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Abstract

In this dissertation, we examine important aspects of infrastructure IEEE 802.11 Wireless

Local Area Networks (WLANs) and identify issues that can affect their performance.

Reviewing the state of the art, we observe that numerous research efforts have proposed

diverse solutions with several limitations that impede their deployment in existing WLANs.

Moreover, users have ever-increasing expectations of availability, reliability, instantaneous

response and security from their wireless connections.

Motivated by these challenges, we design and implement novel but practical solutions

that address open issues affecting the performance of IEEE 802.11 WLANs. We adopt an

Access Point (AP)-based approach, which does not require any modification in the clients.

We focus on the following aspects of WLANs: client mobility, channel management, and

quality of service, and explore three different scenarios for the most common deployments:

an enterprise, a city (urban area), and a personal residence (home). To provide a common

basis for practical implementation of new 802.11 solutions, we present a Smart AP model,

inspired by self-management techniques.

The main contributions of this thesis are:

1. We develop a seamless mobility solution for Voice over IP (VoIP) services in Enterprise

WLANs, called Multichannel Virtual Access Points (mVAP), which requires no client

modifications and is compatible with current devices. We implement and evaluate

mVAP using commodity 802.11 hardware, and achieve transparent mobility without

interruption or degradation of ongoing communications.

2. We investigate the feasibility of harnessing the existing WiFi coverage in urban areas

for mobile Internet access, through trace-based simulations using real data collected by

mobile phones. The results show that the WiFi coverage is large and the connectivity

it offers can be effectively exploited. We identify open issues for the actual deployment

of such a citywide WiFi network and the applications that could benefit from it.

3. We propose an adaptive traffic-aware channel selection mechanism for Home WLANs,

that uses the time-varying traffic load for interference estimation. We implement

this solution using commodity 802.11 hardware and experimentally evaluate it: the

network performance is drastically improved by constantly picking the channel with

the least interference.





Résumé

Dans cette thèse, nous examinons les aspects essentiels des réseaux locaux sans fil

IEEE 802.11 (réseaux WiFi) en mode infrastructure, et identifions les problèmes qui

peuvent affecter leurs performances. Après avoir étudié l’état de l’art, nous constatons que

de nombreux efforts de recherche ont proposé des solutions diverses mais présentant des

limitations qui empêchent leur déploiement dans les réseaux locaux sans fil existants. En

outre, les utilisateurs de ces réseaux ont des attentes toujours croissantes de disponibilité,

de fiabilité, de réponse instantanée et de sécurité de la part de leurs connexions sans fil.

Motivés par ces défis, nous concevons et mettons en œuvre des solutions nouvelles et

concrètes aux problèmes ouverts liés à la performance des réseaux locaux sans fil IEEE 802.11.

Nous adoptons une approche centrée sur le point d’accès (Access Point), qui n’introduit

pas de modifications côté client. Nous nous concentrons sur les aspects suivants des réseaux

locaux sans fil : la mobilité des clients, la gestion des canaux, et la qualité de service, et

nous explorons trois différents scénarios pour les déploiements les plus répandus : une

entreprise, une ville (zone urbaine), et une résidence personnelle (maison ou appartement).

Afin de fournir une base commune pour la mise en œuvre pratique de nouvelles solutions

802.11, nous introduisons un modèle de point d’accès intelligent, inspiré des techniques

d’auto-gestion.

Les contributions principales de cette thèse sont les suivantes :

1. Nous développons une solution de mobilité transparente pour la Voix sur IP (VoIP)

dans les réseaux sans fil d’entreprise, appelée Multichannel Virtual Access Point

(mVAP), qui n’introduit aucune modification côté client et reste compatible avec les

appareils actuels. Nous mettons en œuvre et évaluons mVAP en utilisant du matériel

802.11 standard, et accomplissons une mobilité transparente sans interruption ni

dégradation des communications en cours.

2. Nous étudions la possibilité d’exploiter la couverture WiFi existante dans les zones

urbaines pour obtenir un accès mobile à Internet, grâce à des simulations réalisées

à partir de données réelles collectées par des téléphones portables. Les résultats

montrent que cette couverture WiFi est étendue et que la connectivité offerte peut

être efficacement utilisée. Nous identifions des questions ouvertes concernant le

déploiement effectif d’un tel réseau WiFi à l’échelle d’une ville, et les applications qui

pourraient en bénéficier.

v



3. Nous proposons un mécanisme dynamique de sélection de canal pour les réseaux locaux

sans fil domestiques (maisons et appartements), qui utilise la charge de trafic variable

dans le temps pour l’estimation d’interférences. Nous mettons en œuvre cette solution

en utilisant du matériel 802.11 standard, et nous l’évaluons expérimentalement : les

performances d’un tel réseau sont considérablement améliorées en choisissant le canal

qui présente le moins d’interférences.



Remerciements

Je souhaite avant tout remercier Andrzej Duda de m’avoir donné l’opportunité de faire

ma thèse dans un excellent laboratoire de recherche scientifique, dans une équipe disposant
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1.1 Motivation

With the widespread of mobile devices such as smartphones and tablets, wireless

technology is rapidly becoming the method of choice for network access. One of these

wireless technologies, IEEE 802.11, commonly known as WiFi, is widely adopted in indoor

environments such as enterprises, organizations, and homes. It is also a fast and inexpensive

alternative to cellular networks for Internet access. Nowadays, WiFi is present virtually

everywhere, as the most diverse electronic devices, from mobile phones to home appliances,

come with integrated WiFi chipsets. Users can connect effortlessly, because WiFi provides

an easy setup and configuration.

Since its introduction, more than fifteen years ago, the uses and capabilities of IEEE

802.11 Wireless Local Area Networks (WLANs) have evolved significantly:

• Originally, WiFi was seen as a replacement for wired links. Portable computers con-

nected wirelessly, but from fixed locations. Lately, mobile devices, principally handsets

that consume both voice and Internet services, demand on-the-go connectivity.

• First data bit rates ranged from 1 to 2 Mb/s, but WiFi can now achieve high speeds

of up to 1.3 Gb/s.

1
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• Initially designed for best-effort traffic, WiFi later incorporated quality of service

mechanisms to support multimedia applications with tight constraints.

• The original WiFi security algorithm suffered several flaws and was finally deprecated.

Robust authentication and traffic encryption algorithms were subsequently introduced.

Indeed, users have ever-increasing expectations of availability, reliability, instantaneous

response and security from their wireless connections. Rich-media applications such as

audio and video streaming, seamless mobile connectivity, and cellular data offload are some

of the emerging challenges that WiFi networks need to tackle, and more are to come.

Previous studies have proposed many approaches to improve different aspects of network

performance. However, few of these research proposals contain practical solutions that can

be deployed in existing WLANs. Furthermore, each type of deployment, from the hotspot

in a café to a large university network, shows distinct characteristics and a single solution

cannot fit all possible scenarios.

Motivated by these challenges, we focus on the important aspects of WLANs that are

client mobility, channel management, and quality of service, and identify opportunities for

optimization and innovation. Since the Access Point (AP) is the point of attachment to an

802.11 WLAN, the network performance of clients depends mainly on their connection with

the AP. Additionally, clients are now so diverse that a global driver modification became an

almost impossible task. Therefore, we decided to adopt an AP-based approach to develop

new 802.11 solutions that are backward compatible and can be deployed in existing WLANs.

1.2 Thesis Statement

The aim of this thesis is to design and implement novel but practical solutions that

address issues affecting the performance of single-hop infrastructure IEEE 802.11 WLANs.

Infrastructure networks use central entities called Access Points (APs), which are in charge

of maintaining connections with clients and managing traffic. In a single-hop infrastructure

network, the APs do not route packets to or from other APs, but act essentially as bridges

between a wireless and a wired network.

The proposed solutions follow an AP-based approach. They do not require any modifica-

tion in the clients and do not introduce changes in the WiFi protocol, allowing interoperabil-

ity with existing WiFi devices. These mechanisms are implemented in high-level software,

not in the AP’s firmware (embedded in the hardware), and evaluated on commodity 802.11

hardware.

To provide a common basis for practical implementation of new 802.11 solutions, we

present a Smart AP model, inspired by self-management techniques. By means of adaptive

algorithms, the AP will react to changes in the wireless medium and network, adjusting

its configuration to improve the WLAN’s performance. The AP will make decentralized

decisions based on local measurements and cross-layer information.
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We explore three different scenarios of WLAN deployments: an enterprise, a city (urban

area), and a personal residence (home). These scenarios were selected in order to present a

comprehensive work that explores the most common WLAN deployments, each one with

distinct and complementary characteristics to exploit.

• Enterprise WLANs: These managed networks are composed of numerous APs,

which all belong to a same administrative domain. APs are carefully deployed and

configured, to avoid interference and maximize capacity and coverage. They are

interconnected through a wired network, and a central controller usually manages

the wireless network information. Client devices such as laptops, tablets and mobile

phones are generally homogeneous. Other large-scale networks of this type include

university campuses, hospitals, and other public institutions.

• Citywide wireless network: Not a proper network yet, but a collection of APs dis-

tributed throughout a city (residential gateways, commercial hotspots, and municipal

networks, for example). The dense deployment of these APs create large WiFi cover-

age zones in urban areas. The APs usually offer Internet access, but not all of them

provide free and unrestricted connections. They do not communicate with each other

and have different configurations, such as channel and security parameters. Clients

are highly mobile, mostly data-hungry handsets with limited Internet subscriptions

provided by cellular services.

• Home WLANs: These residential networks are characterized by a single AP and a

broadband Internet connection. Owners have little or no administration skills, so APs

are set up with default configurations. These networks reveal a dense and unplanned

deployment, with overlapping coverage areas among neighboring WLANs, commonly

causing interference. Clients are diverse and consume different types of traffic, such

as web, file sharing, audio and video streaming, and gaming.

We now proceed to enumerate the main contributions of this dissertation:

1. We develop a seamless mobility solution for Voice over IP (VoIP) services in Enterprise

WLANs. Roaming in WiFi networks interrupts established communications and

higher-layer sessions, which can be fatal to delay-sensitive applications such as VoIP.

We design an AP-based mobility management technique called Multichannel Virtual

Access Points (mVAP), which requires no client modifications and is compatible

with current devices. We implement and evaluate mVAP using commodity 802.11

hardware, and achieve transparent mobility without interruption or degradation of

ongoing communications.

2. We investigate the feasibility of exploiting the WiFi coverage in urban areas for mobile

Internet access. We analyze the data collected by mobile phones to identify the

distribution and properties of APs already deployed in a city. Through trace-based
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simulations we evaluate the WiFi coverage and the characteristics of the connectivity

of mobile users, using different mobility speeds and AP settings. We discuss the open

issues for a real deployment of a citywide WiFi network and the applications that

could benefit from it.

3. We propose a traffic-aware channel selection mechanism for Home WLANs. The

extensive deployment of WiFi technology in urban areas has caused an overcrowding

of the license-free frequency bands, leading to high interference among neighboring

WLANs. We design a channel assignment technique that uses the time-varying traffic

load for interference estimation. We implement this solution using commodity 802.11

hardware and experimentally evaluate it: the network performance is drastically

improved by constantly picking the channel with the least interference.

1.3 Dissertation Outline

This thesis is structured as follows: in Chapter 2, we introduce the IEEE 802.11 standard

and briefly describe the basic terms and concepts that are relevant for this dissertation. In

Chapter 3, we focus on important aspects of WLAN deployments: client mobility, channel

selection, and quality of service. We study these aspects in detail, identify the issues

that can affect the WLAN’s performance, and review previous research works. Chapter 4

describes our Smart AP model, which will serve as a guide for the contributions of this thesis.

In Chapter 5, we present our seamless mobility solution for VoIP services in Enterprise

WLANs. In Chapter 6, we investigate the characteristics of WiFi coverage in urban areas

for a citywide mobile Internet access. In Chapter 7, we develop an adaptive traffic-aware

channel selection mechanism for Home WLANs. Finally, we conclude this dissertation and

outline future research directions in Chapter 8.
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2.1 Introduction

The IEEE 802.11 standard [35] defines the Physical (PHY) layer and Medium Access

Control (MAC) sublayer of the OSI model (as depicted in Figure 2.1) for Wireless Local

Area Networks (WLANs). It was created in 1997, but had many subsequent amendments,

adding new functionalities, for instance new modulation methods, and reinforcing aspects

such as security and quality of service.

In this chapter, we present a general description of the IEEE 802.11 standard and

introduce the concepts and terminology used within this dissertation.

5



6 CHAPTER 2. IEEE 802.11 OVERVIEW

802.11 PHY

802.11 MACMAC Sublayer

Physical Layer

802.2 Logical Link Control (LLC)Data Link Layer
LLC Sublayer

802.11

Figure 2.1: IEEE 802.11: Physical and MAC layers.

2.2 Architecture

A WLAN is composed of two or more devices that communicate through radio waves.

The devices can move around a coverage area while still being connected to the network.

2.2.1 Components

A WLAN can consist of the following components:

• Station (STA): a device with an 802.11 wireless network interface, that acts as a

client of the network. Stations are generally battery-powered and easily transportable;

for example, laptops, smartphones, tablets, and game consoles.

• Access Point (AP): a special wireless node with 802.11 capabilities, that acts as a

central transmitter and receiver of the stations’ signals. APs often operate as bridges

between wireless and wired networks.

• Distribution System (DS): a logical component that interconnects APs of a same

WLAN. A DS is commonly an Ethernet wired network.

2.2.2 Types of Networks

The Basic Service Set (BSS) is the basic building block of an 802.11 WLAN. It is a

group of stations (and optionally one AP) that communicate with each other. A basic

service area defines the coverage area where these stations are fully connected.

BSSs can be classified as:

• Independent network (IBSS): consists of two or more stations which can only

communicate directly with the other stations in range. These networks are generally

deployed for a short period of time and without previous planning, and are therefore

also referred to as ad hoc networks.
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• Infrastructure network: uses a central point (the AP) for all communications.

When a station wants to communicate with another station, the first station sends a

frame to the AP, which in turn forwards this frame to the second station. In order to

be members of this network, the stations need to be in the coverage area of the AP.

This type of BSS is the subject of our study.

A BSS is identified by its Basic Service Set Identification (BSSID): in an Infrastructure

BSS, it is the 48-bit MAC address of the wireless network interface of the AP (in an IBSS,

the BSSID is a random MAC address). This value is unique for each BSS.

An Extended Service Set (ESS) is a set of multiple BSSs, connected by a backbone

network (the DS). The BSSs may overlap, in order to create a large continuous coverage

area, as shown in Figure 2.2. Thus, stations can move freely around the ESS while

maintaining connectivity. The DS provides seamless integration of the BSSs, logically

interconnecting them at the MAC layer. Consequently, all stations within a same ESS are

able to communicate with each other. All BSSs in an ESS have the same Extended Service

Set Identifier (ESSID), a human-readable network name for the users. Examples of such

ESS networks are: university campuses, convention centers, airports, and enterprises.

Wired Network

Distribution System

Access Point

Station

Extended Service Set

Figure 2.2: Extended Service Set architecture.
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2.3 Physical Layer

The 802.11 PHY layer is the interface between the MAC sublayer and the wireless

medium. It is responsible for frame transmission and reception tasks. The PHY layer

prepares the MAC frames for transmission, transforms them into signals, and controls the

wireless medium for transmission and reception opportunities. IEEE 802.11 is designed to

support wireless communication in license-free spectrum.

Originally, in 1997, three PHY layers were standardized in the initial publication

of 802.11: FHSS (Frequency hopping spread spectrum), DSSS (Direct-sequence spread

spectrum), and IR (Infrared). Only DSSS is still present in today’s devices: FHSS is not

used anymore for WLANs, and IR never had a commercial product implementation.

802.11b
HR/DSSS PHY

802.11 MACMAC Sublayer

Physical Layer

802.2 Logical Link Control (LLC)Data Link Layer
LLC Sublayer

802.11

802.11a
OFDM PHY

802.11g
ERP PHY

802.11n
MIMO PHY

Figure 2.3: IEEE 802.11: Physical layers.

As shown in Figure 2.3, the following physical layers are currently supported by 802.11:

• 802.11a, introduced in 1999, uses the OFDM (orthogonal frequency division mul-

tiplexing) technology. It operates in the 5 GHz band and provides data rates from

6 Mb/s to 54 Mb/s.

• 802.11b, also ratified in 1999, uses the HR/DSSS (High-rate direct-sequence spread

spectrum) modulation technique, which extends DSSS. It operates in the 2.4 GHz

band and offers data rates of 1, 2, 5.5, and 11 Mb/s. The 2.4 GHz band has the

disadvantage of being more crowded (for instance, by microwave ovens and cordless

phones) than the 5 GHz band. However, 802.11b signals can reach farther distances,

as they are less readily absorbed by walls and other obstacles.

• 802.11g, introduced in 2003, utilizes the same OFDM technology as 802.11a, providing

high data rates (up to 54 Mb/s), but operates in the 2.4 GHz band. 802.11g is fully

backward compatible with 802.11b, allowing the co-existence of devices that use these

technologies in a same WLAN. Both 802.11b and 802.11g are the most common

technologies found nowadays in wireless devices.
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• Lastly, 802.11n implements the MIMO (multiple-input and multiple-output) tech-

nology, significantly increasing data throughput. It also operates in the 2.4 GHz

band. The use of multiple antennas and wider channel bandwidth (40 MHz instead

of 20 MHz, as in 802.11g) provides high data rates of up to 600 Mb/s. 802.11n was

ratified in the year 2009.

New physical layers are constantly emerging, such as 802.11ac which operates in the

5 GHz band and outperforms 802.11n by using a much wider channel bandwidth (up

to 160 MHz) and more MIMO spatial streams.

Internally, the 802.11 PHY layer consists of two sublayers:

• the Physical Layer Convergence Procedure (PLCP) sublayer receives the MAC

frames and prepares them for radio transmission. It appends a PHY-specific preamble

and the PLCP header to the frame, in order to synchronize the transmitter with the

receiver. Each modulation technique implements a different PLCP.

• the Physical Medium Dependent (PMD) sublayer is responsible for transmitting

the frame into the air, using the antenna. It transforms the bits of information

received from the PLCP into RF signals using the modulation technique of choice.

The PHY layer also supervises the state of the wireless medium, by means of a Carrier

Sense/Clear Channel Assessment (CS/CCA). This procedure detects the beginning of a

network signal that can be received (CS) and determines whether the medium is idle, before

transmitting a frame (CCA).

2.4 MAC Sublayer

The 802.11 MAC sublayer controls the delivery of frames into the air and provides the

principal framing operations. It has the advantage of being interoperable with every PHY

layer presented above, and uses the 802.2 Logical Link Control encapsulation to interact

with an Ethernet wired network.

Access to the shared wireless medium is regulated by a coordination function. 802.11

defines three coordination functions, as shown in Figure 2.4, each providing different services:

• Distributed Coordination Function (DCF): This is the fundamental MAC pro-

tocol of IEEE 802.11 and can be found in every WiFi product. DCF defines the

CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) contention

access mechanism, in which several nodes can independently contend for the medium

in order to transmit a frame, without the presence of a central controller.

In DCF, a wireless node first checks if the medium is idle before transmitting, using a

carrier sensing technique. Wireless NICs are half-duplex: they can only transmit or

receive at a time. Collisions cannot be detected while transmitting, thus, in order to

avoid them, DCF applies an exponential random backoff.
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MAC Sublayer

Physical Layer

802.2 Logical Link Control (LLC)Data Link Layer
LLC Sublayer

802.11

802.11e HCF
HCCA MAC

802.11
PCF MAC

802.11 DCF MAC

802.11 PHY

802.11e HCF
EDCA MAC

Figure 2.4: IEEE 802.11: MAC protocols.

• Point Coordination Function (PCF): It provides contention-free services, by

means of a Point Coordinator (PC) that restricts access to the medium. Associated

stations can transmit frames only when the PC allows them. The PC resides in the

AP, so PCF is limited to Infrastructure networks.

PCF interoperates with stations implementing only DCF, alternating contention-

free periods with standard DCF-based service. PCF is optional in the IEEE 802.11

specification, and very few hardware devices implement it.

• Hybrid Coordination Function (HCF): Part of the 802.11e amendment, HCF

combines and enhances both contention-based and contention-free access methods,

enabling prioritized and parameterized Quality of Service (QoS) access to the wireless

medium. It is compatible with both DCF and PCF.

HCF proposes two different methods of channel access: Enhanced Distributed Channel

Access (EDCA) and HCF Controlled Channel Access (HCCA). EDCA is similar to

DCF, since it uses the CSMA/CA access mechanism. HCCA works like PCF and its

contention-free periods. EDCA is implemented in existing hardware, but very few

wireless products implement the optional HCCA.

