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Abstract

Online Social Networks (OSNs) (e.g., Facebook, Twitter and LinkedIn) have gained overwhelming
popularity and accumulated massive digital data about human society. These massive data, repre-
senting individuals’ personal and social information, provide us with unprecedented opportunities
to study, analyze and model the complex network structure, human connections, people similarity,
etc. Meanwhile, OSNs have triggered a large number of profitable applications and services which
seek to maintain vibrate connections and advance users’ experience. In this context, how to devise
such applications and services, especially how to extract and exploit effective social features from
the massive available data to enhance the applications and services, has received much attention.

This dissertation, aiming to enhance the social applications and services, investigates three crit-
ical and practical issues in OSNs: (1) How can we explore potential friends for a user to establish
and enlarge her social connections? (2) How can we discover interesting content for a user to sat-
isfy her personal tastes? (3) How can we inform a user the exposure risk of her private information
to preserve her privacy?

Drawing on the insights about people’s similarity in social science, this dissertation studies the
effects and applications of user similarity in OSNs to address the aforementioned issues. Specif-
ically, sociologists suggest that similarity breeds connection and induces homophily principle that
similar people (e.g., similar age, education, or occupation) are more likely to contact, trust, and
share information with each other than dissimilar ones. Inspired by these outcomes, this dissertation
studies the widespread similarity principle in OSN in terms of whether similar users would be close
in their social relationships, similar in their interests, or approximate in their geo-distance, relying
on 500K user profiles collected from Facebook; it further explores solutions to effectively leverage
the observed similarity principle to devise the following four social applications and services:

• Effects of User Similarity on Link Prediction for New Users: we investigate link prediction
for new users who have not created any link. Based on the limited information obtained during
new users’ sign-up procedure, along with the attributes and links from existing users in an
OSN, we extensively study how similarity between two users would affect the probability that
they befriend. Accordingly, we propose an effective link prediction model for the new users.

• Mining User Similarity for Content Discovery in Social P2P Network: we investigate how
similarity and knowledge of participants in OSNs could benefit their content discovery in P2P
networks. We build a social P2P network model where each peer assigns more weight to her
friends in OSNs who have higher similarity and more knowledge. Using random walk with
restart method, we present a novel content discovery algorithm on top of the proposed social
P2P network model.

• Inspecting Interest Similarity - Prediction and Application: we present comprehensive
empirical studies on interest similarity and reveal that people are likely to exhibit similar
tastes if they have similar demographic information (e.g., age, location), or if they are friends.
Accordingly, given a new user whose interests are unknown, we provide a prediction model
to identify some individuals who may have similar interests with her. We also illustrate a use
case of recommendation system to show the practical use of the proposed prediction model.

• Information Relevance and Leakage - Location Modeling and Privacy Preserving: with a
representative privacy-sensitive attribute of ‘current city’ in Facebook, we study the exposure



risk of a user’s private information according to her self-exposed information. To this end,
we firstly design a current city prediction approach by considering the relevant information
(e.g., workplace) and location similarity between friends. We further analyze the prediction
results and identify some measurable characteristics from users’ self-exposed information,
which can significantly affect the exposure probability of private current city. Eventually,
taking into account these measurable characteristics, we construct an exposure estimator to
assess the current city exposure risk level for an individual user.

Finally, we summarize the significant effects of user similarity in the social applications and
services and discuss some promising research directions for the future work, including fusing data
from multi-platforms, scaling out the proposed approaches and extending similarity effects into
other applications.
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1.1 Background

Online Social Networks (OSNs) (e.g., Facebook, Twitter and LinkedIn), which build up platforms
to connect people and maintain social relationships, have attracted a huge number of people over the
last decade. In OSNs, participants, rather than browse web sites in legacy web systems, are able to
participate in many ways, such as publishing their profiles, making friends, producing various con-
tent (photos, answers/questions, videos, etc.) and interacting with each other by a variety of actions
such as comment, post, like, sharing and so on. By satisfying people’s needs both in communication
and sharing information, OSNs have set root in many people’s daily life. It is reported that over
1.2 billions monthly participants are active on Facebook to connect people, acquire knowledge, and
announce news; 48% of them check ‘what’s happened’ around their social circles everyday. At the
same time, relying on OSNs, social media businesses that benefit from this upsurge of OSN popular-
ity and generated tens of billions of dollars every year. In a nutshell, OSNs are playing an important
role influencing people’s daily life, as well as a significant role in the economy.

From the perspective of technology and science, OSNs provide us with unprecedented oppor-
tunities to address many long-standing scientific and technical questions. A number of interesting
research challenges emerge in investigating OSNs, regarding efficiently maintained networks, well
organized activities, and effectively designed future social applications and services with friendly
user-experience. Therefore, in this dissertation, this dissertation is motivated to harness the oppor-
tunities of Big Data in OSNs and overcome challenges by enhancing applications and services in
OSNs.
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1.1.1 Opportunities

Thousands of millions daily activities by participants in various OSN platforms generate massive
digital data that traces the behavior of human society.In the first place, as these data and traces are
spontaneously produced by individuals, they can be used to capture and represent the individuals’
background information, social relationship, personal preferences, even political opinions. Thus,
instead of laborious data collection methods, such as surveys or face-to-face interviews, OSNs may
become a compelling alternative that collects data samples for traditional social scientific research
more effectively and cheaply, thus overcoming challenges for obtaining the inadequate or expen-
sive data samples. Specifically, with the knowledge from OSNs, we can study, analyze and model
the complex dynamic network structure, human mobility patterns, human communities, individual
influence, information diffusion, etc.

Additionally, OSNs also bring us good opportunity to develop profitable social-featured appli-
cations and services. For instance, leveraging location information and relationship in OSNs, a
location based social recommendation service can be created to suggest a user with nearby restau-
rants that are praised by her friends. This practical service not only benefits users with convenience
but also earn considerable revenue for the service and OSNs providers. To date, there are 7 millions
such applications and web sites integrated with Facebook. Moreover, collective knowledge about
tight connections among users and their personal preferences, as well as location information, can
potentially contribute to other large scale systems such as content delivery networks, Peer-to-Peer
networks and cloud computing.

1.1.2 Challenges

Opportunities usually come along with challenges together. In the process of understanding OSNs
and devising social related applications and services, we may encounter various challenging but
interesting issues.

Collecting and processing large-scaled data. Given an OSN platform, the number of existing
users and various digital data the users contribute is prohibitively large; whereas, the current largest
available dataset presented in academic studies covers only a small portion of it. Gathering data in
large scale is a practical problem. It is almost impossible to capture a complete OSN graph along
with all the uploaded information, especially for a popular OSN with a huge number of active users
such as Facebook, Twitter or Foursquare; while data sampling techniques are usually employed to
collect a representative small fraction of the data for research purpose. The challenge here is how to
ensure the representativeness of the sampled data. Additionally, some of users’ information is not
public available due to users’ privacy concerns and business secret issues. Once a large amount of
raw data is available, how to design effective techniques for cleaning, processing, computing and
mining massive data is another challenge that restricts the scale of OSNs analysis.

Maintaining vibrant social connections and activities. Organizing OSNs and maintaining
users’ vibrant connections and activities become a challenge for OSNs, as the population grows
and functionality expands. In particular, it is still challenging for OSNs to predict and recommend
interesting friends to the participants and help them to attain a successful and active social circle.
Especially, recommending appropriate friends for the newly joined participants is even more impor-
tant to attain their interests in OSNs at the beginning. In addition, satisfying users’ requirements
in gaining and sharing information is also required to maintain users’ vibrant activities in OSNs.
Hence, identifying and delivering the personalized content to enormous number of users according
to their personal interests and social circle is a compelling and non-trivial task.
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Advancing applications and services with social information. In order to develop social-
featured applications or advance the existing services, issues regarding data fusion have been ad-
dressed. This includes filtering out of ’white noise’ data; importing useful social information into
the applications and services; and re-modeling the strength of social links to create a new social
graph under the certain circumstances. For instance, for a video P2P sharing network, more im-
portance needs to be attached to the information about users’ social relationships, interests (movies,
music, drama, etc.) statements and interests groups; and perhaps further more weight should be
given to the relationship between friends according to their interest similarity. Additionally, more
sophisticated approaches are required to provide more convenient and friendly services while in-
volving social information. Take social features for restaurant recommendation service for instance,
beyond the user’s current location and beyond general popularity of restaurants, the social relation-
ships and the similarity in taste between the user and her friends should be considered to satisfy
users with convenient and personalized services.

Estimating and preserving user privacy. Last but not least, while people share knowledge
and publish personal information in OSNs, privacy concerns come with the increase of information
leakage which may cause potential nuisance such as advertising spam, online stalking and identity
theft. It is crucial for OSNs to create a reliable and secure environment for the users. Specifically,
whether the users’ hidden information are real secure, how to estimate the security of users’ private
information and how to help users to preserve their private information are all technical issues to be
addressed.

1.2 Motivations and Goals

This dissertation aims to enhance the social applications and services regarding the aforementioned
challenges, thereby increasing both user experiences and commercial profits in OSNs. It concen-
trates on three most classical, critical and practical applications: (1) Link prediction — how can we
explore potential friends for a user to help her establish and enlarge social connections? (2) Inter-
est exploration — how can we discover interesting content for a user to satisfy her personal tastes?
(3) Privacy preservation — how can we inform a user the exposure risk of her private information
so as to preserve her privacy?

In order to tackle these problems, this dissertation draws to the insights from social science
since people are the kernel of OSNs. Specifically, it is based on a widely observed measure of social
relationships and activities in people’s daily life, namely similarity.

In social science, McPherson et al. [1] attach much importance to similarity and argue that
similarity breeds connections and structures network ties. They also state that similarity induces the
significant homophily and correlation principle in social network on a broad range of dimensions.
Generally speaking, this homophily and correlation principle shows that similar people contact each
other with a higher rate than dissimilar ones. This principle can also be extended to a pervasive
context that cultural, behavioral, genetic or material information flows through networks will tend
to be localized in social space [1].

With this knowledge, this dissertation intends to achieve two specific goals:

• Empirically study and analyze the widespread presentations of similarity in OSNs, in order to
rich the collective knowledge about OSNs. In particular, relying on real data collected from
OSNs, a comprehensive study is conducted on whether similar users would be similar in their
interests, approximate in their geo-distance, or close in their social relationships.
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• Investigate how to effectively leverage the observed similarity related principle to devise and
enhance social applications and services, so as to enhance the user experiences for the OSN
participants and profits for the service providers. While concentrating on the classical appli-
cations, this dissertation investigates four research issues which are distinguished from the
state-of-the-arts:

– This dissertation is concerned with friend recommendation for a new user who has not
created any links yet, instead of predicting new links for the existing user based on the
user’s existing links; then, it investigates how to identify friends who are very similar to
the new user by extensively exploiting the very limited register information of the new
user;

– In order to satisfy users’ personal interests, this dissertation also looks at how to intro-
duce social information and similarity properties to improve content discovery in P2P
network.

– For a user whose interests are unknown, this dissertation tends to find out which of the
interest-available users are probably similar to the user; the results can be used to support
interest-based applications such as recommendation system;

– In the existing work, a user’s private information can be inferred due to the relevance
between various pieces of information and the information similarity between friends.
Concerning users’ privacy, this dissertation estimates the exposure risk of a user’ private
information and help the user to preserve its privacy.

Notions of Similarity: As the approaches to estimate similarity between two objects are widely
defined and applied in literature, before discussing the specific work and contributions in this dis-
sertation, the definitions are given and notions of two users’ similarity in this dissertation which
primarily depends on two typical similarity notions. First, similarity of two users is defined based
on the notion of commonalities and differences. The similarity is higher if users exhibit more
commonalities and fewer differences. Applying this notion for similarity estimation, the overlap of
users’ demographic information is calculated, as well as the common friends or shared interests,
using various computation approaches (e.g., cosine similarity). Second, the distance between two
users is considered as an alternative notion to describe users’ similarity. In literature, Euclidean Dis-
tance, Manhattan Distance, Hamming Distance, etc. are employed to compute users’ similarity. In
this dissertation, two specific distance similarity are employed — geographic distance to measure
users’ location similarity and link distance to assess users’ relationship closeness. Especially, two
users are regarded more similar in location if they are closer at geographic distance; and if two users
are friends connecting to each other, it is assumed that they are similar as the link distance is zero.

1.3 Contributions

In the course of achieving the goals of this dissertation, original contributions have been made
in many facets across collecting data, proposing and formulating the specific research problems,
conducting problem-driven analysis and devising the approaches and models. In particular, the
contributions are listed as follows:

• Data Collection from Facebook: In order to carry out the empirical studies on real social
network data, and address the proposed research issues, a crawler has been implemented and
social information of around 500K user profiles on Facebook was collected from March to
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June in 2012. In the data set, each profile contains three aspects of information including
demographic information, social relationships and user interests. In particular, demographic
information refers to the attributes such as age, gender, hometown and etc., social relationships
is represented by friends list, while user interests cover various interests’ domains, e.g., music,
movies, TV series, and books. Besides, some other necessary information is also captured to
complement the research. For instance, location related attribute (e.g., high school, work
place, university) is associated with the located city along with the collected latitude and
longitude information for all the cities that appear in user profiles. To the best of the author’s
knowledge, the crawler has collected one of the largest Facebook dataset with comprehensive
social information up to date.

• Effects of User Similarity on Link Prediction for New Users: Link prediction for new
users who have not created any link is a fundamental problem in OSNs. It can be used to
recommend friends for new users to start building their social networks. The existing studies
use cross-platform approaches to predict a new user’s links on a certain OSN by porting her
existing links from other OSNs. However, it cannot work when OSNs are not willing to share
their data or users do not want to connect different OSN accounts. In this contribution, a
single-platform approach is used to carry out the link prediction; it tends to explore the users’
profile attributes (e.g., workplace, high school and hometown) which can be easily obtained
during the new users’ sign up procedure. Based on the limited available information from the
new user, along with the attributes and links from existing users, three types of social features
are extracted: basic feature, derived feature and latent relation feature. A link prediction
model is proposed using these social features based on Support Vector Machines. Finally,
using the large Facebook data set, the proposed model is evaluated. The result reveals that the
model outperforms the baselines by achieving the AUC value of 0.83. It also demonstrates
that each of the proposed social features contribute significantly to the prediction model.

• Mining User Similarity for Content Discovery in Social P2P Network: Content discovery
is a critical issue in unstructured Peer-to-Peer (P2P) networks as nodes maintain only local
network information. However, similarly without global information about human networks,
one still can find specific persons via her friends by using social information. Therefore, in this
work, the investigated the problem is of how social information (i.e., friends and background
information) could benefit content discovery in P2P networks. First extensive studies are
carried out on the Facebook data set, which reveal the importance of friendships in discovering
users’ personal interests. Guided by the observation, a social P2P network model is built to
enrich nodes in P2P networks with social information and link nodes via their friendships.
Each node extracts two types of social features - Knowledge and Similarity - and assigns more
weight to the friends that have higher similarity and more knowledge. Furthermore, a novel
content discovery algorithm is developed which can explore the latent relationships among a
node’s friends. A node computes stable scores for all its friends regarding their weight and
the latent relationships. It then selects the top friends with higher scores to query content.
Extensive experiments validate performance of the proposed mechanism. In particular, for
personal interests searching, the proposed mechanism can achieve 100% of Search Success
Rate by selecting the top 20 friends within two-hop. It also achieves 6.5 Hits on average,
which improves 8x the performance of the compared methods.

• Inspecting Interest Similarity — Prediction and Application: Understanding how much
two individuals are alike in their interests (i.e., interest similarity) has become virtually essen-
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tial for many applications and services in OSNs. Since users do not always explicitly elaborate
their interests in OSNs like Facebook, how to determine users’ interest similarity without fully
knowing their interests is a practical problem. This work investigates how users’ interest sim-
ilarity relates to various social features (e.g. geographic distance), and how to infer whether
the interests of two users are alike or unlike where one of the users’ interests are unknown.
Relying on the Facebook data set, comprehensive empirical studies are carried out to ver-
ify the homophily of interest similarity across three interest domains (movies, music and TV
shows). The homophily reveals that people tend to exhibit more similar tastes if they have
similar demographic information (e.g., age, location), or if they are friends. It also shows that
the individuals with higher interest entropy usually share more interests with others. Based
on these results, a practical prediction model under a real OSN environment is established.
For a given user with no interest information, this model can select some individuals who not
only exhibit many interests but also probably achieve high interest similarities with the given
user. Eventually, a use case is given to demonstrate that the proposed prediction model could
facilitate decision-making for OSN applications and services.

• Information Relevance and Leakage — Location Modeling and Privacy Preserving: Pri-
vacy has become a major concern in OSNs due to the threats such as advertising spam, online
stalking and identity theft. To protect privacy, many users hide or do not fill their privacy-
sensitive attributes in OSNs. Existing studies try to infer users’ hidden attributes through
some other information exposed by the users themselves, which implies a potential disclosure
of the hidden attributes. However, these studies do not quantify the exposure risk for a user
based on her self-exposed information. Thus, an individual user still cannot understand the
exposure probability of her privacy-sensitive attributes, let alone take effective countermea-
sures. This work attempts to study the exposure probability of a user’s hidden attributes via
her self-exposed information, with a representative privacy-sensitive attribute - current city
- in Facebook. To this end, a novel current city prediction approach is designed to disclose
a user’s hidden current city from her self-exposed information. Based on user information
crawled from Facebook, it is verified that the proposed prediction approach can predict a
user’s current city more accurately than state-of-the-art approaches. Furthermore, based on
the proposed prediction approach, the exposure probability, which indicates that a user’s cur-
rent city can be correctly predicted via some measurable characteristics of the self-exposed
information, is modeled. An exposure estimator is constructed to assess the current city ex-
posure risk for an individual user, given her self-exposed information. Some case studies are
illustrated to show how to use our proposed exposure estimator to protect users’ privacy.

1.4 Organization

The organization of the remaining of this dissertation is visualized in figure 1.1. Chapter 2 is a sur-
vey of the state-of-the-arts from three perspectives including the metrics to quantify user similarity,
the empirical observations regarding user similarity and the relevant social applications and services
in OSNs. Before introducing the main contributions, Chapter 3 describes the data collection ap-
proach, presents the user profile data crawled from Facebook for this dissertation and discusses the
limitations of the data set. Then the main works of empirical studying and modeling in OSNs are
introduced in detail one by one respectively in Chapter 4, 5, 6 and 7. More specifically, Chapter 4 in-
vestigates link prediction problem for new users who have not created any link. It explores a variety
of social features from the very limited available information from new users, study the correlations
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between these social features and the probability of link creation, and eventually train a link predic-
tion model to recommend friends to new users. Chapter 5 evaluates the effects of user similarity in
social P2P network and exploits users’ social relationship and personal background to improve its
content discovery. Chapter 6 investigates the correlations between interest similarity and a variety of
features and proposes an interest similarity prediction model which can select some interest-similar
individuals for a user who does not present any interests. In this chapter, the model is further ex-
ploited by a new user recommendation system, verifying its advantages. Chapter 7 discusses the
leakage problem of private location information due to the information relevance between different
attributes. This work constructs an accurate current city prediction model according to users’ social
relationships and the relevance among different attributes. An exposure estimator is proposed to as-
sess the exposure risk of current city information given users’ self-exposed information. Chapter 8
concludes the dissertation and charts the future research directions.

Chapter 2.

Literature

Review

Chapter 3.

Data Collection 

and Description

Chapter 8.

Conclusion and 

Future Work

Chapter 5.

Mining User Similarity for Content 

Discovery in Social P2P Network
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Inspecting Interest Similarity:

Prediction and Application

Chapter 7.

Information Relevance and Leakage:

Location Modeling and Privacy Preserving
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Effects of User Similarity on Link 

Prediction for New Users

Figure 1.1: Organization of the rest of the dissertation
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In this chapter, we review state-of-the-art by three aspects. We first investigate the existing
metrics and a variety of social features employed to measure user similarity in OSNs. We continue to
go over the empirical studies on user similarity and summarize its observations. Lastly, we introduce
the user similarity based applications and inspect the effects of user similarity on social applications
and services.
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2.1 Measuring User Similarity in OSNs

Evaluating similarity is a practical and fundamental problem with a long history which serves to var-
ious research domains such as geographic information science [2], biology[3], decision-making [4].
Generally speaking, measuring similarity refers to two factors, namely the measuring approach and
variables (i.e., the features are being used to measure similarity). Therefore, in this section, we will
first introduce the widely used measuring approaches and then the social features that are employed
to measure user similarity.

2.1.1 Similarity Metrics

Concerning about the estimation of similarity in certain applications and services in OSNs, we
classify the existing similarity metrics into three categories. We start with the well-known classical
similarity metrics such as overlap similarity, cosine similarity and Pearson correlation coefficient.
Then we review some information theoretic similarity and global structural similarity metrics which
are defined to adapt to specific kinds of applications.

Specifically, we denote the two objects (e.g., users) respectively as u and v, and organize their as-
sociated attributes (e.g., friends, demographic information or purchased products) into a set, denoted
as Au and Av; s(u,v) represents the similarity between u and v.

2.1.1.1 Classical Similarity Metrics

(1) Overlap Similarity. Overlap similarity is a straightforward estimation of users’ commonality by
calculating the intersection of two users’ attribute sets or the number of two users’ shared items,
denoted as:

sO(u,v) = |Au
⋂

Av| (2.1)

Since overlap similarity is a simply defined and calculated metric, it is one of the most common
used metrics of similarity over studies on OSNs. To predict the potential friends that a user (u)
may link to in the future on basis of users’ interest similarity, the number of shared information
items, authors and tags are counted to measure the item-based, metadata-based and tag-based interest
similarity respectively [5]. Newman [6] employs the number of common collaborators between
two authors to measure their scientific collaboration and point out that the probability of scientists
collaborating increases with the number of common collaborators. Besides, Kossinets et al. [7]
demonstrate that the links are more likely to be established between two users if they possess more
number of interaction contexts.

Nevertheless, overlap similarity has its limitation on similarity estimation. For instance, assume
that users u1 and v1 both with 10 friends share 9 of them, while users u2 and v2 who both own 30
friends also have 9 friends in common. It is obvious that the similarity between u1 and v1 is larger
than it between u2 and v2; while overlap regards them as identical in similarity. Note that, the value
of overlap similarity is not constrained within a certain range.

(2) Cosine Similarity. Cosine similarity, which is defined on two vectors of attributes, calculates
the cosine value of the angle (θ ) between the two vectors. It can be represented by the dot product
and magnitude product of the two vectors, as:

scos(u,v) = cos(θ) =
Au ·Av

‖Au‖‖Av‖
(2.2)
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Cosine similarity can easily be well introduced to a variety of applications. Ye et al. [8] apply
cosine similarity to measure the weights of friends according to their distance for location recom-
mendation. In a social tagging system, tag similarity is calculated by using the cosine similarity
between two tag vectors [9]. Cosine similarity also plays a fundamental role in computing topic
similarity between two users so as to model latent user taste for social link prediction [10].

When the attribute value in the vectors is either 1 or 0, we call it binary cosine similarity.
In other words, binary cosine similarity is suitable for the context with binary attributes, like a
user’s tags vector where each element corresponding to a tag represents whether or not the user
annotated questions/blogs with the tag, or like a user’s friends vector indicating the relationship
(befriend/unfriend) between the user and the others. To some extent, binary cosine similarity can
also be regarded as a particular type of normalized overlap similarity. Therefore, it can overcome
the above-mentioned limitation of overlap similarity and thus be widely used. By adopting binary
cosine similarity, Ashton et al. [11] measure two users’ interest similarity and social similarity and
thereby investigate the effects of similarity on the evaluation that one user provides of another.

Besides, a modified cosine similarity with a regulating factor, namely weighted cosine similar-
ity, is given to consider more variations. It is defined as:

sw_cos(u,v) =
Au ·Av

‖Au‖‖Av‖
·wuv (2.3)

Here wuv represents the adjusting variations endowed with diverse indications with respect to
context. In a web recommendation system, Amatriain et al. [12] divide the number of two users’
co-rated items by the total number of items they rate as the weight. Similarly, to recommend social
events with holding a user’s home location, the location similarity is calculated by weighted cosine
similarity taking into account the common events that users from both locations have attended [13].
Another recent work tends to reduce the cosine similarity value if two users have many dissimilar at-
tributes [14]. Since a weight is used to adjust the estimation of similarity, weighted cosine similarity
is expected to be more accurate in specific applications.

As cosine similarity measures the cosine value of the two vectors’ angle, it fails to estimate their
dissimilarity [15], if the two vectors are in the same direction but different value. For instance, given
five items in a recommendation system, user u dislikes any of them and rates all of them with one
star; while user v rates them all as five stars. The cosine similarity of u and v is equal to 1.

(3) Pearson Correlation Coefficient. Pearson correlation coefficient measures how strong two
vectors are related to each other. It can be derived from the quotient of the two vectors’ covariance
to the product of their deviations.

sp(u,v) =
∑
|A |
i=0(aui−ai) · (avi−ai)√

∑
|A |
i=0(aui−au)2 ·∑|A |i=0(avi−av)2

(2.4)

Pearson correlation coefficient is rather popular in collaborative filtering recommendation sys-
tems as it takes into account the variety of individual users’ review. Specifically, assume two users
u and v rate a group of items. It is possible that u normally rates them with high score (4 stars if
not dislike) while v rates low (2− 3 stars in the same case). Pearson correlation coefficient sub-
tracts the average rating score from each rating, thereby eliminates the individual subjective differ-
ences [15][16][17]. In addition, Pearson correlation coefficient gives a value ranging from −1 to 1,
thus it can represent a negative correlation when below 0. For instance, Ziegler et al. [18] use the
negative Pearson correlation coefficient to represent users’ opposite interests.
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While by using Pearson correlation coefficient, the users’ similarity could be assessed artificially
high if the vectors merely contain a very limited number of attributes (e.g., only very few items are
rated by both of the users in a recommendation system [16]). This issue can be mitigated by using a
weighted Pearson correlation coefficient, which will decrease the similarity value by multiplying a
weight if the number of co-rated items is less than a threshold [16].

2.1.1.2 Information Theoretic Similarity Metrics

Semantic objects, such as comments, posts, answers to questions, descriptions or reviews about
services/products, and tags to photos, videos, music, etc., are widespread over OSNs nowadays. Es-
timating two users’ similarity by such semantic objects is a fundamental task, which can in turn sup-
port to a great number of applications (e.g., recommendation system, search, link prediction) [19].
For the sake of commonality and simplicity, the classical similarity metrics are sometimes used
to compute the similarity between two semantic objects [20][21]; however, these classical metrics
are only limited to similarity assessment of two numerical attribute vectors [22]. Moreover, the
structural information between semantic objects may be missing when using classical metrics [21].
Therefore, in this section, we introduce information theoretic similarity metrics which are more
commonly used than classical metrics in semantic similarity evaluation.

(1) Mutual Information (MI). From the information theoretic perspective, MI [23] evaluates
the information that two objects u and v share. It can be defined as:

sMI(u,v) = ∑
au∈Au

∑
av∈Av

p(au,av) log
p(au,av)

p(au)p(av)
(2.5)

where p(au,av) is the joint probability of au and av, and p(au) and p(av) are independent probability.
It has been proved that MI can estimate social tag similarity with higher accuracy compared to

Overlap, Jaccard, Dice, and Cosine similarity [24]. By measuring the semantic similarity, mutual
information is extended to other specific practical environment. In a study on location sharing
services, the relation between user-generated terms and radius of gyration, as well as the relation
between users’ sentiment and their locations, is evaluated by MI. In order to observe the different
patterns of language uses by users’ classes (e.g., women/men), Caverlee et al. [25] exploit MI to
measure the relatedness between a term and a user class. In addition, MI is also commonly used to
test community detection algorithms [26][27]. Similar to the idea of community detection testing,
Viswanath et al. [28] use MI to compare the nodes ranking results of four social network based Sybil
defense schemes. Though MI is an effective and competitive similarity metric, it is too expensive in
its computation [24].

(2) Information Content (IC). Resnik [29], borrowing information content idea, measures two
concepts’ semantic similarity by the information content of the concepts that subsume them in the
taxonomy. The author further extends the measurement to word/tag similarity as:

sIC(au,av) = maxa∈S (au,av)[− log p(a)]
sIC(u,v) = maxau∈Au,av∈Av [sIC(au,av)]

(2.6)

where sIC(au,av) represents the similarity between two concepts au and av; S (au,av) is the set of
subsumed concepts under au and av; sIC(u,v) calculates the similarity between words/tags u and v;
Au and Av stands for the set of concepts associated to u and v respectively; and p(a) defines the
probability of concept a.

Accurate evaluation of concept probability is a fundamental and challenging problem in the
application of IC metrics. Resnik [29] simply divides the frequency of words subsumed under
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concept a by total amount of words in textual corpora as the concept probability. Although Resnik’s
IC metric may be challenged by many issues such as the availability of corpora or the need of
manual pre-processing of text, it creates the basic formula of IC based evaluation for a number of
more complex and accurate IC assessment [30][31] and it is commonly used in OSNs. Resnik’s IC
method is used to compute the similarity between either user-generated tags [32], or items and users’
profiles [33] so as to achieve personalized recommendation. In order to tag a place, IC method is
employed to assist matching a place to its Wikipage and obtaining the description of the place [34].

(3) Lin’s Descriptive Similarity. Lin [22] proposes a definition of similarity based on a set of
explicit assumptions about similarity in information-theoretic term. Specifically, Lin’s similarity
theorem defines similarity as the ratio between the amount of information in two objects’ common-
ality and the amount of information to fully describe the two objects:

sLin(u,v) =
logP(common(Au,Av))

logP(description(Au,Av))
(2.7)

Lin’s descriptive similarity can be applied in a variety of domains as long as we know both the
commonality and description of the two objects. GiveALink uses Lin’s descriptive similarity to cal-
culate users’ similarity based on their resources [35]. A social semantic political web application
(i.e., Ontopolis.net) [36] applies Lin’s metric to compute similarity of pair-wise tags so as to identify
similar issues/plans/users. Yi [37] addresses social tag sense disambiguation task with stable perfor-
mance by leveraging Lin’s method to estimate the similarity between a tag and its co-occurring tag.
Nevertheless, Lin’s similarity is not applicable to non-hierarchical taxonomies [38]. Maguitman et
al. [39] extend Lin’s descriptive similarity to both hierarchical and non-hierarchical topical ontology.

