 124). In this way, we think that the result of our cloud broker will be more precise

and correspond the best to the consumer request.

106

References

[1] G.W. Torrance, M.H. Boyle, and S.P. Horwood. Application of multi-

attribute utility theory to measure social preferences for health states. Research

and working paper series. McMaster University, Faculty of Business, 1982. xv, 68

[2] IBM. Tips for Choosing a Cloud Service Provider. Technical report, 2011.

3

[3] Salman A. Baset. Cloud SLAs: Present and Future. SIGOPS Oper. Syst.

Rev., 46(2):57–66, July 2012. 3, 38

[4] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf.

NIST Cloud Computing Reference Architecture. Special Publication 500-292,

Reading, Massachusetts, 2011. 5

[5] Freshdesk. http://www.cloudreviews.com/freshdesk.html. 8

[6] NetSuite. http://www.cloudreviews.com/netsuite.html. 8

[7] Zoho. http://www.cloudreviews.com/zoho.html. 8

[8] Bloomfire. http://www.cloudreviews.com/bloomfire.html. 8

[9] GHG Corporation. http://www.cloudreviews.com/ghgcorp.html. 8

[10] Google App Engine. https://cloud.google.com/products/app-engine. 8

[11] AWS Elastic Beanstalk. http://aws.amazon.com/fr/elasticbeanstalk/. 8

[12] cloudmapreduce. https://code.google.com/p/cloudmapreduce/. 8

[13] Force.com. http://www.salesforce.com/fr/force/overview/. 8

107

http://books.google.fr/books?id=DM0hAQAAMAAJ
http://books.google.fr/books?id=DM0hAQAAMAAJ
http://www-935.ibm.com/services/us/leveragingit/SmartCloud_Choosing_a_Provider_IBM.pdf
http://doi.acm.org/10.1145/2331576.2331586
http://www.cloudreviews.com/freshdesk.html
http://www.cloudreviews.com/netsuite.html
http://www.cloudreviews.com/zoho.html
http://www.cloudreviews.com/bloomfire.html
http://www.cloudreviews.com/ghgcorp.html
https://cloud.google.com/products/app-engine
http://aws.amazon.com/fr/elasticbeanstalk/
https://code.google.com/p/cloudmapreduce/
http://www.salesforce.com/fr/force/overview/

REFERENCES

[14] S. Bhardwaj, L. Jain, and S. Jain. CLOUD COMPUTING: A STUDY

OF INFRASTRUCTURE AS A SERVICE (IAAS). International Journal

of Engineering and Information Technology, 2010. 8

[15] Amazon E2C. http://aws.amazon.com/fr/ec2/. 8

[16] GoGrid. http://www.gogrid.com/. 8

[17] Rackspace. http://www.rackspace.com/. 8

[18] Windows Azure. http://www.windowsazure.com/en-us/solutions/

infrastructure/. 8

[19] T. Forell, D. Milojicic, and V. Talwar. Cloud Management: Chal-

lenges and Opportunities. In Parallel and Distributed Processing Workshops

and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, pages 881–

889, 2011. 10

[20] Kuyoro S. O., Ibikunle F., and Awodele O. Cloud Computing Security

Issues and Challenges. International Journal of Computer Networks (IJCN),

Volume (3) : Issue (5), 2011. 10

[21] R. Bernnat, N. Bieber, W. Zink, and J. Strach. Standardizing the Cloud:

A Call to Action. booz&co, 2012. 10

[22] Daniel J. Abadi. Data management in the cloud: Limitation and Op-

portunities. Technical report, 2009. 11

[23] D. Agrawal, A. El Abbadi, S. Antony, and S. Das. Data management

challenges in cloud computing infrastructures. In Proceedings of the 6th in-

ternational conference on Databases in Networked Information Systems, DNIS’10,

pages 1–10, Berlin, Heidelberg, 2010. Springer-Verlag. 11

[24] M. Andreolini, S. Casolari, M. Colajanni, and M. Messori. Dynamic

Load Management of Virtual Machines in Cloud Architectures. In

DimiterR. Avresky, Michel Diaz, Arndt Bode, Bruno Ciciani, and

Eliezer Dekel, editors, Cloud Computing, 34 of Lecture Notes of the Institute

for Computer Sciences, Social-Informatics and Telecommunications Engineering,

pages 201–214. Springer Berlin Heidelberg, 2010. 11

108

http://aws.amazon.com/fr/ec2/
http://www.gogrid.com/
http://www.rackspace.com/
http://www.windowsazure.com/en-us/solutions/infrastructure/
http://www.windowsazure.com/en-us/solutions/infrastructure/
http://dx.doi.org/10.1007/978-3-642-12038-1_1
http://dx.doi.org/10.1007/978-3-642-12038-1_1
http://dx.doi.org/10.1007/978-3-642-12636-9_14
http://dx.doi.org/10.1007/978-3-642-12636-9_14