2.5 Frame Transmission

We now detail the frame transmission in 802.11 using the DCF technique, as we will focus

on this MAC protocol in our dissertation. When a station has a frame in its transmission

queue, it first checks whether the medium is idle:

1. On the one hand, if the medium is idle for longer than a DCF Interframe Space (DIFS)

interval, the transmission begins immediately.
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2. On the other hand, if the medium is busy, the station defers its access and waits for

the channel to be idle without interruption for a period of time equal to DIFS. Then,

the station prepares for an exponential backoff procedure, in order to minimize the

probability of collision with other stations that are also waiting for transmission.

After the elapsed DIFS, the aforementioned backoff procedure begins and lasts for a

period of time called contention window. This period is divided into slots of equal

time. The station picks a random slot and waits for it, decrementing its backoff time

as long as the medium is idle. When the contention timer expires, the station starts

the transmission if the medium is idle. If not, the station restarts the deferral process.

Sender

Receiver
ACK

SIFS

DIFS
Frame

Time

Figure 2.5: Frame acknowledgement.

Because the wireless medium is unreliable, 802.11 includes a positive acknowledgement

of the received frame. Only unicast frames are acknowledged. As an example, in Figure 2.5,

a first station sends a frame to another station:

1. After receiving this frame, the second station waits for a Short Interframe Space

(SIFS) period and sends back an Acknowledgement frame. The first station receives

it, and the transmission of the original frame ends successfully.

2. However, if after sending the original frame, the first station does not receive an

Acknowledgement frame, it considers the original frame to be lost, and starts its

retransmission.

If after several retransmissions, the first station still does not receive an Acknowledge-

ment frame, it finally drops the original frame.

As described above, DCF (as well as other MAC protocols) uses Interframe Spaces to

coordinate the access to the transmission medium. Interframe spaces are time intervals

between frames, and their duration depends on the PHY layer type. Apart from DIFS and

SIFS, other interframe spaces exist, such as EIFS (Extended Interframe Space), used after

a transmission error, and PIFS (PCF Interframe Space), used by PCF.
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2.6 Frame Format

The 802.11 MAC frame format consists of a set of fields that are present in a fixed

order in all frames. The format is depicted in Figure 2.6. The first three fields of the

MAC header (Frame Control, Duration/ID, and Address 1) and the FCS are present in all

frames, constituting the minimal frame format. The remaining fields (Address 2, Address 3,

Sequence Control, Address 4, QoS Control, and Frame Body) are only present in certain

frame types. Unlike Ethernet frames, 802.11 MAC frames do not include a preamble. As

previously described in Section 2.3, the preamble is part of the PHY layer.

0-2312

Frame
Body FCS

4
MAC header

6

Address 1

6

Address 2

2

Duration/
ID

6

Address 3

2

Sequence
Control

6

Address 4 QoS
Control

bytes: 2

Frame
Control

2

Figure 2.6: General 802.11 MAC frame format.

A frame includes three basic components:

• MAC header: contains the frame control, duration, address, and sequence control

information, and, in QoS data frames, the QoS control information.

• Frame Body: is a variable length field, which contains information specific to the

frame type. Its length can vary from 0 to 2,312 bytes.

• Frame Check Sequence (FCS): contains a 4-byte CRC (cyclic redundancy check).

It is used to check the integrity of the frames. A sender calculates the FCS of the

frame, over all the MAC header fields and the Frame Body field, before transmission.

The receiver recalculates the FCS and compares it to the one specified by the sender.

If they match, the frame was received correctly and the receiver sends back an

Acknowledgement frame.

The MAC header is composed of the following fields:

• Frame Control: is 2 bytes in length and consists of the following subfields, as

illustrated in Figure 2.7:

– Protocol Version: is 2 bits in length and, for this standard, has a value of

0. Different values represent different revisions of the standard, and are not

compatible with each other.

– Type: is 2 bits in length and represents the type of the frame: control, data, or

management. We detail these frame types in Section 2.6.1.

– Subtype: is 4 bits in length and, together with the Type subfield, unequivocally

represents the function of the frame. Each frame type has several subtypes.
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Figure 2.7: Frame Control field.

– To DS, From DS: are both 1 bit in length, and combined together indicate

whether the frame is destined for the DS.

∗ To DS=0, From DS=0: management and control frames, as well as data

frames from an IBSS.

∗ To DS=1, From DS=0: data frames destined to the DS, in an Infrastructure

network.

∗ To DS=0, From DS=1: data frames destined to a station, in an Infrastruc-

ture network.

∗ To DS=1, From DS=1: data frames using the fourth address field.

– More Fragments: is 1 bit in length. Frames can be sent in several fragments;

this value is set to 1 if more fragments are to follow.

– Retry: is 1 bit in length and is set to 1 if the received data or management

frame is a retransmission of an earlier frame.

– Power Management: is 1 bit in length and indicates the power management

mode of a station. This value is always set to 0 in the AP’s frames. A value of 1

indicates that the station will be in powersave mode, and a value of 0 indicates

that the station will be active.

– More Data: is 1 bit in length. This value is set to 1 if the AP has at least one

frame available for a station that is in powersave mode.

– Protected Frame: is 1 bit in length. This value is set to 1 if the frame is

protected by a link-layer security protocol, such as WEP.

– Order: is 1 bit in length. A value of 1 indicates that frames are transmitted in

a strict order. This value is set to 0 by default.

• Duration/ID: is 2 bytes in length. This field has several uses: when bit 15 is 0, this

field is the duration (in microseconds) that the medium is expected to be busy for

the current transmission; when bit 15 is 1, this field is used in PCF operation, and

represents the Contention-Free Periods or the Association ID.

• Address fields: are 6 bytes in length and contain a 48-bit MAC address each.

A MAC address has one of the following types: an individual (unicast) address, if the

least significant bit of the first byte of the address is set to 0; a multicast address,

if the least significant bit of the first byte of the address is set to 1; or a broadcast

address, if all bits are set to 1.
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As mentioned before, a MAC frame can contain from one to four address fields,

depending on the frame’s type. An address field can take one of the following values:

– the Basic Service Set Identification (BSSID), the AP’s MAC address (in an

Infrastructure network) which uniquely identifies the BSS;

– the Source Address (SA), the unicast source of the transmission;

– the Destination Address (DA), the final recipient of the frame;

– the Transmitting STA Address (TA), the station that transmitted the frame

onto the wireless medium (only used in wireless bridging);

– the Receiving STA Address (RA), the intended immediate recipient station

on the wireless medium (e.g., the receiver of an Acknowledgement frame).

• Sequence Control: is 2 bytes in length. It contains two subfields: the Sequence

Number, which is assigned to every frame in order to eliminate duplicates and identify

message order; and the Fragment Number, which is set to 0 in the first or only

fragment of a frame, and is incremented by 1 in each successive fragment. This field

is not present in control frames.

• QoS Control: is 2 bytes in length and is only present in QoS operation. It identifies

the traffic category of the frame and other QoS-related information.

2.6.1 Frame Types

The 802.11 MAC sublayer uses three types of frames:

• Management frames support the 802.11 services; they mainly enable stations

to establish and terminate their associations with a BSS. We describe their use in

Section 2.7.

• Data frames carry higher-layer packets in their Frame Body field. Different subtypes

of data frames exist, depending on whether contention-based, contention-free, QoS or

non-QoS services are used.

• Control frames support the delivery of management and data frames. The following

are common control frame subtypes:

– Acknowledgement (ACK): This frame is used to send a positive acknowledgement

of a frame transmission, as described in Section 2.5.

– Ready To Send (RTS) / Clear To Send (CTS): These two frames announce the

delivery of a data frame and reserve the channel for the transmission.
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2.7 Management Operations

We now detail some of the management operations supported by the 802.11 specification.

In particular, we focus on the establishment and termination of a station’s link-layer

connection to a BSS. Figure 2.8 illustrates the three different states of a station in an

Infrastructure network:

Authenticated
and unassociated

Authenticated
and associated

Successful
authentication

Deauthentication

Successful
(re) association

Disassociation

Deauthentication

Unauthenticated
and unassociated

State 1 State 3State 2

Figure 2.8: Overall states of an 802.11 station.

1. Initially, the station is not member of any BSS: it is unauthenticated and unassociated.

The station discovers the available BSSs through a scanning operation. Then, the

station chooses to authenticate with a certain BSS.

2. If the authentication is successful, the station is now authenticated and unassociated.

Then, the station sends an association message to the BSS’s AP.

3. If the association is successful, the station joins the BSS and is now authenticated

and associated. Once in this state, the station starts processing the BSS’s beaconing

and is allowed to exchange data frames with its current AP.

The connection between the station and the BSS can always be modified or terminated,

through a deauthentication or disassociation message originated by the station or its current

AP. The station then returns to a previous state.

All 802.11 management frames share the structure depicted in Figure 2.9: the frame

format is independent of the frame subtype. Only the first three Address fields are used:

the first is the destination address DA, the second is the source address SA, and the third

is the BSSID address.

0-2312

Frame
Body FCS

4
MAC header
6

DA

6

SA

2

Duration
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BSSID

2

Sequence
Control

bytes: 2

Frame
Control

Figure 2.9: Generic management frame.

The Frame Body field contains information encoded with two different types of elements:

fixed-length fields, simply referred to as fields, and variable-length fields, called information
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elements. Information elements have a generic format consisting of a 1-byte Element ID

field, a 1-byte length field, and a variable-length element-specific Information field, of length

bytes. Each element has a unique ID, so new elements can be easily defined in newer

versions of 802.11.

2.7.1 Beaconing

Beacon frames announce the presence of a BSS. In an Infrastructure network, the AP

is responsible for periodically transmitting these frames. Information about the BSS is

included in the beacon frames, such as the current operating channel (frequency), the

beacon interval, the network’s capabilities, the SSID, and the supported bit rates.

The area in which beacon frames can be correctly received determines the basic service

area. Stations use the AP’s beacons to confirm they are close enough to the AP to maintain

communication. Stations also use beacons to identify networks and to synchronize their

clocks.

2.7.2 Scanning

Before being able to join a BSS, stations must discover the existing networks in the area

and identify the compatible ones. This task is accomplished through a scanning procedure,

which builds a list of the available BSSs within range and their description. These results

assist the process of AP selection.

The standard defines two scanning approaches: Passive Scanning and Active Scanning.

In Passive Scanning, the station listens to each channel during a period of time and waits

for Beacon frames to extract information about the existing BSSs. Passive scanning saves

battery power because it does not require any transmission.

Active Scanning involves the broadcasting of Probe Request frames and the processing

of Probe Response frames. Stations in Active Scanning mode use the following procedure,

for each channel:

1. Move to the channel and wait for an incoming frame during a ProbeDelay interval.

If this timer expires, and no incoming frame was detected, the channel is considered

empty: just move to the next channel. Otherwise, an incoming frame is detected

before the timer expires: the channel is in use.

2. Send a Probe Request frame to the broadcast destination address.

3. Wait for a MinChannelTime interval:

• If the medium was idle during that time, there are no available networks in this

channel. Move to the next channel.

• If the medium was busy, wait for a MaxChannelTime interval and process any

received Probe Response frames.
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ProbeDelay, MinChannelTime, and MaxChannelTime are scanning timers and their

values can vary, depending on the driver.

A Probe Request frame contains two fields in its Frame Body: the SSID and the bit

rates supported by the station. If the station scans for a specific network, the SSID field

takes the value of that network’s SSID. On the other hand, if the station is willing to join

any network, the SSID field uses an empty SSID and the BSSID Address field uses the

broadcast address.

APs are responsible for generating Probe Response frames whenever they hear a Probe

Request frame that is searching for their own SSID or using a broadcast SSID. If the station

supports the bit rates required by the network, Probe Response frames are transmitted

individually to the station. The fields in a Probe Response frame are similar to the ones

present in Beacon frames.

2.7.3 Authentication

This is the first step to join a network: a station must authenticate to an AP before

being able to proceed with the association operation. The station sends an Authentication

frame to the AP, indicating the desired type of authentication. The AP sends back another

Authentication frame to the station, with a specific response to its authentication request.

As this authentication process may require several frame exchanges, the Authentication

frames include a sequence counter field in their Frame Body. If the authentication process

is successful, the station is then authenticated but still unassociated.

There are two types of authentication:

• Open System authentication: This is a null authentication algorithm. The

stations do not provide any credential, which means that anyone can authenticate.

This mechanism uses only two messages: the first message (station to AP) requests

authentication, and the second message (AP to station) returns the authentication

result. If the result is “Successful”, the station is authenticated to the AP.

• Shared Key authentication: Stations need a shared secret key in order to authen-

ticate to the AP. This mechanism uses the Wired Equivalent Privacy (WEP) security

algorithm and consists of a four-step challenge-response handshake. WEP is also used

for encrypting data frames; however, this algorithm is now deprecated.

2.7.4 Association

Once the station is authenticated to an AP, it is able to join the BSS by sending an

Association Request frame to the AP. When the AP receives this frame, it first verifies

that the parameters included in the frame match those of the network, and then transmits

an Association Response frame to the station, with the result of the operation. If an

Association Response frame is received with a status value of “Successful”, the station is
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authenticated and associated with the AP. But if the frame has another status value, the

station is not associated with the AP, and the status value indicates the reason for the

failed association attempt: the station is then authenticated but unassociated.

At any given time, the station is associated with no more than one AP. When the

association process is complete, the station is able to fully use the DS (via the AP) for

communication. The association is always initiated by the station.

2.7.5 Reassociation

Mobile stations may need to reassociate with the network, if they are moving around

the service area of an ESS and leave the coverage of their current AP. The station requests

a change in its association, by transmitting a Reassociation Request frame to a new AP

from the same ESS. At this point, the station must already be authenticated to this new

AP: this operation can happen immediately before the reassociation or even earlier, before

the reassociation is actually needed.

When the AP receives the Reassociation Request frame, it transmits a Reassociation

Response frame to the station. This mechanism is similar to the association frame exchange.

If the status value of the Reassociation Response frame is “Successful”, the station is now

associated with the new AP: it is authenticated and associated. However, if the status

value is not “Successful”, the station is authenticated but unassociated. The status value in

the frame indicates the reason for the failure to reassociate.

The Reassociation Request and Reassociation Response frames have the same format as

the Association Request and Association Response frames, respectively. The Reassociation

Request also includes the address of the mobile station’s current AP. This information

makes it possible to transfer the station’s association context from the current AP to the

new AP. However, this mechanism is undefined, as it is not part of the standard.

2.7.6 Deauthentication and Disassociation

Deauthentication and Disassociation frames are used to terminate an authentication

or an association relationship, respectively. Both frames can be originated either by the

station or the AP. They include a single fixed-length field in their Frame Body, the Reason

Code, which specifies the reason why the deauthentication or disassociation procedure was

initiated.

Upon transmission or reception of a Disassociation frame, the station is authenticated

but unassociated. Upon transmission or reception of a Deauthentication frame, the station

is unauthenticated and unassociated, returning to the initial “State 1” in Figure 2.8.
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2.8 Security

WLANs are inherently more difficult to secure than wired LANs: due to the broadcast

nature of the wireless medium, any transmission can be overheard by any device within

range. The IEEE 802.11 standard proposes two types of security mechanisms: WEP and

802.11i.

WEP (Wired Equivalent Privacy) was the first security algorithm included in the

IEEE 802.11 standard. It provides confidentiality by encrypting the Frame Body field of

data frames (upper-layer information) with a shared key. It also protects the WLAN from

unauthorized access, as detailed in Section 2.7.3. WEP has been eventually deprecated

because of numerous flaws and failure to provide security services.

The 802.11i amendment was introduced later as a replacement for WEP. It is also known

as WPA2 (WiFi Protected Access II) and specifies new authentication and encryption pro-

tocols. A station using the WPA2 authentication first uses the Open System authentication

(described in Section 2.7.3) with the AP. WPA2 provides two security modes: Personal

and Enterprise. The WPA2 Personal mode is designed for home and small office networks

and uses pre-shared keys. The WPA2 Enterprise mode is designed for larger enterprise

networks. Secured authentication is provided by IEEE 802.1X services.

2.9 Summary

We presented a description of the basic characteristics of the IEEE 802.11 standard,

which defines the MAC sublayer and the PHY layer for wireless connectivity in WLANs.

The terms and concepts introduced in this chapter are those used within our dissertation.

We particularly observed that not all of the functionalities included in the 802.11

specification are implemented in hardware (for example, PCF and HCCA), and that the

values of some parameters depend on the vendors’ implementations (for example, the

scanning timers ProbeDelay, MinChannelTime, and MaxChannelTime), which leaves room

for innovation.
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3.1 Introduction

When deploying a WLAN, there are several factors to take into consideration in order to

establish the coverage area, choose a proper configuration, and determine the services to

offer. In this dissertation, we will particularly focus on the following three aspects:

• client mobility, to support transition from one BSS to another;

• channel assignment, to increase network capacity and avoid interference from other

APs, other WLANs, or external sources;

• and quality of service, to guarantee minimum traffic requirements.

However, these aspects present limitations that can affect the performance of the WLAN.

For example, when moving between coverage areas, clients may suffer interruptions that

21
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negatively impact upper-layer communication protocols. 802.11 does not specify how to

approach this problem; only vendor-proprietary methods provide seamless and fast roaming.

Furthermore, different uses for WLANs emerge, such as streaming applications, introducing

a new set of challenges.

The three aforementioned aspects of WLAN deployment create the opportunity for

optimization and innovation. In this chapter, we first describe them in detail, then examine

their performance limitations, and finally review the related research and discuss open

issues.

3.2 Mobility

Mobility is one of the most important advantages of wireless networks. Stations can

move freely within the coverage area of an AP, without disrupting their network connections.

Moreover, the proliferation of small handheld devices, such as smartphones and tablets, has

allowed connectivity on-the-go, so stations can transmit and receive frames while roaming.

The mobility of a station within 802.11 WLANs can be classified into the following

three transition types:

• No-transition: the station is static or moves within the basic service area of its

current AP.

• BSS-transition: the station moves from one BSS to another, both part of the same

ESS. IEEE 802.11 enables MAC layer mobility through the DS. Cooperation between

APs is required and can be achieved by means of an Inter-Access Point Protocol

(IAPP). During a BSS transition, the old and new APs exchange information about

the mobile station’s association state (e.g. security context). If both APs belong to

the same IP subnet, the station can keep its IP address and, consequently, station

mobility is transparent to upper layers.

• ESS-transition: the station moves from a BSS in one ESS, to a BSS in another,

different ESS. The 802.11 standard cannot guarantee maintenance of upper-layer

connections, so the station is likely to suffer from service disruption. Network-layer

mobility needs to be supported by special protocols, such as Mobile IP [82] or

Proxy Mobile IPv6 [39].

3.2.1 Handoff Procedure

When a station leaves the basic service area of its current AP, it starts a process called

handoff, which occurs at the Link layer. The handoff is entirely a client-driven process. The

station is responsible for detecting that the connection with its current AP degrades, and

for establishing an association with a new AP. Deploying APs with overlapping coverage

areas enables continuous connectivity for mobile stations.
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As depicted in Figure 3.1, there are three distinct phases in the handoff procedure:

• Discovery: The station searches for potential APs to associate with. It initiates an

Active Scanning (described in Section 2.7.2), by sending Probe Request frames in each

available channel, and processing the received Probe Response frames from the APs.

The station may also obtain the APs’ information through Passive Scanning. The

station completes the scanning and chooses the new AP.

• Authentication: The station requests an authentication to the new AP. The au-

thentication can also be performed in advance, as a preauthentication.

• Reassociation: After a successful authentication, the station proceeds to associate

with the new AP. In a BSS transition, the reassociation service transfers, through the

DS, the current association context from the old AP to the new one.

In an ESS transition, the station exchanges Association Request and Association

Response frames with the new AP.

Handoff Delay

The total handoff delay can be obtained as the sum of the Discovery, Authentication

and Reassociation phases delays.

• When the station executes an Active Scanning, it spends, in each channel, either a

MinChannelTime interval, if the station does not receive any Probe Response frame,

or a MaxChannelTime interval otherwise, as described in Section 2.7.2. Therefore, the

Discovery phase delay TDiscovery is the sum of the time spent scanning each channel. If

P (c) is the probability of finding at least one AP in channel c, TDiscovery is calculated

as follows:

TDiscovery =
n∑
c=1

(
MinChannelT ime ∗ (1− P (c)) +MaxChannelT ime ∗ P (c)

)
• The Authentication delay depends on the security offered and required by the network.

In its simplest form, the Open System authentication consists of a two-frame exchange.

More complex security mechanisms, such as 802.1X, can cause longer delays.

• The Reassociation phase consists of a two-frame exchange, the Reassociation Request

and the Reassociation Response, so this delay is considered constant.

Using wireless hardware from different manufacturers, experimental measurements

showed that the handoff can take up to 2 seconds [72, 104]. During this interval, the station

stops current traffic activity in order to perform the handoff. This process may disrupt

ongoing connections, decreasing throughput and degrading the quality of communications.