(4) Maximum Information Path (MIP). MIP [19] advances both the traditional shortest-path
based similarity and Lin’s descriptive similarity. On one hand, it considers Shannon’s information
amount of shared content compared to the traditional shortest-path based similarity; On the other
hand, MIP overcomes Lin’s limitation on non-hierarchical annotations by employing the maximum
information path passing through the most specific shared tag among numerous paths between two
objects. MIP is mathematically defined as:

sMIP(u,v) =
2log(mina∈Au

⋂
Av [P(a)])

log(mina∈Au [P(a)])+ log(mina∈Av [P(a)])
(2.8)

MIP is thus welcomed to the non-hierarchical semantic environments. Without hierarchical
taxonomy, MIP is leveraged to measure the the similarity between users’ interests and candidate
posts in an effect study of topical interests on user behavior on Twitter [40]. In the design of social
tagging games — GiveALinks Slider and Great Minds Think Alike — where users are requested to
tag the current page and link it to a target page, the authors employ MIP to obtain the target’s similar
pages to assist players [41]. In folksonomies where annotations are represented by (user, item, tag)
triples, MIP are applied to compute two users’ similarity with respect to their social tags and thus
to predict users’ social links according to their topical similarity [38]. Aiello et al. [38] indicate that
the computation of MIP is not as expensive as mutual information.

2.1.1.3 Global Structural Similarity Metrics

So far, we have introduced similarity metrics that only consider two users’ commonality or differ-
ences in terms of their own local information. In this section, we are going to review another type of
similarity metrics taking into account the global topology information based on structural networks.
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(1) Katz. Katz metric [42] is one of the fundamental path-ensemble similarity metrics. Provided
that two nodes (u and v) are more similar if there exist more and shorter paths between them, Katz
sums the number of paths from u to v and exponentially damp the paths’ weights according to their
lengths (i.e., the shorter the path, the larger the weight). We use paths<l>

u,v to represent the set of
length-l paths from u to v, then we can formulate Katz metric as:

sKatz(u,v) =
∞

∑
l=1

β
l · |paths<l>

u,v | (2.9)

where β is a very small variable larger than zero. It modulates the contribution of path by assigning
a very little value to a long path.

Katz metric is effectively used in link prediction applications, such as link recommendation [43][44]
and friend discovery [45]. Specially, to predict the structure of social network without knowing any
author-author relationships, Makrehchi [46] constructs auxiliary networks based on author-topic and
topic-topic relations, and uses Katz metric to calculate the closeness of either author-topic or topic-
topic. In addition, Katz is leveraged to estimate the proximity of a user to a community so as to
achieve community recommendation [47][48]. Katz is improved in its recent use to be adapted to
the multi-modal network [49] or to integrate topology information with node attributes and time
characteristics [50].

(2) Rooted PageRank (RPR). Grounded on the idea that a web page is significant if it receives
numerous links from other important pages [51], PageRank was devised to measure the significance
of pages by randomly walking with a probability of α through outgoing links, and with a probability
of 1−α to a certain designated page [52]. On the basis of PageRank, Rooted PageRank [53], rooted
at a node u, estimates the similarity between u and v by the stationary probability of u walking to v
where u takes a probability of 1−α move to a random neighbor and a probability of α return to u at
each walk step. The stationary probability for all vertex pairs in a graph can be computed by [54]:

sRPR(u,v) = (1−α)(I−αD−1M)−1 = (1−α)D−1/2(
∞

∑
k=0

α
kT k)D1/2 (2.10)

where M is the adjacent matrix; D is the diagonal degree matrix in which D[i, i] = ∑ j M[i, j]; and T
is the normalized adjacent matrix (T = D1/2MD−1/2).

RPR is directly applied to or modified to a variety of applications. First, RPR is widely leveraged
to social link prediction [53][55][56]. For instance, Liu et al. [57] define an AuthorRank to repre-
sent the co-authorship in social digital library networks by a weighted RPR. Backstrom et al. [58]
calculate PageRank score to predict and recommend social links in a supervised way. RPR is also
exploited to evaluate the trust of nodes according to the principle that ‘close’ users are often more
trustworthy [59][60]. Besides, semantic similarity can be gauged by RPR [61]. In a semantic envi-
ronment of Folksonomies, an adaptive PageRank algorithm is proposed and applied to measure tag
similarity [62] and further facilitate recommendation [63].

Note that, besides RPR, there exist several other random walk based similarity measurements in-
cluding Hitting time [64], Escape Probability [65], HITTS [66], Commute Time [67], PropFlow [68],
etc. All these methods share the fundamental idea of graph based random walk but are defined
independently to adapt to different applications and circumstances. Besides, these random walk
methods attract huge attention on their improvement in scalability [54][69][70] and computation
speed [71][72].

(3) SimRank. SimRank [73] regards two object u and v similar if they are related to similar
objects. Specifically, it estimates the similarity between u and v by average similarity between the
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neighbors of u and v in an iterative manner on a graph, and it defines the similarity of u and v equal
to 1 if u and v are the same. SimRank can be mathematically written as:

ssr(u,v) =

{
1 if u = v

C
|A (u)||A (v)| ∑au∈A (u),av∈A (u) ssr(au,av) if u 6= v

(2.11)

where A (u) and A (v) stand for the neighbors of u and v respectively; and C ∈ [0,1] is a constant.
SimRank usually yields the best performance in structural context [74]. Bao et al. [75] pro-

pose a SocialSimRank which adapts SimRank to compute the similarity between social annotation
and web queries in order to facilitate web search. Yu et al. [76] cluster photo-sharing groups into
categories by using SimRank to analyze similarity of groups and tags. SimRank is also suitable
for friends recommendation [77][78], and trust estimation [79]. However, SimRank cannot satisfy
the automorphic equivalence property [80]. In addition, SimRank also suffers from the expensive
computation, and thus many fast SimRank algorithms have been proposed [74][81]

2.1.1.4 Summary

We summarize the most typical and widely used similarity metrics into three categories. The clas-
sical similarity metrics are almost leveraged to every specific domain of social analysis, models
and applications, whereas they are only limited to similarity assessment of two numerical attribute
vectors [22]. Moreover, the structural information may be missing when using classical metrics [21].

In OSNs, information theoretic similarity metrics primarily serve to estimate the similarity be-
tween objects based on their semantic information. Compared to the classical similarity metrics,
this type of similarity metrics takes more computation time and space. And it may also miss some
structural connections among objects.

Global structural similarity metrics extract the structural information implied between two ob-
jects and are more beneficial to link prediction, trust estimation and community detection. The
biggest issue residing in all global structural metrics is their high computation complexity, though
they are usually more accurate. Additionally, this type of metrics is easily to neglect the local net-
work characteristics and other attributes information.

In a nutshell, each type of similarity metrics has its own advantages and disadvantages in specific
application domains. We’d better select the appropriate metric according to the application context.
An alternative way is to consider the combination of multiple metrics together. For instance, we can
combine both local and global similarity measurements for link prediction, by respectively applying
cosine similarity to estimate two users’ profile similarity and leveraging Katz similarity to capture
their global structural relationship closeness.

2.1.2 Features of User Similarity

In different social network platforms (e.g., Facebook, Twitter or Foursquare) or diverse applications
such as recommendation, link prediction and location based services, the obtainable, sensitive and
effective features are different. In this section, we introduce the varied features with respect to three
classes: attribute features, activity features and structural features.

2.1.2.1 Social Attribute Features

Social attribute features refer to all the features derived from users’ basic information. Different
OSN platforms usually maintain different basic information. For instance, Facebook holds users’
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gender, age, education background, current city, interests, contacts, etc., while Twitter only contains
a simple user profile with three attributes, i.e., bio, location and website. All the profile information
can be explored to investigate users’ characteristics in OSNs, such as homophily. Specifically, users’
locations are explored to the homophily of location of friends and further to infer some others’
locations [82]; recommendation systems take advantage of users’ interests and all the available
profile information to predict and recommend new items for users [83]. These attribute features are
also leveraged into P2P networks to identify the similar peers [84].

The analysis based on social attribute features can effectively help us to understand the charac-
ter and structure of OSNs, thus further provide a ground to us for modeling and applying OSNs.
However, we cannot fully depend on these attribute features. First, it is regarding of data limitation.
In some OSNs (e.g., Twitter), the obtainable profile attributes are very limited; even in Facebook
which attempts to require more users’ basic information, only a fraction of them can be publicly
accessed due to the privacy concern. Second, extracting specific features in certain applications is a
challenging issue. For instance, to predict users’ links, it is rather hard to decide which features (e.g.,
age, college, work) are conducive and how much of them respectively. Third, the social attribute
features are relatively stationary which may not represent users’ dynamic characteristics. Fourth,
concentrating on social attribute features may lead to the miss of structural features in OSNs.

2.1.2.2 Social Activity Features

Social activity features relate to users’ real-time activities, such as comments, posts, shares, likes,
forwarding, tagging, communicating, check-ins, purchase, download, rating, question and answer,
edit and so on. The dynamic activity information is usually used to analyze the evolution of
OSNs [85], or to predict users’ mobility traces [86]. The recent purchase, download and rating
records can also be leveraged to predict users’ favorite products in recommendation systems [83] or
to assist social P2P networks to trace the source of content [87]. Research in information retrieval
can exploit features like forwarding and shares to investigate the properties of information flows in
OSNs [88]. Check-ins are significant information for a variety of location based applications [89].

Social activity features can compensate for social attribute features to some extent. First, they are
evolving information and can indicate users’ recent behaviors. Second, it is relatively cheaper and
easier to obtain. For instance, tweets and check-in data can be accessed through public APIs from
Twitter and Foursquare, respectively, for free. However, social activity features cannot overcome
the rest shortages of social attribute features, including the miss of structural features in OSNs and
the difficulty in extracting appropriate features for certain applications.

2.1.2.3 Social Structural Features

Social structural features are the features defined on the basis of the various explicit and implicit
links connecting users in a social graph. Mutual friends relationship [6], follower-followee [89], or
the member relations in a same group [55] are the most natural links in OSNs. These natural links
imply some other information that can be used in applications. Mutual friends may indicate two
users having the same age, living in the same city, preferring similar products, etc. The relation
between follower and followee directs the information flow and reflects users’ influence.

Besides the explicit links between nodes, there is much auxiliary information including either
attribute features or activity features being explored to describe the nodes’ implicit connections and
assisting to build auxiliary social networks [84]. For example, if a user comments to another one’s
posts or photos, or two users comment to, like or share the same post, or two users use the same tag,
an implicit link between the two users could be set up.
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The existing studies deal with the links in OSNs in two ways: all equal links [82] or biased
strong/weak links [58]. All equal links mechanism takes all the links as equal and the social network
is regarded as a unweighted graph; Biased strong/weak links mechanism measures users’ cohesion
and assigns a weight to a link to describe its strength. Users’ cohesion is usually measured by the
qualities such as the number of communications, or common friends, or common ‘likes’ between
them.

Based on these explicit or implicit, unweighted or weighted links in OSNs, a number of struc-
tural metrics, including the number of links, path lengths, local/global cluster coefficient, modularity,
number of triads, are employed to enhance social application, especially in community detection,
link prediction. In fact, structural features are built upon the other two types of features; therefore,
they may inherit their shortages such as the limitation on data availability. While one of the manifest
advantages of structural features is that they take the structures of OSNs into accounts.

2.1.2.4 Summary

In a nutshell, a plenty of various social features are leveraged to study and model OSNs and enhance
social applications. However, we encounter several issues in the practical research and application
with these potential features. First, various platforms maintain diverse information and this informa-
tion may be not accessible; therefore, we can only select the obtainable information in certain cases.
Second, among the available information, it is still challenging to determine the effective ones with
the corresponding weights during similarity estimation.

2.2 Empirical Observations of User Similarity

In recent years, extensive empirical studies have been carried on over various OSN platforms. Mis-
love et al. [90] look into the structural properties of four online social networks of Flickr, YouTube,
LiveJournal and Orkut. Through all these four OSNs, the authors confirm the properties of the
power-law, small-world and scale-free that are discovered in real social networks. The structure of
Facebook graph is anatomized in [91], which presents its fully connection, dense structure, and as-
sortative pattern. These structural analysis shed light on the OSNs grounded on the comprehensive
graph features in one or several OSNs.

Beyond the structural characteristics which are captured from the graph of the users (nodes) and
their social connections (edges), we attach more significance to the attributes of the users themselves,
the representative meaning of the social connections, and the potential relations in users’ attributes
which may cause, or indicate, or correlate to their social connections. Because these studies not
only lead us to the essential reasons of social connections among people but also stir us to more
appropriately take advantage of social relations to improve the online applications.

Particularly, we touch on the effects of users’ similarity in terms of similarity in demographic
background, interests or behaviors on their ‘connections’. Note that the ‘connection’ here is a gen-
eral representative of relation between users but not necessarily a real link as friendship. For exam-
ple, in the study [92] where Leskovec et al. point out that people are more likely to communicate to
the others in similar age, language and location, the connection represents the probability of com-
munication between users. In other words, we overview the widespread homophily phenomenon in
OSNs where similar users tend to connect to each other. In particular, we verify three specific types
of connections in terms of interest similarity, location relevance and friendship.
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2.2.1 Effects of User Similarity on Interest Similarity

The studies on interest similarity tend to find out powerful implications that may indicate the degree
of interests sharing between users. Users with the similar interests are quite conducive information
in social applications and services. For instance, users of similar interests are usually captured to
assist recommendation for electronic business and content discovery in P2P networks. However,
due to the unavailability or inadequacy of users’ explicit interests in some context, identifying the
effective implications of interest similarity is required.

Many existing studies, depending on common senses, turn to the social relationships and exam-
ine whether or not two socially linked users would share more interests than the unlinked users. It
is revealed that friends indeed exhibit more common interests than strangers; it is also demonstrated
that the interest similarity relates to the friends’ distance [5][93]. Membership also holds the ten-
dency of sharing interests. Users in a same forum are observed being more likely to attend the same
threads [94].

In addition, the effects of similar background information, including gender, location, age, oc-
cupation, etc., is comprehensively examined. It is revealed that users’ with more similar background
information are also more alike in their interests [95]. For instance, users with less age difference
or in the same generation present higher interest similarity; users’ nationality or their geographic
distance manifest their interest similarity to some extent.

Some other users’ relations have also been explored to indicate users’ interest similarity and
leveraged to enhance applications. The correlation between trust and interest similarity is verified
in [18]. It is also pointed out that users using the same tags or tagging the same items may share
more interests [96]. In P2P networks, two users are considered as similar in interest if they can
provide files to each other [97]. Collaborative filtering recommendation systems are based on the
principle that two users will have more common interests if they share some interests already [98].

2.2.2 Effects of User Similarity on Location Relevance

Location becomes the most essential information in Location-Based Services. Google map lever-
ages a user’s current location to show her surrounding routes; Coupon advertises promotion infor-
mation according to users’ living cities. OSNs with location, i.e., Location-Based Social Networks
(LBSNs), combine social-spatial properties together and bring users even more fantastic services.
For instance, Foursquare can recommend a nearby restaurant to a user according to her friends’
check-ins and ratings. Therefore, it is promising to understand how users’ similarity relates to their
location relevance and further apply this collective knowledge to enhance the both social and loca-
tion based services in LBSN.

The correlation between social relationships and geographic distance is a fundamental spatial
characteristic of OSNs. Much existing work demonstrates that the probability of two users socially
linking to each other is a function of their distance. There is a universal agreement on the function
that the probability decreases with the increase of distance, whereas the decay relation is not the
same in different contexts, e.g., p(d) ∼ d−2 in a mobile phone communication network [99] while
p(d)∼ d−1 in Facebook [82].

On the other hand, the relation between friendship and users’ mobility is examined by check-ins
in OSNs. Cho et al. [86] reveal that people are more likely to visit a distant place where friends live
around, while the social connections less affect people’s short-ranged travel. They also point out
the limits of explanation on users’ mobility from their friends, based on the empirical findings that
84% of the users have less than 20% of the check-ins visited by one of their friends. Moreover, time
effect is also reported. The probability of a user traveling to her friends’ check-ins is decreasing
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by the time window since her friends’ visiting [86]. Besides, temporal distance between two users’
check-ins at a same time is verified efficient to enhance location prediction [100].

Beyond the effect on location relevance from the direct links between two users, Leskovec et
Horvitz [101] systematically report a complex interplay between topological and geographical prop-
erties of OSNs. They verify that topologically shortest paths between any of two users in OSNs are
proportional to their geographic distance. Besides, Volkovich et al. [102] state that the ties in a
tightly linked social group span short distances.

2.2.3 Effects of User Similarity on Links

Social link, connecting users in OSNs, is the most fundamental component. The aforementioned
basic structural analysis are conducted based on the users’ social links. Nevertheless, in this section,
we discuss how users’ similarity would affect the creation of a link, instead of inspecting the work
on OSNs’ structural properties. As social link represents some certain relationship between users,
mining the users’ similarity will provide a significant clue for their social link. For instance, the
classmates who go to the same college may be friends. In the previous two subsections, we review
the existing work that evaluates the effects of friendships on interest similarity and location relevance
respectively. Then, we survey the effects in the opposite side: user similarity on links in terms of
interest and location, and examine some other effect observations subsequently.

In a study for disentangling the puzzle whether people befriend with others who are similar to
them, and whether friends get more similar over time, Lewis et al. [103] find that users sharing
certain interests in music and movies are significantly likely to make friend with each other. By
mining the semantic interest similarity on social tags, the effectiveness of interest similarity on the
performance of friendship prediction is also confirmed [38][104].

Although people may make friends in both far and close distances [105], Backstrom et al. [82]
visualize that the probability of being friends drops quickly with the increase of geographic distance.
Cho et al. [86] demonstrate that similarity of users’ check-ins trajectories strongly indicate a link in
OSNs. In addition, recommending friends on a basis of user similarity according to their location
histories is validated in [106].

Many other user similarity metrics influence the probability of the creation of links. Backstrom
et Leskovec [58] reveal that the probability of becoming friends is increasing with the number of
mutual friends between two users. Leroy et al. [55] measure the probability of being friends accord-
ing to the interest groups that users are joining in. They show that two users will befriend if they join
many same groups as well as if they join in the groups with little time interval. Besides, co-contact,
co-subscription, co-subscribed, are proved to be conducive for link prediction [107].

2.2.4 Summary

In this section, we review how user similarity impacts their interest similarity, location relevance
and relationships. We confirm the homophily properties in OSNs and conclude that similar users are
more likely to exhibit more common tastes, live closer, and become friends. In fact, similar users
also present some other homophilous characters: similar users provide each other with positive
evaluation in a high probability [11]; the mutual trust between people who are similar to each other
is high [18].
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2.3 Improving Social Applications with User Similarity

Inspired by the aforementioned findings about effects of user similarity, researchers extensively ex-
ploit these effects to develop and improve a variety of applications in OSNs, and also introduce social
information with their effects into existing systems such as Peer-to-Peer (P2P) network and recom-
mendation systems. In this section, we primarily review state-of-the-arts leveraging user similarity
with respect to four specific categories of applications and services, including content discovery in
Peer-to-Peer network, recommendation systems, location prediction and link prediction.

2.3.1 User Similarity in Peer-to-Peer Network

Identifying the users who have similar interests is a fundamental task for content discovery or
prefetching in social P2P network. Numerous exiting studies leverage a variety of techniques to
build up peer to peer relationships according to their similarity. We classify them into the following
three categories.

A classical category of social P2P searching approaches forms social-like relations based on user
similarity learning from historical behaviors. By studying the historical behaviors, Sripanidkulchai
et al. [108] identify the similarity principle of interest-based locality: it is more likely to find content
on a particular peer if it occurred on the peer in the past. Exploiting users’ historical queries, peers
connect to others with the same interests gradually by the result of daily searches [87]. In [109], the
authors also look into users’ friends circles and exploit the link prediction method to extract peers’
proximities, consequently enhancing the capacity for resource discovery in P2P circumstances.

The recent surge of the OSNs brings the new trend of leveraging real social information into
P2P networks. Li and Shen [84] map Facebook users’ information into P2P networks to cluster
users by their common interests and organize nodes into a structured graph and perform searching
by distributed hash table. Using an existing co-authorship graph, Chirita et al. [110] generate a
large P2P collaboration network, investigating diverse search mechanisms and indicating its quality.
Apart from improving content discovery, social information is also employed to solve other issues
in P2P networks. Sanchez-Artigas and Herrera [111] leverage the implicit trust in social networks to
address the churn problem in P2P systems. In [112], the authors reduce startup delays in P2P video
sharing networks through a prefetching approach based on users’ preferences. [113] accelerates the
performance of BitTorrent file sharing with the Twitter social network grounded on the observation
that the nodes in Twitter communities are likely to meet each other again.

Different from the previous two categories of approaches that focus on the similarity between
two individuals, another category of methods applies various strategies to cluster users who are
close to each other in tastes into a community, namely community-based solutions. Fast et al. [114]
improve P2P performance by means of clustering users and creating a social network akin to the one
based on users’ music preferences, with the Hierarchical Dirichlet Processes. In [115], the authors
present the self-organized interest-based clusters in affinity networks which are further exploited to
devise a proactive P2P recommendation system. [116] proposes an approach to grouping similar
nodes and producing a super-peer for constructing Semantic Overlay Networks (SONs). It can
achieve high-quality searching by posing similar queries to the N most-similar SONs. Liu et al. [117]
introduce a small world architecture for P2P networks and propose a semi-structured algorithm to
achieve content discovery in multi-group P2P systems. Generally, as peers in the same community
share more attributes and content, organizing a community is an ideal way to accelerate the search
process. Meanwhile, detecting and establishing a useful community is not an easy task.
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2.3.2 User Similarity in Recommendation Systems

Recommendation system is another typical application of users’ interest similarity. In other words,
once we can identify a user’s personal interests and capture the other ones who have similar interests,
we can recommend this user items/products in two basic ways: either selecting the items which
are similar to her personal interests (i.e., content-based recommendations); or collecting the items
from users who share interests (i.e., collaborative recommendations). The hybrid approaches which
combine the content-based and collaborative methods are also popular alternatives. However, these
traditional recommendation approaches may encounter severe performance issues due to the sparse
interest information, especially for the new users [98].

Based on the observation from OSNs that friends usually share more interests than strangers,
social relationships are leveraged to increase recommendation effectiveness. Liu et Lee [83] capture
users’ preference ratings and friendships from an OSN and enhance recommendation performance
by incorporating these social information into collaborative recommendations. By incorporating
social friendships information, Ma et al. [118] leverage a matrix factorization framework with social
regularization to improve traditional recommendation.

Apart from the friendships, users’ social demographic information is also employed to enhance
recommendation performance, especially to reduce cold-start problem or recommend for users who
do not present any favorite items/products. Specifically, Chen and He [119] integrate demographic
attributes including age, occupation and gender to collaborative filtering recommendation. Based
on α-community spaces model and ‘level of agreement’ of the community, Nguyen et al. [120]
introduce demographic information to build a rule-based induction for new user recommendation.

2.3.3 User Similarity Based Location Prediction

Users’ location becomes a kind of essential information when understanding the spatial structure
of OSNs and providing Location-Based Services. By making use of location information, Friend
Finder enlarges users’ social circle by recommending new friends geographically around them; ex-
ploiting the knowledge about users’ locations and their social relationship, Foursquare can help users
to locate some surrounding restaurant that their friends visited. Moreover, the location information
accompanying with users’ behaviors, such as resource sharing and content consuming, is helpful
to large scale systems such as cloud computing and content delivery network [86]. Although there
exist many ways to obtain users’ fine or coarse locations, such as GPS, wifi, open access check-ins
and predefined location information in users’ profiles, in real-life OSNs, only a small fraction of
users expose their locations. For instance, 16% of users in Twitter reveal home city [89] and 0.6%
of Facebook users publish home address [82]. Thus, in OSNs, a number of existing studies tend to
infer missing locations based on the accessible location and users’ similarity. We review this branch
of research in this section by classifying them into four categories: relationship-based prediction,
content-based prediction, hybrid content-relationship prediction and multi-indication prediction.

Based on the the observation that the probability of being friends is declining with geographic
distance, some approaches infer a user’s location according to the visible locations of her friends.
We call this type of approaches as Relationship-based Prediction. For example, depending on this
observation, Backstrom et al. [82] build a maximum-likelihood location prediction model and even-
tually refine the prediction with an iterative algorithm. However, the pure relationship-based model
might miss a lot of useful location-sensitive information. Especially to the users who do not expose
their relationships, it is even hard to infer their locations.

The rise of Twitter has spawned a mass of tweets which may contain location-specific data,
therefore, another category of prediction approaches [121][122][123] infers a user’s location rely-
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ing on her location-related tweets. The basic idea of these approaches is that the users who post
tweets mentioning same locations have a large chance of being close to each other. Therefore, such
approaches detect the location-related tweets and construct a probabilistic model to estimate the
distribution of location-related words used in tweets. Nevertheless, capturing location information
from their tweets is a very complex task. Twitter messages consist of texts that are unstructured; The
users often use shorthand or informal expression on Twitter, and many of the texts have grammatical
and spelling errors; The very sparsity of multiple location-sensitive terms in tweets is another ob-
stacle. Moreover, the captured location might exist ambiguity. For example, the location-sensitive
terms extracted from a user’s tweet content probably bias the prediction, as they could just implicate
her interested places which might be far away from where they are staying; Also, polysemous words
could lead to incorrect prediction.

An alternative compelling category combines the location indications from relationships and
tweet content and builds upon the two users’ similarity principles. TweetHood identifies a user’s
location by exploring both her tweets and her closest friends’ locations [124]. Tweecalization im-
proves TweetHood by employing a semi-supervised learning algorithm and introducing a new mea-
surement which combines trustworthiness and the number of common friends to weight friends [125].
Li et al. [126] integrate the location influences captured from both social network and user-centric
tweets into a unified discriminative probabilistic model. By considering a user may be related to
multiple locations, MLP model [89] proposes to set up a complete ‘location profiles’ prediction
which infers not only a user’s home location but also her other related locations.

Besides users’ relationships and content, multiple location indications are explored from other
possible location resources to infer users’ invisible locations. Such multi-indication idea has also
been used to Foursquare, which specifically exploits mayorships, tips and dones that users marked [127].

2.3.4 User Similarity for Link Prediction

Predicting links that a user will create in the future is pervasive in OSNs to recommend friends
for users and maintain their social activity. Distinguished from the previous link prediction sur-
veys [53][128], from a perspective of the effects of user similarity on link prediction, we categorize
the existing related literature with respect to whether the predicted user is new or not (i.e., has links
already or not yet).

More work concentrates on the existing users who already exhibited many links; they predict
new links primarily relying on the users’ closeness through users’ established links (i.e., existing
friends). Hasan et al. [129] rely on a set of users’ proximity features (shortest distance, keyword
match count, etc.) extracted from a co-authorship graph to predict the likelihood of the future co-
author relation between users. In addition, Menon et al. [130] improve the prediction by using
a supervised matrix factorization method to learn several latent features that can represent users’
proximity and connect them from the social network graph. Based on supervised random walks,
Backstrom et al. [58] combine information from users and links to guide the random walk on the
existing network graph to determine the closeness of two users.

Recently, a few studies started to deal with the problem of link prediction for new users who
have not linked to anyone. Leroy et al. [55] employ memberships in interest groups as auxiliary
information and predict links for new users by exploring user similarity features such as number
of common groups, size of common groups and difference in joining time. With multiple sources
in social networks, Ge et Zhang [107] predict new users’ link based on various similarity auxiliary
networks, such as co-contact network, co-subscription network, co-subscribed network and favorite
network. Another work addresses the cold start link prediction problem without knowing any user-
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to-user links in a platform by using some similarity information outside the platform (e.g., shopping
history) [55].
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3.1 Data Collection

3.1.1 Approaches to Collect Data

As data is the fundamental for studying users’ behaviors and analyzing network characters, many
approaches have been proposed to collect data. In this section, we are going to briefly introduce four
typical data collection methods: conducting survey/interview, capturing network traffic, crawling
web page and accessing API interface.

Conducting a survey or interview is the most traditional way to collect data in research. In
this way, we collect data by requesting a number of people to complete a group of customized
questions. Although we are able to purposely raise questions for the research, the samples normally
are confined to a small scale. Additionally, it may cost by recruiting people for survey or interview.

The evolution of Internet leaves us a sheer amount of digital footprint of users’ online behav-
iors. Capturing the network traffics generated by people accessing web sites or communicating via
network is one of the widely used methods. A plenty of tools (e.g., Wireshark, Fiddler, and Net-
workMiner) can help to freely monitor and capture these network traffics. Nevertheless, these tools
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only can capture the network traffic passing through the same router; and the transmitting data are
usually encrypted, hence we probably cannot acquire the detailed information such as the content of
a web site or a user’s background information.

Instead of capturing the network traffic, crawling web pages is an alternative extensively applied
method. A crawler, as an agent requesting the server, extracts sensitive information from the replied
web page. It will continue to crawl and jump to another associated web page. One competitive
advantage of crawler is that it can collect all the detailed information that one can view with a
browser. Besides, the crawled data usually keep a topology of the crawled nodes in the network
graph, even though the sampled data may bias to the local graph of the first crawled node.

Besides, almost all the social network platforms, such as Facebook, Twitter, and Foursquare,
provide public APIs for the third-party or individual to collect data. The API request is relatively
simple and the offered data is structured. Unfortunately, the available data via API are limited or
access token needed, which may not satisfy researchers’ requirements for conducting deep studies
and analysis.

3.1.2 Crawling Facebook

Facebook is the most popular social network that has been succeed to attract attention from all
over the world, including celebrities, merchants, politicians, artists and demographic researchers.
Facebook is also a comprehensive repository which integrates various user information, social ap-
plications, user communities, events, etc. Moreover, Facebook concerns about users privacy and
provides users with custom-privacy functions, which satisfy our needs in studying privacy issues.
Therefore, Facebook is an ideal and representative OSN where we can collect data and conduct
studies.