REFERENCES

[25] Y.O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni,

S. Ganti, and Y. Coady. Dynamic Resource Allocation in Comput-

ing Clouds Using Distributed Multiple Criteria Decision Analysis. In

Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on, pages

91–98, 2010. 11

[26] B. Sotomayor, R.S. Montero, I.M. Llorente, and I. Foster. An Open

Source Solution for Virtual Infrastructure Management in Private and

Hybrid Clouds. In IEEE INTERNET COMPUTING, SPECIAL ISSUE ON

CLOUD COMPUTING, 2009. 12

[27] K.A. Nuaimi, N. Mohamed, M.A. Nuaimi, and J. Al-Jaroodi. A Survey

of Load Balancing in Cloud Computing: Challenges and Algorithms.

In Network Cloud Computing and Applications (NCCA), 2012 Second Symposium

on, pages 137–142, 2012. 12

[28] V. Fusenig and A. Sharma. Security architecture for cloud network-

ing. In Computing, Networking and Communications (ICNC), 2012 International

Conference on, pages 45–49, 2012. 12

[29] E.M. Mohamed, H.S. Abdelkader, and S. El-Etriby. Enhanced data

security model for cloud computing. In Informatics and Systems (INFOS),

2012 8th International Conference on, pages CC–12–CC–17, 2012. 12

[30] Gartner. Cloud IaaS: Service-Level Agreements. Technical report, 2011.

13

[31] M. Mohemmed Sha, I. Sherif Baig, C. Rajalakshmi, P. Balaji, and

DR. K. Vivekanandhan.WSLA Based Dynamic Monitoring and Pricing

of Web Services. International Journal of Scientific & Engineering Research -

IJSER, 2013. 13, 38

[32] A. Keller and H. Ludwig. The WSLA Framework: Specifying and

Monitoring Service Level Agreements for Web Services. J. Netw. Syst.

Manage., 11(1):57–81, March 2003. v, 14

109

http://dx.doi.org/10.1023/A:1022445108617
http://dx.doi.org/10.1023/A:1022445108617

