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9Transposable Elements in Genomic 
Sequences
Laurent Modolo and Emmanuelle Lerat 

Abstract
Genome sequences are composed of different 
compartments, among which transposable ele-
ments (TEs) represent one of the most important. 
Not only do these elements correspond to a par-
ticularly large proportion of genomes, they are 
also involved in different mechanisms implicated 
in the evolution of genomes, such as chromo-
some rearrangement and gene innovation. Thus, 
the precise determination of TEs in genomes is 
of significant importance. This step is becoming 
more and more complex with the emergence of 
new types of sequence data coming from next-
generation sequencing (NGS) technologies. 
In this chapter, we present the current status of 
bioinformatic developments made in the detec-
tion and analysis of TEs in genomic sequences. 
We first present the classic tools dedicated to 
the identification of TEs in classic genomic data, 
which originate from whole-genome sequences. 
Because these sequences are significantly differ-
ent from the new types of sequences generated by 
NGS and because the problem of repeats in these 
data is not trivial, we then present how it is pos-
sible to handle TEs in NGS data. We also provide 
some examples of tools designed to answer par-
ticular questions about TEs using NGS data and 
how these types of data are particularly valuable 
for deepening our knowledge of the dynamics of 
TEs. Although this is a still a fast-growing field for 
which new developments are made every day, we 
hope to provide a broader view of what currently 
exists in this field and what allows for TE analyses 
in genomic sequences.

Introduction
Eukaryotic genomes are composed of different 
elements, which are classified according to their 
function in the organism. The protein-coding 
genes, the non-coding genes (specifically rRNA, 
tRNA, and small RNA genes), and the regulatory 
elements associated with these genes are typi-
cally considered the most important groups. The 
remaining elements, which include pseudogenes 
and repeated sequences, have long been con-
sidered trivial in terms of genome functioning. 
However, this limited vision has begun to change 
over the past several years. Measured genome 
size has been demonstrated to be highly variable. 
However, this metric has been found to have no 
relationship with the ‘complexity’ of the organ-
ism. When considering the expected number of 
genes, this paradox has had the implication that 
a given genome can contain more DNA than 
required. Early genome sequencing projects 
helped to answer this question with the discovery 
that the functional genome, which predominantly 
consists of protein-coding genes, represents only 
a small percentage of the genome, whereas the 
more variable regions of the genome, the ‘non-
coding regions’, were demonstrated to represent a 
higher proportion of the complete genome. With 
regard to the human genome, this finding has 
been particularly striking. The first estimations of 
the gene number in our own genome were radi-
cally revised after the human genome sequencing 
project, which revealed a small number of genes 
(fewer than 25,000) and more than 98% ‘non-
functional’ DNA (Lander et al., 2001). The main 
source of size variation in genomes was then 
identified as the non-coding regions of genomes. 
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Transposable elements (TEs) are a part of these 
still underestimated genomic components, which 
can play important roles in the functioning and in 
the evolution of organisms.

TEs are dispersed repeat DNA sequences 
that have the ability to move from one position 
to another along chromosomes. These elements 
typically encode for all the proteins necessary 
for their movement and possess internal regula-
tory regions, allowing for their independent 
expression. Different categories of TEs have 
been identified, and several attempts were made 
to classify them (Wicker et al., 2007; Kapitonov 
and Jurka, 2008). Globally, two main classes have 
been described according to their transposition 
intermediates (retrotransposons use an RNA 
intermediate and form class I, while transposons 
use a DNA intermediate and form class II). 

Within each class, subclasses have been created to 
group sequences with the same structural features 
(Fig. 9.1). According to the classification system 
of Wicker et al., five orders containing 17 super-
families were described as class I elements, and 
two subclasses, containing 12 superfamilies, were 
described as class II elements. As the number of 
the newly sequenced genomes increases, new ele-
ments and potential new types of TEs are being 
discovered, which increases and enriches the 
complexity of TE classification.

Since B. McClintock discovered and first 
described these elements in maize in the 1950s 
(McClintock, 1956), TEs have been searched for 
and discovered in almost all eukaryotic organ-
isms. Depending on the organism, the proportion 
of TEs can be highly variable and at times large, 
for example, 3% in yeast (Kim et al., 1998), 15% 
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in Drosophila (Dowsett and Young, 1982), 45% in 
human (Lander et al., 2001) and more than 80% in 
maize (Schnable et al., 2009). By proportion, TEs 
are directly linked to the host’s genome size. Their 
proportion is typically very high in organisms 
with a very large genome, indicating their role in 
the expansion of the host’s genome size. The vari-
ability of TE proportions in closely related species 
is linked to different parameters, such as the effec-
tive population size and reproduction mode of 
the host organism, the genetic drift, and the host’s 
regulation of transposition activity. For example, 
in the sibling species Drosophila melanogaster and 
D. simulans, the proportion of TEs varies threefold 
(15% in D. melanogaster and 5% in D. simulans), 
although the two species have only been separated 
for 2.3 to 5.4 million years (Li et al., 1999; Tamura 
et al., 2004; Cutter, 2008). This discrepancy in 
TE content has been hypothesized to be linked 
to either a stronger selection against the deleteri-
ous effects of TE insertion in D. simulans, which 
could be due to a larger effective population size 
compared to D. melanogaster, or to a stronger 
resistance of D. simulans to an increase in TE copy 
number (Kimura and Kidwell, 1994; Vieira et al., 
1999). The self-incompatible plant Arabidopsis 
lyrata presents a larger genome (207 Mb) than 
does the self-compatible plant A. thaliana (125 
Mb); however, these two species are only sepa-
rated by 10 million years (Hu et al., 2011). The 
size variation observed between these two plant 
species is predominantly due to TEs and appears, 
in part, to be related to differences in their mating 
systems (Lockton and Gaut, 2010).

Because of their presence in genomes, TEs 
have a significant impact on genome evolution 
and not only on the evolution of genome size 
(Lisch and Kidwell, 2000; Biémont and Vieira, 
2006). TEs can promote mutations, which can 
be deleterious. For example, in humans, approxi-
mately 96 transposition events are directly linked 
to single-gene diseases (Hancks and Kazazian, 
2012), and half of the spontaneous mutations 
observed in Drosophila are due to TEs (Eickbush 
and Furano, 2002). However, the effects of TEs 
can also increase the genetic diversity of an organ-
ism. The repetitive nature of TEs makes them 
responsible for chromosomal rearrangements 
via homologous recombination between copies, 

which, in some cases, can lead to the emergence of 
new species, such as has been hypothesized for D. 
virilis, for example (Evgen’ev et al., 2000). When 
inserting in or near a gene, TEs can provide new 
regulatory elements, altering the expression of the 
gene, or they can contribute to gene innovation 
by providing a new coding region to a gene (Lisch 
and Kidwell, 2000). The implications of TEs in 
all epigenetic mechanisms have now been clearly 
established (Slotkin and Martienssen, 2007). All 
of these facts make TEs particularly important 
in the adaptation of organisms to environmental 
changes. During the years since their discovery, 
the status of TEs has moved from simple junk 
DNA to major players in genome evolution (for a 
historical review, see Biémont, 2010).

Thus, TEs are important components that 
cannot be neglected when analysing genome 
sequences. These elements can be quite numerous 
and, therefore, very important, and they should 
not be simply removed to ease gene annotations. 
The study of TEs is crucial for understanding 
their dynamics, which then allows us to better 
appreciate how genomes function and evolve. 
The question of identifying TEs in genomic 
sequences is a crucial point that has become more 
and more complex with the emergence of new 
types of sequencing data. In this chapter, we will 
first summarize the classic methods that exist to 
search and annotate TEs in assembled genome 
sequences. We will then identify the difficulties 
that can be encountered when using next-gen-
eration sequencing (NGS) data for this task and 
new methods that have been developed. Finally, 
we will provide examples concerning the specific 
analyses that can be performed on TEs using NGS 
data and how these new types of data constitute 
a significant advance in the field of TE dynamics.

Since the beginning of genome sequencing, sig-
nificant efforts have been made to annotate the 
functional regions of genomes. The presence of 
transposable elements (TEs) and other repeats 
has made this task particularly difficult. Thus, to 
facilitate the annotation of genomes, methods 
to identify TEs and other repeats in genome 



Modolo and Lerat|

sequences were developed (Tang, 2007). Indeed, 
the ability to recognize these types of sequences 
has been a suitable starting point to allow for the 
assembly of a genome and also to ease the predic-
tion of genes. This task is particularly important 
for genomes containing very high proportions 
of TEs. Moreover, given the importance of TEs 
in genome evolution, the identification of these 
sequences has been considered crucial to allow the 
access to entire populations of TE copies present 
in a given organism. Having access to all copies 
of a given TE family is particularly interesting 
for studying the evolution and dynamics of a TE 
family. For example, an analysis of the TE copies 
from the majority of families integrated into the D. 
melanogaster genome surprisingly demonstrated 
that the majority of these TEs had recently moved 
because these TE copies were almost identical 
within families and very few ancient copies were 
present (Bowen and McDonald, 2001; Lerat et 
al., 2003). These observations are in favour of 
either the hypothesis of recurrent and numer-
ous horizontal transfers of these elements or the 
hypothesis of a very high turnover in this genome 
to remove ancient and inactive copies. The 
identification of all the TE copies present in the 
human genome has allowed us to obtain informa-
tion concerning the waves of amplification of the 
non-LTR retrotransposons LINE and SINE and 
the formation of retro-processed pseudogenes 
in this genome (Lander et al., 2001; Ohshima et 
al., 2003). Numerous methods dedicated to the 
identification and classification of TEs have been 
developed over the past 15 years. Several reviews 
have described these methods exhaustively and 
provide lists of available programs in each cat-
egory (Bergman and Quesneville, 2007; Saha et 
al., 2008a; Lerat, 2010; Janicki et al., 2011). In this 
section, we will mainly summarize the different 
categories of existing programs and those, which 
are currently more used and more successful in 
performing their tasks.

Similarity- or library-based methods
The principle of these methods is to compare 
genome sequences to a library of TE reference 
sequences to search for the occurrence of the TEs 
in a genome. The library used can be defined by 
the user or can be a public database. The most 

widely used public database employed in this 
type of work is Repbase ( Jurka et al., 2005). 
This database contains the consensus sequences 
of different repeat sequences from a large set of 
eukaryotic organisms and is typically employed 
jointly with the program RepeatMasker (Smit 
et al., 1996–2010), which performs a similarity 
search using the library as a reference. The main 
advantage of this type of method is that it is fast 
and accurate. Although, it obviously cannot dis-
cover new TE families, this method is still a good 
starting point to explore a new genome, particu-
larly if TE sequences from closely related species 
are described.

Signature-based methods
This type of method uses particular structural 
features (such as nucleotide or protein motifs) of 
known TE classes to determine their occurrence 
in a genome sequence. Thus, this approach can 
locate new elements from a given class but will 
fail to discover new classes of elements. Another 
drawback of this method is that it will only 
discover nearly complete and potentially active 
copies and miss degraded ones. Thus, such an 
approach can be complemented using a library-
based method once complete reference elements 
have been discovered based on their structure. 
Moreover, such an approach will depend on the 
level of knowledge available for a given class and 
if it is possible to determine fixed and shared 
features among several families of the same class. 
Signature-based programs typically concentrate 
on a particular type of TE.

For example, it is possible to specifically search 
for LTR-retrotransposons given several shared 
characteristics between families, such as the pres-
ence of an LTR (long terminal repeat) at each 
end of the sequence, the fact that the two LTRs 
are almost identical for complete and potentially 
active copies, a particular distance between them, 
or the presence of particular protein motifs in the 
ORFs contained inside the element. Different 
programs have been designed to detect LTR-
retrotransposons, of which the most successful 
to date is LTRharvest (Ellinghaus et al., 2008; 
Lerat, 2010). However, the user needs to deter-
mine the perfect parameters for the analysed 
genome to avoid the occurrence of numerous 
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false positives. Because of structural features such 
as the presence of a poly-A tail at the 3′ end of 
the sequence or target site duplications at each 
extremity of the copy, other programs have been 
designed to detect non-LTR retrotransposons 
(Szak et al., 2002; Tu et al., 2004; Lucier et al., 
2007). Particular DNA transposons known as 
MITEs have also been the subject of several pro-
grams because of their specific features, i.e. a short 
size (approximately 500 bp) and the presence of 
terminal inverted repeats (TIRs) at each end of 
a copy; and because the use of similarity-based 
methods to find these transposons is difficult due 
to their short size and a lack of coding capacity. 
Recently, the program MITE-Hunter (Han and 
Wessler, 2010) was developed to decrease the 
number of false positives typically obtained using 
other programs to locate MITEs.

De novo methods
With these types of approaches, it is possible to 
search for new types of elements because there 
is no a priori knowledge of the sequence itself. 
Indeed, these programs take advantage of the 
repetitive nature of TEs. These methods are 
particularly interesting when sequencing the 
genomes of species for which no close relatives 
are currently annotated and for which nothing is 
known about their repeat content. However, these 
methods are particularly sensitive to genomic cov-
erage and to the quality of the sequence assembly. 
Another drawback is that these approaches will 
find any type of repeated sequences, even tandem 
repeats, satellites or segmental duplications, in 
addition to identifying TE sequences, which 
implies a classification step for the results to iden-
tify TEs. Moreover, TE families containing very 
few copies will not be detected.

There are two main approaches that are con-
sidered de novo methods. In the first approach, 
the genome sequence is first compared against 
itself to locate all the repeated sequences. Several 
programs use BLAST (Altschul et al., 1990) to 
perform this step. The repeated sequences that are 
located are then grouped into clusters of similar 
sequence. A consensus sequence is then built 
for each cluster, and all the consensus sequences 
are used in a library-based approach to retrieve 
all occurrences within the genome. Among the 

most utilized programs that are currently used in 
the annotation of genomes, we can cite RECON 
(Bao and Eddy, 2002), PILER (Edgar and Myers, 
2005), and BLASTER (Quesneville, unpub-
lished).

In the second approach, the occurrence of 
multiple small words known as k-mers is searched 
for within the genome sequence. The k-mer can 
then be extended to obtain longer sequences. 
Among the existing programs using this approach, 
some have been used to discover TEs in genome 
sequences, for example, REPuter (Kurtz and 
Schleiermacher, 1999), RepeatScout (Price et 
al., 2005), and ReAS (Li et al., 2005). This last 
program has the peculiarity of running not on an 
assembled genome but on the unassembled reads 
of a whole genome shotgun sequence to avoid the 
problems related to a bad assembly.

The availability of next-generation DNA sequenc-
ing (NGS) technologies has revolutionized our 
approach to genomics (Margulies et al., 2005). 
These technologies allow us to obtain huge 
amounts of data at a relatively low cost and with 
less bias than older technologies (Wicker et al., 
2006), thus opening new avenues to the study 
of TEs. These new types of data also imply that 
the classic methods described previously will no 
longer be adapted. To describe how to deal with 
TEs in NGS data, it is first important to under-
stand why these data are different from older 
sequencing data and what methodologies are cur-
rently available to handle them before performing 
the TE studies.

With NGS technologies, not only has the 
volume of data generated dramatically increased, 
but the range of applications has broadened from 
methylation pattern detection (MeDIP-Seq) and 
the study of DNA–protein interactions (ChIP-
Seq) to quantifying and detecting gene expression 
(RNA-Seq). Whatever the application, three 
steps can always be highlighted in sequencing 
methodologies. First, the DNA of interest is 
randomly fragmented and amplified. Second, the 
ends of each of these fragments are sequenced 
into reads. Finally, the original sequence of the 
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DNA is reconstructed from the reads. Currently, 
the first two steps are highly automated, and the 
only concern of the researcher is to determine 
the appropriate sequencing cost to balance the 
read length and the depth of coverage necessary 
for the study. Even if the read size has increased 
with the development of NGS technologies, the 
reconstruction of the original DNA sequences 
(assembly) is currently still the most challenging 
and time-consuming step.

NGS data are subject to particular artefacts that 
need to be taken into account before performing 
analyses. These artefacts are predominantly adap-
tor sequences originating from failed or short 
DNA insertions during library preparation or 
near identical reads originating from PCR error. 
This step of trimming and filtering can be per-
formed using several tools, such as SeqTrim or 
Quake (Falgueras et al., 2010; Kelley et al., 2010). 
Another problem is the presence of sequencing 
errors. Variations between reads can be caused 
by real sequencing errors or by single-nucleotide 
polymorphisms (SNPs), accounting for poly-
ploidy and pooled samples. Thus, it is important 
to perform error corrections that will be linked to 
the NGS technologies used to generate the data 
because the different sequencing methods pro-
duce different types of sequencing error.

Sequencing and analysing DNA 
using NGS
Once the reads are sequenced, an important 
step is to perform their assembly in order to 
reconstruct the complete genome. This step is 
complex but can be eased if a reference genome 
is available. In such a case, it is possible to map the 
reads directly onto the reference genome. As the 
number of reads can be very large, classic mapping 
programs such as the one from the BLAST suite 
(Altschul et al., 1990) have become too computa-
tionally demanding. Thus, a number of alternative 
approaches have been developed over the past 
three years to handle NGS data. Two strategies 
exist for mapping reads onto a genome. The first 
uses a hash table of the reads, and the other 
uses a Burrows-Wheeler (BW) transform of the 
genome (Schbath et al., 2012). Generally, a hash 
table can better address mismatches, whereas the 
more complex BW transform approach can easily 

handle repeats. There are different alternatives to 
deal with reads occurring at multiple positions, 
which are known as multi-reads. The program can 
either ignore them, keep the best matches, keep 
a specific number of them, or ignore the ones 
mapping to more than a specific number of loca-
tions (Treangen and Salzberg, 2012). Taking into 
account all of these considerations, it appears that 
the programs BWA (Li et al., 2010) and Bowtie 
(Langmead et al., 2009) can outperform the other 
programs on many criteria, such as computa-
tional time, the correct positions of the reads, the 
number of unmapped reads, and the multi-reads 
with no more than three mismatches (Schbath et 
al., 2012). Other parameters that need to be taken 
into account in addition to mismatches are indels. 
For this question, BWA is currently the only map-
ping program using the BW transform that is able 
to handle indels. Mapping programs using the 
BW transform appear to be the most appropri-
ate for the study of TEs because they can better 
handle genomic repeats. Moreover, even if this 
class of algorithms relies on heuristics to address 
mismatches, we expect to have a better error 
correction and less mismatch on TE sequences 
because they are sequenced with a better coverage 
than the rest of the genome. For example, with a 
coverage of 10×, we expect an average coverage of 
50× for a given TE that is present with five copies 
in the genome.

Most of the time there is no reference genome, 
and the original DNA sequences have to be 
reconstructed de novo. The mapping approach can 
still be used with the LAST program, which can 
take into account the divergence between species 
to relax the mapping parameters and perform 
xeno-mapping (Frith et al., 2010). Otherwise, 
two different approaches exist for assembling 
without a reference genome, the first using a seed 
approach and the other using a de Bruijn graph. In 
the first approach, the algorithm tries to elongate 
short sequences of k nucleotides (k-mers) using 
overlapping reads by computing an overlapping 
graph where all the paths in the graph consist of 
overlapping reads. Developed for Sanger tech-
nologies, the construction of such a graph is often 
computationally intractable in the case of NGS 
data (Pevzner et al., 2001). Since the publication 
of the EULER program, most assemblers use 
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the de Bruijn graph approach to assemble reads 
(Fig. 9.2). The first step of this approach is to build 
an index of all the possible sequences of size k 
(k-mers, often between 24 and 27 bp). The graph 
itself is built by adding the information from each 
read, and the sequence of a read is represented 
by a path between nodes. The nodes correspond 
to the k-mers and their reverse complements to 
handle more efficiently the two strands of DNA. 
The addition of each read will correspond to 
the addition of more edges between the nodes. 
The construction of a contig is a byproduct of 
the graph itself. Retrieving the original DNA 
sequence is a matter of linearizing the information 
contained in the graph by following the most sup-
ported edge, i.e. the one with the highest number 
of reads (Pevzner et al., 2001; Zerbino and Birney, 
2008).

In practice, even with a high coverage, there 
are always some parts of a DNA sequence that are 
more difficult to assemble, such as repetitive ele-
ments. If the repeat length is larger than the read 
length, which is often the case for TEs, then the 
coverage cannot help to reconstruct the original 
sequence. In this case, a read cannot be associated 
with one particular copy of the repeated element. 
Unassembled or uncovered regions are going to 
form gaps in the assembly, thus decreasing the 
connectivity between the resulting sequences. 
Paired-end sequencing technology can be very 
useful for solving some of the problems caused 
by repetitive content and short or very short 
reads (Treangen and Salzberg, 2012). This type of 
technology is a specific way of sequencing a DNA 

fragment at both ends. As the size of the fragments 
is known, the two resulting reads can be reliably 
positioned relative to each other. To obtain pairs 
of reads that are more than 500 bp apart (called 
the insert size), a specific library must be built 
(a mate-pair or long paired-end library) (Bent-
ley et al., 2008). With paired-end sequencing, a 
coverage of 10× is sufficient to have at least one 
mate-pair spanning every instance of each repeat 
in the genome and to be able to anchor this repeat 
if the paired read is uniquely mappable (Wetzel 
et al., 2011). This mate pair information is very 
useful to position and order the contigs between 
each other, to fill the gaps, and to build scaffolds 
(Fig. 9.3). Contrary to the read length, longer 
inserts will not correspond to a better assembly 
(Wetzel et al., 2011). It appears that the best 
strategy is to use different insert sizes to be able to 
resolve small repeats with short inserts and long 
repeats with large inserts. The size of the insert 
can be specifically tuned to optimally assemble 
the repeat content of the genome under study 
(Wetzel et al., 2011). For example, it was pos-
sible to obtain the same assembly quality found 
using the Sanger-based approach by using insert 
sizes of 180 bp, 3 kb, 6 kb and 40 kb for the mouse 
and human genomes (Gnerre et al., 2011). As 
with the classic Sanger sequencing methods, the 
mis-assembly of the repetitive parts of a genome 
can lead to numerous errors in the reconstructed 
sequences (Phillippy et al., 2008). For example, 
a collapse is formed when the assembler incor-
rectly joins reads originating from distinct repeat 
copies. On the contrary, expansions are formed 

 

a k-mer and its complement. (c) Nodes from a chain of adjacent nodes link with each other by only one edge 
and are collapsed into a single node. The graph is then traversed to form contigs.
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when reads originating from different copies 
of a repeat are included in the assembly of one 
copy of this repeat. These cases are often associ-
ated with a greater or lesser density of reads than 
expected over the repeat(s), and the mate-pairs 
are stretched out or compressed. Sequence rear-
rangements are another type of assembly artefact 
and appear when blocks of DNA are separated by 
repeats. In this case, the order of these blocks can 
be wrongly recovered because they are anchored 
by similar repeats. A special case of rearrange-
ments is inversion, where the two repeat copies 
are in opposite directions. Sometimes all the 
above cases of mis-assembly can be possible with-
out violating any constrains on the paired-end 
information. The amosvalidate package is a collec-
tion of tools aimed at detecting mis-assemblies in 
an automated pipeline (Phillippy et al., 2008).

All the DNA reconstruction problems that 
we have just described will appear in the de 
Bruijn graph by forming three types of structures 
(Zerbino and Birney, 2008). The first corresponds 
to ‘tips’, where a chain of nodes is disconnected 
from the rest of the graph at one end. The second 
corresponds to ‘bubbles’, where two paths start 
from the same node. The third corresponds to 
erroneous connections, which have no identifi-
able structure and correspond to chimeric reads. 
The ‘bubble’ structures of the graph can cor-
respond to perfect circles, in the case of SNPs or 
can form densely connected ‘tangles’ in the case 

of repetitive sequences (Pevzner et al., 2001). 
The shape of these ‘tangles’ can be used for the 
characterization of the TE, as described in Macas 
et al. (2007). There are many programs that can 
handle whole genome assemblies using the de 
Bruijn graph and that are capable of using paired-
end information, such as the programs Velvet 
(Zerbino and Birney, 2008) and ABySS (Simpson 
et al., 2009). More recently, SOAPdenovo (Li et 
al., 2010) was used for the de novo assembly of 
the giant panda genome with an average of 20× 
coverage using 52 bp reads and 37 paired-end 
libraries with insert sizes ranging from 150 bp 
to 10 kb. This genome contains 36.1% TEs. The 
most recent program, ALLPATHS-LG (Gnerre et 
al., 2011), was created to account for paired-end 
information with mixed insert size libraries. This 
program produces a better assembly quality than 
SOAPdenovo but it is slower (for mammalian-
sized genomes, it requires three weeks when 
SOAPdenovo requires only three days (Gnerre 
et al., 2011)). Even if the development of assem-
blers allows for an ever improving assembly of 
genomes, including their repeat content, there 
will always remain some unassembled fractions 
in the data. The study of these leftover contigs or 
reads can be a source of information about the TE 
content. These analyses can be conducted using 
mapping approaches of the data to known TE 
databases of DNA or protein sequences (Sun et 
al., 2012).

 
contigs, and the small grey squares are other nodes in the graph. The dashed lines represent all the possible 
paths built from the read information. The reads are represented by black arrows, and the paired-end 
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Sequencing and analysing RNAs 
using NGS
New sequencing technologies have opened up 
new vistas of knowledge at the various levels of 
an organism’s biology. Having access to an entire 
genome is particularly valuable, but having access 
to the landscape of gene expression allows us to 
go deeper into the analysis of genomes. Thus, 
RNA-Seq technology has been developed, which 
predominantly consists of adding a reverse 
transcription step to transform RNA into DNA 
before performing the regular NGS steps (Mari-
oni et al., 2008). The goal of this approach is to 
obtain the sequence and the abundance of all the 
transcripts of a given organism in a given condi-
tion. Using these types of sequencing methods, 
it is important to handle particular artefacts. In 
addition to the errors generated by the reverse 
transcription step, the reconstruction of the RNA 
sequences accounts for the different levels of 
expression for the different transcripts and for the 
mechanism of alternative splicing (Martin and 
Wang, 2011). Because of the presence of shared 
exons in different transcripts, expression counting 
or quantification is not trivial for RNA-Seq data 
(Trapnell et al., 2010). Moreover, there is a com-
petition between the most abundant transcripts, 
which can be over-sequenced, and the less abun-
dant ones, which can be missed. To sequence and 
quantify less abundant transcripts, hybridization-
based depletion methods to remove the more 
abundant transcripts can be utilized (He et al., 
2010). However, these depletion methods induce 
biases for the quantification and for the assembly 
of the most expressed transcripts.

Once the main artefacts are corrected, there 
are two strategies to analyse the RNA-Seq data. 
The first approach, known as ‘map first’, consists of 
mapping the reads onto a reference genome. This 
approach can be confronted with many problems, 
ranging from the correctness of the alignment, 
the possibility of losing the splicing information 
and the completeness of the reference genome. 
There are many programs for mapping RNA-Seq 
data to a reference genome, but it appears that the 
most commonly utilized is a combination of the 
program TopHat, which is able to discover splice 
junctions, and the program Cufflinks, which 
can be used for the quantification of transcripts 

(Trapnell et al., 2010). The second approach, 
‘assembly first’ (de novo method), consists of 
directly assembling reads to reconstruct the 
transcripts. Using this approach, the resultant 
transcripts can subsequently be mapped to a 
reference genome. A number of transcriptome 
assembly programs have been developed, and 
most use the de Bruijn graph approach. This data 
structure naturally handles the high redundancy 
of the data because each repeat or transcript is 
only present once in the graph. The most com-
monly used transcriptome assemblers are Velvet 
(Zerbino and Birney, 2008) and Trans-ABySS 
(Robertson et al., 2010). More recently, the 
Trinity program was proposed (Grabherr et al., 
2011). Other approaches, such as KISSPLICE 
(Sacomoto et al., 2012), have been developed 
to identify and quantify de novo polymorphisms 
such as alternative splicing, SNP and tandem 
repeats in RNA-Seq data.

Even with a reference genome, the best results 
are obtained using mixed strategies of the two 
approaches (Surget-Groba and Montoya-Burgos, 
2010). Based on the confidence we have in the ref-
erence genome, there are two possibilities. When 
the reference genome is of a very good quality, it 
is possible to first align the reads onto it and then 
to assemble the reads using the mapped reads 
as long contigs. The assembling step allows for 
resolving of the reads coming from the expressed 
regions not present in the reference genome. In a 
case where the reference genome is not of a very 
good quality, another strategy is used, consisting 
of first making the assembly of reads before map-
ping them onto the reference genome. In this case, 
the errors present in the reference genome have 
little impact because they are not present in the 
assembled contigs. The mapping step is then used 
to resolve scaffolds from the more fragmented 
contigs obtained using the de novo approaches. 
This last approach was used to successfully assem-
ble the transcriptome of the mosquito Anopheles 
funestus (Crawford et al., 2010)

With the new technologies of DNA and RNA 
sequencing, new opportunities to study TEs have 
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appeared, once the difficulty for handling these 
repeated sequences taken into account when pro-
cessing the data. In this section, we will exemplify 
different analyses that have allowed us to improve 
on our understanding of TEs.

Even if the cost of NGS sequencing has continu-
ously diminished it is still of interest to perform 
genomic surveys to characterize large genomes. 
The historic approach of using the end sequences 
of bacterial artificial chromosome (BAC) vectors 
is biased towards sequences that can be success-
fully loaded into BACs. NGS technologies allow 
us to perform more representative surveys of large 
genomes by sequencing at a low depth using a 
whole genome shotgun (WGS) approach. This 
approach was first used to further characterize the 
soybean genome, with particular attention paid 
to its repeat content (Swaminathan et al., 2007). 
The first step of the data analysis is to characterize 
a maximum number of reads using databases of 
annotated sequences. For this step, classical pro-
grams such as BlastX and BlastN may be used. 
For example, in the survey analysis of the barley 
genome using 454 sequencing at 0.1× coverage, 
it was possible to determine 7.4% of the barley 
genes using BlastX on a database of predicted 
rice proteins and to characterize the presence of 
many TEs using BlastN on a TE plant database 
(Wicker et al., 2009).

Another characteristic resulting from genome 
sampling with WGS and NGS technologies is 
to expect an increased coverage of the repetitive 
content. For example, with a genomic coverage 
of 0.01×, we can expect a coverage of 10× for 
each repeat occurring in the genome with 1000 
copies (Macas et al., 2007). With this character-
istic, the identification of repeat content using a 
NGS survey is not limited to a homology search. 
The first program developed to use the expected 
increase in coverage for TE sequences is ReAS, 
which has already been referenced in section 1 of 
this chapter and allows us to assemble consensus 
TE sequences (Li et al., 2005). The TEs must exist 
at a sufficient copy number to be recognized by 
their read number and must not be too degraded 
to have sufficient sequence similarities between 
their copies to be able to build a consensus 

sequence. The ReAS program starts by building a 
k-mer index of the reads. The high copy number 
k-mers are then picked out to retrieve the reads 
containing them. The reads are then assembled 
and expanded to recover the consensus sequences 
of the different elements. When possible, the 
contigs formed are linked using the paired-end 
information. The main drawback of this method 
is the fact that it is not designed for short or 
very short reads and cannot process reads less 
than 104 bp (Macas et al., 2007). The AAARF 
(Assisted Automated Assembler of Repeat 
Families) program was designed to overcome this 
problem and can process short or very short reads 
(DeBarry et al., 2008). This program uses one read 
as a query sequence to obtain its nucleotide cover-
age against the rest of the dataset using BlastN. 
This nucleotide coverage is then used to select the 
overlapping reads, which are then aligned using 
ClustalW to build a new query sequence. This 
program iteratively elongates each query sequence 
and assembles a set of TE contigs.

