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Abstract

Drug discovery is a multidisciplinary field which includes molecular biology, biophysics,

biochemistry, and pharmacology. It usually starts with the identification of a biological tar-

get which is known to play a critical role in a particular disease. Therein, computational

methods are increasingly used in the structure-based drug design from target identifica-

tion and validation to the designing of new molecules. To identify molecules that inhibit

desirable activity hundreds of thousands candidates generated with docking protocols are

virtually screened to filter out top-scoring hits. The latter are then tested in biological envi-

ronment and many cycles of optimization are performed to obtain the candidates for further

clinical trials. The first algorithm dedicated to the docking of small molecules was applied to

find new candidates against HIV-1 protease in 1990. Since then, using of docking pipelines

has become a standard practice in drug discovery.

Typically, a docking protocol comprises different phases. It starts with the exhaustive

sampling of the binding site upon rigid-body approximation of monomers. Then, clustering

algorithms are used in order to group similar binding candidates. Different refinement meth-

ods are applied in order to take into account flexibility of a molecular complex or to get rid

of possible docking artefacts. Finally, binding candidates are scored with energy functions

and top-ranked predictions are selected. The Thesis presents novel algorithms for docking

protocols to facilitate structure prediction of protein complexes, which belong to one of the

most important target class in the structure-based drug design.

First, DockTrina - a new algorithm to predict conformations of triangular protein

trimers (i.e. trimers with pair-wise contacts between all three pairs of proteins) is pre-

sented. The method takes as input pair-wise contact predictions from a rigid-body docking

program. It then scans and scores all possible combinations of pairs of monomers using a

very fast root mean square deviation test. Finally, it ranks the predictions using a scoring

function which combines triples of pair-wise contact terms and a geometric clash penalty

term. Being fast and efficient, DockTrina outperforms state-of-the-art computational meth-

ods dedicated to predict structure of protein oligomers on collected benchmark of protein

trimers.

Second, RigidRMSD - a C++ library which provides fast way to compute root mean
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square deviations (RMSDs) between rigid-body transformations of a molecule is developed.

The library is practically useful for clustering of docking poses, resulting in ten times speed

up compared to standard RMSD-based clustering algorithms. The theoretical foundation

of the RigidRMSD algorithm is also used in scoring and refinement stages of the docking

pipeline.

Third, KSENIA - a novel knowledge-based scoring function for protein-protein interac-

tions is developed. The problem of scoring function reconstruction is formulated and solved

as a convex optimization problem in high-dimensional Euclidean space. As a result KSE-

NIA is a smooth function and, thus, is suitable for the structure refinement with potential

energy functions. Remarkably, it is shown that using information about only native inter-

faces of protein complexes is sufficient to reconstruct well-discriminative scoring function.

Fourth, CARBON - a new algorithm for the rigid-body refinement of docking can-

didates is proposed. The rigid-body optimization problem is viewed as the calculation of

quasi-static trajectories of rigid bodies influenced by energy function. To circumvent the

typical problem of incorrect step-sizes for rotation and translation movements of molecular

complexes, the concept of controlled advancement is introduced. CARBON works well in

combination with classical force-field and knowledge-based scoring function. It is a suitable

tool for the rigid-body refinement of molecular complexes with moderate and large steric

clashes between its monomers.

Finally, a novel method to evaluate prediction capability of scoring functions is intro-

duced. It allows to rigorously assess the performance of the scoring function of interest

on benchmarks of molecular complexes. The method manipulates with the score distribu-

tions rather than with scores of particular conformations, which makes it to be advantageous

compared to the standard hit-rate criteria.

The methods described in the Thesis are tested and validated on various protein-protein

benchmarks. The implemented algorithms are successfully used in the CAPRI contest

for structure prediction of protein-protein complexes. The developed methodology can

be easily adapted to the recognition of other types of molecular interactions, involving

ligands, polysaccharides, RNAs, etc. The C++ versions of the presented algorithms will

be made available as a SAMSON Element for the SAMSON software platform at http:

//www.samson-connect.net or at http://nano-d.inrialpes.fr/software/.

http://www.samson-connect.net
http://www.samson-connect.net
http://nano-d.inrialpes.fr/software/
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Résumé

Le docking moléculaire est une méthode permettant de prédire l’orientation d’une molécule

donnée relativement à une autre lorsque celles-ci forment un complexe. Le premier algo-

rithme de docking moléculaire a vu jour en 1990 afin de trouver de nouveaux candidats face

à la protéase du VIH-1. Depuis, l’utilisation de protocoles de docking est devenue une pra-

tique standard dans le domaine de la conception de nouveaux médicaments. Typiquement,

un protocole de docking comporte plusieurs phases. Il requiert l’échantillonnage exhaustif

du site d’interaction où les éléments impliqués sont considérées rigides. Des algorithmes

de clustering sont utilisés afin de regrouper les candidats à l’appariement similaires. Des

méthodes d’affinage sont appliquées pour prendre en compte la flexibilité au sein complexe

moléculaire et afin d’éliminer de possibles artefacts de docking. Enfin, des algorithmes

d’évaluation sont utilisés pour sélectionner les meilleurs candidats pour le docking. Cette

thèse présente de nouveaux algorithmes de protocoles de docking qui facilitent la prédiction

des structures de complexes protéinaires, une des cibles les plus importantes parmi les cibles

visées par les méthodes de conception de médicaments.

Une première contribution concerne le nouvel algorithme Docktrina qui permet de prédire

les conformations de trimères protéinaires triangulaires (i.e. des trimères pour lesquels des

interactions mutuelles de contact existent pour chacune des trois paires de protéines). Celui-

ci prend en entrée des prédictions de contacts paire-à-paire à partir d’hypothèse de corps

rigides. Ensuite toutes les combinaisons possibles de paires de monomères sont évalués

à l’aide d’un test de distance RMSD efficace. Cette méthode à la fois rapide et efficace

améliore l’état de l’art sur les protéines trimères.

Deuxièmement, nous présentons RigidRMSD une librairie C++ qui évalue en temps

constant les distances RMSD entre conformations moléculaires correspondant à des trans-

formations rigides. Cette librairie est en pratique utile lors du clustering de positions de

docking, conduisant à des temps de calcul améliorés d’un facteur dix, comparé aux temps

de calcul des algorithmes standards.

Une troisième contribution concerne KSENIA, une fonction d’évaluation à base de con-

naissance pour l’étude des interactions protéine-protéine. Le problème de la reconstruction

de fonction d’évaluation est alors formulé et résolu comme un problème d’optimisation

convexe.

Quatrièmement, CARBON, un nouvel algorithme pour l’affinage des candidats au dock-

ing basés sur des modèles corps-rigides est proposé. Le problème d’optimisation de corps-

rigides est vu comme le calcul de trajectoires quasi-statiques de corps rigides influencés

par la fonction énergie. CARBON fonctionne aussi bien avec un champ de force classique

qu’avec une fonction d’évaluation à base de connaissance. CARBON est aussi utile pour
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l’affinage de complexes moléculaires qui comportent des clashes stériques modérés à im-

portants.

Finalement, une nouvelle méthode permet d’estimer les capacités de prédiction des fonc-

tions d’évaluation. Celle-ci permet d‘évaluer de façon rigoureuse la performance de la fonc-

tion d’évaluation concernée sur des benchmarks de complexes moléculaires. La méthode

manipule la distribution des scores attribués et non pas directement les scores de conforma-

tions particulières, ce qui la rend avantageuse au regard des critères standard basés sur le

score le plus élevé.

Les méthodes décrites au sein de la thèse sont testées et validées sur différents bench-

marks protéines-protéines. Les algorithmes implémentés ont été utilisés avec succès pour la

compétition CAPRI concernant la prédiction de complexes protéine-protéine. La méthodolo-

gie développée peut facilement être adaptée pour de la reconnaissance d’autres types d’interactions

moléculaires impliquant par exemple des ligands, de l’ARN. . . Les implémentations en

C++ des différents algorithmes présentés seront mises à disposition comme SAMSON Ele-

ments de la plateforme logicielle SAMSON sur http://www.samson-connect.net or at http:

//nano-d.inrialpes.fr/software/.

http://www.samson-connect.net
http://nano-d.inrialpes.fr/software/
http://nano-d.inrialpes.fr/software/
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Chapter 1

Introduction

1.1 Basic Concepts of Protein Structure

Proteins form one of the most important target class in the structure-based drug design.

This section briefly introduces the basic concepts of protein structure hierarchy. Proteins

performs a myriad of activities and orchestrate most of the essential functions of a cell, such

as structural, transport and regulatory functions. The fundamental assumption in protein

science states that protein structure leads to protein function. To describe the protein struc-

ture, it is hierarchicaly represented by the four-level hierarchy: primary, secondary, tertiary,

and quaternary protein structure, which are schematically represented on Figure 1.1.

Proteins are linear polymers of amino acids and the primary structure is the sequence

of amino acids composing the protein. Amino acids are molecules that contain an amino

group (NH2), a carboxyl group (COOH), a hydrogen (H) attached to a central carbon atom

Cα , and a side chain (R) attached to the Cα . Amino acids are distinguished by the R group,

which confers specific chemical properties on it. In proteins, amino acids are referred to

as amino acid residues, which are connected to each other via the peptide bond. Thus, one

often refers to the protein as to the polypeptide.

The secondary structure concept is dedicated to describe the local conformation of a

polypeptide chain. Two types of such conformations are found to be dominant among all

known structures of proteins: α-helix and β -sheets. The former has the coil shape with

a period of 3.6 residues per turn and the latter is the pleated sheet which is formed by β -

strands, that is stretches of several residues laterally connected to each other. Both types

of the secondary structure are stabilized by hydrogen bonding interactions. Whereas in the

α-helix the hydrogen bond is formed between the carbonyl oxygen of each residue and the

amide proton of the residue four positions ahead, in the β -sheets the hydrogen bonds are

located between adjacent polypeptide chains. There are also other regular structures besides
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Figure 1.1 Schematic representation of four levels of protein structure hierarchy.

the standard α-helix and β -sheets as well as the irregular structures, such as loops.

The secondary structural elements combine into three-dimensional structure of protein,

called the tertiary (ternary) structure or fold of the protein. The process of tertiary struc-

ture formation is referred as to the protein folding. Within the overall protein fold one can

distinguish structurally independent patterns (domains) and motifs - regions which could

be structurally dependent. Domains and motifs often have functional significance, hence,

they could be considered as the functional units. The tertiary structure is stabilized by the

intramolecular interactions (between the structural elements) and the intermolecular forces

(with surrounding molecules, e.g. solvent). The folds are classified based on the biochem-

ical principles (globular, membrane and fibrous) as well as on the evolutionary principles

and structural organization [4, 129].

Whereas the tertiary structure describes a single polypeptide chain (monomer), the qua-

ternary structure is dedicated to oligomeric protein complexes (multimer), which consist of

two or more interacting monomers. When the monomers have the same tertiary structure
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the protein complex is called homomeric, and it is called heteromeric otherwise. Albeit the

quaternary structure is stabilized by very specific interactions, they are of the same type as

those employed in tertiary and secondary structure formation. The association of monomers

into the multimers provides several functional advantages. For example, monomers bound

together enhance binding capabilities of the multimer compared to the individual monomer;

upon their association, monomers can confer multiple functions on a single protein; protein

function can be altered when the quaternary structure is changed due to the combinatorial

shifts, that is swapping of different monomers; finally, formation of large protein complexes

is possible thanks to the association of large number of small monomers.

Throughout the Thesis particular protein complexes are referred as to its identification

numbers in the Protein Data Bank (PDB) [13]. The PDB database contains structure of pro-

teins determined using the X-ray crystallography, nuclear magnetic resonance, and cryo-

electron microscopy. Albeit modern experimental techniques are very efficient in protein

structure prediction, it is still difficult to determine quaternary structures of protein com-

plexes due to its size, flexibility and other factors. Thus, computational methods dedicated

for the protein structure prediction serve as a faster and cheaper alternative to the experi-

mental techniques.

1.2 Protein Structure Prediction with Docking Pipelines

The docking pipelines are designated to predict the structure of a molecular complex from

the structures of its individual subunits [144]. In case of protein docking, one distinguishes

between the protein-ligand and the protein-protein docking. The former often implies that

the ligand is a small chemical compound and the binding site is often predetermined. The

latter typically deals with two protein molecules and the global search of the binding pose is

required. Similarly, the smaller protein is often called the ligand and the the bigger protein

is called the receptor. The main part of a docking protocol comprises the exhaustive search-

ing of the binding site upon rigid-body approximation of proteins, that is the global search

of favourable orientations of the receptor with respect to the ligand in six rigid-body trans-

lational and rotational degrees of freedom. Thanks to the pioneering work of Katchalski-

Katzir et al. [62] most of modern docking algorithms employ the fast Fourier transform

(FFT) to perform the global search of the binding poses [143]. Nonetheless, the structure of

monomers outside the complex (unbound state) often undergo conformational changes upon

binding, resulting in the bound state conformation. The modeling of the unbound to bound

transition is a very challenging task, because this transition typically involves much more

degrees of freedom than six rotational and translational ones. To take into account protein



4 Introduction

flexibility, many different refinement methods have been developed. Particularly, appropri-

ate modeling of side chain conformation changes was shown to be efficient for solving most

of docking cases [8, 65, 75, 144]. Molecular docking algorithms typically produce thou-

sands of predictions, some of them having a very similar geometry. Therefore, it is practical

to group these into clusters and consider only one representative binding candidate from

each cluster. There are multiple ways to measure similarity between molecular structures

[147], however, most of the modern state-of-the-art clustering algorithms use the pair-wise

root mean square deviation (RMSD) as the similarity metrics between the predictions.

The docking candidates are ranked with respect to the energy (or the score) given by the

scoring function implemented in the docking algorithm. Currently, FFT docking involves

terms representing shape complementarity, electrostatic, and desolvation contributions to

assess the energy of the produced candidates. However, one is interested in the binding free

energy:

∆Gbind = ∆H −T ∆S, (1.1)

where ∆H is the enthalpic difference between the bound and the unbound states of the com-

plex, T is the temperature, and ∆S is the entropic difference upon binding. The binding free

energy is a much more sophisticated function compared to the potential energy, and involves

not only interaction energy between the partners, but also changes in the internal energy of

monomers, interactions with solvent, rearrangement of solvent molecules and changes of

conformational degrees of freedom corresponding to the entropic loss upon binding. Direct

computation of the binding free energy of proteins is an intractable problem due to its high

computational cost. Instead, different scoring functions as an approximation to the binding

free energy have been extensively developed to be applied to putative docking poses and

virtual screening candidates. The scoring functions for the virtual screening and the selec-

tion of putative binding poses can be categorized into three groups: first-principle methods,

empirical scoring functions, and knowledge-based potentials. First-principle methods gen-

erally do not take into account solvent and intramolecular interactions, and compute only

enthalpic interactions between the receptor and the ligand using molecular mechanics force-

fields. Empirical scoring functions consist of a linear combination of terms that are known

to reflect important factors of binding, e.g. hydrophobic contacts, hydrogen bonding, acces-

sible and buried surface area, etc. Using regression models, all terms are supplied with the

corresponding weights to provide a good agreement with the training set of complexes for

which experimentally determined binding constants are available. Knowledge-based poten-

tials are developed based on the structural information from databases of molecular com-

plexes. The main assumption behind these potentials is that the native molecular complexes

possess distinct structural features with respect to the non-native structures. For example,
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Table 1.1 Quality of a docking prediction with respect to the LRMSD value. The LRMSD value
is defined as the RMSD of the backbone atoms of the ligand after the receptors in the native
and the docking pose conformation have been optimally superimposed.

Quality LRMSD (Å)

1 LRMSD ≤ 1
2 1 < LRMSD ≤ 5
3 5 < LRMSD ≤ 10

the common assumption is that more frequently observed interactions are more important

for the complex stability. These potentials are generally more computationally efficient and

less time demanding, and hence are suitable for the docking protocols.

At this point, energy and score are used as the synonyms. Since the original docking

predictions usually do not possess optimal energy values, in practice, in order to achieve

more reliable energy values, one performs refinement using the scoring function. Typically,

rigid-body minimization algorithms are applied on the first step, where the energy of a

conformation is minimized with respect to the rigid transformations of receptor and ligand

[92].

Various docking, clustering, refining, and scoring algorithms are combined into various

docking protocols. To assess prediction capabilities of the docking protocols, the Critical

Assessment of PRedicted Interactions (CAPRI) was organized [55]. It is a blind prediction

experiment, where the target is the experimentally established but unpublished structure of a

protein-protein complex. Given structural information (primary, secondary or tertiary struc-

tures) about a receptor and a ligand in their unbound form, CAPRI tests docking algorithms

to predict the bound structure of the complex. Additionally, CAPRI involves the scoring

contest, when the participants are invited to rank all submitted models according to their

scoring functions. Finally, the models are evaluated against the true target structure and the

performance of docking and scoring protocols is reported.

To evaluate the relevance of a model, one introduces quality criteria; the two basic ones

which are used through the Thesis are the ligand-RMSD and the CAPRI criterion. The

ligand-RMSD (LRMSD), is defined as the value of RMSD of the backbone atoms of the

ligand after the receptors in the native and the decoy conformations have been optimally su-

perimposed (see Table 1.1). In the CAPRI contest, a more sophisticated criterion compared

to the ligand-RMSD is used. More precisely, in addition to the ligand-RMSD, it involves the

fraction of native contacts in the docking prediction fnat, and the interface RMSD, IRMSD

(see Table 1.2). The fnat parameter is the ratio of the number of native residue-residue

contacts in the predicted complex to the number of residue-residue contacts in the crystal
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Table 1.2 The CAPRI criterion to estimate the quality of docking predictions

Quality Condition

1 (high) fnat ≥ 0.5 and (LRMSD ≤ 1.0 or IRMSD ≤ 1.0)

2 (medium)
(0.3 ≤ fnat < 0.5) and (LRMSD ≤ 5.0 or IRMSD ≤ 2.0) or ( fnat ≥
0.5 and LRMSD > 1.0 and IRMSD > 1.0)

3 (acceptable)
(0.1 ≤ fnat < 0.3 and (LRMSD ≤ 10.0 or IRMSD ≤ 4.0) or ( fnat ≥
0.3 and LRMSD > 5.0 and IRMSD > 2.0)

structure. A pair of residues from different monomers are considered to be in contact if they

are within 5 Å from each other. The IRMSD parameter is the RMSD of the interface region

between the predicted and native structures after optimal superimposition of the backbone

atoms of the interface residues. A residue is considered as the interface residue if any atom

of this residue is within 10 Å from the other partner.

1.3 Contribution of the Thesis

1.3.1 DockTrina: Docking of Triangular Trimers

The first contribution concerns the problem of reconstruction of oligomeric protein com-

plexes, particularly the docking of monomers forming three-multimer. In spite of the abun-

dance of oligomeric proteins within a cell, the structural characterization of protein–protein

interactions is still a challenging task. In particular, many of these interactions involve het-

eromeric complexes, which are relatively difficult to determine experimentally. Hence there

is growing interest in using computational techniques to model such complexes. However,

assembling large heteromeric complexes computationally is a highly combinatorial prob-

lem. Nonetheless the problem can be simplified greatly by considering interactions between

protein trimers. After dimers and monomers, triangular trimers (i.e. trimers with pair-wise

contacts between all three pairs of proteins) are the most frequently observed quaternary

structural motifs according to the three-dimensional (3D) complex database. The first con-

tribution of the Thesis comprises DockTrina [108] - a novel protein docking method for

modeling the 3D structures of nonsymmetrical triangular trimers. The method takes as in-

put pair-wise contact predictions from a rigid-body docking program. It then scans and

scores all possible combinations of pairs of monomers using a very fast root mean square

deviation test. Finally, it ranks the predictions using a scoring function which combines

triples of pair-wise contact terms and a geometric clash penalty term. The overall approach

takes less than 2 min per complex on a modern desktop computer. The method is tested and
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validated using a benchmark set of 220 bound and seven unbound protein trimer structures.

1.3.2 Rapid Determination of RMSDs corresponding to Macromolec-

ular Rigid-body Motions

The second contribution concerns finding the RMSDs between two coordinate vectors that

correspond to the rigid-body motion of a macromolecule, which is an important problem in

structural bioinformatics, computational chemistry, and molecular modeling. Standard al-

gorithms compute the RMSD with time proportional to the number of atoms in the molecule.

However, using the rigid-body formalism, the RMSD could be computed more efficiently,

resulting in a fast and efficient approach. Thus, the second contribution of the Thesis com-

prises RigidRMSD [104], a new algorithm that determines a set of RMSDs corresponding to

a set of rigid-body motions of a macromolecule in constant time with respect to the number

of atoms in the molecule. The algorithm is particularly useful for rigid-body modeling ap-

plications, such as rigid-body docking, and also for high-throughput analysis of rigid-body

modeling and simulation results, e.g. clustering of the docking predictions. The theoretical

foundation of the RigidRMSD algorithm is also used in scoring and refinement stages of the

docking pipeline.

1.3.3 Knowledge-based Scoring Function for Protein-Protein Interac-

tions

The third contribution concerns selection of putative binding poses, which is a challeng-

ing part of virtual screening for protein-protein interactions. Predictive models to filter out

binding candidates with the highest binding affinities comprise scoring functions that assign

a score to each binding pose. Existing scoring functions are typically deduced collecting

statistical information about interfaces of native conformations of protein complexes along

with interfaces of a large generated set of non-native conformations. However, the obtained

scoring functions become biased toward the method used to generate the non-native con-

formations, i.e. they may not recognize near-native interfaces generated with a different

method. It is demonstrated that knowledge of only native protein-protein interfaces is suf-

ficient to construct well-discriminative predictive models for the selection of binding can-

didates. More precisely, a new scoring method is introduced – it comprises a knowledge-

based potential called KSENIA [105] deduced from the structural information about the

native interfaces of 844 crystallographic protein-protein complexes. KSENIA is derived us-

ing convex optimization with a training set composed of native protein complexes and their
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near-native conformations that are obtained using deformations along the low-frequency

normal modes. As a result, the knowledge-based potential has no bias toward a method to

generate putative binding poses. Furthermore, KSENIA is smooth by construction, which

allows to use it along with a rigid-body optimization to refine the binding poses. Using sev-

eral test benchmarks it is demonstrated that the new method discriminates well native and

near-native conformations of protein complexes from the non-native ones.

1.3.4 CARBON: Controlled-Advancement Rigid-Body Optimization for

Nanosystems

The fourth contribution of the Thesis comprises a fast and efficient method for the rigid-

body refinement of molecular complexes, called CARBON [107], where we consider the

rigid-body optimization problem as the calculation of quasi-static trajectories of rigid bod-

ies influenced by the inverse-inertia-weighted energy gradient. In order to determine the ap-

propriate step size in the direction of the net generalized force, we introduce the concept of

advancement region, which is the interval of step sizes that provide movements of the rigid

body within a certain range of RMSD from the initial conformation. As a result, the CAR-

BON approach guarantees the absence of incorrectly large movements of the rigid-bodies

as well as the absence of irrelevantly small movements. CARBON is tested and validated

on several benchmarks using both a classical force-field and a knowledge-based scoring

function. It is demonstrated that CARBON significantly improves the quality of docking

predictions, resulting in higher success rate of the scoring protocol. Finally, CARBON re-

mains stable when monomers of a molecular complex significantly overlap and efficiently

resolves moderate and large steric clashes.

1.3.5 A Novel Criterion to Evaluate Scoring Power of Scoring Func-

tions for Molecular Complexes

Efficiency of scoring functions is typically assessed using benchmarks that comprise many

non-native conformations (decoys) and a few near-native conformations, both obtained with

docking algorithms [94]. As a result, a single scoring function could demonstrate a different

scoring power on benchmarks based on the same set of native complexes but with decoys

generated with different docking algorithms. Furthermore, the fact that a scoring function

can/cannot able to distinguish one particular near-native candidate does not imply that it

can/cannot distinguish any near-native candidate. Thus, the scoring power is a strongly bi-

ased criterion, which critically depends on the poses of the binding candidates in the bench-
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mark set. To address the latter problem, we introduce an alternative criterion to evaluate the

scoring power of a scoring function, which is free of the above-mentioned disadvantages

[106]. More precisely, we complement the benchmark set with the constructed uniform en-

sembles of near-native conformations, where each conformation lies within a certain RMSD

from the corresponding native conformation. We provide the fast and efficient method to

generate the uniform ensembles of near-native conformations. Then, we estimate the scor-

ing power of a scoring function using the cumulative distribution function of decoy scores

and the probability density function of the near-native conformation scores.

The method was applied to assess the scoring power of the knowledge-based scoring

functions for the protein-protein complexes, which we derive using the modern convex op-

timization apparatus. Particularly, the obtained results indicate that the derived scoring func-

tion discriminate well conformations within 2 Å, but performs poorly for the conformations

of 5 Å

The methods described in the Thesis are tested and validated on various protein-protein

benchmarks. The implemented algorithms are successfully used in the CAPRI contest

for structure prediction of protein-protein complexes. The developed methodology can

be easily adapted to the recognition of other types of molecular interactions, involving

ligands, polysaccharides, RNAs, etc. The C++ versions of the presented algorithms will

be made available as SAMSON Elements for the SAMSON software platform at http:

//www.samson-connect.net or at http://nano-d.inrialpes.fr/software/.

http://www.samson-connect.net
http://www.samson-connect.net
http://nano-d.inrialpes.fr/software/




Chapter 2

DockTrina: Docking of Triangular

Trimers

2.1 Introduction

Most proteins interact with other proteins. They form protein complexes that are essential

for many biological processes and which are responsible for a vast array of biological func-

tions [43]. It has been shown that the human genome encodes around 30,000 proteins which

are involved in about 130,000 protein-protein interactions [15]. A recent study of 2000 yeast

proteins found that more than 80% of the proteins interact with at least one other protein

[38]. Furthermore, about 50% of them form complexes with more than five other partners

[1]. These data clearly indicate the importance of protein interactions within oligomers in a

cell.

In spite of the abundance of oligomeric proteins, the structural characterization of pro-

tein–protein interactions is still a challenging task. For example, monomeric structures con-

stitute more than 50% of the structures in the PDB database [13], whereas only about 30%

of the protein sequences in SwissProt [83] correspond to monomeric structures [78]. This

disparity reflects the relative difficulty of determining the structures of oligomeric proteins

experimentally.

Undoubtedly, homomeric interactions are the most common type of protein–protein in-

teractions [40, 78, 101]. Indeed, between about 50% and 70% of the protein complexes

of known three-dimensional (3D) structure are homooligomers according to the SwissProt

[83]. and Protein Quaternary Structure (PQS) databases [44]. Among the complexes that are

not pure homo-oligomers, about two thirds contain at least one interaction between identical

chains, and about one third involve purely heteromeric interactions [101].
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Levy et al. [78] classified protein complexes of known 3D structure using a hierarchi-

cal graph representation of their fundamental structural features. They demonstrated that

triangular trimers (i.e., trimers with pair-wise contacts between all three pairs of proteins)

are the most frequent quaternary structure motif in the PDB after dimers and monomers.

Particularly, triangular trimers constitute about two thirds of all trimers in the PDB, whereas

only one third of trimers are linear trimers. Levy et al. [78] also demonstrated that triangular

trimeric motifs appear in many other oligomers. For instance, if one considers oligomers of

order less than 10 (accounting for more than 98% of all PDB structures), 67 out of 97 of

these topologies contain triangular trimer motifs. Also, although two thirds (2044/3236) of

Levy’s set of 3236 nonredundant protein complexes are monomers and dimers, more than

half of the remainder (i.e., > 536/1192) involve triangular protein interactions. On the other

hand, several algorithms have been developed to predict symmetrical homomeric protein

complexes, whereas only a very few are able to predict nonsymmetrical oligomers.