Specifically, the handoff delay is too long to be tolerated by real-time applications. For

example, Voice over IP (VoIP) requires a one-way end-to-end delay not greater than 150 ms

for good voice quality [102].
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Figure 3.1: The different phases of the handoff process.

3.2.2 IEEE Standardization Efforts

The IEEE released two amendments related to the handoff process: IEEE 802.11f

proposes a common protocol to enable communication among APs of different vendors, and

IEEE 802.11r enables fast BSS transitions for mobile stations, while providing secure and

seamless handoffs.

Inter-AP communications were not standardized in the original IEEE 802.11 specification.

In fact, only proprietary methods enabled the transfer of the station’s association session

across APs, without disrupting link-layer connectivity. IEEE 802.11f was an attempt to

introduce AP-to-AP communication and allow mobility within a single ESS, facilitating

interoperability among APs of multiple vendors. However, this amendment was finally

withdrawn.
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Enhanced security mechanisms (such as 802.1X authentication) and multimedia support

added more parameters negotiation when reassociating with a new AP, making the handoff

delay longer. The IEEE 802.11r amendment specifies the Fast BSS Transition in an ESS,

and provides a faster and secure roaming protocol, preventing connection loss and stream

disruption. IEEE 802.11r requires both client and AP support. Enterprise-oriented products,

such as Cisco, Intel and Apple, are now supporting this functionality.

3.2.3 Related Work

Minimizing the handoff delay has been extensively studied in the literature. Indeed,

researchers have proposed a wide array of fast handoff schemes. These research efforts can

be divided into the following approaches, described in detail below:

• reducing the discovery delay,

• reducing the authentication delay,

• improving the handoff detection mechanism,

• and providing infrastructure-controlled handoffs.

Reducing the Discovery Delay

Previous research has shown that the discovery is the most time-consuming phase of the

handoff and can take more than 80% of the total handoff delay [72, 104]. Many strategies

have been proposed to reduce the AP scanning time; they can be classified under three

categories: selective scan, proactive scan, and eavesdropping (or passive scan).

The full-scanning technique consists in probing all the channels and waiting for a maxi-

mum fixed amount of time for the APs’ responses (MinChannelTime or MaxChannelTime).

This technique wastes resources, as some channels can be empty, or the APs in a channel

may send back their Probe Response frames long before the MaxChannelTime elapses.

Therefore, when a station performs a handoff within a single ESS, it can limit the scanning

to a subset of all channels, observed during previous probings.

Using a selective-scanning technique, Park et al. [80] proposed the use of Neighbor

Graphs (NG). This data structure is an undirected graph, in which each edge represents

a mobility path between APs. This graph is generated by the APs, using Reassociation

Request frames and IAPP Move-Notify messages (which notify a station’s reassociation to

its old AP). Client stations each receive a list of channels to scan, obtained from the NG

and based on their current AP association.

Similarly, Shin et al. [93] proposed the use of NG to capture the handoff relationships

among APs, but from the perspective of the mobile station. As a result, each station

generates and maintains its own NG. Knowing in advance the operating channels of

neighbor APs, this technique reduces the total number of channels to scan, as well as the
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total time spent in each channel, as the station moves from one probing channel to another

as soon as all APs in a channel have replied.

A first proactive scan technique alternates channel probing with transmission periods [61],

providing a smooth handoff. The objective is to avoid scanning all the channels one after

another and thus interrupting current communications during that time. Channels are

divided into groups, so the station scans the whole set of channels in multiple stages, while

still being able to exchange some traffic in between. As this scan technique takes longer than

a standard one, the station triggers the discovery phase earlier, using a higher threshold.

This value is adjusted by an adaptive algorithm, in order to reduce the frequency of channel

scanning.

In the same way, Proactive Scan [109] is a fast handoff scheme that splits the scanning

into shorter probing intervals, each followed by normal transmission activity. Each scanning

interval is short enough to not interrupt current communications. But the station may lose

frames when switching channels: therefore, the station announces its powersave mode to

the AP, just before performing the scan. Moreover, the discovery phase is carried out in

advance, even before triggering the actual handoff, thus reducing the total delay.

Active scanning creates a considerable overhead by probing all channels. SyncScan [84]

is a passive scanning technique that continuously collects information about nearby APs.

This technique requires all stations to be synchronized with the beacons broadcasted on

each channel. Thus, stations can perform a passive scan of the APs by switching channels

at the exact moment a beacon arrives. Although this technique is backward compatible

with the 802.11 standard and only requires trivial modifications, the synchronization of the

APs and the stations is a very complex task.

Passive scanning also has its limitations, as the station has to listen for the beacons in

each channel, which takes a long time. D-Scan [100] proposes eavesdropping in dense 802.11

deployments, but using all the different frames transmitted by the APs, such as beacons,

probe responses, and data frames. The station periodically measures the link quality of its

current AP and, depending on this value, performs a background pre-scanning or initiates

a handoff.

Reducing the Authentication Delay

Research works dedicated to reducing the authentication delay have primarily focused

on proactive authentication mechanisms. Many of these were proposed long before the

introduction of the 802.11r amendment, which is currently the standardized solution for

fast handoffs. We describe the few examples from the literature that propose the most

noticeable techniques: distribution of the station’s context information (such as security

and QoS parameters), pre-registration, and forward-and-buffer mechanisms.

The Proactive Caching algorithm [73] uses the NG data structure to reflect the reassoci-

ation relationships among APs. The NG information can be obtained in a distributed or

centralized manner. This proactive technique forwards the station’s context to potential
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new APs, which are one hop ahead of the current AP, based on the information provided

by the NG. When the station reassociates with one of these APs, its network settings have

already been transferred to the new AP, thus reducing the handoff delay.

However, propagating the station’s context to all the neighbor APs can result in high

overhead. A selective neighbor caching (SNC) scheme [78] reduces the number of transfers

by sending the station’s context to only a selected group of APs.

Another solution [49] also uses the concept of NGs to reduce the authentication delay

and prevent frame loss during the handoff. A central NG server maintains the NG structure

and communicates with the client stations. The information exchanged (about channels and

APs) allows a station to perform a selective scan. The authors also extend the IAPP scheme,

providing a pre-registration of the station with the candidate AP, and a Forward-and-Buffer

mechanism to transfer to this new AP the frames still held by the old AP.

Improving the Handoff Detection Mechanism

The handoff process is triggered by reactive mechanisms. The station starts a handoff

only when the connection with its AP degrades considerably. Thus, the station has already

experienced poor performance during some time, negatively impacting the quality of current

communications. Various events can start the discovery phase:

(i) the station does not receive a number of consecutive beacons,

(ii) the station suffers several consecutive frame losses (i.e., it does not receive any

acknowledgment for recent frame transmissions),

(iii) the current AP’s Received Signal Strength Indicator (RSSI) is below a certain

threshold.

Velayos and Karlsson [104] propose a link-layer detection algorithm, based on frame

losses. In their technique, a station starts the handoff discovery phase immediately after the

transmission of a frame and two subsequent retransmissions. The authors claim that three

consecutive frame transmission failures are probably not caused by collisions. Similarly,

in the case of a station not transmitting while moving, the handoff can be triggered after

the station misses three consecutive beacons and, during that period, does not receive any

traffic from the AP.

Mhatre and Papagiannaki propose proactive smart triggers for improved user perfor-

mance [68]. A station continuously monitors the signal of nearby APs and executes one of

the following triggering algorithms:

• The Hysteresis algorithm: triggers the handoff if the RSSI of an AP instantaneously

exceeds the current AP’s RSSI, plus a hysteresis factor.
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• The Trend algorithm: triggers the handoff as the Hysteresis algorithm does, but uses

trending information (instead of instantaneous values) in order to reduce excessive

transitions between APs.

• The Least Squares Estimator (LSE) algorithm: predicts the future value of the current

and nearby APs’ RSSIs, and triggers the handoff if the predicted value for a nearby

AP is higher than the predicted value for the current AP.

Infrastructure-Controlled Handoffs

All the previous schemes focus on the optimization of the client behavior, clearly because

the handoff is entirely a client phenomenon. There is no protocol to help the APs induce or

influence the handoff decisions, such as when to start the discovery phase, or which AP to

attach to.

An infrastructure-controlled handoff is not a novel idea, as it is already used in cellular

wireless networks [101]. However, this concept has not been sufficiently studied in 802.11

WLANs. With this technique, the station does not perform certain phases of the handoff

process at all, as the network is in charge of, for example, choosing candidate APs and

triggering the reassociation.

Moreover, new mechanisms for the client-based handoff require modifications of the client

logic. Some of these involve a lot of processing and are therefore power-consuming, a clear

disadvantage for mobile devices that rely essentially on batteries. Due to the proliferation

of different manufacturers and platforms for mobile devices, updates of the clients’ drivers

became an extremely difficult task. On the contrary, introducing modifications in the APs

is now feasible thanks to open-source drivers and other frameworks.

We firmly believe that an infrastructure-controlled handoff is interesting and should be

explored in detail, so we propose such a new mobility solution, offering fast handoffs, in

Chapter 5.

3.3 Channel Assignment

802.11 devices operate in the license-free 2.4 GHz and 5 GHz frequency bands. The

2.4 GHz band, used by 802.11b/g/n, is divided into thirteen channels (eleven for North

America, fourteen for Japan). Thus, channel 1 operates in the 2.412 GHz frequency, channel

2 in the 2.417 GHz frequency, etc. The available channels in the 5 GHz band, used by

802.11a, may vary depending on the regulations of the different countries.

802.11 signals are transmitted in a channel that is specified by its center frequency and

spread over its channel width. As a result, part of the signal can be heard in adjacent

channels. For example, the 802.11b DSSS modulation uses a channel width of 22 MHz, as

shown in Figure 3.2a. As channels are spaced 5 MHz apart, a separation of at least five

channels is needed in order to completely avoid interference. Neighboring 802.11 devices in
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overlapping channels are a source of interference and contention. Consequently, the overall

throughput and performance decrease.

Orthogonal channels are non-overlapping channels that are separated by a minimum

distance in order to avoid interference. In 802.11b, there are three orthogonal channels:

1, 6, and 11. The 802.11g OFDM modulation uses a channel width of 20 MHz; therefore,

there are four orthogonal channels: 1, 5, 9, and 13, as depicted in Figure 3.2b. However,

because 802.11g APs also support 802.11b stations and their DSS modulation, 802.11g

WLANs are usually configured with the three 802.11b orthogonal channels. 802.11a

has twelve non-overlapping channels, but some of these are for indoor use only, as their

frequencies are also used by satellites and radars.

(a) 802.11b, with a 22 MHz channel width.
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(b) 802.11g, with a 20 MHz channel width.

Figure 3.2: Orthogonal channels in the 2.4 GHz band.

An AP uses a determined channel for wireless communications, published in Beacon

and Probe Response frames. All the stations associated with a particular AP communicate

in the channel advertised by this AP.

When extending WLANs, two co-located APs allow continuous mobility, but may

create (i) co-channel interference, if both APs operate in the same channel, or (ii) adjacent

interference, if both APs operate in adjacent overlapping channels. Hence, the use of non-

overlapping channels avoids interference and allows to take full advantage of the network

capacity.

In a simple topology, as depicted in Figure 3.3a, channel assignment consists in choosing

a different orthogonal channel for each AP. Figure 3.3b shows the hexagonal cell tiling
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model, inspired from cellular wireless networks. It allows maximum capacity by having both

uninterrupted coverage and maximum channel separation in large deployments. Each AP is

represented by a hexagonal cell, and all its neighbors use the other two orthogonal channels.

However, wireless coverage does not have a regular shape, so this channel allocation model

is not always adequate for WLAN deployments. In fact, the three orthogonal channels

provided by 802.11b/g are not sufficient for large three-dimensional topologies, where WiFi

signals can pass through walls and floors.

channel 1 channel 6 channel 11

(a) Simple topology.
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(b) Hexagonal cell tiling model.

Figure 3.3: Orthogonal channel assignments.

3.3.1 IEEE Standardization Efforts

The IEEE released the following amendments relevant to channel assignment mechanisms:

spectrum management services in 802.11h, and radio resource management in 802.11k

and 802.11v.

Spectrum and Transmit Power Management Extensions

Wireless devices operating in the 5 GHz band must employ Dynamic Frequency Selection

(DFS) and Transmit Power Control (TPC) capabilities to avoid interference with satellites

and radars. The DFS and TPC services are introduced by the 802.11h amendment.

DFS enables the AP to detect radar operation and migrate the BSS to another channel

if a radar is found. The AP alone chooses the new channel and the moment to switch;

it notifies the associated stations of the channel switch by means of a Channel Switch

Announcement (CSA) element in its Beacon frames. The AP maintains the associations

with the stations after the channel switch.

The CSA element announces the new channel number and when the BSS will be switching

channels. The format of the CSA element is shown in Figure 3.4. As an information element,

the first field is the Element ID, and the second is the length field, whose value is set to 3

bytes. The three specific CSA fields are:
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Figure 3.4: CSA element format.

• Channel Switch Mode: indicates transmission restrictions before the channel

switch. If the value is set to 1, the stations must stop transmitting frames until the

channel switch. If the value is set to 0, the stations have no transmission restrictions.

• New Channel Number: the new channel number of the BSS, after the switch.

• Channel Switch Count: the number of beacons the AP will send before the channel

switch. This value decreases in each consecutive beacon. If the value is 0, the AP moves

to the new channel immediately after sending the frame, as depicted in Figure 3.5.

BSS operating 
in new channel

AP

STAs

Beacon
CSA 

Count = N

Time

Beacon
CSA 

Count = 2

Beacon
CSA 

Count = 1

Beacon
CSA 

Count = 0
. . .

Figure 3.5: CSA example: the AP sends beacons with the CSA element, decrementing
the CSA Count field in each beacon. When CSA Count reaches zero, the BSS (AP and
associated stations) moves to the new channel.

TPC, the other capability introduced by the 802.11h amendment, automatically adjusts

and adapts the transmit power level of radios, according to changes in the RF environment

of the AP, in order to reduce interference with satellites and radars.

Radio Resource Management

The 802.11k amendment enables APs and client stations to perform measurements and

collect statistics about their radio environment, with the objective of assisting the WLAN

management and improving its performance. 802.11k proposes standard measurement

mechanisms that do not depend on a specific vendor. Upper layers can take advantage

of the information obtained in order to make efficient decisions, for instance, in channel

selection, load balancing and roaming, through noise histograms, channel loads and neighbor

reports.

The 802.11v amendment introduces Wireless Network Management (WNM) to the

802.11 MAC and PHY layers. It extends the mechanisms of 802.11k, by enabling APs and
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client stations to exchange information about the network and radio conditions, such as

interference and diagnostic reports, power management, and location services.

802.11k requires both AP and client support. Commercial products now implement this

functionality, in a joint effort with 802.11r to provide fast and seamless handoffs. On the

other hand, 802.11v is still not supported by wireless devices.

3.3.2 Related Work

Channel assignment has received great attention from the research community. Many

different approaches have been proposed for either managed or uncoordinated WLAN

deployments, in order to maximize the overall network throughput. Essentially, channel

assignment techniques can be divided into two broad categories: centralized, in which a

central entity decides the channel attribution for each AP in a WLAN, and distributed, in

which each AP chooses its own operating channel, generally based on local measurements.

Since radio spectrum is a scarce resource, network administrators need to manage

it efficiently. When planning a wireless network, administrators first conduct a Radio

Frequency (RF) site survey, using a spectrum analyzer. With the information obtained,

they determine the number of APs to deploy and their locations, in order to provide

maximum coverage. Channel assignment is the next step, and depending on the size of the

wireless network, this task may be performed manually [33].

Centralized Channel Assignment Schemes

Several authors proposed centralized offline algorithms to solve the channel allocation

problem in large managed WLANs. All these proposals use only the three non-overlapping

channels 1, 6, and 11. Wertz et al. [107] divide the floor plan into pixels and give priorities

to each pixel, based on traffic requirements. Channels are assigned following a greedy

heuristic, using this priority map. Hills [47] also elects the channels of the APs with higher

traffic demands first, and then concentrates on the remaining APs.

Knowing the traffic demands and locations beforehand, Lee et al. [59] optimize both AP

placement and channel selection at the same time, using Integer Linear Programming (ILP).

Evaluating all the possibilities to obtain the optimal solution with a brute-force approach

can take a considerable amount of time. Thus, Ling and Yeung [63] propose a heuristic

called patching algorithm for the joint problem of AP location and channel assignment.

This algorithm gradually places the APs, meeting the traffic demands, and determines the

channel distribution at each step.

Channel allocation can also be modeled as a graph coloring problem: the APs are

the vertices of the graph, and each edge represents a potential interference between two

APs with overlapping coverage. Coloring consists in assigning a color to each node, so

that adjacent vertices do not have the same color and the number of utilized colors is

minimal. However, obtaining an optimal solution is NP-hard. In a series of research
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papers [65, 87, 88], the authors use the graph coloring model and implement a heuristic

called DSATUR [16]. Each AP first constructs its neighbor list and sends this information

to a central server, which is responsible for building the complete graph and performing

the channel allocation. The channel assignment is dynamically generated (as opposed to

previous offline algorithms [41, 28, 13, 29] which are static and do not take into consideration

the changing nature of channel conditions): hence, this algorithm is reapplied periodically

or whenever new topology information is available.

Moving from an AP-centric approach, in which interference is measured only at the

APs, to a client-centric approach, in which clients perform the interference detection,

Mishra et al. [70] propose a centralized algorithm called CFAssign-RaC (ConFlict set color

Assignment using Randomized Compaction). This technique addresses both problems

of channel assignment and load balancing with a graph that captures different types of

conflicts: APs reachable from the client’s location (potential APs for load balancing), and

APs and client stations within one-hop range of the client or its current AP (potential

interferers). To collect the graph information, stations periodically conduct a Neighbor

Report, as specified in 802.11k, in which all APs found nearby are listed. The algorithm

performs channel assignment in order to minimize the interference conflicts among the

APs. Channel re-use is applied whenever two adjacent APs do not have any station in

their overlapping region. This technique is regularly executed and can also be dynamically

triggered.

Distributed Channel Assignment Schemes

Distributed channel assignment schemes are appropriate for uncoordinated environments,

but managed WLANs can also implement this type of approach. Least Congested Channel

Search (LCCS) [4] is a simple and common technique provided by commercial APs. As

the AP starts up, it listens to every channel, waiting for Beacon frames broadcasted by

neighbor APs. These beacons include the number of associated clients in the BSS. Based

on this information, the AP chooses the least crowded channel. However, this technique

requires that all APs be from the same vendor, because it uses particular proprietary fields.

Similarly, Yu et al. [112] develop a dynamic, distributed channel assignment mechanism.

Each AP estimates the number of active stations in its current channel. The AP then

monitors the other channels and switches to the one with the least channel utilization. APs

execute this heuristic independently, without inter-AP communication.

An overlapping-channel allocation solution can in some cases achieve better performance

than a solution that uses only the three orthogonal channels [69]. The algorithms Hminmax

and Hsum use a weighted variant of the graph coloring problem, where the weight of an

edge represents the number of clients associated with the two vertex-APs. Both algorithms

exploit local information, obtained through 802.11k Neighbor Reports, and make decisions

in a distributed way. In Hminmax, each AP executes the algorithm independently and
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periodically. On the other hand, the Hsum algorithm requires inter-AP cooperation in order

to exchange the interference metrics.

Akl and Arepally [10] propose a dynamic channel selection algorithm that also uses

overlapping channels. Each AP executes the algorithm and chooses the channel with the

least interference, estimated as a function of the overlapping channel interference, the AP’s

transmit power, and the path loss between interfering APs. The authors propose two

variants of their algorithm when there are several channels to choose from: Pick-Rand, in

which the AP randomly picks a channel, and Pick-First, in which the AP picks the first

channel of the ordered channel list.

Using a different interference metric, Kauffmann et al. [53] propose a distributed

algorithm that minimizes the total interference in uncoordinated WLANs. Channel selection

is performed using a Gibbs sampler, which takes into account the downlink traffic. For

this purpose, APs and stations measure the local interference and the APs’ transmission

delays, a functionality supported by 802.11k. Channel switch is done regularly, when a

timer expires.

Finally, the algorithm MAXchop [74] is a distributed channel assignment algorithm based

on channel-hopping, which requires minimal coordination among APs and is compatible

with the current 802.11 standard. Each AP maintains a channel-hopping sequence (a list

of channels in which it will operate) and hops through this sequence over time. All APs

need to be synchronized, since they should all switch channels at the same time. Stations

measure the interference from neighbor APs, and this information is used to build the

hopping sequences. This technique provides long-term fairness among the APs.

3.4 Quality of Service

With the spread of multimedia applications, such as videoconferencing and online

gaming, 802.11 WLANs struggle to provide the expected quality of service. Furthermore,

new physical layers with higher data bit rates do not suffice to guarantee services such as

bandwidth, delay, jitter and packet loss, to these applications. The 802.11 MAC sublayer is

at the origin of the problem, because it is responsible for controlling channel access.