To recover repetitive sequences, it is also pos-
sible to cluster overlapping unannotated DNA 
sequences. This method was used to assemble 41% 
of the reads of the soybean genome into contigs 
using the Phrap program (Swaminathan et al., 
2007). A similar approach was used to assemble 
31.6% of the unannotated reads into contigs for 
the barley genome survey (Wicker et al., 2009). 
However, using this approach and because of 
the low depth of the data, some links are absent 
in the overlapping graphs, leading to contig 
fragmentation (Novák et al., 2010). A slightly 
different approach was used to reconstruct the 
repeat sequences from a survey of the pea genome 
(Macas et al., 2007). In this study, the program 
tclust from the TGICL package was used to 
cluster the reads based on a mutual similarity 
and to assemble each cluster into contigs. With 
this method, each cluster contains related repeat 
sequences, which can be used to better character-
ize the variability in the TE content of a genome. 
This method was successfully used to characterize 
the repeat content of the banana genome (Hri-
bová et al., 2010). One drawback of this more 
sensible approach is the formation of chimeric 
clusters, which are caused by the presence of reads 
spanning two TE sequences and form bridges 
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between two clusters (Macas et al., 2007). More 
recently, a novel cluster-based approach was pro-
posed with the program SeqGraphR (Novák 
et al., 2010). This program uses a hierarchical 
agglomeration algorithm to cluster the reads and 
to characterize the TE sequences. This graph–
based clustering allows for a better segregation 
of groups of unrelated sequences than tclust. 
Moreover, it allows for a better characterization of 
the cluster structure by computing various graph 
metrics to discriminate between different types 
of repeats. The assembly of TE sequences from 
a cluster results in the formation of consensus 
sequences. With this type of sequence representa-
tion, a significant amount of information about 
TE sequence variability is lost. SeqGraphR can 
provide an alternative representation of TEs by 
direct graph visualization. This approach can be 
very useful for deciphering contig assembly or for 
distinguishing between two closely related TEs. 
SeqGraphR was successfully used to character-
ize the TE content of three species of Nicotiana 
tabacum in a genome survey using 454 sequencing 
at 0.1× (Renny-Byfield et al., 2011).

All previous methods work for genome survey 
data with relatively small dataset sizes, ranging 
from 33 Mb to 90 Mb, but may not be suitable 
for larger datasets. Moreover, approaches using 
read overlap information will only work for sparse 
genome survey data, where the only sequences 
that can be assembled come from repeat 
sequences. If the coverage reaches or exceeds 1×, 
most of the genome can be assembled, and the 
described approaches will lose their specificity for 
TE sequences. However, a genome survey dataset 
can always be generated from a deep genome 
sequencing output by randomly selecting a subset 
of reads to easily study the most abundant repeats. 
LTR retrotransposons can also be de novo identi-
fied using mapping approaches. For this class of 
TEs, the reads will pileup on the two LTRs, and 
a ‘batman ears’-like structure will appear when 
using programs such as Tallymer or JellyFish 
if we allow for multi-read mapping (Kurtz et al., 
2008; Marçais and Kingsford, 2011).

Structural variant detection
One of the most interesting characteristics of 
TEs is their ability to replicate and to colonize a 

genome. This transposition activity can be studied 
between species or populations. NGS technolo-
gies allow us to study copy number variation 
(CNV) by sequencing pooled DNA from different 
individuals (or pool-Seq). The main advantages of 
these approaches are that the approaches are fast 
and not copy specific and offer a higher sensitiv-
ity compared to other technologies (Alkan et al., 
2011). To perform these types of studies, one 
needs an assembled reference genome, a database 
of the TE sequences (which can be built from 
the sequencing data) and, optionally, paired-end 
technology to better resolve the TE information.

For this purpose, the T-lex program was 
developed to compute the population frequen-
cies of individual TE insertions (Fiston-Lavier et 
al., 2011). This program is a pipeline using four 
modules. The first module uses RepeatMasker 
to identify TEs and their flanking regions in the 
reference genome. The second module uses MAQ 
(Li et al., 2008) to determine the presence of TEs 
by mapping reads across the sequences formed by 
an identified TE and its flanking regions in the ref-
erence genome. The third module uses SHRiMP 
(Rumble et al., 2009), which can align sequences 
with long gaps, to identify the absence of a TE 
insertion in the analysed populations by mapping 
reads spanning only the two flanking regions of the 
TE sequence in the reference genome. Finally, the 
last module combines the information of the pre-
vious modules to obtain the frequencies of each 
TE family in the populations. The second version 
of the T-lex program is able to automatically use 
paired-end information to detect novel TE inser-
tions. By using a similar approach to T-lex, it was 
possible to successfully analyse the activity of TEs 
using pooled DNA samples from 114 isofemale 
lines of D. melanogaster (Kofler et al., 2012). For 
this study, 80 million paired-end fragments were 
produced with the Illumina Genome Analyser 
IIx. These reads were mapped onto the reference 
genome, where all the repeats were first masked 
using RepeatMasker. The mapping step was 
then performed using the BWA-SW program (Li 
et al., 2010). The authors were then able to identify 
novel insertions with at least three paired couples 
of reads, with, for each couple, one read mapping 
to a genomic locus and the others mapping to a 
TE sequence. In this study, novel TE insertions 
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were detected if they were present in at least 7% of 
the populations.

Without a reference genome, comparative 
studies of the TE content of different species 
can also be achieved using genome surveys. For 
example, an analysis of genomic gigantism in 
plethodontid salamanders was performed using 
a genome survey of six species sequenced with a 
coverage of 0.1× using 454 technology to obtain 
reads of a maximum length of 400 bp (Sun et al., 
2012). In this study, the RepeatModeler pro-
gram (Smit and Hubley 2008–2010) was used to 
identify those repeats covered by a minimum of 
four reads. The REPCLASS program (Feschotte 
et al., 2009) was then used to further classify the 
unknown repeats. The results demonstrated that 
the analysed salamander species accumulate large 
amounts of LTR-retrotransposons compared to 
other vertebrates.

Analysis of TE regulation by the 
host
With the prevalence of TEs and their capacity to 
invade a genome, it is crucial for the host to be 
able to regulate their activity to avoid too many 
deleterious effects. During the past few years, the 
links between TEs and the epigenetic systems of 
regulation, such as DNA methylation, histone 
modifications, and RNA interference, have been 
shown to be linked to the repeat content of a 
genome (Siomi and Siomi, 2008; Rebollo et al., 
2010). In particular, diverse RNA-mediated 
defences have been discovered in different 
eukaryotic organisms (Slotkin and Martienssen, 
2007; Blumenstiel, 2011). These discoveries have 
allowed for the development of new models for 
TE dynamics in natural populations in which four 
phases have been described: an initial phase of 
TE invasion; a second phase of TE proliferation, 
leading to the appearance of TE insertion alleles 
initiating the production of small RNAs; and 
finally a quiescent state, leading to the stabiliza-
tion of TE copy number (see (Blumenstiel, 2011) 
for a review).

With the development of NGS technologies, 
it has become easier to analyse the epigenetic 
control of TEs. Particular modifications can regu-
late TE activity, such as DNA methylation. This 
type of modification can be determined using a 

MeDIP-seq approach and has already been used 
in several organisms. For example, in black cot-
tonwood, the TEs possessed variable methylation 
according to their family, with LTR retrotranspo-
sons being globally more methylated than other 
classes (Vining et al., 2012).

RNA-Seq is also a reliable way to study active 
TEs because the complete RNA sequences of the 
TEs can be found in the data output. The control 
of TEs can also be studied when considering 
small RNAs such as piRNAs or siRNAs, which 
are expected to be copy specific to the TEs that 
they control. This type of analysis can also be 
used to validate de novo annotations of TEs. The 
results of these approaches are naturally linked 
with the condition or the stage where the differ-
ent TEs are expressed. Due to piRNA regulation, 
the quantification aspect of RNA-Seq is of a lesser 
interest for the study of TEs because the number 
of transcripts is not directly correlated with the 
activity of a TE (Brennecke et al., 2007). How-
ever, these studies allow us to obtain information 
on the potentially complete and active copies that 
are inserted into the genome. The analysis of small 
RNAs is typically performed by mapping the reads 
on to a reference genome to help identify clusters 
of small RNAs and to determine which copy in 
the genome is associated with a particular small 
RNA. This approach has been used in the analysis 
of the control of particular TEs in D. melanogaster 
(Brennecke et al., 2007; Brennecke et al., 2008; 
Grentzinger et al., 2012) and in plant species 
(Hollister et al., 2011). Of course, these genome-
mapping approaches have limitations due to the 
differences that exist between individuals. For 
example, in the case of an analysis of P-elements, 
it was not possible to map them onto the D. mela-
nogaster reference genome because this particular 
element is absent in the sequenced strain (Bren-
necke et al., 2008). Thus, it was necessary to find 
another strategy, in this case, using those reads 
that did not map onto the reference genome.

The regulation of TEs can also be linked to 
the histone modifications of the DNA. Using 
ChIP-seq data, it is possible to determine what 
types of modifications are associated with TEs 
or with genes given their TE neighbourhood. 
For example, in mouse embryonic stem cells, 
an analysis of ChIP-seq data revealed that the 
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majority of gene promoters surrounded by 
numerous TEs were depleted of the bivalent 
marks H3K27me3 + H3K4me3 compared to 
genes surrounded by few or no TEs. This bivalent 
mark has been demonstrated to be specific to 
a ‘poised state’ of developmental genes that are 
temporarily repressed in embryonic stem cells but 
that will be activated later during development 
(Zhang and Mager, 2012). This previous analysis 
indirectly observed modifications associated with 
TEs. Generally, during the mapping step of reads 
sequenced using ChIP-seq analysis, the reads 
cannot be associated with TE copies because only 
uniquely mappable reads are conserved (those 
having a unique location on the genome). Thus, 
an alternative mapping approach was proposed by 
Huda et al. to allow for the direct examination of 
ChIP-seq reads associated with TEs (Huda et al. 
2010). In that analysis, the authors took advantage 
of several ChIP-seq experiments, which allowed 
them access to a genome-wide map of 38 histone 
modifications in human CD4+ T cells (Barski et 
al., 2007; Wang et al., 2008). They used the MAQ 
program to align the reads, allowing for redundant 
genomic locations. It was then possible to charac-
terize what type of TE was present in the mapped 
reads. Their results demonstrated a high variation 
in TE histone modifications according to the TE 
family, with the older TE families and the TEs 
close to genes carrying more modifications than 
the younger TE families and those TEs distal to 
genes.

These different examples demonstrate how 
valuable NGS data are in the analysis of TEs, and 
also identify the need for specific tools to handle 
these data for studying TEs.

Transposable elements are important compo-
nents of genomes that cannot simply be put 
aside when analysing genomes. It is important to 
understand how TEs function and evolve to better 
understand all of the impacts of TEs on genome 
evolution. Given the large amount of genomic 
data that has been continuously generated, this 
task becomes more and more difficult. However, 
these data allow us an access to new information 
that we did not have several years ago.

Since the first sequencing projects were 
undertaken, efforts have been made to develop 
programs that allow for the detection and analysis 
of TE sequences. Various programs have been 
developed that use different or complementary 
approaches to detect TE sequences. These tools 
have very different performances, but even the 
best ones cannot discover all the TE sequences in 
a genome because each has its own drawback(s) 
that prevents it from finding each and every TE 
(Saha et al., 2008b; Lerat, 2010). Thus, the best 
approach to exhaustively describe the landscape 
of TEs in a genome is to use several of these 
different programs and to cross-reference the 
results. Similarly, the best approach to locate TE 
sequences in complete genomes appears to reside 
in the use of pipelines of programs. For example, 
the RepeatModeler pipeline includes different 
programs to build, refine and classify consensus 
sequences of putative interspersed repeats (Smit 
and Hubley, 2008–2010). The REPET pipeline 
has been built to integrate the findings of similar-
ity- and de novo-based programs (Quesneville et 
al., 2005). This pipeline was recently updated to 
retain those programs that provide the best results 
after the authors tested different de novo programs 
(Flutre et al., 2011). Other pipelines have gener-
ally been developed to answer specific questions 
(see Lerat, 2010).

In all cases, another important step after the 
identification of putative TE sequences is the 
classification of the repeats into families. This is a 
difficult step because it must take into account the 
biological aspect of TEs, such as the fact that some 
copies can be fragmented and thus not only full-
length elements exist in a genome and that TEs 
often insert inside each other, producing what are 
known as nested TEs. Some programs have been 
developed to integrate the classification step, such 
as the TEclass program, which tries to deter-
mine the main classes of unknown elements using 
machine-learning algorithms (Abrusán et al., 
2009), or the REPCLASS program, which uses 
different approaches to annotate TEs (Feschotte 
et al., 2009).

With the new type of genomics data generated 
by next-generation sequencing technologies, it is 
necessary to develop new approaches to detect 
and analyse TEs. Indeed, most of the programs 
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that have been designed for classic genomic data 
cannot handle these new types of data. This is 
predominantly because NGSs produce small 
sequence fragments, which increase the difficul-
ties involved in assembling the repeat content of 
a genome, but also because the amounts of these 
data are too large to be handled with the existing 
tools. However, new programs have been designed 
to take these problems into account. Even if all 
these programs are not specific to TEs, specific 
programs are now available to answer particular 
questions on TEs with regards to population 
genomics, and we can hope for new developments 
in more specific areas. Questions about the epige-
netic regulation of TEs are particularly important 
at different levels, such as the impact of TEs in 
cancer development in humans. NGS data now 
offer the possibility of having access to this infor-
mation, which will necessitate the development of 
particular tools specific for TEs.

With the development of NGS data, access to 
individuals’ sequence data should provide us with 
valuable information on the specific content of 
TEs, allowing us to be more precise in terms of the 
insertion profiles of TEs. Currently, the only avail-
able possibility is to compare data to reference 
genomes. However, this shortcut is not precise 
enough when delving deeper into our understand-
ing of the mechanisms of TE dynamics.

Web resources
A list of existing TE detection tools is available at: 

http://bergmanlab.smith.man.ac.uk/?page_
id = 295
Quesneville. BLASTER suite <http://urgi.
versailles.inra.fr/Tools/Blaster>.
Smit, AFA, Hubley, R and Green, P. Repeat-
Masker Open-3.0. 1996–2010 <http://www.
repeatmasker.org>.
Smit, AFA, Hubley, R. RepeatModeler Open-
1.0. 2008–2010 <http://www.repeatmasker.
org>.
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Abstract

Because ofmethodological breakthroughs and the availability of an increasing amount ofwhole-genome sequence data, horizontal

transfers (HTs) in eukaryotes have received much attention recently. Contrary to similar analyses in prokaryotes, most studies in

eukaryotes usually investigate particular sequences corresponding to transposable elements (TEs), neglecting the other components

of the genome.Wepresent a newmethodological framework for thegenome-widedetectionof all putative horizontally transferred

sequences between two species that requires no prior knowledge of the transferred sequences. This method provides a broader

picture of HTs in eukaryotes by fully exploiting complete-genome sequence data. In contrast to previous genome-wide approaches,

we used a well-defined statistical framework to control for the number of false positives in the results, and we propose two new

validation procedures to control for confounding factors. The first validation procedure relies on a comparative analysis with other

speciesof thephylogeny tovalidateHTs for thenonrepeatedsequencesdetected,whereas the secondonebuilt upon thestudyof the

dynamics of the detected TEs. We applied our method to two closely related Drosophila species, Drosophila melanogaster and

D. simulans, inwhichwediscovered 10 newHTs in addition to all theHTs previously detected in different studies,which underscores

our method’s high sensitivity and specificity. Our results favor the hypothesis of multiple independent HTs of TEs while unraveling a

small portion of the network of HTs in the Drosophila phylogeny.

Key words: horizontal transfer, genome-wide method, Drosophila, transposable elements, FDR.

Introduction

Thanks to next-generation sequencing (NGS) technologies

and to recent advances in de novo genome-assembly algo-

rithms, we now have access to an increasing number of com-

plete eukaryotic genomes. This methodological shift toward

deep sequencing has changed the scale of investigation for

many genomic studies and now allows the study of horizontal

transfers (HTs) between eukaryotic species (Gilbert et al. 2010,

2013; Gilbert and Cordaux 2013).

HTs are defined by an exchange of genetic material be-

tween two reproductively isolated organisms (Gilbert et al.

2009) or by a movement of genetic information across

normal mating barriers between more or less distantly related

organisms (Keeling and Palmer 2008). Contrary to prokary-

otes, for which HTs are common and well described (Fall et al.

2007; Juhas et al. 2009; Weinert et al. 2009), HTs are thought

to be rare in eukaryotes, and their underlying mechanisms

remain unknown (Andersson 2005). Proposed hypotheses to

explain HTs in eukaryotes range from virus-mediated HTs

using direct transfer of episomes (O’Brochta et al. 2009),

viral particles, or infection (Kim et al. 1994; Dupuy et al.

2011) to parasite-mediated transfers (Gilbert et al. 2010).

Overall, the main difference between eukaryotes and pro-

karyotes regarding HTs resides in the type of DNA material

that is transferred: HTs usually involve genes in prokaryotes

(Ochman et al. 2000), whereas in eukaryotes, HTs usually in-

volve noncoding DNA and transposable elements (TEs)

(Schaack et al. 2010). Following the availability of complete

assembled genomes, more attention has been directed to

the detection of HTs in eukaryotes, but most studies rely on

similar approaches to the ones used for the detection of HTs in

prokaryotes (Doyon et al. 2011). However, the differences in

the type of horizontally transferred sequences between pro-

karyotes and eukaryotes and in the quantity of DNA to be

investigated raise specific methodological challenges that

need to be addressed to obtain a broader picture of

genome-wide HT dynamics in eukaryotes (de Carvalho and

Loreto 2012).

A particularity of the detection of HTs in eukaryotes is that it

first requires the genome-wide identification of candidate

GBE
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pairs of sequences that are not necessarily predefined. This

point has motivated the development of several approaches,

such as the surrogate method, which relies on differences in

nucleotide patterns consistent with foreign DNA (Ragan 2001;

Putonti et al. 2006). Nevertheless, this type of approach dis-

plays such a high rate of false detections that it is not efficient

for real case studies (Azad and Lawrence 2011). Other

genome-wide approaches start with all-to-all Blast searches

between genomes of many species and detect HTs using an

arbitrary cutoff using e-values (Shi et al. 2005) or a lineage

probability index (Podell and Gaasterland 2007). However,

although these strategies have given better results than the

surrogate method, the lack of statistical framework for the

detection of HTs in both methods has limited the interpreta-

tion of their results and the precise assessment of their speci-

ficity and sensitivity (de Carvalho and Loreto 2012). Overall,

the promises of genome-wide approaches have been tem-

pered by these common drawbacks, which explain the prev-

alence of sequence-specific approaches in HT studies even for

genome-wide data sets.

When focusing on sequence-specific approaches to study

HTs, we can discriminate between tree-topology-based

approaches and sequence-divergence-based approaches. In

prokaryotes, the gold standard for detecting HTs relies on

the study of incongruences between the phylogeny of the

sequences undergoing HTs and the phylogeny of the species.

Because the pairwise identity of a horizontally transferred se-

quence is higher than expected according to the divergence

time of the two species (Silva et al. 2004; Loreto et al. 2008), a

phylogenetic tree based on this sequence will be discordant

from the species tree. Unfortunately, phylogenetic approaches

require a large taxonomic sampling of genes to have sufficient

power of detection, which is often lacking in eukaryotes.

Moreover, this method poorly differentiates HT genes from

ancestral gene duplication(s) followed by gene loss(es) (Roger

1999). Phylogenic incongruences can also be produced when

two or more variants of the ancestral lineage sequence have

been stochastically inherited by the derived lineages (Dias and

Carareto 2012). Finally, another pitfall of these approaches is

the possibility of phylogenetic reconstruction artifacts, which

can lead to strongly supported but false trees and thus to false

positives for HT detection.

Studying pairwise sequence divergences constitutes an al-

ternative that is commonly used when working with eukary-

otes. It can rely on different divergence metrics, such as the

synonymous substitution rates (dS or Ks), to test the consis-

tency of the number of synonymous differences accumulated

between two sequences with the divergence time between

the two species. Confounding factors can also decrease the

power of dS-based approaches. Codon usage bias, for in-

stance, can result in a reduced dS for the reference genes,

which can decrease the sensitivity of detection of sequences

with low dS (Wallau et al. 2012). Purifying selection and var-

iable rates of sequence evolution can also lead to spurious HT

detections or a lack of power for identity-based methods

(Capy et al. 1994; Pace et al. 2008). Finally, a third line of

evidence for the detection of HTs is a patchy distribution of

the sequences within a group of taxa (as they are not vertically

transmitted). However, because of stochastic losses, the lack

of coverage of some parts of the genomes and the random

sampling of the population alleles in the sequenced strains,

this third line of evidence is hardly self-sufficient to infer an HT

event (Keeling and Palmer 2008; Schaack et al. 2010).

One strategy to control for spurious HT detections has been

to focus on one line of evidence for the detection of HTs and

to rely on the two others for validation purposes (Loreto et al.

2008; Gilbert et al. 2010). However, when dealing with

eukaryotes, the absence of evidence for phylogenetic incon-

gruences and the absence of a patchy distribution are likely to

be poor validating arguments, as they do not constitute strict

evidence against the possibility of an HT (Wallau et al. 2012).

Another weakness of current sequence-specific approaches is

that both tree-topology- and sequence-divergence-based

approaches are restricted to coding sequences (CDSs). This

represents only a small part of most eukaryote genomes

and introduces an important detection bias for the analysis

of horizontally transferred sequences.

In eukaryotes, for which HT events involve noncoding DNA

and TEs, only 330 cases of horizontally transferred TEs have

been described to date (Wallau et al. 2012) compared with

rates as high as 30%of lateral gene transfers per phylogenetic

branches for prokaryotes (Abby et al. 2012). TEs are DNA

segments that are able to replicate and insert themselves

into the genome using different mechanisms (Finnegan

1997; Wicker et al. 2007; Jurka et al. 2011). One of the out-

standing features of TEs is their ability to cross species bound-

aries and invade new genomes (Daniels et al. 1990; Pinsker

et al. 2001; Ludwig et al. 2008). These elements can represent

the most abundant part of large eukaryotic genomes, as is the

case of themaize genome (85%) (Schnable et al. 2009) and of

the human genome (between 45% and 78% according to

the detection method [Lander et al. 2001; de Koning et al.

2011]).

Notably, among the 330 horizontally transferred TEs

detected, 178 concern drosophilid species, and from the

101 putative HT events proposed in Drosophilae in 2008,

only 15% were confirmed by the three lines of evidence we

have mentioned (Loreto et al. 2008). Regardless of this

overrepresentation of drosophilids, the majority of these 330

HT detections relied on sequence-specific studies of candidate

sequences. With this approach, only a small part of the

genomes is exploited, which leads to an underestimation of

the number of HTs. Our proposed genome-wide approach

aims to solve this bias by requiring no prior knowledge

concerning the sequences of interest and evaluating all the

identifiable pairs of sequences between two genomes with an

identity-based approach. Our method addresses the detection

of all HTs genome wide as a multiple-testing problem to
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handle this large number of identity-based detections and to

control the proportion of false positives in the results (Wei

et al. 2009). We also propose two new filtering methods to

sort out spurious HT detections corresponding to conserved

sequences in the results.

We applied our method to the genome-wide detection of

all putative HT sequences between two Drosophila species:

Drosophila melanogaster and D. simulans. These two cosmo-

politan Drosophila species have a divergence time estimated

between 4.3 and 6.5 Myr (Tamura et al. 2004) and are highly

similar on many points, except in their TE content. TEs in

D. melanogaster represent a large amount of the genome

(15% [Dowsett and Young 1982]), with mainly young and

active (highly similar) copies (Bowen and McDonald 2001;

Kaminker et al. 2002; Lerat et al. 2003). In contrast, the TEs

in D. simulans are represented mainly by old and degraded

copies (Lerat et al. 2011) and only account for 6.85% of the

genome (Hu et al. 2013). To explain the differences in the TE

landscape between these two species, previous studies based

on a restricted number of TEs have shown that numerous HTs

were likely to be involved (Bartolomé et al. 2009; Lerat et al.

2011) (see Carareto [2011] for a review). To obtain a broader

picture of HT between these two genomes, we performed a

whole-genome comparison study between D. melanogaster

and D. simulans assuming that undefined fragments of DNA

may have been transferred from one species to the other.

These undefined fragments of DNA can contain any types

of sequences, such as TEs, nuclear genes, or intergenic

DNA, thus removing any detection bias toward CDSs. As a

result, we detected 10 new putative horizontally transferred

TEs in addition to all the horizontally transferred TEs described

by different studies between D. melanogaster and D. simu-

lans, bringing to light a portion of the rich network of HTs that

seems to link together the Drosophila species.

Materials and Methods

Our method can be divided into two main parts. For the first

part, it relies on amultiple-testing framework to identify with a

high sensitivity all the sequences that may have been horizon-

tally transferred between two species at the genome scale.

This approach is divided into three different steps described

later. Then, we developed a multiple-testing framework to

evaluate the output of multiple identity-based detections of

HTs while controlling for the expected proportion of false pos-

itives in the results. A novelty of our approach is the modeling

of the data throughout the genome as candidate sequences

that are structured spatially, accounting for their dependency

structure with a nonhomogeneousMarkov model (NHMM) to

increase the power of the multiple-testing correction (Kuan

and Chiang 2012). For the second part of our method, we

discriminate between putative HTs and other mechanisms,

leading to a high pairwise identity to increase our specificity.

For this purpose, we propose two novel validation procedures

that can be applied for genome-wide studies to control for the

numerous sources of spurious detections inherent to the de-

tection of HT.

We will thereafter introduce the software, the algorithms,

and the statistical models that we used for the different parts

of this approach (supplementary fig. S1, Supplementary

Material online). In our application, genome A corresponds

to the genome of D. melanogaster and genome B to the

genome of D. simulans.

Description of the Tree Steps for the Detection of
Putative Horizontally Transferred Sequences between
Two Genomes A and B

Step 1: Selection of the Sequences of Interest

To identify HT events, we define a sequence of interest as part

of a pair of sequences with a higher pairwise nucleotidic iden-

tity than expected between the two species A and B. This first

part of the pipeline aims to delimit such sequences in the two

genomes. To achieve this goal, we start by retrieving the list of

all the identifiable pairs of sequences between the two species

A and B. For this step, we performed a nucleotidic all-to-all

Blast (version 2.2.26) of one genome against the other

(Altschul et al. 1990). The output of such a Blast defines a

many-to-many cardinality between sequences from the two

species, meaning that a given sequence from one species

can be linked to many sequences in the other species, and

vice versa. These types of links are complex and represent a

large quantity of data to address. Moreover, as we cannot

observe two different horizontally transferred sequences at

the same locus in the species A, we filter the resulting pairs

of sequences to only retain the best match for each position

of the genome of A. For the task at hand, we only need the

best local alignments of sequences for each position along the

genomes because the other alignments would have a lower

identity and thus a lower probability to correspond to an HT

event.

To parse the Blast output and obtain a one-to-one cardi-

nality from a many-to-many cardinality, we developed in

python the program htdetect.py (available from the

online resources). This program uses the fact that when work-

ing on two different genomes, there is always a genome of

better quality (genomeA) than the other genome (genome B).

Our algorithm can be divided into the four following stages

(fig. 1):

1. Compute the identity between each pair of sequences and
the corresponding P-values to account for the identity and
the size of the pair of sequences (see unilateral binomial
test later) (fig. 1A).

2. Order all the pairs of sequences according to their position
in genome A (fig. 1B).

3. Merge all the overlapping pairs of sequences in genome A
to obtain a one-to-many cardinality from the many-to-
many cardinality (fig. 1C).
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4. Keep the sequences with the lowest P values from genome
B for each pair of sequences that have beenmerged in step
3 to obtain a one-to-one cardinality (fig. 1C and D).

In the hypothetical case where both genomes are of equiv-

alent quality, the above steps will be strictly symmetrical to

obtain a one-to-one cardinality.

Step 2: Computation of the Expected Pairwise Identity
between the Compared Species

To test H0 : “the number of differences is greater than or

equal to the expected number of differences,” for each of

the filtered sequences, we compute the expected pairwise

nucleotide identity between the species A and B, given their

time of divergence. For this purpose, we used a global pair-

wise alignment of the genome of the species B against the

genome of species A. We compute the number of identical

nucleotides for each nonoverlapping window of size 1kb

along each chromosome arm of the species A. The size of

1kb was empirically chosen as a trade-off between the reso-

lution for the identity computation (of 0.01%) and informa-

tion about the identity variation (a large window size only

gives access to the average identity). To compute the nucleo-

tide identity percentage between the species A and B for each

of these windows, we removed the unknown nucleotides and

the gaps from the computation.

We then used a Gaussian kernel smoothing function of

these nonoverlapping window identity scores to obtain the

distribution of the nucleotide identity between the two spe-

cies. As this identity distribution is skewed to the right in the

case of our application to Drosophila species (fig. 2), we chose

to use the highest mode of this distribution as the expected

pairwise identity between the two genomes, instead of the

mean or a given quantile.

Step 3: Test of the Sequence Pairwise Identity

To model the pairwise identity, for every pair of sequences n,

we denote by Wn the number of different nucleotides

between the two sequences. The distribution of Wn is

B Ln, pnð Þ, where Ln is the length of the pair of sequences of

interest and pn is the probability of having a nucleotidic dis-

similarity. Our aim is to test H0 : pn � p0
� �

accounting for Ln,

in which 1� ep0 is the expected identity calibrated using the

reference distribution constructed from the global alignment

of the two genomes (¼95.62% for our application). Thus, we

compute for each pair of sequences n the probability

Pðwobs
n Þ ¼ P Wn � wobs

n

� �
of having a number of different

nucleotides lower than expected, or unilateral P-value.

The number of tests N equals the number of candidate

pairs of sequences for each chromosome arm and for the

whole genome. Thus, for a given level of type I error (e.g.,

� ¼ 0:05), with a crude estimate under independence of the

tests, the number of false positives (N � �) can be larger than

the number of positives.

At each position along the genome of species A, we have a

P-value denoted by PðwnÞ that is distributed according to a

uniform distribution in [0,1] under H0. From this P value, we

want to infer an indicator variable denoted by Sn, such that

Sn ¼ 1 if H0 is rejected at position n and Sn ¼ 0 otherwise. To

proceed, we use the local false discovery rate (‘FDR) strategy,

which consists in assessing the posterior probability that Sn is

under H0 (Efron et al. 2001). Instead of using raw P-values, a

standard strategy consists in using the inverse probit trans-

form, such that zn ¼ ��1 PðwnÞð Þ, which results in centered

standard Gaussian variables for the z under H0, whereas the

others follow an unknown density distribution f1. Then, the

posterior probability of being under H0 is ‘FDRn ¼ P Sn ¼ð
1jznÞ. The decision rule consists in selecting positions

n ¼ 1, . . . , ‘, such that ‘ ¼ max i : ð1=iÞPi
j¼1 ‘FDRi � �

n o
,

where ‘FDR1, . . . , ‘FDRN is ordered and a is the false discov-

ery rate (FDR) level (Benjamini and Yekutieli 2001).