2.1.1 Docking of Symmetrical Protein Complexes

Here, we review seven published methods to perform docking of symmetrical protein com-

plexes. Most of these methods can handle different types of symmetry, and some can model

conformational changes within monomers. One of the methods for Cn cyclic symmetry

docking is SymmDock [123]. It demonstrated good performance for 19 bound complexes

for which the monomers are related by noncrystallographic symmetry (NCS). The Symm-

Dock algorithm consists of four steps. First, it computes a sparse dot surface representation

for each protein, giving about six surface points for each surface atom. It then samples pos-

sible symmetry axes for each pair of surface points using geometric constraints provided by

Cn symmetry. Next, it clusters candidate symmetry axes according to their directions and

the projection of the protein’s center of mass onto the axes. Finally, it ranks the clusters by

the number of matched pairs of surface atoms. If additional experimental data are available,

for example, from small angle X-Ray scattering (SAXS) experiments, one may improve

SymmDock results using FoXSDock [122]. This algorithm filters predicted models accord-

ing to SAXS profiles, and it clusters and refines the interfaces using flexible docking with

FireDock [87].

Mashiach-Farkash et al. [88] recently developed SymmRef to refine candidate dock-

ing solutions from any symmetric docking method. SymmRef models both side-chains

and backbone movements and re-ranks the models by an energy scoring function, which

includes various energetic terms. SymmRef does not apply symmetry constraints at the

side-chain level. It was tested on an unbound set of 16 proteins.

The ROSETTA program [118] uses a Monte Carlo-plus-minimization protocol which
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can deal with cyclic, dihedral, helical, and icosahedral symmetries [2]. It uses real-space

minimization to find the lowest energy conformation of binding partners restricted by a

certain type of symmetry constraint. The protocol consists of a low-resolution search using a

residue-level potential followed by a subsequent high-resolution stage with all-atom energy

function [41]. Symmetry is also used to restrict the number of backbone and side-chain

degrees of freedom. The method was tested on 14 bound-bound cyclic oligomers related by

NCS, and on one helical and one icosahedral complex.

Huang et al. [49] exploit the redundancy associated with C2 cyclic symmetry for fast

Fourier transform (FFT)-based docking for homodimers. More precisely, they reduce the

rotational search space from 2π ×π ×2π to π ×π . They tested their method on 121 bound

complexes of homodimers collected by Bahadur et al. [5]. In a similar manner, M-ZDOCK

can rigidly dock monomers to make Cn symmetrical multimers [102]. To do this, it exhaus-

tively explores the search space with two rotational and two translational degrees of free-

dom. The translational search is accelerated using a 2D FFT. Its scoring function includes

surface complementarity as well as desolvation and electrostatic energy terms. M-ZDOCK

was tested on a benchmark of eight bound/quasi-bound protein complexes and four unbound

protein complexes with Cn symmetry.

The ClusPro program can deal with Cn, D2, and D3 symmetries [27]. It uses the DOT

rigid-body docking program [85] to generate and cluster more than 20,000 docked confor-

mations between two monomers. It then selects the best 2,000 complexes according to its

scoring function. Then, it constructs symmetrical N-oligomers and computes the root mean

square deviation (RMSD) between the first monomer and its N +1 symmetrical replica. Fi-

nally, it filters out predictions with the RMSD beyond a certain threshold. The method was

tested on 107 homo-oligomer complexes, including dimers, trimers, tetramers, pentamers,

and hexamers.

Another geometric docking algorithm for Cn and Dn symmetries was described by Berchan-

ski et al. [10, 11] . It is based on filtering binary homodimer docking solutions with sym-

metrical restrictions. First, the algorithm constructs homodimers using the MolFit dock-

ing program [62]. It then identifies symmetry-related homodimers by applying Euler’s

theorem to the docking transformation matrices (Euler’s theorem states that the rotation

angle φ about the eigenvector of a rotational matrix M can be calculated from its trace:

Tr(M) = 2cos(φ)+ 1). Finally, this algorithm assembles constructed homodimers into Cn

or Dn oligomers using geometric considerations. It was tested on eight Cn and three Dn

symmetrical complexes.
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2.1.2 Docking of Nonsymmetrical Protein Complexes

In this section, we review five methods able to predict nonsymmetrical protein oligomers.

The CombDock program uses a combinatorial assembly approach to predict the 3D struc-

tures of nonsymmetrical protein oligomers and multi-protein complexes [54]. The algorithm

starts from multiple pair-wise docking poses generated by the authors’ original geometric

hashing algorithm. Given as input N protein structures, it first computes N(N − 1)/2 sets

of pairs of contacts between the proteins. Then, using at most 100 best contacts for each

pair of proteins, CombDock builds an edge-weighted multigraph in which each protein is

represented by a vertex, and each transformation that potentially docks a pair of proteins is

represented by an edge between the corresponding vertices. The search for the best combi-

nation of edges uses the notion of spanning trees (a spanning tree is an undirected acyclic

graph in which each vertex is visited exactly once). Because the problem of finding the min-

imum weight spanning tree is known to be NP-Hard, CombDock uses a greedy breadth-first

strategy to assemble feasible (clash-free) subtrees into candidate solutions. It then clusters

the generated solutions by RMSD, and it ranks them using a scoring function which in-

cludes both geometric and chemical terms. The method was validated on four bound and

five unbound complexes.

Kim and Hummer [64] developed a method that performs oligomeric docking using

coarse-grained models of individual monomers. The method uses Monte Carlo simula-

tions with subsequent distance-based clustering between pairs of docking solutions. The

oligomeric solutions are ranked according to their cluster populations. The feasibility of

this method was demonstrated on the Vps27-ubiquitin complex in the presence of a mem-

brane.

The HADDOCK multibody docking algorithm takes a more general approach for molec-

ular docking [60], which can incorporate experimental and bioinformatics data to drive the

modeling process. In HADDOCK, docking can be driven by a variety of experimental in-

formation about the interface, contacts, and relative orientations inside a complex. Further-

more, HADDOCK treats this information simultaneously and can deal with arbitrary sym-

metry through the use of user-defined distance constraints. The method performs energy

minimization in dihedral angle subspace. Its energy function combines various energetic

terms with user-defined ambiguous interaction restraints to favor the appearance of exper-

imentally observed interactions and optional symmetry constraints. Although the authors

tested HADDOCK only on five symmetrical homo-oligomeric proteins and one symmetri-

cal protein-DNA complex, the method can be used to predict nonsymmetrical complexes

with up to six chains.

ATTRACT [150] is a coarse-grained pair-wise docking algorithm with reduced amino
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acid representation. This coarse-grained approach allows an efficient multistart search by

energy minimization to be used in several directions to simulate global flexibility. Each di-

rection corresponds to a soft collective degree of freedom computed with the normal mode

analysis. Local flexibility is also included in ATTRACT by means of a mean-field repre-

sentation of small loops and side chains. Although ATTRACT was not designed to predict

trimers, the PTools library [120] may be used to call ATTRACT to predict trimeric com-

plexes. The authors of PTools demonstrated its ability to find the correct structure of a

symmetrical trimer complex without using symmetry information.

Recently, the Multi-LZerD algorithm for predicting multimeric complexes was devel-

oped [32]. In the first step, Multi-LZerD generates pair-wise docking predictions by ap-

plying the geometric hashing technique, where the protein surface is represented using

Zernike–Canterakis basis functions. Then, it builds the spanning tree representation, with a

node corresponding to a protein chain and an edge between nodes corresponding to a decoy

of two chains. Similar to CombDock, which also uses spanning trees, Multi-LZerD im-

plements a stochastic search genetic algorithm to find the solutions which are then ranked

using a physics-based score. Finally, after clustering the predictions, Monte Carlo energy

minimization strategy refines each complex in the final population. Multi-LZerD was tested

on eleven bound and a few unbound multimeric complexes.

2.1.3 The DockTrina Approach

The surprisingly large number of non-redundant trimeric complexes found by Levy et al.

[78] motivated us to develop the DockTrina algorithm for predicting new trimeric struc-

tures. As will be shown below, the problem of modeling triangular trimers can be solved

very efficiently. DockTrina takes as input a set of pair-wise contact predictions for each pair

of proteins in the trimer. In principle, any pair-wise rigid body docking algorithm could be

used, but here we use the Hex program [115] because it is fast and because it can output

the spatial transformations required by DockTrina. Given a set of pair-wise docking inter-

actions, DockTrina exhaustively scans all possible combinations of contacts between three

monomers (which typically involves evaluating some 1010 combinations), and it filters out

any combinations which do not satisfy a very efficient RMSD test. This test is performed

in constant time, which makes our method extremely fast. Finally, DockTrina ranks the

predictions using a scoring function that combines the three pairwise docking scores with

an empirical geometric penalty term. The typical running time of DockTrina is less than 2

minutes on a desktop computer with a 12-core 2.67-GHz Intel Xeon CPU.

We demonstrate the efficiency and accuracy of the method using a benchmark set of 220

protein trimers taken from bound crystal structures. This benchmark includes 85 proteins
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with crystallographic symmetry, 76 protein complexes related by NCS, and 59 nonsymmet-

rical protein complexes. We also validate DockTrina using a further set of seven protein

trimers involving unbound crystal structures. In addition, we compare the performance of

DockTrina with SymmDock, CombDock, and HADDOCK algorithms.

2.2 Methods

2.2.1 The DockTrina Algorithm

Here, we describe the general work-flow of our algorithm. Given three proteins, A, B, and

C, of a trimer, we first identify candidate contacts for the native interfaces between each

pair of proteins: A–B, B–C, and C–A. For each pair-wise contact, DockTrina requires a

rigid-body transformation T obtained with Hex or other rigid-body docking algorithms, and

a pseudo-energy score such that if the initial coordinates of the two proteins are A0 and B0,

each putative docking solution is given by A0 and B = T AB ·B0, as shown in Figure 2.1 A.

Given a set of such putative pair-wise contacts, we then exhaustively evaluate triples of all

possible combinations of such pairs.

More precisely, given a set of pair-wise docking transforms T AB, T BC, and TCA, we form

a tetramer of proteins A, B, and C, positioned at A, B, C, and A′, where A′ is the position of

protein A after the above three transforms have been applied to it. This is shown in Figure

2.1 B. In other words, we initialize DockTrina with three proteins positioned at A0, B0,

and C0, such that the first protein is bound to the reference frame of the tetramer, and thus

A = A0. We can then observe that in this reference frame, the position of protein B is given

as B = T AB ·B0. Similarly, the position of protein C is given as C = T AB ·T BC ·C0, and the

transformed position of the first protein A is given as A′ = T AB ·T BC ·TCA ·A. Therefore, we

compute all possible combinations of three transforms of the following form:

T AA = T AB ·T BC ·TCA, (2.1)

such that A′ = T AA ·A.

If the individual transforms are perfectly mutually consistent, then protein A should

be transformed into itself. Thus, for any given combination of pair-wise docking transfor-

mations, the cumulative transformation T AA intuitively corresponds to the mismatch in the

position of protein A after the triangular docking attempt (see Fig. 2.1 B). Hence, the quality

of a trimer produced by this algorithm can be characterized by the RMSD between the ini-

tial position of protein A and its transformed position A′ = T AA ·A. We compute this RMSD

in constant time as described in the Chapter 3. Then, we remove docking predictions with
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Figure 2.1 (A ) Illustration of a pair-wise docking algorithm, for example, Hex. Given
the initial positions of a receptor A0 and a ligand B0, the algorithm generates a candidate
transform T AB such that the predicted ligand position B is given by B = T AB ·B0. (B , C , D

) Illustrations of the DockTrina trimer assembly algorithm. (B ) Given a set of transforms
T AB, T BC, and TCA, DockTrina forms a tetramer of proteins positioned at A, B, C, and A0.
Here, A0 is the position of protein A after the application (in the given order) of the above
three transforms. In the ideal case, A0 should exactly superpose A. In practice, the quality of
the A-B-C trimer is characterized by the mismatch between the A and A0 structure positions.
(C , D ) The same procedure is repeated for tetramers of proteins positioned at B, C, A, B0

and C, A, B, C0 respectively.
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the corresponding RMSD > 10.0 Å. We then assess the quality of the remaining predictions

using the following scoring function:

Score = ScoreAB +ScoreBC +ScoreCA

+0.25
Scoremax

RMSD
,

(2.2)

where ScoreAB, ScoreBC, and ScoreCA are the individual pair-wise scores, Scoremax is the

sum of three best scores for each contact, and RMSD (in Angstroms) is measured between

the initial position A and the transformed position T AA ·A. We use an empirical penalty term

0.25Scoremax/RMSD to penalize large RMSDs. Finally, we remove predictions with the

score < 75% of the sum of three best scores for each contact.

For a trimer of monomers A, B, and C, we need to apply the above procedure three

times, with each monomer in turn providing the reference frame. Figure 2.1 (B–D) il-

lustrates these steps. First, we do the calculations for the tetramer A–B–C–A′ computing

the mismatch corresponding to the transform T AA. Then, we repeat the calculations for

the tetramers B–C–A–B′ with the transform T BB and C–A–B–C′ with the transform TCC.

These steps are summarised in Table 2.1. In the current version of our algorithm, we pro-

Table 2.1 The DockTrina algorithm.

1. Initialize RMSD computations with proteins A, B, and C.

2. Given a set of M candidate contacts for each pair of proteins, compute:
- M3 spatial transformations T AA, if proteins A, B, and C are identical;
- 6M3 spatial transformations T AA, T BB, TCC, T−AA, T−BB, T−CC, if proteins A, B,
and C are not identical and the transforms are slightly different when calculating
pair-wise contacts for A-B compared to those for B-A;
- 3M3 spatial transformations T AA, T BB, TCC otherwise.

3. Compute the RMSD for each of M3, 3M3, or 6M3 spatial transformations.

4. Rescore predictions with RMSD values ≤ 10.0 Å .

5. Sort predictions.

cess M = 1,000 pair-wise contacts. Therefore, for symmetrical structures, we evaluate 109

different combinations of contacts for each target trimer. For NCS and nonsymmetrical tar-

get structures, we evaluate 6× 109 different combinations of contacts. The multithreaded

calculations for one NCS or nonsymmetrical protein take about 1.5 minutes on a desktop
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machine running 64-bit Linux Fedora operating system with 12-core Intel(R) Xeon(R) CPU

X5650 @ 2.67GHz. The corresponding multithreaded calculation for a symmetrical trimer

takes about 15 seconds.

2.2.2 Pair-wise Docking with Hex

In principle, DockTrina may be used with any pair-wise docking algorithm that can out-

put the spatial transformations described above. We chose to use Hex [115], to generate

the necessary input transformations for DockTrina. Hex uses a polar Fourier representation

of protein shapes, and it performs shape-based rigid-body docking using multiple FFTs to

cover the 6D search space. Here, we used polar Fourier shape expansions to polynomial

order N = 31. The real-space angular search step was 7.5◦. We used the radial search

range of 40 Å with a translational step of 2.5 Å and a subsequent substep of 1.2 Å. We

clustered the docking solutions with a threshold of 8 Å and kept the best rigid-body spatial

transforms for the first 1,000 of clusters. For each pair-wise docking solution, Hex outputs

a calculated pseudo-energy and a spatial transformation to rotate and translate the “ligand”

protein. However, because Hex uses discrete sampling rather than energy minimization, it

can give slightly different predictions when calculating pair-wise contacts for A–B com-

pared to those for B–A. Therefore, if the three monomers to be docked are nonidentical,

we apply our calculations to the tetramers A–C–B–A′ , B–A–C–B′ , and C–B–A–C′. Thus,

in such cases, we repeat the calculations six times. Thanks to multithreading, Hex needs

only 3.3 minutes to obtain required transformations for the largest trimeric complex in our

benchmark and 1.5 minutes for the smallest one.

2.2.3 The DockTrina Benchmark Sets

To test and validate the DockTrina docking algorithm, we constructed a benchmark set of

protein trimers. This consists of 85 symmetrical trimers (including protein structures solved

in H 3 and P 3 2 1 space groups), 76 NCS trimers (i.e., proteins with three homologous

chains in the asymmetric unit related by NCS), and 59 nonsymmetrical trimers (i.e., pro-

teins with at least three different chains in the asymmetric unit). The corresponding query

protocols for the PDB are listed in Table 2.2. For our benchmark, we selected only those

structures that have a good contact between individual proteins. We define a good con-

tact as a contact with the interface area comprising at least 8% of the accessible solvent area

(ASA) of the biggest partner. We required all three protein-protein interfaces within a trimer

to satisfy this condition. We retrieved the interface area and the ASA from PDBePISA

server [74]. For symmetrical proteins, we computed contacts between different threefold
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Figure 2.2 Some examples of bound complexes from our trimer benchmark set. Top row:
symmetrical structures. Middle row: NCS structures. Bottom row: nonsymmetrical struc-
tures. All images were generated using PyMOL [124].

symmetry-mates. Otherwise, we computed contacts between individual proteins. For the

remaining symmetrical proteins, we generated trimers according to the BIOMT transform

from the PDB file. Any such proteins that lacked a BIOMT record in their PDB file were

discarded.

Many structures in the PDB contain three homologous chains with no crystallographic

symmetry but which nonetheless possess threefold symmetry. We classify these structures

as NCS. In our benchmark set, among all the proteins with three chains in the asymmet-

ric unit, three structures (1F6F, 1U7F, and 2HY5) contain nonhomologues chains without

threefold symmetry. We thus classified them as nonsymmetric. Because the PDB contains

only a few nonsymmetrical structures with exactly three chains in the asymmetric unit, we

also scanned the PDB for higher-order oligomers. We then selected any such structures hav-

ing triangular pair-wise contacts, and we added the corresponding trimers to the benchmark

set.

Table 2.6 lists the proteins selected for the benchmark. This table also lists the IDs of

the included chains for nonsymmetrical complexes. To assess the quality of predictions

of different docking algorithms objectively, the orientations of all NCS and nonsymmetrical

proteins in the benchmark set were randomized before performing any docking calculations.

Generally, it is important to validate a new docking algorithm using proteins whose

structures have been determined in the unbound state. Therefore, we looked for crystallo-

graphically solved structures which are homologous to the proteins in the bound benchmark,
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Table 2.2 Query protocols for the PDB that were used to compose the bound benchmark set.

Symmetrical NCSa Non-Symmetrical

space group: R3 or H3 or P 3 2 1 number of chains = 3 number of chains ≥ 3
X-ray resolution: 0 – 3 Å X-ray resolution: 0 – 3 Å X-ray resolution: 0 – 3 Å
exclude homology at 70% exclude homology at 70% exclude homology at 70%
contains only proteins contains only proteins contains only proteins

molecular weight ≤ 90 kDa number of protein entities ≥ 3

result countb: 85 result countb: 76 result countb: 59
a Three protein structures, 1F6F, 1U7F, and 2HY5 retrieved by this protocol are non-
symmetrical.
b After processing of contacts.

but which have different contacts between proteins. We retrieved the PDB codes of homo-

logues proteins from the PDB database (ftp://resources.rcsb.org/sequence/clusters) where

all protein chains in the PDB are clustered by BLASTClust algorithm. We used a 95%

homology threshold to discriminate between homologous proteins. We then inspected the

space group and contacts of all the candidate proteins and selected just seven complexes

which are listed in Table 2.3. Among the selected proteins for this unbound benchmark set,

four structures possess threefold crystallographic symmetry. These have PDB codes 1F7O,

1IQA, 2E7A, and 3GQH.

Table 2.3 The complexes of the unbound trimer benchmark set.

Bound complexa Unbound componentsb (space groupc)

1A3F 1POB:A (C 2 2 21)
1F7O 1DUT:A (P 63) 1DUT:B (P 63) 1F7R:A (P 21 3)
1IQA 3ME2:A (P 63) 1QBQ:A (P 61) 3QBQ:C (P 3)
1U7F 1DEV:A (P 31 2 1) 1U7F:B (P 21 21 21) 1DEV:C (P 31 2 1)
2R3U 1TE0:A (I 2 3)
2E7A 3L9J:T (P 63 2 2)
3GQH 3GQK:A (P 21 3)

aThe PDB IDs of trimers from the bound benchmark.
bThe PDB IDs and chain IDs of monomers in the unbound state.
cThe space group of each monomer.
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2.2.4 Comparison with SymmDock, CombDock, and HADDOCK

We compared the performance of the DockTrina algorithm with the results obtained from

SymmDock [123] for the bound symmetric benchmark trimers and with results from Comb-

Dock [54] for the bound NCS and nonsymmetric benchmark trimers. We also predicted

structures of the first 20 nonsymmetrical complexes from our benchmark set using the HAD-

DOCK algorithm [60]. We used default settings provided by SymmDock, CombDock, and

HADDOCK. For HADDOCK, we additionally enforced contacts between the chains to fa-

vor triangular trimers in the predictions. As the input for SymmDock, we used structures of

monomers with C3 symmetry. For CombDock and HADDOCK, we used the structures of

protein trimers as input. The running time of these algorithms strongly depends on the size

of a protein complex. Nonetheless, SymmDock and CombDock algorithms are very fast.

For the smallest and the largest nonsymmetrical trimers, CombDock needs about 15 seconds

and 5 minutes, respectively. The corresponding running times for SymmDock on symmet-

rical complexes are 4 seconds and 1 minute, respectively. HADDOCK requires more time

to obtain results for a particular trimer. It needs 1.5 minutes and 25 minutes to obtain 100

predictions for the smallest and the largest nonsymmetrical trimers, respectively. We did

not compare DockTrina against Multi-LZerD or ATTRACT/PTools due to their very high

execution times (typically 3 hours or more per complex).

2.3 Results and Discussion

2.3.1 Bound Trimer Assembly Results

We first tested the DockTrina algorithm on our benchmark set of 220 bound protein com-

plexes. Table 2.4 summarizes the performance of DockTrina on this benchmark set obtained

when using 1,000 pair-wise contacts between the monomers generated by Hex. Table 2.6

lists the detailed results for this benchmark, which is split into three classes correspond-

ing to symmetrical, NCS, and nonsymmetrical protein complexes. To quantify in a simple

way the quality of DockTrina’s predictions, we use a numerical quality measure for a pro-

tein trimer. We say that the quality-one corresponds to a trimer prediction with all three

pair-wise RMSDs smaller than 3.0 Å, quality-two corresponds to a prediction with all three

pair-wise RMSDs smaller than 5.0 Å, and quality-three corresponds to a prediction with all

three pair-wise RMSDs smaller than 10.0 Å. A pair-wise RMSD is determined by super-

posing the receptor protein from the prediction with the receptor protein from the reference

complex and computing the all-atom RMSD between the ligand proteins. These criteria are

summarized in Table 2.5. We also characterize each prediction using the three ranks i, j,
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and k of pair-wise contacts provided by Hex. Given three monomers A, B, C in a trimer,

these ranks correspond to the ranks calculated by Hex for the pair-wise protein contacts,

A–B, B–C, and A–C. Finally, we also score and rank the complete trimer using our own

scoring function (see Eq. (2.2)). For the symmetrical and NCS cases, we successfully

Table 2.4 Summary of results for the bound and unbound benchmarks.

Classification
Quality = 1/2/3 Quality = 1

Top1a Top10a Top1a Top10a

Bound benchmark:
Symmetrical (85b) 58/70 64/70 41/65 54/65
NCSc (76b) 31/69 55/69 18/64 43/64
Non-symmetrical (61b) 27/31 27/31 20/25 25/25
Total bound (220b) 116/170 146/170 79/154 122/154

Unbound benchmark:
Total unbound (7b) 0/5 4/5 0/4 2/4

aThe numbers x/y represent the number of correctly predicted trimers (x), and the number
of structures with at least one feasible pair-wise contact for all 3 pairs from Hex (y).
bThe total number of structures in this class.
cNon-crystallographic symmetry.

Table 2.5 Trimer docking quality criteria.

Quality RMSDAB, Å RMSDBC, Å RMSDCA, Å

1 0 < x ≤ 3 & 0 < x ≤ 3 & 0 < x ≤ 3
2 3 < x ≤ 5 & 3 < x ≤ 5 & 3 < x ≤ 5
3 5 < x ≤ 10 & 5 < x ≤ 10 & 5 < x ≤ 10

Here, x stands for the pair-wise RMSD between two monomers.

predicted near-native assemblies (quality-one) for 59 of the 161 trimers; and in 97 cases,

we predicted near-native assemblies within the top ten models. We should mention that

we did not use any symmetry information for these two classes of complex. The results

for the NCS complexes are slightly worse than for the symmetrical cases because we treat

the three monomers of these complexes as nonidentical, and thus we discriminate between

A–B–C and A–C–B complexes, for example. If these complexes have threefold symmetry,

the trimers A–B–C and A–C–B are theoretically equivalent. However, the calculated RMSD

between the A–B contact in the A–B–C complex and in the A–C–B complex may be quite

large. Consequently, near-native A–C–B predictions in NCS complexes can be classified as
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incorrect, even though they are often ranked very highly. For symmetrical complexes, we

avoid this problem by using the BIOMT matrix to transform each A–C–B prediction into

the A–B–C frame.

From the group of 59 nonsymmetrical trimers, we obtained near-native (quality-one)

predictions for 20 complexes ranked first, and 25 complexes within the top ten predictions.

Such predictions could subsequently be used to help predict the structures of higher-order

oligomers. However, the algorithm often fails when docking very large structures because

there is a limitation on the size of the monomers that can be docked using Hex. This occurs

for 40 of the nonsymmetrical trimers in our benchmark set.

Another structural feature which can influence successful assembly is the size of the

protein-protein interface. For example, the complexes 1EPT, 1LWU, and 1M93 contain

large subunits, nonetheless correct predictions were ranked first in all three cases due to

their large interfacial areas. The importance of the size of interfacial area can be seen even

more clearly with the complex 2WNV, which is a dimer of nonsymmetrical trimers. In

this case, DockTrina finds as its first solution the correct assembly of monomers with an

average pair-wise interface area of 934.5 Å
2
. However, DockTrina fails on another assembly

of monomers from the same structure, where the correct crystallographic solution has an

average interface area of only 617.4 Å
2

(see Table 2.6 ).

Overall, for 220 complexes from our benchmark, the DockTrina algorithm successfully

ranked first 116 acceptable predictions (quality-one, -two, or -three) and 146 acceptable

predictions were ranked in the top ten predictions. Given that Hex did not produce any useful

pair-wise contacts for 50 cases, even if DockTrina performs perfectly we can only expect

to obtain a maximum of 170 correct predictions out of 220. For near-native predictions

(quality-one), we obtained 122 trimers ranked in the top ten predictions, and 79 trimers

ranked first. Hence, the overall results from DockTrina are impressive.

Figure 2.2 shows some examples of the complexes from the bound benchmark set. We

present both cases, where DockTrina produces correct and incorrect predictions. For exam-

ple, DockTrina obtains correct predictions for 1W85, 1RM6, 1EPT nonsymmetrical protein

complexes from the figure. It also correctly predicts symmetrical 3FTT, 1EUW, 1OCY, and

NCS 2Q0T, 1EL6 complexes. In several cases, DockTrina obtained a much better final rank

compared to the three individual ranks of protein contacts provided by Hex. For example,

for 1M1J, the final rank is one, whereas the best individual contact rank is 86 (see Table

2.6).
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Table 2.6 Bound benchmark set for the DockTrina algorithm.