In this dissertation, we use both crawler and API methods to collect our Facebook data set.
Particularly, we implement crawler to capture user profiles, including demographic information,
social relationships and user interests. We crawl the user profiles by two methods - Breadth First
Search (BFS) [131] and random methods. Using BFS, we randomly select some root users, visit the
root users and their friends (one-hop friends), and subsequently continue to access the friends of the
root users’ friends (two-hop friends). We extract user profiles of all the visited users, and construct
a structural Facebook data set, namely Friends Group data set.

Additionally, we crawled user profiles by the random method to establish an unstructured data
set, called Random Group. We tend to achieve two goals with this Random Group: (1) we compare
user profiles’ characteristics in both Friends Group and Random Group to demonstrate the repre-
sentativeness of the data sets; (2) we construct a baseline with the Random Group to compare with
for the work of content discovery in social P2P network (Chapter 5).

Besides, we complement some necessary public information through Facebook Graph API1.
We primarily focus on location information of some location relevant attributes (e.g., high school,
college and employer). We collect all the values of location relevant attributes emerged in our user
profiles and obtain the city name and latitude/longitude information by querying Facebook Graph
API.

Since Facebook allows users to leave empty to any of the information attributes or only to display
certain information to confined social circles according to users’ customized-privacy, we merely
intend to extract public information from users as our data set resources. In addition, we anonymize
all the user profiles to conduct the research.

1https://developers.facebook.com/tools/explorer
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3.2 Data Description and Preliminary Visualization

This section will introduce our crawled data set in detail, demonstrate its representativeness for the
subsequent researches, and visualize some preliminary characters presented in our data set.

3.2.1 User Profile Description

Each user profile is composed of three parts of information including demographic information,
social relationships and user interests. Specifically,

• Demographic Information: It refers to seven specific profile attributes2: age, gender, cur-
rent city, hometown, high school, college and employer (i.e., work place). Current city and
hometown are two location attributes which are linked to the corresponding latitude/longitude
position. High school, college and employer, as location relevant attributes, are associated
with a city name and latitude/longitude values.

• Social Relationships: We captured users’ friend lists, thus here we define social relationship
as user-claimed friendship. Note that friendship in Facebook is bidirectional, i.e., A is B’s
friend if B is a friend of A.

• User Interests: Facebook encourages users to explicitly describe their favorite music, movies,
TV shows and so on. Nine interest domains are collected in our data set: movies, music, TV
shows, books, games, athletes, teams, sports, and activities.

We crawled Facebook from March to June 2012 and collected profile data. Specifically, we
collect 479,048 user profiles by BFS method for Friends Group while 41,595 profiles for Random
Group by random method. We mainly rely on Friends Group to conduct our analysis and experi-
ments in the specific researches while use Random Group to compare with when necessary.

3.2.2 Data Representativeness Evaluation

Since the representativeness of the information in the two groups guarantees the reliability of the
following data studies, comparisons and data-based experiments, we first compare several statistics
of public social information drawn from two data sets to reveal their consistence and representative-
ness. We assume that the social information in the two groups are representative if the statistical
characteristics in the Friends Group approach to the corresponding ones in the Random Group. In
particular, we tend to compare Friend Degree, Interest Degree and Attribute Public Degree between
Friends Group and Random Group.

A user’s Friend Degree is defined as the number of her friends. Figure 3.1(a) plots Cumulative
Distribution Function (CDF) of users’ Friend Degree for both Friends Group (the blue solid line) and
Random Group (the red dotted line). Note that the data shown in the figure has been excluded the
users who have no friends. We observe that most of users maintain a number of friends, in which
95.5% and 96.5% of users have a Friend Degree higher than 50 in Friends Group and Random
Group, respectively. The Friend Degree of around 1% of users even exceeds 4000 in both groups.
The median Friend Degree is 387 in Friends Group and 384 in Random Group, which are very
similar.

2In this dissertation, profile attribute is different to social feature. Profile attributes are the information that users claim
on their Facebook page (e.g., age, hometown, gender); social feature indicates the quantitative values, like age distance,
location distance, friend similarity, etc., which are derived from attributes.
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Figure 3.1: Preliminary statistics studies

Similarly, a user’s Interest Degree is defined as the total number of her interest. Note that in this
presentation we sum the number of music, movies, TV shows, books and games as Interest Degree
since they are the most typical interest domains. Figure 3.1(b) draws CDF of users’ Interest Degree
and shows that the users in Random Group present slightly higher Interest Degree than do the users
in Friends Group. The median Interest Degrees is around 24 and 22 respectively in the two groups.

Besides, we consider a user as Public User regarding one attribute if she publish her information
of this attribute. For instance, if a user U has two public attributes, named age and gender, we call
U is a Public User both regarding age and gender. Accordingly, we define Attribute Public Degree
of one attribute in a group as the number of Public User regarding the attribute divided by the total
number of users in the group. We use Attribute Public Degree to further reveal the representativeness
of the data in the two groups. We compare eight attributes: gender, friends, interest, current city,
hometown, employer, education and age. Education here is the combination of high school and
college. Figure 3.1(c) shows that the largest difference of Attribute Public Degree between the two
groups is approximately 6% in terms of employer. The average Attribute Public Degree difference
between the two groups is only about 1.1%.

In summary, the CDF of Friend Degree of the two groups match well with each other in figure
3.1(a); and so does the CDF of Interest Degree in figure 3.1(b). Figure 3.1(c) shows that the Attribute
Public Degrees of the eight attributes in Friends Group are all very similar to those in Random
Group. Therefore, we believe that the social information in the two groups are representative and
feasible to be used for the studies, comparisons and data-based experiments in this dissertation.

3.2.3 Preliminary Characters Presentation

Before applying the data sets into some specific work, we would like to reveal some high-level
characteristics and patterns of demographics that emerge from the collective users. We use Friends
Group as primary data resource and Friends Group is indicated in the rest of this dissertation if there
is no special illustration.

3.2.3.1 Demographic characteristics of individuals

Considering current city as representative location, figure 3.2 displays the geographical location
distribution of current city reporters over the globe. The color of each dot in the figure corresponds
to the number of users in a city, applying a spectrum of colors ranging from blue (low), green, yellow
to red (high). We can see that the red dots are mainly located in the east coast of North America as
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well as Europe, thus we infer that people from North America and Europe are the dominant users
on Facebook. We also observe that people in coastal regions are more active than people situated
inland. In addition, a few blue dots are noticed in the oceans, which might indicate some users report
fake locations. We ignore them as the number is very small.
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Figure 3.2: Location distribution of users. The color of each dot in the figure corresponds to the
number of users in a city, applying a spectrum of colors ranging from blue (low), green, yellow to
red (high).

Moreover, we study the distribution of users by age. Figure 3.3(a) displays the distributions of
age reporters with respect to female, male, unknown gender and all. Among all the age reporters,
4196 are male and 4096 are female. We notice that the age distributions of males and females are
similar to each other. We also observe that the user distributions are skewed by age following with
a long tail. The users in the 20-30 span of years are the most representative users in our data set;
while the proportion of the users older than 40 or younger than 20 in our data set is rather small (less
than 10% in total). Besides, we choose 3 years as an age interval and cluster age reporters in the age
range of 20-40 into seven age groups. Taking movies, music and TV shows as the representative
interest, figure 3.3(b) examines the average number of interests that each user exhibits according to
different age groups. It reveals that the young users report more interests than middle-age users.
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Figure 3.3: Distributions by age. Figure 3.3(a) plots the number of users at each age. Figure 3.3(b)
presents the average numbers of interests that users report at different age groups.
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3.2.3.2 Demographic characteristics of friends

In this section, we further reveal the demographic characteristics between friends in terms of gender,
location, and age respectively.

We first examine the distribution of friends by gender combinations: cross-gender friends and
same-gender friends. This analysis is conducted on gender reporters. Particularly, for each gender
reporter, we rely on her friends that are also gender reporters and calculate the percentage of friends
in the same-/cross- gender respectively. Figure 3.4 displays the CDF of the percentage of friends by
gender combinations. We observe that only around 40% of users exhibit the same gender with less
than half of their friends, while more than 60% of gender reporters make fewer friends (i.e., less
than half) with opposite gender. It indicates that people prefer to make friends with others of the
same gender, especially for men.
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Figure 3.4: CDF of friends distribution by gender combinations

In addition, we track how age affects the friendship between people. Figure 3.5 displays the
distribution of pairs at various age differences. It reveals that people are more likely to make friends
with others at the same age or at an age gap of 1-2 years. The percentage of friend pairs decreases
rapidly as age difference increases when it is larger than 1 year. Besides, we also notice that the
percentages of friend pairs are less than the numbers of random pairs at the age differences in the
range of 3− 13 years. When age difference is larger than 13 years, people make friends following
the random probabilities. We infer that people are more likely to make friends with others who are
in the similar ages.
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Figure 3.5: Pairs distribution by age difference

We calculate geographical distances between pairs and illustrate the pairs distribution with dis-
tances in Figure 3.6. From the upper subfigure, we see that the distance distribution of friend pairs
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Figure 3.6: Pairs distribution by distance

is strongly skewed to the left. It falls dramatically from the start, bottoms out at the distance of 400
kilometers, and then stays at a very low value as the distance increases. Among all the friend pairs
in the experiments, 28.9% of them come from the same city and 43.43% of the friends live less
than 100 kilometers apart. Whereas, the lower subfigure shows that the percentages of random pairs
fluctuate by distances with a gradual downward trend. The peaks and drops at some specific dis-
tances may reveal geographical characteristics. For instance, the peaks at distances of 5000 km and
6500 km may respectively indicate the width of America and the width of Atlantic. The different
distributions of friend pairs and random pairs, in other words, mean that people tend to make friends
within a short distance.

3.3 Data Limitation

We discuss two limitations of our data set: amount limitation and information limitation. We further
demonstrate that our research is not constrained by these limitations.

3.3.1 Amount Limitation

Comparing to 1.2 billion monthly active users in Facebook, we admit that around 500K users in our
date set is just a tip of ice-berg. We have tended to demonstrate the representativeness of our data
set by comparing the characters (e.g., location distribution, age distribution) revealed from Friends
Group and Random Group in section 3.2.2. Therefore, we believe this data set and the research
based on the data set are representative. To the best of our knowledge, this data set is one of the
largest and most comprehensive data set regarding Facebook users’ profile information and social
links in academic research.

3.3.2 Information Limitation

On one hand, we are only able to collect users’ public information. Two possible reasons lead us
not seeing users’ information. One is that a user has not describe the information in her Facebook
profile; the other is that she sets the privacy of information. However, this limitation stirs us to
explore whether it is possible to infer users’ invisible information on basis of the public information;
or is it really secure of users’ private information if users simply hide the privacy-sensitive attribute
from public. We will illustrate the details about these questions in the following chapters.
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On the other hand, there are a lot of other data information we can access from Facebook,
such as users’ interaction, activity (e.g., sharing and posts), check-ins and so on. It is true we can
advance our research if we leverage this information. But we have to admit the difficulty and even
impossibility of obtaining all this information from Facebook due to privacy issues. Fortunately, the
current research problems in this dissertation are not confined by this limitation.
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4.1 Introduction

In OSNs, social links (e.g., friends in Facebook, follower-followee in Twitter) play an important role
in users’ experience as well as in the success of the OSN. If a user’s links are well-established, he can
use the social network more frequently [132][129][130]. Therefore, a high-quality link prediction
is required to allow OSNs to recommend useful links to users. Especially, when it comes to a new
user who has not created any link, the link prediction (new-user link prediction) becomes even more
crucial, because it can be used to recommend friends for new users to start building their social
networks. A poor prediction in the first place may discourage new users from using the platform.

Many approaches have been proposed to predict users’ potential links depending on the exist-
ing ones that they have already established [129][130][58]. However, these approaches cannot be
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adopted to the new-user link prediction since the new users have not created any link. Recently, by
using cross-platform approaches, a few studies have begun to tackle this new-user link prediction
problem. These studies predict a new user’s links in a certain OSN platform by porting that user’s
well-established links from other OSNs [133][134]. Nevertheless, the application of these cross-
platform methods in real-life scenarios may face some problems. First, two OSNs may not agree to
share users’ links as users’ information are generally private, confidential and valuable to them [55].
Second, users may not give their consent to be tracked back to their information in other OSNs
or users intend to use different OSNs for different purposes (e.g., LinkedIn for professional and
Facebook for personal). Due to these problems, in this work, we study the new-user link prediction
problem in a single-platform instead of cross-platform.

Our single-platform approach is to leverage the attributes (e.g., workplace, high school and
hometown) provided by new users when they register their accounts, as well as information from
existing users. It is inspired by the previous studies showing that the similarity between users’
attributes reflects their relationship to some extent. For instance, people who share more common
interests are more likely to be friends [82][135][136][93]. As it is practical for OSNs to request user
attributes during the registration, our approach is applicable in real-life scenarios.

Without the loss of generality, new-user link prediction problem can be considered to predict
whether a new user u will link to a given existing user v or not. In particular, given u with attributes
and v with both attributes and friends, we attempt to extract some social features that can indicate
the probability of u linking to v. By using Support Vector Machines (SVM) [137], we train a link
prediction model to determine whether u will link to v based on the combination of the extracted
social features.

Exploring appropriate social features is crucial and challenging since it directly affects the ca-
pacity of the prediction model and the available information is very limited. We propose to fully use
the obtainable information and extract the following three types of social features:

• Basic features: There are two types of basic features: binary similarity and number of common
attributes. The former is calculated by comparing two users u and v by each attribute (e.g.,
current city). The latter is the total number of the same attributes between them.

• Derived features: We further describe the relation between two users’ attributes by various
ways, e.g., the geographic distance between their current cities or their interest similarity.

• Latent relation: We use a latent relation score to estimate how much u and friends of v share
the same attributes. We show that two users probably obtain a higher score if they are friends.

In summary, this chapter has the following contributions: (1) We explore multiple social features
to predict links for new users who have not created any link. To the authors’ best knowledge, this is
the first work to address the new-user link prediction problem by leveraging the information from a
single-platform. (2) To evaluate our approach, we use a Facebook data set including 479,000 users.
For each user, we record his demographics, interests and links (friends). Results show that all the
features we proposed in this chapter can significantly improve the performance of the new-user link
prediction.

4.2 Link Prediction

The goal of this work is, given an undirected social network graph and a new user u who has not
created any link yet, to determine which users in the given graph the new user u will connect to. In
this section, we formulate the link prediction problem and describe our solution.
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4.2.1 Problem Statement

Considering a given undirected social network graph G = (U ,E), where U is a set of existing users
in the social network graph; E is a set of undirected links e〈u,v〉 between users u and v where u,
v ∈U . Apart from the links, users on social networks usually expose other personal attribute such
as age, hometown, college and work. Therefore, for each existing user v, we generate an attribute
vector, denoted as A = 〈a1(v),a2(v), · · ·am(v)〉. We also gather all of v’s links into a friend set,
denoted as F (v) = { f | f ∈U ∧ e〈v, f 〉 ∈ E}. Then, we can use a tuple to represent an existing user
as v : 〈a1(v),a2(v), · · ·am(v),F (v)〉. Note that, as the user v may not complete all the attributes or
not expose his friend set, some elements in the tuple can be null.

For a new user who has not constructed any link, OSNs usually request him to provide some
personal information when he is signing up. For this reason, without existing links (i.e., no friend
set), a new user u can be represented by a tuple merely with attributes as: u : 〈a1(u),a2(u), · · ·am(u)〉.

According to the goal of this work — to distinguish which of the existing users v ∈ U are
preferred to construct a link by u and which are not, we classify a candidate set of existing users (i.e.,
C ) into two categories: linked-users (i.e., L ) and de-linked-users (i.e., D). Note that C = L

⋃
D ,

where C ∈U . We assume that the users in L are more likely to get linked by u than the users in D .

On the basis of the above establishments, the problem of new-user link prediction can be for-
mally stated as: Given a social network graph G = (U,E) where each v ∈U contains an attribute
vector and a friend set, v : 〈a1(v),a2(v), · · ·am(v),F (v)〉, a set of existing user candidates C ⊆U, a
given new user u who is represented by an attribute vector (i.e., u : 〈a1(u),a2(u), · · ·am(u)〉), predict
which of the users in C that u may create links to, labeled as L (linked-users), and which of the
users that u may not, labeled as D (de-linked-users).

4.2.2 Workflow of Link Prediction for New User

Given a new user u who reveals some profile attributes and a set C of existing users who exhibit both
attributes and friends, the basic idea is exploiting all the obtainable information to figure out existing
users that are similar to u from C as the linked-users (L ), for much existing work has proved that
people are likely to connect to another if they are similar to each other [136][93][138][82][135].

Based on the mentioned idea, we model the friend probability, which measures the probability
that u will create a link to v∈C , by computing their similarity based on their obtainable information
(i.e., u and v’s attribute vector, v’s friend set and v’s friends’ attribute vector). Specifically, we
leverage SVM [137] to train a link prediction model, which describes the friend probability by
a combination of multiple social features (i.e., ψuv). To train the model, we generate a training
data set which gathers information of a number of user pairs. Each user pair corresponds to a
label zi and multiple social features xxxi. Note that zi equals 1 if two users are friends; otherwise,
zi equals 0. With the data set, we aim at training a set of parameters (w) and making the social
features’ parameterized combination describe the pattern of connectivity between users. In other
words, with taking the social features that are parameterized by the trained w, we can compute the
friend probability between u and v, and then determine whether v belongs to L or D for the new
user u.

Thus, constructing the SVM-based link prediction model is addressing the optimization problem
as follows:
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minF(w) = 1
2‖w‖

2 +λ ∑
q
i=1 ξi

subject to:

{
ξi > 0

zi〈w,xxxi〉> 1−ξi

(4.1)

where q stands for the total number of the user pairs and i denote the ith pair; λ is a constant and
ξi(i = 1, ...,q) are slack variables for optimization.

4.3 Empirical Studies on Relationship Similarity

Capturing good social features that are exploited in the learning algorithm is critical and challenging
[58]. For training the model with enough features, we take various ways to extract plenty of features
with limited social attributes. Particularly, we conduct this study based on a real social data set
which we have crawled from Facebook. We first briefly introduce the data set and then illustrate
multiple captured social features. We also reveal some relations between friend probability and
social features. Note that, although the social features seem tightly depending on the social attributes
in Facebook, our work is easy to be extended to other social network platforms.

In this work, we think of the user’s demographics and interests as social attributes to conduct the
empirical studies. Specially, we consider ten social attributes: current city, hometown, high school,
college, work, age, gender, user’s favorite music, movies and TV shows.

4.3.1 Basic Features

With a new user’s social attributes, the most straight-forward way to predict his link is to look for
some users who exhibit some common attributes with the new user. For instance, if a new user
u states that he is working at TELECOM SUDPARIS, he might know others working in TELECOM

SUDPARIS. Therefore, in this OSN, if there is an existing user v stating that he is working for
TELECOM SUDPARIS, it is more probable that u will link to v than others. We define two types of
basic features: binary similarity and number of common attributes.

Binary similarity estimates whether two users are same or not in one certain attribute. For
instance, binary similarity on work of u and v equals 1 if they work in the same company or or-
ganization; otherwise, it is 0. Moreover, we sum up the binary similarity on all the attributes to
obtain the number of common attributes as another basic feature, since two users are more likely to
be friends if they share more attributes. With the Facebook data set, we study the relations between
friend probability and the two basic features.

Figure 4.1(a) displays the friend probability of two users if they have same value on a certain
attribute. We observe that users from the same high school and workplace might connect with each
other with the highest probabilities — around 15% and 7.4% respectively. Figure 4.1(b) reveals the
increase of the friend probability when the number of common attributes grows. The user pairs who
share five common attributes merely have 3% of probability to be friends. Only 0.3% of user pairs
could share six common attributes, although their friend probability reach to 17.6%. The above
observations imply that only using the two kinds of basic features may still be hard to predict links
correctly and inspire us to explore more social features to describe user pairs’ connectivity patterns.
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Figure 4.1: Friend probability by basic features

4.3.2 Derived Features

In this section, we try to capture more social features from two user’s attributes, which are called
derived features. For different attributes, we propose three feature extraction methods, and thus
get three sub-categories of derived features: distance features, correlation features and similarity
features.

4.3.2.1 Attribute Distance

Some existing studies indicate the homophily principle that people are more likely to link to others
who are closer to them [82][93]. We attempt to use the distance function to describe the closeness in
terms of the location-related attribute (e.g., current city and hometown) and age. We can calculate
users’ geographic distance by exploiting the location’s coordinates and look further into how the
distance would affect the friend probability. The absolute age difference between two users is also
introduced as a distance feature.

Figure 4.2(a) shows the effects of geographic distance between users on the users’ friend proba-
bility which holds the homophily principle both for current city and hometown. Figure 4.2(b) reveals
that the friend probability does not correlate to the age distance. Nevertheless, the observation ex-
hibits its rationality: people usually link to various people in different ages. For instance, a teenager
may link to his parents, and a younger employee could link to an elder leader.

4.3.2.2 Attribute Correlation

We have found that people from the same high school, workplace or college link to each other
with a relatively larger possibility. Besides, in reality, people from different organizations may also
exhibit frequent links because of the tight collaboration and relations between them. For example,
TELECOM SUDPARIS as a telecommunication institute may have a very close relationship with
TELECOM ORANGE LAB because of their regular project collaborations. Therefore, many of the
employees from these two workplaces may know each other and establish links.

To accurately describe this connectivity pattern, we construct a attribute correlation matrix
which learns the friend probability between users with specific value combination in one attribute
(i.e., high school, workplace and college). For instance, to set up a work correlation matrix, both of
the columns and rows represent all the workplaces that users report, and the cross-cell of ith column
(representing work Wi) and jth row (representing work Wj) stands for the friend probability between
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Figure 4.2: Friend probability by distance

the employees in work Wi and the employees in work Wj, i.e., f pw(i, j). Marking the work attribute
as aw, we get the following formula:

f pw(i, j) = P(e〈u,v〉 ∈ E | aw(u) =Wi∧aw(v) =Wj)

=
|{e〈u,v〉 ∈ E | aw(u) =Wi∧aw(v) =Wj}|
|{(u,v) | aw(u) =Wi∧aw(v) =Wj ∧u 6= v}|

The numerator in the above formula is the number of friend pairs where one’s work is Wi and the
other’s work is Wj; the denominator is the number of all possible user pairs where two users work
in Wi and Wj respectively. Back to the previous example, assume Wi is TELECOM SUDPARIS and
Wj is TELECOM ORANGE LAB, then f pw(i, j) is the probability that two employees from the two
institutes are friends. Besides the attribute of work, we also construct such matrices for high school
and college.

Note that the friend probability study relies on an aggregation number of existing users with
complete required information (i.e., friendships and value on the attribute). According to the size
of population and various number of distinct attribute values (e.g., the number of workplaces re-
ported by users), the construction of attribute correlation matrix may take a long time. However,
it is feasible as the matrix construction can be calculated off-line, and does not need to be updated
frequently.

4.3.2.3 Interest Similarity

Cosine similarity is widely used to estimate the closeness of two vectors. Hence, for the attribute
with a value of vector, like favorite music, movies and TV shows where users present multiple items,
we apply the cosine similarity to describe two users’ interest similarity. For the detailed description
about how to calculate cosine similarity between two users’ interests, please refer to Chapter 2.
According to the Figure 4.3, we verify that users with similar interests link to each other with high
probability, which is also observed by other work [136][93][138].

4.3.3 Latent Relation

Both basic and derived features are constructed by only considering the new user u and the existing
user v’s attribute vectors; besides, another kind of information is still available— v’s friend set. If u
and v’s friends are similar, the link e〈u,v〉 will probably be created. We call the relation between u
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and v captured through the relations between u and the friends of v as latent relation. We consider
the latent attribute relation between u and v, which is estimated by the latent attribute links between
u and the friends of v. Specifically, one latent attribute link is created if u has a same attribute with
one of v’s friends.

v

u age cityTSP Paris25 work Orange

age cityschool

43

work

school

age cityschool work age cityschool work

Paris OrangeUPMC 35 Paris TEMTEM 25 BJ BaiduTSP

Latent Relations

?

f1 f2 f3

Figure 4.4: An example of latent relations between two users

Figure 4.4 illustrates an example to show the latent links between a new user u and an existing
user v, where v has three friends f1, f2 and f3. We observe that u and f1 share two attributes —
work and current city — which construct two latent links between u and v. u also links to v’s other
friends f2 and f3 by various attributes. In addition, we observe many disconnections between u and
v’s friends on attributes, denoted by the red cross and dotted lines in the figure.

The problem then becomes how to quantify these latent links and disconnections between u and
v’s friends, so as to model the latent relation between u and v. Intuitively, u and v exhibit higher
probability to be friends if there are more latent links and less disconnections. Therefore, we reward
the latent relation of u and v if there is one latent link, and punish the latent relation if there is one
disconnection. According to this idea, we estimate u and v’s latent relation by r−αq, where r equals
the number of latent links, q is the number of disconnections and α is a regulator for punish value
[139]. Accordingly, we compute a latent relation score as:

scrlr =
1

1+ e−β (r−αq)
(4.2)

where β is an exponential regulator. Figure 4.5 displays the relation between friend probability
and the latent relation score when α = 0.05, β = 0.05. It reveals that the friend probability would
increase if two users exhibit more latent links and less disconnections (i.e., larger latent relation
score).
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α β

Figure 4.5: Latent relation scores between two users

Note that, when u reveals few attributes and most basic and derived features of u and v cannot be

obtained, this latent relation score can be especially important for determining whether e〈u,v〉 will

exist.

4.4 Evaluation

In this section, we evaluate our proposed approach on the crawled Facebook data set. We first

introduce the experiment setup and then report the experiment results.

4.4.1 Experiment Setup

Taking the prediction algorithm described in Section 4.2.2, we leverage all the introduced social

features in Section 4.3 to train our new user link prediction model. In particular, we use 1) Basic

feature, i.e., the number of common attributes; 2) Derived feature, including the distance of current

city and hometown, the attribute correlation on work, high school and college; and 3) latent Relation

score. We call our proposed model as BDRlink model. Note that, BDRlink model does not exploit

binary similarity on each attribute because it has already been involved in derived feature. For

instance, if the distance of current city between two users equals to 0, it indicates they are in the

same city (i.e., binary similarity is 1); otherwise, binary similarity is 0.

We compare BDRlink model with three baselines — Blink model, Dlink model, and BDlink
model:

• Blink model merely considers basic social feature which includes the number of common

attribute and binary similarity on all attributes (i.e., current city, hometown, high school, col-

lege, work, age, gender, user’s favorite music, movies and TV shows).

• Dlink model merely considers derived social feature which includes current city distance,

hometown distance, age distance, high school correlation, college correlation, work correla-

tion, music similarity, movies similarity and TV shows similarity).

• BDlink model takes into account the number of common attribute (basic feature) and all the

derived features that are used to train Dlink.

Note that these models are trained with users who reveal friends and more than 3 attributes.

We randomly couple two users into a user pair and select one of the two users as the new user by

removing his friends.
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4.4.2 Evaluation Results

We evaluate the proposed BDRlink model from three perspectives: 1) we compare the prediction
performance of BDRlink, Blink, Dlink and BDlink models in terms of ROC curves with 10-fold
cross validation; 2) we further carry out ‘leave-one-feature-out’ model comparison to investigate the
influence of various social features on link prediction; 3) we evaluate the prediction performance of
BDRlink by the number of available attributes from the new user, so as to inspect and verify whether
the new user can derive better friends prediction if they provide more information.

Prediction performance comparison: We draw the ROC curves of four prediction models,
shown in Figure 4.6. We also note the corresponding Area Under Curves (AUCs) in the legend.
First of all, compared to the diagonal line (i.e., AUC= 50%) which represents the performance of
random guess, all the four models with our captured social features can predict more accurately. We
notice that Blink model and Dlink model exhibit equal prediction capacity as they almost achieve
a same AUC of 68.8%. Additionally, the combination of basic features and derived features can
slightly enlarge the AUC from 68.8% to 71%. Among the four compared model, BDRlink model
generates the largest AUC and its AUC significantly outperforms the other three models by 14%,
14% and 12% respectively. It reveals that the attribute based latent relations between users not only
works for the link prediction but also plays a very important role in the link prediction.
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Figure 4.6: ROC curves comparison

Leave-one-feature-out: To investigate whether the social features leveraged in BDRlink model
would improve the prediction performance or not, we leverage the state-of-the-art ‘leave-one-feature-
out’ strategy and remove one feature from the overall features to train additional models. Specifi-
cally, five feature types — basic feature, distance feature, attribute correlation feature, interest simi-
larity feature and latent relation score— are considered. Thus, we train five ‘leave-one-feature-out’
prediction models by taking out one of the five types of features, namely No basic feature model,
No distance feature model, No attribute correlation feature model, No interest similarity model and
No latent relation score model.

Table 4.1 compares the AUCs of the five ‘leave-one-feature-out’ models and the BDRlink model.
We observe that BDRlink model outperforms all the other models which means removing any of
the used social features would decrease its prediction power. In addition, comparing the five ‘leave-
one-feature-out’ models, we find that various social features impact the prediction performance in
different degrees. For instance, removing basic features or interest similarity, the prediction perfor-
mance does not fall down much; whereas latent relation score is quite sensitive to the prediction as
the performance decrease obviously when it is removed.

AUC by number of available attribute: In this experiment, we aim to validate whether BDR-
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Type of Model AUC
No basic feature 0.8139

No distance feature 0.7563
No attribute correlation feature 0.7863

No interest similarity 0.8107
No latent relation score 0.7104

BDRlink 0.8325

Table 4.1: Leave-one-feature-out comparison

link can predict links more accurately if new users provide more attributes. We group the user pairs
according to the number of attributes obtained from new users and test the prediction performance
of BDRlink for each group in terms of AUC. Table 4.2 lists the AUC values by various attributes
numbers. The results reveal that the prediction accuracy would increase if new users provide more
attributes.