DCF, the fundamental 802.11 MAC coordination function, was originally designed for

best-effort services. Performance evaluation results in [23, 25] show that DCF experiences

important throughput degradation and high latency during heavy load conditions. Thus,

various research efforts have been devoted to providing some QoS enhancements: differen-

tiated services at the network layer [46], station-based schemes [1, 51, 95, 103, 105], and

queue-based schemes [2, 66, 90].

Moreover, the DCF protocol offers equal probability of medium access to every associated

station, causing a performance anomaly in BSSs with multi-rate stations [44]. Indeed, low

bit rate stations limit the overall throughput of the cell, penalizing stations with higher

bit rate by degrading their throughput. Different approaches to providing fairness among



3.4. QUALITY OF SERVICE 35

stations have been proposed [27, 45, 94, 99, 110], but many of these novel techniques require

client-side modifications, introduce changes in the firmware of the wireless cards, or depend

on new MAC protocols that are incompatible with the current 802.11 MAC. Unfortunately,

their limitations prevent these techniques from being implemented in commodity hardware

and their subsequent deployment in ordinary WLANs.

3.4.1 802.11e: QoS Enhancements

Accordingly, the 802.11e amendment aimed at providing enhancements in the MAC

sublayer, introducing QoS features and support for real-time multimedia applications in

WLANs, while maintaining full backward compatibility. A station using QoS is called

QSTA and an AP using QoS is called QAP. A QAP may allow associations with non-QoS

stations.

802.11e defines a new MAC protocol: the hybrid coordination function (HCF), which

was briefly described in Section 2.4. HCF combines and enhances both DCF and PCF,

enabling prioritized and parameterized QoS access to the wireless medium for QSTAs,

while providing best-effort services for non-QSTAs. HCF supports two mechanisms: a

contention-based channel access method, called Enhanced Distributed Channel Access

(EDCA), and a polling-based channel access method for contention-free operation, called

HCF-Controlled Channel Access (HCCA).

HCCA provides parameterized QoS access and may be used by application flows

that require delay or bandwidth guarantees, such as video and voice. Transmissions are

regulated by a central entity called hybrid coordinator (HC), collocated with the QAP.

QSTAs request transmission slots and negotiate QoS requirements with the HC. HCCA

alternates contention-free periods (CFP) with contention periods (CP), and uses DCF

exclusively during the CPs. Since HCCA support is optional, it has not been implemented

in commercial wireless products.

EDCA provides prioritized QoS using a CSMA/CA access mechanism. Traffic dif-

ferentiation is achieved through the use of four Traffic Categories (TCs): Background

(lowest), Best Effort, Video, Voice (highest). MAC frames with higher TC priority are

given precedence over frames with lower priority. The TC of a given flow is specified by the

application layer, in the ToS field of the IP packets.

Each TC has its own transmit queue and corresponding parameters: CWmin and

CWmax, the contention window limits used by the backoff algorithm, and the Arbitration

Interframe Space (AIFS), the minimum idle time before transmission of a frame. The value

of AIFS is the sum of a SIFS interval and the duration of the number of slots indicated by

the AIFS Number (AIFSN) parameter; the minimum value of AIFS is the same as DIFS

(2 ·Slot time+SIFS). All these parameters are announced in the Beacon, Probe Response,

and (Re)Association frames, sent by the QAP. When two or more frames of different TC

queues try to simultaneously access the wireless medium, an internal collision occurs. The
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queue with the highest priority proceeds with the channel access, and the lower-priority

queues start the backoff algorithm, as if a classical collision had occurred.

In spite of the higher channel access probability for time-sensitive applications, such as

video and voice, EDCA cannot provide throughput guarantees: in heavy load conditions,

the performance of these applications degrades significantly. Worse yet, flows that come

from different stations but belong to the same TC still compete for access to the wireless

medium.

EDCA is implemented in commercial hardware; actually, WiFi Multimedia (WMM)-

certified APs must support EDCA. Also, EDCA is compatible with DCF, since non-QSTAs

use DCF to exchange frames with the QAP.

3.4.2 Related Work

We examine three distinct approaches that propose priority mechanisms in order to

guarantee traffic requirements. Contrary to the majority of QoS-related research proposals,

which were mainly studied through analytical and simulation methods, these approaches

have been experimentally evaluated and effectively implemented in current 802.11 hardware.

Han et al. [42] present the Channel Access Throttling (CAT) scheme, an extension of

EDCA. CAT provides access-priority groups (similar to traffic categories) that stations

can dynamically join. As a result, some stations have a higher priority than others when

transmitting, independently of their flows’ traffic category. CAT is compatible with EDCA

and can be implemented in the MadWifi driver; however, it requires both AP and client

support.

The prioritization of a specific station’s traffic can be achieved with SHAPE [22], a Smart

Home Access Point Environment that supports multimedia services. SHAPE implicitly

reserves the channel for a certain station by sending it unsolicited CTS frames, forcing the

rest of the stations to defer their transmissions. This mechanism provides the required

bandwidth and significantly reduces the delay jitter, using the basic DCF (not 802.11e).

SHAPE is implemented in the AP, so existing client stations can benefit from this technique

without any modification.

Although WiFox [40] does not yet support QoS, it offers an interesting approach to

solving traffic asymmetry in large audience environments. WLAN traffic is mostly downlink,

but the AP merely gets the same share of channel access as every contending station, causing

congestion at the AP. WiFox uses basic 802.11e concepts to provide adaptive prioritization

of the AP’s channel access over competing stations. Specifically, WiFox assigns high priority

values to the AP’s channel access parameters during heavy load conditions at the AP.

This mechanism only introduces modifications in the AP and was deployed in off-the-shelf

commercial hardware.
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3.5 Summary

In this chapter, we described three aspects of WLANs that must be taken into account

during their design and deployment: client mobility, channel assignment, and quality of

service. These aspects suffer from performance limitations that have been largely discussed

in the literature: the research works proposed diverse solutions that improve the WLAN

performance and support new services. Indeed, new functionalities have been added to the

original 802.11 standard through subsequent amendments.

However, despite the enhanced capabilities of the 802.11 standard, WLANs face new

challenges introduced by novel applications and uses, such as multimedia streaming and

location-based services. Moreover, we observed that many solutions proposed by the research

community introduce changes in the client behavior or modify the MAC protocol, making

them incompatible with legacy clients. Also, static or offline techniques do not reflect the

changing dynamics of the wireless medium and network properties. These factors impede

the deployment of the previously described proposals in current WLANs.

In the following chapters, we first exploit the observations made in this chapter to build

a common basis for practical implementation of new 802.11 solutions. Then, we identify

open challenges in different WLAN scenarios and present the main contributions of this

thesis: novel mechanisms that can be effectively deployed in current WLANs.
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4.1 Introduction

We present our Smart AP model, for developing practical AP-based solutions using

self-management techniques in existing WLANs. As discussed in the previous chapter, there

are several issues that affect the IEEE 802.11 WLAN performance. These problems have

been much discussed in recent literature and numerous approaches to improve the WLAN

operation exist. However, many of these techniques have limitations that prevent their

deployment in current WLANs, since they propose manual or static optimization mechanisms,

cannot be practically implemented in today’s wireless cards, or require modifications in the

IEEE 802.11 standard, neglecting interoperability with existing WiFi devices.

The objective of our thesis is to develop solutions that improve the performance of

WLANs, and most importantly, to deploy these solutions in existing WLANs. We focus on

approaches that can be implemented in off-the-shelf hardware, do not require client-side

modifications, are backward compatible with legacy wireless devices, and manage the

39
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available resources in a dynamic way. Therefore, in this chapter, we introduce our Smart AP

model, to provide a common foundation upon which to build our solutions.

In Section 4.2, we first outline the limitations of existing schemes, which motivate us

to propose the Smart AP model. Then, we describe the design goals of our model in

Section 4.3, and its architecture in Section 4.4. Finally, we summarize the chapter in

Section 4.5.

4.2 Motivation

In recent years, WLAN performance issues have been largely discussed in the literature.

These works are accompanied by techniques and algorithms to enhance the WLAN operation,

and thus deliver increased capacity, higher throughput, fairness among clients, and quality

of service, to wireless traffic.

However, many of these research efforts suffer from several limitations that prevent their

practical and correct deployment in existing WLANs:

• Low-level modifications: Several techniques, such as new MAC protocols and colli-

sion or interference measurement methods [34, 45, 98], configure low-level parameters

and change functionalities in the Physical and MAC layers. Thus, they require access

to the firmware of the wireless card, which in many cases is proprietary and not

available for modification [36].

• Client support: In the past, the introduction of changes in the infrastructure was not

possible, due to proprietary source code restrictions. Clients were fairly homogeneous,

and client code development was relatively easy. Consequently, numerous approaches

proposed changes in the client behavior, for example AP selection and association

techniques. But nowadays, clients are remarkably diverse: laptops, smartphones,

tablets, and a variety of vendors and manufacturers such as Nokia, BlackBerry, and

Apple. Hence, supporting all these different platforms is rather impractical.

• 802.11 modifications: Introducing fundamental changes to the IEEE 802.11 stan-

dard can provide new functionalities or improve the network performance [45]. How-

ever, these novel methods prevent interoperability with legacy (or even current) WiFi

devices. Additionally, vendors take time to introduce new features in their hardware,

so modifications in the standard reduce their impact.

• Unsuitable centralized model: In most centralized wireless networks such as

Enterprise WLANs, there are two primary components: a central controller, which is

in charge of the management and configuration activities, and the APs, which are

essentially the end-points of the network [21]. APs in these networks act as mere

MAC layer bridges, forwarding frames between the wireless clients and the wired

network.
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In recent years, uncoordinated WLANs gained importance because of the increasing

number of hotspots and residential wireless networks. However, performance optimiza-

tions designed for centralized WLANs are inappropriate, as uncoordinated WLANs

have distinct characteristics (for instance, the lack of a central authority).

• Manual or static configurations: Usually, several WiFi parameters such as the

operating channel are assigned in a manual way, which can be time-consuming.

Moreover, wireless channel conditions are known to vary over time, as are other

network characteristics (the number of clients, the type and amount of traffic).

However, static configurations of WiFi devices assume a stable environment and do

not adapt to changes, failing to provide better performance.

4.3 Smart AP Model

The limitations outlined in the previous section motivated us to conceive a framework

for developing new optimization techniques for existing WLANs. With this in mind, we

propose our Smart AP model, inspired by Autonomic Computing [55].

The AP is the central entity of a WLAN, responsible for establishing and maintaining

connections with client stations, and assigning the available resources to cope with their

demands. Therefore, AP-based approaches can benefit from this leading role and improve

the network performance.

Self-management techniques can give autonomy and “intelligence” to the AP. Essentially,

decision-making should be distributed and decentralized. Based on the autonomic control

loop depicted in Figure 4.1, the AP should: continually monitor the wireless environment

and measure its current performance; detect problems and repair them; and automatically

reconfigure and adapt to changes, in order to optimize the WLAN performance.

Autonomic manager

Analyze Plan

ExecuteMonitor
Knowledge

Managed element

Figure 4.1: Autonomic control loop.
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Our Smart AP model follows the design guidelines detailed below:

• Use of commodity hardware: Commercial off-the-shelf WiFi hardware is inexpen-

sive (as opposed to Software-Defined Radio) and usually runs open-source software.

Lately, most of the 802.11 protocol is implemented in the driver software, leaving only

low-level and real-time operations (for example, the DCF) implemented in the wireless

card’s firmware. Development of new functionalities in software is more flexible and

permits rapid rollout.

• No client-side modifications: Nowadays, infrastructure-based solutions are easier

to implement, since many commercial AP products use OpenWrt [77], a common

Linux platform for residential gateways and WiFi routers. Vendors and ISPs provide

periodic firmware updates, so new features can be made readily available.

• Backward compatibility: By creating extensions and adding new functionalities

compatible with the 802.11 standard, novel techniques can be rapidly deployed and

transparently used with regular (and legacy) WiFi devices.

• Self-management: APs make decentralized and distributed decisions based on their

own measurements and on client feedback. Techniques falling into this category are

more suitable for unmanaged environments.

• Dynamic optimization: Adaptive reconfiguration reflects the wireless medium

dynamics, as well as the different types of clients and traffic characteristics. By means

of online algorithms, the AP reacts to changes, adjusts parameters, and, accordingly,

improves the WLAN’s performance and maintains flexible objectives.

• Cross-layer techniques: Layered protocols are not optimal for wireless networks,

because they were designed for wired networks [97]. Cross-layer design enables

interaction and collaboration between layers. Thus, by combining information from

the Physical and MAC layers, we can obtain performance improvements.

4.4 Architecture

We present the basic architecture for the implementation of our Smart AP model,

depicted in Figure 4.2, which consists of the following components:

• Wireless NICs: We use commodity 802.11 wireless cards (with omni-directional

antennas) based on Atheros chipsets, which are widely adopted by the research

community. These cards have open-source drivers that permit direct modification of

their code.

We use two wireless cards: the AP interface, dedicated to the AP functionality, and

the monitor interface, to monitor activity. Attaching an extra wireless card to an AP
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Figure 4.2: Smart AP architecture.

is easily done, since many wireless router models have USB ports, and wireless cards

with USB adapters are quite cheap. Moreover, OpenWrt [77], the widely adopted

operating system for WiFi APs, supports a large number of wireless NIC drivers.

• Wireless Card Driver: This driver lives in kernel space and links each wireless

card to the AP and Monitoring applications, respectively. The driver’s main function

is the correct transmission and reception of frames. For our experiments, we used the

MadWifi driver and its successors ath5k (for 802.11a/bg-enabled wireless NICs) and

ath9k (for 802.11n-enabled wireless NICs) [108]. These drivers have the advantage

of implementing correctly the complete 802.11 standard and most of the subsequent

amendments.

• Applications: We implement our solutions as applications that run in user space.

This choice alleviates the dependence on driver and kernel versions.

The AP and Monitoring applications can exchange information through inter-process

communication.

– Access Point Application: This application is in charge of the AP manage-

ment functionality. As an example, hostapd [48] is an 802.11 AP daemon service

commonly used on Linux platforms, and supports various authentication modes

(IEEE 802.1X, WPA, WPA2, EAP, and RADIUS).

– Monitoring Application: This application, by setting its wireless card to

monitor mode, can sequentially hop through all channels or listen to a specific

one, and capture all available frames, not only those actually meant for the AP.

Thanks to this application and the monitor wireless NIC, the AP can follow the

activity of any channel, while serving the clients in its own channel at the same
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time, with its AP wireless NIC. It can also obtain local measurements such as

channel usage, and keep records of the stations that enter or leave its coverage

area.

4.5 Summary

In this chapter, we presented our Smart AP model, based on self-management techniques,

for creating practical AP-based solutions to improve WLAN performance. Our efforts are

directed toward novel approaches that use commodity hardware, introduce changes only

to the infrastructure (and not to the client behavior), are fully compatible with existing

802.11 devices, and dynamically manage and optimize the available resources, by exploiting

cross-layer information.

The design and architecture of the Smart AP described in this chapter will serve as a

guide for the three contributions of this thesis, which follow in the next chapters.
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5.1 Introduction

We now present the first contribution of this thesis: a transparent mobility mechanism for

Voice over IP (VoIP) services in Enterprise WLANs. This type of WLANs is characterized

by the deployment of several APs that all belong to a same administrative domain and

therefore offer a wide-area coverage. Within such a WLAN, client stations can move freely,

45
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but because of the short-range nature of the APs, they usually need to reassociate with

different APs in order to continue their communications. When changing APs, a client

station starts a process known as handoff that can take up to 2 seconds, too long a delay

for real-time applications such as VoIP. Using the concept of Virtual Access Points (VAP),

we have developed a mobility solution called Multichannel Virtual Access Points (mVAP)

that provides seamless handoffs without performance degradation of applications with tight

delay constraints.

In Section 5.2, we first introduce the problem of mobility in WLANs when running

real-time applications such as VoIP, and discuss the related work in Section 5.3. Next, we

present our mVAP solution and its design in Section 5.4, describe its implementation and

our PACMAP framework in Section 5.5, and evaluate its performance in Section 5.6. Last,

we point out possible future work in Section 5.7, and summarize the chapter in Section 5.8.

The results presented in this chapter were published in the proceedings of IEEE 73rd

Vehicular Technology Conference (VTC Spring), in May 2011 [14].

5.2 Problem Statement

Over the past years, IEEE 802.11 WLANs have become the preferred solution to

extend wired networks, thanks to their rapid deployment and easy configuration. These

characteristics, in addition to low-cost hardware, have caused an increasing growth of

WLANs. Wireless networking also brings the advantage of mobility, allowing clients to

roam freely.

We consider 802.11 infrastructure networks in which APs convey traffic between associ-

ated clients and the wired part of the network. Examples of such networks are university

campuses, convention centers, airports, and corporation intranets. Because APs have a

limited range, coverage can be extended to a larger area by deploying multiple APs (for

example, one AP in every office in the case of an enterprise WiFi network), thus resulting in

a densely deployed network. APs are interconnected through a Distribution System (DS),

generally a wired network, to enable inter-AP communications.

As detailed in Chapter 3, a station can join the wireless network by associating with

an AP. When a station moves away from this AP, its signal falls off. If it drops below a

certain threshold, the station starts searching for a new AP to associate with, initiating

the MAC layer handoff process, until the new association takes place. The handoff delay

takes a significant amount of time: up to 2 seconds, as measured in [72, 104]. During this

time, the station neither receives nor sends data packets, which may interrupt current

connections. Consequently, the handoff delay is too long for real-time applications like

VoIP, which recommend a one-way end-to-end delay not greater than 150 ms for good voice

quality [102].

Several solutions have been proposed to improve different handoff phases: discovery of

new APs, re-authentication, and reassociation. Most of these solutions modify the client
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behavior, because the client is the one in charge of its association and handoff process when

moving. But as handheld VoIP WiFi devices become increasingly popular, such solutions

are not practical due to, for example, proprietary source code restrictions, as discussed in

Chapter 4. The modification of the AP behavior, instead of the client’s, is therefore an

interesting alternative way to improve different aspects of wireless client mobility.

In this light, Grunenberger et al. proposed the concept of Virtual Access Points [37], in

which the VAP manages the client mobility. However, a serious drawback of this approach

is that all APs need to operate in the same channel. Indeed, APs in managed environments

like Enterprise WLANs usually operate in different channels, in order to avoid interference

and increase network capacity.

Taking all the previous problems into consideration, we designed a complete mobility

solution that provides seamless handoffs in multichannel wireless networks, can be deployed

in off-the-shelf hardware, and requires no modifications on the client side.

Thus, the contributions of this chapter are as follows:

• Proposal of our new solution, Multichannel Virtual Access Points (mVAP), for seamless

and efficient handoffs.

• Implementation of mVAP in a real environment, using a brand new version of our

PACMAP framework, and running on top of the MadWifi [64] driver.

• Experimental evaluation of the mVAP performance with different VoIP codecs (8, 16,

and 64 Kb/s).

5.3 Related Work

Several authors proposed fast-handoff schemes to reduce the handoff delay, as described

in Section 3.2. They fall into the following main categories: (1) reducing AP scanning (probe)

time by using different strategies of channel scanning, such as proactive scan [109], selective

scan [61], eavesdropping [84, 100], and (2) reducing the authentication and reassociation

time, for example by proactive distribution of authentication information [73]. Nevertheless,

all these schemes focus on modifying the client behavior, clearly because the client is the

device that controls the handoff process.

Network-based mobility management is another interesting approach, since the AP

can negotiate the client’s reassociation beforehand and therefore reduce the handoff delay.

Indeed, some solutions in the literature develop this aspect: HaND [24] is a handoff

technique in which APs exchange information about moving clients, and the current AP

itself triggers the handoff procedure. The disadvantage of this technique is that it also

introduces modifications in the client behavior.

On the other hand, OmniVoice [7], a mobile voice solution for small-scale organizations,

does not require any client-side modification. With a single-channel WLAN design, this

solution uses a central controller for managing interferences and scheduling transmissions.
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Similarly, the Virtual Access Points (VAP) [38] technique mentioned before does not modify

the client stations. Providing one VAP for each client, APs control and handle the stations’

association session. The clients themselves believe they are always connected to the same

VAP, and therefore avoid the handoffs altogether when moving.

Although both solutions provide seamless handoffs by means of network-based mobility

and both can be used by regular 802.11 clients, their use is restricted to single-channel

WLANs, an uncommon and highly inefficient configuration.

5.4 Multichannel Virtual Access Points

5.4.1 Overview

We reuse the idea behind VAP in order to develop Multichannel Virtual Access Points

(mVAP), a complete solution for seamless handoffs in Enterprise WLANs where APs listen

to different channels. A WLAN that deploys mVAP actually broadcasts two different

network names:

• the “Voice” WLAN (composed of VAPs) in which client stations benefit from our

new handoff scheme and can switch from one AP to another without performance

degradation of their real-time applications;

• the “Default” WLAN (composed of regular APs) that handles the rest of the traffic.