By mapping candidate sequences along the genome of

species A, we expect the probability for one locus to have a

higher pairwise nucleotide identity than expected to depend

on its neighbors. Moreover, with the fragmentation of the

candidate sequences due to the nucleotidic Blast, we also

could detect small adjacent pieces of this locus instead of a

unique DNA fragment, and because of their small sizes,

each of these pieces of alignment could be statistically

nonsignificant on its own. In the case of dependency, all the
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FIG. 1.—Algorithm to reduce the many-to-many cardinality in the

results of an all-to-all nucleotidic Blast to a one-to-one cardinality between

a genome A (red) and a genome B (blue). (A) Compute the identity be-

tween each pair of sequences and the corresponding P values (see

Materials and methods, stage 3), and order all the pairs of sequences

according to their position on genome A (the sequence order is 1-2-3).

(B) Merge all the overlapping pairs of sequences in the genome A to go

from amany-to-many cardinality to a one-to-many cardinality (remove the

dashed part of the sequence 3.1). (C) Keep the sequences with the lowest

P values from genome B for each pair of sequences that were merged in

stage 3 to obtain a one-to-one cardinality (remove the dashed sequence

2.2). (D) One-to-one cardinality between the two genomes.
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multiple-testing procedures not accounting for the depen-

dency structure are suboptimal (Wei et al. 2009), meaning

that if the procedure controls for the FDR for a given level, it

does not minimize the false nondiscovery rate. Because

decision at position n may depend on neighbor tests, we

used the local index of significance (LIS) to compute

P Sn ¼ 0jz1, . . . , zNð Þ (Sun and Tony Cai 2009).

To proceed, we considered a homogeneous hidden

Markov model in which Sn is the hidden states (Sn 2 0, 1f g),
which is governed by transition probabilities P Sn+1jSnð Þ.
Moreover, we also accounted for the genomic context of

each sequences, like GC content or the distance between

the sequences that can influence the transition and emission

probability of the model, as we do not expect the dependency

of a given sequence to its neighbors to be the same between

every sequences. We considered a logistic regression to

account for covariates X1, . . . ,XN characterizing the se-

quences, such that:

P S1 ¼ jjX1 ¼ xð Þ ¼
exp �j+�

n
j � x

� �
P1
k¼0

exp �k+�
n
k � x

� �

P Sn ¼ jjSn�1 ¼ i,Xn ¼ xð Þ ¼
exp �ij+�

n
j � x

� �
P1
k¼0

exp �ik+�
n
k � x

� �

with i, j ¼ 0, 1f g (Kuan and Chiang 2012). The model param-

eters � ¼ ð�, f1, �i , �ij, �jÞ, with k being the proportion of

P-values equal to 1, can be estimated using the EM algorithm.

We developed a zero-inflated Gaussian distribution to handle

unilateral tests with the appropriate z-values transformed. This

model is implemented in the R package fdrDEP available on

the CRAN for multiple unilateral hypothesis testing.

The LIS statistics are computed for each chromosome arm

of the species A and concatenated to control for the FDR at a

level of 10% for the whole genome of A with the Benjamini,

Hochberg, and Yekutieli procedure (Wei et al. 2009).

Filtering for True Putative HT Events

With steps 1–3, we could have detected highly similar

fragments of sequence alignments that would not have

been significant for the whole corresponding sequences, so

we first recovered the full length of each annotated DNA

fragment detected in the species A. To reconstruct the com-

plete sequences for these results, we used the bedtools

suite (version 2.17.0, options intersectBed -a annota

tions.gff -b results.bed -wa) (Quinlan and Hall

2010) to extract the annotated sequences corresponding to

results with positions intersecting the ones from the species A.

Then, we applied the two following filters to sort out con-

served sequences from our results for nonrepeated and

repeated sequences.

For Nonrepeated Sequences

For CDSs, we expect to observe an effect of selection because

nonsynonymous mutations can be deleterious, neutral, or ad-

vantageous. Thus, for the CDSs identified with our approach,

we can compute their dS values using orthologous genes. We

then performed the same unilateral binomial test as for the

nucleotidic identity to determine whether the dS of a given

CDS is significantly lower than the expected identity between

the two species considered while controlling for the FDR at a

level of 10% (Benjamini and Yekutieli 2001).

In addition, to take into account non-CDSs that cannot be

used in dS approaches, we developed a new validation proce-

dure based on sequence conservation, which can be applied

to both coding and non-CDSs. In the set of detected se-

quences, a sequence identified with the same level of signif-

icance, both between D. melanogaster (the species A) and

D. simulans (the species B) and between D. melanogaster

and other Drosophila species, would illustrate a conserved

sequence across the phylogeny rather than multiple HTs at

the same position in D. melanogaster. Thus, we performed

the same analysis with four other species from the 12

Drosophila genomes project: D. sechellia, D. yakuba, D. pseu-

doobscura, and D. virilis, as a gradient of phylogenetically

divergent species, before subtracting these results from

those of the D. melanogaster–D. simulans analysis. We used

the bedtools suite to subtract the.bed tracks of the results

of each species along the D. melanogaster genome. Figure 3

describes the decision rule used in this subtraction according
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FIG. 2.—Distribution of the pairwise nucleotide identity, genomewide

with nonoverlapping windows of size 1kb, of the Drosophila simulans

genome alignment on the D. melanogaster genome. The vertical bars

represent the values of the mean, the median, and the mode of this

distribution.
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to the corresponding phylogenetic tree. This step provided us

with a landscape of all the sequences with a pairwise identity

higher than expected between D. simulans and D. melanoga-

ster and not conserved in the other Drosophila species. This

last filter relies on the strong hypothesis that a pair of

sequences absent between a given pair of species is not miss-

ing due to random sampling of the population alleles in the

sequenced individuals, a lack of genome coverage, or a

misassembly.

As TEs and other repeated sequences are present at multi-

ple loci between a pair of genomes, they were excluded from

this filtering step and were validated separately, considering

that we could not discriminate which TE copy identified be-

tween two genomes corresponded to a specific locus in the

genome of the species A.

For Repeated Sequences

With our genome-wide approach, the set of TEs detected was

not restricted to elements with a coding capacity, preventing

us from relying on the dS metric for their validation. Moreover,

for TE family with a large number of copies, we can expect

one or more of these copies to be more identical than ex-

pected between the two genomes just by chance. To account

for the full set of detected TEs and analyze each detected TE

family, we developed a new validating procedure based on

the recent dynamics of the detected TEs in the genomes of

species A and B. We worked under the hypothesis that, after

an HT, a TE escapes the host defense mechanisms for a time

and quickly replicates itself in the new host genome

(Anxolabéhère et al. 1988; Le Rouzic and Capy 2005;

Granzotto et al. 2011). Thus, in the case of an identifiable

horizontally transferred TE, we expected to observe many

highly similar copies of the TE corresponding to this burst of

transposition in one or both genomes, in contrast to few

conserved TE insertions (Lerat et al. 2011; Dias and Carareto

2012).

To help in the synthetic interpretation of the recent history

of each TE in our results, we start by defining the most iden-

tical pair of copies between the two genomes, as the last

putative horizontally transferred copy in the case of an HT.

For each TE family, this most identical pair of copies between

the two genomes is defined as the pair of copies with the low-

est P-values from all the detected copies using the 80-80-80

rule (Wicker et al. 2007). Then, we Blast each of these most

identical copies on the genome of A using a nucleotidic

Blast (version 2.2.26) (Altschul et al. 1990). We built an

index of the similarity of each copy of these elements com-

pared with the most identical pair of copies between the two

genomes, normalized by the size of the copies. We called this

index the activity track. These activity tracks are used to rank

between 0 and 1 all the copies of each identified TE according

to their divergence from the corresponding most identical pair

of copies between the two genomes, with 1 corresponding to

a low degree of divergence and a recent activity of this TE and

0 corresponding to old and divergent copies. The activity track

corresponds to the probability of having a pairwise nucleotidic

identity with the most identical pair of copies less than or

equal to the expected identity 1� ep0, estimated using the

reference distribution constructed from the global alignment

of the two genomes. For every pair of TE copies n, we denote

by Wn the number of different nucleotides between the two

copies. The distribution of Wn is B Ln, pnð Þ, where Ln is the

length of the alignment between the copies and pn is the

nucleotidic dissimilarity. Our aim was to compute for each

pair of sequences n the probability P Wn � wobs
n

� �
corre-

sponding to the activity track. The same analysis is performed

with the genome of species B to get an overview of the TE

activity in both genomes. We developed in python the pro-

gram activity_tracks.py (available from the online re-

sources) to compute this index.

Finally, wemanually inspected the results in.bed format on

each chromosome arm of D. melanogaster to look for cluster

of sequences with a higher identity than expected using the

integrative genome viewer software (Thorvaldsdóttir

et al. 2013).

All the statistical analyses in this article were performed

using the software R (version 3.0.0) (R Core Team 2013).

Data Acquisition

We used the last available versions of the genomes of

D. melanogaster (species A) (version r5.49), D. sechellia (ver-

sion r1.3), D. yakuba (version r1.3), D. pseudoobscura (version

r2.30), and D. virilis (version r1.2) and the corresponding an-

notation tracks from flybase (http://flybase.org [Marygold

et al. 2013]). For D. simulans (species B), we did not work at

first on the genome sequenced by the 12Drosophila genomes

project (Drosophila 12 Genomes Consortium 2007). Indeed,

D. melanogaster

D. simulans
D. sechellia

D. pseudoobscura

D. virilis

D. yakuba

A B C D E

FIG. 3.—Decision rule for the filtering step about selective pressure,

with the presence (red) or absence (gray) of a pair of sequences between

the corresponding species. (A) Putative HT between Drosophila melano-

gaster and D. simulans. (B) Putative HT between D. melanogaster and

D. simulans prior to the D. sechellia speciation event or conserved se-

quences between D. melanogaster, D. simulans, and D. sechellia.

(C) Conserved sequences in the melanogaster subgroup. (D–E)

Conserved sequences with stochastic loss or ancestral polymorphisms.
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this genome is a patchwork of six independently derived

strains with the assembly of six major chromosome arms rep-

resenting only 101.3Mb of the 137.8Mb expected.

Moreover, this genome presents several major misassemblies

and has the worst read quality of the 12 Drosophila genomes

(Hu et al. 2013). This is why we used the D. simulans genome

that was resequenced in 2012 and assembled from thew501

strain of the original Sanger data, in addition to a high-cover-

age Illumina sequencing of iso-females of this same strain (Hu

et al. 2013). However, to be able to compare our approach

with previous studies, we also conducted a second analysis

with the genome of D. simulans (version 1.3) available from

flybase (http://flybase.org).

The genome pairwise alignments were retrieved from the

UCSC website (http://hgdownload.cse.ucsc.edu).

The sequence annotation tracks used to obtain the full

length of the corresponding TEs and CDSs and annotate the

noncoding DNA were downloaded from flybase (http://fly

base.org) in.gff format (Marygold et al. 2013).

Instead of computing the dS of the detected CDSs, we used

the dS data of the 11,000 orthologs from the 12 Drosophila

genomes, available from the study of Heger and Ponting

(2007).

Quality of the TE Content in the Genome of D. simulans

We used the software SeqGrapheR (Novãk et al. 2010) to

analyze the TE content of the D. simulans genome directly

from a uniform random sample of 900k reads obtained

from the 2012 genome project (SRA:SRX159034) (Hu et al.

2013). The assembled repetitions were annotated using

RepeatMasker (version 3.3.0) (Smit AF, Hubley R, Green P,

unpublished data).

Data Access

All the scripts used for our pipeline are available in a git

repository at: git://dev.prabi.fr/modolo2013.

Results

Genome-Wide Detection of Sequences with a Higher
Nucleotidic Identity than Expected

Defining the Set of Candidates for HT Detection

Wekept the best local alignments obtained by the Blast search

ofD. simulans againstD.melanogaster for each position in the

genome of D. melanogaster, thereby taking into account the

repeated content that is often removed from genome-wide

alignment (i.e., best global alignment). The cumulative size of

the filtered sequences decreased with the divergence time

between a given species and D. melanogaster, which is con-

sistent with the nucleotidic Blast algorithm (table 1). For

example, we retrieved approximately 112Mb of sequences

between D. melanogaster and D. simulans (divergence time

of 5:4� 1:1 Myr), compared with only 13Mb between

D. melanogaster and D. virilis (divergence time of 42:9� 8:7

Myr). However, such a trendwas not observed for the number

of filtered sequences, which can be explained by the fragmen-

tation of the retrieved sequences, which increased with the

phylogenetic distance (table 1).With this set of candidates, we

used our method to determine whether the observed pairwise

nucleotidic identity for each of these pairs of sequences was

higher than expected between the considered species and D.

melanogaster.

Assessing the Reference Distribution for
Nucleotidic Identity

We computed a reference nucleotidic identity distribution

with the analysis of the global alignment of the genome of

D. simulans along the genome ofD.melanogaster (fig. 2). This

distribution accounted for the variations in nucleotidic identity

along the two genomes, in contrast to the common mutation

rate of 1:1� 0:2� 10�8 mutations per site per year per lin-

eage for the Drosophila phylogeny that has been computed

on a limited number of nuclear genes (Tamura et al. 2004).

Consequently, this mutation rate based on the molecular

clock hypothesis (Weir and Schluter 2008) may not be repre-

sentative of the pairwise nucleotidic identity between the

whole genomes of D. melanogaster and D. simulans

(Drosophila 12Genomes Consortium 2007) and is not suitable

for a genome-wide analysis. For the detection of HTs between

D. melanogaster and D. simulans, we were only interested in

the expected nucleotide identity corresponding to the accu-

mulation of mutations between these two species since their

time of divergence. Thus, we choose the highest mode of

identity distribution as a reference to compute the unilateral

P-values of our tests, which quantified the probability of each

candidate to have a nucleotidic identity exceeding 95.63%,

while accounting for the size of the alignment (fig. 2).

Controlling for False Positives in the Context
of Genomic Dependencies

As in many genomic studies, the number of statistical tests to

perform was large (168,325 pairs of sequences for the com-

parisonD. melanogaster vs.D. simulans). If nomultiple-testing

procedure is applied, we can roughly expect to declare an

average of 10% of the tests (16,832) to be false positives by

retrieving all the P-values below 0.1, which can be higher than

the number of true positives (Finner and Roters 2002). By ap-

plying the standard Benjamini–Hochberg multiple-testing cor-

rection with an FDR level of 10% (Benjamini and Hochberg

1995), without taking into account the dependency structure

between the tests, we only retrieved 605 CDSs, 934 TE inser-

tions, and 2,345 intergenic DNA fragments. Thus, we used

our method to assess the probability that each pair of se-

quences has a higher pairwise identity than expected while

accounting for its dependency to its neighbors, adjusted to
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other genomic covariates to increase our sensitivity. Indeed,

the GC content of the sequences as well as the distance be-

tween a pair of sequences and the next on a chromosome

arm and the presence of TEs are likely to be proxies of the

similarity of a pair of sequence to its neighbors. We also ex-

pected the recombination rate to be an important factor, but

no significant correlation was found between the recombina-

tion data available for the genome ofD.melanogaster and the

P-values of our tests. With this correction applied to the

168,325 tests, we retrieved 7.3Mb of sequences, including

2,651 fragments from CDSs (2.46Mb), 3,967 fragments from

insertions of 28 different TE families (201kb), and a large

number of intergenic DNA fragments (13,806 sequences

corresponding to 4.68 Mb), between D. melanogaster and

D. simulans.

Distinction between “True” HT Events and Biological
False Positives

HT Sequences in the Light of Other Drosophila Species

We detected a set of sequences with an identity higher than

expected between the genomes of D. simulans and D. mela-

nogaster that was not reduced to HT sequences, thus we

started by retrieving the full-length sequences of each anno-

tated fragment from the genome of D. melanogaster. Then,

we discriminated putative HT sequences from the sequences

displaying a signature of functional constraints. We tested

whether the dS of the 2,651 detected CDSs was significantly

lower than expected in the D. melanogaster-D. simulans anal-

ysis, and we finally retained 26 CDSs.

To discriminate between conserved and horizontally trans-

ferred sequences for the full set of detected nonrepeated

sequence (i.e., both coding and non-CDSs), we used the com-

parative analysis between D. melanogaster and D. simulans,

and between D. melanogaster and other Drosophila species.

This subtraction allowed us to remove approximately 40% of

the base pairs for the intergenic DNA (thus keeping 2.79Mb

of the 4.68Mb), with a consistently high pairwise identity with

D. melanogaster in this phylogeny. This result is consistent

with the results from Casillas et al. (2007) where 38.6% of

the noncoding DNA in D. melanogaster display the signature

of functional constraints. We also retained 28 of the 2,651

CDSs with this second approach.

The intersection of the results from the dS analysis with the

ones from this subtraction led to the detection of 11 CDSs

annotated from RNA-Seq data but of unknown function

(Marygold et al. 2013). These 11 CDSs were sparsely distrib-

uted along all the major chromosome arms of D. melanoga-

ster and found in clusters of CDSs with significant pairwise

nucleotide identity but nonsignificant dS. Thus, these 11 CDS

in our results could be biological false positives caused by the

dependency model used in the multiple-testing correction,

lowering their probability of being under the null hypothesis

due to their conserved neighbors, which does not support the

hypothesis of their HT. For the detected noncoding DNA, we

were not able to use the D. melanogaster annotations to

retrieve the full-length sequences of the DNA fragments.

This class of fragmented DNA, representing 63.91% of the

detected DNA in our results, was annotated based on the

D. melanogaster annotation tracks (supplementary table S1,

Supplementary Material online) but was only analyzed as

neighboring sequences of the detected CDSs and TE

sequences.

Horizontally Transferred TEs

For the repeated sequence, we used the activity track to study

the recent activity of the detected TE family. According to

the activity track distributions, most of the detected TE families

in our results presented a recent period of activity in

D. melanogaster (supplementary figs. S2 and S3, Supplemen-

tary Material online), with a large number of copies highly

similar to the most identical pair of copies between the two

genomes (see e.g., the diver element, fig. 4A). However, for

some elements such as the ancient element INE-1, described

as having invaded the ancestor lineage of D. melanogaster

and D. simulans (Kapitonov and Jurka 2003), the activity

track showed a majority of divergent copies with only few

ones close to the most identical copy between the two ge-

nomes (fig. 4B), as expected by chance for a large number of

Table 1

Results of the Filter of the All-to-All Nucleotidic Blast between Drosophila melanogaster and the Corresponding Species

Species Sequence Size (kb) Number of Sequences Divergence Time to

D. melanogaster (Myr)
Row Filtered Significanta Row Filtered Significanta

D. simulans 550,226 112,748 9,012 4,468,121 168,325 11,927 5.4

D. sechellia 1,219,599 111,909 5,452 7,947,377 170,394 7,025 5.4

D. yakuba 1,972,352 91,584 977 23,960,790 239,011 3,185 12.8

D. pseudoobscura 102,146 22,241 593 1,431,447 213,790 11,323 30.0

D. virilis 184,640 13,463 298 2,186,411 117,831 6,305 42.0

NOTE.—Row, results corresponding to a many-to-many cardinality; filtered, results corresponding to a one-to-one cardinality.
aResults corresponding to the significative identity-based tests after multiple-testing correction.
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corresponds to the most identical pair of copies between the two genomes, whereas the colored bars represent the number of copies ranked according to

their similarity to this most identical pair of copies for a given TE. The red bars represent the activity tracks inD.melanogaster,whereas the blue bars represent

the activity tracks in D. simulans 2007. (A) Example of a TE family presenting a recent period of activity corresponding to a putative HT from D. simulans

towardD.melanogaster. (B) Example of a TE family with an activity not consistent with an HT betweenD. simulans andD.melanogaster. (C) Example of a TE

family with different waves of activity.
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old and degraded copies. With the activity track ranking the

TE copies according to the most identical pair of copies be-

tween the two genomes which can be seen as the last puta-

tive horizontally transferred copy in the case of an HT, we

were able to balance the direction of the transfers, which is

crucial to understand the horizontally transferred TE history

and dynamics. In the case of a horizontally transferred TE

from a first species toward a second species, we can expect

the TE to be present in a small number of highly similar and

potentially active copies in the first species and in a large

number of highly similar copies in the second species (supple-

mentary fig. S3, SupplementaryMaterial online).We observed

this pattern for elements such as diver, which had a large

number of copies with an activity track close to 1 in D. mel-

anogaster and few copies in D. simulans (fig. 4A). This pattern

was consistent with its HT from D. simulans toward D. mela-

nogaster, even with few copies that were statistically signifi-

cant in the two genomes. In the genome of D. simulans, most

of the activity track distributions were bimodal, with few TE

copies close to 1 and a large number of copies close to 0

corresponding to old and degraded copies (supplementary

fig. S3, Supplementary Material online), which was consistent

with the observations made for some of these TE families in

the genome of D. simulans (Lerat et al. 2011). In contrast, in

D. melanogaster, most of the TE copies had an activity track

close to 1, which was representative of young and active TE

populations. These differences of TE landscape between these

two species support the hypothesis of multiple horizontally

transferred TEs from D. simulans (fig. 4A) and from other

species (fig. 4C) toward D. melanogaster.

With the 2012 version of the genome of D. simulans, we

were able to identify 21 TE families with 10 new cases of

horizontally transferred TEs, which were not previously iden-

tified as horizontally transferred between these two species

(supplementary fig. S2, Supplementary Material online).

However, 11 TEs were missing from the 24 horizontally trans-

ferred TEs previously described by different studies between

D. simulans and D. melanogaster (de la Chaux and Wagner

2009; Bartolomé et al. 2009; Carareto 2011; Lerat et al.

2011). From these 11 TEs, the elements were only present

in a few noncomplete copies in the 2012 version of the

genome of D. simulans, which explain their absence from

our results. For the elements F, copia, gypsy5, and gypsy10,

the TE copies were highly divergent from those present in the

genome of D. melanogaster and displayed a nonsignificant

nucleotidic identity. To confirm the absence of the 412 ele-

ment, known to be active in some populations of D. simulans

(Vieira and Biémont 1997), we performed a de novo assembly

of the TEs directly from the reads of the 2012 D. simulans

genome project. The reads corresponding to this 7,566bp

element represented 50kb of the 137.8Mb genome of

D. simulans, with the majority of the reads matching the

long terminal repeats and few reads mapping within the ele-

ment, which was concordant with the 2012 assembly.

Therefore, the absence of these 11 horizontally transferred

TEs from our results was likely the result of their absence

from the assembled strain in the 2012 version of the

genome of D. simulans rather than a lack of sensitivity of

our method. Using the genome of D. simulans from the 12

Drosophila genomes project (Drosophila 12 Genomes

Consortium 2007) (supplementary fig. S3, Supplementary

Material online), we were able to recover in one analysis the

24 HTs previously described in the literature, including the 11

families missing from our analysis with the D. simulans

genome of 2012. The 10 new and the 24 previously described

TEs all presented activity track distributions consistent with the

after effect of a horizontally transferred TE from D. simulans

toward D. melanogaster (supplementary figs. S2 and S3 and

table S2, Supplementary Material online). Thus, given the

number of horizontally transferred TEs detected between

D. melanogaster and D. simulans in the short time since

their divergence, a parsimonious hypothesis could be the

introgression of one or more fragments of DNA containing

different TEs instead of multiple independent HTs.

Introgression versus Multiple HT Events

To obtain a broader view of the HTs betweenD. melanogaster

and D. simulans, and discriminate between introgression and

multiple independent HTs, we manually inspected the 11

CDSs, the TE insertions from the 21 families left and the

10,232 fragments of noncoding DNA in the final results

along each chromosome arm of D. melanogaster and with

the 2012 genome of D. simulans. In the case of introgression,

we expected to observe the simultaneous transfer of these

three types of sequences in one large DNA fragment.

However, we found no sequence containing three or even

two of these different types of sequences in the final results.

This absence of completely introgressed fragments could be a

consequence of the fragmentation of the detected sequences

between the two genomes. However, we also did not find any

obvious clusters of these different types of DNA along the

chromosome arms of D. melanogaster. Overall, the types of

detected sequences in our study support the prevalence of TEs

and noncoding DNA in HTs between these two species.

However, the informations contained in the genome of the

sequenced individuals are not sufficient to support the

hypothesis of multiple independent horizontally transferred

TEs toward D. melanogaster rather than introgression events.

To better understand the horizontally transferred TEs in-

volving D. melanogaster, we performed the same horizontally

transferred TE analysis with the data from our comparison

with the four other Drosophila species (D. sechellia,

D. yakuba, D. pseudoobscura, and D. virilis) (supplementary

figs. S4–S7 and table S2, Supplementary Material online). We

detected numerous horizontally transferred TEs in this re-

stricted window of time starting 5:4� 1:1 Ma, corresponding

to the expected identity threshold between D. melanogaster

Genome-Wide Method for Horizontally Transferred Sequence Detection GBE
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and D. simulans. The comparison between D. melanogaster

and D. sechellia provided evidence for HTs of 21 elements

between these two species (supplementary fig. S4, Supple-

mentary Material online). Drosophila sechellia is the only spe-

cies with a divergence time to the ancestor that it shares with

D. simulanswithin the time window of our analysis, so for this

species we can discriminate between horizontally transferred

TEs involving D. melanogaster and the ancestor of D. simulans

and D. sechellia, and horizontally transferred TEs involving

D. melanogaster and D. sechellia (fig. 3). For the element

(with an activity track nonconsistent with an HT in the 2007

version of the genome of D. simulans and absent from the

2012 version), the results rather indicate recent activity in both

species, which suggest the existence of a third donor species,

such as another D. simulans strain than those sequenced in

2007. We also observed the same pattern for 17 elements

between D. melanogaster and D. yakuba (supplementary

fig. S5, Supplementary Material online). However, we did

not find any clear evidence of recent horizontally transferred

TEs or a burst of transposition in the analysis of the TEs

detected between D. melanogaster and D. pseudoobscura,

or between D. melanogaster and D. virilis, which could be

explained by the degree of fragmentation of the correspond-

ing sets of sequences (supplementary figs. S6 and S7,

Supplementary Material online). Finally, recent activity of the

Roo element was detected in D. melanogaster, D. simulans,

D. sechellia, and D. yakuba, which could be the result of in-

dependent HTs of this element toward these four species after

their divergence (de la Chaux and Wagner 2009).

Discussion

In eukaryotes, the study of horizontally transferred sequences

is confined to CDSs and often focuses on specific TEs. Thus,

there are two systematic biases in the detection of HTs in

eukaryotes: the candidate HT must be known and must

have a coding capacity (Keeling and Palmer 2008). We pro-

pose a new genome-wide approach that aims to bypass these

biases inherent to sequence-specific approaches by consider-

ing all the best local alignments of one genome to another as

possible horizontally transferred sequences. Then, we test

each of these sequences to retrieve those with a higher

nucleotidic identity than expected between the two species

while accounting for the multiplicity of the tests and their

dependency structure throughout the target genome. We de-

tected 2,651 CDSs, 3,967 insertions from 28 different TE fam-

ilies, and a large number of intergenic DNA fragments

(13,806) more identical than expected from the 4,468,121

pairs of sequences identifiable between D. melanogaster

and the 2012 version of the genome of D. simulans. Finally,

we discriminated between spurious HT detection and putative

HTs in our results with two novel validation procedures for

genome-wide HT detection. And after manual inspection of

the results, we retained 21 TE families as horizontally

transferred between these two species, validating the preva-

lence of TE sequences in HTs between these two species with-

out detection bias toward this type of sequence.

Genome-Wide Identification of Putative Horizontally
Transferred Sequences

Previous genome-wide approaches used a wide range of pro-

cedures to infer sequencesmore identical than expected given

the phylogeny of the species to detect HTs in eukaryotes

(Loreto et al. 2008; Wallau et al. 2012). However, none of

these procedures relied on a statistical testing framework to

validate their sensitivity and specificity. This explains why se-

quence-specific approaches are still used: their particular reli-

ability despite the limited set of sequences considered (Wallau

et al. 2012). The collegial tests for the identity-based detection

of horizontal transferred sequences in eukaryotes rely on the

synonymous substitution rate, often in the form for a codon-

based Z-test (Pace et al. 2008; Gilbert and Cordaux 2013). In

our study, the set of candidates sequences was not restricted

to the small coding portion of eukaryote genomes, and this

justified the use of a binomial test to retrieve the sequences

with a higher pairwise nucleotidic identity than expected

between two species without any codon information while

accounting for the size of each candidate. This simple model

for codon substitution is sensitive enough to detect recent HTs

for which we can expect a small saturation between se-

quences. The saturation corresponds to the occurrences of

multiple mutations at a single nucleotide (or site), which

leads to an underestimation of the nucleotidic divergence be-

tween two sequences because we can only observe the last

mutation in the case of multiple mutations per site. A pair of

sequences with saturation is expected to have more single

mutations per site than multiple mutations per site. Thus,

the complex cases, ill-defined by the model, will also corre-

spond to the sequences in the “uninteresting” side of our

unilateral hypothesis and will be correctly assigned to the set

of nonsignificant sequences.

In genome-wide analyses, we often face multiple-testing

issues, and our results underscore the importance of working

with a well-defined statistical framework to control the

number of incorrect detections and increase the power of

the study. We also took advantage of the fact that when

comparing two genomes, we always have a genome of

better quality to map the detected candidate sequences, to

greatly reduce the dimensionality of the data to be analyzed,

thus increasing the power of our study (Storey and Tibshirani

2003). For our analysis, the now standard Benjamini–

Hochberg FDR (Benjamini and Yekutieli 2001) procedure

had a too low specificity to produce relevant results. This

was caused by the dependency between the tests in our anal-

ysis, which was taken into account with the LIS framework to

increase the specificity of our approach (Sun and Tony Cai

2009). Modeling this dependency between each pair of
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candidates along the chromosome arms of D. melanogaster

with a homogeneous Markov model (HMM) was not suffi-

cient to retrieve all the horizontally transferred TEs described in

the literature with the genome of D. simulans from the 12

Drosophila project (Drosophila 12 Genomes Consortium

2007). For our purposes, an HMM would have tended to ho-

mogenize the LIS statistics according to the information pro-

vided by the adjacent without taking into account any

information about the type of sequences or the distance be-

tween them (i.e., the nonsignificant pairs of sequences sur-

rounding a TE copy), which can explain these missing

horizontally transferred TEs. With an NHMM, we were able

to enrich the standard Markovian dependency according to

covariates, such as the distance between the statistical tests

along the genome and the presence of TEs, and to detect the

24 horizontally transferred TEs described in the literature

(Carareto 2011) with an FDR level of 10% and the 2007 ver-

sion of the genome of D. simulans, in addition to 10 new ones

with the 2012 version of the genome (supplementary table

S2, Supplementary Material online).

Our approach can be applied to any pair of sequenced

species in which one species has an assembled genome,

into which candidate sequences will be placed, to model the

dependency structure between the tests with a NHMM. The

specificity of this method is high enough to detect sequences

more identical than expected between closely related species

while controlling for the FDR in the results. This procedure

could also be used with any other unilateral tests for different

biological problems or to model the nucleotidic differences in

ancient HTs or betweenmore divergent species with a greater

prevalence of saturation.