#Attributes 3 4 5 6 7 8 9

AUC 0.66 0.70 0.72 0.73 0.75 0.83 0.87

Table 4.2: AUC by varying number of available attributes

4.5 Summary

This chapter proposes a novel method to predict links for new users in OSNs. It leverages the
attributes from new users provided at the registration phase and the profile information (attributes
and links) from existing users to generate a number of effective social features. The correlation
between the friend probability and these social features is investigated to select effective features for
training a SVM-based link prediction model — BDRlink. The empirical experiments show that the
BDRlink model performs better than the other three baseline models. The leave-one-feature-out test
reveals that each of the proposed social features contribute significantly to the prediction model.
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5.1 Introduction

Unlike the traditional client/server model, each node1 in Peer-to-Peer (P2P) networks acts both as a
server and a client. Thus, the node is allowed to share resources (e.g., files, peripherals) directly with
others, which makes P2P networks quite popular. A report from Palo Alto Network [140] shows that
P2P file sharing consumes 14% of overall bandwidth between November 2011 and May 2012, sur-
passing other applications. Furthermore, with the increasing demand for multimedia entertainment,
P2P networks are being broadly used in video streaming applications, such as PPstream, PPLive and
UUSee.

In P2P networks, content discovery is a critical problem. There are two typical classes of its solu-
tions: structured and unstructured. Structured P2P, using Distributed Hash Table (DHT) [141][142][143],
is efficient but inflexible under a dynamic environment. Compared to unstructured P2P, it also pro-
duces more overheads for finding popular content. Unstructured P2P is widely used over the In-
ternet [144]. Gnutella [145] is the first practical implementation of unstructured P2P. However,
it applies flooding to search content and cannot adapt to the complex networks. Although many
improved approaches [146][147][109][148] have been proposed, content discovery still remains a
challenge in unstructured P2P, especially for unpopular content which is stored by only a few nodes.
This is due to the lack of global network topologies and content information.

Nevertheless, similarly without global information of complex human networks, humans can
efficiently find out specific people by exploiting their own Social Information (i.e., friends, and
friends’ background information such as nationality, interests and city). On one hand, researchers
tend to verify this through experiments. In 1950s, from real human networks, Milgram revealed
that any randomly selected people can reach the others by about six people on average [149]. It has
also been demonstrated that users on Facebook can reach others through 3.74 intermediaries [150].
On the other hand, researchers are also inspired to extract the underlying characteristics of people
behavior (e.g., people communicate more with each other when they have more similarity [92]),
and leverage them to enhance performance in diverse systems, such as prediction systems [151],
recommendation systems [152], and advertisement systems [153].

In this work, we are motivated to investigate how social information could benefit content dis-
covery in unstructured P2P networks. In particular, by learning from humans’ experience on finding
people, we propose to exploit social information from real social networks and look for content
via a subset of friends that are selected based on their social information. Our approach is differ-
ent from the existing work. First, we do not infer nodes’ preferences and social relationships by
monitoring their behavior as suggested in [108][154], since such information is explicitly exposed
among friends on social networks. Either, we do not group nodes into communities by exploiting
complex algorithms presented in [114][115]; instead, we use the user-generated friendships which

1nodes & users are exchangeable in this chapter
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are straight-forward and reliable. In addition, we especially look into content discovery regard-
ing users’ personal interests (i.e., users’ own interests which include both popular and unpopular
content) rather than only focus on the popular ones.

5.1.1 Challenges

It is a non-trivial task of leveraging social information to improve content discovery in P2P networks.
We encounter the following challenges:

First, to leverage social information into P2P network and verify the newly proposed social P2P
mechanism, real social information data are required. Although the recent online social networks
reflecting human networks provide plenty of users’ social information, it is not easy to collect such
social information.

Second, since the existing P2P platforms do not involve or exploit social information, how to
associate the nodes in P2P networks with social information is another challenge.

Third, even if we are able to solve the second challenge and enrich nodes in P2P networks with
their associated social information, it is still hard to properly exploit such information and achieve
good performances (e.g., high success rate and low cost) for content discovery.

5.1.2 Method and Contributions

To solve the challenges, we first capture a large volume of social information from Facebook. The
studies on these data reveal that: (1) a node shares higher similarity with its friends than with
randomly selected nodes; (2) a node’s friends present different degrees of Similarity to itself and
report different amount of Knowledge (e.g., friends, interests). Intuitively, a node is more likely
to find content from those nodes that present higher similarity and more knowledge. Therefore,
we then build up a social P2P Network Model that connects nodes with their friends rather than
randomly selected nodes. On top of this model, we propose a Top K social-DRWR-P2P Search
Algorithm, which selects a subset of friends with higher similarity and more knowledge. The details
are as follows:

Social P2P Network Model: The model projects users’ social information in social networks
into corresponding nodes of users in a P2P network, and links nodes according to users’ friendships.
In the model, a node estimates the weight of a link, which is defined as a friend’s content discov-
ery weight, by applying two types of social features: the friend’s Knowledge; and the Similarity
between the node and its friend.

Top K social-DRWR-P2P Search Algorithm: Based on the social P2P model, the algorithm
extracts the latent friendships among a node’s friends and computes scores for its friends according
to their content discovery weights by using a modified Distributed Random Walks with Restart
(DRWR) method. Eventually, by using the algorithm, a node ranks its friends based on the scores
and forwards queries to its top K friends (receivers) on the ranking list.

The proposed method (i.e., social-DRWR-P2P2) is evaluated on Facebook data. It achieves a
higher success rate and lower cost than social-P2P3 and traditional-P2P4. Especially, social-DRWR-
P2P could reach 100% of Search Success Rate (SSR) by selecting top 20 friends within two-hop for
personal interests searching. Under the same condition, the compared methods achieve 90.5% and

2social-DRWR-P2P selects receivers by the proposed algorithm over the social P2P network model
3social-P2P selects receivers randomly among the sender’s friends over the social P2P network model
4In traditional-P2P, receivers are randomly selected among all the other nodes
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61.4% of SSR respectively. In addition, social-DRWR-P2P achieves 6.5 Hits on average, which is
more than 8 times superior to the compared methods.

We conclude the contributions in this chapter:

• We collect social information of 500K user profiles from Facebook. We also carry out ex-
tensive studies on these data and extract useful characteristics which inspire the design of the
content discovery mechanism.

• We propose a social P2P network model and associate the nodes in P2P networks with social
information reasonably. The model exhibits two advantages for content discovery: first, the
model links nodes with their friends who can discover users’ interests with higher probabilities
compared to the randomly selected nodes; second, the node in this model estimates its friends’
content discovery weights by integrating social features of Knowledge and Similarity.

• Based on the social P2P network model, we extract latent friendships among a node’s friends
and further propose a Top K social-DRWR-P2P algorithm to select a subset of optimal friends.
In addition, we exploit a parameter optimization approach to adjusting social feature parame-
ters in the algorithm. The extensive evaluations reveal the efficiency of the proposed method,
especially for users’ personal interests search.

• We discuss reasonability of the social P2P network model in Section 5.3.1.2 and discuss prac-
ticality of the proposed mechanism in Section 5.6. We give suggestions about how to apply
the proposed mechanism to unstructured P2P applications.

The rest of this chapter is organized as follows. Section 5.2 describes and analyzes Facebook
data set. We discuss the proposed mechanism in Section 5.3. In Section 5.4 we elaborate experimen-
tal methodology and parameters setup. We evaluate the proposed mechanism in Section 5.5. Section
5.6 discusses the practicality of the proposed mechanism and Section 5.7 concludes this chapter.

5.2 Empirical Analysis

In this section, we conduct empirical studies on our data set and tend to inspect potential social
information for content discovery in social P2P network. We assume that a user is easier to provide
content if she associates with more interests; we also assume that it is more likely to request a
content from a similar user. Therefore, we first look into which users are associated with more
interests; then we compare user similarity inside Friends Group and Random Group to reveal the
potential assistant of friendship in content discovery. Finally, we study the distributions of interests’
popularity in both Groups.

5.2.1 Users’ Associated Interests

Concerning an interest catalogue with M interests in total and a user associating with m interests,
the possibility of discovering any interest in the catalogue from the user equals m/M. It is an
increasing function of m, which implies that the users who associate with more interests can provide
larger probability to discover any interests for others. Therefore, we expect to reveal the users who
associate with more interests.

Method(M)1: A user’s associated interests refer to both the user’s own interests and her friends’
interests. We can easily decide a user’s own Interest Degree, thus here we focus on the relation
between a user’s Friend Degree and the total Interest Degree of all her friends. In particular, given a
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user with Friend Degree of n, we compute its Total Interest Degree of Friends by the overall number
of interests that all her friends present. We plot users’ total Interest Degree of Friends by their Friend
Degree in figure 5.1.
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Figure 5.1: Total interest degree of friends by friend degree

Observation(O)1: Figure 5.1 reveals that the Friend Degree strongly correlates to the total
Interest Degree of Friends. It is observed that the Total Interest Degree of Friends goes up with the
increasing of Friend Degree. This indicates that a user can associate (access from her friends) with
more interests if she has more friends. The correlation between the total Interest Degree of Friends
and the Friend Degree can be modeled linearly.

Inference(I)1: O1 demonstrates that the users with higher Friend Degree can access more inter-
ests from their friends; while the users with higher Interest Degree have more interests by themselves
according to the definition of Interest Degree. Hence, we infer that a user is more likely to find con-
tent from other users with higher Friend Degree and Interest Degree, since users associating with
more interests can provide more probability to achieve content discovery.

5.2.2 User Similarity

We suppose that if a user U shares more common interests with user A than with user B, it is easier
for U to find her interests from A than from B. Similarly, if U shares more common friends with A
than with B, we assume that U has a stronger relationship with A than with B. Therefore, intuitively,
the stronger relationships imply the more latent connections, common activities and common inter-
ests which might be beneficial to content discovery. In this section, we conduct studies on users’
similarity and expect that a user present more similarity with her friends than with strangers.

M2: We learn similarity between two users by Common Friend Degree and Common Interest
Degree. We further define Interest Correlation to compare interest similarity inside the two groups.

M2.1: We calculate the Common Friend/Interest Degree in Friends Group by counting the
number of common friends/interests between users and their friends. For Random Group, we select
two users at random and compute the Common Friend/Interest Degree by counting the number of
common friends/interests between them. The more common friends/interests two users share, the
higher similarity they have. Figure 5.2(a) shows the CDF of Common Friend Degree. The inside
figure plots the CDF of the Common Friend/Interest Degree between strangers in Random Group
and the outside figure shows the CDF of the Common Friend/Interest Degree between friends in
Friends Group. Figure 5.2(b) presents Common Interest Degrees of the two groups.

M2.2: If a user claims a certain interest as one of her own interests, we call the user as a fan of
this interest. The Interest Correlation of a certain interest is defined as the fraction of the fan number
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Figure 5.2: User similarity

of the interest to the total fan number of all the interests in a corresponding group as given below:

ICI j =
∑UI j

∑Ii∈I ∑UIi

where ∑UI j is the fan number of interest I j and I is the total number of interests in the group.
We rank all the interests in Friends Group and Random Group respectively by their Interest Cor-

relation, and compute the Average Interest Correlation of the top K interests (K = 100,200,500,1000,
and the total number of interests) to compare the entire Interest Correlations inside the two groups.
The larger the entire Interest Correlation within a group obtains, the higher is the interest similarity
among users inside the group. In addition, we compare the individual interest correlation of the top
100 interests in the two groups.

O2: The investigations for similarity between users show that a user has higher Common
Friend/Interest Degree with her friends than with strangers. We also note that different friends
of a user share different Common Friend/Interest Degree with the user. In addition, it is observed
that the Interest Correlations are higher among friends in Friends Group than those among strangers
in Random Group. In particular, we observe:

O2.1: In figure 5.2(a), more than 99% of the randomly selected pairs of users have no common
friends in the Random Group. In contrast, more than half of the friend pairs share 100 common
friends in Friends Group. Although the common interests between two users are very sparse, the
maximum Common Interest Degree of Friends Group reaches 31 which doubles that of 14 in Ran-
dom Group. The average Common Interest Degree of Friends Group and Random Group are 0.42
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and 0.21 respectively.
O2.2: The average interest correlation of the top K interests (shown in figure 5.2(c)) and indi-

vidual interest correlation of the top 100 interests (shown in figure 5.2(d)) both are higher in Friends
Group than in Random Group.

I2: We suppose that a user is more likely to find content for another user if they have higher
similarity. Therefore, we obtain the following two inferences.

I2.1: As the Common Friend/Interest Degree and the Interest Correlations are higher in Friends
Group than in Random Group, friends present a higher similarity than strangers. Hence, we infer
that it might be easier to discover content for a user via her friends than through strangers.

I2.2: We also conjecture that a user might be more likely to find a content from the friends with
higher Common Friend/Interest Degree.

5.2.3 Interest Popularity Distribution

An interest is considered as a popular interest if many users state it as an interest on Facebook.
In this section, we test how many percentages of interests are popular to most of the users in the
two groups. For each user, we also study the percentage of unpopular interests that she presents.
This study would reveal how important it is to take into account content discovery regarding users’
personal interests (both popular and unpopular ones).

M3: we look into Interest Popularity Distribution and the percentage of unpopular interests
among each users’ personal interests. Interest Popularity Distribution is computed to estimate how
popular the interests are. We also look into the Percentage of Users’ Unpopular Interests.

M3.1: We define the popularity of an interest as the number of its fans. The interest is more
popular if it attracts more fans. We rank all the interests based on their popularity. Figure 5.3(a)
shows the interest popularity distribution in the log-log scale.

M3.2: We assume the top 500 interests are popular interests and the rests are unpopular ones.
Figure 5.3(b) displays the CDF by the percentage of users’ unpopular interests.
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Figure 5.3: Interests distribution

O3: We observe that the interest popularity distribution is very skewed - most of the interests
are unpopular which only attracts quite few users. In addition, we also observe that almost 50% of
a user’s interests are not popular in both groups. Some details are reported as follows:

O3.1: Figure 5.3(a) shows that the Interest Popularity Distribution of both groups shapes in
Zipf lines. In the Friends Group, only around 23.4% of users prefer the top One interest and the



50 Mining User Similarity for Content Discovery in Social P2P Network

500th interest attracts only 0.35% of users. While in the Random Group, the top One and the 500th
interests are preferred only by 13.2% and 0.4% of users respectively. Generally speaking, most of
interests are preferred by only a small number of users.

O3.2: Figure 5.3(b) reveals that, for more than 45% of users in the Friends Group, half of their
interests are unpopular; while for nearly 75% of users when it comes to the Random Group.

I3: From the perspective of the interests in a group, most of interests are not popular; whereas
from the perspective of users, unpopular interests account for around half of their interests on av-
erage. Therefore, we state that only improving discovery of popular content cannot satisfy users’
requirements. We have to take into account users’ unpopular interests meanwhile.

5.2.4 Analysis Summary

We briefly summarize the main inferences which might guide the design of content discovery mech-
anism as follows:

Summary(S)1: Concerning about content discovery for users’ personal interests is very im-
portant for satisfying users’ P2P experiences (see I3);

S2: A user discovers her personal interests more easily from her friends than from strangers
(see I2.1);

S3: A user is more likely to find content from her friends with more friends and interests (see
I1.2);

S4: The friends who share more common friends/interests would achieve content discovery
with higher possibilities (see I2.2).

5.3 Social-Based Content Discovery Mechanism

Content discovery problem is normally approached by finding paths from a starting node to target
nodes that store the queried content in a network. Our idea is to cast this problem as a task that a
sender (starting node or any mediator node) ranks all candidate nodes and selects top-ranked ones
as the next hop (i.e., receivers) on the paths. We aim to assign higher scores to the nodes that more
likely reply to the sender’s query.

Grounded on both the analytical results from the previous section and the idea of selecting
receivers, we attempt to achieve content discovery with high performance for users’ personal inter-
ests (see S1). First, we build up a social P2P network model which leads to the content discovery
for a user via her friends (see S2). In this model, the nodes connect to their friends by using so-
cial relationships in social networks and weight their friends based on two types social attributes -
Knowledge (refer to S3) and Similarity (refer to S4). On top of this model, we introduce a Top
K social-DRWR-P2P search algorithm to select receivers for each sender. This algorithm chooses
a user’s friends that have more knowledge and share higher similarity with this user. The next two
subsections explain the social P2P network model and search algorithm in details.

5.3.1 Social P2P Network Model

In order to construct the social P2P network model, shown in figure 5.4, we project users’ social
information on social networks into the corresponding nodes in a P2P network. The nodes thus
inherit the users’ basic profiles, friends’ lists, and interests’ lists. The nodes connect to each other
if they are friends on social networks. Therefore, we define the social P2P network model as a
weighted directed graph G = {V,S,E}, where V is the set of nodes in the network model; S is the set
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of nodes’ social information inherited from social networks; and E ⊆ V ×V is the set of weighted
links which are determined by users’ friendships. In this graph, each node estimates the weights
of its links with respect to the corresponding friends’ probabilities of discovering content, namely
friends’ content discovery weights. In the following sections, we discuss the calculation of friends’
content discovery weights and feasibility of the social P2P network model.
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Figure 5.4: Social P2P network model

5.3.1.1 Friend’s Content Discovery Weight

Referring to S3 and S4 in Section 5.2.4, we estimate friends’ content discovery weight by two
ways accordingly. Thus we obtain two types of social features, namely Knowledge features and
Similarity features, which are detailed as follows.

Knowledge features: we define a node’s knowledge features by the amount of resources (i.e.,
knowledge degree) with respect to various users’ social attributes. In particular, each social attribute
is associated with one knowledge feature. For example, regarding the social attribute of a user’s
friend (interest) list, we compute friend (interest) degree by counting the number of friends (in-
terests). We expect that the friends with more knowledge would be more likely to reply the node’s
content query (refer to S3). Therefore, we assign higher weights to the friends with more knowledge.

Knowledge weight matrix: to explain how to weight friends by their knowledge, we consider a
node i and its r friends. Specifically, assuming n types of knowledge features are employed, for one
of its friend j, the node i denotes all the quantified knowledge degrees as D(K)

i j = (dk1
i j ,d

k2
i j , ...,d

kn
i j ).

Similarly, for all of its friends, the node i generates a knowledge degree matrix (D(K)
i ). D(K)

i is a
r× n matrix, in which each row stands for the knowledge degrees of one friend over n knowledge
features; and each column represents the knowledge degrees on one particular knowledge feature
by different friends. Using the logistic way, we normalized the xth knowledge degree of friend j by:

normx(dkx
i j ) =

1−exp(−dkx
i j /θ x)

1+exp(−dkx
i j /θ x)

, where θ x is a regularization parameter by the xth knowledge degree.

Eventually, the node i calculates knowledge weights for all its friends by normalizing the matrix of
knowledge degree (D(K)

i ), denoted as:
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W (K)
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 (5.1)

Similarity features: we compute similarity of two users with respect to their social attributes
as similarity features. Such features measure how much two users are similar regarding the corre-
sponding attributes. For example, we can derive friend (interest) similarities between a user and her
friends by employing their social attributes of friend (interest) list. We conjecture that the friends
who have higher similarity with the node would be more likely to reply a satisfactory content (refer
to S4). Hence, such friends should be assigned with larger weights too.

Similarity weight matrix: suppose that we discuss m types of similarity features, then node
i’s similarity features are expressed by a vector, F(S)

i = ( f s1
i , f s2

i , ..., f sm
i ). Regarding each feature,

node i computes the similarity with its friend by the cosine distance. In regard of the lth feature, the
similarity weight between node i and its friend j can be calculated by:

w(sl)
i j =

f (sl)
i · f (sl)

j

‖ f (sl)
i ‖ · ‖ f (sl)

j ‖

For friend j, node i records their similarity weights over all the m features by a similarity weight
vector, i.e., w(S)

i j = (ws1
i j ,w

s2
i j , ...,w

sm
i j ). Similarly, node i calculates the similarity weight vectors for

all of its friends (r in total) and further integrates them into a similarity weight matrix. Thus, the
similarity weight matrix generated by node i equals:

W (S)
i =


w(S)

i1

w(S)
i2
...

w(S)
ir

=


w(s1)

i1 w(s2)
i1 . . . w(sm)

i1

w(s1)
i2 w(s2)

i2 . . . w(sm)
i2

...
...

. . .
...

w(s1)
ir w(s2)

ir . . . w(sm)
ir

 (5.2)

Integration of Knowledge and Similarity: at last, node i computes the integrative weights for
its friends (i.e., friends’ content discovery weights, W (KS)

i ) by incorporating their knowledge weights
and similarity weights as follows:

W (KS)
i =W (K)

i �ααα +W (S)
i �βββ (5.3)

where ααα = [αk1αk2...αkn]> and βββ = [β s1β s2...β sm]>, are the parameters of the model, and αk1+
αk2 + ...+αkn +β s1 +β s2 + ...+β sm = 1.

As different attributes might affect content discovery performance at varying degrees, we expect
to find out a set of optimal feature parameters according to the feature’s influence on performance
of content discovery. The parameters optimization problem is discussed in Section 5.3.2.3.

5.3.1.2 Discussions of Social P2P Network Model

It is reasonable to map users’ social information from social networks onto the nodes in a P2P net-
work. Nowadays, a huge number of Internet users apply P2P platforms to share files, and meanwhile
communicate on various social networks. For example, Bob often watches movies on PPStream,
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while he also claims his favorite movies on Facebook. Although Bob’s favorite movies are not
explicitly claimed on PPStream, it is reasonable that PPStream uses these information to enhance
Bob’s experience. We further discuss the practicality of this model in Section 5.6.

In addition, there are two reasons that we set up a social P2P network model by linking nodes
via friendships. First, we are inspired by the analytical result that a user is more likely to find her
interests through friends than strangers. Second, considering the plenty of nodes in a P2P network,
it is resource-consuming and time-wasting to compute links’ weights and rank them. The social
P2P network model considerably scales down a sender’s candidate nodes to its friends and makes it
lightweight to run a ranking algorithm.

5.3.2 Top K Social-DRWR-P2P Algorithm

In this section, we propose a Top K social-DRWR-P2P algorithm to further select a subset of friends
over the social P2P network model. First we introduce the basic algorithm of Random Walking with
Restart (RWR). Then we present a modified version of RWR, namely Distributed RWR (DRWR),
which could be applied distributedly in our social P2P network model. DRWR biases the friends
who are more likely to reply to the queries with higher scores. In order to score friends properly, we
discuss the model parameter optimization problem subsequently. We eventually present the Top K
social-DRWR-P2P mechanism and give an example of receiver selection.

5.3.2.1 Random Walk with Restart

Given a weighted graph G(V,E), RWR performs walks starting from a node s to other nodes by
following the probabilities of the edges that are proportional to their weights at each step. We
assume that each step of a random walker is independent of its previous moves, thus we could
employ a Markov chain to describe the path that the random walker visited. We denote the state that
a random walker is visiting node i at step t as i = i(t). The transition probability of a random walker
shifting from state i = i(t) to the next state j = j(t +1) is:

ps j(t) = p( j(t +1)|s(t)) (5.4)

ppp(t) = {ps j(t)} is called the transition probability vector at step t for all nodes. In addition,
at each step we also consider a probability, namely the self-transition probability δ , of making the
random walker go back to the starter s. We calculate the shifting rate by using the following equation
recursively:

ppp(t +1) = (1−δ )ApApAp(t)+δqqq (5.5)

In this equation, qqq is a vector where the elements equal 0 except for the one that corresponds
to the initial node being set to 1. AAA is a matrix in which the elements stand for the state transition
probabilities between two nodes. If i and j are disconnected to each other, ai j = 0; and otherwise
ai j = wi j/w(i·) where w(i·) = ∑

n
j=1 wi j. wi j is the weight that node i assigns to its friend j, calculated

by equation 5.3. Therefore, the matrix A is computed as:

A =W (K) �ααα +W (S) �βββ (5.6)

Since the random walker’s visiting pattern is a Markov process, the transition probability vector
can converge after a number of steps l. Finally we obtain p(l) as a stationary measure of the shifting
rate.
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5.3.2.2 Distributed RWR (DRWR)

Each node in the social P2P network constructs a <FRIEND, WEIGHT> table (denoted as Ti <
F,W >) by computing its friends’ weights and exchanges it with their friends. Each node, from its
friends’ Ti < F,W >, picks out the entries that reflect the latent relationship among its friends. By
merging the selected entries from all its friends’ Ti<F,W >, the node builds up a mixed <FRIEND,
WEIGHT> table called MT n < F,W > and calculates transition matrix AAA. Finally, the node con-
ducts a local random walk over all its friends and computes a stable transition probability for each
friend as its score, by using the Eq.(5.5). DRWR method could extract the latent friendship behind
a node to bias its friends’ scores.

Figure 5.5: Distributed random walk

To further explain the DRWR method, we illustrate how node 1 in figure 5.5 assigns scores to
its friends as an instance. Node 1 has three friends of nodes 2, 3 and 4 where node 3 connects to
nodes 2 and 4 as well. We depict the links between two nodes in solid lines if both of them are
either node 1 or its friends; while use dashed lines to represent the other links. The numbers on the
links represent the friend content discovery weight. After exchanging Ti < F,W >, node 1 filters
the weights of node 5 from T 2 < F,W > and T 3 < F,W >. It also removes the weight of node 6
from T 4 < F,W >. Node 1 obtains MT 1 < F,W > by means of filtering and merging all collected
Ti < F,W >, as shown in the middle of figure 5.5. At the right side of this figure, we depict the
initial transition matrix AAA on node 1. Node 1 computes the scores by solving Eq.5.5.

5.3.2.3 Parameters Optimization

As we mentioned in Section 5.3.1, different information attributes affect content discovery perfor-
mance at varying degrees. Hence we expect to find out a set of optimal feature parameters for the
calculation of nodes’ weight and finally to assign proper scores to friends by using DRWR. To ad-
dress the problem, we begin with a sender s and divide all its friends into two subsets, denoted as Fk
and Fr. We expect that the subset of Fk is comprised of the friends from which the sender could find
the queried content with higher probabilities; while Fr consists of the friends of lower probabilities
for content discovery. Therefore, we aim to find out an optimal parameter set for features that give
the friends in Fk greater scores than those in Fr. We denote the parameter vector as aaa and define the
optimization problem as:
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min
aaa

F(aaa) = ‖ aaa ‖2 +λ ∑
k∈Fk,r∈Fr

h(pr− pk) (5.7)

where λ is a regularization parameter and h(.) generates a non-negative penalty which h(.) = 0 as
pr < pk while h(.) > 0 as pr > pk. To obtain the optimal parameters set, we exploit the gradient
based optimization approach to minimizing the loss value [151] (Appendix A offers more details
about parameter optimization.)

5.3.2.4 Top K social-DRWR-P2P Search Algorithm

In this section, we summarize the top K social-DRWR-P2P search algorithm: First, a node constructs
connections based on its friendships presented by the corresponding user in social network. Then,
the node leverages numerous features - namely friends’ knowledge and similarity - to assign weights
to its friends. By exploiting the DRWR algorithm, the node computes stable scores for its friends.
Eventually, the node ranks all its friends based on their scores and selects the top K friends from the
ranking list to forward queries.
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Figure 5.6: An example of top K social-DRWR-P2P search algorithm

An example of Top K social-DRWR-P2P Search is illustrated in Figure 5.6. First, every node
connects with their friends and estimates its friends’ weights based on their similarity and knowl-
edge. In this example, user u connects to its friends f 1, f 2 and f 3 and measures their weights
(0.6, 0.2 and 0.2 respectively) based on friends’ similarity and knowledge from u’s own perspective.
Similarly, f 1, f 2 and f 3 also estimate weights for their friends. User u does not link to the stranger
s and weights s as zero. Then, u runs DRWR algorithm to score each of its friends, shown in the
right table.

Particularly, we note that the final scores assigned by DRWR are not as the same as the initial
weights. For instance, from u’s own perspective, f 2 and f 3 have the same weight. However, f 3
should be assigned a higher score than f 2 intuitively since f 3 is also a friend of u’s friend ( f 1).
This relationship makes u, f 1 and f 3 much closer to each other and raises the content discovery
probabilities of f 1 and f 3. It is the DRWR algorithm that explores the latent friendship between
friends f 1 and f 3 to increase their scores. Finally, we select top K friends from the friends ranking
list.

Furthermore, the proposed mechanism is flexible with the changeable knowledge and similarity
features. Different feature parameters are assigned according to specific applications. In addition,
we notice that the complexity of the algorithm is O(l) defined by the convergent steps.
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ALGORITHM 1: Top K social-DRWR-P2P search

Input: Friends’ information from OSN:;
The set of friends’ list of a node;
The set of friends’ feature;
The number of selected friends: K;
Output: Top K friends of the node;
Initialize unstructured social_P2P network;
for f k ∈ KnowledgeFeatures(F(K)) do

Assign the weight of feature f k to each friend of the node(Equation 5.1);
end
for f s ∈ SimilarityFeatures(F(S)) do

Assign weight of feature f s to each friend of the node(Equation 5.2);
end
Combine all factored features’ weight (Equation 5.3)
Iteration: Run DRWR until probability vector ppp converges. l = 0;
for ppp is not convergent do

Calculate stable transition probability for each friend (Equation 5.5);
l ++;

end
Order friends based on friends’ scores;
Selected Top K friends of the node;

5.4 Experiments Setup

We use the two Facebook data sets to evaluate the proposed the mechanism. The friendships are
used to connect nodes in the social P2P network, and the information of a user’s friends is applied
to estimate the content discovery weights. In this section, we first introduce the experiment method
and performance metrics. Then, we describe the parameter setup in the proposed social P2P network
model.

5.4.1 Experiment Design

5.4.1.1 Assumption and Evaluation Strategies

Receivers (any mediator nodes or the target nodes) in the experiments store a set of content so as
to reply to the queries from the starting node. Facebook supports user-generated interests explicitly.
Here we assume the receivers store their favorite Movie, Music, Book, Game and TV series, or know
how to find out their interests even if they do not store them on their disk. And then it is plausible to
assume that a receiver’s interest list on Facebook works as her content list.

From the perspective of a normal user (starting node), two kinds of interests are desirable: the
user’s personal interests and the most popular interests. Our evaluations are therefore composed
of two parts: personal interests searching and popular interests searching. In personal interests
searching, we assume that the starting node looks for all its interests from others. In popular interests
searching, top 500 interests in each group are considered as its popular interests, and the starting
node searches all the popular interests.
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5.4.1.2 Comparison

We compare the newly proposed content discovery mechanisms (i.e., social-DRWR-P2P) to social-
P2P and traditional-P2P.