REFERENCES

[33] D. Davide Lamanna, J. Skene, and W. Emmerich. SLAng: a language

for defining service level agreements. In Distributed Computing Systems,

2003. FTDCS 2003. Proceedings. The Ninth IEEE Workshop on Future Trends

of, pages 100–106, 2003. 14

[34] G. Frankova, D. Malfatti, and M. Aiello. Semantics and Extensions

of WS-Agreement, 2006. 15, 38

[35] I. Horrocks, B. Parsia, P. Patel-Schneider, and J. Hendler. Seman-

tic Web Architecture: Stack or Two Towers? In François Fages and

Sylvain Soliman, editors, Principles and Practice of Semantic Web Reasoning,

3703 of Lecture Notes in Computer Science, pages 37–41. Springer Berlin Heidel-

berg, 2005. v, 16, 17

[36] A. Gerber, A. van der Merwe, and A. Barnard. A functional semantic

web architecture. In Proceedings of the 5th European semantic web conference

on The semantic web: research and applications, ESWC’08, pages 273–287, Berlin,

Heidelberg, 2008. Springer-Verlag. 16

[37] J. Bermejo. A Simplified Guide to Create an Ontology. Technical report,

UNIVERSIDAD POLITECNICA DE MADRID, ASLab, 2007. 17

[38] R. Rosati. On the decidability and complexity of integrating ontologies

and rules. Web Semantics: Science, Services and Agents on the World Wide

Web, 3(1), 2005. 17

[39] D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber, M. Wei-

dlich, and S. Zugal. Declarative versus Imperative Process Modeling

Languages: The Issue of Understandability. In Terry Halpin, John

Krogstie, Selmin Nurcan, Erik Proper, Rainer Schmidt, Pnina Sof-

fer, and Roland Ukor, editors, Enterprise, Business-Process and Information

Systems Modeling, 29 of Lecture Notes in Business Information Processing, pages

353–366. Springer Berlin Heidelberg, 2009. 18

[40] S. Stoutenburg, L. Obrst, D. Nichols, P. Franklin, K. Samuel, and

M. Prausa. Ontologies and Rules for Rapid Enterprise Integration

110

http://dx.doi.org/10.1007/11552222_4
http://dx.doi.org/10.1007/11552222_4
http://dl.acm.org/citation.cfm?id=1789394.1789422
http://dl.acm.org/citation.cfm?id=1789394.1789422
http://www.websemanticsjournal.org/index.php/ps/article/view/64
http://www.websemanticsjournal.org/index.php/ps/article/view/64
http://dx.doi.org/10.1007/978-3-642-01862-6_29
http://dx.doi.org/10.1007/978-3-642-01862-6_29

REFERENCES

and Event Aggregation. In EDOC Conference Workshop, 2007. EDOC ’07.

Eleventh International IEEE, pages 173–108, 2007. v, 19, 20, 21

[41] D. Xiao and H. Xu. An Integration of Ontology-based and Policy-based

Network Management for Automation. In Computational Intelligence for

Modelling, Control and Automation, 2006 and International Conference on Intelli-

gent Agents, Web Technologies and Internet Commerce, International Conference

on, pages 27–27, 2006. v, 21, 22

[42] D. Androcec, N. Vrcek, and J. Seva. Cloud Computing Ontologies: A

Systematic Review. In MOPAS 2012, The Third International Conference on

Models and Ontology-based Design of Protocols, Architectures and Services, 2012.

22

[43] T. Han and K. Mong Sim. An Ontology-enhanced Cloud Service Dis-

covery System. In International MultiConference of Engineers and Computer

Scientists (IMEC 2010), pages 644–649, 2010. 23

[44] M. Zhang, R. Ranjan, A. Haller, D. Georgakopoulos, M. Menzel, and

S. Nepal. An ontology-based system for Cloud infrastructure services’

discovery. In CollaborateCom, pages 524–530. IEEE, 2012. 23

[45] Y. Ma, S. Jang, and J. Lee. Ontology-Based Resource Management for

Cloud Computing. In NgocThanh Nguyen, Chong-Gun Kim, and Adam

Janiak, editors, Intelligent Information and Database Systems, 6592 of Lecture

Notes in Computer Science, pages 343–352. Springer Berlin Heidelberg, 2011. 23

[46] R. Harris. Introduction to Decision Making. http://www.virtualsalt.

com/crebook5.htm, 1998. 24

[47] J. Waters, M.G. Ceruti, R. Patel, and J. Eitelberg. Decision-

Acquisition System Based on a Common Decision-Exchange Protocol.

In Space and Naval Warfare Systems Center Pacific (SSC Pacific),15th ICCRTS,

Santa Monica, CA,22-24 June, 2010, 2010. 24

[48] S.B. Kodeswaran, O. Ratsimor, A. Joshi, and F. Perich. Utilizing Se-

mantic Tags for Policy Based Networking. In Global Telecommunications

Conference, 2007. GLOBECOM ’07. IEEE, pages 1954–1958, 2007. 25

111

http://dblp.uni-trier.de/db/conf/colcom/colcom2012.html#ZhangRHGMN12
http://dblp.uni-trier.de/db/conf/colcom/colcom2012.html#ZhangRHGMN12
http://dx.doi.org/10.1007/978-3-642-20042-7_35
http://dx.doi.org/10.1007/978-3-642-20042-7_35
http://www.virtualsalt.com/crebook5.htm
http://www.virtualsalt.com/crebook5.htm

REFERENCES

[49] L. Wu, S.K. Garg, R. Buyya, C. Chen, and S. Versteeg. Automated

SLA Negotiation Framework for Cloud Computing. In Cluster, Cloud and

Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on,

pages 235–244, May 2013. 25

[50] M. Velasquez and P.T. Hester. An Analysis of Multi-Criteria Decision

Making Methodss. International Journal of Operations Research, 10(2):56–66,

2013. 26

[51] journal=American Journal of Information Sys-

tems volume=1 number=1 pages=31–43 year=2013

url=http://pubs.sciepub.com/ajis/1/1/5 doi=10.12691/ajis-1-1-5 pub-

lisher=Science and Education Publishing Aruldoss, M. and Lakshmi,

T. M. and Venkatesan, V. P., title=A Survey on Multi Criteria

Decision Making Methods and Its Applications. 26, 67

[52] E. K. Zavadskas, Z. Turskis, and S. Kildiene. State of art surveys

of overviews on MCDM/MADM methods. Technological and Economic

Development of Economy, 20(1):165–179, 2014. 26

[53] M. Menzel, M. Schönherr, J. Nimis, and S. Tai. (MC2)2: A Generic

Decision-Making Framework and its Application to Cloud Computing.