Two New Methods to Confirm HTs in Genome-Wide
Studies

Most of the methods for HT detection in eukaryotes use se-

quence-specific approaches and rely on strong dS evidence to

infer putative HTs (Bartolomé et al. 2009; Lerat et al. 2011). In

the remaining studies, the candidate sequences generally in-

volve distantly related species and recent HT events where the

identity line of evidence can be self-sufficient (Loreto et al.

2008), for example, the case of the TEs SPIN and OC1

(Gilbert et al. 2010, 2013). This can also be the case for

recent HTs, such as the well-known example of the P element

transferred from D. willistoni to D. melanogaster less than 100

years ago, for which the nucleotidic identity is almost of 100%

between the two species (Daniels et al. 1990). We were able

to retrieve sequences with an identity percentage higher than

99% between D. melanogaster and D. yakuba for the ele-

ments Doc, jockey, and transib3, which was unexpected and

could be sufficient to infer their HT. However, the number of

obvious cases was small, and we needed to confirm the other

HTs by other lines of evidence.

When studying the pattern of sequence divergence

between genomes to infer HTs, we can encounter a large

number of confounding factors that need to be checked

(Siepel et al. 2005; Pollard et al. 2010). These factors range

from natural turnover (gain or loss of functional elements) to

the effect of purifying and positive selection, which can act on

entire sequences or on parts of sequences, canceling the

effect of divergence. For the study of HTs, we can add to

this list the effect of different evolutionary rates for the se-

quence under consideration or the effect of stochastic losses

in the phylogeny of the candidate sequence(s) (Loreto et al.

2008). Moreover, we have to rely on orthologs and sequence

identification, which is nontrivial and can lead to numerous

false positives (Gronau et al. 2013). The possibility of mis-

placed DNA sequences in the genomic database, polymerase

chain reaction mispriming, contamination, incomplete se-

quence data, and poorly rooted trees can also be technical

sources of errors for HT detection (Lisch 2008). Therefore, to

differentiate between putative HT events and the possibility

of vertical transmission, we need to investigate other lines of

evidence (Loreto et al. 2008; Gilbert et al. 2010). In genome-

wide studies of HT, in contrast to sequence-specific

approaches, all the candidate sequences are not assumed to

have been horizontally transferred from one species to the

other, and the procedures need to include validation steps

to produce sound results.

Validation of the Nonrepeated Content

Our approach follows an identity-based line of evidence to

detect HTs, so we would need phylogenetic clues to validate

them. In the case of D. melanogaster and D. simulans, which

are almost at a terminal node of the Drosophila phylogenic

tree, phylogenetic incongruences would mostly consist of

nonsignificant differences in branch lengths compared with

those expected. Even if incomplete lineage sorting could

remain a problem, for a sequence-specific identity-based

approach, the validation proceduresmainly consist of showing

evidence that the high observed nucleotidic identity is not

the result of other mechanisms than HT, such as purifying

selection or a mutational cold spot (Pace et al. 2008; Casillas

et al. 2007). When dealing with genome-wide data, tools

such as SCONE or the ones from the PHAST package can

produce conservation tracks frommultiple genome-alignment

between different species (Asthana et al. 2007; Hubisz

et al. 2011). However, these conservation tracks consist

of quantitative scores to measure the departure from neu-

trality for each nucleotide, and these scores are difficult to

incorporate into a statistical test to determine whether a

given detected fragment is conserved or horizontally

transferred.

We thus developed amore conservative approach that also

accounted for non–CDSs, by subtracting the results of the

D.melanogaster–D. simulans comparison from those retrieved
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for the comparison between D. melanogaster and other

Drosophila species (D. sechellia, D. yakuba, D. pseudoobscura,

and D. virilis). With this comparative analysis, we discriminated

between putative horizontally transferred sequences and se-

quences under purifying selection that are expected to be

conserved across the phylogeny genome-wide for coding

and noncoding DNA. The use of those four other species

strengthened our results by preventing the detection of sto-

chastic loss or ancestral polymorphisms. These two mecha-

nisms could lead to the detection of conserved sequences

between D. melanogaster and D. simulans that are absent

from a third species, which is unlikely to occur simultaneously

in the five analyzed species.

Finally, as this line of evidence is easily accessible and should

always be considered for the study of the HT of CDSs, we also

checked for CDS dS values lower than expected given the time

of divergence of the considered species. Overall, our results

show an absence of HTs involving CDS between Drosophila

species (Schaack et al. 2010), which is not caused by detection

bias toward these types of sequences. Because this validation

procedure is restricted to the nonrepeated content of our re-

sults, we also developed a second validation procedure to

assess the TEs identified.

Validation of Horizontally Transferred TEs

To identify horizontally transferred TEs among the set of TEs

with an identity higher than expected between D. melanoga-

ster and D. simulans, we analyzed their recent dynamics since

their last putative HT (Dias and Carareto 2012). The TE dy-

namics andmaintenance in the host genome can be described

as a birth-and-death processes (Schaack et al. 2010; Le Rouzic

et al. 2013). The death of a TE corresponds to the inactivation

of all its copies by the host defense mechanisms or the accu-

mulation of disabling mutations (Jurka et al. 2012). On the

other hand, the birth of a TE corresponds to an active copy

colonizing a novel host devoid of specific transposition con-

trols against this TE, which immediately leads to the burst of

transposition of the founder copy in the new genome (Le

Rouzic and Capy 2005; Naito et al. 2009). Bursts of transpo-

sition have been recorded for different TEs in numerous

Drosophila species (Garcı́a Guerreiro 2012) and can be easily

identifiable because all the resulting TE copies are almost iden-

tical to each other. Afterward, most of the copies accumulate

stochastic mutations and are lost over time by attrition, except

for a minority of copies that can become exapted and can be

identified as DNA segments conserved across species

(Margulies et al. 2003; Siepel et al. 2005; Pace et al. 2008).

Because TEs are likely to evolve neutrally after their insertion,

we could use the neutral rate of substitution to compute the

timing of a burst of transposition by calculating the pairwise

divergence between all the TE copies and their consensus as

an approximation of the founder copy as described in the

literature (Pace and Feschotte 2007; Schaack et al. 2010; Le

Rouzic et al. 2013). However, the consensus is not always a

good approximation of the ancestral copy. Thus, instead of

studying the complete history of a TE family with a consensus

approach, our method focuses on the period of time sur-

rounding its last putative HT between the considered species

and ignores the events older than the divergence time be-

tween D. melanogaster and D. simulans. Thus, this change

in the time scale provided us with a better temporal resolution

for the study of the last bursts of transposition. In D. melano-

gaster, where the TE activity was recent (Bowen and

McDonald 2001; Lerat et al. 2003), wewere not able to clearly

discriminate between the different activity periods of the TE

families with an approach based on an estimated neutral mu-

tation rate between all the copies of a TE family and their

consensus sequences (Ray et al. 2008). Moreover, for the

TEs with different waves of activity, such as the element tran-

sib3 (fig. 4C) in the studied species, a consensus would corre-

spond to a hypothetical copy dated in the middle of the waves

of activity rather than to the ancestral copy. Our approach

solves these drawbacks of consensus-based TE analysis and

accounts for highly variable lengths of copies between TE

families.

Another important point concerning HTs is to determine

the direction of these transfers. In the cases of horizontally

transferred TEs, we could expect a species with a high

number of TE copies to have a higher probability to horizon-

tally transmit one of its copies to another species, resulting in

numerous identical copies in one species and few in the other.

For this scenario to be valid, the transferred TEs would need to

be almost instantly regulated in the receiver species to stay at

a low copy number or for the receiver species to be se-

quenced before their burst of transposition. For both cases,

these TE insertions would not have a high frequency in the

species and would most likely not be observed in the se-

quenced strains. In an opposite scenario (a horizontally trans-

ferred TE from a species with few putatively active but

controlled TE copies), a TE is transferred to a species where

this TE is unknown for the host regulation system, which

would lead to a burst of transposition and a quick fixation

of this TE in the receiver species. Consequently, we are more

likely to observe the results of this second scenario in the

sequenced individuals, and we can use it to decipher the di-

rection of detected horizontally transferred TEs (Dias and

Carareto 2012).

Overall, our results show that different waves of activity

seem to have occurred for different TE families and that

their dynamics can be used to describe the numerous horizon-

tally transferred TEs between D. melanogaster and D. simu-

lans. After a horizontally transferred TE and a burst of

transposition, we expect to observe a unique wave of activity

before the control of the element, so the presence of other

waves seems to be indicative of a complex history of the TE

dynamics in Drosophila.
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Drosophila melanogaster as a Target of Multiple
Independent Horizontally Transferred TE Events

Exchange of TEs with D. simulans

In regard to the number of horizontally transferred TEs

that have been detected, a parsimonious hypothesis would

be their simultaneous transfer by introgression instead of in-

dependent HTs. Thus, we can wonder why no traces of intro-

gression were detected between D. melanogaster and

D. simulans, when hybrids are known to have been possible

between these two species (Sawamura et al. 2004; Barbash

2010). A first genomic explanation could be that due to mu-

tations and recombinations, the signal of an introgressed frag-

ment of DNA has been lost over time. In this case, we can

wonder why this DNA fragment would have undergone

such high recombination and mutation rates, when most

of the DNA is still identifiable between D. melanogaster and

D. simulans.

As “nothing in evolution makes sense except in light of

population genetics” (Lynch 2007), we can try to answer

this question at a population level. For TEs, many steps are

necessary for an HT to be successful (Le Rouzic and Capy

2005). After passing through the new host barriers, the TE

must transfer itself into the germ line to be transmitted to the

descendants. Then, the TE needs to have a sufficient transpo-

sition rate to propagate into the host genome and to increase

in frequency in the species by vertical transmission. For TEs,

which are able to actively colonize genomes, most of the TE

insertions in natural populations are absent from the se-

quenced genome, as shown by the study of 113 D. melano-

gaster strains isolated from natural population (Kofler et al.

2012).

In the case of an introgression, all the cells in the progeny of

the backcross with the hybrid will have a copy of the intro-

gressed DNA fragment, so the first step of contaminating the

germ line is always successful. Afterward, this introgressed

DNA fragment has to increase in frequency in the species to

be likely to be observed in the individuals actually sequenced.

In contrast to the active TE copies, the introgressed fragment

cannot actively replicate itself in the new genome, and its

probability of fixation is simply its frequency in the population,

at least in diploid organisms with a large effective population

size, such as D. melanogaster (Nolte and Schlötterer 2008). As

a result, the frequency of this introgressed fragment would be

almost null in comparison to the effective population size of

D. melanogaster, and even with the carrier subpopulation hy-

pothesis (Jurka et al. 2011), where the population is divided

into demes in each of which we can observe an effect of

genetic drift that favors the fixation of low-frequency alleles,

the introgressed fragment would have a low probability to be

transmitted to the other demes and to be fixed in the species

(Ghosh et al. 2012). Therefore, we would need to use

D. melanogaster and D. simulans population-genetic data to

be able to detect any traces of introgression events, as in the

recent study of introgression events between D. simulans and

D. sechellia from Brand et al. (2013).

This population-genetic aspect of the genomic data needs

to be taken into account, as it can explain other aspects of our

TE-based results. For example, the differences in the detection

of horizontally transferred TEs between D. melanogaster and

D. simulans found between the 2012 version of the D. simu-

lans genomes sequenced from one strain (Hu et al. 2013) and

the version from the 12 Drosophila genomes project se-

quenced from five different strains (Drosophila 12 Genomes

Consortium 2007) can be explained by the variability of TE

insertions between the populations of D. simulans (Vieira and

Biémont 2004).

With Other Drosophila Species

Overall, the extensive evidence of horizontally transferred TEs

detected in D. melanogaster seems to indicate that the fixa-

tion of new TEs could be facilitated in this genome. The timing

of most HTs involving D. melanogaster was estimated be-

tween 1.4 and 2.3 Ma, before the worldwide expansion of

D. melanogaster and D. simulans that happened 15,000 years

ago (Stephan and Li 2007; Carareto 2011). Themelanogaster

subgroup is endemic to Afrotropical regions, with the proto-

melanogaster founder dated between 17 and 20Ma from the

oriental region of Africa (Lachaise et al. 1988). Thus, a parsi-

monious hypothesis for the numerous horizontally transferred

TEs detected among D. melanogaster, D. simulans, D. sechel-

lia, and D. yakuba would place them at a time when these

species were all living in Africa, before the worldwide expan-

sion ofD.melanogaster andD. simulans. In this scenario, there

would have been fewer geographical barriers to hamper the

fixation of horizontally transferred TEs into sympatric popula-

tions with a smaller repartition area than the worldwide pop-

ulations ofD.melanogaster. The arrival of these new TE copies

in the genome D. melanogastermay have been a springboard

for the worldwide expansion of this species, as the load of TEs

can be correlated with the colonization of new territory (Vieira

et al. 1999, 2002). In contrast, a stronger population structure

in D. simulans (Mousset and Derome 2004) could explain the

polymorphisms of TE insertion that have resulted in different

TE loads between populations (Vieira and Biémont 2004) and

that may have independently favored the worldwide expan-

sion of this species, even if in both cases the cause of such a

mechanism is not yet understood.

Conclusions

We have developed a novel approach for the genome-wide

detection of all putative HT sequences independently of their

coding capability between two genomes. Our method relies

on a well-defined testing framework to approach this

genome-wide problem as a multiple-testing problem.We suc-

cessfully applied this method between the genomes of

D. melanogaster and D. simulans, underscoring the sensitivity
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of our approach to detect HTs between closely related species.

Like previous studies of HTs in eukaryotes, we validated these

results with other lines of evidence. We also proposed two

novel approaches to remove bias due to the detection of con-

served sequences, by a comparative analysis with phylogenet-

ically related species in the case of CDS and non–CDSs and by

an analysis of their recent activity in the case of TEs. After

these validation steps, we retrieved all the horizontally trans-

ferred TEs previously described in different studies (see

Carareto [2011] for a review) and very few spurious CDS,

attesting to the sensitivity and the specificity of our approach.

By amanual analysis of our results along each chromosome

arm of D. melanogaster, we did not detect any trace of intro-

gression between D. melanogaster and D. simulans, even if

this does not completely rule out this hypothesis. We also

detected a large number of horizontally transferred TEs involv-

ing D. melanogaster and other Drosophila species with our

assessment steps, bringing to light a small portion of the net-

work of horizontally transferred TEs in this phylogeny. This

large number of HTs for different TE families also supports

the model of birth and death, where HT events are a vital

part of the TE life cycle that prevents their extinction

(Schaack et al. 2010). We are just beginning to understand

the complex horizontally transferred TE network in eukary-

otes, and our approach could be applied to any pair of se-

quenced species to increase our knowledge of the dynamics

of these sequences, which seem to jump both within and

between species.

Supplementary Material

Supplementary figure S1–S7 and tables S1 and S2 are avail-

able at Genome Biology and Evolution online (http://www.

gbe.oxfordjournals.org/).
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1 INTRODUCTION

In the era of next generation sequencing (NGS) data, we often deal with hundreds even thou-
sands of simultaneous hypothesis testings. For example in differential gene expression analyses,
expression levels of thousands of genes are compared under different conditions. Genome-wide
association studies constitute another example where the association of a subset of genetic
markers associated with a disease or a trait is investigated among hundreds of thousands mak-
ers (Storey and Tibshirani, 2003). Therefore, such analyses are closely linked to multiple-testing
(Dudoit and van der Laan, 2008). Classically, the goal of statistical testing has been to avoid
making one or more type-I errors (wrongly rejecting the null hypothesis or false positive) and
this type of control has been naturally extended to multiple-testing with the family wise error
rate control (FWER) proposed by Bonferroni (Hochberg, 1988). However, the FWER control
leads to a drastic loss in power and such procedure only returns a small subset of true positives.
To increase the power of multiple-testing correction, Benjamini and Hochberg (1995) proposed
a control of the false discovery rate (FDR), that is controlling the proportion of false positives
(FP ) for a potentially large number of rejections (R). The FDR is defined by:

FDR = E

[
FP

R

∣∣∣R > 0

]
Pr (R > 0) . (1)

Another metric for multiple-testing procedure is the false non-discovery rate (FNR), intro-
duced by Genovese and Wasserman (2002) and defined by:

FNR = E

[
FN

S

∣∣∣ S > 0

]
Pr (S > 0) . (2)

The different outcomes of multiple-testing procedures are summarized in Table 1. A FDR
procedure is valid if it provides a strong control of the FDR at a nominal level α, and optimal
if it has the smallest FNR among all the valid FDR procedures (Sun and Tony Cai, 2009).
Similarly to the draw-backs of FWER control, an FDR procedure that is valid but non-optimal
will only return a subset of true positives potentially hiding important results from the analysis.

One of the main advantage of mutliple-testing procedures is their hability to work directly
with p-values regardless of the underlying test statistic. However, when confronted with a

Table 1: Classification of tested hypotheses

Hypothesis Claimed non-significant Claimed significant Total

Null TN FP m0

Non-null FN TP m1

Total S R m



multiple-testing problem the tests can be either two-sided, when the tested hypothesis is bilat-
eral, or one-sided, when the tested hypothesis is unilateral. In practice, there is a wide range of
common applications, such as the likelihood ratio test (Anders and Huber, 2010) or when the
problematic is fundamentally unilateral (Modolo et al., 2014), where the hypotheses tested are
unilateral. However, while there is a large literature for the control of the FDR for two-sided
multiple-testing, the one-sided multiple-testing problem has been mostly overlooked (Pounds
and Cheng, 2006).

There are some fondamental differences between one-sided and two-sided hypothesis testing
that render the assumption made by bilateral multiple-testing procedures invalid and could
lead to poor performance of the FDR procedures when applied to one-sided hypothesis testing
(Pounds and Cheng, 2006). To intruduce theses differences, let us first consider the general
framework introduced by Efron et al. (2001) for two-sided multiple-testing. The p-values are a
random vector X of m random variables. The first assumption is that their are two population
of p-values in proportion π0 and (1− π0) with π0 the proportion of p-values associated with the
null hypothesis. The probability density distribution (pdf) of X, g (xi) , i = {1, . . . ,m}, can be
modeled as the following two-component mixture:

g (x) = (1− π0) g1 (x) + π0g0 (x) , ∀x ∈ [0, 1] , (3)

with g0 (x) the pdf the p-values associated with the null hypothesis and g1 (x) the pdf of
the p-values associated with the alternative hypothesis. Most of the bilateral multiple-testing
procedures rely on the key assumption that g0 (x) = U (]0, 1]) when X is continuous (Casella
and Berger, 1990). However, observations show that for unilateral multiple-testing this key
assumption do not hold. In one-sided multiple-testing the p-values associated with the null
hypothesis can arise from a uniform distribution, or can be stochastically higher than uniform,
if they correspond to the non-tested hypothesis.

Figure 1 presents a comparison between simple multiple z-tests in the bilateral case (H0 :
the mean is equal to zero) and in the unilateral case (H0 : the mean is higher or equal to zero).
In the bilateral case, we have g0 (x) = U (]0, 1]) for the p-values associated with the non-tested
hypotheses, while we clearly don’t have an uniform distribution of the p-values associated with
the non-tested hypotheses in the unilateral case. Therefore, when building a multiple-testing
procedure for unilateral hypothesis, one has to account for the excess of p-values corresponding
to the non-tested hypothesis that do not follow a uniform distribution (Han et al., 2011).

One widely used multiple-testing procedure developed for bilateral multiple-testing is the
Benjamini & Hochberg procedure (BH) (Benjamini and Hochberg, 1995). With x(1), . . . , x(m)

the ordered m p-values and H(1), . . . ,H(m) the corresponding hypotheses, the BH procedure is
valid for a FDR level α (Benjamini and Yekutieli, 2001; Genovese and Wasserman, 2002):

k = max

{
i : x(i) ≤

i

m

α

π0

}
, then reject all H(i), 1, . . . , k. (4)

The original BH procedure provides a conservative control for the FDR at a level απ0 for
bilateral multiple-testing (by setting π0 = 1). This control level can be closer to α with plug-in
procedures using an estimate of π0 (Benjamini and Yekutieli, 2001; Genovese and Wasserman,
2002).

To illustrate the problem of the procedure developed for bilateral multiple-testing with the
BH procedure, we can rewrite (4) under the framework (3) (Liu et al., 2014) :

k = max

{
i :

π0F0 (Ti)

F̂ (Ti)
≤ α

}
, then reject all H(i), 1, . . . , k, (5)

with i/m = F̂ (Ti) the empirical estimate of the cumulative density function (cdf) for the test
statistic associated with H(i) and xis the estimate of F0 (Ti) (p-values are the cdf of the test
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Figure 1: Comparison of bilateral versus unilateral multiple hypotheses testing for 10,000 stu-
dent tests. For the bilateral tests, the t-statistics and p-values associated with the alternative
hypothesis H1 are in green and blue depending on the side of the departure from the null
hypothesis, while the values associated with the null hypothesis H0 appear in red. For the uni-
lateral tests, the t-statistics and p-values associated with H1 appear in green, while the values
associated with H0 appear in red or in blue if they correspond to the non-tested hypothesis.

statistic under the null distribution). In the case of unilateral multiple-testing, this estimation
of F0 does not take into account the p-values associated with the non-tested hypotheses and
underestimate the real density of F0. Moreover, every procedure that aims at increasing the
power of the FDR control by using a plug-in estimator of π0 that do not take into account
this excess of p-values under the null hypothesis will over estimate the density of the uniform
distribution, thus increasing the number of FP .

We propose in this paper a new procedure to handle unilateral multiple-testing using the
framework developed by Sun and Tony Cai (2009) to efficiently control the FDR. The rest of
the paper is structured as follow. We introduce the compound decision framework developed
by Sun and Tony Cai (2009) to control the FDR as a nominal level α in section 2. We
present a new mixture distribution to model unilateral p-values distribution under conditional
independence for this framework in section 3. Finally in section 4 we present simulation results
of our procedure and the performance of its implementation in an R package (R Core Team,
2014).

2 Optimal procedure for False Discovery Rate control

When dealing with a large number of simultaneous hypotheses testing, Sun and Tony Cai (2009)
showed that the multiple-testing problem is equivalent to the weighted classification problem
under mild conditions. Their work extend the framework developed by Efron et al. (2001) to
different form of dependency between the tests and prove its optimality.

Let x = (x1, . . . , xm) be a vector of observed p-values associated with a vector of unknown



states H = (H1, . . . , Hm) ∈ {0, 1}m such that:

Xi|Hi ∼ (1−Hi)g0 +Hig1, (6)

with g0 the conditional probability density function (cpdf) of the p-values corresponding to null-
hypotheses (H0) and g1 the cpdf of the p-values corresponding to the non-null hypotheses (H1),
denote by π0 = Pr (Hi = 0) the proportion of null-hypotheses. The goal of the multiple-testing
or the weighted classification problem is to choose between {Hi = 0} and {Hi = 1}.

They define the local index of significance (LIS) defined as the following statistic:

LISi (x) = Pr (Hi = 0|x) , (7)

With the LIS and a class of tests statistic that satisfy the monotone ratio condition (MRC),
Sun and Tony Cai (2009) define the following optimal multiple-testing procedure for a FDR
level α given in their Theorem 4:

With LIS(1), . . . , LIS(m) the ordered LIS statistics and H(1), . . . ,H(m) the corresponding
hypotheses, the following testing control procedure (the LIS procedure) is valid at an FDR
level α:

let k = max

⎧⎨⎩i :
1

i

i∑
j=1

LIS(j) (x) ≤ α

⎫⎬⎭ , then reject all H(i), i = 1, . . . , k. (8)

Theorem 5 and 6 of Sun and Tony Cai (2009) show that a local index of significance testing pro-

cedure where LISi in (8) is replaced by its plug-in statistic L̂ISi is optimal and asymptotically
valid for a level α.

In the independent case where Hi ∼ B (π0), the LIS reduces to the local false discovery rate
(�FDR) (Efron et al., 2001):

�FDR (xi) =
Pr (xi|Hi = 0)

Pr (xi|Hi = 0) + Pr (xi|Hi = 1)
. (9)

Moreover, Sun and Cai (2007) also showed that the lFDR (xi) is optimal and asymptotically
valid compared to other FDR procedures for a level α in the independent case.

More generally, multiple-testing procedures consist in first ranking them tests by importance
and then thresholding accordingly to a metric that we want to control for. When multiple-testing
procedures are based on p-values the general decision rule is simple and we can solve the m
component problems separately, when, where based on LISi or �FDRi the general decision rule
is compound (the classification of Hi depends on other Hj , j �= i) which allows for a better
ranking of the hypotheses (Sun and Cai, 2007).

3 p-values distribution for unilateral multiple-testing

The general framework developed in the previous section is valid for unilateral and bilateral
multiple-testing. However, for unilateral tests, we need to account for the differences of the
shape of the p-value distributions compared to bilateral multiple-testing. Here, we present a new
mixture model for one-sided p-values distribution that take into account the p-values associated
with the non-tested hypothesis. This new model brings the power of the LIS multiple-testing
procedure (8) to unilateral multiple-hypothesis testing.

For bilateral multiple-hypothesis testing, most estimators rely on the following assumption
on the shape of the conditional p-values distribution (Celisse and Robin, 2008):

∃λ ∈]0, 1]/∀i ∈ {1, . . . ,m} , Xi ∈ [λ, 1] =⇒ Xi|Hi ∼ U ([λ, 1]) . (B)



The assumption can be rationalized by the fact that for multiple hypotheses testing, we generally
are in the case where the number of null hypothesis is larger than the number of alternative
hypothesis (i.e. π0 	 (1− π0)), thus with the MRC (Sun and Tony Cai, 2009) there is a point
λ above which there is almost no contribution of g1 to the mixture model such that:

∀i ∈ {1, . . . ,m} , xi ∈ [λ, 1] =⇒ E [Hi = 0|x] 	 E [Hi = 1|x] . (10)

two sided p value one sided p value

0.000

0.025

0.050

0.075

0.100

0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9
p-values

A B

de
ns

ity

Figure 2: Comparison of bilateral versus unilateral multiple hypotheses testing p-values dis-
tributions. For the bilateral tests, the p-values associated with the alternative hypothesis H1

are in green and blue depending on the side of the departure from the null hypothesis, while
the values associated with the null hypothesis H0 appear in red. For the unilateral tests, the
p-values associated with H1 appear in green, while the values associated with H0 appear in red
or in blue if they correspond to the non-tested hypothesis. The dashed line correspond to the
position of λ and μ.

However, for some cases assumption (B) do not hold (Pounds and Cheng, 2006). Unilateral
hypothesis testing is one of these cases, where the p-values under the null hypothesis can arise
from a uniform distribution, or can be stochastically higher than uniform, if their associated
hypothesis is the non-tested hypothesis. Our approach extends the mixture model presented in
equation (3) to account for the characteristics of a distribution of unilateral p-values (see Figure
2).

Like for two-sided multiple-hypothesis testing, our first assumption is that a p-values dis-
tribution is a mixture of two populations in proportion π0 and (1− π0) with π0 the proportion
of p-values associated with the null hypothesis. However, by opposition to two-sided multiple
hypothesis testing, we don’t have only one, but two sources of p-values associated with the null
hypothesis: we have p-values computed from statistics that follow the model defined by the
test and p-values computed from statistics that do not follow the model defined by the test
and whose departure from this model is not tested. To describe the p-values distribution of
multiple unilateral tests, our second assumption is that the population of p-values associated
with the null hypothesis is subdivided in two sub-populations in proportion π1 and (1−π1) with
π1 the proportion of p-values corresponding with the null hypothesis because their associated
hypothesis is the untested hypothesis.

Like two-sided multiple hypothesis testing, for one-sided multiple hypothesis testing, the
p-values can be seen as a random vector X of m random variables. We propose to model the
probability density distribution of X, g (xi) , i = {1, . . . ,m}, as the following three-component
mixture:

g (x) = (1− π0) g1 (x) + π0 (π1g2 (x) + (1− π1) g0 (x)) (11)



with g0 = U (]0, 1]) and g1 and g2 two unknown probability density function. If the test statistic
satisfies the MRC (Sun and Tony Cai, 2009), g1 (x) is decreasing with high density near 0 and
g2 (x) is increasing with high density near 1 (Han et al., 2011).

To control the FDR at a given level, we need to discriminate between p-values associated
with the null hypothesis and p-values associated with the alternative hypothesis. For this we
need to introduce a new random variable H ∈ {0, 1}m. H is hidden and Hi is equal to 1 when
the hypothesis associated with Xi is the alternative hypothesis or equal to 0 otherwise. We
could introduce another hidden random variable U ∈ {0, 1}m such that when U = 1, Xi follow
the uniform distribution and g2 otherwise. However, a major challenge with this framework
is to discriminate between the three compartments of the p-values distribution, two of which
are unknown (Han et al., 2011). To simplify this problem and control the FDR for unilateral
multiple-testing where assumption (B) do not hold, Celisse and Robin (2008) proposed the
following milder assumption (see Figure 2 B):

∃Λ = [λ, μ] ⊂ (0, 1]/∀i ∈ {1, . . . ,m} , Xi ∈ Λ =⇒ Xi|Hi ∼ U (Λ) , (C)

In this setting, the distribution g (x) is only supposed uniform on the interval [λ, μ]. With
the MRC (Sun and Tony Cai, 2009) this assumption can be rationalized such that there is
a point μ under which there is almost no contribution of g2 to the mixture model, since we
expect to be in the case where we have more hypotheses under the true null-hypothesis than
the non-tested hypotheses. Otherwise we may want to perform another test that better defines
the null-hypothesis.

We emphasize that for the FDR control, we are only interested in discriminating between
the two sources of hypothesis: correctly assigning the labels H. Thus from Assumption (C),
with an estimate of μ, we propose to simplify this problem by working with a vector of p-values
right-censored in μ.

3.1 Right censoring

Here we present our censored model of unilateral p-values distribution. We propose to work
with the right-censored random variable Y instead of X such that:

Yi = Xi1[0,μ[ (Xi) + μ1[μ,1] (Xi) . (12)

By opposition to truncated data, where some observations are missing, with a censored
variable we have access to all the observations. With Y being right censored in μ, all Y
observations corresponding with X observations greater than to μ are set to μ. Therefore, the
probability density function of Y , h is similar to the pdf of X with all the mass of g (x) on the
interval [μ, 1] shifted to μ. We can write the pdf of Y is as the following mixture:

h (y) = (1− π0) g̃1 (y) + π0 [(1− π1) g̃0 (y) + π1g̃2 (y)]

with :

∀k ∈ {0, 1, 2} , g̃k (y) = gk (y)1(y<μ) + δμ (y) [1−Gk (μ)]

were δμ (y) is the Dirac density on μ.
Under the Assumption (C) we have [1−G1 (μ)] = 0 and G2 (μ) = 0. Moreover, with∫ λ

0 g1 (x) dx = 1 we can drop 1(y<μ). Thus we have:

g̃1 (y) = g1 (y) and g̃2 (y) = δμ (y)

To simplify our model further, we consider the density point in μ as one unique component
of the mixture. Therefore the pdf of Y is:

h (y) = (1− π0) g1 (y) + π0 (1− π1) g0 (y)1(y<μ) + [π0π1 + π0 (1− π1) (1−G0 (μ))] δμ (y)



Let κ be the weight of the Diract distribution in the mixture, we can rewrite h (y) without
π1 the proportion of untested alternative hypotheses, such that:

h (y) = (1− π0) g1 (y) + π0

[(
1− κ

π0

)
g0 (y)1(y<μ) +

κ

π0
δμ (y)

]
(13)

Note that g0 (y)1(y<μ) the pdf of the uniform distribution on ]0, 1] set to be equal to zero on
[μ, 1] is equal to the pdf of the uniform distribution on ]0, μ[. Moreover, with ∀y ≥ λ, g1 (y) = 0
and ∀y = μ, g0 (y)1(y<μ) = 0, we set implicitly Hi = 0, ∀yi = μ. Thus our model corresponds
to Assumption (C) by splitting the p-values into three segments:

• ]0, λ[, with a mixture of p-values associated with the alternative hypothesis and p-values
associated with the null hypothesis that follow an uniform distribution:

∀yi ∈ ]0, λ[ , h (y) = (1− π0) g1 (y) + π0

(
1− κ

π0

)
g0 (y)1(y<μ),

• [λ, μ[, with only p-values associated with the null hypothesis that follow an uniform dis-
tribution:

∀yi ∈ [λ, μ[ , h (y) = π0

(
1− κ

π0

)
g0 (y)1(y<μ),

• and [μ, 1[, with only p-values associated with the null hypothesis,

∀yi ∈ [μ, 1[ , h (y) = κδμ (y) .