• social-DRWR-P2P: we first project the information of users in Friends Group to the nodes in
P2P network one by one and generate the social-P2P network topology by following the social
p2p network model introduced in Section 5.3.1. We run Top K social-DRWR-P2P algorithm
and launch queries to the selected top K nodes over this network topology.

• social-P2P: we use the same social-P2P network topology as social-DRWR-P2P mechanism
does. However, the content discovery queries are forwarded to K randomly selected friends,
instead of the top K friends selected by social-DRWR-P2P.

• traditional-P2P: we map the users’ information in the Random Group to the nodes in the P2P
network and then a node selects K users at random to send queries.

We launch one-hop and two-hop searching by forwarding K queries at each sender.

5.4.2 Performance Metrics

In each content discovery procedure, a node (i.e., sender) sends the content discovery queries to K
selected nodes (i.e., receiver5), and in turn H nodes (i.e., replier) among them reply. In addition, we
refer the node that stores the queried content as a storer and denote the total number of storers as C.
Then we define the following four metrics to evaluate our proposed method:

Hits: Hits is defined as the average number of replies during content discovery procedures (i.e.
H). Intuitively, it relates to the selected number (K) of receivers: a sender might get more replies
while it sends queries to more receivers.

Query Success Rate (QSR): QSR equals the fraction of the number of replies to the number
of receivers (i.e., QSR = H/K). Although increasing the number of receivers might lead to more
Hits, it costs more network resources (e.g., bandwidth). To some extent, over-query could even
lead to network congestion and lower network performance. Hence, Hits alone is not enough for
performance evaluation. Given two mechanisms which achieve the same Hits, the one with a higher
QSR performs more efficiently.

Search Success Rate (SSR): We consider a content discovery procedure to be successful as long
as the sender receives a reply at least from the receivers. SSR is a metric for estimating the success
rate of procedures. We run M procedures in total and S of them are successful. Thus, we calculate
SSR by dividing the number of successful procedures by the total number of procedures (i.e., SSR =
S/M). Note that different P2P applications have different requirements in content discovery: some
of them are only interested in finding one single copy of content, while others look for as many
copies as possible. Therefore, the former applications probably do not concern about QSR, since
SSR is a very important metric for them. In contrast, QSR is meaningful for the latter applications.

Recall: Recall is computed as the number of repliers divided by the total number of storers (i.e.,
Recall = H/C). Recall reflects the capacity of a mechanism in terms of completely retrieving. If
two mechanisms achieve the same Hits and QSR / SSR, the one that reaches higher Recall presents
better performance.

5In social-DRWR-P2P, the receivers are the top K friends; in social-P2P, the receivers stand for the random selected
friends; in traditional P2P, the receivers represent for the totally random selected users
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5.4.3 Parameters Setup

As described in Section 5.3, the proposed social-DRWR-P2P algorithm applies two ways to quantify
users’ social attributes, which respectively produce knowledge features and similarity features. In
our experiments, we employ two social attributes which are users’ friends list and interests list.
Drawing on equations 5.1 and 5.2, we obtain the normalized friend degree and interest degree as
knowledge features; and we compute friend similarity and interest similarity as similarity features.

5.5 Performance Evaluation

In this section, we compare the performance of traditional-P2P, social-P2P and social-DRWR-P2P
with respect to personal interests searching and popular interests searching respectively. The results
indicate that social-DRWR-P2P is superior to the other algorithms not only for discovering popular
interests but also for nodes’ personal interests.

5.5.1 Personal Interests Searching

To evaluate the discovery of users’ personal interests, a starting node generates queries for all its
personal interests and a receiver replies as long as it stores the queried interests. Figure 5.7 sequen-
tially plots the personal interests search results of the Hits, QSR, SSR and Recall achieved by the
three compared algorithms. The vertical axes are the values of the aforementioned four metrics and
the horizontal axes represent the number of receivers. In the figure, K only represents the number of
receivers to which each sender forward queries. Therefore, the total number of receivers for two-hop
search is K +K2 corresponding to K at the horizontal axes in figure 5.7 and 5.8. We perform the
experiments with K being [1,3,5,10,20,30,40, 50,60,70,80,90,100] respectively.

Figure 5.7(a) shows the average Hits. It is obvious that the values of Hits are getting higher
as the number of receivers (K) increases. In cases of both one-hop and two-hop, social-P2P gains
higher Hits than traditional-P2P. This implies that friends perform better than randomly selected
nodes for personal interests searching. Compared with social-P2P, social-DRWR-P2P achieves
even higher Hits. This observation indicates that friends with a higher similarity and more knowl-
edge are more likely to find personal interests. Furthermore, in the one-hop experiments, the Hits of
social-DRWR-P2P exceeds 1 when the receivers are more than 40; while the Hits of the other two
mechanisms only reach 0.14 and 0.00003. In the two-hop estimations, social-DRWR-P2P can obtain
1.22 replies on average by sending queries within 5 receivers at each sender; however, social-P2P
and traditional-P2P receive only 0.008 and 0.0002 replies respectively under the same condition.
The results indicate that two-hop search costs fewer queries than one-hop search to achieve the
same performance of Hits. For instance, to guarantee one Hits, a starting node, forwarding 5 queries
at each sender in two-hop search, sends 30 queries in total; compared with 40 queries in one-hop
search.

Figure 5.7(b) reveals that social-DRWR-P2P gains much higher QSR than traditional-P2P and
social-P2P. Additionally, we observe that, for social-P2P and traditional-P2P, the QSR changes
little in a broad range of K values, especially in one-hop searching; however, the QSR of social-
DRWR-P2P decreases obviously as K increases. In other words, the efficiency of social-DRWR-P2P
drops while more friends with lower weight (i.e., K increases) are requested to. These observations
reflect that the friends of more knowledge and similarity benefit more for content discovery. Com-
bining the results from both Hits (figure 5.7(a)) and QSR (figure 5.7(b)), we note that when K is
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Figure 5.7: Performance of personal interests searching

between 5 and 20, social-DRWR-P2P can obtain a good Hits (between 1.22 to 6.5)and a good QSR
(between 0.041 to 0.015) within two-hop search.

From figure 5.7(c), we can see that the proposed mechanism also outperforms others in terms of
the SSR. The SSR of social-DRWR-P2P achieves 100% with selecting 20 receivers at each sender
in two-hop search. This means that social-DRWR-P2P can guarantee its success by two-hop search
with sending 420 queries (i.e.,K=20) in total. To accomplish the same performance, social-P2P
needs to query 3660 receivers (i.e., K = 60) and traditional P2P queries to 8190 receivers (i.e.,
K = 90) at least. In other words, in order to guarantee a successful search, social-DRWR-P2P saves
almost 8 and 18 times queries compared to social-P2P and traditional P2P.

Figure 5.7(d) compares the completely retrieving capacity of the three mechanisms. In the best
cases, social-DRWR-P2P can find out 0.73% and 52.12% of storers to reply queries in one-hop
search and two-hop search respectively. Meanwhile, the social-P2P only locates 0.14% and 12.05%
of storers, and the traditional-P2P explores about 3×10−5% and 0.26% comparatively. On average,
social-DRWR-P2P improves the percentage of retrieved storers by nearly 11 times in one-hop and
19 times in two-hop compared to social-P2P.

To summarize content discovery for personal interests, we suggest applying two-hop social-
DRWR-P2P with selecting top 20 receivers at each sender. In this case, social-DRWR-P2P could
guarantee a 100% successful content discovery. Also it achieves suitable Hits (6.5) with acceptable
QSR (0.015).
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5.5.2 Popular Interests Searching

In order to validate the performance of the three algorithms in terms of popular interests searching,
we first rank all the interests by their popularity. Then we group the successive 20 interests from
high to low in the ranking list into a bucket and calculate the average value for all the metrics. We
consider the top 500 interests as the popular interests and generate 25 buckets. Figure 5.8 shows the
one-hop and two-hop evaluations with K = 20 for social-DRWR-P2P, social-P2P and traditional-
P2P.

We can see that, in the case of popular interest discovery, social-DRWR-P2P also outperforms
social-P2P and traditional-P2P and achieves better performance of Hits, QSR, SSR and Recall
under the same conditions. We account for friends’ knowledge amount as a factor when we rank
friends in social-DRWR-P2P. Therefore, the observations may respond to the fact that the selected
receivers with higher scores can provide more content which also contain many popular content.
However, social-P2P does not perform better than traditional-P2P method for popular interests
searching, which implies that the algorithm merely involving the friendship does not benefit popular
interests searching obviously.
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Figure 5.8: Performance of popular interests searching. We group the top content by size of 20, thus
the buckets are:[T1-T20],[T21-T40],...,[T481-T500].

We also observe that, in general, the content discovery queries for the interests in the higher
position in a ranking list receive replies with higher probabilities as well as higher efficiency. This
might suggest that for popular interests searching we could downsize the number of receivers to
some extent in order to obtain enough Hits and reduce the cost at the same time; and contrarily, we
would have to send more queries to achieve similar performance for searching unpopular interests.
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In addition, we notice that the value of recall does not decrease as the ranking goes down. That is
to say, the capacity for retrieving interests can maintain a certain level no matter how popular the
interests are.

5.5.3 Result Discussions

The results obtained in this section provide a number of interesting insights that we summarize as
follows:
(1) Due to the large number of available resources for the popular interests, retrieving such inter-
ests is a relatively easier task. Additionally users present many unpopular interests in general (see
Section 5.2). Therefore, a good content discovery solution should be characterized by its twofold
abilities of finding popular interests and personal interests. The experiments reveal that our proposed
social-DRWR-P2P significantly improves the performance of content discovery not only for popular
interests but also for personal interests.
(2) We also notice that, for popular interests searching, social-P2P which merely considers the
friendship among nodes does not show any advantage over traditional-P2P. This just indicates that
the two aspects of our proposed mechanism - the social P2P network model and the Top K social-
DRWR-P2P Search Algorithm - are both necessary in order to improve content discovery.
(3) It has been demonstrated that, for a certain number of queries, the proposed social-DRWR-P2P
might perform better within two-hop search than one-hop search. For instance, if we query 110
friends within one-hop, the sender selects receivers including the relatively low ranking ones among
all its friends. However, if the same amount of queries are issued within two-hop, the queries are
sent to the 10 highest ranked friends and sequentially forwarded to 10 highest ranked friends of
them.
(4) We can state that the friends with a higher similarity and more knowledge are more likely to
reply the content from two perspectives: (i) social-DRWR-P2P, which selects the receivers with
friends of higher weight, performs better than social-P2P (i.e., randomly select friends); (ii) the QSR
of social-DRWR-P2P decreases with involving more friends of lower weights (see figure 5.7(b)).
Furthermore, we devise an experiment to verify this statement:

• With the ranked friends list generated by social-DRWR-P2P, we cluster each 10 successive
friends from top to bottom into a group and compare the average Hits of each group. That is
to say, the top 10 friends are clustered into group 1, and the next successive 10 friends (i.e.,
top 11th to top 20th) into group 2. In this way, we generate 20 ordered groups by the top 200
friends. Note that the friends in nth group have higher scores than friends in n+ 1th group.
Figure 5.9 shows that, both for personal interests searching and popular interests searching,
the friends with more knowledge and higher similarity can achieve better performance.

5.6 Discussion

In this section, we discuss and explain three practical issues of the proposed mechanism.

5.6.1 Feasibility of Social P2P Model

In this chapter, we project user social information into a P2P network to build up the social P2P
network model. This model is the basis for the proposed content discovery algorithm. Therefore the
feasibility of the model determines the practicability of the proposed systems. The core issue here
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Figure 5.9: Hits number of social-DRWR-P2P

is whether or not it is possible to set up a real social P2P sharing platform (i.e. a P2P network with
users’ social information).

For enlarging the influence and user volume, many existing P2P applications recommend users
to combine their P2P accounts with their social network accounts. For instance, when logging on
PPstream, a user would receive a message of “Login with your Weibo (Chinese Twitter) account;
Login with your Renren (Chinese Facebook) account; Login with your QQ (Chinese MSN) ac-
count”. Even though we have no idea of what percentage of users would meet these requirements,
we believe users would accept this recommendation if they could obtain better performance for
their P2P experience. The existing unstructured P2P applications could directly follow the proposed
mechanism to improve content discovery.

Existing P2P applications (e.g. PPstream, PPlive) encourage users to register on their platforms.
They record users’ basic profile like age, gender, education, etc., and track users’ history of up-
loading, watching and storing. As long as allowing users to make friends and encourage them to
communicate with each other on their platforms, these P2P applications could easily construct their
own social P2P networks. The proposed mechanism can be integrated into exiting platforms.

As Facebook is currently the biggest OSN in the world, we leverage Facebook to extract users’
social information, setup the social P2P model and conduct the experiments in this research. How-
ever, for the two above-mentioned reasons, our proposed method is practical not only for P2P plat-
forms with user accounts associated with Facebook, but also for others with their own user social
networks.

5.6.2 Effectiveness of Facebook Data set

Because of Facebook’s privacy policy, we only crawl the public information from the public users
from Facebook. Thus, one might doubt that the results of studies on Facebook and the data-based
experiments are biased by the incomplete data sets. However, as shown in figure 3.1(c), 65% of
users in the data sets present their friends and 53% of users show their interests to the public. From
the point of studies, we have a considerable number of samples. In addition, we use two ways to
collect information and present their generality in Section 3.2.2. From the perspective of data-based
experiments, a node could probably achieve a better performance if it has more social information .



Summary 63

5.6.3 Selection of Social Features

To estimate friends’ content discovery weights with respect to social attributes (in Section 5.3.1.1),
we provide two ways by which we obtain knowledge features and similarity features respectively.
We refer knowledge features as the quantifiable resources of a node; and regard similarity features
as the metrics, which measure how much users are alike with respect to diverse attributes. In our
opinion, this model can be flexibly extended to contain more relative social features regarding the
available social information. For instance, age similarity might be a practical similarity feature, as
in general younger generation of 1990s might present different tastes in movies or music, compared
with middle-age people who were born in 1970s. In addition, the proposed algorithm, summing up
the products of the features’ values and the biased parameters (see Equation 5.3 in Section 5.3.1.1),
seeks to achieve the best performance by taking overall advantage of the considered features.

5.7 Summary

In this chapter, we present a social P2P mechanism grounded on the real social network informa-
tion. By linking nodes through their social friendship, we build up a social P2P network model; we
weight the friendship regarding of knowledge features and similarity features. Based on this model,
we further propose a content discover algorithm which selects a subset of friends by the modified
version of the RWR algorithm (i.e., DRWR). This algorithm is able to explore the latent friend-
ships among a node’s friends. Although online social networks are mainly centralized nowadays,
the social information that users generate and maintain can be exploited into a P2P environment.
Besides, relying on a large data set with 500K Facebook user profiles, we conduct comprehensive
experiments to evaluate our proposed method. The experiment results have demonstrated that our
proposed approach is capable of improving content discovery in P2P not only for popular content
but also for users’ personal interests. In the future, we plan to extend the current solution by select-
ing friends regarding their social features as well as the features of the requested content, so as to
make the mechanism more effective and intelligent. Besides, we will take into consideration more
specific social features.
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6.1 Introduction

With the evolution of OSNs, understanding to what extent two individuals are alike in their interests
(i.e., interest similarity) has become a basic requirement for the organization and maintenance of
vibrant OSNs. On the one hand, such information about users’ interest similarity could be lever-
aged to support friend recommendation and social circle maintenance. For instance, the decision
to recommend users who share many interests with each other to be friends could increase users’
approval rate of recommendation, because people usually aggregate by their mutual interests [103].
On the other hand, knowing interest similarity between users also facilitates social applications and
advertising. For example, instead of randomly hunting for clients, exploring those users with a
high interest similarity with existing clients could efficiently enlarge client groups for application
providers and businesses.

However, estimating interest similarity between two users is not a straight-forward issue since
users do not always explicitly elaborate their interests. In our Facebook data set, 51.6% of users do
not present any interests in their profiles; and among nine interest domains in the data set, except
for movies, music and TV shows, less than a quarter of users reveal their interests in any of the
other six interest domains (e.g., books, sports or games). Since such lack of users’ interests occurs
quite often in the real OSN environment, how to infer two users’ interest similarity without complete
information about their interests poses a challenge.

To deal with this problem, we investigate how two users’ interest similarity relates to various
social features in depth (e.g. profile overlap, geographic distance, and friend similarity) and further
infer whether two users are alike/unalike in interest according to these learned relations. Existing
studies have already demonstrated that friends share more interests than strangers [155] and verified
that interest similarity strongly correlates to the trust between users [18]. However, the work to date
has not address the issue of inferring users’ interest similarity without complete information about
users’ interests. Furthermore, we carry out a comprehensive analysis on the correlations between
users’ interest similarity and diverse social features, and have unearthed additional relative factors
that could enhance interest similarity prediction.

Particularly, we quantify interest similarity over an aggregation of user pairs by two metrics:
probability of sharing interest, defined as the likelihood that two users have any mutual interests;
and degree of interest similarity, which captures interest overlaps between two users based on the
weighted cosine similarity. In addition, we extract social features (e.g. profile overlap, geographic
distance, and friend similarity) from users’ social information regarding three aspects: demographic
information (age, gender, location, etc.), social relations (i.e., friendship), and obtainable users’
interests. Specifically, we conduct the study in three interest domains, namely movies, music and
TV shows.

We highlight our key findings captured from the wide variety of analysis — the homophily of
interest similarity. Generally, homophily shows the level of homogeneity in people’s social net-
works in relation to multiple sociodemographic, behavioral and intrapersonal characteristics [1].
Specifically, in this chapter, homophily

• reveals that people tend to be interested in the same movies, music and TV shows when they
are similar in their demographic information, such as age, gender and location;

• implies that friends have higher interest similarity than strangers. Furthermore, the interest
similarity increases if two users share more common friends;

• indicates that the individuals with a larger interest entropy are likely to share more interests
with others. Note that we exploit interest entropy to quantify the characteristics of one user’s
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interests. A user’s interest entropy is influenced by two factors: the total number of a user’s
interests and the popularity of these interests. The more interests a user presents, and the less
popular the interests are, the more the user gains in interest entropy.

Based on the empirical studies, we propose a prediction model with a number of features (e.g.
geographic distance, friend similarity and interest entropy). This prediction model can determine
whether two users are similar or not in interest when one of the users does not provide his inter-
ests. The prediction result can be properly applied to various interest similarity based applications
(e.g., recommendation system [156][157], friend prediction [155][104] and user evaluation system
[158]). For instance, the model can help to address the new user problem in the typical collabora-
tive recommendations [5][119]. Normally, a collaborative recommendation system recommends a
user some items that are liked by the others with similar interests. Whereas, the recommendation
may fail when it comes to a new user u not revealing his interests, as the system cannot determine
which of its existing users may share interests with u. In this case, even without u’s interests, the
proposed prediction model is able to find some existing users who are predicted being similar to u
and recommend u some items according to their interests.

In summary, the main contributions of this chapter include:

• To the best of our knowledge, this is the first work to infer the interest similarity of two users
where we do not know one of the user’s interests. Owing to the frequent lack of users’ interest
in OSNs and the common requirement for applications of knowing the interest similarity
between users, this research problem has a practical significance.

• We capture various social features depending on users’ social information and investigate
how interest similarity relates to these social features through a comprehensive perspective
at a collective level. We uncover the homophily between these social features and users’
interest similarity. Relying on a large data set crawled from Facebook, the analytical results
can advance the collective knowledge of OSNs.

• We devise a practical interest similarity prediction model based on the learned social features,
namely InterestSim model. We also introduce two baselines referred to Friend model and De-
moSim model. These two baselines depends on users’ friendships [5][159] and demographic
similarity [119][160][161] respectively. The experiments show that InterestSim model outper-
forms Friend and DemoSim model by 12%-16% and 3%-4% respectively in terms of AUCs
in different interest domains.

• We illustrate a use case where we leverage the proposed InterestSim model to practically
address the new user recommendation problem. Compared with several state-of-the-art ap-
proaches, it turns out that our proposed InterestSim model can facilitate the new user recom-
mendation with a higher precision.

6.2 Overview

We provide a brief overview to state the research problem, present an outline of a potential solution
and introduce the empirical analysis framework, visualized in figure 6.1.

The goal of this chapter is to estimate the interest similarity between two users without knowing
one user’s interest information. To achieve this goal, we first distinguish two kinds of users, Active
Users and Passive Users:
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Figure 6.1: Overview of problem, proposed solution and the problem and solution (P/S) based
analysis framework

• Active Users (i.e., ua) explicitly present their demographic information (D), friendships (F)
and interests (I), which can be denoted by a tuple of ua :< Da,Fa, Ia >;

• Passive Users (i.e., up) only report partial demographic information and/or friendships, but
hide interests from the public; we denote a passive user as up :< Dp,Fp >.

On this basis, the fundamental problem becomes, given an active user ua and a passive user up,
to infer whether ua and up are similar or dissimilar in interest. The problem also could be extended
to select a subset of active users who probably share many interests with up, given a up and a set of
active users (i.e., Cua = {ua :< Da,Fa, Ia >}).

Our solution for this problem is to train a prediction model which can infer the interest similarity
between users relying on their obtainable social information. For instance, it might speculate that
two users are more likely to share interests if they are friends. Consequently, we attempt to achieve
the interest similarity prediction by two steps: (1) based on users’ social information, we can capture
several social features that may reflect users’ interest similarity to some extent; and (2) based on the
learned social features, we construct an interest similarity prediction model.

According to the proposed solution, the primary issue is to determine what specific social fea-
tures correlate to the users’ interest similarity. Therefore, we conduct extensive empirical analysis on
interest similarity with respect to various social features derived from the users’ social information.
In particular, we perform the analysis through three perspectives:

• Demographic-related features ( fD): We extract the demographic features by comparing two
users’ demographic information (D) and investigate how they correlate to interest similarity.
For example, we measure the geographic distance between users and examine how users’
interest similarity varies regarding their geographic distance.

• Friendship-related features ( fF ): We generate friendship features based on the friendships
(F) of two users. For example, we define a feature of friend similarity by counting the mutual
friends of two users and study its influence on interest similarity.

• Interest-related feature ( fI): Since we do not know the passive user’s interests in the prediction
problem, we tend to explore interest-related feature by capturing the interest characteristics
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from the active user side (I). We expect that the users who exhibit certain characteristics on his
interests would generally achieve a higher/lower interest similarity with others. In this chapter,
we specially employ entropy to quantify a user’s interests as the interest-related feature.

Furthermore, based on the learned social features, we exploit Support Vector Machines (SVM)
[162][163] method to train the interest similarity prediction model.

6.3 Measurements for Interest Similarity

To study the properties of interest similarity among users, we define the measurement of interest
similarity by two steps: (1) we first limit the computation of interest similarity between two users
(i.e., a user pair); (2) we extend the computation to an aggregation of user pairs and obtain a mea-
surement of collective interest similarity. The analysis regarding interest similarity in the following
sections depends on the collective interest similarity. Consequently, we first introduce two ways to
measure interest similarity between two users: binary similarity and weighted cosine similarity.
Then, based on these two measurements, we define two metrics to evaluate interest similarity at an
aggregated level, namely the probability of sharing interests and the degree of interest similarity.

6.3.1 Interest Similarity of Two Users

Binary similarity and weighted cosine similarity are the two measurements used to calculate interest
similarity between two users. Note that user u’s interests are denoted by an interest set Iu instead of
a binary interest vector to avoid a very sparse interest vector.

Binary similarity measures whether or not two users are similar in terms of their interests. We
assume that two users are similar in interest, as long as they have any mutual interests; otherwise,
they are dissimilar, denoted as:

sb(u,v) =
{

1 if Iuv 6=∅
0 if Iuv =∅ (6.1)

where Iuv represents the intersection of interests between user u and v. Binary similarity is
defined to evaluate the probability of sharing interests.

Weighted cosine similarity estimates the extent to which two users are similar in interest. It is
introduced by two steps. First, drawing on the general calculation of cosine similarity, the interest
similarity between users u and v is then defined as the cosine distance between their interest sets:
sc(u,v) =

‖Iuv‖1
‖Iu‖2.‖Iv‖2

where ‖Iu‖2 =
√

lu (lu is the number of interests of u) and ‖Iuv‖1 is the number
of mutual interests of u and v. If either lu = 0 or lv = 0, sc(u,v) is undefined.

Moreover, as it seems easier for two users to share a very popular interest (e.g., the movie ‘Harry
Potter’) than a rare one (e.g., the documentary ‘La Dany’), we consider the interest similarity to be
more significant if two users share a less popular interest. So, we introduce interest popularity into
the calculation of cosine similarity. Specifically, we count the number of users who like an interest
as its popularity and weight the cosine similarity according to the popularity of two users’ mutual
interests. The more an interest occurs, the less weight it is assigned. Thus we formulate the weighted
cosine interest similarity as:

sw(u,v) =
∑i∈Iuv w(i)
‖Iu‖2.‖Iv‖2

(6.2)
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in which w(i) equals the inverse log N where N stands for the number of users who are interested
in interest i, i.e., w(i) = 1

logN . Weighted cosine similarity is applied to compute the degree of interest
similarity.

6.3.2 Collective Interest Similarity

Based on the above-introduced interest similarity metrics regarding two users, we further estimate
the collective interest similarity over an aggregation of user pairs. We denote the aggregation of
user pairs as C and average the interest similarities of the user pairs in C as its collective interest
similarity.

In particular, we define probability of sharing interests (i.e., p) of user pairs in C as the mean
binary similarity of the collective pairs as follows:

p =
∑(u,v)∈C sb(u,v)

‖C‖
(6.3)

In addition, we calculate the degree of interest similarity (i.e., s) of C as the average weighted
cosine similarity of all the user pairs in C, denoted as:

s =
∑(u,v)∈C sw(u,v)

‖C‖
(6.4)

where ‖C‖ stands for the number of pairs that are included in the pair set C. In the rest of this
chapter, we use these two collective measurements to study how interest similarity varies depending
on various social features.

6.4 Homophily of Interest Similarity

In this section, we examine the relations between interest similarity and various social features that
emerge from the collective users. We investigate the changes of interest similarity with respect to
demographic-related features, social relationships and interest-related feature subsequently. Note
that, each empirical study is carried out on a specific social feature and a particular interest domain
(i.e., movies, music and TV shows). Therefore, for each study, the pair set C is generated by consid-
ering two factors: (1) the related profile attribute and (2) the focused interest domain. For instance,
to test the relation between gender and interest similarity in terms of movies, we construct a gen-
der/movie set of pairs by coupling users who present both gender and movies. Note that we only
consider the users who exhibit more than three items in the focused interest domain.

6.4.1 Interest Similarity by Demographics

We study how demographic information affects interest similarity from four perspectives, profile
overlap, gender, location (geographic distance and country) and age (age distance and generation).

6.4.1.1 Interest Similarity by Profile Overlap

Profile overlap measures the number of the profile attributes where two users exhibit the same value.
In particular, for each user, we generate a profile vector with 16 cells which corresponds to nine
interest domains and seven demographic attributes (refer Section 3.2.1). Concerning a particular
interest domain cell, if a user u presents any items in the interest domain, we say u is interested in
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Figure 6.2: Interest similarity with profile overlap. Standard error is estimated by bootstrap re-
sampling throughout this chapter. The colorful left Y-axes stand for the degree of interest similarity
and the right grey Y-axes indicate the probability of sharing interests.

this domain and denote the cell as 1; otherwise, it is set to 0. We directly put the users’ demographic
attributes into the corresponding cells.

We separately generate profile/interest sets for the three interest domains (i.e., movies, music
and TV shows) with 1,000,000 user pairs where the users present more than three interest items and
at least one demographic attribute. Let Cdq = {(qu,qv, puv,suv) : |qu

⋂
qv| = dq} denote a collection

of user pairs where the profile overlap between the user pair (u and v) is dq; qu and qv represent u
and v’ profile vectors; puv and suv are the probability of sharing interest and the degree of interest
similarity between u and v respectively.

Figure 6.2 plots the interest similarity over profile overlap in movies, music, and TV shows re-
spectively. As the number of user pairs with profile overlap beyond 11 is very small, we concentrate
on the user pairs whose profile overlap falls between 1 and 11. The results reveal that both of the
probability of sharing interests and the degree of interest similarity go up with the increase of pro-
file overlap regardless of interest domains. This observation demonstrates that two users are more
similar in their tastes if they share more common attributes in their profiles.

6.4.1.2 Interest Similarity by Gender

We produce gender/interest sets with 1,000,000 randomly coupled user pairs where the users present
their gender and more than three interest items (Movies, Music or TV shows). Let Cgc = {(gu,gv, puv,suv) :
gu
⋃

gv = gc} denote an aggregation of user pairs where two users are of gender combination gc.
Here, the gender combination of a user pair takes three possible values (i.e, gc) as male-male,
female-female and male-female.

Table 6.1 shows the probability of sharing interests and the degree of interest similarity accord-
ing to the different gender combinations. We observe the homophily for gender that the pairs present
higher interest similarities when they are in the same sex (i.e., male-male or female-female). In ad-
dition, we find that males are more similar on the interests of movies and music whereas females
present higher interest similarity in TV shows.

This observation of homophily for gender here is different from the heterophily for gender in
communication network reported in the previous work [92]. It demonstrates that people commu-
nicate more with the ones in the opposite gender. In other words, although people like to make
connection with others of different sex, the pairs of cross-gender do not share interests highly. This
suggests that we should exploit the gender property of the homophily or heterophily properly accord-
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Probability of sharing interests Degree of interest similarity
Movies Music TV shows Movies Music TV shows

Male & Male 0.164 0.179 0.209 0.0022 0.0019 0.0035
Female & Female 0.145 0.157 0.245 0.0020 0.0015 0.0042
Female & Male 0.118 0.151 0.176 0.0015 0.0014 0.0027

Table 6.1: Interest similarity by gender

ing to the specific applications. For instances, for some specific communication/dating applications,
users in the opposite gender might take the priority to be considered; while the users of the same
gender are supposed to be thought at the first place when it comes to enhancing the recommendation
for interests.