Wired Network

VA P

Station is associated with VAP

AP1
802.11g, CH=1

AP2
802.11g, CH=6

VAP, CH=1
VA P

VAP, CH=6

Station moves

Station continues its association with VAP

VAP is handled by AP1 VAP is now handled by AP2

Inter-AP messages

menu menu

VA P

Figure 5.1: Mobility management with mVAP.

Mobility management in mVAP consists in the following procedure, as shown in Fig-

ure 5.1. When a station wishes to join the Voice WLAN, the first AP in charge of the

station’s connection creates a dedicated VAP for this particular station. Therefore, each

station associates with its own unique VAP and maintains connectivity by the continuous

reception of beacons. When the station moves, APs communicate with each other in order

to move the association state to the new AP, which now handles the VAP for the station.
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Therefore, the station avoids starting a handoff when moving, because it has the impression

of being always connected to the same VAP, thanks to the cooperation between APs to

create this transparent operation.

The APs that implement mVAP adhere to the Smart AP model, introduced in Chapter 4.

Specifically, they can service their own clients (from both the Voice and Default networks)

via their AP interface, while monitoring roaming clients at the same time via their monitor

interface, as depicted in Figure 5.2. Additionally, as APs operate in different channels, they

can cooperate through the DS, commonly using an Ethernet interface in order to exchange

Inter-AP messages.

Wireless Card Driver Wireless Card Driver

AP Wireless NIC Monitor Wireless NIC

mVAP Application

Figure 5.2: Architecture of mVAP.

The other key element in the mVAP solution is the Channel Switch Announcement

(CSA): when a client station moves and needs to associate with another AP and switch

channels, it receives the necessary information by means of a CSA in the VAP beacon, as

described in Section 3.3.1. Finally, if no new AP can be found to handle the VAP of a

moving client station, the client falls back to the standard handoff mechanism, also making

this solution compatible with legacy 802.11 devices that do not support the CSA.

5.4.2 Protocol

The following steps form the basis of the mVAP protocol, depicted in Figure 5.3:

1. A client station (STA) is connected to the Voice WLAN and is associated with APi

in channel i. STA starts moving and APi detects that the signal of STA drops below

a threshold Threshold.

2. APi sends a Scan Request message to its neighbor APs (APj 6=i) through the DS.

3. All APj 6=i that receive the Scan Request message switch their monitor interface to

channel i and listen to STA packets for a short period of time.

4. If APj successfully listens to STA packets, it sends a Scan Response message to

APi through the DS.
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Figure 5.3: mVAP protocol.

5. APi collects the Scan Response messages and chooses the AP with the best signal

(if better than its own).

6. APi sends a Station Move message to the chosen APk through the DS. APk’s AP

interface is servicing its clients on channel k.

7. APk receives the Station Move message. Thus, it instantiates the VAP for STA and

starts sending the corresponding beacons (in channel k).

8. APi sends beacons (in channel i) to the STA, with the CSA element set in order to

force the STA to switch to channel k.

9. STA receives the beacons with the CSA element and switches to channel k.
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10. STA has successfully moved from APi in channel i to APk in channel k, without losing

connectivity. From the STA perspective, it is still connected to the same VAP.

5.4.3 Protocol Details

In this section, we discuss some of the finer aspects of mVAP.

Uniqueness of each VAP

Each client of the Voice WLAN is associated with its own unique VAP. Indeed, a client

station maintains its connection with an AP as long as it successfully receives beacons from

this AP’s BSSID, which means that a VAP has to keep its BSSID when moving from one

AP to another. Furthermore, since we do not want this AP and channel switch to affect

other clients, the VAP’s BSSID needs to be unique and dedicated to a particular client

station.

A VAP’s uniqueness can be achieved by basing its BSSID on its client’s MAC address

and flipping the first bit, for example:

Client MAC address VAP BSSID

00:11:22:33:44:55 → 80:11:22:33:44:55

aa:bb:cc:dd:ee:ff → 2a:bb:cc:dd:ee:ff

Channel Switch Announcement

A VAP uses the CSA element, as described in Section 3.3.1, to advertise that it is

switching to a new channel. Since each station associates with its own VAP and receives

dedicated beacons, the channel switch only applies to the station that effectively changes

APs. The MadWifi driver for example implements the CSA element, so stations can use

this solution without client-side modifications.

The CSA element is sent in the beacons only when the new AP is chosen (step 8 in

Figure 5.3). In our implementation, the old AP sends three consecutive beacons, with an

interval of 100 ms between them, decrementing the value of the Channel Switch Count in

each beacon. When this value reaches zero, 300 ms after the first CSA announcement, the

station switches to the new AP and channel, and the old AP deletes the station from its

associated client list and stops sending VAP beacons for the station.

Inter-AP Messages

Inter-AP communications (steps 2 to 7 in Figure 5.3) take place over the DS, as an

Ethernet wired network commonly interconnects APs in current deployments. Messages

are exchanged over reliable TCP connections established between APs, and contain the

following information, also depicted in Figure 5.4:
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• Scan Request: Station’s MAC address, Station’s IP address, BSSID, Station channel

(where the APs’ monitor interfaces will listen for Station’s traffic).

• Scan Response: Station’s MAC address, Station’s IP address, Station Received

Signal Strength Indicator (the signal strength of Station’s frames that reached the AP),

new AP channel (the channel in which the responding AP’s AP interface operates).

• Station Move: Station’s MAC address, Station’s IP address (because the Station

will keep its IP address when changing APs, the new AP needs this information

to update the network’s bridging tables via gratuitous ARP messages), CSA count,

Beacon interval (these last two elements give the new AP a hint about when to expect

the Station’s channel switch).

Scan Request message

Scan Response message

Station Move message

bytes

Station's 
MAC address

Station's 
IP address

6 4bytes

Station's
RSSI

New
channel

1 1

Station's 
MAC address

6 4bytes

Beacon
Interval

2

CSA
count

1

Station's 
MAC address BSSID

Station's
channel

6 4 6 1

Station's 
IP address

Station's 
IP address

Figure 5.4: Inter-AP messages for the mVAP protocol.

Use of 2 Radios

When a client station moves away from its current AP, the AP starts the process of

searching for a new AP among its neighbors. Therefore, the neighbor APs need to listen

for packets from the moving station in order to obtain its RSSI. Since the station itself

is transmitting in a channel different from the neighbor APs’ channels, these APs need
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to switch channels in order to listen for the station’s packets. As a result, if using only

one wireless interface, the APs leave their own channels and clients unattended. If their

clients send packets, they will be lost. Consequently, in accord with our Smart AP model,

we use two wireless radios, the AP interface for the AP functionality (for both Voice and

Default WLANs), and the monitor interface for monitoring the roaming VoIP clients in

other channels.

5.5 PACMAP

In order to implement our mVAP solution, we developed a tool called PACMAP:

the PACket MAniPulation framework. PACMAP is a framework for controlling and

manipulating 802.11 frames. It is a user-space frame monitor and injector that allows for

fast prototyping of modifications and customizations of the IEEE 802.11 MAC protocol

(management and data functions) and upper-layer networking protocols.

Initially, PACMAP was conceived for prototyping with the Python scripting language,

but due to poor performance measures during the evaluation of the implementation of

VAP [38], it was rewritten entirely for this thesis, as a C library with the objective of code

reusability and extensibility. Consequently, this new version is generic and can be used to

test other ideas, for example, new handoff or AP selection techniques. Additionally, as the

framework runs in user-space, code development is easier than in kernel space.

MadWifi driver TAP interface

IP stack

TCP socket
(Ethernet interface)

User space

Kernel space

mVAP Prototype

PACMAP

802.11 Handler

I/O Manager

Figure 5.5: mVAP implementation using PACMAP.

Figure 5.5 shows a high-level description of how PACMAP is used to implement

our mVAP prototype. A lower-level description of PACMAP’s internal architecture and

implementation will be presented in Sections 5.5.1 and 5.5.2, respectively.
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5.5.1 Architecture

The PACMAP core is composed of the I/O manager and the 802.11 protocol handler, as

shown in Figure 5.6. Incoming packets handled by PACMAP may come from the wireless or

the TAP interface [106]. These packets are processed by the I/O manager and sent to the

802.11 protocol handler, which passes them to the appropriate prototype callback function.

The callback functions process these incoming packets, and might forward them or

create new wireless frames. These outgoing packets are then passed to the PACMAP core,

which in turn delivers them to the appropriate interface. For example, beacon frames are

generated by the AP prototype code, then transmitted to PACMAP, and finally injected

into the wireless card.

Figure 5.6: Low-level description of PACMAP.

I/O Manager

The I/O manager is an abstraction layer to the wireless and TAP device handling.

It writes to and reads from the devices, configures their settings, manages sockets, and

handles periodic functions. Wireless frame injection and I/O management is based on

Aircrack-ng [8] code, a well-known tool usually used to recover 802.11 encryption keys.

802.11 Protocol Handler

The 802.11 protocol handler receives packets from the I/O manager, classifies them

according to their type (for example, an authentication management frame), and executes

the appropriate prototype callback function. It also sends the outgoing packets to the I/O

manager, and can forge 802.11 header frames if needed.
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5.5.2 Implementation

Event Handler

We have designed this new version of PACMAP as an event-driven C library. We use

the libevent API [62] to execute a callback function when one of the following events occurs:

• A packet is received from the wireless interface.

• A packet is received from the TAP interface.

• A periodic function is activated, for example, to send beacons.

• A function timeouts, for example, when scanning a channel (MinChannelTime, Max-

ChannelTime).

• An Inter-AP message is received, since the AP is listening on a specific TCP port of

the Ethernet interface.

Wireless Interface

We use Atheros-based wireless cards with the MadWifi driver. In monitor mode, the

card listens to all packets and does not filter them. At the same time, MadWifi makes it

possible to inject packets and send them over the wireless medium.

The wireless card firmware manages the 802.11 control frames such as ACK and

RTS/CTS, as well as channel access methods, so the details of frame delivery and reception

in the wireless medium are beyond the reach of PACMAP.

TAP Interface

A TAP interface [106] emulates an Ethernet device and handles Ethernet frames.

PACMAP uses a TAP interface to inject the incoming wireless data packets into the kernel

network stack for further processing.

Similarly, the packets sent by the kernel to the TAP interface, from upper-layer applica-

tions or the Ethernet interface, are received and processed by PACMAP.

Cross-layer Information

PACMAP can take advantage of cross-layer information, which is very useful in wireless

networking. One important example is the signal strength that is measured by an AP or an

associated client station, and that is used to trigger a handoff.

The MadWifi driver supports the radiotap header [83] and provides physical layer

information such as channel frequency, bit rate, and RSSI. Thanks to the design of PACMAP,

the use of cross-layer techniques between upper-layer networking protocols is also possible.
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5.5.3 Prototyping

The simplicity of PACMAP lies in the abstraction layer provided by its 802.11 protocol

handler, which interacts with the I/O manager, leaves out complex hardware details, and

allows one to concentrate on the main functionality when implementing a prototype.

In order to modify the default behavior of MadWifi’s monitor mode, a prototype consists

of several callback functions executed by the 802.11 protocol handler upon receiving a

packet. Examples of these functions are: processing an authorization request, handling a

disassociation message, or selecting a new AP. It is also possible to create periodic functions

such as beaconing, or timeout functions such as AP scanning.

PACMAP can use a configuration file, allowing different settings for a same prototype.

Examples of configuration options are: the number of neighbor APs and their MAC and IP

addresses, channel, beacon interval, and RSSI threshold.

PACMAP is available for download at http://pacmap.ligforge.imag.fr/

5.6 Evaluation

In this section, we first describe the setup for the experimental evaluation of our mVAP

solution, and next present its performance results.

5.6.1 Methodology

We use two laptops acting as APs (AP1 and AP2), one laptop acting as a wireless mobile

station M , and one desktop computer D connected to the wired network, as shown in

Figure 5.7. All computers run Ubuntu 9.10. AP1 and AP2 have two wireless cards: one for

the AP functionality, a D-Link DWL-AG660 wireless card running the MadWifi driver; and

another one for the monitor functionality, an Intel PRO/Wireless 3945ABG card running

the ipw2200 driver. The mobile station M has one D-Link DWL-AG660 wireless card

and runs the MadWifi driver. The version of the MadWifi driver is 0.9.4. The APs run

PACMAP with the mVAP implementation, and both of them use 802.11g: AP1 listens to

channel 1 and AP2 listens to channel 6. The mobile station uses the standard MadWifi

driver configured in station mode.

During the experiment, station M associates with AP1 (listening to channel 1) and then

moves toward AP2 (listening to channel 6) which becomes its new de facto AP. Finally,

station M returns to AP1.

For performance evaluation, we use a Constant Bit Rate (CBR) UDP stream to mimic

the VoIP traffic generated by different voice codecs, shown in Table 5.1. Packets are sent

from station M to computer D. We generate the UDP traffic with the tool iperf [50], and

final UDP payload size contains the voice payload size of the codec, plus 12 bytes of the

Real-time Transport Protocol (RTP) header.

http://pacmap.ligforge.imag.fr/
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Wired Network

M
(wireless, mobile)

AP1
802.11g, CH=1

AP2
802.11g, CH=6

D
(wired)

UDP traffic

Figure 5.7: Experimental setup.

Codec Bit Rate Voice Payload Size Interval

G.729 8 Kb/s 20 Bytes 20 ms

G.728 16 Kb/s 60 Bytes 30 ms

G.711 64 Kb/s 160 Bytes 20 ms

Table 5.1: Voice codecs used in the evaluation.

5.6.2 Results

We measure the packet Inter-Arrival Time (IAT ), defined as the difference between the

arrival times (AT ) of the nth packet and the (n-1)th packet:

IAT (n) = AT (n)−AT (n− 1) (5.1)

In Figure 5.8, we observe that in each experiment the IAT between packets is never greater

than 60 ms: the mVAP solution stays well below the maximum delay of 150 ms required

for quality VoIP communication. Moreover, there is no disruption in the communication

and no packet loss when the station moves from one AP to the other, except one single

packet because of ARP tables updates.

In Figure 5.9, we present the empirical Cumulative Distributive Function of the IAT

values for each codec. Most of the values are clustered around the expected intervals of

20 ms, 30 ms and 20 ms for codecs G.729, G.728 and G.711, respectively. The mean, 90th

percentile, and standard deviation of the IAT distributions are shown in Table 5.2.
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(a) G.729 (8 Kb/s).
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(b) G.728 (16 Kb/s).
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(c) G.711 (64 Kb/s).

Figure 5.8: Inter-Arrival Time (IAT) between UDP packets, for each codec.

From these results, we conclude that mVAP handles the transition from one AP to

another without disrupting the current communications and offers exceptional handoff

performance. Furthermore, we confirm that our mVAP solution can be implemented in

off-the-shelf hardware and can be deployed without any modification on the client side.
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Figure 5.9: Empirical CDF of the IAT values, for each codec.

Codec Mean 90th Percentile Std. Deviation

G.729 20.01 ms 20.24 ms 0.72 ms

G.728 30.01 ms 30.23 ms 1.63 ms

G.711 20.01 ms 20.24 ms 1.16 ms

Table 5.2: Descriptors of the IAT distributions, for each codec.

5.7 Future Work

When we described the mVAP protocol in Sections 5.4.2 and 5.4.3, we intentionally

omitted some details that are currently implemented in a very straightforward way. However,

they constitute an interesting area open for enhancements and future work.

Metrics

In our mVAP prototype, the metrics to trigger a Scan Request (step 1 in Figure 5.3)

and to choose a new AP (steps 3 to 5) are simply the instantaneous RSSI of the client

station. The conditions of the wireless medium are highly variable, so using just one single

value as a trigger might not accurately represent the movement of the station. Historical

information and long-term trends, as suggested in [68], and other values such as AP loads,

can improve these decisions.
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List of Neighbor APs

In order to send the Scan Request messages (step 2), each AP needs the list of its

neighbor APs. This list is manually provided by an administrator, which can be a laborious

task in a WLAN with many APs. But this list could also be created by a neighbor discovery

algorithm: during a preliminary learning phase, the APs monitor all the channels and use

the information found in management frames (such as beacons and probe responses) to

build their neighbor lists.

Inter-AP Communication

In steps 2 to 7, APs could use the CAPWAP protocol [21] and exchange messages

through a Datagram Transport Layer Security (DTLS) tunnel. This secure connection

between APs would also allow a client’s security context to be transferred, when passing its

VAP from one AP to another.

VAP Beacons

• When many VoIP clients are active simultaneously, the transmissions of VAP beacons

increase, reducing the available bandwidth. In order to limit the number of beacons,

APs could create VAPs as a service, only when they detect VoIP phones (for example,

by distinguishing such a phone’s MAC address from normal devices such as laptops).

Another option is to decrease the beacon frequency, by using a larger beacon interval,

which is 1024 µs ≈ 100 ms by default.

• The beacon interval is advertised in the beacon frame. We observed in the MadWifi

driver’s code that client stations update the value of this interval upon receiving a

beacon. In order to speed up the channel switch when a station moves toward a new

AP, the beacons with the CSA element could be sent with a smaller beacon interval

(e.g. 50 ms).

Quality of Service

Although not implemented in this mVAP version, we could provide higher priority to

VAP frames in the Voice network, over common WLAN frames in the Default network, by

using two separate queues, depicted in Figure 5.10. Each queue has different channel access

parameters, such as AIFS, CWmin, and CWmax.

The mechanism for channel access is similar to 802.11e EDCA (described in Section 3.4.1):

two frames ready to be sent, one in each queue, obtain the same time slot when executing the

contention algorithm. The Voice frame is allowed to be transmitted, while the Default frame

starts a backoff, as if a collision had occurred. This mechanism is completely transparent

to the client stations.



5.8. SUMMARY 61

VOICE_QUEUEDEFAULT_QUEUE

Backoff:
AIFS_DEFAULT

CWmin_DEFAULT
CWmax_DEFAULT

Backoff:
AIFS_VOICE

CWmin_VOICE
CWmax_VOICE

Internal Medium Contention:
VOICE frame has higher priority

Transmission

Figure 5.10: Two transmission queues: the Voice queue has higher priority than the
Default queue.

5.8 Summary

We presented the first contribution of this thesis: Multichannel Virtual Access Points, a

transparent mobility solution for VoIP services in Enterprise WLANs. With this solution,

clients can move from one AP to another without disrupting their current communications.

The advantages of mVAP include very low latency of handoffs, required for multimedia

applications such as VoIP, and no client-side modifications at all, in accordance with our

Smart AP model.

We also presented PACMAP, our flexible framework for developing IEEE 802.11 proto-

types, in user-space, using inexpensive hardware. The new design of PACMAP allows for

easy experiments with MAC layer (and above) prototypes for 802.11 wireless networks, and

was used to implement our mVAP solution.

We evaluated this implementation with three different types of voice codecs, and the

results show that the delay between packets does not vary when moving from one AP to

another, and current communications are not disrupted.

The promising results of this network-based mobility technique encouraged us to analyze

the deployment of such a solution in uncoordinated environments, very different from the

Enterprise WLANs we just worked with. Therefore, in the next chapter, we will focus on

the characteristics of mobile connectivity in a wireless network composed of the numerous

but heterogeneous APs present in an urban area.
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6.1 Introduction

In this chapter, we present the second contribution of our thesis: we investigate the

feasibility of exploiting the WiFi coverage in urban areas for mobile Internet access, and the

type of applications that can benefit from this Internet access provided by already deployed

APs.

Nowadays, most smartphones and other mobile handsets are WiFi-enabled. Moreover,

mobile Internet data traffic is expected to grow significantly in the next few years. WiFi

is an interesting alternative to cellular networks, as it is a widespread wireless technology,

provides high data rates, and has a low deployment cost.
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Working with the data collected by smartphones across a city, we analyze the char-

acteristics of WiFi coverage and connectivity for mobile users, using various AP settings

and mobility speeds. These results allow us to study different applications that could be

supported and the challenges faced to create a citywide WiFi network, given the current

infrastructure composed of residential WiFi APs and hotspots.

The results presented in this chapter were published in the proceedings of the first

workshop on Urban networking (UrbaNe ’12), in December 2012 [15].

6.2 Motivation

With the proliferation of mobile Internet-enabled devices, Internet connection is expected

by users anywhere and anytime. Indeed, many forecasts predict an exponential growth of

mobile data traffic [79]. Cellular broadband networks are therefore facing the problems of

traffic congestion and network capacity. But improvements to these wireless networks are

expensive, and new technologies such as 4G still have issues with their service performance.

WiFi networks are a viable solution to reduce the use of 3G networks, offering high

bandwidth and a cheap infrastructure [58]. In fact, mobile operators have already started

to use WiFi for data offloading. Thus, dense deployment of WiFi APs could ensure Internet

connectivity, falling back to 3G where service cannot be offered.