CoRR, abs/1112.1851, 2011. 27

[54] Z. ur Rehman, F.K. Hussain, and O.K. Hussain. Towards Multi-criteria

Cloud Service Selection. In Innovative Mobile and Internet Services in Ubiq-

uitous Computing (IMIS), 2011 Fifth International Conference on, pages 44–48,

2011. 27

[55] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf.

NIST Cloud Computing Reference Architectures. Technical report, NIST:

National Institute of Standards and Technology, 2011. 27

[56] F. Jrad, J. Tao, and A Streit. SLA based service brokering in inter-

cloud environments. In CLOSER(2012)76-818, 2012. v, 28, 29, 32

112

http://www.orstw.org.tw/ijor/vol10no2/ijor_vol10_no2_p56_p66.pdf
http://www.orstw.org.tw/ijor/vol10no2/ijor_vol10_no2_p56_p66.pdf
http://www.tandfonline.com/doi/abs/10.3846/20294913.2014.892037
http://www.tandfonline.com/doi/abs/10.3846/20294913.2014.892037

REFERENCES

[57] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski. In-

troducing STRATOS: A Cloud Broker Service. In Cloud Computing

(CLOUD), 2012 IEEE 5th International Conference on, pages 891–898, 2012.

30

[58] SLASOI. http://sla-at-soi.eu/, 2008-2011. 30

[59] E. Badidi. A Framework for Software-as-a-Service Selection and Provi-

sioning. CoRR, abs/1306.1888, 2013. 31

[60] mOSAIC. http://www.optimis-project.eu/project, 2010-2013. 31

[61] S.K. Nair, S. Porwal, T. Dimitrakos, AJ. Ferrer, J. Tordsson,

T. Sharif, C. Sheridan, M. Rajarajan, and AU. Khan. Towards Secure

Cloud Bursting, Brokerage and Aggregation. In Web Services (ECOWS),

2010 IEEE 8th European Conference on, pages 189–196, Dec 2010. 31

[62] Contrail. http://contrail-project.eu/fr, 2010-2014. 31

[63] mOSAIC. http://www.mosaic-cloud.eu/, 2010-2013. 31

[64] F. Moscato, R. Aversa, B. Di Martino, T. Fortis, and V. Munteanu.

An analysis of mOSAIC ontology for Cloud resources annotation. In

Computer Science and Information Systems (FedCSIS), 2011 Federated Confer-

ence on, pages 973–980, Sept 2011. 31

[65] CompatibleOne. http://www.compatibleone.org/. 32

[66] S. Yangui, IJ. Marshall, JP. Laisne, and S. Tata. CompatibleOne: The

Open Source Cloud Broker. Journal of Grid Computing, 12(1):93–109, 2014.

32

[67] A. Cuomo, G. Di Modica, S. Distefano, A. Puliafito, M. Rak,

O. Tomarchio, S. Venticinque, and U. Villano. An SLA-based Broker

for Cloud Infrastructures. Journal of Grid Computing, 11(1):1–25, 2013. 32

[68] Amazon web services. http://aws.amazon.com/fr/. 36

[69] Windows Azure. http://www.windowsazure.com/fr-fr/. 36

113

http://sla-at-soi.eu/
http://arxiv.org/abs/1306.1888
http://arxiv.org/abs/1306.1888
http://www.optimis-project.eu/project
http://contrail-project.eu/fr
http://www.mosaic-cloud.eu/
http://www.compatibleone.org/
http://dx.doi.org/10.1007/s10723-013-9285-0
http://dx.doi.org/10.1007/s10723-013-9285-0
http://dx.doi.org/10.1007/s10723-012-9241-4
http://dx.doi.org/10.1007/s10723-012-9241-4
http://aws.amazon.com/fr/
http://www.windowsazure.com/fr-fr/