PDB IDa SymmN/ Space Group/ Quality = 1,2,3 Quality = 1
N chainsb Chain IDsc Qualityd Ranke RMSD f ig jh ki Qualityd Ranke RMSD f ig jh ki

Symmetrical Complexes (85)

1ALY 3 H 3 1 1 1.74 9 1 1 1 1 1.74 9 1 1
1BT9 3 P 3 2 1 2 1 2.87 2 2 2 – – – – – –
1CB0 3 P 3 2 1 2 1 8.00 1 3 1 1 21 7.99 1 3 360
1COI 6 P 3 2 1 2 1 0.59 387 4 438 1 5 0.69 567 973 2
1DCS 3 H 3 – – – – – – – – – – – –
1DF4 3 H 3 1 1 0.52 67 652 108 1 1 0.52 67 652 108
1EUW 3 H 3 1 1 3.14 1 1 1 1 1 3.14 1 1 1
1F7L 3 H 3 2 3 1.74 61 83 211 1 173 2.93 61 83 401
1FNJ 3 H 3 1 1 1.88 1 1 1 1 1 1.88 1 1 1
1H9J 3 P 3 2 1 1 1 1.93 3 1 2 1 1 1.93 3 1 2
1HTN 3 H 3 – – – – – – – – – – – –
1HUP 3 P 3 2 1 – – – – – – – – – – – –
1IHC 3 H 3 1 1 1.86 1 3 2 1 1 1.86 1 3 2
1KFN 3 H 3 1 1 0.55 982 259 384 1 1 0.55 982 259 384
1KWG 3 P 3 2 1 – – – – – – – – – – – –
1MG1 3 H 3 – – – – – – – – – – – –
1MZY 3 H 3 2 1 2.63 1 2 2 1 2 3.17 870 1 1
1OCY 3 P 3 2 1 1 1 1.54 1 2 1 1 1 1.54 1 2 1
1OK8 3 P 3 2 1 – – – – – – – – – – – –
1PHO 3 P 3 2 1 2 1 3.05 4 2 1 1 5 3.77 1 3 8
1PIQ 3 P 3 2 1 2 3 1.14 92 1 240 1 62 1.32 14 23 138
1QHV 3 P 3 2 1 1 1 2.34 1 1 2 1 1 2.34 1 1 2
1TD4 3 H 3 1 95 1.52 306 451 154 1 95 1.52 306 451 154
1UKU 3 P 3 2 1 2 1 1.61 1 7 2 1 2 4.46 2 2 1
1VMH 3 H 3 1 1 3.63 1 1 1 1 1 3.63 1 1 1
1WA0 3 H 3 1 1 5.92 1 1 1 1 1 5.92 1 1 1
1WM3 1 H 3 – – – – – – – – – – – –
1XQE 3 H 3 1 1 4.24 1 1 1 1 1 4.24 1 1 1
1YC9 3 P 3 2 1 – – – – – – – – – – – –
1YQ8 3 H 3 1 1 1.85 1 1 4 1 1 1.85 1 1 4
2B2H 3 H 3 1 1 2.81 1 1 1 1 1 2.81 1 1 1
2BSF 3 P 3 2 1 1 1 4.10 2 33 3 1 1 4.10 2 33 3
2CV6 3 H 3 – – – – – – – – – – – –
2CW4 3 H 3 1 6 2.25 1 8 4 1 6 2.25 1 8 4
2FB6 3 H 3 1 12 1.84 22 8 291 1 12 1.84 22 8 291
2FKK 3 P 3 2 1 1 1 2.21 3 1 1 1 1 2.21 3 1 1
2NMU 3 P 3 2 1 1 1 1.94 3 1 1 1 1 1.94 3 1 1
2NZ6 3 H 3 – – – – – – – – – – – –
2POR 3 H 3 2 1 4.82 2 1 1 1 2 1.63 1 5 6
2Q2X 3 P 3 2 1 3 1 8.44 1 27 18 – – – – – –
2QLK 3 H 3 2 1 1.52 357 179 25 1 16 5.60 12 179 25
2R32 3 H 3 – – – – – – – – – – – –
2RFR 3 P 3 2 1 1 1 1.48 2 2 1 1 1 1.48 2 2 1
2STD 3 P 3 2 1 3 1 9.73 1 1 3 1 45 3.41 6 35 49
2VBK 1 H 3 3 1 9.42 3 171 1 – – – – – –
2VJI 3 P 3 2 1 – – – – – – – – – – – –
2VNL 3 H 3 1 1 2.19 2 1 1 1 1 2.19 2 1 1
2WPY 3 P 3 2 1 2 1 0.80 35 271 24 1 3 0.82 360 404 4
2WR8 3 H 3 1 1 1.98 1 11 1 1 1 1.98 1 11 1
2X4J 3 H 3 1 288 5.64 105 271 14 1 288 5.64 105 271 14
2XQH 3 H 3 2 1 1.42 4 2 15 1 243 6.02 8 122 30
2XZR 3 P 3 2 1 2 1 0.53 36 861 265 1 2 0.61 740 234 61
3B9W 3 H 3 1 1 3.16 1 1 1 1 1 3.16 1 1 1
3BZQ 3 H 3 1 1 2.88 1 1 1 1 1 2.88 1 1 1
3CI3 3 H 3 1 1 6.00 1 1 1 1 1 6.00 1 1 1
3DJ4 3 H 3 – – – – – – – – – – – –
3EG4 3 H 3 1 1 2.00 4 2 1 1 1 2.00 4 2 1
3FTT 3 H 3 1 1 4.54 53 2 1 1 1 4.54 53 2 1
3FWU 3 H 3 1 1 3.00 1 1 2 1 1 3.00 1 1 2
3GVL 3 H 3 1 1 4.27 1 2 2 1 1 4.27 1 2 2
3GWM 3 H 3 3 109 3.74 461 94 54 – – – – – –
3H56 3 H 3 1 1 3.64 2 1 5 1 1 3.64 2 1 5
3HWU 3 H 3 1 2 1.98 1 1 1 1 2 1.98 1 1 1
3I87 3 P 3 2 1 1 1 3.75 6 1 1 1 1 3.75 6 1 1
3IJ4 3 H 3 1 1 4.76 3 1 1 1 1 4.76 3 1 1
3KWE 3 H 3 1 4 3.72 10 28 87 1 4 3.72 10 28 87
3LAA 3 H 3 1 1 0.07 284 7 14 1 1 0.07 284 7 14
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3LGU 1 H 3 2 1207 4.01 52 543 489 – – – – – –
3LQW 3 H 3 1 1 3.17 1 2 1 1 1 3.17 1 2 1
3M73 3 H 3 1 1 2.68 1 1 1 1 1 2.68 1 1 1
3MC3 3 H 3 1 1 1.04 2 12 619 1 1 1.04 2 12 619
3MDX 3 H 3 1 1 2.69 1 1 1 1 1 2.69 1 1 1
3N4H 3 P 3 2 1 1 1 4.03 1 1 1 1 1 4.03 1 1 1
3NUM 3 H 3 2 4 4.70 35 5 34 1 60 6.14 25 29 96
3OC7 3 H 3 1 1 4.78 1 1 2 1 1 4.78 1 1 2
3PMO 3 H 3 1 1 3.03 1 1 2 1 1 3.03 1 1 2
3PRN 3 H 3 2 1 5.64 4 1 1 1 7 4.91 1 4 31
3Q1X 3 H 3 2 1 5.82 1 1 1 1 2 6.30 1 1 2
3QR8 3 P 3 2 1 1 1 2.13 1 2 1 1 1 2.13 1 2 1
3QUW 3 H 3 2 1 1.87 6 3 1 1 2 4.01 1 2 1
3R3R 3 H 3 1 13 2.71 91 1 6 1 13 2.71 91 1 6
3TDT 3 H 3 1 1 3.62 1 1 1 1 1 3.62 1 1 1
3TG7 3 H 3 – – – – – – – – – – – –
4AC3 3 P 3 2 1 – – – – – – – – – – – –
4TSV 3 H 3 1 1 0.68 10 3 488 1 1 0.68 10 3 488

Top1 Top10 Top1 Top10
58/85/70 j 64/85/70 j 41/85/65 j 54/85/65 j

NCS Complexes (76)

1A3F 3 P 21 21 21 3 83171 9.49 204 180 793 1 90648 3.67 749 846 793
1C28 3 P 61 1 1 1.72 3 1 1 1 1 1.72 3 1 1
1COS 1 P 21 21 21 1 12 0.81 165 2 147 1 12 0.81 165 2 147
1EL6 3 P 21 21 21 1 1 2.22 4 1 1 1 1 2.22 4 1 1
1F7O 3 P 21 21 21 1 1 1.61 1 1 2 1 1 1.61 1 1 2
1FTF 3 C 1 2 1 2 6 2.89 25 1 59 1 77 4.01 299 25 1
1GCM 3 P 1 21 1 3 14 0.86 1 657 297 1 45 0.97 136 11 219
1IDP 3 P 1 21 1 2 1 3.72 1 2 2 1 7 3.72 1 2 2
1IQA 3 P 21 21 21 1 1 2.96 1 2 2 1 1 2.96 1 2 2
1JCD 3 P 1 2 12 0.38 16 29 856 1 168 0.54 558 765 374
1KK6 3 P 21 21 21 – – – – – – – – – – – –
1KKE 1 P 21 21 21 2 343 6.39 15 113 2 1 1863 5.78 15 113 11
1LW1 2 C 1 2 1 1 1 2.82 1 2 1 1 1 2.82 1 2 1
1O8O 3 I 41 2 2 1 6 3.44 2 7 1 1 6 3.44 2 7 1
1ODE 3 P 21 21 21 3 1 1.85 9 2 6 1 248 2.96 4 6 5
1P32 3 P 1 21 1 – – – – – – – – – – – –
1Q5U 3 P 21 21 2 2 20 1.86 1 7 3 1 23 2.24 2 2 3
1QU9 3 P 2 2 2 1 4 2.16 2 1 2 1 4 2.16 2 1 2
1RGX 6 C 1 2 1 1 4 1.93 2 3 1 1 4 1.93 2 3 1
1S2L 6 P 43 21 2 – – – – – – – – – – – –
1TD3 3 C 1 2 1 1 3054 3.16 132 33 687 1 3054 3.16 132 33 687
1TDT 3 P 1 21 1 1 1 4.80 1 1 1 1 1 4.80 1 1 1
1U5Y 3 C 1 2 1 1 29 2.85 28 1 10 1 29 2.85 28 1 10
1UDE 6 P 21 21 2 2 1 3.70 29 57 18 1 38 3.62 48 87 13
1VFJ 3 P 21 21 21 1 1 2.58 1 1 1 1 1 2.58 1 1 1
1WP8 3 P 1 1 4 1.24 13 1 2 1 4 1.24 13 1 2
1WT6 3 P 21 21 21 2 2 0.59 903 323 76 1 5695 1.75 8 323 584
1WVT 3 P 41 21 2 1 5 1.56 8 14 14 1 5 1.56 8 14 14
1YQ6 3 P 41 21 2 1 1 1.46 4 1 5 1 1 1.46 4 1 5
1ZVB 3 C 1 2 1 1 9 0.95 698 25 4 1 9 0.95 698 25 4
2BA2 1 P 1 21 1 3 1 0.36 916 156 111 1 4 0.51 325 25 598
2BAZ 3 P 43 1 2 2.23 1 2 3 1 2 2.23 1 2 3
2BCM 3 P 41 1 862 3.70 232 104 35 1 862 3.70 232 104 35
2BSD 3 P 21 21 21 2 1 1.98 1 2 2 1 3 2.10 2 6 2
2CHC 3 C 2 2 21 1 6 2.04 4 2 1 1 6 2.04 4 2 1
2CU5 3 C 1 2 1 3 1 2.77 1 2 3 1 24 2.77 1 2 3
2DJ6 3 P 21 21 21 1 1 2.12 1 3 5 1 1 2.12 1 3 5
2E2A 3 P 41 21 2 1 1 1.71 1 1 2 1 1 1.71 1 1 2
2E7A 3 P 21 21 21 1 6 0.76 225 3 20 1 6 0.76 225 3 20
2FVH 3 P 6 3 65609 7.60 723 984 69 – – – – – –
2GDG 3 P 63 1 2 2.45 1 1 1 1 2 2.45 1 1 1
2GTR 3 C 1 2 1 1 4 2.24 28 21 58 1 4 2.24 28 21 58
2I9D 3 P 61 1 5 2.84 92 1 29 1 5 2.84 92 1 29
2IC7 3 C 1 2 1 1 1 1.79 2 1 14 1 1 1.79 2 1 14
2IG8 3 P 41 2 2 1 1 1.86 1 1 1 1 1 1.86 1 1 1
2IUM 3 C 1 2 1 3 1 5.31 45 6 8 1 4 3.30 8 259 6
2PBQ 3 P 1 21 1 1 326 2.89 48 950 52 1 326 2.89 48 950 52
2Q0T 3 P 1 21 1 3 4 2.88 2 1 2 1 12 2.88 2 1 2
2Q4I 3 P 21 21 21 1 1 0.97 3 634 2 1 1 0.97 3 634 2
2R3U 3 C 1 2 1 1 7 3.58 14 9 3 1 7 3.58 14 9 3
2WX3 1 P 32 2 1 2 1 0.36 937 292 208 1 4 0.41 898 283 276



2.3 Results and Discussion 27

2X57 6 P 41 21 2 – – – – – – – – – – – –
2YW6 12 P 62 2 2 – – – – – – – – – – – –
2ZFC 3 H 3 3 1 0.15 916 493 367 1 9 0.66 4 230 302
2ZHY 3 C 2 2 21 3 14 6.99 1 2 176 – – – – – –
3AA8 3 P 61 3 1 2.51 2 2 1 1 14 2.51 2 2 1
3B93 3 C 1 2 1 3 82 7.47 11 631 1 – – – – – –
3BHP 3 C 1 2 1 3 59765 6.97 3 261 223 – – – – – –
3CM1 1 P 41 1 5 3.07 46 42 27 1 5 3.07 46 42 27
3D9X 3 P 1 1 1 0.31 171 57 15 1 1 0.31 171 57 15
3DA0 3 P 1 21 1 1 1 1.57 2 1 2 1 1 1.57 2 1 2
3DLI 3 P 21 21 21 2 1 7.18 11 112 5 – – – – – –
3EMF 3 I 2 2 2 1 4 1.57 1 2 2 1 4 1.57 1 2 2
3EMO 3 C 1 2 1 1 1 0.60 11 198 310 1 1 0.60 11 198 310
3EXW 3 P 21 21 2 2 6 4.80 10 70 9 1 70 3.46 70 9 365
3F09 3 P 21 21 21 2 5 2.79 125 16 1 1 15 3.26 362 56 1
3FD9 3 P 21 21 2 – – – – – – – – – – – –
3GQH 3 P 21 21 21 3 1 3.28 5 3 4 1 27 3.28 5 3 4
3H6X 3 C 1 2 1 3 1 1.84 2 2 15 1 15 1.84 2 2 15
3HFE 3 C 1 2 1 1 2 0.87 33 2 560 1 2 0.87 33 2 560
3N4G 3 C 1 2 1 1 7 3.63 1 2 1 1 7 3.63 1 2 1
3QXI 3 C 1 2 1 1 2 4.04 1 1 1 1 2 4.04 1 1 1
3R1W 3 P 1 21 1 1 1 2.48 1 2 1 1 1 2.48 1 2 1
3STI 3 P 31 – – – – – – – – – – – –
3SWY 1 P 1 21 1 1 1 1.28 1 3 1 1 1 1.28 1 3 1
3T97 1 P 21 21 21 1 4 0.69 178 837 2 1 4 0.69 178 837 2

Top1 Top10 Top1 Top10
31/76/69 j 55/76/69 j 18/76/64 j 43/76/64 j

Non-Symmetrical Complexes (59)

1AYM 1 1 2 3 1 1 0.88 1 1 1 1 1 0.88 1 1 1
1B35 60 A B C 1 1 0.99 1 1 2 1 1 0.99 1 1 2
1BEV 60 1 2 3 – – – – – – – – – – – –
1DGW 3 A X Y 1 1 0.48 1 1 5 1 1 0.48 1 1 5
1E6Y 2 C B D – – – – – – – – – – – –
1EPT 1 A B C 1 1 0.52 1 1 1 1 1 0.52 1 1 1
1EYS 1 M H L – – – – – – – – – – – –
1F6F 1 A B C – – – – – – – – – – – –
1FI8 2 C D F – – – – – – – – – – – –
1HBN 2 E F D – – – – – – – – – – – –
1HIA 1 A B I 3 831 7.51 65 225 1 – – – – – –
1J34 1 A B C 3 1 8.71 1 1 330 – – – – – –
1L1O 2 A B C 3 267 9.19 11 1 19 – – – – – –
1LWU – A B C 2 1 0.36 204 44 784 1 3 0.98 2 2 1
1M1J – A B C 1 1 0.32 764 453 86 1 1 0.32 764 453 86
1M93 1 A B C 2 1 0.15 324 1 2 1 4 1.16 1 32 1
1MTY 2 C E H 3 1 6.16 54 1 1 – – – – – –
1O7D 1 D C B – – – – – – – – – – – –
1PVC – 1 2 3 – – – – – – – – – – – –
1QQP 60 1 2 3 – – – – – – – – – – – –
1RM6 2 A B C 1 1 0.88 1 2 1 1 1 0.88 1 2 1
1SR4 1 A B C 1 1 0.95 1 1 1 1 1 0.95 1 1 1
1U7F 1 A B C 1 1 0.15 4 4 12 1 1 0.15 4 4 12
1UNB 3 v 3 u – – – – – – – – – – – –
1W85 1 F H G 1 1 0.08 1 1 1 1 1 0.08 1 1 1
2AZE 2 A B C 2 1 0.67 38 934 124 1 4 1.06 1 11 463
2D1P 2 I E G – – – – – – – – – – – –
2DSR 1 I G B 1 1 0.57 6 2 395 1 1 0.57 6 2 395
2E1M 2 A B C – – – – – – – – – – – –
2E74 2 B C H 1 1 0.43 1 31 2 1 1 0.43 1 31 2
2F66 2 D E B 1 1 2.59 3 102 1 1 1 2.59 3 102 1
2H88 1 Q P O – – – – – – – – – – – –
2HY5 2 A B C 1 1 0.78 1 51 2 1 1 0.78 1 51 2
2HZS 2 B C D – – – – – – – – – – – –
2J3W 1 A B E – – – – – – – – – – – –
2J8C 1 M L H – – – – – – – – – – – –
2MEV 1 1 2 3 – – – – – – – – – – – –
2QFA 1 A B C 1 1 1.76 190 1 1 1 1 1.76 190 1 1
2QI9 1 A B F 1 1 0.92 12 1 1 1 1 0.92 12 1 1
2UNB – 2 3 j 1 1 1.85 1 6 75 1 1 1.85 1 6 75
2WJN 1 L H M 2 1 1.20 3 1 5 1 2 2.87 3 1 1
2WNV 1 E D F 1 1 0.31 1 1 1 1 1 0.31 1 1 1
2WNV 1 F D C – – – – – – – – – – – –
2WTK 1 A B C – – – – – – – – – – – –
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2ZZD 4 I G H 1 1 1.08 1 146 1 1 1 1.08 1 146 1
3ARC – K Z Y 3 1498885 6.37 253 24 732 – – – – – –
3CI0 1 K J I – – – – – – – – – – – –
3CJI 60 A B C – – – – – – – – – – – –
3NAP 60 A B C 1 1 1.97 7 1 23 1 1 1.97 7 1 23
3P8C 1 F D E 2 1 0.71 1 2 92 1 6 2.76 2 1 1
3R0L 1 A B D 3 515 9.54 68 1 21 – – – – – –
3RGB 2 I J K – – – – – – – – – – – –
3RKO 1 M N L – – – – – – – – – – – –
3RYC 1 E D C – – – – – – – – – – – –
3S6N 1 E 2 F – – – – – – – – – – – –
3SQG 2 I H G – – – – – – – – – – – –
3U5C – C V A – – – – – – – – – – – –
3VBH 60 A B C 1 1 0.39 1 1 1 1 1 0.39 1 1 1
4A8X 1 A B C – – – – – – – – – – – –

Top1 Top10 Top1 Top10
27/59/31 j 27/59/31 j 20/59/25 j 25/59/25 j

Total (220)

Top1 Top10 Top1 Top10
116/220/170 j 146/220/170 j 79/220/154 j 122/220/154 j

a Protein ID in the PDB.
b Symmetry number as given by PISA [74] for symmetrical or NCS trimers / Number of chains for non-
symmetrical trimers.
c Space group for symmetrical or NCS trimers / Chain IDs for non-symmetrical trimers.
d Quality according to criteria listed in Table 2.5.
e Rank provided by our scoring function (see Equation (2.2)).
f RMSD between the position of the first monomer A and its transformed position T AA ·A.
g Rank provided by Hex for the first pair of monomers in the trimer.
h Rank provided by Hex for the second pair of monomers in the trimer.
i Rank provided by Hex for the third pair of monomers in the trimer.
jThe numbers x/y/z represent the number of correctly predicted trimers (x), the total number of trimers in this
class (y), and the number of structures with at least one feasible pair-wise contact from Hex (z).
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2.3.2 Unbound Trimer Assembly Results

We also tested DockTrina on our benchmark set of seven unbound protein trimers. Here,

we measured the RMSD between monomers according to their corresponding bound struc-

tures. Table 2.4 gives a summary of the performance of DockTrina on this benchmark.

Table 2.7 lists the detailed results of our predictions. We obtained four out of seven ac-

ceptable (quality-one, -two, or -three) predictions, and two near-native (quality-one) predic-

tions within the top ten predictions. We should mention that the structures 1F7O, 1IQA,

2E7A, and 3GQH in the unbound benchmark have threefold crystallographic symmetry

axes, which probably makes it slightly easier to obtain good predictions in these cases.

Table 2.7 Unbound benchmark set for the DockTrina algorithm.

PDB ID1 Sym2 Space Group3 Quality = 1,2,3 Quality = 1
Quality4 Rank5 B Rank6 RMSD7 i8 j9 k10 Qualityd Ranke RMSDg ih ji k j

1A3F 3 P 21 21 21 – – 29441 – – – – – – – – –
1F7O 3 P 21 21 21 2 7 1 4.64 1 2 2 1 594 1.84 2 92 3
1IQA 3 P 21 21 21 2 4 7 4.94 2 4 2 1 11 3.78 4 3 1
1U7F 3 P 21 21 21 – – 186 – – – – – – – – – –
2E7A 3 P 21 21 21 1 7 9 5.29 2 2 2 1 7 5.29 2 2 2
2R3U 3 C 1 2 1 3 1574 7 3.36 73 498 79 – – – – – –
3GQH 3 P 21 21 21 1 4 4 3.53 8 12 9 1 4 3.53 8 12 9

Total (7)

Top1 Top10 Top1 Top10
0/7/511 4/7/5k 0/7/4k 2/7/4k

4Quality according to criteria listed in Table 2.5.
5Rank provided by our scoring function (see Equation (2.2)).
6Rank provided by our scoring function for the bound complex, see Table 2.6.
7RMSD between the position of the first monomer A and its transformed position T AA ·A.
8Rank provided by Hex for the first pair of monomers in the trimer.
9Rank provided by Hex for the second pair of monomers in the trimer.

10Rank provided by Hex for the third pair of monomers in the trimer.
11The numbers x/y/z represent the number of correctly predicted trimers (x), the total number of trimers

(y), and the number of structures with at least one feasible pair-wise contact from Hex (z).
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2.3.3 Comparison with SymmDock

To assess DockTrina’s ability to model symmetrical trimers, we compared DockTrina with

the SymmDock algorithm. SymmDock explicitly uses cyclic symmetry information to con-

strain its exhaustive rigid-body search to a reduced 4D subspace. On the other hand, Dock-

Trina was not specifically developed to model symmetrical structures. It therefore does not

use any symmetry information, and instead performs exhaustive rigid-body search in the

full 6D space. Hence, we were keen to compare the performance of the two algorithms.

Overall, SymmDock ranked first 65 acceptable predictions (quality-one, -two, or -three)

and placed 73 acceptable predictions in the top ten predictions. For near-native (quality-

one) predictions, SymmDock ranked 56 trimers within the top ten predictions, and it placed

42 trimers at rank one. These results are slightly better than the DockTrina results, which is

perhaps not surprising because DockTrina does not use the C3 symmetry constraint. Nev-

ertheless, the DockTrina results are still highly competitive. For example, DockTrina pro-

duced 41 near-native symmetrical trimers at rank one (compared to 42 with SymmDock),

and it ranked 54 trimers in the top ten predictions (compared to 56 with SymmDock).

2.3.4 Comparison with CombDock

To assess DockTrina’s performance on proteins without symmetry, we compared it against

the CombDock combinatorial assembly algorithm. However, the success rate of CombDock

on our bound benchmark set turned out to be very low. Indeed, CombDock obtained no

correct predictions for the 76 NCS proteins, and it produced only two acceptable predictions

at rank one for the 59 nonsymmetrical complexes. In contrast, DockTrina ranks a total of

82 NCS and nonsymmetrical trimers of acceptable quality within the top ten models.

We believe the poor performance of CombDock arises because it does not require trimeric

contacts in its solutions. More specifically, many of the solutions produced by CombDock

are linear trimers with only two contacts between the three monomers. Therefore, for a

fair comparison, we excluded linear predictions from the final list of CombDock results.

However, it still fails on 135 out of 137 examples used here. On the other hand, DockT-

rina always requires three contacts between the monomers to build the trimer. Therefore,

DockTrina will fail if Hex does not produce at least one acceptable pair-wise contact for

each pair of monomers, as for the 1O7D complex, for example (which was one of the two

examples correctly predicted by CombDock). Nonetheless, the overall results obtained by

DockTrina on these more difficult complexes demonstrate the utility of explicitly searching

for triangular contacts.
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Figure 2.3 (A) Native complex of proteins A, B, and C. (B) Prediction without a steric clash
between proteins. (C) Prediction with the same pair-wise RMSD as before but with a steric
clash between proteins A and C. DockTrina gives the same geometric penalty term for the
trimers in (B) and in (C).

2.3.5 Comparison with HADDOCK

Because HADDOCK was designed to use biological constraints to restrict the search space,

it is not well-suited for the blind docking calculations described here. Indeed, HADDOCK

requires significant time to prepare the input and calculate even a single complex. Thus,

we were not able to test HADDOCK on all of the trimers in our benchmark set. Instead,

we ran HADDOCK on a subset of first 20 nonsymmetrical trimers in our benchmark set.

However, as it did not find any feasible solutions for this subset, we decided to abandon this

comparison due to the manual effort necessary to set up each docking run.

2.3.6 The DockTrina Scoring Function

As aforementioned, DockTrina ranks its predictions using a scoring function that combines

the pair-wise contact scores from Hex with an empirical geometric penalty term (see Eq.

(2.2) ). This is very cheap to evaluate, although it is probably not optimal, as can be seen

from Tables 2.6 and 2.7. A more sophisticated scoring function might produce better re-

sults. Nonetheless, a crucial advantage of our scoring function is that it detects and penalizes

trimers with large A–A′ RMSDs in constant time. We believe that our RMSD-based scor-

ing function produces better predictions compared to more expensive scoring functions that

evaluate steric clashes between the monomers, as in CombDock, for example. Figure 2.3 il-

lustrates two predictions ranked equally by DockTrina. However, steric clash-based scoring

functions would reject the second prediction, even though it may be very close to the native

structure. Although DockTrina predictions may contain clashes, one can straightforwardly

refine them using conventional minimization tools.
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Figure 2.4 Success rates as a function of number of pair-wise docking solutions for sym-
metrical trimers (left); NCS trimers (middle); and nonsymmetrical trimers (right) from our
benchmark. The total number of combinations of the three monomers is given as the third
power of the number of pair-wise solutions. Solid black curve represents the DockTrina
success rate as a function of number of pair-wise docking solutions. Dashed magenta curve
represents the maximum theoretical success rate at a given number of pair-wise docking
solutions provided by Hex. Horizontal dashed line represents the maximum theoretical suc-
cess rate when 10,000 Hex pair-wise docking solutions are considered.

2.3.7 DockTrina’s Success Rate

To evaluate how DockTrina’s success rate depends on the quality of the input pair-wise

docking solutions, we analyzed the rigid-body transforms provided by the Hex pair-wise

docking algorithm. More precisely, for each pair of monomers, we evaluated the number

of acceptable solutions (quality-one, -two, or -three) produced by Hex within the first M

pair-wise predictions, where the maximum value of M was 10,000. We consider the max-

imum theoretical trimer success rate for a given number of pair-wise docking solutions to

be the number of trimers with at least one acceptable pair-wise docking solution. Similarly,

we calculate the success rate of DockTrina using the number of acceptable trimer predic-

tions found within the top ten DockTrina models for a given number of pair-wise docking

solutions. Figure 2.4 shows the success rate of DockTrina (black solid curve) along with

the maximum theoretical success rate (magenta dashed curve). The horizontal dashed line

represents the maximum theoretical success rate achieved with 10,000 pairwise docking

solutions. From 2.4, we can see that DockTrina’s success rate increases steadily with the

number of input transforms. We can also see that to achieve the greatest trimer assem-

bly performance, it is sufficient to consider only 100 input transforms for symmetrical and

NCS complexes. However, around 1000 pair-wise input transforms are needed to maximize

trimer assembly performance for nonsymmetrical complexes. Nonetheless, even using the

maximum number of pair-wise docking solutions does not give perfect performance due to
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the lack of acceptable pair-wise predictions from Hex. Overall, DockTrina’s success rate

is around 90% of the theoretical maximum, as defined above. This high success rate stems

from the ability of DockTrina’s scoring function to pull out predictions with low RMSD

even if the individual pair-wise docking scores are low (see Eq. (2.2)).