6.4.1.3 Interest Similarity by Location

We study how location affects interest similarity by geographic distance and country.
Interest similarity by geographic distance: denote a set of user pairs where the two users of a

pair are apart of duv in the span of [dl,dl +∇) by Cdl = {(lu, lv, puv,suv) : distance(lu, lv) = duv
∧

duv ∈
[dl,dl +∇)}. lu is the location of user u represented by its latitude and longitude and ∇ stands for an
interval of distance.
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Figure 6.3: Interest similarity by geographical distance

Figure 6.3(a) reports the degree of interest similarity by a full view of distance range from 0 to
15000km with an interval of 100km. Although the results fluctuate at some points when the distances
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are larger than 3000km, we see a decreasing trend of the degree of interest similarity by the distance.
Furthermore, we zoom in the x-axes and show the interest similarity with distances in the range of
0 and 3000km in figure 6.3(b), 6.3(c) and 6.3(d). We observe that the interest similarity decreases
quickly when the distance is small, and it gets steadily when the distance continuous increasing.
This implies that the interest similarity correlates to the distance very sensitively only in a limited
range of distance.

In addition, we look into a number of pair samples which might lead to the fluctuations at
distances larger than 3000km. Taking the peak at 3500km as an example, we find that the two
users at this distance are mostly from the east and west of the USA. Therefore, we speculate that
such peaks may reveal some implicit connections (e.g., nationality, language, culture) between the
specific geographic regions. Therefore, we further examine how interest similarity varies depending
on the geographic region in terms of country.

Interest similarity by country: let Cthk = {(tu, tv, puv,suv) : tu = h
∧

tv = k} denote the set of
pairs in which the two users come from the countries (denoted by tu and tv) of h and k. We select
users from 20 representative countries over six continents and randomly generate 200,000 pairs for
each country combination (cross-country or same-country).

(a) Movies (b) Music (c) TV shows

Figure 6.4: Degree of interest similarity by country

Figure 6.4 displays the heatmaps of the degree of interest similarity by country combination,
where a brighter cell indicate that users from the corresponding countries (represented by the row
and column) share more interests. Note that the cells on the secondary diagonal represents the
interest similarity of pairs from the same country (i.e., native pairs).

We observe that the cells on the secondary diagonal is brighter than the other cells in the same
row or column. This demonstrates that, compared to the pairs from two diverse nations (i.e., alien
pairs), native pairs share more interests. Besides, we notice Chinese share less movies with Philip-
pine and Indonesian, but report a high movie similarity with American. We also notice that users
from South America countries share a lot of interest. This observation might imply that the different
countries share interests with distinctions.

6.4.1.4 Interest Similarity by Age

How age distance and generation affect interest similarity are learned in this section.
Interest similarity by age distance: age distance measures the gap of two users in terms of

age. Let Cda = {(au,av, puv,suv) : |au−av|= da} denote a set of pairs whose ages differ at da. Note
that the discussed age distance (i.e., da) varies from 0 to 20 years.
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Figure 6.5: Interest similarity by age distance

Figure 6.5 shows that the interest similarity decline as the age distance goes up. This observation
demonstrates that users share more interests if they are closer at age. Moreover, we observe that the
interest similarity drops fast when the age distance is small; and it gets to decline gradually as the
age distance continues increasing.

Interest similarity by generation: Let Cga = {(au,av, puv,suv) : au ∈ g
∧

av ∈ g} denote a set of
user pairs where the two users are in the same generation g. Remind that we select 3 years as an age
interval of one generation.
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Figure 6.6: Interest similarity by generation. The lines represent the interest similarity of each
generation. Inside each generation, the grouped three histograms display the degree of interest
similarity with age distance at 0, 1 and 2 respectively.

Figure 6.6 reveals that the younger generations present higher interest similarity than the middle-
age generations. And comparing the interest similarity by age distance inside a generation, the
results basically hold the rule that the interest similarity decrease with the increase of the age distance
although several exceptions exist (e.g., 38-40 for movie).

6.4.2 Effects of Friendship

We examine interest similarity according to friendship through two perspectives: friend distance
and friend similarity. Friend distance is computed by the connected hops between two users; friend
similarity measures the common friends of two users.
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6.4.2.1 Interest Similarity by friend distance

Let Cd f = {( fu, fv, puv,suv) : D( fu, fv) = d f } denote a set of pairs where the friend distance of the
two users u and v is d f hops. Particularly, we take into account friendship in two-hop with three
users pair groups: direct-friend pair — u and v connect to each other directly (d f = 1); indirect-
friend pair — u is a friend of v’s friends but u and v are not direct-friend (d f = 2); stranger pair —
u and v’s friend distance is larger than 2 (d f > 2).
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Figure 6.7: Interest similarity by friend distance

Figure 6.7(a) and 6.7(b) report the probability of sharing interests and degree of interest similar-
ity by friend distance respectively. These results reveal that the users with less friend distance share
more interests: direct-friend pairs exhibit the highest interest similarity; and the indirect-friend pairs
share more interests than the stranger pairs do.

6.4.2.2 Interest similarity by friend similarity

Friend similarity measures two users’ common friends by cosine similarity, i.e., fuv =
‖ fu fv‖
‖ fu‖‖ fv‖ . Note

that we only consider the user pairs who present at least one mutual friend where 95% of them show
a friend similarity less than 0.02. So the studied friend similarity is in the range of (0,0.02]. Let
Cs f = {( fu, fv, puv,suv) : ‖ fu fv‖

‖ fu‖‖ fv‖ = fuv
∧

fuv ∈ [ fs, fs +∇)} denote a set of user pairs in which the
two users exhibit a friend similarity in the range of [ fs, fs +∇). ∇ represents an interval of friend
similarity.
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Figure 6.8: Probability of sharing interests by friend similarity

Figure 6.8 shows the change of the probability of sharing interests with friend similarity; figure
6.9(a), 6.9(b) and 6.9(c) display the relation between the degree of interest similarity and friend
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Figure 6.9: Degree of interest similarity by friend similarity

similarity with respect to movies, music and TV shows respectively. All these figures reveal that the
user pairs generally share more interests if they obtain a higher friend similarity. In particular, we
observe that the interest similarity goes up steeply when the friend similarity is less than 0.001, and
hereafter it becomes steady with rise of friend similarity.

6.4.3 Effects of Interest Entropy

In this section, we are interested in looking at interest related feature. We employ entropy to capture
a user’s interest feature. Entropy quantifies the information amount of the user’s interests by two
elements of the interests: the number of interests and the weight of interests. Generally speaking, a
user with many high weighted interests should be assigned with a large entropy. Using the natural
log, we define interest entropy H(Iu) as:

H(Iu) =− ∑
xi∈Iu

w(xi) logw(xi)

Where w(xi) represents the weight of interests xi (defined in Section 6.3). As 95% of users’
interest entropy is less than 8, we discuss the interest similarity by entropy in [0,8].
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Figure 6.10: CDF of interest entropy

Let Cei = {(Iu, Iv, puv,suv) : H(Iu) = ei
∨

H(Iv) = ei} denote a set of pairs by users’ interest en-
tropy of ei. Note that, in this set, only one user in a user pair is required to have an interest entropy
of ei. Because we tend to study whether the interest similarity would be influenced by one user’
interest entropy in a pair.
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Figure 6.11: Interest similarity by interest entropy

Figure 6.10 displays the probability of sharing interest; Figure 6.11(a), 6.11(b) and 6.11(c) show
degree of interest similarity. We observe that the interest similarity grows as the increase of interest
entropy. And it particularly rises very quickly as the interest entropy is small.

6.5 Inferring Interest Similarity

In the previous section, we conducted extensive analysis of how various social features correlate to
interest similarity of two users. The goal of this section is to design a prediction model for inferring
whether two users are similar in interest (namely interest similarity between users) relying on these
new learned correlations.

Let us consider many applications which directly exploit interest similarity between users to
improve the performance [155][158][104]. Obviously, the interest similarity can be easily com-
puted if both of two users’ interests are known. However, as there are always some users not
revealing their interests, for such applications, missing users’ interests is indeed a practical ob-
stacle to computing interest similarity directly (e.g., new user problem in recommendation sys-
tem [119][5][161][160][159]). Therefore, it is appealing to infer two users’ interest similarity for
this case.

Besides, users’ interests are normally desirable for personalized recommending or advertis-
ing [156][157]. For a number of passive users who do not explicitly reveal their interests (51%
of users in our Facebook data set), if it is possible to capture some active users who not only expose
their own interests but also are predicted to have similar interests as a given passive user, then we
can infer the passive user’s interests according to the similar active users’ interests. In this case, how
to predict users’ interest similarity (i.e., to determine whether two users are similar or not in their
interests) without knowing interests from one of the users becomes a meaningful problem.

Specifically, in this prediction, we consider two users: a passive user u who only presents some
demographic information and social relationships with limited friends but does not reveal his inter-
ests (i.e., up : 〈Dp,Fp〉); and an active user v who has complete information including demographic
attributes, friends as well as interests (i.e., ua : 〈Da,Fa, Ia〉). Then, the prediction task is to determine
whether the passive user u and the active user v are similar or dissimilar regarding their interests.

6.5.1 Interest Similarity Prediction Model

According to the prediction task itself, two possible results are expected: i) the given passive user
u and active user v are similar regarding their interests (i.e., labeled as interest-similar); ii) u and
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v are not similar (i.e., labeled as interest-dissimilar). To achieve the task, the basic idea is to train
a prediction model to label u and v as either interest-similar or interest-dissimilar by learning their
social features. Therefore, in this section, we introduce our prediction model in details from three
aspects: (1) we clarify the criterion to determine whether two users are interest-similar or interest-
dissimilar; (2) we illustrate the social features that are leveraged to train the prediction model; (3)
by exploiting Support Vector Machines (SVM) method [163], we establish our interest similarity
prediction model, namely InterestSim model.

Criterion: Given a pair of users u and v, whether they are similar or dissimilar is determined
by their interest similarity and an established threshold. We compute u and v’s interest similarity
by the degree of interest similarity (i.e., sw(u,v)) and compare the value to the established threshold
(i.e., ε). We use zuv to label the interest similarity between u and v. If the interest similarity is larger
than ε , zuv is labeled to 1, representing u and v are interest-similar; otherwise, zuv is labeled to −1,
indicating u and v are interest-dissimilar:

zuv =

{
1 sw(u,v)> ε

−1 sw(u,v)< ε
(6.5)

Social Features: Moreover, given a passive user u, an active user v and all of their obtainable
social information (i.e., demographic information, friends and v’s interests), we extract the following
social features drawing on the studies in the previous section:

• Profile Overlap (POuv) computes the percentage of the same attributes that u and v share
among the seven demographic attributes: age, gender, current city, hometown, high school,
employer, and college.

• Gender Combination (GCuv) takes three possibilities: 1 (male-male), -1 (female-female), and
0 (male-female).

• Geographic Distance (GDuv) measures the distance between u and v’s current city (refer to
Section 6.4.1.3).

• Binary Country (BCuv) is set to 1 if u and v come from the same country; otherwise it equals
0.

• Age Distance (ADuv) calculates the absolute difference of u and v’s ages.

• Friendship Distance (FDuv) is set to 1 if two users are friends; otherwise, it equals 0.

• Friend Similarity (FSuv) is calculated by cosine similarity (refer to Section 6.4.2.2).

• Interest Entropy (IEv) is computed by the active user v’s interests (refer to Section 6.2 and
6.4.3).

Note that we normalize Geographic Distance, Age Distance, Friendship Distance and Interest
Entropy to ensure all the features belonging to [−1,1]. Thus, for the user pair u and v, we obtain a
social feature vector: xxxuv = 〈POuv,GCuv,GDuv,BCuv,ADuv,FDuv,FSuv, IEv〉.

SVM-based InterestSim model: So far, from each user pair (u,v) where u is a passive user and v
is an active user, we can generate a tuple 〈xxxuv,zuv〉. xxxuv is the social features extracted from u and v’s
social information; zuv is the label which stands for whether u and v are interest-similar or interest-
dissimilar. To train the InterestSim model, we aggregate a number of user pairs where all the pairs
are made of a passive user and an active user. Similarly, from all these user pairs, we can generate
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a tuple collection where each tuple corresponds to a pair of users, denoted as C {pairi : (xxxi,zi)}.
Assume q stands for the total number of the user pairs and i denote the ith pair. Then constructing
the SVM-based prediction model is solving the following optimization problem:

minL(w) = 1
2‖w‖

2 +δ ∑
q
i=1 ξi

subject to:

{
ξi > 0

zi〈w,xxxi〉> 1−ξi

(6.6)

where δ is a constant and ξi,(i = 1, ...,q) are slack variables for optimization. Note that, for training
the prediction model, we assume that u’s interests are known to calculate u and v’s interest similarity
so as to determine the label (interest-similar or interest-dissimilar). However, when computing the
social features, we think of u’s interests as unavailable information in keeping with the prediction
problem’s pre-condition that u is a passive user.

Specifically, to train the proposed InterestSim model, we generate 150,000 user pairs by ran-
domly coupling two users (u and v) where both u and v exhibit all the demographic information,
friend lists as well as more than three interests in movies, music, or TV shows. Afterward, we split
the whole 150,000 user pairs into ten subsets (i.e., 15,000 user pairs per subset) and do a ten-fold
cross validation.

6.5.2 Evaluation of Prediction

In this section, we are going to evaluate the InterestSim model through two ways: (1) we leverage the
‘leave-one-feature-out’ approach to investigate the effects of various social features on the interest
similarity predictions; (2) we evaluate the performance of InterestSim model and compare it with
other two baseline approaches.

6.5.2.1 Leave-One-Feature-Out Evaluation

We carry out ‘leave-one-feature-out’ comparisons and train prediction models by excluding one of
overall features. For instance, we train a No Profile Overlap model by taking out Profile Overlap
from the social feature vector xxxuv. In addition, for some features originated from one attribute, we
remove them as one integrated feature to train the ‘leave-one feature-out’ model. For example, we
view Friendship Distance and Friend Similarity (both originated from friend lists) as an integrated
feature, namely Social Relation; and also regard Geographic Distance and Binary Country as Loca-
tion. In particular, we generated models without any one out of the six features of Profile Overlap,
Gender Combination, Age Distance, Location, Social Relation, and Interest Entropy. In total, we
obtain 18 ‘leave-one-feature-out’ models with respect to the three interest domains of movies, music
and TV shows (6×3).

Table 6.2 compares the ‘leave-one-feature-out’ models with the InterestSim model in terms of
the areas under ROC curves (AUCs). From the table, we can see that our proposed InterestSim
model, which infers interest similarity according to all the learned social features, outperforms the
other models which miss one type of social features. It demonstrates that all the used social features
are beneficial for the prediction. Note that a social feature (e.g. Gender Combination) would be
more important if the AUC of a model trained without the feature (e.g., No Gender Combination
model) is smaller. Therefore, from the results, we can say that Profile Overlap, Gender Combination
and Social Relation are less sensitive in the predictions of interest similarity compared to the other
attributes, such as Interest Entropy, Age Distance, and Location. In addition, we observe that the
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AUC
Type of Model Music Movies TV shows

No Profile Overlap 0.6201 0.6388 0.6825
No Gender Combination 0.6521 0.6410 0.6889

No Age Distance 0.5831 0.5943 0.6061
No Location 0.5490 0.5880 0.6550

No Social Relation 0.6491 0.6206 0.6727
No Interest Entropy 0.5171 0.5236 0.6047
InterestSim Model 0.6720 0.6644 0.7027

Table 6.2: Comparison of effects on interest similarity prediction by different social features

impacts of the social features on the predictions in different interest domains exhibit their own prop-
erties. For instance, Location is more sensitive to music similarity prediction than movie similarity
prediction, while Social Relation plays a more important role in movie similarity prediction than
music similarity prediction.

6.5.2.2 Prediction Performance Comparison

To the best of our knowledge, this is the first work aiming at inferring whether two users are similar
or not in terms of their interests, without knowing one user’s interests. Some existing work has
pointed out several good features that can indicate similar interests between users. The friendship
between two users is one of the most acknowledged feature that are used to infer a user’s interests
from the other’s [5][164][159]. Additionally, in order to make accurate recommendations for new
users without rating any items, demographic information is also explored to indicate that users with
more common demographic information might share more interests [119][161][160]. Therefore, we
draw on their main ideas on interest similarity indications and train two baseline prediction models
respectively exploiting users’ friendships and demographic information, namely Friend model and
DemoSim model. In particular, we train Friend model by using two features: Friend Distance and
Friend Similarity; and we construct the DemoSim model by applying Profile Overlap, Age Distance,
Gender Combination and Geographic Distance.

Figure 6.12 plots the ROC curves for the three interest domains of movies, music, and TV shows,
comparing the proposed InterestSim model to the Friend model and DemoSim model in the aspect of
prediction capacity. Table 6.3 compares AUCs between the three sets of models. The ROC curves of
Friend model almost approach to the secondary diagonal which represents the capability of random
prediction. It indicates that we can hardly infer users’ interest similarity merely with respect to their
friendships. By considering four demographic features which involves in seven profile attributes,
DemoSim model generates larger AUCs and performs better than Friend model. Even though, much
of the area improvement under the ROC curves of InterestSim model has been shown in figure
6.12. From table 6.3, for movies, music and TV shows, we gain more than 3%-4% of improvement
compared with DemoSim in terms of AUC.

Friend Demo InterestSim
Music 0.5487 0.6411 0.6720
Movies 0.5335 0.6142 0.6644

TV shows 0.5478 0.6593 0.7027

Table 6.3: AUC comparisons among Friend model, Demo model and InterestSim model
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Figure 6.12: ROC curves of prediction

6.6 Case Study: Recommendation for New Users

Recommendation system recommends items to a user if these items are presumably preferred by the
user. In order to make efficient recommendations, many existing approaches, which are categorized
as content-based recommendations, collaborative recommendations and hybrid recommendations,
need to acquire the users’ interests. These approaches encounter a common and difficult problem
— new user problem — when the recommendations are required for the new users who have no or
very little information about their interests [156][165]. Fortunately, our proposed InterestSim model
just can make a bridge between the new users and their interests via some existing active users who
present interests in the recommendation system: we can recommend the interests of the existing
active users who are predicted being similar in interest with the new users. For this reason, we
leverage our proposed InterestSim model to address the new user problem. With this case study, we
aim at demonstrating the practical use of our proposed prediction model.

6.6.1 Approaches

In this subsection, we briefly describe how to recommend items to a new user based on our proposed
InterestSim model — namely InterestSimPop recommendation; we also introduce several state-of-
the-art new user recommendation approaches to compare with:

• InterestSimPop: exploits InterestSim model to infer a number of users who are similar with
the new user in interest; and then it recommends the new user the most popular items that
liked by those similar users;

• OverallPop: For a new user without claiming his interests, a straightforward way is recom-
mending the overall most popular items among all the existing users. Such a method, called
OverallPop here, is often used as an intuitive baseline in the existing research about the new
user problem [166];

• FriendPop: In [5][159], the authors indicate that using the friends’ interests may facilitate the
recommendation performance for a new user. We thus borrow the basic idea from these works
to implement the FriendPop baseline method, which selects the most popular items among a
new user’s friends;

• DemoSimPop: Demographic information, such as age, location, gender, is another useful
source to tackle the new user problem [119][160][161]. Following the idea in [119], De-
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moSimPop first finds the users whose demographic attributes (e.g., gender, location, and age)
are similar to the new user, and then selects the most popular items from those demographic-
similar users;

• DemoComAgree: Based on α-community spaces model and ‘level of agreement’ of the com-
munity, the authors propose another way to use demographic information to improve the item
recommendation for a new user [120]. Here, we also implement this method and call it as
DemoComAgree.

6.6.2 Experiment Setup and Results

According to our data set, we randomly select 200 users who present demographic information
(including age, gender, current city, hometown, high school, college and employer), friends and
interests respectively in terms of movies, music and TV. We hide these users’ interests and collect
them into a new users set (i.e., Unew) to recommend items. In addition, we use the rest of users
who present more than 3 movies, music or TV shows as the existing active users. By using the
above-mentioned recommendation approaches, we generate recommendation item lists for the new
users from the preferences of the existing active users, and eventually we compare the recommended
items with the new users’ real preferences.

To evaluate and compare the performance of the above-mentioned approaches, we respectively
select the top 5, top 10, top 20 and top 100 items to generate the recommendation lists. We es-
timate the effectiveness of the recommendations by a quite commonly used metric — precision
[156][157][120][166]. In fact, precision estimates how many percentage of recommendations are
the users’ real interests. Assume that a new user u ∈ Unew has pu specific preferences; we rec-
ommend qu items to the u where ru among these qu items are u’s real interests. Then, we have
precision = 1

N ∑u∈Unew ru/qu, where N is the number of new users in Unew. By the definition of
precision, a good recommendation approach should exhibit a large precision.
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Figure 6.13: Evaluation on recommendation precision

Figure 6.13 compares the precision of our proposed InterestSimPop recommendation to the
other four baselines. We observe that our proposed InterestSimPop approach achieves the largest
precision no matter what the interest domain refers to. This indicates that our proposed approach
can improve effectiveness of recommendations for a new user. For instance, in Figure 6.13(a), the
precision of InterestSimPop is around 0.45 for the top 5 recommendations, which means we can
correctly recommend 2−3 movies out of the top 5 recommendations to the new users on average;
however the other approaches cannot ensure 1 correct movie recommendation.
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6.7 Discussion

In this section, we further discuss two concerns: 1) social feature selection; 2) the practical use of
the proposed interest similarity prediction model.

Social feature selection: To fully exploit the obtainable information in the prediction, besides
demographic information and friendships, we handily use interest entropy to characterize the active
user’s interests and luckily find that two users’ interest similarity correlates to interest entropy. Thus,
we leverage the active user’s interest entropy with other demographic and friendship features into
the prediction model. The ‘leave-one-feature-out’ evaluation reveals the positive effects of interest
entropy and all other social features. This just indicates all the studied social features can improve
the prediction. For the future work, we may improve the prediction model if more social features
could be obtained.

Use of the proposed prediction model: We have illustrated how to use our prediction model
to enhance the recommendation for new users. We also believe that our proposed model can be
easily used to other applications, like friend recommendation. Although several existing approaches
may rely on mutual friends, colleague or classmate, we propose to recommend friends according to
interest similarity for the following reasons: 1) as our proposed interest similarity prediction model
exhaustively exploits the users’ obtainable information, the interest similarity based friend recom-
mendation may substitute for the existing approaches once their requisite information (e.g., friend,
job or school) is missing; 2) The promising of the interest-based OSNs like Pinterest, CircleMe
and Yaamo reveals that people like to connect other people with similar interests. It has also been
proved that users who share certain interests are more likely to be friends [155][104][103]. Thus, a
mixed solution, which includes all the approaches based on mutual friend, colleague, classmate and
interest similarity, may be an alternative.

6.8 Summary

As users do not always explicitly elaborate their interests in OSNs, in this chapter, we address a
practical problem for OSNs: How to infer two users’ interest similarity when we cannot fully know
their interests?

To solve this problem, from users’ demographic information, friendships and their interests, we
first attempt to identify some users’ social features (e.g. geographic distance, friend similarity) that
are strongly correlated to their interest similarity. In particular, we conduct a comprehensive empir-
ical study on how users’ interest similarity relates to various social features with a large Facebook
data set in three interest domains (i.e. movies, music, and TV shows). The result reveals that people
tend to exhibit more similar tastes if they have similar demographic information (e.g., age, location)
or share more common friends. In addition, we also find that the individuals with a higher interest
entropy would generally share more interests with the others. Finally, we identify several effec-
tive social features that are strongly correlated to users’ interest similarity, including geographic
distance, gender combination, age distance, friend similarity, interest entropy, etc.

Based on the above identified social features, we propose a user interest similarity prediction
model that can determine whether two users are similar or not in an interest domain while inter-
ests cannot be obtained from one of them. The evaluation demonstrates that the prediction model
integrating all the learned social features outperforms other models that lack some of those features.
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7.1 Introduction

Owing to the increase of potential violations such as advertising spam, online stalking and identity
theft [167], in recent years, more and more users in OSNs start to concern their privacy and become
reluctant to expose all their personal information to public [168]. Consequently, the users may not
fill the privacy-sensitive attributes (e.g., location, age, or phone number) or hide them from strangers
and merely allow such information visible to their friends.

While hiding the privacy-sensitive attributes, users usually expose some other information that
seems less privacy-sensitive to them. It has been reported that Facebook users publicly reveal four
attributes on average and 63% of them uncover their friends list [169]. Due to the correlations among
various attributes, some of the self-exposed information may indicate the invisible privacy-sensitive
attributes to some extent [170]. In such a case, whether the privacy-sensitive attribute that a user
intends to hide is really undercover is in doubt.

In this work, exploiting users’ location information as a representative, we attempt to understand
what is the risk that a user’s invisible information would be disclosed. There exist several reasons
that lead us to conduct this study based on location information. First, among various kinds of in-
formation, location is usually one of the privacy-sensitive attributes for a user. In real-life OSNs, we
notice that users are quite careful to reveal their location information: 16% of users in Twitter reveal
home city [89] and 0.6% of Facebook users publish home address [171]. Moreover, for third-parties,
location information is a valuable attribute that can be utilized for commercial purposes; this may
tempt the third parties to infer users’ hidden location information. Even worse, the location infor-
mation might be misused by unscrupulous businesses to bombard a user with unsolicited marketing,
or even lead to more severe harms such as stalking and physical attacks [172]. Therefore, protecting
the hidden location information for a user becomes rather critical. In particular, as Facebook is the
most popular OSN [173], we concentrate on the attribute of current city in Facebook and investigate
the following issues:

1) Is the private current city that a user expects to hide really undercover? In other words, if a
user hides his current city but exposes some other information, can we predict a user’s current city
by using his self-exposed information?

2) For an individual user, can we help him to understand the actual risk (probability) that his
private current city could be correctly predicted based on his self-exposed information? Further-
more, can we provide some countermeasures to increase the security of his hidden current city?

To address the aforementioned issues, we first propose a current city prediction approach to pre-
dict users’ hidden current city. Although many location prediction approaches have been developed
for Twitter [121][122][123][174] and Foursquare [170][127], they cannot be appropriately lever-
aged to Facebook because of the different properties (e.g., obtainable information) in these OSNs.
For Facebook, Backstrom et al. predict users’ locations based on their friends’ locations [171]. In
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order to achieve high prediction accuracy in Facebook, we first conduct empirical studies to demon-
strate that friends’ locations, users’ profile attributes, such as hometown, school and workplace, may
indicate their current city to some extent. Furthermore, we devise a novel current city prediction ap-
proach by extracting location indications from integrated self-exposed information including profile
attributes and friends list.

Second, based on the proposed prediction approach, we construct a current city exposure es-
timator to estimate the exposure probability that a user’s invisible current city may be correctly
inferred via his self-exposed information. The exposure estimator can also provide a user with some
countermeasures to keep his hidden current city undercover. To the best of our knowledge, this is
the first work that attempts to estimate a user’s exposure probability of an invisible attribute by his
self-exposed information.

It is a non-trivial task to construct either the current city prediction approach or the exposure
estimator. We encounter the following challenges:

1) How to extract and integrate different location indications from a user’s multiple self-
exposed information? Since the proposed prediction approach tends to explore location indications
from both profile attributes and friends list, two subproblems are considered. (i) A user probably
reveals multiple attributes (e.g., hometown, workplace) which may indicate different locations; be-
sides, a certain attribute might indicate several locations. For example, a user working in GOOGLE

suggests that the user could probably live in any city where GOOGLE sets up an office e.g., CALI-
FORNIA, BEIJING or PARIS. (ii) The friends of a user, probably residing in different cities, may be
close to or far away from the user. These strong or weak geographic relations may influence the sig-
nificance of the friends’ location indications. Thus, it is challenging to appropriately combine these
various location indications into an integrated model, so as to determine probabilities to locations
where the user may live.

2) How to predict a user’s current city when we obtain the probabilities of the user being at
various locations? By overcoming challenge 1, we can obtain a probability vector which indicates
the probabilities that a user resides at certain locations. At first glance, with this probability vector,
we might easily predict the location with the highest probability as the user’s current city. However,
this might not be the best option when concerning the locations’ geographic relations. Assume the
probability vector suggests that a user u has 40%, 35% and 25% probability of residing in BEIJING,
PARIS and EVRY respectively. Then, u is more likely to live in the area around PARIS and EVRY

than BEIJING, because PAIRS and EVRY are only 30km apart but they are thousands of kilometers
away from BEIJING. Hence, a location selection method should be carefully designed for a current
city prediction approach.

3) How to estimate the exposure risk of a user’ hidden current city? To help a user understand
the exposure risk of his hidden current city, a straight-forward method is providing the user with
a predicted location; thus the user can decide whether his current city can be predicted correctly
(risky) or incorrectly (secure). However, this method may not meet users’ expectations. For a user
whose location is correctly predicted, he may expect to know which of his self-exposed information
primarily leads to the leakage of his private current city and how to increase its security. For another
user whose hidden location is not predicted correctly, still some leakage of location leakage may
exist. For example, a prediction approach may incorrectly infer a parisian living in LYON according
to probabilistic results: 55% in LYON and 45% in PARIS; Even though the prediction result is
incorrect, the user still leaks some location information. Therefore, how to estimate the current city
exposure risk and help a user achieve his privacy intention is a challenging objective.

This work makes the following contributions:
1) Profile and friend location indication model: To properly reveal location indications from
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users’ self-exposed information, we construct an integrated probability model. We capture location
indications from two types of information: location sensitive attributes and friends list. Location
sensitive attributes are the profile attributes that can indicate one or multiple locations (e.g., home-
town). For each location sensitive attribute, we set up a location attribute indication matrix from
which we can index the locations and the corresponding probabilities that a certain attribute value
indicates. Besides, considering a user and one of his friends who publish current city, we estimate
their location similarity according to their attribute correlations, and assign a large weight to the
friend if he has a high location similarity to the user. For a friend not revealing current city, we
predict the friend’s current city using his visible location sensitive attributes, and assign a very small
weight to him. Eventually, based on our Facebook data set, we train an integrated model that can
tell the probability for each potential city where a user may reside.