WiFi APs can be found almost everywhere nowadays: municipal wireless networks, cafés,

hotels, airports, and private environments at home or work. However, only a fraction of all

these APs are open for association to any user. In some other cases, such as residential APs,

their owners are members of ”community networks” and share their Internet bandwidth

with other members (e.g., FON [30], FreeWifi [31], CableWifi [20]).

WiFi APs in a city are generally unmanaged with a default configuration. Moreover,

they are deployed indoors and in an unplanned manner, which can cause poor reception,

interference between neighbor APs, and result in low throughput. They connect to the

Internet over a broadband access, such as DSL, which provides high data rates.

In this chapter, we consider the use of already deployed WiFi APs to provide urban

mobile Internet access. If the coverage is sufficiently dense, users moving with different

speeds may profit from continuous WiFi connectivity. The questions are whether such an

architecture is feasible, on what parameters its performance depends, and what applications

can benefit from its services. We investigate these issues by simulating connectivity of mobile

users in a city, based on detailed traces provided by the Nokia Mobile Data Challenge [67].

Our contributions can be summarized as:

• We analyze the data collected by smartphone users during more than one year, mainly

in the Swiss city of Lausanne, and provided by the Nokia Mobile Data Challenge [67].

We first identify the distribution of the WiFi APs already deployed in the city, and

properties such as channel assignment, link quality, and authentication mode. We

also study the patterns of the users’ paths to derive a simple mobility model.
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• We evaluate the WiFi coverage and the characteristics of the connectivity of mobile

users in the central urban area of Lausanne. We simulate various scenarios using

different AP ranges, security and handoff parameters, but also user speeds and mobility

patterns.

• Finally, we discuss the open issues for a real deployment of such a citywide WiFi

network, given the results above. We explore the applications that can benefit from

Internet access provided by WiFi-based connectivity, such as sensor-data collection

and location-based services.

6.3 Related Work

Several works have considered the deployment and usage of WiFi APs in cities. We

present an overview of the different aspects of the subject:

AP Characterization

The first study examined statistics of over 5 million APs collected through wardriving.

It characterized the default settings (e.g. SSID), location, and density of APs found in

several metropolitan cities [52]. Similarly, other works quantified the impact of interference

on end-client performance [9], analyzed the coverage and duration of connectivity, and

measured the performance of TCP uploads [19].

Large-scale WiFi Networks

Inspired by the popularity of WiFi technology, municipalities, non-profit and private

entities have deployed free WiFi hotspots in cities. Examples of such urban WiFi networks

include MIT Roofnet, Google WiFi Network, Madison MadMesh. Despite the efforts,

these networks suffer mainly from packet loss [6] and coverage holes [11]; they need more

investment in infrastructure, and are far from having a good performance.

WiFi Offloading

Prior works have studied mobile data offloading as an alternative to cellular network

upgrades, as WiFi hotspots are cheaper and easier to deploy. Balasubramanian et al.

studied the availability of WiFi connectivity and its performance, and proposed a predictor

of offload capability [12]. Lee et al. analyzed the traces of 100 mobile phones during two

weeks and a half to predict the duration of data transfers based on mobility patterns [58].
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6.4 Data Analysis

In this section, we describe the data used later in our simulations. We characterize

essential AP properties and detail our corrections to the APs’ positions. Finally, we present

a mobility pattern generated from the GPS traces of the mobile users.

6.4.1 Data Description

We obtained the data from the Mobile Data Challenge organized by Nokia [67]. It

was collected by the smartphones of 38 participants during more than one year. We used

the GPS, WLAN, and WLAN location datasets [57]. The GPS traces contain the GPS

information of the mobile phones. Because of energy constraints, GPS coordinates were

sampled with a period of 10 seconds, mostly during outdoor movements.

The WLAN traces contain the APs discovered during the WiFi scans performed by the

phones, and the WLAN location traces contain the GPS coordinates of some of the APs;

these traces were sampled with a period between 60 and 900 seconds. Sensitive WLAN

fields, such as the MAC address and the SSID, were anonymized to ensure the privacy of

the participants.

6.4.2 Characterization of the APs

From the WLAN traces, we extracted the APs operating in infrastructure mode and

found nearly 127,000 unique APs distributed across Switzerland. The following information

is present in the dataset: timestamp, anonymized MAC address and SSID, signal strength,

channel, encryption type, operational mode.

When inspecting the traces, we discovered that a few APs changed their settings over

time, such as channel number and security type. Consequently, for the following plots, we

considered all the different values of channel number and security type that an AP might

have had during the data collection.

We analyzed the following characteristics:

Channels

The smartphones performed their WiFi scans in the 2.4 GHz band, so the APs they

discovered listen to channels between 1 and 13. In Figure 6.1a, we observe that 65% of the

APs operate in channels 1, 6, and 11; indeed, the use of orthogonal channels decreases the

interference among neighboring APs.

We examined the APs’ channel assignment in detail. Figure 6.1b represents the number

of APs detected per scan: 45% of the scans found only 1 AP, and nearly 42% found between

2 and 4 APs. When analyzing the scans that detected 2 or more APs, we calculated the

channel separation between all pairs of APs found during the scan.
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(d) Number of co-channel APs detected per scan.

Figure 6.1: APs’ channel distribution and channel separation.

Figure 6.1c depicts the resulting channel separation distribution: on the one hand, 40%

of the APs have a channel separation of less than 5 channels, which is not sufficient to

guarantee a wireless medium free of interference. Worse yet, 30% of the APs use the same

channel, creating important co-channel interference. On the other hand, 60% of the APs

have enough channel separation (5 or more), and 35% and 17% of the APs have a channel

separation of 5 and 10, respectively, which reflects the use of orthogonal channels (channels

1-6 and 6-11, and channels 1-11).

Figure 6.1d portrays the number of APs that share a same channel, as detected by a

single scanning operation. Nearly 50% of the scans found at least 2 APs operating in the

same channel, and 40% found 3 or more. These results show that channel interference is a

serious problem in such dense urban deployments.

Link Quality

(Figure 6.2a) 70% of the records in the WLAN traces correspond to APs that were

detected with a signal stronger than -85 dBm, providing a data rate of at least 11 Mb/s.
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Figure 6.2: AP characteristics: (a) Link quality and (b) Authentication.

Actually, nearly 40% of the records indicate a signal stronger than -70 dBm, a common

value for data rates of 54 Mb/s1.

Authentication

(Figure 6.2b) Less than 20% of the APs are open for association (they do not require

any authentication). Open APs already share their bandwidth and provide free Internet

access to guests. Community networks, such as FreeWifi, appear as “Open” in the scan list

but require users to authenticate through a web portal.

6.4.3 Geographic Distribution of the APs

The WLAN location traces contain the coordinates of nearly 2,500 APs. The following

information is present in the dataset: timestamp, anonymized MAC address, longitude,

latitude. The position of each AP appears several times in the traces, with coordinates that

sometimes differ by a few meters. Therefore, we calculated their arithmetic mean in order

to obtain a definitive position.

The coordinates of the APs are expressed in decimal degrees (for example, 45.2002 ◦,

5.7222 ◦) and while most of them have between 7 and 11 decimal places, some of them

appear truncated, with less than 3 decimal places. We removed these truncated coordinates

from the dataset, because they differ from the other coordinates by more than 1 km. The

result of applying this heuristic can be seen in Figure 6.3: on the left map, many APs were

erroneously positioned on an artificial straight line.

Finally, from the coordinates of the APs contained in the WLAN location traces (only

2,500 APs, less than 2% of all the APs discovered by the phones), we were able to extrapolate

the coordinates of nearly 33,500 APs (26% of all the APs). We assumed that all the APs

detected by a scan are located within a radius of 50 m from the phone that performed the

scan (a common coverage range for indoor APs). Thus, we generated new coordinates (for

1Measured experimentally in http://www.tp-link.com/en/products/details/?model=TL-WN721N#spec

http://www.tp-link.com/en/products/details/?model=TL-WN721N#spec
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Figure 6.3: AP distribution: with (left) and without (right) the truncated coordinates.

the APs whose position was unknown) by appending five random digits to the first three

digits of the original coordinates (of a nearby AP whose position is known), for example:

• original coordinates: [ 45.2002 ◦, 5.7222 ◦ ]

• new coordinates: [ 45.20040053 ◦, 5.72220417 ◦ ]

• distance: 22.3 m.

6.4.4 Mobility Model

The GPS traces contain the coordinates of the users’ outdoor whereabouts. The following

information is present in the dataset: timestamp, geolocation (altitude, longitude, latitude),

speed, heading. Based on this information, we wanted to create a mobility model more

realistic than the Random Walk model: we used a Markov chain [111] to describe, for a

moving user, the probabilities of transition from one direction to another.

We therefore processed all the heading fields that appear in the GPS dataset. We first

transformed these fields (angles in degrees) into eight different directions: north, north-

east, east, south-east, south, south-west, west, north-west. We then used a chain of three

directions to obtain fine-grained movements, for example:

(previous, current, next) = (south, south, east)

Finally, we computed the transition probabilities with the following formula:

Pr(next|previous, current) =

∑
Pr(previous, current, next)∑

Pr(previous, current)
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In more than 75% of the cases, the new direction of a user (next) corresponds to his

two previous directions (current and previous). Figure 6.4 illustrates how this model (on

the right) generates paths with longer straight segments than the Random Walk model (on

the left).

Figure 6.4: Paths generated with the Random Walk model (left) and the transition
probabilities from the GPS traces (right).

6.5 Trace-based Evaluation

To study the feasibility of citywide WiFi networks, we simulated the connectivity of

mobile urban users with the traces provided by the Nokia Mobile Data Challenge. We built

a model of Lausanne, the city in the traces where most of the APs are located. We ran

various simulations to analyze and understand the characteristics of the WiFi coverage and

connectivity provided by the APs already deployed throughout the city.

6.5.1 Simulation Scenario

We focused on the central area of Lausanne, where the AP distribution is densest.

We developed a simple simulator that moves users along random paths modeled with the

Markov chain described above. The simulator computes the position of a mobile user with

a granularity of 1 meter, and at each step checks if a handoff (or an association, if the user’s

device has lost WiFi connectivity) has to be performed. Therefore, it computes the distance

between the device and its current AP and uses the Log-Distance Path Loss model [86] to

obtain the current AP’s signal strength. If needed, the simulator performs a handoff and

switches from the current AP to another. It takes the following parameters into account:

AP Ranges

We assumed that all APs have omni-directional antennas, the prevalent and cheapest

model encountered nowadays. We used three different coverage ranges for the APs: 20 m,

50 m, and 100 m. The two former values are common ranges for indoor APs, and the latter

is a common range for outdoor APs. As 50 m is the most common range [9], we performed

the simulations that involve different user speeds with this value.
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AP Associations

As an ideal situation, and unless otherwise stated, we assumed that every AP in the city

is available for association (we call this scenario “All APs”). But we also ran simulations

using only the “Open APs” (those not protected by any security mechanism) from the traces

(nearly 17% of all the APs).

Handoff Durations

A handoff is the process in which a client device searches for a new AP, authenticates

and associates with this AP, and in this particular case (because every AP is independent

and belongs to a different network) finally obtains an IP address. During the handoff, the

client cannot send nor receive traffic, which has an important impact on the delay and

packet loss that applications may have to tolerate.

We simplified the handoff process by modeling it as a fixed delay. We assumed the

following values for the handoff duration: 0 s, 150 ms, 1 s, 2 s, and 5 s. The first value

corresponds to an instantaneous handoff, as in the case of an efficient network-supported

mobility management. The next value, 150 ms, is the maximum acceptable latency in

end-to-end communications for VoIP applications. The latter values are commonly measured

handoff durations.

Handoff Strategy

When a device is not associated with any AP, it chooses the AP with the strongest

signal. When its current AP’s signal strength (SS1) drops below a fixed threshold, the

device attempts to associate with another AP whose signal strength (SS2) is greater than

SS1. We used a -90 dBm threshold, a common limit for the lowest data rate (1 Mb/s).

User Speeds

We wanted to represent the different speeds of a mobile user, and therefore selected

the following values: walking (1 m/s), by bicycle (5 m/s ∼= 18 km/h), by bus (11 m/s ∼=
40 km/h), and by car (20 m/s ∼= 70 km/h).

User Paths

We generated 10,000 different user paths with our Markov-chain mobility model. Each

path is 3,600 meters long and made of 50-meter segments. We applied the transition

probabilities after each segment, in order to change the user’s direction. Finally, we centered

the paths on the downtown area of Lausanne.
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6.5.2 Results

We define the following performance indicators:

• Temporal Coverage: Considering a user’s path as a whole, this is the total amount

of time during which the user moves in WiFi-covered areas [58].

• Connection Duration: A continuous portion of a user’s path during which the user

is associated with the same AP. The connection period stops when the user leaves

this AP’s coverage area.

• Disconnection Duration: A continuous portion of a user’s path during which the

user is out of the range of any AP. The disconnection period stops when the user is

able to associate with an AP.

• Internet Access Session: A continuous portion of a user’s path during which the

user is able to associate with one or more APs, and is able to send and receive Internet

traffic (i.e., he is not performing a handoff), until a disconnection occurs because of

the loss of WiFi coverage. As mentioned before, the user’s IP address might change

(if he moves from one AP to another) during such an Internet access session.

First, in Figure 6.5, we compute the mean temporal coverage for different AP ranges,

when using “All APs” or only the “Open APs”. In the “All APs” scenario, the most common

(indoor) AP range of 50 m averaged 70% of temporal coverage. With a 20-m range (indoor

APs surrounded by obstacles that decrease their range) we obtained less than 55% of

temporal coverage, and with a 100-m range (outdoor APs) we obtained more than 80% of

temporal coverage. These two values (20 m and 100 m) are the minimum and maximum

AP ranges, so 55% and 80% represent the minimum and maximum temporal coverage when

all the APs are available for association.

In the “Open APs” scenario, the results are lower but quite similar; the decrease in

temporal coverage is only about 10%, which means that the WiFi coverage is already dense

even when only 17% of all the APs are open for association.

In Figure 6.6, we plot the Complementary Cumulative Distribution Function (CCDF)

of the temporal coverage when using “All APs”, in order to compare the WiFi coverage of

our 10,000 simulated mobile users, for each AP range. As expected, the longer the range,

the better the coverage.
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Figure 6.5: Mean temporal coverage (percentage of a complete user path), for different
AP ranges, when using “All APs” or only “Open APs”.
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Figure 6.6: Complementary CDF of the temporal coverage (percentage of a complete user
path), for different AP ranges, when using “All APs”.

Next, we ran our simulations with an AP range of 50 m and different user speeds. In

Figure 6.7, we show the mean duration of a connection with the same AP, when assuming a

handoff delay of 0 s. If the user is walking, the mean duration of a single connection is 130 s

(more than 2 minutes). However, faster speeds have shorter connections of less than 30 s.
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Figure 6.7: Mean connection duration with the same AP, for different user speeds.

In Figure 6.8, we present the mean duration of an Internet access session, for different

handoff delays and user speeds. A walking user can experience an average session of 572 s

(more than 9 minutes). At bicycle speed, the average session lasts 114 s (nearly 2 minutes),

and this duration decreases to 52 s by bus, and 28 s by car.

We observe that if the user is walking, the duration of the handoff does not have as

much impact as if traveling by car. Because the handoff duration does not depend on the

user’s speed, the short sessions by car are dramatically impacted by this delay: the average

Internet access session decreases from 28 s to 8 s when the handoff duration increases. In

contrast, the average session of a walking user merely decreases from 572 s to 551 s.

In Figure 6.9, we present the total Internet access session, during a complete user’s path

around the city. Again, a longer handoff delay has almost no impact on the total Internet

access session of a walking user; but by car, the duration of the total Internet access session

decreases dramatically from 70% to 20%. As mentioned before, longer handoff delays reduce

the periods of useful connectivity.

Finally, Figure 6.10 and Figure 6.11 present the overall disconnection results. The first

figure shows the mean disconnection duration. On the one hand, a walking user suffers long

periods without WiFi connectivity (almost 3 minutes). On the other hand, faster users

experience shorter disconnections.

The second figure shows the Complementary CDF of the duration of all the disconnections

that occurred during our 10,000 simulations, for each user speed. For walking users, 40% of

the disconnections lasted more than 100 s (nearly 2 minutes).
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Figure 6.8: Mean Internet access session duration (logarithmic scale), for different handoff
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6.6 Discussion

The previous results, obtained from trace-based simulations, confirm our initial conjec-

ture: WiFi APs in urban areas are so widely deployed that we could provide a seamless

mobile Internet access based on this dense WiFi coverage. Indeed, a walking user can expect

to be Internet-connected 70% of the time via such a citywide network. Unplanned placement
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of APs may lead to the existence of areas that lack coverage, but short disconnections may

be tolerated if the duration of the connections is sufficient.

The applications that could be supported in a citywide WiFi network, without any

modification of the 802.11 standard, are delay-tolerant applications, that can either wait

between connections or alternate between a 3G and a WiFi link [12, 58]. Short, but

frequent connectivity can be used for opportunistic sensing. For instance, traffic and road

conditions can be shared by mobile phones and disseminated to vehicles [76]. Thanks to

the large coverage, location-based services can use the numerous APs for positioning, even

indoors, without using a GPS.

When moving among APs, users should only experience very short handoff delays.

Different strategies can be implemented to decrease this value: we can use different handoff

and association algorithms (for example, multiple simultaneous associations [96]) or manage

mobility in the network, which results in instantaneous handoffs [14]. With the handoff

technique proposed in the previous chapter, the APs are aware of nearby clients by scanning

all the available channels with their monitor interface, thus anticipating the handoff and

reducing the delay.

Currently, there is no homogeneous method of authentication, the selection of APs has

to be done manually, and mobility (session transfer) is inexistent. Nevertheless, efforts in

this direction are under way: the Hotspot 2.0 and the Next Generation Hotspot initiatives,

based on the IEEE 802.11u amendment. These specifications allow mobile devices to log

into WiFi networks in a seamless way. Certainly, a uniform authentication and connection

mechanism among Internet providers would help these mobile devices to profit from the

extensive WiFi coverage and maintain their current communications.

6.7 Summary

The questions we answered in this chapter are: Can we use the already deployed WiFi

APs for a citywide mobile Internet access? What are the characteristics of these WiFi

connections? What type of applications can benefit from this wireless technology? And

finally, what are the challenges to face if we want to take advantage of this infrastructure?

We studied the data originated from the activity of smartphones around the Swiss

city of Lausanne. We analyzed the geographic distribution of the city’s APs and their

characteristics. We ran several simulations, varying mobile user speeds and AP properties

such as range, association, and handoff duration. We measured the WiFi coverage, Internet

access session, connection and disconnection durations.

The results showed that the existing WiFi coverage is large and the connectivity it

offers can be exploited. We proposed several applications that could be used in such a

citywide wireless network, and the challenges that should be tackled in order to run these

applications in an effective way.
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This study has also highlighted the fact that channel assignment is not a trivial matter

in these dense urban deployments, as detailed in Section 6.4.2 (“Characterization of the

APs”, subsection “Channels”) and depicted in Figure 6.1. This problem motivated us to

investigate the performance and optimization of WLANs on a smaller scale (“Apartment”

or “Home” WLANs), in the next chapter.
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7.1 Introduction

Home WLANs are increasingly popular, as more electronic devices have the ability to

use the 802.11 technology. Because of the dense deployment of these WLANs in residential

zones, neighboring networks have to share the wireless spectrum. This creates interference

and reduces the available channel capacity. Careful channel selection is therefore required

in order to provide a better performance. Moreover, we need a new adaptive technique that

takes into account the characteristics specific to Home WLANs: they are uncoordinated

networks, they generally do not have an administrator, and their traffic demands vary
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through the hours and days. Indeed, home networks typically generate more traffic in the

evenings and on weekends, while office networks are more active during the week days.

In this chapter, we present the third and last contribution of our thesis: an adaptive

traffic-aware channel selection algorithm for Home WLANs. The chapter is organized as

follows: we first explain the problem of interference and frequency allocation for Home

WLANs in Section 7.2. We review the existing solutions for uncoordinated and traffic-

aware channel assignment in Section 7.3. Then, in Section 7.4, we detail the design and

development of our traffic-aware channel selection mechanism. In Section 7.5, we describe

the experimental evaluations of our technique, and present the results we obtained, which

show an improvement of the overall performance. Finally, we summarize the outcomes of

this chapter in Section 7.6.

7.2 Problem Statement

In the last few years, high-speed Internet Service Providers have equipped their clients

with a broadband router (also known as residential gateway). Commonly, a router comes

with a DNS cache, and functionalities such as NAT, routing, and firewall. It offers the

possibility of sharing the Internet connection, and other resources such as printers and file

servers, among several devices connected to the router through a wire. Eventually, router

manufacturers included the WiFi technology in their products, giving their customers the

opportunity to deploy a wireless network at home: the router is the AP, and the wireless

clients are devices such as notebooks and game consoles, which associate with the AP.