2.4 Conclusions

We have presented a new and very efficient algorithm for docking triangular protein trimers.

The algorithm exhaustively scans all possible combinations of contacts between three monomers,

with the total number of about 1010 combinations. The running time of DockTrina is less

than 2 minutes on a modern desktop computer.

To test and validate the DockTrina algorithm, we have collected two trimer docking

benchmarks, consisting of 220 bound and seven unbound protein complexes, respectively.

On the bound docking benchmark, our algorithm obtains 66.4% acceptable predictions

listed in the top ten, 55.5% near-native predictions listed in the top ten, 52.7% acceptable

predictions ranked first, and 35.9% near-native predictions ranked first. Given that Hex did

not produce any acceptable pair-wise contacts for 50 cases, and any near-native contacts for

66 cases, the success rates of our algorithm are 85.9%, 79.2%, 68.2%, and 79.2%, respec-

tively. We find that the performance of DockTrina on symmetrical proteins is similar to that

of SymmDock algorithm, which was specifically developed to deal with cyclic symmetries.

However, DockTrina gives significantly better results than HADDOCK and Comb Dock on

protein trimers without symmetry.

We find that docking multimeric proteins is much more challenging than docking dimers.

Typically, protein multimers have smaller pair-wise interface areas than dimers, making it

difficult to predict individual interfaces between the monomers. On the other hand, we also

find that exploiting triangular relationships between monomers provides a powerful way

to identify feasible complexes. We believe it would be relatively straightforward to ex-

tend our algorithm to predict more general multimeric protein complexes with symmetry.

However, given the combinatorial nature of the general assembly problem, more work will

be required to model larger nonsymmetrical hetero complexes. DockTrina is available at

http://nano-d.inrialpes.fr/software/docktrina or by request from the authors.

http://nano-d.inrialpes.fr/software/docktrina




Chapter 3

Rapid Determination of RMSDs

Corresponding to Macromolecular

Rigid-body Motions

3.1 Introduction

The root mean square deviation is a widely used and powerful criterion to estimate the sim-

ilarity between two ordered sets of points. In structural biology and bioinformatics, RMSD

has been widely accepted as a measure of similarity between macromolecules. For rigid-

body modeling applications, such as rigid-body molecular docking [23, 114], rigid-body

molecular dynamics simulations [33, 86], and rigid-body Monte Carlo simulations [142],

RMSD can be used as a measure of the rigid-body motion of a molecule. However, determi-

nation of the RMSD can be a rate-limiting step for those applications where large number

of rigid-body motions should be compared. These applications range from conformation

sampling in protein docking and structure-based drug design to high-throughput analysis of

rigid-body modeling and simulation results.

Much effort has been spent in developing algorithms for the optimal superposition of

two molecules that minimizes the RMSD between the corresponding atoms [29, 31, 35, 47,

48, 58, 61, 63, 67, 77, 81, 91, 135]. In these methods, the squared RMSD is typically mini-

mized with respect to the components of a rotation matrix or a rotation quaternion. However,

in many applications of computational chemistry and structural bioinformatics, a comple-

mentary problem emerges — given a set of rigid-body motions of a reference molecule,

compute the corresponding set of RMSDs. To the best of our knowledge, there exists no

explicit description of an efficient algorithm for this problem in the literature. For the case
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of the RMSD between two positions of the same molecule after applying two spatial rigid-

body transformations, a formula can be found in the work of Rarey et al. [112], however, it

contains an error, which we correct below. Here, we present RigidRMSD, a new algorithm

for constant time RMSD computations. In particular, we provide a connection between the

RMSD and the axis and the angle of the rotation. Also, we consider rotations represented by

both matrices and quaternions, since the two representations are widely used in the descrip-

tion of spatial transformations. We demonstrate that the quaternion representation could be

more efficient than the matrix representation. Our algorithm initializes in time linear in the

number of atoms in the molecule and then computes the RMSD corresponding to a rigid-

body motion in constant time. The algorithm can be very useful when computing multiple

RMSDs corresponding to a sequence of rigid-body motions, as, for example, in the Dock-

Trina method [108] or clustering applications, as each new RMSD computation takes only

constant time. To demonstrate the efficiency of the RigidRMSD library, we implemented

an RMSD-based clustering algorithm and compared it with the standard clustering method.

Finally, we provide several source-code examples that demonstrate the usage of our library.

3.2 Methodology

3.2.1 Weighted RMSD

Given two sets of N points A = {ai}N and A′ = {a′i}N with associated weights {wi}N , the

weighted RMSD between them is given as

RMSD(A,A′)2 =
1

W
∑

i

wi

∣

∣ai −a′i
∣

∣

2
, (3.1)

where W = ∑i wi. Here, {wi}N are statistical weights that may emphasize the importance

of a certain part of the structure, for example in case of a protein, the backbone or the side

chains. These weights can be also equal to atomic masses (in this case W equals to the total

mass of the molecule) or may be set to 1 (in this case W = N).

3.2.2 Quaternion Arithmetic

A quaternion Q can be considered as a combination of a scalar s with a 3-component vector

q = {qx,qy,qz}T , Q = [s,q]. The product of two quaternions Q1 = [s1,q1] and Q2 = [s2,q2]

is a quaternion and can be expressed through a combination of scalar and vector products:

Q1 ·Q2 ≡ [s1,q1] · [s2,q2] = [s1s2 − (q1 ·q2),s1q2 + s2q1 +(q1 ×q2)] . (3.2)
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The squared norm of a quaternion Q is given as |Q|2 = s2 + q · q, and a unit quaternion

is a quaternion with its norm equal to 1. An inverse quaternion Q−1 is given as Q−1 =

[s,−q]/ |Q|2. A vector v can be treated as a quaternion with zero scalar component, v ≡
[0,v]. Then, a unit quaternion Q̂ can be used to rotate vector v to a new position v′ as

follows

[

0,v′
]

= Q̂ [0,v] Q̂−1 =
[

0,(s2 −q2)v+2s(q×v)+2(q ·v)q
]

= [0,v+2q× (q×v+ sv)] .

(3.3)

Equivalently, the same rotation can be represented with a rotation matrix R, such that v′ =

Rv, where R can be expressed through the components of the quaternion Q̂ as

R =







s2 +q2
x −q2

y −q2
z 2qxqy −2sqz 2qxqz +2sqy

2qxqy +2sqz s2 −q2
x +q2

y −q2
z 2qyqz −2sqx

2qxqz −2sqy 2qyqz +2sqx s2 −q2
x −q2

y +q2
z






. (3.4)

A unit quaternion Q̂ corresponding to a rotation by an angle α around a unit axis u is given

as Q̂ = [cos α
2 ,usin α

2 ], and its inverse is Q̂−1 = [cos α
2 ,−usin α

2 ]. Finally, N sequential

rotations around different unit axes defined by unit quaternions {Q̂i}N result in a new vector

v′ according to

[

0,v′
]

= Q̂NQ̂N−1...Q̂2Q̂1 [0,v] Q̂
−1
1 Q̂−1

2 ...Q̂−1
N−1Q̂−1

N . (3.5)

3.3 Rigid-body motion described with quaternions

Let R be a rotation matrix and T be a translation vector applied to a molecule with N atoms

at positions A = {ai}N with ai = {xi,yi,zi}T , such that the new positions A′ = {a′i}N are

given as a′i = Rai +T. Then, the weighted RMSD between A and A′ is given as

RMSD2(A,A′) =
1

W
∑

i

wi |ai −Rai −T|2 . (3.6)

We can rewrite the previous expression using quaternion representation of vectors ai and T

as

RMSD2 =
1

W
∑

i

wi

∣

∣[0,ai]− Q̂[0,ai]Q̂
−1 − [0,T]

∣

∣

2
. (3.7)

Here, the unit quaternion Q̂ corresponds to the rotation matrix R. Since the norm of a

quaternion does not change if we multiply it by a unit quaternion, we may right-multiply
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the kernel of the previous expression by Q̂ to obtain

RMSD2 =
1

W
∑

i

wi

∣

∣[0,ai]Q̂− Q̂[0,ai]− [0,T]Q̂
∣

∣

2
. (3.8)

Using the scalar–vector representation of a quaternion, we rewrite the previous RMSD ex-

pression as

RMSD2 =
1

W
∑

i

wi [−q ·T,−sT+(2ai −T)×q]2 . (3.9)

Performing scalar and vector products in Eq. (3.9), we obtain

RMSD2 =
1

W
∑

i

wi

(

[qxTx +qyTy +qzTz]
2

+ [−sTx +qy(2zi −Tz)−qz(2yi −Ty)]
2 (3.10)

+ [−sTy +qz(2xi −Tx)−qx(2zi −Tz)]
2

+ [−sTz +qx(2yi −Ty)−qy(2xi −Tx)]
2
)

.

Grouping terms in Eq. (3.10) that depend on atomic positions together, we obtain

RMSD2 = T 2
x +T 2

y +T 2
z +

4
W

∑
i

wi

{

q2
x(y

2
i + z2

i )+q2
y(x

2
i + z2

i )+q2
z (x

2
i + y2

i )

− 2qxqyxiyi −2qxqzxizi −2qyqzziyi

}

(3.11)

+
4

W

{

qxqzTz +qxqyTy −q2
z Tx −q2

yTx + sqzTy − sqyTz

}

∑
i

wixi

+
4

W

{

qyqzTz +qxqyTx −q2
xTy −q2

z Ty + sqxTz − sqzTx

}

∑
i

wiyi

+
4

W

{

qyqzTy +qxqzTx −q2
xTz −q2

yTz + sqyTx − sqxTy

}

∑
i

wizi.

Introducing the inertia tensor I, the rotation matrix R, the center of mass (COM) vector C,

and the 3×3 identity matrix E3, we may simplify the previous expression to

RMSD2 = T2 +
4

W
qT Iq+2TT (R−E3)C, (3.12)
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where C = 1
W
{∑wixi,∑wiyi,∑wizi}T , rotation matrix R corresponds to the rotation with

the unit quaternion Q̂ according to Eq. (3.4), and the inertia tensor I is given as

I =







∑wi(y
2
i + z2

i ) −∑wixiyi −∑wixizi

−∑wixiyi ∑wi(x
2
i + z2

i ) −∑wiyizi

−∑wixizi −∑wiyizi ∑wi(x
2
i + y2

i )






. (3.13)

Equation (3.12) is the principal result of this chapter. It consists of three parts, the pure

translational contribution T2, the pure rotational contribution 4
W

qT Iq, and the cross–term

2TT (R−E3)C. In this equation, only two variables depend on the atomic positions {ai}N ,

the inertia tensor I, and the COM vector C. Below, we will use this fact when computing

RMSDs for a set of rigid-body motions.

3.3.1 RMSD Corresponding to a Pure Rotation

An interesting consequence of Eq. (3.12) is the analytical expression of the RMSD for a

pure rigid-body rotation. Recall that a unit quaternion in Eq. (3.12) can be represented as a

rotation about a unit axis n by an angle α , Q̂ = [cos α
2 ,nsin α

2 ]. Then, if a rigid molecule is

rotated about this axis passing through the origin, the RMSD for such a rotation is given as

RMSD2 =
4

W
sin2 α

2
I(n), (3.14)

where I(n) is the reduction of the inertia tensor (3.13) to a scalar form for the unit axis n:

I(n) = nT In. (3.15)

3.3.2 Rigid-body Motion Described with a Rotation Matrix

The pure rotational contribution 4
W

qT Iq in Eq. (3.12) can be rewritten in terms of a rotation

matrix R as

4
W

qT Iq =
4

W
tr
((

qqT
)

I
)

=
1

W
tr(I) [1− tr(R)]+

2
W

tr(IR) . (3.16)

Here, rotation matrix R is connected with the vector part of the rotation quaternion q by Eq.

(3.4). Equivalently, Eq. (3.16) can be written as

4
W

qT Iq =
2

W

3

∑
i, j=1

(

δi j −Ri j

)

Xi j, (3.17)
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where δi j is the Kronecker delta and matrix X is given as

X =







∑wix
2
i ∑wixiyi ∑wixizi

∑wixiyi ∑wiy
2
i ∑wiyizi

∑wixizi ∑wiyizi ∑wiz
2
i






. (3.18)

Now, the weighted RMSD in Eq. (3.12) can be computed using the matrix description of

the rotation:

RMSD2 = T2 +
2

W

3

∑
i, j=1

(

δi j −Ri j

)

Xi j +2TT (R−E3)C. (3.19)

3.3.3 RMSD Corresponding to a Relative Rigid-body Motion

Let R1 and R2 be two rotation matrices and T1 and T2 – two translation vectors applied to

a molecule with N atoms at positions A = {ai}N , such that new positions A1 = {a1
i }N and

A2 = {a2
i }N are given as a1

i =R1ai+T1 and a2
i =R2ai+T2. Let a unit quaternion Q̂= [s,q]

correspond to the relative rotation RT
2 R1. Then, the weighted RMSD between positions A1

and A2 is given by a generalized version of Eq. (3.12) as

RMSD2(A1,A2) =
4

W
qT Iq+(T1 −T2)

2 +2(T1 −T2)
T (R1 −R2)C. (3.20)

Using Eq. (3.17) we can rewrite the above equation using the matrix description of the

rotation:

RMSD2(A1,A2) =
2

W

3

∑
i, j=1

(

δi j −
3

∑
k=1

R1
kiR

2
k j

)

Xi j+(T1 −T2)
2+2(T1 −T2)

T (R1 −R2)C.

(3.21)

The derived equation is equivalent to the formula obtained by Rarey et al. for clustering

spatial motions in the FlexX docking tool [112], except that the formula of Rarey et al.

contains an error in the rotational part. More precisely, it has an additional factor 2 preceding

the ∑
3
k=1 R1

kiR
2
k j term.

3.4 Algorithm Implementation

3.4.1 Computational Considerations

In the above Eqs. (3.12) — (3.21) , as we have mentioned earlier, only two variables depend

on the atomic positions of the reference molecular structure — the inertia tensor I (or, its
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equivalent matrix X if the rotation is given using the matrix representation) , and the COM

vector C. Therefore, given a set of M spatial transformations, we compute these two vari-

ables only once at the initialisation step. The computational complexity of this step is linear

with respect to the number of atoms N in the molecule. After, each RMSD computation

for a single spatial transformation takes only constant time. The total cost to compute M

RMSD values for a rigid molecule with N atoms thus will be O(N +M), which is usually

much smaller compared to the cost of standard algorithms, O(NM), particularly at large val-

ues of M and N. More precisely, a standard algorithm computes the RMSD for each spatial

transformation in O(N) operations according to Eq. (3.1), thus resulting in O(NM) overall

complexity for M spatial transformations. Below we discuss computational strategies that

allow to reduce the constant in O(N +M).

In Eq. (3.12), the cross–term vanishes in the reference frame bound to the COM of

the molecule where C = 0. In this reference frame, the rotation is preserved, while the

translation TCOM is given as

TCOM = RC+T−C. (3.22)

We can equivalently obtain the translation in the COM reference frame using a rotation

quaternion Q̂ as

TCOM = Q̂CQ̂−1 +T−C. (3.23)

Therefore, in the COM reference frame, the RMSD can be computed with fewer arithmetic

operations. More precisely, using quaternion representation of the rotation, the RMSD is

given as

RMSD2 = T2
COM +

4
W

qT ICOMq. (3.24)

Similarly, if we use matrix representation of the rotation, the RMSD is given as

RMSD2 = T2
COM +

2
W

3

∑
i, j=1

(

δi j −Ri j

)

XCOM
i j . (3.25)

In the above equations, inertia tensor ICOM and matrix XCOM are computed in the COM

coordinate system. A particularly interesting case is the computation of the RMSD in the

principal axes of inertia (PAI) frame. The PAI frame is the coordinate system where the

centre of mass vector C = 0 and the molecule is aligned along its principal axes, that is,

matrices ICOM and XCOM are diagonal. In this frame, Eqs. (3.24) and (3.25) are simpler.

Also, in the PAI frame, RMSD corresponding to a relative rigid-body motion defined by
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two rotation quaternions Q̂1 and Q̂2 and two translation vectors T1 and T2 will be

RMSD2(A1,A2) =
4

W

((

s1qx
2 −qx

1s2 −q
y
1qz

2 +qz
1q

y
2

)2
Ixx +

(

s1q
y
2 −q

y
1s2 −qz

1qx
2 +qx

1qz
2

)2
Iyy+

(

s1qz
2 −qz

1s2 −qx
1q

y
2 +q

y
1qx

2

)2
Izz

)

+(T1 −T2)
2 . (3.26)

This equation uses three times fewer arithmetic operations compared to the previously pub-

lished Eq. (3.21). More precisely, Eq. (3.26) requires only 38 arithmetic operations com-

pared to 114 operations in Eq. (3.21).

Generally, Eqs. (3.22) — (3.26) are more efficient in the number of arithmetic operations

compared to Eqs. (3.12) and (3.21), as it is summarized in Table 3.1. This table lists the

Table 3.1 Number of arithmetic operations for the squared RMSD calculations with respect
to different rotation representations and a different choice of the coordinate frame. These
numbers were computed according to the source code of the RigidRMSD library. The
references to the corresponding equations are given in the last column. These equations
comprise only multiplication and addition/subtraction arithmetic operations.

multiplies add/subtract Total Equation

RMSD2 (quaternion,
34 20 54 (3.24) and (3.23)

world frame)
RMSD2 (matrix,

19 26 45 (3.25) and (3.22)
world frame)

RMSD2 (quaternion,
16 8 24 (3.24)

COM frame)
RMSD2 (matrix,

10 14 24 (3.25)
COM frame)

RMSD2 (quaternion,
9 5 14 (3.24), ICOM is diagonal

PAI frame)
RMSD2 (matrix,

6 8 14 (3.25), XCOM is diagonal
PAI frame)

RMSD2 for clustering,
55 59 114 (3.21)

(matrix, world frame)
RMSD2 for clustering,

21 17 38 (3.26)
(quaternion, PAI frame)

number of arithmetic operations needed to compute the squared RMSD using different rep-

resentations of the rigid-body motion in three different coordinate systems, the world frame,

the COM frame, and the PAI frame. As listed in Table 3.1, to compute the squared RMSD

we need 54 arithmetic operations in the worst case, when the rigid-body rotation is given

as a quaternion in the world frame. If we choose the coordinate system properly (the PAI
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frame), we can compute the squared RMSD in just 14 operations. Table 3.1 demonstrates

that in the world frame one requires a fewer number of arithmetic operations to compute

the RMSD if rotations are represented with rotation matrices, whereas in the COM and PAI

frames the number of operations is equal between the two representations. However, when

performing sequences of rotations, the quaternion representation is more numerically sta-

ble and computationally efficient compared to the matrix representation irrespective of the

choice of coordinate system. Indeed, one requires 45 arithmetic operations to multiply two

rotation matrices, whereas quaternion multiplication requires only 28 operations. Finally,

Table 3.1 demonstrates that the squared RMSD for a relative rigid-body motion computed

with the quaternion representation in the PAI frame requires three times fewer operations

compared to the one computed with the matrix representation in the world frame.

3.4.2 Numerical Tests

Throughout the article, we count the number of arithmetic operations in different equations

according to the source code of the RigidRMSD library. We would like to mention that

the cost of different arithmetic operations is not the same - division and square root are

usually more expensive than multiplication, which is in turn more expensive than addition

and subtraction [18]. We should also mention that on modern computers minimizing the

number of arithmetic operations is less important for the performance of a particular al-

gorithm compared to increasing the amount of instruction level parallelism or improving

memory access patterns and cache utilization, for example. Therefore, it is impossible to

rigorously compare the performance of different algorithms solely based on their operation

count. Thus, we only provide the total number of arithmetic operations as a rough esti-

mation of the complexity of the equations and the corresponding algorithms. To get more

practical numbers, in the following sections we run a series of tests with two different levels

of compiler optimization.

We implemented the tests using the C++ programming language and compiled them us-

ing g++ compiler version 4.6 with optimization levels -O0 and -O3. For the gcc family of

compilers, optimization option -O0 disables compiler optimization, whereas optimization

option -O3 enables heavy optimization including inter-procedural optimization and vector-

ization. We ran the tests on a 64-bit Linux Fedora operating system with Intel(R) Xeon(R)

CPU X5650 @ 2.67GHz.
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3.5 Results and Discussion

This section presents numerical tests and practical applications of the equations derived in

this article. First, we compare the quaternion representation with the matrix representation

when computing sequential rotations (i.e., a composition of several rotations) and when

computing a product of rotations with the subsequent RMSD computation. Second, we

discuss the similarity measure between molecules and demonstrate that the rotation RMSD

(see Eq. (3.14)) can be advantageous over a simpler angular distance measure. Finally, we

present a rigid-body clustering algorithm as an example of the application of the derived

equations.

3.5.1 Rotation Representation

Quaternions provide another way to represent rotations compared to conventional rotation

matrices. In practice, the quaternion representation has several benefits over the matrix

representation. First, a quaternion compared to a matrix requires less storage, four val-

ues versus nine. Second, the orthonormalization of a quaternion costs much less than the

orthogonalization of a matrix. More precisely, orthonormalization of a quaternion can be

accomplished by dividing the quaternion by its norm, which requires twelve arithmetic oper-

ations including one square root. However, there is no universal method for matrix orthonor-

malization. In this case, one may use the Gram–Schmidt orthonormalization method, QR

decomposition, singular value decomposition or other methods, which are more computa-

tionally expensive compared to the quaternion orthonormalization [39]. Third, a product of

two rotations using quaternions requires fewer arithmetic operations compared to the matrix

representation (28 versus 45). Finally, the matrix multiplication is less numerically stable

due to the accumulation of rounding errors. In summary, applications that require sequen-

tial rotations (e.g., some docking applications) will gain in speed, memory, and numerical

precision when using the quaternion representation.

To demonstrate the numerical efficiency of the quaternion representation, we ran a series

of tests with two different levels of compiler optimization. In the first test, we performed 108

products of rotations using the two types of rotation representation and compared the timing

for a single product of rotations with and without compiler optimization. The results of this

test are presented in Table 3.2. We see that a rotation with quaternions is about 60with

matrices regardless of the optimization level. In the second test, we computed a product

of two rotations with the subsequent RMSD computation using Eqs. (3.22) — (3.25) and

repeated these operations 108 times. Then, we calculated the time required for a single

product of rotations with the subsequent RMSD computation. The results of this test are
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also presented in Table 3.2. Again, the quaternion representation is about 10% faster without

optimization and 4% faster with optimization compared to the matrix representation. We

should note that increasing the number of sequential rotations will provide a bigger speedup

using the quaternion representation in this example. In the third test, we computed 108

RMSDs corresponding to a relative rigid-body motion using the matrix representation of

rotation (see Eq. (3.21)) and the quaternion representation of rotation (see Eq. (3.26)). We

can see that our quaternion approach is 2.4–3.2 times faster compared to the matrix formula

(see Eq. (3.21)) depending on the level of the hardware optimization.

Table 3.2 Running time for three tests using two levels of compiler optimization. O0 op-
timization level disables optimization, whereas O3 optimization level enables heavy opti-
mization including interprocedural optimization and vectorization. In the first test (columns
1 and 2), we performed 108 products of rotations using the two types of rotation represen-
tation and reported the timing for a single product of rotations. In the second test (columns
3 and 4), we computed a product of two rotations with the subsequent RMSD computation
using Eqs. (3.22) — (3.25) and repeated these operations 108 times for averaging. In the
last test (columns 5 and 6), we computed 108 RMSDs corresponding to a relative rigid-body
motion, as in the clustering application, using the matrix representation of rotation (see Eq.
(3.21)) and the quaternion representation of rotation (see Eq. (3.26)) and reported the timing
for a single RMSD calculation.

Product of
Rotations (-
O0)

Product of
Rotations (-
O3)

Rotations
and RMSD
(-O0)

Rotations
and RMSD
(-O3)

Clustering
(-O0)

Clustering
(-O3)

Quaternion rep-
resentation

2.96×
10−8 s

0.73×
10−8 s

7.79×
10−8 s

2.29×
10−8 s

4.17×
10−8 s

1.19×
10−8 s

Matrix repre-
sentation

4.68×
10−8 s

1.18×
10−8 s

8.55×
10−8 s

2.39×
10−8 s

9.99×
10−8 s

3.81×
10−8 s

To summarize, if a particular application operates with sequential rotations, as it happens

in the DockTrina algorithm [108] or other docking applications, RMSD computations are

more numerically efficient using the quaternion representation. Furthermore, the gain of

using the quaternion representation is bigger up to 60% when using a larger sequence of

rotations.

3.5.2 Rotation RMSD as a similarity measure for molecular structures

It is still an open question how to measure the similarity between structures of a molecu-

lar complex [147]. For example, Rodrigues et al[117] developed a clustering method with

the similarity measure based on the fraction of common contacts between two complexes.
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Another similarity measure was recently proposed by Vreven et al. [146], where the an-

gular distance computed in constant time is used as the criterion for the similarity between

the predictions from rigid-body docking. Nonetheless, the majority of the algorithms in

the structural bioinformatics use the pair-wise RMSD as the similarity metric between the

molecular structures.

Equation (3.14) is of particular interest when considered in relation to the aforemen-

tioned work of Vreven et al. [146], where the authors demonstrated that the angular distance

can serve as a similarity measure for rigid molecules as an alternative for the RMSD. More

precisely, they defined the angular distance as the angle between the rotations correspond-

ing to two docking predictions, ignoring the translational degrees of freedom. Vreven et al.

claimed that the drawback of using the RMSD is that it is computationally expensive. How-

ever, we demonstrated that the RMSD can also be computed in constant time. Furthermore,

in the context of Eq. (3.14), the angular distance is simply equal to the rotation angle α In

particular, for a fixed rotation angle, the angular distance for molecules of different size will

be equal, while the RMSD can be very different. Another example that demonstrates the

difference between the two measures is the rotation of a long linear molecule. The RMSD

for such a rotation will dramatically depend on the axis of the rotation, while the angular

distance will be the same regardless the rotation axis.

To conclude, we would like to emphasize that for comparison of rigid molecules of dif-

ferent size or molecules of non-spherical shape, it may be more rigorous to use the similarity

measure defined by Eq. (3.14) instead of the angular distance. Particularly, our measure in-

volves the scalar form of the inertia tensor (see Eq. (3.15)), thus taking into account the

geometry and the rotation axis of the molecules.

3.5.3 Clustering

One of the possible applications of the RigidRMSD library can be the rigid-body cluster-

ing. Molecular docking algorithms typically produce thousands of solutions, some of them

having a very similar geometry. Therefore, it is practical to group these into clusters. As we

have discussed above, there are multiple ways to measure the similarity between molecular

structures [147], however, most of the modern state-of-the-art clustering algorithms use the

pair-wise RMSD as the similarity metric between the predictions, as it is implemented, for

example, in the Hex [114] and ZDOCK [23] docking algorithms. In the worst case, the

complexity of such a clustering algorithm can be quadratic with respect to the number of

docking predictions. Thus, an efficient pair-wise RMSD test can dramatically improve the

clustering performance. The clustering algorithm used by the Hex and ZDOCK applications

consists of the following steps. First, the docking prediction with the best score (yet unas-
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signed to any cluster) is taken as the seed for the new cluster. Second, the pair-wise RMSDs

between the seed and all other predictions (in case of ZDOCK) or some best predictions (in

case of Hex) are measured and the predictions with the RMSD lower than a certain thresh-

old are put into the cluster. Finally, these two steps are iterated until all docking predictions

are assigned to corresponding clusters.