2) Current city prediction approach: To address Challenge 2, we aggregate locations into
clusters by considering the locations’ geographic relations. Then, based on the proposed profile and
friend location indication model, we predict a user’s invisible current city by two steps: (i) cluster-
selection: for each cluster, we sum up the probabilities of locations inside the cluster; then we
select the cluster with the highest probability; (ii) location-selection: we determine a best location
within the selected cluster as the user’s current city. The evaluation results demonstrate that our
proposed prediction approach achieves less error distance and higher accuracy than the state-of-the-
art approaches. Furthermore, for the users who reveal their ‘Hometown’ and ‘Work and Education’,
our proposed approach can predict current city with an accuracy of 90%.

3) Current city exposure estimator: We define some measurements to describe the character-
istics of users’ self-exposed information. Based on these measurements, we analyze how the users’
self-exposed information affects the probability that users’ current city may be correctly inferred
(i.e., current city exposure probability). Furthermore, we use a regression method to model the
current city exposure probability and construct a current city exposure estimator. Given a user’s
self-exposed information, the proposed exposure estimator provides two estimators — Exposure
Probability and Risk Level — to quantify the current city exposure risk. The exposure estimator can
also estimate the exposure risk assuming that the user hides some of his self-exposed information.
Consequently, the user can easily decide which information he should hide to satisfy his privacy
intention.

7.2 Empirical Studies on Location Correlation

In this section, concentrating on current city, we tend to explore and display how location sensitive
attributes can indicate a user’s current city from two perspectives. First, we examine how a user’s
current city (i.e. CC) correlates to the location of her hometown (i.e. HT), high school (i.e. HS) and
employer (i.e. EM). Then, we investigate how the location information of a user’s friends correlates
to the user’s location information. We conduct the studies on both city-level and country-level.

7.2.1 Location Correlation between User’s Attributes

Concerning a certain location sensitive attribute (i.e.,ai(u)), we compare a user’s current city (i.e.,
c(u)) and the corresponding city of ai(u): if c(u) and ai(u) are equal in city, then we denote
F(c(u),ai(u)) = 1; otherwise F(c(u),ai(u)) = 0. We calculate the percentage of users who have
identical location on c(u) and ai(u) as the Average Correlation between c(u) and ai(u), denoted as:
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Cor(c,ai) =
∑

M
i=1 F(c(u),ai(u))

M
(7.1)

where M represents the number of users who indicate both c(u) and ai(u).
Figure 7.1 plots the Average Correlation between current city and the location sensitive attributes

in terms of HT, HS and EM. We can see that around 60% of people live in the same city as their
hometown. On the contrary, employer location does not match current city with a high probability
as our expectation. One possible reason could be many large companies have branches all over the
world but only indicate the address of the headquarters on their web sites. However, we still find
56% of users have the same employer city as their current city. While 42.8% of users present their
current city as same as the city of their high school. At country level, we note that more than 80%
of users stay in the country of their hometown, employer and high school.
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Figure 7.1: User-centric correlation

We further investigate the location change from hometown to current city by continents. The
results are shown in figure 7.2 where we use AF, AS, EU, NA, AU and SA represent Africa, Asia,
Europe, North America and South America. According to the results, almost 70% people in Aus-
tralia leave their hometown and move to a new place, therefore it is much harder to infer Australians
current location from their hometown. However, more than 60% of people in Asia and South Amer-
ica stay in their hometown. The correlations of current city and hometown are much higher in these
continents.
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Figure 7.2: Correlation of current location and hometown by continent
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7.2.2 Location Correlation between Friends

People usually make friends with their classmates who go to the same school, colleagues who work
in the same company, and others who participate in a same off-line activity. Therefore, we expect
that the location information from a user’s friends may give indications to where the user is.

Given a location sensitive attribute i of user u and a location sensitive attribute j of her friend
f u
k , denoted respectively as ai(u) and a j( f u

k ), we compare their location: if ai(u) and a j( f u
k ) are

identical in location, then F(ai(u),a j( f u
k ))) = 1; otherwise F(ai(u),a j( f u

k )) = 0. On this basis, we
define the correlation between users on attribute i to their friends on attribute j as the percentage of
u’s friends whose have a j( f u

k ) be identical to ai(u) in location, denoted as:

Cor(ai(u),a j( f u)) =
∑

N
k=1 F(ai(u),a j( f u

k ))

N
(7.2)

where N represents the number of u’s friends who publish attribute j.
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Figure 7.3: Location correlation between users and their friends

First we compute the interrelation of users’ current location and their friends’ hometown, em-
ployer, and high school respectively, shown in figure 7.3(a) and figure 7.3(b). In city level, more
than 50% of users are in the city that 60% of their friends come from; and around 40% of users
live in the same city that 50% of their friends work in or where they went to high school. While at
country level, about 70% of users live in the same country as 80% of their friends.

We also calculate what percentage of a users’ friends have the same location (current location,
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hometown, employer, high school) as the users’ corresponding locations. At city level(figure 7.3(c)),
we have around 50% of users who work in the same city as more than 50% of their friends; around
60% of users went to the same school as more than 50% of their friends; and 60% of users come
from the same city as more than 60% of their friends. At country level, the number of location
correlations goes even higher – more than 70% of users are in the same country as 80% their friends
(figure 7.3(d)).

Based on the above preliminary analysis and observations of location correlation, we conclude
that: (1) users’ current city correlate to their hometown, high school and employer locations to a
certain degree; and (2) friends’ explicit and implicit location attributes reflect users’ current location
to some extent. Moreover, these observations suggest that we may predict a user’s current city from
her self-exposed information including profile attributes and friends list.

7.3 Predicting Current City: Problem Statement

In this section, we formulate the current city prediction problem. Facebook, as a social network
containing location information, can be viewed as an undirected graph G = (U ,E ,L ), where U is
a set of users; E is a set of edges e〈u,v〉 representing the friend relationship between users u and v,
where u and v ∈U ; L is a candidate locations list composed of all the user-generated locations.

Typically, a user u in Facebook might contribute various information, e.g., his basic profile
information, friends, comments, photos. The core information of u in this chapter is his current city,
denoted as l(u). According to the accessibility of users’ current city, the users are classified into
two sets: current city available users (LA-users) and current city unavailable users (LN-users). We,
respectively, use U

LA
and U

LN
to denote the sets of LA-users and LN-users, where U =U

LA∪U
LN

.
To predict users’ current city, we tend to exploit the users’ location sensitive attributes and

friends list. Assume that there exist m types of location sensitive attributes, denoted as A =
{a1,a2, · · · ,am}. Specifically, we denote a user u’s location sensitive attributes as A (u) = {a1(u),
a2(u), · · · ,am(u)}. The users may also have a friends list, denoted as F (u), where F (u) = { f ∈
U ∧ e〈u, f 〉 ∈ E }. Therefore, we use a tuple to represent a user as u : 〈l(u),A (u),F (u)〉.

Additionally, we attempt to denote a location with a tuple of its unified ID (lid), latitude and lon-
gitude coordinate. Therefore, a location can be written as a tuple: l : 〈lid , lat, lon〉 and the candidate
locations list can be denoted as a set of location tuples: L = {l : 〈lid , lat, lon〉}N , where lat and
lon respectively stand for the latitude and longitude of a location, and N is the number of candidate
locations in the list.

Thus, the current city prediction problem can be formally stated as: Given, (i) a graph G =
(U

LA ∪U
LN
,E ,L ); (ii) the public location l(u) for LA-users u ∈U

LA
; (iii) the location sensitive

attributes A (u) and the friends list F (u) for all the users u ∈ (U
LA ∪U

LN
), we predict current city

l̂(u) for each LN-user u ∈U
LN

, so as to make l̂(u) close to the user’s real current city.
Note that the current city of a user’s friends can be either available ( f ∈ U

LA
) or unavailable

( f ∈U
LN

). Thus, we introduce two notations to represent the two groups of friends: current city
available friends (LA-friends) and current city unavailable friends (LN-friends). Let denote a user’s
LA-friends as F

LA
(u) and LN-friends as F

LN
(u), where F (u) = F

LA
(u)∪F

LN
(u).

7.4 Overview of Current City Prediction

The goal of current city prediction is to correctly infer a coordinate point with latitude and longitude
for a LN-user, given the candidate locations list L and the user’s self-exposed information including
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his location sensitive attributes and friends list. To achieve this goal, the basic idea is first to train a
unified location indication model by extracting and integrating location indications from the given
self-exposed information. This trained model is expected to estimate the probability of the given
LN-user being at each location in the candidate locations list. Based on the candidate locations
and the corresponding probabilities that are suggested by the model, a prediction approach is then
proposed to properly select a location to be the predicted current city.
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Figure 7.4: Framework of current city prediction (LSAs: location sensitive attributes)

Figure 7.4 illustrates the framework of our proposed current city prediction solution. To train
the integrated model, we first separately consider the location indications from location sensitive
attributes and friends, and consequently obtain two sub-models: profile location indication (PLI)
model and friend location indication (FLI) model. Both PLI model and FLI model calculate a
probability vector in which the element stands for the probability of a user being at a certain can-
didate location. Note that, FLI model leverages the location indications from both LA-friends and
LN-friends. By integrating the probability vectors generated by PLI and FLI model with proper
parameters, a unified profile and friends location indication (PFLI) model is derived.

For determining a current city for a LN-user based on the probabilities of all the candidate
locations obtained by PFLI model, we use a two-step location selection strategy: cluster selection
and location selection. Specifically, we first aggregate the nearby locations into a location cluster
and obtain a set of location clusters. Then, we calculate the probability of a user being in a cluster
by summing up the probabilities of all the candidate locations belonging to this cluster; the cluster
with the highest probability is picked out as a candidate cluster. Finally, we try to select the ‘best’
location from the candidate cluster as the predicted current city.

In the next two sections, we will introduce how we set up the PFLI model and devise the current
city prediction approach in detail.

7.5 Profile and Friend Location Indication Model

In this section, we describe the design of the probabilistic models which can suggest the probabilities
of users being at all candidate locations. We first introduce the profile location indication (PLI)
model; it estimates the probability merely relying on a user’s location sensitive attributes. Then, we
describe the friend location indication (FLI) model, which considers the location indications from a
user’s friends. Eventually, we integrate these two models together and obtain the integrated profile
and friend location indication (PFLI) model.
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7.5.1 Profile Location Indication Model

According to Challenge 1 in Sec. 7.1, two problems should be concerned to construct PLI model.
First, a certain value of a location sensitive attribute may indicate several locations. Therefore, for
each attribute value, we need to consider its all possible location indications with the corresponding
probabilities. Second, multiple location sensitive attributes (e.g., hometown, workplace, college)
can be captured from a user’s profile. This requires us to integrate various location indications
extracted from different location sensitive attributes.

In order to capture the multiple possible location indications from one attribute value, we define
a location-attribute indication matrix for each (k-th) location sensitive attribute ak ∈A , denoted as
Rk. The rows of this matrix represent the candidate locations (l ∈L ), while the columns stand for
the possible values of ak. We use li to represent the i-th candidate location and ak j to denote the j-th
possible value of ak. Then, a cell σ

i j
k in the matrix calculates the indication probability of ak j to li —

the probability that a user, whose k-th location sensitive attribute ak equals ak j , currently lives in the
city li. Specifically, the indication probability equals the number of users who live in li and have a
value of ak j divided by the total number of users who have a value of ak j . For instance, considering
workplace, if 10 out of 100 employees from TELECOM SUDPARIS state that they live in EVRY in
the whole data set, then the indication probability of TELECOM SUDPARIS to EVRY is 0.1. Note
that, the j-th column of the Rk represents the multiple location indications of ak j .

Assume that ak refers to M possible values except ‘null’; N is the total number of the candidate
locations. The k-th location-attribute indication matrix can be written as:

Rk = {σ i j
k }N×M = {p(l(u) = li|ak(u) = ak j)}N×M

Based on the location-attribute indication matrix (R), we model the probability of a user’s cur-
rent city at li by combining all the user’s available location sensitive attributes in his profile:

pPro f (u, li) = ∑
ak∈A ,ak(u)6=null

αk p(l(u) = li|ak(u) = ak j)

= ∑
ak∈A ,ak(u)6=null

αkσk(u, li)
(7.3)

Where σk(u, li) can be easily obtained by indexing the corresponding location-attribute indication
matrix (Rk) according to u’s value of ak (ak(u) = ak j ) and the given location (li), namely σ

i j
k ; αk is

a parameter to adjust the significance of the different location sensitive attributes.
As we discussed in Sec. 7.3, not all a user’s the attributes can be observed by public. Therefore,

in Eq. 7.3, we merely consider the location sensitive attributes where the user publishes a value
(ak(u) 6= null). That means the indication probability of a user at any location is equal to zero if the
user’s attribute ak(u) is invisible. If all the location sensitive attributes are invisible for a user, we
rely on the other information (e.g., his friends) to infer his current city, which we will discuss in the
next section.

7.5.2 Friend Location Indication Model

Besides a user’s location sensitive attributes, a plenty of location indications can be extracted from
the user’s friends. The existing work points out that around 92% of the crawled users from Twitter
whose locations are also revealed in their relationships [89]; We find 87% of users’ current city from
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their friends’ locations in our crawled Facebook data set. Hence, we exploit location indications
from users’ friends to construct the FLI model.

Since a user’s friends can be either LA-friends (current city available) or LN-friends (current city
unavailable), we take into account the location indications from both LA-friends and LN-friends to
design FLI model. On one hand, we build up FLI model primarily depending on the location indi-
cations from LA-friends. On the other hand, we consider the location indications from LN-friends
as a small regulator to modulate FLI model. Accordingly, FLI model contains two components:
LA-friends location indication (LA-FLI) model and LN-friends location indication (LN-FLI) model.

7.5.2.1 LA-FLI Model

LA-FLI model differentiates the weights of a user’s LA-friends and estimates the probability that
he lives in a certain location (li) depending on the weights of the friends living in li. LA-FLI model
attempts to assign a LA-friend with high weight if he is more likely to be in the same city to the
user. However, LA-FLI model cannot directly determine which friends live in the same city to the
user since the user’s city is unknown. Therefore, to differentiate the friends’ weights, LA-FLI model
assesses the location similarity between a user and his friends according to the correlation between
their location sensitive attributes.
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Figure 7.5: An example of social relations and profile information

We illustrate an example in Figure 7.5 and show that the location sensitive attributes can be used
to distinguish the weights among various LA-friends. Focusing on LN-user u2 and his LA-friends
u3, u4 and u5, we notice that u2 and u3, u4 work in the same institute, while u5 works in another
company which is far away from u2’s workplace. In this case, it is natural to infer that u2 is more
likely to be living in the same city with u3 and u4 than with u5; then u3 and u4 should be assigned
with higher weights than u5 because of the location similarity indicated by their workplace.

Inspired by the example, we construct an attribute-based location similarity matrix (Wk) to
estimate the location similarity between two users by each (k-th) location sensitive attribute (ak ∈
A ). The rows and columns in the matrix are the possible values regarding ak. The cells in the
matrix wi j

k calculate the location similarity of two users — the probability that the two users live in
the same city — when they respectively have values of aki and ak j . Specifically, we compute the total
number of friend pairs where one user has a value of aki and the other has a value of ak j , denoted
as |{ak(u) = aki ∧ ak(v) = ak j}|; Among these friend pairs, we further count the number of friend
pairs where the two users live in the same city, denoted as |{l(u) = l(v)∧ak(u) = aki ∧ak(v) = ak j}|.
Then, the attribute-based location similarity matrix is defined as:
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Wk = {wi j
k }M×M

= {p(l(u) = l(v)|ak(u) = aki ∧ak(v) = ak j)}M×M

= {
|{l(u) = l(v)∧ak(u) = aki ∧ak(v) = ak j}|

|{ak(u) = aki ∧ak(v) = ak j}|
}M×M

where M is the number of possible values of attribute ak.
For a certain attribute ak, assume that u and his LA-friend v have a value of aki and ak j respec-

tively. Then, the location similarity between u and v on ak can be easily obtained by indexing the
i-th row and j-th column of Wk, denoted as wk(u,v) = wi j

k ,v ∈ FLA(u). If the user u or his LA-friend
v does not expose attribute ak, wk(u,v) = 0.

On the basis of the location similarity on a certain attribute, we combine all the location simi-
larities on multiple location sensitive attributes with a set of trained parameters (β ) to measure the
weight of the LA-friend v. This combined attribute-based weight describes the probability that u and
v live in the same city concerning all of their location sensitive attributes (e.g., work, hometown). v
will be assigned to a large weight if he has a high probability to be in the same city with u.

Then, LA-FLI model calculates the probability of u living in li by integrating all the weights of
u’s LA-friends who live in li:

pLA−F (u, li) = ∑
v∈F LA(u)

∑
ak∈A

βkwk(u,v)pLA−U (v, li) (7.4)

where pLA−U (v, li) represents whether or not the LA-friend v living in li. It equals 1 if v states his
current city is li; otherwise, it is 0:

pLA−U (v, li) =

{
1 if l(v) = li
0 otherwise

7.5.2.2 LN-FLI Model

Before introducing LN-FLI model, we inspect the potential benefit of a user’s LN-friends for his
current city prediction with another example shown in Figure 7.5. We observe that u2, being as a LN-
friend of u1, does not expose his current city; whereas, the workplace of u2, TELECOM SUDPARIS,
indicates two cities — PARIS and EVRY — according to the current cities of the users u3 and u4
who are also the employees of TELECOM SUDPARIS. Thereby, a user’s LN-friends can also reveal
some location indications in their exposed attributes, which may help the prediction.

Therefore, for a LN-friend (v), we first rely on his exposed location sensitive attributes and use
PLI model (Sec. 7.5.1) to predict his current city, as:

pPro f (v, li) = ∑
ak∈A ,ak(v)6=null

αk p(l(v) = li|ak(v) = ak j)

Taking all the LN-friends as equal, LN-FLI model integrates LN-friends’ location indications
and computes the probability that u lives in li ∈L as follows:

pLN−F (u, li) = ∑
v∈FLN(u)

pPro f (v, li) (7.5)
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7.5.2.3 FLI Model

Eventually, primarily relying on LA-FLI model and being adjusted by LN-FLI model with a very
small regulator parameter λ , FLI model estimates the probability that u currently lives at li by:

pF (u, li) = pLA−F (u, li)+λ pLN−F (u, li) (7.6)

7.5.3 Integrated Profile and Friend Location Indication Model

So far, we have introduced PLI model and FLI model, which abstract the probabilities of a user
at various candidate locations, respectively, from his own location sensitive attributes and friends
list. Then, we integrate them into a unified probabilistic location indication model, so as to capture
complete location indications from two sides. Specifically, PFLI model calculates the probability of
u living in li ∈L as:

p(u, li) = θP pPro f (u, li)+θF pF (u, li) (7.7)

7.5.3.1 Parameter Computation

To obtain a set of good parameters for the model, we first rewrite the model as:

p(u, li) = θP pPro f (u, li)+θF pF (u, li)

= ∑
ak∈A

θPαkσk(u, li)

+ ∑
ak∈A

θF βk ∑
v∈FLA(u)

wk(u,v)pLA−F (v, li)

+ ∑
ak∈A

λθF ∑
v∈FLN(u)

αkσk(v, li)

= ∑
ak∈A
{[µkσk(u, li)+νkδk(u, li)]+ [λαηk(u, li)]}

(7.8)

where

• µk = θPαk; νk = θF βk; λα = λθF

• δk(u, li) = ∑v∈FLA(u) wk(u,v)pLA−F (v, li)

• ηk(u, li) = ∑v∈FLN(u) σk(v, li)

As λ is a regulator parameter of very small value, we take the location indications extracted
from a user’s location sensitive attributes and his LA-friends as primary indications, while the part
captured from the LN-friends as a micro-regulating indication. Thus, we compute the parameters
by two separate steps. We first optimize the parameters µk and νk together for the main indication.
We also try to find a set of local optimal parameters for PLI model to have a good regulating value
from the LN-friends.

We train a good set of parameters µk and νk on a group of LA-users. For each LA-user, we con-
sider all the locations li that indicated by either the user’s location sensitive attributes or friends. In
other words, the probability that the user lives in li is larger than zero, i.e., ∑ak∈A [σk(u, li)+δk(u, li)]> 0.
According to each indicated location li, we generate an independent 〈label: features〉 item as 〈label(li) :
σ1(u, li), · · · ,σm(u, li),δ1(u, li), · · · ,δm(u, li)〉 .In particular, we classify the indicated locations into
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two groups according to their distances to u’s actual location. We label an indicated location (li)
as a far location (label(li) = 0), if its distance to u’s actual location is larger than a pre-defined
threshold; otherwise, we regard it as a close location (label(li) = 1); in addition, σk(u, li) = σ

i j
k and

δk(u, li) = ∑v∈FLA(u) wk(u,v)pLA−F (v, li), where k ∈ [1,m]. Based on the generated items, we use a
logistic regression method to train the model in the following format:

f (y|x;σ1, · · · ,σm,δ1, · · · ,δm) = hσ ,δ (x)y(1−hσ ,δ (x))1−y

where y is the label of the indicated location, x stands for the features and hσ ,δ (x) is the hypothesis
function. Then we can apply gradient descent method to maximize f (y|x;σ ,δ ) and compute the
parameters. Similarly, we can obtain a set of parameters for PLI model which works for the LN-
friends.

7.6 Current City Prediction Approach

Based on the results of PFLI model — the corresponding probabilities of a user currently living
in all the candidate locations, we devise a current city prediction approach in this section. Recall
the example we illustrated in Challenge 3 of Sec. 7.1. Assuming the PFLI model suggests that
a user u has a probability of, respectively, 40% in BEIJING, 35% in PAIRS and 25% in EVRY

which is very close to PARIS. In this case, u might live in the area around PAIRS and EVRY with a
larger probability than BEIJING since the aggregated probability of u in the area around PAIRS and
EVRY are higher than BEIJING. Therefore, rather than directly deal with the problem on a single-
city [89][171][122][125], we aggregate the candidate locations which are very close to each other
into a location cluster. We attempt to predict a user’s current city by two steps: cluster selection and
location selection. Refer to Figure 7.4, this prediction approach has been implemented with several
main functions, including Candidate Locations Cluster, Cluster Selector and Location Selector. We
are going to explain the main functions and illustrate how the prediction approach performs.

7.6.1 Candidate Locations Cluster

We draw on hierarchical clustering method [175] to generate location clusters. The hierarchical
clustering method arranges all the candidate locations in a hierarchy with a treelike structure based
on the distance between two locations, and successively merges the closest locations into clusters.
Specifically, we first treat all the candidate locations as an independent location cluster and calculate
the distance between any two candidate locations (Step 1). We find the closest pair of the location
cluster and merge them into a new location cluster (Step 2). Then, we compute the average distance
between the new cluster and each of the old ones (Step 3). We repeat the Step 2 and Step 3 until
all the candidate locations are organized into one cluster tree. Eventually, we choose an ideal dis-
tance threshold (i.e., the average distance between any of two locations in the neighboring location
clusters) to cut the cluster tree into clusters (Step 4).

Figure 7.6 illustrates an example of clusters on the user-generated candidate locations that locate
in the area with latitude in 47◦N ∼ 49◦N and longitude in 1◦W ∼ 6◦E. There exist 154 candidate
locations in this area mentioned by users in our Facebook data set. With the hierarchical clustering
method, we divide them into 7 location clusters which are marked in different color. We note several
properties of our candidate locations clusters. First, all the regions are formed by clustering the
user-generated locations according to their distances, instead of dividing areas with equal-sized grid
cells [176] [177]. In our clustering, the areas that the users do not mention are out of consideration.
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Second, the density inside the clusters are different; however, the average distances between all the
candidate locations in any two neighboring clusters are equal (100km in Figure 7.6). Third, the
complexity of the Step 2 and Step 3 is O(k3) and the complexity of the Step 4 is O(2k). Although
the computation of location clustering is expensive, it can be preprocessed and only needs to be run
once.

Figure 7.6: An example of candidate locations cluster

7.6.2 Cluster Selector

Cluster selector selects the best cluster for a user where the user may reside with the highest proba-
bility. We leverage the proposed PFLI model to obtain the user’s probability living at each candidate
location. The probability of a user locating in a cluster is equal to the aggregated probability of all
the candidate locations inside the cluster. Therefore, for each cluster, we sum up the probabilities of
its candidate locations and select the cluster with the highest probability.

7.6.3 Location Selector

Eventually, we tend to select a best point from the selected cluster for the user. Three alternatives are
considered here. First, we select the point with the highest probability (i.e., point of highest prob-
ability) inside the selected cluster as the best point. Second, we consider the geographic centroid
of the selected cluster as the user’s best point. The geographic centroid is the average coordinate
for all the points in a cluster while the probability of each point is considered as its weight. Third,
we calculate the center of minimum distance which minimizes the overall distance form itself to
all the rest of locations in a cluster. We will further discuss and compare the three methods in the
experiment.

7.6.4 Implementation of Prediction Approach

Practically, each user only associates with a very limited number of locations compared to the total
number of the candidate locations. Hence, according to the PFLI model, we do not calculate the
probability for each candidate location and simplify the computation by three steps.

First, we initiate a probability vector (i.e., p0(u)) of candidate locations for a user, which merely
includes the location indications from the user’s location sensitive attributes and his LN-friends.
Recall that the j-th column in the location-attribute indication matrix Rk stands for the probabilities
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ALGORITHM 2: Current city prediction

Input: A LN-user u’s location sensitive attributes;
u’s friends list and friends’ location sensitive attributes;
Location clusters set C = {c1,c2, · · · ,cs} (s is the number of clusters);
Output: Predicted current city for u: 〈lat, lon〉;
Initiate the probability vector p0(u) for u (Eq. 7.9);
Obtain all of LA-friends’ current city LLA−F ;
p(u) = p0(u);
for li ∈LLA−F do

p(u, li)← p(u, li)+ pLA−F (u, li);
end
for cx ∈ C do

p(u)cx = ∑l∈cx p(u, l)
end
Cluster selection: ch where p(u)ch ≥ p(u)cx ,∀cx ∈ C ;
Location selection from ch (Sec. 7.6.3);
The predicted current city of u: 〈lat, lon〉

that a user lives in the corresponding locations if the user present a value of ak j in terms of the
attribute ak. We rewrite the indication matrix as Rk = [R·k1 ,R·k2 , ...,R·kM ], where M is the number of
possible values of ak. Thus, we obtain the following initial probability vector:

p0(u) = ∑
ak∈A

[µkp(ak(u) = ak j)+λα ∑
v∈FLN

p(ak(v) = ak j)]

= ∑
ak∈A

(µkR·k j +λα ∑
v∈FLN

αkR·k j)
(7.9)

Second, we look at the location indications from the user’s LA-friends. In fact, such indications
correspond to two factors: LA-friends’ current city and their weight. The current city of the user’s
LA-friends are aggregated into a set, denoted as LLA−F . According to the LA-FLI model, we can
compute the probabilities that the user live in li ∈LLA−F . As the number of the locations in LLA−F is
much smaller than the total number of candidate locations in L , we can dramatically improve the
computation rate.

Third, we add the location indications from LA-friends (i.e., pLA−F (u, li), where li ∈LLA−F ) to
the right positions in the initial probability vector by indexing li in L . Then, we have a current city
probability vector (i.e., p(u)) for the user, which is used to calculate the clusters’ probabilities.

Eventually, obtaining the probabilities of u in all possible locations, we can easily compute
the aggregated probability of u in each cluster and select the cluster with the highest probability.
Furthermore, we predict a current city for u from the selected cluster by exploiting the location
selector.

We summarize the current city prediction approach in Algorithm 2. In this algorithm, we assume
that we have acquired the trained PFLI model with parameters (µk,νk,λk), the candidate locations
(L ), the location attribute indication matrices (Rk), the attribute-based location similarity matrix
(Wk) and the location clusters set (C ). Then we try to predict the user u’s current city according to
u’s self-exposed information. Finally, we obtain a location with its latitude and longitude.
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7.7 Evaluation for Current City Prediction

In this section, we evaluate our proposed approach on a data set crawled from Facebook. We first
introduce this data set, the compared approaches and the measurement. Then, we report the experi-
ment results.

7.7.1 Experiment Setup

We are going to introduce the experiment setup through three aspects: data description, evaluation
approaches and the measurements.

7.7.1.1 Data description

Among all 479,048 users in our data set, 173,027 users publicly report their current city (LA-users)
and the rest 306,021 users do not reveal their current city (LN-users). In our evaluation, we use the
126,101 LA-users as the train and test set for the prediction. All the LN-users’ information is also
involved in the experiments, as the proposed approach considers the integrated location indications
not only from a user’ location sensitive attributes and LA-friends but also from LN-friends.

We extract a user’s latest work or education experience as a location sensitive attribute, named
‘Work and Education’; we also exploit a user’s ‘Hometown’ as another location sensitive attribute.
In our data set, 87,708 LA-users show their ‘Hometown’ and 54,097 LA-users expose ‘Work and
Education’ to the public. In addition, 85,923 of the LA-Users publish their friends list.

7.7.1.2 Approaches

Based on our current city prediction model and the two-step location selection strategy (cluster se-
lection; then location selection), we propose three cluster based prediction approaches with different
location selectors. We tend to compare the performance of these approaches and determine a good
location selector to obtain a prediction approach with high prediction accuracy. We also propose a
non-cluster prediction approach based on our current city prediction model to evaluate the effective-
ness of location cluster. Specifically, these model based approaches can be denoted as:

• PFLIprob is a cluster based approach which selects the point of highest probability from the
selected cluster as the predicted location.

• PFLIcent is a cluster based approach which selects the geographic centroid from the selected
cluster as the best prediction.

• PFLIdist is a cluster based approach which selects the center of minimum distance from the
selected cluster.

• PFLInoclst is a non-cluster approach which selects the point of highest probability from all
candidate locations as the predicted location.