Residential WiFi networks are referred to as chaotic deployments [9] and have two

important characteristics: they are unplanned, because the AP is deployed without careful

placement or channel assignment, and they are unmanaged, because their owners have

little or no administration skills. In unplanned WLANs, the placement of the AP is made

spontaneously and might depend on its proximity to telephone or wall sockets. In contrast,

larger WLANs in enterprises or university campuses benefit from a planned deployment,

where network administrators use WiFi planning tools in order to maximize coverage and

minimize interference by choosing an optimal frequency allocation. Unmanaged WLANs

do not have an administrator in charge of the configuration and troubleshooting of the

network; as a result, these APs are generally set up with the default settings from their

manufacturers.

In urban areas, there exists a dense deployment of Home WLANs, mainly originated

from the growing popularity of WiFi technology and the simplicity of installing and running

these networks. Although APs have a short range (50 m for indoor deployments [9]) and

obstructions such as walls reduce their signal reach, adjacent WLANs are not isolated from

each other. Interference from neighboring WLANs can negatively impact the performance

of a wireless network. Therefore, it is important to choose an operating frequency for the

AP that minimizes this interference.
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Indeed, Broustis et al. [17] state that there are three aspects of WLANs that can improve

the overall network capacity in dense deployments affected by interference: 1) intelligent

channel assignment, 2) load-balancing of user associations across APs, and 3) adaptive

power-control. For Home WLANs, the only option is channel assignment: with only one

AP, it is not possible to load-balance clients, and reducing the AP’s transmission power

would decrease its coverage.

In the research literature, we find many approaches that solve the problem of channel

assignment in wireless networks such as cellular networks, mesh networks, and managed

WLANs. However, as Home WLANs differ significantly from the previously studied wireless

networks, these solutions do not address the problem in a complete way.

A basic channel assignment technique that avoids interference altogether is the use

of orthogonal channels. As detailed in Chapter 3, 802.11 operates in the 2.4 GHz and

5 GHz bands. These bands have several channels each, offering three and twelve orthogonal

channels, respectively. We will focus on the 2.4 GHz band, since it is the most common for

commercial wireless hardware. But because of the large number of WLANs sharing the

same wireless spectrum, the three non-overlapping channels (1, 6, and 11) of the 2.4 GHz

band do not suffice to guarantee a coverage free from interference, as several neighboring

APs end up choosing the same channel, as discussed in Section 6.4.

The selection of partially overlapping channels can solve the co-channel interference

problem: a few solutions [71, 75] show their advantage over channel assignments that

use only orthogonal frequencies. Nevertheless, these algorithms are traffic-agnostic and

non-adaptive, since they do not consider changes in the environment, where APs switch

channels, new APs can appear, and the traffic loads of WLANs fluctuate, creating more or

less interference.

Many channel assignment solutions have been designed for centralized networks, such

as Enterprise WLANs. But Home WLANs are uncoordinated networks: they do not have

a centralized controller and they do not communicate or exchange information with each

other. Therefore, we need a decentralized solution for channel selection, where each AP

makes a decision based on local measurements.

Hence, we design and develop a channel selection algorithm that is based on our

Smart AP model and runs on off-the-shelf hardware. Changes are introduced only in the

software (not in the firmware) of the AP, whereas clients do not require any modification at

all. Using the second WiFi card in monitor mode, the AP scans all the available channels in

the spectrum in order to calculate the interference from neighboring WLANs. Therefore, the

AP can detect better channels (those with more capacity) that could boost the performance

of its WLAN. Having a dedicated WiFi card for monitoring avoids the disruption of ongoing

communications with associated clients, and allows for longer eavesdropping intervals in

each channel. Also, the monitoring process and the channel switch decision are executed

online, in a transparent and passive way, with no need to introduce traffic for interference

measurements.



82 CHAPTER 7. TRAFFIC-AWARE CHANNEL SELECTION FOR HOME WLANS

7.3 Related Work

In Chapter 3, we presented a detailed description of previously published work on the

channel assignment problem. In our case, we focus on distributed solutions for decentralized

networks. Despite the fact that centralized channel selection can deliver an optimal

configuration, it requires a global vision of the network [47, 59, 63, 65, 107]. Home WLANs

are uncoordinated networks and the information about neighbors can be obtained only

from local measurements.

Most of the channel selection mechanisms for uncoordinated networks that can be found

in the literature have a series of properties that do not allow their implementation in today’s

Home WLANs. Requirements such as communication among APs [3, 10, 69] and AP

synchronization [74] cannot yet be fulfilled in residential WLANs. Interference measured by

clients gives a better and more complete perspective of the network dynamics [69], but so

far this feature is not readily available in the clients’ drivers.

As detailed in Section 3.3, the Least Congested Channel Search (LCCS) [4] is a simple

channel selection algorithm that selects the best channel using information about the

neighboring APs. The AP scans all the channels to determine the most lightly loaded

channel, based on the number of associated clients, as published by the beacons of other

APs. This metric is too simplistic, as the actual channel traffic load is not necessarily

correlated with the number of associated client stations. Worse yet, this algorithm is static,

only executed at the AP’s startup or when the parameters of the radio are modified. A

channel can be declared empty just because at that time a neighbor AP was inactive or did

not have any associated clients. Other examples of similar metrics include the total number

of active clients [69] and the RSS of transmitted frames [54].

Several dynamic traffic-aware channel assignment mechanisms can be found in the

research literature. Although designed for centralized networks, Rozner et al. address

the problem by employing historical SNMP samples provided by the APs [91]. In multi-

channel wireless mesh networks, nodes periodically exchange information about channel

utilization [85]. However, in residential wireless networks, each AP is independent of the

others, and there is no protocol that allows communication among APs through the wireless

medium (nor through the Internet).

In a first approach, channel selection is done by measuring the downlink traffic seen

by the AP [53, 60]. An improved and very recent technique, published at the same time

our own solution was developed, computes the airtime consumed by the Home WLAN and

other neighboring WLANs as part of the interference metric [43]. The authors consider the

combined problem of frequency and channel width selection. Out-of-band measurements are

carried out periodically with the same 802.11 card used for AP functionality. Consequently,

these micro-sensing intervals slightly reduce the throughput of ongoing traffic exchanges.
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The use of a second wireless card dedicated to monitoring is useful for two reasons:

first, current traffic transmissions with the AP are not interrupted by measurements of

other channels, and second, constant scanning provides a more complete and precise view

of the wireless spectrum. Monitoring the 802.11 spectrum can also be practical for different

reasons, such as network management [5] and rogue AP detection [92]. The use of sampling

techniques [26], hopping through every channel and processing captured frames, seems to

be sufficient to accurately estimate the state of the channels, and will be explored in the

following sections.

7.4 Traffic-Aware Channel Selection

We propose a new channel assignment technique for uncoordinated chaotic WLANs,

using a traffic-aware metric. The aim of our channel selection mechanism is to find the

channel with the least interference, in order to improve the network performance. The

interference in a channel can be estimated using the traffic captured in that channel.

Our technique makes use of a dedicated wireless interface for channel monitoring. By

periodically sampling each channel, we can compute the amount of time a channel is

occupied by transmissions that belong to neighboring WLANs, and use the results to

evaluate the potential effects of a channel switch on our Home WLAN.

We design and implement our channel assignment technique following the Smart AP

model, described in Chapter 4. Unless explicitly stated, all the operations of the channel

selection algorithm are performed by the monitor interface, whereas the channel switch

operation itself is carried out by the AP interface.

In this section, we first introduce the design of our technique: we explain the metric

we use to measure the channel interference, and we detail the algorithm that samples all

the channels, builds the metrics, and makes the decision of switching to a better channel.

Lastly, we describe the software implementation of our algorithm and the architecture of

the tool that enables the AP to execute our traffic-aware channel selection mechanism.

7.4.1 Channel Interference Estimation Metric

A first, näıve approach

We need a metric to measure the amount of interference in a channel, in order to

determine the best channel for our Home WLAN. But since we do not have one monitor

interface available for each of the possible channels, we cannot obtain a complete or perfect

view of every channel. Therefore, we adopt a sampling approach: we divide the time into

intervals, and during each interval, we set our monitor interface to a determined frequency

and listen to that specific channel for transmissions. Accordingly, we now detail how to

compute the first, näıve version of our channel interference metric.



84 CHAPTER 7. TRAFFIC-AWARE CHANNEL SELECTION FOR HOME WLANS

• First, we calculate the airtime (in microseconds) of each frame captured in the channel

we are monitoring. This value mainly depends on the frame’s transmission duration,

which is calculated using the length (in bits) of the frame, Lengthf , and the bit rate

used in the transmission, Bitratef , plus other constants:

Airtimef = IFSf + Preamblef +
Lengthf
Bitratef

(7.1)

where IFSf is an inter-frame space, which depends on the frame’s type, and Preamblef

is the transmission duration of the PLCP (Physical Layer Convergence Protocol)

preamble. We take the inter-frame space interval into account for the frame’s airtime

value because, although no real transmission occurs, we consider that it must be

reserved in order to continue successfully with the frame’s transmission.

The value of IFSf depends on the frame’s type and the modulation used (DSSS for

802.11b, OFDM for 802.11g, etc). ACK and CTS frames, Data frames with the More

Fragments bit set (in the Frame Control field of the MAC header), Data frames part

of an RTS/CTS exchange, among others, are all preceded by the SIFS. The rest of

the frames, such as Management frames, RTS frames, and initial Data frames, are

preceded by the DIFS.

• Then, in Equation 7.2, and for each channel α (chα), we calculate λW (chα): the

fraction of time that channel α is occupied by ongoing transmissions, over a window

of time W . We extrapolate this value to the entire window W , from the intervals of

W that were effectively monitoring channel α.

λW (chα) =

∑
i∈W
i∈chα

∑
f∈i

Airtimef

 ∗


DurationW∑
i∈W
i∈chα

Durationi

 (7.2)

i represents a sampling interval of W where channel α was being monitored; f

represents a frame captured during the interval i; Airtimef (in microseconds) is

calculated using Equation 7.1; DurationW is the length of the window W (in seconds);

and Durationi is the length of the interval i (in microseconds).

• Finally, our first and näıve channel interference metric MW (chα) is simply:

MW (chα) = λW (chα) (7.3)

To verify this approach through experimental evaluation, we performed a series of tests

using two WLANs (WLAN1 and WLAN2), each with one AP and one client station.
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We use iperf to generate traffic and our own channel monitoring tool to calculate the

channel interference metric. In the first series of experiments, WLAN1 (AP1 and STA1) is

operating in channel 1. STA1 sends a UDP traffic to AP1 at a 20 Mb/s data rate during

120 seconds, and AP2 monitors channels 1 and 2.

Figure 7.1 presents the normalized metrics for channels 1 and 2. Channel 1 clearly shows

the load of the traffic between STA1 and AP1, but channel 2 indicates almost no interference,

although it should definitely suffer from the traffic in its neighbor channel 1. We observe

that this näıve channel interference metric, calculated using only the frames captured in

that channel, unequivocally fails to reflect the interference from adjacent channels.

0.1

0.5

0.9
1

0 30 60 90 120 150 180

N
or

m
al

iz
ed

M
et

ric

Time (seconds)

Channel 1 Channel 2

Figure 7.1: Normalized interference metric (näıve approach), channel 1 and 2.

In the second series of experiments, we wanted to explicitly demonstrate the effect of

interference between two simultaneous transmissions, comparing the use of overlapping

channels with the use of orthogonal channels, and the resultant metrics. In both evaluations,

the two WLANs transmit traffic at the same time: STA2 starts sending a UDP traffic to

AP2 at a 20 Mb/s data rate during 180 seconds, and after 30 seconds, STA1 sends a UDP

traffic to AP1 at a 20 Mb/s data rate during 120 seconds. AP1 and STA1 are in channel 1,

while AP2 and STA2 are in channel 2 for the first evaluation, and in channel 6 for the the

second evaluation.

Figure 7.2 presents the results of the experiments: on the left, the evaluation using

overlapping channels 1 and 2, and on the right, the evaluation using orthogonal channels

1 and 6. Figure 7.2a, on the top left, shows the throughput of both WLANs (in channel

1 and 2, respectively). We observe that when STA1 in channel 1 starts transmitting,

the throughput of STA2 varies erratically from 20 Mb/s to 15 Mb/s, and returns to a

stable 20 Mb/s only when STA1 stops transmitting. Figure 7.2b, on the top right, shows

the throughput of both WLANs (in channel 1 and 6, respectively). It is clear that the

throughput of STA2 does not change during the transmission of STA1. Naturally, the use

of orthogonal channels eliminates (or at least reduces drastically) the effect of interference

on simultaneous transmissions, whereas the use of overlapping channels distinctly suffers

from it.
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(d) Normalized interference metric, channel 1 and 6.

Figure 7.2: Interference effect on simultaneous transmissions, when channels overlap (left)
and when channels are orthogonal (right).

We now study the normalized metrics obtained through the monitoring of both channels.

Figure 7.2c, on the bottom left, accompanies the throughput results presented above.

Between seconds 30 and 150, both metrics follow the traffic load of their own channel.

During the first and last 30 seconds of the evaluation, when STA1 is not transmitting,

the metric of channel 2 shows an extremely busy channel, whereas the metric of channel

1 indicates an almost empty channel, although the interference from neighbor channel 2

should definitely appear, since STA2 is actively transmitting at that time. For comparison,

in Figure 7.2d on the bottom right, we see that the metric of channel 6 is stable during the

180 seconds of the experiment, and the metric of channel 1 accurately shows no interference

during the first and last 30 seconds, and the rest of the time reflects the traffic load of its

own channel.

We conclude that computing a channel interference metric in this näıve way, using

only the frames captured in that channel, shows the traffic dynamics of that channel, but

omits the interference created by adjacent channels. Indeed, many of the interfering frames

from active adjacent channels cannot be successfully decoded by our wireless card, and
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are therefore not taken into account during the metric calculations. Therefore, we propose

a refined approach that effectively includes the overlapping channel interference into the

metric, in order to reflect the actual use of the wireless spectrum.

A better, refined approach

As explained in Section 3.3, channels in the 2.4 GHz band are spaced at 5 MHz intervals,

and each channel has a width of 22 MHz (when using 802.11b, or 20 MHz when using

802.11g), clearly overlapping. Therefore, frames that are transmitted in a certain channel

can also be overheard (at least partially) in adjacent channels. The amount of interference

between two channels, designated as Interference Factor in the literature [74], can be

calculated, as detailed in [18], using the formulas detailed below.

The power spectrum snx of an unfiltered modulated signal x is given by:

snx(x) =

{ ∣∣∣ sin(2·π·x)2·π·x

∣∣∣ if x 6= 0

1 otherwise
(7.4)

Both transmitter and receiver use Intermediate Frequency filtering; the following function

filt applies to the SAWTEK 855653 filter [81], and may vary for other chipset models or

filter configurations:

filt(x) =
1

1 + (2.6 · x)6
(7.5)

From Equation 7.4 and Equation 7.5, the filtered channel overlap between channels α

and β, over the band of interest x, is:

overlap(α, β, x) =
(
filt(ch(α, x)) · snx(ch(α, x))

)
·
(
filt(ch(β, x)) · snx(ch(β, x))

)
(7.6)

ch(n, f), the channel number n and frequency f conversion factor, is given by:

ch(n, f) =
f − (2412 + 5 · (n− 1))

bw
(7.7)

where bw is the null-to-null channel bandwidth in MHz, a constant equal to 22 MHz

for HR/DSSS signals. As an example, when the frequency f is equal to channel n’s center

frequency, ch(n, f) is equal to 0.

Finally, the Interference Factor IF between channels α and β, of channel separation

∆ = |α− β|, is:

IF(∆) =
1

S0
·
∫ 2700

2200
overlap(α, β, x) dx

⇐⇒ (7.8)

IF(∆) =
1

S0
·
∫ 2700

2200
overlap(1, 1 + ∆, x) dx
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where S0 is a scaling value that should result in the maximum Interference Factor of 1

when the channels overlap completely, i.e. α = β ⇐⇒ ∆ = 0:

IF(0) =
1

S0
·
∫ 2700

2200
overlap(1, 1, x) dx = 1

⇐⇒ (7.9)

S0 =

∫ 2700

2200
overlap(1, 1, x) dx = 9.2655

Accordingly, we now detail how to compute our improved channel interference metric,

using the Interference Factor IF described above.

• First, we calculate the airtime Airtimef (in microseconds) of each frame captured

and originated in the channel we are monitoring, as detailed in Equation 7.1.

• Then, in Equation 7.10, and for each channel α (chα), we calculate λW (chα): the frac-

tion of time that channel α is occupied by ongoing transmissions, actually originated

in that channel, over a window of time W . We extrapolate this value to the entire

window W , from the intervals of W that were effectively monitoring channel α.

λW (chα) =


∑
i∈W
i∈chα

∑
f∈i
f∈chα

f /∈WLANγ

Airtimef

 ∗


DurationW∑
i∈W
i∈chα

Durationi

 (7.10)

i represents a sampling interval of W where channel α was being monitored; f

represents a frame captured during the interval i, that was originated in channel α,

but does not belong to our own WLANγ ; Airtimef is calculated using Equation 7.1;

DurationW is the length of the window W ; and Durationi is the length of the

interval i.

We would like to mention again that in order to calculate λW (chγ) for our WLANγ

(operating in channel γ), we do not take into account the airtime of the frames

belonging to our own WLANγ (frames sent by our AP or associated stations) since

we want to determine the amount of interference from neighbor WLANs.

• Finally, our new and improved channel interference metric MW (chα) is the total

interference our WLAN would suffer in channel α from all the neighbor WLANs that

operate in every possible channel of the spectrum, over a window of time W . It is

calculated as the sum of the interference from all the available channels:

MW (chα) =
∑

chβ∈CH
( λW (chβ) · IF(|chα − chβ|) ) (7.11)
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where channel β is in the set of all available channels CH (e.g., channels 1 to 11 in the

2.4 GHz band); λW (chβ) is obtained from Equation 7.10; and IF(|chα−chβ|) denotes

the Interference Factor between channels α and β, obtained from Equation 7.8.

As a last remark, IF should normally be applied to the signal power of each transmit-

ted frame, but the wireless NICs installed in Home APs do not possess the calibration

needed to provide a correct estimation of the received signal power. Therefore, in

our metric, we use IF directly with the busy time fraction of a channel, λW (chβ), in

order to approximate the interference perceived by each channel.

To validate our new metric and the use of IF , we repeat the previous experiments

and confirm that this improved metric reflects the interference created by traffic from

overlapping channels, as depicted in Figure 7.3.

On the left, in Figure 7.3a, STA1 (in channel 1) sends a UDP traffic to AP1 at a 20 Mb/s

data rate between seconds 30 and 150, while AP2 monitors channels 1 and 2. On the right,

in Figure 7.3b, STA2 (in channel 2), sends a UDP traffic to AP2 at a 20 Mb/s data rate

during the whole evaluation, and at around 30 seconds, STA1 (in channel 1) starts sending

a UDP traffic to AP1 at a 20 Mb/s data rate, and stops at around 150 seconds. We observe

that in both figures the channel metrics reflect not only the load of the channel itself, but

also the interference from the adjacent channel.
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Figure 7.3: Normalized interference metric, channel 1 and 2.

7.4.2 Channel Selection Algorithm

In this section, we detail the algorithm that makes the decision of switching channels.

We use our channel interference metric to choose the new channel, but there are a few other

conditions that must be met in order to perform a channel switch of the entire Home WLAN.

These considerations include the stability of the interference level in the new channel, the

characteristics of the traffic exchanged in our own WLAN, the time elapsed since the last
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channel switch operation, and a minimum threshold of interference to avoid ping-pong

effects (continuously changing from one channel to another). Algorithm 7.1 depicts the

pseudocode of the channel selection mechanism.

• For each channel in the list of all channels available for monitoring, the AP starts

listening to the corresponding frequency during an interval of time i, using the monitor

interface, and processes every captured frame. After that interval, the AP switches

to the next channel in the list, and repeats the operation. We call monitoring cycle

the period of time that the AP spends scanning once every channel of the channel

list (line 1). When the AP completes a monitoring cycle, it computes the interference

metricMW (chα) for each channel (line 2) and starts the channel selection mechanism.

• On the one hand, if a channel switch timer has not yet been set up (line 3), the

AP checks whether switching to a new channel will improve the performance of the

WLAN (line 4). If this is true, we save the best channel as the candidate channel

(line 5) and set up a random timer that will effectively perform the channel switch

when expired (line 6). The AP then continues with the channel monitoring.