To demonstrate the efficiency of the RigidRMSD library, we compared the clustering

algorithm implemented with our library to the one from the Hex software. We chose Hex for

the comparison because it is a very fast rigid-body docking tool and also because it explicitly

provides the clustering time. It is worth to note that Hex’s clustering algorithm has linear

complexity with respect to the number of docking predictions, that is, it is faster (although

less accurate) than the standard RMSD-based clustering algorithms, as it is implemented in

ZDOCK. Both Hex and ZDOCK clustering algorithms use the standard RMSD test linear

in the number of atoms in the protein.

For the comparison, we collected a benchmark of 23 protein dimers of various size (see

Table 3.3). After, we launched Hex version 6.3 on this benchmark and collected docking so-

lutions before clustering, sizes of clusters, and clustering time. We then also clustered these

solutions using the RigidRMSD library. Figure 3.1 shows the clustering time of the Hex

clustering algorithm with respect to our clustering using Eqs. (3.21) and (3.26) as a func-

tion of the number of atoms in the smaller protein (left) and the number of docking solutions

before the clustering (right). We can clearly see that our implementation of the clustering

algorithm is more than an order of magnitude faster compared to the Hex implementation.

Also, the quaternion representation of rotation, Eq. (3.26), is on average three times more

efficient compared to the matrix representation, Eq. (3.21). The efficiency of our clustering

algorithm increases when using a larger RMSD threshold, as it is shown in Fig. 3.2. Also,

mean cluster sizes obtained with our clustering algorithm are significantly larger compared

to the Hex clustering (see Fig. 3.2), particularly at large RMSD thresholds. This demon-

strates that our implementation of the clustering algorithm is not only much faster, but also

more accurate compared to the clustering in Hex, especially at large clustering thresholds.

3.6 Conclusions

We described a very fast and efficient way to compute the RMSD corresponding to the set

of rigid-body motions of a molecule. Our algorithm consists of an initialization step fol-

lowed by a series of constant time RMSD computations. The initialization step has linear

complexity with respect to the number of atoms in a molecule. However, each of the RMSD

calculations requires only 14 to 54 arithmetic operations when using a single rigid-body
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Table 3.3 Benchmark of protein dimers. First two columns represent names of protein
monomer in a protein complex according to PDB. The third column lists the number of
atoms in the smaller protein.

First protein Second protein Number of atoms in the smaller protein
1AYM::A 1AYM::B 1981
1AYM::B 1AYM::C 1847
1AYM::C 1AYM::A 2336
1B35::A 1B35::B 1412
1B35::B 1B35::C 2129
1B35::C 1B35::A 2029
1EPT::A 1EPT::B 768
1EPT::B 1EPT::C 863
1EPT::C 1EPT::A 388
1RM6::A 1RM6::B 2422
1RM6::B 1RM6::C 1178
1SR4::A 1SR4::B 2025
1SR4::B 1SR4::C 1203
1SR4::C 1SR4::A 1308
1W85::A 1W85::B 2569
1W85::B 1W85::C 2483
1W85::C 1W85::A 2473
2WJN::A 2WJN::B 2161
2WJN::B 2WJN::C 2451
2WJN::C 2WJN::A 1876
3VBH::A 3VBH::B 2300
3VBH::B 3VBH::C 1896
3VBH::C 3VBH::A 1863

motion (i.e., given with a single spatial rigid-body transformation), or 38 to 114 arithmetic

operations when using a relative rigid-body motion (i.e., given with a pair of spatial rigid-

body transformations), depending on the representation of the motion and the choice of the

coordinate frame. This can be compared to 30 arithmetic operations needed to rotate a vec-

tor using a quaternion or 15 arithmetic operations needed to rotate a vector using a rotation

matrix. We demonstrated that RMSD computations are more numerically efficient when us-

ing the quaternion representation of rotation. In particular, the gain of using the quaternion

representation is bigger when using a larger sequence of rotations. We have also discussed

two ways to measure the similarity between structures of a molecular complex. Specifically,

we claim that it may be more rigorous to use the rotation RMSD similarity measure defined

by (3.14) instead of the simpler measure based on the angular distance. As an application of
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Figure 3.1 Left: Time spent on clustering docking solutions by Hex and RigidRMSD with
respect to the number of atoms in the smaller protein. Each point on the plot corresponds to a
protein complex from the protein benchmark (see Table 3.3). For each protein complex, the
number of considered docking solutions was fixed to 10,000. Right: Average time spent on
clustering docking solutions by Hex and RigidRMSD with respect to the number of docking
solutions. For this plot, we chose five structures with the number of atoms in the smaller
protein of about 2000 such that they result in a similar number of clusters and plotted the
standard deviation of the clustering time for these structures. For both plots, time is plotted
on a logarithmic scale and the clustering RMSD threshold is fixed to 10.0 Å.

the RigidRMSD library, we implemented a clustering algorithm for solutions obtained with

rigid-body molecular docking tools. We showed that our implementation is more than one

order of magnitude faster and also more accurate compared to the standard clustering algo-

rithm used in the popular Hex docking software. A C++ implementation of the RigidRMSD

library is available at http://nano-d.inrialpes.fr/software/RigidRMSD.

http://nano-d.inrialpes.fr/software/RigidRMSD
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Figure 3.2 Left: Average size of a cluster provided by Hex and RigidRMSD with respect to
the RMSD cluster threshold. Right: Average time spent on clustering docking solutions by
Hex and RigidRMSD with respect to the RMSD cluster threshold. For both plots, we chose
five structures with the number of atoms in the smaller protein of about 2000 such that they
result in a similar number of clusters. For each protein complex, the number of considered
docking solutions was fixed to 10,000.



Chapter 4

Knowledge-based Scoring Function for

Protein-Protein Interactions

4.1 Introduction

Protein-protein interactions play crucial role in the human interactome, orchestrating most

of the signaling network processes. Abrupt changes in protein-protein interactions lead to

various kind of diseases, which makes protein structure prediction an important challenge

in rational drug design. However, generally it is very difficult to experimentally obtain

structures of protein complexes, thus computational molecular docking techniques are of-

ten used nowadays for protein-protein structure prediction. Typically, molecular docking as

an integral part of the drug discovery process involves the scoring stage, where one selects

the best putative binding candidates from the set of binding poses by assigning the score

or the energy value E to each candidate. The scoring stage incorporates sophisticated scor-

ing functions [95], which are obtained with the empirical force-fields or using information

derived from experimentally obtained structures of protein complexes. The latter type of

scoring functions belongs to the family of the knowledge-based or statistical scoring func-

tions. The majority of modern knowledge-based scoring functions for the protein-protein

interactions are developed following the observation that the distances between the atoms

in experimentally determined structures follow the Boltzmann distribution [36]. More pre-

cisely, using ideas from statistical theory of liquids, effective potentials between atoms are

extracted using the inverse Boltzmann relation, Ei j(r) = −kBT log(Pi j(r)/Z), where kB is

the Boltzmann constant, Pi j(r) denotes the probability to find two atoms of certain types i

and j at a distance r, and Z denotes the probability distribution in the reference state. The

latter is the thermodynamic equilibrium state of the protein when all interactions between
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the atoms are set to zero. The score of a protein conformation is then given as a sum of the

effective potentials between all pairs of atoms. Although this concept is old and originates

from the work of Tanaka and Scheraga [134], Miyazawa and Jernigan [93] and Sippl [130],

it is still under debates [9, 70, 131, 136]. Particularly, the computation of the reference

state is a challenging problem [76]. Although some assumptions were made to ease the ex-

pression of the reference state for protein monomers [82, 121, 130, 153], to deduce scoring

functions for the protein-protein docking, one usually computes the reference state based on

a large set of generated non-native conformations of protein complexes (decoys). [25, 51].

Another type of statistical potentials is constructed using the discriminative machine learn-

ing, specifically, the linear programming approach [3, 22, 84, 110, 111, 113, 138]. The

basic idea behind this approach is to solve a system of inequalities that demand the energy

of the native conformation to be lower than the energy of all the decoy conformations for a

particular complex, E(Pnative)−E(P
decoy
i )< 0, ∀P

decoy
i ∈ Pdecoy. Although this approach

circumvents the computation of the reference state, its success critically depends on the cho-

sen set of decoy conformations Pdecoy. Thereby, the obtained statistical potential depends

on the sampling algorithm used to generate the decoy conformations and, generally, might

not distinguish the native structures equally well from decoys obtained by another sampling

algorithm.

In this study we discovered that knowledge of only native protein-protein interfaces

is sufficient to construct well-discriminative predictive models for the selection of puta-

tive binding candidates. Namely, we introduce a new scoring method that comprises a

knowledge-based scoring function called KSENIA deduced from the structural information

about the native interfaces of 844 crystallographic protein-protein complexes. As a result,

our approach does not require neither the computation of the reference state nor the en-

semble of non-native complexes. Thus, it has no bias toward a method to generate putative

binding poses. To the best of our knowledge, this is the first investigation of the knowledge-

based scoring function that needs no information derived from non-native protein-protein

interfaces. More precisely, we use convex optimization to train the knowledge-based scor-

ing function on sets of near-native conformations with the average root mean square de-

viation (RMSD) between monomers of 1 Å. These are composed using the deformations

along the directions of low-frequency normal modes computed at the native conformations.

We demonstrate that the obtained scoring function is capable to distinguish the native and

near-native protein-protein interactions from the non-native ones. Given that rigid-body

minimization refinement improves the scoring performance [92], we also implement a rigid-

body optimization protocol using the derived knowledge-based potential. Finally, we verify

the robustness of our method on several protein-protein docking benchmarks.
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4.2 Theoretical Basis

We consider N native protein-protein complex conformations Pnative
i , i = 1..N. For each

protein complex i we generate D decoys, P
decoy
i j , j = 1..D, where the first index runs over

different protein complexes and the second index runs over generated decoys. Then we find

a linear scoring functional F , defined for all possible complexes, such that for each native

complex i and its decoy j the following inequality holds:

F(Pnative
i )< F(P

decoy
i j ) (4.1)

We express the scoring functional which fulfills these assumptions in the following form:

F(P) =
M

∑
k=1

M

∑
l=k

rmax
∫

0

nkl(r)Ukl(r) dr, (4.2)

where nkl(r) is the number density of atom pairs at a distance r between two atoms of

types k and l (kl-pair), with one atom located in the larger protein (receptor), and the other

atom located in the smaller protein (ligand). Here, M is the total number of different atom

types. We used M = 20 atom types definitions provided by Huang and Zou [51], which were

defined by the classification of all heavy atoms in standard amino acids according to their

element symbol, aromaticity, hybridization, and polarity. The functions Ukl(r) are unknown

scoring potentials, which we determine below.The number density nkl(r) is computed as a

sum over all kl-pairs in a given protein complex via:

nkl(r) = ∑
i j

1√
2πσ2

e
− (r−ri j)

2

2σ2 (4.3)

Here, each kl-pair at a distance ri j is represented by a Gaussian centered at ri j with the stan-

dard deviation of σ , which takes into account possible inaccuracies and thermal fluctuations

in the protein structure. In our work we chose σ = 0.4 Å, since this value demonstrated the

best results in the cross-validation tests (see Section 4.3.2 for more details). We considered

only atom pairs at distances below the threshold distance rmax = 10 Å. Using Eq. (4.3), we

can re-write the scoring functional F(P) (see Eq. (4.2)) as the sum over all kl-pairs of atoms

i and j at a distance ri j:

F(P) = ∑
i j

1√
2πσ2

rmax
∫

0

e
− (r−ri j)

2

2σ2 Ukl(r) dr = ∑
i j

ϒkl(ri j) (4.4)
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We will refer to the functions

ϒkl(r) =
1√

2πσ2

rmax
∫

0

e
− (x−r)2

2σ2 Ukl(x) dx, (4.5)

which are the Gauss transform of the scoring potentials Ukl(x), as to the scoring functions.

In order to determine unknown scoring potentials Ukl(r) (see Eq. (4.2)), we decompose

them along with the number densities nkl(r) in a polynomial basis:

Ukl(r) = ∑
q

wkl
q ψq(r), r ∈ [0;rmax]

nkl(r) = ∑
q

xkl
q ψq(r), r ∈ [0;rmax],

(4.6)

where ψq(r) are orthogonal basis functions on the interval [r1;r2], and wkl
q with xkl

q are

the expansion coefficients of Ukl(r) and nkl(r), respectively. Here, we use a set of shifted

rectangular functions as the basis [30]. Given this, the scoring functional F (see Eq. (4.2))

can be expanded up to the order Q as:

F(P)≈
M

∑
k=1

M

∑
l=k

Q

∑
q

wkl
q xkl

q = (w ·x), w,x ∈ R
Q×M×(M+1)/2 (4.7)

We will refer to the vector w as to the scoring vector and to the vector x as to the structure

vector. Then, we can re-write the set of inequalities ((4.1)) as a soft-margin quadratic

optimization problem [17]:

Minimize (in w, bi, ξi j): 1
2w ·w+∑i j Ci jξi j

Subject to:

yi j

[

w ·xi j −bi

]

−1+ξi j ≥ 0, i = 1..N, j = 0..D

ξi j ≥ 0

(4.8)

Here, index i runs over different protein complexes and index j runs over different con-

formations of the i-th protein complex. Particularly, protein conformations with j = 0 are

native with the corresponding constants yi0 = +1 and protein conformations with j = 1..D

are the decoys with the corresponding constants yi j =−1. Parameters Ci j can be regarded as

regularization parameters, which control the importance of different structure vectors. We

found the optimal values of Ci j parameters using the cross-validation procedure (see Section

4.3.2). The scoring vector w, the offset vector b and the slack variables ξi j are the parameters

to be optimized. The size of the optimization problem is determined by the dimensionality
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of the structure and the scoring vectors, which is equal to Q×M× (M+1)/2 = 8400, and

by the size of the training set, N = 844 and D = 225. The latter is composed based only

on local information about the native interfaces of protein-protein complexes and no other

information is used (see Section 4.3.5). We solve problem ((4.8)) in its dual form using

the block sequential minimal optimization (BSMO) algorithm as explained elsewhere [30].

Finally, given the solution of problem (4.8), i.e. the scoring vector w, one may restore the

scoring potentials Ukl(r) (see Eq. (4.6) ), the scoring functions ϒkl(r) (see Eq. (4.5)), and

compute the score of a protein complex according to Eq. (4.4).

4.3 Material and Methods

4.3.1 Artificial Potential Barriers

To reconstruct potential barriers at short distances, we first introduce two barrier support

points, P1 and P2. The first point P1(0,100) defines the height of the potential barrier. The

second point P2(xrdf,77) defines the width of the barrier. The distance xrdf varies for different

kl-pairs of atoms and is determined as the abscissa of the first point with a non-zero y-

coordinate of the radial distribution function corresponding to the kl-pair, which is computed

from the native structures in the training set. Then, we classify each scoring function ϒkl(r)

(see Eq. 4.5) as steep or flat:

ϒkl(r)is :







steep , if xmax ≤ 5Å and ∆y ≥ 1.5

flat , otherwise
,

where xmax is the x-coordinate of the first local maximum of a potential ϒkl(r) and ∆y is the

difference between y-coordinates of the first local maximum and minimum.

After, we discretize the functions ϒkl(r) with 40 support points, positioned evenly in x.

Later, we use a cubic spline interpolation through these points to reconstruct the original

functions. To introduce the artificial barriers, we replace some of the support points prior to

the interpolation. More precisely, for the steep scoring functions we remove all the support

points in the interval of [0,xb], with xb being the inflection point between the first local

maximum and minimum, where the second derivative of the scoring function changes its

sign from negative to positive. For the flat scoring functions, we remove all the support

points in the interval of [0,xb], where xb = 1.35xrdf. Finally, we replace all the support

points in the defined intervals by the two barrier support points P1 and P2.

At the very last step we use the cubic spline interpolation to smoothly delineate the
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Figure 4.1 Schematic representation of the potential barrier reconstruction. Red - initial
scoring function. Blue - the reconstructed potential barrier.

barriers with the rest of the scoring functions. In order to determine the parameters for the

barrier support points, we exhaustively screenned a range of values and verified the results

on the training set of protein complexes. Figure 4.1 schematically represents parameters

used to reconstruct the potential barriers for the derived scoring functions.

4.3.2 Cross-Validation

One may highlight three parameters that influence the solution of the problem (4.8). The

first parameter is the temperature factor
√

kBT . This parameter controls the amplitude of the

normal mode fluctuations (see Eq. 4.17). It affects the conformation of the generated decoys

and hence the structure vectors xi j extracted from these decoys. The second parameter is

the standard deviation σ of the Gaussian function (see Eq. 4.3), which also influences

the structure vectors xi j. The third parameter is the set of regularization coefficients Ci j.

The optimal values of these parameters are generally not known in advance. To estimate

them, we used the cross-validation procedure. Namely, we screenned the values of these

parameters in a certain range. Then, for each combination of the parameters we solved

the optimization problem (4.8) on a reduced training set of 200 protein complex structures.

After, we validated the obtained solutions on the other 644 protein complexes from the

training set.

We screened the values of the temperature factor
√

kBT in {5,10,20,40,60}. The best
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value for the Gaussian width parameter σ was adopted from the previous study [30]. For

the set of regularization parameters Ci j, we discriminate weights for the native and for the

decoy structure vectors:

Cnative
i j =C

Ndecoy

Ntotal

and

C
decoy
i j =C

Nnative

Ntotal
,

where Ndecoy and Nnative are the number of the decoy and the native structure vectors, respec-

tively, and Ntotal = Ndecoy +Nnative is the total number of the structure vectors. We choose

parameters Ci j to be different for the native and the decoy structure vectors of each complex

because fewer native structure vectors should have larger weights. Thus the screening of

the values of regularization parameters Ci j is reduced to the screening of the values of the

regularization constant C. We screened the values of the parameter C from 1 to 109 with

the exponential step size of 3
√

10. We found the optimal value for the temperature factor√
kBT , the standard deviation σ and the regularization parameter C to be equal to 10, 0.4,

and 3.2×104, respectively. At the last step, we derived the final scoring functions using the

complete training set with the optimal values of the parameters.

4.3.3 Rigid-Body Minimization

The scoring functions ϒkl(r) (see Eq. (4.5)) are smooth by construction. This fact allows

to use these functions for the structure optimization. More accurately, for a given kl-pair

of atoms at a distance ri j, the negative gradient −∇ϒkl(ri j) could be regarded as the force

with which one atom acts on the other atom. Thus, one may use the set of derived functions

ϒkl(r) to optimize a particular conformation of a protein complex until a local minimum is

reached, provided ∇ϒkl(ri j) = 0 for each pair of atoms. Since special calibration is required

to retain structure integrity of a complex, a more relevant structure optimization would be

the rigid-body optimization, where instead of force minimization over each pair of atoms,

one minimizes the net force and the net torque acting on each monomer. The rigid-body

optimization with functions ϒkl(r) could be useful in a local rigid-body minimization as a

refinement step to process docking predictions. It was shown that such refinement could

improve docking predictions dramatically [92]. In contrast to our scoring functions ϒkl(r),

most of modern statistical potentials are not differentiable [50, 121, 127, 152]. Thereby,

to perform structure optimization with such potentials, one either uses a smooth interpola-

tion of potentials, or employs various derivative-free optimization strategies, e.g. Nelder-

Mead [98] or Powell [109] methods and their modifications, where the convergence rate



58 Knowledge-based Scoring Function for Protein-Protein Interactions

Table 4.1 The rigid-body minimization work-flow.

1. Set initial parameters for the structure optimization.

2. Compute the score Uk of the current conformation and the descent direction dk in the
rigid-body space.

3. Find an appropriate step size α and make a step toward the descent direction:
xk+1 = xk +αdk.

4. Repeat steps 2-3 until desired tolerance or maximum number of iterations is achieved.

5. Take the last computed score as the final score of the optimized conformation.

is much slower compared to first- or higher- order optimization strategies. Following this

idea, we implemented the local rigid-body minimization protocol to explore whether such

an optimization improves scoring capabilities of KSENIA. General work-flow for the local

rigid-body minimization is listed in Table 4.1.

4.3.4 Normal Modes

Let us consider a system of N particles with 3N degrees of freedom near the equilibrium

state x0. The potential energy of the system can be approximated as a quadratic form:

U(x1,x2, . . . ,x3N) =U(x0)+
1
2

3N

∑
i=1

3N

∑
j=1

Fi jxix j, (4.9)

where elements of the matrix of the quadratic form Fi j =
(

δ 2U
δxiδx j

)

x0

are the force constants at

the equilibrium state x0. There exist a different set of coordinates yi, where both the kinetic

K and the potential U energies have the diagonal form and thus the Newton’s equations

of motion are uncoupled. This means that the solution for the equations of motion for

each coordinate can be obtained separately. These coordinates yi are called the normal
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coordinates, and the corresponding energy terms have the following form:

U(y1,y2, . . . ,y3N) = U(x0)+
1
2

3N

∑
i=1

λiy
2
i ,

K(y1,y2, . . . ,y3N) =
1
2

3N

∑
i=1

ẏ2
i

(4.10)

The transition matrix between the two coordinate bases is obtained via diagonalization of

matrix M− 1
2 FM− 1

2 = LDLT:

U −U(x0)≡
1
2

xTFx =
1
2

xTM
1
2 LDLTM

1
2 x =

1
2

yTDy, (4.11)

where M is the diagonal mass matrix, i.e. Mi j = miδi j. Thus, the connection between the

two coordinate systems is given as a linear transformation

x = M− 1
2 Ly (4.12)

Normal coordinates provide a convenient way to describe molecular fluctuations of a

system near the equilibrium state. Particularly, the evolution of the system in the normal

basis is the superposition of the independent harmonic oscillations along each normal coor-

dinate yi. Such oscillations are called normal modes [149] and are expressed as:

yi(t) = Ai cos(ωit +δi), (4.13)

where ωi ≡
√

Dii and δi correspond to the frequency and the phase of the i-th mode, respec-

tively. The factor Ai =
√

2kBT/ωi is the amplitude of the fluctuation. Given the transition

matrix L between the two bases (see Eq. (4.12)), oscillations in the Cartesian basis can be

written as:

xk(t) = Lki(Ai cos(ωit +δi))/
√

mk (4.14)

Thus, all atoms in a molecule for a given mode i oscillate with the same frequency and phase.

However, the amplitude of the fluctuation of the Cartesian coordinate xk, corresponding to

the oscillation of the mode yi, is different for each coordinate k and is defined by the i-th

column of the transition matrix L:

⟨x2
k⟩i = L2

kiA
2
i ⟨cos(ωit +δi)

2⟩/mk =
1

2mk

L2
kiA

2
i = L2

ki

kBT

mkω2
i

(4.15)

When all the modes are active, the amplitude of the fluctuation of the Cartesian coordinate



60 Knowledge-based Scoring Function for Protein-Protein Interactions

xk reads:

⟨x2
k⟩=

kBT

mk
∑

i

L2
ki

ω2
i

(4.16)

We use this theoretical framework to construct the training set of protein-protein complexes.

A deeper discussion of normal modes analysis and its applications in structural biology can

be found e.g. in [19, 21, 89, 145, 149].

4.3.5 Training Set

Native Complexes

We used the training database of 851 non-redundant protein-protein complex structures pre-

pared by Huang and Zou [51]. This database contains protein-protein complexes extracted

from the PDB [12] and includes 655 homodimers and 196 heterodimers. We updated

three PDB structures from the original training database: 2Q33 supersedes 1N98, 2ZOY

supersedes 1V7B, and 3KKJ supersedes 1YVV. The training database contains only crys-

tal dimeric structures determined by X-ray crystallography at resolution better than 2.5 Å.

Each chain of the dimeric structure has at least 10 amino acids, and the number of inter-

acting residue pairs, as defined as having at least 1 heavy atom within 4.5 Å, is at least 30.

Each protein-protein interface consists only of 20 standard types of amino acids. No ho-

mologous complexes were included in the training database. Two protein complexes were

regarded as homologues if the sequence identity between receptor-receptor pairs and be-

tween ligand-ligand pairs was > 70%. Finally, Huang and Zou [51] manually inspected the

training database and left only those structures that had no artifacts of crystallization.

Near-native Decoys

To exclude any bias to computational methods and potentials for generation of putative

binding poses, we construct our training set using structural information about only pro-

tein complexes in their native conformations. For the initial set of 844 native protein

complexes (see Section 4.3.5) we generated near-native conformations, i.e. conformations

within RMSD = 3 Å, for each native complex as follows. First, given the coordinate vector

Xnative of each monomer in a protein complex, we computed its ten lowest-frequency nor-

mal modes. Then, we formed fifteen near-native conformations for each monomer using the

linear combinations of these modes :

X̂ = Xnative +
√

kBT M− 1
2

10

∑
i=1

ri
Li

ωi
, (4.17)
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where
√

kBT is the temperature factor, M is the diagonal mass matrix, i.e. Mkl = mkδkl ,

ri is the random weight for each mode ranging from -1 to 1, Li is the i-th column of the

transition matrix between the Cartesian and the normal mode bases, and ωi is the frequency

of the i-th mode. The temperature factor
√

kBT affects the amplitude of the deformation,

hence, too large temperatures cause a monomer to deform significantly breaking the cova-

lent bonds. We tried several values of the temperature factor and found the optimal value

of
√

kBT to be 10 kJ
1
2 (see Section 4.3.2). To ensure the absence of non-relevant conforma-

tions, we measured the RMSD between the native and the generated conformations. Indeed,

the average RMSD is equal to 1.02 Å, which means that the deformations with the given

temperature factor keep all generated conformations non-disrupted. At the last step, we

combined conformations X̂ of two monomers representing one protein complex, resulted

in 15× 15 = 225 near-native conformations. To summarize, the composed training set to

derive the scoring function contains 844 assemblies, where each assembly consists of one

native protein complex and 225 generated near-native conformations.

We used the MMTK library [46] to perform the normal mode analysis for protein

molecules and the OPLS-UA force-field [57] to compute the force constants (see Eq. (4.9)

). Since normal modes are defined for the equilibrium state of the system, we minimized

each monomer of a dimer in a vacuum using 50 steps of the steepest descent algorithm with

the relative energy tolerance of 1e− 3 and cut-off distance for all non-bonded interactions

of 5 Å. We chose such a relatively small number of minimization steps in order to not sig-

nificantly deform the X-Ray structure of a monomer. Indeed, the RMSD between the initial

and the minimized monomer structures did not exceed 0.5 Å. Given each monomer near the

equilibrium state, we used the Fourier subspace for the reduced-basis normal modes compu-

tations [45]. We picked up ten first low-frequency modes from the Fourier basis to generate

different local deformations of the protein complexes. We should note that we excluded the

first six modes that correspond to the rigid-body motion.

Finally, we want to stress that all generated conformations represent near-native protein

structures. Indeed, we use directions along the slowest normal modes to locally deform the

monomers, however, the orientations of the monomers with respect to each other are fixed.

Since all the monomer conformations differ only slightly from the native monomers (the

average RMSD is 1.02 Å), the interaction interfaces of all generated complexes undergo

moderate changes keeping the major part of the native contacts. To conclude, we com-

posed the training set based only on local information about the native interfaces and no

other information was used. In the Results section we demonstrate the scoring function for

protein-protein interactions derived using this training set.
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4.3.6 Test Benchmarks

Hex Test Benchmark

For the first test, we constructed a rigid-body benchmark starting from the native structures

in the training set. More precisely, to generate decoys we used the Hex rigid-body docking

program [115, 116]. For the Hex input, we used polar Fourier shape expansions to polyno-

mial order N = 31, the real-space angular search step of 7.5◦, the radial search range of 40 Å

with a translational step of 2.5 Å and the subsequent sub-step of 1.25 Å. We ran Hex for

each native complex in the training set and clustered the docking solutions with a threshold

of 8 Å. Top 200 docking predictions were added to the test benchmark in addition to the na-

tive complexes, resulting in 201×844 = 169,644 protein complexes. Finally, we evaluated

the success rate of the Hex scoring function on the constructed benchmark according to the

quality of the docking poses. Here we de ne the quality according to the value of RMSD

of the backbone atoms of the ligand (LRMSD) after the receptors in the native and the decoy

conformations have been optimally superimposed (see Table 1.1). To do so, we used the

fast open-source RigidRMSD library [104] that computes RMSDs given spatial transforms

of the docking poses.