With our model of censored p-values and an estimate of μ, we can easily estimate the other
model parameters θ = {π0, κ, g1} and most importantly the probability that the hypothesis
associated with the ith p-values is the null hypothesis.

With the hidden variable H, the complete-data log-likelihood of our model is:

logL (y, μ, θ,H) =
m∑
i=1

1 (Hi = 1) log ((1− π0) g1 (y))

+

m∑
i=1

1 (Hi = 1) log

(
π0

[(
1− κ

π0

)
g0 (y)1(y<μ) +

κ

π0
δμ (y)

])
With the indicator function 1 (Hi = a) equal to 1 when Hi = a and zero otherwise.

We highlight that our model do specify the point λ and only rely on the posterior probability
Pr (H = 0|y) to discriminate between null and alternative hypothesis. Therefore, we expect less
FN in our results by not making an error in the estimation of λ in our model.

To be able to use this right censoring of the p-values, we need to obtain an estimate of μ.

3.2 Estimation of the censoring point μ

Celisse and Robin (2008) proposed to obtain a histogram estimation of the p-value density
distribution of multiple unilateral tests by exact leave-p-out cross validation (LPO). With this
approach we can select an irregular histogram with a wide central column corresponding to the
interval [λ, μ] that minimize the quadratic risk of the model. We propose to use this framework
to retrieve an estimator of μ as a byproduct of the LPO procedure.

Let us consider MD the set of all possible partitions on [0, 1] in D segments with equal
length:

MD =

{
m,m = (Id)

D
d=1, Id =

]
d− 1

N
,
d

N

]}
.



Let us denote S the collection of estimators we consider, such that:

SN,D =
{
ŝD,N (x; λ̂, μ̂)

}
and S =

⋃
N,D

SN,D,

with

ŝD,N (x; λ̂, μ̂) =
N̂λ∑
d=1

[
m∑
i=1

1{xi ∈ Id}
]
1{x ∈ Id}+

[
m∑
i=1

1{xi ∈]λ̂, μ̂]}
]
1{x ∈]λ̂, μ̂]}

+

D∑
d=N̂λ+2

[
m∑
i=1

1{xi ∈ Id}
]
1{x ∈ I

Nμ̂+1+d−(N̂λ+2)
}

with the constraint that Nμ̂+ 1 +D − (Nλ̂− 2) = N .
Celisse and Robin (2008) derived the following closed formula to compute the quadratic risk

of the model, with leave-p-out cross-validation for every p ∈ {1, . . . , n− 1}, for risk estimation
Celisse (2014) proves the leave-one-out optimality (p = 1), when the family of models to explore
is not too large:

R̂1

(
ŝD,N (x; λ̂, μ̂)

)
=

1

(m− 1) (m− 1)

N∑
d=1

1

|Id|
[
(2m− 1)

md

m
−m2

(md

m

)2
]

(14)

where mi =
∑m

j=1 1{xj ∈ Ii}
If Assumption (C) is fulfilled, by minimizing R̂1

(
ŝ
N,̂λ,μ̂

)
we expect to select an histogram

estimator ŝD,N (x; λ̂, μ̂) with a wide central interval
[
λ̂, μ̂

]
close to [λ, μ] which can used to

estimate μ.

3.3 Estimation of Pr (H = 0|y)
By correctly handling the excess of p-values near 1 that is the trademark of one-sided multiple-
testing we can compute the probability of a p-values xi to be associated with the null hypothesis.

While it is possible to work directly with the mixture density h (16), most of the density
of g1 is concentrated near 0 while the density g0 is spread between 0 and μ̂. Thus, from a
numerical point of view, working with h will favor the estimation of g0 over g1 (Guedj et al.,
2009).

For estimation purposes, Efron (2005) proposed work with z−values such that z = Φ−1 (x)
instead of p-values, with Φ (•) the standard Gaussian cumulative density distribution. This
transform spreads the z-values on R and “zooms” on the near zero p-values A refinement was
proposed by Sun and Cai (2007), with a transform that maintains the notion of departure from
the null hypothesis carried by the p-values. With this transform, the highest density point
of the distribution of the z-values associated with the null-hypothesis, corresponds to the less
significant p-values (equal to 1) and the density of this distribution decreases with the distance
to zero.

We propose to adapt this second transform to unilateral multiple hypothesis testing with
the following transform:

z = Φ−1

(
1− y

2μ

)
∈ Φ−1 [0.5, 1] (15)

with y as defined in equation (12). We use y/μ to work in the common Gaussian framework on
R+ instead of the interval

[
Φ−1 (1− μ/2) ,∞[

.



With this transform we obtain the following mixture density distribution for the z-values
on R+:

f (y) = (1− π0) f1 (y) + π0

[(
1− κ

π0

)
f0 (y)1(z>0) +

κ

π0
δ0 (y)

]
(16)

with f0 (z) = Φ−1 (1− g0 (y) /2μ) the pdf of the standard folded Gaussian density, δ0 (z) =
Φ−1 (1− δμ (y) /2μ) and f1 (z) = Φ−1 (1− g1 (y) /2μ) an unknown pdf with a null density in
zero.

For applications, the shape of the f1 distribution is often not known and must be estimated.
For the LIS procedure Sun and Tony Cai (2009) used a Gaussian mixture density distribution
which is a simple and flexible tool for such estimation. However, for multiple hypothesis-testing
if the observations under the null hypothesis often follow a unique known distribution, the
observation under the alternative hypothesis can potentially follow a number of distributions
equal to TP . Thus f1 is no longer a simple parametric distribution. We can use a nonpara-
metric estimation of f1 via kernel density estimation as described in (Liu et al., 2014) with the
constraint that f1(0) = 0. This approach is similar to the one proposed by Guedj et al. (2009)
under independence assumption of the hypotheses, which yield good performance for estimating
f1 (Nguyen and Matias, 2012, 2013).

With our LPO estimator of μ, the remaining of the model parameters can then be estimated
using the EM-algorithm (Dempster et al., 1977).

We developed this model for three different dependency structures (See supplementary file
S1). The first one reduces to the �FDR (Efron et al., 2001), with independence between the
tests:

P (Hi = j|x) = P (Hi = j|xi), j ∈ {0, 1} (17)

The second model assumes homogeneous Markovian dependency between the tests (Sun and
Tony Cai, 2009):

P (Hi = j|x) = P (Hi = j|xi, Hi−1), j ∈ {0, 1} (18)

The third model assumes non-homogeneous Markovian dependency between the tests (Kuan
et al., 2012):

P (Hi = j|x) = P (Hi = j|xi, Hi−1,Z), j ∈ {0, 1} (19)

This model assume that we have a vector Z1:m = (Z1, . . . ,Zm) of covariables with Zi a vector
of D covariables associated with xi. Two assumptions are made:

P (Hi|H1:m, z1:m, x1:m) =

{
P (Hi|Hi−1, zi) i ≥ 2
P (H1|z1) i = 1

P (xi|Hi, z1:m, xi:m) = P (xi|Hi)

In this model the value of the emission probability and the transition matrix are function of Z

πk (z) = P (H1 = k|Z1 = z)

ajk (z) = P (Hi = k|Hi−1 = j,Zi = z)

As we work with probability (i.e. defined in [0, 1]) Hughes et al. (1999) chose to employ multi-
nomial logistic regression to parametrize the hidden state transition.

πk (z) =
exp

(
λk + ρi

k × z
)

{0,1}∑
�=1

exp
(
λ� + ρi

� × z
)

ajk (z) =
exp

(
σjk + ρi

k × z
)

{0,1}∑
�=1

exp
(
σj� + ρi

� × z
)



with λk, σjk ∈ R and ρk ∈ RD. With ωk the set of transition parameters for the state k we
have to set ω0 = 0 to guarantee the uniqueness of the parameters. A homogeneous HMMs can
be seen as a particular case of NHMM where ρ = 0.

ρ = 0 ⇔ P (Hi = k|Hi−1 = j,Zi = z) = P (Hi = k|Hi−1 = j)

4 RESULTS

To evaluate the performances of the proposed procedure for the control of the FDR in the
case of unilateral multiple-testing we performed different numerical simulations. As the whole
procedure relies on the estimate of the cut-point μ, we first tested the consistency of this
estimator from the LPO procedure with a large number of shapes for the p-values distribution.
Then we performed simulation of our LIS, in order to study the control of the FDR. The
results in this section show good estimates for μ, and a strong control of the FDR as for the
benefit taking into account the dependency structure of the data by decreasing the FNR.

4.1 LPO simulations for the estimation of μ

To study the estimate of μ provided by LPO, we simulated p-values according to the following
model:

g(x) = (1− π0)Beta[0,λ] (1, �) + π0π1U[0,1] ([0, 1]) + π0 (1− π1)Beta[μ,1] (r, 1) , (20)

with Beta[a,b] (i, j) the Beta distribution function with a support on [a, b] and parameters i, j.
In this model, the two beta distributions correspond respectively to g1[0,λ] and g2[μ,1], g

0
[0,1] being

the uniform distribution on [0, 1]. Therefore, there is no contribution of g1 and g2 on the interval
[λ, μ] which fulfills condition (C). This framework allows us to have access to the true value of
μ.

Simulations with this model were computed 30 times for a vector of p-values of size m =
10000 with the following parameters:

• p = {1, n/10, n/2}
• π0 = {0.8, 0.9}
• π1 = {0.2, 0.3, 0.4, 0.5, 0.6}
• λ = 0.2

• μ = {0.5, 0.6, 0.7, 0.8, 0.9}
• � = 5

• r = {2.5, 3, 5}
The set of parameters {λ, μ, π}, with π = π0π1, was estimated from the parameters of the

irregular histogram minimizing the LPO risk estimator in the histogram collection S (??). By
default, we explore regular grids of size n = 3i wih i ∈ {3, 4, 5, 6, 7}, on which are built irregular
histogram defined by jth columns of width 1/n followed by a central column of width (k− j)/n
and kth columns of width 1/n. For each size n, j ranges from 2 to n − 3 and k ranges from
j + 2 to n− 1.

With this framework, more than 9% of the simulation provides wrong estimates of π (where
π > 1). These 9% of the simulation seem to be linked with an estimation of λ too close to
the one of μ. These errors with the estimation of both λ and μ seem to be explained by two
factors. The first one is the choice of regular grids to explore: there are large jumps in the model



dimension to explore with n = 3i and i ∈ {3, 4, 5, 6, 7} (Figure 3 left). Thus, if the increase in
model complexity is linked to a large decrease in the risk, we can select the new model only
because it is more complex than the previous one (i.e. over-fitting), which would not have been
the case if all the sizes of regular grid were explored (but this would require huge computational
resources). We note that this problem decreases with the value of p, but we need very large
values of p for this problem to disappear (of the order m/2) with also increase the bias of the
LPO estimators. The second one is the shape of the p-values distribution where we have a large
number of p-values near 0 and 1. Therefore, we can select the right-most or left-most central
column which capture an high number of p-values (Figure 3 right).
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Figure 3: Three examples where LPO provides wrongs estimates (π being superior to 1). For
each case the top histogram represents the p-values distribution with the green bar displaying
the value of μ, the red bar the one of λ and the blue bar the one of π.

To circumvent these problems, we set the width of the central columns to be at minimum a
percentage of the central column selected for the previous grid size (by default 50%). Moreover,
for multiple-testing we are typically in cases where π0 	 (1− π0), we fix j to be at maximum a
given percentage of the grid (by default 20%). These two constraints prevent the above problems
and straighten the curve of the risk (Figure 4).

Figure 5 displays the effect of these constraints on the estimation of μ for all the sets of
parameters. From this figure we can see, in the cases without constraints, that there seems to be
a second population of error where μ is clearly overestimated. This overestimation corresponds
to the phenomenon described previously, where the model selected is the irregular histogram
with the smallest central column and high value of μ and λ. However, this problem disappears
with the constrains.

Globally, the values of μ̂ seems to be skewed to higher value than the real μ and this
tendency is magnified by the value of r (see Figure 6). The slope of the Beta density function
Beta[μ,1] (r, 1) near μ is governed by parameter r, with a smaller slope for higher values of r.
Thus, for small slope the density of Beta[μ,1] (r, 1) near μ is essentially uniform. The difficulty
of estimating μ also increase when μ is small, which can also be explained by a larger support
for Beta[μ,1] (r, 1) and a larger interval where this Beta distribution is near uniform. At last
there is also a strong correlation between the overestimation of μ and the proportion π1. The
less weight Beta[μ,1] (r, 1) as in the model the harder it will be to identity its contribution to
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Figure 4: Results of LPO with constraint for the same three cases as the one from Figure 3 For
each cases the top histogram represent the p-values distribution with the green displaying the
value of μ, the red bar the one of λ and the blue bar the one of π.

the mixture g(x).
To sum-up our approach seems to overestimate μ, in cases where the contribution ofBeta[μ,1] (r, 1)

near μ is almost uniform. Thus for these cases, there is almost no differences between the true
model g(x) and another with a wider central uniform disitribution between λ and μ̂. We empha-
size, that for real p-values distributions there is no true value of μ, and that our procedure seems
to produce sound result for the estimation of a point μ̂ above which the p-values distribution is
no longer uniform.



Figure 5: Violin plot of the density of the distribution of the errors made by estimating μ. The
errors are simply computed by μ̂ − μ to display the skew of their distribution. The violin in
red represent the distribution of errors without constrains, while the one in blue represent the
distribution of errors with constrains.



Figure 6: Boxplot of the errors made by estimating μ. The errors are simply computed by μ̂−μ
to display the skew of their distribution. Each plot correspond to a different values of μ, while
the boxplot color correspond to different values of π1 and the y-axis to different value of r



4.2 FDR simulation under independence

In this section we present a simulation study of the performance of different multiple-testing
procedures for multiple-unilateral tests. We simulate unilateral z-values distribution according
to the following model:

f(z) = (1− π0)N (μ1, 1) + π0π1N (0, 1) + π0(1− π1)N (μ2, 1) (21)

g(x) = Φ(f(z)), (22)

with N (μ1, 1) the distribution of the test statistic under the alternative hypothesis, N (0, 1)
the distribution of the test statistic under the null hypothesis defined by the test and N (μ2, 1)
the distribution of the test statistic under the null hypothesis corresponding to the non-tested
hypotheses. With Φ(x), the cumulative density distribution of a standard Gaussian distribution,
g(x) is the distribution of the p-values corresponding to the z-statistic f(z) when μ1 < 0 and
μ2 > 0.

Moreover, the data where generated under the NHMM model (19) to evaluate the gain in
taking into account the dependency structure of the data. Simulations with this model were
computed 10 times for a vector of p-values of size m = 10000 with the following parameters:

• π0 = {0.8, 0.9, 0.95}
• π1 = {0.8, 0.7, 0.6, 0.5, 0.4}
• μ1 = {−1,−1.5,−2,−2.5,−3,−3.5,−4}
• μ2 = {1, 2, 3, 4}

For the parameter π0, we manually set the vector of parameters ω of the NHMM to values
corresponding to π0 = {0.8, 0.9, 0.95} in the data.

For each simulation, the results of four procedures where recorded for a FDR level of 0.1.
The Benjamini-Hochberg procedure Benjamini and Hochberg (1995), and our procedure with
the independence model (17), the homogeneous Markovian dependence model (18) and the
non-homogeneous Markovian dependence model (19) between the hidden states H. Due to the
unilateral nature of the p-values simulated, we could not use other procedures based on the
�FDR, as these procedure do not take into account the excess of p-values near 1. This leads to
bad estimates for the models parameters, that are of no interest of a comparative study. Step-
up procedures like BH, avoid the problem linked to this misspecification of the model for the
p-values distribution simply by stopping before it happens. In this case, the step-up procedure
consists in rejecting all p-values, starting form the smallest one, until the average of the rejected
p-values reach the selected FDR threshold α. In this case, except for unrealistic threshold (i.e.
α ≥ μ), the p-values associated with the non-tested hypothesis will never be considered by the
procedure.

Figure 7 compares the average FDR for the four multiples-testing procedures with different
values of μ1 and π1. The value of μ1 can be seen as a measure of the difference between
the p-values associated with the alternative hypothesis and the one associated with the null-
hypothesis. Thus, for values of μ1 close to zero, the task of discriminating between H = 0 and
H = 1 is harder. Globally we can observe a strong control of the FDR for all procedures in
all conditions. However, there seems to be an increasing difference between the BH procedure
and the ones taking into account p-values corresponding to the untested hypothesis when their
proportion increase (i.e. the value of π1 decreases). While our procedure seems stable according
to the different values of π1, the FDR of the BH procedure increase with π1. In the BH
procedure, the estimate of g by i/m (4), leads to an overestimation of the density of g0 as
the contribution of g1 to m is not taken into account. Thus, the procedure will produce less
rejections for low value of π1. Because, only extremely low p-values are rejected in this case the
probability of false positive decreases.
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Figure 7: Curve of the FDR mean for different choices of μ1. Each plot corresponds to different
values of π1 and each line correspond to one of the four following procedures: Benjamini-
Hochberg (BH), and our procedure with the independence model (indep), the homogeneous
Markovian dependence model (HMM) and the non-homogeneous Markovian dependence model
(NHMM). The red horizontal line correspond to the FDR level we control for (0.1)

Figure 8 compares the average FNR for the four multiples-testing procedures with different
values of μ1 and π1. While all the procedure are valid in term of FDR control at a level 0.1,
methods accounting for the dependency structure of the data have lower FNR. The FNR
decreases with the complexity of the model, with the NHMM model corresponding to the
model under which the data where generated. Like for the FDR, the differences between the
BH procedure and our procedures increases with the proportion of untested hypothesis. This,
difference in FNR, can be crucial for real applications, as it could correspond to the differences
between the detection of crucial differences and overlooking them.
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Figure 8: Curve of the FNR mean for different choices of μ1. Each plot corresponds to different
values of π1 and each line correspond to one of the four following procedures: Benjamini-
Hochberg (BH), and our procedure with the independence model (indep), the homogeneous
Markovian dependence model (HMM) and the non-homogeneous Markovian dependence model
(NHMM).

5 DISCUSSION

This article presents a new flexible framework for unilateral multiple-testing application. This
new framework handles the excess of p-values close to 1, seen in unilateral multiple-testing
applications, and our transform provide a simple probabilistic mixture model that can be easily
be implemented in other procedure. Here, extend the LIS framework developed by Sun and
Tony Cai (2009), given access to the better ranking of hypotheses provided by the LIS statistics
for unilateral hypothesis testing. We also adapted the model proposed by Kuan et al. (2012)
to integrate prior knowledge about the dependency structure of the data. Taking, into account
the dependency between the different hypotheses tested can dramatically decrease the number



of false negative and represent the difference between non-significant and significant results.
This method and its implementation are freely available as an R package, uniFDR, with

a fast C++ implementation of the most computationally demanding functions. Currently,
the model for independent hypothesis testing, similar to the �FDR approaches, the model
with homogeneous Markovian dependency and non-homogeneous Markovian dependency are
available. However, the functions for the p-values transform are easily accessible and can be
used for other procedure with few modifications to implement the mixture model (??) with the
constraint that Pr(H = 1|z = 0) = 0. For example, this could easily be implemented in the
covariate-modulated �FDR procedure developed by Zablocki et al. (2014), that can incorporate
the prior information about hypothesis provided by covariates.

Overall, with our approach, we could revisit many results of unilateral multiple-testing
applications and find new positives with the power of �FDR and LIS based procedures.
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UrQt: an efficient software for the
Unsupervised Quality trimming of NGS data
Laurent Modolo and Emmanuelle Lerat*

Abstract

Background: Quality control is a necessary step of any Next Generation Sequencing analysis. Although customary,

this step still requires manual interventions to empirically choose tuning parameters according to various quality

statistics. Moreover, current quality control procedures that provide a “good quality” data set, are not optimal and

discard many informative nucleotides. To address these drawbacks, we present a new quality control method,

implemented in UrQt software, for Unsupervised Quality trimming of Next Generation Sequencing reads.

Results: Our trimming procedure relies on a well-defined probabilistic framework to detect the best segmentation

between two segments of unreliable nucleotides, framing a segment of informative nucleotides. Our software only

requires one user-friendly parameter to define the minimal quality threshold (phred score) to consider a nucleotide to

be informative, which is independent of both the experiment and the quality of the data. This procedure is

implemented in C++ in an efficient and parallelized software with a low memory footprint. We tested the

performances of UrQt compared to the best-known trimming programs, on seven RNA and DNA sequencing

experiments and demonstrated its optimality in the resulting tradeoff between the number of trimmed nucleotides

and the quality objective.

Conclusions: By finding the best segmentation to delimit a segment of good quality nucleotides, UrQt greatly

increases the number of reads and of nucleotides that can be retained for a given quality objective. UrQt source files,

binary executables for different operating systems and documentation are freely available (under the GPLv3) at the

following address: https://lbbe.univ-lyon1.fr/-UrQt-.html.

Keywords: Quality control, Trimming, Next-generation sequencing, Unsupervised segmentation, Parallel computing

Background
Next Generation Sequencing (NGS) technologies produce

calling error probabilities for each sequenced nucleotide

[1]. These probabilities, encoded as phred scores [2], are

often high at the heads and tails of the reads, indicating

low-quality nucleotides [3]. The presence of these unreli-

able nucleotides can result inmissing or wrong alignments

that can either increase the number of false negatives

and false positives in subsequent analyses or can pro-

duce false k-mers in de novo assembly, increasing both the

complexity of an assembly and the chance of producing

misassemblies [4]. To remove these unreliable nucleotides

and only work with informative nucleotides, most NGS

*Correspondence: emmanuelle.lerat@univ-lyon1.fr

Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Laboratoire de

Biométrie et Biologie Evolutive, 43 bd du 11 novembre 1918, 69622

Villeurbanne cedex, France

data analyses start with a quality control (QC) step before

any downstream analysis.

There are three types of approaches to address low-

quality nucleotides. Classical QC strategies begin by

removing an arbitrary number of nucleotides at the head

and tail of each read, with tools such as the fastx_trimmer

from the FASTX-Toolkit [5], after visualization of the per

nucleotide sequence quality with tools such as FastQC

[6]. Then, only reads of high quality are retained by other

filters; for example, all reads with a given percentage

of their length below a given phred score are excluded,

using tools such as the fastq_quality_filter from FASTX-

Toolkit. More recent approachesmodify incorrectly called

nucleotides by superimposing reads to each other and

removing low frequency polymorphisms. This kind of

approach often works using motifs of k nucleotides or k-
mer to modify low frequency motifs based on the most

frequent ones. However, this type of approach requires

© 2015 Modolo and Lerat; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise

stated.
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potentially high sequencing coverage (15x in the case

of Quake [7] and 100x in the case of ALLPATHS-LG

[8]) and cannot be applied to non-uniform sequencing

experiments, such as RNA sequencing (RNA-Seq). Other

approaches trim unreliable nucleotides at the head and tail

of each read.With these approaches, one wants to find the

best trade-off between removing unreliable nucleotides

and keeping the longest reliable or informative subse-

quence for the entire read. Current trimming approaches

rely on two types of algorithms: the running sum algo-

rithm and the window-based algorithm (for a review see

[4]). However, these algorithms only return good local cut-

ting points for each read when it is necessary to find a

good global cutting point to get the best trade-off between

removing unreliable nucleotides and losing too much

information. Moreover, most of these QC strategies rely

heavily on manually chosen parameters that are difficult

to interpret and cannot be easily automatized.

In the present work, we have developed the program

UrQt to trim unreliable nucleotides at the heads and tails

of NGS reads based on their phred scores. We define an

informative segment as a segment whose nucleotides are

on average informative and an informative nucleotide as

a nucleotide with a quality score above a specified quality

threshold. Our approach takes advantage of the expected

shape of the calling error probability along each read

(abruptly decreasing for the first nucleotides and slowly

increasing with the size of the reads) to find the best parti-

tion between two segments of unreliable nucleotides to be

trimmed –the head and the tail of the reads– and a central

informative segment. UrQt implements an unsupervised

segmentation algorithm to find the best trimming cut-

points in each read by maximum likelihood. We use a

probabilisticmodel to handlemore naturally the trimming

problem than other procedures using window-based or

running sum algorithms [4]. Moreover, UrQt requires no

data-dependent parameters and takes advantage of mod-

ern multicore achitectures, which makes it particularly

interesting to be routinely applied for NGS reads in fastq

or fastq.gz format [9] and attractive for the development

of future analytical pipelines.

Implementation
In this section, we present the probabilistic model that we

use to find the best position to trim a read to increase

its quality without removing more nucleotides than nec-

essary. We also present an extension of this model for

homopolymer trimming.

A read is defined as a vector (n1, . . . , nm) of m
nucleotides associated with a vector of phred scores

(q1, . . . , qm). We want to find the best cut-point k1 ∈
[1,m] in a read of length m between an informative seg-

ment for nucleotide ni, i ∈ [1, k1] and a segment of unre-

liable quality for nucleotide ni, i ∈ [k1 + 1,m] (Figure 1).

Then, having found k1, we want to find the best cut-point

k2 ∈ [1, k1] between a segment of unreliable quality for

nucleotide ni, i ∈ [1, k2 − 1] and an informative segment

for nucleotide ni, i ∈ [k2, k1]. Given the shape of the call-

ing error probability distribution, there is less signal to

find k1 (the probability slowly increases at the extremity of

the read) than k2 (abruptly decreases). Therefore, we want
to have the highest number of nucleotides to support the

choice of k1 when k2 can be found with a subsequence of

the read (Figure 1).

With q the quality value of a nucleotide, the probability

for this nucleotide to be correct is defined by:

pa (q) = 1 − 10
−q
10 (A)

which gives, for example, a probability pa (q) = 0.99 for

a phred q = 20 [2]. However, in QC, the word “informa-

tive” is typically defined as a phred score above a certain

threshold and not the probability of calling the correct

nucleotide. From a probabilistic point of view, we need

to discriminate informative nucleotides (with pa (q) ≥
pa (t) and t a given threshold) from other nucleotides,

rather than discriminate fairly accurate nucleotides (with

pa (q) ≥ 0.5) from the others. Therefore, we propose to

define the probability of having an informative nucleotide

10
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Figure 1 Quality trimming. Position of the cut-points k1 and k2 in a read. After trimming, the retained part corresponds to the section with a green

background, which indicates an informative segment of nucleotides between k1 and k2.
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as pb (q, t) = 1 − 2
−q
t with t the minimal phred score

acceptable to be informative. This definition shifts the

probability function such that for q = t, we have

pb (q, t) = 0.5. Therefore, at the threshold t, nucleotides
with pb (q, t) ≥ 0.5 are informative and the others are

not. With t = 3.0103, we go back to the classical phred

function (Figure 2) in which pb (q, t) = pa (q).
With the function pb (q, t), low phred scores are associ-

ated with a low probability to be correct (pb (0, t) = 0),

but for t ≤ 20 a high phred score does not correspond to

a high probability to be correct (for example, pb (40, 20) =
0.75). Therefore, from a probabilistic point of view, unre-

liable nucleotides will have more weight than informative

ones. To associate a high phred score with a high probabil-

ity of having an informative nucleotide, we constrain this

probability to reach 1 for a phred score of 45 by using the

following spline function (Figure 2):

p (q, t) =
{
1 − 2

−q
t if q ≤ max(20, t),

B (q�, p1, p2, 1, 1) otherwise
(B)

with B (q�, p1, p2, p3, p4) the cubic Bezier curve starting at
p1 toward p2 and arriving at p4 coming from the direction

of p3 for q� ∈ [0, 1]. We have p1 = 1 − 2−max(20,t)/t , p2 =

g (1/3 × (45 − max(20, t))) with g (q) the tangent to the

function 1 − 2
−q
t in max(20, t). We scale the Bezier curve

to the interval [t, 45] with q� = (q − t) / (45 − t). The con-
straint max(20, t) ensures that d

dq�B (q�, p1, p2, p3, p4) < 0

for q� ∈ [0, 1] (see Figure 2).

With the maximum likelihood framework, finding the

position of the cut-point between a segment of infor-

mative nucleotides (q > t) and a segment of unreliable

nucleotides (q < t) consists in estimating k1 by:

k̂1 = argmax
k

k∏
i=1

1

k f0 (ni, t)
m∏

i=k+1

1

m − k − 1
f1 (ni, t)

(C)

with f0 (ni, t) the probability that the nucleotide ni comes

from the segment of informative nucleotides and f1 (ni, t)
the probability that the nucleotide ni comes from the seg-

ment of unreliable nucleotides for a given t. Such that:

f0 (ni, t) = p (qi, t)
∏
N∈�

Pr(N)1(ni=N) (D)

f1 (ni, t) = (1 − p (qi, t))
1

4
(E)
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Figure 2 Probability-phred functions. p (q, t) according to the choice of t. The white, dark grey, light grey and black dots represent respectively the

position of p1, p2, p3 and p4 for the corresponding probability-phred functions. Before p1 we have the 1 − 2
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t part of the function (B) and after p1

the B (q� , p1, p2, p3, p4) part of the function (B).
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with 1(ni = N) an indicator variable such that 1(ni =
N) = 1 if the nucleotide ni is equal to N and 0 oth-

erwise, Pr(N) = ∑k
i=1 1 (ni = N) /k the probability to

observe the nucleotideN between 1 and k, and� the stan-

dard IUB/IUPAC dictionary [10]. Pr(N)N∈� and k1 are

estimated with the complete data framework of the EM

algorithm [11]. After finding k̂1, we apply the same proce-

dure on the interval [ 1, k̂1] to estimate the best cut-point

k2 between a segment of unreliable nucleotides ahead of

a segment of informative nucleotides. This double binary

segmentation ensures to provide the best two cut-points

for a given read [12].

For p (q, t) = pa (q), we can interpret the segment of

informative nucleotides as a segment for which on average

we are confident that a given nucleotide is the correct one,

whereas the segment of unreliable nucleotides is com-

posed of uninformative nucleotides in which on average

any of the four nucleotides can be present at a given

position. The cut-point k1 maximizes the probability that

the nucleotides ni, i ∈ [1, k1] are informative and that

nucleotides ni, i ∈ [k1,m] are not.