• On the other hand, if a channel switch timer has already been set up, the AP first

checks whether the candidate channel stills holds its position as the best channel (or

near-best) to switch the WLAN to (line 7). If this is the case, and the timer has

expired (line 8), the timer is turned off (line 9) and the AP proceeds to perform the

channel switch (line 10). However, if a channel switch to the candidate channel is not

a favorable option, the timer is stopped (line 11) and the pending channel switch is

canceled. Finally, in both outcomes, the AP continues with the channel monitoring.

We now clarify some details about this algorithm. The main goal is to choose a good

channel with a stable metric, so when we find a channel that meets the conditions for a

channel switch, we set a timer for a certain period of time (line 6). During this period, we

verify that the candidate channel does not show abrupt changes in the interference metric,

and stays an optimal solution to improve the WLAN performance (line 7). Additionally, as

other APs of neighboring WLANs can also implement this algorithm, we choose a random

duration for the timer in order to minimize the probability that two or more neighboring

WLANs switch to the same channel at the same time, which would result in degraded

performance.

The conditions required to start and continue with the channel switch operation are

evaluated in the function MaySwitchTo (line 12). We first determine if the WLAN itself,

independently of the candidate channel, is allowed to perform a channel switch. We test the

following conditions: (i) the WLAN has stayed in its channel at least a minimum amount

of time, preventing rapid-fire channel switches that would lead to a ping-pong behavior

(line 18); (ii) the interference of the current channel is greater than a minimum threshold,
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Algorithm 7.1: Channel Selection Algorithm

Program ChannelMonitoring ():
[ · · · ]

1 while ChannelSampling () do
2 UpdateChannelsMetric ();

/* Verify if there is a pending channel switch operation */

3 if CurrentChannel.Timer == None then
/* No candidate channel yet */

4 if MaySwitchTo (BestChannel) then
/* Best channel meets conditions for a channel switch */

5 CurrentChannel.Candidate = BestChannel;
6 CurrentChannel.Timer = RandomTime();

else
/* Confirm current channel switch operation */

7 if MaySwitchTo (CurrentChannel.Candidate) then
8 if CurrentChannel.Timer has Expired then

/* Perform channel switch */

9 CurrentChannel.Timer = None;
10 SwitchTo (CurrentChannel.Candidate);

else
/* Channel switch operation canceled */

11 CurrentChannel.Timer = None;

[ · · · ]

/* Verify if NewChannel meets the conditions for a channel switch */

12 Function bool MaySwitchTo(NewChannel):
13 if not MaySwitch () then

return FALSE;

14 if BestChannel WAY BETTER THAN NewChannel then
return FALSE;

15 if CurrentChannel WAY BETTER THAN NewChannel then
return FALSE;

16 return TRUE;

/* Verify if WLAN is allowed to perform a channel switch,

independently of NewChannel */

17 Function bool MaySwitch():
18 if SwitchedTooRecently () then

return FALSE;

19 if CurrentChannel GOOD ENOUGH then
return FALSE;

20 if HaveRealTimeOrCriticalTraffic () then
return FALSE;

21 return TRUE;
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avoiding unnecessary channel switches (line 19); and (iii) the current traffic is not critical or

real-time, e.g. emergency calls, preventing the disruption of such sensitive communications

(line 20).

If the three previous conditions are met, the AP can qualify for a channel switch.

Subsequently, we evaluate two more conditions, related to the candidate channel: it should

still be the best or near-best option for a channel switch compared to (i) other channels

(line 14) and (ii) the current channel (line 15), avoiding a switch to a channel whose level

of interference has increased since we first chose it as the candidate channel, or if there is

another channel that can provide a better performance to our WLAN than the candidate

channel.

Frame Filtering

We would like to dedicate a few lines to explaining how we decide whether a frame was

originally transmitted in the currently monitored channel, in order to calculate λW (chα). The

AP scans all available frequencies and processes every captured frame. Frames transmitted

in one channel can be received in overlapping channels. Therefore, we need to determine

the channel in which the frame was originally transmitted.

First, we create a dataset of the neighboring BSSs using their beacon frames, which

contain their BSSID MAC address (the same as the AP’s) and their operating channel. The

rest of the management frames, control and (especially) data frames, help us discover their

clients’ MAC addresses.

After that, when a frame is captured, we first verify whether its BSSID MAC address

exists in the dataset. If found, we extract the operating channel of the BSS from the dataset.

Finally, if we confirm that the frame was indeed originated in the channel we are currently

monitoring, we calculate the frame’s airtime and use it in our metric.

7.4.3 Implementation

Our channel selection algorithm was developed as a C program, called channelmon. As

can be seen in Figure 7.4, the Smart AP model provides us with two wireless NICs: one card

for AP-related functions, and one card for monitoring. We use the hostapd [48] daemon

as an IEEE 802.11 AP. Channelmon is also running on the AP as a daemon. Having a

dedicated WiFi card for the monitoring task prevents disruption of ongoing communications,

and enables longer and more frequent scanning intervals in each channel.

The channelmon application continuously monitors all available channels, and processes

the frames captured by the monitor interface. When the algorithm finds a better channel

for the AP to operate in, the channelmon application informs the hostapd daemon of the

channel switch, indicating the new channel number for the AP.

The implementation of our algorithm does not introduce any modification on the

client side, as mandated by the requirements of the Smart AP model. To capture the
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Figure 7.4: Architecture of the Channel Selection mechanism.

whole network dynamics, it would also be possible to include the interference measured by

client stations in our channel interference metric, as defined in the 802.11k and 802.11v

amendments, presented in Section 3.3.1.

In order to calculate the airtime of each captured frame, as described in Equation 7.1,

we obtain several parameters from the radiotap headers [83], such as the preamble type

(long or short), the data rate, the channel type (e.g., 802.11b, 802.11g only, 802.11g with

802.11b support), and the channel frequency.

The following values are used for the inter-frame spaces [35]:

802.11b 802.11b/g 802.11g 802.11a

SIFS 10 µs 10 µs 10 µs 16 µs

Slot time 20 µs 20 µs 9 µs 9 µs

DIFS 50 µs 50 µs 28 µs 34 µs

Table 7.1: IFS values for the different 802.11 technologies.

where 802.11b/g means 802.11g with 802.11b support. DIFS is calculated as

(2 · Slot time+ SIFS).

And for the preamble transmission durations:

Long preamble Short preamble

192 µs 96 µs

Table 7.2: Preamble transmission durations.
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In order to determine the amount of channel overlap, we use the normalized values of

the Interference Factor IF(∆) described in Equation 7.8 and calculated in [18]:

Channel

Separation
0 1 2 3 4 5 6 7 to 10

Interference

Factor
1 0.7272 0.2714 0.0375 0.0054 0.0008 0.0002 0

Table 7.3: Interference Factor IF(∆).

7.5 Evaluation

In this section, we present the evaluation of our channel assignment technique on a small

testbed that corresponds to a typical Home WLAN setup. The objective of this evaluation

is to provide a proof-of-concept for our mechanism, and evidence that our technique can be

effectively implemented in off-the-shelf hardware. The results show the improvement of the

network performance when applying our channel selection algorithm.

7.5.1 Platform and Experiments Description

The experiments were carried out in an urban residential area, where a large number of

Home WLANs can be found in the 2.4 GHz band. We decided to include the background

interference generated mostly by the APs’ beacons, since this reflects a common scenario

in Home WLANs. However, we performed the experiments at night, to avoid severe

interference from unrelated traffic.

For our platform, we used laptops for the APs and the client stations. They all run

Ubuntu 12.04. The APs have two cards: one for the AP functionality, a D-Link DWL-AG660

wireless card running the ath5k driver; and another one for the monitor functionality, a

TP-Link TL-WN821N wireless card running the ath9k driver. Each station has one D-Link

DWL-AG660 wireless card and runs the ath5k driver.

Our testbed consists of three WLANs, operating in the 2.4 GHz band. Each WLAN

is composed of one AP and one station. WLAN3 has an AP which runs the channelmon

application, whereas WLAN1 and WLAN2 act as neighboring WLANs. WLAN1 and

WLAN2 operate in orthogonal channels. WLAN3 starts in the same channel as WLAN1

and switches channels along the experiment, choosing the most suitable channel as designated

by the channel selection algorithm. The channelmon application was executed with the

following parameters: the window size W is 150 s (a value large enough to get a clear

picture of every channel’s state, but small enough to not miss any opportunity for channel

switching and performance improvement), the monitoring interval i for each channel is

100 ms, and the list of channels to scan goes from 1 to 11. To generate the wireless traffic
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in the WLANs, we used the tool iperf. In each WLAN, the AP sends a downlink traffic

to the station. We evaluated two different scenarios, one using TCP traffic and one using

UDP traffic.

7.5.2 Interference Factor Adjustment

In the first scenario, we performed the evaluation using TCP traffic. WLAN1 operates

in channel 11 and WLAN2 in channel 6. WLAN3 starts operating in channel 11. AP1 and

AP2 send TCP traffic without interruption to STA1 and STA2, respectively. On average,

WLAN1 has a throughput of 14.2 Mb/s and WLAN2 has a throughput of 16.8 Mb/s. After

170 seconds, AP3 sends a TCP traffic to STA3 during 120 seconds, with a throughput

of 9.17 Mb/s on average. After the transmission, at around 314 seconds, AP3 switches

to channel 3, as designated by the channelmon application. AP3 then resends a TCP

traffic to STA3 during 120 seconds. This time, WLAN3 has a throughput of 9.96 Mb/s,

which shows a slight improvement of 8.6%. During (and because of) AP3’s first and

second transmissions, the throughputs of WLAN1 and WLAN2 decrease to 7.22 Mb/s and

9.04 Mb/s, respectively.
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Figure 7.5: TCP traffic evaluation: WLAN3 switches from channel 11 to channel 3.

Despite the improvement of WLAN3’s network performance, we know that choosing

channel 1 instead of channel 3 would have led to a better performance yet, because although

the metrics of channel 1 and channel 3 are very close, as depicted in Figure 7.6, channel 1 is

farther away (than channel 3) from the interference created in channel 6. We infer that the

theoretical values of the Interference Factor are too optimistic, since the metrics obtained

do not perfectly reflect the actual interference. As an example of one source of error, the

theoretical calculation of IF(∆) included Equation 7.5 for an Intermediate Frequency filter,

which may vary depending on the chipset model and filter configuration.

In order to validate our intuition about the error of the IF values, we apply a fractional

power K between 0 and 1 to these values, to increase them and consequently amplify the

interference from adjacent channels. As a first approach, we chose K = 0.5 (square root),
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Figure 7.6: TCP traffic evaluation: interference metric for channels 1 to 11.
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a common function that follows closely the original function but generates higher values.

As an illustration, in Figure 7.7 we compare the theoretical Interference Factor values

IF(∆) (detailed in Table 7.3) to the adjusted values
√
IF(∆).

7.5.3 Results

We repeated the previous experiments with the adjusted Interference Factor values.

WLAN3 starts operating in channel 11, but now the channelmon application effectively

requests AP3 to switch to channel 1, the channel with the least interference, as shown in

Figure 7.8. Figure 7.9 depicts the throughput of the three WLANs, and WLAN3 shows

an important performance improvement of 122%, from 8.30 Mb/s to 18.50 Mb/s. The

decrease in the metrics, at around 300 seconds, is due to limitations in multi-radio wireless
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Figure 7.8: TCP traffic evaluation: interference metrics for channels 1 to 11, using√
IF(∆).
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Figure 7.9: TCP traffic evaluation: WLAN3 switches from channel 11 to channel 1, using√
IF(∆). The increase in network performance is notably greater than during the previous

evaluation.

platforms [89]: when AP3 sends an intense TCP traffic through its AP interface, its

monitor interface captures less traffic. However, the relative order (vs. absolute order) of

the channels sorted by their normalized metric is conserved, which is the critical property

of the metric for the Channel Selection algorithm.

For the second scenario, we performed the same experiments, but used UDP traffic.

WLAN1 now operates in channel 1 and WLAN2 in channel 6. WLAN3 starts operating

in channel 1. AP1 and AP2 send a UDP traffic at a 13 Mb/s data rate (e.g. a streaming

application), without interruption, to STA1 and STA2, respectively. At around 170 seconds,

AP3 sends a UDP traffic to STA3 at a 13 Mb/s data rate during 120 seconds. At the end of

the transmission, AP3 switches to channel 11, as designated by the channelmon application.

AP3 then resends a UDP traffic to STA3 during 120 seconds.
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Figure 7.10 shows the results of this evaluation. When sharing channel 1 with WLAN1,

between seconds 170 and 290, WLAN3 has a throughput of 11.7 Mb/s. After switching to

channel 11, the UDP traffic of WLAN3 has a stable throughput of 13 Mb/s. Figure 7.11

shows the aggregate throughput of the three WLANs along the experiment. We observe

that after the channel switch, the three UDP flows have a stable throughput of 13 Mb/s,

making a total throughput of 39 Mb/s.

10

15

0 100 200 300 400 500 600

Th
ro

ug
hp

ut
(M

b/
s)

Time (seconds)

WLAN 1 WLAN 2 WLAN 3

Channel Switch: 1 to 11

Figure 7.10: UDP traffic evaluation: WLAN3 switches from channel 1 to channel 11, and
thus improves its throughput.
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Figure 7.11: UDP traffic evaluation: aggregate throughput of all three WLANs.

With all the results obtained, we conclude that our channel selection mechanism, based

on our traffic-aware metric, effectively improves the network performance by choosing the

channel with the least interference.

7.6 Summary

In this chapter, we presented a new solution for the channel selection problem, specifically

designed for uncoordinated Home WLANs. Our mechanism is adaptive and online, because

it takes into account the dynamics of the wireless medium; and it is passive, because

it monitors every channel during a fixed amount of time, in order to capture the traffic
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characteristics of every channel. We proposed a traffic-aware metric that quantifies the

amount of interference a channel suffers from its neighboring channels. We implemented our

technique in off-the-shelf hardware, without any modification in the clients, and evaluated

two different scenarios using TCP and UDP downlink traffic. Results show that our technique

improves the network performance, by choosing the channel with the least interference.

Future work should include: adjustment of parameters, such as the window size W ,

the monitoring interval i, and more importantly, the Interference Factor IF(∆) (i.e., find

the optimal value of K through simulations); performance evaluations that include the

interference measured by clients; and further evaluations to determine the scalability and

convergence of the algorithm.
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The subject of study in this dissertation has been single-hop infrastructure IEEE 802.11

WLANs. In particular, we examined the important aspects of a WLAN’s deployment

and identified issues that can affect its performance. Reviewing the state of the art,

we observed that numerous research efforts have proposed diverse solutions with several

limitations that impede their use in existing WLANs: they propose manual or static

optimization mechanisms, cannot be practically implemented in today’s wireless cards, or

require modifications in the IEEE 802.11 standard, neglecting interoperability with existing

WiFi devices.

Motivated by these challenges, the aim of this dissertation has been to design and

implement novel but practical solutions that address open issues affecting the performance

of IEEE 802.11 WLANs. We focused on the following aspects of WLANs: client mobility,

channel management, and quality of service, and explored three different scenarios for

the most common deployments: an enterprise, a city (urban area), and a personal resi-

dence (home). For each scenario, we identified interesting opportunities for optimization

and innovation and proposed original solutions, which we validated via simulation and

experimentation.

In this final chapter, we first summarize the main contributions of our dissertation and

then outline future research directions for our work.

101
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8.1 Contributions

To provide a common basis for practical implementation of new 802.11 solutions, we

presented a Smart AP model, inspired by self-management techniques. We adopted an

AP-based approach, which does not require any modification in the clients. Indeed, the

proposed mechanisms can benefit from the AP’s leading role in a WLAN to improve the

network performance of the clients. Furthermore, clients are now so diverse that a global

driver modification has become an almost impossible task.

Our primary objective was to develop novel and practical 802.11 solutions that can

be deployed in existing WLANs and thus do not introduce changes in the WiFi protocol,

allowing interoperability with today’s WiFi devices. We utilized adaptive algorithms in

order to reflect the wireless medium and network dynamics, by continuous monitoring and

measurement of the current performance. Cross-layer design played an important role there,

by combining information from the Physical and MAC layers.

We presented the basic architecture for the implementation of our Smart AP model,

which principally consists of two commodity 802.11 Atheros-based wireless cards, extensively

used by the research community. One wireless card is responsible for the AP functionality,

while the other card is dedicated to monitoring activity in all channels, allowing the AP to

simultaneously serve the clients in its own channel, without interruption. We implemented

our solutions as applications that run in user space, which alleviates the dependence on the

driver and kernel versions.

The main contributions of this thesis are the following:

1. We presented a transparent mobility solution for VoIP services in Enterprise WLANs,

called Multichannel Virtual Access Points (mVAP). It provides seamless handoffs

with no performance degradation, for applications with tight delay constraints. This

network-based mobility technique does not introduce any modification in the client

behavior and is compatible with the existing 802.11 protocol.

We implemented mVAP in commodity hardware, using a brand new version of our

PACMAP framework and running on top of the MadWifi driver. We experimentally

evaluated the mVAP performance with different VoIP codecs: results showed that

mVAP handles the change of AP without disrupting the ongoing communications and

offers exceptional handoff performance.

2. We investigated the feasibility of exploiting the WiFi coverage in urban areas for

mobile Internet access. First, we characterized the distribution of the WiFi APs

already deployed in a city and properties such as channel assignment, link quality,

and authentication mode. We also studied the patterns of users’ paths in order to

derive a simple mobility model.

We simulated different scenarios, varying mobile user speeds and AP properties such as

range, association type, and handoff parameters, and we measured the WiFi coverage,
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Internet access session, connection, and disconnection durations. The results showed

that the existing WiFi coverage is large and the connectivity it offers can be exploited

in new and creative ways.

Finally, we proposed several applications that can benefit from this Internet access

provided by already deployed WiFi APs, and discussed the challenges that should be

faced in order to run these applications effectively.

3. We proposed an adaptive traffic-aware channel selection mechanism for uncoordinated

Home WLANs. Our technique takes into account the dynamics of the wireless medium

and makes online channel switch decisions based on local measurements. Channel load

estimation is done in a transparent and passive way, by monitoring every channel and

without introducing traffic to measure the interference. We proposed a traffic-aware

metric and showed that this metric accurately quantifies the amount of interference a

channel suffers from its neighboring channels.

We implemented a proof-of-concept of our technique using commodity WiFi cards

and evaluated two scenarios using, respectively, TCP and UDP downlink traffic. The

results obtained showed that this channel selection mechanism, based on our traffic-

aware metric, effectively improves the network performance by constantly choosing

the channel with the least interference.

8.2 Future Work

The work presented in this dissertation has permitted us to identify new opportunities

and open challenges related to the deployment and utilization of IEEE 802.11 WLANs.

We now divide extensions of our work into two categories: (1) Enterprise and Home

WLANs, which are indoor deployments where clients are trusted and allowed access to all

available resources, and (2) Citywide networks, which are loose collections of APs distributed

throughout a city, where clients are roaming and allowed only partial access to resources,

usually broadband Internet connections.

Enterprise and Home WLANs

The development of a complete Smart AP framework (based on our model) is critical

to enable the automation of WLANs. The Smart AP manages the radio and network

resources for the subsequent optimization of the WLAN’s performance. It follows an

autonomic approach, in which the AP continuously monitors the environment and the

WLAN’s performance, and performs specific actions to adapt to the current scenario and

demands. This framework could be implemented in OpenWrt, which already provides a

package manager for easy customization and upgrades. Algorithms designed for different

scenarios and goals (for instance, our mVAP and channel selection mechanisms) could be
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easily “plugged-in” to the framework, providing a common platform for the deployment of

research prototypes and facilitating code reuse.

Despite the utilization of fast communication techniques such as MIMO, wider-bandwidth

channels, and IEEE 802.11ad Gigabit WiFi, traffic management is still an open challenge

in WLANs, as WiFi-enabled devices continue to proliferate. Web traffic (mostly downlink)

represents a significant fraction of the total amount of data traffic, and video consumption

over the Internet (downlink and uplink) is predicted to increase considerably in the next few

years [79]. Data-hungry devices such as smartphones and tablets compete with real-time

and rich-media applications for channel access and bandwidth, so APs must implement

mechanisms to provide real-time QoS guarantees, and estimate and anticipate traffic

demands.

Citywide networks

Users who access the Internet primarily via mobile wireless connections can benefit from

inter-technology mobility in urban areas. But there are two important problems that need

to be solved in order to improve the performance of such a mobile wireless connectivity:

• support of seamless mobility between heterogeneous wireless technologies, by means

of intelligent handover decisions;

• smooth adaptation of multimedia content across the different connections, e.g. dynamic

adjustment of video bit rate and resolution.

Moreover, the caching of popular data close to users has recently attracted research

attention [56]. In this approach, data is generally stored in the routers along the network

path, in order to minimize network traffic and provide faster content delivery. A new

interesting proposal for this problem would be to store and cache data in the numerous APs

deployed throughout cities. However, their limited storage capacity is one of the challenges

to overcome when developing such a solution.
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