Zdock Test Benchmark

For the second test benchmark we used the protein-protein docking benchmark v3.0 com-

posed by Hwang et al., which consists of 124 non-redundant protein-protein complexes

[52]. Then, we employed Zdock v.3.0.1 rigid-body docking software [103], which uses a

grid-based representation of two proteins and a three-dimensional fast Fourier transform to

explore the search space of rigid-body docking positions. We used the bound conformation

of each monomer in the benchmark for the Zdock input, randomly set initial protein orien-

tations and used the default parameters for the docking predictions. Finally, we chose 2000

best generated rigid-body docking poses according to the Zdock v.3.0.1. scoring function

for each complex. Thus, the second test benchmark consists of 124× 2,000 = 248,000

protein complexes.

To evaluate the success rate of this scoring function on the constructed benchmark, we

use the CAPRI criterion [56] for a correct prediction (Table 1.2).

Rosetta Test Benchmark

Gray et al. generated the Rosetta benchmark using 54 complexes from the protein-protein

docking benchmark version 0.0 [24] in bothe the bound and the unbound conformations.
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Figure 4.2 Examples of the derived distance-dependent scoring functions between atoms
of types N2+−O2- , C3−C3 and Cα −Cα , respectively. Here, N2+ are guanidine nitro-
gens with two hydrogens, O2- are oxygens in carboxyl groups, C3 are aliphatic carbons
bonded to carbons or hydrogens only and Cα are the backbone Cα atoms. Black, dashed:
initially derived scoring functions without taking into account the absence of statistics at
short distances. Blue, solid: redefined scoring functions that take into account the absence
of statistics at short distances.

For each complex, the authors generated 1,000 bound and 1,000 unbound decoys following

the flexible docking protocol, which is a part of the RosettaDock suite [41]. The first step

in the protocol is the random translation and rotation of one of the proteins constituting

the complex. Afterwards, the side chains are optimized simultaneously with the rigid body

displacement of the protein. Finally, the full-atom minimization is performed to refine the

conformation of the complex. We calculated the success rate of RosettaDock using the same

quality criterion as in CAPRI [56] (Table 1.2). Both the bound and the unbound Rosetta

benchmarks consist of 54×1,000 = 54,000 protein complexes.

4.4 Results

4.4.1 Scoring Functional

Figure 4.2 presents three derived scoring functions (dashed) for different atom pairs. As

one can see, at short separation distances the scoring functions tend to zero. This is the

artifact of the training set, and is mainly caused by the absence of observations of atom

pairs at distances close to zero. However, we want our scoring functions to be able to

penalize conformations in which steric clashes between the monomers are present. Thus,

we re-define the scoring functions at short distances to form artificial potential barriers (see

Section 4.3.1). The initial scoring functions along with the modified scoring functions are

shown in Figure 4.2. We refer to the latter as to KSENIA, which stands for Knowledge-

based Scoring function Employing only Native Interfaces .
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The scoring functional F (see Eq. (4.4)) of a particular protein complex P is computed

as the sum of separate scores for each pair of atoms within the cutoff distance rmax. Thus,

F , as a function of 3× (NA +NB) variables, where NA and NB are the numbers of atoms

in molecules A and B respectively, is not identically zero only in the conformational vol-

ume where at least one pair of atoms is within rmax distance. Since KSENIA typically

possesses several maxima and minima (see Fig. 4.2), F is likely to be a rugged function

in this volume [37]. However, we want to demonstrate that since our scoring functions

were derived from the local deformations of the native conformations, the scoring func-

tional F is smooth at least in the neighborhood of the native conformation. To show this,

we explored the behavior of the scoring functional F in the four-dimensional manifold of

the 3× (NA +NB) conformational space. Namely, given two monomers, one of which is

fixed, we consider four coordinates corresponding to the rigid-body degrees of freedom:

the distance d between the centers of mass of the two monomers, the rotation of the free

molecule about the axis connecting the centers of mass by an angle α , and two rotations

about two other orthogonal axes by angles β and γ . Then, starting from the native con-

formation of the complex (d0,α0,β0,γ0), we calculate partial derivatives in the vicinity of

this conformation. More precisely, we sample the first partial derivative
δF(d,α,β ,γ)

δe
at

points {e0±ε,e0±2ε,e0±3ε, . . .}, where e∈ {d,α,β ,γ}, and ε is a sufficiently small pos-

itive value. At the point where the partial derivative changes its sign, we can not expect a

gradient-based local minimization algorithm to find the nearest local minimum to the point

(d0,α0,β0,γ0). Thus, one can characterize the smoothness of the scoring functional F at

the point (d0,α0,β0,γ0) by four intervals (e0 −mε , e0 + nε), where the partial derivative

is a constant-sign function. Figure 4.3 shows the distribution of such interval lengths over

the native conformations in the training set. The most probable size of the smooth region

around the native conformation is 2.2 Å, 0.42 rad, 0.22 rad, 0.22 rad in four degrees of free-

dom, respectively. Practically, it means that the rigid-body minimization, started from an

arbitrary point within this region, is expected to optimize the conformation corresponding

to this point toward the conformation corresponding to the local minimum of this region,

assuming that F is convex in the neighborhood of the native conformation.

Finally, it remains to prove that the point representing the native conformation in the

four-dimensional manifold lies close to the local minimum. To demonstrate this, we mea-

sured the RMSD between the native conformation and the conformation obtained after the

rigid-body minimization with the KSENIA potential starting from the native conformation.

Figure 4.4 shows the distribution of such RMSDs in the training set. As it could be seen,

the minimized and native structures are very similar and the corresponding RMSD does not

exceed 2 Å. Moreover, the most probable RMSD between the two conformations is 0.1 Å.
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Figure 4.3 Distribution of the interval lengths in the four-dimensional manifold where the
partial derivatives of the scoring functional are the constant-sign functions. These distribu-
tions are computed using the native structures in the training set. Blue, solid: interval length
for the d-coordinate, which is the distance between the centers of mass of two monomers.
Green, dashed: interval length for the α-coordinate, which is the angle of rotation of the
ligand about the axis connecting the centers of mass. Orange, dotted: interval length for the
β - and γ- coordinates, which are the angles of rotation about two other orthogonal axes.
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Figure 4.4 Histogram representing the distributions of the RMSDs between the native and
minimized conformations in the training set using the rigid-body minimisation protocol.

To summarize, we demonstrated that the scoring functional F is a smooth function in

the vicinity of the native conformation. Hence, the rigid-body minimization is expected to

improve predictions if started at an arbitrary point in this vicinity. Below, we provide numer-

ical experiments that demonstrate the practical importance of the rigid-body minimization

with KSENIA.

4.4.2 Performance on the Test Benchmarks

The aim of any scoring function is to differentiate the native and near-native conforma-

tions of protein complexes from the non-native ones. In this section we demonstrate that

observing only the native protein complexes is sufficient to build a powerful and well-

discriminative knowledge-based scoring function. Using four different protein-protein bench-

marks described in Section 4.3.6, we evaluate the success rate of our method, which is

defined as the percentage of protein complexes for which docking predictions with quality-

one, -two or -three are ranked at the top positions. We also compare our method with the

widely-used scoring functions of Hex [115], Zdock [103], and Rosetta [41].

Hex Test Benchmark

In the first test, we used the Hex test benchmark (see Section 4.3.6). Although the train-

ing set and this benchmark share the same native structures, their decoys are very different.
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Figure 4.5 Performance of the scoring functions on the Hex test benchmark. Success rates of
the initial scoring functions (Initial SFs) are depicted with the blue rectangles. Success rates
of KSENIA are depicted with the yellow rectangles. TopN value is defined as the percentage
of protein complexes for which at least one of the docking prediction with the corresponding
quality q is present within the first N docking poses. The quality of predictions q is evaluated
according to the value of LRMSD (see Table 1.1).

More precisely, for the training, we generated local deformations at the protein-protein in-

terfaces for all native complexes using directions along the low-frequency normal modes.

On the other hand, to generate decoys for the test benchmark, we performed the exhaustive

search in the six-dimensional space of rigid-body motions. Consequently, many different

interfaces for each native complex are present. Furthermore, owing to the clustering of spa-

tially close docking predictions, there are no similar interfaces in the test benchmark. Thus,

the goal of the first test is to demonstrate that employing only local information about the

native interfaces is sufficient to derive a well-discriminative scoring function. We ranked

all docking poses in the training set according to the values of the initial scoring functions

and the values of KSENIA. Figure 4.5 presents the corresponding success rates for the top

predictions. Clearly, the derived scoring functions predict the native interfaces very well,

providing the success rates of more than 90% for the top one predictions. To explore if

our scoring functions can distinguish correct interfaces (generated by Hex with quality-one,

-two or -three) from the non-native ones, we removed the native structures from the test

benchmark, leaving only predictions with non-zero rotational part of the spatial transform.

We will refer to the obtained set as to the reduced Hex test benchmark. Figure 4.6 shows re-

computed success rates for the top predictions (solid rectangles). In this figure, we also list

the maximum success rates of the scoring functions (hollow rectangles) as the percentage

of protein complexes for which Hex could predict poses of the corresponding quality. From
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Figure 4.6 one can see that the derived scoring functions provide a similar success rate as the

Hex scoring function, which is solely based on the shape-complementarity term. However,

the initial scoring functions slightly out-perform KSENIA on the reduced Hex test bench-

mark. Presumably this is because we lose some information when re-defining potentials

at short distances (see Section 4.3.1). Nonetheless, KSENIA is dedicated to be used with

the local rigid-body minimization for the refinement of the docking predictions. Thereby,

at the next step we used the rigid-body minimization protocol (see Section 4.3.3 and Table

4.1 ) to optimize the docking poses. Then, we ranked the optimized docking predictions ac-

cording to the values of KSENIA and re-evaluated the success rates (Figure 4.6, green solid

rectangles). We found that the rigid-body minimization dramatically improves the scoring

results. In particular, the rigid-body minimization increased the total number of quality-one

poses, rising the maximum success rate from 28% to 66%. Moreover, the corresponding

success rates are more than twice better compared to both the success rates of Hex and the

success rates of scoring without the refinement procedure. To summarize, we demonstrated

that employing structural information of only native interfaces, it is possible to distinguish

near-native conformations of protein complexes from the non-native decoys. We have also

shown that it is possible to refine docking predictions using a smooth knowledge-based

statistical scoring function with a rigid-body minimization algorithm, which improves the

quality of the predictions and the overall performance of the scoring method. Below, we

further investigate the capability of our approach on more complicated test benchmarks.

Zdock Test Benchmark

For the Zdock benchmark set (see Section 4.3.6 ) we applied the rigid-body minimisation

protocol with KSENIA, as in the previous section, ranked the poses and compared the suc-

cess rates against Zdock v.3.0.1 scoring function, which includes the shape-complementarity

term, the electrostatic term and the desolvation term. Figure 4.7 shows results obtained on

this benchmark. Our approach shows around three times better success rate for the top one

quality-one, -two or -three predictions. We should note, however, that for eight complexes

in the benchmark, the rigid-body minimization deteriorated several quality-one predictions

to quality -two or -three. Thus, the maximum number for the top one quality-one predic-

tions is reduced from 97% to 91%. Nonetheless, our method demonstrates around seven

times higher success rate for the top one predictions with the highest quality compared to

the Zdock v.3.0.1 scoring function. We should note that we did not verify the performance

of KSENIA on the protein-protein unbound benchmark [52]. After the rigid-body dock-

ing applied to the monomers in the unbound conformations, side-chains of the interface

residues are, generally, in non-optimal conformations, which might be crucial for KSENIA.
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Figure 4.6 Performance of the scoring functions on the reduced Hex test benchmark. Suc-
cess rates of the initial scoring functions (Initial SFs) are depicted with the solid blue rectan-
gles. Success rates of KSENIA are depicted with the solid yellow rectangles. Success rates
of KSENIA along with the rigid-body minimization (KSENIA+RBM) are depicted with the
solid green rectangles. Success rates of the Hex scoring function are depicted with the solid
purple rectangles. Hollow rectangles of the corresponding color represent the maximum
achievable success rates. TopN value is defined as the percentage of protein complexes for
which at least one of the docking prediction with the corresponding quality q is present
within the first N docking poses. The quality of predictions q is evaluated according to the
value of LRMSD (see Table 1.1).
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Figure 4.7 Performance of the scoring functions on the Zdock test benchmark. Success
rates of KSENIA along with the rigid-body minimization (KSENIA+RBM) are depicted
with the solid green rectangles. Success rates of the Zdock scoring function are depicted
with the solid purple rectangles. Hollow rectangles of the corresponding color represent
the maximum achievable success rates. TopN value is defined as the percentage of protein
complexes for which at least one of the docking prediction with the corresponding quality
q is present within the first N docking poses. The quality of predictions q is evaluated
according to the CAPRI criterion (see Table 1.2).

Instead, we verified the performance of KSENIA on the Rosetta bound and unbound test

benchmarks, where side-chain conformations are optimized.

Rosetta Test Benchmark

Comparison of the performance of the Rosetta’s scoring function against our rigid-body

minimization with KSENIA is presented in Figure 4.8 for both the bound and the unbound

benchmarks. As it could be seen, although Rosetta itself performs slightly better, our ap-

proach still demonstrates very good results despite the complexity of these benchmarks.

Indeed, the native contacts for all the complexes in the benchmark are disturbed owing to

the side-chain re-packing or homologous replacement, for example. In addition, our scoring

method does not take into consideration the individual scores of the monomers. In partic-

ular, it does not penalize rare rotameric states of the side-chains, which are present in the

benchmark. Nonetheless, using only distance distributions between the atoms in different

monomers at their native and near-native states, our scoring function is capable to rank

quality-one poses at the top position for around 60 % of cases for the Rosetta bound bench-

mark, and to rank quality-one, -two or -three poses at the top position for around 45 % of

cases for the Rosetta unbound benchmark.



4.4 Results 71

0%

25%

50%

75%

Top1, q=1,2,3 Top10, q=1,2 Top1, q=1 Top10, q=1

S
u

c
c
e

s
s
 r

a
te

KSENIA+RBM (Bound) Rosetta (Bound)
KSENIA+RBM (Unbound) Rosetta (Unbound)

Figure 4.8 Performance of the scoring functions on the Rosetta bound and unbound test
benchmarks. Success rates of KSENIA along with the rigid-body minimization (KSE-
NIA+RBM) are depicted with the solid green and the solid blue rectangles for the Rosetta
bound and unbound test benchmarks, respectively. Success rates of the Rosetta scoring
function are depicted with the solid red and the solid purple ractangles for the Rosetta bound
and unbound test benchmarks, respectively. Hollow rectangles of the corresponding color
represent the maximum achievable success rates. TopN value is defined as the percentage
of protein complexes for which at least one of the docking prediction with the correspond-
ing quality q is present within the first N docking poses. The quality of predictions q is
evaluated according to the CAPRI criterion (see Table 1.2).
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Table 4.2 Scores for the native and one of the decoy structures before and after the rigid-
body minimization.

1ZC6 Score Score after the rigid-body minimization

Udecoy -1594.740 -3036.307 (rank 1)
Unative -1810.758 (rank 1) -2144.868

   BA

A' B'B'

B'

   B'   B'

   B'

Figure 4.9 Schematic representation of the native interface (orange, solid) and crystal con-
tacts (blue, dashed). The unit cell is depicted as the gray parallelogram encompassing
monomers A and B, which form the native interface.

4.4.3 Crystallographic Symmetry Mates as Docking Predictions

We observed that in several cases non-native decoys replace near-native predictions at the

top positions after the rigid-body minimization applied. As the result, the success rate be-

comes less than it could be, since the near-native predictions get a lower rank. For example,

Table 4.2 lists scores before and after the rigid-body minimization applied to the protein

complex 1ZC6 from the Hex test benchmark. In terms of the ligand-RMSD, the decoy

structure significantly differs from the native one: LRMSD > 60 Å. However, we found that

the interface formed by the decoy monomers is similar to the one of the crystal-packing

interfaces that are observed in the crystal structure. Typically, only one of the interfaces

presented in the crystal is considered to be the native interface, and other crystal-packing

interfaces or crystal contacts are considered to be the artifacts of crystallization (Fig. 4.9).

However, distinguishing between the native interface and the crystal contacts is a challeng-

ing problem, since both are formed following the same physical principles [68, 73]. For the

case of homodimer 1ZC6, LRMSD between the decoy and the complex forming the crystal

contact is about 2.8 Å. We found these observations to be the additional evidence of the

prediction capability of KSENIA.
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4.4.4 Discussion

Reference state-based statistical methods require a large set of false-positive examples of

protein complexes, i.e. non-native conformations, in order to compute the reference state.

Linear and quadratic programming approaches train the scoring function also involving a

set of generated false-positive examples in order to construct the system of inequalities

(4.1). It is a common practice in protein-protein docking to select as false-positive examples

those decoys that possess the best score according to some well-accepted scoring function

[25, 51, 138]. On the contrary, we have selected false-negative examples purely based on the

structure of protein complexes in their native conformations. More precisely, our decoy sets

were generated in such a way that the average RMSD between the corresponding monomers

in the decoys and in the native structures is about 1 Å, keeping the relative orientation of the

monomers fixed. Nonetheless, despite our training set does not contain non-native confor-

mations with large RMSDs with respect to the native structures, we are able to reconstruct

the atom-atom distance-dependent scoring functions (see Eq. 4.5). As we have shown

above, the obtained potentials demonstrate surprisingly good results on four protein-protein

docking benchmarks. We would like to emphasize that all the benchmarks mostly consist

of non-native decoys that have large RMSDs with respect to the native structures. Thus,

our results strongly suggest that the native protein complexes themselves contain all neces-

sary structural information to build well-discriminative potentials that recognize native and

near-native protein-protein conformations.

Regarding the disadvantages of the proposed methodology, i.e. derivation of the KSE-

NIA potential, we can point out two aspects. First, current statistic observations do not

take into account conformations of individual monomers. This means that, in principle, we

can imagine a situation when two very unrealistic structures of two monomers (all atomic

coordinates inside each monomer are the same, for example) result in a good score of the

complex. To circumvent this problem, one may either collect extra geometric information,

such as triplet, quadruplet, etc. distributions of atoms in the complex, or additionally score

individual monomers. Second, in our training set there are no statistics at short separation

distances between the monomers inside a complex. Thus, as a result, we need to define po-

tential barriers at short distances for the proper behaviour of the obtained scoring functions.

We would also like to stress that the derived KSENIA potential has no bias toward a

method to generate docking predictions. This is because for the construction of the train-

ing set we did not use any standard docking prediction method such as Zdock, Hex, etc.

Thus, the rigid-body minimization is very important for the success of the proposed scoring

methodology. Namely, the minimization is required to resolve steric clashes, which often

appear in docking predictions produced by various methods. For example, Zdock and Hex
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use a soft shape complementarity potential, which permits moderate overlap between the

monomers in a complex. Generally, we believe that structure optimization should be the

inevitable step of a general scoring procedure when one has no information about docking

predictions to score.

Our method does not, in principle, require external packages, potentials, or algorithms

neither to generate the training set, nor to formulate and solve the optimization problem. In

the present study, to generate the local deformations, we computed low-frequency normal

modes using the MMTK package with a united-atom force-field [46]. However, normal

modes can be computed in a simpler way using, e.g. the elastic-network model [137], the

gaussian network model [6], the rotation-translation of blocks method [133], etc. Thus,

methodology presented in this paper can be easily adapted to the recognition of other types

of molecular interactions, such as protein-ligand, protein-RNA, etc., provided that the atom

types assignment is modified appropriately.

4.5 Conclusions

Present study demonstrates that knowledge of only native protein-protein interfaces is suf-

ficient to construct well-discriminative predictive models for the selection of binding can-

didates. Namely, we introduced a new scoring method that comprises a knowledge-based

scoring function called KSENIA deduced from the structural information about the native

interfaces of 844 crystallographic protein-protein complexes. The knowledge-based poten-

tial relies on the information obtained thanks to the deformations of these interfaces com-

puted along the low-frequency normal modes. As a result, in contrast to existing scoring

functions, our potential does not require neither the computation of the reference state nor

the ensemble of non-native complexes. Thus, it has no bias toward a method to generate

putative binding poses. Moreover, KSENIA is smooth by construction, which allows to

use it along with the gradient-based rigid-body minimization. Particularly, we showed that

the rigid-body optimization of the docking poses improves the scoring stage of molecular

docking. Using several test benchmarks we demonstrated that our method out-performs the

Hex scoring function, which is based on the shape complementarity between the monomers

in a complex, and the Zdock scoring function, which also includes the electrostatic and des-

olvation terms. We found remarkable that the native protein complexes themselves contain

all necessary information to derive a successful and well-discriminative scoring function.

Although our method performs slightly worse on the Rosetta test benchmark compared to

the more sophisticated RosettaDock scoring function, we believe that further improvements

of KSENIA, e.g. accounting for the integrity of monomers, rotamer optimization, etc., will
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eliminate this disadvantage.

Methodology presented in this paper can be easily adapted to the recognition of other

types of molecular interactions, such as protein-ligand, protein-RNA, etc. We will make

KSENIA publicly available as a part of SAMSON software platform developed in our group

at http://nano-d.inrialpes.fr/software.

http://nano-d.inrialpes.fr/software




Chapter 5

CARBON: Controlled-Advancement

Rigid-Body Optimization for

Nanosystems

5.1 Introduction

Most modern docking algorithms are dedicated to predicting the bound state of a molecular

complex from the structure of its unbound subunits. Given an initial set of binding can-

didates, various refinement algorithms are involved to take into account the flexibility of

molecular complexes [145, 151] or to get rid of docking artefacts, e.g. overlaps between

subunits of a molecular complex. To address the latter problem, one possibility is to contin-

uously minimize the energy of the complex with respect to rigid-body transformations [16].

The rigid-body motion formalism aims at characterizing the location of rigid objects, and

has obvious uses in the description of robot kinematics [42, 79, 140].

In biological applications, one of the methods commonly used to perform a rigid-body

minimization is to apply rigidity constraints to an all-atom optimization, as described for

example in the original CHARMM paper [20]. Another approach consists in computing

generalized forces that act on molecules considered as rigid bodies, and in solving dif-

ferential equations to update generalized velocities and molecular coordinates [26]. Re-

cently, Mirzaei et al. [92] described a fast rigid-body minimization algorithm for refinement

of docking predictions. The authors used local parametrization of rigid transformations

SO(3)×R3 with exponential coordinates and defined rigid-body minimization as an opti-

mization problem on the R6 Euclidean space. The optimization problem was solved with

the limited-memory BFGS algorithm (L-BFGS) [80]. Their method was adjusted and ap-
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plied to refine docking predictions produced by the Piper software [72] with the CHARMM

force-field. The authors reported that the use of their rigid-body formalism results in a one-

order of magnitude speedup, when compared to an all-atom optimization with constraints.

However, the authors also noticed several shortcomings, such as unstable behavior of the

method when the monomers in the molecular complex approach too close to each other.

In this study, we present a fast rigid-body minimization approach which uses the net

generalized force as a descent direction in a six-dimensional manifold. To circumvent

the problem of incorrect step sizes for rotational and translational movements of molec-

ular complexes, we introduce the concept of controlled advancement. Precisely, we use a

recently introduced expression for the root-mean-square deviation (RMSD) between two

molecular complexes [104] to control the minimum and maximum distances that rigid bod-

ies are allowed to travel when performing optimization in a given direction. We demon-

strate the efficiency of our approach in combination with classical empirical potentials, e.g.

the CHARMM force-field, as well as with knowledge-based scoring functions, for which

there is currently growing interest in virtual screening. Furthermore, using the knowledge-

based scoring function previously derived in our lab, we show that refinement with our

rigid-body minimization method dramatically improves results of the scoring stage of the

docking pipeline. We compare our method with the state-of-the-art rigid-body minimization

approach of Mirzaei et al. [92] on a set of protein-protein complexes. Finally, we show that

the presented rigid-body minimization algorithm is able to resolve soft, moderate and large

steric clashes in molecular complexes.

5.2 Theoretical Foundation

5.2.1 Rigid-Body motion representation

In this paper, we represent a rigid-body motion as a pair of operators, the rotation and trans-

lation operators, applied to the rigid-body of interest to change its position and orientation

in space. First, the rotation operator is applied, and then it is followed by the translation

operator. Whereas in most cases the translation operator is simply expressed as a 3-vector

in Euclidean space, the rotation operator may be written in several ways. For example, it

can be represented via a rotation matrix, Euler’s angles, a quaternion or an axis-angle repre-

sentation. Although all these representations may be considered equivalent, some are more

numerically efficient than the others. Here, we use quaternions (see Section 3.2) since we

found them more beneficial and convenient compared to the other representations [104].



5.2 Theoretical Foundation 79

5.2.2 Rigid-Body Energy Minimization

Given two monomers A and B of a molecular complex AB and the potential energy func-

tion U , the problem of the rigid-body optimization is to find the rigid transformations for

A and B that minimize the interaction energy UAB between them. To solve this problem,

one often considers the local rigid-body minimization, which is the search of the deepest

minimum of the potential energy function in the set of rigid transformations correspond-

ing to local changes of the structure of the molecular complex AB. These local changes

are typically characterized in terms of the RMSD from the initial conformation or relative

orientation of monomers. The rigid transformations reduce the dimensionality of the con-

formational space down to six degrees of freedom corresponding to the mutual translation

and rotation of the two rigid bodies. Thus, the rigid-body minimization could be expressed

as an optimization problem with respect to the rotation and translation operators. However,

regarding the rigid-body minimization of molecular complexes, one may encounter several

pitfalls mainly related to the rugged shape of the potential energy landscape. For example,

if steric clashes are present in the conformation of a molecular complex, the magnitude of

the gradient | ∇UAB | could be enormously large, typically resulting in very large moves of

monomers in the complex with respect to each other. On the contrary, too small magnitudes

of the gradient result in irrelevantly small moves of the monomers. Below, we describe

a novel fast approach for the rigid-body minimization, which abates the influence of the

above-mentioned drawbacks.

Force and position update

We use the rigid-body dynamics formalism to describe forces and torques acting on a rigid

body [7]. Precisely, we view the rigid-body optimization problem as the calculation of

quasi-static trajectories of rigid bodies influenced by a force-field, i.e. trajectories where

rigid-body velocities are zeroed at the end of each time step1, and rigid bodies follow the

inverse-inertia-weighted energy gradient.

Given the potential energy function U(r1,r2, ...,rN), the force FA
j acting on the j-th

particle of rigid body A is computed as the negative gradient of U . The net force acting on A

is then given as the superposition of forces acting on each particle: FA = ∑ j FA
j . The forces

FA and FB = −FA provide translation directions for the monomers A and B, respectively.

Assuming a point r with mass m has zero velocity at the beginning of the time step, and has

1Strictly speaking, quasi-static trajectories demand that rigid-body velocities are zero at all time, but we
use a discretized point of view that is more natural in the context of rigid-body simulation.
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a constant acceleration a for a duration τ , its quasi-static displacement ∆r is

∆r =
a · τ2

2
=

| F | ·τ2

2m
, (5.1)

where F is the force applied to point r. As a result, the translation operator T̂ applied on a

rigid body corresponds to the translation vector T

T = F · τ2

2M
(5.2)

where M is the total mass of the rigid body. Because the translation operator takes into

account the mass of the rigid body, a heavier monomer is displaced less compared to a

lighter one (it is a more inert rigid body).