With our model, trimming nucleotides of unreliable

quality is somewhat similar to removing homopolymers

from the extremities of the reads. The task of removing

homopolymers, such as polyA tails in RNA-Seq exper-

iments, is not trivial, because the quality of a given

nucleotide decreases both at the end of the read and with

the size of the homopolymer. Therefore, because the num-

ber of incorrectly called nucleotides increases, we are less

likely to observe As at the end of the polyA tail. UrQt

implements a procedure for the unsupervised trimming of

polyN with a straightforward modification of equation (E)

such that:

f1 (ni, t) = pa (qi, t)1(ni=A)

(
(1 − pa (qi, t))

1

4

)1(ni �=A)

(F)

in which we can replace A by any letter of the stan-

dard IUB/IUPAC dictionary. With this definition of f1, we

consider the calling error probability of the nucleotide at

position i if ni = A or if ni �= A, the probability that the

nucleotide could have been an A.

Results and discussion
To assess the performance of our approach, we com-

pared the performance of UrQt to other publicly available

programs on different NGS data sets (see Table 1). The

quality of the data generated during an NGS experiment

can vary greatly depending on the type of data (DNA or

RNA) and the sequencing pipeline. To analyze these two

types of data on the same genome, we chose paired-end

RNA and paired-end DNA sequencing experiments from

the species Drosophila melanogaster. For this species, the
DNA sample quality quickly drops at the end of the reads

(see Additional file 1), and the RNA sample presents

a large variability of quality among its reads. We also

included in our analysis four other data sets from four

different species which are the same ones as used in the

comparative study of Del Fabbro et al. [4]. One single-

end RNA sample from the species Homo sapiens of poor
overall quality and one single-end RNA sample of good

overall quality from the species Arabidopsis thaliana. For
the DNA sample, we used one paired-end sample from

the species Prunus persica of excellent overall quality

and one paired-end DNA sample from the species Sac-
charomyces cerevisiae of average quality. Finally, we also

included one paired-end RNA sample from the species

Homo sapiens of overall good quality. The seven data sets

(Table 1) were downloaded from theNCBI website. Rather

than using the complete data set, we uniformly sampled

500,000 reads from each experiment using the software

fastq_sampler.py (available at https://github.com/
l-modolo/fastq_sampler), to speed-up the compu-

tation and work with comparable reads number for each

sample.

For testing purposes, we choose the better trimming

programs, according to their performances in the study

of Del Fabbro et al. [4] and representing both running

sum algorithms (Cutadapt [13], which implement the

algorithm proposed for BWA [14]) and sliding-windows

Table 1 NGS data sets used for testing

Accession Species Sample Paired-end Read size Reference
number type (bp) genome

SRR002073 Homo sapiens RNA no 33 hg19

SRR521463 Homo sapiens RNA yes 75 hg19

SRR420813 Arabidopsis thaliana RNA no 83 TAIR10

SRX150254 Prunus persica DNA yes 100 1.22

SRR452441 Saccharomyces cerevisiae DNA yes 100 EF4

SRR988074 Drosophila melanogaster DNA yes 101 5.41

SRR919326 Drosophila melanogaster RNA yes 101 5.41
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algorithms (Trimmomatic [15] and Sickle [16]). The dif-

ferent programs were compared on two points: the overall

quality of the resulting trimmed data set and the number

of reads mapped on the corresponding reference genome

with Bowtie2 [17] for different quality thresholds. For the

analyses presented in this work, we used the latest avail-

able versions of Cutadapt (version 1.4.1), Trimmomatic

(version 0.32) and Sickle [16] (version 1.290). The value

of the quality threshold t for the three programs, corre-

sponded respectively to the parameter –t for UrQt, –q
for Cutadapt and Sickle and SLIDINGWINDOW:4:t for

Trimmomatic. All the other parameters were set to default

values, except for the minimum read length that was set

to 1 bp. All quality figures were generated with FastQC [6]

and the quality statistics were computed using R [18] and

the FASTX-Toolkit [5].

Consistency of the trimming procedures
It is expected that the quality in the trimmed data set will

increase with the quality threshold up to a certain satu-

ration point. We computed the median quality (phred) in

the trimmed data for different quality thresholds (Figure 3,

and Additional file 2 for the seven data sets). We observed

from this comparison that except for UrQt, all other pro-

grams failed to produce a stable relationship between the

chosen quality threshold and the resulting median quality

score across different samples. For example, we observed

a logarithmic-like relationship between the quality thresh-

old and the median for data sets of overall poor quality,

such as the H. sapiens data of overall poor quality, and

an exponential-like relationship for data sets of overall

good quality, such as the A. thaliana and the S. cerevisiae
data (Figure 3). These different types of relationships indi-

cate that an increase of the threshold does not have the

same effect from one data set to another, and that this

effect also depends on the value of the threshold. However,

with UrQt, we observe a stable relationship between the

threshold and the median quality that is representative of

more consistent cutting-points. With a stable relationship

between the threshold and the quality of the trimmed data

Figure 3 Quality of the trimmed data for each software. Performances of different trimming algorithms in terms of the median quality (phred) of

the resulting trimmed data set for different quality thresholds. The choices of t correspond to the parameter –t for UrQt, –q for Cutadapt and Sickle

and SLIDINGWINDOW:4:t for Trimmomatic. The black line corresponds to raw (untrimmed) data, and R1 and R2 correspond to the two ends of

paired-end data.
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set, it is thus possible to set the quality threshold before-

hand according to a targeted quality and independently of

the data.

Optimality of the trimming procedures
Although increasing the quality of a data set by trimming

nucleotides of poor quality is easy, the remaining diffi-

culty lies in minimizing the information (nucleotides) lost

in the process. A simple metric to evaluate this trade-off

is the number of trimmed reads that can be mapped on

the corresponding reference genome. With better qual-

ity information after trimming, we expect an increase of

the number of mapped reads, whereas by removing too

many nucleotides, we expect less information and thus a

decrease in the number of mapped reads. For the map-

ping procedure, we used Bowtie2 [17] (version 2.2.2) (with

default parameters and the –very-sensitive option) and

the genome indexes available from the igenome project

(see Table 1 and Additional file 3 for the version). For

the paired-end data, each end was mapped independently.

We examined the number of mapped reads on the corre-

sponding reference genomes (Table 1) for different quality

thresholds (Figure 4 and Additional file 4 for the seven

data sets). The same mapping procedure was also per-

formed using BWA [14] (version 0.7.10) (with default

parameters) (Additional file 3). We observed that UrQt

was the only software that consistently increased the num-

ber of mapped reads for all data sets. The other programs

provided the desired effect only for data sets of over-

all poor quality, such as for the single-end H. sapiens
data (SRR002073), and produced worse results than those

obtained by mapping the raw data for data sets of better

quality (Figure 4). For the single-end H. sapiens data, we
observed that UrQt better respected the chosen threshold,

thus producing worst results than the other programs for

the low quality threshold. For example, with this dataset

and a threshold of 5, we expect a large number of reads

with an average quality slightly above 5 which are diffi-

cult to map. This respect of the threshold can also be seen

for the paired-end H. sapiens data (SRR521463) or the D.

Figure 4 Remaining information in the trimmed data for each software. Mapping performances for different quality threshold. The choice of t
corresponds to the parameter –t for UrQt, –q for Cutadapt and Sickle and SLIDINGWINDOW:4:t for Trimmomatic. The black line corresponds to raw

(untrimmed) data, and R1 and R2 correspond to the two ends of paired-end data.
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melanogaster RNA data (SRR919326) and a low threshold

of 5 where UrQt is the only program that produces results

comparable to the raw data (see Additional file 4).

For data sets of excellent quality, such as P. persica
(see Additional file 4), all the trimming programs except

for UrQt deteriorated the mapping performances com-

pared with the ones obtained by mapping the raw data.

This result provides additional evidence of better trim-

ming cut-points identified by UrQt compared with the

ones found by other procedures that remove too many

nucleotides for data sets of excellent quality.

When considering the output of a mapping software, we

can discriminate between reads, which map to a unique

position and reads, which map to multiple positions. The

number of reads mapping at multiple positions depends

on three factors: the number of reads associated with rep-

etition, the sensitivity of the mapping procedure (we can

expect more reads mapping at multiple positions when

allowing for more missmatches and gaps), and the infor-

mation contained in the reads. Thus with trimming pro-

cedures, the information loss of over-trimming could lead

to an increase of the number of reads mapping at multi-

ple positions. This over-trimming effect can be seen with

Cutadapt, Trimmomatic and Sickle for high threshold val-

ues (superior to 20) (see Additional file 3 for the results

with Bowtie2 and BWA). However, with UrQt, the num-

ber of reads mapping to unique position increase with the

choice of the threshold which is also consistent with bet-

ter cut-point. These results hold for every dataset with the

exception of the H. sapiens RNA sample of poor overall

quality (SRR002073) for which removing a large number

of uninformative nucleotides also correspond to removing

a large number of reads.

Overall, the results obtained with UrQt correspond to

the expected results for a trimming procedure and a given

quality threshold in opposition to the other programs in

our test panel (see Additional file 3 and 5). The out-

put of UrQt depends on the choice of t that defines an

informative sequence for which we expect nucleotides to

have a phred score above this threshold. Contrary to cur-

rent methods in which the choice of the threshold is set

according to the quality of the data, the UrQt –t parame-

ter only depends on the goal of the analysis (SNP calling,

de novo-assembly, mapping, etc.).

Conclusions
UrQt is a new tool for the key QC step of any NGS data

analysis to trim low-quality nucleotides and polyA tails

from reads in fastq or fastq.gz format with an efficient

C++ implementation. By finding the best segmentation to

delimit a segment of informative nucleotides, UrQt greatly

increases the number of reads and of nucleotides that

can be retained for a given quality objective. Using this

software should provide a significant gain for many NGS

applications. Moreover, the consistency of our trimming

procedure with the quality of the trimmed data set for a

given quality threshold, will allow for better automation of

the trimming step in a pipeline. We also provide a galaxy

wrapper for UrQt to facilitate its integration in existing

pipelines developed on this platform [19-21]. Finally, with

our simple probabilistic model for the trimming of NGS

data, we hope that users will have a better grasp on the

quality threshold –t to obtain the largest trimmed data set

with the required quality.

Availability and requirements
Project name: UrQt
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Operating system(s): Platform independent

Programming language: C++
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License: GNU GPLv3

Any restrictions to use by non-academics: GNU GPLv3
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Additional file 5: Quality analysis of the seven NGS samples for the
four tested programs. Quality analysis of the output of the four programs

for the seven NGS samples and different quality thresholds (Table 1) with

the FastQC [6] software.
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2Université de Lyon 1, Villeurbanne, France
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Abstract

Repetitive DNA, including transposable elements (TEs), is found throughout eukaryotic genomes. Annotating and assembling the

“repeatome” during genome-wide analysis often poses a challenge. To address this problem, we present dnaPipeTE—a new

bioinformatics pipeline that uses a sample of raw genomic reads. It produces precise estimates of repeated DNA content and TE

consensus sequences, as well as the relative ages of TE families. We shows that dnaPipeTE performs well using very low coverage

sequencing in different genomes, losing accuracy onlywith old TE families.We applied this pipeline to the genomeof theAsian tiger

mosquito Aedes albopictus, an invasive species of human health interest, for which the genome size is estimated to be over 1 Gbp.

Using dnaPipeTE,we showed that this species harbors a large (50%of the genome) andpotentially active repeatomewith an overall

TE class andorder composition similar to that ofAedes aegypti, the yellow fevermosquito. However, intraorder dynamics showclear

distinctions between the two species, with differences at the TE family level. Our pipeline’s ability to manage the repeatome anno-

tation problem will make it helpful for new or ongoing assembly projects, and our results will benefit future genomic studies of A.

albopictus.

Key words: transposable elements, repeated DNA, TE analysis, Aedes albopictus, Trinity, bioinformatic pipeline.

Introduction

Repeated DNA, including transposable elements (TEs), is wide-

spread within eukaryotic genomes. In such a “repeatome,”

the spread of TEs, which might bear coding sequences and

can reach thousands of base pairs in length, contributes sub-

stantially to genomic size and evolution. Because of their abil-

ity to insert within genes or regulatory regions and to cause

ectopic recombination due to their repetitive nature, TEs are

assumed to be frequently deleterious to their hosts (Goodier

and Kazazian 2008; Beck et al. 2011; Vela et al. 2014).

However, an increasing number of studies have shown that

TE insertions can sometimes be adaptive and can be co-opted

by their host genomes (Rebollo et al. 2010; Casacuberta and

González 2013). Thus, understanding genomic evolution de-

mands a comprehensive knowledge of TE composition within

the genome, as well as of their dynamics and interactions with

host genome. To this end, genome annotations that include

TE annotation and quantification are crucial.

In the current era of short-read sequencing, the assembly

of genomes bearing a significant amount of repeated se-

quence is a complex task. Reads overlapping a repeated ele-

ment might correspond to several positions in the genome
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and thus can be misplaced and can produce chimeric assem-

bly. Therefore, repeats produce a large number of short con-

tigs that cannot be properly positioned or annotated within

the assembly. Accordingly, the quality of the assembly for TEs

is often poor and can result in underrepresented and/or incor-

rect annotation of their sequences (Modolo and Lerat 2014).

The Asian tiger mosquito Aedes albopictus (Diptera:

Culicidae) presents a striking example of a genome that is

difficult to assemble due to its repeatome. This species—a

vector of Dengue and Chikungunya viruses that is often

viewed as one of the most threatening invasive species in

the world—still has not had its genome sequence released,

even though several projects have been aimed at this task over

the last few years (see Bonizzoni et al. 2013 for a review).

Aedes aegypti, the closest species whose genome has been

fully sequenced and annotated, possesses a similar genome

size, and repeated DNA comprises more than 50% of

its genome. Unlike A. albopictus, the whole genome of

A. aegypti has been fully sequenced using Sanger technology,

which produces longer reads than current Next-Generation

Sequencing (NGS) methods and therefore allowed the con-

struction of a large library of TEs and repeats (Nene et al.

2007). Moreover, intraspecies variation of the A. albopictus

genome size—ranging from 0.62 to 1.66pg—has been sug-

gested (Rao and Rai 1987; Kumar and Rai 1990), supporting

the hypothesis of a significant amount of TE activity, with

more copies present in some populations than in others

(McLain et al. 1987; Black et al. 1988). However, no study is

currently aimed at finding and quantifying TEs in a compre-

hensive manner in this species.

Several bioinformatic solutions now enable the de novo

assembly of TE sequences directly from NGS genomic data

sets without the need for a reference genome. Thesemethods

assume that reads belonging to TEs or other repetitive DNAs

are overrepresented among the sequenced reads. Current

pipelines such as RepARK (Koch et al. 2014) and TEdna

(Zytnicki et al. 2014) use whole NGS genomic data sets or

only the unassembled reads left after a genome assembly.

These two programs use overrepresented k-mers to assemble

TE sequences: Velvet (Zerbino and Birney 2008) or CLC

(CLCbio, http://www.clcbio.com/products/clc-assembly-cell/,

last accessed April 13, 2015) are used in RepARK, and an

implementation of a de Bruijn graph assembler is used in

TEdna. Although these programs are dedicated to TE assem-

bly, they do not allow repeat quantification or annotation. An

alternative way to explore a genome’s repetitive content is to

use low coverage sequencing. In such data sets, only TEs and

other repetitive DNA sequences are expected to have a suffi-

cient representation in the pool of reads to be assembled. For

example, in average, for a sample with 0.1� coverage, only

sequences that are present at least 10 times within the

genome can be assembled. Based on this principle, the

RepeatExplorer (RE) pipeline (Novák et al. 2010) was designed

to cluster and then assemble similar reads from a small

uniform genomic sample in order to retrieve repeats. In a

uniform genomic sample, the proportion of reads assigned

to a given cluster directly corresponds to the proportion

of reads assigned to the relevant TE family in the genome.

In addition to computing a direct quantification of each repeat

family, RE can annotate repeat families using RepeatMasker

(RM) and protein domain search (Smit AFA, Hubley R, Green

P. RepeatMasker Open-3.0. 1996–2010, http://www.repeat-

masker.org, last accessed April 13, 2015). However, although

the RE pipeline can process NGS data sets, most of the tools it

uses are not designed for this type of data, especially during

the assembly step performed by CAP3 (Huang 1999)—a

Bacterial Artificial Chromosome (BAC)-clone sequence type

assembler.

Here, we present a new pipeline, dnaPipeTE (De Novo

Assembly and Annotation Pipeline for Transposable

Elements), that combines previous methods by allowing fast

and accurate assembly of repeat sequences from a small ge-

nomic sample with dedicated NGS tools and by performing

quantification and annotation of TEs and repeats for compar-

ative analysis. The cornerstone of dnaPipeTE is the use

of Trinity (Grabherr et al. 2011)—originally designed for

RNAseq data assembly—to assemble repeats from low-

coverage genomic data sets, which produce complete

repeat sequences and enable the recovery of alternative con-

sensuses within one TE family. Our pipeline also performs an

automatic annotation of repeats using RM and the Repbase

database (Jurka et al. 2005) and produces different data and

figures for the quantification of repeats.We also implemented

a computation of the TE age distribution for the most recent

copies, using the divergence between reads and contigs.

With this pipeline and annotations from known TEs,

we aimed to 1) estimate the number of repeated DNAs in

A. albopictus, 2) annotate and quantify the diversity of TEs

in its genome, and 3) compare this repeatome with that of

A. aegypti, to infer the dynamics of TEs since the divergence of

these two species.

Materials and Methods

dnaPipeTE: A Pipeline to Assemble, Annotate, and
Quantify Repetitive Sequences from Small Unassembled
NGS Data Sets

dnaPipeTE is a fully automated pipeline designed to assem-

ble and quantify repeats from genomic NGS reads. It is

freely available for download at https://lbbe.univ-lyon1.fr/-

dnaPipeTE-.html (under the GPLv3). Figure 1 shows the

main steps in the dnaPipeTE pipeline. Our pipeline takes as

input a FASTQ (Cock et al. 2010) file containing quality filtered

short reads. dnaPipeTE then performs uniform samplings of

the reads to produce low coverage data sets used during

analysis. The samples must represent less than 1� coverage

to avoid the assembly of nonrepeated genome content; using

Repeatome of the Asian Tiger Mosquito GBE
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FIG. 1.—Overview of the dnaPipeTE pipeline. First, genomic reads in FASTQ format are sampled. Then, assembly of repeats is performed using two or

more iterations of Trinity. For each iteration, the previously assembled reads are added to the next sample to improve the repeat assembly. In the next step,

assembled contigs are annotated using RepeatMasker. Finally, reads from the “BLAST sample” are blasted against all the contigs to estimate the relative

abundance of each assembled repeat and to compute the TE landscape. In a second BLAST, the same sample is successively blasted against the annotated

contigs joined to the Repbase library, then with the unannotated contigs in order to retrieve copies that would not have been assembled and to obtain a

more global repeat content estimation. See text for additional details.
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a sample size of less than 0.25� of the genome is often suf-

ficient to obtain a precise estimate of the repeated content

(see supplementary fig. S1, SupplementaryMaterial online, for

examples with 0.1� and 0.25�). dnaPipeTE requires at least

three samples of the original genomic data set: Two for the

assembly step and an independent third used for the quanti-

fication steps. Our pipeline is currently designed to use only

single-end reads because training analyses showed that using

paired-end reads could produce chimeras during repeat as-

sembly (data not shown). We developed dnaPipeTE using

100-bp reads, which are currently the most frequently gener-

ated NGS data sets, but our implementation would work with

any read size.

Repeat Assembly with Trinity

After uniform sampling of the reads, dnaPipeTE builds contigs

from the repeated sequences using Trinity. In an RNAseq ex-

periment, a given gene can produce different transcripts, and

the Trinity software is equipped to handle alternative tran-

scripts with a hierarchical procedure: after identifying a

“gene” (a subpart of the assembly graph), Trinity can produce

different contigs that represent all the alternative transcripts of

this gene. Similarly, TE copies from the same family, which

may display an accumulation of mutations, deletions, inser-

tions, or other structural changes, are treated by Trinity as

alternative sequences of the same gene (TE family). Thus,

with Trinity one can recover complete alternative consensus

sequences from a given TE family. Retrieving good consensus

increases the ability to perform an accurate estimation of TE

abundance by improving read mapping to TEs. The rarest

elements in the genome are predicted to generate few (or

no) reads in the subset samples; thus, dnaPipeTE performs

iterative runs of Trinity using new samples to decrease such

risk. The first run uses a first sample; then, any reads mapping

to k-mer contigs belonging to repeats (“inchworm” contigs;

see Trinity manual) are added to a second independent

sample, and Trinity is performed onemore time. Each iteration

enriches the number of reads associated with a repeat in the

next sample and allows the recovery of more and larger con-

tigs (some examples are given in supplementary Material,

Supplementary Material online). In the case of A. albopictus

sequences, our tuning experiments showed that two itera-

tions performed on a data set with 0.1� coverage ensured

the best assembly N50 and that supplementary iteration

showed no significant improvement in the quality of the

assembly (supplementary fig. S2, Supplementary Material

online). In the latest versions of Trinity (�r20140717), contigs
are built from “clusters” that correspond to units of the de

Bruijn graph made during the assembly. These clusters are

divided into genes and finally “isoforms” that represent the

alternative transcripts of a gene in RNAseq studies. Applied to

low-coverage DNA data, one gene ideally represents one

repeat family, in which isoforms are structural variant copies

belonging to one family (copies with insertions or deletions for

example) or to closely related families. An isoform present in

Trinity.fasta output following all iterations of the Trinity pro-

gram is referred to as a “dnaPipeTE contig.” During the as-

sembly step in dnaPipeTE, Trinity (version r20140717) was

used with default parameters for single-end reads, with the

exception of the minimum coverage to join k-mer contigs set

to 1 to retain contigs from low copy repeats (Haas B, personal

communication).

Contig Annotation with RepeatMasker

After the assembly step, dnaPipeTE contigs are annotated

using RM, for which a built-in or custom repeat library can

be specified. Following the 80-80-80 rule proposed by Wicker

et al. (2007), contigs with 80% query coverage on 80% of

subjects (databases) were stored as “full-length,” and queries

with 80% hits on fewer than 80% of subjects were stored as

“partial” (fig. 2). Of the other contigs annotated by RM, only

the order information (according to Wicker et al. 2007 classi-

fication)— Long Terminal Repeat (LTR), Long INterspersed

Element (LINE), Short INterspersed Element (SINE), DNA,

Miniature Inverted-repeat Transposable Elements (MITEs)

(short TEs harboring terminal inverted repeats but without

coding sequences), Ribosomal RNA, low complexity, and

simple/tandem repeats—is retained. For our analysis, we

used the Repbase libraries (version 2014-01-31 downloaded

from http://www.girinst.org/, last accessed April 13, 2015)

and the TEFam library (accessed at http://tefam.biochem.vt.

edu/tefam/index.php, last accessed April 13, 2015). RM

(version open-4.0.5) parameters were set to default values,

slow-research mode with the NCBI BLAST program

(RMBLASTN program, NCBI BLAST 2,2,23+), and only

the best hit was kept following dnaPipeTE contig analysis, as

determined by the highest Smith–Waterman score

provided by RM.

Repeat Quantification

For quantifying the repeats, BLASTN software (Altschul et al.

1990) was found to perform better than classic short-read

aligners such as Bowtie2 (Langmead and Salzberg 2012).

Indeed, the divergence between a dnaPipeTE contig—that

is, a consensus sequence for a repeat family—and its reads

belonging to different copies can be higher than the diver-

gence between a gene or a transcript and its reads, and re-

quires a more sensitive approach. During the “BLAST 1” step

(fig. 1), reads from the “BLAST” sample are matched against

all the dnaPipeTE contigs to estimate the genome proportion

of each assembled repeat. However, we cannot quantify the

unassembled repeats during this step. Thus, to obtain an over-

all estimation of repeat content, the BLAST sample is first

matched against a database composed of the annotated con-

tigs of dnaPipeTE and the repeat library in order to recover

reads associated with misassembled or missing repeats

Repeatome of the Asian Tiger Mosquito GBE

Genome Biol. Evol. 7(4):1192–1205. doi:10.1093/gbe/evv050 Advance Access publication March 11, 2015 1195



(“BLASTN 2,” fig. 1). Then, the unmapped reads are matched

against the unannotated contigs supplied by dnapipeTE

(“BLASTN 3,” fig. 1), and the remaining reads are assumed

to belong to nonrepeated sequences. We use the BLAST

sample for both estimations, and reads are mapped using

discontinuous BLASTN (NCBI BLAST 2.2.29+), which keeps

matches with 80% minimum identity and only the best hit

per read. To speed-up computation, dnaPipeTE uses GNU

Parallel (version 20140622) (Tange 2011) to parallelize

BLASTN runs.

Finally, the divergence computed between one read and its

contigs during the BLAST 1 step is used as a proxy of the

divergence time between TE copies in a given family. This

proxy is shown to be relevant compared with previous analy-

ses of TE age distribution that used Kimura distances from a

full-length TE copy and its consensus sequence in Repbase

(“TE Landscapes,” http://www.repeatmasker.org/ (last

accessed April 13, 2015); several examples are given in sup-

plementary fig. S3, Supplementary Material online).

Efficiency of dnaPipeTE

Prior to A. albopictus genome analysis, we tested the effi-

ciency of dnaPipeTE on well-annotated genomes that varied

in size and TE content. We used available Illumina reads from

the species Drosophila melanogaster (Diptera: Drosophilidae),

Anopheles gambiae (Diptera: Culicidae), Caenorhabditis ele-

gans (Rhabditida: Rhabditidae), Ciona intestinalis (Enterogona:

Cionidae), Gasterosteus aculeatus (Gasterosteiformes:

Gasterosteidae), and A. aegypti—the closest fully sequenced

species to A. albopictus. We also tested the behavior of

dnaPipeTE on older repeatomes, such as that of the human

genome (Homo sapiens), in which copies of one TE family are

highly divergent. All data management information and ref-

erences are given in supplementary table S1, Supplementary

Material online.

Analysis of the A. albopictus Repeatome and Comparison
with A. aegypti

Genomic Data

The two mosquito genomes were sequenced with Illumina

NGS technology (Illumina HiSeq2000). The A. albopictus

strain originated from La Reunion Island, Indian Ocean.

Genomic DNA was prepared from four female individuals of

generation F5 bred in an insectarium. Sequencing generated

440.2 million 100-bp paired-end reads (ProfilXpert platform,

Lyon, France). A total sample of 4,243,902 single-end reads

was also generated (R1’s were used). Aedes aegypti female

genomic reads (SRR871496; strain Liverpool; 213.4 million

100-bp paired-end reads; ~16.4� coverage, Virginia Tech)

were downloaded from the short-read archive collection

(http://www.ncbi.nlm.nih.gov/sra, last accessed April 13,

2015); only the first read of each pair was used for analysis.

Read Preprocessing

According to quality statistics, all reads were trimmed

to 82bp, keeping the nucleotides 10 through 91 in both

A. albopictus and A. aegypti species. Then, sequences were

filtered using FASTX-toolkit (http://hannonlab.cshl.edu/fastx_

toolkit/, last accessed April 13, 2015) with a minimum 20 av-

erage Phred score on 90% of the reads. Finally, reads from

mitochondrial DNA were removed from the data with Bowtie

2 software (version 2.1.0) under default parameters to map

reads to the whole mitochondrial genome sequence for each

Aedes species available through the NCBI website (http://

www.ncbi.nlm.nih.gov/, last accessed April 13, 2015).

Aedes albopictus and A. aegypti Sampling

In the literature, the genome size of A. albopictus is reported

to be variable, ranging from 0.6 to 1.6Gbp. Flow cytometry

performed on the heads of A. albopictus females estimated

the genome size of our sequenced strain to be 1.16Gbp

FIG. 2.—Classification procedure of RepeatMasker annotation for the dnaPipeTE contigs. According to the alignment overlap between the query (a/Q)

and the subject (a/S), the dnaPipeTE contigs are annotated as one of the three categories. “Hit” is the weakest annotation, while partial and full-length

indicate that the dnaPipeTE contig has annotated along more than 80% of its length.
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(1.19pg, unpublished data). The number of reads comprising

the three independent samples used by dnaPipeTE was set to

represent 0.1� of each genome. The subset sample of

4,243,902 reads (0.3�) was used to assemble TEs and repeats

for A. albopictus, consisting of 2 samples of 0.1� genomic

coverage for assembly and a third sample of 0.1� for the

quantification step. This sample size was chosen after a pre-

liminary analysis showed that 0.1� per Trinity run maximizes

the assembly N50 for this genome (supplementary fig. S2,

Supplementary Material online). We suggest that this will bal-

ance finding as many repeats as possible with limiting the

assembly of nonrepeated DNA (noise). For A. aegypti, cover-

age was also set to 0.1�, using reads taken from the full

sequencing experiment based on a genome size of 1.3Gbp,

according to the whole-genome assembly size and mean

genome size estimations (Nene et al. 2007; Gregory, T.R.

(2015); Animal Genome Size Database. http://www.genome-

size.com, last accessed April 13, 2015).

TE Family Recovery and Quantification

To cluster dnaPipeTE contigs into TE families, we used the

cd-hit-est program from the CD-HIT suite (version 4.6.1)

(Li and Godzik 2006) with local alignment and the greedy

algorithm. We set the clustering parameters to group pairs

of sequences with at least 80% of the shortest sequence

aligned, with a minimum of 80% identity in the longest se-

quence (parameters -aS 0,8 -c 0,8 -G 0 -g 1). This method

results in better performance than grouping contigs per Trinity

gene or by RM annotation. In the first case, contigs from one

Trinity gene could be joined when they shared a conserved

fragment (such as a protein domain), even if they did not

actually belong to the same TE family. In the second case,

RM annotations include only the closest sequences known,

and one sequence could easily match to multiple TE families.

This method allowed us to report the most abundant repeats

(in relative genome proportion) and to estimate the number of

TE copies for fully assembled repeats (dnaPipeTE contigs full-

length, see above).

We then estimated the copy number of the fully assembled

repeats (table 1) using the following formula:

n=Nð Þ � G=Lð Þ
where n is the number of read-matching contigs from a TE

family (contigs from one CD-HIT cluster),N is the total number

of reads in the BLAST sample, G is the genome size in bp, and

L is the length of the representative sequence of the TE family

(reference sequence of the CD-HIT cluster) in bp.

TE Transcriptional Activity

To identify transcriptionally active TEs among the

discovered repeats in A. albopictus, we mapped the A. albo-

pictus transcriptome assembly (adult, embryo, and oocyte

transcriptome merged reference assembly downloaded from

http://www.albopictusexpression.org/, last accessed April 13,

2015) onto the dnaPipeTE contigs using BLAT. We filtered the

results of the BLAT analysis such that only TE consensus se-

quences matching 80% of a transcriptome contig (minimum

alignment 80bp) with 80% minimum identity were retained.