REFERENCES

[70] H.J. Lee, M.S. Kim, J. W. Hong, and G.H Lee. Mapping between QoS

Parameters and Network Performance Metrics for SLA monitoring. In

Asia-Pacific Network Operations and Management Symposium. 37

[71] M. Risch and J. Altmann. Enabling Open Cloud Markets Through WS-

Agreement Extensions. TEMEP Discussion Papers 200920, Seoul National

University; Technology Management, Economics, and Policy Program (TEMEP),

2009. 38, 56

[72] K. Kritikos and D. Plexousakis. A Semantic QoS-Based Web Service

Discovery Engine for Over-Constrained QoS Demands. In Elisabetta

Nitto and Matei Ripeanu, editors, Service-Oriented Computing - ICSOC 2007

Workshops, 4907 of Lecture Notes in Computer Science, pages 151–164. Springer

Berlin Heidelberg, 2009. 38

[73] L. Wu, S.K. Garg, R. Buyya, C. Chen, and S. Versteeg. Automated

SLA Negotiation Framework for Cloud Computing. In Cluster, Cloud and

Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on,

pages 235–244, May 2013. 38

[74] CSCC Workgroup. Practical guide to cloud service level agreements.

Technical report, Cloud Standards Customer Council (CSCC), 2012. 38

[75] N. Grozev and R. Buyya. Inter-Cloud architectures and application

brokering: taxonomy and survey. Software: Practice and Experience,

44(3):369–390, 2014. 38, 39, 40

[76] Hyperic. http://www.hyperic.com/. 42, 105

[77] CloudHarmony. http://cloudharmony.com/. 42, 105

[78] Monitis. http://www.monitis.com/. 42, 105

[79] Nimsoft. https://cloudmonitor.nimsoft.com/fr/. 42, 105

[80] Amazon Cloudwatch. http://aws.amazon.com/fr/cloudwatch/. 42, 105

[81] Entreprise Monitoring and Management of Cloud Services. http://www.

hyperic.com/products/Cloud-monitoring.html. 42, 105

114

http://EconPapers.repec.org/RePEc:snv:dp2009:200920
http://EconPapers.repec.org/RePEc:snv:dp2009:200920
http://dx.doi.org/10.1007/978-3-540-93851-4_15
http://dx.doi.org/10.1007/978-3-540-93851-4_15
http://dx.doi.org/10.1002/spe.2168
http://dx.doi.org/10.1002/spe.2168
http://www.hyperic.com/
http://cloudharmony.com/
http://www.monitis.com/
https://cloudmonitor.nimsoft.com/fr/
http://aws.amazon.com/fr/cloudwatch/
http://www.hyperic.com/products/Cloud-monitoring.html
http://www.hyperic.com/products/Cloud-monitoring.html

REFERENCES

[82] Cloudkick Cloud Management toolkit. http://www.rackspace.com/cloud/

monitoring/. 42, 105

[83] Apache Jena. https://jena.apache.org/. 47

[84] G. Antoniou and F. Harmelen. Web Ontology Language: OWL. In

Steffen Staab and Rudi Studer, editors, Handbook on Ontologies, Interna-

tional Handbooks on Information Systems, pages 91–110. Springer Berlin Heidel-

berg, 2009. 47

[85] OWL Working Group. Web Ontology Language (OWL). http://www.

w3.org/2001/sw/wiki/OWL, 2012. 47

[86] B. McBride. The Resource Description Framework (RDF) and its Vo-

cabulary Description Language RDFS. In Steffen Staab and Rudi

Studer, editors, Handbook on Ontologies, International Handbooks on Infor-

mation Systems, pages 51–65. Springer Berlin Heidelberg, 2004. 47

[87] D. Allemang and J. Hendler. Semantic Web for the Working Ontologist:

Effective Modeling in RDFS and OWL. Elsevier Science, 2011. 47

[88] OCCI: Open Cloud Computing Interface. http://occi-wg.org/. 52, 105

[89] T. Rodrigues, P. Rosa, and J. Cardoso. Mapping XML to Existing

OWL Ontologies. In International Conference WWW/Internet 2006, pp. 72-

77, 2006. 56

[90] D. Bouyssou. Outranking methods Outranking Methods. In

Christodoulos A. Floudas and Panos M. Pardalos, editors, Encyclopedia

of Optimization, pages 2887–2893. Springer US, 2009. 66

[91] B. Roy. The outranking approach and the foundations of electre meth-

ods. Theory and Decision, 31(1):49–73, 1991. 66

[92] J.P. Brans and B. Mareschal. The Promethee Methods for MCDM;

The Promcalc, Gaia And Bankadviser Software. In CarlosA. Bana e

Costa, editor, Readings in Multiple Criteria Decision Aid, pages 216–252.