Until now, we did not consider that the force acting on a particular point of the rigid

body sets a spin, i.e. rotational motion, on it. To characterize this motion, the torque GA
j

resulting from the action of the force FA
j on the j-th particle of A is computed as

GA
j = (rA

j − rA
c)×FA

j, (5.3)

where rA
j is the position of the j-th particle of A and rA

c is the center of mass of A. Similarly

to the net force, the net torque GA acting on A is computed as follows

G = ∑
j

GA
j = ∑

j

(rA
j − rA

c)×FA
j (5.4)

The net torque depends on the position of the particles relative to the center of mass and, in

contrast to the net force, does convey the information about the distribution of forces acting

on the rigid body. Assuming the rigid-body has zero angular velocity at the beginning of

the time step and a constant torque applied to it, we compute the angular velocity at the end

of the time step as follows

w = I−1 ·G · τ, (5.5)

where I is the inertia tensor of the rigid body,

I =







∑mi(y
2
i + z2

i ) −∑mixiyi −∑mixizi

−∑mixiyi ∑mi(x
2
i + z2

i ) −∑miyizi

−∑mixizi −∑miyizi ∑mi(x
2
i + y2

i )






, (5.6)

and mi with {xi,yi,zi} are the mass and position of the i-th particle, respectively. Note, that

once the inertia tensor is computed in the reference frame (Ire f ), the inertia tensor in another
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frame can be expressed as

I = R · Ire f ·RT , (5.7)

where the rotation matrix R corresponds to the transition between the two frames. Finally,

given the angular velocity w, we update the rotational quaternion Q̂ according to

˙̂Q =
1
2
[0,w]Q̂ (5.8)

As one can see from Eqs. (5.5), (5.6), and (5.8), the obtained rotation quaternion Q̂ involves

the mass distribution of the rigid body, which influences the angle of rotation similarly to

how the mass of a rigid body M influences the translation step (Eq. (5.2)).

Finally, given the translation vector T and the rotation quaternion Q̂ = [s,q], the new

position of the rigid-body is expressed as

rnew = rold +2q× (q× rold + srold)+T (5.9)

We will refer to the couple of forces (F,G) as to the generalized force acting on a rigid

body and will use it as the descent direction d in the six-dimensional Euclidean space. To

simplify the notation, we will also denote displacement of a rigid body upon the generalized

force as xnew = xold + τ · d and refer to the time step τ as to the step size for the descent

direction d.

Controlled advancement and acceptance criterion

Given the descent direction d, the algorithm to determine an appropriate step size along this

direction is required. In order to do this, we introduce the advancement region (τmin,τmax),

that is the interval of τ that correspond to allowed displacements of a molecule, and we

define the allowed displacements as a set of rigid-body displacements with RMSDs to the

original position within a range (RMSDmin, RMSDmax). To express the step size τ via the

RMSD upon a rigid-body transformation, we use the following relation [104]

RMSD2 =
4
M

qT Iq+T2. (5.10)

where M is the mass of a monomer, q is the vector part of a rotation quaternion, I is the

inertia tensor and T is the translation vector. Using Eqs (5.1), (5.5), and (5.8) one obtains

RMSD2 =
τ4

M(1+ τ4(I−1G)2

4 )
GT I−1G+

τ4F2

4M2 (5.11)
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Using this equation, we can compute the bounds on the advancement region τmin and τmax as

a function of RMSDmin and RMSDmax, respectively. To do so, we need to solve a quadratic

equation with respect to τ4. However, to optimize a molecular structure with a steric clash,

we may consider only the translational RMSD. Thus, a simpler option to define the bounds

on (τmin, τmax) is to compute step sizes τ corresponding to the minimum and the maximum

translation magnitudes T using Eq. (5.1),

τ =

√

2MT

| F | . (5.12)

In this study with use the minimum translation of Tmin = 0.001 Å and the maximum trans-

lation of Tmax = 3 Å. We should note that the value of Tmin is an order of magnitude smaller

compared to the accuracy of the PDB molecular format, thus it is appropriate for our opti-

mization method and we do not need to make it smaller. The value of Tmax guarantees that

the linear step-size search starts with the initial value of τ that corresponds to the RMSD

between monomer’ conformations of greater than 3 Å.

Given this and concepts introduced in the previous section, Algorithm 1 presents how

to compute the proper step size τ . First, we use the backtracking strategy to gradually

Algorithm 1 The algorithm to choose the proper step size for iteration i.

Input: descent direction di, position of rigid body xi, advancement region (τmin,τmax)
Set τ = τmax
while τ ≥ τmin do

xi+1 = xi + τ ·di

if U(xi+1)<U(xi) then

return τ
end if

τ → ρτ {ρ ∈ (0;1) is a decrement factor of the step size. }
end while

return 0

reduce τ . In contrast to standard approaches, the initial guess of τ is neither constant nor

depends on the history of the previously accepted step sizes. Instead, it is determined from

the advancement region to take into account the magnitude of the generalized force and

provide the initial tentative movement of the rigid body. Second, we track only changes in

the energy function and not in the generalized force. Albeit the latter is helpful if one wants

to determine proximity to a local minimum, we focus on only decreasing the energy because

we may hop between several local minima descending in energy without any guarantees on

the value of the generalized force. Finally, we stop the line search if there is no appropriate
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step size τ within the advancement region (τmin,τmax). We do not look for the values of τ

smaller than τmin since step sizes below this value provide uselessly small movements of the

rigid body.

Algorithm outline

Given the procedure to compute the descent direction, the advancement region, and the al-

gorithm to compute the proper step size, now we present Algorithm 2 for the rigid-body

minimization of a molecular complex consisting of N subunits. Here, we iteratively update

Algorithm 2 The algorithm for the rigid-body minimization of a molecular complex.

for k = 0 to Kmax do

Compute energy function Uk

for all molecules Mi, i ∈ {1,2..N} do

Compute descent direction di
k

Compute advancement region [τ i
min,τ

i
max]

end for

Define minimal advancement region [τ̂min, τ̂max] = mini [τ
i
min,τ

i
max]

Choose proper step size τ i
opt from [τ̂min, τ̂max] using Algorithm 1 {At this step we find

new position of each rigid-body and new value of the energy function Uk+1 ≤Uk}
if τ i

opt = 0 ∀i ∈ {1,2..Nmolecules} then

return {No allowed step sizes are found}
end if

end for

return {Maximum number of iteration Kmax is achieved}

the positions and orientations of subunits in the molecular complex. Given the computed

generalized forces and the corresponding advancement regions, we choose the smallest ad-

vancement region to guarantee the absence of large movements for any monomer in the

molecular complex. The positions are updated only for those monomers where the proper

step size are found within the advancement region. If no proper step size within the ad-

vancement region is found for any of the monomers, we stop the rigid-body minimization,

since smaller step sizes provide negligibly small movements of the monomers. The latter

condition is implicitly related with the difference in energy in the two subsequent steps. In-

deed, if the stop condition holds, the difference between the energies in the two subsequent

steps equals to zero. For this reason we do not use the tolerance criterion for the changes

in the energy function and run the algorithm until one can find rigid transformations cor-

responding to the advancement region of τ or the maximum number of iteration Kmax is

achieved.
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In Section 5.4 we provide numerical results that demonstrate the power and efficiency

of Algorithm 2 when it is used both with a classical force-field and with a knowledge-based

scoring function.

5.3 Methods

5.3.1 Test benchmark for the classical force-field

The first benchmark was generously provided by Dima Kozakov from Boston University.

It consists of docking predictions for five different protein docking jobs produced by the

ClusPro automated server [28, 71] with the default parameters. For each protein complex,

60 docking predictions were added to the benchmark.

5.3.2 Test benchmark for the knowledge-based scoring function

To test our rigid-body minimization approach in combination with the knowledge-based

scoring function, we used 844 non-redundant protein-protein complex structures from the

database prepared by Huang and Zou [51]. This database contains non-homologous protein-

protein complexes extracted from the PDB [13] and includes 655 homodimers and 196

heterodimers. For each native complex, we used the Hex rigid-body docking program [115]

to generate docking poses. More precisely, for the Hex input, we used polar Fourier shape

expansions to polynomial order N = 31, the real-space angular search step of 7.5◦, the

radial search range of 40 Å with a translational step of 2.5 Å and the subsequent sub-step

of 1.25 Å. We clustered the docking poses with a threshold of 8 Å and left only the docking

predictions with non-zero rotational part of the spatial transform. Top 200 docking poses of

each native complex were added to the test benchmark, resulting in 200× 844 = 169,644

protein complexes. We compare the docking predictions by assessing the quality of a pose

based on the RMSD of the backbone atoms of the ligand (LRMSD) after the receptors in

the native and the docking pose conformation have been optimally superimposed (see Table

1.1). We use the fast open-source RigidRMSD library [104] to compute RMSDs given a

spatial transform of a docking pose. Finally, we evaluated the success rate of the Hex scoring

function on the constructed benchmark according to the value of LRMSD for comparison.

5.3.3 Test benchmark of moderate and large steric clashes

The Hex and Piper energy functions involve penalty terms that prevent large steric clashes

to appear in the output predictions. Thus, only soft steric clashes could be present in the
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two previous benchmarks. In order to demonstrate that our rigid-body minimization algo-

rithm is able to resolve larger steric clashes, we constructed another two sets of molecular

complexes.

The first set consists of five complexes taken from the protein-protein docking bench-

mark v.4.0 [53], for which the unbound conformations of monomers after superimposition

on the corresponding bound conformations possess moderate steric clashes. The latter is

assessed by the number of clashed atoms to be in between 30 and 200. Two heavy atoms

form a clash if they belong to different monomers and the distance between them is less

than 2.4 Å, which is twice the van der Waals radius of a hydrogen atom. Figure 5.2 presents

initial conformations of the five complexes (the first column).

For the second set we selected four native complexes from the non-homologous set of

protein dimers prepared by Huang and Zou [51] and created large steric clashes (number of

clashed atoms is greater than 200) by moving monomers of a protein complex toward each

other. Figure 5.3 A presents initial conformations of the four complexes.

5.4 Results and Discussion

To demonstrate the power and the advantages of our rigid-body minimization approach we

examined it with test cases that have a practical application for computational structural bi-

ology. First, we show the relevance of the method for refinement of binding candidates with

the CHARMM force-field. To do so, we run CARBON on the test benchmark generated

with the Piper docking program [72] and compare the obtained results with the state-of-

the-art approach of rigid-body manifold optimization method [92], which was specifically

fine-tuned to deal well with Piper docking predictions. Second, on the benchmark generated

with the Hex docking program [115], we demonstrate that a combination of the rigid-body

minimization algorithm with the knowledge-based potential improves the scoring results.

Third, we show that in case of a large steric overlap appearing between subunits of a molec-

ular complex, our algorithm remains stable and resolves the steric clashes properly. Finally,

we conclude the section with a general discussion.

5.4.1 The CARBON algorithm in combination with classical force-field

For the first test, we use the benchmark produced with the Piper docking program (see Sec-

tion 5.3.1) and the widely used CHARMM potential as the classical force-field. As the refer-

ence method for the comparison, we choose the rigid-body manifold optimization approach

(MO) [92]. Their method uses local parametrization of SO(3)×R3 via the exponential map
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Table 5.1 Performance the rigid-body optimization algorithms on the benchmark generated
with the Piper docking program. The average difference between the energy values of the
final conformations is denoted by av. ∆E. The average LRMSD between the starting and
final conformations is denoted by av. LRMSD. The LRMSD value is defined as the RMSD
of the backbone atoms of the ligand after the receptors in the native and the docking pose
conformation have been optimally superimposed. The average number of energy and forces
computations is denoted by av. no. of computations. The number of cases where one
algorithm was found to be superior to the other in terms of the value of the reached energy
and computational efficiency is denoted by no. of wins E and no. of wins N, respectively.

complex av. ∆E (kcal/mol) av. LRMSD (Å) av. no. of computations no. of wins E no. of wins N

CARBON/MO CARBON/MO CARBON/MO CARBON/MO

01 73.410 10.026/10.298 87/206 0/49 42/7

02 41.108 11.654/7.194 100/174 1/46 39/8

03 37.649 9.006/6.891 137/203 1/38 29/10

04 35,530 10.500/6.116 98/187 1/47 41/7

05 25,405 14.730/9.081 65/210 1/40 34/7

Total 42,620 11.183/7.916 97.4/196 1.8%/98.2% 83.6%/17.4%

and the limited-memory BFGS minimization algorithm, which is a quasi-Newton method

to solve the local minimization problem on a six-dimensional Euclidean space [80]. The

parameters of this method were specifically calibrated to work well on docking predictions

produced by the Piper software. We implemented the CARBON algorithm inside the C-

library source code of MO, provided by Mirzaei et al., such that the computations of energy,

forces and neighbor list are the same for both methods. Then, we ran the rigid-body mini-

mization algorithms for each conformation in the benchmark. We discarded the minimized

conformations as failures if: i) the RMSD between the initial and the final conformations

is greater than 30 Å or ii) the final conformation contains unresolved steric clashes or iii) a

method takes more than 500 evaluations of energy and forces. The first criterion assures that

the rigid-body minimization does not lead monomers far away from each other. The sec-

ond criterion discards minimized conformations that still contain steric clashes. The third

criterion guarantees that the final conformation is reached sufficiently fast.

To compare performance of the two methods, we measured the average difference be-

tween the energy values of the final conformations, the average LRMSD of the final confor-

mations with respect to the initial conformation, the average number of energy and forces

computations, and the number of cases where one algorithm was found to be superior to the

other in terms of the value of the reached energy and computational efficiency. Table 5.1

reports the calculated characteristics.

As one can see, the MO method provides final conformations with a lower energy in
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almost all the cases in the benchmark. On one hand, this is an expected result since the

MO method is specifically fine-tuned to deal well with the Piper docking predictions. On

the other hand, we observed that the LRMSD between the corresponding final conformations

produced by the two methods varies in a wide range from 0 to 25 Å and greater than 3 Å

in 88% of the cases (not shown in the table). This indicates that the two methods approach

two different local minima and it is difficult to rigorously compare the two rigid-body mini-

mization algorithms. Nonetheless, the average difference between the energy values of final

conformations is about 40 kcal/mol, which is less than 2.5% of the average final energy.

On average, CARBON produces conformations with larger values of LRMSD with respect to

the initial conformations. However, LRMSD could be controlled with the right bound of the

advancement region, which corresponds to the translation of 3 Å in this test. Concerning

the computational efficiency, CARBON obtains the final conformations faster than the MO

method in more than 80% of cases. We choose the number of energy and force computa-

tions as the criterion of computational efficiency since it is the most expensive operation of

the minimization algorithms. On average, CARBON was twice faster compared to the MO

approach.

We should, however, pay reader’s attention to the fact that the stopping criteria for the

two methods are very different. While the MO method spends computational time trying to

achieve a better value of energy, the CARBON method terminates as soon as the step size

gets smaller than the lower bound value τmin. Lowering the tolerance of the MO method,

probably, will speed up the calculations, however, it may also result in the different final

conformations. Thus, we can only conclude from this test that the CARBON approach is

suitable to be used with a classical force-field such as CHARMM and competitive with the

state-of-the-art approach.

5.4.2 The CARBON algorithm in combination with knowledge-based

scoring function

With the growing number of scoring functions aimed to discriminate between near-native

and non-native conformations of protein complexes, we believe it is important to develop

rigid-body optimization algorithms which refine well the putative binding poses in combi-

nation with these functions. Here we choose the KSENIA potential because it is smooth and

appropriate for the rigid-body minimization [105]. For the second test, we used the bench-

mark constructed with the Hex docking program [115]. It consists of rigid-body poses

with the assigned quality, which is evaluated according to the value of LRMSD (see Section

5.3.2). To demonstrate the efficiency of the CARBON method in combination with the
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knowledge-based scoring function, we compared the scoring success rates on the initial set

of conformations and on the set of minimized conformations. The success rate is defined

as the percentage of protein complexes for which docking predictions with quality 1, 2, or

3 are ranked at the top positions. More precisely, first we ranked the docking predictions

with respect to the values of KSENIA and computed the success rates for top-one-quality-

one, -two or three, top-ten-quality-one or -two, top-one-quality-one and top-ten-quality-one

predictions. Then, we optimized each docking pose using a C++ implementation of our

rigid-body minimization algorithm (2) and KSENIA as the potential, re-assigned qualities

and re-computed the corresponding success rates. Finally, we evaluated the maximum suc-

cess rates provided by the initial and the optimized docking poses. Figure 5.1 presents the

corresponding success rates. From the figure, one may see that the rigid-body minimiza-
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Figure 5.1 Performance of the scoring functions on the test benchmark. Success rates of
KSENIA are depicted with the solid yellow rectangles. Success rates of KSENIA along
with the rigid-body minimization (KSENIA+CARBON) are depicted with the solid green
rectangles. Success rates of the Hex scoring function are depicted with the solid purple rect-
angles. Hollow rectangles of the corresponding colour represent the maximum achievable
success rates. TopN value is defined as the percentage of protein complexes for which at
least one of the docking prediction with the corresponding quality q is present within the
first N docking poses. The quality of predictions q is evaluated according to the value of
LRMSD (see Table 1.1).

tion dramatically improves the scoring results. In particular, the rigid-body minimization

ameliorates poses of quality-two or -three into quality-one. Indeed, the maximum success

rate for the top-one-quality-one, -two or -three predictions did not change, while the other

maximum success rates increased. Moreover, the total number of quality-one docking poses

in the test benchmark was increased by approximately five times (not shown on the figure),



5.4 Results and Discussion 89

rising the maximum success rate from 28% to 66%. Finally, the improvement provided by

the rigid-body minimization makes the corresponding success rates to be more than twice

higher compared to both the success rates of Hex and the success rates of scoring without

the refinement procedure.

5.4.3 The CARBON algorithm to refine moderate and large steric clashes

In the applications described above we use the benchmarks constructed with the rigid-body

docking programs. Therein, a docking potential involves a penalty term, which prevents the

formation of a large steric clash between the monomers. As a consequence, these bench-

marks have no cases with a large overlap between the protein monomers. However, for a

general input conformation of a molecular complex, it is important that the rigid-body min-

imization is also able to resolve large steric clashes. For this reason, in the third test we use

the benchmark with moderate and large steric clashes (see Section 5.3.3). For each com-

plex in the benchmark, we performed the rigid-body minimization in combination with the

knowledge-based scoring function as well as the classical force-field. In the latter case, we

also ran the MO algorithm for the comparison. Table 5.2 lists the energies and the number

of clashed atoms before and after the minimization.

Regarding the rigid-body minimization in combination with the CHARMM force-field,

for the cases with moderate steric clashes our approach outperforms the MO method in

terms of energy and quality of the final conformations in four cases out of five. In all five

cases CARBON dramatically improved the conformation of the complexes in terms of its

energy as well as resolved almost all presented steric clashes. Despite the enormous values

of energy and force of the starting conformations, the monomers in the final conformations

are not far away from each other and possess a clear interface of interaction between each

other. Figure 5.2 presents the refined conformations with moderate steric clashes from the

benchmark. For the large steric clashes, neither the MO method nor CARBON are able

to refine the starting conformations with the classical force-field well. We believe that this

is due to the rugged shape of the energy landscape provided by the CHARMM force-field

for such conformations. In contrast, the CARBON algorithm in combination with KSENIA

perfectly resolves moderate and large steric clashes for all the complexes in the benchmark.

Again, in all cases, the monomers in their final conformations possess a clear interface of

interaction between each other. Figure 5.3 presents the refined conformations with large

steric clashes from the benchmark. Furthermore, minimization with the knowledge-based

scoring function provides a smaller values of LRMSD between the initial and the final con-

formations compared to the minimization with the CHARMM force-field (see Table 5.2).

To conclude, our approach outperforms the state-of-the-art MO method with the CHARMM
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Table 5.2 Performance of the rigid-body optimization algorithms on the benchmark of mod-
erate and large steric clashes. The energy values of starting and final conformations are
denoted by Estart and Efinal, respectively. The number of clashed atoms in a starting confor-
mation is denoted by no. of clashes. The number of clashed atoms in a final conformation is
denoted by no. of remained clashes. The LRMSD between the starting and the final confor-
mations of the ligands after the receptors is denoted by LRMSD. The LRMSD value is defined
as the RMSD of the backbone atoms of the ligand after the receptors in the native and the
docking pose conformation have been optimally superimposed. Two atoms form a clash if
they belong to different subunits and the distance between them is less than 2.4 Å.

complex Estart (kcal/mol) Efinal (kcal/mol) no. no. of remained clashes LRMSD (Å)

CHARMM KSENIA CHARMM KSENIA of CHARMM KSENIA CHARMM KSENIA

CARBON/MO CARBON clashes CARBON/MO CARBON CARBON/MO CARBON

Moderate steric clashes

1BKD 5,08×1012 2,67×103 −8,23×102/3,81×108 −9,08×101 177 0/252 2 26.6/10.5 5.9

1PXV 7,60×1011 1,11×103 −3,89×102/1,52×108 −9,05×101 78 2/120 0 14.7/11.6 6.5

1XQS 2,77×108 4,53×102 −1,79×103/3,42×104 −5,44×101 46 0/36 2 27.9/6.5 10.4

2C0L 2,84×1011 4,36×102 1,19×103/1,14×103 −8,16×101 35 0/0 0 6.1/4.6 4.8

2OT3 1,09×1011 2,29×103 −3,89×102/2,25×107 −8,56×101 136 0/120 0 8.6/2.4 7.9

Large steric clashes

1A0G 3,61×1012 1,24×104 1,59×1011/1,31×1010 −5,48×101 681 708/661 0 3.6/0.335 18.9

11AS 2,68×1014 2,57×104 3,59×1011/1,33×1012 −8,79×101 1393 1503/1716 0 1.5/7.998 24.6

1A4I 2,89×1016 2,07×104 3,23×1011/1,15×1012 −9,45×101 1139 1069/1276 0 6.1/16.737 17.9

1A7N 1,21×1013 1,50×104 7,18×1010/1,22×1011 −1,48×102 801 918/976 0 5.4/12.790 20.1
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force-field on molecular complexes with moderate steric clashes. The CARBON method in

combination with the KSENIA scoring function resolves moderate and large steric clashes

efficiently. In general, we believe that rigid-body minimization in combination with a soft

knowledge-based scoring function is the method of choice to refine docking predictions.

5.4.4 General Discussion

In this section we want to highlight advantages and drawbacks of the proposed method and

discuss some important aspects regarding rigid-body optimization of biomolecular com-

plexes. First of all, we want to make readers aware of the possible confusion about the term

“local rigid-body minimization”. Locality here is considered with respect to the conforma-

tion of the complex: the interaction area should not change dramatically upon rigid-body

refinement. However, it does not mean that one has to find the closest local minimum of the

energy function with respect to rigid transformations. Indeed, typically energy function pos-

sess many local minima such that the difference between two conformations corresponding

to the neighboring minima could be negligible. Thus, the rigid-body minimization algo-

rithm should take into account the possibility of hopping between several local minima on

the energy landscape in order to reach lower energy conformations in the neighborhood of

the initial conformation. For these reasons we choose the difference in energy as the accep-

tance criterion for the rigid-body movement, regardless of the force causing this movement.

Another advantage of our algorithm is the advancement region concept. Most of modern

rigid-body optimization algorithms employ the standard back-tracking line-search method

to find an appropriate step size for a given descent direction. Therein, the initial guess of

the step size on the current iteration typically depends on the step size on the previous itera-

tion and the backtracking may continue until irrelevantly small step sizes occur. In contrast,

we first determine the advancement region based on the largest and smallest rigid-body

movements the user allows. Then, the backtracking line-search is performed within the ad-

vancement region. Thus, the step sizes on two subsequent iterations are independent, and

each step size corresponds to a relevant rigid-body movement. In case when the line-search

does not find any appropriate step size within the advancement region and steric clashes are

still present in the final conformation, one may conclude that the energy function is not well

suitable for the rigid-body optimization, as it happens, for example, with the CHARMM

potential applied to protein conformations with large steric clashes.

Regarding further developments of the proposed method, one may use more sophisti-

cated gradient-based approaches or higher-order optimization techniques in order to speed

up the optimization. It would be interesting, for example, to develop and test a hybrid

approach, which starts with the rigid-body gradient-based minimization to remove steric
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clashes and then switches to a higher-order scheme, for example the one from work of

Mirzaei et al [92]. However, we believe that the gradient descent is the method of choice

when there is no additional information available about the energy landscape of the starting

conformation of a molecular complex.

5.5 Conclusion

In this study, CARBON, a novel method for fast rigid-body refinement of molecular com-

plexes is proposed. The rigid-body optimization problem is viewed as the calculation of

quasi-static trajectories of rigid bodies influenced by the inverse-inertia-weighted energy

gradient. In order to determine the appropriate step size in direction of the net generalized

force, the concept of advancement region is introduced. Namely, we compute the advance-

ment region as the interval of step sizes that provide movements of the rigid body within

a certain RMSD range from the initial conformation. Then, the standard backtracking line

search is applied to find the appropriate step size in this interval. As a result, the CAR-

BON approach guarantees the absence of incorrectly large movements of the rigid-bodies

as well as the absence of irrelevantly small movements. We tested and validated CARBON

on several benchmarks using both a classical force-field and a knowledge-based scoring

function. Particularly, CARBON is suitable to be used with the CHARMM force-field and

competitive with the state-of-the-art approach. Using a knowledge-based scoring function

we demonstrated that CARBON significantly improves the quality of docking predictions

in terms of the LRMSD, resulting in higher success rate of the scoring protocol. Finally, we

demonstrated that the proposed method remains stable and efficiently resolves moderate and

large steric clashes when initial conformations of monomers of a molecular complex over-

lap. CARBON will be made available as a SAMSON Element for the SAMSON software

platform at http://www.samson-connect.net.

http://www.samson-connect.net
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Figure 5.2 Starting and minimized conformations of five complexes: 1BDK, 1PXV, 1XQS,
2C0L, 2OT3, respectively.
The first column: starting conformations of the complexes. Receptors and ligands are
shown in light green and light red, respectively. The steric clashes are shown in sharp green
for the receptors and sharp red for the ligands.
The second column: Conformations of the complex after the rigid-body minimization
using the MO method and the CHARMM force-field. Receptors and ligands are shown in
light green and light blue, respectively. The steric clashes are shown in sharp green for the
receptors and sharp blue for the ligands.
The third column: Conformations of the complexes after the rigid-body minimization us-
ing the CARBON method and the CHARMM force-field. Receptors and ligands are shown
in light green and dark blue, respectively. The steric clashes are shown in sharp green for
the receptors and sharp blue for the ligands.
The fourth column: Conformations of the complexes after the rigid-body minimization
using the CARBON method and the KSENIA scoring function. Receptors and ligands are
shown in light green and dark orange, respectively. The steric clashes are shown in sharp
green for the receptors and sharp magenta for the ligands.
Two heavy atoms form a clash if they belong to different monomers and the distance be-
tween them is less than 2.4 Å (twice the van der Waals radius of a hydrogen atom).
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A

B

Figure 5.3 Initial and minimized conformations of four complexes: 11AS, 1A0G, 1A4I,
1A7N, respectively. Two monomers are shown in dark red and dark blue, respectively. The
clashed atoms of the monomers are colored in sharp red and sharp blue, respectively. Two
heavy atoms form a clash if they belong to different monomers and the distance between
them is less than 2.4 Å (twice the van der Waals radius of a hydrogen atom).
A: Starting conformation of four complexes with a large overlap between the two corre-
sponding monomers. B: Final conformation of four complexes with no steric clashes.



Chapter 6

A novel criterion to evaluate scoring

power of scoring functions for molecular

complexes

6.1 Introduction

As it is described earlier, direct computation of the binding free energy of proteins is an in-

tractable problem due to its high computational cost, and many various scoring functions are

developed to approximate the Gibbs free energy. Thus, it is important to understand the abil-

ity of the available scoring functions to distinguish biologically relevant binding candidates

among non-relevant ones. From now on we will refer to this ability as to the scoring power.

A lot of progress was made to assess the scoring power of targeted scoring protocols for vir-

tual screening of protein-ligand complexes [126]. Given libraries of many low-affinity and

a few high-affinity compounds, the scoring power of a targeted scoring function is typically

measured based on the number of correctly identified active compounds. Different char-

acteristics have been introduced for this assessment, for example, the receiver-operating

characteristic (ROC curve) and its variants [66, 132, 139, 141], the enrichment factor (EF)

[14, 69, 148], the analysis of variance [125], the area under the accumulation curve (AUAC),

the average position of the active compounds [59], the Z-score [34], the robust initial en-

hancement (RIE) [90, 128], etc.