Comparison between A. albopictus and A. aegypti

To avoid annotation bias due to the abundance of refer-

ence sequences from A. aegypti in Repbase, we performed

a second analysis with dnaPipeTE on A. albopictus and

A. aegypti using a TE library devoid of reference sequences

from A. aegypti. Then, we used BLAT to match cd-hit-

clustered dnaPipeTE contigs between species in order to iden-

tify shared TE families. We filtered the results of the BLAT

analysis such that alignments with at least 80bp and 75%

identity and only one reference contig per species were re-

tained. Finally, for each species we summed the total number

of reads in the cluster for which the references belonged.

Thus, we obtained pairs of counts for putatively shared TE

families.

dnaPipeTE Comparison with RepeatExplorer

Compared with dnaPipeTE, RE requires only one sample for

assembly and annotation. We thus ran it using the “BLAT”

sample generated by dnaPipeTE for the A. albopictus data set,

on which an estimation of repeated content and a quantifi-

cation of themain repeat families is performed. Computations

were performed online with the “clustering” tool of the RE

Galaxy server (http://repeatexplorer.umbr.cas.cz/, last

accessed April 13, 2015) with the following parameters:

44bp (55% of the read length) minimum overlap for cluster-

ing, 0.01% cluster threshold for detailed analysis, 40bp min-

imal overlap for read assembly and RepeatMasking against the

“all” database. Computation time, contig number, N50, pro-

portion of repeats in the sample, and percentage of annota-

tion of the repeated content were calculated for comparison.

Results

Efficiency of dnaPipeTE

We report here the results obtained for D. melanogaster

(fig. 3). Details and results from other species are presented

in supplementary figures S1 and S3, Supplementary Material

online. InD.melanogaster, as well as the other fully annotated

genome tested, dnaPipeTE estimations for the different fam-

ilies of TEs are accurate when only a small subset sample of

NGS sequencing reads was used as input (three samples of

0.25� coverage). The relative proportion of each TE order is

respected in dnaPipeTE estimations. In D. melanogaster, how-

ever, the whole repeat content is underestimated (17.78% vs.

28.21%). For this species, our results indicate that dnaPipeTE

seems to have underestimated the simple and tandem repeat

content of the genome. For A. aegypti (supplementary fig. S1,
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Supplementary Material online), we estimate the TE content

to be 45.6%, which is very close to the estimation of 47%

made by Nene et al. from the assembled genome. Using ge-

nomes variable in size and TE content as benchmark, we also

noticed that the more the genome is filled with repeated

DNA, the less the number of Trinity iteration is needed, as

well as the coverage provided as input.

Comparisons of TE age distributions obtained with

dnaPipeTE (fig. 3 and supplementary fig. S3,

Supplementary Material online) and those made from

fully assembled genomes available on the RM website (TE

landscapes) (http://repeatmasker.org/genomicDatasets/

RMGenomicDatasets.html, last accessed April 13, 2015)

were performed. These comparisons showed that

dnaPipeTE provides a good estimate of the recent TE age

distribution. As with other de novo TE assemblers,

dnaPipeTE is limited in its ability to detect old TE families

with degraded and divergent copies. For example, in D.

melanogaster or H. sapiens, TEs with more than 30% diver-

gence between reads and the consensus sequence are not

identified (fig. 3 and supplementary fig. S4, Supplementary

Material online). Our tuning tests show that dnaPipeTE per-

forms well in the estimation of TE proportion and dynamics,

with consensus-read divergence ranging from 0% to 15%,

which is sufficient to compare closely related species and is

close to the definition of a TE family as per the 80-80-80

rule (Wicker et al. 2007).

Aedes albopictus Repeatome Analysis

Repeat Assembly with dnaPipeTE

Assembly of the repeats produced 8,102 contigs with an N50

of 677bp. Although no reference genome for A. albopictus

exists at this point in time, dnaPipeTE was able to annotate

5,141 contigs including 949 “partial TEs” and 30 full-length

elements. Among these, some full-length annotated

dnaPipeTE contigs were found to represent different variants

of the same family, including some internal deletions.

Taking this into account, a total of 24 annotated families

with full-length consensus sequences were quoted for

A. albopictus.

Repeated DNA Content of A. albopictus

dnaPipeTE reported that the repeatome of A. albopictus com-

prises 49.73% of the genome. Annotation of this repeated

FIG. 3.—Relative genome proportions of the main repeat classes (pie charts) and TE landscapes (bar plots) from RepeatMasker on assembled genome

(left) and dnaPipeTE (right, BLASTN with 0.25� genome coverage) for Drosophila melanogaster strain w1118. RepeatMasker analysis data were down-

loaded from http://repeatmasker.org and retranscribed according to the name used for annotation in dnaPipeTE.
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DNA showed that TEs occupy 33.58% of the genome.

Tandem repeats (satellites and microsatellites) occupy 8%

(fig. 4), while unannotated repeats represent 7.23%. The

most abundant repeats were Class II (DNA) transposons and

LINE (Class I non-LTR) retrotransposons, followed by LTR

retrotransposons and SINEs. Details regarding the most

abundant repeat families are reported in table 1. The most

abundant TE family in terms of genome percentage is a “Lian-

like” LINE element (similar to Lian-a1 in A. aegypti), which

occupies 1.267% of the genome with 3,586 estimated

copies (table 1). The most highly represented families in

terms of copy number among the full-length elements

annotated by dnaPipeTE are two LINE elements from the

“Loner” superfamily, with more than 6,000 estimated

Table 1

The Most Abundant Identified Repeat Families in Aedes albopictus

Genome% RM Annotation RM Superfamily dnaPipeTE Contig Size Estimated Copy Number

1.26% Lian-Aa1 LINE/LOA 4,080 3586

1.25% RTE Ele4 LINE/RTE-BovB 3,447 4203

1.16% JAM1 LINE/RTE-BovB 2,356 5728

1.10% R1_Ele1 LINE/R1 5,797 2195

0.54% RTE_Ele3 LINE/RTE-BovB 3,283 1911

0.41% CACTA-3_AA DNA/CMC-EnSpm 1,626

0.37% TF001239_mTA_Ele24Aedes MITE 638

0.33% Chapaev3-2_AA DNA/CMC-Chapaev-3 1,611

0.29% Loner_Ele2 LINE/I 6,335 526

0.28% TF001239_mTA_Ele24_Aedes MITE 469

0.28% Loner Ele1 LINE/I 6,329 513

0.23% Lian-Aa1 LINE/LOA 934

0.23% FEILAI_AA S1NE/tRNA 324 8215

0.22% TF001248_mTA_E1e33_Aedes MITE 2,407 1071

0.18% MSAT-1_AAe Satellite 2,133

0.17% RTE Ele5 LINE/RTE-BovB 2,642

0.17% Lian-Aa1 LINE/LOA 1,865 1053

0.17% LSU-rRNADme rRNA 4,681

0.16% R1_Ele1 LINE/R1 3,362

0.16% JAM1B_AAe LINE/RTE-BovB 793

0.16% LOA_Ele5 LINE/LOA 3,724 500

0.16% TF001244_mTA_Ele29Aedes MITE 578

0.15% MSAT-2_AAe Satellite 1,301

0.15% TF001312_m8bp_Ele20_Aedes MITE 1,532

0.15% TF000681_m4bp_Ele5_Aedes MITE 674 2548

0.14% CR1-50_AAe LINE/CR1 678

0.14% Sola2-4_AAe DNA/Sola 1,232

0.14% TF001310_m8bp_E1e19_Aedes MITE 1,840

0.14% TF001280_otherMITEs_Ele7Aedes MITE 252

0.13% JAM1B_AAe LINE/RTE-BovB 424

0.13% MSAT-1_AAe Satellite 663

0.13% MSAT-2_AAe Satellite 575

0.13% Gecko SINE/tRNA-I 249 5967

0.13% TF001295_mTA_Ele38c_Aedes MITE 1,377

0.12% MSAT-1AAe Satellite 204

0.12% TF001257_m4bp_E1e16_Aedes MITE 887

0.12% TF001280_otherMITEs_Ele7Aedes MITE 1,379

0.12% TF001313_otherMITEs_Ele27Aedes MITE 2,209

0.12% MSAT-1_AAe Satellite 852

0.12% TF000746_mTA_Ele22_Aedes MITE 557 2439

0.11% LOA_Ele2B_AAe LINE/LOA 2,484

0.11% Sola1-3_AA DNA/Sola 349

0.11% otherMITEs_Ele11 DNA/hAT-hATm 421

0.11% TF001251_m3bp_Ele8a_Aedes MITE 900

Note.—An estimation of copy number was made only for TEs identified as full-length elements and was based on the size of the dnaPipeTE reference contig after TE
family clustering. RM annotation, repeat family hit found by RepeatMasker; RM superfamily, repeat superfamily name in Repbase.
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copies each. Thirteen other LINE families represent more than

0.10% of the genome each. Fourteen MITEs (non-

autonomous Class II) also appear among the most repeated

TE families.

In addition, we found using BLAT that 7,005 of the 8,102

dnaPipeTE contigs have significant hits with a sequence from

the A. albopictus transcriptome assembly reported for adult,

embryo, and oocyte (Poelchau 2011; http://www.albopictu-

sexpression.org/ [last accessed April 13, 2015]; supplementary

table S2, Supplementary Material online).

Comparison of TE Dynamics between A. albopictus
and A. aegypti

Aedes albopictus TE age distribution was compared with that

of the yellow fever mosquito, A. aegypti (the only available

assembled genome for the Aedes genus). We showed that in

both species, most of the reads are highly similar to their re-

spective dnaPipeTE contigs (fig. 5). This indicates that most of

the detected TE families are recent and possess a high degree

of similarity between their copies. This similarity is particularly

strong for the detected LTR retrotransposons and, to a

lesser extent, for the LINEs that are the most represented

TEs in these distributions. Class II DNA transposons are less

represented than expected in these comparisons, as their

detection suffered from the removal of A. aegypti reference

sequences from the library for comparison (fig. 4 for the

full analysis in A. albopictus vs. fig. 5 for the interspecies

comparison). Between species, the most striking result is

that the genomic proportion of LINE/Jockey reads inA. aegypti

is high and is composed of mostly recent but also some

older TEs, while this family is much less abundant in A. albo-

pictus, with less divergence between reads and contigs. In

addition, the distribution of the read divergence of LINE/R1

elements is strongly concentrated at the left of the graphic

(representing recent TE copies) in A. aegypti, while in A. albo-

pictus the proportion of reads in superfamilies of higher

divergence decreases more slowly (representing older TE

copies).

The weak positive correlation between A. aegypti and

A. albopictus in the genomic abundance of the shared families

(fig. 6, r2=0.186, P<0.01 on the log10 scale) is mostly due to

the less abundant families (<0.1% of the genome). Some

families display very high differences, such as the Juan-A

(LINE/Jockey retrotransposon) family which represents almost

3%of the genome proportion inA. aegypti but only 0.08% in

A. albopictus, or Copia_Ele122 which displays a 5-fold

change between the two species, while R1-Ele1 and RTE-3

are good examples of the mirror case. Globally, very

few shared families have the same genomic proportion,

with the exception of CACTA-3 (DNA transposon) and, less

markedly, Jam-1 or Lian-Aa1 (LINEs), which contrast the

general trend.

Comparison between dnaPipeTE and RepeatExplorer

Our pipeline dnaPipeTE operates on the same principles as RE

to estimate, assemble, and annotate the repeatome of a spe-

cies from a sample of reads. Therefore, it was expected that

similar estimates of global repeated content in A. albopictus

would be obtained by RE and dnaPipeTE (table 2). However,

dnaPipeTE, in addition to being much faster, was also able to

FIG. 4.—Relative genome proportions of the main repeat classes found in Aedes albopictus using dnaPipeTE, from a nucleotide BLAST of 1,414,634

reads (0.1�) against the repeat assemblies performed with a total of 2,829,268 reads (0.2�).
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annotate a larger fraction of TEs and to compute larger con-

tigs. However, RE seems to more sensitively estimate the pro-

portion of low complexity and tandem repeat sequences (data

not shown).

Discussion

The A. albopictus repeatome

We report the first description of the A. albopictus repeatome

using dnaPipeTE, a new bioinformatic pipeline for the de

novo estimation, annotation, and assembly of repeatomes

from raw genomic reads. We found that the total amount

of repeated DNA reached 49.13% of the genome that in-

cludes at least 33.58% TEs. Taking into account that this

method will underestimate low copy number TEs as well as

older copies that were unable to be assembled due to muta-

tion accumulation, our estimation should be viewed as a

lower bound for the TE content of A. albopictus. As 7.23%

of the genome is still unannotated repeats, it is possible

that the TE content of A. albopictus ranks the largest

among mosquitoes (fig. 7; Holt et al. 2002; Nene et al.

2007; Arensburger et al. 2011; Marinotti et al. 2013;

Zhou et al. 2014). The large repeatome of A. albopictus

contributes to half of its genome size, which is consistent

with the observed relation between genome size and TE con-

tent (Biémont and Vieira 2004; Chénais et al. 2012). This re-

lation exists between published genome sizes and TE content

of other mosquitoes (fig. 7, r2=0.82, P<0.01).

TE families can be extremely different from each other and

are classified into several subfamilies. In a given genome, some

TE families are present in few copies, while others can reach

hundreds of thousands of copies. In A. albopictus, the largest

TE families in terms of genome proportion and copy numbers

are LINE (non-LTR) retroelements, which harbor thousands of

copies per family and represent 12.09% of the genome.

FIG. 5.—TE age distribution comparisons between Aedes albopictus (left) and Aedes aegypti (right). For each species, the nucleotide divergence from

BLASTN is reported between a repeat read and the contig, where it matches the dnaPipeTE assembly.

FIG. 6.—Comparison of the relative genome proportions of shared TE

families between Aedes albopictus and Aedes aegypti in terms of genome

percentage (log10 scale). Each dot represents a shared TE family, defined

by a more similar BLAT hit between the TE family reference contig of each

species. Names on the graphs correspond to themain TE annotation (from

A. aegypti) discussed in the text.
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These LINEs represent several well-known superfamilies that

have been described in mosquitoes, such as I (Lian, R1, Loa,

and Loner families) and RTE (Tu et al. 1998; Biedler and Tu

2003; Boulesteix and Biémont 2005). LINEs are also found in

high copy number inA. aegypti, where they represent 14% of

the genome (Nene et al. 2007). At the class level, the most

abundant class of TE is the Class II, with a majority of DNA

transposons andMITEs. This feature is shared by theA. aegypti

genome, in which Class II elements are also the most abun-

dant repeats, comprising 20% of genome proportion, includ-

ing 16% of MITEs.

TE Dynamics and Comparison with Aedes aegypti

Comparison of the two related Aedes species highlighted a

convergence in TE landscapes at the superfamily level. Both

species display a similar distribution of sequenced TE reads

against their contig sequences for the three TEs studied

(LTR, LINEs [Class I], and Class II). In these species, Class I ele-

ments (RNA-mediated transposition) showed a right-skewed

distribution, meaning that copies of each TE family share a

high identity. This is typical of recent or active TE families, in

which the copy number increases faster than the accumula-

tion of mutations within the copies (Lerat et al. 2011; Staton

et al. 2012). This pattern can be seen in species such

as D. melanogaster or An. gambiae, in which Class I elements

showed recent amplifications (Biedler and Tu 2003;

Kapitonov and Jurka 2003; see also the genome analysis

available online at http://repeatmasker.org/genomicDatasets/

RMGenomicDatasets.html, last accessed April 13, 2015).

In both mosquito species, DNA-based transposons (Class II)

are poorly represented compared with their relative genome

proportion. However, this result might be explained by the

removal of A. aegypti TE references from the library to avoid

any bias toward this species in the annotation, which might

have removed elements specific to the Aedes genus. Another

explanation is that DNA transposons could belong to families

with very few copies and/or result from an old invasion

of the genome. Thus, our methodology, which is weaker

beyond 15% divergence and for elements with few copies,

could have missed old Class II elements. Ultimately, this could

mean either that members of Class II are the first TEs to have

invaded Aedes genomes or that Class I TEs are undergoing a

new expansion wave.

Despite these similarities in the TE age distributions, the

LINE/Jockey superfamily is different between these two spe-

cies. Indeed, these elements are rare (0.04% of the blasted

reads) in A. albopictus, where only recent copies are found.

However, in A. aegypti, they represent half of the LINEs, and

the LINE/Juan-A is the most abundant TE, representing 3% of

the genome (Nene et al. 2007). Conversely, A. albopictus

harbors more LINE/I elements than A. aegypti, and their dis-

tribution indicates a higher number of divergent copies, which

suggests that their amplification in the A. albopictus genome

could have begun earlier than in A. aegypti following the

divergence of these two species.

The distinction betweenA. albopictus andA. aegypti is even

more strikingwhenobserving the abundanceof the TE families

they share. Indeed, the abundance of TEs copies is very

Table 2

Performance Comparison between dnaPipeTE and RepeatExplorer Using Aedes Albopictus and Drosophila melanogaster Samples

Computing Time Contig

Number

Assembly

N50 (bp)

Repeat

Content

Estimation

Repeat

Annotation

A. albopictus dnaPipeTE 3h 07min (8 CPUs/40 Go RAM) 8102 677 49.13% 85.3%

RepeatExplorer 2 days 5h 12min (8 CPUs/16 Go RAM)

14615

198 51.0% 25.5%

D. melanogaster dnaPipeTE 0h 40min (8 CPUs/15 Go RAM) 2054 2,590 18% 98.8%

RepeatExplorer 6h 05min (8 CPUs/16 Go RAM) 1352 287 16.5% 86.1%

NOTE.—Repeat annotation percentage was computed by counting the number of genomic reads receiving an annotation for each method.

FIG. 7.—Linear regression of genome size over TE content in mosqui-

toes. Except for Aedes albopictus, data come from complete sequenced

genomes cited in the text. (r2=0.827, P< 0.01).
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different from one genome to another. This indicates that

while both species share similar trends in TE class dynamics,

a TE expansion occurred independently in each species. This

observation could be interpreted in the ecological framework

of TE dynamics and evolution (Venner et al. 2009; Linquist

et al. 2013). Indeed, “ecological” factors affecting the

genome, such as GC content or genome size, have been

shown to be linked to TE abundance and distribution in related

species (Jurka et al. 2011). Thus, inheritance of a common

genome and ecosystem from an ancestor could have con-

strained superfamily dynamics in both species, considering

either the possible interaction between TEs (identical to in-

terspecific competition) or between TEs and the genome ar-

chitecture (Venner et al. 2009; Linquist et al. 2013). However,

at the family level, the spread of one TE family instead of an-

other is not subject to ecological constraint (Jurka et al. 2011).

For instance, the general pattern of a recent invasion of LTRs

and LINEs in the Aedes species studied here can still be ob-

served, while the specific TE families amplified in each species

differ. In addition, both A. albopictus and A. aegypti are ex-

amples of species with numerous subdivided populations in

their native areas (Hawley 1988; Mousson et al. 2005; Brown

et al. 2014) and a relatively limited natural dispersion capability

(Reiter 1996; Bellini et al. 2010; Medley et al. 2015), which

increases the probability of differential TE fixation in isolated

subpopulations (Jurka et al. 2011). Therefore, the sequenced

individuals are only representative of the subpopulations to

which they belong, and it would be interesting to compare

TE family diversity at the subpopulation level with regard to

intraspecific genome size variation imparted by TEs in

A. albopictus (McLain et al. 1987; Black and Rai 1988).

dnaPipeTE: A Novel Tool for TE Comparative Studies

Preliminary work on the A. albopictus repeatome led us to

develop our own pipeline in order to address specific unmet

needs. As the A. albopictus genome is especially large, we

were interested in solutions using low coverage sequencing

to find and quantify TEs and interspersed repeats. The most

advanced software for this task previously available was RE

(Novák et al. 2010), which allows the simultaneous location,

quantification, and annotation of repeats from unassembled

sequencing reads. However, we felt that some points could be

improved by using NGS-specific tools. By using Trinity as a TE

assembler on small genomic data sets, dnaPipeTE can recover

larger TE contigs and can improve this step by performing

multiple iterations with additional independent samples.

dnaPipeTE can annotate and quantify TE families with its con-

tigs and the number of mapped reads, while RE annotation is

given only for sampled reads. Our method allowed the iden-

tification of more repeats in A. albopictus than RE, with a

substantial decrease in computational time. As with other

library-based tools, this automatic annotation should be con-

sidered with caution when working on species with very few

reference libraries, where the similarities between hits might

be weak and could lead to annotation errors. However, tests

on model species showed that dnaPipeTE performed well in

the estimation of the TE content and the proportions of the

main TE families. Although it was not designed for de novo

identification of new TE families, dnaPipeTE can produce full-

length contigs of TEs that could be manually annotated at a

later point. dnaPipeTE also provides a large amount of usable

output (summary tables, graphs, sorted data sets). Finally,

dnaPipeTE is the first method capable of generating a repre-

sentation of TE age distribution without prior genome assem-

bly. This analysis of course has some limitations. First, the

BLAST method allows the detection of variation only from

0% to 15% divergence. Second, considering two divergent

copies in a TE family, the accumulation of mutations will not

be evenly distributed along the sequence; reads from a con-

served protein domain will be more similar to the contig than

nonfunctional regions due to selective constraints, biasing the

TE age distribution toward recent divergence. In the future,

the effects of these drawbacks will be reduced by the use of

longer reads, which dnaPipeTE is already equipped to handle.

In conclusion, this new bioinformatic pipeline, available

for download at https://lbbe.univ-lyon1.fr/-dnaPipeTE-.html,

allowed us to perform a fast and comprehensive analysis of

TEs and repeat elements in a newly sequenced genome using

NGS raw data with only 0.3� genome coverage. It allows

the design of “low sequencing experiments” that reduce

sequencing cost and facilitate an increase in the number of

samples compared. The consistency and the robustness of

dnaPipeTE also allow for comparative studies such as the

one presented in this article.

Our study showed that the repeatome of A. albopictus is

huge, encompassing 50% of the genome, and that it shares

notable similarities with A. aegypti at the main TE order level.

The intrafamily dynamics of TEs show high variation between

species. Since the divergence of A. albopictus and A. aegypti

10 million years ago (Pashley and Rai 1983), TE families

seemed to have evolved independently from ancestral TE ecol-

ogy. These pictures of the two Aedes species’ repeatomes

could explain the large genome size variation due to repetitive

DNA reported at the intraspecific level (McLain et al. 1987;

Black and Rai 1988).

Supplementary Material

Supplementary figures S1–S4, tables S1 and S2, and Material

are available at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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Additional Files

Supplementary Figure S1: Detailed data-flow diagram of the different steps in the genome-
wide detection of horizontally transferred sequences between two genomes. It consists of three
steps for the detection of all pairs of sequences with a nucleotidic identity higher than expected
between two genomes, and two filtering steps to remove spurious detections from the results.

Supplementary Figure S2: Density distributions of the activity tracks for all the TEs detected
between D. melanogaster and the 2012 version of the genome of D. simulans. The reds bars
represent the activity tracks in D. melanogaster while the blue bars represent the activity tracks

in the other species. The elements with an activity tracks consitent with a recent arrival in the
genome of D. melanogater by HT are represented with a green background title

Supplementary Figure S3: Density distributions of the activity tracks for all the TEs detected
between D. melanogaster and the 2007 version of the genome of D. simulans. The reds bars
represent the activity tracks in D. melanogaster while the blue bars represent the activity tracks

in the other species. The elements with an activity tracks consitent with a recent arrival in the
genome of D. melanogater by HT are represented with a green background title.

Supplementary Figure S4: Density distributions of the activity tracks for all the TEs detected
between D. melanogaster and D. sechellia. The red bars represent the activity tracks in D.

melanogaster while the blue bars represent the activity tracks in the other species.The elements
with an activity tracks consitent with a recent arrival in the genome of D. melanogater by HT
are represented with a green background title

Supplementary Figure S5: Density distributions of the activity tracks for all the TEs detected
between D. melanogaster and D. yakuba. The red bars represent the activity tracks in D.

melanogaster while the blue bars represent the activity tracks in the other species.The ele-
ments with an activity tracks consitent with a recent arrival in the genome of D. melanogater

by HT are represented with a green background title

Supplementary Figure S6: Density distributions of the activity tracks for all the TEs detected
between D. melanogaster and D. pseudoobscura. The red bars represent the activity tracks in
D. melanogaster while the blue bars represent the activity tracks in the other species.

Supplementary Figure S7: Density distributions of the activity tracks for all the TEs de-
tected between D. melanogaster and D. virilis. The red bars represent the activity tracks in
D. melanogaster while the blue bars represent the activity tracks in the other species.
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Supplementary Table S1: Annotation of the intergenic DNA fragments detected with the D.

melangoaster -D. simulans analysis, before and after the filtering with the results between D.

melanogaster and other Drosophila species of the phylogeny.

Supplementary Table S2: List of TEs families detected and validated based on their activity

tracks between D. melanogaster and the corresponding species.
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Table S1: Annotation of the intergenic DNA fragments detected with the D. melangoaster -D.

simulans analysis.

intergenic DNA
before filter after filter
(fragments) (fragments)

CRMs 244 222
DNA motif 0 0
five prime UTR 23725 1338
insertion site 4 2
insulator 338 176
mature peptide 0 0
miRNA 19 11
modified RNA base feature 6 5
ncRNA 512 177
oligonucleotide 10553 10192
origin of replication 1078 774
orthologous region 1018 664
point mutation 14 8
polyA site 4 4
pre miRNA 9 5
protein binding site 123 93
pseudogene 185 13
regulatory region 263 237
repeat region 4086 72
rescue fragment 179 148
RNAi reagent 7343 4580
rRNA 4 0
silencer 62 51
snoRNA 68 22
snRNA 195 0
tandem repeat 38 0
TF binding site 17312 12591
three prime UTR 2078 1904
tRNA 510 3
TSS 2055 1263

72025 34555
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Table S2: List of the transposables elements with an activity track consistent with an horizontal
transfert between the considered genome and the one of D. melanogaster.

D. simulans 2012 D. simulans 2007 D. sechellia D. yakuba

Transposable - 1731 1731 -

Elements - 17.6 - -

297 297 297 297

(names in 3S18 3S18 3S18 3S18

bold were - 412 - -

previously accord accord - -

described - Bari1 - -

in the blood blood - blood

literature) BS BS - -

- Burdock - -

- copia copia -

- copia2 - -

Cr1a - Cr1a -

- diver diver diver

- diver2 - -

- Doc - Doc

- Doc2 - -

- F F -

flea flea flea -

frogger frogger - -

- FW - -

GATE GATE - -

- - G -

- - G6 -

- gtwin - -

- gypsy10 gypsy10 -

- - - gypsy6

gypsy12 - - -

- gypsy2 - -

gypsy4 - - -

- gypsy5 - -

HB HB HB HB

HMS-Beagle HMS-Beagle - HMS-Beagle

I I - -

- invader1 - -

- invader2 - -

- invader6 - -

- - Ivk Ivk

jokey jokey jokey jokey

juan juan juan juan

mdg1 mdg1 mdg1 mdg1

- mdg3 mdg3 mdg3

- Micropia - -

- - ninja-Dsim-like -

- opus opus -

PBac - PBac PBac

roo roo roo roo

- RR48313 (Max) - -
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D. simulans 2012 D. simulans 2007 D. sechellia D. yakuba

Transposable Stalker2 Stalker2 - -

Elements Tabor Tabor - -

- Tirant - -

- transib1 transib1 transib1

- - - transib3

- Transpac - -

- Xanthias - -

- ZAM - -

total 21 46 21 17
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2 The unilateral side of multiple-testing : an �FDR applica-
tion
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The unilateral side of multiple-testing: an �FDR application

Supplementary File 1
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1 Zero inflated Gaussian distribution.

Let us consider the ZI-Gaussian (ZIG) distribution φδ0(x, α) = αδ0(x)+ (1−α)φ(x, 0, 1), where
φ(•, 0, 1) denotes the standard Gaussian pdf. The only parameter of this distribution is α
which can be estimated using the complete data framework of the EM algorithm. Denoting by
V ∼ B(α) the hidden variable such that when Vn equals 0, X ∼ δ0(•) and when Vn equals 1, Xn ∼
φ(•, 0, σ0). Thus the complete-data log-likelihood of a n-sample of ZI-Gaussian distribution is:

logL(α;X,V) =
N∑

n=1

I(Vn = 0) log (αδ0(xn)) +
N∑

n=1

I(Vn = 1) log ((1− α)φ(xn, 0, 1))

With νs(n) = P (Vn = s|X) by standard derivation, we have the estimators :

α̂ =
1

N

N∑
n=1

ν0(n)

1
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and the posterior expectation of V is

ν0(n) =
αδ0(xn)

αδ0(xn) + (1− α)φ(xn, 0, 1)

As P (X = 0) = 0 when X ∼ N (0, 1), we can note that we always have :

α̂ =
� {X = 0}
� {X}

2
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2 Normal Mixture.

Let us consider the Normal Mixture distribution φL (x,μ,σ, c) =
L∑

�=1

c�φ(x, μ�, σ�), where φ(•, μ�, σ�)

denotes the Gaussian pdf. The only parameters of this distribution are the vectors μ, σ and
ω which can be estimated using the complete data framework of the EM algorithm. Denoting
by W� ∼ B(c�) the hidden variable such that when Wn� equals 1, Xn ∼ φ(x, μ�, σ�). Thus the
complete-data log-likelihood of a n-sample of Normal Mixture distribution is:

logL(c,μ,σ;X,W) =

N∑
n=1

L∑
�=1

I(Wn� = 1)× log(c�) + I(Wn� = 1)× log(φ(x, μ�, σ�))

With ωs�(n) = P (Wn� = s|X) and the constraint
L∑

�=1

c� = 1, by standard derivation, we have

the estimators:

ĉ� =

N∑
n=1

ω1�(n)

N

μ̂� =

N∑
n=1

ω1�(n)× xn

N∑
n=1

ω1�(n)

σ̂2
� =

N∑
n=1

ω1�(n)(xn − μ�)
2

N∑
n=1

ω1�(n)

and the posterior expectation of W is

ω1�(n) =
c�φ(xn, μ�, σ�)

L∑
j=1

cjφ(xn, μj , σj)

3
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3 Mixture with a ZIG-component.