Springer Berlin Heidelberg, 1990. 66

115

http://www.rackspace.com/cloud/monitoring/
http://www.rackspace.com/cloud/monitoring/
https://jena.apache.org/
http://dx.doi.org/10.1007/978-3-540-92673-3_4
http://www.w3.org/2001/sw/wiki/OWL
http://www.w3.org/2001/sw/wiki/OWL
http://dx.doi.org/10.1007/978-3-540-24750-0_3
http://dx.doi.org/10.1007/978-3-540-24750-0_3
http://books.google.fr/books?id=_qGKPOlB1DgC
http://books.google.fr/books?id=_qGKPOlB1DgC
http://occi-wg.org/
http://dx.doi.org/10.1007/978-0-387-74759-0_495
http://dx.doi.org/10.1007/BF00134132
http://dx.doi.org/10.1007/BF00134132
http://dx.doi.org/10.1007/978-3-642-75935-2_10
http://dx.doi.org/10.1007/978-3-642-75935-2_10

REFERENCES

[93] T.L. Saaty. Decision Making for Leaders: The Analytic Hierarchy Process for

Decisions in a Complex World. Analytic hierarchy process series. RWS Publica-

tions, 1990. 66

[94] H.M. Alabool and AK. Mahmood. Review on cloud service evaluation

and selection methods. In Research and Innovation in Information Systems

(ICRIIS), 2013 International Conference on, pages 61–66, Nov 2013. 66

[95] L. Benyoucef, H. Ding, and X. Xie. Supplier selection problem : selec-

tion criteria and methods. Technical Report 2003-02, INSTITUT NATIONAL

DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE (INRIA),

McMaster University, Hamilton, Canada, 2003. 66

[96] J.S. Dyer. Maut — Multiattribute Utility Theory. In Multiple Criteria

Decision Analysis: State of the Art Surveys, 78 of International Series in Opera-

tions Research & Management Science, pages 265–292. Springer New York, 2005.

66

[97] A. Ishizaka and P. Nemery. Multi-attribute utility theory, pages 81–113. John

Wiley & Sons Ltd, 2013. 66

[98] S.K. Garg, S. Versteeg, and R. Buyya. A framework for ranking of

cloud computing services. Future Generation Computer Systems, 29(4):1012

– 1023, 2013. Special Section: Utility and Cloud Computing. 67

[99] Saul I. Gass. Model World: The Great Debate-MAUT Versus AHP.

Interfaces, 35(4):308–312, July 2005. 67

[100] R.D. Luce and H. Raiffa. Games and Decisions. John Wiley and Sons, New

York, 1957. 67

[101] W. Furlong, D. Feeny, G. Torrance, C. Goldsmith, S. DePauw,

Z. Zhu, M. Denton, and M. Boyle. Multiplicative Multi-Attribute

Utility Function for the Health Utilities Index 3 (HUI3) System: A

Technical Report. Centre for Health Economics and Policy Analysis Working

Paper Series 1998-11, Centre for Health Economics and Policy Analysis (CHEPA),

McMaster University, Hamilton, Canada, 1998. 68

116

http://books.google.fr/books?id=GsDZAAAAMAAJ
http://books.google.fr/books?id=GsDZAAAAMAAJ
http://hal.inria.fr/docs/00/07/18/60/PDF/RR-4726.pdfl
http://hal.inria.fr/docs/00/07/18/60/PDF/RR-4726.pdfl
http://dx.doi.org/10.1007/0-387-23081-5_7
http://dx.doi.org/10.1002/9781118644898.ch4
http://www.sciencedirect.com/science/article/pii/S0167739X12001422
http://www.sciencedirect.com/science/article/pii/S0167739X12001422
http://dx.doi.org/10.1287/inte.1050.0152
http://ideas.repec.org/p/hpa/wpaper/199811.html
http://ideas.repec.org/p/hpa/wpaper/199811.html
http://ideas.repec.org/p/hpa/wpaper/199811.html

REFERENCES

[102] Z. Wang, S. Zhang, and J. Kuang. A Dynamic MAUT Decision Model

for R&D Project Selection. In Computing, Control and Industrial Engineering

(CCIE), 2010 International Conference on, 1, pages 423–427, June 2010. 69, 93

[103] M. Sun, T. Zang, X. Xu, and R. Wang. Consumer-Centered Cloud

Services Selection Using AHP. In Service Sciences (ICSS), 2013 International

Conference on, pages 1–6, April 2013. 69

[104] M.N. Bennani and D. Menasce. Resource Allocation for Autonomic

Data Centers using Analytic Performance Models. In Autonomic Com-

puting, 2005. ICAC 2005. Proceedings. Second International Conference on, pages

229–240, June 2005. 70

[105] Daniel A. Menascé and P. Ngo. Understanding Cloud Computing:

Experimentation and Capacity Planning. 70

[106] System Reliability Center. Quantitative Measures of Availability.

http://src.alionscience.com/pdf/QuantitativeMeasuresAvailability.

pdf. 71

[107] K. Nomura, K. Yamori, E. Takahashi, T. Miyoshi, and Y. Tanaka.

Waiting Time versus Utility to Download Images. In in 2001 Asia Pacific

Symposium on Information and Telecommunication Technologies, 2009. 71

[108] H.A. Nguyen, T. Van Nguyen, and Deokjai Choi. How to Maximize

User Satisfaction Degree in Multi-service IP Networks. In Intelligent

Information and Database Systems, 2009. ACIIDS 2009. First Asian Conference

on, pages 471–476, April 2009. 71

[109] J.Z. Wang, P. Varman, and C.S. Xie. Optimizing storage performance

in public cloud platforms. Journal of Zhejiang University SCIENCE C,

12(12):951–964, 2011. 73

[110] J. Weinman. Time is Money: The Value of “On-Demand” . http://www.

joeweinman.com/Resources/Joe_Weinman_Time_Is_Money.pdf. 77

117

http://src.alionscience.com/pdf/QuantitativeMeasuresAvailability.pdf
http://src.alionscience.com/pdf/QuantitativeMeasuresAvailability.pdf
http://dx.doi.org/10.1631/jzus.C1100097
http://dx.doi.org/10.1631/jzus.C1100097
http://www.joeweinman.com/Resources/Joe_Weinman_Time_Is_Money.pdf
http://www.joeweinman.com/Resources/Joe_Weinman_Time_Is_Money.pdf

REFERENCES

[111] S. Islam, K. Lee, A. Fekete, and A. Liu. How a Consumer Can Mea-

sure Elasticity for Cloud Platforms. In Proceedings of the 3rd ACM/SPEC

International Conference on Performance Engineering, ICPE ’12, pages 85–96,

New York, NY, USA, 2012. ACM. 77

[112] T. Limin, H. Decai, and H. Libin. Research on Subjective Trust Model

Based on Cloud Model for Open Networks. Journal of Computational

Information Systems, pages 4844–4854, 2011. 82

[113] S. Wang, L. Zhang, N. Ma, and S. Wang. An Evaluation Approach of

Subjective Trust Based on Cloud Model. In Computer Science and Software

Engineering, 2008 International Conference on, 3, pages 1062–1068, Dec 2008.

82

[114] Z. Zhao-xiong, He XU, and W. Suo-ping. A Novel Weighted Trust

Model based on Cloud. Advances in Information Sciences and Service Sciences,

3(3), April 2011. 83

[115] S. Ries, S. Habib, M. Mühlhäuser, and V. Varadharajan. CertainLogic:

A Logic for Modeling Trust and Uncertainty. In JonathanM. McCune,

Boris Balacheff, Adrian Perrig, Ahmad-Reza Sadeghi, Angela Sasse,

and Yolanta Beres, editors, Trust and Trustworthy Computing, 6740 of Lec-

ture Notes in Computer Science, pages 254–261. Springer Berlin Heidelberg, 2011.

83, 84, 100

[116] S.M. Habib, S. Ries, and M. Muhlhauser. Towards a Trust Management

System for Cloud Computing. In Trust, Security and Privacy in Computing

and Communications (TrustCom), 2011 IEEE 10th International Conference on,

pages 933–939, Nov 2011. 83, 100

[117] 10 Questions to Ask When Choosing a Cloud Provider. http://www.

entrepreneur.com/article/226845. 99

[118] O.H. Alhazmi and Y.K. Malaiya. Evaluating disaster recovery plans

using the cloud. In Reliability and Maintainability Symposium (RAMS), 2013

Proceedings - Annual, pages 1–6, Jan 2013. 100

118

http://doi.acm.org/10.1145/2188286.2188301
http://doi.acm.org/10.1145/2188286.2188301
http://dx.doi.org/10.1007/978-3-642-21599-5_19
http://dx.doi.org/10.1007/978-3-642-21599-5_19
http://www.entrepreneur.com/article/226845
http://www.entrepreneur.com/article/226845