Whereas some targeted scoring functions significantly enhance the virtual screening per-

formance for particular molecular complexes, there is a growing fundamental and practical

interest in developing a general scoring protocol that will well discriminate near-native con-

formations from the non-native ones, for example, those from protein-protein complexes
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[95]. Efficiency of scoring functions is typically assessed using benchmarks that comprise

many non-native conformations (decoys) and a few near-native conformations, both ob-

tained with docking algorithms [94]. Therein the scoring power is estimated using the hit

rate (HR) criterion. Namely, given a set of native molecular complexes {Pi}, i = 1..N and

a subset of generated conformations {P
j

i }, j = 1..Ni, some of which could be near-native

(P̂ j
i ), the hit rate is introduced as the percentage of near-native complexes in the benchmark

ranked at top M positions:

HR(M) =
∑

N
i ✶(∃ j < M : P

j
i −near-native)

N
, (6.1)

where ✶ (condition) is the indicator function, which takes value 1 if the condition holds and

0 otherwise. Near-native conformation can be defined using various similarity metrics, e.g.

fraction of native contacts, interface or ligand RMSD, etc [147]. For particular M values of

1, 10 and 100, the HR criterion is also known as Top1, Top10 and Top100 characteristics,

respectively. As a consequence of Eq. (6.1), a single scoring function could demonstrate a

different scoring power on benchmarks based on the same set of native complexes but with

decoys generated with different docking algorithms. Furthermore, the fact that a scoring

function can/cannot able to distinguish one particular near-native candidate does not im-

ply that it can/cannot distinguish any near-native candidate. Thus, the scoring power is a

strongly biased criterion, which critically depends on the poses of the binding candidates in

the benchmark set.

To address the latter problem, we introduce an alternative criterion to evaluate the scor-

ing power of a scoring function, which is free of the above-mentioned disadvantages. More

precisely, we complement the benchmark set with the constructed uniform ensembles of

near-native conformations, where each conformation lies within a certain RMSD from the

corresponding native conformation. We provide the fast and efficient method to generate the

uniform ensembles of near-native conformations. Then, we estimate the scoring power of

a scoring function using the cumulative distribution function of decoy scores and the prob-

ability density function of the near-native conformation scores. As a result, the obtained

characteristic has no bias toward near-native predictions generated by docking algorithms.

Thus, the proposed theoretical model could be applied to assess the scoring power of scoring

functions for protein-protein as well as for protein-ligand complexes.

To practically demonstrate the proposed criterion, we investigate the scoring power of

the pair-wise distance-dependent knowledge-based scoring functions for protein-protein in-

teractions. This class of scoring functions has been recently shown to be very promis-

ing compared to the other classes of scoring functions [94]. In this study we derive the
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knowledge-based scoring functions using the modern convex optimization apparatus and

non-redundant set protein-protein complexes as the training database.

The solution of the convex problem guarantees that the scoring function is optimal, that

is, it perfectly distinguishes the native complexes from the non-native ones on the training

set. More precisely, the derived scoring function is regularized using the cross-validation

technique in order to exclude over-fitting to the training set. Nonetheless, the novel criterion

demonstrates that the scoring function discriminates well only those conformations that

have ligand-RMSD less than 2 Å, but it loses the scoring power for conformations with

ligand-RMSD of 5 Å. Thus, the novel criterion provides a better estimation of the scoring

power of scoring functions compared to the standard hit rate criterion. It could be useful

in analysis of the scoring power and helpful in better understanding of the properties and

pitfalls of different scoring methods. Particularly, the obtained results suggest to look for

novel strategies to derive and train knowledge-based scoring functions in order to improve

their scoring power.

6.2 Theoretical Foundation

6.2.1 Near-native Ensemble of Molecular Complex

Generally, the ratio of near-native conformations of molecular complexes produced by the

docking algorithms is low. This prevents the rigorous assessment of the success rate of a

scoring function on test benchmarks. Here we propose a fast and efficient methodology to

construct an ensemble of near-native conformations given the native molecular complex.

We start with the equation that relates the axis and the angle of rotation with the RMSD

corresponding to the given rotation of a structure [104]:

RMSD2 =
4

W
sin2 α

2
nT In, (6.2)

where I is the inertia tensor of the structure, α is the angle of rotation about the unit axis n

and W is the sum of atomic weights. Given Eq. (6.2), the rotation angle is expressed as:

α = 2arcsin

(

RMSD
2

√

W

nT In

)

, (6.3)

provided that this angle exists. Then, given an axis of rotation n and a value of RMSD, one

can compute rotation angle α that corresponds exactly to RMSD from the initial conforma-

tion. Having this, the problem of ensemble generation reduces to collecting of a sufficient



98A novel criterion to evaluate scoring power of scoring functions for molecular complexes

number of rotation axes. For the uniform sampling of the near-native conformations, we

collect the rotation axes using the spherical tessellation by an icosahedron. More precisely,

starting from an icosahedron with twelve vertices and twenty triangular faces, one connects

midpoint of each edge within each face, thus splitting each triangle into four new triangles.

Then, this procedure is repeated until a desired level of tessellation is achieved. Finally,

the set of normalized radius-vectors to the centroids of each triangle is taken as the collec-

tion of the rotation axes. In this study, we use five levels of tessellation resulting in 640

non-collinear rotation axes.

The set of the rotation axes is generated only once. Then, for each native complex in the

benchmark and each axis of rotation from the set, one evaluates the rotation angle according

to Eq. (6.3) and obtains the corresponding near-native conformation. Thus, the complexity

of ensemble generation for a particular native complex is O(Nl
atoms×Naxes), where Nl

atoms is

the number of atoms in the ligand and Naxes is the number of rotation axes in the set.

6.2.2 Novel Scoring Power Criterion

We start with the introduction of a few concepts useful for the further derivation of the novel

success rate equation. First, we will refer to the non-native ensemble as to the non-redundant

set of non-native conformations of a particular molecular complex C. This ensemble could

be generated using various docking algorithms that use exhaustive search in six rotational

and translational degrees of freedom. Second, we will refer to the near-native ensemble of

complex C corresponding to the RMSD value of r as to the non-redundant set of confor-

mations, such that the RMSD between each conformation and the native one is exactly r.

Section 6.2.1 describes the efficient algorithm to generate such ensemble. Finally, by assign-

ing a score to each conformation in a particular ensemble, one obtains the score distribution

of the ensemble. The concept of score distribution has been already used for targeted scor-

ing functions in virtual screening of protein-ligand molecular complexes by Seifert [125].

However, Seifert used the Gaussian approximation of the score distributions despite the fact

that for different targets the distribution varies and could be asymmetric.

Given the score distribution for the near-native ensemble corresponding to the RMSD

value of r, we reconstruct the probability density function (PDF) p(x,r). The value of p(x,r)

at a point x equals to the probability of a random near-native complex with RMSD = r

having the score of x. We use the kernel density estimation (KDE) function to reconstruct

the PDF. In principle, any standard kernel is appropriate. Here we choose the Epanechnikov

kernel as the KDE function, because it is optimal in the minimum variance sense.

Given the score distribution for the non-native ensemble, we construct the empirical
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cumulative distribution (ECD) function F(x):

F(x) =
1
N

N

∑
i=1

✶{di < x}, (6.4)

where di is the score of the ith non-native decoy, N is the total number of non-native decoys

in the ensemble and ✶{condition} is the indicator function. The value of F(x) at a point

x corresponds to the probability of the score of a random non-native decoy to be less than

x. Thus, we can estimate the prediction error of a near-native conformation with the score

s as the value F(s) and express the prediction error of a conformation from the near-native

ensemble corresponding to the RMSD = r as:

e(r) =
∫ ∞

−∞
p(x,r)F(x)dx (6.5)

In practice, one is interested in the prediction error of the near-native conformations below

a certain RMSD value, rmax, rather than at fixed RMSD value r:

E(rmax) =
∫ rmax

0
e(r)ρ(r)dr, (6.6)

where ρ(r) reflects the probability of a near-native conformation to be at RMSD = r and,

hence, depends on the sampling algorithm used to generate the near-native conformations.

Here, we obtain the near-native conformations using Eq. 3.14 and the precomputed set of

rotation axes (see Section 6.3.1 ). For small angles α the dependence between the RMSD

and the angle is linear regardless the axis of rotation:

RMSD ∼ sin
α

2
∼ α

2
(6.7)

Thus, using the uniform sampling of α we can treat ρ(r) to be the uniform distribution.

Then, the prediction error is written as:

E(rmax) =
1

rmax

∫ rmax

0
e(r)dr (6.8)

Recall that E(rmax) corresponds to the particular molecular complex C. The value of

E(rmax) = 0 means perfect discrimination between near-native complexes and the decoys,

while the value of E(rmax) = 0.5 means a random behavior of the scoring function. Thus, for

clarity, it is useful to introduce the correlation coefficient R(rmax) = 1−2E(rmax), such that

R(rmax) = 1 corresponds to the perfect discrimination between near-native complexes and

the decoys, R(rmax) = 0 for a random behavior of the scoring function, and R(rmax) = −1
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corresponds to the anti-correlation, that is the near-native complexes possess larger scores

compared to the decoys. Finally, given a set of various protein complexes {Ci}, i = 1..N,

we evaluate the prediction errors for all the complexes and estimate the scoring power Ω of

the scoring function of interest Ŝ as:

Ω =
1
N

N

∑
i=1

R(rmax,Ci, Ŝ) (6.9)

6.3 Materials and Methods

6.3.1 Training Set and Test Benchmark

Native Complexes

We used the training database of 851 non-redundant protein-protein complex structures pre-

pared by Huang and Zou [51]. This database contains protein-protein complexes extracted

from the PDB [12] and includes 655 homodimers and 196 heterodimers. We updated

three PDB structures from the original training database: 2Q33 supersedes 1N98, 2ZOY

supersedes 1V7B, and 3KKJ supersedes 1YVV. The training database contains only crys-

tal dimeric structures determined by X-ray crystallography at resolution better than 2.5 Å.

Each chain of the dimeric structure has at least 10 amino acids, and the number of inter-

acting residue pairs, as defined as having at least 1 heavy atom within 4.5 Å, is at least 30.

Each protein-protein interface consists only of 20 standard types of amino acids. No ho-

mologous complexes were included in the training database. Two protein complexes were

regarded as homologues if the sequence identity between receptor-receptor pairs and be-

tween ligand-ligand pairs was > 70%. Finally, Huang and Zou [51] manually inspected the

training database and left only those structures that had no artifacts of crystallization.

Non-native Decoys

To generate non-native decoys, we used the Hex software for the rigid-body docking [116].

For the Hex input, we used polar Fourier shape expansions to polynomial order N = 31, the

real-space angular search step of 7.5◦, the radial search range of 40 Å with a translational

step of 2.5 Å and the subsequent sub-step of 1.25 Å. We ran Hex for each native complex

and clustered the docking solutions with a threshold of 8 Å. The first 100 non-native decoys

were included in the training set and the first 200 non-native decoys were added for the test

benchmark.



6.3 Materials and Methods 101

Near-native Decoys

To generate ensembles of near-native decoys we employed the algorithm provided in Section

6.2.1. In this work, we considered five levels of icosahedron tessellation, resulting in 640

non-collinear rotations axes. We used six values of RMSD, namely: 0.5, 1.0, 2.0, 3.0,

4.0 and 5.0 Å. For each native protein complex in the training set we fixed the receptor

and generated ensemble of near-native configurations for the ligand. Thus, for each native

protein complex we constructed six ensembles corresponding to the different RMSD values,

each consisting of 640× 2 = 1,280 near-native complexes (the factor 2 corresponds to the

two rotations by angles ±α). Figure 6.1 shows several ligand conformations for the protein

complex 1A0G with RMSD value of 5 Å. The near-native complexes along with the Hex

decoys form the test benchmark.

Figure 6.1 Several near-native rigid-body ligand conformations of the protein complex
1A0G. Each near-native configurations (grey) is exactly 5 Å away from the native con-
figuration (blue).

6.3.2 Scoring Function Derivation

To derive pair-wise distance dependent scoring function we used the same concepts of scor-

ing functional F and mapping of molecular structure P to a structure vector x in a high-

dimensional Euclidean space as described in Chapter 4. Given the structure vectors obtained

from the training set, in order to determine the scoring vector w, we formulate the convex
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optimization problem in the following form:

Minimize (in w, b, ) :
λ

2
∥w∥2

2 +∑
i j

1
γ

Ci j log{1+ exp(γyi j(w
T xi j +bi))}, (6.10)

where indexes i runs over different protein complexes, index j runs over the decoys of ith

protein complex, Ci j is the weight of the corresponding structure vector, yi j equals to 1 and

−1 for the near-native and non-native decoys, respectively, b is the offset vector, γ is the

smoothing constant and λ is the regularization parameter. There are several differences

between the problem (6.10) and the problem (4.8). In the problem (6.10) we use the loga-

rithmic loss function rather than the hinge-loss as was originally introduced in (4.8). This

allows to use fast gradient-based methods for minimizing composite objective function to

solve the problem (6.10) in its primal form, which turned out to be much faster compared to

the block sequential minimal optimization method in the dual form [30]. The regularization

parameter λ plays a crucial role in the quality of the resulted scoring function and should be

optimized using the cross-validation procedure. Here, we optimized parameter λ in order to

achieve the maximum performance of the scoring function on the benchmark consisting of

the Hex decoy structures along with the generated ensembles of near-native structures. We

solve the problem (6.10) using the first-order method by Nesterov [99, 100]. The solution

of the convex optimization problem, w, is constructed such that near-native conformations

possess lower score compared to the non-native conformations for each protein complex

in the training set, provided that the corresponding scoring vectors are separable. In other

words, the scoring function is built to maximize the performance of the scoring function on

the test benchmark in the sense of the HR criterion (Eq. (6.1)).

6.4 RESULTS AND DISCUSSION

6.4.1 The Score Distribution of Near-native and Non-native Ensem-

bles

Given the scoring function S and the ensemble of decoys structures (either non-native or

near-native) one can construct the score distribution by computing the score for each decoy

in this ensemble. Figure 6.2 demonstrates such score distributions obtained with the derived

knowledge-based scoring function for the near-native ensembles of the protein complex

1A0G corresponding to the RMSD values of 1 Å, 3 Å, and 5 Å, rspectively. As one can see

from the figure, the smaller RMSD value is used, the narrower is the score distribution. On

average, the standard deviation of the score distribution corresponding to the RMSD value
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1A0G

Figure 6.2 The score distributions of the near-native ensembles of protein complex 1A0G
corresponding to the RMSD values of 1 Å (black, solid), 3 Å (red, dashed), and 5 Å (blue,
dotted).

of 1 Å is 2.3 times smaller compared to the one corresponding to the RMSD value of 5

Å. This is because for small RMSD values the difference between the near-native and the

native configurations becomes negligible. Hence, the structure vectors become similar. In

the limiting case of the RMSD value approaching 0 Å, they are identically equal. We can

also see that for large RMSD values the score distribution is shifted to the right. Indeed, for

all protein complexes we observed that the mean value of the score distribution is larger for

larger RMSD values. This is because large RMSD values imply a large difference between

the decoy and the native conformations. Hence, the scores of the decoys are higher with

accordance to the solution of the convex optimization problem (6.10). All these observa-

tions are the consequence of the properties of the derived scoring function from the convex

optimization problem (6.10).

In a similar manner, one can reconstruct the score distribution of the non-native ensem-

ble. If there is no intersection between the score distributions of the near-native and the non-

native ensembles of a particular molecular complex, the scoring function performs perfectly

and can thus distinguish any near-native structure from any non-native structure. However,

the intersection between the two distributions indicates that the scoring function may fail to

discriminate a near-native conformation. Figure 6.3 presents these two cases obtained with

the derived scoring function and scoring distributions corresponding to the non-native en-

semble and near-native ensembles of RMSD equal to 0.5 Å and 3.0 Å, correspondingly, for

protein complex 11AS. In the case when the score distributions of the near-native and the

non-native ensembles intersect, one can in principle split the near-native and the non-native
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11AS

Figure 6.3 Left: The near-native score distribution corresponding to the RMSD = 0.5 Å and
the non-native decoy distributions (for protein complex 11AS). No intersection between the
distributions implies the perfect discrimination between the near-native and the non-native
conformations.
Right: The near-native score distribution corresponding to the RMSD = 3.0 Å and the non-
native decoy distributions (for protein complex 11AS). Intersection indicates that some of
the near-native conformations possess a higher score compared to some of the non-native
conformations.

ensembles in two parts such that the scoring function performs perfectly on the first ensem-

ble and fails totally on the second one. As a consequence, the standard benchmark-based

HR criterion can not correctly evaluate the scoring power of the given scoring function. In

contrast, our criterion manipulates with the information about the score distributions instead

of a set of scores for a particularly collected benchmark. Thus, it provides a more rigorous

assessment of a scoring function.

We want to stress that the score distributions of near-native ensembles depend both on

the scoring function and the sampling algorithm, thus, they could be rather different from

the normal distribution. In order to demonstrate this fact, we estimated the goodness of fit τ

of the reconstructed score distributions f (x) with respect to the Gaussian model of the input

set of scores g(x),

τ =
∫ +∞

−∞
| f (x)−g(x) | dx, (6.11)

where f (x) is a score distribution reconstructed with the Epanechnikov kernel and g(x) is the

Gaussian distribution corresponding to the mean and the standard deviation values of the set

of scores. The τ-characteristic is the area between the two curves and it demonstrates how

well the input set of data could be approximated by the Gaussian distribution. Particularly,
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τ = 0 corresponds to the normally distributed input data. We calculated the τ-characteristic

for the near-native and the non-native ensembles for each protein complex using the derived

scoring function and did not find correlation between the τ-characteristics with respect to

the RMSD values. Figure 6.4 presents the τ-characteristics for different RMSD values

averaged over all the conformations of all protein complexes in the test benchmark and

Figure 6.5 presents the obtained τ-characteristics along with the score distributions and the

corresponding Gaussian model for two protein complexes (1DDZ and 1PL5).

Figure 6.4 Goodness of fit of the reconstructed score distributions with respect to the Gaus-
sian model. Value of the τ-characteristics averaged over the all conformations in the test
benchmark are shown with respect to the conformations’ RMSD. The error bars corresponds
to the standard deviation.

To summarize, we demonstrated that the standard benchmark-based HR criterion could

be not rigorous in certain cases and using the score distributions may provide a better es-

timation of the scoring power of scoring functions. We also demonstrated that the score

distributions are different for different protein complexes and, in general, could not be ap-

proximated by the normal distribution. Thus, the direct computation of the scores for the

near-native and the non-native ensembles for a given scoring function is the inevitable step

to reconstruct the corresponding score distributions.

6.5 Scoring Power of Pair-wise Distance-dependent Knowledge-

based Scoring Function for Protein-protein Interactions

Here, we assess the scoring power of the pair-wise distance-dependent knowledge-based

scoring function (SF) derived using the large non-redundant set of 851 protein-protein com-

plexes (see Section 6.3.1) and the modern convex optimization apparatus (see Section 6.3.2).

The obtained SF provides Top1 characteristic of 0.92, which means that the scoring function
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1DDZ

1PL5

RMSD=0.5 Å RMSD=5.0 Å

RMSD ≥ 10.0 ÅRMSD=0.5 Å

RMSD ≥ 10.0 Å

RMSD=5.0 Å

τ = 0.54 τ = 0.19 τ = 0.12

τ = 0.13 τ = 0.69 τ = 0.54

Figure 6.5 Score distributions with the corresponding Gaussian model along with the τ-
characteristic obtained for two protein complexes at different RMSD values.

ranks the native complex at the first place in 92 % of protein complexes in the training set.

However, using the novel criterion (see Eq. (6.9)), which takes into account the intersection

between the score distributions (see Figure 6.3), one can see that the ability to predict near-

native structures dramatically decreases as the RMSD between them and the native confor-

mation gets larger (see Table 6.1). As one can see from Table 6.1, for near-native confor-

mations with RMSD less than 0.5 Å the probability to have a higher score for a non-native

decoy is less than 1 %. This is the expected result because the SF was trained specifically

to well discriminate the native conformations presented in the benchmark. Nonetheless,

albeit the derived SF provides good results for near-native conformations within 2 Å from

the native structure, it is not able to discriminate near-native conformation of 5 Å (the corre-

sponding scoring power is almost zero). We want to emphasize that since the test benchmark

is based on the same native complexes as the training set, the presented Ω values correspond

to the upper estimation of the SF’s scoring power.

To conclude, we assessed the scoring power of the pair-wise distance-dependent knowledge-

based scoring function for protein-protein interactions using the novel criterion. We demon-

strated that albeit the Top1 criterion reports on 92% success rate, the derived SF is able to
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Table 6.1 Scoring power of the derived scoring function with respect of the RMSD of near-
native conformations.

RMSD (Å) Scoring power Ω (see Eq. (6.9)) Prediction Error E (see Eq. (6.6))

0.5 0.982 0.008
1.0 0.928 0.036
2.0 0.691 0.155
3.0 0.419 0.291
4.0 0.194 0.403
5.0 0.023 0.488

predict well only near-near native structures within RMSD of 2 Å from the native com-

plex and performs very poorly on the near-native conformation of 5 Å. Thus, the proposed

criterion is very useful to analyze the scoring power of a scoring function of interest.

6.6 CONCLUSIONS

We propose the novel criterion for a rigorous evaluation of the scoring power of scoring

functions. In contrast to the standard hit-rate criterion, which is based on the set of scores

computed for the typical benchmarks that comprise few near-native and many non-native

conformations, the proposed criterion manipulates with the score distributions of the non-

native and the near-native ensembles of conformations. The score distributions depend both

on the scoring function and protein complexes and cannot be approximated with the normal

distribution. The fast methodology to generate near-native ensembles of conformations with

a certain RMSD value is presented. The novel criterion was applied to evaluate the scoring

power of the pair-wise distance-dependent knowledge-based scoring function. To derive the

scoring function, we used a benchmark consisting of native complexes and many non-native

conformations generated with the docking algorithm. The obtained results demonstrate

that the scoring function discriminates well near-native conformations with RMSD values

within 2 Å. However, it performs poorly for the near-native conformations of higher RMSD

values. Thus, the proposed criterion is very useful when doing analysis of a scoring function

of interest and should be used instead or at least in combination with the standard hit-rate

criterion.





Chapter 7

Conclusions

7.1 Performance in CAPRI

The algorithms presented in the Thesis were used to predict structures of protein-protein

targets in the CAPRI contest [55] as described below. First, we used the Hex software [115]

to generate pair-wise docking predictions given the structures of monomers in the unbound

state. For the Hex input parameters, we used polar Fourier shape expansions to polynomial

order N = 31, the real-space angular search step of 7.5◦, the radial search range of 40 Å with

a translational step of 2.5 Å, the subsequent sub-step of 1.25 Å, and the clustering threshold

of 5− 10 Å, depending on the number of hits. Generally, we kept about 10,000 docking

poses. Then, we used the CARBON rigid-body minimization algorithm in combination

with the KSENIA potential to refine the obtained binding candidates. Additionally, the

SCWRL4 package[75] was used at each iteration of the rigid-body minimization in order to

take into account flexibility of protein side chains. Finally, ten best binding candidates were

selected as the submission models for CAPRI.

Figure 7.1 presents the best predictions for protein-protein CAPRI targets on Rounds

26-27 obtained with the described docking pipeline. For the Target 53-54 there were no un-

bound structure of one of the monomers and thus the homology modeling with I-TASSER

server [119] was used in order to generate initial docking models. For Target 53 our dock-

ing pipeline succeeded to provide one acceptable-quality prediction among ten top-ranked

models. However, there were no successful predictions for Target 54, probably due to the

large difference between the true structure and the homologue model (only 4 teams out of

42 succeeded to produce acceptable-quality predictions). For Target 58 we obtained one

medium-quality prediction and only four other teams out of 22 succeeded to produce pre-

dictions of the same quality.

CAPRI Targets 55 and 56 were aimed to test methods for evaluating the effect of point



110 Conclusions

Figure 7.1 The native and predicted structures of the protein-protein complexes for CAPRI
Targets.
Left: native structure of Target 53 (grey) and acceptable-quality model produced by the
docking pipeline (the two monomers are coloured in red and blue, respectively).
Right: native structure of Target 58 (grey) and medium-quality model produced by the
docking pipeline (the two monomers are coloured in red and blue, respectively).

mutations on protein-protein interaction affinity. Predictors were provided with the com-

prehensive datasets on the effects of every point mutant of two designed protein binders of

influenza hemagglutinin [96]. Generally, point mutations stabilized the protein folds and

some of them also provided effect on the binding of the complex. It turned out to be very

difficult to predict the effect of the mutations following physics-based principles. As a re-

sult, only machine-learning methods provided statistically significant correlation between

the predicted values and the measured Kd constants. Particularly, we obtained a good corre-

lation between our score and the binding affinity for point mutations corresponding to four

residues lying on the interface between the two proteins and failed otherwise [96].

CAPRI Round 30 was launched in collaboration with the Critical Assessment of Struc-

ture Predictions of proteins (CASP) [97]. Overall 25 targets were designated as CAPRI

comprising 18 protein dimers. In this round we obtained correct predictions for 11 our of

18 dimer targets.

7.2 Future Work and General Conclusion

Despite dynamic progress in the computational biology, there are many ways to improve

the existing tools and many challenging problems to solve still remain. For example, the

DockTrina approach could be generalized for protein oligomers of higher order, where each
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pair of monomers interact with each other. The only critical moment for DockTrina is the

presence of spatial transforms corresponding to the correct pair-wise conformations in the

input file. However, the number of native contacts is decreasing with the growing order of

oligomer where all monomers interact with each other, thus, it becomes very difficult to

predict correct pair-wise interfaces. Thus, albeit the generalized algorithm is easy to imple-

ment, it is hard to test and validate due to the difficulties of composing the corresponding

benchmarks. Regarding the improvement of DockTrina, its scoring function (2.2) could be

parametrized as follows

Score = γScoreDocking +
(1− γ)Scoremax

Docking

αRMSD+β
, (7.1)

where α , β , and γ are parameters to optimize. Then, given collected benchmarks, one

can find the optimal values of α , β , and γ in order to achieve higher success rates using a

particular pair-wise docking program. It would be also interesting to investigate and include

other terms in the DockTrina’s scoring function, which are not taken into account by scores

of a pair-wise docking algorithm, for example a term that reflects the relative interface areas

of different pairs of monomers. Finally, it would be interesting to take into consideration

some extent of flexibility for the DockTrina predictions.

Concerning development of the knowledge-based scoring function, there are many in-

teresting directions to explore. For example, the results of CAPRI Round 27 suggests that

residues located far from the interface do play role in the binding affinity of the protein

complex, thus, the corresponding effect should be taken into account in the scoring func-

tion derivation. Another point is that the current scoring function is based on the atom

typization provided by Huang and Zou [51]. One may consider different atom typization

and distinguish atoms not only with respect to their properties, but also, for example, with

respect to the type of an amino acid this atom belongs to. Furthermore, the evaluation of

derived scoring functions with the novel criterion indicates necessity to take into account

more sophisticated statistical information about interactions, e.g. triplet distribution func-

tions, quadruplet distribution functions, etc. Finally, it would be interesting to employ pre-

sented methodology in order to develop knowledge-based scoring functions for other types

of molecule interactions, such as those involving small ligands, polysaccharides peptides,

RNAs and others.

Regarding the rigid-body minimization algorithm, from the obtained results one may

see that on one hand, the gradient based CARBON method is very efficient to resolve steric

clashes in molecular complexes, and on another hand, the quasi-Newton scheme obtains

conformations with a better energy. Thus, it would be interesting to investigate a hybrid
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approach that first employs CARBON in order to resolve the steric clashes and then uses

a higher order scheme to obtain more reliable energy value. Again, since proteins undergo

conformational changes upon binding, it is important to include more degrees of freedom to

refine molecular complexes.

Finally, we hope that the developed algorithms will put a weighty bit into the progress

in computational biology and will be helpful in solving problems of structure-based drug

design in general and protein structure prediction in particular.
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