Let us consider a mixture of 2 distributions such that

f(x) = κφδ0(x, α) + (1− κ)φL (x,μ,σ, c)

we introduce the indicator variable S ∼ B(κ) such that given {Sn = 0} the conditional distri-
bution of Xn is φδ0(•, α). To estimate the parameters of such a mixture, let us consider the
complete-data likelihood:

L(κ, α, c,μ,σ;X,S,V,W) =
N∏

n=1

κI(Sn=0)αI(Sn=0,Vn=0)(1− α)I(Vn=1,Sn=0)φ(xi, 0, 1)
I(Vn=1,Sn=0)

×
N∏

n=1

(1− κ)I(Sn=1)

(
L∏

�=1

(c�φ(xn, μ�, σ�))
I(Wn�=1,Sn=1)

)

with (αδ0(xn))
I(Sn=0,Vn=0) = αI(Sn=0,Vn=0) as ν0(n) = 1 if xn = 0

and the constraint
L∑

�=1

c� = 1

logL(κ, α, c,μ,σ;X,S,V,W) =
N∑

n=1

I(Sn = 0) log κ+
N∑

n=1

I(Vn = 0, Sn = 0) logα

+
N∑

n=1

I(Vn = 1, Sn = 0) log(1− α)

+
N∑

n=1

I(Vn = 1, Sn = 0) log φ(xn, 0, 1) +

N∑
n=1

I(Sn = 1) log(1− κ)

+
N∑

n=1

L∑
�=1

I(Sn = 1,Wn� = 1) log (c�φ(xn, μ�, σ�))

The expected log-likelihood :

4
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E {logL(κ, α, c,μ,σ;X,S,V,W)|X} =

N∑
n=1

E {I(Sn = 0)|xn} log κ

+
N∑

n=1

E {I(Vn = 0, Sn = 0)|xn} logα

+
N∑

n=1

E {I(Vn = 1, Sn = 0)|xn} log(1− α)

+
N∑

n=1

E {I(Vn = 1, Sn = 0)|xn} log φ(xi, 0, 1)

+

N∑
n=1

E {I(Sn = 1)|xn} log(1− κ)

+

N∑
n=1

L∑
�=1

E {I(Sn = 1,Wn� = 1)|xn} log (c�φ(xn, μ�, σ�))

3.1 E-Step.

γs(n) = E {I(Sn = s)|X} = P (Sn = s|X)

=
P (Sn = s) f(xn|Sn = s)
1∑

k=0

P (Sn = k) f(xn|Sn = k)

γ0(n) =
κφδ0(xn, α)

κφδ0(xn, α) + (1− κ)φL

(
xn, μ1:L, σ2

1:L, c1:L
)

γ0(n)νs(n) = E {I(Sn = 0, Vn = s|X} = P (Sn = 0, Vn = s|X)

=
P (Sn = 0, Vn = s) f(xn|Sn = 0, Vn = s)

P (Sn = 0) f(xn|Sn = 0)

=
P (Sn = 0|xn)P (Vn = s|Sn = 0) f(xn|Sn = 0, Vn = s)

P (Sn = 0) f(xn|Sn = 0)

γ0(n)ν0(n) = γ0(n)× καδ0(xn)

καδ0(xn) + κ(1− α)φ(xn, 0, 1)

= γ0(n)× αδ0(xn)

αδ0(xn) + (1− α)φ(xi, 0, 1)

5
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γ1(n)ωs�(n) = E {I(Sn = 1,Wn� = s)|X} = P (Sn = 1,Wn� = s|X)

=
P (Sn = 1,Wn� = s) f(xn|Sn = 1,Wn� = S)

P (Sn = 1) f(xn|Sn = 1)

=
P (Sn = 1|X)P (Wn� = s|Sn = 1) f(xn|Sn = 1,Wn� = s)

P (Sn = 0) f(xn|Sn = 0)

γ1(n)ω1�(n) = γ1(n)× (1− κ)c�φ(xn, μ�, σ�)

(1− κ)
L∑

j=1
cjφ(xn, μj , σj)

= γ1(n)× c�φ(xn, μ�, σ�)
L∑

j=1
cjφ(xn, μj , σj)

3.2 M-Step.

κ̂ =

N∑
n=1

γ0(n)

N

α̂ =

N∑
n=1

γ0(n)ν0(n)

N∑
n=1

γ0(n)

μ̂� =

N∑
n=1

γ1(n)× ω1�(n)× xn

N∑
n=1

γ1(n)× ω1�(n)

σ̂2
� =

N∑
n=1

γ1(n)× ω1�(n)× (xn − μ̂�)
2

N∑
n=1

γ1(n)× ω1�(n)

ĉ� =

N∑
n=1

γ1(n)× ω1�(n)

N∑
n=1

γ1(n)

6
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4 Mixture with a ZIG-componen t and an HMM.

Let us consider a mixture of 2 distributions such that

f(x) = κφδ0(x, α) + (1− κ)φL (x,μ,σ, c)

we introduce the indicator variable Sn ∈ {0, 1}, with S following a Markov chain of order 1
with κ the emission probability, A the transition matrix, with generator aij = P (Sn+1 = j|Sn = i)
the transition matrix, and f(x) the emission probability. Such that given {Sn = 0} the condi-
tional distribution of Xn is φδ0(•, α) and that given {Sn = 1} the conditional distribution of Xn

is φL (•,μ,σ, c).

P (X,S) =
1∏

i=0

[P (S1 = i)P (x1|S1 = i)]
N∏

n=2

1∏
i=0

1∏
j=0

[P (Sn = j|Sn−1 = i)P (xn|Sn = j)]

With

P (xn|Sn = 0) = φδ0(xn, α)

P (xn|Sn = 1) = φL (xn,μ,σ, c)

And the constraints:

1∑
i=0

πi = 1

1∑
j=0

aij = 1, for i ∈ {0, 1}

L∑
�=1

c� = 1

7
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To estimate the parameters of such a mixture, let us consider the complete-data likelihood:

L(κ, α, c,μ,σ;X,S,V,W) =
1∏

i=0

[P (S1 = i)P (x1|S1 = i)]I[S1=i]

×
N∏

n=2

1∏
i=0

1∏
j=0

[P (Sn = j|Sn−1 = i)P (xn|Sn = j)]I[Sn−1=i,Sn=j]

= (P (Sn = 0)P (x1|S1 = 0))I(S1=0)

× (P (Sn = 1)P (x1|S1 = 1))I(S1=1)

×
N∏

n=2

(
P (Sn = 0|Sn−1 = 1)I(Sn−1=1) P (Sn = 0|Sn−1 = 0)I(Sn−1=0)

)I(Sn=0)

×
N∏

n=2

(
P (Sn = 1|Sn−1 = 1)I(Sn−1=1) P (Sn = 1|Sn−1 = 0)I(Sn−1=0)

)I(Sn=1)

×
N∏

n=2

P (xn|Sn = 1)I(Sn=1) P (xn|Sn = 0)I(Sn=0)

logL(κ, α, c,μ,σ;X,S,V,W) = I(S1 = 0)log(κ) + I(S1 = 1) log(1− κ)

+
N∑

n=1

I(Sn = 0) log φδ0(xn, α)

+
N∑

n=1

I(Sn = 1) log φL (xn,μ,σ, c)

+
N∑

n=2

I(Sn = 0, Sn−1 = 1) logP (Sn = 0|Sn−1 = 1)

+

N∑
n=2

I(Sn = 0, Sn−1 = 0) logP (Sn = 0|Sn−1 = 0)

+

N∑
n=2

I(Sn = 1, Sn−1 = 1) logP (Sn = 1|Sn−1 = 1)

+
N∑

n=2

I(Sn = 1, Sn−1 = 0) logP (Sn = 1|Sn−1 = 0)

8
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Taking the expected log-likelihood :

E {logL(κ, α, c,μ,σ;X,S,V,W)|X} = E {I(S1 = 0)|X} log(κ) + E {I(S1 = 1)|X} log(1− κ)

+
N∑

n=1

E {I(Sn = 0)|X} log φδ0(xn, α)

+
N∑

n=1

E {I(Sn = 1)|X} log φL (xn,μ,σ, c)

+
N∑

n=2

E {I(Sn = 0, Sn−1 = 1)|X} logP (Sn = 0|Sn−1 = 1)

+
N∑

n=2

E {I(Sn = 0, Sn−1 = 0)|X} logP (Sn = 0|Sn−1 = 0)

+
N∑

n=2

E {I(Sn = 1, Sn−1 = 1)|X} logP (Sn = 1|Sn−1 = 1)

+
N∑

n=2

E {I(Sn = 1, Sn−1 = 0)|X} logP (Sn = 1|Sn−1 = 0)

4.1 E-Step.

we define x1:N = {x1, . . . , xN}, x1:n = {x1, . . . , xn} and xn+1:N = {xn+1, . . . , xN}.

P (Sn = i, x1:N ) = P (xn+1:N |Sn = i)P (Sn = i, x1:n)

P (Sn = i, x1:n) =
1∑

j=0

P (xn|Sn = i)P (Sn = i|Sn−1 = j)P (Sn−1 = j|x1:n−1)

αi(n) =

1∑
j=0

P (xn|Sn = i)× aji × αj(n− 1)

αi(1) =

1∑
j=0

P (x1|S1 = i)P (S1 = i)

P (xn+1:N |Sn = i) =

1∑
j=0

P (xn+2:N |Sn+1 = j)P (xn+1|Sn+1 = j)P (Sn+1 = j|Sn = i)

βi(n) =
1∑

j=0

βj(n+ 1)× P (xn+1|Sn+1 = j)× aij

βi(n) = 1

9
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γi(n) = E {I(Sn = i)|x1:N} = P (Sn = i|x1:N )

=
αi(n)βi(n)

1∑
j=0

αj(n)βj(n)

ξij(n) = E {I(Sn−1 = i, Sn = j)|x1:N} = P (Sn−1 = i, Sn = j|x1:N )

=
αi(n− 1)aijP (xn|Sn = j)βj(n)∑

r=0
1

1∑
s=0

αr(n− 1)arsP (xn|Sn = s)βs(n)

=
γi(n)aijP (xn|Sn+1 = j)βj(n+ 1)

βi(n)

γ0(n)ν0(n) = E {I(Sn = 0, Vn = 0)|xn} = P (Sn = 1, Vn = 0|xn)
= γ0(n)× αδ0(xn)

αδ0(xn) + (1− α)φ(xn, 0)

γ1(n)ω1�(n) = E {I(Sn = 1,Wn� = 1)|xn} = P (Sn = 1,Wn� = 1|xn)
= γ1(n)× c�φ(xn, μ�, σ�)

L∑
j=1

cjφ(xn, μj , σj)

10
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4.2 M-Step.

π̂i = γi(1)

âij =

N−1∑
n=1

ξij(n)

N−1∑
n=1

γi(n)

κ̂ =
1

N

N∑
n=1

γ0(n)

α̂ =

N∑
n=1

γ0(n)× ν0(n)

N∑
n=1

γ0(n)

μ̂� =

N∑
n=1

γ1(n)× ω1�(n)× xn

N∑
n=1

γ1(n)× ω1�(n)

σ̂2
� =

N∑
n=1

γ1(n)× ω1�(n)× (xn − μ̂�)
2

N∑
n=1

γ1(n)× ω1�(n)

ĉ� =

N∑
n=1

γ1(n)× ω1�(n)

N∑
n=1

γ1(n)

11
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... ...S1 S2 Sn SN-1 SN

... ...1 Z2 Zn ZN-1 ZN

... ...x1 x2 xn xN-1 xN

Z

Figure 1: Bayesian network representation of a non-homogeneous HMM.

5 ZIG NHMM

The LIS theorems wrote by Sun and Cai (2009) show that the same level of FDR control can be
obtain by the LIS procedure than by the FDR procedure if the observation Xn are conditionally
independent according to the hidden state Sn.

P (Xn = x|Sn = s) = fi(x)

with fi(x) the density function of the data where Sn = i. In the case where Sn ∈ {0, 1} we are
going to use f0(x) = φδ0(x, α) and f1(x) = φL (x,μ,σ, c).

In the cases where the dependency structure is different from an homogeneous first order
Markov chain, the departure from the dependency model will result in a relaxation of the FDR
control. It is why instead of using an homogeneous HMMs we can use the non-homogeneous
HMM (NHMM) framework of Hughes and Cuttorp to try to capture most of the dependency
structure between the tests.

This model assume that we have a vector Z1:N = (Z1, . . . ,ZN ) of covariables with Zn a
vector of D covariables associated with Xn. We can see from the Figure 1 that two assumptions
are made :

P (sn|s1:n, z1:n, x1:n) =

{
P (sn|sn−1, zn) n ≥ 2
P (s1|z1) n = 1

P (xn|sn, z1:N , xn−1) = P (xn|sn)

In this model the value of the emission probability and the transition matrix are function of Z

πj (z) = P (S1 = j|Z1 = z)

aij (z) = P (Sn = j|Sn−1 = i,Zn = z)

As we work with probability (i.e. defined in [0, 1]) Hughes and Cuttorp chose to employ multi-

12
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nomial logistic regression to parametrize the hidden state transition.

πj (z) =
exp

(
λj + ρn

j × z
)

K∑
k=1

exp
(
λk + ρn

k × z
)

aij (z) =
exp

(
σij + ρn

j × z
)

K∑
k=1

exp
(
σik + ρn

k × z
)

with λj , σij ∈ R and ρj ∈ RD. With ωj the set of transition parameters for the state j we
have to set ω0 = 0 to guarantee the uniqueness of the parameters.

Note: A homogeneous HMMs can be seen as a particular case of NHMM where ρ = 0.

ρ = 0 ⇔ P (Sn = j|Sn−1 = i,Zn = z) = P (Sn = j|Sn−1 = i)

With Θ the set of NHMM parameters, the joint probability of the data and the hidden states
is:

P (x1:N , s1:N |z1:N ,Θ) = P (s1|z1,Θ)
N∏

n=2

P (sn|sn−1, zn, xn−1,Θ)
N∏

n=1

P (xn|sn, zn, xn−1,Θ)

= P (s1|z1,Θ)
N∏

n=2

P (sn|sn−1, zn,Θ)
N∏

n=1

P (xn|sn,Θ)

=
K∏
j=0

πj (z1)
I(S1=j)

N∏
n=2

K∏
i=0

K∏
j=0

aij (zn)
I(Sn−1=i,Sn=j)

N∏
n=1

K∏
i=0

fi (xn)
I(Sn=i)

The log-likelihood of the NHMM model is given by:

logP (x1:N , s1:N |z1:N ,Θ) =
K∑
j=0

I (S1 = j) log πj (z1)

+
N∑

n=2

K∑
i=0

K∑
j=0

I (Sn−1 = i, Sn = j) log aij (zn)

+
N∑

n=1

K∑
i=0

I (Sn = i) log fi (xn)

with the constraints

K∑
j=0

πj(Z1) = 1

K∑
j=0

aij(Zn) = 1 ,for i ∈ {0, . . . ,K} and n ≥ 2

13
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The expected log-likelihood is:

E {logP (x1:N , s1:N |z1:N ,Θ) |X,Z} =
K∑
j=0

E {I (S1 = j) |X,Z} log πj (z1)

+
N∑

n=2

K∑
i=0

K∑
j=0

E {I (Sn−1 = i, Sn = j) |X,Z} log aij (zn)

+

N∑
n=1

K∑
i=0

E {I (Sn = i) |X,Z} log fi (xn)

as for the homogeneous case, we can use the forward-backward equations to compute P (sn|x1:N , z1:N ):

αi (n) = P (Sn = i, x1:n|z1:n)
βi (n) = P (xn+1:N |Sn = i, xn, zn+1:N )

with

αi (1) = P (S1 = i|z1)× P (x1|S1 = i)

αi (n+ 1) = P (xn+1|Sn+1 = i, zn+1)
K∑
j=0

P (Sn+1 = i|Sn = j, zn+1)αj (n)

βi (N) = 1

βi (n) =

K∑
j=0

P (Sn = i|Sn+1 = j, zn+1)P (xn+1|Sn+1 = j, zn)βj (n+ 1)

Note: The likelihood of the data sequence P (X1:N |Z1:N ) can be computed by

P (x1:N |z1:N ) =

K∑
i=0

P (SN = i, x1:N |z1:N )

=
K∑
i=0

αi(N)

5.1 E-Step.

γi(n) = E {I(Sn = i)|x1:Nz1:N} = P (Sn = i|x1:N , z1:N )

=
αi(n)βi(n)

K∑
j=0

αj(n)βj(n)

=
αi(n)βi(n)
K∑
j=0

αj(N)

14
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ξij(n) = E {I(Sn−1 = i, Sn = j)|x1:N , z1:N} = P (Sn−1 = i, Sn = j|x1:N , z1:N )

=
αi(n− 1)aijP (xn|Sn = j)βj(n)

K∑
r=0

K∑
s=0

αr(n− 1)arsP (xn|Sn = s)βs(n)

=
αi(n− 1)aijP (xn|Sn = j)βj(n)

K∑
j=0

αj(N)

In the case where K = {0, 1} and f(x) = κφδ0(x, α) + (1 − κ)φL (x,μ,σ, c), with the
additional hidden variables V and W� as label for the compartments of respectively φδ0(x, α)
and the φL (x,μ,σ, c), we have:

γ0(n)ν0(n) = E {I(Sn = 0, Vn = 0)|x1:N , z1:N} = P (Sn = 1, Vn = 0|x1:N , z1:N )

= γ0(n)× αδ0(xn)

αδ0(xn) + (1− α)φ(xn, 0)

γ1(n)ω1�(n) = E {I(Sn = 1,Wn� = 1)|x1:N , z1:N} = P (Sn = 1,Wn� = 1|x1:N , z1:N )

= γ1(n)× ω�φ(xn, μ�, σ�)
L∑

j=1
ωjφ(xn, μj , σj)

with the contraint
L∑

�=1

c� = 1

5.2 M-Step.

κ̂ =
1

N

N∑
n=1

γ0(n)

α̂ =

N∑
n=1

γ0(n)× ν0(n)

N∑
n=1

γ0(n)

μ̂� =

N∑
n=1

γ1(n)× ω1�(n)× xn

N∑
n=1

γ1(n)× ω1�(n)

σ̂2
� =

N∑
n=1

γ1(n)× ω1�(n)× (xn − μ̂�)
2

N∑
n=1

γ1(n)× ω1�(n)
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ĉ� =

N∑
n=1

γ1(n)× ω1�(n)

N∑
n=1

γ1(n)

Unfortunately, the set of transition parameters Ω = (ω0, . . . ,ωK) have non-linear partial
derivatives which can not be equated to zero analytically. We can use a conjugate gradient
algorithm to update Ω iteratively such that Q (Ωt+1) ≥ Q (Ωt).

Q (Ωt) =
K∑
j=0

E {I (S1 = j) |X,Z} log πj (z1)

+
N∑

n=2

K∑
i=0

K∑
j=0

E {I (Sn−1 = i, Sn = j) |X,Z} log aij (zn)

=

K∑
j=0

γj(1) log πj (z1) +

N∑
n=2

K∑
i=0

K∑
j=0

ξij(n) log aij (zn)

16
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For identifiability we have ω0 = 0 (i.e. for K = {0, 1}, λ0 = σ00 = σ10 = ρ0 = 0).

Ωt+1 = Ωt + νtΦt where νt = argmax
ν

Q (Ωt + νΦt)

We have to compute, the gradient Φt = ∇Q (Ωt) (which is the vector of first partial deriva-
tives).

∇Q (Ωt) =

(
∂Q

∂λj
,
∂Q

∂σij
,
∂Q

∂ρj

)
In the case where K = {0, 1}, we have :

∂Q

∂λ1
= γ1(1)− π1(z1)

∂Q

∂σ01
=

N∑
n=2

[ξ01(n)− γ0(n− 1)a01(n)]

∂Q

∂σ11
=

N∑
n=2

[ξ11(n)− γ1(n− 1)a11(n)]

∂Q

∂ρ1

= [γ1(1)− π1(z1)] z1 +

N∑
n=2

K∑
r=0

[ξr1 − γr(n− 1)ar1(n)] zn

We use the Polak-Ribiere variation of the conjugate gradient algorithm to update Φ :

Φ0 = −∇Q (Ω0)

Φt+1 = ∇Q (Ωt)− γtΦt

γt = max

{
∇Q (Ωt+1)

T (∇Q (Ωt+1)−∇Q (Ωt))

∇Q (Ωt)
T∇Q (Ωt)

, 0

}

And the Newton-Raphson algorithm to perform a line search to find νt :

ν0 = 0

νt+1 = νt −
dQ(Ωt+νΦt)

dνt
d2Q(Ωt+νΦt)

dν2t
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In the case where K = {0, 1}, we have :

dQ (Ωt + νΦt)

dνt
=

1∑
j=0

(
Φλj

+Φρn
j
× z1

)
(γj(1)− πj(z1))

+
N∑

n=2

1∑
i=0

1∑
j=0

(
Φσij +Φρn

j
× zn

)
(ξij(n)− γi(n− 1)aij(zn))

d2Q (Ωt + νΦt)

dν2t
= −

1∑
j=0

(
Φλj

+Φρn
j
× z1

)2
πj(z1) (1− πj(z1))

−
N∑

n=2

1∑
i=0

1∑
j=0

(
Φσij +Φρn

j
× zn

)2
aij(zn) (1− aij(zn)) γi(n− 1)
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3 UrQt : an efficient and fast software for the Unsupervised
Quality trimming of NGS data
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Quality analysis of the 6 NGS samples
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Figure 1 : Supplementary figure S2. Performances of different trimming algorithm in
terms of the median quality (phred) of the resulting trimmed data set for different quality
thresholds. The choice of t correspond to the parameter –t for UrQt, –q for Cutadapt
and Sickle and SLIDINGWINDOW :4 :t for Trimmomatic. The black line corresponds
to raw (untrimmed) data and R1 and R2 correspond to the two ends of paired-end data.
This figure complete the Figure ?? with the six data sets
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Figure 2 : Supplementary figure S2. Mapping performances for different quality thre-
shold. The choice of t correspond to the parameter –t for UrQt, –q for Cutadapt and
Sickle and SLIDINGWINDOW :4 :t for Trimmomatic. The black line corresponds to raw
(untrimmed) data and R1 and R2 correspond to the two ends of paired-end data. This
figure complete the Figure ?? with the six data sets
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Table 1: NGS data sets used for testing
Accession number Species sample type paired-end read size (bp) reference genome
SRR002073 Homo sapiens RNA no 33 hg19
SRR420813 Arabidopsis thaliana RNA no 83 TAIR10
SRX150254 Prunus persica DNA yes 100 1.22
SRR452441 Saccharomyces cerevisiae DNA yes 100 EF4
SRR988074 Drosophila melanogaster DNA yes 101 5.41
SRR919326 Drosophila melanogaster RNA yes 101 5.41

1 Drosophila melanogaster DNA sample (SRR988074)

1.1 Per base sequence quality

Figure 1: Drosophila melanogaster DNA: per base sequence quality. Left: R1, right: R2.

1.2 Per sequence quality scores

Figure 2: Drosophila melanogaster DNA: per sequence quality scores. Left: R1, right: R2.
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1.3 Per base sequence content

Figure 3: Drosophila melanogaster DNA: per base sequence content. Left: R1, right: R2.

1.4 Sequence Length Distribution

Figure 4: Drosophila melanogaster DNA: sequence Length Distribution. Left: R1, right: R2.
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2 Drosophila melanogaster RNA sample (SRR919326)

2.1 Per base sequence quality

Figure 5: Drosophila melanogaster RNA: per base sequence quality. Left: R1, right: R2.

2.2 Per sequence quality scores

Figure 6: Drosophila melanogaster RNA: per sequence quality scores. Left: R1, right: R2.

2.3 Per base sequence content

2.4 Sequence Length Distribution
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Figure 7: Drosophila melanogaster RNA: per base sequence content. Left: R1, right: R2.

Figure 8: Drosophila melanogaster RNA: sequence Length Distributiony. Left: R1, right: R2.

3 Homo sapiens RNA sample (SRR002073)

3.1 Per base sequence quality

Figure 9: Homo sapiens RNA: per base sequence quality
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3.2 Per sequence quality scores

Figure 10: Homo sapiens RNA: per sequence quality scores

3.3 Per base sequence content

Figure 11: Homo sapiens RNA: per base sequence content

3.4 Sequence Length Distribution
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Figure 12: Homo sapiens RNA: sequence Length Distribution

4 Arabidopsis thaliana RNA sample (SRR420813)

4.1 Per base sequence quality

Figure 13: Arabidopsis thaliana RNA: per base sequence quality

4.2 Per sequence quality scores

4.3 Per base sequence content

4.4 Sequence Length Distribution
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Figure 14: Arabidopsis thaliana RNA: per sequence quality scores

Figure 15: Arabidopsis thaliana RNA: per base sequence content

Figure 16: Arabidopsis thaliana RNA: sequence Length Distribution

876



Figure 17: Prunus persica DNA: per base sequence quality. Left: R1, right: R2.

Figure 18: Prunus persica DNA: per sequence quality scores. Left: R1, right: R2.

5 Prunus persica DNA sample (SRX150254)

5.1 Per base sequence quality

5.2 Per sequence quality scores

5.3 Per base sequence content

5.4 Sequence Length Distribution
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Figure 19: Prunus persica DNA: per base sequence content. Left: R1, right: R2.

Figure 20: Prunus persica DNA: per sequence Length Distribution. Left: R1, right: R2.

6 Saccharomyces cerevisiae DNA sample (SRR452441)

6.1 Per base sequence quality

Figure 21: Saccharomyces cerevisiae DNA: per base sequence quality. Left: R1, right: R2.
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6.2 Per sequence quality scores

Figure 22: Saccharomyces cerevisiae DNA: per sequence quality scores. Left: R1, right: R2.

6.3 Per base sequence content

Figure 23: Saccharomyces cerevisiae DNA: per base sequence content. Left: R1, right: R2.

6.4 Sequence Length Distribution
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Figure 24: Saccharomyces cerevisiae DNA: per sequence Length Distribution. Left: R1, right:
R2.
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4 De novo assembly and annotation of the Asian Tiger Mos-
quito (Aedes albopictus) Repeatome from raw genomic
reads with dnaPipeTE and comparative analysis with the
yellow fever mosquito (Aedes aegypti)

82



Supplementary material

November 14, 2014

De novo assembly and annotation of the Asian Tiger Mosquito (Aedes albopictus) Repeatome
from raw genomic reads with dnaPipeTE and comparative analysis with the yellow fever

mosquito (Aedes aegypti)

1 Test of dnaPipeTE efficiency
In order to assess the method performances and boundaries, we tested dnaPipeTE on a set of
reference genomes for which both fully assembled genome and suitable NGS sequences were avail-
able. We then compared the genome proportion of the main families and the TE landscapes made
either with dnaPipeTE, or with RepeatMasker on assembled genomes. RepeatMasker analysis
were already performed by the A. Smit team (Institute for Systems Biology), and fully available
online at: http://repeatmasker.org/genomicDatasets/RMGenomicDatasets.html

1.1 Datasets

When available, we used the same strain in dnaPipeTE analysis than the sequenced one. We
downloaded NGS datasets from the Short Read Archive (http://www.ncbi.nlm.nih.gov/sra), and
cleaned the datasets using fastx-toolkit with the parameters used described in the Method section.
For the smallest genome sizes we used an initial sample size of 0.25X, while we use 0.1X for the
biggest ones (Ae. aegypti and Homo sapiens). We used different sample size since preliminary
results showed that increasing sample size wont increase substantially the total amount of repeat
found while it exponentially increased the computation time. We only used the R1 end of each
file (single end) for the dnaPipeTE runs. The following table (Supp. Table 1) summarizes dataset
specifications.
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Table 1: Species and dataset used for dnaPipeTE tests. Genomes size are taken from whole genome assemblies and
will be found at http://repeatmasker.org/. Unless otherwise stated, datasets used for dnaPipeTE are the R1 reads
from 101 bp Illumina HiSeq2000 sequencing
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1.2 Supplementary figures
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Figure 1: Estimation of the repeated content with dnaPipeTE and comparison with whole assembled genome
analysis. Pairs of piecharts summarize the overall amount of repeats classes either using RepeatMasker on the
whole assembled genome (left) [except for Ae. aegypti, data from the TE content analysis performed by Nene et al.
2007], either dnaPipeTE on single end Illumina reads (right). Values are given in percentage of the genome content.
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Figure 2: TE age distribution (TE landscapes) from blastn divergence between reads and their dnaPipeTE contigs.
Barplots represent the total amount of reads from TEs (in genome percentage) according to their divergence from
their matching dnaPipeTE contig, using blastn. Dashed black line represent the shape of the distribution observed
using RepeatMasker on assembled genomes.
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1.3 Discussion

In most cases, dnaPipeTE was able to find most of the described TE and other repeats classes
in the NGS datasets. Globally, the estimation of the total amount of repeat using dnaPipeTE
appear relevant, regarding to the estimation made from the assembled genomes. Estimation of
the TE content was really good for samples using exactly the same strain in both analysis (D.
melanogaster and C. elegans). Estimations were also very good in C. intestinalis and A. gambiae
for wich the strains were different or unidentified; we noticed that in both species, dnaPipeTE
identified new repeats.

Looking at the results from G. aculeatus, we found much more repeats with dnaPipeTE than
the RepeatMasker analysis did on the assembled genome. New annotations mostly came from
other fishes, thus we are quite confident that they are not false positive. However it is possible
that the current G. aculeatus did not include all the repeats, depending on the sequencing and
assembly method used and / or, although they came from the same place (Bear Paw lake), that
the NGS sequenced sample is divergent from the reference sequenced individual.

In Ae. aegypti, we note that if the total amount of Class I repeats (MITEs and DNA) are
close (19% vs 24%) however dnaPipeTE found less MITEs TEs than expected. MITEs are short,
without coding sequences TEs derived from DNA transposons. It is thus possible that most of
them have been identified as DNA, without better available annotation.

In the Human genome however, dnaPipeTE did not manage to estimate accurately the re-
peated content. While inside the repeated content, the relative proportion of each TE classes is
well estimated, we only found that it represent half of its actual size. This, is certainly due to
the particular profile of the TE age in the Human genome (and many vertebrates) where TE are
mostly ancient. Thus, there is less identity between reads from different copies of the same TE
family and the assembly will fail to find the older families. This is the main limitation of methods
based on low coverage datasets.

From the TE landscapes estimations, we showed that our method allow to catch variation un
TE age distribution until at least 15% divergence. Below this threshold, the blastn method fail
to match reads with more divergent contigs, and thus those TEs will be dropped out from the
report. However, we can clearly disctinct caracteristic shapes between models that fits with the
fully assembled genomes TE landscapes that are available at http://repeatmasker.org/genomic-
Datasets/RMGenomicDatasets.html In addition, we can note that the first bin in those graphs
(0 to 1% divergence) is inflated comparing to RepeatMasker analysis on fully assembled genomes.
This issue is discussed in the paper.

2 Sample size choice for Ae. albopictus and interest of mul-
tiple iteration

In order to maximize the N50 of assembly while not assembling too much none repeated genome
content, we tested both dnaPipeTE with different sample size and Trinity iterations (see material
and methods). We found that in Ae. albopictus, the best compromise was to choose a combination

88



of two iterations with a sample size of 0,1X. On figure S.X. Each combination of Trinity iteration
and sample size was tested two times, except for 0,1X and 0,17X that have three repetitions.

Figure 3: Assembly N50 after the first (T 1x) and the second (T 2x) Trinity iteration in dnaPipeTE for Ae.
albopictus, according to sample size. For T 2x, two samples of the same size were used successively, according to
the description made in material and methods

In addition we provide here the results from D. melanogaster for 1st and 2nd iteration of Trinity.
After the first Trinity assembly on a 0,25X sample, the N50 was 1342 bp for 1302 contigs. Then
adding a new sample of 0,25X to the assembled reads for the second iteration, the N50 rose to
2054 bp with 2590 contigs.

3 Supplementary data
Supplementary data 1 : annotated full-length contigs (dnaPipeTE_full_lengths_TE_albo.fasta)
Supplementary data 2: annotated partial contigs (dnaPipeTE_partial_TE_albo.fasta)

4 Blat results of Ae. albopictus assembled transcriptome
on dnaPipeTE contigs (blast format)

Column Content 1 Transcriptome contig (query) 2 dnaPipeTE contigs (target) 3 Percentage in-
dentity 4 Alignment size (bp) 5 # mismatches 6 # gap opening 7 Query start 8 Query end 9
Subject start 10 Subject end 11 E-value 12 Bit Score
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