Besides, we compare the model based approaches with several state-of-the-art prediction ap-
proaches:

• Basedist predicts a user’s location based on the observation that the likelihood of friendship
between two persons is decreasing with the distance [171].
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Table 7.1: Prediction results (AED) for users with LA-Friends
Approach Basedist Baseann Base f req Baseknn PFLInoclst PFLIdist PFLIcent PFLIprob

AED@60% 8.6 5.7 5.9 10.8 2.5 49.5 5.6 2.1

AED@80% 85.0 64.3 91.8 100.0 40.1 77.4 38.0 36.9

AED@100% 1288.5 1129.0 1160.5 1397.6 874.0 885.9 855.3 854.4

Table 7.2: Prediction results (AED) for overall users
Approach Basedist Baseann Base f req Baseknn PFLInoclst PFLIdist PFLIcent PFLIprob

AED@60% 102.8 6.7 73.9 119.5 3.5 50.6 6.3 3.1

AED@80% 1368.8 74.7 1257.2 1429.6 52.5 88.2 50.2 49.1

AED@100% 2671 1204.0 2523.5 2698.5 981.0 989.9 960.8 960.0

• Baseann maps any location sensitive attribute value to a certain location and apply artificial
neural network to train a current city prediction model.

• Base f req infers a user’s location according to the location frequency extracted from his friends’
location-specific tweets [121][122]. We borrow the idea of counting the frequency of locations
that emerge in a user’s friends and predict his current city by the most frequent location.

• Baseknn also relies on the frequency idea for Twitter; however, it merely counts on a user’s
k closest friends who have the most common friends with him to compute the most frequent
location [124][125].

Among the above approaches, Basedist and Baseann are originally devised for Facebook; while
Base f req and Baseknn for Twitter. We leverage the main ideas from Base f req and Baseknn, and modify
them to fit our data set. By comparing our approach to Basedist , Base f req and Baseknn which mainly
depend on friendships, we attempt to reveal the advantage of our approach: integrating location
sensitive attributes. Using Baseann, we verify the newly introduced one-attribute/multiple-locations
mapping method.

7.7.1.3 Measurements

We exploit the same measurements that used in the existing work [121][122][126]: Average Error
Distance (AED) and Accuracy within K km (ACC@K).

Error Distance of a user u’s predicted result (i.e., ErrDist(u)) is defined as the distance in
kilometers between the user’s real location and his predicted location. AED averages the Error
Distances of the overall evaluated users, denoted as AED = ∑u∈U ErrDist(u)

|U | . In addition, we rank the
users by their Error Distance in descending order and report AED of the top 60%, 80% and 100%
of the evaluated users in the ranking list, denoted as AED@60%, AED@80% and AED@100%
respectively [126].

Accuracy within K km reveals the percentage of users being predicted with an Error Distance
less than K km. It can be represented as ACC@K = |{u|u∈U∧ErrDist(u)<K}|

|U | . ACC@K shows the
predication capability of an approach at a specific required Error Distance.
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7.7.2 Experiment Results

Many relationship-based methods (e.g., Basedist , Base f req and Baseknn) heavily rely on users’ LA-
friends whose locations are exposed. In general, such methods can work well for the users who
have a certain number of LA-friends; but when they are applied to the overall users (either have or
have not LA-friends), the performance decreases notably. We evaluate the prediction performance
respectively on two user sets: users with LA-friends and overall users. And we report the evaluation
results on AED and ACC@K subsequently.

7.7.2.1 Evaluation on AED

Table 7.1 and Table 7.2 show the AEDs of all the compared approaches for two user sets respectively.
We use bold font to highlight the shortest AED in the tables. From the results, we observe that the
approaches based on our proposed PFLI model perform much better than all the other baselines.
Among the model-based approaches, PFLIprob, which selects the point with highest probability from
the selected cluster, generates less AED than the other approaches with different location selectors;
whereas the differences are quite small among all these model-based approaches. For instance,
comparing PFLIprob and PFLIcent , the differences of AED@100% are only 0.9 and 0.8 km for two
user sets respectively. However, PFLIprob reduces the AED significantly compared to Baseann —
the best baseline. This observation demonstrates that our integrated probabilistic model can better
describe users’ location than the other compared models.

Comparing the results of AED@60%, AED@80% and AED@100%, we notice that we can
predict the top 60% and the top 80% of the users’ current city at relatively small AEDs by our
proposed approaches; While the AEDs increase by 10-23 times when we consider all of the users
(AEDs@100%). It is similar when it comes to the other approaches: AED@100% is much larger
than AED@60% and AED@80%. From the perspective of the approaches’ capacity, this observation
demonstrates that the approaches can predict most of the users’ current city with a small Error
Distance. While from the perspective of privacy, it implies that many users may be not security
enough to hide their current city. We will discuss it further in the next section.

In addition, we notice that the AEDs of Basedist , Base f req and Baseknn for the overall users are
almost 2 times the values for users with LA-friends. However, for the PFLI model based approach,
the AEDs differ slightly for two user sets. For example, the AED of PFLIprob for overall users is
only 74.4 km larger than the result for users with friends. Based on the evaluation comparisons
on two users set, we can tell that, with the integrated location indications from users’ profile and
friends, our proposed prediction approaches is not constrained to users’ LA-friends. Even for some
users without knowing LA-friends in the overall users, our proposed approaches can still predict
their location based on their profile and LN-friends.

Lastly, we compare the AEDs of the approaches using our proposed PFLI model. First, we
compare PFLInoclst and PFLIprob. PFLInoclst directly selects the location of the highest probability
from the probability vector generated by PFLI model; while, relying on a cluster strategy, PFLIprob
successively takes a cluster selection and a location selection which selects the location of the high-
est probability inside a selected cluster. The experiment results demonstrate that the cluster based
approach outperforms the non-cluster based approach. Second, we investigate the cluster based ap-
proaches with different location selection solutions. From the results, PFLIdist generates the largest
AEDs and PFLIprob achieves the smallest ones. This may suggest us a good solution — selecting the
point with the highest probability — to select a location inside a cluster. We will further compare
these three approaches on ACC@K and determine a good location selection solution to achieve a
prediction approach with high accuracy in the next section.
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7.7.2.2 Evaluation on ACC@K

In this section, we first study ACC@K of the three proposed prediction approaches with different
location selectors, attempting to understand their strengths. Based on this study, we will develop a
combined-approach strategy by combining the best prediction approaches under certain conditions,
so as to obtain better performance than solely using any one of them.

Figure 7.7 compares the three proposed prediction approaches and plots ACC@Ks at different
Error Distances for two user sets in two subfigures. In both subfigures, we observe that the accuracy
of PFLIprob goes up steadily with the increase of Error Distance. Compared to PFLIprob, PFLIcent

may lead very low accuracy when the required Error Distance is quite small; but it can achieve
higher accuracy than PFLIprob, when the Error Distance is larger than 40 km. It reveals the proper-
ties of these two prediction approaches: PFLIcent selects the geographic centroid of a cluster, which
generates a short average Error Distance to all the locations in the cluster but loses chance to pick
the user’s exact coordinate once it is not the centroid; while PFLIprob might produce a large Error
Distance if the location of the highest probability is not the user’s real location. Besides, PFLIdist is
not competitive with the other two approaches.

0 20 40 60 80 100 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Error Distance (km)

A
cc

ur
ac

y

 

 

PFLIprob
PFLIcent
PFLIdist
PFLIcmb

(a) Users with friends

0 20 40 60 80 100 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Error Distance (km)

A
cc

ur
ac

y

 

 

PFLIprob
PFLIcent
PFLIdist
PFLIcmb

(b) Overall users

Figure 7.7: ACC@K of different location selectors
In this case, we propose a combined-approach strategy which uses PFLIprob when the required

Error Distance is smaller than 40 km and otherwise applies PFLIcent . We believe the combination is
reasonable and practical. Because if third parties want to identify users according to their locations,
they usually expect to identify users in a city or an area which allows certain Error Distance. Then,
if a third party can tolerate a larger Error Distance, we can exploit PFLIcent . Otherwise, we apply
PFLIprob. We also plot the combination line in Figure 7.7, named PFLIcmb.

Figure 7.8 compares PFLIcmb to various baseline methods in terms of prediction accuracy. We
observe that the proposed PFLIcmb outperforms all the compared baselines with the highest accuracy
for both user sets. Compared to PFLInoclst , PFLIcmb increases around 1.5% and 1.2% of accuracy
on average respectively for users with LA-friends and overall users. It proves the effectiveness of
the cluster strategy with successive cluster selection and location selection.

Comparing the results respectively for users with LA-friends and overall users, we observe a
huge accuracy gap for Base f req, Basedist and Baseknn. These approaches severely depend on friends’
locations which lead to dramatic fall of performance when they are applied for users who do not
have LA-friends. However, our proposed approaches integrating location sensitive attributes and
friends (including our previous work Baseann) can almost hold the prediction effectiveness for the
overall users.

To summarize, first, we propose to combine PFLIprob and PFLIcent into a PFLIcmb approach
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Figure 7.8: ACC@K of the proposed approach and other baselines

inspired by the experiment observations. PFLIcmb can flexibly change the prediction approach ac-
cording to their performance under different required Error Distances. Second, our proposed ap-
proach outperforms the other compared baselines. Especially for the overall users, our proposed
approach could gain 20% higher of accuracy than Basedist which is also a city prediction approach
on Facebook.

7.8 Estimating Current City Exposure: Problem Statement

In this section, we pay attention to estimating the exposure probability of current city for a user who
hides his current city. We formally formulate the current city exposure estimation problem as: Given,
(i) a graph G = (U

LA ∪U
LN
,E ,L ); (ii) the public location l(u) for LA-users u ∈ U

LA
; (iii) the

location sensitive attributes A (u) and the friends list F (u) for all the users u ∈ (U
LA ∪U

LN
); (iv)

a required Error Distance K km, we forecast the current city exposure probability within K km and
report exposure risk level for each LN-user u ∈U

LN
.

To solve this problem, we run the proposed prediction approach on an aggregation of users and
conduct analysis on the aggregated prediction results. Furthermore, we apply a regression method
to construct the exposure model according to the analysis observations. Relying on this model, we
devise a current city exposure estimator to tell a user the current city Exposure Probability within K
km and Exposure Risk Level.

The Exposure Probability within K km (EP@K) represents the probability that a user’ current
city could be inferred correctly if the required Error Distance is K km. As it has the similar concept
as the metric of ACC@K, we compute it by the same formula: |{u|u∈U∧ErrDist(u)<K}|

|U | .
Additionally, we set up 5 Exposure Risk Levels according to value of Exposure Probability,

shown in Table 7.3. We regard Level 5 as the most risky level which indicates an Exposure Proba-
bility larger than 0.9, while Level 1 as the safe one which represents a small Exposure Probability
less than 0.25.

Next, we first show some observations of inspections on the prediction for an aggregated users.
Then we introduce the current city exposure model and the model based estimator. Finally, we
illustrate some case studies to show the use of our proposed exposure estimator. We also summarize
some guidelines to reduce the exposure risk.
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Table 7.3: Risk level vs. exposure probability
Exposure Probability [0.9,1] [0.75,0.9) [0.5,0.75) [0.5,0.25) [0.25,0]

Risk Level Level 5 Level 4 Level 3 Level 2 Level 1

Table 7.4: User categories by visible attributes combination
User’s Visible Attributes Abbreviation

‘Hometown’ ‘HT’

‘Work and Education’ ‘WE’

‘Friends’ ‘F’

‘Hometown’ and ‘Work and Education’ ‘HT+WE’

‘Hometown’ and ‘Friends’ ‘HT+F’

‘Work and Education’ and ‘Friends’ ‘WE+F’

‘Hometown’, ‘Work and Education’ and ‘Friends’ ‘HT+WE+F’

7.9 Current City Exposure Inspection

Assume that we have run the proposed prediction approach on an aggregation of users whose cur-
rent city is visible. We then obtain a collection of prediction results including users’ self-exposed
information, predicted current city and actual current city. We also develop some measurements
to describe the characteristics of users’ self-exposed information. Based on these prediction re-
sults, we can learn the correlation between the current city exposure probability and the measurable
characteristics of users’ self-exposed information.

First, we classify users into diverse categories with respect to the combinations of visible/invisi-
ble properties of their location sensitive attributes and friends list. Table 7.4 lists the obtained seven
User Categories. User Category measures the types and amount of users’ self-exposed information.

Figure 7.9 inspects the Exposure Probabilities for various User Categories. From this figure, we
observe that different types of self-exposed information may divulge users’ current city to different
extent. For instance, users in ‘WE’ category are normally more dangerous to disclose their current
city than users in ‘HT’ or ‘F’ category. We also find that the users who publish their ‘WE’ (in
category ‘WE’, ‘HT+WE’, ‘WE+F’ and ‘HT+WE+F’) exhibit a high Exposure Probability. This
means that ‘WE’ is a very risky attribute to leak users’ current city. The results also reveal that ‘HT’
is more sensitive to disclose current city than ‘F’, although ‘F’ is generally regarded as a significant
location indication.

Besides, generally speaking, Figure 7.9 displays that a user’s current city could be predicted
with a larger probability if the user exposes more information. For example, users who expose
‘HT+F’ exhibit a higher exposure probability than users only revealing either ‘HT’ or ‘F’. Note that,
for a user who exposes ‘WE+HT’, his current city exposure probability can be up to 90% which
approaches to the exposure probability of users who expose ‘HT+WE+F’. In other words, merely
exposing ‘WE+HT’ but not ‘F’ can almost lead to the leakage of current city.

According to the results displayed in Figure 7.9, we conclude that User Category, distinguishing
users by the types and amount of their self-exposed information, relates to Exposure Probability.

Apart from User Category, we define a new metric named Exposure Coefficient. It estimates the
ratio of the probabilities of candidate locations in the selected cluster ch to the overall probabilities
of all the candidate locations (equal 1), calculated as follows:



106 Information Relevance and Leakage: Predicting Location and Preserving Privacy

0 20 40 60 80 100 1200.4

0.5

0.6

0.7

0.8

0.9

1

Error Distance (km)
E

xp
os

ur
e 

Pr
ob

ab
ili

ty
 (

E
P@

K
)

 

 

HT
WE
HT+WE

 

 

F
HT+F
WE+F
HT+WE+F

Figure 7.9: Current city exposure probability by user category
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Figure 7.10: Exposure probability by exposure coefficient in different user categories

EC(u) =
∑l∈ch

p(u, l)

∑l∈L p(u, l)
= ∑

l∈ch

p(u, l)

Exposure Coefficient represents the centrality of the users’ location indications. For example,
Exposure Coefficient with a value of 100% means that all of a user’s location indications point to
an exclusive location cluster. We further look into the change of exposure probability according to
Exposure Coefficient for each User Category.

Figure 7.10 reveals how Exposure Probability varies with diverse Exposure Coefficient and Error
Distances in different User Categories. In this figure, each subfigure represents one User Category;
the X , Y and Z axes in each subfigure are Exposure Coefficient (EC), Error Distances (ED) and
Exposure Probability (EP) respectively. We observe that the Exposure Probability normally grows
up when the Exposure Coefficient gets larger. When the Exposure Coefficient equals 100%, the
Exposure Probability surpasses 90% within a required Error Distance of 20 km almost for all User
Categories. This observation indicates that the current city is more dangerous to be predicted when
a user’s location indications are more likely to point to one city or to multiple cities that are in the
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same cluster. In other words, a user’s current city is easy to disclose if the centrality of the user’s
self-exposed information is high.

Note that, there exists an exception for the users only exposing their ‘F’: the decline of Exposure
Probability when the Exposure Coefficient is larger than 0.9. One reasonable explanation is that
only the users with an extremely small number of friends (e.g., only 1 friend) can have an Exposure
Coefficient higher than 0.9, which might reduce the risk of current city exposure due to the limited
information.

7.10 Estimating Current City Exposure Risk

In the previous section, we observe that the current city Exposure Probability for a user is influ-
enced by three factors: Error Distance, User Category and Exposure Coefficient. According to the
observation which are shown in Figure 7.10, we try to use a polynomial multiple regression method
to model the relation among the current city Exposure Probability, Exposure Coefficient and Er-
ror Distance for each User Category. We can denote the model as: y = f unx1(x2,x3), where x1,
x2 and x3 represent a user’s User Category, Exposure Coefficient and Error Distance respectively;
f unx1(x2,x3) represents a polynomial function of Exposure Coefficient x2 and Error Distance x3
given the User Category x1. y is the computed Exposure Probability.

By exploiting the proposed current city exposure model, we construct an exposure estimator
to forecast the exposure risk of a user’s private current city. Figure 7.11 illustrates the framework
of current city exposure estimator. The exposure estimator contains three main function modules:
user information handler, current city exposure model and exposure risk level decision. The inputs
of the exposure estimator include a user’s self-exposed information and a pre-established Error
Distance. Given the user’s self-exposure information, user information handler determines User
category and computes Exposure Coefficient. Based on the pre-established Error Distance, the
obtained User category and Exposure Coefficient, the exposure model calculates the current city
exposure probability for the user. Exposure risk module determines a risk level according to the
exposure probability. Eventually, the exposure estimator provides two risk measurements of current
city: Exposure probability and Risk Level.

Do

LN-U

Figure 7.11: Framework of current city exposure estimator

7.11 Case Study: Exposure Estimator and Privacy Protection

Table 7.5 illustrates several use cases, where we estimate the Exposure Probability and Risk Level
for some LN-users. In this study, we observe that some of the LN-users are not really safe to hide
their current city if they leave some other information visible. For instance, considering U7, even
only publishing ‘EM’, his current city is almost leaked with an extremely high Exposure Probability
of 0.987 within an Error Distance of 20 km. In addition, for users in the same User Category, the
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Table 7.5: Exposure estimator cases study

User
User Exposure Error Exposure Risk

Category Coefficient Distance Probability Level

U1 ‘HT+WE+F’ 0.491 100km 0.93 Level 5

U1 ‘HT+WE+F’ 0.491 20km 0.88 Level 4

U2 ‘F’ 0.905 100km 0.796 Level 4

U3 ‘F’ 0.125 100km 0.128 Level 1

U4 ‘WE+F’ 0.54 20km 0.461 Level 2

U5 ‘HT+F’ 0.694 20km 0.683 Level 3

U6 ‘HT’ 0.191 100km 0.254 Level 2

U7 ‘WE’ 1 20km 0.987 Level 5

Table 7.6: Exposure guidelines for U1: the exposure risks if he adjusts some privacy configurations
with an Error Distance of 100km

U1 ‘HT+WE+F’ Hide ‘WE’ Hide ‘F’ Hide ‘WE+F’

Exposure Probability 0.93 0.46 0.906 0.436

Risk Level Level 5 Level 2 Level 5 Level 2

ones who exist a higher Exposure Coefficient are more likely to divulge his current city. Looking
at U2 and U3 who are both in ‘F’ category, the current city of U2 who exhibits an extremely high
Exposure Coefficients is much more dangerous than U3’s current city.

In addition, the exposure estimator can give some countermeasures on privacy configuration
to against information leakage. Assume users hide some part of their exposed information, the
exposure estimator estimates and reports the corresponding Exposure Probability and Exposure Risk
Level. Then users can decide a new privacy configuration accordingly. We take U1 as an example
and list some possible exposure risks assuming that he adjusts his privacy configuration. The results
shown in Table 7.6 reveal that the privacy could increase obviously if U1 hides his ‘WE’ or ‘WE+F’.
The results also point out that merely hiding ‘F’ could not protect U1’s current city privacy.

Eventually, according to the studies on the current city exposure risk, we summarize the follow-
ing pieces of general suggestions:

• As all the location indications may expose the hidden current city, close all of location sensi-
tive information including ‘WE’, ‘F’ and ‘HT’ so as to achieve a high current city security.

• Hide the most sensitive exposed information (e.g., ‘WE’) if users want to publicly share some
personal information (e.g., ‘F’), since the most sensitive information can independently lead to
a quite high Exposure Probability. For example, ‘WE’ alone can lead an Exposure Probability
higher than 80%.

• According to the centrality principle which refers to the Exposure Coefficient, Hide ‘F’ if
most friends indicate the same place where the user lives. For instance, U2 in Table 7.5 is
necessarily suggested hiding his ‘F’.



Summary 109

7.12 Summary

This chapter starts with two open questions regarding the security of users’ hidden privacy-sensitive
attributes. To answer these questions, we first propose a novel current city prediction approach to
infer users’ current city by leveraging users’ self-exposed information including location sensitive
attributes and friends list. We validate the new prediction approach on our Facebook data set and the
results reveal that the users’ hidden current city may be dangerous to be predicted. Then we apply
the proposed prediction approach to predict users’ current city and model the exposure probability
by Exposure Coefficient at different Error Distances for each User Category. Based on the exposure
model, we propose a current city exposure estimator to measure the exposure probability and risk
level of a user’s hidden current city according to his self-exposed information. The exposure esti-
mator can also help users to adjust their privacy configuration to satisfy their privacy intention. Note
that, although this work studies the potential risk of users’ privacy-sensitive attributes with a repre-
sentative attribute of current city in Facebook, the proposed idea and approach could be extended to
other attributes and utilized by other OSNs.
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Chapter 8
Conclusion and Future Work
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8.1 Conclusion

Since the largest OSN in the world, Facebook, was founded in 2004, OSNs have become a de
facto portal for accessing the Internet for millions of users. Nowadays, there exist hundreds of
OSNs all over the world, supporting a spectrum of practices, interests, and users, and attracting a
lot of researchers to leverage the huge amount of digital information in OSNs to conduct research
works across various areas including computer science, social science, economics, etc. With tens of
millions of users worldwide, OSNs appear to be a new venue of innovation with many challenging
research problems.

To gain new insights from OSNs, this dissertation focuses on investigating how user similarity
can be leveraged comprehensively to facilitate a variety of applications, in order to address a wide
range of critical issues in OSNs, containing interested content discovery, item recommendation,
friend prediction, privacy protection, etc. Specifically, the contributions of this dissertation cover
the whole life-cycle of the research process, including data collection, analysis and applications.

First, in order to establish concrete research results, this dissertation tries to obtain a large sam-
ple of OSN users from Facebook, the biggest OSN platform worldwide currently. In chapter 3, this
dissertation presents the various web data collection approaches and describes the extracted 500K
Facebook users’ public profiles. Each user’s profile includes three kinds of information: demo-
graphics, social relationships, and interests. According to the author’s knowledge, our crawled data
set is one of the largest Facebook data sets including rich user profile information up to date.

Based on this data set, from various perspectives, this dissertation then tends to study how to
apply the knowledge of user similarity into a diversity of real-life applications to serve OSN users.
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• Chapter 4 addresses the link prediction problem for new users who have not created any link,
which can be used to recommend friends for new users to initialize their social networks.
The basic idea is leveraging the users’ profile attributes (e.g., workplace, high school and
hometown) that can be easily obtained during the new users’ sign up procedure to tackle
the new-user link prediction problem. Based on the limited sign-up information, along with
the attributes and links from existing users in OSN, three kinds of social features are identi-
fied: basic feature, derived feature and latent relation feature. By studying how the similarity
of users regarding these features would indicate their friendship, a new user link prediction
model is proposed by using all these learned social features. Extensive experimental results
on our Facebook data set show that every learned social feature can effectively improve the
link prediction performance for new users.

• Chapter 5, aiming at helping users to find their interested content in P2P network, leverages
users’ OSN profile information, including both their interests and social relationships, to im-
prove the content discovery mechanism in P2P network. By connecting P2P network with
OSN to establish a social P2P network model, a user can turn to his friends to query his in-
terested resource, which probably has higher success rate than querying a stranger as friends
tend to share more interests. More specifically, a user’s different friends are assigned with
different weights using random walk with restart, by considering the friend’s own knowledge
and the similarity with the user; thus, higher-weighted friends tend to have more probabil-
ity to successfully answer a user’s content discovery request. Experimental results show that
considering the knowledge and similarity of a user’s friend actually contributes to the content
discovery in P2P network.

• Chapter 6, to verify the homophily that similar people will tend to have similar interests,
carries out a comprehensive study on investigating the correlation between interest similarity
and other attribute similarity in users’ profiles, e.g., age, city. The social relationship between
two users (i.e., whether they are friends) is also taken into account to see if it would affect the
two users’ interest similarity. This study confirms that the homophily does exist. Then, based
on these analysis results, for a user whose interests are unknown, a practical prediction model
is developed to identify some users who may share some interests with the given interest-
unknown user. Finally, shown as a use case, this prediction model is applied into a item
recommendation system to improve the recommendation performance for new users who have
only little public information.

• Chapter 7 turns to protect the users’ privacy-sensitive information. Specifically, it exploits
users’ location information, current city, as a concrete example of sensitive information to
conduct this work. First, based on our data set, it observes that usually two users with similar
profile attributes (e.g., work) and close social relationships (e.g., friends) would live in similar
cities (i.e., same city or nearby cities). Inspired by this observation, it designs a prediction
model to estimate a user’s current city considering her other information. The estimation
results of our proposed prediction model indicate that if a user exposes certain other informa-
tion, then her hidden current city might still be inferred accurately by a third-party using her
self-exposed information. Then, to help users to realize such privacy risk, some measurable
characteristics are extracted from their self-exposed information, and an exposure estimator
which can notify a user of her exposure risk level of the privacy-sensitive information (i.e.,
current city) is developed, due to the self-exposed information. Eventually, this chapter de-
scribes some use cases about how to leverage our exposure estimator to protect the users’ sen-
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sitive information (lower the risk level), via tuning the privacy settings of their self-exposed
information.

To sum up, user similarity plays important roles in all the above four research applications. This
dissertation comprehensively investigates the potential correlations between different user attributes
and reveals that similar users tend to be similar in their interests, approximate in their geo-distance,
or close in their social relationships. Relying on these observations and the obtainable information,
this dissertation designs models and algorithms to address various critical issues in OSNs, such as
item/friend recommendation for new users and privacy-sensitive location information protection.

8.2 Future Work

This dissertation has extensively studied the effects of user similarity in our Facebook data set
and further introduces these effects to effectively enhance four specific applications and services,
whereas our work is still subject to several limitations. In the following, some promising future
research directions are discussed.

8.2.1 Data Fusion for Empirical Study

First of all, so far, this dissertation only relies on one data set of static information about user profile
from Facebook. Apart from this information, Facebook contains a great deal of knowledge, e.g., user
actions such as post, comment, and joining group, which can be used to more precisely measure
user similarity and more efficiently augment the social applications and services. Besides, many
other OSN platforms are flourishing and accumulating data with their own specialties. For instance,
Twitter spread information in a 140-character short message with the location where it has been sent;
Foursquare shares and gathers a great number of check-ins. Such massive information expanding
within digital footprint can represent different facets of human behavior or characters. A variety
of natural laws regarding similarity may be captured or the knowledge about homophily principle
may be reinterpreted or enriched from different perspectives. Therefore, integrating the extensive
data to study, analysis and model would be more interesting and conductive for the applications
and services. Although data fusion can enrich our data sources, it also presents challenges with
respect to how to collect and unify a user’s information from multi-platforms, how much data to
store, how much this will cost, and whether the users’ expected privacy will be preserved during
data integration.

8.2.2 Scalability of the Approach

In reality, the total number of users in OSNs is beyond 1 billion, let alone the amount of user-
generated connections, interactions and content. However, this dissertation has not taken into ac-
count the practical scalability issue and only evaluated our proposed algorithm and approaches on a
500K user profile data set. How to apply our approach to billions of users’ profiles might meet many
challenging problems, probably needing the techniques from other research areas such as distributed
system and parallel computing. Therefore, another direction for our future research is to adapt our
proposed approaches to the scalable approaches that can be leveraged in real-life OSN platforms
consisting of an enormous number of users.
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8.2.3 Enriching other OSN Applications with Similarity

Inspired by the findings about similarity and homophily principle from social science, this dis-
sertation has successfully explored and leveraged the effects of similarity to advance four specific
applications and services in OSNs. While the four works cover certain important OSN issues such
as item recommendation, friend prediction and privacy protection, there still exist a broad spectrum
of other applications that may be enriched stemming from the intensive study of similarity. On
one hand, novel OSN applications are emerging all the time, most of which could be facilitated
by the investigation of user similarity. For instance, in the rapid-growing crowdfunding platforms,
by studying the similarity between a project initiator with other successful/failed project initiators,
some valuable insights could be obtained for the potential project supporters to determine whether
the rewards of funding this project is deserved. On the other hand, some applications can be bene-
fited by the similarity beyond two users. For example, by abstracting the similarity between users
upto cities or even nations, it affords an opportunity to leverage OSN big data to automatically sketch
a global culture map (which is traditionally created by time-consuming sample surveys) to reflect
the commonality and distinction between different regions worldwide.



Appendix A
Parameter Optimization for Social P2P
Network Model

To optimize the parameters of the social P2P network model, we minimize equation 5.7 with respect
to the parameters ααα and βββ . The parameters are represented uniformly as aaa instead in this section.
Therefore we calculate the derivative of equation 5.7 as:

∂F(aaa)
∂aaa

= 2aaa+∑
k,r

∂h(pr− pk)

∂aaa
= 2aaa+∑

k,r

∂h(pr− pk)

∂ (pr− pk)
(
∂ pr

∂aaa
− ∂ pk

∂aaa
) (A.1)

Applying the commonly used hinge-loss function, i.e., h(pr − pk) = [1− (pr − pk)(aaaT (wwwrv−
wwwkv))]+; thus we have ∂h(pr−pk)

∂ (pr−pk)
= [aaaT (wwwrv−wwwkv)]+. To calculate ∂ pu

∂aaa , we obtain the initial proba-
bility vector at step 0 by sending queries to all the friends of the starting node and calculating the
success rate. We denote the initial probability vector as p(0)p(0)p(0). According to equation 5.5, we can
iteratively compute the final probability given by:

ppp = (1−δ )A
′
p(0)A
′
p(0)A
′
p(0) (A.2)

where A
′

A
′

A
′

is the final random walk transition probability matrix. Note that ppp is the principal
eigenvector of matrix A

′
A
′

A
′
. A.1 can be rewritten as pu = ∑i piA

′
A
′

A
′
iu. Therefore the derivative of pu with

respect to aaa equals:
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iu
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By recursively employing the chain rule to A.3, we can compute the derivative of pu iteratively
[58] [178] [179] [180].

Eventually, we apply the gradient descent method to minimize F(a) directly:

aaa := aaa−µ
∂F(aaa)

∂aaa
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