REFERENCES

[119] T. Wood, E. Cecchet, K. K. Ramakrishnan, P. Shenoy, J. Van

Der Merwe, and A. Venkataramani. Disaster Recovery as a Cloud

Service: Economic Benefits & Deployment Challenges. 100

[120] S. Yangui and S. Tata. CloudServ: PaaS Resources Provisioning for

Service-Based Applications. 2014 IEEE 28th International Conference on

Advanced Information Networking and Applications, 0:522–529, 2013. 105

[121] M. Mohamed, D. Belaid, and S. Tata. Monitoring and Reconfiguration

for OCCI Resources. In Cloud Computing Technology and Science (CloudCom),

2013 IEEE 5th International Conference on, 1, pages 539–546, Dec 2013. 105

[122] H. Pervaiz. A Multi-Criteria Decision Making (MCDM) network se-

lection model providing enhanced QoS differentiation to customers. In

Multimedia Computing and Information Technology (MCIT), 2010 International

Conference on, pages 49–52, March 2010. 106

[123] C. Bana e Costa, J.M. De Corte, and J.C. Vansnick. On the Mathe-

matical Foundation of MACBETH. In Multiple Criteria Decision Analysis:

State of the Art Surveys, 78 of International Series in Operations Research &

Management Science, pages 409–437. Springer New York, 2005. 106

[124] C. Bana E Costa and J.C. Vansnick. The MACBETH Approach: Basic

Ideas, Software, and an Application. In Nadine Meskens and Marc

Roubens, editors, Advances in Decision Analysis, 4 of Mathematical Modelling:

Theory and Applications, pages 131–157. Springer Netherlands, 1999. 106

119

http://dx.doi.org/10.1007/0-387-23081-5_10
http://dx.doi.org/10.1007/0-387-23081-5_10
http://dx.doi.org/10.1007/978-94-017-0647-6_9
http://dx.doi.org/10.1007/978-94-017-0647-6_9

	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem statement
	1.3 Contributions
	1.4 Thesis structure

	2 State of the art on cloud management frameworks
	2.1 Cloud Computing Overview
	2.1.1 Cloud Computing Characteristics
	2.1.2 Cloud Computing Service Models
	2.1.3 Cloud Computing Deployment Models

	2.2 Cloud Computing Management Challenges
	2.2.1 Data Management
	2.2.2 Virtual Machine Management
	2.2.3 Load Balancing
	2.2.4 Security
	2.2.5 Service Level Agreement

	2.3 Service Discovery and Selection
	2.3.1 Semantic based management tools
	2.3.1.1 Semantic Web architectures
	2.3.1.2 Ontology
	2.3.1.3 Declarative programming

	2.3.2 Combining ontologies with rules
	2.3.3 Cloud services discovery ontologies
	2.3.4 Cloud Service Selection

	2.4 Cloud Broker architecture
	2.4.1 Cloud Broker Definition
	2.4.2 Cloud Broker related work

	3 Cloud Broker Architecture for negotiating semantic SLA contracts
	3.1 Problem Statement
	3.2 CBA: A Cloud Broker Architecture
	3.3 Management Policies Implementation
	3.3.1 Consistency Checking Policies
	3.3.2 Violation Detection Policies

	3.4 Cloud SLA Contract specification
	3.4.1 IaaS Cloud SLA Contract specification

	3.5 Ontology Mapping to WS-Agreement

	4 Service provider's selection based on the multi-criteria method
	4.1 Motivation
	4.2 Multi-criteria algorithm for service provider's selection
	4.2.1 Service selection algorithm
	4.2.2 Functional QoS Utility functions
	4.2.2.1 Compute Utility functions
	4.2.2.2 Network Utility functions
	4.2.2.3 Storage Utility functions
	4.2.2.4 Cost Utility function

	4.2.3 Non Functional QoS Utility functions
	4.2.3.1 Reliability Utility functions
	4.2.3.2 Trust Utility function

	5 Experimentations and results
	5.1 Validation of semantic annotations contribution
	5.2 Evaluation of the proposed utility functions
	5.2.1 Evaluation of functional utility functions
	5.2.1.1 Utility functions Configuration
	5.2.1.2 Results

	5.2.2 Evaluation of non functional utility functions
	5.2.2.1 Disaster recovery Example
	5.2.2.2 Trust example

	5.3 Conclusion

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Research Directions

	References

